home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE SPPDI(AP,N,DET,JOB)
- INTEGER N,JOB
- REAL AP(1)
- REAL DET(2)
- C
- C SPPDI COMPUTES THE DETERMINANT AND INVERSE
- C OF A REAL SYMMETRIC POSITIVE DEFINITE MATRIX
- C USING THE FACTORS COMPUTED BY SPPCO OR SPPFA .
- C
- C ON ENTRY
- C
- C AP REAL (N*(N+1)/2)
- C THE OUTPUT FROM SPPCO OR SPPFA.
- C
- C N INTEGER
- C THE ORDER OF THE MATRIX A .
- C
- C JOB INTEGER
- C = 11 BOTH DETERMINANT AND INVERSE.
- C = 01 INVERSE ONLY.
- C = 10 DETERMINANT ONLY.
- C
- C ON RETURN
- C
- C AP THE UPPER TRIANGULAR HALF OF THE INVERSE .
- C THE STRICT LOWER TRIANGLE IS UNALTERED.
- C
- C DET REAL(2)
- C DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
- C OTHERWISE NOT REFERENCED.
- C DETERMINANT = DET(1) * 10.0**DET(2)
- C WITH 1.0 .LE. DET(1) .LT. 10.0
- C OR DET(1) .EQ. 0.0 .
- C
- C ERROR CONDITION
- C
- C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
- C A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
- C IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
- C AND IF DPOCO OR DPOFA HAS SET INFO .EQ. 0 .
- C
- C LINPACK. THIS VERSION DATED 08/14/78 .
- C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
- C
- C SUBROUTINES AND FUNCTIONS
- C
- C BLAS SAXPY,SSCAL
- C FORTRAN MOD
- C
- C INTERNAL VARIABLES
- C
- REAL T
- REAL S
- INTEGER I,II,J,JJ,JM1,J1,K,KJ,KK,KP1,K1
- C
- C COMPUTE DETERMINANT
- C
- IF (JOB/10 .EQ. 0) GO TO 70
- DET(1) = 1.0E0
- DET(2) = 0.0E0
- S = 10.0E0
- II = 0
- DO 50 I = 1, N
- II = II + I
- DET(1) = AP(II)**2*DET(1)
- C ...EXIT
- IF (DET(1) .EQ. 0.0E0) GO TO 60
- 10 IF (DET(1) .GE. 1.0E0) GO TO 20
- DET(1) = S*DET(1)
- DET(2) = DET(2) - 1.0E0
- GO TO 10
- 20 CONTINUE
- 30 IF (DET(1) .LT. S) GO TO 40
- DET(1) = DET(1)/S
- DET(2) = DET(2) + 1.0E0
- GO TO 30
- 40 CONTINUE
- 50 CONTINUE
- 60 CONTINUE
- 70 CONTINUE
- C
- C COMPUTE INVERSE(R)
- C
- IF (MOD(JOB,10) .EQ. 0) GO TO 140
- KK = 0
- DO 100 K = 1, N
- K1 = KK + 1
- KK = KK + K
- AP(KK) = 1.0E0/AP(KK)
- T = -AP(KK)
- CALL SSCAL(K-1,T,AP(K1),1)
- KP1 = K + 1
- J1 = KK + 1
- KJ = KK + K
- IF (N .LT. KP1) GO TO 90
- DO 80 J = KP1, N
- T = AP(KJ)
- AP(KJ) = 0.0E0
- CALL SAXPY(K,T,AP(K1),1,AP(J1),1)
- J1 = J1 + J
- KJ = KJ + J
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- C
- C FORM INVERSE(R) * TRANS(INVERSE(R))
- C
- JJ = 0
- DO 130 J = 1, N
- J1 = JJ + 1
- JJ = JJ + J
- JM1 = J - 1
- K1 = 1
- KJ = J1
- IF (JM1 .LT. 1) GO TO 120
- DO 110 K = 1, JM1
- T = AP(KJ)
- CALL SAXPY(K,T,AP(J1),1,AP(K1),1)
- K1 = K1 + K
- KJ = KJ + 1
- 110 CONTINUE
- 120 CONTINUE
- T = AP(JJ)
- CALL SSCAL(J,T,AP(J1),1)
- 130 CONTINUE
- 140 CONTINUE
- RETURN
- END