
Object Pascal and Delphi
Topic groups See also
Object Pascal is a high-level, compiled, strongly typed language that supports structured and object-
oriented design. Its benefits include easy-to-read code, quick compilation, and the use of multiple unit
files for modular programming.
Object Pascal has special features that support Delphi’s component framework and RAD environment.
For the most part, descriptions and examples in this language reference assume that you are using
Object Pascal to develop Delphi applications.
Most Delphi developers write and compile their code in Delphi’s integrated development environment
(IDE). Delphi handles many details of setting up projects and source files, such as maintenance of
dependency information among units. Delphi also places constraints on program organization that are
not, strictly speaking, part of the Object Pascal language specification. For example, Delphi enforces
certain file- and program-naming conventions that you can avoid if you write your programs outside of
the IDE and compile them from the command prompt.
These Help topics generally assume that you are working in Delphi’s IDE and that you are building
applications that use the Visual Component Library (VCL). Occasionally, however, Delphi-specific rules
are distinguished from rules that apply to all Object Pascal programming.

Program organization
Topic groups See also
Programs are usually divided into source-code modules called units. Each program begins with a
heading, which specifies a name for the program. The heading is followed by an optional uses clause,
then a block of declarations and statements. The uses clause lists units that are linked into the program;
these units, which can be shared by different programs, often have uses clauses of their own.
The uses clause provides the compiler with information about dependencies among modules. Because
this information is stored in the modules themselves, Object Pascal programs do not require makefiles,
header files, or preprocessor “include” directives. (Delphi’s Project Manager generates a makefile each
time a project is loaded in the IDE, but saves these files only for project groups that include more than
one project.)
For further discussion of program structure and dependencies, see Programs and units.

Pascal source files
Topic groups See also
The compiler expects to find Pascal source code in files of three kinds:

unit source files, which end with the .PAS extension,
project files, which end with the .DPR extension, and
package source files, which end with the .DPK extension.

Unit source files contain most of the code in an application. Each Delphi application has a single project
file and several unit files; the project file—which corresponds to the “main” program file in traditional
Pascal—organizes the unit files into an application. Delphi automatically maintains a project file for each
application.
If you are compiling a program from the command line, you can put all your source code into unit (.PAS)
files. But if you use the Delphi IDE to build your application, you must have a project (.DPR) file.
Package source files are similar to project files, but they are used to construct special dynamic-link
libraries called packages. For more information about packages, see dynamic-link libraries and
packages.

Other files used to build applications
Topic groups See also
In addition to source-code modules, Delphi uses several non-Pascal files to build applications. These
files are maintained automatically by Delphi and include

form files, which end with the .DFM extension,
resource files, which end with the .RES extension, and
project options files, which end with the .DOF extension.

A form (.DFM) file is either a text file or a compiled Windows resource file that can contain bitmaps,
strings, and so forth. Each form file represents a single Delphi form, which usually corresponds to a
window or dialog box in a Windows application. The Delphi IDE allows you to view and edit form files as
text, and to save form files as either text or binary. Although the default behavior is to save form files as
text, they are usually not edited manually; it is more common to use Delphi’s visual design tools for this
purpose. Each Delphi project has at least one form, and each form has an associated unit (.PAS) file
that, by default, has the same name as the form file.
In addition to form files, each Delphi project uses a standard Windows resource (.RES) file to hold the
bitmap for the application’s icon. By default, this file has the same name as the project (.DPR) file. To
change an application’s icon, use Delphi’s Project Options dialog.
A project options (.DOF) file contains compiler and linker settings, search directories, version
information, and so forth. Each project has an associated project options file with the same name as the
project (.DPR) file. Usually, the options in this file are set from Delphi’s Project Options dialog.
Various tools in the Delphi IDE store data in files of other types. Desktop settings (.DSK) files contain
information about the arrangement of windows and other configuration options; .DSK files can be
project-specific or environment-wide. The Integrated Translation Environment generates .RPS and .DFN
files that contain information about resource localization. The Data Module Designer maintains diagram
descriptions in .DTI files. These files have no direct effect on compilation.

Compiler-generated files
Topic groups See also
The first time you build an application or a standard dynamic-link library, the compiler produces a .DCU
(Delphi compiled unit) file for each new unit used in your project; all the .DCU files in your project are
then linked to create a single .EXE (executable) or .DLL file. The first time you build a package, the
compiler produces a .DCU file for each new unit contained in the package, and then creates both
a .DCP and a .BPL file. (For more information about dynamic-link libraries and packages, see Dynamic-
link libraries and packages.) If you use the –GD switch, the linker generates a map file and a .DRC file;
the .DRC file, which contains string resources, can be compiled into a resource file.
When you rebuild a project, individual units are not recompiled unless their source (.PAS) files have
changed since the last compilation, or their .DCU files cannot be found, or you explicitly tell the compiler
to reprocess them. In fact, it is not necessary for a unit’s source file to be present at all, as long as the
compiler can find the .DCU file.

Example Programs
Topic groups See also
The examples that follow illustrate basic features of Object Pascal and Delphi programming. The first
two examples are not Delphi applications, but you can compile them from the command line.
A simple console application
A more complicated example
A Windows application

A simple console application
Topic groups See also
The program below is a simple console application that you can compile and run from the command
prompt.

program Greeting;

{$APPTYPE CONSOLE}

var MyMessage: string;

begin
 MyMessage := 'Hello world!';
 Writeln(MyMessage);
end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells the
compiler that this is a console application, to be run from the command line. The next line declares a
variable called MyMessage, which holds a string. (Object Pascal has genuine string data types.) The
program then assigns the string “Hello world!” to the variable MyMessage, and sends the contents of
MyMessage to the standard output using the Writeln procedure. (Writeln is defined implicitly in the
System unit, which the compiler automatically includes in every application.)
If you have Delphi installed and your Path includes the Delphi\Bin directory (where DCC32.EXE and
DCC32.CFG reside), you can type this program into a file called GREETING.PAS or GREETING.DPR
and compile it by entering

DCC32 GREETING
on the command line. The resulting executable (GREETING.EXE) prints the message “Hello world!”
Aside from its simplicity, this example differs in several important ways from programs that you are likely
to write with Delphi. First, it is a console application. Delphi is typically used to write Windows
applications with graphical interfaces; hence, in a Delphi application you would not ordinarily call Writeln.
Moreover, the entire example program (save for Writeln) is in a single file. In a Delphi application, the
program heading—the first line of the example—would be placed in a separate project file that would not
contain any of the actual application logic, other than a few calls to methods defined in unit files.

A more complicated example
Topic groups See also
The next example shows a program that is divided into two files: a project file and a unit file. The project
file, which you can save as GREETING.DPR, looks like this:

program Greeting;

{$APPTYPE CONSOLE}

uses Unit1;

begin
 PrintMessage('Hello World!');
end.

The first line declares a program called Greeting, which, once again, is a console application. The uses
Unit1; clause tells the compiler that Greeting includes a unit called Unit1. Finally, the program calls the
PrintMessage procedure, passing to it the string “Hello World!” Where does the PrintMessage procedure
come from? It’s defined in Unit1. Here’s the source code for Unit1, which you can save in a file called
UNIT1.PAS:

unit Unit1;

interface

procedure PrintMessage(msg: string);

implementation

procedure PrintMessage(msg: string);
begin
 Writeln(msg);
end;

end.

Unit1 defines a procedure called PrintMessage that takes a single string as an argument and sends the
string to the standard output. (In Pascal, routines that do not return a value are called procedures.
Routines that return a value are called functions.) Notice that PrintMessage is declared twice in Unit1.
The first declaration, under the reserved word interface, makes PrintMessage available to other
modules (such as Greeting) that use Unit1. The second declaration, under the reserved word
implementation, actually defines PrintMessage.
You can now compile Greeting from the command line by entering

DCC32 GREETING
There’s no need to include Unit1 as a command-line argument. When the compiler processes
GREETING.DPR, it automatically looks for unit files that the Greeting program depends on. The
resulting executable (GREETING.EXE) does the same thing as our first example: it prints the message
“Hello world!”

A Windows application
Topic groups See also
Our next example is a Windows application built with Delphi’s Visual Component Library (VCL). This
program uses Delphi-generated form and resource files, so you won’t be able to compile it from the
source code alone. But it illustrates important features of Object Pascal. In addition to multiple units, the
program uses classes and objects.
The program includes a project file and two new unit files. First, the project file:

program Greeting; { comments are enclosed in braces }

uses
 Forms,
 Unit1 { the unit for Form1 },
 Unit2 { the unit for Form2 };

{$R *.RES} { this directive links the project's resource file }

begin
 { calls to Application }
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.CreateForm(TForm2, Form2);
 Application.Run;
end.

Once again, our program is called Greeting. It uses three units: Forms, which is part of the VCL; Unit1,
which is associated with the application’s main form (Form1); and Unit2, which is associated with
another form (Form2).
The program makes a series of calls to an object named Application, which is an instance of the
TApplication class defined in the Forms unit. (Every Delphi project has an automatically generated
Application object.) Two of these calls invoke a TApplication method named CreateForm. The first call to
CreateForm creates Form1, an instance of the TForm1 class defined in Unit1. The second call to
CreateForm creates Form2, an instance of the TForm2 class defined in Unit2.
Unit1 looks like this:

unit Unit1;

interface

uses { these units are part of Delphi's Visual Component Library (VCL) }
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 end;

var
 Form1: TForm1;

implementation

uses Unit2; { this is where Form2 is defined }

{$R *.DFM} { this directive links Unit1's form file }

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Hide;

 Form2.Show;
end;

end.

Unit1 creates a class named TForm1 (derived from the VCL’s TForm) and an instance of this class,
Form1. TForm1 includes a button—Button1, an instance of TButton—and a procedure named
TForm1.Button1Click that is called at runtime whenever the user presses Button1. TForm1.Button1Click
does two things: it hides Form1 (the call to Form1.Hide) and it displays Form2 (the call to Form2.Show).
Form2 is defined in Unit2:

unit Unit2;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TForm2 = class(TForm)
 Label1: TLabel;
 CancelButton: TButton;
 procedure CancelButtonClick(Sender: TObject);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 end;

var
 Form2: TForm2;

implementation

uses Unit1;

{$R *.DFM}

procedure TForm2.CancelButtonClick(Sender: TObject);
begin
 Form2.Close;
end;

procedure TForm2.Form2Close(Sender: TObject; var Action: TCloseAction);
begin
 Form1.Show;
end;

end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. TForm2 includes a button
(CancelButton, an instance of TButton) and a label (Label1, an instance of TLabel). You can’t see this
from the source code, but Label1 displays a caption that reads “Hello world!” The caption is defined in
Form2’s form file, UNIT2.DFM.
Unit2 defines two procedures. TForm2.CancelButtonClick is called at runtime whenever the user
presses CancelButton; it closes Form2. TForm2.FormClose is called at runtime whenever Form2 closes;
it reopens Form1. These procedures (along with Unit1’s TForm1.Button1Click) are known as event
handlers because they respond to events that occur while the program is running. Event handlers are
assigned to specific events by the form (.DFM) files for Form1 and Form2.
When the Greeting program starts, Form1 is displayed and Form2 is invisible. (By default, only the first
form created in the project file is visible at runtime. This is called the project’s main form.) When the user
presses the button on Form1, Form1 disappears and is replaced by Form2, which displays the “Hello
world!” greeting. When the user closes Form2 (by pressing CancelButton or the Close button on the title
bar), Form1 reappears.

Programs and units
Topic groups See also
A program is constructed from source-code modules called units. Each unit is stored in its own file and
compiled separately; compiled units (.DCU files) are linked to create an application. Units allow you to

divide large programs into modules that can be edited separately.
create libraries that you can share among programs.
distribute libraries to other developers without making the source code available.

In traditional Pascal programming, all source code, including the main program, is stored in .PAS files.
Delphi uses a project (.DPR) file to store the “main” program, while most other source code resides in
unit (.PAS) files. Each application—or project—consists of a single project file and one or more unit files.
(Strictly speaking, you needn’t explicitly use any units in a project, but all programs automatically use the
System unit.) To build a project, the compiler needs either a source file or a previously compiled DCU for
each unit.

Program structure and syntax
Topic groups See also
A program contains

a program heading,
a uses clause (optional), and
a block of declarations and statements.

The program heading specifies a name for the program. The uses clause lists units used by the
program. The block contains declarations and statements that are executed when the program runs.
The Delphi IDE expects to find these three elements in a single project (.DPR) file.
The example below shows the project file for a program called Editor.

 1 program Editor;
 2
 3 uses
 4 Forms,
 5 REAbout in 'REABOUT.PAS' {AboutBox},
 6 REMain in 'REMain.pas' {MainForm};
 7
 8 {$R *.RES}
 9
10 begin
11 Application.Title := 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);
13 Application.Run;
14 end.

Line 1 contains the program heading. The uses clause is on lines 3 through 6. Line 8 is a compiler
directive that links the project’s resource file into the program. Lines 10 through 14 contain the block of
statements that are executed when the program runs. Finally, the project file, like all source files, ends
with a period.
This is in fact a fairly typical project file. Project files are usually short, since most of a program’s logic
resides in its unit files. Project files are generated and maintained by Delphi, and it is seldom necessary
to edit them manually.

The program heading
Topic groups See also
The program heading specifies the program’s name. It consists of the reserved word program, followed
by a valid identifier, followed by a semicolon. For Delphi applications, the identifier must match the
project file name. In the previous example, since the program is called Editor, the project file should be
called EDITOR.DPR.
In standard Pascal, a program heading can include parameters after the program name:

program Calc(input, output);
Delphi’s compiler ignores these parameters.

The program uses clause
Topic groups See also
The uses clause lists units that are incorporated into the program. These units may in turn have uses
clauses of their own. For more information about the uses clause, see Unit references and the uses
clause.

The block
Topic groups See also
The block contains a simple or structured statement that is executed when the program runs. In most
Delphi programs, the block consists of a compound statement—bracketed between the reserved words
begin and end—whose component statements are simply method calls to the project’s Application
object. (Every Delphi project has an Application variable that holds an instance of TApplication,
TWebApplication, or TServiceApplication.) The block can also contain declarations of constants, types,
variables, procedures, and functions; these declarations must precede the statement part of the block.

Unit structure and syntax
Topic groups See also
A unit consists of types (including classes), constants, variables, and routines (functions and
procedures). Each unit is defined in its own unit (.PAS) file.
A unit file begins with a unit heading, which is followed by the interface, implementation, initialization,
and finalization sections. The initialization and finalization sections are optional. A skeleton unit file looks
like this:

unit Unit1;

interface

uses { List of units goes here }

 { Interface section goes here }

implementation

uses { List of units goes here }

 { Implementation section goes here }

initialization
 { Initialization section goes here }

finalization
 { Finalization section goes here }

end.

The unit must conclude with the word end followed by a period.

The unit heading
Topic groups See also
The unit heading specifies the unit’s name. It consists of the reserved word unit, followed by a valid
identifier, followed by a semicolon. For Delphi applications, the identifier must match the unit file name.
Thus, the unit heading

unit MainForm;
would occur in a source file called MAINFORM.PAS, and the file containing the compiled unit would be
MAINFORM.DCU.
Unit names must be unique within a project. Even if their unit files are in different directories, two units
with the same name cannot be used in a single program.

The interface section
Topic groups See also
The interface section of a unit begins with the reserved word interface and continues until the beginning
of the implementation section. The interface section declares constants, types, variables, procedures,
and functions that are available toclients—that is, to other units or programs that use the unit where they
are declared. These entities are called public because a client can access them as if they were declared
in the client itself.
The interface declaration of a procedure or function includes only the routine’s heading. The block of the
procedure or function follows in the implementation section. Thus procedure and function declarations in
the interface section work like forward declarations, although the forward directive isn’t used.
The interface declaration for a class must include declarations for all class members.
The interface section can include its own uses clause, which must appear immediately after the word
interface. For information about the uses clause, see Unit references and the uses clause.

The implementation section
Topic groups See also
The implementation section of a unit begins with the reserved word implementation and continues until
the beginning of the initialization section or, if there is no initialization section, until the end of the unit.
The implementation section defines procedures and functions that are declared in the interface section.
Within the implementation section, these procedures and functions may be defined and called in any
order. You can omit parameter lists from public procedure and function headings when you define them
in the implementation section; but if you include a parameter list, it must match the declaration in the
interface section exactly.
In addition to definitions of public procedures and functions, the implementation section can declare
constants, types (including classes), variables, procedures, and functions that are private to the unit—
that is, inaccessible to clients.
The implementation section can include its own uses clause, which must appear immediately after the
word implementation. For information about the uses clause, see Unit references and the uses clause.

The initialization section
Topic groups See also
The initialization section is optional. It begins with the reserved word initialization and continues until
the beginning of the finalization section or, if there is no finalization section, until the end of the unit. The
initialization section contains statements that are executed, in the order in which they appear, on
program start-up. So, for example, if you have defined data structures that need to be initialized, you
can do this in the initialization section.
The initialization sections of units used by a client are executed in the order in which the units appear in
the client’s uses clause.

The finalization section
Topic groups See also
The finalization section is optional and can appear only in units that have an initialization section. The
finalization section begins with the reserved word finalization and continues until the end of the unit. It
contains statements that are executed when the main program terminates. Use the finalization section
to free resources that are allocated in the initialization section.
Finalization sections are executed in the opposite order from initializations. For example, if your
application initializes units A, B, and C, in that order, it will finalize them in the order C, B, and A.
Once a unit’s initialization code starts to execute, the corresponding finalization section is guaranteed to
execute when the application shuts down. The finalization section must therefore be able to handle
incompletely initialized data, since, if a runtime error occurs, the initialization code might not execute
completely.

Unit references and the uses clause
Topic groups See also
A uses clause lists units used by the program, library, or unit in which the clause appears. (For
information about libraries, see dynamic-link libraries and packages.) A uses clause can occur in

the project file for a program or library,
the interface section of a unit, and
the implementation section of a unit.

Most project files contain a uses clause, as do the interface sections of most units. The implementation
section of a unit can contain its own uses clause as well.
The System unit is used automatically by every Delphi application and cannot be listed explicitly in the
uses clause. (System implements routines for file I/O, string handling, floating point operations, dynamic
memory allocation, and so forth.) Other standard library units, such as SysUtils, must be included in the
uses clause. In most cases, Delphi places all necessary units in the uses clause when it generates and
maintains a source file.
For more information about the placement and content of the uses clause, see Multiple and indirect unit
references and Circular unit references.

Uses clause syntax

The syntax of a uses clause
Topic groups See also
A uses clause consists of the reserved word uses, followed by one or more comma-delimited unit
names, followed by a semicolon. Examples:

uses Forms, Main;
uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

In the uses clause of a program or library, any unit name may be followed by the reserved word in and
the name of a source file, with or without a directory path, in single quotation marks; directory paths can
be absolute or relative. Examples:

uses Windows, Messages, SysUtils, Strings in 'C:\Classes\Strings.pas', Classes;
uses
 Forms,
 Main,
 Extra in '..\EXTRA\EXTRA.PAS';

Include in ... after a unit name when you need to specify the unit’s source file. Since the Delphi IDE
expects unit names to match the names of the source files in which they reside, there is usually no
reason to do this. Using in is necessary only when the location of the source file is unclear, for example
when

You have used a source file that is in a different directory from the project file, and that directory is
not in the compiler’s search path or Delphi’s Library search path.

Different directories in the compiler’s search path have identically named units.
You are compiling a console application from the command line, and you have named a unit with

an identifier that doesn’t match the name of its source file.
Delphi also relies on the in ... construction to determine which units are part of a project. Only units that
appear in a project (.DPR) file’s uses clause followed by in and a file name are considered to be part of
the project; other units in the uses clause are used by the project without belonging to it. This distinction
has no effect on compilation, but it affects IDE tools like the Project Manager and Project Browser.
In the uses clause of a unit, you cannot use in to tell the compiler where to find a source file. Every unit
must be in the compiler’s search path, Delphi’s Library search path, or the same directory as the unit
that uses it. Moreover, unit names must match the names of their source files.

Multiple and indirect unit references
Topic groups See also
The order in which units appear in the uses clause determines the order of their initialization (see The
initialization section)and affects the way identifiers are located by the compiler. If two units declare a
variable, constant, type, procedure, or function with the same name, the compiler uses the one from the
unit listed last in the uses clause. (To access the identifier from the other unit, you would have to add a
qualifier: UnitName.Identifier.)
A uses clause need include only units used directly by the program or unit in which the clause appears.
That is, if unit A references constants, types, variables, procedures, or functions that are declared in unit
B, then A must use B explicitly. If B in turn references identifiers from unit C, then A is indirectly
dependent on C; in this case, C needn’t be included in a uses clause in A, but the compiler must still be
able to find both B and C in order to process A.
The example below illustrates indirect dependency.

program Prog;
uses Unit2;
const a = b;
...
unit Unit2;
interface
uses Unit1;
const b = c;
...
unit Unit1;
interface
const c = 1;
...

In this example, Prog depends directly on Unit2, which depends directly on Unit1. Hence Prog is
indirectly dependent on Unit1. Because Unit1 does not appear in Prog’s uses clause, identifiers
declared in Unit1 are not available to Prog.
To compile a client module, the compiler needs to locate all units that the client depends on, directly or
indirectly. Unless the source code for these units has changed, however, the compiler needs only
their .DCU files, not their source (.PAS) files.
When changes are made in the interface section of a unit, other units that depend on it must be
recompiled. But when changes are made only in the implementation or other sections of a unit,
dependent units don’t have to be recompiled. The compiler tracks these dependencies automatically
and recompiles units only when necessary.

Circular unit references
Topic groups See also
When units reference each other directly or indirectly, the units are said to be mutually dependent.
Mutual dependencies are allowed as long as there are no circular paths connecting the uses clause of
one interface section to the uses clause of another. In other words, starting from the interface section of
a unit, it must never be possible to return to that unit by following references through interface sections
of other units. For a pattern of mutual dependencies to be valid, each circular reference path must lead
through the uses clause of at least one implementation section.
In the simplest case of two mutually dependent units, this means that the units cannot list each other in
their interface uses clauses. So the following example leads to a compilation error:

unit Unit1;
interface
uses Unit2;
...
unit Unit2;
interface
uses Unit1;
...

However, the two units can legally reference each other if one of the references is moved to the
implementation section:

unit Unit1;
interface
uses Unit2;
...
unit Unit2;
interface
...
implementation
uses Unit1;
...

To reduce the chance of circular references, it’s a good idea to list units in the implementation uses
clause whenever possible. Only when identifiers from another unit are used in the interface section is it
necessary to list that unit in the interface uses clause.

Syntactic elements
Topic groups See also
Object Pascal uses the ASCII character set, including the letters A through Z and a through z, the digits
0 through 9, and other standard characters. It is not case-sensitive. The space character (ASCII 32) and
the control characters (ASCII 0 through 31—including ASCII 13, the return or end-of-line character) are
called blanks.
Fundamental syntactic elements, called tokens, combine to form expressions, declarations, and
statements. A statement describes an algorithmic action that can be executed within a program. An
expression is a syntactic unit that occurs within a statement and denotes a value. A declaration defines
an identifier (such as the name of a function or variable) that can be used in expressions and
statements, and, where appropriate, allocates memory for the identifier.

Fundamental syntactic elements
Topic groups See also
On the simplest level, a program is a sequence of tokens delimited by separators. A token is the
smallest meaningful unit of text in a program. A separator is either a blank or a comment. Strictly
speaking, it is not always necessary to place a separator between two tokens; for example, the code
fragment

Size:=20;Price:=10;
is perfectly legal. Convention and readability, however, dictate that we write this as

Size := 20;
Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives, numerals, labels, and
character strings. A separator can be part of a token only if the token is a character string. Adjacent
identifiers, reserved words, numerals, and labels must have one or more separators between them.

Special symbols
Topic groups See also
Special symbols are nonalphanumeric characters, or pairs of such characters, that have fixed meanings.
The following single characters are special symbols.
$ & ' () * + , – . / : ; < = > @ [] ^ { }
The following character pairs are also special symbols.
(* (. *) .) .. // := <= >= < >
The left bracket — [— is equivalent to the character pair of left parenthesis and period — (. ; the right
bracket —] — is equivalent to the character pair of period and right parenthesis — .) . The left-
parenthesis–plus–asterisk and asterisk–plus–right-parenthesis — (* *) — are equivalent to the left and
right brace — { } .
Notice that !, " (double quotation marks), %, ?, \, _ (underscore), |(pipe), and ~ (tilde) are not special
characters.

Identifiers
Topic groups See also
Identifiers denote constants, variables, fields, types, properties, procedures, functions, programs, units,
libraries, and packages. An identifier can be of any length, but only the first 255 characters are
significant. An identifier must begin with a letter or an underscore (_) and cannot contain spaces; letters,
digits, and underscores are allowed after the first character. Reserved words cannot be used as
identifiers.
Since Object Pascal is case-insensitive, an identifier like CalculateValue could be written in any of these
ways:

CalculateValue
calculateValue
calculatevalue
CALCULATEVALUE

Qualified identifiers
When you use an identifier that has been declared in more than one place, it is sometimes necessary to
qualify the identifier. The syntax for a qualified identifier is

identifier1.identifier2
where identifier1 qualifies identifier2. For example, if two units each declare a variable called
CurrentValue, you can specify that you want to access the CurrentValue in Unit2 by writing

Unit2.CurrentValue
Qualifiers can be iterated. For example,

Form1.Button1.Click
calls the Click method in Button1 of Form1.
If you don’t qualify an identifier, its interpretation is determined by the rules of scope described in Blocks
and scope.

Reserved words
Topic groups See also
The following reserved words cannot be redefined or used as identifiers.

and array as asm
begin case class const
constructor destructor dispinterface div
do downto else end
except exports file finalization
finally for function goto
if implementation in inherited
initialization inline interface is
label library mod nil
not object of or
out packed procedure program
property raise record repeat
resourcestring set shl shr
string then threadvar to
try type unit until
uses var while with
xor

In addition to the words above, private, protected, public, published, and automated act as reserved
words within object type declarations, but are otherwise treated as directives. The words at and on also
have special meanings.

Directives
Topic groups See also
Directives have special meanings in Object Pascal, but, unlike reserved words, appear only in contexts
where user-defined identifiers cannot occur. Hence—although it is inadvisable to do so—you can define
an identifier that looks exactly like a directive.

absolute abstract assembler automated
cdecl contains default dispid
dynamic export external far
forward implements index message
name near nodefault overload
override package pascal private
protected public published read
readonly register reintroduce requires
resident safecall stdcall stored
virtual write writeonly

Numerals
Topic groups See also
Integer and real constants can be represented in decimal notation as sequences of digits without
commas or spaces, and prefixed with the + or – operator to indicate sign. Values default to positive (so
that, for example, 67258 is equivalent to +67258) and must be within the range of the largest predefined
real or integer type.
Numerals with decimal points or exponents denote reals, while other numerals denote integers. When
the character E or e occurs within a real, it means “times ten to the power of”. For example, 7E–2 means
7 10^–2, and 12.25e+6 and 12.25e6 both mean 12.25
 10^6.
The dollar-sign prefix indicates a hexadecimal numeral—for example, $8F. Hexadecimals must be within
the range $00000000 to $FFFFFFFF. The sign of a hexadecimal is determined by the leftmost (most
significant) bit of its binary representation.
For more information about real and integer types, see Data types, variables, and constants. For
information about the data types of numerals, see True constants.

Labels
Topic groups See also
A label is a sequence of no more than four digits—that is, a numeral between 0 and 9999. Leading
zeros are not significant. Identifiers can also function as labels.
Labels are used in goto statements. For more information about goto statements and labels, see Goto
statements.

Character strings
Topic groups See also
A character string, also called a string literal or string constant, consists of a quoted string, a control
string, or a combination of quoted and control strings. Separators can occur only within quoted strings.
A quoted string is a sequence of up to 255 characters from the extended ASCII character set, written on
one line and enclosed by apostrophes. A quoted string with nothing between the apostrophes is a null
string. Two sequential apostrophes in a quoted string denote a single character, namely an apostrophe.
For example,

'BORLAND' { BORLAND }
'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }

A control string is a sequence of one or more control characters, each of which consists of the # symbol
followed by an unsigned integer constant from 0 to 255 (decimal or hexadecimal) and denotes the
corresponding ASCII character. The control string

#89#111#117
is equivalent to the quoted string

'You'
You can combine quoted strings with control strings to form larger character strings. For example, you
could use

'Line 1'#13#10'Line 2'
to put a carriage-return–line-feed between “Line 1” and “Line 2”. However, you cannot concatenate two
quoted strings in this way, since a pair of sequential apostrophes is interpreted as a single character. (To
concatenate quoted strings, use the + operator or simply combine them into a single quoted string.)
A character string’s length is the number of characters in the string. A character string of any length is
compatible with any string type, and with the PChar type when extended syntax is enabled ({$X+}). A
character string of length 1 is compatible with any character type, and a nonempty character string of
length n is compatible with packed arrays of n characters. For more information about string types, see
String types.

Comments and compiler directives
Topic groups See also
Comments are ignored by the compiler, except when they function as separators (delimiting adjacent
tokens) or compiler directives.
There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }
(* Text between a left-parenthesis-plus-asterisk and an
 asterisk-plus-right-parenthesis also constitutes a comment. *)
// Any text between a double-slash and the end of the line constitutes a comment.

A comment that contains a dollar sign ($) immediately after the opening { or (* is a compiler directive.
For example,

{$WARNINGS OFF}
tells the compiler not to generate warning messages.

Expressions
Topic groups See also
An expression is a construction that returns a value. For example,

X { variable }
@X { address of a variable }
15 { integer constant }
InterestRate { variable }
Calc(X,Y) { function call }
X * Y { product of X and Y }
Z / (1 - Z) { quotient of Z and (1 - Z) }
X = 1.5 { Boolean }
C in Range1 { Boolean }
not Done { negation of a Boolean }
['a','b','c'] { set }
Char(48) { value typecast }

The simplest expressions are variables and constants (described in Data types, variables, and
constants). More complex expressions are built from simpler ones using operators, function calls, set
constructors, indexes, and typecasts.

Operators
Topic groups See also
Operators behave like predefined functions that are part of the Object Pascal language. For example,
the expression (X + Y) is built from the variables X and Y—called operands—with the + operator; when
X and Y represent integers or reals, (X + Y) returns their sum. Operators include @, not, ^, *, /, div,
mod, and, shl, shr, as, +, –, or, xor, =, >, <, <>, <=, >=, in, and is.
The operators @, not, and ^ are unary (taking one operand). All other operators are binary (taking two
operands), except that + and – can function as either unary or binary. A unary operator always precedes
its operand (for example, -B), except for ^, which follows its operand (for example, P^). A binary operator
is placed between its operands (for example, A = 7).
Some operators behave differently depending on the type of data passed to them. For example, not
performs bitwise negation on an integer operand and logical negation on a Boolean operand. Such
operators appear below under multiple categories.
Except for ^, is, and in, all operators can take operands of type Variant.
The sections that follow assume some familiarity with Object Pascal data types.
For information about operator precedence in complex expressions, see Operator precedence rules.
Arithmetic operators
Boolean operators
Logical (bitwise) operators
String operators
Pointer operators
Set operators
Relational operators
Class operators
The @ operator

Arithmetic operators
Topic groups See also
Arithmetic operators, which take real or integer operands, include +, –, *, /, div, and mod.

Operator Operation Operand types Result type Example
+ addition integer, real integer, real X + Y
– subtraction integer, real integer, real Result - 1
* multiplication integer, real integer, real P * InterestRate
/ real division integer, real real X / 2
div integer division integer integer Total div UnitSize
mod remainder integer integer Y mod 6

Operator Operation Operand type Result type Example
+ (unary) sign identity integer, real integer, real +7
– (unary) sign negation integer, real integer, real -X

The following rules apply to arithmetic operators.
The value of x/y is of type Extended, regardless of the types of x and y. For other arithmetic

operators, the result is of type Extended whenever at least one operand is a real; otherwise, the result is
of type Int64 when at least one operand is of type Int64; otherwise, the result is of type Integer. If an
operand’s type is a subrange of an integer type, it is treated as if it were of the integer type.

The value of x div y is the value of x/y rounded in the direction of zero to the nearest integer.
The mod operator returns the remainder obtained by dividing its operands. In other words, x mod

y = x – (x div y) * y.
A runtime error occurs when y is zero in an expression of the form x/y, x div y, or x mod y.

Boolean operators
Topic groups See also
The Boolean operators not, and, or, and xor take operands of any Boolean type and return a value of
type Boolean.

Operator Operation Operand types Result type Example
not negation Boolean Boolean not (C in MySet)
and conjunction Boolean Boolean Done and (Total > 0)
or disjunction Boolean Boolean A or B
xor exclusive disjunction Boolean Boolean A xor B

These operations are governed by standard rules of Boolean logic. For example, an expression of the
form x and y is True if and only if both x and y are True.

Complete versus short-circuit Boolean evaluation
The Delphi compiler supports two modes of evaluation for the and and or operators: complete
evaluation and short-circuit (partial) evaluation. Complete evaluation means that each conjunct or
disjunct is evaluated, even when the result of the entire expression is already determined. Short-circuit
evaluation means strict left-to-right evaluation that stops as soon as the result of the entire expression is
determined. For example, if the expression A and B is evaluated under short-circuit mode when A is
False, the compiler won’t evaluate B; it knows that the entire expression is False as soon as it evaluates
A.
Short-circuit evaluation is usually preferable because it guarantees minimum execution time and, in
most cases, minimum code size. Complete evaluation is sometimes convenient when one operand is a
function with side effects that alter the execution of the program.
Short-circuit evaluation also allows the use of constructions that might otherwise result in illegal runtime
operations. For example, the following code iterates through the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do
begin
 ...
 Inc(I);
end;

In a case where S has no commas, the last iteration increments I to a value which is greater than the
length of S. When the while condition is next tested, complete evaluation results in an attempt to read
S[I], which could cause a runtime error. Under short-circuit evaluation, in contrast, the second part of the
while condition — (S[I] <> ',') — is not evaluated after the first part fails.
Use the $B compiler directive to control evaluation mode. The default state is {$B–}, which enables
short-circuit evaluation. To enable complete evaluation locally, add the {$B+} directive to your code. You
can also switch to complete evaluation on a project-wide basis by selecting Complete Boolean
Evaluation in the Compiler Options dialog.

Logical (bitwise) operators
Topic groups See also
The following logical operators perform bitwise manipulation on integer operands. For example, if the
value stored in X (in binary) is 001101 and the value stored in Y is 100001, the statement

Z := X or Y;
assigns the value 101101 to Z.

Operator Operation Operand types Result type Examples
not bitwise negation integer integer not X
and bitwise and integer integer X and Y
or bitwise or integer integer X or Y
xor bitwise xor integer integer X xor Y
shl bitwise shift left integer integer X shl 2
shr bitwise shift right integer integer Y shl I

The following rules apply to bitwise operators.
The result of a not operation is of the same type as the operand.
If the operands of an and, or, or xor operation are both integers, the result is of the predefined

integer type with the smallest range that includes all possible values of both types.
The operations x shl y and x shr y shift the value of x to the left or right by y bits, which is

equivalent to multiplying or dividing x by 2^y; the result is of the same type as x. For example, if N stores
the value 01101 (decimal 13), then N shl 1 returns 11010 (decimal 26).

String operators
Topic groups See also
The relational operators =, <>, <, >, <=, and >= all take string operands (see Relational operators). The
+ operator concatenates two strings.

Operator Operation Operand types Result type Example
+ concatenation string, packed string, character string S + '. '

The following rules apply to string concatenation.
The operands for + can be strings, packed strings (packed arrays of type Char), or characters.

However, if one operand is of type WideChar, the other operand must be a long string.
The result of a + operation is compatible with any string type. However, if the operands are both

short strings or characters, and their combined length is greater than 255, the result is truncated to the
first 255 characters.

Pointer operators
Topic groups See also
The relational operators <, >, <=, and >= can take operands of type PChar (see Relational operators).
The following operators also take pointers as operands. For more information about pointers, see
Pointers and pointer types.

Operator Operation Operand types Result type Example
+ pointer addition character pointer, integer character pointer P + I
- pointer subtraction character pointer, integer character pointer, integer P - Q
^ pointer dereference pointer base type of pointer P^
= equality pointer Boolean P = Q
<> inequality pointer Boolean P <> Q

The ^ operator dereferences a pointer. Its operand can be a pointer of any type except the generic
Pointer, which must be typecast before dereferencing.
P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is True.
You can use the + and – operators to increment and decrement the offset of a character pointer. You
can also use – to calculate the difference between the offsets of two character pointers. The following
rules apply.

If I is an integer and P is a character pointer, then P + I adds I to the address given by P; that is, it
returns a pointer to the address I characters after P. (The expression I + P is equivalent to P + I.) P – I
subtracts I from the address given by P; that is, it returns a pointer to the address I characters before P.

If P and Q are both character pointers, then P – Q computes the difference between the address
given by P (the higher address) and the address given by Q (the lower address); that is, it returns an
integer denoting the number of characters between P and Q. P + Q is not defined.

Set operators
Topic groups See also
The following operators take sets as operands.

Operator Operation Operand types Result type Example
+ union set set Set1 + Set2
– difference set set S - T
* intersection set set S * T
<= subset set Boolean Q <= MySet
>= superset set Boolean S1 >= S2
= equality set Boolean S2 = MySet
<> inequality set Boolean MySet <> S1
in membership ordinal, set Boolean A in Set1

The following rules apply to +, –, and *.
An ordinal O is in X + Y if and only if O is in X or Y (or both). O is in X – Y if and only if O is in X

but not in Y. O is in X * Y if and only if O is in both X and Y.
The result of a +, –, or * operation is of the type set of A..B, where A is the smallest ordinal value

in the result set and B is the largest.
The following rules apply to <=, >=, =, <>, and in.

X <= Y is True just in case every member of X is a member of Y; Z >= W is equivalent to W <= Z.
U = V is True just in case U and V contain exactly the same members; otherwise, U <> V is True.

For an ordinal O and a set S, O in S is True just in case O is a member of S.

Relational operators
Topic groups See also
Relational operators are used to compare two operands. The operators =, <>, <=, and >= also apply to
sets (see Set operators); = and <> also apply to pointers (see Pointer operators).

Operator Operation Operand types Result
type

Example

= equality simple, class, class reference, interface,
string, packed string

Boolean I = Max

<> inequality simple, class, class reference, interface,
string, packed string

Boolean X <> Y

< less-than simple, string, packed string, PChar Boolean X < Y
> greater-than simple, string, packed string, PChar Boolean Len > 0
<= less-than-or-

equal-to
simple, string, packed string, PChar Boolean Cnt <= I

>= greater-than-or-
equal-to

simple, string, packed string, PChar Boolean I >= 1

For most simple types, comparison is straightforward. For example, I = J is True just in case I and J
have the same value, and I <> J is True otherwise. The following rules apply to relational operators.

Operands must be of compatible types, except that a real and an integer can be compared.
Strings are compared according to the ordering of the extended ASCII character set. Character

types are treated as strings of length 1.
Two packed strings must have the same number of components to be compared. When a packed

string with n components is compared to a string, the packed string is treated as a string of length n.
The operators <, >, <=, and >= apply to PChar operands only if the two pointers point within the

same character array.
The operators = and <> can take operands of class and class-reference types. With operands of

a class type, = and <> are evaluated according the rules that apply to pointers: C = D is True just in case
C and D point to the same instance object, and C <> D is True otherwise. With operands of a class-
reference type, C = D is True just in case C and D denote the same class, and C <> D is True otherwise.
For more information about classes, see Classes and objects.

Class operators
Topic groups See also
The operators as and is take classes and instance objects as operands; as operates on interfaces as
well. For more information, see Classes and objects and Object interfaces.
The relational operators = and <> also operate on classes. See Relational operators.

The @ operator
Topic groups See also
The @ operator returns the address of a variable, or of a function, procedure, or method; that is, @
constructs a pointer to its operand. For more information about pointers, see Pointers and pointer types.
The following rules apply to @.

If X is a variable, @X returns the address of X. (Special rules apply when X is a procedural
variable; see Procedural types in statements and expressions.) The type of @X is Pointer if the default
{$T–} compiler directive is in effect. In the {$T+} state, @X is of type ^T, where T is the type of X.

If F is a routine (a function or procedure), @F returns F’s entry point. The type of @F is always
Pointer.

When @ is applied to a method defined in a class, the method identifier must be qualified with the
class name. For example,

@TMyClass.DoSomething
points to the DoSomething method of TMyClass. For more information about classes and methods,
see Classes and objects.

Operator precedence rules
Topic groups See also
In complex expressions, rules of precedence determine the order in which operations are performed.

Operators Precedence
@, not first (highest)
*, /, div, mod, and, shl, shr, as second
+, –, or, xor third
=, <>, <, >, <=, >=, in, is fourth (lowest)

An operator with higher precedence is evaluated before an operator with lower precedence, while
operators of equal precedence associate to the left. Hence the expression

X + Y * Z
multiplies Y times Z, then adds X to the result; * is performed first, because is has a higher precedence
than +. But

X - Y + Z
first subtracts Y from X, then adds Z to the result; – and + have the same precedence, so the operation
on the left is performed first.
You can use parentheses to override these precedence rules. An expression within parentheses is
evaluated first, then treated as a single operand. For example,

(X + Y) * Z
multiplies Z times the sum of X and Y.
Parentheses are sometimes needed in situations where, at first glance, they seem not to be. For
example, consider the expression

X = Y or X = Z
The intended interpretation of this is obviously

(X = Y) or (X = Z)
Without parentheses, however, the compiler follows operator precedence rules and reads it as

(X = (Y or X)) = Z
—which results in a compilation error unless Z is Boolean.
Parentheses often make code easier to write and to read, even when they are, strictly speaking,
superfluous. Thus the first example above could be written as

X + (Y * Z)
Here the parentheses are unnecessary (to the compiler), but they spare both programmer and reader
from having to think about operator precedence.

Function calls
Topic groups See also
Because functions return a value, function calls are expressions. For example, if you’ve defined a
function called Calc that takes two integer arguments and returns an integer, then the function call
Calc(24, 47) is an integer expression. If I and J are integer variables, then I + Calc(J, 8) is also an
integer expression. Examples of function calls include

Sum(A, 63)
Maximum(147, J)
Sin(X + Y)
Eof(F)
Volume(Radius, Height)
GetValue
TSomeObject.SomeMethod(I,J);

For more information about functions, see Procedures and functions.

Set constructors
Topic groups See also
A set constructor denotes a set-type value. For example,

[5, 6, 7, 8]
denotes the set whose members are 5, 6, 7, and 8. The set constructor

[5..8]
could also denote the same set.
The syntax for a set constructor is

[item1, ..., itemn]
where each item is either an expression denoting an ordinal of the set’s base type or a pair of such
expressions with two dots (..) in between. When an item has the form x..y, it is shorthand for all the
ordinals in the range from x to y, inclusive; but if x is greater than y, then x..y denotes nothing and [x..y]
is the empty set. The set constructor [] denotes the empty set, while [x] denotes the set whose only
member is the value of x.
Examples of set constructors:

[red, green, MyColor]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z', Chr(Digit + 48)]

For more information about sets, see Sets.

Indexes
Topic groups See also
Strings, arrays, array properties, and pointers to strings or arrays can be indexed. For example, if
FileName is a string variable, the expression FileName[3] returns the third character in the string
denoted by FileName, while FileName[I + 1] returns the character immediately after the one indexed by
I. For information about strings, see String types. For information about arrays and array properties, see
Arrays and Array properties.

Typecasts
Topic groups See also
It is sometimes useful to treat an expression as if it belonged to different type. A typecast allows you to
do this by, in effect, temporarily changing an expression’s type. For example, Integer('A') casts the
character A as an integer.
The syntax for a typecast is

typeIdentifier(expression)
If the expression is a variable, the result is called a variable typecast; otherwise, the result is a value
typecast. While their syntax is the same, different rules apply to the two kinds of typecast.
Value typecasts
Variable typecasts

Value typecasts
Topic groups See also
In a value typecast, the type identifier and the cast expression must both be ordinal types or both be
pointer types. Examples of value typecasts include

Integer('A')
Char(48)
Boolean(0)
Color(2)
Longint(@Buffer)

The resulting value is obtained by converting the expression in parentheses. This may involve truncation
or extension if the size of the specified type differs from that of the expression. The expression’s sign is
always preserved.
The statement

I := Integer('A');
assigns the value of Integer('A')—that is, 65—to the variable I.
A value typecast cannot be followed by qualifiers and cannot appear on the left side of an assignment
statement.

Variable typecasts
Topic groups See also
You can cast any variable to any type, provided their sizes are the same and you do not mix integers
with reals. (To convert numeric types, rely on standard functions like Int and Trunc.) Examples of
variable typecasts include

Char(I)
Boolean(Count)
TSomeDefinedType(MyVariable)

Variable typecasts can appear on either side of an assignment statement. Thus
var MyChar: char;
...
Shortint(MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.
You can cast variables to a procedural type. For example, given the declarations

type Func = function(X: Integer): Integer;
var
 F: Func;
 P: Pointer;
 N: Integer;

you can make the following assignments.
F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }
P := @F; { Assign pointer value in F to P }
N := F(N); { Call function via F }
N := Func(P)(N); { Call function via P }

Variable typecasts can also be followed by qualifiers, as illustrated in the following example.
type
 TByteRec = record
 Lo, Hi: Byte;
 end;
 TWordRec = record
 Low, High: Word;
 end;
 PByte = ^Byte;
var
 B: Byte;
 W: Word;
 L: Longint;
 P: Pointer;
begin
 W := $1234;
 B := TByteRec(W).Lo;
 TByteRec(W).Hi := 0;
 L := $01234567;
 W := TWordRec(L).Low;
 B := TByteRec(TWordRec(L).Low).Hi;
 B := PByte(L)^;
end;

In this example, TByteRec is used to access the low- and high-order bytes of a word, and TWordRec to
access the low- and high-order words of a long integer. You could call the predefined functions Lo and
Hi for the same purpose, but a variable typecast has the advantage that it can be used on the left side of
an assignment statement.
For information about typecasting pointers, see Pointers and pointer types. For information about
casting class and interface types, see The as operator and Interface typecasts.

Declarations and statements
Topic groups See also
Aside from the uses clause (and reserved words like implementation that demarcate parts of a unit), a
program consists entirely of declarations and statements, which are organized into blocks.
Declarations
Statements

Declarations
Topic groups See also
The names of variables, constants, types, fields, properties, procedures, functions, programs, units,
libraries, and packages are called identifiers. (Numeric constants like 26057 are not identifiers.)
Identifiers must be declared before you can use them; the only exceptions are a few predefined types,
routines, and constants that the compiler understands automatically, the variable Result when it occurs
inside a function block, and the variable Self when it occurs inside a method implementation.
A declaration defines an identifier and, where appropriate, allocates memory for it. For example,

var Size: Extended;
declares a variable called Size that holds an Extended (real) value, while

function DoThis(X, Y: string): Integer;
declares a function called DoThis that takes two strings as arguments and returns an integer. Each
declaration ends with a semicolon. When you declare several variables, constants, types, or labels at
the same time, you need only write the appropriate reserved word once:

var
 Size: Extended;
 Quantity: Integer;
 Description: string;

The syntax and placement of a declaration depend on the kind of identifier you are defining. In general,
declarations can occur only at the beginning of a block or at the beginning of the interface or
implementation section of a unit (after the uses clause). Specific conventions for declaring variables,
constants, types, functions, and so forth are explained in the documentation for those topics.

Statements
Topic groups See also
Statements define algorithmic actions within a program. Simple statements—like assignments and
procedure calls—can combine to form loops, conditional statements, and other structured statements.
Multiple statements within a block, and in the initialization or finalization section of a unit, are separated
by semicolons.
Simple statements
Structured statements

Simple statements
Topic groups See also
A simple statement doesn’t contain any other statements. Simple statements include assignments, calls
to procedures and functions, and goto jumps.

Assignment statements
Topic groups See also
An assignment statement has the form

variable := expression
where variable is any variable reference—including a variable, variable typecast, dereferenced pointer,
or component of a structured variable—and expression is any assignment-compatible expression.
(Within a function block, variable can be replaced with the name of the function being defined. See
Procedures and functions.) The := symbol is sometimes called the assignment operator.
An assignment statement replaces the current value of variable with the value of expression. For
example,

I := 3;
assigns the value 3 to the variable I. The variable reference on the left side of the assignment can
appear in the expression on the right. For example,

I := I + 1;
increments the value of I. Other assignment statements include

X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I * K;
Shortint(MyChar) := 122;
TByteRec(W).Hi := 0;
MyString[I] := 'A';
SomeArray[I + 1] := P^;
TMyObject.SomeProperty := True;

Procedure and function calls
Topic groups See also
A procedure call consists of the name of a procedure (with or without qualifiers), followed by a
parameter list (if required). Examples include

PrintHeading;
Transpose(A, N, M);
Find(Smith, William);
Writeln('Hello world!');
DoSomething();
Unit1.SomeProcedure;
TMyObject.SomeMethod(X,Y);

Function calls, like calls to procedures, can be treated as statements in their own right:
MyFunction(X);

When you use a function call in this way, its return value is discarded.
For more information about procedures and functions, see Procedures and functions.

Goto statements
Topic groups See also
A goto statement, which has the form

goto label
transfers program execution to the statement marked by the specified label. To mark a statement, you
must first declare the label. Then precede the statement you want to mark with the label and a colon:

label: statement
Declare labels like this:

label label;
You can declare several labels at once:

label label1, ..., labeln;
A label can be any valid identifier or any numeral between 0 and 9999.
The label declaration, marked statement, and goto statement must belong to the same block. (See
Blocks and scope.) Hence it is not possible to jump into or out of a procedure or function. Do not mark
more than one statement in a block with the same label.
For example,

label StartHere;
...
StartHere: Beep;
goto StartHere;

creates an infinite loop that calls the Beep procedure repeatedly.
The goto statement is generally discouraged in structured programming. It is, however, sometimes used
as a way of exiting from nested loops, as in the following example.

procedure FindFirstAnswer;
var X, Y, Z, Count: Integer;
label FoundAnAnswer;
begin
 Count := SomeConstant;
 for X := 1 to Count do
 for Y := 1 to Count do
 for Z := 1 to Count do
 if ... { some condition holds on X, Y, and Z } then
 goto FoundAnAnswer;

 ... {code to execute if no answer is found }
 Exit;

 FoundAnAnswer:
 ... { code to execute when an answer is found }
end;

Notice that we are using goto to jump out of a nested loop. Never jump into a loop or other structured
statement, since this can have unpredictable effects.

Structured statements
Topic groups See also
Structured statements are built from other statements. Use a structured statement when you want to
execute other statements sequentially, conditionally, or repeatedly.

A compound or with statement simply executes a sequence of constituent statements.
A conditional statement—that is, an if or case statement—executes at most one of its

constituents, depending on specified criteria.
Loop statements—including repeat, while, and for loops—execute a sequence of constituent

statements repeatedly.
A special group of statements—including raise, try...except, and try...finally constructions—

create and handle exceptions. For information about exception generation and handling, see Exceptions.

Compound statements
Topic groups See also
A compound statement is a sequence of other (simple or structured) statements to be executed in the
order in which they are written. The compound statement is bracketed by the reserved words begin and
end, and its constituent statements are separated by semicolons. For example:

begin
 Z := X;
 X := Y;
 Y := Z;
end;

The last semicolon before end is optional. So we could have written this as
begin
 Z := X;
 X := Y;
 Y := Z
end;

Compound statements are essential in contexts where Object Pascal syntax requires a single
statement. In addition to program, function, and procedure blocks, they occur within other structured
statements, such as conditionals or loops. For example:

begin
 I := SomeConstant;
 while I > 0 do
 begin
 ...
 I := I - 1;
 end;
end;

You can write a compound statement that contains only a single constituent statement; like parentheses
in a complex term, begin and end sometimes serve to disambiguate and to improve readability. You can
also use an empty compound statement to create a block that does nothing:

begin
end;

With statements
Topic groups See also
A with statement is a shorthand for referencing the fields of a record or the fields, properties, and
methods of an object. The syntax of a with statement is

with obj do statement
or

with obj1, ..., objn do statement
where obj is a variable reference denoting an object or record, and statement is any simple or structured
statement. Within statement, you can refer to fields, properties, and methods of obj using their identifiers
alone—without qualifiers.
For example, given the declarations

type TDate = record
 Day: Integer;
 Month: Integer;
 Year: Integer;
end;
var OrderDate: TDate;

you could write the following with statement.
with OrderDate do
 if Month = 12 then
 begin
 Month := 1;
 Year := Year + 1;
 end
 else
 Month := Month + 1;

This is equivalent to
if OrderDate.Month = 12 then
begin
 OrderDate.Month := 1;
 OrderDate.Year := OrderDate.Year + 1;
end
else
 OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers, these actions are
performed once, before statement is executed. This makes with statements efficient as well as concise.
It also means that assignments to a variable within statement cannot affect the interpretation of obj
during the current execution of the with statement.
Each variable reference or method name in a with statement is interpreted, if possible, as a member of
the specified object or record. If there is another variable or method of the same name that you want to
access from the with statement, you need to prepend it with a qualifier, as in the following example.

with OrderDate do
 begin
 Year := Unit1.Year
 ...
 end;

When multiple objects or records appear after with, the entire statement is treated like a series of
nested with statements. Thus

with obj1, obj2, ..., objn do statement
is equivalent to

with obj1 do
 with obj2 do
 ...

 with objn do
 statement

In this case, each variable reference or method name in statement is interpreted, if possible, as a
member of objn; otherwise it is interpreted, if possible, as a member of objn–1; and so forth. The same
rule applies to interpreting the objs themselves, so that, for instance, if objn is a member of both obj1
and obj2, it is interpreted as obj2.objn.

If statements
Topic groups See also
There are two forms of if statement: if...then and the if...then...else. The syntax of an if...then
statement is

if expression then statement
where expression returns a Boolean value. If expression is True, then statement is executed; otherwise
it is not. For example,

if J <> 0 then Result := I/J;
The syntax of an if...then...else statement is

if expression then statement1 else statement2
where expression returns a Boolean value. If expression is True, then statement1 is executed; otherwise
statement2 is executed. For example,

if J = 0 then
 Exit
else
 Result := I/J;

The then and else clauses contain one statement each, but it can be a structured statement. For
example,

if J <> 0 then
begin
 Result := I/J;
 Count := Count + 1;
end
else if Count = Last then
 Done := True
else
 Exit;

Notice that there is never a semicolon between the then clause and the word else. You can place a
semicolon after an entire if statement to separate it from the next statement in its block, but the then
and else clauses require nothing more than a space or carriage return between them. Placing a
semicolon immediately before else (in an if statement) is a common programming error.
A special difficulty arises in connection with nested if statements. The problem arises because some if
statements have else clauses while others do not, but the syntax for the two kinds of statement is
otherwise the same. In a series of nested conditionals where there are fewer else clauses than if
statements, it may not seem clear which else clauses are bound to which ifs. Consider a statement of
the form

if expression1 then if expression2 then statement1 else statement2;
There would appear to be two ways to parse this:

if expression1 then [if expression2 then statement1 else statement2];
if expression1 then [if expression2 then statement1] else statement2;

The compiler always parses in the first way. That is, in real code, the statement
if ... { expression1 } then
 if ... { expression2 } then
 ... { statement1 }
 else
 ... { statement2 } ;

is equivalent to
if ... { expression1 } then
begin
 if ... { expression2 } then
 ... { statement1 }
 else
 ... { statement2 }

end;
The rule is that nested conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left. To force the compiler to read our example in the second way,
you would have to write it explicitly as

if ... { expression1 } then
begin
 if ... { expression2 } then
 ... { statement1 }
end
else
 ... { statement2 } ;

Case statements
Topic groups See also
The case statement provides a readable alternative to complex nested if conditionals. A case statement
has the form

case selectorExpression of
 caseList1: statement1;
 ...
 caseListn: statementn;
end

where selectorExpression is any expression of an ordinal type (string types are invalid) and each
caseList is one of the following:

A numeral, declared constant, or other expression that the compiler can evaluate without
executing your program. It must be of an ordinal type compatible with selectorExpression. Thus 7, True, 4
+ 5 * 3, 'A', and Integer('A') can all be used as caseLists, but variables and most function calls cannot. (A
few built-in functions like Hi and Lo can occur in a caseList. See Constant expressions.)

A subrange having the form First..Last, where First and Last both satisfy the criterion above and
First is less than or equal to Last.

A list having the form item1, ..., itemn, where each item satisfies one of the criteria above.
Each value represented by a caseList must be unique in the case statement; subranges and lists cannot
overlap. A case statement can have a final else clause:

case selectorExpression of
 caseList1: statement1;
 ...
 caseListn: statementn;
else
 statement;
end

When a case statement is executed, at most one of its constituent statements is executed. Whichever
caseList has a value equal to that of selectorExpression determines the statement to be used. If none of
the caseLists has the same value as selectorExpression, then the statement in the else clause (if there
is one) is executed.
The case statement

case I of
 1..5: Caption := 'Low';
 6..9: Caption := 'High';
 0, 10..99: Caption := 'Out of range';
else
 Caption := '';
end;

is equivalent to the nested conditional
if I in [1..5] then
 Caption := 'Low'
 else if I in [6..10] then
 Caption := 'High'
 else if (I = 0) or (I in [10..99]) then
 Caption := 'Out of range'
 else
 Caption := '';

Other examples of case statements:
case MyColor of
 Red: X := 1;
 Green: X := 2;
 Blue: X := 3;
 Yellow, Orange, Black: X := 0;

end;
case Selection of
 Done: Form1.Close;
 Compute: CalculateTotal(UnitCost, Quantity);
else
 Beep;
end;

Control loops
Topic groups See also
Loops allow you to execute a sequence of statements repeatedly, using a control condition or variable to
determine when the execution stops. Object Pascal has three kinds of control loop: repeat statements,
while statements, and for statements.
You can use the standard Break and Continue procedures to control the flow of a repeat, while, or for
statement. Break terminates the statement in which it occurs, while Continue begins executing the next
iteration of the sequence.
Repeat statements
While statements
For statements

Repeat statements
Topic groups See also
The syntax of a repeat statement is

repeat statement1; ...; statementn; until expression
where expression returns a Boolean value. (The last semicolon before until is optional.) The repeat
statement executes its sequence of constituent statements continually, testing expression after each
iteration. When expression returns True, the repeat statement terminates. The sequence is always
executed at least once because expression is not evaluated until after the first iteration.
Examples of repeat statements include

repeat
 K := I mod J;
 I := J;
 J := K;
until J = 0;
repeat
 Write('Enter a value (0..9): ');
 Readln(I);
until (I >= 0) and (I <= 9);

While statements
Topic groups See also
A while statement is similar to a repeat statement, except that the control condition is evaluated before
the first execution of the statement sequence. Hence, if the condition is false, the statement sequence is
never executed.
The syntax of a while statement is

while expression do statement
where expression returns a Boolean value and statement can be a compound statement. The while
statement executes its constituent statement repeatedly, testing expression before each iteration. As
long as expression returns True, execution continues.
Examples of while statements include

while Data[I] <> X do I := I + 1;
while I > 0 do
begin
 if Odd(I) then Z := Z * X;
 I := I div 2;
 X := Sqr(X);
end;
while not Eof(InputFile) do
begin
 Readln(InputFile, Line);
 Process(Line);
end;

For statements
Topic groups See also
A for statement, unlike a repeat or while statement, requires you to specify explicitly the number of
iterations you want the loop to go through. The syntax of a for statement is

for counter := initialValue to finalValue do statement
or

for counter := initialValue downto finalValue do statement
where

counter is a local variable (declared in the block containing the for statement) of ordinal type,
without any qualifiers.

initialValue and finalValue are expressions that are assignment-compatible with counter.
statement is a simple or structured statement that does not change the value of counter.

The for statement assigns the value of initialValue to counter, then executes statement repeatedly,
incrementing or decrementing counter after each iteration. (The for...to syntax increments counter, while
the for...downto syntax decrements it.) When counter returns the same value as finalValue, statement
is executed once more and the for statement terminates. In other words, statement is executed once for
every value in the range from initialValue to finalValue. If initialValue is equal to finalValue, statement is
executed exactly once. If initialValue is greater than finalValue in a for...to statement, or less than
finalValue in a for...downto statement, then statement is never executed. After the for statement
terminates, the value of counter is undefined.
For purposes of controlling execution of the loop, the expressions initialValue and finalValue are
evaluated only once, before the loop begins. Hence the for...to statement is almost, but not quite,
equivalent to this while construction:

begin
 counter := initialValue;
 while counter <= finalValue do
 begin
 statement;
 counter := Succ(counter);
 end;
end

The difference between this construction and the for...to statement is that the while loop re-evaluates
finalValue before each iteration. This can result in noticeably slower performance if finalValue is a
complex expression, and it also means that changes to the value of finalValue within statement can
affect execution of the loop.
Examples of for statements:

for I := 2 to 63 do
 if Data[I] > Max then
 Max := Data[I];
for I := ListBox1.Items.Count - 1 downto 0 do
 ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);
for I := 1 to 10 do
 for J := 1 to 10 do
 begin
 X := 0;
 for K := 1 to 10 do
 X := X + Mat1[I, K] * Mat2[K, J];
 Mat[I, J] := X;
 end;
for C := Red to Blue do Check(C);

Blocks and scope
Topic groups
Declarations and statements are organized into blocks, which define local namespaces (or scopes) for
labels and identifiers. Blocks allow a single identifier, such as a variable name, to have different
meanings in different parts of a program. Each block is part of the declaration of a program, function, or
procedure; each program, function, or procedure declaration has one block.
Blocks
Scope

Blocks
Topic groups See also
A block consists of a series of declarations followed by a compound statement. All declarations must
occur together at the beginning of the block. So the form of a block is

declarations
begin
 statements
end

The declarations section can include, in any order, declarations for variables, constants (including
resource strings), types, procedures, functions, and labels. In a program block, the declarations section
can also include one or more exports clauses (see Dynamic-link libraries and packages).
For example, in a function declaration like

function UpperCase(const S: string): string;
var
 Ch: Char;
 L: Integer;
 Source, Dest: PChar;
begin
 ...
end;

the first line of the declaration is the function heading and all of the succeeding lines make up the block.
Ch, L, Source, and Dest are local variables; their declarations apply only to the UpperCase function
block and override—in this block only—any declarations of the same identifiers that may occur in the
program block or in the interface or implementation section of a unit.

Scope
Topic groups See also
An identifier, such as a variable or function name, can be used only within the scope of its declaration.
The location of a declaration determines its scope. An identifier declared within the declaration of a
program, function, or procedure has a scope limited to the block in which it is declared. An identifier
declared in the interface section of a unit has a scope that includes any other units or programs that use
the unit where the declaration occurs. Identifiers with narrower scope—especially identifiers declared in
functions and procedures—are sometimes called local, while identifiers with wider scope are called
global.
The rules that determine identifier scope are summarized below.

If the identifier is declared in ... its scope extends ...
the declaration of a program, function, or
procedure

from the point where it is declared to the end of the
current block, including all blocks enclosed within
that scope.

the interface section of a unit from the point where it is declared to the end of the
unit, and to any other unit or program that uses that
unit. (See Programs and units.)

the implementation section of a unit, but not within
the block of any function or procedure

from the point where it is declared to the end of the
implementation section. The identifier is available to
any function or procedure within that implementation
section.

the definition of a record type (that is, the identifier
is the name of a field in the record)

from the point of its declaration to the end of the
field-type definition. (See Records.)

the definition of a class (that is, the identifier is the
name of a property or method in the class)

from the point of its declaration to the end of the
class-type definition, and also includes descendants
of the class and the blocks of all methods in the
class and its descendants. (See Classes and
objects.)

Naming conflicts
When one block encloses another, the former is called the outer block and the latter the inner block. If
an identifier declared in an outer block is redeclared in an inner block, the inner declaration overrides the
outer one and determines the meaning of the identifier for the duration of the inner block. For example, if
you declare a variable called MaxValue in the interface section of a unit, and then declare another
variable with the same name in a function declaration within that unit, any unqualified occurrences of
MaxValue in the function block are governed by the second, local declaration. Similarly, a function
declared within another function creates a new, inner scope in which identifiers used by the outer
function can be redeclared locally.
The use of multiple units further complicates the definition of scope. Each unit listed in a uses clause
imposes a new scope that encloses the remaining units used and the program or unit containing the
uses clause. The first unit in a uses clause represents the outermost scope and each succeeding unit
represents a new scope inside the previous one. If two or more units declare the same identifier in their
interface sections, an unqualified reference to the identifier selects the declaration in the innermost
scope—that is, in the unit where the reference itself occurs, or, if that unit doesn’t declare the identifier,
in the last unit in the uses clause that does declare the identifier.
The System unit is used automatically by every program or unit. The declarations in System, along with
the predefined types, routines, and constants that the compiler understands automatically, always have
the outermost scope.
You can override these rules of scope and by-pass an inner declaration by using a qualified identifier
(see Qualified identifiers) or a with statement (see With statements).

Data types and variables
Topic groups See also
A type is essentially a name for a kind of data. When you declare a variable you must specify its type,
which determines the set of values the variable can hold and the operations that can be performed on it.
Every expression returns data of a particular type, as does every function. Most functions and
procedures require parameters of specific types.
Object Pascal is a “strongly typed” language, which means that it distinguishes a variety of data types
and does not always allow you to substitute one type for another. This is usually beneficial because it
lets the compiler treat data intelligently and validate your code more thoroughly, preventing hard-to-
diagnose runtime errors. When you need greater flexibility, however, there are mechanisms to
circumvent strong typing. These include typecasting, pointers, variants, variant parts in records, and
absolute addressing of variables.

About types
Topic groups See also
There are several ways to categorize Object Pascal data types:

Some types are predefined (or built-in); the compiler recognizes these automatically, without the
need for a declaration. Almost all of the types documented in this language reference are predefined.
Other types are created by declaration; these include user-defined types and the types defined in Delphi’s
libraries.

Types can be classified as either fundamental or generic. The range and format of a fundamental
type is the same in all implementations of Object Pascal, regardless of the underlying CPU and operating
system. The range and format of a generic type is platform-specific and could vary across different
implementations. Most predefined types are fundamental, but a handful of integer, character, string, and
pointer types are generic. It’s a good idea to use generic types when possible, since they provide optimal
performance and portability. However, changes in storage format from one implementation of a generic
type to the next could cause compatibility problems—for example, if you are streaming data to a file.

Types can be classified as simple, string, structured, pointer, procedural, or variant. In addition,
type identifiers themselves can be regarded as belonging to a special “type” because they can be passed
as parameters to certain functions (such as High, Low, and SizeOf).
The outline below shows the taxonomy of Object Pascal data types.
simple

ordinal
integer
character
Boolean
enumerated
subrange

real
string
structured

set
array
record
file
class
class reference
interface

pointer
procedural
variant
(type identifier)
The standard function SizeOf operates on all variables and type identifiers. It returns an integer
representing the amount of memory (in bytes) used to store data of the specified type. For example,
SizeOf(Longint) returns 4, since a Longint variable uses four bytes of memory.
Type declarations are illustrated in the sections that follow. For general information about type
declarations, see Declaring types.

Simple types
Topic groups See also
Simple types, which include ordinal types and real types, define ordered sets of values.

Ordinal types
Topic groups See also
Ordinal types include integer, character, Boolean, enumerated, and subrange types. An ordinal type
defines an ordered set of values in which each value except the first has a unique predecessor and
each value except the last has a unique successor. Further, each value has an ordinality, which
determines the ordering of the type. For integer types, the ordinality of a value is the value itself; for all
other ordinal types except subranges, the first value has ordinality 0, the next value has ordinality 1, and
so forth. If a value has ordinality n, its predecessor has ordinality n – 1 and its successor has ordinality n
+ 1.
Several predefined functions operate on ordinal values and type identifiers. The most important of them
are summarized below.

Function Parameter Return value Remarks
Ord ordinal expression ordinality of expression’s

value
Does not take Int64
arguments.

Pred ordinal expression predecessor of
expression’s value

Do not use on properties that
have a write procedure.

Succ ordinal expression successor of expression’s
value

Do not use on properties that
have a write procedure.

High ordinal type identifier or
variable of ordinal type

highest value in type Also operates on short-string
types and arrays.

Low ordinal type identifier or
variable of ordinal type

lowest value in type Also operates on short-string
types and arrays.

For example, High(Byte) returns 255 because the highest value of type Byte is 255, and Succ(2) returns
3 because 3 is the successor of 2.
The standard procedures Inc and Dec increment and decrement the value of an ordinal variable. For
example, Inc(I) is equivalent to I := Succ(I) and, if I is an integer variable, to I := I + 1.

Integer types
Topic groups See also
An integer type represents a subset of the whole numbers. The generic integer types are Integer and
Cardinal; use these whenever possible, since they result in the best performance for the underlying CPU
and operating system. The table below gives their ranges and storage formats for the current 32-bit
Object Pascal compiler.

Type Range Format
Integer –2147483648..2147483647 signed 32-bit
Cardinal 0..4294967295 unsigned 32-bit

Fundamental integer types include Shortint, Smallint, Longint, Int64, Byte, Word, and Longword.

Type Range Format
Shortint –128..127 signed 8-bit
Smallint –32768..32767 signed 16-bit
Longint –2147483648..2147483647 signed 32-bit
Int64 –2^63..2^63–1 signed 64-bit
Byte 0..255 unsigned 8-bit
Word 0..65535 unsigned 16-bit
Longword 0..4294967295 unsigned 32-bit

In general, arithmetic operations on integers return a value of type Integer—which, in its current
implementation, is equivalent to the 32-bit Longint. Operations return a value of type Int64 only when
performed on an Int64 operand. Hence the following code produces incorrect results.

var
 I: Integer;
 J: Int64;
 ...
I := High(Integer);
J := I + 1;

To get an Int64 return value in this situation, cast I as Int64:
 ...
J := Int64(I) + 1;

For more information, see Arithmetic operators.
Note:Most standard routines that take integer arguments truncate Int64 values to 32 bits. However, the

High, Low, Succ, Pred, Inc, Dec, IntToStr, and IntToHex routines fully support Int64 arguments.
Also, the Round, Trunc, StrToInt64, and StrToInt64Def functions return Int64 values. A few routines
—including Ord—cannot take Int64 values at all.

When you increment the last value or decrement the first value of an integer type, the result wraps
around the beginning or end of the range. For example, the Shortint type has the range –128..127;
hence, after execution of the code

var I: Shortint;
 ...
I := High(Shortint);
I := I + 1;

the value of I is –128. If compiler range-checking is enabled, however, this code generates a runtime
error.

Character types
Topic groups See also
The fundamental character types are AnsiChar and WideChar. AnsiChar values are byte-sized (8-bit)
characters ordered according to the extended ANSI character set. WideChar values are word-sized (16-
bit) characters ordered according to the Unicode character set. The first 256 Unicode characters
correspond to the ANSI characters.
The generic character type is Char, which is equivalent to AnsiChar. Because the implementation of
Char is subject to change, it’s a good idea to use the standard function SizeOf rather than a hard-coded
constant when writing programs that may need to handle characters of different sizes.
A string constant of length 1, such as 'A', can denote a character value. The predefined function Chr
returns the character value for any integer in the range of AnsiChar or WideChar; for example, Chr(65)
returns the letter A.
Character values, like integers, wrap around when decremented or incremented past the beginning or
end of their range (unless range-checking is enabled). For example, after execution of the code

var
 Letter: Char;
 I: Integer;
begin
 Letter := High(Letter);
 for I := 1 to 66 do
 Inc(Letter);
end;

Letter has the value A (ASCII 65).

Boolean types
Topic groups See also
The four predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool. Boolean is the
preferred type. The others exist to provide compatibility with different languages and the Windows
environment.
A Boolean variable occupies one byte of memory, a ByteBool variable also occupies one byte, a
WordBool variable occupies two bytes (one word), and a LongBool variable occupies four bytes (two
words).
Boolean values are denoted by the predefined constants True and False. The following relationships
hold.

Boolean ByteBool, WordBool, LongBool
False < True False <> True
Ord(False) = 0 Ord(False) = 0
Ord(True) = 1 Ord(True) <> 0
Succ(False) = True Succ(False) = True
Pred(True) = False Pred(False) = True

A value of type ByteBool, LongBool, or WordBool is considered True when its ordinality is nonzero. If
such a value appears in a context where a Boolean is expected, the compiler automatically converts any
value of nonzero ordinality to True.
The remarks above refer to the ordinality of Boolean values—not to the values themselves. In Object
Pascal, Boolean expressions cannot be equated with integers or reals. Hence, if X is an integer variable,
the statement

if X then ...;
generates a compilation error. Casting the variable to a Boolean type is unreliable, but each of the
following alternatives will work.

if X <> 0 then ...; { use longer expression that returns Boolean value }
var OK: Boolean { use Boolean variable }
 ...
if X <> 0 then OK := True;
if OK then ...;

Enumerated types
Topic groups See also
An enumerated type defines an ordered set of values by simply listing identifiers that denote these
values. The values have no inherent meaning, and their ordinality follows the sequence in which the
identifiers are listed.
To declare an enumerated type, use the syntax

type typeName = (val1, ..., valn)
where typeName and each val are valid identifiers. For example, the declaration

type Suit = (Club, Diamond, Heart, Spade);
defines an enumerated type called Suit whose possible values are Club, Diamond, Heart, and Spade.
When you declare an enumerated type, you are declaring each val to be a constant of type typeName. If
the val identifiers are used for another purpose within the same scope, naming conflicts occur. For
example, suppose you declare the type

type TSound = (Click, Clack, Clock);
Unfortunately, Click is also the name of a method defined for TControl and all of the objects in Delphi’s
VCL that descend from it. So if you’re writing a Delphi application and you create an event handler like

procedure TForm1.DBGrid1Enter(Sender: TObject);
var Thing: TSound;
begin
 ...
 Thing := Click;
 ...
end;

you’ll get a compilation error; the compiler interprets Click within the scope of the procedure as a
reference to TForm’s Click method. You can work around this by qualifying the identifier; thus, if TSound
is declared in MyUnit, you would use

Thing := MyUnit.Click;
A better solution, however, is to choose constant names that are not likely to conflict with other
identifiers. Examples:

type
 TSound = (tsClick, tsClack, tsClock);
 TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);
 Answer = (ansYes, ansNo, ansMaybe);

You can use the (val1, ..., valn) construction directly in variable declarations, as if it were a type name:
var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can’t declare another variable within the same scope using
these constant identifiers. Thus

var Card1: (Club, Diamond, Heart, Spade);
var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But
var Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does
type Suit = (Club, Diamond, Heart, Spade);
var
 Card1: Suit;
 Card2: Suit;

Subrange types
Topic groups See also
A subrange type represents a subset of the values in another ordinal type (called the base type). Any
construction of the form Low..High, where Low and High are constant expressions of the same ordinal
type and Low is less than High, identifies a subrange type that includes all values between Low and
High. For example, if you declare the enumerated type

type TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);
you can then define a subrange type like

type TMyColors = Green..White;
Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.
You can use numeric constants and characters (string constants of length 1) to define subrange types:

type
 SomeNumbers = -128..127;
 Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base type is the smallest
integer or character type that contains the specified range.
The Low..High construction itself functions as a type name, so you can use it directly in variable
declarations. For example,

var SomeNum: 1..500;
declares an integer variable whose value can be anywhere in the range from 1 to 500.
The ordinality of each value in a subrange is preserved from the base type. (In the first example above,
if Color is a variable that holds the value Green, Ord(Color) returns 2 regardless of whether Color is of
type TColors or TMyColors.) Values do not wrap around the beginning or end of a subrange, even if the
base is an integer or character type; incrementing or decrementing past the boundary of a subrange
simply converts the value to the base type. Hence, while

type Percentile = 0..99;
var I: Percentile;
...
I := 100;

produces an error,
...
I := 99;
Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).
The use of constant expressions in subrange definitions introduces a syntactic difficulty. In any type
declaration, when the first meaningful character after = is a left parenthesis, the compiler assumes that
an enumerated type is being defined. Hence the code

const
 X = 50;
 Y = 10;
type
 Scale = (X - Y) * 2..(X + Y) * 2;

produces an error. Work around this problem by rewriting the type declaration to avoid the leading
parenthesis:

type
 Scale = 2 * (X - Y)..(X + Y) * 2;

Real types
Topic groups See also
A real type defines a set of numbers that can be represented with floating-point notation. The table
below gives the ranges and storage formats for the fundamental real types.

Type Range Significant digits Size in bytes
Real48 2.9 x 10^–39 .. 1.7 x 10^38 11–12 6
Single 1.5 x 10^–45 .. 3.4 x 10^38 7–8 4
Double 5.0 x 10^–324 .. 1.7 x 10^308 15–16 8
Extended 3.6 x 10^–4951 .. 1.1 x 10^4932 19–20 10
Comp –2^63+1 .. 2^63 –1 19–20 8
Currency –922337203685477.5808..

922337203685477.5807
19–20 8

The generic type Real, in its current implementation, is equivalent to Double.

Type Range Significant digits Size in bytes
Real 5.0 x 10^–324 .. 1.7 x 10^308 15–16 8

Note:The six-byte Real48 type was called Real in earlier versions of Object Pascal. If you are
recompiling code that uses the older, six-byte Real type, you may want to change it to Real48. You
can also use the {$REALCOMPATIBILITY ON} compiler directive to turn Real back into the six-
byte type.

The following remarks apply to fundamental real types.
Real48 is maintained for backward compatibility. Since its storage format is not native to the Intel

CPU family, it results in slower performance than other floating-point types.
Extended offers greater precision than other real types but is less portable. Be careful using

Extended if you are creating data files to share across platforms.
The Comp (computational) type is native to the Intel CPU and represents a 64-bit integer. It is

classified as a real, however, because it does not behave like an ordinal type. (For example, you cannot
increment or decrement a Comp value.) Comp is maintained for backward compatibility only. Use the
Int64 type for better performance.

Currency is a fixed-point data type that minimizes rounding errors in monetary calculations. It is
stored as a scaled 64-bit integer with the four least-significant digits implicitly representing decimal places.
When mixed with other real types in assignments and expressions, Currency values are automatically
divided or multiplied by 10000.

String types
Topic groups See also
A string represents a sequence of characters. Object Pascal supports the following predefined string
types.

Type Maximum length Memory required Used for
ShortString 255 characters 2 to 256 bytes backward compatibility
AnsiString ~2^31 characters 4 bytes to 2GB 8-bit (ANSI) characters
WideString ~2^30 characters 4 bytes to 2GB Unicode characters;

COM servers and interfaces
AnsiString, sometimes called the long string, is the preferred type for most purposes.
String types can be mixed in assignments and expressions; the compiler automatically performs
required conversions. But strings passed by reference to a function or procedure (as var and out
parameters) must be of the appropriate type. Strings can be explicitly cast to a different string type (see
Typecasts).
The reserved word string functions like a generic type identifier. For example,

var S: string;
creates a variable S that holds a string. In the default {$H+} state, the compiler interprets string (when it
appears without a bracketed number after it) as AnsiString. Use the {$H–} directive to turn string into
ShortString.
The standard function Length returns the number of characters in a string. The SetLength procedure
adjusts the length of a string.
Comparison of strings is defined by the ordering of the characters in corresponding positions. Between
strings of unequal length, each character in the longer string without a corresponding character in the
shorter string takes on a greater-than value. For example, “AB” is greater than “A”; that is, 'AB' > 'A'
returns True. Zero-length strings hold the lowest values.
You can index a string variable just as you would an array. If S is a string variable and i an integer
expression, S[i] represents the ith character—or, strictly speaking, the ith byte—in S. For a ShortString
or AnsiString, S[i] is of type AnsiChar; for a WideString, S[i] is of type WideChar. The statement
MyString[2] := 'A'; assigns the value A to the second character of MyString. The following code uses the
standard UpCase function to convert MyString to uppercase.

var I: Integer;
begin
 I := Length(MyString);
 while I > 0 do
 begin
 MyString[I] := UpCase(MyString[I]);
 I := I - 1;
 end;
end;

Be careful indexing strings in this way, since overwriting the end of a string can cause access violations.
Also, avoid passing long-string indexes as var parameters, because this results in inefficient code.
You can assign the value of a string constant—or any other expression that returns a string—to a
variable. The length of the string changes dynamically when the assignment is made. Examples:

MyString := 'Hello world!';
MyString := 'Hello ' + 'world';
MyString := MyString + '!';
MyString := ' '; { space }
MyString := ''; { empty string }

Short strings
Topic groups See also
A ShortString is 0 to 255 characters long. While the length of a ShortString can change dynamically, its
memory is a statically allocated 256 bytes; the first byte stores the length of the string, and the
remaining 255 bytes are available for characters. If S is a ShortString variable, Ord(S[0]), like Length(S),
returns the length of S; assigning a value to S[0], like calling SetLength, changes the length of S.
ShortString uses 8-bit ANSI characters and is maintained for backward compatibility only.
Object Pascal supports short-string types—in effect, subtypes of ShortString—whose maximum length
is anywhere from 0 to 255 characters. These are denoted by a bracketed numeral appended to the
reserved word string. For example,

var MyString: string[100];
creates a variable called MyString whose maximum length is 100 characters. This is equivalent to the
declarations

type CString = string[100];
var MyString: CString;

Variables declared in this way allocate only as much memory as the type requires—that is, the specified
maximum length plus one byte. In our example, MyString uses 101 bytes, as compared to 256 bytes for
a variable of the predefined ShortString type.
When you assign a value to a short-string variable, the string is truncated if it exceeds the maximum
length for the type.
The standard functions High and Low operate on short-string type identifiers and variables. High returns
the maximum length of the short-string type, while Low returns zero.

Long strings
Topic groups See also
AnsiString, also called a long string, represents a dynamically allocated string whose maximum length is
limited only by available memory. It uses 8-bit ANSI characters.
A long-string variable is a pointer occupying four bytes of memory. When the variable is empty—that is,
when it contains a zero-length string—the pointer is nil and the string uses no additional storage. When
the variable is nonempty, it points to a dynamically allocated block of memory that contains the string
value, a 32-bit length indicator, and a 32-bit reference count. This memory is allocated on the heap, but
its management is entirely automatic and requires no user code.
Because long-string variables are pointers, two or more of them can reference the same value without
consuming additional memory. The compiler exploits this to conserve resources and execute
assignments faster. Whenever a long-string variable is destroyed or assigned a new value, the
reference count of the old string (the variable’s previous value) is decremented and the reference count
of the new value (if there is one) is incremented; if the reference count of a string reaches zero, its
memory is deallocated. This process is called reference-counting. When indexing is used to change the
value of a single character in a string, a copy of the string is made if—but only if—its reference count is
greater than one. This is called copy-on-write semantics.

WideString
Topic groups See also
The WideString type represents a dynamically allocated string of 16-bit Unicode characters. In most
respects it is similar to AnsiString, but it is less efficient because it does not implement reference-
counting and copy-on-write semantics.
WideString is compatible with the COM BSTR type. Delphi has COM support features that convert
AnsiString values to WideString, but if you make calls to the COM API, you may need to explicitly cast or
convert your strings to WideString.
About extended character sets

About extended character sets
Topic groups See also
Windows supports single-byte and multibyte character sets as well as Unicode. With a single-byte
character set (SBCS), each byte in a string represents one character. The ANSI character set used by
most Western versions of Windows is a single-byte character set.
In a multibyte character set (MBCS), some characters are represented by one byte and others by more
than one byte. The first byte of a multibyte character is called the lead byte. In general, the lower 128
characters of a multibyte character set map to the 7-bit ASCII characters, and any byte whose ordinal
value is greater than 127 is the lead byte of a multibyte character. Only single-byte characters can
contain the null value (#0). Multibyte character sets—especially double-byte character sets (DBCS)—
are widely used for Asian languages.
In the Unicode character set, each character is represented by two bytes. Thus a Unicode string is a
sequence not of individual bytes but of two-byte words. Unicode characters and strings are also called
wide characters and wide character strings. The first 256 Unicode characters map to the ANSI character
set.
Object Pascal supports single-byte and multibyte characters and strings through the Char, PChar,
AnsiChar, PAnsiChar, and AnsiString types. Indexing of multibyte strings is not reliable, since S[i]
represents the ith byte (not necessarily the ith character) in S. However, Delphi’s standard string-
handling functions have multibyte-enabled counterparts that also implement locale-specific ordering for
characters. (Names of multibyte functions usually start with Ansi-. For example, the multibyte version of
StrPos is AnsiStrPos.) Multibyte character support is operating-system dependent and based on the
current Windows locale.
Object Pascal supports Unicode characters and strings through the WideChar, PWideChar, and
WideString types.

Working with null-terminated strings
Topic groups See also
Many programming languages, including C and C++, lack a dedicated string data type. These
languages, and environments like Windows that are built with them, rely on null-terminated strings. A
null-terminated string is a zero-based array of characters that ends with NULL (#0); since the array has
no length indicator, the first NULL character marks the end of the string. You can use Object Pascal
constructions and special routines in the SysUtils unit (see Standard routines and I/O) to handle null-
terminated strings when you need to share data with systems that use them.
For example, the following type declarations could be used to store null-terminated strings.

type
 TIdentifier = array[0..15] of Char;
 TFileName = array[0..259] of Char;
 TMemoText = array[0..1023] of WideChar;

You can assign a string constant to a statically allocated zero-based character array. (Dynamic arrays
won’t work for this purpose.) If you initialize an array constant with a string that is shorter than the
declared length of the array, the remaining characters are set to #0.
Using pointers, arrays, and string constants
Mixing Pascal strings and null-terminated strings

Using pointers, arrays, and string constants
Topic groups See also
To manipulate null-terminated strings, it is often necessary to use pointers. (See Pointers and pointer
types.) String constants are assignment-compatible with the PChar and PWideChar types, which
represent pointers to null-terminated arrays of Char and WideChar values. For example,

var P: PChar;
 ...
P := 'Hello world!';

points P to an area of memory that contains a null-terminated copy of “Hello world!” This is equivalent to
const TempString: array[0..12] of Char = 'Hello world!'#0;
var P: PChar;
 ...
P := @TempString;

You can also pass string constants to any function that takes value or const parameters of type PChar
or PWideChar—for example StrUpper('Hello world!'). As with assignments to a PChar, the compiler
generates a null-terminated copy of the string and gives the function a pointer to that copy. Finally, you
can initialize PChar or PWideChar constants with string literals, alone or in a structured type. Examples:

const
Message: PChar = 'Program terminated';
 Prompt: PChar = 'Enter values: ';
 Digits: array[0..9] of PChar = (
 'Zero', 'One', 'Two', 'Three', 'Four',
 'Five', 'Six', 'Seven', 'Eight', 'Nine');

Zero-based character arrays are compatible with PChar and PWideChar. When you use a character
array in place of a pointer value, the compiler converts the array to a pointer constant whose value
corresponds to the address of the first element of the array. For example,

var
 MyArray: array[0..32] of Char;
 MyPointer: PChar;
begin
 MyArray := 'Hello';
 MyPointer := MyArray;
 SomeProcedure(MyArray);
 SomeProcedure(MyPointer);
end;

This code calls SomeProcedure twice with the same value.
A character pointer can be indexed as if it were an array. In the example above, MyPointer[0] returns H.
The index specifies an offset added to the pointer before it is dereferenced. (For PWideChar variables,
the index is automatically multiplied by two.) Thus, if P is a character pointer, P[0] is equivalent to P^ and
specifies the first character in the array, P[1] specifies the second character in the array, and so forth; P[-
1] specifies the “character” immediately to the left of P[0]. The compiler performs no range checking on
these indexes.
The StrUpper function illustrates the use of pointer indexing to iterate through a null-terminated string:

function StrUpper(Dest, Source: PChar; MaxLen: Integer): PChar;
var
 I: Integer;
begin
 I := 0;
 while (I < MaxLen) and (Source[I] <> #0) do
 begin
 Dest[I] := UpCase(Source[I]);
 Inc(I);
 end;
 Dest[I] := #0;
 Result := Dest;
end;

Mixing Pascal strings and null-terminated strings
Topic groups See also
You can mix long strings (AnsiString values) and null-terminated strings (PChar values) in expressions
and assignments, and you can pass PChar values to functions or procedures that take long-string
parameters. The assignment S := P, where S is a string variable and P is a PChar expression, copies a
null-terminated string into a long string.
In a binary operation, if one operand is a long string and the other a PChar, the PChar operand is
converted to a long string.
You can cast a PChar value as a long string. This is useful when you want to perform a string operation
on two PChar values. For example,

S := string(P1) + string(P2);
You can also cast a long string as a null-terminated string. The following rules apply.

If S is a long-string expression, PChar(S) casts S as a null-terminated string; it returns a pointer to
the first character in S. For example, if Str1 and Str2 are long strings, you could call the Win32 API
MessageBox function like this:

MessageBox(0, PChar(Str1), PChar(Str2), MB_OK);
(MessageBox is declared in the Windows interface unit.)

You can also use Pointer(S) to cast a long string to an untyped pointer. But if S is empty, the
typecast returns nil.

When you cast a long-string variable to a pointer, the pointer remains valid until the variable is
assigned a new value or goes out of scope. If you cast any other long-string expression to a pointer, the
pointer is valid only within the statement where the typecast is performed.

When you cast a long-string expression to a pointer, the pointer should usually be considered
read-only. You can safely use the pointer to modify the long string only when all of the following conditions
are satisfied.

The expression cast is a long-string variable.
The string is not empty.
The string is unique—that is, has a reference count of one. To guarantee that the string is unique,

call the SetLength, SetString, or UniqueString procedure.
The string has not been modified since the typecast was made.
The characters modified are all within the string. Be careful not to use an out-of-range index on

the pointer.
The same rules apply when mixing WideString values with PWideChar values.

Structured types
Topic groups See also
Instances of a structured type hold more than one value. Structured types include sets, arrays, records,
and files as well as class, class-reference, and interface types. Except for sets, which hold ordinal
values only, structured types can contain other structured types; a type can have unlimited levels of
structuring.
By default, the values in a structured type are aligned on word or double-word boundaries for faster
access. When you declare a structured type, you can include the reserved word packed to implement
compressed data storage. For example,

type TNumbers = packed array[1..100] of Real;
Using packed slows data access and, in the case of a character array, affects type compatibility. For
more information, see Memory management.

Sets
Topic groups See also
A set is a collection of values of the same ordinal type. The values have no inherent order, nor is it
meaningful for a value to be included twice in a set.
The range of a set type is the power set of a specific ordinal type, called the base type; that is, the
possible values of the set type are all the subsets of the base type, including the empty set. The base
type can have no more than 256 possible values, and their ordinalities must fall between 0 and 255. Any
construction of the form

set of baseType
where baseType is an appropriate ordinal type, identifies a set type.
Because of the size limitations for base types, set types are usually defined with subranges. For
example, the declarations

type
 TSomeInts = 1..250;
 TIntSet = set of TSomeInts;

create a set type called TIntSet whose values are collections of integers in the range from 1 to 250. You
could accomplish the same thing with

type TIntSet = set of 1..250;
Given this declaration, you can create a sets like this:

var Set1, Set2: TIntSet;
 ...
Set1 := [1, 3, 5, 7, 9];
Set2 := [2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:
var MySet: set of 'a'..'z';
 ...
MySet := ['a','b','c'];

Other examples of set types include
set of Byte
set of (Club, Diamond, Heart, Spade)
set of Char;

The in operator tests set membership:
if 'a' in MySet then ... { do something } ;

Every set type can hold the empty set, denoted by [].

Arrays
Topic groups See also
An array represents an indexed collection of elements of the same type (called the base type). Because
each element has a unique index, arrays, unlike sets, can meaningfully contain the same value more
than once. Arrays can be allocated statically or dynamically.
Static arrays
Dynamic arrays

Static arrays
Topic groups See also
Static array types are denoted by constructions of the form

array[indexType1, ..., indexTypen] of baseType
where each indexType is an ordinal type whose range does not exceed 2GB. Since the indexTypes
index the array, the number of elements an array can hold is limited by the product of the sizes of the
indexTypes. In practice, indexTypes are usually integer subranges.
In the simplest case of a one-dimensional array, there is only a single indexType. For example,

var MyArray: array[1..100] of Char;
declares a variable called MyArray that holds an array of 100 character values. Given this declaration,
MyArray[3] denotes the third character in MyArray. If you create a static array but don’t assign values to
all its elements, the unused elements are still allocated and contain random data; they are like
uninitialized variables.
A multidimensional array is an array of arrays. For example,

type TMatrix = array[1..10] of array[1..50] of Real;
is equivalent to

type TMatrix = array[1..10, 1..50] of Real;
Whichever way TMatrix is declared, it represents an array of 500 real values. A variable MyMatrix of
type TMatrix can be indexed like this: MyMatrix[2,45]; or like this: MyMatrix[2][45]. Similarly,

packed array[Boolean,1..10,TShoeSize] of Integer;
is equivalent to

packed array[Boolean] of packed array[1..10] of packed array[TShoeSize] of Integer;
The standard functions Low and High operate on array type identifiers and variables. They return the
low and high bounds of the array’s first index type. The standard function Length returns the number of
elements in the array’s first dimension.
A one-dimensional, packed, static array of Char values is called a packed string. Packed-string types
are compatible with string types and with other packed-string types that have the same number of
elements. See Type compatibility and identity.
An array type of the form array[0..x] of Char is called a zero-based character array. Zero-based
character arrays are used to store null-terminated strings and are compatible with PChar values. See
Working with null-terminated strings.

Dynamic arrays
Topic groups See also
Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic array is reallocated
when you assign a value to the array or pass it to the SetLength procedure. Dynamic-array types are
denoted by constructions of the form

array of baseType
For example,

var MyFlexibleArray: array of Real;
declares a one-dimensional dynamic array of reals. The declaration does not allocate memory for
MyFlexibleArray. To create the array in memory, call SetLength. For example, given the declaration
above,

SetLength(MyFlexibleArray, 20);
allocates an array of 20 reals, indexed 0 to 19. Dynamic arrays are always integer-indexed, always
starting from 0.
Dynamic-array variables are implicitly pointers and are managed by the same reference-counting
technique used for long strings. To deallocate a dynamic array, assign nil to a variable that references
the array or pass the variable to Finalize; either of these methods disposes of the array, provided there
are no other references to it. Dynamic arrays of length 0 have the value nil. Do not apply the
dereference operator (^) to a dynamic-array variable or pass it to the New or Dispose procedure.
If X and Y are variables of the same dynamic-array type, X :=Y points X to the same array as Y. (There
is no need to allocate memory for X before performing this operation.) Unlike strings and static arrays,
dynamic arrays are not automatically copied before they are written to. For example, after this code
executes—

var
 A, B: array of Integer;
begin
 SetLength(A, 1);
 A[0] := 1;
 B := A;
 B[0] := 2;
end;

—the value of A[0] is 2. (If A and B were static arrays, A[0] would still be 1.)
Assigning to a dynamic-array index (for example, MyFlexibleArray[2] := 7) does not reallocate the array.
Out-of-range indexes are not reported at compile time.
When dynamic-array variables are compared, their references are compared, not their array values.
Thus, after execution of the code

var
 A, B: array of Integer;
begin
 SetLength(A, 1);
 SetLength(B, 1);
 A[0] := 2;
 B[0] := 2;
end;

A = B returns False but A[0] = B[0] returns True.
To truncate a dynamic array, pass it to the Copy function and assign the result back to the array
variable. For example, if A is a dynamic array, A := Copy(A, 0, 20) truncates all but the first 20 elements
of A.
Once a dynamic array has been allocated, you can pass it to the standard functions Length, High, and
Low. Length returns the number of elements in the array, High returns the array’s highest index (that is,
Length – 1), and Low returns 0. In the case of a zero-length array, High returns –1 (with the anomalous
consequence that High < Low).

Note: In some function and procedure declarations, array parameters are represented as array of
baseType, without any index types specified. For example,

function CheckStrings(A: array of string): Boolean;
This indicates that the function operates on all arrays of the specified base type, regardless of their size,
how they are indexed, or whether they are allocated statically or dynamically. See Open array
parameters.
Multidimensional dynamic arrays

Multidimensional dynamic arrays
Topic groups See also
To declare multidimensional dynamic arrays, use iterated array of ... constructions. For example,

type TMessageGrid = array of array of string;
var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call SetLength with two integer
arguments. For example, if I and J are integer-valued variables,

SetLength(Msgs,I,J);
allocates an I-by-J array, and Msgs[0,0] denotes an element of that array.
You can create multidimensional dynamic arrays that are not rectangular. The first step is to call
SetLength, passing it parameters for the first n dimensions of the array. For example,

var Ints: array of array of Integer;
SetLength(Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns one at a time (giving
them different lengths); for example

SetLength(Ints[2], 5);
makes the third column of Ints five integers long. At this point (even if the other columns haven’t been
allocated) you can assign values to the third column—for example, Ints[2,4] := 6.
The following example uses dynamic arrays (and the IntToStr function declared in the SysUtils unit) to
create a triangular matrix of strings.

var
 A : array of array of string;
 I, J : Integer;
begin
 SetLength(A, 10);
 for I := Low(A) to High(A) do
 begin
 SetLength(A[I], I);
 for J := Low(A[I]) to High(A[I]) do
 A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';
 end;
end;

Array types and assignments
Topic groups See also
Arrays are assignment-compatible only if they are of the same type. Because Pascal uses name-
equivalence for types, the following code will not compile.

var
 Int1: array[1..10] of Integer;
 Int2: array[1..10] of Integer;
 ...
Int1 := Int2;

To make the assignment work, declare the variables as
var Int1, Int2: array[1..10] of Integer;

or
type IntArray = array[1..10] of Integer;
var
 Int1: IntArray;
 Int2: IntArray;

Records
Topic groups See also
A record (analogous to a structure in some languages) represents a heterogeneous set of elements.
Each element is called a field; the declaration of a record type specifies a name and type for each field.
The syntax of a record type declaration is

type recordTypeName = record
 fieldList1: type1;
 ...
 fieldListn: typen;
end

Where recordTypeName is a valid identifier, each type denotes a type, and each fieldList is a valid
identifier or a comma-delimited list of identifiers. The final semicolon is optional.
For example, the following declaration creates a record type called TDateRec.

type
 TDateRec = record
 Year: Integer;
 Month: (Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec);
 Day: 1..31;
 end;

Each TDateRec contains three fields: an integer value called Year, a value of an enumerated type called
Month, and another integer between 1 and 31 called Day. The identifiers Year, Month, and Day are the
field designators for TDateRec, and they behave like variables. The TDateRec type declaration,
however, does not allocate any memory for the Year, Month, and Day fields; memory is allocated when
you instantiate the record, like this:

var Record1, Record2: TDateRec;
This variable declaration creates two instances of TDateRec, called Record1 and Record2.
You can access the fields of a record by qualifying the field designators with the record’s name:

Record1.Year := 1904;
Record1.Month := Jun;
Record1.Day := 16;

Or use a with statement:
with Record1 do
begin
 Year := 1904;
 Month := Jun;
 Day := 16;
end;

You can now copy the values of Record1’s fields to Record2:
Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs, you don’t have to
worry about naming conflicts between field designators and other variables.
Instead of defining record types, you can use the record ... construction directly in variable declarations:

var S: record
 Name: string;
 Age: Integer;
end;

However, a declaration like this largely defeats the purpose of records, which is to avoid repetitive
coding of similar groups of variables. Moreover, separately declared records of this kind will not be
assignment-compatible, even if their structures are identical.
Variant parts in records

Variant parts in records
Topic groups See also
A record type can have a variant part, which looks like a case statement. The variant part must follow
the other fields in the record declaration.
To declare a record type with a variant part, use the following syntax.

type recordTypeName = record
 fieldList1: type1;
 ...
 fieldListn: typen;
case tag: ordinalType of
 constantList1: (variant1);
 ...
 constantListn: (variantn);
end;

The first part of the declaration—up to the reserved word case—is the same as that of a standard
record type. The remainder of the declaration—from case to the optional final semicolon—is called the
variant part. In the variant part,

tag is optional and can be any valid identifier. If you omit tag, omit the colon (:) after it as well.
ordinalType denotes an ordinal type.
Each constantList is a constant denoting a value of type ordinalType, or a comma-delimited list of

such constants. No value can be represented more than once in the combined constantLists.
Each variant is a comma-delimited list of declarations resembling the fieldList: type constructions

in the main part of the record type. That is, a variant has the form
fieldList1: type1;
 ...
fieldListn: typen;

where each fieldList is a valid identifier or comma-delimited list of identifiers, each type denotes a
type, and the final semicolon is optional. The types must not be long strings, dynamic arrays,
variants (that is, Variant types), or interfaces, nor can they be structured types that contain long
strings, dynamic arrays, variants, or interfaces; but they can be pointers to these types.

Records with variant parts are complicated syntactically but deceptively simple semantically. The variant
part of a record contains several variants which share the same space in memory. You can read or write
to any field of any variant at any time; but if you write to a field in one variant and then to a field in
another variant, you may be overwriting your own data. The tag, if there is one, functions as an extra
field (of type ordinalType) in the non-variant part of the record.
Variant parts have two purposes. First, suppose you want to create a record type that has fields for
different kinds of data, but you know that you will never need to use all of the fields in a single record
instance. For example,

type
 TEmployee = record
 FirstName, LastName: string[40];
 BirthDate: TDate;
 case Salaried: Boolean of
 True: (AnnualSalary: Currency);
 False: (HourlyWage: Currency);
end;

The idea here is that every employee has either a salary or an hourly wage, but not both. So when you
create an instance of TEmployee, there is no reason to allocate enough memory for both fields. In this
case, the only difference between the variants is in the field names, but the fields could just as easily
have been of different types. Consider some more complicated examples:

type
 TPerson = record
 FirstName, LastName: string[40];
 BirthDate: TDate;

 case Citizen: Boolean of
 True: (Birthplace: string[40]);
 False: (Country: string[20];
 EntryPort: string[20];
 EntryDate, ExitDate: TDate);
 end;
type
 TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);
 TFigure = record
 case TShapeList of
 Rectangle: (Height, Width: Real);
 Triangle: (Side1, Side2, Angle: Real);
 Circle: (Radius: Real);
 Ellipse, Other: ();
 end;

For each record instance, the compiler allocates enough memory to hold all the fields in the largest
variant. The optional tag and the constantLists (like Rectangle, Triangle, and so forth in the last example
above) play no role in the way the compiler manages the fields; they are there only for the convenience
of the programmer.
The second reason for variant parts is that they let you treat the same data as belonging to different
types, even in cases where the compiler would not allow a typecast. For example, if you have a 64-bit
Real as the first field in one variant and a 32-bit Integer as the first field in another, you can assign a
value to the Real field and then read back the first 32 bits of it as the value of the Integer field (passing
it, say, to a function that requires integer parameters).

File types
Topic groups See also
A file is an ordered set of elements of the same type. Standard I/O routines use the predefined TextFile
or Text type, which represents a file containing characters organized into lines. For more information
about file input and output, see Standard routines and I/O.
To declare a file type, use the syntax

type fileTypeName = file of type
where fileTypeName is any valid identifier and type is a fixed-size type. Pointer types—whether implicit
or explicit—are not allowed, so a file cannot contain dynamic arrays, long strings, classes, objects,
pointers, variants, other files, or structured types that contain any of these.
For example,

type
 PhoneEntry = record
 FirstName, LastName: string[20];
 PhoneNumber: string[15];
 Listed: Boolean;
 end;
 PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.
You can also use the file of ... construction directly in a variable declaration. For example,

var List1: file of PhoneEntry;
The word file by itself indicates an untyped file:

var DataFile: file;
For more information, see Untyped files.
Files are not allowed in arrays or records.

Pointers and pointer types
Topic groups See also
A pointer is a variable that denotes a memory address. When a pointer holds the address of another
variable, we say that it points to the location of that variable in memory or to the data stored there. In the
case of an array or other structured type, a pointer holds the address of the first element in the structure.
Pointers are typed to indicate the kind of data stored at the addresses they hold. The general-purpose
Pointer type can represent a pointer to any data, while more specialized pointer types reference only
specific types of data. Pointers occupy four bytes of memory.
Overview of pointers
Pointer types

Overview of pointers
Topic groups See also
To see how pointers work, look at the following example.

1 var
2 X, Y: Integer; // X and Y are Integer variables
3 P: ^Integer; // P points to an Integer
4 begin
5 X := 17; // assign a value to X
6 P := @X; // assign the address of X to P
7 Y := P^; // dereference P; assign the result to Y
8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a pointer to an Integer value;
this means that P can point to the location of X or Y. Line 5 assigns a value to X, and line 6 assigns the
address of X (denoted by @X) to P. Finally, line 7 retrieves the value at the location pointed to by P
(denoted by ^P) and assigns it to Y. After this code executes, X and Y have the same value, namely 17.
The @ operator, which we have used here to take the address of a variable, also operates on functions
and procedures. For more information, see The @ operator and Procedural types in statements and
expressions.
The symbol ^ has two purposes, both of which are illustrated in our example. When it appears before a
type identifier—

^typeName
—it denotes a type that represents pointers to variables of type typeName. When it appears after a
pointer variable—

pointer^
—it dereferences the pointer; that is, it returns the value stored at the memory address held by the
pointer.
Our example may seem like a roundabout way of copying the value of one variable to another—
something that we could have accomplished with a simple assignment statement. But pointers are
useful for several reasons. First, understanding pointers will help you to understand Object Pascal, since
pointers often operate behind the scenes in code where they don’t appear explicitly. Any data type that
requires large, dynamically allocated blocks of memory uses pointers. Long-string variables, for
instance, are implicitly pointers, as are class variables. Moreover, some advanced programming
techniques require the use of pointers.
Finally, pointers are sometimes the only way to circumvent Object Pascal’s strict data typing. By
referencing a variable with an all-purpose Pointer, casting the Pointer to a more specific type, and then
dereferencing it, you can treat the data stored by any variable as if it belonged to any type. For example,
the following code assigns data stored in a real variable to an integer variable.

type
 PInteger = ^Integer;
var
 R: Single;
 I: Integer;
 P: Pointer;
 PI: PInteger;
begin
 ...
 P := @R;
 PI := PInteger(P);
 I := PI^;
end;

Of course, reals and integers are stored in different formats. This assignment simply copies raw binary
data from R to I, without converting it.
In addition to assigning the result of an @ operation, you can use several standard routines to give a
value to a pointer. The New and GetMem procedures assign a memory address to an existing pointer,

while the Addr and Ptr functions return a pointer to a specified address or variable.
Dereferenced pointers can be qualified and can function as qualifiers, as in the expression P1^.Data^.
The reserved word nil is a special constant that can be assigned to any pointer. When nil is assigned to
a pointer, the pointer doesn’t reference anything.

Pointer types
Topic groups See also
You can declare a pointer to any type, using the syntax

type pointerTypeName = ^type
When you define a record or other data type, it’s a common practice also to define a pointer to that type.
This makes it easy to manipulate instances of the type without copying large blocks of memory.
Standard pointer types exist for many purposes. The most versatile is Pointer, which can point to data of
any kind. But a Pointer variable cannot be dereferenced; placing the ^ symbol after a Pointer variable
causes a compilation error. To access the data referenced by a Pointer variable, first cast it to another
pointer type and then dereference it.
Character pointers
Other standard pointer types

Character pointers
Topic groups See also
The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar and WideChar
values, respectively. The generic PChar represents a pointer to a Char (that is, in its current
implementation, to an AnsiChar). These character pointers are used to manipulate null-terminated
strings. (See Working with null-terminated strings.)

Other standard pointer types
Topic groups See also
The System and SysUtils units declare many standard pointer types. While these types are not built-in,
they are commonly used in Delphi programming.

Pointer type Points to variables of type
PAnsiString, PString AnsiString
PByteArray ByteArray (declared in SysUtils). Used to typecast dynamically

allocated memory for array access.
PCurrency Currency
PExtended Extended
POleVariant OleVariant
PShortString ShortString. Useful when porting legacy code that uses PString

type.
PTextBuf TextBuf (declared in SysUtils). TextBuf is the internal buffer type

in a TTextRec file record.)
PVarRec TVarRec (declared in System)
PVariant Variant
PWideString WideString
PWordArray TWordArray (declared in SysUtils). Used to typecast dynamically

allocated memory for arrays of 2-byte values.

Procedural types
Topic groups See also
Procedural types allow you to treat procedures and functions as values that can be assigned to
variables or passed to other procedures and functions. For example, suppose you define a function
called Calc that takes two integer parameters and returns an integer:

function Calc(X,Y: Integer): Integer;
You can assign the Calc function to the variable F:

var F: function(X,Y: Integer): Integer;
F := Calc;

If you take any procedure or function heading and remove the identifier after the word procedure or
function, what’s left is the name of a procedural type. You can use such type names directly in variable
declarations (as in the example above) or to declare new types:

type
 TIntegerFunction = function: Integer;
 TProcedure = procedure;
 TStrProc = procedure(const S: string);
 TMathFunc = function(X: Double): Double;
var
 F: TIntegerFunction; { F is a parameterless function that returns an
integer }
 Proc: TProcedure; { Proc is a parameterless procedure }
 SP: TStrProc; { SP is a procedure that takes a string parameter
}
 M: TMathFunc; { M is a function that takes a Double (real)
parameter
 and returns a Double }
procedure FuncProc(P: TIntegerFunction); { FuncProc is a procedure whose only
parameter
 is a parameterless integer-valued
function }

The variables above are all procedure pointers—that is, pointers to the address of a procedure or
function. If you want to reference a method of an instance object (see Classes and objects), you need to
add the words of object to the procedural type name. For example

type
 TMethod = procedure of object;
 TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of pointers; the first stores the
address of a method, and the second stores a reference to the object the method belongs to. Given the
declarations

type
 TNotifyEvent = procedure(Sender: TObject) of object;
 TMainForm = class(TForm)
 procedure ButtonClick(Sender: TObject);
 ...
 end;
var
 MainForm: TMainForm;
 OnClick: TNotifyEvent

we could make the following assignment.
OnClick := MainForm.ButtonClick;

Two procedural types are compatible if they have
the same calling convention,
the same return value (or no return value), and
the same number of parameters, with identically typed parameters in corresponding positions.

(Parameter names do not matter.)
Procedure pointer types are always incompatible with method pointer types. The value nil can be

assigned to any procedural type.
Nested procedures and functions (routines declared within other routines) cannot be used as procedural
values, nor can predefined procedures and functions. If you want to use a predefined routine like Length
as a procedural value, write a wrapper for it:

function FLength(S: string): Integer;
begin
 Result := Length(S);
end;

Procedural types in statements and expressions

Procedural types in statements and expressions
Topic groups See also
When a procedural variable is on the left side of an assignment statement, the compiler expects a
procedural value on the right. The assignment makes the variable on the left a pointer to the function or
procedure indicated on the right. In other contexts, however, using a procedural variable results in a call
to the referenced procedure or function. You can even use a procedural variable to pass parameters:

var
 F: function(X: Integer): Integer;
 I: Integer;
function SomeFunction(X: Integer): Integer;
 ...
F := SomeFunction; // assign SomeFunction to F
I := F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the interpretation of procedure
or method pointers on the right. For example,

var
 F, G: function: Integer;
 I: Integer;
function SomeFunction: Integer;
 ...
F := SomeFunction; // assign SomeFunction to F
G := F; // copy F to G
I := G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies that value to another
variable. The third statement makes a call to the referenced function and assigns the result to I.
Because I is an integer variable, not a procedural one, the last assignment actually calls the function
(which returns an integer).
In some situations it is less clear how a procedural variable should be interpreted. Consider the
statement

if F = MyFunction then ...;
In this case, the occurrence of F results in a function call; the compiler calls the function pointed to by F,
then calls the function MyFunction, then compares the results. The rule is that whenever a procedural
variable occurs within an expression, it represents a call to the referenced procedure or function. In a
case where F references a procedure (which doesn’t return a value), or where F references a function
that requires parameters, the statement above causes a compilation error. To compare the procedural
value of F with MyFunction, use

if @F = @MyFunction then ...;
@F converts F into an untyped pointer variable that contains an address, and @MyFunction returns the
address of MyFunction.
To get the memory address of a procedural variable (rather than the address stored in it), use @@. For
example, @@F returns the address of F.
The @ operator can also be used to assign an untyped pointer value to a procedural variable. For
example,

var StrComp: function(Str1, Str2: PChar): Integer;
 ...
@StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

calls the Windows GetProcAddress function and points StrComp to the result.
Any procedural variable can hold the value nil, which means that it points to nothing. But attempting to
call a nil-valued procedural variable is an error. To test whether a procedural variable is assigned, use
the standard function Assigned:

if Assigned(OnClick) then OnClick(X);

Variant types
Topic groups See also
Sometimes it is necessary to manipulate data whose type varies or cannot be determined at compile
time. In these cases, one option is to use variables and parameters of type Variant, which represent
values that can change type at runtime. Variants, as they are called, offer greater flexibility but consume
more memory than regular variables, and operations on them are slower than on statically bound types.
Moreover, illicit operations on variants often result in runtime errors, where similar mistakes with regular
variables would have been caught at compile time.
Variants can hold values of any type except records, sets, static arrays, files, classes, class references,
pointers, and Int64. In other words, with the exception of Int64, variants can hold anything but structured
types and pointers. They can hold COM and CORBA objects, whose methods and properties can be
accessed through them. (See Object interfaces.) They can hold dynamic arrays, and they can hold a
special kind of static array called a variant array. (See Variant arrays.) Variants can mix with other
variants and with integer, real, string, and Boolean values in expressions and assignments; the compiler
automatically performs type conversions.
Variants that contain strings cannot be indexed. That is, if V is a variant that holds a string value, the
construction V[1] is illegitimate.
A variant occupies 16 bytes of memory and consists of a type code and a value, or pointer to a value, of
the type specified by the code. All variants are initialized on creation to the special value Unassigned.
The special value Null indicates unknown or missing data.
The standard function VarType returns a variant’s type code. The varTypeMask constant is a bit mask
used to extract the code from VarType’s return value, so that, for example,

VarType(V) and varTypeMask = varDouble
returns True if V contains a Double or an array of Double. (The mask simply hides the first bit, which
indicates whether the variant holds an array.) The TVarData record type defined in the System unit can
be used to typecast variants and gain access to their internal representation. See the online Help on
VarType for a list if codes, and note that new type codes may be added in future implementations of
Object Pascal.
Variant type conversions
Variants in expressions
Variant arrays
Other variant types

Variant type conversions
Topic groups See also
All integer, real, string, character, and Boolean types (except Int64) are assignment-compatible with
Variant. Expressions can be explicitly cast as variants, and the VarAsType and VarCast standard
routines can be used to change the internal representation of a variant. The following code
demonstrates the use of variants and some of the automatic conversions performed when variants are
mixed with other types.

var
 V1, V2, V3, V4, V5: Variant;
 I: Integer;
 D: Double;
 S: string;
begin
 V1 := 1; { integer value }
 V2 := 1234.5678; { real value }
 V3 := 'Hello world!'; { string value }
 V4 := '1000'; { string value }
 V5 := V1 + V2 + V4; { real value 2235.5678}
 I := V1; { I = 1 (integer value) }
 D := V2; { D = 1234.5678 (real value) }
 S := V3; { S = 'Hello world!' (string value) }
 I := V4; { I = 1000 (integer value) }
 S := V5; { S = '2235.5678' (string value) }
end;

The compiler performs type conversions according to the following rules.
Target

Source
integer real string character Boolean

integer converts integer
formats

converts to real converts to string
representation

same as
string (left)

returns False if 0,
True otherwise

real rounds to
nearest integer

converts real
formats

converts to string
representation
using Windows
regional settings

same as
string (left)

returns False if 0,
True otherwise

string converts to
integer,
truncating if
necessary;
raises exception
if string is not
numeric

converts to real
using Windows
regional settings;
raises exception
if string is not
numeric

converts
string/character
formats

same as
string (left)

returns False if
string is “false”
(non–case-
sensitive) or a
numeric string that
evaluates to 0, True
if string is “true” or
a nonzero numeric
string; raises
exception otherwise

characte
r

same as string
(above)

same as string
(above)

same as string
(above)

same as
string-to-
string

same as string
(above)

Boolean False = 0,
True = –1
(255 if Byte)

False = 0,
True = –1

False = “0”,
True = “–1”

same as
string (left)

False = False,
True = True

Unassig
ned

returns 0 returns 0 returns empty
string

same as
string (left)

returns False

Null raises exception raises exception raises exception same as raises exception

string (left)
Out-of-range assignments often result in the target variable getting the highest value in its range. Invalid
assignments or casts raise the EVariantError exception.
Special conversion rules apply to the TDateTime real type declared in the System unit. When a
TDateTime is converted to any other type, it treated as a normal Double. When an integer, real, or
Boolean is converted to a TDateTime, it is first converted to a Double, then read as a date-time value.
When a string is converted to a TDateTime, it is interpreted as a date-time value using the Windows
regional settings. When an Unassigned value is converted to TDateTime, it is treated like the real or
integer value 0. Converting a Null value to TDateTime raises an exception.
If a variant references a COM object, any attempt to convert it reads the object’s default property and
converts that value to the requested type. If the object has no default property, an exception is raised.

Variants in expressions
Topic groups See also
All operators except ^, is, and in take variant operands. Operations on variants return Variant values;
they return Null if one or both operands is Null, and raise an exception if one or both operands is
Unassigned. In a binary operation, if only one operand is a variant, the other is converted to a variant.
The return type of an operation is determined by its operands. In general, the same rules that apply to
operands of statically bound types apply to variants. For example, if V1 and V2 are variants that hold an
integer and a real value, then V1 + V2 returns a real-valued variant. With variants, however, you can
perform binary operations on combinations of values that would not be allowed using statically typed
expressions. When possible, the compiler converts mismatched variants using the rules summarized in
Variant type conversions. For example, if V3 and V4 are variants that hold a numeric string and an
integer, the expression V3 + V4 returns an integer-valued variant; the numeric string is converted to an
integer before the operation is performed.

Variant arrays
Topic groups See also
You cannot assign an ordinary static array to a variant. Instead, create a variant array by calling either of
the standard functions VarArrayCreate or VarArrayOf. For example,

V: Variant;
 ...
V := VarArrayCreate([0,9], varInteger);

creates a variant array of integers (of length 10) and assigns it to the variant V. The array can be
indexed using V[0], V[1], and so forth, but it is not possible to pass a variant array element as a var
parameter. Variant arrays are always indexed with integers.
The second parameter in the call to VarArrayCreate is the type code for the array’s base type. For a list
of these codes, see VarType. Never pass the code varString to VarArrayCreate; to create a variant array
of strings, use varOleStr.
Variants can hold variant arrays of different sizes, dimensions, and base types. The elements of a
variant array can be of any type allowed in variants except ShortString and AnsiString, and if the base
type of the array is Variant, its elements can even be heterogeneous. Use the VarArrayRedim function
to resize a variant array. Other standard routines that operate on variant arrays include
VarArrayDimCount, VarArrayLowBound, VarArrayHighBound, VarArrayRef, VarArrayLock, and
VarArrayUnlock.
When a variant containing a variant array is assigned to another variant or passed as a value parameter,
the entire array is copied. Don’t perform such operations unnecessarily, since they are memory-
inefficient.

OleVariant
Topic groups See also
The OleVariant type represents variants that contain only COM-compatible types. When a Variant is
assigned to an OleVariant, incompatible types are converted to their compatible counterparts. For
example, if a variant containing an AnsiString is assigned to an OleVariant, the AnsiString becomes a
WideString.

Type compatibility and identity
Topic groups See also
To understand which operations can be performed on which expressions, we need to distinguish several
kinds of compatibility among types and values. These include type identity, type compatibility, and
assignment-compatibility.

Type identity
Topic groups See also
Type identity is almost straightforward. When one type identifier is declared using another type identifier,
without qualification, they denote the same type. Thus, given the declarations

type
 T1 = Integer;
 T2 = T1;
 T3 = Integer;
 T4 = T2;

T1, T2, T3, T4, and Integer all denote the same type. To create distinct types, repeat the word type in
the declaration. For example,

type TMyInteger = type Integer;
creates a new type called TMyInteger which is not identical to Integer.
Language constructions that function as type names denote a different type each time they occur. Thus
the declarations

type
 TS1 = set of Char;
 TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations
var
 S1: string[10];
 S2: string[10];

create two variables of distinct types. To create variables of the same type, use
var S1, S2: string[10];

or
type MyString = string[10];
var
 S1: MyString;
 S2: MyString;

Type compatibility
Topic groups See also
Every type is compatible with itself. Two distinct types are compatible if they satisfy at least one of the
following conditions.

They are both real types.
They are both integer types.
One type is a subrange of the other.
Both types are subranges of the same type.
Both are set types with compatible base types.
Both are packed-string types with the same number of components.
One is a string type and the other is a string, packed-string, or Char type.
One type is Variant and the other is an integer, real, string, character, or Boolean type.
Both are class, class-reference, or interface types, and one type is derived from the other.
One type is PChar or PWideChar and the other is a zero-based character array of the form

array[0..n] of Char.
One type is Pointer (an untyped pointer) and the other is any pointer type.
Both types are (typed) pointers to the same type and the {$T+} compiler directive is in effect.
Both are procedural types with the same result type, the same number of parameters, and type-

identity between parameters in corresponding positions.

Assignment-compatibility
Topic groups See also
Assignment-compatibility is not a symmetric relation. An expression of type T2 can be assigned to a
variable of type T1 if the value of the expression falls in the range of T1 and at least one of the following
conditions is satisfied.

T1 and T2 are of the same type, and it is not a file type or structured type that contains a file type
at any level.

T1 and T2 are compatible ordinal types.
T1 and T2 are both real types.
T1 is a real type and T2 is an integer type.
T1 is PChar or any string type and the expression is a string constant.
T1 and T2 are both string types.
T1 is a string type and T2 is a Char or packed-string type.
T1 is a long string and T2 is PChar.
T1 and T2 are compatible packed-string types.
T1 and T2 are compatible set types.
T1 and T2 are compatible pointer types.
T1 and T2 are both class, class-reference, or interface types and T2 is a derived from T1.
T1 is an interface type and T2 is a class type that implements T1.
T1 is PChar or PWideChar and T2 is a zero-based character array of the form array[0..n] of Char.
T1 and T2 are compatible procedural types. (A function or procedure identifier is treated, in

certain assignment statements, as an expression of a procedural type. See “Procedural types in
statements and expressions” on page 5-39.)

T1 is Variant and T2 is an integer, real, string, character, Boolean, or interface type.
T1 is an integer, real, string, character, or Boolean type and T2 is Variant.
T1 is the IUnknown or IDispatch interface type and T2 is Variant. (The variant’s type code must

be varEmpty, varUnknown, or varDispatch if T1 is IUnknown, and varEmpty or varDispatch if T1 is
IDispatch.)

Declaring types
Topic groups See also
A type declaration specifies an identifier that denotes a type. The syntax for a type declaration is

type newTypeName = type
where newTypeName is a valid identifier. For example, given the type declaration

type TMyString = string;
you can make the variable declaration

var S: TMyString;
A type identifier’s scope doesn’t include the type declaration itself (except for pointer types). So you
cannot, for example, define a record type that uses itself recursively.
When you declare a type that is identical to an existing type, the compiler treats the new type identifier
as an alias for the old one. Thus, given the declarations

type TValue = Real;
var
 X: Real;
 Y: TValue;

X and Y are of the same type; at runtime, there is no way to distinguish TValue from Real. This is usually
of little consequence, but if your purpose in defining a new type is to utilize runtime type information—for
example, to associate a Delphi property editor with properties of a particular type—the distinction
between “different name” and “different type” becomes important. In this case, use the syntax

type newTypeName = type type
For example,

type TValue = type Real;
forces the compiler to create a new, distinct type called TValue.

Variables
Topic groups See also
A variable is an identifier whose value can change at runtime. Put differently, a variable is a name for a
location in memory; you can use the name to read or write to the memory location. Variables are like
containers for data, and, because they are typed, they tell the compiler how to interpret the data they
hold.
Declaring variables

Declaring variables
Topic groups See also
The basic syntax for a variable declaration is

var identifierList: type;
where identifierList is a comma-delimited list of valid identifiers and type is any valid type. For example,

var I: Integer;
declares a variable I of type Integer, while

var X, Y: Real;
declares two variables—X and Y—of type Real.
Consecutive variable declarations do not have to repeat the reserved word var:

var
 X, Y, Z: Double;
 I, J, K: Integer;
 Digit: 0..9;
 Okay: Boolean;

Variables declared within a procedure or function are sometimes called local, while other variables are
called global. Global variables can be initialized at the same time they are declared, using the syntax

var identifier: type = constantExpression;
where constantExpression is any constant expression representing a value of type type. Thus the
declaration

var I: Integer = 7;
is equivalent to the declaration and statement

var I: Integer;
 ...
I := 7;

Multiple variable declarations (such as var X, Y, Z: Real;) cannot include initializations, nor can
declarations of variant and file-type variables.
If you don’t explicitly initialize a global variable, the compiler initializes it to 0. Local variables, in contrast,
cannot be initialized in their declarations and contain random data until a value is assigned to them.
When you declare a variable, you are allocating memory which is freed automatically when the variable
is no longer used. In particular, local variables exist only until the program exits from the function or
procedure in which they are declared. For more information about variables and memory management,
see Memory management.
Absolute addresses
Dynamic variables
Thread-local variables

Absolute addresses
Topic groups See also
To declare a variable that resides at a specified memory address, put the word absolute after the type
name, followed by an address. Example:

var CrtMode: Byte absolute $0040;
This technique is useful only in low-level programming, for example when writing device drivers.
To create a new variable that resides at the same address as an existing variable, use the name of the
existing variable (instead of an address) after the word absolute. For example,

var
 Str: string[32];
 StrLen: Byte absolute Str;

specifies that the variable StrLen should start at the same address as Str. Since the first byte of a short
string contains the string’s length, the value of StrLen is the length of Str.
You cannot initialize a variable in an absolute declaration.

Dynamic variables
Topic groups See also
You can create dynamic variables by calling the GetMem or New procedure. Such variables are
allocated on the heap and are not managed automatically. Once you create one, it is your responsibility
ultimately to free the variable’s memory; use FreeMem to destroy variables created by GetMem and
Dispose to destroy variables created by New. Other standard routines that operate on dynamic variables
include ReallocMem, Initialize, StrAlloc, and StrDispose.
Long strings and dynamic arrays are also heap-allocated dynamic variables, but their memory is
managed automatically.

Thread-local variables
Topic groups See also
Thread-local (or thread) variables are used in multithreaded applications. A thread-local variable is like a
global variable, except that each thread of execution gets its own private copy of the variable, which
cannot be accessed from other threads. Thread-local variables are declared with threadvar instead of
var. For example,

threadvar X: Integer;
Thread-variable declarations

cannot occur within a procedure or function.
cannot include initializations.
cannot specify the absolute directive.

Reference-counted variables (such as long strings, dynamic arrays, or interfaces) are not thread-safe,
even if they are declared with threadvar. Do not use dynamic thread variables, since there is in general
no way to free the heap-allocated memory created by each thread of execution. Finally, do not create
pointer- or procedural-type thread variables.

Declared constants
Topic groups See also
Several different language constructions are referred to as “constants”. There are numeric constants
(also called numerals) like 17, and string constants (also called character strings or string literals) like
'Hello world!'. Every enumerated type defines constants that represent the values of that type. There are
predefined constants like True, False, and nil. Finally, there are constants that, like variables, are
created individually by declaration.
Declared constants are either true constants or typed constants. These two kinds of constant are
superficially similar, but they are governed by different rules and used for different purposes.

True constants
Topic groups See also
A true constant is a declared identifier whose value cannot change. For example,

const MaxValue = 237;
declares a constant called MaxValue that returns the integer 237. The syntax for declaring a true
constant is

const identifier = constantExpression
where identifier is any valid identifier and constantExpression is an expression that the compiler can
evaluate without executing your program. (See Constant expressions for more information.)
If constantExpression returns an ordinal value, you can specify the type of the declared constant using a
value typecast. For example

const MyNumber = Int64(17);
declares a constant called MyNumber, of type Int64, that returns the integer 17. Otherwise, the type of
the declared constant is the type of the constantExpression.

If constantExpression is a character string, the declared constant is compatible with any string
type. If the character string is of length 1, it is also compatible with any character type.

If constantExpression is a real, its type is Extended. If it is an integer, its type is given by the table
below.

Range of constant
(hexadecimal)

Range of constant
(decimal)

Type

–$8000000000000000..–
$80000001

–2^63..–2147483649 Int64

–$80000000..–$8001 –2147483648..–32769 Integer
–$8000..–$81 –32768..–129 Smallint
–$80..–1 –128..–1 Shortint
0..$7F 0..127 0..127
$80..$FF 128..255 Byte
$0100..$7FFF 256..32767 0..32767
$8000..$FFFF 32768..65535 Word
$10000..$7FFFFFFF 65536..2147483647 0..2147483647
$80000000..$FFFFFFFF 2147483648..4294967295 Cardinal
$100000000..$7FFFFFFFFFFFFF
FF

4294967296..2^63–1 Int64

Here are some examples of constant declarations:
const
 Min = 0;
 Max = 100;
 Center = (Max - Min) div 2;
 Beta = Chr(225);
 NumChars = Ord('Z') - Ord('A') + 1;
 Message = 'Out of memory';
 ErrStr = ' Error: ' + Message + '. ';
 ErrPos = 80 - Length(ErrStr) div 2;
 Ln10 = 2.302585092994045684;
 Ln10R = 1 / Ln10;
 Numeric = ['0'..'9'];
 Alpha = ['A'..'Z', 'a'..'z'];
 AlphaNum = Alpha + Numeric;

Constant expressions
Topic groups See also
A constant expression is an expression that the compiler can evaluate without executing the program in
which it occurs. Constant expressions include numerals; character strings; true constants; values of
enumerated types; the special constants True, False, and nil; and expressions built exclusively from
these elements with operators, typecasts, and set constructors. Constant expressions cannot include
variables, pointers, or function calls, except calls to the following predefined functions:

Abs
Chr
Hi

High
Length
Lo

Low
Odd
Ord

Pred
Round
SizeOf

Succ
Swap
Trunc

This definition of a constant expression is used in several places in Object Pascal’s syntax specification.
Constant expressions are required for initializing global variables, defining subrange types, specifying
default parameter values, writing case statements, and declaring both true and typed constants.
Examples of constant expressions:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Borland' + ' ' + 'Delphi'
Chr(32)
Ord('Z') - Ord('A') + 1

Resource strings
Topic groups See also
Resource strings are stored as resources and linked into the executable or library so that they can be
modified without recompiling the program. For more information, see Internationalization and localization
and the topics that follow it.
Resource strings are declared like other true constants, except that the word const is replaced by
resourcestring. The expression to the right of the = symbol must be a constant expression and must
return a string value. For example,

resourcestring
 CreateError = 'Cannot create file %s'; { for explanations of format
specifiers, }
 OpenError = 'Cannot open file %s'; { see 'Format strings' in the online
Help }
 LineTooLong = 'Line too long';
 ProductName = 'Borland Delphi\000\000';
 SomeResourceString = SomeTrueConstant;

The compiler automatically resolves naming conflicts among resource strings in different libraries.

Typed constants
Topic groups See also
Typed constants, unlike true constants, can hold values of array, record, procedural, and pointer types.
Typed constants cannot occur in constant expressions.
In the default {$J+} compiler state, typed constants can have new values assigned to them; they behave
essentially like initialized variables. But if the {$J–} compiler directive is in effect, typed constants cannot
change value at runtime; they are, in effect, read-only variables.
Declare a typed constant like this:

const identifier: type = value
where identifier is any valid identifier, type is any type except files and variants, and value is an
expression of type type. For example,

const Max: Integer = 100;
In most cases, value must be a constant expression; but if type is an array, record, procedural, or
pointer type, special rules apply.
Array constants
Record constants
Procedural constants
Pointer constants

Array constants
Topic groups See also
To declare an array constant, enclose the values of the array’s elements, separated by commas, in
parentheses at the end of the declaration. These values must be represented by constant expressions.
For example,

const Digits: array[0..9] of Char = ('0', '1', '2', '3', '4', '5', '6', '7', '8',
'9');

declares a typed constant called Digits that holds an array of characters.
Zero-based character arrays often represent null-terminated strings, and for this reason string constants
can be used to initialize character arrays. So the declaration above can be more conveniently
represented as

const Digits: array[0..9] of Char = '0123456789';
To define a multidimensional array constant, enclose the values of each dimension in a separate set of
parentheses, separated by commas. For example,

type TCube = array[0..1, 0..1, 0..1] of Integer;
const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where
Maze[0,0,0] = 0
Maze[0,0,1] = 1
Maze[0,1,0] = 2
Maze[0,1,1] = 3
Maze[1,0,0] = 4
Maze[1,0,1] = 5
Maze[1,1,0] = 6
Maze[1,1,1] = 7

Array constants cannot contain file-type values at any level.

Record constants
Topic groups See also
To declare a record constant, specify the value of each field—as fieldName: value, with the field
assignments separated by semicolons—in parentheses at the end of the declaration. The values must
be represented by constant expressions. The fields must be listed in the order in which they appear in
the record type declaration, and the tag field, if there is one, must have a value specified; if the record
has a variant part, only the variant selected by the tag field can be assigned values.
Examples:

type
 TPoint = record
 X, Y: Single;
 end;
 TVector = array[0..1] of TPoint;
 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
 TDate = record
 D: 1..31;
 M: TMonth;
 Y: 1900..1999;
 end;
const
 Origin: TPoint = (X: 0.0; Y: 0.0);
 Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
 SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural constants
Topic groups See also
To declare a procedural constant, specify the name of a function or procedure that is compatible with the
declared type of the constant. For example,

function Calc(X, Y: Integer): Integer;
begin
 ...
end;
type TFunction = function(X, Y: Integer): Integer;
const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a function call:
I := MyFunction(5, 7)

You can also assign the value nil to a procedural constant.

Pointer constants
Topic groups See also
When you declare a pointer constant, you must initialize it to a value that can be resolved—at least as a
relative address—at compile time. There are three ways to do this: with the @ operator, with nil, and (if
the constant is of type PChar) with a string literal. For example, if I is a global variable of type Integer,
you can declare a constant like

const PI: ^Integer = @I;
The compiler can resolve this because global variables are part of the code segment. So are functions
and global constants:

const PF: Pointer = @MyFunction;
Because string literals are allocated as global constants, you can initialize a PChar constant with a string
literal:

const WarningStr: PChar = 'Warning!';
Addresses of local (stack-allocated) and dynamic (heap-allocated) variables cannot be assigned to
pointer constants.

Procedures and functions
Topic groups See also
Procedures and functions—referred to collectively as routines—are self-contained statement blocks that
can be called from different locations in a program. A function is a routine that returns a value when it
executes. A procedure is a routine that does not return a value.
Function calls, because they return a value, can be used as expressions in assignments and operations.
For example,

I := SomeFunction(X);
calls SomeFunction and assigns the result to I. Function calls cannot appear on the left side of an
assignment statement.
Both function and procedure calls can be used as complete statements. For example,

DoSomething;
calls the DoSomething routine; if DoSomething is a function, its return value is discarded.
Procedures and functions can call themselves recursively.
Declaring procedures and functions
Parameters
Calling procedures and functions

Declaring procedures and functions
Topic groups See also
When you declare a procedure or function, you specify its name, the number and type of parameters it
takes, and, in the case of a function, the type of its return value; this part of the declaration is sometimes
called the prototype, heading, or header. Then you write a block of code that executes whenever the
procedure or function is called; this part is sometimes called the routine’s body or block.
The standard procedure Exit can occur within the body of any procedure or function. Exit halts execution
of the routine where it occurs and immediately passes program control back to the point from which the
routine was called.
Procedure declarations
Function declarations

Procedure declarations
Topic groups See also
A procedure declaration has the form

procedure procedureName(parameterList); directives;
localDeclarations;
begin
 statements
end;

where procedureName is any valid identifier, statements is a sequence of statements that execute when
the procedure is called, and (parameterList), directives;, and localDeclarations; are optional.

For information about the parameterList, see Parameters.
For information about directives, see Calling conventions, Forward and interface declarations,

External declarations, and Overloading procedures and functions. If you include more than one directive,
separate them with semicolons.

For information about localDeclarations, which declares local identifiers, see Local declarations.
Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var
 V: Integer;
begin
 V := Abs(N);
 S := '';
 repeat
 S := Chr(V mod 10 + Ord('0')) + S;
 V := V div 10;
 until V = 0;
 if N < 0 then S := '-' + S;
end;

Given this declaration, you can call the NumString procedure like this:
NumString(17, MyString);

This procedure call assigns the value “17” to MyString (which must be a string variable).
Within a procedure’s statement block, you can use variables and other identifiers declared in the
localDeclarations part of the procedure. You can also use the parameter names from the parameter list
(like N and S in the example above); the parameter list defines a set of local variables, so don’t try to
redeclare the parameter names in the localDeclarations section. Finally, you can use any identifiers
within whose scope the procedure declaration falls.
Overloading procedures and functions

Function declarations
Topic groups See also
A function declaration is like a procedure declaration except that it specifies a return type and a return
value. Function declarations have the form

function functionName(parameterList): returnType; directives;
localDeclarations;
begin
 statements
end;

where functionName is any valid identifier, returnType is any type, statements is a sequence of
statements that execute when the function is called, and (parameterList), directives;, and
localDeclarations; are optional.

For information about the parameterList, see Parameters.
For information about directives, see Calling conventions, Forward and interface declarations,

External declarations, and Overloading procedures and functions. If you include more than one directive,
separate them with semicolons.

For information about localDeclarations, which declares local identifiers, see Local declarations.
The function’s statement block is governed by the same rules that apply to procedures. Within the
statement block, you can use variables and other identifiers declared in the localDeclarations part of the
function, parameter names from the parameter list, and any identifiers within whose scope the function
declaration falls. In addition, the function name itself acts as a special variable that holds the function’s
return value, as does the predefined variable Result.
For example,

function WF: Integer;
begin
 WF := 17;
end;

defines a constant function called WF that takes no parameters and always returns the integer value 17.
This declaration is equivalent to

function WF: Integer;
begin
 Result := 17;
end;

Here is a more complicated function declaration:
function Max(A: array of Real; N: Integer): Real;
var
 X: Real;
 I: Integer;
begin
 X := A[0];
 for I := 1 to N - 1 do
 if X < A[I] then X := A[I];
 Max := X;
end;

You can assign a value to Result or to the function name repeatedly within a statement block, as long as
you assign only values that match the declared return type. When execution of the function terminates,
whatever value was last assigned to Result or to the function name becomes the function’s return value.
For example,

function Power(X: Real; Y: Integer): Real;
var
 I: Integer;
begin
 Result := 1.0;
 I := Y;
 while I > 0 do

 begin
 if Odd(I) then Result := Result * X;
 I := I div 2;
 X := Sqr(X);
 end;
end;

Result and the function name always represent the same value. Hence
function MyFunction: Integer;
begin
 MyFunction := 5;
 Result := Result * 2;
 MyFunction := Result + 1;
end;

returns the value 11. But Result is not completely interchangeable with the function name. When the
function name appears on the left side of an assignment statement, the compiler assumes that it is
being used (like Result) to track the return value; when the function name appears anywhere else in the
statement block, the compiler interprets it as a recursive call to the function itself. Result, on the other
hand, can be used as a variable in operations, typecasts, set constructors, indexes, and calls to other
routines.
Result is implicitly declared in every function, so do not try to redeclare it.
If execution terminates without an assignment being made to Result or the function name, then the
function’s return value is undefined.
Overloading procedures and functions

Calling conventions
Topic groups See also
When you declare a procedure or function, you can specify a calling convention using one of the
directives register, pascal, cdecl, stdcall, and safecall. For example,

function MyFunction(X, Y: Real): Real; cdecl;
 ...

Calling conventions determine the order in which parameters are passed to the routine. They also affect
the removal of parameters from the stack, the use of registers for passing parameters, and error and
exception handling. The default calling convention is register.

The register and pascal conventions pass parameters from left to right; that is, the leftmost
parameter is evaluated and passed first and the rightmost parameter is evaluated and passed last. The
cdecl, stdcall, and safecall conventions pass parameters from right to left.

For all conventions except cdecl, the procedure or function removes parameters from the stack
upon returning. With the cdecl convention, the caller removes parameters from the stack when the call
returns.

The register convention uses up to three CPU registers to pass parameters, while the other
conventions pass all parameters on the stack.

The safecall convention implements COM error and exception handling.
The table below summarizes calling conventions.

Directive Parameter order Clean-up Passes parameters in registers?
register Left-to-right Routine Yes
pascal Left-to-right Routine No
cdecl Right-to-left Caller No
stdcall Right-to-left Routine No
safecall Right-to-left Routine No

The default register convention is the most efficient, since it usually avoids creation of a stack frame.
(Access methods for published properties must use register.) The cdecl convention is useful when you
call functions from DLLs written in C or C++, while stdcall and safecall are used for Windows API calls.
The safecall convention must be used for declaring dual-interface methods. The pascal convention is
maintained for backward compatibility. For more information on calling conventions, see Program
control.
The directives near, far, and export refer to calling conventions in 16-bit Windows programming. They
have no effect in 32-bit applications and are maintained for backward compatibility only.

Forward and interface declarations
Topic groups See also
The forward directive replaces the block, including local variable declarations and statements, in a
procedure or function declaration. For example,

function Calculate(X, Y: Integer): Real; forward;
declares a function called Calculate. Somewhere after the forward declaration, the routine must be
redeclared in a defining declaration that includes a block. The defining declaration for Calculate might
look like this:

function Calculate;
 ... { declarations }
begin
 ... { statement block }
end;

Ordinarily, a defining declaration does not have to repeat the routine’s parameter list or return type, but if
it does repeat them, they must match those in the forward declaration exactly (except that default
parameters can be omitted). If the forward declaration specifies an overloaded procedure or function
(see Overloading procedures and functions), then the defining declaration must repeat the parameter
list.
Between a forward declaration and its defining declaration, you can place nothing except other
declarations. The defining declaration can be an external or assembler declaration, but it cannot be
another forward declaration.
The purpose of a forward declaration is to extend the scope of a procedure or function identifier to an
earlier point in the source code. This allows other procedures and functions to call the forward-declared
routine before it is actually defined. Besides letting you organize your code more flexibly, forward
declarations are sometimes necessary for mutual recursions.
The forward directive is not allowed in the interface section of a unit. Procedure and function headers
in the interface section, however, behave like forward declarations and must have defining declarations
in the implementation section. A routine declared in the interface section is available from anywhere
else in the unit and from any other unit or program that uses the unit where it is declared.

External declarations
Topic groups See also
The external directive, which replaces the block in a procedure or function declaration, allows you to
call procedures and functions that are compiled separately from your program.

Linking to .OBJ files
To call routines from a separately compiled .OBJ file, first link the .OBJ file to your application using the
$L (or $LINK) compiler directive. For example,

{$L BLOCK.OBJ}
links BLOCK.OBJ into the program or unit in which it occurs. Next, declare the functions and procedures
that you want to call:

procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OBJ.
Declarations like the ones above are frequently used to access external routines written in assembly
language. You can also place assembly-language routines directly in your Object Pascal source code;
for more information, see Inline assembler code.

Importing functions from DLLs
To import routines from a dynamic-link library, attach a directive of the form

external stringConstant;
to the end of a normal procedure or function header, where stringConstant is the name of the .DLL file in
single quotation marks. For example,

function SomeFunction(S: string): string; external 'strlib.dll';
imports a function called SomeFunction from STRLIB.DLL.
You can import a routine under a different name from the one it has in the DLL. If you do this, specify the
original name in the external directive:

external stringConstant1 name stringConstant2;
where the first stringConstant gives the name of the .DLL file and the second stringConstant is the
routine’s original name. For example, the following declaration imports a function from USER32.DLL
(part of the Windows API).

function MessageBox(HWnd: Integer; Text, Caption: PChar; Flags: Integer): Integer;
 stdcall; external 'user32.dll' name 'MessageBoxA';

The function’s original name is MessageBoxA, but it is imported as MessageBox.
Instead of a name, you can use a number to identify the routine you want to import:

external stringConstant index integerConstant;
where integerConstant is the routine’s index in the DLL export table.
In your importing declaration, be sure to match the exact spelling and case of the routine’s name. Later,
when you call the imported routine, the name is case-insensitive.
For more information about DLLs, see Dynamic-link libraries and packages.

Overloading procedures and functions
Topic groups See also
You can declare more than one routine in the same scope with the same name. This is called
overloading. Overloaded routines must be declared with the overload directive and must have
distinguishing parameter lists. For example, consider the declarations

function Divide(X, Y: Real): Real; overload;
begin
 Result := X/Y;
end;
function Divide(X, Y: Integer): Integer; overload;
begin
 Result := X div Y;
end;

These declarations create two functions, both called Divide, that take parameters of different types.
When you call Divide, the compiler determines which function to invoke by looking at the actual
parameters passed in the call. For example, Divide(6.0, 3.0) calls the first Divide function, because its
arguments are real-valued.
You can pass to an overloaded routine parameters that are not identical in type with those in any of the
routine’s declarations, but that are assignment-compatible with the parameters in more than one
declaration. This happens most frequently when a routine is overloaded with different integer types or
different real types—for example,

procedure Store(X: Longint); overload;
procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler invokes the routine whose
parameters are of the type with the smallest range that accommodates the actual parameters in the call.
(Remember that real-valued constant expressions are always of type Extended.)
Overloaded routines must be distinguished by the number of parameters they take or the types of their
parameters. Hence the following pair of declarations causes a compilation error.

function Cap(S: string): string; overload;
 ...
procedure Cap(var Str: string); overload;
 ...

But the declarations
function Func(X: Real; Y: Integer): Real; overload;
 ...
function Func(X: Integer; Y: Real): Real; overload;
 ...

are legal.
When an overloaded routine is declared in a forward or interface declaration, the defining declaration
must repeat the routine’s parameter list.
If you use default parameters in overloaded routines, be careful of ambiguous parameter signatures. For
more information, see Default parameters and overloaded routines.
You can limit the potential effects of overloading by qualifying a routine’s name when you call it. For
example, Unit1.MyProcedure(X, Y) can call only routines declared in Unit1; if no routine in Unit1
matches the name and parameter list in the call, an error results.
For information about distributing overloaded methods in a class hierarchy, see Overloading methods.
For information about exporting overloaded routines from a DLL, see The exports clause.

Local declarations
Topic groups See also
The body of a function or procedure often begins with declarations of local variables used in the
routine’s statement block. These declarations can also include constants, types, and other routines. The
scope of a local identifier is limited to the routine where it is declared.

Nested routines
Functions and procedures sometimes contain other functions and procedures within the local-
declarations section of their blocks. For example, the following declaration of a procedure called
DoSomething contains a nested procedure.

procedure DoSomething(S: string);
var
 X, Y: Integer;
 procedure NestedProc(S: string);
 begin
 ...
 end;
begin
 ...
 NestedProc(S);
 ...
end;

The scope of a nested routine is limited to the procedure or function in which it is declared. In our
example, NestedProc can be called only within DoSomething.
For real examples of nested routines, look at the DateTimeToString procedure, the ScanDate function,
and other routines in the SysUtils unit.

Parameters
Topic groups See also
Most procedure and function headers include a parameter list. For example, in the header

function Power(X: Real; Y: Integer): Real;
the parameter list is (X: Real; Y: Integer).
A parameter list is a sequence of parameter declarations separated by semicolons and enclosed in
parentheses. Each declaration is a comma-delimited series of parameter names, followed in most cases
by a colon and a type identifier, and in some cases by the = symbol and a default value. Parameter
names must be valid identifiers. Any declaration can be preceded by one of the reserved words var,
const, and out (see Parameter semantics). Examples:

(X, Y: Real)
(var S: string; X: Integer)
(HWnd: Integer; Text, Caption: PChar; Flags: Integer)
(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must be passed to the
routine when it is called. If a routine does not take any parameters, omit the identifier list and the
parentheses in its declaration:

procedure UpdateRecords;
begin
 ...
end;

Within the procedure or function body, the parameter names (X and Y in the first example above) can be
used as local variables. Do not redeclare the parameter names in the local declarations section of the
procedure or function body.
String parameters
Array parameters

Parameter semantics
Topic groups See also
Parameters are categorized in several ways:

Every parameter is classified as value, variable, constant, or out. Value parameters are the
default; the reserved words var, const, and out indicate variable, constant, and out parameters,
respectively.

Value parameters are always typed, while constant, variable, and out parameters can be either
typed or untyped.

Special rules apply to array parameters.
Files and instances of structured types that contain files can be passed only as variable (var)
parameters.
Value and variable parameters
Constant parameters
Out parameters

Value and variable parameters
Topic groups See also
Most parameters are either value parameters (the default) or variable (var) parameters. Value
parameters are passed by value, while variable parameters are passed by reference. To see what this
means, consider the following functions.

function DoubleByValue(X: Integer): Integer; // X is a value parameter
begin
 X := X * 2;
 Result := X;
end;
function DoubleByRef(var X: Integer): Integer; // X is a variable parameter
begin
 X := X * 2;
 Result := X;
end;

These functions return the same result, but only the second one—DoubleByRef—can change the value
of a variable passed to it. Suppose we call the functions like this:

var
 I, J, V, W: Integer;
begin
 I := 4;
 V := 4;
 J := DoubleByValue(I); // J = 8, I = 4
 W := DoubleByRef(V); // W = 8, V = 8
end;

After this code executes, the variable I, which was passed to DoubleByValue, has the same value we
initially assigned to it. But the variable V, which was passed to DoubleByRef, has a different value.
A value parameter acts like a local variable that gets initialized to the value passed in the procedure or
function call. If you pass a variable as a value parameter, the procedure or function creates a copy of it;
changes made to the copy have no effect on the original variable and are lost when program execution
returns to the caller.
A variable parameter, on the other hand, acts like a pointer rather than a copy. Changes made to the
parameter within the body of a function or procedure persist after program execution returns to the caller
and the parameter name itself has gone out of scope.
Even if the same variable is passed in two or more var parameters, no copies are made. This is
illustrated in the following example.

procedure AddOne(var X, Y: Integer);
begin
 X := X + 1;
 Y := Y + 1;
end;
var I: Integer;
begin
 I := 1;
 AddOne(I, I);
end;

After this code executes, the value of I is 3.
If a routine’s declaration specifies a var parameter, you must pass an assignable expression—that is, a
variable, typed constant (in the {$J+} state), dereferenced pointer, field, or indexed variable—to the
routine when you call it. To use our previous examples, DoubleByRef(7) produces an error, although
DoubleByValue(7) is legal.
Indexes and pointer dereferences passed in var parameters—for example, DoubleByRef(MyArray[I])—
are evaluated once, before execution of the routine.

Constant parameters
Topic groups See also
A constant (const) parameter is like a local constant or read-only variable. Constant parameters are
similar to value parameters, except that you can’t assign a value to a constant parameter within the
body of a procedure or function, nor can you pass one as a var parameter to another routine. (But when
you pass an object reference as a constant parameter, you can still modify the object’s properties.)
Using const allows the compiler to optimize code for structured- and string-type parameters. It also
provides a safeguard against unintentionally passing a parameter by reference to another routine.
Here, for example, is the header for the CompareStr function in the SysUtils unit:

function CompareStr(const S1, S2: string): Integer;
Because S1 and S2 are not modified in the body of CompareStr, they can be declared as constant
parameters.

Out parameters
Topic groups See also
An out parameter, like a variable parameter, is passed by reference. With an out parameter, however,
the initial value of the referenced variable is discarded by the routine it is passed to. The out parameter
is for output only; that is, it tells the function or procedure where to store output, but doesn’t provide any
input.
For example, consider the procedure heading

procedure GetInfo(out Info: SomeRecordType);
When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;
 ...
GetInfo(MyRecord);

But you’re not using MyRecord to pass any data to the GetInfo procedure; MyRecord is just a container
where you want GetInfo to store the information it generates. The call to GetInfo immediately frees the
memory used by MyRecord, before program control passes to the procedure.
Out parameters are frequently used with distributed-object models like COM and CORBA. In addition,
you should use out parameters when you pass an uninitialized variable to a function or procedure.

Untyped parameters
Topic groups See also
You can omit type specifications when declaring var, const, and out parameters. (Value parameters
must be typed.) For example,

procedure TakeAnything(const C);
declares a procedure called TakeAnything that accepts a parameter of any type. When you call such a
routine, you cannot pass it a numeral or untyped numeric constant.
Within a procedure or function body, untyped parameters are incompatible with every type. To operate
on an untyped parameter, you must cast it. In general, the compiler cannot verify that operations on
untyped parameters are valid.
The following example uses untyped parameters in a function called Equal that compares a specified
number of bytes of any two variables.

function Equal(var Source, Dest; Size: Integer): Boolean;
type
 TBytes = array[0..MaxInt - 1] of Byte;
var
 N: Integer;
begin
 N := 0;
 while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do
 Inc(N);
 Equal := N = Size;
end;

Given the declarations
type
 TVector = array[1..10] of Integer;
 TPoint = record
 X, Y: Integer;
 end;
var
 Vec1, Vec2: TVector;
 N: Integer;
 P: TPoint;

you could make the following calls to Equal:
Equal(Vec1, Vec2, SizeOf(TVector)) // compare Vec1 to Vec2
Equal(Vec1, Vec2, SizeOf(Integer) * N) // compare first N elements of Vec1
and Vec2
Equal(Vec1[1], Vec1[6], SizeOf(Integer) * 5) // compare first 5 to last 5 elements
of Vec1
Equal(Vec1[1], P, 4) // compare Vec1[1] to P.X and Vec1[2]
to P.Y

String parameters
Topic groups See also
When you declare routines that take short-string parameters, you cannot include length specifiers in the
parameter declarations. That is, the declaration

procedure Check(S: string[20]); // syntax error
causes a compilation error. But

type TString20 = string[20];
procedure Check(S: TString20);

is valid. The special identifier OpenString can be used to declare routines that take short-string
parameters of varying length:

procedure Check(S: OpenString);
When the {$H–} and {$P+} compiler directives are both in effect, the reserved word string is equivalent
to OpenString in parameter declarations.
Short strings, OpenString, $H, and $P are supported for backward compatibility only. In new code, you
can avoid these considerations by using long strings.

Array parameters
Topic groups See also
When you declare routines that take array parameters, you cannot include index type specifiers in the
parameter declarations. That is, the declaration

procedure Sort(A: array[1..10] of Integer); // syntax error
causes a compilation error. But

type TDigits = array[1..10] of Integer;
procedure Sort(A: TDigits);

is valid. For most purposes, however, open array parameters are a better solution.

Open array parameters
Topic groups See also
Open array parameters allow arrays of different sizes to be passed to the same procedure or function.
To define a routine with an open array parameter, use the syntax array of type (rather than array[X..Y] of
type) in the parameter declaration. For example,

function Find(A: array of Char): Integer;
declares a function called Find that takes a character array of any size and returns an integer.
Note:The syntax of open array parameters resembles that of dynamic array types, but they do not mean

the same thing. The example above creates a function that takes any array of Char elements,
including (but not limited to) dynamic arrays. To declare parameters that must be dynamic arrays,
you need to specify a type identifier:

type TDynamicCharArray = array of Char;
function Find(A: TDynamicCharArray): Integer;

For information about dynamic arrays, see Dynamic arrays.
Within the body of a routine, open array parameters are governed by the following rules.

They are always zero-based. The first element is 0, the second element is 1, and so forth. The
standard Low and High functions return 0 and Length – 1, respectively. The SizeOf function returns the
size of the actual array passed to the routine.

They can be accessed by element only. Assignments to an entire open array parameter are not
allowed.

They can be passed to other procedures and functions only as open array parameters or untyped
var parameters. They cannot be passed to SetLength.

Instead of an array, you can pass a variable of the open array parameter’s base type. It will be
treated as an array of length 1.
When you pass an array as an open array value parameter, the compiler creates a local copy of the
array within the routine’s stack frame. Be careful not to overflow the stack by passing large arrays.
The following examples use open array parameters to define a Clear procedure that assigns zero to
each element in an array of reals and a Sum function that computes the sum of the elements in an array
of reals.

procedure Clear(var A: array of Real);
var
 I: Integer;
begin
 for I := 0 to High(A) do A[I] := 0;
end;
function Sum(const A: array of Real): Real;
var
 I: Integer;
 S: Real;
begin
 S := 0;
 for I := 0 to High(A) do S := S + A[I];
 Sum := S;
end;

When you call routines that use open array parameters, you can pass open array constructors to them.
Variant open array parameters

Variant open array parameters
Topic groups See also
Variant open array parameters allow you to pass an array of differently-typed expressions to a single
procedure or function. To define a routine with a variant open array parameter, specify array of const as
the parameter’s type. Thus

procedure DoSomething(A: array of const);
declares a procedure called DoSomething that can operate on heterogeneous arrays.
The array of const construction is equivalent to array of TVarRec. TVarRec, declared in the System
unit, represents a record with a variant part that can hold values of integer, Boolean, character, real,
string, pointer, class, class reference, interface, and variant types. TVarRec’s VType field indicates the
type of each element in the array. Some types are passed as pointers rather than values; in particular,
long strings are passed as Pointer and must be typecast to string.
The following example uses a variant open array parameter in a function that creates a string
representation of each element passed to it and concatenates the results into a single string. The string-
handling routines called in this function are defined in SysUtils.

function MakeStr(const Args: array of const): string;
const
 BoolChars: array[Boolean] of Char = ('F', 'T');
var
 I: Integer;
begin
 Result := '';
 for I := 0 to High(Args) do
 with Args[I] do
 case VType of
 vtInteger: Result := Result + IntToStr(VInteger);
 vtBoolean: Result := Result + BoolChars[VBoolean];
 vtChar: Result := Result + VChar;
 vtExtended: Result := Result + FloatToStr(VExtended^);
 vtString: Result := Result + VString^;
 vtPChar: Result := Result + VPChar;
 vtObject: Result := Result + VObject.ClassName;
 vtClass: Result := Result + VClass.ClassName;
 vtAnsiString: Result := Result + string(VAnsiString);
 vtCurrency: Result := Result + CurrToStr(VCurrency^);
 vtVariant: Result := Result + string(VVariant^);
 vtInt64: Result := Result + IntToStr(VInt64^);
 end;
end;

We can call this function using an open array constructor (see Open array constructors). For example,
MakeStr(['test', 100, ' ', True, 3.14159, TForm])

returns the string “test100 T3.14159TForm”.

Default parameters
Topic groups See also
You can specify default parameter values in a procedure or function heading. Default values are allowed
only for typed const and value parameters. To provide a default value, end the parameter declaration
with the = symbol followed by a constant expression that is assignment-compatible with the parameter’s
type.
For example, given the declaration

procedure FillArray(A: array of Integer; Value: Integer = 0);
the following procedure calls are equivalent.

FillArray(MyArray);
FillArray(MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while
function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

is legal,
function MyFunction(X, Y: Real = 3.5): Real; // syntax error

is not.
Parameters with default values must occur at the end of the parameter list. That is, all parameters
following the first declared default value must also have default values. So the following declaration is
illegal.

procedure MyProcedure(I: Integer = 1; S: string); // syntax error
Default values specified in a procedural type override those specified in an actual routine. Thus, given
the declarations

type TResizer = function(X: Real; Y: Real = 1.0): Real;
function Resizer(X: Real; Y: Real = 2.0): Real;
var
 F: TResizer;
 N: Real;

the statements
F := Resizer;
F(N);

result in the values (N, 1.0) being passed to Resizer.
Default parameters are limited to values that can be specified by a constant expression. Hence
parameters of a dynamic-array, procedural, class, class-reference, or interface type can have no value
other than nil as their default. Parameters of a record, variant, file, static-array, or object type cannot
have default values at all.
For information about calling routines with default parameter values, see Calling procedures and
functions.
Default parameters and overloaded routines
Default parameters in forward and interface declarations

Default parameters and overloaded routines
Topic groups See also
If you use default parameter values in an overloaded routine, avoid ambiguous parameter signatures.
Consider, for example, the following.

procedure Confused(I: Integer); overload;
 ...
procedure Confused(I: Integer; J: Integer = 0); overload;
 ...
Confused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

Default parameters in forward and interface declarations
Topic groups See also
If a routine has a forward declaration or appears in the interface section of a unit, default parameter
values—if there are any—must be specified in the forward or interface declaration. In this case, the
default values can be omitted from the defining (implementation) declaration; but if the defining
declaration includes default values, they must match those in the forward or interface declaration
exactly.

Calling procedures and functions
Topic groups See also
When you call a procedure or function, program control passes from the point where the call is made to
the body of the routine. You can make the call using the routine’s declared name (with or without
qualifiers) or using a procedural variable that points to the routine. In either case, if the routine is
declared with parameters, your call to it must pass parameters that correspond in order and type to the
routine’s parameter list. The parameters you pass to a routine are called actual parameters, while the
parameters in the routine’s declaration are called formal parameters.
When calling a routine, remember that

expressions used to pass typed const and value parameters must be assignment-compatible
with the corresponding formal parameters.

expressions used to pass var and out parameters must be identically typed with the
corresponding formal parameters, unless the formal parameters are untyped.

only assignable expressions can be used to pass var and out parameters.
if a routine’s formal parameters are untyped, numerals and true constants with numeric values

cannot be used as actual parameters.
When you call a routine that uses default parameter values, all actual parameters following the first
accepted default must also use the default values; calls of the form SomeFunction(,,X) are not legal.
You can omit parentheses when passing all and only the default parameters to a routine. For example,
given the procedure

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');
the following calls are equivalent.

DoSomething();
DoSomething;

Open array constructors

Open array constructors
Topic groups See also
Open array constructors allow you to construct arrays directly within function and procedure calls. They
can be passed only as open array parameters or variant open array parameters.
An open array constructor, like a set constructor, is a sequence of expressions separated by commas
and enclosed in brackets. For example, given the declarations

var I, J: Integer;
procedure Add(A: array of Integer);

you could call the Add procedure with the statement
Add([5, 7, I, I + J]);

This is equivalent to
var Temp: array[0..3] of Integer;
 ...
Temp[0] := 5;
Temp[1] := 7;
Temp[2] := I;
Temp[3] := I + J;
Add(Temp);

Open array constructors can be passed only as value or const parameters. The expressions in a
constructor must be assignment-compatible with the base type of the array parameter. In the case of a
variant open array parameter, the expressions can be of different types.

Classes and objects
Topic groups See also
A class, or class type, defines a structure consisting of fields, methods, and properties. Instances of a
class type are called objects. The fields, methods, and properties of a class are called its components or
members.

A field is essentially a variable that is part of an object. Like the fields of a record, a class’s fields
represent data items that exist in each instance of the class.

A method is a procedure or function associated with a class. Most methods operate on objects—
that is, instances of a class. Some methods (called class methods) operate on class types themselves.

A property is an interface to data associated with an object (often stored in a field). Properties
have access specifiers, which determine how their data are read and modified. From other parts of a
program—outside of the object itself—a property appears in most respects like a field.
Objects are dynamically allocated blocks of memory whose structure is determined by their class type.
Each object has a unique copy of every field defined in the class, but all instances of a class share the
same methods. Objects are created and destroyed by special methods called constructors and
destructors.
A variable of a class type is actually a pointer that references an object. Hence more than one variable
can refer to the same object. Like other pointers, class-type variables can hold the value nil. But you
don’t have to explicitly dereference a class-type variable to access the object it points to. For example,
SomeObject.Size := 100 assigns the value 100 to the Size property of the object referenced by
SomeObject; you would not write this as SomeObject^.Size := 100.

About class types
Topic groups See also
A class type must be declared and given a name before it can be instantiated. (You cannot define a
class type within a variable declaration.) Declare classes only in the outermost scope of a program or
unit, not in a procedure or function declaration.
A class type declaration has the form

type className = class (ancestorClass)
 memberList
 end;

where className is any valid identifier, (ancestorClass) is optional, and memberList declares members
—that is, fields, methods, and properties—of the class. If you omit (ancestorClass), then the new class
inherits directly from the predefined TObject class. If you include (ancestorClass) and memberList is
empty, you can omit end. A class type declaration can also include a list of interfaces implemented by
the class; see Implementing interfaces.
Methods appear in a class declaration as function or procedure headings, with no body. Defining
declarations for each method occur elsewhere in the program.
For example, here is the declaration of the TListColumns class from the ComCtrls unit of Delphi’s VCL.

type
 TListColumns = class(TCollection)
 private
 FOwner: TCustomListView;
 function GetItem(Index: Integer): TListColumn;
 procedure SetItem(Index: Integer; Value: TListColumn);
 protected
 function GetOwner: TPersistent; override;
 procedure Update(Item: TCollectionItem); override;
 public
 constructor Create(AOwner: TCustomListView);
 function Add: TListColumn;
 property Owner: TCustomListView read FOwner;
 property Items[Index: Integer]: TListColumn read GetItem write SetItem; default;
 end;

TListColumns descends from TCollection (in the Classes unit), inheriting most of its members. But it
defines—or redefines—several methods and properties, including its constructor method, Create. Its
destructor, Destroy, is inherited without change from TCollection, and so is not redeclared. Each
member is declared as private, protected, or public (this class has no published members); for
explanations of these terms, see Visibility of class members.
Given this declaration, we can create a TListColumns with

var ListColumns: TListColumns;
ListColumns := TListColumns.Create(SomeListView);

where SomeListView is a variable that holds a TCustomListView object.
Inheritance and scope
Forward declarations and mutually dependent classes

Inheritance and scope
Topic groups See also
When you declare a class, you can specify its immediate ancestor. For example,

type TSomeControl = class(TWinControl);
declares a class called TSomeControl that descends from TWinControl. A class type automatically
inherits all of the members from its immediate ancestor. Each class can declare new members and can
redefine inherited ones, but a class cannot remove members defined in an ancestor. Hence
TSomeControl contains all of the members defined in TWinControl and in each of TWinControl‘s
ancestors.
The scope of a member’s identifier starts at the point where the member is declared, continues to the
end of the class declaration, and extends over all descendants of the class and the blocks of all
methods defined in the class and its descendants.
TObject and TClass
Compatibility of class types

TObject and TClass
Topic groups See also
The TObject class, declared in the System unit, is the ultimate ancestor of all other classes. TObject
defines only a handful of methods, including a basic constructor and destructor. In addition to TObject,
the System unit declares the class-reference type TClass:

TClass = class of TObject;
If the declaration of a class type doesn’t specify an ancestor, the class inherits directly from TObject.
Thus

type TMyClass = class
 ...
end;

is equivalent to
type TMyClass = class(TObject)
 ...
end;

The latter form is recommended for readability.

Compatibility of class types
Topic groups See also
A class type is assignment-compatible with its ancestors. Hence a variable of a class type can reference
an instance of any descendant type. For example, given the declarations

type
 TFigure = class(TObject);
 TRectangle = class(TFigure);
 TSquare = class(TRectangle);
var
 Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and TSquare.

Object types
Topic groups See also
As an alternative to class types, you can declare object types using the syntax

type objectTypeName = object (ancestorObjectType)
 memberList
end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional, and memberList
declares fields, methods, and properties. If (ancestorObjectType) is omitted, then the new type has no
ancestor. Object types cannot have published members.
Since object types do not descend from TObject, they provide no built-in constructors, destructors, or
other methods. You can create instances of an object type using the New procedure and destroy them
with the Dispose procedure, or you can simply declare variables of an object type, just as you would
with records.
Object types are supported for backward compatibility only. Their use is not recommended.

Visibility of class members
Topic groups See also
Every member of a class has an attribute called visibility, which is indicated by one of the reserved
words private, protected, public, published, or automated. For example,

published property Color: TColor read GetColor write SetColor;
declares a published property called Color. Visibility determines where and how a member can be
accessed, with private representing the least accessibility, protected representing an intermediate level
of accessibility, and public, published, and automated representing the greatest accessibility.
Private, protected, and public members
Published members
Automated members
If a member’s declaration appears without its own visibility specifier, the member has the same visibility
as the one that precedes it. Members at the beginning of a class declaration that don’t have a specified
visibility are by default published, provided the class is compiled in the {$M+} state or is derived from a
class compiled in the {$M+} state; otherwise, such members are public.
For readability, it is best to organize a class declaration by visibility, placing all the private members
together, followed by all the protected members, and so forth. This way each visibility reserved word
appears at most once and marks the beginning of a new “section” of the declaration. So a typical class
declaration should like this:

type
 TMyClass = class(TControl)
 private
 ... { private declarations here}
 protected
 ... { protected declarations here }
 public
 ... { public declarations here }
 published
 ... { published declarations here }
 end;

You can increase the visibility of a member in a descendant class by redeclaring it, but you cannot
decrease its visibility. For example, a protected property can be made public in a descendant, but not
private. Moreover, published members cannot become public in a descendant class. For more
information, see Property overrides and redeclarations.

Private, protected, and public members
Topic groups See also
A private member is invisible outside of the unit or program where its class is declared. In other words, a
private method cannot be called from another module, and a private field or property cannot be read or
written to from another module. By placing related class declarations in the same module, you can give
the classes access to one another’s private members without making those members more widely
accessible.
A protected member is visible anywhere in the module where its class is declared and from any
descendant class, regardless of the module where the descendant class appears. In other words, a
protected method can be called, and a protected field or property read or written to, from the definition of
any method belonging to a class that descends from the one where the protected member is declared.
Members that are intended for use only in the implementation of derived classes are usually protected.
A public member is visible wherever its class can be referenced.

Published members
Topic groups See also
Published members have the same visibility as public members. The difference is that runtime type
information (RTTI) is generated for published members. RTTI allows an application to query the fields
and properties of an object dynamically and to locate its methods. Delphi uses RTTI to access the
values of properties when saving and loading form (.DFM) files, to display properties in the Object
Inspector, and to associate specific methods (called event handlers) with specific properties (called
events).
Published properties are restricted to certain data types. Ordinal, string, class, interface, and method-
pointer types can be published. So can set types, provided the upper and lower bounds of the base type
have ordinal values between 0 and 31. (In other words, the set must fit in a byte, word, or double word.)
Any real type except Real48 can be published. Array properties cannot be published.
All methods are publishable, but a class cannot publish two or more overloaded methods with the same
name. Fields can be published only if they are of a class or interface type.
A class cannot have published members unless it is compiled in the {$M+} state or descends from a
class compiled in the {$M+} state. Most classes with published members derive from TPersistent, which
is compiled in the {$M+} state, so it is seldom necessary to use the $M directive.

Automated members
Topic groups See also
Automated members have the same visibility as public members. The difference is that Automation type
information (required for Automation servers) is generated for automated members. Automated
members typically appear only in classes derived from the TAutoObject class in the OleAuto unit. This
unit, and the automated reserved word itself, are maintained for backward compatibility. The
TAutoObject class in the ComObj unit does not use automated.
The following restrictions apply to methods and properties declared as automated.

The types of all properties, array property parameters, method parameters, and function results
must be automatable. The automatable types are Byte, Currency, Real, Double, Longint, Integer, Single,
Smallint, AnsiString, WideString, TDateTime, Variant, OleVariant, WordBool, and all interface types.

Method declarations must use the default register calling convention. They can be virtual, but not
dynamic.

Property declarations can include access specifiers (read and write) but other specifiers (index,
stored, default, and nodefault) are not allowed. Access specifiers must list a method identifier that uses
the default register calling convention; field identifiers are not allowed.

Property declarations must specify a type. Property overrides are not allowed.
The declaration of an automated method or property can include a dispid directive, which must be
followed by an integer constant that specifies an Automation dispatch ID for the member. Otherwise, the
compiler automatically assigns the member a dispatch ID that is one larger than the largest dispatch ID
used by any method or property in the class and its ancestors. Specifying an already used ID in a
dispid directive causes an error.
For more information about Automation, see Automation objects.

Forward declarations and mutually dependent classes
Topic groups See also
If the declaration of a class type ends with the word class and a semicolon—that is, if it has the form

type className = class;
with no ancestor or class members listed after the word class—then it is a forward declaration. A
forward declaration must be resolved by a defining declaration of the same class within the same type
declaration section. In other words, between a forward declaration and its defining declaration, nothing
can occur except other type declarations.
Forward declarations allow mutually dependent classes. For example,

type
 TFigure = class; // forward declaration
 TDrawing = class
 Figure: TFigure;
 ...
 end;
 TFigure = class // defining declaration
 Drawing: TDrawing;
 ...
 end;

Do not confuse forward declarations with complete declarations of types that derive from TObject
without declaring any class members.

type
 TFirstClass = class; // this is a forward declaration
 TSecondClass = class // this is a complete class declaration
 end; //
 TThirdClass = class(TObject); // this is a complete class declaration

Fields
Topic groups See also
A field is like a variable that belongs to an object. Fields can be of any type, including class types. (That
is, fields can hold object references.) Fields are usually private.
To define a field member of a class, simply declare the field as you would a variable. All field
declarations must occur before any property or method declarations. For example, the following
declaration creates a class called TNumber whose only member, other than the methods is inherits from
TObject, is an integer field called Int.

type TNumber = class
 Int: Integer;
end;

Fields are statically bound; that is, references to them are fixed at compile time. To see what this means,
consider the following code.

type
 TAncestor = class
 Value: Integer;
 end;
 TDescendant = class(TAncestor)
 Value: string; // hides the inherited Value field
 end;
var
 MyObject: TAncestor;
begin
 MyObject := TDescendant.Create;
 MyObject.Value := 'Hello!'; // error
 TDescendant(MyObject).Value := 'Hello!'; // works!
end;

Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The compiler
therefore interprets MyObject.Value as referring to the (integer) field declared in TAncestor. Both fields,
however, exist in the TDescendant object; the inherited Value is hidden by the new one, and can be
accessed through a typecast.

Methods
Topic groups See also
A method is a procedure or function associated with a class. A call to a method specifies the object (or, if
it is a class method, the class) that the method should operate on. For example,

SomeObject.Free
calls the Free method in SomeObject.
Method implementations
Method binding
Overloading methods
Constructors
Destructors
Message handlers

Method implementations
Topic groups See also
Within a class declaration, methods appear as procedure and function headings, which work like
forward declarations. Somewhere after the class declaration, but within the same module, each method
must be implemented by a defining declaration. For example, suppose the declaration of TMyClass
includes a method called DoSomething:

type
 TMyClass = class(TObject)
 ...
 procedure DoSomething;
 ...
 end;

A defining declaration for DoSomething must occur later in the module:
procedure TMyClass.DoSomething;
begin
 ...
end;

While a class can be declared in either the interface or the implementation section of a unit, defining
declarations for a class’s methods must be in the implementation section.
In the heading of a defining declaration, the method name is always qualified with the name of the class
to which it belongs. The heading can repeat the parameter list from the class declaration; if it does so,
the order, type, and names of the parameters must match exactly, and, if the method is a function, so
must the return value.
Inherited
Self

Inherited
Topic groups See also
The reserved word inherited plays a special role in implementing polymorphic behavior. It can occur in
method definitions, with or without an identifier after it.
If inherited is followed by a method identifier, it represents a normal method call, except that the search
for the method begins with the immediate ancestor of the enclosing method’s class. For example, when

inherited Create(...);
occurs in the definition of a method, it calls the inherited Create.
When inherited has no identifier after it, it refers to the inherited method with the same name as the
enclosing method. In this case, inherited can appear with or without parameters; if no parameters are
specified, it passes to the inherited method the same parameters with which the enclosing method was
called. For example,

inherited;
occurs frequently in the implementation of constructors. It calls the inherited constructor with the same
parameters that were passed to the descendant.

Self
Topic groups See also
Within the implementation of a method, the identifier Self references the object in which the method is
called. For example, here is the implementation of TCollection’s Add method in the Classes unit of the
VCL.

function TCollection.Add: TCollectionItem;
begin
 Result := FItemClass.Create(Self);
end;

The Add method calls the Create method in the class referenced by the FItemClass field, which is
always a TCollectionItem descendant. TCollectionItem.Create takes a single parameter of type
TCollection, so Add passes it the TCollection instance object where Add is called. This is illustrated in
the following code.

var MyCollection: TCollection;
 ...
MyCollection.Add // MyCollection is passed to the TCollectionItem.Create method

Self is useful for a variety of reasons. For example, a member identifier declared in a class type might
be redeclared in the block of one of the class’s methods. In this case, you can access the original
member identifier as Self.Identifier.
For information about Self in class methods, see Class methods.

Method binding
Topic groups See also
Methods can be static (the default), virtual, or dynamic. Virtual and dynamic methods can be overridden,
and they can be abstract. These designations come into play when a variable of one class type holds a
value of a descendant class type. They determine which implementation is activated when a method is
called.
Static methods
Virtual and dynamic methods
Abstract methods

Static methods
Topic groups See also
Methods are by default static. When a static method is called, the declared (compile-time) type of the
class or object variable used in the method call determines which implementation to activate. In the
following example, the Draw methods are static.

type
 TFigure = class
 procedure Draw;
 end;
 TRectangle = class(TFigure)
 procedure Draw;
 end;

Given these declarations, the following code illustrates the effect of calling a static method. In the
second call to Figure.Draw, the Figure variable references an object of class TRectangle, but the call
invokes the implementation of Draw in TFigure, because the declared type of the Figure variable is
TFigure.

var
 Figure: TFigure;
 Rectangle: TRectangle;
begin
 Figure := TFigure.Create;
 Figure.Draw; // calls TFigure.Draw
 Figure.Destroy;
 Figure := TRectangle.Create;
 Figure.Draw; // calls TFigure.Draw
 TRectangle(Figure).Draw; // calls TRectangle.Draw
 Figure.Destroy;
 Rectangle := TRectangle.Create;
 Rectangle.Draw; // calls TRectangle.Draw
 Rectangle.Destroy;
end;

Virtual and dynamic methods
Topic groups See also
To make a method virtual or dynamic, include the virtual or dynamic directive in its declaration. Virtual
and dynamic methods, unlike static methods, can be overridden in descendant classes. When an
overridden method is called, the actual (runtime) type of the class or object used in the method call—not
the declared type of the variable—determines which implementation to activate.
To override a method, redeclare it with the override directive. An override declaration must match the
ancestor declaration in the order and type of its parameters and in its result type (if any).
In the following example, the Draw method declared in TFigure is overridden in two descendant classes.

type
 TFigure = class
 procedure Draw; virtual;
 end;
 TRectangle = class(TFigure)
 procedure Draw; override;
 end;
 TEllipse = class(TFigure)
 procedure Draw; override;
 end;

Given these declarations, the following code illustrates the effect of calling a virtual method through a
variable whose actual type varies at runtime.

var
 Figure: TFigure;
begin
 Figure := TRectangle.Create;
 Figure.Draw; // calls TRectangle.Draw
 Figure.Destroy;
 Figure := TEllipse.Create;
 Figure.Draw; // calls TEllipse.Draw
 Figure.Destroy;
end;

Only virtual and dynamic methods can be overridden. All methods, however, can be overloaded; see
Overloading methods.

Virtual versus dynamic
Virtual and dynamic methods are semantically equivalent. They differ only in the implementation of
method-call dispatching at runtime. Virtual methods optimize for speed, while dynamic methods optimize
for code size.
In general, virtual methods are the most efficient way to implement polymorphic behavior. Dynamic
methods are useful when a base class declares many overridable methods which are inherited by many
descendant classes in an application, but only occasionally overridden.
Overriding versus hiding
Reintroduce
Abstract methods

Overriding versus hiding
Topic groups See also
If a method declaration specifies the same method identifier and parameter signature as an inherited
method, but doesn’t include override, the new declaration merely hides the inherited one without
overriding it. Both methods exist in the descendant class, where the method name is statically bound.
For example,

type
 T1 = class(TObject)
 procedure Act; virtual;
 end;
 T2 = class(T1)
 procedure Act; // Act is redeclared, but not overridden
 end;
var
 SomeObject: T1;
begin
 SomeObject := T2.Create;
 SomeObject.Act; // calls T1.Act
end;

Reintroduce
Topic groups See also
The reintroduce directive suppresses compiler warnings about hiding previously declared virtual
methods. For example,

procedure DoSomething; reintroduce; // the ancestor class also has a DoSomething
method

Use reintroduce when you want to hide an inherited virtual method with a new one.

Abstract methods
Topic groups See also
An abstract method is a virtual or dynamic method that has no implementation in the class where it is
declared. Its implementation is deferred to a descendant class. Abstract methods must be declared with
the directive abstract after virtual or dynamic. For example,

procedure DoSomething; virtual; abstract;
You can call an abstract method only in a class or instance of a class in which the method has been
overridden.

Overloading methods
Topic groups See also
A method can be redeclared using the overload directive. In this case, if the redeclared method has a
different parameter signature from its ancestor, it overloads the inherited method without hiding it.
Calling the method in a descendant class activates whichever implementation matches the parameters
in the call.
If you overload a virtual method, use the reintroduce directive when you redeclare it in descendant
classes. For example,

type
 T1 = class(TObject)
 procedure Test(I: Integer); overload; virtual;
 end;
 T2 = class(T1)
 procedure Test(S: string); reintroduce; overload;
 end;
 ...
 SomeObject := T2.Create;
 SomeObject.Test('Hello!'); // calls T2.Test
 SomeObject.Test(7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same name. Maintenance of
runtime type information requires a unique name for each published member.

type
 TSomeClass = class
 published
 function Func(P: Integer): Integer;
 function Func(P: Boolean): Integer // error
 ...

Methods that serve as property read or write specifiers cannot be overloaded.
The implementation of an overloaded method must repeat the parameter list from the class declaration.
For more information about overloading, see Overloading procedures and functions.

Constructors
Topic groups See also
A constructor is a special method that creates and initializes instance objects. The declaration of a
constructor looks like a procedure declaration, but it begins with the word constructor. Examples:

constructor Create;
constructor Create(AOwner: TComponent);

Constructors must use the default register calling convention. Although the declaration specifies no
return value, when a constructor is called using a class reference, it returns a reference to the object it
creates.
A class can have more than one constructor, but most have only one. It is conventional to call the
constructor Create.
To create an object, call the constructor method in a class type. For example,

MyObject := TMyClass.Create;
This allocates storage for the new object on the heap, sets the values of all ordinal fields to zero,
assigns nil to all pointer and class-type fields, and makes all string fields empty. Other actions specified
in the constructor implementation are performed next; typically, objects are initialized based on values
passed as parameters to the constructor. Finally, the constructor returns a reference to the newly
allocated and initialized object. The type of the returned value is the same as the class type specified in
the constructor call.
If an exception is raised during execution of a constructor that was invoked on a class reference, the
Destroy destructor is automatically called to destroy the unfinished object.
When a constructor is called using an object reference (rather than a class reference), it does not create
an object or return a value. Instead, the constructor operates on the specified object, executing only the
statements in the constructor’s implementation. A constructor is typically invoked on an object reference
in conjunction with the reserved word inherited to execute an inherited constructor.
Here is an example of a class type and its constructor.

type
 TShape = class(TGraphicControl)
 private
 FPen: TPen;
 FBrush: TBrush;
 procedure PenChanged(Sender: TObject);
 procedure BrushChanged(Sender: TObject);
 public
 constructor Create(Owner: TComponent); override;
 destructor Destroy; override;
 ...
 end;
constructor TShape.Create(Owner: TComponent);
begin
 inherited Create(Owner); // Initialize inherited parts
 Width := 65; // Change inherited properties
 Height := 65;
 FPen := TPen.Create; // Initialize new fields
 FPen.OnChange := PenChanged;
 FBrush := TBrush.Create;
 FBrush.OnChange := BrushChanged;
end;

The first action of a constructor is usually to call an inherited constructor to initialize the object’s inherited
fields. The constructor then initializes the fields introduced in the descendant class. Because a
constructor always clears the storage it allocates for a new object, all fields start with a value of zero
(ordinal types), nil (pointer and class types), empty (string types), or Unassigned (variants). Hence there
is no need to initialize fields in a constructor’s implementation except to nonzero or nonempty values.
When invoked through a class-type identifier, a constructor declared as virtual is equivalent to a static

constructor. When combined with class-reference types, however, virtual constructors allow polymorphic
construction of objects—that is, construction of objects whose types aren’t known at compile time. (See
Class references.)

Destructors
Topic groups See also
A destructor is a special method that destroys the object where it is called and deallocates its memory.
The declaration of a destructor looks like a procedure declaration, but it begins with the word
destructor. Examples:

destructor Destroy;
destructor Destroy; override;

Destructors must use the default register calling convention. Although a class can have more than one
destructor, it is recommended that each class override the inherited Destroy method and declare no
other destructors.
To call a destructor, you must reference an instance object. For example,

MyObject.Destroy;
When a destructor is called, actions specified in the destructor implementation are performed first.
Typically, these consist of destroying any embedded objects and freeing resources that were allocated
by the object. Then the storage that was allocated for the object is disposed of.
Here is an example of a destructor implementation.

destructor TShape.Destroy;
begin
 FBrush.Free;
 FPen.Free;
 inherited Destroy;
end;

The last action in a destructor’s implementation is typically to call the inherited destructor to destroy the
object’s inherited fields.
When an exception is raised during creation of an object, Destroy is automatically called to dispose of
the unfinished object. This means that Destroy must be prepared to dispose of partially constructed
objects. Because a constructor sets the fields of a new object to zero or empty values before performing
other actions, class-type and pointer-type fields in a partially constructed object are always nil. A
destructor should therefore check for nil values before operating on class-type or pointer-type fields.
Calling the Free method (defined in TObject), rather than Destroy, offers a convenient way of checking
for nil values before destroying an object.

Message handlers
Topic groups See also
Message handlers are methods that implement responses to dynamically dispatched messages.
Delphi’s VCL uses message handlers to respond to Windows messages.
A message handler is created by including the message directive in a method declaration, followed by
an integer constant between 1 and 49151 which specifies the message ID. For message handlers in
VCL controls, the integer constant must be one of the Windows message IDs defined, along with
corresponding record types, in the Messages unit. For example,

type
 TTextBox = class(TCustomControl)
 private
 procedure WMChar(var Message: TWMChar); message WM_CHAR;
 ...
 end;

A message handler must be a procedure that takes a single var parameter.
A message handler does not have to include the override directive to override an inherited message
handler. In fact, it doesn’t have to specify the same method name or parameter type as the method it
overrides. The message ID alone determines which message the method responds to and whether it is
an override.

Implementing message handlers
The implementation of a message handler can call the inherited message handler, as in this example:

procedure TTextBox.WMChar(var Message: TWMChar);
begin
 if Chr(Message.CharCode) = #13 then
 ProcessEnter
 else
 inherited;
end;

The inherited statement searches backward through the class hierarchy and invokes the first message
handler with the same ID as the current method, automatically passing the message record to it. If no
ancestor class implements a message handler for the given ID, inherited calls the DefaultHandler
method originally defined in TObject.
The implementation of DefaultHandler in TObject simply returns without performing any actions. By
overriding DefaultHandler, a class can implement its own default handling of messages. The
DefaultHandler method for VCL controls calls the Windows DefWindowProc function.

Message dispatching
Message handlers are seldom called directly. Instead, messages are dispatched to an object using the
Dispatch method inherited from TObject:

procedure Dispatch(var Message);
The Message parameter passed to Dispatch must be a record whose first entry is a field of type
Cardinal containing a message ID. See the Messages unit for examples.
Dispatch searches backward through the class hierarchy (starting from the class of the object where it is
called) and invokes the first message handler for the ID passed to it. If no message handler is found for
the given ID, Dispatch calls DefaultHandler.

Properties
Topic groups See also
A property, like a field, defines an attribute of an object. But while a field is merely a storage location
whose contents can be examined and changed, a property associates specific actions with reading or
modifying its data. Properties provide control over access to an object’s attributes, and they allow
attributes to be computed.
The declaration of a property specifies a name and a type, and includes at least one access specifier.
The syntax of a property declaration is

property propertyName[indexes]: type index integerConstant specifiers;
where

propertyName is any valid identifier.
[indexes] is optional and is a sequence of parameter declarations separated by semicolons. Each

parameter declaration has the form identifier1, ..., identifiern: type. For more information, see Array
properties.

the index integerConstant clause is optional. For more information, see Index specifiers.
specifiers is a sequence of read, write, stored, default (or nodefault), and implements specifiers.

Every property declaration must have at least one read or write specifier.
Properties are defined by their access specifiers. Unlike fields, properties cannot be passed as var
parameters, nor can the @ operator be applied to a property. The reason is that a property doesn’t
necessarily exist in memory. It could, for instance, have a read method that retrieves a value from a
database or generates a random value.
Property overrides and redeclarations

Property access
Topic groups See also
Every property has a read specifier, a write specifier, or both. These are called access specifiers and
they have the form

read fieldOrMethod
write fieldOrMethod

where fieldOrMethod is the name of a field or method declared in the same class as the property or in
an ancestor class.

If fieldOrMethod is declared in the same class, it must occur before the property declaration. If it
is declared in an ancestor class, it must be visible from the descendant; that is, it cannot be a private field
or method of an ancestor class declared in a different unit.

If fieldOrMethod is a field, it must be of the same type as the property.
If fieldOrMethod is a method, it cannot be overloaded. Moreover, access methods for a published

property must use the default register calling convention.
In a read specifier, if fieldOrMethod is a method, it must be a parameterless function whose result

type is the same as the property’s type.
In a write specifier, if fieldOrMethod is a method, it must be a procedure that takes a single value

or const parameter of the same type as the property.
For example, given the declaration

property Color: TColor read GetColor write SetColor;
the GetColor method must be declared as

function GetColor: TColor;
and the SetColor method must be declared as one of these:

procedure SetColor(Value: TColor);
procedure SetColor(const Value: TColor);

(The name of SetColor‘s parameter, of course, doesn’t have to be Value.)
When a property is referenced in an expression, its value is read using the field or method listed in the
read specifier. When a property is referenced in an assignment statement, its value is written using the
field or method listed in the write specifier.
The example below declares a class called TCompass with a published property called Heading. The
value of Heading is read through the FHeading field and written through the SetHeading procedure.

type
 THeading = 0..359;
 TCompass = class(TControl)
 private
 FHeading: THeading;
 procedure SetHeading(Value: THeading);
 published
 property Heading: THeading read FHeading write SetHeading;
 ...
 end;

Given this declaration, the statements
if Compass.Heading = 180 then GoingSouth;
Compass.Heading := 135;

correspond to
if Compass.FHeading = 180 then GoingSouth;
Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading property; the read operation
consists of retrieving the value stored in the FHeading field. On the other hand, assigning a value to the
Heading property translates into a call to the SetHeading method, which, presumably, stores the new
value in the FHeading field as well as performing other actions. For example, SetHeading might be
implemented like this:

procedure TCompass.SetHeading(Value: THeading);
begin
 if FHeading <> Value then
 begin
 FHeading := Value;
 Repaint; // update user interface to reflect new value
 end;
end;

A property whose declaration includes only a read specifier is a read-only property, and one whose
declaration includes only a write specifier is a write-only property. It is an error to assign a value to a
read-only property or use a write-only property in an expression.

Array properties
Topic groups See also
Array properties are indexed properties. They can represent things like items in a list, child controls of a
control, and pixels of a bitmap.
The declaration of an array property includes a parameter list that specifies the names and types of the
indexes. For example,

property Objects[Index: Integer]: TObject read GetObject write SetObject;
property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;
property Values[const Name: string]: string read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure’s or function’s parameter list,
except that the parameter declarations are enclosed in brackets instead of parentheses. Unlike arrays,
which can use only ordinal-type indexes, array properties allow indexes of any type.
For array properties, access specifiers must list methods rather than fields. The method in a read
specifier must be a function that takes the number and type of parameters listed in the property’s index
parameter list, in the same order, and whose result type is identical to the property’s type. The method in
a write specifier must be a procedure that takes the number and type of parameters listed in the
property’s index parameter list, in the same order, plus an additional value or const parameter of the
same type as the property.
For example, the access methods for the array properties above might be declared as

function GetObject(Index: Integer): TObject;
function GetPixel(X, Y: Integer): TColor;
function GetValue(const Name: string): string;
procedure SetObject(Index: Integer; Value: TObject);
procedure SetPixel(X, Y: Integer; Value: TColor);
procedure SetValue(const Name, Value: string);

An array property is accessed by indexing the property identifier. For example, the statements
if Collection.Objects[0] = nil then Exit;
Canvas.Pixels[10, 20] := clRed;
Params.Values['PATH'] := 'C:\DELPHI\BIN';

correspond to
if Collection.GetObject(0) = nil then Exit;
Canvas.SetPixel(10, 20, clRed);
Params.SetValue('PATH', 'C:\DELPHI\BIN');

The definition of an array property can be followed by the default directive, in which case the array
property becomes the default property of the class. For example,

type
 TStringArray = class
 public
 property Strings[Index: Integer]: string ...; default;
 ...
 end;

If a class has a default property, you can access that property with the abbreviation object[index], which
is equivalent to object.property[index]. For example, given the declaration above, StringArray.Strings[7]
can be abbreviated to StringArray[7]. A class can have only one default property. Changing or hiding the
default property in descendant classes may lead to unexpected behavior, since the compiler always
determines an object’s default property statically.

Index specifiers
Topic groups See also
Index specifiers allow several properties to share the same access method while representing different
values. An index specifier consists of the directive index followed by an integer constant between –
2147483647 and 2147483647. If a property has an index specifier, its read and write specifiers must list
methods rather than fields. For example,

type
 TRectangle = class
 private
 FCoordinates: array[0..3] of Longint;
 function GetCoordinate(Index: Integer): Longint;
 procedure SetCoordinate(Index: Integer; Value: Longint);
 public
 property Left: Longint index 0 read GetCoordinate write SetCoordinate;
 property Top: Longint index 1 read GetCoordinate write SetCoordinate;
 property Right: Longint index 2 read GetCoordinate write SetCoordinate;
 property Bottom: Longint index 3 read GetCoordinate write SetCoordinate;
 property Coordinates[Index: Integer]: Longint read GetCoordinate write
SetCoordinate;
 ...
 end;

An access method for a property with an index specifier must take an extra value parameter of type
Integer. For a read function, it must be the last parameter; for a write procedure, it must be the second-
to-last parameter (preceding the parameter that specifies the property value). When a program
accesses the property, the property’s integer constant is automatically passed to the access method.
Given the declaration above, if Rectangle is of type TRectangle, then

Rectangle.Right := Rectangle.Left + 100;
corresponds to

Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage specifiers
Topic groups See also
The optional stored, default, and nodefault directives are called storage specifiers. They have no
effect on program behavior, but control the way Delphi maintains runtime type information (RTTI).
Specifically, storage specifiers determine whether Delphi saves the values of published properties in
form (.DFM) files.
The stored directive must be followed by True, False, the name of a Boolean field, or the name of a
parameterless method that returns a Boolean value. For example,

property Name: TComponentName read FName write SetName stored False;
If a property has no stored directive, it is treated as if stored True were specified.
The default directive must be followed by a constant of the same type as the property. For example,

property Tag: Longint read FTag write FTag default 0;
To override an inherited default value without specifying a new one, use the nodefault directive. The
default and nodefault directives are supported only for ordinal types and for set types, provided the
upper and lower bounds of the set’s base type have ordinal values between 0 and 31; if such a property
is declared without default or nodefault, it is treated as if nodefault were specified. For reals, pointers,
and strings, there is an implicit default value of 0, nil, and '' (the empty string), respectively.
When Delphi saves a component’s state, it checks the storage specifiers of the component’s published
properties. If a property’s current value is different from its default value (or if there is no default value)
and the stored specifier is True, then the property’s value is saved. Otherwise, the property’s value is
not saved.
Note:Storage specifiers are not supported for array properties. The default directive has a different

meaning when used in an array property declaration. See Array properties.

Property overrides and redeclarations
Topic groups See also
A property declaration that doesn’t specify a type is called a property override. Property overrides allow
you to change a property’s inherited visibility or specifiers. The simplest override consists only of the
reserved word property followed by an inherited property identifier; this form is used to change a
property’s visibility. For example, if an ancestor class declares a property as protected, a derived class
can redeclare it in a public or published section of the class. Property overrides can include read,
write,stored, default, and nodefault directives; any such directive overrides the corresponding
inherited directive. An override can replace an inherited access specifier, add a missing specifier, or
increase a property’s visibility, but it cannot remove an access specifier or decrease a property’s
visibility. An override can include an implements directive, which adds to the list of implemented
interfaces without removing inherited ones.
The following declarations illustrate the use of property overrides.

type
 TAncestor = class
 ...
 protected
 property Size: Integer read FSize;
 property Text: string read GetText write SetText;
 property Color: TColor read FColor write SetColor stored False;
 ...
 end;
type
 TDerived = class(TAncestor)
 ...
 protected
 property Size write SetSize;
 published
 property Text;
 property Color stored True default clBlue;
 ...
 end;

The override of Size adds a write specifier to allow the property to be modified. The overrides of Text
and Color change the visibility of the properties from protected to published. The property override of
Color also specifies that the property should be filed if its value isn’t clBlue.
A redeclaration of a property that includes a type identifier hides the inherited property rather than
overriding it. This means that a new property is created with the same name as the inherited one. Any
property declaration that specifies a type must be a complete declaration, and must therefore include at
least one access specifier.
Whether a property is hidden or overridden in a derived class, property look-up is always static. That is,
the declared (compile-time) type of the variable used to identify an object determines the interpretation
of its property identifiers. Hence, after the following code executes, reading or assigning a value to
MyObject.Value invokes Method1 or Method2, even though MyObject holds an instance of
TDescendant. But you can cast MyObject to TDescendant to access the descendant class’s properties
and their access specifiers.

type
 TAncestor = class
 ...
 property Value: Integer read Method1 write Method2;
 end;
 TDescendant = class(TAncestor)
 ...
 property Value: Integer read Method3 write Method4;
 end;
var MyObject: TAncestor;
 ...

MyObject := TDescendant.Create;

Class references
Topic groups See also
Sometimes operations are performed on a class itself, rather than on instances of a class (that is,
objects). This happens, for example, when you call a constructor method using a class reference. You
can always refer to a specific class using its name, but at times it is necessary to declare variables or
parameters that take classes as values, and in these situations you need class-reference types.
Class-reference types
Class operators
Class methods

Class-reference types
Topic groups See also
A class-reference type, sometimes called a metaclass, is denoted by a construction of the form

class of type
where type is any class type. The identifier type itself denotes a value whose type is class of type. If
type1 is an ancestor of type2, then class of type2 is assignment-compatible with class of type1. Thus

type TClass = class of TObject;
var AnyObj: TClass;

declares a variable called AnyObj that can hold a reference to any class. (The definition of a class-
reference type cannot occur directly in a variable declaration or parameter list.) You can assign the value
nil to a variable of any class-reference type.
To see how class-reference types are used, look at the declaration of the constructor for TCollection (in
the VCL’s Classes unit):

type TCollectionItemClass = class of TCollectionItem;
 ...
constructor Create(ItemClass: TCollectionItemClass);

This declaration says that to create a TCollection instance object, you must pass to the constructor the
name of a class descending from TCollectionItem.
Class-reference types are useful when you want to invoke a class method or virtual constructor on a
class or object whose actual type is unknown at compile time.
Constructors and class references

Constructors and class references
Topic groups See also
A constructor can be called using a variable of a class-reference type. This allows construction of
objects whose type isn’t known at compile time. For example,

type TControlClass = class of TControl;
function CreateControl(ControlClass: TControlClass;
 const ControlName: string; X, Y, W, H: Integer): TControl;
begin
 Result := ControlClass.Create(MainForm);
 with Result do
 begin
 Parent := MainForm;
 Name := ControlName;
 SetBounds(X, Y, W, H);
 Visible := True;
 end;
end;

The CreateControl function requires a class-reference parameter to tell it what kind of control to create.
It uses this parameter to call the class’s constructor. Because class-type identifiers denote class-
reference values, a call to CreateControl can specify the identifier of the class to create an instance of.
For example,

CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);
Constructors called using class references are usually virtual. The constructor implementation activated
by the call depends on the runtime type of the class reference.

Class operators
Topic groups See also
Every class inherits from TObject methods called ClassType and ClassParent that return, respectively, a
reference to the class of an object and of an object’s immediate ancestor. Both methods return a value
of type TClass (where TClass = class of TObject), which can be cast to a more specific type. Every class
also inherits a method called InheritsFrom that tests whether the object where it is called descends from
a specified class. These methods are used by the is and as operators, and it is seldom necessary to call
them directly.
The is operator
The as operator

The is operator
Topic groups See also
The is operator, which performs dynamic type checking, is used to verify the actual runtime class of an
object. The expression

object is class
returns True if object is an instance of the class denoted by class or one of its descendants, and False
otherwise. (If object is nil, the result is False.) If the declared type of object is unrelated to class—that is,
if the types are distinct and one is not an ancestor of the other—a compilation error results. For
example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;
This statement casts a variable to TEdit after first verifying that the object it references is an instance of
TEdit or one of its descendants.

The as operator
Topic groups See also
The as operator performs checked typecasts. The expression

object as class
returns a reference to the same object as object, but with the type given by class. At runtime, object
must be an instance of the class denoted by class or one of its descendants, or be nil; otherwise an
exception is raised. If the declared type of object is unrelated to class—that is, if the types are distinct
and one is not an ancestor of the other—a compilation error results. For example,

with Sender as TButton do
begin
 Caption := '&Ok';
 OnClick := OkClick;
end;

The rules of operator precedence often require as typecasts to be enclosed in parentheses. For
example,

(Sender as TButton).Caption := '&Ok';

Class methods
Topic groups See also
A class method is a method (other than a constructor) that operates on classes instead of objects. The
definition of a class method must begin with the reserved word class. For example,

type
 TFigure = class
 public
 class function Supports(Operation: string): Boolean; virtual;
 class procedure GetInfo(var Info: TFigureInfo); virtual;
 ...
 end;

The defining declaration of a class method must also begin with class. For example,
class procedure TFigure.GetInfo(var Info: TFigureInfo);
begin
 ...
end;

In the defining declaration of a class method, the identifier Self represents the class where the method is
called (which could be a descendant of the class in which it is defined). If the method is called in the
class C, then Self is of the type class of C. Thus you cannot useSelf to access fields, properties, and
normal (object) methods, but you can use it to call constructors and other class methods.
A class method can be called through a class reference or an object reference. When it is called through
an object reference, the class of the object becomes the value of Self.

Exceptions
Topic groups See also
An exception is raised when an error or other event interrupts normal execution of a program. The
exception transfers control to an exception handler, which allows you to separate normal program logic
from error-handling. Because exceptions are objects, they can be grouped into hierarchies using
inheritance, and new exceptions can be introduced without affecting existing code. An exception can
carry information, such as an error message, from the point where it is raised to the point where it is
handled.
When an application uses the SysUtils unit, all runtime errors are automatically converted into
exceptions. Errors that would otherwise terminate an application—such as insufficient memory, division
by zero, and general protection faults—can be caught and handled.
Declaring exception types
Raising and handling exceptions
Standard exception classes and routines

Declaring exception types
Topic groups See also
Exception types are declared just like other classes. In fact, it is possible to use an instance of any class
as an exception, but it is recommended that exceptions be derived from the Exception class defined in
SysUtils.
You can group exceptions into families using inheritance. For example, the following declarations in
SysUtils define a family of exception types for math errors.

type
 EMathError = class(Exception);
 EInvalidOp = class(EMathError);
 EZeroDivide = class(EMathError);
 EOverflow = class(EMathError);
 EUnderflow = class(EMathError);

Given these declarations, you can define a single EMathError exception handler that also handles
EInvalidOp, EZeroDivide, EOverflow, and EUnderflow.
Exception classes sometimes define fields, methods, or properties that convey additional information
about the error. For example,

type EInOutError = class(Exception)
 ErrorCode: Integer;
 end;

Raising and handling exceptions
Topic groups See also
To create an exception object, call the exception class’s constructor within a raise statement. For
example,

raise EMathError.Create;
In general, the form of a raise statement is

raise object at address
where object and at address are both optional. If object is omitted, the statement re-raises the current
exception; see Re-raising exceptions. When an address is specified, it is usually a pointer to a
procedure or function; use this option to raise the exception from an earlier point in the stack than the
one where the error actually occurred.
When an exception is raised—that is, referenced in a raise statement—it is governed by special
exception-handling logic. A raise statement never returns control in the normal way. Instead, it transfers
control to the innermost exception handler that can handle exceptions of the given class. (The innermost
handler is the one whose try...except block was most recently entered but has not yet exited.)
For example, the function below converts a string to an integer, raising an ERangeError exception if the
resulting value is outside a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;
begin
 Result := StrToInt(S); // StrToInt is declared in SysUtils
 if (Result < Min) or (Result > Max) then
 raise ERangeError.CreateFmt(
 '%d is not within the valid range of %d..%d',
 [Result, Min, Max]);
end;

Notice the CreateFmt method called in the raise statement. Exception and its descendants have special
constructors that provide alternative ways to create exception messages and context IDs.
A raised exception is destroyed automatically after it is handled. Never attempt to destroy a raised
exception manually.
Note:Raising an exception in the initialization section of a unit may not produce the intended result.

Normal exception support comes from the SysUtils unit, which must be initialized before such
support is available. If an exception occurs during initialization, all initialized units—including
SysUtils—are finalized and the exception is re-raised. Then the System unit catches the exception
and handles it, usually by interrupting the program.

Try...except statements
Nested exceptions
Try...finally statements

Try...except statements
Topic groups See also
Exceptions are handled within try...except statements. For example,

try
 X := Y/Z;
except
 on EZeroDivide do HandleZeroDivide;
end;

This statement attempts to divide Y by Z, but calls a routine named HandleZeroDivide if an EZeroDivide
exception is raised.
The syntax of a try...except statement is

try statements except exceptionBlock end
where statements is a sequence of statements (delimited by semicolons) and exceptionBlock is either

another sequence of statements or
a sequence of exception handlers, optionally followed by
else statements

An exception handler has the form
on identifier: type do statement

where identifier: is optional (if included, identifier can be any valid identifier), type is a type used to
represent exceptions, and statement is any statement.
A try...except statement executes the statements in the initial statements list. If no exceptions are
raised, the exception block (exceptionBlock) is ignored and control passes to the next part of the
program.
If an exception is raised during execution of the initial statements list, either by a raise statement in the
statements list or by a procedure or function called from the statements list, an attempt is made to
“handle” the exception:

If any of the handlers in the exception block matches the exception, control passes to the first
such handler. An exception handler “matches” an exception just in case the type in the handler is the
class of the exception or an ancestor of that class.

If no such handler is found, control passes to the statement in the else clause, if there is one.
If the exception block is just a sequence of statements without any exception handlers, control

passes to the first statement in the list.
If none of the conditions above is satisfied, the search continues in the exception block of the next-most-
recently entered try...except statement that has not yet exited. If no appropriate handler, else clause, or
statement list is found there, the search propagates to the next-most-recently entered try...except
statement, and so forth. If the outermost try...except statement is reached and the exception is still not
handled, the program terminates.
When an exception is handled, the stack is traced back to the procedure or function containing the
try...except statement where the handling occurs, and control is transferred to the executed exception
handler, else clause, or statement list. This process discards all procedure and function calls that
occurred after entering the try...except statement where the exception is handled. The exception object
is then automatically destroyed through a call to its Destroy destructor and control is passed to the
statement following the try...except statement. (If a call to the Exit, Break, or Continue standard
procedure causes control to leave the exception handler, the exception object is still automatically
destroyed.)
In the example below, the first exception handler handles division-by-zero exceptions, the second one
handles overflow exceptions, and the final one handles all other math exceptions. EMathError appears
last in the exception block because it is the ancestor of the other two exception classes; if it appeared
first, the other two handlers would never be invoked.

try
 ...
except

 on EZeroDivide do HandleZeroDivide;
 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
end;

An exception handler can specify an identifier before the name of the exception class. This declares the
identifier to represent the exception object during execution of the statement that follows on...do. The
scope of the identifier is limited to that statement. For example,

try
 ...
except
 on E: Exception do ErrorDialog(E.Message, E.HelpContext);
end;

If the exception block specifies an else clause, the else clause handles any exceptions that aren’t
handled by the block’s exception handlers. For example,

try
 ...
except
 on EZeroDivide do HandleZeroDivide;
 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
else
 HandleAllOthers;
end;

Here, the else clause handles any exception that isn’t an EMathError.
An exception block that contains no exception handlers, but instead consists only of a list of statements,
handles all exceptions. For example,

try
 ...
except
 HandleException;
end;

Here, the HandleException routine handles any exception that occurs as a result of executing the
statements between try and except.

Re-raising exceptions
Topic groups See also
When the reserved word raise occurs in an exception block without an object reference following it, it
raises whatever exception is handled by the block. This allows an exception handler to respond to an
error in a limited way and then re-raise the exception. Re-raising is useful when a procedure or function
has to clean up after an exception occurs but cannot fully handle the exception.
For example, the GetFileList function allocates a TStringList object and fills it with file names matching a
specified search path:

function GetFileList(const Path: string): TStringList;
var
 I: Integer;
 SearchRec: TSearchRec;
begin
 Result := TStringList.Create;
 try
 I := FindFirst(Path, 0, SearchRec);
 while I = 0 do
 begin
 Result.Add(SearchRec.Name);
 I := FindNext(SearchRec);
 end;
 except
 Result.Free;
 raise;
 end;
end;

GetFileList creates a TStringList object, then uses the FindFirst and FindNext functions (defined in
SysUtils) to initialize it. If the initialization fails—for example because the search path is invalid, or
because there is not enough memory to fill in the string list—GetFileList needs to dispose of the new
string list, since the caller does not yet know of its existence. For this reason, initialization of the string
list is performed in a try...except statement. If an exception occurs, the statement’s exception block
disposes of the string list, then re-raises the exception.

Nested exceptions
Topic groups See also
Code executed in an exception handler can itself raise and handle exceptions. As long as these
exceptions are also handled within the exception handler, they do not affect the original exception.
However, once an exception raised in an exception handler propagates beyond that handler, the original
exception is lost. This is illustrated by the Tan function below.

type
 ETrigError = class(EMathError);
function Tan(X: Extended): Extended;
begin
 try
 Result := Sin(X) / Cos(X);
 except
 on EMathError do
 raise ETrigError.Create('Invalid argument to Tan');
 end;
end;

If an EMathError exception occurs during execution of Tan, the exception handler raises an ETrigError.
Since Tan does not provide a handler for ETrigError, the exception propagates beyond the original
exception handler, causing the EMathError exception to be destroyed. To the caller, it appears as if the
Tan function has raised an ETrigError exception.

Try...finally statements
Topic groups See also
Sometimes you want to ensure that specific parts of an operation are completed, whether or not the
operation is interrupted by an exception. For example, when a routine acquires control of a resource, it
is often important that the resource be released, regardless of whether the routine terminates normally.
In these situations, you can use a try...finally statement.
The following example shows how code that opens and processes a file can ensure that the file is
ultimately closed, even if an error occurs during execution.

Reset(F);
try
 ... // process file F
finally
 CloseFile(F);
end;

The syntax of a try...finally statement is
try statementList1 finally statementList2 end

where each statementList is a sequence of statements delimited by semicolons. The try...finally
statement executes the statements in statementList1 (the try clause). If statementList1 finishes without
raising exceptions, statementList2 (the finally clause) is executed. If an exception is raised during
execution of statementList1, control is transferred to statementList2; once statementList2 finishes
executing, the exception is re-raised. If a call to the Exit, Break, or Continue procedure causes control to
leave statementList1, statementList2 is automatically executed. Thus the finally clause is always
executed, regardless of how the try clause terminates.
If an exception is raised but not handled in the finally clause, that exception is propagated out of the
try...finally statement, and any exception already raised in the try clause is lost. The finally clause
should therefore handle all locally raised exceptions, so as not to disturb propagation of other
exceptions.

Standard exception classes and routines
Topic groups See also
The SysUtils unit declares several standard routines for handling exceptions, including ExceptObject,
ExceptAddr, and ShowException. SysUtils and other VCL units also include dozens of exception
classes, all which (aside from OutlineError) derive from Exception.
The Exception class has properties called Message and HelpContext that can be used to pass an error
description and a context ID for context-sensitive online documentation. It also defines various
constructor methods that allow you to specify the description and context ID in different ways.

Standard routines and I/O
Topic groups See also
These topics discuss text and file I/O and summarize standard library routines. Many of the procedures
and functions listed here are defined in the System unit, which is implicitly compiled with every
application. Others are built into the compiler but are treated as if they were in the System unit.
Some standard routines are in units such as SysUtils, which must be listed in a uses clause to make
them available in programs. You cannot, however, list System in a uses clause, nor should you modify
the System unit or try to rebuild it explicitly.
File input and output
Text-file device drivers
Handling null-terminated strings
Other standard routines

File input and output
Topic groups See also
The table below lists input and output routines.

Procedure or
function Description
Append Opens an existing text file for appending.
AssignFile Assigns the name of an external file to a file variable.
BlockRead Reads one or more records from an untyped file.
BlockWrite Writes one or more records into an untyped file.
ChDir Changes the current directory.
CloseFile Closes an open file.
Eof Returns the end-of-file status of a file.
Eoln Returns the end-of-line status of a text file.
Erase Erases an external file.
FilePos Returns the current file position of a typed or untyped file.
FileSize Returns the current size of a file; not used for text files.
Flush Flushes the buffer of an output text file.
GetDir Returns the current directory of a specified drive.
IOResult Returns an integer value that is the status of the last I/O function

performed.
MkDir Creates a subdirectory.
Read Reads one or more values from a file into one or more variables.
Readln Does what Read does and then skips to beginning of next line in the text

file.
Rename Renames an external file.
Reset Opens an existing file.
Rewrite Creates and opens a new file.
RmDir Removes an empty subdirectory.
Seek Moves the current position of a typed or untyped file to a specified

component. Not used with text files.
SeekEof Returns the end-of-file status of a text file.
SeekEoln Returns the end-of-line status of a text file.
SetTextBuf Assigns an I/O buffer to a text file.
Truncate Truncates a typed or untyped file at the current file position.
Write Writes one or more values to a file.
Writeln Does the same as Write, and then writes an end-of-line marker to the text

file.
A file variable is any variable whose type is a file type. There are three classes of file: typed, text, and
untyped. The syntax for declaring file types is given in File types.
Before a file variable can be used, it must be associated with an external file through a call to the
AssignFile procedure. An external file is typically a named disk file, but it can also be a device, such as
the keyboard or the display. The external file stores the information written to the file or supplies the
information read from the file.
Once the association with an external file is established, the file variable must be “opened” to prepare it
for input or output. An existing file can be opened via the Reset procedure, and a new file can be
created and opened via the Rewrite procedure. Text files opened with Reset are read-only and text files
opened with Rewrite and Append are write-only. Typed files and untyped files always allow both reading
and writing regardless of whether they were opened with Reset or Rewrite.

Every file is a linear sequence of components, each of which has the component type (or record type) of
the file. The components are numbered starting with zero.
Files are normally accessed sequentially. That is, when a component is read using the standard
procedure Read or written using the standard procedure Write, the current file position moves to the
next numerically ordered file component. Typed files and untyped files can also be accessed randomly
through the standard procedure Seek, which moves the current file position to a specified component.
The standard functions FilePos and FileSize can be used to determine the current file position and the
current file size.
When a program completes processing a file, the file must be closed using the standard procedure
CloseFile. After a file is closed, its associated external file is updated. The file variable can then be
associated with another external file.
By default, all calls to standard I/O procedures and functions are automatically checked for errors, and if
an error occurs an exception is raised (or the program is terminated if exception handling is not
enabled). This automatic checking can be turned on and off using the {$I+} and {$I–} compiler
directives. When I/O checking is off—that is, when a procedure or function call is compiled in the {$I–}
state—an I/O error doesn’t cause an exception to be raised; to check the result of an I/O operation, you
must call the standard function IOResult instead.
You must call the IOResult function to clear an error, even if you aren’t interested in the error. If you don’t
clear an error and {$I+} is the current state, the next I/O function call will fail with the lingering IOResult
error.
Text files
Untyped files

Text files
Topic groups See also
This section summarizes I/O using file variables of the standard type Text.
When a text file is opened, the external file is interpreted in a special way: It is considered to represent a
sequence of characters formatted into lines, where each line is terminated by an end-of-line marker (a
carriage-return character, possibly followed by a linefeed character). The type Text is distinct from the
type file of Char.
For text files, there are special forms of Read and Write that let you read and write values that are not of
type Char. Such values are automatically translated to and from their character representation. For
example, Read(F, I), where I is a type Integer variable, reads a sequence of digits, interprets that
sequence as a decimal integer, and stores it in I.
There are two standard text-file variables, Input and Output. The standard file variable Input is a read-
only file associated with the operating system’s standard input (typically the keyboard). The standard file
variable Output is a write-only file associated with the operating system’s standard output (typically the
display). Before an application begins executing, Input and Output are automatically opened, as if the
following statements were executed:

AssignFile(Input, '');
Reset(Input);
AssignFile(Output, '');
Rewrite(Output);

Note:Text-oriented I/O is available only in console applications—that is, applications compiled with the
“Generate console application” option checked on the Linker page of the Project Options dialog
box or with the -cc command-line compiler option. In a GUI (non-console) application, any attempt
to read or write using Input or Output will produce an I/O error.

Some of the standard I/O routines that work on text files don’t need to have a file variable explicitly given
as a parameter. If the file parameter is omitted, Input or Output is assumed by default, depending on
whether the procedure or function is input- or output-oriented. For example, Read(X) corresponds to
Read(Input, X) and Write(X) corresponds to Write(Output, X).
If you do specify a file when calling one of the input or output routines that work on text files, the file
must be associated with an external file using AssignFile, and opened using Reset, Rewrite, or Append.
An exception is raised if you pass a file that was opened with Reset to an output-oriented procedure or
function. An exception is also raised if you pass a file that was opened with Rewrite or Append to an
input-oriented procedure or function.

Untyped files
Topic groups See also
Untyped files are low-level I/O channels used primarily for direct access to disk files regardless of type
and structuring. An untyped file is declared with the word file and nothing more. For example,

var DataFile: file;
For untyped files, the Reset and Rewrite procedures allow an extra parameter to specify the record size
used in data transfers. For historical reasons, the default record size is 128 bytes. A record size of 1 is
the only value that correctly reflects the exact size of any file. (No partial records are possible when the
record size is 1.)
Except for Read and Write, all typed-file standard procedures and functions are also allowed on untyped
files. Instead of Read and Write, two procedures called BlockRead and BlockWrite are used for high-
speed data transfers.

Text-file device drivers
Topic groups See also
You can define your own text-file device drivers for your Windows programs. A text-file device driver is a
set of four functions that completely implement an interface between Object Pascal’s file system and
some device.
The four functions that define each device driver are Open, InOut, Flush, and Close. The function
header of each function is

function DeviceFunc(var F: TTextRec): Integer;
where DeviceFunc is the name of the function (that is, Open, InOut, Flush, or Close). The return value of
a device-interface function becomes the value returned by IOResult. If the return value is zero, the
operation was successful.
To associate the device-interface functions with a specific file, you must write a customized Assign
procedure. The Assign procedure must assign the addresses of the four device-interface functions to
the four function pointers in the text-file variable. In addition, it should store the fmClosed “magic”
constant in the Mode field, store the size of the text-file buffer in BufSize, store a pointer to the text-file
buffer in BufPtr, and clear the Name string.
Assuming, for example, that the four device-interface functions are called DevOpen, DevInOut,
DevFlush, and DevClose, the Assign procedure might look like this:

procedure AssignDev(var F: Text);
begin
 with TextRec(F) do
 begin
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 OpenFunc := @DevOpen;
 InOutFunc := @DevInOut;
 FlushFunc := @DevFlush;
 CloseFunc := @DevClose;
 Name[0] := #0;
 end;
end;

The device-interface functions can use the UserData field in the file record to store private information.
This field isn’t modified by the Delphi file system at any time.
Device functions

Device functions
Topic groups See also
The functions that make up a text-file device driver are described below.

The Open function
The Open function is called by the Reset, Rewrite, and Append standard procedures to open a text file
associated with a device. On entry, the Mode field contains fmInput, fmOutput, or fmInOut to indicate
whether the Open function was called from Reset, Rewrite, or Append.
The Open function prepares the file for input or output, according to the Mode value. If Mode specified
fmInOut (indicating that Open was called from Append), it must be changed to fmOutput before Open
returns.
Open is always called before any of the other device-interface functions. For that reason, AssignDev
only initializes the OpenFunc field, leaving initialization of the remaining vectors up to Open. Based on
Mode, Open can then install pointers to either input- or output-oriented functions. This saves the InOut,
Flush functions and the CloseFile procedure from determining the current mode.

The InOut function
The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln, SeekEof, SeekEoln, and
CloseFile standard routines whenever input or output from the device is required.
When Mode is fmInput, the InOut function reads up to BufSize characters into BufPtr^, and returns the
number of characters read in BufEnd. In addition, it stores zero in BufPos. If the InOut function returns
zero in BufEnd as a result of an input request, Eof becomes True for the file.
When Mode is fmOutput, the InOut function writes BufPos characters from BufPtr^, and returns zero in
BufPos.

The Flush function
The Flush function is called at the end of each Read, Readln, Write, and Writeln. It can optionally flush
the text-file buffer.
If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush the remaining
(unread) characters in the buffer. This feature is seldom used.
If Mode is fmOutput, the Flush function can write the contents of the buffer exactly like the InOut
function, which ensures that text written to the device appears on the device immediately. If Flush does
nothing, the text doesn’t appear on the device until the buffer becomes full or the file is closed.

The Close function
The Close function is called by the CloseFile standard procedure to close a text file associated with a
device. (The Reset, Rewrite, and Append procedures also call Close if the file they are opening is
already open.) If Mode is fmOutput, then before calling Close, the file system calls the InOut function to
ensure that all characters have been written to the device.

Handling null-terminated strings
Topic groups See also
Object Pascal’s extended syntax allows the Read, Readln, Str, and Val standard procedures to be
applied to zero-based character arrays, and allows the Write, Writeln, Val, AssignFile, and Rename
standard procedures to be applied to both zero-based character arrays and character pointers. In
addition, the following functions are provided for handling null-terminated strings. For more information
about null-terminated strings, see Working with null-terminated strings.

Function Description
StrAlloc Allocates a character buffer of a given size on the heap.
StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.
StrCat Concatenates two strings.
StrComp Compares two strings.
StrCopy Copies a string.
StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.
StrECopy Copies a string and returns a pointer to the end of the string.
StrEnd Returns a pointer to the end of a string.
StrFmt Formats one or more values into a string.
StrIComp Compares two strings without case sensitivity.
StrLCat Concatenates two strings with a given maximum length of the resulting

string.
StrLComp Compares two strings for a given maximum length.
StrLCopy Copies a string up to a given maximum length.
StrLen Returns the length of a string.
StrLFmt Formats one or more values into a string with a given maximum length.
StrLIComp Compares two strings for a given maximum length without case

sensitivity.
StrLower Converts a string to lowercase.
StrMove Moves a block of characters from one string to another.
StrNew Allocates a string on the heap.
StrPCopy Copies a Pascal string to a null-terminated string.
StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum

length.
StrPos Returns a pointer to the first occurrence of a given substring within a

string.
StrRScan Returns a pointer to the last occurrence of a given character within a

string.
StrScan Returns a pointer to the first occurrence of a given character within a

string.
StrUpper Converts a string to uppercase.

Standard string-handling functions have multibyte-enabled counterparts that also implement locale-
specific ordering for characters. Names of multibyte functions start with Ansi-. For example, the
multibyte version of StrPos is AnsiStrPos. Multibyte character support is operating-system dependent
and based on the current Windows locale.

Wide-character strings
The System unit provides three functions, WideCharToString, WideCharLenToString, and
StringToWideChar, that can be used to convert null-terminated wide character strings to single- or
double-byte long strings.
For more information about wide-character strings, see About extended character sets.

Other standard routines
Topic groups See also
The table below lists frequently used procedures and functions found in Delphi’s libraries. This is not an
exhaustive inventory of standard routines.

Procedure or function
Description

Abort Ends the process without reporting an error.
Addr Returns a pointer to a specified object.
AllocMem Allocates a memory block and initializes each byte to zero.
ArcTan Calculates the arctangent of the given number.
Assert Tests whether a boolean expression is True.
Assigned Tests for a nil (unassigned) pointer or procedural variable.
Beep Generates a standard beep using the computer speaker.
Break Causes control to exit a for, while, or repeat statement.
ByteToCharIndex Returns the position of the character containing a specified byte in a

string.
Chr Returns the character for a specified ASCII value.
Close Terminates the association between a file variable and an external file.
CompareMem Performs a binary comparison of two memory images.
CompareStr Compares strings case sensitively.
CompareText Compares strings by ordinal value and is not case sensitive.
Continue Returns control to the next iteration of for, while, or repeat statements.
Copy Returns a substring of a string or a segment of a dynamic array.
Cos Calculates the cosine of an angle.
CurrToStr Converts a currency variable to a string.
Date Returns the current date.
DateTimeToStr Converts a variable of type TDateTime to a string.
DateToStr Converts a variable of type TDateTime to a string.
Dec Decrements an ordinal variable.
Dispose Releases memory allocated for a dynamic variable.
ExceptAddr Returns the address at which the current exception was raised.
Exit Exits from the current procedure.
Exp Calculates the exponential of X.
FillChar Fills contiguous bytes with a specified value.
Finalize Uninitializes a dynamically allocated variable.
FloatToStr Converts a floating point value to a string.
FloatToStrF Converts a floating point value to a string, using specified format.
FmtLoadStr Returns formatted output using a resourced format string.
FmtStr Assembles a formatted string from a series of arrays.
Format Assembles a string from a format string and a series of arrays.
FormatDateTime Formats a date-and-time value.
FormatFloat Formats a floating point value.
FreeMem Disposes of a dynamic variable.
GetMem Creates a dynamic variable and a pointer to the address of the block.
GetParentForm Returns the form or property page that contains a specified control.
Halt Initiates abnormal termination of a program.
Hi Returns the high-order byte of an expression as an unsigned value.
High Returns the highest value in the range of a type, array, or string.

Inc Increments an ordinal variable.
Initialize Initializes a dynamically allocated variable.
Insert Inserts a substring at a specified point in a string.
Int Returns the integer part of a real number.
IntToStr Converts an integer to a string.
Length Returns the length of a string or array.
Lo Returns the low-order byte of an expression as an unsigned value.
Low Returns the lowest value in the range of a type, array, or string.
LowerCase Converts an ASCII string to lowercase.
MaxIntValue Returns the largest signed value in an integer array.
MaxValue Returns the largest signed value in an array.
MinIntValue Returns the smallest signed value in an integer array.
MinValue Returns smallest signed value in an array.
New Creates a new dynamic variable and references it with a specified pointer.
Now Returns the current date and time.
Ord Returns the ordinal value of an ordinal-type expression.
Pos Returns the index of the first character of a specified substring in a string.
Pred Returns the predecessor of an ordinal value.
Ptr Converts a specified address to a pointer.
Random Generates random numbers within a specified range.
ReallocMem Reallocates a dynamic variable.
Round Returns the value of a real rounded to the nearest whole number.
SetLength Sets the dynamic length of a string variable or array.
SetString Sets the contents and length of the given string.
ShowException Displays an exception message with its address.
ShowMessage Displays a message box with an unformatted string and an OK button.
ShowMessageFmt Displays a message box with a formatted string and an OK button.
Sin Returns the sine of an angle in radians.
SizeOd Returns the number of bytes occupied by a variable or type.
Sqr Returns the square of a number.
Sqrt Returns the square root of a number.
Str Formats a string and returns it to a variable.
StrToCurr Converts a string to a currency value.
StrToDate Converts a string to a date format (TDateTime).
StrToDateTime Converts a string to a TDateTime.
StrToFloat Converts a string to a floating-point value.
StrToInt Converts a string to an integer.
StrToTime Converts a string to a time format (TDateTime).
StrUpper Returns a string in upper case.
Succ Returns the successor of an ordinal value.
Sum Returns the sum of the elements from an array.
Time Returns the current time.
TimeToStr Converts a variable of type TDateTime to a string.
Trunc Truncates a real number to an integer.
UniqueString Makes a string unique.
UpCase Converts a character to uppercase.
UpperCase Returns a string in uppercase.
VarArrayCreate Creates a variant array.

VarArrayCreate Returns number of dimensions of a variant array.
VarArrayDimCount Returns number of dimensions of a variant array.
VarARrayHighBound Returns high bound for a dimension in a variant array.
VarArrayLock Locks a variant array and returns a pointer to the data.
VarArrayLowBound Returns the low bound of a dimension in a variant array.
VarArrayOf Creates and fills a one-dimensional variant array.
VarArrayRedim Resizes a variant array.
VarArrayRef Returns a reference to the passed variant array.
VarArrayUnlock Unlocks a variant array.
VarAsType Converts a variant to specified type.
VarCast Converts a variant to a specified type, storing the result in a variable.
VarClear Clears a variant.
CarCopy Copies a variant.
VarToStr Converts variant to string.
VarType Returns type code of specified variant.

For information on format strings, see Format strings.

Dynamic-link libraries and packages
Topic groups See also
A dynamic-link library (DLL) is a collection of routines that can be called by applications and by other
DLLs. Like units, DLLs contain sharable code or resources. But a DLL is a separately compiled
executable that is linked at runtime to the programs that use it.
To distinguish them from standalone executables, files containing compiled DLLs are named with
the .DLL extension. Object Pascal programs can call DLLs written in other languages, and Windows
applications written in other languages can call DLLs written in Object Pascal.
Calling DLLs
Writing DLLs
Packages

Calling DLLs
Topic groups See also
Before you can call routines defined in a DLL, you must import them. This can be done in two ways: by
declaring an external procedure or function, or by calling the Windows API directly. Whichever method
you use, the routines are not linked to your application until runtime. This means that the DLL need not
be present when you compile your program. It also means that there is no compile-time validation of
attempts to import a routine.
Object Pascal does not support importing of variables from DLLs.

Static loading
The simplest way to import a procedure or function is to declare it using the external directive. For
example,

procedure DoSomething; external 'MYLIB.DLL';
If you include this declaration in a program, MYLIB.DLL is loaded once, when the program starts.
Throughout execution of the program, the identifier DoSomething always refers to the same entry point
in the same DLL.
Declarations of imported routines can be placed directly in the program or unit where they are called. To
simplify maintenance, however, you can collect external declarations into a separate “import unit” that
also contains any constants and types required for interfacing with the DLL. (Delphi’s Windows unit is a
good example.) Other modules that use the import unit can call any routines declared in it.
For more information about external declarations, see External declarations.
Dynamic loading through Windows API calls.

Dynamic loading
Topic groups See also
You can access routines in a DLL through direct calls to Windows library functions, including
LoadLibrary, FreeLibrary, and GetProcAddress (all declared in Delphi’s Windows unit). In this case, use
procedural-type variables to reference the imported routines. For example,

uses Windows, ...;
type
 TTimeRec = record
 Second: Integer;
 Minute: Integer;
 Hour: Integer;
 end;
 TGetTime = procedure(var Time: TTimeRec);
 THandle = Integer;
var
 Time: TTimeRec;
 Handle: THandle;
 GetTime: TGetTime;
 ...
begin
 Handle := LoadLibrary('DATETIME.DLL');
 if Handle <> 0 then
 begin
 @GetTime := GetProcAddress(Handle, 'GetTime');
 if @GetTime <> nil then
 begin
 GetTime(Time);
 with Time do
 WriteLn('The time is ', Hour, ':', Minute, ':', Second);
 end;
 FreeLibrary(Handle);
 end;
end;

When you import routines this way, the DLL is not loaded until the code containing the call to
LoadLibrary executes. The DLL is later unloaded by the call to FreeLibrary. This allows you to conserve
memory, and to run your program even when some of the DLLs it uses are not present.

Writing DLLs
Topic groups See also
The structure of a DLL is identical to that of a program, except that a DLL begins with the reserved word
library (instead of program).
The following example shows a DLL with two exported functions, Min and Max.

library MinMax;
function Min(X, Y: Integer): Integer; stdcall;
begin
 if X < Y then Min := X else Min := Y;
end;
function Max(X, Y: Integer): Integer; stdcall;
begin
 if X > Y then Max := X else Max := Y;
end;
exports
 Min,
 Max;
begin
end.

If you want your DLL to be available to applications written in other languages, it’s safest to specify
stdcall in the declarations of exported functions. Other languages may not support Object Pascal’s
default register calling convention.
DLLs can be built from multiple units. In this case, the library source file is frequently reduced to a uses
clause, an exports clause, and the DLL’s initialization code. For example,

library Editors;
uses EdInit, EdInOut, EdFormat, EdPrint;
exports
 InitEditors,
 DoneEditors index 17 name Done,
 InsertText name Insert,
 DeleteSelection name Delete,
 FormatSelection,
 PrintSelection name Print,
 ...
 SetErrorHandler;
begin
 InitLibrary;
end.

You can put exports clauses in the interface or implementation section of a unit. Any library that
includes such a unit in its uses clause automatically exports the routines listed the unit’s exports
clauses—without the need for an exports clause of its own.
Only routines that a library explicitly exports are available for importing by other libraries or programs.
The exports clause
Library initialization code
Global variables in a DLL
DLLs and system variables
Exceptions and runtime errors in DLLs
The shared memory manager

The exports clause
Topic groups See also
A routine is exported when it is listed in an exports clause, which has the form

exports entry1, ..., entryn;
where each entry consists of the name of a procedure or function (which must be declared prior to the
exports clause), followed by a parameter list (only if the routine is overloaded), followed by an optional
index specifier and an optional name specifier. You can qualify the procedure or function name with the
name of a unit.
(Entries can also include the directive resident, which is maintained for backward compatibility and is
ignored by the compiler.)
An index specifier consists of the directive index followed by a numeric constant between 1 and
2,147,483,647. (For more efficient programs, use low index values.) If an entry has no index specifier,
the routine is automatically assigned a number in the DLL’s export table. Use of index specifiers, which
are supported for backward compatibility, is discouraged and may cause problems for other
development tools.
A name specifier consists of the directive name followed by a string constant. If an entry has no name
specifier, the routine is exported under its original declared name, with the same spelling and case. Use
a name clause when you want to export a routine under a different name. For example,

exports
 DoSomethingABC name 'DoSomething';

When you export an overloaded function or procedure from a DLL, you must specify its parameter list in
the exports clause. For example,

exports
 Divide(X, Y: Integer) name 'Divide_Ints',
 Divide(X, Y: Real) name 'Divide_Reals';

Do not include index specifiers in entries for overloaded routines.
An exports clause can appear anywhere and any number of times in the declaration part of a program
or library, or in the interface or implementation section of a unit. Programs seldom contain an exports
clause.

Library initialization code
Topic groups See also
The statements in a library’s block constitute the library’s initialization code. These statements are
executed once every time the DLL is loaded. They typically perform tasks like registering window
classes and initializing variables. Library initialization code can also install an exit procedure using the
ExitProc variable, as described in Exit procedures; the exit procedure executes when the DLL is
unloaded.
Library initialization code can signal an error by setting the ExitCode variable to a nonzero
value.ExitCode is declared in the System unit and defaults to zero, indicating successful initialization. If
a library’s initialization code sets ExitCode to another value, the DLL is unloaded and the calling
application is notified of the failure. Similarly, if an unhandled exception occurs during execution of the
initialization code, the calling application is notified of a failure to load the DLL.
Here is an example of a library with initialization code and an exit procedure.

library Test;
var
 SaveExit: Pointer;
procedure LibExit;
begin
 ... // library exit code
 ExitProc := SaveExit; // restore exit procedure chain
end;
begin
 ... // library initialization code
 SaveExit := ExitProc; // save exit procedure chain
 ExitProc := @LibExit; // install LibExit exit procedure
end.

When a DLL is unloaded, the library’s exit procedures are executed by repeated calls to the address
stored in ExitProc, until ExitProc becomes nil. The initialization parts of all units used by a library are
executed before the library’s initialization code, and the finalization parts of those units are executed
after the library’s exit procedure.

Global variables in a DLL
Topic groups See also
Global variables declared in a DLL cannot be imported by an Object Pascal application.
A DLL can be used by several applications at once, but each application has a copy of the DLL in its
own process space with its own set of global variables. For multiple DLLs—or multiple instances of a
DLL—to share memory, they must use memory-mapped files. Refer to the Windows API documentation
for further information.

DLLs and System variables
Topic groups See also
Several variables declared in the System unit are of special interest to programmers of DLLs. Use
IsLibrary to determine whether code is executing in an application or in a DLL; IsLibrary is always False
in an application and True in a DLL. During a DLL’s lifetime, HInstance contains its instance handle.
CmdLine is always nil in a DLL.
The DLLProc variable allows a DLL to monitor calls that the operating system makes to the DLL’s entry
point. This feature is normally used only by DLLs that support multithreading. To monitor operating-
system calls, create a callback procedure that takes a single integer parameter—for example,

procedure DLLHandler(Reason: Integer);
—and assign the address of the procedure to the DLLProc variable. When Windows calls the procedure,
it passes to it one of the following values (defined in the Windows unit).

DLL_PROCESS_DETACH Indicates that the DLL is detaching from the address space of
the calling process as a result of a clean exit or a call to
FreeLibrary.

DLL_THREAD_ATTACH Indicates that the current process is creating a new thread.
DLL_THREAD_DETACH Indicates that a thread is exiting cleanly.

In the body of the procedure, you can specify actions to take depending on which parameter is passed
to the procedure.

Exceptions and runtime errors in DLLs
Topic groups See also
When an exception is raised but not handled in a DLL, it propagates out of the DLL to the caller. If the
calling application or DLL is itself written in Object Pascal, the exception can be handled through a
normal try...except statement. If the calling application or DLL is written in another language, the
exception can be handled as an operating-system exception with the exception code $0EEDFACE. The
first entry in the ExceptionInformation array of the operating-system exception record contains the
exception address, and the second entry contains a reference to the Object Pascal exception object.
If a DLL does not use the SysUtils unit, Delphi’s exception support is disabled. In this case, when a
runtime error occurs in the DLL, the calling application terminates. Because the DLL has no way of
knowing whether it was called from an Object Pascal program, it cannot invoke the application’s exit
procedures; the application is simply aborted and removed from memory.

The shared-memory manager
Topic groups See also
If a DLL exports routines that pass long strings or dynamic arrays as parameters or function results
(whether directly or nested in records or objects), then the DLL and its client applications (or DLLs) must
all use the ShareMem unit. The same is true if one application or DLL allocates memory with New or
GetMem which is deallocated by a call to Dispose or FreeMem in another module. ShareMem should
always be the first unit listed in any program or library uses clause where it occurs.
ShareMem is the interface unit for the BORLANDMM.DLL memory manager, which allows modules to
share dynamically allocated memory. BORLANDMM.DLL must be deployed with applications and DLLs
that use ShareMem. When an application or DLL uses ShareMem, its memory manager is replaced by
the memory manager in BORLANDMM.DLL.

Packages
Topic groups See also
A package is a specially compiled dynamic-link library used by Delphi applications, the Delphi IDE, or
both. Runtime packages provide functionality when a user runs an application. Design-time packages
are used to install components in Delphi’s IDE and to create special property editors for custom
components. A single package can function at both design time and runtime, and design-time packages
frequently work by referencing runtime packages in their requires clauses.
To distinguish them from other DLLs, package libraries are stored in files that end with the .BPL (Borland
package library) extension.
Ordinarily, packages are loaded statically when an applications starts. But you can use the
LoadPackage and UnloadPackage routines (in the SysUtils unit) to load packages dynamically.
Note:When an application utilizes packages, the name of each packaged unit still must appear in the

uses clause of any source file that references it.
Package declarations and source files
Compiling packages

Package declarations and source files
Topic groups See also
Each package is declared in a separate source file, which should be saved with the .DPK (Delphi
package) extension to avoid confusion with other files containing Object Pascal code. A package source
file does not contain type, data, procedure, or function declarations. Instead, it contains

A name for the package.
A list of other packages required by the new package. These are packages to which the new

package is linked.
A list of unit files contained by, or bound into, the package when it is compiled. The package is

essentially a wrapper for these source-code units, which provide the functionality of the compiled BPL.
A package declaration has the form

package packageName;
 requiresClause;
 containsClause;
end.

where packageName is any valid identifier. The requiresClause and containsClause are both optional.
For example, the following code declares the VCLDB50 package.

package VCLDB50;
 requires VCL50;
 contains Db, Dbcgrids, Dbctrls, Dbgrids, ... ;
end.

The requires clause lists other, external packages used by the package being declared. It consists of
the directive requires, followed by a comma-delimited list of package names, followed by a semicolon. If
a package does not reference other packages, it does not need a requires clause.
The contains clause identifies the unit files to be compiled and bound into the package. It consists of
the directive contains, followed by a comma-delimited list of unit names, followed by a semicolon. Any
unit name may be followed by the reserved word in and the name of a source file, with or without a
directory path, in single quotation marks; directory paths can be absolute or relative. For example,

contains MyUnit in 'C:\MyProject\MyUnit.pas';
Note:Thread-local variables (declared with threadvar) in a packaged unit cannot be accessed from

clients that use the package.
Naming packages
The requires clause
The contains clause

Naming packages
Topic groups See also
A compiled package involves several generated files. For example, the source file for the package called
VCL50 is VCL50.DPK, from which the compiler generates an executable and a binary image called
VCL50.BPL and VCL50.DCP, respectively. VCL50 is used to refer to the package in the requires
clauses of other packages, or when using the package in an application. Package names must be
unique within a project.

The requires clause
Topic groups See also
The requires clause lists other, external packages that are used by the current package. It functions like
the uses clause in a unit file. An external package listed in the requires clause is automatically linked at
compile time into any application that uses both the current package and one of the units contained in
the external package.
If the unit files contained in a package make references to other packaged units, the other packages
should be included in the first package’s requires clause. If the other packages are omitted from the
requires clause, the compiler loads the referenced units from their DCU files.

Avoiding circular package references
Packages cannot contain circular references in their requires clauses. This means that

A package cannot reference itself in its own requires clause.
A chain of references must terminate without rereferencing any package in the chain. If package

A requires package B, then package B cannot require package A; if package A requires package B and
package B requires package C, then package C cannot require package A.

Duplicate package references
The compiler ignores duplicate references in a package’s requires clause. For programming clarity and
readability, however, duplicate references should be removed.

The contains clause
Topic groups See also
The contains clause identifies the unit files to be bound into the package. Do not include file-name
extensions in the contains clause.

Avoiding redundant source code uses
A package cannot be listed in the contains clause of another package or the uses clause of a unit.
All units included directly in a package’s contains clause, or indirectly in the uses clauses of those
units, are bound into the package at compile time. The units contained (directly or indirectly) in a
package cannot be contained in any other packages referenced in requires clause of that package.
A unit cannot be contained (directly or indirectly) in more than one package used by the same
application.

Compiling packages
Topic groups See also
Packages are ordinarily compiled from the Delphi IDE using .DPK files generated by the Package editor.
You can also compile .DPK files directly from the command line. When you build a project that contains
a package, the package is implicitly recompiled if necessary.
Generated files
Package-specific compiler directives
Package-specific command-line compiler switches

Generated files
Topic groups See also
The following table lists the files produced by the successful compilation of a package.

File extension Contents
DCP A binary image containing a package header and the concatenation of

all DCU files in the package. A single DCP file is created for each
package. The base name for the DCP is the base name of the DPK
source file.

DCU A binary image for a unit file contained in a package. One DCU is
created, when necessary, for each unit file.

BPL The runtime package. This file is a Windows DLL with special Delphi-
specific features. The base name for the BPL is the base name of the
DPK source file.

Package-specific compiler directives
Topic groups See also
The following table lists package-specific compiler directives that can be inserted into source code.

Directive Purpose
{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled

later. Use in .DPK files when compiling packages that
provide low-level functionality, that change
infrequently between builds, or whose source code
will not be distributed.

{$G–} or {$IMPORTEDDATA OFF} Disables creation of imported data references. This
directive increases memory-access efficiency, but
prevents the unit where it occurs from referencing
variables in other packages.

{$WEAKPACKAGEUNIT ON} Packages unit weakly.
{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.
{$DESIGNONLY ON} Compiles the package for installation in the Delphi

IDE. (Put in .DPK file.)
{$RUNONLY ON} Compiles the package as runtime only. (Put in .DPK

file.)
Including {$DENYPACKAGEUNIT ON} in source code prevents the unit file from being packaged.
Including {$G–} or {IMPORTEDDATA OFF} may prevent a package from being used in the same
application with other packages.
Other compiler directives may be included, if appropriate, in package source code.

Package-specific command-line compiler switches
Topic groups See also
The following package-specific switches are available for the command-line compiler.

Switch Purpose
–$G– Disables creation of imported data references. Using this switch increases

memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

–LE path Specifies the directory where the package BPL file will be placed.
–LN path Specifies the directory where the package DCP file will be placed.
–LUpackageName
[;packageName2;...]

Specifies additional runtime packages to use in an application. Used when
compiling a project.

–Z Prevents a package from being implicitly recompiled later. Use when
compiling packages that provide low-level functionality, that change
infrequently between builds, or whose source code will not be distributed.

Using the –$G– switch may prevent a package from being used in the same application with other
packages.
Other command-line options may be used, if appropriate, when compiling packages.

Object interfaces
Topic groups See also
An object interface—or simply interface—defines methods that can be implemented by a class.
Interfaces are declared like classes, but cannot be directly instantiated and do not have their own
method definitions. Rather, it is the responsibility of any class that supports an interface to provide
implementations for the interface’s methods. A variable of an interface type can reference an object
whose class implements that interface; however, only methods declared in the interface can be called
using such a variable.
Interfaces offer some of the advantages of multiple inheritance without the semantic difficulties. They are
also essential for using distributed object models, including COM (the Component Object Model) and
CORBA (Common Object Request Broker Architecture). Objects built with Delphi that support interfaces
can interact with COM objects written in C++, Java, and other languages.
Interface types
Implementing interfaces
Interface references
Automation objects

Interface types
Topic groups See also
Interfaces, like classes, can be declared only in the outermost scope of a program or unit, not in a
procedure or function declaration. An interface type declaration has the form

type interfaceName = interface (ancestorInterface)
 ['{GUID}']
 memberList
end;

where (ancestorInterface) and ['{GUID}'] are optional. In most respects, interface declarations resemble
class declarations, but the following restrictions apply.

The memberList can include only methods and properties. Fields are not allowed in interfaces.
Since an interface has no fields, property read and write specifiers must be methods.
All members of an interface are public. Visibility specifiers and storage specifiers are not allowed.

(But an array property can be declared as default.)
Interfaces have no constructors or destructors. They cannot be instantiated, except through

classes that implement their methods.
Methods cannot be declared as virtual, dynamic, abstract, or override. Since interfaces do not

implement their own methods, these designations have no meaning.
Here is an example of an interface declaration:

type
 IMalloc = interface(IUnknown)
 ['{00000002-0000-0000-C000-000000000046}']
 function Alloc(Size: Integer): Pointer; stdcall;
 function Realloc(P: Pointer; Size: Integer): Pointer; stdcall;
 procedure Free(P: Pointer); stdcall;
 function GetSize(P: Pointer): Integer; stdcall;
 function DidAlloc(P: Pointer): Integer; stdcall;
 procedure HeapMinimize; stdcall;
 end;

IUnknown and inheritance
Interface identification
Calling conventions
Interface properties
Forward declarations

IUnknown and inheritance
Topic groups See also
An interface, like a class, inherits all of its ancestors’ methods. But interfaces, unlike classes, do not
implement methods. What an interface inherits is the obligation to implement methods—an obligation
that devolves onto any class supporting the interface.
The declaration of an interface can specify an ancestor interface. If no ancestor is specified, the
interface is a direct descendant of IUnknown, which is defined in the System unit and is the ultimate
ancestor of all other interfaces. IUnknown declares three methods: QueryInterface, _AddRef, and
_Release. QueryInterface provides the means to move freely among the different interfaces that an
object supports. _AddRef and _Release provide lifetime management for interface references. The
easiest way to implement these methods is to derive the implementing class from the System unit’s
TInterfacedObject.

Interface identification
Topic groups See also
An interface declaration can specify a globally unique identifier (GUID), represented by a string literal
enclosed in brackets immediately preceding the member list. The GUID part of the declaration must
have the form

['{xxxxxxxx–xxxx–xxxx–xxxx–xxxxxxxxxxxx}']
where each x is a hexadecimal digit (0 through 9 or A through F).
A GUID is a 16-byte binary value that uniquely identifies an interface. If an interface has a GUID, you
can use interface querying to get references to its implementations. (See “Interface querying” on page
10-14.)
The TGUID and PGUID types, declared in the System unit, are used to manipulate GUIDs.

type
 PGUID = ^TGUID;
 TGUID = packed record
 D1: Longword;
 D2: Word;
 D3: Word;
 D4: array[0..7] of Byte;
 end;

When you declare a typed constant of type TGUID, you can use a string literal to specify its value. For
example,

const IID_IMalloc: TGUID = '{00000002-0000-0000-C000-000000000046}';
In procedure and function calls, either a GUID or an interface identifier can serve as a value or constant
parameter of type TGUID. For example, given the declaration

function Supports(Unknown: IUnknown; const IID: TGUID): Boolean;
Supports can be called in either of two ways:

if Supports(Allocator, IMalloc) then ...
if Supports(Allocator, IID_IMalloc) then ...

Calling conventions
Topic groups See also
The default calling convention is register, but interfaces shared among modules (especially if they are
written in different languages) should declare all methods with stdcall. Use safecall to implement
methods of dual interfaces and CORBA interfaces.
For more information about calling conventions, see Calling conventions.

Interface properties
Topic groups See also
Properties declared in an interface are accessible only through expressions of the interface type; they
cannot be accessed through class-type variables. Moreover, interface properties are visible only within
programs where the interface is compiled. COM objects do not have properties.
In an interface, property read and write specifiers must be methods, since fields are not available.

Forward declarations
Topic groups See also
An interface declaration that ends with the reserved word interface and a semicolon, without specifying
an ancestor, GUID, or member list, is a forward declaration. A forward declaration must be resolved by a
defining declaration of the same interface within the same type declaration section. In other words,
between a forward declaration and its defining declaration, nothing can occur except other type
declarations.
Forward declarations allow mutually dependent interfaces. For example,

type
 IControl = interface;
 IWindow = interface
 ['{00000115-0000-0000-C000-000000000044}']
 function GetControl(Index: Integer): IControl;
 ...
 end;
 IControl = interface
 ['{00000115-0000-0000-C000-000000000049}']
 function GetWindow: IWindow;
 ...
 end;

Mutually derived interfaces are not allowed. For example, it is not legal to derive IWindow from IControl
and also derive IControl from IWindow.

Implementing interfaces
Topic groups See also
Once an interface has been declared, it must be implemented in a class before it can be used. The
interfaces implemented by a class are specified in the class’s declaration, after the name of the class’s
ancestor. Such declarations have the form

type className = class (ancestorClass, interface1, ..., interfacen)
 memberList
 end;

For example,
type
 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)
 ...
 end;

declares a class called TMemoryManager that implements the IMalloc and IErrorInfo interfaces. When a
class implements an interface, it must implement (or inherit an implementation of) each method declared
in the interface.
Here is the declaration of TInterfacedObject in the System unit.

type
 TInterfacedObject = class(TObject, IUnknown)
 protected
 FRefCount: Integer;
 function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 property RefCount: Integer read FRefCount;
 end;

TInterfacedObject implements the IUnknown interface. Hence TInterfacedObject declares and
implements each of IUnknown’s three methods.
Classes that implement interfaces can also be used as base classes. (The first example above declares
TMemoryManager as a direct descendent of TInterfacedObject.) Since every interface inherits from
IUnknown, a class that implements interfaces must implement the QueryInterface, _AddRef, and
_Release methods. The System unit’s TInterfacedObject implements these methods and is thus a
convenient base from which to derive other classes that implement interfaces.
When an interface is implemented, each of its methods is mapped onto a method in the implementing
class that has the same result type, the same calling convention, the same number of parameters, and
identically typed parameters in each position. By default, each interface method is mapped to a method
of the same name in the implementing class.
Method resolution clauses
Changing inherited implementations
Implementing interfaces by delegation

Method resolution clauses
Topic groups See also
You can override the default name-based mappings by including method resolution clauses in a class
declaration. When a class implements two or more interfaces that have identically named methods, use
method resolution clauses to resolve the naming conflicts.
A method resolution clause has the form

procedure interface.interfaceMethod = implementingMethod;
or

function interface.interfaceMethod = implementingMethod;
where implementingMethod is a method declared in the class or one of its ancestors. The
implementingMethod can be a method declared later in the class declaration, but cannot be a private
method of an ancestor class declared in another module.
For example, the class declaration

type
 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)
 function IMalloc.Alloc = Allocate;
 procedure IMalloc.Free = Deallocate;
 ...
 end;

maps IMalloc’s Alloc and Free methods onto TMemoryManager’s Allocate and Deallocate methods.
A method resolution clause cannot alter a mapping introduced by an ancestor class.

Changing inherited implementations
Topic groups See also
Descendant classes can change the way a specific interface method is implemented by overriding the
implementing method. This requires that the implementing method be virtual or dynamic.
A class can also reimplement an entire interface that it inherits from an ancestor class. This involves
relisting the interface in the descendant class’s declaration. For example,

type
 IWindow = interface
 ['{00000115-0000-0000-C000-000000000146}']
 procedure Draw;
 ...
 end;
 TWindow = class(TInterfacedObject, IWindow) // TWindow implements IWindow
 procedure Draw;
 ...
 end;
 TFrameWindow = class(TWindow, IWindow) // TFrameWindow reimplements IWindow
 procedure Draw;
 ...
 end;

Reimplementing an interface hides the inherited implementation of the same interface. Hence method
resolution clauses in an ancestor class have no effect on the reimplemented interface.

Implementing interfaces by delegation
Topic groups See also
The implements directive allows you to delegate implementation of an interface to a property in the
implementing class. For example,

property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
declares a property called MyInterface that implements the interface IMyInterface.
The implements directive must be the last specifier in the property declaration and can list more than
one interface, separated by commas. The delegate property

must be of a class or interface type.
cannot be an array property or have an index specifier.
must have a read specifier. If the property uses a read method, that method must use the default

register calling convention and cannot be dynamic (though it can be virtual) or specify the message
directive.
Delegating to an interface-type property
Delegating to a class-type property

Delegating to an interface-type property
Topic groups See also
If the delegate property is of an interface type, that interface, or an interface from which it derives, must
occur in the ancestor list of the class where the property is declared. The delegate property must return
an object whose class completely implements the interface specified by the implements directive, and
which does so without method resolution clauses. For example,

type
 IMyInterface = interface
 procedure P1;
 procedure P2;
 end;
 TMyClass = class(TObject, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
 end;
var
 MyClass: TMyClass;
 MyInterface: IMyInterface;
begin
 MyClass := TMyClass.Create;
 MyClass.FMyInterface := ... // some object whose class implements IMyInterface
 MyInterface := MyClass;
 MyInterface.P1;
end;

Delegating to a class-type property
Topic groups See also
If the delegate property is of a class type, that class and its ancestors are searched for methods
implementing the specified interface before the enclosing class and its ancestors are searched. Thus it
is possible to implement some methods in the class specified by the property, and others in the class
where the property is declared. Method resolution clauses can be used in the usual way to resolve
ambiguities or specify a particular method. An interface cannot be implemented by more than one class-
type property. For example,

type
 IMyInterface = interface
 procedure P1;
 procedure P2;
 end;
 TMyImplClass = class
 procedure P1;
 procedure P2;
 end;
 TMyClass = class(TInterfacedObject, IMyInterface)
 FMyImplClass: TMyImplClass;
 property MyImplClass: TMyImplClass read FMyImplClass implements IMyInterface;
 procedure IMyInterface.P1 = MyP1;
 procedure MyP1;
 end;
procedure TMyImplClass.P1;
 ...
procedure TMyImplClass.P2;
 ...
procedure TMyClass.MyP1;
 ...
var
 MyClass: TMyClass;
 MyInterface: IMyInterface;
begin
 MyClass := TMyClass.Create;
 MyClass.FMyImplClass := TMyImplClass.Create;
 MyInterface := MyClass;
 MyInterface.P1; // calls TMyClass.MyP1;
 MyInterface.P2; // calls TImplClass.P2;
end;

Interface references
Topic groups See also
If you declare a variable of an interface type, the variable can reference instances of any class that
implements the interface. Such variables allow you to call interface methods without knowing at compile
time where the interface is implemented. But they are subject to the following limitations.

An interface-type expression gives you access only to methods and properties declared in the
interface, not to other members of the implementing class.

An interface-type expression cannot reference an object whose class implements a descendant
interface, unless the class (or one that it inherits from) explicitly implements the ancestor interface as well.
For example,

type
 IAncestor = interface
 end;
 IDescendant = interface(IAncestor)
 procedure P1;
 end;
 TSomething = class(TInterfacedObject, IDescendant)
 procedure P1;
 procedure P2;
 end;
 ...
var
 D: IDescendant;
 A: IAncestor;
begin
 D := TSomething.Create; // works!
 A := TSomething.Create; // error
 D.P1; // works!
 D.P2; // error
end;

In this example,
A is declared as a variable of type IAncestor. Because TSomething does not list IAncestor among

the interfaces it implements, a TSomething instance cannot be assigned to A. But if we changed
TSomething’s declaration to

TSomething = class(TInterfacedObject, IAncestor, IDescendant)
 ...

the first error would become a valid assignment.
D is declared as a variable of type IDescendant. While D references an instance of TSomething,

we cannot use it to access TSomething’s P2 method, since P2 is not a method of IDescendant. But if we
changed D’s declaration to

D: TSomething;
the second error would become a valid method call.

Interface references are managed through reference-counting, which depends on the _AddRef and
_Release methods inherited from IUnknown. When an object is referenced only through interfaces,
there is no need to destroy it manually; the object is automatically destroyed when the last reference to it
goes out of scope.
Global interface-type variables can be initialized only to nil.
To determine whether an interface-type expression references an object, pass it to the standard function
Assigned.
Interface assignment-compatibility
Interface typecasts
Interface querying

Interface assignment-compatibility
Topic groups See also
A class type is assignment-compatible with any interface type implemented by the class. An interface
type is assignment-compatible with any ancestor interface type. The value nil can be assigned to any
interface-type variable.
An interface-type expression can be assigned to a variant. If the interface is of type IDispatch or a
descendant, the variant receives the type code varDispatch. Otherwise, the variant receives the type
code varUnknown.
A variant whose type code is varEmpty, varUnknown, or varDispatch can be assigned to an IUnknown
variable. A variant whose type code is varEmpty or varDispatch can be assigned to an IDispatch
variable.

Interface typecasts
Topic groups See also
Interface types follow the same rules as class types in variable and value typecasts. Class-type
expressions can be cast to interface types—for example, IMyInterface(SomeObject)—provided the class
implements the interface.
An interface-type expression can be cast to Variant. If the interface is of type IDispatch or a descendant,
the resulting variant has the type code varDispatch. Otherwise, the resulting variant has the type code
varUnknown.
A variant whose type code is varEmpty, varUnknown, or varDispatch can be cast to IUnknown. A variant
whose type code is varEmpty or varDispatch can be cast to IDispatch.
Interface querying

Interface querying
Topic groups See also
You can use the as operator to perform checked interface typecasts. This is known as interface
querying, and it yields an interface-type expression from an object reference or from another interface
reference, based on the actual (runtime) type of the object. An interface query has the form

object as interface
where object is an expression of an interface or variant type or denotes an instance of a class that
implements an interface, and interface is any interface declared with a GUID.
An interface query returns nil if object is nil. Otherwise, it passes the GUID of interface to the
QueryInterface method in object, raising an exception unless QueryInterface returns zero. If
QueryInterface returns zero (indicating that object’s class implements interface), the interface query
returns an interface reference to object.

Automation objects
Topic groups See also
An object whose class implements the IDispatch interface (declared in the System unit) is an
Automation object.
Dispatch interface types
Accessing Automation objects
Dual interfaces

Dispatch interface types
Topic groups See also
Dispatch interface types define the methods and properties that an Automation object implements
through IDispatch. Calls to methods of a dispatch interface are routed through IDispatch’s Invoke
method at runtime; a class cannot implement a dispatch interface.
A dispatch interface type declaration has the form

type interfaceName = dispinterface
 ['{GUID}']
 memberList
end;

where ['{GUID}'] is optional and memberList consists of property and method declarations. Dispatch
interface declarations are similar to regular interface declarations, but they cannot specify an ancestor.
For example,

type
 IStringsDisp = dispinterface
 ['{EE05DFE2-5549-11D0-9EA9-0020AF3D82DA}']
 property ControlDefault[Index: Integer]: OleVariant dispid 0; default;
 function Count: Integer; dispid 1;
 property Item[Index: Integer]: OleVariant dispid 2;
 procedure Remove(Index: Integer); dispid 3;
 procedure Clear; dispid 4;
 function Add(Item: OleVariant): Integer; dispid 5;
 function _NewEnum: IUnknown; dispid -4;
 end;

Dispatch interface methods
Methods of a dispatch interface are prototypes for calls to the Invoke method of the underlying IDispatch
implementation. To specify an Automation dispatch ID for a method, include the dispid directive in its
declaration, followed by an integer constant; specifying an already used ID causes an error.
A method declared in a dispatch interface cannot contain directives other than dispid. Parameter and
result types must be automatable—that is, they must be Byte, Currency, Real, Double, Longint, Integer,
Single, Smallint, AnsiString, WideString, TDateTime, Variant, OleVariant, WordBool, or any interface
type.

Dispatch interface properties
Properties of a dispatch interface do not include access specifiers. They can be declared as readonly or
writeonly. To specify a dispatch ID for a property, include the dispid directive in its declaration, followed
by an integer constant; specifying an already used ID causes an error. Array properties can be declared
as default. No other directives are allowed in dispatch-interface property declarations.

Accessing Automation objects
Topic groups See also
Use variants to access Automation objects. When a variant references an Automation object, you can
call the object’s methods and read or write to its properties through the variant. To do this, you must
include ComObj in the uses clause of one of your units or your program or library.
Automation object method calls are bound at runtime and require no previous method declarations. The
validity of these calls is not checked at compile time.
The following example illustrates Automation method calls. The CreateOleObject function (defined in
ComObj) returns an IDispatch reference to an Automation object and is assignment-compatible with the
variant Word.

var
 Word: Variant;
begin
 Word := CreateOleObject('Word.Basic');
 Word.FileNew('Normal');
 Word.Insert('This is the first line'#13);
 Word.Insert('This is the second line'#13);
 Word.FileSaveAs('c:\temp\test.txt', 3);
end;

You can pass interface-type parameters to Automation methods.
Variant arrays with an element type of varByte are the preferred method of passing binary data between
Automation controllers and servers. Such arrays are subject to no translation of their data, and can be
efficiently accessed using the VarArrayLock and VarArrayUnlock routines.

Automation object method-call syntax
The syntax of an Automation object method call or property access is similar to that of a normal method
call or property access. Automation method calls, however, can use both positional and named
parameters. (But some Automation servers do not support named parameters.)
A positional parameter is simply an expression. A named parameter consists of a parameter identifier,
followed by the := symbol, followed by an expression. Positional parameters must precede any named
parameters in a method call. Named parameters can be specified in any order.
Some Automation servers allow you to omit parameters from a method call, accepting their default
values. For example,

Word.FileSaveAs('test.doc');
Word.FileSaveAs('test.doc', 6);
Word.FileSaveAs('test.doc',,,'secret');
Word.FileSaveAs('test.doc', Password := 'secret');
Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

Automation method call parameters can be of integer, real, string, Boolean, and variant types. A
parameter is passed by reference if the parameter expression consists only of a variable reference, and
if the variable reference is of type Byte, Smallint, Integer, Single, Double, Currency, TDateTime,
AnsiString, WordBool, or Variant. If the expression is not of one of these types, or if it is not just a
variable, the parameter is passed by value. Passing a parameter by reference to a method that expects
a value parameter causes COM to fetch the value from the reference parameter. Passing a parameter
by value to a method that expects a reference parameter causes an error.

Dual interfaces
Topic groups See also
A dual interface is an interface that supports both compile-time binding and runtime binding through
Automation. Dual interfaces must descend from IDispatch.
All methods of a dual interface (except from those inherited from IUnknown and IDispatch) must use the
safecall convention, and all method parameter and result types must be automatable. (The automatable
types are Byte, Currency, Real, Double, Real48, Integer, Single, Smallint, AnsiString, ShortString,
TDateTime, Variant, OleVariant, and WordBool.)

Memory management
Topic groups See also
This group of topics explains how programs use memory and describes the internal formats of Object
Pascal data types.

Delphi’s memory manager
The memory manager manages all dynamic memory allocations and deallocations in a Delphi
application. The New, Dispose, GetMem, ReallocMem, and FreeMem standard procedures use the
memory manager, and all objects and long strings are allocated through the memory manager.
Delphi’s memory manager is optimized for applications that allocate large numbers of small- to medium-
sized blocks, as is typical for object-oriented applications and applications that process string data.
Other memory managers, such as the implementations of GlobalAlloc, LocalAlloc, and private heap
support in Windows, typically do not perform well in such situations, and would slow down an application
if they were used directly.
To ensure the best performance, the memory manager interfaces directly with the Win32 virtual memory
API (the VirtualAlloc and VirtualFree functions). The memory manager reserves memory from the
operating system in 1-MB sections of address space, and commits memory as required in 16-KB
increments. It decommits and releases unused memory in 16-KB and 1-MB sections. For smaller
blocks, committed memory is further suballocated.
Memory manager blocks are always rounded upward to a 4-byte boundary, and always include a 4-byte
header in which the size of the block and other status bits are stored. This means that memory manager
blocks are always double-word-aligned, which guarantees optimal CPU performance when addressing
the block.
The memory manager maintains two status variables, AllocMemCount and AllocMemSize, which
contain the number of currently allocated memory blocks and the combined size of all currently allocated
memory blocks. Applications can use these variables to display status information for debugging.
The System unit provides two procedures, GetMemoryManager and SetMemoryManager, that allow
applications to intercept low-level memory manager calls. The System unit also provides a function
called GetHeapStatus that returns a record containing detailed memory-manager status information.

Variables
Topic groups See also
Global variables are allocated on the application data segment and persist for the duration of the
program. Local variables (declared within procedures and functions) reside in an application’s stack.
Each time a procedure or function is called, it allocates a set of local variables; on exit, the local
variables are disposed of. Compiler optimization may eliminate variables earlier.
An application’s stack is defined by two values: the minimum stack size and the maximum stack size.
The values are controlled through the $MINSTACKSIZE and $MAXSTACKSIZE compiler directives,
and default to 16,384 (16K) and 1,048,576 (1M) respectively. An application is guaranteed to have the
minimum stack size available, and an application’s stack is never allowed to grow larger than the
maximum stack size. If there is not enough memory available to satisfy an application’s minimum stack
requirement, Windows will report an error upon attempting to start the application.
If an application requires more stack space than specified by the minimum stack size, additional
memory is automatically allocated in 4K increments. If allocation of additional stack space fails, either
because more memory is not available or because the total size of the stack would exceed the
maximum stack size, an EStackOverflow exception is raised. (Stack overflow checking is completely
automatic. The $S compiler directive, which originally controlled overflow checking, is maintained for
backward compatibility.)
Dynamic variables created with the GetMem or New procedure are heap-allocated and persist until they
are deallocated with FreeMem or Dispose.
Long strings, wide strings, dynamic arrays, variants, and interfaces are heap-allocated, but their memory
is managed automatically.

Integer types
Topic groups See also
The format of an integer-type variable depends on its minimum and maximum bounds.

If both bounds are within the range –128..127 (Shortint), the variable is stored as a signed byte.
If both bounds are within the range 0..255 (Byte), the variable is stored as an unsigned byte.
If both bounds are within the range –32768..32767 (Smallint), the variable is stored as a signed

word.
If both bounds are within the range 0..65535 (Word), the variable is stored as an unsigned word.
If both bounds are within the range –2147483648..2147483647 (Longint), the variable is stored

as a signed double word.
If both bounds are within the range 0..4294967295 (Longword), the variable is stored as an

unsigned double word.
Otherwise, the variable is stored as a signed quadruple word (Int64).

Character types
Topic groups See also
A Char, an AnsiChar, or a subrange of a Char type is stored as an unsigned byte. A WideChar is stored
as an unsigned word.

Boolean types
Topic groups See also
A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool type is stored as a
Word, and a LongBool is stored as a Longint.
A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and LongBool types can
assume the values 0 (False) or nonzero (True).

Enumerated types
Topic groups See also
An enumerated type is stored as an unsigned byte if the enumeration has no more than 256 values and
the type was declared in the {$Z1} state (the default). If an enumerated type has more than 256 values,
or if the type was declared in the {$Z2} state, it is stored as an unsigned word. If an enumerated type is
declared in the {$Z4} state, it is stored as an unsigned double-word.

Real types
Topic groups See also
The real types store the binary representation of a sign (+ or –), an exponent, and a significand. A real
value has the form

+/– significand * 2^exponent
where the significand has a single bit to the left of the binary decimal point. (That is, 0 <= significand <
2.)
In the figures that follow, the most significant bit is always on the left and the least significant bit on the
right. The numbers at the top indicate the width (in bits) of each field, with the leftmost items stored at
the highest addresses. For example, for a Real48 value, e is stored in the first byte, f in the following five
bytes, and s in the most significant bit of the last byte.

The Real48 type
A 6-byte (48-bit) Real48 number is divided into three fields:

If 0 < e <= 255, the value v of the number is given by
v = (–1)^s * 2^(e–129) * (1.f)

If e = 0, then v = 0.
The Real48 type can’t store denormals, NaNs, and infinities. Denormals become zero when stored in a
Real48, while NaNs and infinities produce an overflow error if an attempt is made to store them in a
Real48.

The Single type
A 4-byte (32-bit) Single number is divided into three fields

The value v of the number is given by
if 0 < e < 255, then v = (–1)^s * 2^(e–127) * (1.f)
if e = 0 and f <> 0, then v = (–1)^s * 2^(–126) * (0.f)
if e = 0 and f = 0, then v = (–1)^s * 0
if e = 255 and f = 0, then v = (–1)^s * Inf
if e = 255 and f <> 0, then v is a NaN

The Double type
An 8-byte (64-bit) Double number is divided into three fields

The value v of the number is given by
if 0 < e < 2047, then v = (–1)^s * 2^(e–1023) * (1.f)
if e = 0 and f <> 0, then v = (–1)^s * 2^(–1022) * (0.f)
if e = 0 and f = 0, then v = (–1)^s * 0
if e = 2047 and f = 0, then v = (–1)^s * Inf
if e = 2047 and f <> 0, then v is a NaN

The Extended type
A 10-byte (80-bit) Extended number is divided into four fields:

The value v of the number is given by
if 0 <= e < 32767, then v = (–1)^s * 2^(e–16383) * (i.f)

if e = 32767 and f = 0, then v = (–1)^s * Inf
if e = 32767 and f <> 0, then v is a NaN

The Comp type
An 8-byte (64-bit) Comp number is stored as a signed 64-bit integer.

The Currency type
An 8-byte (64-bit) Currency number is stored as a scaled and signed 64-bit integer with the four least-
significant digits implicitly representing four decimal places.

Pointer types
Topic groups See also
A Pointer type is stored in 4 bytes as a 32-bit address. The pointer value nil is stored as zero.

Short string types
Topic groups See also
A string occupies as many bytes as its maximum length plus one. The first byte contains the current
dynamic length of the string, and the following bytes contain the characters of the string.
The length byte and the characters are considered unsigned values. Maximum string length is 255
characters plus a length byte (string[255]).

Long string types
Topic groups See also
A long string variable occupies four bytes of memory which contain a pointer to a dynamically allocated
string. When a long string variable is empty (contains a zero-length string), the string pointer is nil and
no dynamic memory is associated with the string variable. For a nonempty string value, the string
pointer points to a dynamically allocated block of memory that contains the string value in addition to a
32-bit length indicator and a 32-bit reference count. The table below shows the layout of a long-string
memory block.

Offset Contents
–8 32-bit reference-count
–4 32-bit length indicator
0..Length – 1 character string
Length NULL character

The NULL character at the end of a long string memory block is automatically maintained by the
compiler and the built-in string handling routines. This makes it possible to typecast a long string directly
to a null-terminated string.
For string constants and literals, the compiler generates a memory block with the same layout as a
dynamically allocated string, but with a reference count of –1. When a long string variable is assigned a
string constant, the string pointer is assigned the address of the memory block generated for the string
constant. The built-in string handling routines know not to attempt to modify blocks that have a reference
count of –1.

Wide string types
Topic groups See also
A wide string variable occupies four bytes of memory which contain a pointer to a dynamically allocated
string. When a wide string variable is empty (contains a zero-length string), the string pointer is nil and
no dynamic memory is associated with the string variable. For a nonempty string value, the string
pointer points to a dynamically allocated block of memory that contains the string value in addition to a
32-bit length indicator. The table below shows the layout of a wide-string memory block.

Offset Contents
–4 32-bit length indicator (in bytes)
0..Length – 1 character string
Length NULL character

The string length is the number of bytes, so it is twice the number of wide characters contained in the
string.
The NULL character at the end of a wide string memory block is automatically maintained by the
compiler and the built-in string handling routines. This makes it possible to typecast a wide string directly
to a null-terminated string.

Set types
Topic groups See also
A set is a bit array where each bit indicates whether an element is in the set or not. The maximum
number of elements in a set is 256, so a set never occupies more than 32 bytes. The number of bytes
occupied by a particular set is equal to

(Max div 8) – (Min div 8) + 1
where Max and Min are the upper and lower bounds of the base type of the set. The byte number of a
specific element E is

(E div 8) – (Min div 8)
and the bit number within that byte is

E mod 8
where E denotes the ordinal value of the element.

Static array types
Topic groups See also
A static array is stored as a contiguous sequence of variables of the component type of the array. The
components with the lowest indexes are stored at the lowest memory addresses. A multidimensional
array is stored with the rightmost dimension increasing first.

Dynamic array types
Topic groups See also
A dynamic-array variable occupies four bytes of memory which contain a pointer to the dynamically
allocated array. When the variable is empty (uninitialized) or holds a zero-length array, the pointer is nil
and no dynamic memory is associated with the variable. For a nonempty array, the variable points to a
dynamically allocated block of memory that contains the array in addition to a 32-bit length indicator and
a 32-bit reference count. The table below shows the layout of a dynamic-array memory block.

Offset Contents
–8 32-bit reference-count
–4 32-bit length indicator (number of elements)
0..Length * (size of element) – 1 array elements

Record types
Topic groups See also
When a record type is declared in the {$A+} state (the default), and when the declaration does not
include a packed modifier, the type is an unpacked record type, and the fields of the record are aligned
for efficient access by the CPU. The alignment is controlled by the type of each field. Every data type
has an inherent alignment, which is automatically computed by the compiler. The alignment can be 1, 2,
4, or 8, and represents the byte boundary that a value of the type must be stored on to provide the most
efficient access. The table below lists the alignments for all data types.

Type Alignment
Ordinal types size of the type (1, 2, 4, or 8)
Real types 2 for Real48 and Extended, 4 for all other real types
Short string types 1
Array types same as the element type of the array.
Record types the largest alignment of the fields in the record
Set types size of the type if 1, 2, or 4, otherwise 1
All other types 4

To ensure proper alignment of the fields in an unpacked record type, the compiler inserts an unused
byte before fields with an alignment of 2, and up to three unused bytes before fields with an alignment of
4, if required. Finally, the compiler rounds the total size of the record upward to the byte boundary
specified by the largest alignment of any of the fields.
When a record type is declared in the {$A–} state, or when the declaration includes the packed
modifier, the fields of the record are not aligned, but are instead assigned consecutive offsets. The total
size of such a packed record is simply the size of all the fields.

File types
Topic groups See also
File types are represented as records. Typed files and untyped files occupy 332 bytes, which are laid out
as follows:

type
 TFileRec = record
 Handle: Integer;
 Mode: Integer;
 RecSize: Cardinal;
 Private: array[1..28] of Byte;
 UserData: array[1..32] of Byte;
 Name: array[0..259] of Char;
 end;

Text files occupy 460 bytes, which are laid out as follows:
type
 TTextBuf = array[0..127] of Char;
 TTextRec = record
 Handle: Integer;
 Mode: Integer;
 BufSize: Cardinal;
 BufPos: Cardinal;
 BufEnd: Cardinal;
 BufPtr: PChar;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array[1..32] of Byte;
 Name: array[0..259] of Char;
 Buffer: TTextBuf;
 end;

Handle contains the file’s handle (when the file is open).
The Mode field can assume one of the values

const
 fmClosed = $D7B0;
 fmInput = $D7B1;
 fmOutput = $D7B2;
 fmInOut = $D7B3;

where fmClosed indicates that the file is closed, fmInput and fmOutput indicate that the file is a text file
that has been reset (fmInput) or rewritten (fmOutput), and fmInOut indicates that the file variable is a
typed or an untyped file that has been reset or rewritten. Any other value indicates that the file variable is
not assigned (and hence not initialized).
The UserData field is available for user-written routines to store data in.
Name contains the file name, which is a sequence of characters terminated by a null character (#0).
For typed files and untyped files, RecSize contains the record length in bytes, and the Private field is
unused but reserved.
For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of the next character in
the buffer to read or write, and BufEnd is a count of valid characters in the buffer. OpenFunc, InOutFunc,
FlushFunc, and CloseFunc are pointers to the I/O routines that control the file; see Device functions.

Procedural types
Topic groups See also
A procedure pointer is stored as a 32-bit pointer to the entry point of a procedure or function. A method
pointer is stored as a 32-bit pointer to the entry point of a method, followed by a 32-bit pointer to an
object.

Class types
Topic groups See also
A class-type value is stored as a 32-bit pointer to an instance of the class, which is called an object. The
internal data format of an object resembles that of a record. The object’s fields are stored in order of
declaration as a sequence of contiguous variables. Fields are always aligned, corresponding to an
unpacked record type. Any fields inherited from an ancestor class are stored before the new fields
defined in the descendant class.
The first 4-byte field of every object is a pointer to the virtual method table (VMT) of the class. There is
exactly one VMT per class (not one per object); distinct class types, no matter how similar, never share
a VMT. VMTs are built automatically by the compiler, and are never directly manipulated by a program.
Pointers to VMTs, which are automatically stored by constructor methods in the objects they create, are
also never directly manipulated by a program.
The layout of a VMT is shown in the following table. At positive offsets, a VMT consists of a list of 32-bit
method pointers—one per user-defined virtual method in the class type—in order of declaration. Each
slot contains the address of the corresponding virtual method’s entry point. This layout is compatible
with a C++ v-table and with COM. At negative offsets, a VMT contains a number of fields that are
internal to Object Pascal’s implementation. Applications should use the methods defined in TObject to
query this information, since the layout is likely to change in future implementations of Object Pascal.

Offset Type Description
–76 Pointer pointer to virtual method table (or nil)
–72 Pointer pointer to interface table (or nil)
–68 Pointer pointer to Automation information table (or nil)
–64 Pointer pointer to instance initialization table (or nil)
–60 Pointer pointer to type information table (or nil)
–56 Pointer pointer to field definition table (or nil)
–52 Pointer pointer to method definition table (or nil)
–48 Pointer pointer to dynamic method table (or nil)
–44 Pointer pointer to short string containing class name
–40 Cardinal instance size in bytes
–36 Pointer pointer to a pointer to ancestor class (or nil)
–32 Pointer pointer to entry point of SafecallException method (or nil)
–28 Pointer entry point of AfterConstruction method
–24 Pointer entry point of BeforeDestruction method
–20 Pointer entry point of Dispatch method
–16 Pointer entry point of DefaultHandler method
–12 Pointer entry point of NewInstance method
–8 Pointer entry point of FreeInstance method
–4 Pointer entry point of Destroy destructor
0 Pointer entry point of first user-defined virtual method
4 Pointer entry point of second user-defined virtual method
...

Class reference types
Topic groups See also
A class-reference value is stored as a 32-bit pointer to the virtual method table (VMT) of a class.

Variant types
Topic groups See also
A variant is stored as a 16-byte record that contains a type code and a value (or a reference to a value)
of the type given by the code. The System unit defines constants and types for variants.
The TVarData type represents the internal structure of a Variant variable, which is identical to the
Variant type used by COM and the Win32 API. The TVarData type can be used in typecasts of Variant
variables to access the internal structure of a variable.
The VType field of a TVarData record contains the type code of the variant in the lower twelve bits (the
bits defined by the varTypeMask constant). In addition, the varArray bit may be set to indicate that the
variant is an array, and the varByRef bit may be set to indicate that the variant contains a reference as
opposed to a value.
The Reserved1, Reserved2, and Reserved3 fields of a TVarData record are unused.
The contents of the remaining eight bytes of a TVarData record depend on the VType field. If neither the
varArray nor the varByRef bits are set, the variant contains a value of the given type.
If the varArray bit is set, the variant contains a pointer to a TVarArray structure that defines an array. The
type of each array element is given by the varTypeMask bits in the VType field.
If the varByRef bit is set, the variant contains a reference to a value of the type given by the
varTypeMask and varArray bits in the VType field.
The varString type code is private to Delphi. Variants containing a varString value should never be
passed to a non-Delphi function. Delphi's Automation support automatically converts varString variants
to varOleStr variants before passing them as parameters to external functions.

Program control
Topic groups See also
These sections explain how parameters and function results are stored and transferred. The final
section discusses exit procedures.
Parameters and function results

Parameter passing
Function results
Method calls

Exit procedures

Parameters and function results
Topic groups See also
Treatment of parameters and function results is determined by several factors, including calling
conventions, parameter semantics, and the type and size of the value being passed.
Parameter passing
Function results
Method calls

Parameter passing
Topic groups See also
Parameters are transferred to procedures and functions via CPU registers or the stack, depending on
the routine’s calling convention. For information about calling conventions, see Calling conventions.
Variable (var) parameters are always passed by reference, as 32-bit pointers that point to the actual
storage location.
Value and constant (const) parameters are passed by value or by reference, depending on the type and
size of the parameter:

An ordinal parameter is passed as an 8-bit, 16-bit, 32-bit, or 64-bit value, using the same format
as a variable of the corresponding type.

A real parameter is always passed on the stack. A Single parameter occupies 4 bytes, and a
Double, Comp, or Currency parameter occupies 8 bytes. A Real48 occupies 8 bytes, with the Real48
value stored in the lower 6 bytes. An Extended occupies 12 bytes, with the Extended value stored in the
lower 10 bytes.

A short-string parameter is passed as a 32-bit pointer to a short string.
A long-string or dynamic-array parameter is passed as a 32-bit pointer to the dynamic memory

block allocated for the long string. The value nil is passed for an empty long string.
A pointer, class, class-reference, or procedure-pointer parameter is passed as a 32-bit pointer.
A method pointer is passed on the stack as two 32-bit pointers. The instance pointer is pushed

before the method pointer so that the method pointer occupies the lowest address.
Under the register and pascal conventions, a Variant parameter is passed as a 32-bit pointer to

a Variant value.
Sets, records, and static arrays of 1, 2, or 4 bytes are passed as 8-bit, 16-bit, and 32-bit values.

Larger sets, records, and static arrays are passed as 32-bit pointers to the value. An exception to this rule
is that records are always passed directly on the stack under the cdecl, stdcall, and safecall
conventions; the size of a record passed this way is rounded upward to the nearest double-word
boundary.

An open-array parameter is passed as two 32-bit values. The first value is a pointer to the array
data, and the second value is one less than the number of elements in the array.
When two parameters are passed on the stack, each parameter occupies a multiple of 4 bytes (a whole
number of double words). For an 8-bit or 16-bit parameter, even though the parameter occupies only a
byte or a word, it is passed as a double word. The contents of the unused parts of the double word are
undefined.
Under the pascal, cdecl, stdcall and safecall conventions, all parameters are passed on the stack.
Under the pascal convention, parameters are pushed in the order of their declaration (left-to-right), so
that the first parameter ends up at the highest address and the last parameter ends up at the lowest
address. Under the cdecl, stdcall, and safecall conventions, parameters are pushed in reverse order of
declaration (right-to-left), so that the first parameter ends up at the lowest address and the last
parameter ends up at the highest address.
Under the register convention, up to three parameters are passed in CPU registers, and the rest (if any)
are passed on the stack. The parameters are passed in order of declaration (as with the pascal
convention), and the first three parameters that qualify are passed in the EAX, EDX, and ECX registers,
in that order. Real and method-pointer types do not qualify as register parameters, but all other
parameters do. If more than three parameters qualify as register parameters, the first three are passed
in EAX, EDX, and ECX, and the remaining parameters are pushed onto the stack in order of declaration.
For example, given the declaration

procedure Test(A: Integer; var B: Char; C: Double; const D: string; E: Pointer);
a call to Test passes A in EAX as a 32-bit integer, B in EDX as a pointer to a Char, and D in ECX as a
pointer to a long-string memory block; C and E are pushed onto the stack as two double-words and a
32-bit pointer, in that order.

Register saving conventions
Procedures and functions must preserve the EBX, ESI, EDI, and EBP registers, but can modify the

EAX, EDX, and ECX registers. When implementing a constructor or destructor in assembler, be sure to
preserve the DL register. Procedures and functions are invoked with the assumption that the CPU’s
direction flag is cleared (corresponding to a CLD instruction) and must return with the direction flag
cleared.

Function results
Topic groups See also
The following conventions are used for returning function result values.

Ordinal results are returned in a CPU register. Bytes are returned in AL, words are returned in AX,
and double-words are returned in EAX.

Real results are returned in the floating-point coprocessor’s top-of-stack register (ST(0)). For
function results of type Currency, the value in ST(0) is scaled by 10000. For example, the Currency value
1.234 is returned in ST(0) as 12340.

For a string, dynamic array, method pointer, or Variant result, the effects are the same as if the
function result were declared as an additional var parameter following the declared parameters. In other
words, the caller passes an additional 32-bit pointer that points to a variable in which to return the function
result.

Pointer, class, class-reference, and procedure-pointer results are returned in EAX.
For static-array, record, and set results, if the value occupies one byte it is returned in AL; if the

value occupies two bytes it is returned in AX; and if the value occupies four bytes it is returned in EAX.
Otherwise, the result is returned in an additional var parameter that is passed to the function after the
declared parameters.

Method calls
Topic groups See also
Methods use the same calling conventions as ordinary procedures and functions, except that every
method has an additional implicit parameter Self, which is a reference to the instance or class in which
the method is called. The Self parameter is passed as a 32-bit pointer.

Under the register convention, Self behaves as if it were declared before all other parameters. It
is therefore always passed in the EAX register.

Under the pascal convention, Self behaves as if it were declared after all other parameters
(including the additional var parameter sometimes passed for a function result). It is therefore pushed
last, ending up at a lower address than all other parameters.

Under the cdecl, stdcall, and safecall conventions, Self behaves as if it were declared before all
other parameters, but after the additional var parameter (if any) passed for a function result. It is therefore
the last to be pushed, except for the additional var parameter.
Constructors and destructors

Constructors and destructors
Topic groups See also
Constructors and destructors use the same calling conventions as other methods, except that an
additional Boolean flag parameter is passed to indicate the context of the constructor or destructor call.
A value of False in the flag parameter of a constructor call indicates that the constructor was invoked
through an instance object or using the inherited keyword. In this case, the constructor behaves like an
ordinary method. A value of True in the flag parameter of a constructor call indicates that the constructor
was invoked through a class reference. In this case, the constructor creates an instance of the class
given by Self, and returns a reference to the newly created object in EAX.
A value of False in the flag parameter of a destructor call indicates that the destructor was invoked using
the inherited keyword. In this case, the destructor behaves like an ordinary method. A value of True in
the flag parameter of a destructor call indicates that the destructor was invoked through an instance
object. In this case, the destructor deallocates the instance given by Self just before returning.
The flag parameter behaves as if it were declared before all other parameters. Under the register
convention, it is passed in the DL register. Under the pascal convention, it is pushed before all other
parameters. Under the cdecl, stdcall, and safecall conventions, it is pushed just before the Self
parameter.
Since the DL register indicates whether the constructor or destructor is the outermost in the call stack,
you must restore the value of DL before exiting so that BeforeDestruction or AfterConstruction can be
called properly.

Exit procedures
Topic groups See also
Exit procedures ensure that specific actions—such as updating and closing files—are carried out before
a program terminates. The ExitProc pointer variable allows you to “install” an exit procedure, so that it is
always called as part of the program’s termination—whether the termination is normal, forced by a call
to Halt, or the result of a runtime error. An exit procedure takes no parameters.
Note: It is recommended that finalization sections, rather than exit procedures, be used for all exit

behavior. Exit procedures are available only for .EXE or .DLL targets; for packages, exit behavior
must be implemented in a finalization section. All exit procedures are called before execution of
finalization sections.

Units as well as programs can install exit procedures. A unit can install an exit procedure as part of its
initialization code, relying on the procedure to close files or perform other clean-up tasks.
When implemented properly, an exit procedure is part of a chain of exit procedures. The procedures are
executed in reverse order of installation, ensuring that the exit code of one unit isn’t executed before the
exit code of any units that depend on it. To keep the chain intact, you must save the current contents of
ExitProc before pointing it to the address of your own exit procedure. Also, the first statement in your exit
procedure must reinstall the saved value of ExitProc.
The following code shows a skeleton implementation of an exit procedure.

var
 ExitSave: Pointer;
procedure MyExit;
begin
 ExitProc := ExitSave; // always restore old vector first
 ...
end;
begin
 ExitSave := ExitProc;
 ExitProc := @MyExit;
 ...
end.

On entry, the code saves the contents of ExitProc in ExitSave, then installs the MyExit procedure. When
called as part of the termination process, the first thing MyExit does is reinstall the previous exit
procedure.
The termination routine in the runtime library keeps calling exit procedures until ExitProc becomes nil.
To avoid infinite loops, ExitProc is set to nil before every call, so the next exit procedure is called only if
the current exit procedure assigns an address to ExitProc. If an error occurs in an exit procedure, it is
not called again.
An exit procedure can learn the cause of termination by examining the ExitCode integer variable and the
ErrorAddr pointer variable. In case of normal termination, ExitCode is zero and ErrorAddr is nil. In case
of termination through a call to Halt, ExitCode contains the value passed to Halt and ErrorAddr is nil. In
case of termination due to a runtime error, ExitCode contains the error code and ErrorAddr contains the
address of the invalid statement.
The last exit procedure (the one installed by the runtime library) closes the Input and Output files. If
ErrorAddr is not nil, it outputs a runtime error message. To output your own runtime error message,
install an exit procedure that examines ErrorAddr and outputs a message if it’s not nil; before returning,
set ErrorAddr to nil so that the error is not reported again by other exit procedures.
Once the runtime library has called all exit procedures, it returns to Windows, passing the value stored
in ExitCode as a return code.

Inline assembler code
Topic groups See also
The built-in assembler allows you to write Intel assembler code within Object Pascal programs. It
implements a large subset of the syntax supported by Turbo Assembler and Microsoft’s Macro
Assembler, including all 8086/8087 and 80386/80387 opcodes and all but a few of Turbo Assembler’s
expression operators. Moreover, the built-in assembler allows you to use Object Pascal identifiers in
assembler statements.
Except for DB, DW, and DD (define byte, word, and double word), none of Turbo Assembler’s directives
(such as EQU, PROC, STRUC, SEGMENT, and MACRO) are supported by the built-in assembler.
Operations implemented through Turbo Assembler directives, however, are largely matched by
corresponding Object Pascal constructions. For example, most EQU directives correspond to constant,
variable, and type declarations; the PROC directive corresponds to procedure and function declarations;
and the STRUC directive corresponds to record types.
As an alternative to the built-in assembler, you can link to .OBJ files that contain external procedures
and functions. See External declarations for more information.
The asm statement
Assembler statement syntax
Expressions
Assembler procedures and functions

The asm statement
Topic groups See also
The built-in assembler is accessed through asm statements, which have the form

asm statementList end
where statementList is a sequence of assembler statements separated by semicolons, end-of-line
characters, or Object Pascal comments.
Comments in an asm statement must be in Object Pascal style. A semicolon does not indicate that the
rest of the line is a comment.
The reserved word inline and the directive assembler are maintained for backward compatibility only.
They have no effect on the compiler.

Register use
In general, the rules of register use in an asm statement are the same as those of an external
procedure or function. An asm statement must preserve the EDI, ESI, ESP, EBP, and EBX registers, but
can freely modify the EAX, ECX, and EDX registers. On entry to an asm statement, BP points to the
current stack frame, SP points to the top of the stack, SS contains the segment address of the stack
segment, and DS contains the segment address of the data segment. Except for EDI, ESI, ESP, EBP,
and EBX, an asm statement can assume nothing about register contents on entry to the statement.

Assembler statement syntax
Topic groups See also
This syntax of an assembler statement is

Label: Prefix Opcode Operand1, Operand2
where Label is a label, Prefix is an assembler prefix opcode (operation code), Opcode is an assembler
instruction opcode or directive, and Operand is an assembler expression. Label and Prefix are optional.
Some opcodes take only one operand, and some take none.
Comments are allowed between assembler statements, but not within them. For example,

MOV AX,1 {Initial value} { OK }
MOV CX,100 {Count} { OK }
MOV {Initial value} AX,1; { Error! }
MOV CX, {Count} 100 { Error! }

Labels
Instruction opcodes
Assembler directives
Operands

Labels
Topic groups See also
Labels are used in built-in assembler statements as they are in Object Pascal—by writing the label and
a colon before a statement. There is no limit to a label’s length, but only the first 32 characters are
significant. As in Object Pascal, labels must be declared in a label declaration part in the block
containing the asm statement. There is one exception to this rule: local labels.
Local labels are labels that start with an at-sign (@). They consist of an at-sign followed by one or more
letters, digits, underscores, or at-signs. Use of local labels is restricted to asm statements, and the
scope of a local label extends from the asm reserved word to the end of the asm statement that
contains it. A local label doesn’t have to be declared.

Instruction opcodes
Topic groups See also
The built-in assembler supports the following opcodes.

LOCK REP REPE REPZ REPNE
REPNZ SEGES SEGCS SEGSS SEGDS
SEGFS SEGGS ADC,mLeft ADD,mLeft AND,mLeft
AAA,mAX AAS,mAX AAD,mAX AAM,mAX BOUND,

 mNONE
BSF,mLeft BSR,mLeft BT BTC,mLeft BTR,mLeft
BTS,mLeft CALL,mNONE CMP CBW,mAX CWDE,mAX
CWD,
 <mAX,mDX>

CDQ,
 <mAX,mDX>

CLC CLD CLI

CMC CMPSB,
 <mSIDI>

CMPSW,
 <mSIDI>

CMPSD,
 <mSIDI>

DAA,mAX

DAS,mAX DEC,mLeft DIV,mLeft ENTER,
 mNONE

HLT

IDIV,mLeft IMUL,mLeft IN,mLeft INC,mLeft INSB,mDI
INSW,mDI INSD,mDI INT INTO IRET
IRETD JMP JO JNO JC
JB JNAE JNC JAE JNB
JE JZ JNE JNZ JBE
JNA JA JNBE JS JNS
JP JPE JNP JPO JL
JNGE JGE JNL JLE JNG
JG JNLE JCXZ JECXZ LAHF,mAX
LEA,mLeft LEAVE,

 mNONE
LDS,mSpecial LES,mSpecial LFS,mSpecial

LGS,mSpecial LSS,mSpecial LODSB,
 <mAX,mDI>

LODSW,
 <mAX,mDI>

LODSD,
 <mAX,mDI>

LOOP,mCX LOOPE,mCX LOOPZ,mCX LOOPNE,mCX LOOPNZ,mCX
LOOPD,mCX LOOPDE,mCX LOOPDZ,mCX LOOPDNE,

 mCX
LOOPDNZ,
 mCX

MOV,mLeft MOVSX,mLeft MOVZX,mLeft MOVSB,
 <mSIDI>

MOVSW,
 <mSIDI>

MOVSD,
 <mSIDI>

MUL,mLeft NEG,mLeft NOP NOT,mLeft

OR,mLeft OUT OUTSB,mSI OUTSW,mSI OUTSD,mSI
POP,mLeft POPF POPA,mSpecial POPAD,

 mSpecial
POPFD,
 mSpecial

PUSH PUSHF PUSHA PUSHAD PUSHFD
RET RETN RETF SUB,mLeft SBB,mLeft
RCL,mLeft RCR,mLeft ROL,mLeft ROR,mLeft SAL,mLeft
SHL,mLeft SAR,mLeft SHR,mLeft SHLD,mLeft SHRD,mLeft
SAHF SCASB,mDI SCASW,mDI SCASD,mDI STC
STD STI STOSB,mDI STOSW,mDI STOSD,mDI
TEST WAIT XCHG,<mLeft,

 mRight>
XLAT,mAX XOR,mLeft

SETA,mLeft SETAE,mLeft SETB,mLeft SETBE,mLeft SETC,mLeft
SETE,mLeft SETG,mLeft SETGE,mLeft SETL,mLeft SETLE,mLeft

SETNA,mLeft SETNAE,mLeft SETNB,mLeft SETNBE,mLeft SETNC,mLeft
SETNE,mLeft SETNG,mLeft SETNGE,mLeft SETNL,mLeft SETNLE,mLeft
SETNO,mLeft SETNP,mLeft SETNS,mLeft SETNZ,mLeft SETO,mLeft
SETP,mLeft SETPE,mLeft SETPO,mLeft SETS,mLeft SETZ,mLeft
ARPL LAR,mLeft CLTS LGDT SGDT
LIDT SIDT LLDT SLDT LMSW
SMSW LSL,mLeft LTR,mLeft STR,mLeft VERR
VERW BSWAP,mLeft XADD,mLeft CMPXCHG,

 <mLeft,mAX>
INVD

WBINVD INVLPG FLD,m87 FILD,m87 FST,m87
FSTP,m87 FIST,m87 FISTP,m87 FADD,m87 FADDP,m87
FIADD,m87 FSUB,m87 FSUBP,m87 FSUBR,m87 FSUBRP,m87
FISUB,m87 FISUBR,m87 FMUL,m87 FMULP,m87 FIMUL,m87
FDIV,m87 FDIVP,m87 FDIVR,m87 FDIVRP,m87 FIDIV,m87
FIDIVR,m87 FCOM,m87 FCOMP,m87 FCOMPP,m87 FICOM,m87
FICOMP,m87 F2XM1,m87 FABS,m87 FBLD,m87 FBSTP,m87
FCHS,m87 FDECSTP,m87 FFREE,m87 FINCSTP,m87 FLD1,m87
FLDCW,m87 FLDENV,m87 FLDL2E,m87 FLDL2T,m87 FLDLG2,m87
FLDLN2,m87 FLDPI,m87 FLDZ,m87 FNOP,m87 FPREM,m87
FPATAN,m87 FPTAN,m87 FRNDINT,m87 FRSTOR,m87 FSCALE,m87
FSETPM,m87 FSQRT,m87 FTST,m87 FWAIT,m87 FXAM,m87
FXCH,m87 FXTRACT,m87 FYL2X,m87 FYL2XP1,m87 FCLEX,m87
FNCLEX,m87 FDISI,m87 FNDISI,m87 FENI,m87 FNENI,m87
FINIT,m87 FNINIT,m87 FSAVE,m87 FNSAVE,m87 FSTCW,m87
FNSTCW,m87 FSTENV,m87 FNSTENV,m87 FSTSW,m87 FNSTSW,m87
FUCOM,m87 FUCOMP,m87 FUCOMPP,m87 FPREM1,m87 FCOS,m87
FSIN,m87 FSINCOS,m87

For a complete description of each instruction, refer to your microprocessor documentation.

RET instruction sizing
The RET instruction opcode always generates a near return.

Automatic jump sizing
Unless otherwise directed, the built-in assembler optimizes jump instructions by automatically selecting
the shortest, and therefore most efficient, form of a jump instruction. This automatic jump sizing applies
to the unconditional jump instruction (JMP), and to all conditional jump instructions when the target is a
label (not a procedure or function).
For an unconditional jump instruction (JMP), the built-in assembler generates a short jump (one-byte
opcode followed by a one-byte displacement) if the distance to the target label is –128 to 127 bytes.
Otherwise it generates a near jump (one-byte opcode followed by a two-byte displacement).
For a conditional jump instruction, a short jump (one-byte opcode followed by a one-byte displacement)
is generated if the distance to the target label is –128 to 127 bytes. Otherwise, the built-in assembler
generates a short jump with the inverse condition, which jumps over a near jump to the target label (five
bytes in total). For example, the assembler statement

JC Stop
where Stop isn’t within reach of a short jump, is converted to a machine code sequence that
corresponds to this:

JNC Skip
JMP Stop
Skip:

Jumps to the entry points of procedures and functions are always near.

Assembler directives
Topic groups See also
The built-in assembler supports three assembler directives: DB (define byte), DW (define word), and DD
(define double word). Each generates data corresponding to the comma-separated operands that follow
the directive.
The DB directive generates a sequence of bytes. Each operand can be a constant expression with a
value between –128 and 255, or a character string of any length. Constant expressions generate one
byte of code, and strings generate a sequence of bytes with values corresponding to the ASCII code of
each character.
The DW directive generates a sequence of words. Each operand can be a constant expression with a
value between –32,768 and 65,535, or an address expression. For an address expression, the built-in
assembler generates a near pointer—that is, a word that contains the offset part of the address.
The DD directive generates a sequence of double words. Each operand can be a constant expression
with a value between –2,147,483,648 and 4,294,967,295, or an address expression. For an address
expression, the built-in assembler generates a far pointer—that is, a word that contains the offset part of
the address, followed by a word that contains the segment part of the address.
The data generated by the DB, DW, and DD directives is always stored in the code segment, just like
the code generated by other built-in assembler statements. To generate uninitialized or initialized data in
the data segment, you should use Object Pascal var or const declarations.
Some examples of DB, DW, and DD directives follow.

asm
 DB 0FFH { One byte }
 DB 0,99 { Two bytes }
 DB 'A' { Ord('A') }
 DB 'Hello world...',0DH,0AH { String followed by CR/LF }
 DB 12,"Delphi" { Object Pascal style string }
 DW 0FFFFH { One word }
 DW 0,9999 { Two words }
 DW 'A' { Same as DB 'A',0 }
 DW 'BA' { Same as DB 'A','B' }
 DW MyVar { Offset of MyVar }
 DW MyProc { Offset of MyProc }
 DD 0FFFFFFFFH { One double-word }
 DD 0,999999999 { Two double-words }
 DD 'A' { Same as DB 'A',0,0,0 }
 DD 'DCBA' { Same as DB 'A','B','C','D' }
 DD MyVar { Pointer to MyVar }
 DD MyProc { Pointer to MyProc }
end;

In Turbo Assembler, when an identifier precedes a DB, DW, or DD directive, it causes the declaration of
a byte-, word-, or double-word-sized variable at the location of the directive. For example, Turbo
Assembler allows the following:

ByteVar DB ?
WordVar DW ?
IntVar DD ?
 ...
 MOV AL,ByteVar
 MOV BX,WordVar
 MOV ECX,IntVar

The built-in assembler doesn’t support such variable declarations. The only kind of symbol that can be
defined in an inline assembler statement is a label. All variables must be declared using Object Pascal
syntax; the preceding construction can be replaced by

var
 ByteVar: Byte;
 WordVar: Word;

 IntVar: Integer;
 ...
asm
 MOV AL,ByteVar
 MOV BX,WordVar
 MOV ECX,IntVar
end;

Operands
Topic groups See also
Built-in assembler operands are expressions that consist of constants, registers, symbols, and
operators.
Within operands, the following reserved words have predefined meanings

AH BX DI EBX ESP OFFSET SP
AL BYTE DL ECX FS OR SS
AND CH DS EDI GS PTR ST
AX CL DWORD EDX HIGH QWORD TBYTE
BH CS DX EIP LOW SHL TYPE
BL CX EAX ES MOD SHR WORD
BP DH EBP ESI NOT SI XOR

Reserved words always take precedence over user-defined identifiers. For example,
var
 Ch: Char;
 ...
asm
 MOV CH, 1
end;

loads 1 into the CH register, not into the Ch variable. To access a user-defined symbol with the same
name as a reserved word, you must use the ampersand (&) override operator:

MOV &Ch, 1
It is best to avoid user-defined identifiers with the same names as built-in assembler reserved words.

Expressions
Topic groups See also
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn’t support floating-point
and string values, except string constants.
Expressions are built from expression elements and operators, and each expression has an associated
expression class and expression type.
Differences between Object Pascal and assembler expressions
Expression elements
Expression classes
Expression types
Expression operators

Differences between Object Pascal and assembler expressions
Topic groups See also
The most important difference between Object Pascal expressions and built-in assembler expressions is
that assembler expressions must resolve to a constant value—a value that can be computed at compile
time. For example, given the declarations

const
 X = 10;
 Y = 20;
var
 Z: Integer;

the following is a valid statement.
asm
 MOV Z,X+Y
end;

Because both X and Y are constants, the expression X + Y is a convenient way of writing the constant
30, and the resulting instruction simply moves of the value 30 into the variable Z. But if X and Y are
variables—

var
 X, Y: Integer;

—the built-in assembler cannot compute the value of X + Y at compile time. In this case, to move the
sum of X and Y into Z you would use

asm
 MOV EAX,X
 ADD EAX,Y
 MOV Z,EAX
end;

In an Object Pascal expression, a variable reference denotes the contents of the variable. But in an
assembler expression, a variable reference denotes the address of the variable. In Object Pascal the
expression X + 4 (where X is a variable) means the contents of X plus 4, while to the built-in assembler
it means the contents of the word at the address four bytes higher than the address of X. So, even
though you’re allowed to write

asm
 MOV EAX,X+4
end;

this code doesn’t load the value of X plus 4 into AX; instead, it loads the value of a word stored four
bytes beyond X. The correct way to add 4 to the contents of X is

asm
 MOV EAX,X
 ADD EAX,4
end;

Expression elements
Topic groups See also
The elements of an expression are constants, registers, and symbols.
Constants
Registers
Symbols

Constants
Topic groups See also
The built-in assembler supports two types of constant: numeric constants and string constants.

Numeric constants
Numeric constants must be integers, and their values must be between –2,147,483,648 and
4,294,967,295.
By default, numeric constants use decimal notation, but the built-in assembler also supports binary,
octal, and hexadecimal. Binary notation is selected by writing a B after the number, octal notation by
writing an O after the number, and hexadecimal notation by writing an H after the number or a $ before
the number.
Numeric constants must start with one of the digits 0 through 9 or the $ character. When you write a
hexadecimal constant using the H suffix, an extra zero is required in front of the number if the first
significant digit is one of the digits A through F. For example, 0BAD4H and $BAD4 are hexadecimal
constants, but BAD4H is an identifier because it starts with a letter.

String constants
String constants must be enclosed in single or double quotation marks. Two consecutive quotation
marks of the same type as the enclosing quotation marks count as only one character. Here are some
examples of string constants:

'Z'
'Delphi'
"That's all folks"
'"That''s all folks," he said.'
'100'
'"'
"'"

String constants of any length are allowed in DB directives, and cause allocation of a sequence of bytes
containing the ASCII values of the characters in the string. In all other cases, a string constant can be no
longer than four characters and denotes a numeric value which can participate in an expression. The
numeric value of a string constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24
where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first) character. If the string is
shorter than four characters, the leftmost characters are assumed to be zero. The following table shows
string constants and their numeric values.

String Value
'a' 00000061H
'ba' 00006261H
'cba' 00636261H
'dcba' 64636261H
'a ' 00006120H
' a' 20202061H
'a' * 2 000000E2H
'a'-'A' 00000020H
not 'a' FFFFFF9EH

Registers
Topic groups See also
The following reserved symbols denote CPU registers:.

32-bit general purpose EAX EBX ECX
EDX

32-bit pointer or index ESP EBP ESI
EDI

16-bit general purpose AX BX CX DX 16-bit pointer or index SP BP SI DI
8-bit low registers AL BL CL DL 16-bit segment registers CS DS SS ES

32-bit segment registers FS GS
8-bit high registers AH BH CH DH Coprocessor register stack ST

When an operand consists solely of a register name, it is called a register operand. All registers can be
used as register operands, and some registers can be used in other contexts.
The base registers (BX and BP) and the index registers (SI and DI) can be written within square
brackets to indicate indexing. Valid base/index register combinations are [BX], [BP], [SI], [DI], [BX+SI],
[BX+DI], [BP+SI], and [BP+DI]. You can also index with all the 32-bit registers—for example,
[EAX+ECX], [ESP], and [ESP+EAX+5].
The segment registers (ES, CS, SS, DS, FS, and GS) are supported, but segments are normally not
useful in 32-bit applications.
The symbol ST denotes the topmost register on the 8087 floating-point register stack. Each of the eight
floating-point registers can be referred to using ST(X), where X is a constant between 0 and 7 indicating
the distance from the top of the register stack.

Symbols
Topic groups See also
The built-in assembler allows you to access almost all Object Pascal identifiers in assembler
expressions, including constants, types, variables, procedures, and functions. In addition, the built-in
assembler implements the special symbol @Result, which corresponds to the Result variable within the
body of a function. For example, the function

function Sum(X, Y: Integer): Integer;
begin
 Result := X + Y;
end;

could be written in assembler as
function Sum(X, Y: Integer): Integer; stdcall;
begin
 asm
 MOV EAX,X
 ADD EAX,Y
 MOV @Result,EAX
 end;
end;

The following symbols cannot be used in asm statements:
Standard procedures and functions (for example, WriteLn and Chr).
The Mem, MemW, MemL, Port, and PortW special arrays.
String, floating-point, and set constants.
Labels that aren’t declared in the current block.
The @Result symbol outside of functions.

The following table summarizes the kinds of symbol that can be used in asm statements.

Symbol Value Class Type
Label Address of label Memory reference SHORT
Constant Value of constant Immediate value 0
Type 0 Memory reference Size of type
Field Offset of field Memory Size of type
Variable Address of variable Memory reference Size of type
Procedure Address of procedure Memory reference NEAR
Function Address of function Memory reference NEAR
Unit 0 Immediate value 0
@Code Code segment address Memory reference 0FFF0H
@Data Data segment address Memory reference 0FFF0H
@Result Result variable offset Memory reference Size of type

With optimizations disabled, local variables (variables declared in procedures and functions) are always
allocated on the stack and accessed relative to EBP, and the value of a local variable symbol is its
signed offset from EBP. The assembler automatically adds [EBP] in references to local variables. For
example, given the declaration

var Count: Integer;
within a function or procedure, the instruction

MOV EAX,Count
assembles into MOV EAX,[EBP–4].
The built-in assembler treats var parameters as a 32-bit pointers, and the size of a var parameter is
always 4. The syntax for accessing a var parameter is different from that for accessing a value
parameter. To access the contents of a var parameter, you must first load the 32-bit pointer and then
access the location it points to. For example,

function Sum(var X, Y: Integer): Integer; stdcall;

begin
 asm
 MOV EAX,X
 MOV EAX,[EAX]
 MOV EDX,Y
 ADD EAX,[EDX]
 MOV @Result,AX
 end;
end;

Identifiers can be qualified within asm statements. For example, given the declarations
type
 TPoint = record
 X, Y: Integer;
 end;
 TRect = record
 A, B: TPoint;
 end;
var
 P: TPoint;
 R: TRect;

the following constructions can be used in an asm statement to access fields.
MOV EAX,P.X
MOV EDX,P.Y
MOV ECX,R.A.X
MOV EBX,R.B.Y

A type identifier can be used to construct variables on the fly. Each of the following instructions
generates the same machine code, which loads the contents of [EDX] into EAX.

MOV EAX,(TRect PTR [EDX]).B.X
MOV EAX,TRect(EDX]).B.X
MOV EAX,TRect[EDX].B.X
MOV EAX,[EDX].TRect.B.X

Expression classes
Topic groups See also
The built-in assembler divides expressions into three classes: registers, memory references, and
immediate values.
An expression that consists solely of a register name is a register expression. Examples of register
expressions are AX, CL, DI, and ES. Used as operands, register expressions direct the assembler to
generate instructions that operate on the CPU registers.
Expressions that denote memory locations are memory references. Object Pascal’s labels, variables,
typed constants, procedures, and functions belong to this category.
Expressions that aren’t registers and aren’t associated with memory locations are immediate values.
This group includes Object Pascal’s untyped constants and type identifiers.
Immediate values and memory references cause different code to be generated when used as
operands. For example,

const
 Start = 10;
var
 Count: Integer;
 ...
asm
 MOV EAX,Start { MOV EAX,xxxx }
 EBX,Count { MOV EBX,[xxxx] }
 MOV ECX,[Start] { MOV ECX,[xxxx] }
 MOV EDX,OFFSET Count { MOV EDX,xxxx }
end;

Because Start is an immediate value, the first MOV is assembled into a move immediate instruction.
The second MOV, however, is translated into a move memory instruction, as Count is a memory
reference. In the third MOV, the brackets convert Start into a memory reference (in this case, the word at
offset 10 in the data segment). In the fourth MOV, the OFFSET operator converts Count into an
immediate value (the offset of Count in the data segment).
The brackets and OFFSET operator complement each other. The following asm statement produces
identical machine code to the first two lines of the previous asm statement.

asm
 MOV EAX,OFFSET [Start]
 MOV EBX,[OFFSET Count]
end;

Memory references and immediate values are further classified as either relocatable or absolute.
Relocation is the process by which the linker assigns absolute addresses to symbols. A relocatable
expression denotes a value that requires relocation at link time, while an absolute expression denotes a
value that requires no such relocation. Typically, expressions that refer to labels, variables, procedures,
or functions are relocatable, since the final address of these symbols is unknown at compile time.
Expressions that operate solely on constants are absolute.
The built-in assembler allows you to carry out any operation on an absolute value, but it restricts
operations on relocatable values to addition and subtraction of constants.

Expression types
Topic groups See also
Every built-in assembler expression has a type—or, more correctly, a size, because the assembler
regards the type of an expression simply as the size of its memory location. For example, the type of an
Integer variable is four, because it occupies 4 bytes. The built-in assembler performs type checking
whenever possible, so in the instructions

var
 QuitFlag: Boolean;
 OutBufPtr: Word;
 ...
asm
 MOV AL,QuitFlag
 MOV BX,OutBufPtr
end;

the assembler checks that the size of QuitFlag is one (a byte), and that the size of OutBufPtr is two (a
word). The instruction

MOV DL,OutBufPtr
produces an error because DL is a byte-sized register and OutBufPtr is a word. The type of a memory
reference can be changed through a typecast; these are correct ways of writing the previous instruction:

MOV DL,BYTE PTR OutBufPtr
MOV DL,Byte(OutBufPtr)
MOV DL,OutBufPtr.Byte

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr variable.
In some cases, a memory reference is untyped. One example is an immediate value enclosed in square
brackets:

MOV AL,[100H]
MOV BX,[100H]

The built-in assembler permits both of these instructions, because the expression [100H] has no type—it
just means “the contents of address 100H in the data segment,” and the type can be determined from
the first operand (byte for AL, word for BX). In cases where the type can’t be determined from another
operand, the built-in assembler requires an explicit typecast:

INC BYTE PTR [100H]
IMUL WORD PTR [100H]

The following table summarizes the predefined type symbols that the built-in assembler provides in
addition to any currently declared Object Pascal types.

Symbol Type
BYTE 1
WORD 2
DWORD 4
QWORD 8
TBYTE 10

Expression operators
Topic groups See also
The built-in assembler provides a variety of operators. Precedence rules are different from Object
Pascal; for example, in an asm statement, AND has lower precedence than the addition and subtraction
operators. The following table lists the built-in assembler’s expression operators in decreasing order of
precedence.

Operators Remarks Precedence
& highest
(), [], ., HIGH, LOW
+, – unary + and –
:
OFFSET, SEG, TYPE, PTR, *, /,
MOD, SHL, SHR, +, – binary + and –
NOT, AND, OR, XOR lowest

The following table defines the built-in assembler’s expression operators.

Operator Description
& Identifier override. The identifier immediately following the ampersand is treated

as a user-defined symbol, even if the spelling is the same as a built-in assembler
reserved symbol.

(...) Subexpression. Expressions within parentheses are evaluated completely prior to
being treated as a single expression element. Another expression can precede the
expression within the parentheses; the result in this case is the sum of the values of
the two expressions, with the type of the first expression.

[...] Memory reference. The expression within brackets is evaluated completely prior to
being treated as a single expression element. The expression within brackets can
be combined with the BX, BP, SI, or DI registers using the plus (+) operator, to
indicate CPU register indexing. Another expression can precede the expression
within the brackets; the result in this case is the sum of the values of the two
expressions, with the type of the first expression. The result is always a memory
reference.

. Structure member selector. The result is the sum of the expression before the
period and the expression after the period, with the type of the expression after the
period. Symbols belonging to the scope identified by the expression before the
period can be accessed in the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the operator.
The expression must be an absolute immediate value.

LOW Returns the low-order 8 bits of the word-sized expression following the operator.
The expression must be an absolute immediate value.

+ Unary plus. Returns the expression following the plus with no changes. The
expression must be an absolute immediate value.

– Unary minus. Returns the negated value of the expression following the minus.
The expression must be an absolute immediate value.

+ Addition. The expressions can be immediate values or memory references, but
only one of the expressions can be a relocatable value. If one of the expressions is
a relocatable value, the result is also a relocatable value. If either of the expressions
is a memory reference, the result is also a memory reference.

– Subtraction. The first expression can have any class, but the second expression
must be an absolute immediate value. The result has the same class as the first
expression.

: Segment override. Instructs the assembler that the expression after the colon

belongs to the segment given by the segment register name (CS, DS, SS, FS, GS,
or ES) before the colon. The result is a memory reference with the value of the
expression after the colon. When a segment override is used in an instruction
operand, the instruction is prefixed with an appropriate segment-override prefix
instruction to ensure that the indicated segment is selected.

OFFSET Returns the offset part (double word) of the expression following the operator. The
result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The type of
an immediate value is 0.

PTR Typecast operator. The result is a memory reference with the value of the
expression following the operator and the type of the expression in front of the
operator.

* Multiplication. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

/ Integer division. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate
values, and the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

NOT Bitwise negation. The expression must be an absolute immediate value, and the
result is an absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result
is an absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is
an absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and
the result is an absolute immediate value.

Assembler procedures and functions
Topic groups See also
You can write complete procedures and functions using inline assembler code, without including a
begin...end statement. For example,

function LongMul(X, Y: Integer): Longint;
asm
 MOV EAX,X
 IMUL Y
end;

The compiler performs several optimizations on these routines:
No code is generated to copy value parameters into local variables. This affects all string-type

value parameters and other value parameters whose size isn’t 1, 2, or 4 bytes. Within the routine, such
parameters must be treated as if they were var parameters.

Unless a function returns a string, variant, or interface reference, the compiler doesn’t allocate a
function result variable; a reference to the @Result symbol is an error. For strings, variants, and
interfaces, the caller always allocates an @Result pointer.

The compiler generates no stack frame for routines that aren’t nested and have no parameters or
local variables.

The automatically generated entry and exit code for the routine looks like this:
PUSH EBP ;Present if Locals <> 0 or Params <> 0
MOV EBP,ESP ;Present if Locals <> 0 or Params <> 0
SUB ESP,Locals ;Present if Locals <> 0
 ...
MOV ESP,EBP ;Present if Locals <> 0
POP EBP ;Present if Locals <> 0 or Params <> 0
RET Params ;Always present

If locals include variants, long strings, or interfaces, they are initialized to zero but not finalized.
Locals is the size of the local variables and Params is the size of the parameters. If both Locals

and Params are zero, there is no entry code, and the exit code consists simply of a RET instruction.
Assembler functions return their results as follows.

Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX (32-bit values).
Real values are returned in ST(0) on the coprocessor’s register stack. (Currency values are

scaled by 10000.)
Pointers, including long strings, are returned in EAX.
Short strings and variants are returned in the temporary location pointed to by @Result.

Object Pascal grammar
Topic groups See also

Goal -> (Program | Package | Library | Unit)
Program -> [PROGRAM Ident ['(' IdentList ')'] ';']
 ProgramBlock '.'
Unit -> UNIT Ident ';'
 InterfaceSection
 ImplementationSection
 InitSection '.'
Package -> PACKAGE Ident ';'
 [RequiresClause]
 [ContainsClause]
 END '.'
Library -> LIBRARY Ident ';'
 ProgramBlock '.'
ProgramBlock -> [UsesClause]
 Block
UsesClause -> USES IdentList ';'
InterfaceSection -> INTERFACE
 [UsesClause]
 [InterfaceDecl]...
InterfaceDecl -> ConstSection
 -> TypeSection
 -> VarSection
 -> ExportedHeading
ExportedHeading -> ProcedureHeading ';' [Directive]
 -> FunctionHeading ';' [Directive]
ImplementationSection -> IMPLEMENTATION
 [UsesClause]
 [DeclSection]...
Block -> [DeclSection]
 CompoundStmt
DeclSection -> LabelDeclSection
 -> ConstSection
 -> TypeSection
 -> VarSection
 -> ProcedureDeclSection
LabelDeclSection -> LABEL LabelId
ConstSection -> CONST (ConstantDecl ';')...
ConstantDecl -> Ident '=' ConstExpr
 -> Ident ':' TypeId '=' TypedConstant
TypeSection -> TYPE (TypeDecl ';')...
TypeDecl -> Ident '=' Type
 -> Ident '=' RestrictedType
TypedConstant -> (ConstExpr | ArrayConstant | RecordConstant)
ArrayConstant -> '(' TypedConstant/','... ')'
RecordConstant -> '(' RecordFieldConstant/';'... ')'
RecordFieldConstant -> Ident ':' TypedConstant
Type -> TypeId
 -> SimpleType
 -> StrucType
 -> PointerType
 -> StringType
 -> ProcedureType
 -> VariantType
 -> ClassRefType
RestrictedType -> ObjectType
 -> ClassType

 -> InterfaceType
ClassRefType -> CLASS OF TypeId
SimpleType -> (OrdinalType | RealType)
RealType -> REAL48
 -> REAL
 -> SINGLE
 -> DOUBLE
 -> EXTENDED
 -> CURRENCY
 -> COMP
OrdinalType -> (SubrangeType | EnumeratedType | OrdIdent)
OrdIdent -> SHORTINT
 -> SMALLINT
 -> INTEGER
 -> BYTE
 -> LONGINT
 -> INT64
 -> WORD
 -> BOOLEAN
 -> CHAR
 -> WIDECHAR
 -> LONGWORD
 -> PCHAR
VariantType -> VARIANT
 -> OLEVARIANT
SubrangeType -> ConstExpr '..' ConstExpr
EnumeratedType -> '(' IdentList ')'
StringType -> STRING
 -> ANSISTRING
 -> WIDESTRING
 -> STRING '[' ConstExpr ']'
StrucType -> [PACKED] (ArrayType | SetType | FileType | RecType)
ArrayType -> ARRAY ['[' OrdinalType/','... ']'] OF Type
RecType -> RECORD [FieldList] END
FieldList -> FieldDecl/';'... [VariantSection] [';']
FieldDecl -> IdentList ':' Type
VariantSection -> CASE [Ident ':'] TypeId OF RecVariant/';'...
RecVariant -> ConstExpr/','... ':' '(' [FieldList] ')'
SetType -> SET OF OrdinalType
FileType -> FILE OF TypeId
PointerType -> '^' TypeId
ProcedureType -> (ProcedureHeading | FunctionHeading) [OF OBJECT]
VarSection -> VAR (VarDecl ';')...
VarDecl -> IdentList ':' Type [(ABSOLUTE (Ident | ConstExpr)) | '=' ConstExpr]
Expression -> SimpleExpression [RelOp SimpleExpression]...
SimpleExpression -> ['+' | '-'] Term [AddOp Term]...
Term -> Factor [MulOp Factor]...
Factor -> Designator ['(' ExprList ')']
 -> '' Designator
 -> Number
 -> String
 -> NIL
 -> '(' Expression ')'
 -> NOT Factor
 -> SetConstructor
 -> TypeId '(' Expression ')'
RelOp -> '>'
 -> '<'

 -> '<='
 -> '>='
 -> '<>'
 -> IN
 -> IS
 -> AS
AddOp -> '+'
 -> '-'
 -> OR
 -> XOR
MulOp -> '*'
 -> '/'
 -> DIV
 -> MOD
 -> AND
 -> SHL
 -> SHR
Designator -> QualId ['.' Ident | '[' ExprList ']' | '^']...
SetConstructor -> '[' [SetElement/','...] ']'
SetElement -> Expression ['..' Expression]
ExprList -> Expression/','...
Statement -> [LabelId ':'] [SimpleStatement | StructStmt]
StmtList -> Statement/';'...
SimpleStatement -> Designator ['(' ExprList ')']
 -> Designator ':=' Expression
 -> INHERITED
 -> GOTO LabelId
StructStmt -> CompoundStmt
 -> ConditionalStmt
 -> LoopStmt
 -> WithStmt
CompoundStmt -> BEGIN StmtList END
ConditionalStmt -> IfStmt
 -> CaseStmt
IfStmt -> IF Expression THEN Statement [ELSE Statement]
CaseStmt -> CASE Expression OF CaseSelector/';'... [ELSE Statement] [';'] END
CaseSelector -> CaseLabel/','... ':' Statement
CaseLabel -> ConstExpr ['..' ConstExpr]
LoopStmt -> RepeatStmt
 -> WhileStmt
 -> ForStmt
RepeatStmt -> REPEAT Statement UNTIL Expression
WhileStmt -> WHILE Expression DO Statement
ForStmt -> FOR QualId ':=' Expression (TO | DOWNTO) Expression DO Statement
WithStmt -> WITH IdentList DO Statement
ProcedureDeclSection -> ProcedureDecl
 -> FunctionDecl
ProcedureDecl -> ProcedureHeading ';' [Directive]
 Block ';'
FunctionDecl -> FunctionHeading ';' [Directive]
 Block ';'
FunctionHeading -> FUNCTION Ident [FormalParameters] ':' (SimpleType | STRING)
ProcedureHeading -> PROCEDURE Ident [FormalParameters]
FormalParameters -> '(' FormalParm/';'... ')'
FormalParm -> [VAR | CONST | OUT] Parameter
Parameter -> IdentList [':' ([ARRAY OF] SimpleType | STRING | FILE)]
 -> Ident ':' SimpleType '=' ConstExpr
Directive -> CDECL

 -> REGISTER
 -> DYNAMIC
 -> VIRTUAL
 -> EXPORT
 -> EXTERNAL
 -> FAR
 -> FORWARD
 -> MESSAGE
 -> OVERRIDE
 -> OVERLOAD
 -> PASCAL
 -> REINTRODUCE
 -> SAFECALL
 -> STDCALL
ObjectType -> OBJECT [ObjHeritage] [ObjFieldList] [MethodList] END
ObjHeritage -> '(' QualId ')'
MethodList -> (MethodHeading [';' VIRTUAL])/';'...
MethodHeading -> ProcedureHeading
 -> FunctionHeading
 -> ConstructorHeading
 -> DestructorHeading
ConstructorHeading -> CONSTRUCTOR Ident [FormalParameters]
DestructorHeading -> DESTRUCTOR Ident [FormalParameters]
ObjFieldList -> (IdentList ':' Type)/';'...
InitSection -> INITIALIZATION StmtList [FINALIZATION StmtList] END
 -> BEGIN StmtList END
 -> END
ClassType -> CLASS [ClassHeritage]
 [ClassFieldList]
 [ClassMethodList]
 [ClassPropertyList]
 END
ClassHeritage -> '(' IdentList ')'
ClassVisibility -> [PUBLIC | PROTECTED | PRIVATE | PUBLISHED]
ClassFieldList -> (ClassVisibility ObjFieldList)/';'...
ClassMethodList -> (ClassVisibility MethodList)/';'...
ClassPropertyList -> (ClassVisibility PropertyList ';')...
PropertyList -> PROPERTY Ident [PropertyInterface] PropertySpecifiers
PropertyInterface -> [PropertyParameterList] ':' Ident
PropertyParameterList -> '[' (IdentList ':' TypeId)/';'... ']'
PropertySpecifiers -> [INDEX ConstExpr]
 [READ Ident]
 [WRITE Ident]
 [STORED (Ident | Constant)]
 [(DEFAULT ConstExpr) | NODEFAULT]
 [IMPLEMENTS TypeId]
InterfaceType -> INTERFACE [InterfaceHeritage]
 [ClassMethodList]
 [ClassPropertyList]
 END
InterfaceHeritage -> '(' IdentList ')'
RequiresClause -> REQUIRES IdentList... ';'
ContainsClause -> CONTAINS IdentList... ';'
IdentList -> Ident/','...
QualId -> [UnitId '.'] Ident
TypeId -> [UnitId '.'] <type-identifier>
Ident -> <identifier>
ConstExpr -> <constant-expression>

UnitId -> <unit-identifier>
LabelId -> <label-identifier>
Number -> <number>
String -> <string>

Related topic groups
Object Pascal Language Guide
· Object Pascal overview
· Programs and units
· Syntactic elements
· Data types, variables and constants
· Procedures and functions
· Classes and objects
· Standard routines and I/O
· Dynamic-link libraries and packages
· Object interfaces
· Memory management
· Program control
· Inline assembler code
· Object Pascal grammar

Object Pascal overview
Related topic groups
· Object Pascal and Delphi
· Program organization: Overview
· Pascal source files
· Other files used to build applications
· Compiler-generated files
· About example programs
· A simple console application
· A more complicated example
· A Windows application

Programs and units
Related topic groups
· Programs and units: Overview
· Program structure and syntax: Overview
· The program heading
· The program uses clause
· The block
· Unit structure and syntax: Overview
· The unit heading
· The interface section
· The implementation section
· The initialization section
· The finalization section
· Unit references and the uses clause
· The syntax of a uses clause
· Multiple and indirect unit references
· Circular unit references

Syntactic elements
Related topic groups
· Syntactic elements: Overview
· Fundamental syntactic elements: Overview
· Special symbols
· Identifiers
· Reserved words
· Directives
· Numerals
· Labels
· Character strings
· Comments and compiler directives
· About expressions
· About operators
· Arithmetic operators
· Boolean operators
· Logical (bitwise) operators
· String operators
· Pointer operators
· Set operators
· Relational operators
· Class operators
· The @ operator
· Operator precedence rules
· Function calls
· Set constructors
· Indexes
· Typecasts: Overview
· Value typecasts
· Variable typecasts
· About declarations and statements
· Declarations
· Statements
· Simple statements: Overview
· Assignment statements
· Procedure and function calls
· Goto statements
· Structured statements: Overview
· Compound statements
· With statements
· If statements
· Case statements
· Control loops

· Repeat statements
· While statements
· For statements
· Blocks and scope: Overview
· Blocks
· Scope

Data types, variables and constants
Related topic groups
· Data types and variables: Overview
· About types
· Simple types: Overview
· Ordinal types: Overview
· Integer types
· Character types
· Boolean types
· Enumerated types
· Subrange types
· Real types
· About string types
· Short strings
· Long strings
· WideString
· About extended character sets
· Working with null-terminated strings
· Using pointers, arrays, and string constants
· Mixing Pascal strings and null-terminated strings
· Structured types: Overview
· Sets
· Arrays: Overview
· Static arrays
· Dynamic arrays
· Multidimensional dynamic arrays
· Array types and assignments
· About records
· Variant parts in records
· File types
· Pointers and pointer types
· Overview of pointers
· About pointer types
· Character pointers
· Other standard pointer types
· Procedural types: Overview
· Procedural types in statements and expressions
· Variant types: Overview
· Variant type conversions
· Variants in expressions
· Variant arrays
· OleVariant
· Type compatibility and identity: Overview

· Type identity
· Type compatibility
· Assignment-compatibility
· Declaring types
· Variables: Overview
· Declaring variables
· Absolute addresses
· Dynamic variables
· Thread-local variables
· Constants: Overview
· True constants
· Constant expressions
· Resource strings
· About typed constants
· Array constants
· Record constants
· Procedural constants
· Pointer constants

Procedures and functions
Related topic groups
· Procedures and functions: Overview
· Declaring procedures and functions: Overview
· Procedure declarations
· Function declarations
· Calling conventions
· Forward and interface declarations
· External declarations
· Overloading procedures and functions
· Local declarations
· Parameters: Overview
· Parameter semantics: Overview
· Value and variable parameters
· Constant parameters
· Out parameters
· Untyped parameters
· About string parameters
· Array parameters: Overview
· Open array parameters
· Variant open array parameters
· Default parameters
· Default parameters and overloaded routines
· Default parameters in forward and interface declarations
· Calling procedures and functions
· Open array constructors

Classes and objects
Related topic groups
· Classes and objects: Overview
· About class types
· Inheritance and scope
· TObject and TClass
· Compatibility of class types
· Object types
· Visibility of class members
· Private, protected, and public members
· Published members
· Automated members
· Forward declarations and mutually dependent classes
· Fields
· Methods: Overview
· Method implementations
· Inherited
· Self
· Method binding: Overview
· Static methods
· Virtual and dynamic methods
· Overriding versus hiding
· Reintroduce
· Abstract methods
· Overloading methods
· Constructors
· Destructors
· Message handlers
· Properties: Overview
· Property access
· Array properties
· Index specifiers
· Storage specifiers
· Property overrides and redeclarations
· Class references: Overview
· Class-reference types
· Constructors and class references
· Class operators: Overview
· The is operator
· The as operator
· Class methods
· Exceptions: Overview
· Declaring exception types

· Raising and handling exceptions
· Try...except statements
· Re-raising exceptions
· Nested exceptions
· Try...finally statements
· Standard exception classes and routines

Standard routines and I/O
Related topic groups
· Standard routines and I/O: Overview
· File input and output
· Text files
· Untyped files
· Text-file device drivers: Overview
· Device functions
· Handling null-terminated strings
· Other standard routines

Dynamic-link libraries and packages
Related topic groups
· Dynamic-link libraries: Overview
· Calling DLLs
· Dynamic loading
· Writing DLLs
· The exports clause
· Library initialization code
· Global variables in a DLL
· DLLs and System variables
· Exceptions and runtime errors in DLLs
· The shared-memory manager
· Packages: Overview
· Package declarations and source files
· Naming packages
· The requires clause
· The contains clause
· Compiling packages: Overview
· Generated files
· Package-specific compiler directives
· Package-specific command-line compiler switches

Object interfaces
Related topic groups
· Object interfaces: Overview
· Interface types: Overview
· IUnknown and inheritance
· Interface identification
· Calling conventions
· Interface properties
· Forward declarations
· Implementing interfaces
· Method resolution clauses
· Changing inherited implementations
· Implementing interfaces by delegation
· Delegating to an interface-type property
· Delegating to a class-type property
· Interface references
· Interface assignment-compatibility
· Interface typecasts
· Interface querying
· Automation objects: Overview
· Dispatch interface types
· Accessing Automation objects
· Dual interfaces

Memory management
Related topic groups
· Memory management: Overview
· Variables
· Integer types
· Character types
· Boolean types
· Enumerated types
· Real types
· Pointer types
· Short string types
· Long string types
· Wide string types
· Set types
· Static array types
· Dynamic array types
· Record types
· File types
· Procedural types
· Class types
· Class reference types
· Variant types

Program control
Related topic groups
· Program control: Overview
· Parameters and function results: Overview
· Parameter passing
· Function results
· Method calls
· Constructors and destructors
· Exit procedures

Inline assembler code
Related topic groups
· Inline assembler code: Overview
· The asm statement
· Assembler statement syntax
· Labels
· Instruction opcodes
· Assembler directives
· Operands
· Expressions: Overview
· Differences between Object Pascal and assembler expressions
· Expression elements: Overview
· Constants
· Registers
· Symbols
· Expression classes
· Expression types
· Expression operators
· Assembler procedures and functions

Object Pascal grammar
Related topic groups
· Formal grammar

