
Teleport Exec™
 Version 1.29

Interface and Specifications Copyright © 1997-2001 Tennyson Maxwell Information Systems, Inc.

Teleport Exec is a multithreaded Win32 executable program that performs all the file-retrieving, Internet-
exploring, HTML parsing and relinking functions of the Teleport Pro™ commercial webspider— except
that Teleport Exec is run and configured entirely from the command-line, and optionally by response files.
Teleport Exec provides a complete programmatic interface to all of the functions and capabilities of
Teleport Pro, as well as extra reporting functions not available through Teleport Pro. Communication
with the calling process is handled via the command-line, response files, system-wide progress messages
broadcast via Windows™ , and end-of-session report and log files generated by Teleport Exec.

Teleport Exec/VLX™ (Very Large eXploration) is a modified version of Teleport Exec that is capable of
handling up to 40 million addresses in a single project database. The API for Teleport Exec/VLX is
identical to that of Teleport Exec; the only difference between the programs is the larger database capacity
of the VLX spider engine. For further information regarding memory requirements and usage of Teleport
Exec/VLX, please consult the readme document accompanying that program.

Contents Page

Terms and Lexical Conventions Used in this Document..2
Command-line Arguments and Response Files..3

a. The Response File Format ...3
b. Switches for Adding Addresses and Setting Address Properties ...4
c. Switches for Setting Project Properties...6
d. Switches for Running, Relinking, and Reporting on Projects ...12

Progress Messages ..16
End-of-Session Report and Log...19

a. The End-of-Session Report ..19
b. The End-of-Session Log ..22

Runtime Control ...23
Program Specifications ...24
For Further Information ..25

Terms and Lexical Conventions Used in this Document Teleport Exec Interface and Specifications

2

Terms and Lexical Conventions Used in this Document

Project is the combination of starting addresses, and exploration, retrieval, and relinking parameters
that define where and how Teleport Exec will retrieve, modify, and save files from the Internet.

Session indicates a complete execution, by Teleport Exec, of a given project.

Arguments are strings that appear on the command-line.

Switches are arguments that control project creation, modification, running, relinking, and other
Teleport Exec functions. Switches must be preceded by either the / (forward slash) or - (minus)
characters.

Parameters are strings or numbers that follow a switch.

monotype denotes command-line arguments, switches, or parameters.

[square brackets] denote optional arguments or parameters.

<angle brackets> denote required arguments or parameters.

| denotes alternative parameters; for example, /r[r|u|c|n] indicates that the /r switch may be
followed by any one of the letters n, r, u, or c. In some cases, more than one of the listed
parameters may be given in a single switch.

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

3

Command-line Arguments and Response Files

When Teleport Exec is executed from the command-line or batch file, or from another process,
command-line arguments are used to configure the program’s operation, its exploration parameters,
and the addresses it will search. In effect, the command-line for Teleport Exec generates a complete
Teleport Pro project— or opens an existing one and, optionally, modifies it— and then runs it.

To circumvent the command-line length limit under Windows (1024 characters), Teleport Exec
allows the use of a “response file,” a text file that contains, on one or more lines, command-line
arguments. The arguments in the response file are processed in addition to, not in lieu of, other
arguments on the command-line.

The Teleport Exec command-line format is—

proexec <projectfile> [switches] [@responsefile]

The Teleport Exec/VLX command-line format is the same, but use execvlx instead of proexec—

execvlx <projectfile> [switches] [@responsefile]

The arguments may appear in any order, except that the <projectfile> argument must precede
all arguments that would affect the project. The command-line and response file together may
contain any number of switches and response files. Multiple response files are allowed, each
processed in the order listed. Response files may be nested; a response file may call another response
file.

The complete command-line (after all response files have been processed) may contain only one
project filename. If the project already exists, Teleport Exec will open it and modify and/or run it as
the command-line dictates. If the project does not exist, Teleport Exec will save the project it creates
under the given project filename.

Teleport Exec processes command-line arguments from left to right, and response file arguments
from top to bottom. Successive arguments that conflict with preceding ones will override the
preceding arguments. Project creation and modification arguments that precede the project filename
will be ignored.

Arguments must be separated by one or more spaces. Arguments that contain space characters must
be enclosed in double quotes. Note that in such a case the complete argument must be contained in
quotes. For example, to specify autoconnection using the defined connection “Concentric Boston,”
the complete switch is—

"/aConcentric Boston"

a. The Response File Format

When Teleport Exec encounters a @responsefile argument (an argument preceded by the @
symbol), it reads that file from disk and processes the arguments listed in it, in top-to-bottom
order, as if the file were one long command-line. The response file arguments are processed in
addition to, not in lieu of, other command-line and response file arguments.

Multiple response files are allowed, each processed in the order listed. Response files may be
nested; a response file may call another response file.

Response files must be ASCII text files. They may be of any length, up to the operating system
filesize limit of 2 Gb.

Each argument in the response file must begin and end on the same line. All arguments are
treated as if quoted, and thus quotes are unnecessary. Thus, the switch for autoconnecting via the

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

4

connection named “Concentric Boston” may be given on a single line in a response file, without
quotation marks, as—

/aConcentric Boston

Response files may have comments. Comments are lines preceded by a semicolon (;), for
example—

;This causes the program to dial Concentric Boston
/aConcentric Boston
;other lines here...

b. Switches for Adding Addresses and Setting Address Properties

/nu<address> New URL Address: Adds a new starting address to the project. If the given
address is already a starting address in the project, this switch references that address for
purposes of the exploration parameter switches which follow it (see below). If the address
already exists in the project, but is not a starting address, Teleport Exec promotes the address
to starting address status.

New starting addresses are given the following default exploration parameters, which
subsequent switches on the command-line may modify: Inner exploration depth=0, Outer
exploration depth=0, boundary condition=1, and no user account or password.

The address must be specified as either a complete URL, partial URL, or local file path.
Partial URLs will be considered HTTP addresses and parsed accordingly. For example—

/nuhttp://www.tenmax.com adds http://www.tenmax.com/

/nuwww.tenmax.com adds http://www.tenmax.com/

/nuwww.tenmax.com/index.html adds http://www.tenmax.com/index.html

/nuc:\temp\index.htm adds c:\temp\index.htm

/nuftp://tenmax.com/test.doc adds ftp://tenmax.com/test.doc

Addresses may contain standard URL port specifications, for example—

/nuberne.ch:100/home.htm adds http://berne.ch/home.htm on port 100

Addresses may contain hexadecimal escape codes, ISO-8859-1 entities, and SGML
entities, for example—

/nutest.com/Test%20file.htm adds http://test.com/Test file.htm

/nutest.com/My file.htm adds http://test.com/My file.htm

/nutest.com/Rålf.htm adds http://test.com/Rålf.htm

Addresses may contain any ANSI character, for example—

/nutest.com/Rålf.htm adds http://test.com/Rålf.htm

Note that valid Internet addresses may contains spaces and quotation marks. To avoid
confusing the command-line, you should specify such addresses using any of the special
notations given above. For example, to add the address
http://search.com/search?param="bin", specify the following—

/nusearch.com/search?param=%22bin%22

/nid<depth> New Inner Depth: Modifies the immediately preceding address’s inner
exploration link depth. This option also sets the default inner depth for any addresses added
later with the /nu parameter.

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

5

/nod<depth> New Outer Depth: Modifies the immediately preceding address’s outer
exploration link depth. This option also sets the default outer depth for any addresses added
later with the /nu parameter.

/nb<1|2|3|4|5|6|7|8> New Boundary Condition: Modifies the immediately preceding
address’s boundary condition. This option also sets the default boundary condition for any
addresses added later with the /nu parameter. Note that the Inner Depth property is always
obeyed; if you want “unlimited” inner depth scanning of a site, set the inner depth to a very
high number, such as 1000.

Boundary conditions correspond to those listed in the Teleport Pro Starting Address dialog
box, but Teleport Exec has some additional boundary types not in Teleport Pro. The
boundary conditions are—

1 Stay within path: Directs Teleport Exec to explore only addresses that have the same
domain and path stub as the starting address.

2 Stay within domain: Directs Teleport Exec to explore only addresses that have the same
domain as the starting address.

3 Stay within domain, or within path of external links: Directs Teleport Exec to explore
only addresses that have the same domain as the starting address, except that it may also
explore addresses that have the same domain and path stub as any external link on the
starting domain.

4 Stay within domain, or within the domain of external links (and outer depth): Directs
Teleport Exec to explore only address that have the same domain as the starting address,
except that it may also explore addresses that have the same domain as any external link
on the starting domain (but it must also obey the outer depth setting).

5 No boundaries, but stay within the “inner depth” from the starting address. Directs
Teleport Exec to explore all addresses leading away from the starting address, up to n
addresses away from the starting address, where n is given by the previous /nid
setting. When this boundary is selected, Teleport Exec does not distinguish between in-
domain and out-of-domain addresses; any address may be explored, so long as it is
within n links from the starting address.

6 Stay within unqualified domain: Directs Teleport Exec to explore only addresses that
have the same unqualified domain as that of the starting address. For example, starting
from the address “www.yahoo.com,” addresses on the “info.yahoo.com” would be
considered in-bounds. The “unqualified domain” is the last two elements of the full
domain name. For example, “home.netscape.com,” “shop.netscape.com,” and
“info.france.netscape.com” all have the same unqualified domain name.

7 Stay within unqualified domain, or within path of external links: Directs Teleport Exec
to explore only addresses that have the same unqualified domain as that of the starting
address, except that it may also explore addresses that have the same domain and path
stub as any external link on the starting domain.

8 Stay within unqualified domain, or within the domain of external links (and outer
depth): Directs Teleport Exec to explore only address that have the same unqualified
domain as that of the starting address, except that it may also explore addresses that
have the same domain as any external link on the starting domain (but it must also obey
the outer depth setting).

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

6

Note that none of the above boundary conditions apply to embedded files, such as graphics,
sounds, and applets, that are required to compose a retrieved web page. These files are
always retrieved, so long as they meet all other retrieval specifications.

/na<account> New Account: Modifies the immediately preceding address’s user account.
This option also sets the default account name for any addresses added later with the /nu
parameter.

/np<password> New Password: Modifies the immediately preceding address’s password.
This option also sets the default password for any addresses added later with the /nu
parameter.

/ne Enable Address: Enables the immediately preceding address.

/nd Disable Address: Disables the immediately preceding address.

c. Switches for Setting Project Properties

/pra[autosaverate] Autosave Rate: Specifies the project autosave rate in seconds.
Default: 600 seconds. If zero or no value is given, autosaving is disabled. When autosaving
is enabled, Teleport Exec will always save the project file just prior to terminating.

/prf[maximumsize] Retrieve All Files [less than maximum size]: Disables the project’s
file retrieval specifications, if any, and directs Teleport Exec to retrieve all files it
encounters. You may optionally set a maximum filesize limit, given in kilobytes. Default:
On (with no maximum size restriction).

/prs[patternlist[;minimumsize[;maximumsize]]] New Retrieval Specification:
Adds a new file retrieval specification to the project. The specification must be given as a
semicolon-separated list of filename patterns, optionally using DOS wildcards such as *
(match zero or more characters) and ? (match one character). You may optionally specify
minimum and maximum filesize limits for the specification, each limit given in kilobytes.
For example—

/prs*.gif;*.jpg;*.jpeg specifies all gif, jpg, and jpeg files, of any size

/prs*.gif;*.jpg;16;32 specifies all 16 to 32 kb gif and jpg files

/prsindex*.*;8 specifies all 8 kb or larger files named index*.*

Filename patterns may also contain grep-style regular expressions, except that the regular
expression characters * . ? are given DOS-style meanings instead of their usual grep
interpretations. For example—

/prsfile[0-9].htm specifies files named f0.htm, f1.htm, f2.htm, …

If no pattern follows this switch, all existing file retrieval specifications are cleared. Default:
No retrieval specifications.

/prm[b|e|j|n] Set Retrieval Mode(s): Sets or clears one or more retrieval mode types.
These modes correspond to the last four options on Teleport Pro’s Project Properties,
Retrieval page. Unspecified modes are cleared. They are—

b Retrieve background graphics: Unless this mode is set, Teleport Exec will not retrieve
background graphics files, even if they otherwise meet all other retrieval specifications.
Default: On.

e Retrieve embedded files (graphics, sounds, or animations): Unless this mode is set,
Teleport Exec will not retrieve embedded files (those files that appear along with the

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

7

text of a web page), even if they otherwise meet all other retrieval specifications.
Default: On.

j Retrieve Java applets: Unless this mode is set, Teleport Exec will not retrieve Java
applets, even if they otherwise meet all other retrieval specifications. This option also
enables Teleport Exec’s Java parser, which will scan retrieved applets and attempt to
locate and retrieve any base classes the applet may require. Default: On.

n Retrieve only file names: This option simply prevents Teleport Exec from saving
retrieved files. Default: Off.

/prb[a|d|m|l|s] Set Browsing Parameter(s): Sets or clears one or more browsing,
mirroring, and linking parameters . These modes correspond to the options on Teleport
Pro’s Project Properties, Browsing/Mirroring page. Unspecified parameters are cleared.
They are—

a Always save HTML: This option ensures that Teleport Exec always saves HTML files,
regardless of the file’s actual extension. Default: On.

d Preserve directory structure of remote server(s): Directs Teleport Exec to save all files
in a directory structure that mimics that of the remote server(s) the files are drawn from.
Default: Off.

m Use browser-compatible filenames: Directs Teleport Exec to append a “.htm” extension
to HTML files that do not already have that extension. This ensures that the files will be
treated as HTML files when opened offline in the user’s browser. Default: On.

l Localize HTML links: Enables Teleport Exec’s dynamic and end-of-session relinking
systems, which will relink all HTML files so that the links point to other retrieved files
within the same project. Teleport Exec will automatically relink any files that become
eligible for relinking during the retrieval session. At the session’s end, Teleport Exec
will then relink all remaining HTML files, as necessary. Default: On.

Teleport Exec’s dynamic relinker is multithreaded and operates on a queued, as-
available basis, giving execution priority to the retrieval threads. The end-of-session
relinker is single-threaded, and simply sequences through all of the remaining HTML
files, after the retrieval system has shut down.

HTML link localization must be enabled at the start of a project in order for Teleport
Exec’s relinking system ever to work. An HTML file not processed by the relinker
before it is saved to disk, cannot be relinked later.

s Localize links using short filename notation: The same as option l, but relinks HTML
files using the operating system’s generated short name for the retrieved files.

This option does not cause Teleport Exec to change the names of the files it writes.
Instead, it only relinks the HTML files using the generated (8.3) short filename. This
ensures that the relinked website will work equally well on both long filename and short
filename volumes— and that on long filename volumes, the original filenames are kept
intact.

To export a website copy generated using this option to a short filename volume, teleport
the file first to a long filename volume, then copy the files to the short filename volume
using the generated short filename. (You may use the DOS xcopy /n command for this
purpose.) Default: Off.

/prl<1|2|3|4|5> Set Linkage Mode: Sets the type of links that Teleport Exec will write
for links to files it does not retrieve. Linkage modes only apply when Teleport Exec is
commanded to localize links (using the /prbl switch). The first three modes correspond to
the three modes listed on Teleport Pro’s Project Properties, Browsing/Mirroring page, and

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

8

apply only to clickable links which would point to files that are not retrieved in the project.
The fourth mode applies to all unretrieved links in the project, whether clickable or
embedded. The fifth mode applies to all links. The linkage modes are—

1 Link to message box: Causes Teleport Exec to point these links to a javascript pop-up
message box that briefly describes why the file was not retrieved, and lets the user select
whether to get the file from the original server. This is the default linkage mode. Note
that this is a change from previous versions of Teleport Exec, in which this linkage
mode created a link to an HTML page containing the explanatory message.

2 Link to Internet: Causes Teleport Exec to “externalize” these links so that they point to
the absolute (usually Internet) location at which the file was originally addressed.

3 Link to predicted location: Causes Teleport Exec to write the link to the location where
it would store the file, if the file were retrieved. This mode imposes the least burden on
the relinking system. Links to missing files will not work— they may generate a short
message box in Netscape when clicked; Internet Explorer will simply do nothing.
However, if the missing files are eventually retrieved, relinking of the originating
HTML page is not required.

4 Link to Internet for all unretrieved links: Causes Teleport Exec to rewrite all
unretrieved links as external (absolute Internet) addresses. (Note that this option differs
from linkage mode 2 in that mode 2 will cause Teleport Exec to relink only clickable
unretrieved links.)

5 Link to Internet for all links: Causes Teleport Exec to rewrite all links, whether
retrieved or unretrieved, as external (absolute Internet) addresses.

Note that Teleport Exec will always relink un-explorable elements, such as forms containing
data that must be entered by the user, using mode 2 (link to Internet), so that such elements
will still operate when browsed offline. Note also that Teleport Exec will, except when using
linkage modes 4 or 5, relink unretrieved embedded elements to a dead local address.

/pre[s[gridsize]|f|o] Set Advanced Exploration Parameter(s): Sets or clears one or
more advanced exploration parameters. The exploration parameters correspond to the first
three options listed on Teleport Pro’s Project Properties, Exploration page. Unspecified
parameters are cleared. They are—

s Explore server-side image map [with optional grid size]: Enables Teleport Exec’s
server-side image map pinging system. Only where necessary, Teleport Exec will
“ping” a server-side image map across a grid of points, to locate any links. Upon
relinking (if enabled; see above), Teleport Exec will install a parallel client-side image
map in the calling HTML file, so that the image map may be browsed offline. Default:
Off.

Teleport Exec will ping a server-side map only when necessary— if a client-side map is
available, it will use the client-side map instead.

If no grid size is specified, the grid size defaults to 30 pixels.

f Explore frames: Unless this mode is set, Teleport Exec will not retrieve frame source
files, even if they otherwise meet all other retrieval specifications. Default: On.

o Explore forms: Causes Teleport Exec to explore form links, when possible. Explorable
forms are those that require no data or user input, or have only hidden data fields.
Default: On.

/prt<threadcount> Set Thread Count: Sets the maximum number of retrieval threads
Teleport Exec may launch. Range = 1–10. Default: 10, or the maximum number of open
sockets that the operating system will allow, whichever is smaller.

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

9

/prz<timeout> Set Thread Timeout: Sets the thread timeout period, in seconds. Threads
that wait longer than this period for a response from the remote server will abort. Note that
the operating system’s underlying sockets layer may impose a shorter timeout period; this
value cannot be predicted. Default: 360 seconds.

/prrd<retrytimes> Set Retries for Denied Requests: Sets the number of times Teleport
Exec will request a file, if the server reports that the file is temporarily unavailable. Teleport
Exec will add retry requests as low-priority items to the normal retrieval queue, to avoid
badgering an unresponsive server. Nevertheless, values in excess of 10 retries may be
considered bad netiquette. Default: 5.

/prri<retrytimes> Set Retries for Incomplete Files: Sets the number of times Teleport
Exec will attempt to retrieve a file, if the file is incompletely sent or corrupted during the
transfer (when such a state is detectable). Teleport Exec will add retry requests as low-
priority items to the normal retrieval queue, to avoid badgering the server, which may simply
be overloaded. Nevertheless, values in excess of 10 retries may be considered bad netiquette.
Default: 5.

/pru[g|b|h|e|s|a|x] Set Update Parameters(s): Sets or clears one or more of the
project’s update parameters. These parameters correspond to those listed in the bottom
section of Teleport Pro’s Project Properties, Exploration page. Unspecified parameters are
cleared. They are—

g Update good files: Unless this mode is set, Teleport Exec will not update retrieved files,
even if they otherwise meet all other retrieval and update specifications. Default: On.

b Update bad files: Unless this mode is set, Teleport Exec will not attempt to retrieve
unretrieved files for which the remote server reported an error (such as file not found),
even if they otherwise meet all other retrieval specifications. Default: On.

h Update HTML files: Unless this mode is set, Teleport Exec will not update HTML files,
even if they otherwise meet all other retrieval and update specifications. Default: On.

e Update embedded files: Unless this mode is set, Teleport Exec will not update
embedded files— background graphics, sounds, regular graphics, animations, and Java
applets— even if they otherwise meet all other retrieval and update specifications.
Default: On.

Note that the term “embedded” is here more broadly used than in the Retrieve
Embedded Files mode.

s Update server-side image maps: Unless this mode is set, Teleport Exec will not update
(re-ping) server side image maps. Default: Off.

a Update all other files: Unless this mode is set, Teleport Exec will not update non-
HTML, non-embedded files, even if they otherwise meet all other retrieval and update
specifications. Default: On.

x Update as explored: Unless this mode is set, Teleport Exec will update all files in its
database, regardless of whether they meet other project retrieval specifications (such as
project boundaries, exclusions, etc.), so long as the meet the other update requirements
in this section. With this mode set, Teleport will update only those files that meet
project retrieval specifications and meet the other update requirements in this section.
Therefore, if you use this option, please remember to set at least one of the other
updating options as well (such as update HTML), . Default: Off.

/prk[keywordlist] Set Keyword Exclusions: Sets the project’s keyword list. The
keyword list may contain one or more keywords or phrases, separated by semicolons. If this

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

10

switch is followed by no keywords, any existing project keywords are cleared. Default: No
keywords.

When a project has keyword exclusions, retrieved HTML pages will not be saved unless they
contain one or more keywords; and embedded files that belong to non-matching pages will
be skipped altogether. Teleport Exec’s keyword search is word-bounded and case
insensitive.

/prx[patternlist] Set Filename Exclusions: Sets the project’s filename exclusion list.
The list may contain one or more filename patterns, of the style normally used for file
retrieval specifications (described above). This feature, like file retrieval specifications,
supports both DOS- and grep-style wildcards and pattern-matching symbols. If no pattern
list follows this switch, any existing pattern list is cleared. Default: No filename exclusions.

/prp[pathstub] Set Path Exclusion: Adds a path stub to the project’s path exclusions list.
Teleport Exec will not explore or retrieve any files whose addresses begin with the given
path stub. If no path stub follows this switch, all existing path exclusions are cleared.
Default: No path exclusions.

Path stubs must be specified using complete URL notation— in other words, the http://,
ftp://, and c:\ prefixes are required. For example—

http://www.microsoft.com/ will exclude all addresses on www.microsoft.com

http://www.test.com/home/ will exclude all addresses in /home/ on www.test.com

Teleport Exec supports DOS- and grep-style wildcards and pattern-matching symbols for
this feature. For example—

http://*.ca/ will exclude all addresses on domains ending in .ca

http://*/test/ will exclude all addresses with /test/ in the path

http://*.c[ah]/ will exclude all addresses on domains ending in .ca or .ch

/prn[d|s|r|w[delaytime]] Set Netiquette Parameters: Sets or clears one or more of
the project’s netiquette parameters. These parameters correspond to those listed at the top of
Teleport Pro’s Project Properties, Netiquette page. Unspecified options are cleared. They
are—

d Domain Dispersed Querying: Enables Teleport Exec’s Domain Dispersed Querying™
algorithm, which dynamically shuffles the retrieval queue to distribute file and update
requests across different servers, whenever possible. Distributing simultaneous file
requests relieves transmission bottlenecks that could be caused by a single slow or
deadlocked server. Default: On.

s Server Overload Protection: Enables Teleport Exec’s Server Overload Protection
algorithm. “Server overload” is a misnomer; in reality, the client’s connection (via
modem) is far more likely to become overloaded than the remote server. This algorithm
moderates the number of active retrieval threads so that the amount of requested data
does not exceed the network connection’s ability to send it. Default: On.

r Robot Exclusions System: Enables Teleport Exec’s Robot Exclusions System. This
system provides compliance with the voluntary RES standard for excluding automated
agents from parts of websites. Teleport Exec’s RES system attempts to locate a
robots.txt file on each domain it visits. If such a file is found, Teleport Exec parses it,
then locates and obeys all “disallow” restrictions in the file. Default: On.

The RES system will match all robots.txt directives that specify a user-agent of “*” (the
global wildcard), or which contain the word “teleport” (case insensitive).

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

11

w Wait Between Requests: Causes Teleport Exec to wait the specified number of seconds
between sequential file or update requests to the same server. If zero or no delay time is
given, waiting is disabled. Default: 1 second.

Teleport Exec does not wait between requests to different servers. Also, Teleport Exec
automatically disables waiting when pinging a server-side image map (see above).

/pri[a|t|m[version]|n[version]|c<identity>] Set Agent Identity: Sets
Teleport Exec’s agent identity. These parameters correspond to those listed at the bottom of
Teleport Pro’s Project Properties, Netiquette page. Only one identity type may be specified.
The identity options are—

a Anonymous: Sends no identity string.

t Teleport Exec: Identifies itself as the current version of Teleport Exec. This is the
default identity setting.

m Microsoft Internet Explorer: Identifies itself as Microsoft Internet Explorer, with an
optional version string.

n Netscape Navigator: Identifies itself as Netscape Navigator, with an optional version
string.

c Custom Identity: Identifies itself as the given identity string.

It is considered good netiquette for a client to identify itself, and to do so accurately.
However, because many websites and webservers will modify their responses based on the
client’s identity (for example, some sites will not send frame files to clients they do not
recognize as capable of handling frames), the user may find it useful to have Teleport Exec
assume another identity.

/prds<date> Set Start Date/Time Filter: Sets Teleport Exec’s start date filter to <date>,
where <date> is given in the format mm/dd/yy hh:mm:ss [am|pm] . You may use
24-hour time, or specify am/pm. If the time (hh:mm:ss) field is omitted, the start time is
assumed to begin at 12:00:00 am. (Any non-digit character may be used as delimiters in
specifying the date, so you can substitute, for example, mm/dd/yy-hh:mm:ss, and omit to
use quotes around the parameter.) You may also use 4-digit years; 2-digit years are
interpreted as year 2000+ years if the value is less than 70. Default: No starting date filter.

When filtering by start date, Teleport Exec will save files that it retrieves only if (in addition
to meeting all other filtering parameters) they are reported by the remote server to have a
“Last Modified Date” equal to or later than <date>. When the remote server does not
report the file’s last modification date, Teleport Exec assumes that date/time to be the same
as the date/time at which the file was retrieved (measured according to client machine’s
system clock).

Note that start date filtering is not performed on embedded files, when the parent file has
already been loaded (i.e., the parent file has met all of the project specifications and has
been saved to disk). This ensures that all of the components of a web page will be saved, so
long as that page meets the project filtering requirements.

/prde<date> Set End Date/Time Filter: Sets Teleport Exec’s end date filter to <date>,
where <date> is given in the format mm/dd/yy hh:mm:ss [am|pm] . You may use
24-hour time, or specify am/pm. If the time (hh:mm:ss) field is omitted, the start time is
field is omitted, the end time is assumed to end at 11:59:59 pm (midnight). (Any non-digit
character may be used as delimiters in specifying the date, so you can substitute, for
example, mm/dd/yy-hh:mm:ss, and omit to use quotes around the parameter.) You may
also use 4-digit years; 2-digit years are interpreted as year 2000+ years if the value is less
than 70. Default: No ending date filter.

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

12

When filtering by end date, Teleport Exec will save files that it retrieves only if (in addition
to meeting all other filtering parameters) they are reported by the remote server to have a
“Last Modified Date” earlier than <date>. When the remote server does not report the
file’s last modification date, Teleport Exec assumes that date/time to be the same as the
date/time at which the file was retrieved (measured according to client machine’s system
clock).

Note that end date filtering is not performed on embedded files, when the parent file has
already been loaded (i.e., the parent file has met all of the project specifications and has
been saved to disk). This ensures that all of the components of a web page will be saved, so
long as that page meets the project filtering requirements.

/pro[p<name>] Set Other Parameters: Sets or clears one or more of the project’s “other”
parameters. Unspecified options are given their default values. The “other parameters”
are—

p Product Name: Causes Teleport Exec to use the name <name> when writing any user-
readable files (such as message files created by the /prl1 command). Default:
“Teleport Exec.”

/prc Cautious Encoding: Causes Teleport Exec to use “cautious” encoding when formulating
URLs for retrieval. The cautious encoding scheme is designed to accommodate older servers
that have trouble accepting unencoded “special” characters (such as “:”).

/prh<header> Set Additional Headers: Sets optional additional headers that Teleport Exec
will pass along with its requests to HTTP servers. Headers should be given in the form

field-name: field-value

To specify multiple headers, separate them with semicolons. To use a semicolon as a literal
character within a field or value, prefix it with a backslash character.

While you may use this mechanism to pass any additional headers you wish, Teleport Exec
may override some of them with its own headers if, for example, it is asked to identify itself
as a browser.

Note that the extra header information is not stored as part of the project file. This
command has effect only for the particular session in which it is used.

d. Switches for Running, Relinking, and Reporting on Projects

/a<connectionname> Autoconnect: Attempts to establish a connection to the Internet from
the host computer, via Windows Dial-Up Networking, using the named RAS (Remote
Access Service) entry. The parameter must be the complete name of the RAS entry; Teleport
Exec will not search for a partial name match. If the connection is already open, Teleport
Exec will not attempt to open it again. Teleport Exec will use the default parameters
(account name, password, access number, and dialing attempts) stored in the RAS registry to
establish the connection. Note: Windows 95 Service Pack 1 created a bug that can prevent
applications from accessing the RAS registry entries. In this situation, the RAS entry will
usually fail to connect. The patch to correct this bug is available at
http://www.microsoft.com/windows/software/passwd.htm.

Special feature: A ? (question mark) symbol can be substituted for the connectionname
parameter, to specify that Teleport Exec should connect using the user’s default connection
entry.

/ca<account> Connection Account: Specifies the user account for autoconnecting with dial-
up networking. If this parameter is omitted, Teleport Exec will attempt to connect using the
account stored in the Dial-Up Networking phonebook.

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

13

/cp<password> Connection Password: Specifies the user’s password for autoconnecting
with dial-up networking. If this parameter is omitted, Teleport Exec will attempt to connect
using the password stored in the Dial-Up Networking phonebook.

Note that Windows 95 Service Pack 1 created a bug that can prevent applications from
accessing the user’s password for dial-up purposes. In this situation, Teleport Exec will
usually fail to connect. The patch to correct this bug is available at
http://www.microsoft.com/windows/software/passwd.htm

/cn<number> Connection Number: Specifies the telephone number to dial for autoconnecting
through dial-up networking. If this parameter is omitted, Teleport Exec will attempt to dial
the number stored in the Dial-Up Networking phonebook.

/d Disconnect: Automatically disconnects the host computer from the Internet, by hanging up
the RAS entry used to autoconnect, when the project is finished running, or when Teleport
Exec exits, whichever occurs first.

/pxu[proxyaddress] Proxy URL Address: Sets the proxy server address used to connect to
the Internet. The address should be given as a domain name, and does not require a
complete URL specification. If no address is specified, any existing default proxy is cleared.
When a proxy is specified, it becomes the program default, stored in the system registry for
future use.

/pxo<proxyport> Proxy Port: Sets the port on which the proxy server is located. When a
proxy port is specified, it becomes the program default, stored in the system registry for
future use.

/pxa[proxyaccount] Proxy Account: Sets the user account for the proxy server. When a
proxy account is specified, it becomes the program default, stored in the system registry for
future use. If no account is given, this parameter is cleared.

/pxp[proxypassword] Proxy Password: Sets the password for the proxy server. When a
proxy password is specified, it becomes the program default, stored in the system registry for
future use. If no password is given, this parameter is cleared.

/r[r|u|c|n] Run Project: Begins running this project.

/rr Run Regular: Runs the project in the normal fashion; all new (unretrieved) files in the
project database are queued for retrieval, and all old (already retrieved) files are queued
behind them, for updating. This is the default mode, if no run parameter is given.

/ru Run Update: Runs the project in Update Mode; Teleport Exec will only update files
already retrieved in this project, and will not retrieve new ones, unless they are
discovered while updating an HTML file that contains new links.

/rc Run Complete: Runs the project in Complete Retrieval mode; all eligible files in the
database are queued for retrieval, whether previously retrieved or not.

/t<timelimit> Time Limit: Specifies a time limit for running the project, in minutes. The
project will stop automatically if this limit is reached.

/f<spacelimit> Free Space Limit: Specifies a minimum disk free space limit, in
megabytes. The project will stop automatically if this limit is reached. The free space
calculation includes all temporary and operating system cache files open on the volume at
run-time.

/z<sizelimit>[k] Retrieved Size Limit: Specifies the maximum total bytes that the project
can retrieve and store into the project folder, in megabytes, in a single session. If the
sizelimit parameter is followed by a “k” then the limit will be interpreted as kilobytes, not
megabytes. The project will abort automatically if the size limit is reached. Note that this

Command-line Arguments and Response Files Teleport Exec Interface and Specifications

14

limits the number of bytes added to the project, not the total size of all files in the project
folder.

/l Relink Project: Relinks all HTML files in the project folder, using the project’s current
linking specifications. When this option is given, Teleport Exec will simply relink the files
and exit, and will perform no other tasks.

/g<filename> Generate end-of-session report: At the end of a project session, writes a tab-
delimited text report at the given filename, listing the status of all files in the project address
database. If /g is specified but <filename> is omitted or <filename> contains only a
path (i.e., it ends in a backslash) the report filename defaults to the path given (or the current
directory, if no path is given), plus the name of the project, plus the extension .rep.

/h<filename> Generate end-of-session log: At the end of a project session, writes a tab-
delimited log entry at the end of the file with the given name, listing the time the project
complete, the project name, and the completion status of the project. A typical entry might
read, for example, “Project Completed. 57 files were read, of which 34 were saved to disk.”
If /h is specified but <filename> is omitted or <filename> contains only a path (i.e., it
ends in a backslash) the log filename defaults to the path given (or the current directory, if
no path is given), plus the name of the project, plus the extension .log.

/i Write Update Status Codes: Alters the end-of-session report so that it prints the “update”
status code for each address, rather than the “best” code (which is normally what is reported;
see below). For updated files, the end-of-session report will list the status code received from
the server in response to the update request. For new files, the status code will be the code
returned by the ordinary GET request. For files that were not retrieved or updated, the status
code will be zero.

/j<filename> Generate Saved File Log: Generates a saved file log for the session. The
saved file log receives a new entry for each file that is written into the project folder, at the
moment the file is written. Entries are written when files are saved after first being
retrieved, and upon any subsequent updates; but not when a file is relinked. The log has the
following format—

ID tab LastModifiedDate tab URL tab OriginalURL tab LocalPath
tab Depth CRLF

The report’s elements are—

ID Each address in the Teleport Exec database is assigned a unique 32-bit identifier that
remains constant for the life of the project. Calling applications can use this identifier to
track changes to a file, regardless of where the file is later stored. The address identifier
is also broadcast in the File Saved and File Relinked progress messages (see above).

LastModifiedDate The file’s modification date as reported by the remote server, in
the form mm/dd/yyyy hh:mm:ss. If the server did not report a date, or the reported
date was invalid, this time is the same as the date on which the file was saved, according
to the local system clock. The date is reported in GMT.

URL The URL to this file.

OriginalURL If this URL was the result of a redirection from another URL, this field
contains the originating URL. Otherwise, this field is blank.

LocalPath The full path to this file.

Depth The address’s depth, or distance from its starting point, measured as the number
of hyperlinks that must be followed to reach this address from the starting point. For

Teleport Exec Interface and Specifications Command-line Arguments and Response Files

15

more detail on the meaning of this field, please read its full description in the section
describing the End of Session report format, below.

Each time an entry is made in saved file log, the “Teleport Exec File Saved” progress
message is broadcast. The parameters of that message identify the file ID and the location
within the logfile that the entry was made, enabling a listening application to determine the
details of the newly saved file. For more information, see the section on Progress Messages,
below.

/debug Debug Interface: Displays the program’s debug interface, for development purposes.
This interface shows the status line and thread states, and allows the developer to save,
pause, stop, or abort the project.

/m<filename> Generate Response File: Generates a response file containing all the switches
required to reproduce the current project. You can use this command to convert an existing
Teleport Pro project into a response file that Teleport Exec can use to re-create the project.
The response file will contain all of the commands necessary to create the project properties
and the starting address(es) for the project. It will not, however, contain commands for non-
project properties such as those for dialing a modem or using a proxy server.

/v<string> Set Instance Identifier Value: Assigns a string value to this instance of Teleport
Exec. The instance value can be any string; it will be appended to the project name in the
(usually hidden) main window for the program. When used with the multi-instance version
of Teleport Exec, the instance identifier allows you to identify a particular instance of
Teleport Exec, which can be useful if running multiple projects with the same project name.
Without an instance identifier, Teleport Exec’s main window title will read “project –
Teleport Exec”; with an instance identifier, the title will read “project<instance> – Teleport
Exec” (where project is the name of the project, and instance is the assigned instance
value).

Progress Messages Teleport Exec Interface and Specifications

16

Progress Messages

During a project session, Teleport Exec broadcasts system-wide progress messages, via Windows™
messaging, to all running applications. Listening processes can handle these messages to learn of the
project’s progress on a file-by-file basis.

Teleport Exec broadcasts progress messages using the Win32 BroadcastSystemMessage() function.
Messages are posted, not sent, so a listening process need not respond to the message. Because posted
messages are placed immediately in the application message queue and not processed until the
application is ready, these progress messages may lag slightly behind the events they report.

All progress messages have IDs in the range 0xC000–0xFFFF, the range newly reserved for private
application messages. (This range was formerly reserved for Windows™ .) The listening process can
find the message ID for each message by calling the Win32 RegisterWindowMessage() function with
the message identifier string.

Teleport Exec posts the following progress messages—

Message ID=“Teleport Exec Starting”: Teleport Exec broadcasts this message just before it
begins running a project.

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Thread Completed”: Teleport Exec broadcasts this message
whenever a retrieval thread terminates, whether successfully (file retrieved or updated) or
unsuccessfully (file unavailable). Since threads terminate with some frequency, this message
serves as a constant status update on the project’s overall progress.

WPARAM = length of the remaining retrieval queue.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec File Saved”: Teleport Exec broadcasts this message whenever it
saves a file in the project folder. Note that a file save may occur after a file is retrieved,
updated, or relinked.

WPARAM = the file’s 32-bit identifier (see End-of-Session reports, below).

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec File Logged”: Teleport Exec broadcasts this message whenever it
makes an entry in the Saved File log. (This occurs when the project is run with the “\j”
option; see the section on switches for running and relinking projects, above.) This message
is always followed by a Teleport Exec File Saved message. Unlike the File Saved message,
however, this message is only sent after an entry is put in the Saved File log, which occurs
only when a file is retrieved or updated (never when relinked).

WPARAM = the offset in the logfile of the beginning of the entry for this item.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Level Complete”: Teleport Exec broadcasts this message
whenever it probably has finished downloading all files at a given depth. The message is
broadcasted in ascending depth order. Teleport explores in a breadth-first manner, exploring
all files at depth zero before moving on to files at depth 1, depth 2, and so on. This message
is sent just after Teleport receives what it believes is the first file at a new depth level. It is
only an approximate notification of this event, because many factors affect the way in which
the retrieval queue is prioritized: domain spreading, re-queuing items that were
incompletely loaded or which failed to load, and the need to gather embedded files before

Teleport Exec Interface and Specifications Progress Messages

17

non-embedded files all can change the breadth-first ordering slightly, but sometimes enough
that this message will be sent before a level is actually complete, or significantly after the
level is complete.

Note that a level completion notice is not sent when the project is finished. You may assume
upon completion that all levels are complete.

Note also that level completion notifications will also be sent when a project is updated. In
this case, they indicate that (again, approximately) all files on a given level were updated.

WPARAM = the depth level just completed.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec File Relinked”: Teleport Exec broadcasts this message whenever
it dynamically relinks an HTML file, during a project session. A File Saved message will
always immediately precede this message. End-of-session relinking does not generate this
message.

WPARAM = the file’s 32-bit identifier (see End-of-Session reports, below).

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Dialing”: Teleport Exec broadcasts this message whenever it
begins dialing an ISP through Dial-Up Networking.

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Dialer Successful”: Teleport Exec broadcasts this message
whenever it successfully dials an ISP through Dial-Up Networking.

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Dialer Failed”: Teleport Exec broadcasts this message whenever
it cannot connect to an ISP through Dial-Up Networking for any reason (e.g., no dial tone,
wrong number, bad password, service unavailable).

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Connect Successful”: Teleport Exec broadcasts this message the
first time it successfully connects to any Internet server, which usually occurs at the start of a
project session. Note that Teleport Exec will attempt to determine if it is connected by
querying a number of “known good” servers, including those for Microsoft, Netscape, and
IBM, if initial queries to the project’s starting addresses fail.

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Connect Failed”: Teleport Exec broadcasts this message
whenever it determines that it cannot connect to any remote server on the Internet. Before
sending this message, Teleport Exec (1) attempts to connect at least once to every server that
hosts an item in its current retrieval queue; and (2) attempts to connect to any of a set of
“known good” servers, including those for Microsoft, Netscape, and IBM. Only after
Teleport Exec fails to connect to any of these servers does it send this message; thus, this
message is a good indication that the client’s local network is down.

WPARAM = 0.

Progress Messages Teleport Exec Interface and Specifications

18

LPARAM = the window handle of the Teleport Exec instance window.

Message ID=“Teleport Exec Finished”: Teleport Exec broadcasts this message just before it
terminates.

WPARAM = 0.

LPARAM = the window handle of the Teleport Exec instance window.

Teleport Exec Interface and Specifications End-of-Session Report and Log

19

End-of-Session Report and Log

Teleport Exec can generate two files at the end of a project session, a report and a log file. The
report lists the current status of all of the files in the project database. The log file lists the time the
project was run and its completion status.

a. The End-of-Session Report

At the end of a project session, if the /g switch was specified, Teleport Exec generates a tab-
delimited text report on the status of each file in the project’s address database. The report has the
following format—

ID tab Status tab LinkType tab Date tab LastModifiedDate tab URL tab
OwnerURL tab LocalPath tab ModifyCode tab ContentType tab Depth tab
RedirectURL CRLF

The report’s elements are—

ID Each address in the Teleport Exec database is assigned a unique 32-bit identifier that
remains constant for the life of the project. Calling applications can use this identifier to
track changes to a file, regardless of where the file is later stored. The address identifier is
also broadcast in the File Saved and File Relinked progress messages (see above).

Status The retrieval status code for the address. For files that were queued for retrieval, this
code is the HTTP response code sent by the webserver, usually 200 for retrieved files, 302 for
redirected files, and 400–500 for not found or unavailable files.

Note that unless the Report Update Status Codes (/i) option is enabled, the status code
reported will be the “best” status code received so far in the project. That is, if previous
attempts to get a file were successful, the status code will be 200, even if later attempts fail.
The “best” code is intended to represent the state of the mirrored site, not the current state of
the remote server. If you wish to display the most recently obtained status code (i.e., the code
received on update attempts), use the /i option to display those status codes instead. (See
above for more detail.)

Status codes above 600 are assigned by Teleport Exec, and indicate that a file was not queued
for retrieval, or was retrieved but discarded, for failure to meet project specifications. The
following is the list of currently defined status codes—

UNSUPPORTEDPROTOCOL 700
UNWANTEDTYPE 701
UNWANTEDJAVA 702
UNWANTEDFRAME 703
UNWANTEDFORM 704
UNWANTEDEMBEDDED 705
UNWANTEDBACKGROUND 706
EXCEEDSINNERDEPTH 707
EXCEEDSOUTERDEPTH 708
EXCEEDSINNERBOUNDS 709
EXCEEDSOUTERBOUNDS 710
EXCLUDEDTYPE 711
EXCLUDEDPATH 712
UNWANTEDSERVERMAP 713
EXTERNALEXTERNAL 714
ROBOTSEXCLUDED 715
OVERSIZEDFILE 716

End-of-Session Report and Log Teleport Exec Interface and Specifications

20

UNDERSIZEDFILE 717
NOKEYWORDS 718
OWNERNOKEYWORDS 719
EXPLOREONLY 721
MATCHEDCRC 722
FAILEDCONNECT 723
HTMLEXPLORED 724
TOOOLDFILE 725
TOONEWFILE 726
<RESERVED> 727
INVALIDREDIRECT 728
CIRCULARREDIRECT 729
INVALIDADDRESS 799

The EXPLOREONLY and HTMLEXPLORED status codes indicate files which are marked
for exploration but not retrieval; HTMLEXLORED files were successfully read, but not saved
to disk.

The MATCHEDCRC status code is defined for development use only and is unused in this
version of Teleport Exec.

LinkType The type of the first link that pointed to this address. The following is the list of
currently defined link types—

INVALID 0
NORMAL LINK 1
IMAGE SOURCE 2
BACKGROUND IMAGE 3
FRAME SOURCE 4
NORMAL FORM ACTION 5
JAVA APPLET 6
REDIRECTED 7
META REFRESH 8
BASE HREF 9
JAVA CODEBASE 10
SERVER MAP 11
OLD JAVA APPLET 12
OLD JAVA CODEBASE 13
LOW IMAGE SOURCE 14
DYNAMIC IMAGE SOURCE 15
OPTION FORM ACTION 16
DATA FORM ACTION 17
OBJECT (ACTIVEX) 18
OBJECT ARCHIVE 19
OBJECT RESOURCE 20
OBJECT CODESOURCE 21
STYLESHEET RESOURCE 24
STYLESHEET 26
SCRIPT SOURCE 27

Date The date and time on which the file was last retrieved or updated, in the form
mm/dd/yyyy hh:mm:ss. This date is written in local time (not GMT).

LastModifiedDate The file’s modification date as reported by the remote server, in the
form mm/dd/yyyy hh:mm:ss. If the server did not report a date, or the reported date

Teleport Exec Interface and Specifications End-of-Session Report and Log

21

was invalid, this time is the same as the Date field, above. This date is, however, written in
GMT.

URL The URL to this file.

OwnerURL The URL to the “owning” web page for this file. The owning web page is the first
web page Teleport encountered during its exploration, that linked to this file.

LocalPath The full path to this file, if successfully retrieved and saved in the project folder.

ModifyCode A code that indicates whether the file appeared to be new or modified in this
project session. If the webserver reported that the file was new or modified (indicating either
that this is the first time that Teleport Exec has retrieved the file, or that the server believes
the file has changed since the last time that Teleport Exec retrieved the file), then this field
will contain the letter “m.” Otherwise, this field is blank.

Note that file modification is tracked on a session-by-session basis; at the start of a session, all
files are considered to be unmodified. Note also that some webservers, especially those
serving database- or script-generated files, may report that files are modified, even though
their actual content has remained unchanged.

ContentType The MIME content type for this file, as reported by the server. This is the
same information listed in Teleport Pro under the “Type” column of the file list. Common
MIME types are “text/html,” “image/gif,” and “image/jpeg.” Most servers give files of
unknown type the designation “application/octet-stream.” If Teleport Exec has not retrieved
this file, this field is left blank.

Depth The address’s depth, or distance from its starting point, measured as the number of
hyperlinks that must be followed to reach this address from the starting point. For addresses
on the same domain as a starting address, the depth is the distance from the starting address.
For “external” addresses, or those that are on a domain not the same as any starting address,
the depth is the distance from the earliest “gateway” address on the starting domain. (The
“gateway” address is the first address that leads from the domain of a starting address to the
domain of the destination address.) A starting address, therefore, always has a depth of zero.
The depth for external addresses is given as a negative number; gateway addresses, therefore,
have a depth of –1. All other addresses have positive depth.

Generally, embedded files— those that are required to make up a web page— are considered to
have the same depth as the page they make up. For instance, a graphic file will have the same
depth as the page that it is embedded on; and a frame source file will have the same depth as
the frame master file. Where a file can have more than one depth— for instance, a graphic
that is embedded on more than one web page— the lowest possible depth is listed.

For more information on how the depth field is calculated and used, see the section above on
setting starting address parameters.

RedirectURL When the file for this address is reported to be at a different location (i.e., the
client has been “redirected” by the server to a new address), this field will contain the
redirection address. Where there is no redirect, or where the redirect is invalid (some servers
send circular or invalid redirections), this field is left blank.

End-of-Session Report and Log Teleport Exec Interface and Specifications

22

b. The End-of-Session Log

At the end of a project session, if the /h switch was specified, Teleport Exec appends to the given log
file a tab-delimited entry listing the date the project was run, its path, and its completion status.
Because this command appends the log entry instead of creating a new file, you can use it to log the
completion status of several projects to the same file. Conversely, if you want the log file to list only
the last completion date and status, then you should delete the log file before running the project.

The end-of-session log has the following format—

Date tab Path tab Status CRLF

The report’s elements are—

Date The time and date the project was last run, given in local time in the format
mm/dd/yyyy hh:mm:ss .

Path The complete path to the project.

Status The completion status of the project. This is the same text you might see in the “Last
Result” field of Teleport Pro Scheduler’s schedule list. A typical completion status line reads,
“Project Completed: 152 files were read, of which 137 were saved to disk.”

A completion status line will always begin with the words “Project Completed” if the
project completed normally (i.e., the project was not aborted or stopped for any reason during
the session). If the project was aborted, either by the user (by pressing the Abort button on the
debug panel), or for cause (a space limit condition was reached, or an initial connection error
prevented the project from running at all), the status line will begin with the words,
“Project Aborted”. If the project was stopped by the user (by pressing the Stop button
on the debug panel), or stopped for cause (a project time limit was reached), the status line
will begin with the words, “Project Stopped”.

Teleport Exec Interface and Specifications Runtime Control

23

Runtime Control

Although it can be run from the command-line, Teleport Exec is not a “console” application and,
once started, it cannot be terminated by issuing a Ctrl-C or closing the command window. The
process can be properly shut down by pressing the “Abort” or “Stop” buttons on the debug interface,
or by closing the interface window (which causes an immediate, graceful abort)— but these techniques
are available only if the debug interface has been requested (by specifying the /debug parameter).

However, a running instance of Teleport Exec can also be controlled by executing proexec.exe (or
execvlx.exe , for Teleport Exec/VLX) again with a “runtime” command-line. Runtime
commands are available even if the debug window is not invoked. The two runtime commands are—

/a Abort: Causes the running instance immediately to abort, shutting down all running
threads. Any partially retrieved files will be lost. This is the same as pressing the “Abort”
button on the debug window’s toolbar.

/s Stop: Causes the running instance to stop further retrieval, but any running threads will
continue retrieving until they are finished. When all of the threads finish, the program will
shut down. This is the same as pressing the “Stop” button on the debug window’s toolbar.

The runtime commands are available only when using the single-instance version of Teleport Exec.
Individual instances of the multiple-instance version can be controlled only through the debug
interface.

Program Specifications Teleport Exec Interface and Specifications

24

Program Specifications

Executable Type: All code Win32 rev 4.0, subsystem rev 4.0, for I386 CPUs.

Operating Systems: Any Win32 operating system (Win9x, WinNT, Win2000, WinMe).

Imports: USER32, KERNEL32, GDI32, COMDLG32, ADVAPI32, SHELL32,
COMCTL32.

Runtime bindings: WSOCK32 (required), RASAPI32 (when available).

Threading structure: Multithreaded. Synchronization is achieved primarily through Windows™
messaging, although in limited circumstances process-specific mutexes are
used.

The retrieval engine and parsing engine are both multithreaded and run
asynchronously, with the retrieval engine getting execution priority. Primary
parsing is performed on an on-demand basis; relinking is performed on an as-
available basis throughout the project session. Relinks not processed during the
normal course of the project are handled in a single thread at end-of-session.

The retrieval engine is limited to no more than 10 threads. The parsing engine
is limited to no more than 8 threads.

Retrieval Engine: Robust file retrieval from HTTP/0.9–, HTTP/1.0–, and HTTP/1.1–compliant
webservers. Hand-tuned header parser accommodates non-compliant
webservers (e.g., some CERN and Apache implementations). Robust file
retrieval from FTP servers compliant with RFCs 959 and 1123 (anonymous
access only).

Parsing Engine: Performs robust bottom-up single-pass HTML parsing and relinking. HTML
4.0 compliant. The parser is hand-tuned for efficiency and to accommodate
common HTML authoring errors (missing delimiters, illegal characters).
Handles all accepted methods of URL notation, including hexadecimal escape
codes, nonstandard ports, SGML entities, ISO-8859-1 entities, bookmarking,
and query specifiers. The parser is also capable of properly handling Internet
addresses given as DBCS or Unicode strings.

Database Engine: Proprietary. Optimized for lookup performance to handle the querying load
imposed by simultaneous file parsing. Maximum size: 64k addresses.
(Exec/VLX database size is 40M addresses).

Teleport Exec Interface and Specifications For Further Information

25

For Further Information

If you have any questions about this document, please contact us at:

Tennyson Maxwell Information Systems, Inc.
PO Box 400556
Cambridge, MA 02140

+1 617 591-8155 voice
+1 617 591-8157 fax
email: support@tenmax.com

