
Quick Start

Inprise Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland ®

Delphi ™ 5
for Windows 98, Windows 95, & Windows NT

Refer to the file DEPLOY.TXT located in the root directory of your Delphi 5 product for a complete list of files that you
can distribute in accordance with the Delphi 5 License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 1999 Inprise Corporation. All rights reserved. All Inprise and Borland brand and product names
are trademarks or registered trademarks of Inprise Corporation. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1350WW21000 2E1R799
9900010203-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1
What is Delphi? 1-1
Where to find information 1-1

Online Help 1-2
Printed documentation 1-3
Developer support services 1-3

Typographic conventions 1-4

Chapter 2
A tour of the environment 2-1
Starting Delphi 2-1
Using toolbars, menus, and keyboard

shortcuts. 2-2
Placing components on a form 2-3
Changing component appearance and

behavior . 2-4
Working with events 2-5

Viewing and editing code 2-5
Viewing form files 2-6
Browsing with the editor 2-6
Exploring code 2-7

Managing projects 2-7
Browsing project elements and structure 2-8
Creating to-do lists. 2-9
Designing data modules 2-9
Setting project and environment options 2-10
Getting help . 2-11

Help with coding 2-12
Class Completion 2-13

Debugging applications 2-13
Exploring databases 2-14
Templates and the Object Repository 2-15

Chapter 3
Your first application—a brief tutorial 3-1
Starting a new application 3-1
Setting property values 3-2
Adding objects to the form 3-3
Connecting to a database 3-5
Adding support for a menu and a toolbar . . . 3-6
Adding a menu. 3-8
Adding a toolbar 3-9
Displaying images3-10
Adding text and memo objects 3-12
Writing an event handler 3-13

Chapter 4
Customizing the environment 4-1
Organizing your work area 4-1

Docking tool windows 4-1
Arranging menus and toolbars 4-4

Customizing desktop settings 4-5
Setting default project options. 4-5
Specifying default projects and forms 4-5
Setting tool preferences. 4-6

Customizing the Code editor 4-6
Customizing the Form Designer. 4-6
Setting Explorer options 4-6

Customizing the Component palette 4-7
Arranging the Component palette. 4-8
Installing components 4-8

Adding ActiveX controls 4-8
Creating component templates 4-8

Customizing the Help system 4-9

Chapter 5
Programming with Delphi 5-1
Development tools and features. 5-1

Using the VCL 5-1
Exception handling 5-2

Database connectivity and utilities 5-3
BDE Administrator 5-3
SQL Explorer (Database Explorer) 5-3
Database Desktop 5-4
Data Dictionary 5-4

Kinds of development project 5-4
Applications and servers 5-4
DLLs . 5-4
Custom components and packages 5-5
Frames . 5-5
COM and ActiveX. 5-5

Type libraries 5-6
Deploying applications. 5-6
Internationalizing applications 5-6

Index I-1

Contents

ii

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

This Quick Start provides an overview of the Delphi development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Delphi.

What is Delphi?
Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). Using Delphi, you can create highly efficient applications for
Microsoft Windows 95, Windows 98, and Windows NT with a minimum of manual
coding. Delphi provides all the tools you need to develop, test, debug, and deploy
applications, including a large library of reusable components, a suite of design tools,
application and form templates, and programming wizards. These tools simplify
prototyping and shorten development time.

Where to find information
Information on Delphi is available in a variety of forms:

• Online Help
• Printed documentation
• Inprise developer support services
• Inprise and borland.com Web sites

For information about new features in this release, refer to What’s New in Delphi? in the
online Help and to the borland.com Web site.

1-2 Q u i c k S t a r t

W h e r e t o f i n d i n f o r m a t i o n

Online Help

The online Help system provides detailed information about user-interface features,
language implementation, programming tasks, and the components in the Visual
Component Library (VCL). It includes the core Help files listed in Table 1.1.

Table 1.1 Online Help files

Help file Contents Audience

What’s New in Delphi?
(Del5new.hlp)

Introduces new features and enhancements to
Delphi for the current release and includes links to
detailed information.

Developers who
upgraded to this
release

Using Delphi
(Delphi5.hlp)

Introduces the Delphi development environment
and explains how to work with forms projects, and
packages. Discusses basic concepts of component-
based object-oriented programming.

New Delphi
developers, people
with questions about
the IDE

Visual Component Library
Reference
(Del5vcl.hlp)

Presents detailed reference on VCL classes, global
routines, types, and variables. Entries show the
unit where each class is declared; its position in the
hierarchy; a list of available properties, methods,
and events; and code examples.

All Delphi developers

Programming with Delphi
(Del5prog.hlp)

Provides details about using the VCL components
and illustrates common programming tasks such as
handling exceptions, creating toolbars and
drag-and-drop controls, and using graphics.

All Delphi developers

Developing Database
Applications
(Del5dbd.hlp)

Explains design of single- and multi-tiered
database applications, including database
architecture, datasets, fields, tables, queries, and
decision support.

Database developers

Developing Distributed
Applications
(Del5dap.hlp)

Explains how to create distributed applications.
Includes information on CORBA, DCOM, MTS,
HTTP, and sockets.

Developers writing
client/server
applications

Creating Custom Components
(Del5cw.hlp)

Provides information on writing custom Delphi
components. Explains how to design, build, test,
and install a component.

Developers writing
Delphi components

Developing COM-based
Applications
(Del5com.hlp)

Explains how to build distributed applications
using COM. Topics include COM objects, MTS
components, Automation servers and controllers,
ActiveX controls, and type libraries. Explains how
to modify generated type libraries using Delphi’s
Type Library Editor

Developers writing
client/server
applications

Object Pascal Reference
(Del5op.hlp)

Provides a formal definition of the Object Pascal
language and includes topics on file I/O, string
manipulation, program control, data types, and
language extensions.

Developers who need
Object Pascal
language details

Customizing Help
(OpenHelp.hlp)

Explains how to configure the Delphi Help system.
The OpenHelp utility lets you add or remove any
Windows Help (.HLP) file.

Developers wanting
to customize the
Delphi Help system

I n t r o d u c t i o n 1-3

W h e r e t o f i n d i n f o r m a t i o n

You will also find Help on additional products that are supplied with some versions
of Delphi, such as

• Integrated Translation Environment (ITE) Help

• Borland Database Engine (BDE) Help

• BDE Administrator Help

• Database Explorer Help

• Local SQL, SQL Builder, and SQL Monitor Help

• Package Collection Editor Help

• Help Author’s Guide (Help Workshop)

• QuickReport Help

• TeeChart Help

• InterBase and InterBase Express Help

• CORBA Component Library Reference Help

• Help for miscellaneous components (FastNet Time, DayTime, Echo, Finger, HTTP,
NNTP, POP3, Powersock, SMTP, UDP, URL Encode/Decode, UUprocessor,
Stream and Msg components)

All Help files are located in the Help directory under the main Delphi directory.

For information on customizing your Help system, see “Customizing the Help
system” on page 4-9.

Printed documentation

This Quick Start is an introduction to Delphi. To order additional printed
documentation, refer to the Web site at shop.borland.com.

Developer support services

Inprise also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support offerings for Delphi, refer to
http://www.borland.com/devsupport/delphi.

Additional Delphi Technical Information documents and answers to Frequently
Asked Questions (FAQs) are also available at this Web site.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi.

For information about year 2000 issues and our products, see the following URL:
http://www.inprise.com/devsupport/y2000/.

1-4 Q u i c k S t a r t

T y p o g r a p h i c c o n v e n t i o n s

Typographic conventions
This manual uses the typefaces described below to indicate special text.

Table 1.2 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

A t o u r o f t h e e n v i r o n m e n t 2-1

C h a p t e r

2
Chapter2A tour of the environment

Starting Delphi
You can start Delphi in several ways:

• Double-click the Delphi icon (if you’ve created a shortcut).
• Choose Programs|Delphi from the Windows Start menu.
• Choose Run from the Windows Start menu, then enter Delphi32.
• Double-click Delphi32.exe in the Delphi\Bin directory.

Right away, you’ll see some of the major tools in Delphi’s integrated development
environment (IDE).

Palette of ready-
made components
to use in your
applications.

Code editor for viewing
and editing code.

The Form Designer
contains a blank form
on which to start
designing the UI for
your application. An
application can
include many forms.

The Code Explorer shows you the classes, variables, and
routines in your unit and lets you navigate quickly.

The Object Inspector is used to
change objects’ properties and
select event handlers.

2-2 Q u i c k S t a r t

U s i n g t o o l b a r s , m e n u s , a n d k e y b o a r d s h o r t c u t s

Delphi’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the .DFM file that contains the textual
description of your form. You can also manually edit any code generated by Delphi
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can manage
projects, design graphical interfaces, write code, search databases, compile, test,
debug, and browse through class libraries without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 4, “Customizing the
environment.”

Using toolbars, menus, and keyboard shortcuts
Delphi’s toolbars, located in the main window, provide quick access to frequently
used operations and commands. All toolbar operations are duplicated in the drop-
down menus.

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbar is also customizable. You can add commands you want to it or move the
parts of the toolbar to different locations. For more information, see “Arranging
menus and toolbars” on page 4-4.

You can name and save desktop arrangements using the Desktop toolbar.

You can use the right-click menu to hide any toolbar. To
display a toolbar if it’s not showing, choose View|Toolbars
and check the one you want.

To find out what a button does, point to it for a moment
and a hint is displayed. The button’s keyboard shortcut, if
it has one, is displayed as well.

Run

Save all Add file to
project

Open

Save

New
form

Remove
file from
projectNew

Toggle
form/unit

View
forms

View
units

Standard toolbar

Pause

Trace
into

Step
over

Debug toolbar

List of projects
you can run

Desktop toolbar

Name of saved
desktop

Set debug
desktop

Open
project

Save current
desktop

View toolbar

A t o u r o f t h e e n v i r o n m e n t 2-3

P l a c i n g c o m p o n e n t s o n a f o r m

Placing components on a form
To build an application interface, you place components on a form, set their
properties, and code their event handlers.
Many components are provided on the Component palette, grouped by function.

Click a component on the Component palette.

Then click where you want to place it on the form.

Or choose a
component from an
alphabetical list.

You can install new components on
the Component palette.

You can also rearrange the palette and
add new pages. Choose Environment
Options, then the Palette page.

2-4 Q u i c k S t a r t

C h a n g i n g c o m p o n e n t a p p e a r a n c e a n d b e h a v i o r

Changing component appearance and behavior
You can change the way a component appears and behaves in your application by
using the Object Inspector. When a component is selected on a form, its properties
and events are displayed in the Object Inspector.

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you’ll see an ellipsis.

... or use this drop-down list to select an
object. Here, Button2 is selected, and its
properties are displayed.

Select a property
and change its
value in the right
column.

... or double-click a plus sign to open a detail list.

Click an ellipsis to open
a dialog where you can
change the properties
of a helper object.

You can select an object on the form by clicking on it...

Double-click here to
change the value from
True to False.

Click on the down arrow
to select from a list of
valid values.

Click any ellipsis to
display a property editor
for that property.

A t o u r o f t h e e n v i r o n m e n t 2-5

V i e w i n g a n d e d i t i n g c o d e

Working with events

Viewing and editing code
As you design the user interface for your application, Delphi generates the
underlying Pascal code. When you select and modify the properties of forms and
components, your changes are automatically reflected in the source files.

You can also add code to your source files directly using the built-in Code editor. The
Code editor is a full-featured ASCII editor.

Choose Tools|Editor Options to customize your editing environment. You can set
options such as tabbing, key mapping, color, and automatic features.

Select an existing event
handler from the drop-
down list.

Click the Events tab in the Object Inspector to see the
events that each component can handle. Here, Button2 is
selected and its type is displayed: TButton.

Or double-click in the
value column, and
Delphi generates
skeleton code for a new
event handler.

Components
added to the form
are reflected in
the code.

Click on any language keyword or VCL element,
and press F1 to get Help.

Generated
code.

2-6 Q u i c k S t a r t

V i e w i n g a n d e d i t i n g c o d e

Viewing form files

Forms are a very visible part of most Delphi projects—they are where you design the
user interface of an application. Normally, you design forms using Delphi’s visual
tools, and Delphi stores them forms in form files. Form files (extension .DFM) describe
each component in your form, including the values of all persistent properties.

To view a form (.DFM) file in the editor, right-click on the form and select View as
Text. Form files can be edited. To return to the pictorial view of your form, right-click
and choose View as Form.

You can save form files in either text (the default) or binary format. The Environment
Options dialog lets you indicate which format to use for newly created forms.

For more information...
Search for “form files” in the Help index.

Browsing with the editor

The Code editor has Forward and Back buttons like the ones you’ve seen on Web
browsers. You can use them to navigate through source code. Click the left arrow to
return to the last place you were working in your code. Then click the right arrow to
move forward again.

Within the Code editor, you can also move between the declaration of a procedure
and its implementation by typing Ctrl+Shift+↑ or Ctrl+Shift+↓.

For more information...
Search for “Code editor” in the Help index.

Use the editor like a Web
browser.

Press Ctrl and point to any
identifier. The cursor turns into
a hand, and the identifier turns
blue and is underlined.

Click to jump to the definition of
the identifier.

After navigating, click the Back
arrow to return to your previous
location.

A t o u r o f t h e e n v i r o n m e n t 2-7

M a n a g i n g p r o j e c t s

Exploring code

When a source file is open in the Code editor, you can use the Code Explorer to see a
structured table of contents for the code. The Code Explorer contains a tree diagram
showing the types, classes, properties, methods, global variables, and routines
defined in your unit. It also shows the other units listed in the uses clause.

For more information...
Search for “Code Explorer” in the Help index.

Managing projects
Use the Project Manager to organize the form and unit files that make up an
application. To display the Project Manager, choose View|Project Manager.

To search for a class,
property, method, variable,
or routine, just type its name.

2-8 Q u i c k S t a r t

B r o w s i n g p r o j e c t e l e m e n t s a n d s t r u c t u r e

The Project Manager shows you the form, unit, resource, object, library, and other
files contained in a project. You can use the Project Manager to add and remove files,
and you can open any file by double-clicking it.

You can combine related projects into a single project group. For example, you might
use project groups to organize a multi-tiered application or to keep DLLs with
executables that use them.

For more information...
Search for “Project Manager” in the Help index.

Browsing project elements and structure
As mentioned earlier, the Code Explorer lets you examine a unit in detail. For a
broader view of what’s available to you in your project, you can use the Project
Browser. It displays the object hierarchies, units, and global symbols within your
entire project. Choose View|Browser to display the Project Browser.

You can also expand the scope of the Project Browser to include all symbols available
in Delphi’s VCL object hierarchy. Choose Tools|Environment Options and check All
symbols (VCL included) on the Explorer page.

The Project Browser has three tabs that display classes, units, and globals. On the
Explorer page of Tools|Environment Options, you can set the scope of the Project
Browser and control how source elements are grouped.

For more information...
Search for “Project Browser” in the Help index.

A t o u r o f t h e e n v i r o n m e n t 2-9

C r e a t i n g t o - d o l i s t s

Creating to-do lists
To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items
directly in the source code. Choose View|To-Do list do add or view information
associated with a project.

For more information...
Search for “To-Do Lists” in the Help index.

Designing data modules
A data module is a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, data modules provide a convenient organizational tool.

Right-click on a to-do list to
display commands that let
you sort and filter the list.

Click here when you’re
done with an item.

2-10 Q u i c k S t a r t

S e t t i n g p r o j e c t a n d e n v i r o n m e n t o p t i o n s

The Data Module Designer makes it easy to create data modules. To create a data
module, choose File|New and double-click on Data Module.

Delphi opens an empty data module in the Data Module Designer, displays the unit
file for the new module in the Code editor, and adds the module to the current
project. When you reopen an existing data module, Delphi displays its components
in the Data Module Designer.

For more information...
Search for “Data Module Designer” or “data module” in the Help index.

Setting project and environment options
The Project Options dialog, accessed by choosing Project|Options, controls compiler
and linker switches, some search paths and output directories, project version
information, and other settings that are maintained separately for each application.
When you make changes in the Project Options dialog, your changes affect only the
current project; but if the Default check box is selected, your selections are also saved
as the default settings for new projects. (See “Setting default project options” on
page 4-5.)

The Environment Options dialog, accessed by choosing Tools|Environment Options,
controls global IDE settings for all projects. These include many settings that affect
the appearance and behavior of the IDE, as well as some search paths and output
directories. You’ll find more information about some of these options in “Setting tool
preferences” on page 4-6.

For more information...
For details about the options on any page of the Project Options or Environment
Options dialog, click the Help button on that page. Or search for “Project Options
dialog box” or “Environment Options dialog box” in the Help index.

This pane shows a hierarchical
tree view of the components in
the module.

The Data Diagram tab shows a
graphic representation of relationships
among components, such as
master-detail and lookup fields.

The Components tab
(displayed here) shows
components as they would
appear on a form.

A t o u r o f t h e e n v i r o n m e n t 2-11

G e t t i n g h e l p

Getting help
The online Help system provides extensive documentation on the VCL and other
parts of Delphi. Here are some of the ways you can display Help:

Press F1 on a
property or event
name in the Object
Inspector to display
VCL Help.

Press F1 on a language
keyword or VCL element in
the Code editor.

Press F1 on an object in
the Form Designer.

2-12 Q u i c k S t a r t

G e t t i n g h e l p

You can get Help on any part of the development environment, including menu
items, dialog boxes, windows, toolbars, and components.

Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Error messages from the compiler and linker appear in a special window below the Code
editor. To get Help with compilation errors, select a message from the list and press F1.

Help with coding

Delphi provides various aids to help you write code. The Code Insight tools display
context-sensitive pop-up windows in the Code editor.

Table 2.1 Code Insight tools

Tool How it works

Code Completion Type a class name followed by a dot (.) to display a list of properties,
methods, and events appropriate to the class. Type the beginning of
an assignment statement and press Ctrl+space to display a list of valid
values for the variable. Type a procedure, function, or method name
to bring up a list of arguments.

Code Parameters Type a method name and an open parenthesis to display the syntax
for the method’s arguments.

Code Templates Press Ctrl+J to see a list of common programming statements that you
can insert into your code. You can create your own templates in
addition to the ones supplied with Delphi.

Tooltip Expression
Evaluation

While your program has paused during debugging, point to any
variable to display its current value.

Tooltip Symbol Insight While editing code, point to any identifier to display its declaration.

Press F1 on any menu
command, dialog box, or
window to display Help on
that item.

A t o u r o f t h e e n v i r o n m e n t 2-13

D e b u g g i n g a p p l i c a t i o n s

To configure these tools, choose Tools|Environment Options and click the Code
Insight tab.

Class Completion
Class Completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration; then press Ctrl+Shift+C, or right-click and select Complete
Class at Cursor. Delphi automatically adds private read and write specifiers to the
declarations for any properties that require them, then creates skeleton code for all
the class’s methods. You can also use Class Completion to fill in class declarations for
methods you’ve already implemented.

To configure Class Completion, choose Tools|Environment Options and click the
Explorer tab.

For more information...
Search for “Code Insight” and “Class Completion” in the Help index.

Debugging applications
The IDE includes an integrated debugger that helps you locate and fix errors in your
code. The debugger lets you control program execution, watch variables, and modify
data values while your application is running. You can step through your code line
by line, examining the state of the program at each breakpoint

When you type the dot in
Button1., Delphi displays a
list of properties, methods,
and events for the class.

Select an item on the list
and press Enter to add it to
your code.

2-14 Q u i c k S t a r t

E x p l o r i n g d a t a b a s e s

.

To use the debugger, you must compile your program with debug information.
Choose Project|Options, select the Compiler page, and check Debug Information.
Then you can begin a debugging session by running the program from the IDE. To
set debugger options, choose Tools|Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,
Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing
View|Debug Windows. To learn how to combine debugging windows for more
convenient use, see “Docking tool windows” on page 4-1.

Once you set up your desktop as you like it for debugging, you can save the settings as
the debugging or runtime desktop. This desktop layout will be used whenever you are
debugging any application. For details, see “Customizing desktop settings” on page 4-5.

Some versions of Delphi support multiprocess and remote debugging of distributed
applications from either the client or the server. To turn on remote debugging, choose
Run|Parameters, click the Remote tab, and check “Debug Project on remote
machine”; then choose Project|Options, click the Linker tab, and check “Include
remote debug symbols”.

For more information...
See “Using Delphi” in the Help contents or search for “debugging” in the Help index.

Exploring databases
The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work
directly with a remote database server during application development. For example,

Run button

Choose any of the debugging
commands from the Run
menu.

Some commands are also
available on the toolbar.

You can attach or overlay
several debugging
windows for easier use.

A t o u r o f t h e e n v i r o n m e n t 2-15

T e m p l a t e s a n d t h e O b j e c t R e p o s i t o r y

you can create, delete, or restructure tables, and you can import constraints while
you are developing a database application.

For more information...
Choose Database|Explore to open the Explorer; then press F1. Or search for
“Database Explorer” in the main Help index.

Templates and the Object Repository
The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,
sample applications, and other items that can simplify development. Choose File|
New to display the New Items dialog when you begin a project. Check the
Repository to see if it contains an object that resembles one you want to create.

Choose Database|Explore
to display the Explorer. You
can see and change the
data in a table.

And you can query a
database directly.

You can copy, inherit, or
reference an existing object.

The Object Repository
contains many tabbed
pages, which include objects
like forms, frames, units, and
batch files, and wizards to
create specialized items.

2-16 Q u i c k S t a r t

T e m p l a t e s a n d t h e O b j e c t R e p o s i t o r y

You can add your own objects to the Repository to facilitate reusing them and
sharing them with other developers. Reusing objects lets you build families of
applications with common user interfaces and functionality; building on an existing
foundation also reduces development time and improves quality. The Object
Repository provides a central location for tools that members of a development team
can access over a network.

To add objects to the Repository, right-click in the New Items dialog and choose
Properties, or choose Tools|Repository from the main menu.

For more information...
See “Using Delphi” in the Help contents or search for “Object Repository” in the
Help index. Also choose File|New and browse in the Object Repository to see the
kinds of templates and wizards you can use as starting points for your applications.
The objects available to you will depend on the version of Delphi you purchased.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-1

C h a p t e r

3
Chapter3Your first application—a brief tutorial

The quickest way to introduce yourself to Delphi is to write an application. This
tutorial guides you through the creation of a program that navigates a marine-life
database. After setting up access to the database, you’ll write an event handler that
opens a standard Save As dialog box, allowing you to write information from the
database to a file.

Starting a new application
Before beginning a new application, create a folder to hold the source files.

1 Create a folder called Marine in the Projects directory off the main Delphi directory.

2 Open a new project.
Each application is represented by a project. When you start Delphi, it opens a
blank project by default. If another project is already open, choose File|New
Application to create a new project.
When you open a new project, Delphi automatically creates the following files.
• Project1.DPR: a source-code file associated with the project. This is called a

project file.
• Unit1.PAS: a source-code file associated with the main project form. This is

called a unit file.
• Unit1.DFM: a resource file that stores information about the main project form.

This is called a form file.
Each form has its own unit and form files.

3 Choose File|Save All to save your files to disk. When the Save dialog appears,
navigate to your Marine folder and save each file using its default name.
Later on, you can save your work at any time by choosing File|Save All.
When you save your project, Delphi creates additional files in your project
directory. You don’t need to worry about them but don’t delete them.

3-2 Q u i c k S t a r t

S e t t i n g p r o p e r t y v a l u e s

When you open a new project, Delphi displays the project’s main form, named Form1
by default. You’ll create the user interface and other parts of your application by
placing components on this form.

Next to the form, you’ll see the Object Inspector, which you can use to set property
values for the form and components you place on it.

Setting property values
When you use the Object Inspector to set properties, Delphi maintains your source
code for you. The values you set in the Object Inspector are called design-time settings.

• Set the background color of Form1 to Aqua.

Find the form’s Color property in the Object Inspector and click the drop-down list
displayed to the right of the property. Choose clAqua from the list.

The default form has Maximize
and Minimize buttons, a Close
button, and a Control menu.

If you run the form now by
pressing F9, you’ll see that
these buttons all work.

To return to design mode, click
the X to close the form.

The drop-down list at the top of the Object Inspector
shows the currently selected object. In this case, the
object is Form1 and its type is TForm1.

When an object is selected, the Object Inspector shows
its properties.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-3

A d d i n g o b j e c t s t o t h e f o r m

Adding objects to the form
The Component palette represents components by icons grouped onto tabbed pages.
Add a component to a form by selecting the component on the palette, then clicking
on the form where you want to place it. You can also double-click a component to
place it in the middle of the form.

Add a Table and a StatusBar to the form:

1 Drop a Table component onto the form.

Click the Data Access tab on the Component palette. To find the Table component,
point at an icon on the palette for a moment; Delphi displays a Help hint showing
the name of the component.

When you find the Table component, click it once to select it, then click on the form
to place the component. The Table component is nonvisual, so it doesn’t matter
where you put it. Delphi names the object Table1 by default. (When you point to
the component on the form, Delphi displays its name—Table1—and the type of
object it is—TTable.)

Each Delphi component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, Delphi generates the
code necessary to construct an instance object when your application is running.

Component palette tabs Components

3-4 Q u i c k S t a r t

A d d i n g o b j e c t s t o t h e f o r m

2 Set the DatabaseName property of Table1 to DBDEMOS. (DBDEMOS is an alias to
the sample database that you’re going to use.)

Select Table1 on the form, then choose the DatabaseName property in the Object
Inspector. Select DBDEMOS from the drop-down list.

3 Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the application.

4 Set the AutoHint property of the status bar to True. The easiest way to do this is to
double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to
True allows Help hints to appear in the status bar at runtime.)

Click the down arrow to display the
property drop-down list.

Select DBDEMOS.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-5

C o n n e c t i n g t o a d a t a b a s e

Connecting to a database
The next step is to add database controls and a DataSource to your form.

1 From the Data Access page of the Component palette, drop a DataSource
component onto the form. The DataSource component is nonvisual, so it doesn’t
matter where you put it on the form. Set its DataSet property to Table1.

2 From the Data Controls page, choose the DBGrid component and drop it onto your
form. Position it in the lower left corner of the form above the status bar, then
expand it by dragging its upper right corner.

If necessary, you can enlarge the form by dragging its lower right corner. Your
form should now resemble the following figure.

3 Set DBGrid properties to align the grid with the form. Double-click Anchors in the
Object Inspector to display akLeft, akTop, akRight, and akBottom; set them all to True.

4 Set the DataSource property of DBGrid to DataSource1 (the default name of the
DataSource component you just added to the form).

Now you can finish setting up the Table1 object you placed on the form earlier.

5 Select the Table1 object on the form, then set its TableName property to BIOLIFE.DB.
(Name is still Table1.) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB database
table. If the grid doesn’t display data, make sure you’ve correctly set the properties
of all the objects on the form, as explained in the instructions above. (Also verify
that you copied the sample database files into your ...\Borland Shared\Data
directory when you installed Delphi.)

The Data Controls
page on the
Component palette
holds components
that let you view
database tables.

To display all the
fields in a table, use a
DBGrid component.

The Table and
DataSource
objects don’t
show when
the application
is running.

3-6 Q u i c k S t a r t

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

The DBGrid control displays data at design time, while you are working in the
IDE. This allows you to verify that you’ve connected to the database correctly. You
cannot, however, edit the data at design time; to edit the data in the table, you’ll
have to run the application.

6 Press F9 to compile and run the project. (You can also run the project by clicking
the Run button on the Debug toolbar, or by choosing Run from the Run menu.)

In connecting our application to a database, we’ve used three components and
several levels of indirection. A data-aware control (in this case, a DBGrid) points to a
DataSource object, which in turn points to a dataset object (in this case, a Table).
Finally, the dataset (Table1) points to an actual database table (BIOLIFE), which is
accessed through the BDE alias DBDEMOS. (BDE aliases are configured through the
BDE Administrator.)

This architecture may seem complicated at first, but in the long run it simplifies
development and maintenance. For more information, see “Developing database
applications” in the Developer’s Guide or online Help.

Adding support for a menu and a toolbar
When you run your project, Delphi opens the program in a window like the one you
designed on the form. The program is a full-fledged Windows application, complete
with Minimize, Maximize, and Close buttons and a Control menu. You can scroll
through the BIOLIFE data in the grid.

Though your program already has a great deal of functionality, it still lacks many
features usually found in Windows applications. For example, most Windows
applications implement menus and toolbars to make them easy to use.

As soon as you set Active to
True in Table1, data appears
in the grid at design time.

data-aware control
(Grid) DataSource

dataset
(Table) BDE database

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-7

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

In this section, you’ll prepare your application for additional graphical-interface
elements by setting up an ActionList component. While you can create menus,
toolbars, and buttons without using action lists, action lists simplify development
and maintenance by centralizing responses to user commands.

1 Click the X in the upper right corner to close the application and return to the
design-time view of the form.

2 From the Win32 page of the Component palette, drop an ImageList onto the form.
This is a nonvisual component, so it doesn’t matter where you place it. The
ImageList will contain icons that represent standard actions like Cut and Paste.

3 From the Standard page of the Component palette, drop an ActionList onto the
form. This is another nonvisual component.

4 Set the action list’s Images property to ImageList1.

5 Double-click the action list to display the Action List editor.

6 Right-click on the Action List editor and choose New Standard Action. The
Standard Actions list box is displayed.

7 Select the following actions: TDataSetFirst, TDataSetLast, TDataSetNext,
TDataSetPrior, TEditCopy, TEditCut, and TEditPaste. (Use the Ctrl key to select
multiple items.) Then click OK.

8 Click on the X to close the Action List editor.

You’ve added standard actions. Now you’re ready to add the menu and toolbar.

Right-click in the
editor and choose
New Standard Action
to display the
Standard Actions
list box.

Select the actions you
want and click OK.
Press Ctrl to select
multiple actions.

You’ve added standard
actions that Delphi provides
along with standard images.

You’ll use these on a toolbar
and menu.

3-8 Q u i c k S t a r t

A d d i n g a m e n u

Adding a menu
In this section, you’ll add a main menu bar with three drop-down menus—File, Edit,
and Record—and you’ll add menu items to each one using the standard actions in
the action list.

1 From the Standard page of the Component palette, drop a MainMenu component
onto the form. It doesn’t matter where you place it.

2 Set the main menu’s Images property to ImageList1.
3 Double-click the menu component to display the Menu Designer.

4 Type &File to set the Caption property of the first top-level menu item and press Enter.

5 Type &Save and press Enter to create a Save menu item under File.

6 Type a hyphen in the next item under the File menu and press Enter to create a
separator bar on the menu.

7 Type E&xit and press Enter to create an Exit menu item under File.

8 Click on the second top-level menu item (to the right of File), type &Edit, and press
Enter. The first menu item under Edit is selected.

• In the Object Inspector, set its Action to EditCut1 and press Enter. The item’s
caption is automatically set to Cut.

• Select the next menu item (under Cut) and set its Action to EditCopy1.
• Select the next menu item and set its Action to EditPaste1.

When you type
&File and press
Enter, the top-level
File command
appears ready for
you to add the first
menu item.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-9

A d d i n g a t o o l b a r

9 Click on the third top-level menu item (to the right of Edit), type &Record as its
caption, and press Enter. The menu item under Record is selected.

• In the Object Inspector, set its Action to DataSetFirst1.
• Select the next menu item and set its Action to DataSetPrior1.
• Select the next menu item and set its Action to DataSetNext1.
• Select the next menu item and set its Action to DataSetLast1.

10 Click on the X to close the Menu Designer.

Press F9 to run your program and see how it looks.

Close the application when you’re ready to continue.

Adding a toolbar
1 On the Win32 page of the Component palette, double-click the ToolBar to add it to

the form.

• Set the toolbar’s Indent property to 4.
• Set its Images property to ImageList1.
• Set ShowHint to True.

2 Add buttons to the toolbar.

• With the toolbar selected, right-click and choose New Button three times.
• Right-click and choose New Separator.
• Right-click and choose New Button four more times.

3 Assign actions to the first set of buttons.

• Select the first button and set its Action to EditCut1.
• Select the second button and set its Action to EditCopy1.
• Select the third button and set its Action to EditPaste1.

3-10 Q u i c k S t a r t

D i s p l a y i n g i m a g e s

4 Assign actions to the second set of buttons.

• Select the first button and set its Action to DataSetFirst1.
• Select the second button and set its Action to DataSetPrior1.
• Select the third button and set its Action to DataSetNext1.
• Select the last button and set its Action to DataSetLast1.

Here’s how it looks:

5 Press F9 to compile and run the project.

Check out the toolbar. The First, Prior, Next, and Last buttons work. Select text
within a cell in the grid; the Cut, Copy, and Paste buttons work as well.

Close the application when you’re ready to continue.

Displaying images
Each record in the BIOLIFE database has a picture associated with it. In this section,
we’ll expand our application to display pictures.

1 From the Standard page of the Component palette, drop a Panel component onto
the form below the toolbar. Delphi names this Panel1 by default.

2 In the Object Inspector, delete the Panel1 string from the panel’s Caption property.
Leave the Caption property blank.

The toobar uses standard
actions supplied with Delphi.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-11

D i s p l a y i n g i m a g e s

3 Align Panel1 to the top of the form by setting its Align property to alTop. Next, drag
the bottom of the panel down so it fills the portion of the form between the toolbar
and the grid.

4 Set the panel’s color to clBlue.

5 From the Data Controls palette page, drop a DBImage component on top of Panel1
and set its Align property to alRight. Size the DBImage by dragging out its left side
so your form resembles the one shown in the following figure.

6 Set the DataSource property of DBImage to DataSource1. Then set its DataField
property to Graphic. (In the Object Inspector, the drop-down list next to DataField
shows the fields in the BIOLIFE table. Graphic is one of the field names.)

You can drag to set the
width of DBImage, or you
can set its Width property
in the Object Inspector.

3-12 Q u i c k S t a r t

A d d i n g t e x t a n d m e m o o b j e c t s

As soon as you set DataField to Graphic, the DBImage component displays the
image of a fish corresponding to the first record of the table. This shows that you
have correctly hooked up to the database.

7 Press F9 to compile and run your application.

Close the application when you’re ready to continue.

Adding text and memo objects
In this section, you’ll add two components that display individual text fields from the
database.

1 Select Panel1.

2 From the Data Controls page of the Component palette, drop a DBMemo
component onto Panel1 and position it so it occupies the upper left corner of the
panel (below the menus and toolbar).

3 Resize the DBMemo by dragging its lower right corner. Extend the right edge of
the DBMemo until it touches the left edge of the DBImage. Extend the bottom of the
DBMemo to within a half inch or so of the bottom of Panel1.

4 In the Object Inspector, set the following properties for the DBMemo.

• Set DataSource to DataSource1.
• Set DataField to Notes (information about the fish appears).
• Set ScrollBars to ssVertical.

5 Drop a DBText component on Panel1 under the DBMemo object. Enlarge the
DBText so it fills the area under the DBMemo, then set its properties as follows.

• Set DataSource to DataSource1.
• Set DataField to Common_Name.
• Set Alignment to taCenter.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-13

W r i t i n g a n e v e n t h a n d l e r

6 Customize the Font property of the DBText component using the Font editor.

The Font editor is a property editor that you can access through the Object
Inspector. Select the Font property in the Object Inspector; an ellipsis button
appears on the right side of the property setting. Click the ellipsis button to
display the Font editor.

Modify the following DBText settings using the Font editor, then click OK.

• Set the Font Style to Bold.
• Set the Color to Silver.
• Set the Size to 12.

7 Compile and run your application by pressing F9.

You can view and edit the data in the DBMemo component. The DBText component
displays data for reading only.

Close the application when you’re ready to continue.

Writing an event handler
Up to this point, you’ve developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you’ve
taken full advantage of Delphi‘s RAD environment. In this section, however, you’ll
write procedures called event handlers that respond to user input while the
application is running. You’ll connect the event handlers to menu items, so that when
a menu item is selected your application executes the code in the handler.

1 From the Dialogs page of the Component palette, drop a SaveDialog component
onto the form. This is a nonvisual component, so it doesn’t matter where you place
it. Delphi names it SaveDialog1 by default. (When SaveDialog‘s Execute method is
called, it invokes a standard Windows dialog for saving files.)

3-14 Q u i c k S t a r t

W r i t i n g a n e v e n t h a n d l e r

2 From the menu on your form, choose File|Save. Delphi creates a skeleton event
handler for the event that occurs at runtime when the user selects Save from the
File menu. The Code editor opens with the cursor inside the event handler.

This event handler is attached to the OnClick event of the main menu’s first menu
item. The menu item is an instance of the class TMenuItem, and OnClick is its
default event. Hence the Save1Click method is a default event handler.

3 Complete the event handler by adding the code shown below in the var section
and between the outermost begin and end.

procedure TForm1.Save1Click(Sender: TObject);
var

i: integer;
begin

SaveDialog1.Title := Format('Save info for %s', [DBText1.Field.AsString]);
if SaveDialog1.Execute then
begin

with TStringList.Create do
try
Add(Format('Facts on the %s', [DBText1.Field.AsString]));
Add(#13#10);
for i := 1 to DBGrid1.FieldCount-3 do
Add(Format('%s : %s',

[DBGrid1.Fields[i].FieldName,
DBGrid1.Fields[i].AsString]));

Add(Format(#13#10+'%s'+#13#10,[DBMemo1.Text]));
SaveToFile(SaveDialog1.FileName);

finally
Free;

end;
end;

end;

This event handler calls the Execute method in the SaveDialog component. When
the dialog box opens and the user specifies a file name, it saves fields from the
current database record into a file.

Y o u r f i r s t a p p l i c a t i o n — a b r i e f t u t o r i a l 3-15

W r i t i n g a n e v e n t h a n d l e r

4 To add code for the Exit command, choose File|Exit. Delphi generates another
skeleton event handler and displays it in the editor.

procedure TForm1.Exit1Click(Sender: TObject);
begin

end;

Right where the cursor is positioned (between begin and end), type

Close;

5 Choose File|Save All to save your work. Then press F9 to run the application.

You can exit the program using the now functional File|Exit command.

Most components on the Component palette have events, and most components
have a default event. A common default event is OnClick, which gets called whenever
the component is clicked; for example, if you placed a Button component (TButton) on
a form, you would almost certainly write an OnClick event handler for it. When you
double-click certain objects on a form, Delphi creates a skeleton handler for the
default event.

You can also access all of a component’s events through the Object Inspector. Select
an object on a form, then click the Events tab on the object Inspector; you’ll see a list
of the object’s events. To create a skeleton handler for any event, double-click in the
space to its right.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

3-16 Q u i c k S t a r t

C u s t o m i z i n g t h e e n v i r o n m e n t 4-1

C h a p t e r

4
Chapter4Customizing the environment

This chapter explains some of the ways you can customize the Delphi development
environment.

Organizing your work area
The IDE provides many tools to support development, including the Form Designer,
Object Inspector, Code editor, Project Manager, Project Browser, and debugging
windows. With so many tools available, you’ll want to organize your work area for
maximum convenience.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means either attaching windows to each other so that they move
together or combining several windows into a tabbed “notebook”—helps you use
screen space efficiently while maintaining fast access to tools.

From the View menu, you can bring up any tool window and then dock it directly to
the Code editor for use while coding and debugging. For example, when you first
open Delphi in its default configuration, the Code Explorer is docked to the left of the
Code editor. If you want, you can add the Project Manager to the first two to create
three docked windows.

4-2 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a

While debugging, you can dock Watch and Breakpoint windows onto the Code
editor.

Here the Project Manager and Code Explorer
are docked to the Code editor.

Other tools, such as the
Object Inspector, can be
docked or arranged
separately.

C u s t o m i z i n g t h e e n v i r o n m e n t 4-3

O r g a n i z i n g y o u r w o r k a r e a

You can also dock tools to form a tabbed window.

To dock a window, drag it over another window until the first window’s rectangular
outline becomes narrow and vertical; then release the mouse. To undock a window,
click its title bar and drag it in any direction.

For more information...
Search for “docking tools” in the Help index.

Here, only the breakpoint list
is docked to the Code editor.

Here, various debugging views are
docked to form tabbed pages.

4-4 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a

Arranging menus and toolbars

The main window, which occupies the top of the screen, contains the menu, toolbars,
and Component palette. You can reorganize its contents.

You can even separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether.

You can also customize the toolbars by adding or deleting tools.

Main window
in its default
arrangement.

You can move toolbars and menus within the main window. Click the
grabber (the double bar on the left) and drag it to where you want it.

Main window
organized
differently.

Choose View|Toolbars|
Customize.

From the Commands
page, select any
command and drag it
onto the toolbar.

C u s t o m i z i n g t h e e n v i r o n m e n t 4-5

C u s t o m i z i n g d e s k t o p s e t t i n g s

Customizing desktop settings
You can customize and save your desktop settings. A Desktop toolbar in the IDE
includes a pick list of the available desktop layouts and two icons make it easy to
customize the desktop.

Arrange the desktop as you want including displaying, sizing, and docking particular
windows, and placing them where you want on the display. Click the Save current
desktop icon on the Desktop toolbar or choose View|Desktops|Save Desktop.

For more information...
Search for “desktop layout” in the Help index.

Setting default project options
The Project Options dialog, accessed by choosing Project|Options, controls settings
that are maintained separately for each application you develop. (See “Setting project
and environment options” on page 2-10.) However, by choosing the Default check
box in the lower left corner of the dialog, you can save your selections as the default
settings for all new projects.

Checking Default writes the current settings from the dialog to the options file
DEFPROJ.DOF. To restore Delphi’s original default settings, delete or rename the
DEFPROJ.DOF file, which is located in the Delphi\Bin directory.

Specifying default projects and forms
When you choose File|New Application, a new project opens in the IDE. If you
haven’t specified a default project, Delphi creates its standard new application with
an empty form. But you can select any item from the Projects page of the Object
Repository (see “Templates and the Object Repository” on page 2-15) as your default
project. Once you’ve specified a default project, Delphi uses it as a template
whenever you choose File|New Application. If you select a wizard as your default
project, Delphi runs the wizard whenever you choose File|New Application; the
wizard creates your new project based on your responses to a series of dialog boxes.

In the same way that you specify a default project, you can specify a default main
form and a default new form. The default main form is the form created when you
begin a new application. The default new form is the form created when you choose
File|New Form to add a form to an open project. If you haven’t specified a default
form, Delphi uses a blank form.

You always have the option to override your default project or forms by choosing
File|New and selecting from the New Items dialog box.

Set debug
desktop

Save current
desktop

Named desktop
settings are listed here

4-6 Q u i c k S t a r t

S e t t i n g t o o l p r e f e r e n c e s

For more information...
See “projects, specifying default” and “forms, specifying default” in the Help index.

Setting tool preferences
The Environment Options dialog, accessed by choosing Tools|Environment Options,
controls many aspects of the appearance and behavior of the IDE. Changes made in
the Environment Options dialog are global; that is, they affect not just the current
project, but projects that you open and compile later.

For more information...
Click the Help button on any page of the Environment Options dialog, or search for
“Environment Options dialog box” in the Help index.

Customizing the Code editor

One tool you may want to customize right away is the Code editor. Several pages in the
Tools|Editor Options dialog have editor settings. For example, you can choose keystroke
mappings, fonts, margin widths, colors, syntax highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. See “Help with coding” on page 2-12 to
learn about these tools.

For more information...
Click the Help button on the following pages in the Editor Options dialog: General,
Display, Key Mapping, Color, and Code Insight.

Customizing the Form Designer

The Preferences page of the Environment Options dialog has settings that affect the
Form Designer. For example, you can adjust or disable the “grid snap” feature.

For more information...
Click the Help button on the Preferences page of the Environment Options dialog.

Setting Explorer options

The Code Explorer (described in “Exploring code” on page 2-7) opens automatically
when you start Delphi. You can disable this behavior—and set other options for the
Code Explorer—from the Explorer page of the Environment Options dialog.

You can also set options such as the initial browser view and the browser scope which
affect the Code Browser on the Explorer page of the Environment Options dialog. The
Code Browser is shown in “Browsing project elements and structure” on page 2-8.

For more information...
Click the Help button on the Explorer page of the Environment Options dialog.

C u s t o m i z i n g t h e e n v i r o n m e n t 4-7

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

Customizing the Component palette
In its default configuration, the Component palette displays many useful VCL objects
organized functionally onto tabbed pages. You can customize the Component palette by

• hiding or rearranging components

• adding, removing, rearranging, or renaming pages

• installing new components

• creating component templates and adding them to the palette

You can create new components and
add them to the Component palette.

You can rearrange the palette
and add new pages.

4-8 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog. You can open this dialog in several ways:

• Choose Component|Configure Palette.
• Choose Tools|Environment Options and click the Palette tab.
• Right-click on the Component palette an select Properties.

For more information...
Click the Help button in the Palette Properties dialog.

Installing components

You can supplement the components in the VCL with custom components that you
write yourself or obtain from third-party developers. To make new components
available at design time, you need to install them in the IDE.

For more information...
To install third-party components, follow the vendor’s instructions. To learn about
writing your own components, see “Creating custom components” in the Developer’s
Guide or online Help.

Adding ActiveX controls
You can add ActiveX controls to the Component palette and use them in your Delphi
projects. Choose Component|Import ActiveX Control to open the Import ActiveX
dialog. From here you can register new ActiveX controls or select an already
registered control for installation in the IDE. When you install an ActiveX control,
Delphi creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component|Import ActiveX Control and click the Help button.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
for reuse on other forms.

To create a component template, simply arrange one or more components on a form,
set their properties in the Object Inspector, and select all of the components. Then
choose Component|Create Component Template. When the Component Template
Information dialog opens, you can select a name for the template, the palette page on
which you want it to appear, and an icon to represent the template on the palette.

C u s t o m i z i n g t h e e n v i r o n m e n t 4-9

C u s t o m i z i n g t h e H e l p s y s t e m

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

For more information...
Search for “Template” in the Help index or choose Component|Create Component
Template and press F1.

Customizing the Help system
Delphi’s online Help system comprises more than a dozen WinHelp (.HLP) files and
includes documentation for the IDE, the Visual Component Library, and additional
products and tools supplied with Delphi. A utility called OpenHelp allows you to
customize the Help system by choosing which files to make available through the
master table of contents, the index, and the IDE’s context-sensitive Help.

To start OpenHelp, choose Help|Customize.

OpenHelp lets you add any WinHelp files to Delphi‘s Help system, including
documentation for third-party products. OpenHelp also allows you to remove
references to obsolete Help files from the system registry.

For an overview of the Help files supplied with Delphi, see “Online Help” on
page 1-2.

For more information...
Choose Help|Customize, then choose Help|Contents from the OpenHelp main
window.

The default Help system is set up in
the Delphi5.ohp file in the Help
directory. You can customize your
Help system by adding or deleting
files.

This list controls which Help topics
appear in the Help Contents.

4-10 Q u i c k S t a r t

P r o g r a m m i n g w i t h D e l p h i 5-1

C h a p t e r

5
Chapter5Programming with Delphi

The following sections provide an overview of software development with Delphi
and describe some features that are not covered in earlier chapters of this Quick Start.

Development tools and features
The integrated development environment (IDE) includes the Form Designer, Object
Inspector, Component palette, Project Manager, Code Explorer, Code editor, Data
Module Designer, software localization tools, debugger, and many other tools. The
particular features and components available to you will depend on which version of
Delphi you’ve purchased.

All versions of Delphi support general-purpose 32-bit Windows programming,
multithreading, COM and Automation controllers, and multiprocess debugging.
Some versions add support for server applications such as COM servers and Web
applications, database development with report and chart generation for a variety of
DBMS back ends, support for SQL database servers (such as Oracle 8 and InterBase),
Microsoft Transaction Server (MTS), multi-tiered database applications, CORBA, and
decision-support systems. For up-to-date product information, refer to
www.borland.com or contact your Inprise distributor.

Using the VCL

Delphi comes with components that are part of a class hierarchy called the Visual
Component Library (VCL). The VCL includes objects that are visible at runtime—
such as edit controls, buttons, and other user-interface elements—as well as

5-2 Q u i c k S t a r t

D e v e l o p m e n t t o o l s a n d f e a t u r e s

nonvisual controls like datasets and timers. The diagram below shows some of the
principal classes that make up the VCL.

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Delphi forms. Because VCL
components are hooked into the IDE, you can use tools like the Form Designer to
develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL button control,
you don’t have to write code to handle Windows messages when the button is
clicked; you are responsible only for the application logic that executes in response to
the event.

Most versions of Delphi come with complete source code for the VCL. In addition to
supplementing the online documentation, the VCL source code provides invaluable
examples of Object Pascal programming techniques.

For more information...
See “Visual Component Library Reference” and “Creating Custom Components” in
the online Help.

Exception handling
Delphi’s error-handling is based on exceptions, which are special objects generated in
response to unanticipated input or faulty program execution. Exceptions can be
raised at both design time and runtime, and the VCL contains many exception classes
that are associated with specific error conditions. In your applications, you’ll want to
write exception handlers to deal gracefully with runtime errors. Exceptions can also be
a valuable debugging tool, since the class of an exception often provides a clue about
what caused it to be raised.

For more information...
See the entries for “Exception” and its specialized descendant classes in the online
VCL reference. Look up “exception handling” in the Help index.

TObject

TPersistentTStreamException

TComponent TStringsTGraphicTGraphicsObject

TControl TCommonDialogTMenuTDataSet

TWinControlTGraphicControl

TCustomControlTScrollingWinControl

TApplication

TComObject

TCollection

TField

TInterface

TCustomForm Most visual controls
inherit from TWinControl.

P r o g r a m m i n g w i t h D e l p h i 5-3

D e v e l o p m e n t t o o l s a n d f e a t u r e s

Database connectivity and utilities

Delphi and the VCL offer a variety of connectivity tools to simplify the development
of database applications. The Borland Database Engine (BDE) is a collection of
drivers that support many popular database formats, including dBASE, Paradox,
FoxPro, Access, and any ODBC data source. SQL Links drivers, available with some
versions of Delphi, support servers such as Oracle, Sybase, Informix, DB2, SQL
Server, and InterBase.

Delphi includes components that you can use to access data through InterBase
Express (IBX). IBX applications provide access to advanced InterBase features and
offer the highest performance component interface for InterBase 5.5 and later.

IBX is based on the custom data access Delphi component architecture, and is
integrated with the Data Module Designer. IBX is compatible with Delphi’s library of
data-aware components, and does not require the Borland Database Engine (BDE).

You can create database tables at design time in the Form Designer. First, create field
definitions using the Object Inspector, then right-click on the table component and
choose Create Table.

Some versions of Delphi include components to connect to databases using ActiveX
Data Objects (ADO). ADO is Microsoft’s high-level interface to any data source,
including relational and non-relational databases, email and file systems, text and
graphics, and custom business objects.

For more information...
See “Developing Database Applications” in the Developer’s Guide or online Help.

In addition, Delphi provides the following tools for database developers.

BDE Administrator
Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...
Start the BDE Administrator from the Delphi program group under the Windows
Start menu. Then choose Help|Contents.

SQL Explorer (Database Explorer)
The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...
From the Delphi main menu, choose Database|Explore to open the Explorer; then
press F1. Or search for “Database Explorer” in the main Help index.

5-4 Q u i c k S t a r t

K i n d s o f d e v e l o p m e n t p r o j e c t

Database Desktop
The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...
Start the Database Desktop from the Delphi program group under the Windows Start
menu. Then press F1.

Data Dictionary
The Data Dictionary provides a customizable storage area, independent of your
applications, where you can create extended field attribute sets that describe the
content and appearance of data. The Data Dictionary can reside on a remote server
for additional sharing of information.

For more information...
Search for “Data Dictionary” in the Help index.

Kinds of development project
You can use Delphi to write Windows GUI applications, console applications, service
applications, dynamic-link libraries (DLLs), packages (a special type of DLL used by
Delphi), and other programs.

Applications and servers

Delphi has features that make it easy to write distributed applications, including
client/server, multi-tiered, and Web-based systems. In addition to support for
standards like COM and a suite of Internet components, some versions of Delphi
provide extensive tools for CORBA development.

For more information...
See “Building applications, components, and libraries” and “Developing distributed
applications” in the Developer’s Guide or online Help.

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. Since a DLL contains sharable code or
resources, it is typically used by more than one application.

For more information...
Search for “DLLs” in the Help index.

P r o g r a m m i n g w i t h D e l p h i 5-5

K i n d s o f d e v e l o p m e n t p r o j e c t

Custom components and packages

A package is a special dynamic-link library used by Delphi applications, the IDE, or
both. While packages can be used in a variety of ways, their most common purpose is
the encapsulation Delphi components. In fact, all components installed in the IDE
must be compiled as packages.

The components that come with Delphi are preinstalled in the IDE and offer a range
of functionality that should be sufficient for most of your development needs. You
could program with Delphi for years without installing a new component, but you
may sometimes want to solve special problems or encapsulate particular kinds of
behavior that require custom components.

Custom components supplement the VCL while promoting code reuse and
consistency across applications. Many Delphi components are available through
third-party developers, and Delphi provides a New Component wizard that makes it
easy to create and install components on your own.

For more information...
See “Creating Custom Components” in the Developer’s Guide or online Help. Search
for “packages” in the Help index.

Frames

A frame (TFrame), like a form, is a container for other components. In some ways, a
frame is more like a customized component than a form. Frames can be saved on the
Component palette for easy reuse, and they can be nested within forms, other frames,
or other container objects.

After a frame is created and saved, it continues to function as a unit and to inherit
changes from the components (including other frames) it contains. When a frame is
embedded in another frame or form, it continues to inherit changes made to the
frame from which it derives.

For more information...
Search for “frames” and “TFrame” in the Help index.

COM and ActiveX

Delphi supports Microsoft’s COM (Component Object Model) standard and
provides wizards for easy creation of ActiveX controls. Sample ActiveX controls are
installed on the ActiveX page of the Component palette. Numerous COM server
components are provided on the Servers tab of the Component palette. You can use
these components as if they were VCL components. For example, you can place one
of the Microsoft Word components onto a form to bring up an instance of Microsoft
Word within an application interface.

For more information...
Search for “COM” and “ActiveX” in the Help index.

5-6 Q u i c k S t a r t

D e p l o y i n g a p p l i c a t i o n s

Type libraries
Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools. Delphi
provides a Type Library editor for creating and maintaining type libraries.

For more information...
Search for “type libraries” in the Help index.

Deploying applications
When you deploy an application, be sure to supply all the required files—including
executables, DLLs, packages, and BDE drivers—to your users. To make this process
easier, Delphi includes a special version of InstallShield Express, a popular tool for
developing installation utilities.

For more information...
Search for “deploying applications” in the Help index.

Internationalizing applications
Delphi offers many features for internationalizing and localizing applications.
Support for input method editors (IMEs) and extended character sets is provided
throughout the VCL, and tools like the Resource DLL wizard make it easy to prepare
a project for localization. To get the maximum benefit from these features, you need
to start thinking about internationalization requirements as early as possible in the
development process.

The Integrated Translation Environment (ITE), available in some versions of Delphi,
is a suite of tools for software localization and simultaneous development for
different locales. It is integrated with the IDE to let you manage multiple localized
versions of an application as part of a single project.

The ITE includes three tools:

• Translation Manager, a grid for viewing and editing translated resources

• Translation Repository, a sharable database for translations

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs

For more information...
Search for “international applications” and “ITE” in the Help index.

I n d e x I-1

A
Access 5-3
ActionList component 3-7
ActiveX 1-2, 5-5

installing controls 4-8
palette page 5-5

ActiveX Data Objects
(ADO) 5-3

Automation 5-1
Automation objects 1-2

B
BDE (Borland Database

Engine) 5-3
Administrator 3-6, 5-3
aliases 3-6, 5-3

buttons (VCL) 5-2

C
character sets

extended 5-6
charts 5-1
Class Completion 2-13
classes 3-3
Code Completion 2-12
Code editor 2-5 to 2-13

browsing 2-6
options 4-6

Code Explorer 2-7, 4-6
Code Insight 2-12
Code Parameters 2-12
code see source code
Code Templates 2-12
color

Code editor 4-6
forms 3-2

COM 1-2, 5-1, 5-4, 5-5
compiling 3-6
Component palette 2-3, 3-3, 5-2

customizing 4-7
component templates 4-8
components 2-3, 3-2, 3-3

arranging on the Component
palette 4-8

customizing 1-2, 4-8, 5-5
documentation 1-2
installing 4-8, 5-5
setting properties 2-4, 3-2

templates 4-8
third-party 4-8, 5-5
VCL hierarchy 5-2
writing 1-2, 4-8, 5-5

components see also Visual
Component Library (VCL)

console applications 5-4
context menus 2-2
controls

database 3-3, 3-5, 3-6, 5-3
nonvisual 3-3, 3-5, 5-2

CORBA 1-2, 5-1, 5-4
customization

Code editor 4-6
Component palette 4-4, 4-7
Delphi 4-1 to 4-9
desktop settings 4-5
Form Designer 4-6
Help 4-9
project options 4-5

D
Data Dictionary 5-4
Data Module Designer 2-9 to

2-10, 5-3
data modules 2-9 to 2-10
data-aware controls 3-6, 5-3
Database Desktop 5-4
Database Explorer 2-14, 5-3
databases 2-14 to 2-15

accessing 3-3, 3-4, 3-5, 3-6,
5-3

architecture of database
connection 3-6

controls 3-3, 3-5
report generation 5-1
tools and utilities 5-3

dataset components 3-6
DataSource component 3-5, 3-6
DB2 5-3
dBASE 5-3
DBGrid component 3-5
DBImage component 3-11
DBMemo component 3-12
DBText component 3-12
DCOM 1-2
debugging 2-13 to 2-14

arranging views and tool
windows 4-2

remote 2-14

decision support 5-1
default event handlers 3-14
default events 3-14, 3-15
default forms 4-5
default project options 2-10, 4-5
default projects 4-5
deploying applications 5-6
design time 3-2
desktop settings 4-5
developer support 1-3
.DFM files 2-6, 3-1
docking tool windows 4-1
documentation 1-1 to 1-3, 2-11

to 2-12
ordering 1-3

documentation see also Help
system

.DPR files 3-1
dynamic-link libraries

(DLLs) 5-4

E
editor see Code editor
Environment Options

dialog 2-10, 4-6
errors

compiler 2-12
exception handling 5-2

event handlers 2-5, 3-13 to 3-15
default 3-14

events 2-5, 3-13 to 3-15, 5-2
default 3-14, 3-15

Events page (Object
Inspector) 2-5

example program 3-1 to 3-15
exceptions 5-2

F
Font editor 3-13
fonts

Code editor 4-6
Form Designer 2-1

options 4-6
form files 2-6, 3-1
forms 2-3, 3-2

default 4-5
new 4-5

FoxPro 5-3
frames 5-5

Index

I-2 Q u i c k S t a r t

G
graphics, displaying 3-10
grid snap 4-6
grids (database) 3-5
GUIs, creating 2-3, 3-2

H
Help system

accessing 2-11 to 2-12
context-sensitive 2-11 to 2-12
customizing 1-2, 4-9
files 1-2

highlighting, syntax 4-6
.HLP files 1-2, 4-9
HTTP 1-2

I
IDE see integrated development

environment
ImageList component 3-7
images, displaying 3-10
IMEs 5-6
indentation, Code editor 4-6
Informix 5-3
input method editors 5-6
installation utilities 5-6
InstallShield Express 5-6
instance objects 3-3
integrated development

environment (IDE) 2-1 to 2-2,
5-1

customizing 4-1 to 4-9
InterBase 5-3

InterBase Express (IBX) 5-3
internationalization 5-6

K
keyboard shortcuts 2-2
keystroke mappings 4-6

L
localization 5-6

M
MainMenu component 3-8
marine life example 3-1 to 3-15
menu component see MainMenu

component
menus 2-2

configuring 4-4
context 2-2

messages, Windows 5-2
Microsoft Transaction Server

(MTS) 5-1
MTS 1-2
multithreading 5-1
multi-tiered applications 5-1

N
new features 1-1
New Items dialog (File|

New) 2-15, 4-5
newsgroups 1-3

O
Object Inspector 2-4 to 2-5, 3-2

overview 2-4
Object Pascal 1-2
Object Repository 2-15, 4-5
objects 3-3
ODBC 5-3
.OHP files 4-9
online Help

accessing 2-11 to 2-12
context-sensitive 2-11 to 2-12
customizing 1-2, 4-9
files 1-2

OpenHelp 1-2, 4-9
options

environment 2-10, 4-6
project 2-10, 4-5

Oracle 5-1, 5-3

P
packages 5-4, 5-5
Panel component 3-10
Paradox 5-3
.PAS files 3-1
pictures, displaying 3-10
Project Browser 2-8
project files 3-1
project groups 2-8
Project Manager 2-7
Project Options dialog 2-10, 4-5
projects 3-1

default 4-5
new 4-5

properties
setting 2-4, 3-2

R
remote debugging 2-14
reports 5-1
Resource DLL wizard 5-6

right-click menus 2-2
Run button 3-6
Run menu 3-6
running applications 3-6

S
service applications 5-4
shortcuts (keyboard) 2-2
sockets 1-2
source code

files 3-1
help in writing 2-12 to 2-13
VCL 5-2

SQL 5-1
SQL Explorer 2-14, 5-3
SQL Links 5-3
SQL Server 5-3
starting Delphi 2-1
StatusBar component 3-4
support services 1-3
Sybase 5-3
syntax highlighting 4-6

T
tabbed windows, configuring in

the IDE 4-3
Table component 3-3, 3-6
tabs, Code editor 4-6
TComponent 5-2
technical support 1-3
templates 2-15
templates see also Code

Templates, component
templates

TMenuItem class 3-14
To-do Lists 2-9
tool windows

docking 4-1
ToolBar component 3-9
toolbars 2-2

configuring 4-4
Tooltip Expression

Evaluation 2-12
Tooltip Symbol Insight 2-12
tutorial 3-1 to 3-15
two-way tools 2-2
type libraries 1-2, 5-6
Type Library editor 5-6
typographic conventions 1-4

U
unit files 3-1, 4-8
user interfaces, creating 2-3, 3-2

I n d e x I-3

V
versions of Delphi 5-1
Visual Component Library

(VCL) 5-1
Component palette 4-7
diagram 5-2
documentation 1-2
source code 5-2

W
Web site (Delphi support) 1-3
windows

docking 4-1
Windows (operating

system) 1-1
messages 5-2

WinHelp 4-9
wizards 2-15, 4-5, 5-5

Y
Y2K issues 1-3
year 2000 issues 1-3

I-4 Q u i c k S t a r t

	Quick Start
	Contents
	Ch 1: Introduction
	What is Delphi?
	Where to find information
	Online Help
	Printed documentation
	Developer support services

	Typographic conventions

	Ch 2: A tour of the environment
	Starting Delphi
	Using toolbars, menus, and keyboard shortcuts
	Placing components on a form
	Changing component appearance and behavior
	Working with events

	Viewing and editing code
	Viewing form files
	Browsing with the editor
	Exploring code

	Managing projects
	Browsing project elements and structure
	Creating to-do lists
	Designing data modules
	Setting project and environment options
	Getting help
	Help with coding
	Class Completion

	Debugging applications
	Exploring databases
	Templates and the Object Repository

	Ch 3: Your first application—a brief tutorial
	Starting a new application
	Setting property values
	Adding objects to the form
	Connecting to a database
	Adding support for a menu and a toolbar
	Adding a menu
	Adding a toolbar
	Displaying images
	Adding text and memo objects
	Writing an event handler

	Ch 4: Customizing the environment
	Organizing your work area
	Docking tool windows
	Arranging menus and toolbars

	Customizing desktop settings
	Setting default project options
	Specifying default projects and forms
	Setting tool preferences
	Customizing the Code editor
	Customizing the Form Designer
	Setting Explorer options

	Customizing the Component palette
	Arranging the Component palette
	Installing components
	Adding ActiveX controls

	Creating component templates

	Customizing the Help system

	Ch 5: Programming with Delphi
	Development tools and features
	Using the VCL
	Exception handling

	Database connectivity and utilities
	BDE Administrator
	SQL Explorer (Database Explorer)
	Database Desktop
	Data Dictionary

	Kinds of development project
	Applications and servers
	DLLs
	Custom components and packages
	Frames
	COM and ActiveX
	Type libraries

	Deploying applications
	Internationalizing applications

	Index
	A - F
	G - U
	V - Z

