
The
Introductory
Version

case 4 0/ /case/ /4 0

2

The Introductory Version

Welcome to the world of case/4/0. Is professional soft-
ware development your daily business? Then take a look at
our CASE-Tool case/4/0. We have developed it for you.

Discover case/4/0 ...

... and convince yourself just how simple and effective this
tool is. Take a good look at every aspect. Try structuring,
animating, printing and generating—from Analysis
through to source code.

If you want to know more about case/4/0 ...

... familiarize yourself with the overview of the product and
comprehensive information on the following pages, with
which we hope to stimulate your journey through case/4/0.

case/4/0—Analysis, Design and

Programming Tools for LAN

Operation

Seite 4

Ready for major projects

Page 5

Central Repository for Multi-User

Operation

Page 5

... a firm foundation:

Structured Methods in case/4/0

Page 6

System Analysis Highlights

Page 7

System Design Highlights

Page 13

Integrated Version and

Configuration Management

Page 18

Expanding case/4/0 as needed

Seite 19

... great advantages for your

projects

Page 21

case 4 0/ /case/ /4 0

3

This document is protected by copyright. No part of this document may be

reproduced or transmitted in any form or by any means, electronic or
mechanical, including photo-copying, recording, or information storage and

retrieval systems, without the express written permission of microTOOL GmbH.

© microTOOL GmbH. Berlin 1997. All rights reserved.

The reproduction of tradenames, product names, trademarks, etc., in this

brochure does not entitle to their free use, in the sense of trade mark acts, even

if they are not specially marked as such.
Companies, names and all other data used in our examples are fictitious.

n Copyright

4
A first look

at the Main Menu and Toolbar

case/4/0—Analysis, Design and Programming
Tools for LAN Operation

What is case/4/0? What can it do for you? A look at the
menu provides an answer to this question:
case/4/0 integrates

Tools for System Analysis
Tools for System Design and
A Publisher for the creation of target group documentation

Whether you are developing commercial or technical applica-
tions, regardless of whether you are specifically concerned with
dialog processing, database communication or real-time appli-
cations, case/4/0 offers you comprehensive tool support. You
can enlarge the scope of possible uses even further through
your own add-ins and by using the integrated Script language.
From the toolbar you can see that case/4/0 offers a number
of graphical outlines for System Analysis and System Design.
This is for good reason: case/4/0 is conceived for task-share
projects in which complexity should be reduced, where pro-
gress is made according to plan and architectural decisions are
reached consciously. Integrated Version and Configuration
Managers enable the effective steering of the software engi-
neering process—especially in large IT organizations.
case/4/0 is ready for any project size: The model-driven ap-
proach that case/4/0 consequently follows makes sure of
that. The concentrated, graphically structured knowledge in
the models is actively employed by case/4/0 for quality con-
trol and for the generation of results that lead you on toward
your goal.

5

Ready for major projects

From systems analysis to programming, from
data administration to quality control—the spec-
trum of case/4/0 uses is broad indeed. The
case/4/0 Manager in case/4/0 assists in the
unambiguous definition and delineation of the
tasks and rights of project members which is
especially necessary in large projects.
Practically speaking, it works like this: Every
case/4/0 user must register in the login dialog
for the system to be edited. The case/4/0 ad-
ministrator then defines which results a user can
edit by means of an administration component.
It helps the administrator define individual users and user
groups for each case/4/0 system. Each group or individual
user can be given individual rights to edit certain types of re-
sults. The distribution of rights can be quite complex, in that
the states that the results pass through in the process of the
software life cycle are taken into consideration as rights are
granted.
The whole procedure can be done by simple Drag & Drop:
Users or user groups are dragged to the states for which they
should have rights. Detailed editing rights can be "clicked to-
gether" in a dialog field.
The result for the user looks like this: All menu functions or
command buttons which start functions the user is not entitled
to are disabled and cannot be selected.

Central Repository for Multi-User Operation

As soon as you begin constructing a model, case/4/0 auto-
matically makes sure that your results fit in with those from all
other project members without contradictions. This is possible
because case/4/0 was conceived especially for multi-user-
operation. It includes an integrated LAN-Repository which ac-
tively secures the consistency of all the results.

case/4/0 includes three sample systems for you to

edit as you choose:

Choose EASY_C, if you are interested in developing

with Microsoft C/C++, Microsoft Foundation Class

Library (MFC) and ODBC-Interface, EASY_VB, if you

develop Microsoft Visual Basic applications, and

EASY_COB, if you would like to follow the develop-

ment of a Micro Focus COBOL application with Micro

Focus Dialog System.

The results available for you to edit depend on the

login ID you use. In the sample system, for example,

the project leader Richard Leyken (login: RL) and the

data administrator Gunnar Holl (login: GH) did the

modeling. Go ahead and step into their roles if you

want to see how the effects of user administration

feel. In order to follow all the work steps shown

here, sign in as “Administrator”. You don’t need a

password to edit the system.

Secure Multi-User Operation

6

Open architecture—flexible interfaces

case/4/0 conforms flexibly to the most widely varying forms
of project organization. case/4/0 is componentware, as de-
fined by Microsoft COM. This means that a part of the internal
architecture is published in the form of exposed classes and is
described in a type library. case/4/0 is thereby open for user-
specific, object-based communication with other COM-ready
tools.
Additionally, the user can access the integrated LAN repository
via a C-programmer interface and case/4/0’s own script lan-
guage—for example in order to evaluate development results
(System/Evaluate). We will show the opportunities for need-
based configuration presented by open architecture in an ex-
ample later on.
By the way: besides ensuring consistency, case/4/0 also guar-
antees the formal correctness of your results, because it has ...

... a firm foundation: Structured Methods in
case/4/0

case/4/0 offers two mutually coordinated methods for Sys-
tem Analysis and System Design. These combine the well-
tried concepts of

Structured Analysis from DeMarco with Real-Time Extensions
from Ward and Mellor,
Entity Analysis from Chen,
Structured Systems Design based on Page-Jones and
Yourdon,
Relational Data Modeling from Codd

into a continual process. Strong practical impulses have lead to
continuous development updates of the structured concepts.
Therefore, for application development in C, COBOL or Visual
Basic on relational data bases they are, now more than ever,
the ideal structuring aid. They are perfect for planning large
projects—without strategic risk.
With the help of its script language, case/4/0 can also be
programmed for other target environments with no problems.

Central Repository

The case/4/0 repository guarantees secure multi-

user operation. With its Import and Export func-

tions, case/4/0 supports the division of a system into

parts, as well as the logically consistent integration

of decentralized engineering results.

7 System Analysis Highlights

System Analysis Highlights

What does System Analysis mean in case/4/0? Let’s take a
quick glance at the menu element of the same name. Func-
tions, data and behavior of an application system are modeled
from a problem domain point of view by the graphical System
Analysis tools. For this purpose, case/4/0 offers five diagram
types:

The Function Structure: a simple tree diagram for the
functional decomposition of a system,
The Information Flow: a data flow diagram extended by
the presentation of control and material flows,
The Data Structure: it structures data hierarchically and
describes views of entity types,
The Entity Relationship Model (ER Model): it illustrates
data objects and their relationships,
The Enterprise Data Model: it offers graphic editing func-
tions, navigation and zoom aids in order to integrate entity
relationship models into a complete model without redun-
dancy.

Data, event and material catalogs complement the graphical
models by means of formal and textual descriptions.
What the menu doesn’t show you is that case/4/0 provides
three further tool components when developing information
flows:

The State Transition Diagram: for system control specifica-
tion,
A Dialog Designer: for the graphical design of the user
interfaces,

 A syntax and context sensitive Editor: for the description of
the so-called transformation behavior, i.e. the principle work-
ing process of the processing functions.

Choosing EASY_C,

EASY_VB or EASY_COB

lands you in the middle of a

project team’s work. The

team has the task of im-

proving the processing order

of the—fictitious, of

course—”Easy Furniture

Company”. Some results

are already available, so

that you have at least one example of every possible

type of systems analysis results.

The case/4/0 Online Help can answer your ques-

tions on how to use the tool. You can learn more

about the Help under the question mark in the main

menu.

8
System Analysis Highlights:

The Function Structure

Once the functionality, control and user interface of a system
have been structured from a problem domain point of view,
then the organization of the specified enterprise processes can
be dynamically simulated and verified. case/4/0 supplies you
with a true to life impression of the new system under the
menu point Animation.
With the aid of System Analysis case/4/0 offers you a system
specification, which

consists, in the sense of modularization, of components with
tight functional binding and loose data coupling—a neces-
sary requirement for easy maintenance of a system,
already works, that is to say it describes the organizational
control of the functions found from a problem domain point
of view,
establishes the redundancy-free, logical order of data and
thereby the strategic potential of the new system.

The Function Structure

A function structure provides a structured overview of all of the
problem domain functions in a system. With case/4/0 you are
able to distinguish between several function types within a
function structure because...

... control, presentation, processing—function does
not equal function

case/4/0 knows:
Processing functions (light yellow): these change the contents
or structure of data or material.
Dialog functions (green): these give the future users of the
system the chance to intervene in the system process by
means of menus and dialog boxes.
Control functions (yellow): these coordinate the activities of the
processing and dialog functions and react to events in the sys-
tem.
The reuse of system components can be planned and modeled
with Recurrent Structures (white).

If you choose Function Structure, then you can

select a diagram to edit from the list of all dia-

grams of this type available or set up a new one.

In the sample system you will find the EASY Furni-

ture Company's function structure.

Part: Separate Subtree

Block: Structuring Aid

Condition

Action: Link elements

This is the toolbar for editing a function structure:

Function

Recurrent Structure

9
System Analysis Highlights:

The Information Flow

For the software developer, the function structure marks the
path through the system specifications, for the project manager
it forms the basis of task distribution, project planning, and
project control.

The Information Flow

Data Flow Charts are the most flexible and best-loved element
in Structured Analysis. There’s a good reason for this: their
notation is very simple and they are extremely suited for com-
munications—even for the “method laity”. Therefore it is no
great surprise that event-oriented extensions to the information
flows were suggested by various authors at the end of the
eighties, so that they could be implemented even further—for
example for the specification of real-time applications.

Structuring a Business Process clearly

We have gone one step further and have integrated the devel-
opment of dialog applications with graphical user interfaces in
the world of structured methods. Besides the exchange of
data, material and events between functions, interfaces and
stores, case/4/0 also specifies the “inner life” of functions.
Processing functions can be divided into sub-functions for
which the interactions are illustrated in an information flow.
The consistency of the resulting information flow hierarchy is
taken care of by case/4/0 top down.
Dialog functions are specified via the graphic design of the
corresponding dialog fields and menus. Furthermore, the defi-
nition of callbacks determines how the dialog function should
react to the user’s actions. This is taken care of by case/4/0’s
own Dialog Designer, initially unconnected to the future sys-
tem.
Control functions are specified in state transition diagrams.
They illustrate how control functions react to events dependent
on the current state of the system.

If you click on an element with the right mouse

button, it tells you what you can do with it. Try it

out: Click on Supply Furniture and choose Display

Information Flow in order to branch off into the

information flow for the function. A double click on

Supply Furniture, by the way, would have the same

effect.

There’s a state transition diagram for the function

Control Furniture Supply. Go ahead and take a look

at it.

10
System Analysis Highlights:

The Entity Relationship Model

If you want to set up a new transition, then the

name of the condition can only be the name of an

event which in the information flow is connected to

the control with an incoming arrow. This type of

dependency between diagrams is taken care of by

case/4/0 automatically.

In the Sell Furniture information flow you will find an

inconspicuous, grey box—the Order entity type. If you

click on this with the right hand mouse key, it shows

you the path to the ER Model from which this entity

type originates.

The notation of the state transition diagram is quite simple:
oval elements represent the system states and arrows repre-
sent the transitions. A transition is labelled with the condition
which must be fulfilled in order for the transition to take place.
Under it, the actions carried out by a system in order to reach
the new state are entered.

The Entity Relationship Model

Information flows show which data is exchanged, processed or
created by the functions of a system. Data from the problem
domain must first be structured before detailed information
flows can be created. case/4/0 supplies you with the entity
relationship model (ER Model for short) to take over the task
of semantic data modeling. The name "entity relationship
model" expresses exactly the elements which are contained in
a diagram of this type, namely:
n Entity types, symbolized by rectangles. These represent col-

lections of similar problem domain objects and consist of
attributes which refer to uniquely defined data elements in
the case/4/0 data catalog,

n Relationships, symbolized by diamonds and connected to
entity types, represent the problem domain relationships of
the entity types. They are labeled with their cardinality and
semantic type,

n Associative entity types, i.e. elements, which can be inter-
preted as relationships on the one hand, but also as entity
types on the other, because they possess self-describing
characteristics, i.e. attributes. They are represented by rect-
angles which are connected to diamonds by arrows,

n Sub and super relationships which illustrate specialization or
generalization of entity types and which can be recognized
by a blue triangle.

11
System Analysis Highlights:
Animating System Behavior

Entity types from the ER Models can be inserted in information
flows as data stores. Later updates to an entity type are consis-
tently passed on by case/4/0 to all information flows af-
fected.
How do you structure an ER Model? In case/4/0, we suggest
that you orient your ER Models to the subject matter. Redun-
dancies between ER Models are completely permissible, and
are automatically taken care of by case/4/0. If you want to
know in what problem domain relationships an entity-type is
involved, in all ER Models, then you can generate a context ER
Model which shows this very aspect.
All entity types at once? No problem for case/4/0. ER Models
can be integrated, redundancy free, into an Enterprise Data
Model (EDM).
The design of ER Models in case/4/0 entailsof not only con-
ceptual clarity, but also a very practical advantage for software
design and implementation: From an ER Model you can derive
a relational data base design in the form of a relational model
at the click of the mouse. (We will deal with relational models
comprehensively later). And from it—once again, at the push
of a button—you can generate SQL-Data Base description.

Your Specification Learns to Operate

Once system control, user interfaces and data storage are cor-
rectly specified within the context of an information flow as
concretely as shown above, then it is just a small step to the
Animation of the system behavior. By this we mean the
systematic run-through of the business processes which are
described by one or more information flows.
But there is still something left to do! First of all the following
question must be answered: How do processing functions prin-
cipally react to input data, events or incoming material? The
answer to this is given by the definition of the transformation
behavior of the elementary processing functions in the informa-

Go ahead and try out animation! The menu item for

it is in the main menu under System Analysis.

This is where the Order entity type comes from: The

Order Transaction ER Model. With the Edit Attributes

command you can see what’s behind the box.

12

tion flow. In the form of simplified rules and with active support
from a context and syntax sensitive editor, the inputs from
which the function generates its outputs can determined. In
the animation, the transformation rules appear in place of the
detailed algorithmic logic of the functions. If this requirement is
met, then case/4/0 only needs information concerning which
scenario you would like to dynamically examine in order to
start. A scenario consists of one or more information flows
which, taken together, describe a business procedure, and is
extended by outline conditions. An outline condition is, for
example, the number of external events which should happen
in the process of the business procedure.
And this is how the animation looks: For the purpose of dem-
onstrating a business procedure, case/4/0 marks the use of
information paths, and the activation of functions in informa-
tion flows by moving colored highlighting. Even more, if a dia-
log function is activated during the process of an animation,
then the user interface designed for it appears on the screen.
Now you can intervene in the business process—just as the
user will later—by clicking on a dialog element, for example.
In the information flow you can then follow the highlighting
and see which functions are set in motion by your actions. If
another dialog function is activated, then a new dialog box will
appear on the screen. The business process can therefore be
followed abstractly by information flows in the form of moving
highlights and concretely, as dialog flow.
If the animation was successful, then the result of the System
Analysis with case/4/0 is a complete and functional specifica-
tion from the problem domain point of view. An optimal basis
for software design is therefore created by case/4/0.

We suggest that you animate the scenario Furniture

Sales and Deliveries. For this scenario, the EASY

Furniture Company project team has already set up

the outline conditions. With Store Values for ex-

ample, it has defined the Furniture Warehouse as

having 100 pieces of furniture (material stores)

available. Select Start to begin the animation.

The animation runs automatically with Start. Don’t

forget to step into the shoes of the future user.

case/4/0 will wait for your reaction when a dialog

field is shown.

System Analysis Highlights:
Animating System Behavior

13

System Design Highlights

System Design with case/4/0 means
Large-scale design, i.e. data base design and the develop-
ment of software architecture based on the results of System
Analysis,
Small-scale design, i.e. detailed specification of the algo-
rithms of all complex functions as a precondition for imple-
mentation.

For these steps—as can be seen in a glance at the main menu
item System Design—case/4/0 offers three types of dia-
grams:

The Module Structure: a tree diagram that, on the one
hand, presents a graphical contents list for a module, and on
the other, acts as a sort of "container" for the source code.
Who calls who—this aspect is also displayed by module
structures,
The Type Structure: the technical counterpart to the logical
data structure, and

n The Relational Model, for the design of the relational data
base.

A fourth type of system design diagram is also accessible, not
from the main menu, but via module structures:
n The Implementation Tree: it illustrates the algorithmic logic

of complex functions of the module structure in the form of
graphical pseudo code.

From these graphic results, the standard case/4/0 package
generates code for the following target technologies:
n Micro Focus COBOL with Micro Focus dialog system and

Embedded SQL for IBM Database/2, as well as
n Microsoft C/C++ with Microsoft Foundation Class Library

and Microsoft ODBC-Interface,
n Microsoft Visual Basic with forms and recordsets.
That won’t work with your target environment? With your own
Generating Functions, found under the menu item of the
same name, you can expand the generating capacity of
case/4/0 to other target systems.
Data Bases are generated on the basis of relational models.

System Design Highlights

Before you check out what’s hiding behind these

menu items in detail, let case/4/0 do some hard

work and generate the design results mentioned in

the menu from the System Analysis results.

Because ...

14

System Design’s primary objective is to transfer the results of
analysis into software design without loss of problem domain
knowledge and architectural characteristics. To reach this
objective, case/4/0 offers three different procedure alterna-
tives:
n Explicit module development: This means setting up module

structures and transfering the required functions and data
from system analysis to your module design, with the help of
case/4/0.

n Automated recurrent design steps: If you realize that you
often require modules of a similar structure, then you should
design a generally valid setup—we call this a Module Tem-
plate—for these steps. Besides the graphical structure, a
module template contains so-called Generating functions,
which are formulated in a simple script language and give
you a chance to influence the results of code generation.
case/4/0 creates concrete module structures from module
templates. To do this you only have to inform the tool as to
which up-to-date results should be used in the module struc-
ture. Module templates are therefore a suitable instrument
for illustrating and carrying out enterprise-specific structure
and programming standards. This is due to the fact that
case/4/0 takes care of compliance to them on its own.

n Leave the work of modularization to case/4/0 and go ...

... from Analysis to Design by mouse click

The case/4/0 tool component which relieves you of the de-
sign work is called the Design Assistant. The Design Assistant
generates module structures from the information flows of
System Analysis, relational models with attributes and primary
and foreign keys from ER Models, and type structures from
data structures.
Two things are required to design software "at the push of a
button":

The Design Assistant

... Software design by mouseclick is definitely worth

trying out. Best of all with your own piece of "Sys-

tem Analysis". We suggest:

Step 1: Expand the EASY Furniture Company func-

tion structure by adding a third function, Reserve

Furniture to Sell Furniture and Hand-Out Furniture.

Then divide this function in a dialog function Adver-

tise Article and a processing function Reserve Article.

Finally, connect Reserve Furniture with Self Pick-up

Furniture Sales.

Step 2: Set up a new ER Model with the name

Reservations, that looks something like this:

15

n a fundamental architectural concept for structuring a soft-
ware system,

n detailed construction plans for software structures, i.e. mod-
ule templates.

The Design Assistant works on the basis of a distributable layer
architecture, which can also be used for the development of
Client/Server applications. It is equipped with standard tem-
plates for the user interface, processing and data access mod-
ules, which can be modified, extended or replaced specific to
your application at any time.
This is how the Design Assistant works: Each entity type in the
information flow is checked as to whether it has already been
transferred into a relation, i.e. the design of a data base table.
If this is not the case then the Design Assistant makes up for
this design step and automatically creates data base designs
from the ER Models in the form of relational models. After this
preparation, the Design Assistant is ready to generate one
module structure for each entity type for access to the corre-
sponding relation. All data structures which describe the input/
output data of the information flow functions are transferred
into type structures, which are subsequently used by the De-
sign Assistant to create data definitions in module structures.
All processing functions which appear in an information flow
are summarized in the module structure of one processing
module. For each dialog function, one module structure of an
interface module is created. Finally, the relationships used be-
tween interface, processing and access modules are derived
from the information flow and illustrated in the module struc-
tures.
Come on, let’s take a look at some of the results generated.

The Design Assistant

Step 3: Click in the Function Structure on Reserve

Furniture with the right mouse button, in order to

open the function’s context menu. Choose Show

Information flow and create this diagram:

Customer is an external interface, Article and Reser-

vation are the entity types of the ER Model you just

set up.

Make a dialog field for Show Article and determine

(with Assign/Callback) for the Reserve control but-

ton, that the user’s click will cause Reserve Article to

be carried out. If you like, you can add sample val-

ues as shown above. That finishes your piece of

System Analysis. Now leave the software design to

case/4/0.

16

The Relational Model

The relational model serves to design a data base. From its
elements—the relations—case/4/0 generates SQL table
definitions. Remember the menu point Data Base in the Sys-
tem Design menu?
Relations can be described by their attributes, primary keys and
indices. Apart from the rectangular symbols for relations, the
relational model also shows arrows. These represent the rela-
tionships between the relations which should be used as access
paths. These are described by foreign keys.
By the way, you can also derive a relational model from an ER
Model directly—without the Design Assistant. And what if
there are later corrections to be made to an entity type? No
problem! A mutual update of the relational and ER Models can
be made at any time.

The Module Structure

Module structures make the design of software architecture
into a conscious, creative process. A module structure is the
graphical presentation of a C-Module or of a COBOL- or Visual
Basic-Program and shows:
n each function or dataset which realize a common problem

domain or technical task or which should be coupled to-
gether, and

n all foreign modules or called programs which are used in the
module.

A function in a C-module structure or a section in a COBOL-
module structure can be traced back from a function structure
to a problem domain function. A special role is played here by
the dialog functions. These are denoted by the abbreviation
"Dlg". If they have been taken over from a function structure,
then they will bring the design of the user interface created in
System Analysis with them. Of course, menus and dialog boxes
can also be worked on within a module structure. User inter-
face elements which the case/4/0 dialog designer does not
contain as standard can be included in this process.

System Design Highlights:
The Relational Model and the Module Structure

Step 4: In the Information Flow’s context menu you

will find the menu item Design Assistant.

Step 5: The Design Assistant requires you to give it

the blueprints it should use for the module design.

Select the Templates control button.

Once the templates are defined (like for Microsoft

C above), the Design Assistant shows what it’s

going to generate: a relational model Reservations,

a processing module Reserve Furniture, a user

interface module Advertise Article, two access

modules ... see for yourself.

Step 6: When you end the dialog with the Design

Assistant by clicking OK, it creates this Relational

Model, among other things:

17

If you are working with MFC-Interface Classes or with the Mi-
cro Focus Dialog System, then you no longer need to code the
interface—this is done automatically by case/4/0. The key to
code generation—and not only for user interfaces—are the
generating functions, which can be assigned to the elements
of a module structure.

Let case/4/0 do the programming for you ...

... by developing reusable generating functions for all common
recurrent tasks within a software system and assigning them to
the elements of a module template or module structure. As
already mentioned, generating functions are formulated in
case/4/0’s own generating language. This BASIC-like lan-
guage consists of simple constructs and accesses to the reposi-
tory, with which case/4/0 ascertains the knowledge required
in the current processing context. As opposed to macro expan-
sion, case/4/0 does not insert a static piece of code into the
source, but carries out a generating function whenever you
wish to see or work on the code in a module structure. In do-
ing this, case/4/0 reverts back to the current repository con-
tents so that all updates in the specification automatically take
effect in code.
If you use generating functions in module templates then you
will receive complete construction plans for modules. case/4/0
is supplied with a whole set of these. Their effect: Design and
programming of standard tasks such as interface treatment or
data access is taken over completely by case/4/0.
Where the development of complex processing logic is con-
cerned, then the responsibility is, as before, yours. First of all
you can specify processing functions from module structures
with graphical pseudo code in the form of implementation
trees to be filled with code subsequently. It is thus not neces-
sary to exit case/4/0 to write code. The objective of this pro-
cedure is to link the specification and code so closely that they
both stay up-to-date and consistent with each other for the

System Design Highlights: The Code

The Design Assistant has done even more for you

and generated a large part of the source code. Let's

take a look, for example, at the newly created

Module Structure Advertise Article. Use the menu

function Code to look behind the boxes of this dia-

gram and find out what case/4/0 has done for you.

Or create a Listing with the menu function of the

same name, which you find in the context menu for

the Module Structure’s header box.

18

whole software life cycle. Code updates outside of case/4/0
are also possible and can be subsequently taken over into the
tool. Maintenance in case/4/0 therefore always builds upon
the up-to-date, easily readable, graphical documentation.

Integrated Version and Configuration Man-
agement

Clarity and understandability are of central importance in daily
work on a project.
With its Version and Configuration Managers, case/4/0
offers you two elements that, if rigorously followed, lead to
contribute significantly to the success in the software devel-
opment process.

Versioning the Results

In case/4/0, both diagrams, such as ER Models or module
structures, as well as results without graphic representation,
such as data elements or collections of generating func-
tions, can be versioned. A version is a snapshot of the cur-
rent development state and cannot be changed later.
case/4/0 makes the versioned results available in a new
system separately, if need be. Should an older version be
further developed in the context of other results, which may
have been created later, it is necessary to make sure that
all the results fit together without contradiction. The import
function in case/4/0, that brings together the results, can
take over this task for you.

Making Configurations

By "configuration" we mean a user-defined part of a case/4/0
system. When it is set up, it only receives a name. Later, at
any time you choose, you can assign diagrams or other results
from the current case/4/0 system to it. A configuration serves
to collect results which together represent the building blocks
of a system or milestones achieved. If the results collected in a

Version and Configuration Management

This is what version management looks like:

If you want to discard the current state of results and

replace it in the process of development, with an

earlier version, then you just have to activate the

desired version with the function Restore.

Go ahead and give it a try!

19

configuration have reached a state of development that you
wish to hold on to, then you can “freeze” a configuration with
a mouseclick. This process is similar to versioning single results:
A frozen configuration cannot be edited. It maintains its ele-
ments’ current state of development.
case/4/0 makes sure that the frozen partial system is inter-
nally consistent, that it does not contain, for example, refer-
ences to a void.
The import function in case/4/0 once again takes care of the
consistent combination of a recreated
configuration with the current devel-
opment results.

Expanding case/4/0 as
needed

You’ve gotten a first glimpse of
case/4/0’s capabilities. We would
also like to show you how to expand
case/4/0’s functionality according
to your indiviuell needs by the way
of add-ins. You have two options:
n You use the open architecture of

case/4/0 and expand the set of
functions through add-ins you
have developed yourself, or

n You lean back on the add-ins offered by microTOOL ...

... for Example, with Reverse
Engineering for COBOL and PL/1

Many of the COBOL or PL/1 systems in use today require a
major service commitment. The decision to improve the inter-
nal implementation while leaving external functionalities un-
changed is often unavoidable.
A requirement for cleaning and reorganizing legacies is the
"rediscovery" of the original software design on the basis of
the existing source code. This step is supported by the Reverse

You come to configuration management by activat-

ing the function of the same name in the System

menu.

Version and Configuration Management

If a frozen configuration should be restored to the

development state, then the user doesn’t have to do

any more than tell case/4/0 to recreate the con-

figuration. All results of a configuration are then

made available for editing with a new case/4/0

system.

20

Engineering functions available for case/4/0 as add-ins. They
discover the structure of the programs and produce clear
graphic documentation in case/4/0, which makes it easier to
understand the programs and their restructuring. We show you
how this works in a COBOL example.
The add-in for COBOL Reverse Engineering has a parser which
analyzes COBOL programs and copy elements. Its use requires
syntactically correct code. After analyzing COBOL programs
and copy elements the following elements are created and
deposited in the case/4/0 repository:
n Module structures with sections/paragraphs, variables, type

structure references and references to the programs called,
n Type structures with data groups and datafields, repeat

groups and exclusive alternatives for redefined data,
n Data elements in the data catalog with formatting informa-

tions, default values, and enumeration sets.
The COBOL source code is also taken up into the case/4/0
repository and assigned to the graphic elements which were
created. The result is a clear graphic description of the COBOL
programs, which is mechanically connected to the source
code.
Results which were developed in case/4/0 are not formally
different from those created by the add-in. This means that the
many evaluative functions that case/4/0 offers for quality
control are also available for reverse-engineering results. The
editing and restructuring of modules and type structures are
not in any way differentiated from primary software
engineering in case/4/0. An add-in for Reverse Engineering is
available for SQL, in addition to the COBOL and PL/1 add-in.

From Analysis to Maintenance:
A well-travelled Road in case/4/0

This is where our quick tour through case/4/0 ends. We
haven’t been able to present anywhere near all the functions
in this short piece. There is much more to discover, but also
one thing to remember:

case/4/0 means ...

Add-Ins

Regardless of whether you extend case/4/0 with

ready-made add-Ins or with your own, the Add-In

Manager (which, incidentally, is itself an add-In)

makes sure that you work on a single interface

consistently. You can use it to integrate new tool

functions in case/4/0.

21 Great Advantages for your Projects

microTOOL GmbH

Voltastrasse 5
D-13355 Berlin

Phone: (+49 30) 467 0860
Fax: (+49 30) 464 4714
e-Mail: info@microTOOL.de

microTOOL Sp. z o.o.

ul. Wolodyjowskiego 64
PL-02-724 Warszawa

Phone: (+48 22) 648 32 99
Fax: (+48 22) 43 81 01
e-Mail: info@microTOOL.com.pl

... great advantages for your projects

Because during system analysis, case/4/0’s graphic methods
lead to better communication of all participants, and thereby
to quick progress in the project. They entice higher precision in
the problem domain field and give you strategic security be-
yond the boundaries of a single project. The verification of the
system behavior, before a single line of code is written, brings
the assurance that what is conceived of will also function. Soft-
ware design and implementation with case/4/0 mean stan-
dardization of the results and palpable reduction in the amount
of effort required, measurable at the latest by the number of
statements generated.

Convince yourself that case/4/0 delivers your project every-
thing promised by this quick tour. We would be glad to discuss
the development of an enterprise-specific case/4/0 imple-
mentation with you.
Just give us a call:

One more thing that you should definitely try out:

How to create and update for example, job specifi-

cations by using Publish with OLE and Microsoft

Word.

	case/4/0 -The Introductory Version
	Discover case/4/0 ...
	If you want to know more about case/4/0 ...

	case/4/0 - Analysis, Design and Programming Tools for LAN Operation
	Ready for major projects
	Central Repository for Multi-User Operation
	Open architecture - flexible interfaces

	... a firm foundation: Structured Method in case/4/0
	System Analysis Highlights
	The Function structure
	The Information Flow
	The Entity Relationship Model
	Your Specification Learns to Operate

	System Design Highlights
	From Analysis to Design by mouse click
	The Module Structure
	Let case/4/0 do the programming for you ...

	Integrated Version and Configuration Management
	Expanding case/4/0 as needed
	... for Example, with Reverse Engineering for COBOL and PL/1

	... great advantages for your projects

