

Table of Contents
Statement list    5
ALTER DATABASE    6
ALTER DOMAIN    7
ALTER EXCEPTION    9
ALTER INDEX    10
ALTER PROCEDURE    11
ALTER TABLE    12
ALTER TRIGGER    19
AVG()     20
BASED ON    22
BEGIN DECLARE SECTION    23
CAST()     23
CLOSE    24
CLOSE (BLOB)    25
COMMIT    26
CONNECT    28
COUNT()     32
CREATE DATABASE    33
CREATE DOMAIN    36
CREATE EXCEPTION    41
CREATE GENERATOR    42
CREATE INDEX    43
CREATE PROCEDURE    45
CREATE ROLE    52
CREATE SHADOW    53
CREATE TABLE    56
CREATE TRIGGER    64
CREATE VIEW    70
DECLARE CURSOR    73
DECLARE CURSOR (BLOB)    75
DECLARE EXTERNAL FUNCTION    76
DECLARE FILTER    78
DECLARE STATEMENT    80
DECLARE TABLE    80
DELETE    81
DESCRIBE    83
DISCONNECT    85
DROP DATABASE    85
DROP DOMAIN    86
DROP EXCEPTION    87
DROP EXTERNAL FUNCTION    88
DROP FILTER    89
DROP INDEX    90

DROP PROCEDURE    91
DROP ROLE    91
DROP SHADOW    92
DROP TABLE    93
DROP TRIGGER    94
DROP VIEW    95
END DECLARE SECTION    95
EVENT INIT    96
EVENT WAIT    97
EXECUTE    98
EXECUTE IMMEDIATE    100
EXECUTE PROCEDURE    101
FETCH    102
FETCH (BLOB)    104
GEN_ID()     105
GRANT    106
INSERT    110
INSERT CURSOR (BLOB)    112
MAX()     113
MIN()     114
OPEN    114
OPEN (BLOB)    115
PREPARE    116
REVOKE    118
ROLLBACK    121
SELECT    122
SET DATABASE    129
SET GENERATOR    131
SET NAMES    132
SET SQL DIALECT    133
SET STATISTICS    134
SET TRANSACTION    135
SHOW SQL DIALECT    138
SUM()     139
UPDATE    139
UPPER()     141
WHENEVER    142

Statement list
This chapter describes the following SQL statements:

ALTER DATABASE
Adds secondary files to the current database. Available in SQL, DSQL, and
isql.

Syntax ALTER {DATABASE | SCHEMA}
ADD <add_clause>;

<add_clause> = FILE 'filespec' [<fileinfo>] [<add_clause>]
<fileinfo> = LENGTH [=] int [PAGE[S]]

| STARTING [AT [PAGE]] int [<fileinfo>]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
SCHEMA Alternative keyword for DATABASE

ADD FILE 'filespec' Adds one or more secondary files to receive
database pages after the primary file is filled;
for a remote database, associate secondary
files with the same node

LENGTH [=] int
[PAGE[S]]

Specifies the range of pages for a secondary
file by providing the number of pages in each
file

STARTING [AT
[PAGE]] int

Specifies a range of pages for a secondary file
by providing the starting page number

Description ALTER DATABASE adds secondary files to an existing database. Secondary

files permit databases to spread across storage devices, but they must
remain on the same node as the primary database file. A database can be
altered by its creator, the SYSDBA user, and any users with operating system
root privileges.
ALTER DATABASE requires exclusive access to the database.
Note InterBase dynamically expands the last file in a database as needed
until it reaches the 4GB limit. You should be aware that specifying a LENGTH
for such files has no effect.
You cannot use ALTER DATABASE to split an existing database file. For example,
if your existing database is 80,000 pages long and you add a secondary file
STARTING AT 50000, InterBase starts the new database file at page 80,001.

Tip To split an existing database file into smaller files, back it up and restore it.
When you restore a database, you are free to specify secondary file sizes at
will, without reference to the number and size of the original files.

Example The following isql statement adds two secondary files to an existing
database. The command creates a secondary database file called
employee2.gdb that is 10,000 pages long and another called
employee3.gdb. interBase starts using employee2.gdb only when the
primary file reaches 10,000 pages.

ALTER DATABASE
ADD FILE 'employee2.gdb'
STARTING AT PAGE 10001 LENGTH 10000
ADD FILE 'employee3.gdb';

See Also CREATE DATABASE, DROP DATABASE
See the Data Definition Guide for more information about multi-file
databases and the Operations Guide for more information about exclusive
database access.

ALTER DOMAIN
Changes a domain definition. Available in SQL, DSQL, and isql.
ALTER DOMAIN name {

SET DEFAULT {literal | NULL | USER}
| DROP DEFAULT
| ADD [CONSTRAINT] CHECK (<dom_search_condition>)
| DROP CONSTRAINT
| new_col_name
| TYPE datatype};

<dom_search_condition> = {
VALUE <operator> <val>
| VALUE [NOT] BETWEEN <val> AND <val>
| VALUE [NOT] LIKE <val> [ESCAPE <val>]
| VALUE [NOT] IN (<val> [, <val> …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING <val>
| VALUE [NOT] STARTING [WITH] <val>
| (<dom_search_condition>)
| NOT <dom_search_condition>
| <dom_search_condition> OR <dom_search_condition>
| <dom_search_condition> AND <dom_search_condition>
}

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing domain
SET DEFAULT Specifies a default column value that is

entered when no other entry is made.
Values:

literal—Inserts a specified string,
numeric value, or date value

NULL—Enters a NULL value
USER—Enters the user name of the

current user; column must be of compatible
text type to use the default

Defaults set at column level override
defaults set at the domain level

DROP DEFAULT Drops an existing default
ADD [CONSTRAINT]
CHECK
dom_search_conditi
on

Adds a CHECK constraint to the domain
definition; a domain definition can include
only one CHECK constraint

DROP CONSTRAINT Drops CHECK constraint from the domain
definition

new_col_name Changes the domain name
TYPE data_type Changes the domain datatype

Description ALTER DOMAIN changes any aspect of an existing domain except its NOT

NULL setting. Changes made to a domain definition affect all column
definitions based on the domain that have not been overridden at the table
level.
Note To change a datatype or NOT NULL setting of a domain, drop the domain
and recreate it with the desired combination of features.
A domain can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.

Example The following isql statements create a domain that must have a value >
1,000, then alter it by setting a default of 9,999:
CREATE DOMAIN CUSTNO

AS INTEGER
CHECK (VALUE > 1000);

ALTER DOMAIN CUSTNO SET DEFAULT 9999;

See Also CREATE DOMAIN, CREATE TABLE, DROP DOMAIN
For a complete discussion of creating domains, and using them to create
column definitions, see the Data Definition Guide.

ALTER EXCEPTION
Changes the message associated with an existing exception. Available in
DSQL and isql.

Syntax ALTER EXCEPTION name 'message'

Argument Description
name Name of an existing

exception message
'message' Quoted string containing

ASCII values

Description ALTER EXCEPTION changes the text of an exception error message.

An exception can be altered by its creator, the SYSDBA user, and any users
with operating system root privileges.

Example This isql statement alters the message of an exception:
ALTER EXCEPTION CUSTOMER_CHECK 'Hold shipment for customer

remittance.';

See Also ALTER PROCEDURE, ALTER TRIGGER, CREATE EXCEPTION, CREATE PROCEDURE, CREATE
TRIGGER, DROP EXCEPTION
For more information on creating, raising, and handling exceptions, see the
Data Definition Guide.

ALTER INDEX
Activates or deactivates an index. Available in SQL, DSQL, and isql.

Syntax ALTER INDEX name {ACTIVE | INACTIVE};

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing index
ACTIVE Changes an INACTIVE index to an

ACTIVE one
INACTIVE Changes an ACTIVE index to an

INACTIVE one

Description ALTER INDEX makes an inactive index available for use, or disables the use

of an active index. Deactivating and reactivating an index is useful when
changes in the distribution of indexed data cause the index to become
unbalanced.
Before inserting or updating a large number of rows, deactivate a table's
indexes to avoid altering the index incrementally. When finished, reactivate
the index. Reactivating a deactivated index rebuilds and rebalances an
index.
If an index is in use, ALTER INDEX does not take effect until the index is no
longer in use.
ALTER INDEX fails and returns an error if the index is defined for a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint. To alter such an index, use DROP INDEX
to delete the index, then recreate it with CREATE INDEX.
An index can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.
Note To add or drop index columns or keys, use DROP INDEX to delete the
index, then recreate it with CREATE INDEX.

Example The following isql statements deactivate and reactivate an index to rebuild
it:
ALTER INDEX BUDGETX INACTIVE;
ALTER INDEX BUDGETX ACTIVE;

See Also ALTER TABLE, CREATE INDEX, DROP INDEX, SET STATISTICS

ALTER PROCEDURE
Changes the definition of an existing stored procedure. Available in DSQL
and isql.

Syntax ALTER PROCEDURE name
[(param <datatype> [, param <datatype> …])]
[RETURNS (param <datatype> [, param <datatype> …])]
AS <procedure_body> [terminator]

Argument Description
name Name of an existing procedure
param datatype Input parameters used by the procedure;

legal datatypes are listed under CREATE
PROCEDURE

RETURNS param
datatype

Output parameters used by the procedure;
legal datatypes are listed under CREATE
PROCEDURE

procedure_body The procedure body includes:
 Local variable declarations
 A block of statements in procedure

and trigger language
See CREATE PROCEDURE for a complete
description

terminator Terminator defined by the isql SET TERM
command to signify the end of the
procedure body; required by isql

Description ALTER PROCEDURE changes an existing stored procedure without affecting

its dependencies. It can modify a procedure's input parameters, output
parameters, and body.
The complete procedure header and body must be included in the ALTER
PROCEDURE statement. The syntax is exactly the same as CREATE PROCEDURE,
except CREATE is replaced by ALTER.

Important Be careful about changing the type, number, and order of input and output
parameters to a procedure, since existing application code may assume the
procedure has its original format.
A procedure can be altered by its creator, the SYSDBA user, and any users
with operating system root privileges.
Procedures in use are not altered until they are no longer in use.
ALTER PROCEDURE changes take effect when they are committed. Changes are
then reflected in all applications that use the procedure without recompiling
or relinking.

Example The following isql statements alter the GET_EMP_PROJ procedure, changing the
return parameter to have a datatype of VARCHAR(20):
SET TERM !! ;

ALTER PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID VARCHAR(20)) AS

BEGIN
FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :emp_no
INTO :proj_id
DO

SUSPEND;
END !!

SET TERM ; !!

See Also CREATE PROCEDURE, DROP PROCEDURE, EXECUTE PROCEDURE
For more information on creating and using procedures, see the Data
Definition Guide.

ALTER TABLE
Changes a table by adding, dropping, or modifying columns or integrity
constraints. Available in SQL, DSQL, and isql.

Syntax ALTER TABLE table <operation> [, <operation> …];
<operation> = {ADD <col_def>

| ADD <tconstraint>
| ALTER [COLUMN] column_name <alt_col_clause>
| DROP col
| DROP CONSTRAINT constraint}

<alt_col_clause> = {TO new_col_name
| TYPE new_col_datatype
| POSITION new_col_position}

<col_def> = col {<datatype> | COMPUTED [BY] (<expr>) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[<col_constraint>]
[COLLATE collation]

<datatype> =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[<array_dim>]
| (DATE | TIME | TIMESTAMP}[<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]<array_dim> = [[x:]y [, [x:]y …]]

<expr> = A valid SQL expression that results in a single value.
<col_constraint> = [CONSTRAINT constraint]

{ UNIQUE
| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition>)}
<tconstraint> = [CONSTRAINT constraint]

{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …]) REFERENCES other_table

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition>)}
<search_condition> = <val> <operator> {<val> | (<select_one>)}

| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]
| <val> [NOT] IN (<val> [, <val> …] | <select_list>)
| <val> IS [NOT] NULL
| <val> {>= | <=}
| <val> [NOT] {= | < | >}

| {ALL | SOME | ANY} (<select_list>)
| EXISTS (<select_expr>)
| SINGULAR (<select_expr>)
| <val> [NOT] CONTAINING <val>
| <val> [NOT] STARTING [WITH] <val>
| (<search_condition>)
| NOT <search_condition>
| <search_condition> OR <search_condition>
| <search_condition> AND <search_condition>

<val> = { col [<array_dim>] | :variable
| <constant> | <expr> | <function>
| udf ([<val> [, <val> …]])
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]

<constant> = num | 'string' | charsetname 'string'
<function> = COUNT (* | [ALL] <val> | DISTINCT <val>)

| SUM ([ALL] <val> | DISTINCT <val>)
| AVG ([ALL] <val> | DISTINCT <val>)
| MAX ([ALL] <val> | DISTINCT <val>)
| MIN ([ALL] <val> | DISTINCT <val>)
| CAST (<val> AS <datatype>)
| UPPER (<val>)
| GEN_ID (generator, <val>)

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}
<select_one> = SELECT on a single column; returns exactly one value.
<select_list> = SELECT on a single column; returns zero or more values.
<select_expr> = SELECT on a list of values; returns zero or more values.

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Notes on ALTER TABLE syntax
n The column constraints for referential integrity were new in InterBase 5. See

constraint_def in Table 1    and the Description    for ALTER TABLE on page 17.
n You cannot specify a COLLATE clause for Blob columns.
n When declaring arrays, you must include the outermost brackets, shown

below in bold. For example, the following statement creates a 5 by 5 two-
dimensional array of strings, each of which is 6 characters long:
my_array = varchar(6)[5,5]
Use the colon (:) to specify an array with a starting point other than 1. The
following example creates an array of integers that begins at 20 and ends at
30:
my_array = integer[20:30]

n For the full syntax of search_condition, see CREATE TABLE.
TABLE 1 The ALTER TABLE statement

Argument Description
table Name of an existing table to modify
operation Action to perform on the table. Valid options

are:
 ADD a new column or table constraint to a

table
 DROP an existing column or constraint

from a table
col_def Description of a new column to add

Must include a column name and datatype
Can also include default values, column

constraints, and a specific collation order
col Name of the column to add or drop; column

name must be unique within the table
datatype Datatype of the column
ALTER [COLUMN] Modifies column names, datatypes, and

positions.
COMPUTED [BY] expr Specifies that the value of the column's data is

calculated from expr at runtime and is therefore
not allocated storage space in the database

expr can be any arithmetic expression
valid for the datatypes in the expression

Any columns referenced in expr must exist
before they can be used in expr

expr cannot reference Blob columns
expr must return a single value, and

cannot return an array
domain Name of an existing domain
DEFAULT Specifies a default value for column data; this

value is entered when no other entry is made;
possible values are:

literal: Inserts a specified string, numeric
value, or date value

NULL: Enters a NULL value
USER: Enters the user name of the current

user; column must be of compatible text type to
use the default
Defaults set at column level override defaults
set at the domain level

CONSTRAINT
constraint

Name of a column or table constraint; the
constraint name must be unique within the
table

constraint_def Specifies the kind of column constraint; valid
options are UNIQUE, PRIMARY KEY, CHECK, and

REFERENCES

CHECK
search_condition

An attempt to enter a new value in the column
fails if the value does not meet the
search_condition

REFERENCES Specifies that the column values are derived
from column values in another table; if you do
not specify column names, InterBase looks for a
column with the same name as the referencing
column in the referenced table

ON DELETE | ON
UPDATE

Used with REFERENCES: Changes a foreign key
whenever the referenced primary key changes;
valid options are:

[Default] NO ACTION: Does not change the
foreign key; may cause the primary key update
to fail due to referential integrity checks

CASCADE: For ON DELETE, deletes the
corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the
new value of the primary key

SET NULL: Sets all the columns of the
corresponding foreign key to NULL

SET DEFAULT: Sets every column of the
corresponding foreign key is set to its default
value in effect when the referential integrity
constraint is defined; when the default for a
foreign column changes after the referential
integrity constraint is defined, the change does
not have an effect on the default value used in
the referential integrity constraint

NOT NULL Specifies that a column cannot contain a NULL
value

If a table already has rows, a new column
cannot be NOT NULL

NOT NULL is a column attribute only
DROP CONSTRAINT Drops the specified table constraint
table_constraint Description of the new table constraint;

constraints can be PRIMARY KEY, UNIQUE, FOREIGN
KEY, or CHECK

COLLATE collation Establishes a default sorting behavior for the
column

Description ALTER TABLE modifies the structure of an existing table. A single ALTER TABLE

statement can perform multiple adds and drops.
n A table can be altered by its creator, the SYSDBA user, and any users with

operating system superuser privileges.
n ALTER TABLE fails if the new data in a table violates a PRIMARY KEY or UNIQUE

constraint definition added to the table. Dropping a column fails if any of the
following are true:
· The column is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint
· The column is used in a CHECK constraint
· The column is used in the value expression of a computed column
· The column is referenced by another database object such as a view

Important When a column is dropped, all data stored in it is lost.

Referential integrity constraints
n To ensure that the referential integrity of foreign keys is preserved, use the

ON UPDATE and ON DELETE options for all REFERENCES statements. The values
for these cascading referential integrity options are given in Table 1, "The
ALTER TABLE statement," on page 15.

n If you do not use the ON UPDATE and ON DELETE options, you must drop the
constraint or computed column before dropping the table column. To drop a
PRIMARY KEY or UNIQUE constraints that is referenced by FOREIGN KEY
constraints, drop the FOREIGN KEY constraint before dropping the PRIMARY KEY
or UNIQUE key it references.

n You can create a FOREIGN KEY reference to a table that is owned by someone
else only if that owner has explicitly granted you the REFERENCES privilege on
that table using GRANT. Any user who updates your foreign key table must
have REFERENCES or SELECT privileges on the referenced primary key table.

n You can add a check constraint to a column that is based on a domain, but
be aware that changes to tables that contain CHECK constraints with
subqueries may cause constraint violations.

n Naming column constraints is optional. If you do not specify a name,
InterBase assigns a system-generated name. Assigning a descriptive name
can make a constraint easier to find for changing or dropping, and easier to
find when its name appears in a constraint violation error message.

Example The following isql statement adds a column to a table and drops a column:
ALTER TABLE COUNTRY

ADD CAPITAL VARCHAR(25),
DROP CURRENCY;

This statement results in the loss of all data in the dropped CURRENCY
column.
The next isql statement adds two columns to a table and defines a UNIQUE
constraint on one of them:
ALTER TABLE COUNTRY

ADD CAPITAL VARCHAR(25) NOT NULL UNIQUE,
ADD LARGEST_CITY VARCHAR(25) NOT NULL;

The next isql statement changes the name of the LARGEST_CITY column to
BIGGEST_CITY:
ALTER TABLE COUNTRY ALTER LARGEST_CITY TO BIGGEST_CITY;

See Also ALTER DOMAIN, CREATE DOMAIN, CREATE TABLE
For more information about altering tables, see the Embedded SQL Guide.

ALTER TRIGGER
Changes an existing trigger. Available in DSQL and isql.

Syntax ALTER TRIGGER name
[ACTIVE | INACTIVE]
[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION number]
[AS <trigger_body>] [terminator]

Argument Description
name Name of an existing trigger
ACTIVE [Default] Specifies that a trigger action takes

effect when fired
INACTIVE Specifies that a trigger action does not take effect
BEFORE Specifies the trigger fires before the associated

operation takes place
AFTER Specifies the trigger fires after the associated

operation takes place
DELETE|
INSERT
|UPDATE

Specifies the table operation that causes the
trigger to fire

POSITION
number

Specifies order of firing for triggers before the
same action or after the same action

number must be an integer between 0 and
32,767, inclusive

Lower-number triggers fire first
Triggers for a table need not be

consecutive; triggers on the same action with the
same position number fire in random order

trigger_bod
y

Body of the trigger: a block of statements in
procedure and trigger language

See CREATE TRIGGER for a complete
description

terminator Terminator defined by the isql SET TERM command
to signify the end of the trigger body; not needed
when altering only the trigger header

Description ALTER TRIGGER changes the definition of an existing trigger. If any of the

arguments to ALTER TRIGGER are omitted, then they default to their current
values, that is the value specified by CREATE TRIGGER, or the last ALTER
TRIGGER.
ALTER TRIGGER can change:

n Header information only, including the trigger activation status, when it
performs its actions, the event that fires the trigger, and the order in which
the trigger fires compared to other triggers.

n Body information only, the trigger statements that follow the AS clause.
n Header and trigger body information. In this case, the new trigger definition

replaces the old trigger definition.
A trigger can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.
Note To alter a trigger defined automatically by a CHECK constraint on a table,
use ALTER TABLE to change the constraint definition.

Examples The following isql statement modifies the trigger, SET_CUST_NO, to be
inactive:
ALTER TRIGGER SET_CUST_NO INACTIVE;
The next isql statement modifies the trigger, SET_CUST_NO, to insert a row
into the table, NEW_CUSTOMERS, for each new customer.
SET TERM !! ;
ALTER TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS

BEGIN
NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
INSERT INTO NEW_CUSTOMERS(NEW.CUST_NO, TODAY)

END !!
SET TERM ; !!

See Also CREATE TRIGGER, DROP TRIGGER
For more information about triggers, see the Data Definition Guide.

AVG()
Calculates the average of numeric values in a specified column or
expression. Available in SQL, DSQL, and isql.

Syntax AVG ([ALL] value | DISTINCT value)

Argum
ent

Description

ALL Returns the average of all values
DISTINC
T

Eliminates duplicate values before
calculating the average

value A column or expression that evaluates to
a numeric datatype

Description AVG() is an aggregate function that returns the average of the values in a

specified column or expression. Only numeric datatypes are allowed as input
to AVG().
If a field value involved in a calculation is NULL or unknown, it is
automatically excluded from the calculation. Automatic exclusion prevents
averages from being skewed by meaningless data.
AVG() computes its value over a range of selected rows. If the number of rows
returned by a SELECT is zero, AVG() returns a NULL value.

Examples The following embedded SQL statement returns the average of all rows in a
table:
EXEC SQL

SELECT AVG (BUDGET) FROM DEPARTMENT INTO :avg_budget;
The next embedded SQL statement demonstrates the use of SUM(), AVG(),
MIN(), and MAX() over a subset of rows in a table:
EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also COUNT() , MAX() , MIN() , SUM()

BASED ON
Declares a host-language variable based on a column. Available in SQL.

Syntax BASED [ON] [dbhandle.]table.col[.SEGMENT] variable;

Argume
nt

Description

dbhandle Handle for the database in which a table resides in a
multi-database program; dbhandle must be previously
declared in a SET DATABASE statement

table.col Name of table and name of column on which the
variable is based

.SEGMENT Bases the local variable size on the segment length of
the Blob column during BLOB FETCH operations; use
only when table.col refers to a column of BLOB
datatype

variable Name of the host-language variable that inherits the
characteristics of a database column

Description BASED ON is a preprocessor directive that creates a host-language variable

based on a column definition. The host variable inherits the attributes
described for the column and any characteristics that make the variable type
consistent with the programming language in use. For example, in C, BASED
ON adds one byte to CHAR and VARCHAR variables to accommodate the NULL
character terminator.
Use BASED ON in a program's variable declaration section.
Note BASED ON does not require the EXEC SQL keywords.
To declare a host-language variable large enough to hold a Blob segment
during FETCH operations, use the SEGMENT option of the BASED ON clause. The
variable's size is derived from the segment length of a Blob column. If the
segment length for the Blob column is changed in the database, recompile
the program to adjust the size of host variables created with BASED ON.

Examples The following embedded statements declare a host variable based on a
column:
EXEC SQL

BEGIN DECLARE SECTION
BASED_ON EMPLOYEE.SALARY salary;

EXEC SQL
END DECLARE SECTION;

See Also BEGIN DECLARE SECTION, CREATE TABLE, END DECLARE SECTION

BEGIN DECLARE SECTION
Identifies the start of a host-language variable declaration section. Available
in SQL.

Syntax BEGIN DECLARE SECTION;

Description BEGIN DECLARE SECTION is used in embedded SQL applications to identify
the start of host-language variable declarations for variables that will be
used in subsequent SQL statements. BEGIN DECLARE SECTION is also a
preprocessor directive that instructs gpre to declare SQLCODE automatically
for the applications programmer.

Important BEGIN DECLARE SECTION must always appear within a module's global variable
declaration section.

Example The following embedded SQL statements declare a section and a host-
language variable:
EXEC SQL

BEGIN DECLARE SECTION;
BASED ON EMPLOYEE.SALARY salary;

EXEC SQL
END DECLARE SECTION;

See Also BASED ON, END DECLARE SECTION

CAST()
Converts a column from one datatype to another. Available in SQL, DSQL,
and isql.

Syntax CAST (value AS datatype)

Argument Description
val A column, constant, or expression; in SQL, val can

also be a host-language variable, function, or UDF
datatype Datatype to which to convert

Description CAST() allows mixing of numerics and characters in a single expression by

converting val to a specified datatype.
Normally, only similar datatypes can be compared in search conditions.
CAST() can be used in search conditions to translate one datatype into
another for comparison purposes.
Datatypes can be converted as shown in the following table:

TABLE 2 Compatible datatypes for CAST()
From datatype class To datatype class
Numeric character, varying character,

date, time, timestamp
Character, varying
character

numeric, date, time, timestamp

Date character, varying character,
timestamp

Time character, varying character,
timestamp

Timestamp character, varying character,
date, time

Blob, arrays —

An error results if a given datatype cannot be converted into the datatype
specified in CAST().

Example In the following WHERE clause, CAST() is used to translate a CHARACTER
datatype, INTERVIEW_DATE, to a DATE datatype to compare against a DATE
datatype, HIRE_DATE:
. . .

WHERE HIRE_DATE = CAST (INTERVIEW_DATE AS DATE);

See Also UPPER()

CLOSE
Closes an open cursor. Available in SQL.

Syntax CLOSE cursor;

Argument Description
cursor Name of an open cursor

Description CLOSE terminates the specified cursor, releasing the rows in its active set

and any associated system resources. A cursor is a one-way pointer into the
ordered set of rows retrieved by the select expression in the DECLARE CURSOR
statement. A cursor enables sequential access to retrieved rows in turn and
update in place.
There are four related cursor statements:

Stag
e

Statemen
t

Purpose

1 DECLARE
CURSOR

Declares the cursor; the SELECT statement
determines rows retrieved for the cursor

2 OPEN Retrieves the rows specified for retrieval with
DECLARE CURSOR; the resulting rows become the
cursor's active set

3 FETCH Retrieves the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the set

4 CLOSE Closes the cursor and releases system
resources

FETCH statements cannot be issued against a closed cursor. Until a cursor is
closed and reopened, InterBase does not reevaluate values passed to the
search conditions. Another user can commit changes to the database while a
cursor is open, making the active set different the next time that cursor is
reopened.
Note In addition to CLOSE, COMMIT and ROLLBACK automatically close all
cursors in a transaction.

Example The following embedded SQL statement closes a cursor:
EXEC SQL

CLOSE BC;

See Also CLOSE (BLOB), COMMIT, DECLARE CURSOR, FETCH, OPEN, ROLLBACK

CLOSE (BLOB)
Terminates a specified Blob cursor and releases associated system
resources. Available in SQL.

Syntax CLOSE blob_cursor;

Argument Description
blob_cursor Name of an open Blob

cursor

Description CLOSE closes an opened read or insert Blob cursor. Generally a Blob cursor

should only be closed after:
n Fetching all the Blob segments for BLOB READ operations.
n Inserting all the segments for BLOB INSERT operations.

Example The following embedded SQL statement closes a Blob cursor:
EXEC SQL

CLOSE BC;

See Also DECLARE CURSOR (BLOB), FETCH (BLOB), INSERT CURSOR (BLOB), OPEN (BLOB)

COMMIT
Makes a transaction's changes to the database permanent, and ends the
transaction. Available in SQL, DSQL, and isql.

Syntax COMMIT [WORK] [TRANSACTION name] [RELEASE] [RETAIN [SNAPSHOT]];

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
WORK An optional word used for compatibility with

other relational databases that require it
TRANSACTION
name

Commits transaction name to database.
Without this option, COMMIT affects the default
transaction

RELEASE Available for compatibility with earlier versions
of InterBase

RETAIN
[SNAPSHOT]

Commits changes and retains current
transaction context

Description COMMIT is used to end a transaction and:

n Write all updates to the database.
n Make the transaction's changes visible to subsequent SNAPSHOT transactions

or READ COMMITTED transactions.
n Close open cursors, unless the RETAIN argument is used.

A transaction ending with COMMIT is considered a successful termination.
Always use COMMIT or ROLLBACK to end the default transaction.

Tip After read-only transactions, which make no database changes, use COMMIT
rather than ROLLBACK. The effect is the same, but the performance of
subsequent transactions is better and the system resources used by them
are reduced.

Important The RELEASE argument is only available for compatibility with previous
versions of InterBase. To detach from a database use DISCONNECT.

Examples The following isql statement makes permanent the changes to the database
made by the default transaction:
COMMIT;
The next embedded SQL statement commits a named transaction:
EXEC SQL

COMMIT TR1;
The following embedded SQL statement uses COMMIT RETAIN to commit
changes while maintaining the current transaction context:
EXEC SQL

COMMIT RETAIN;
See Also DISCONNECT, ROLLBACK

For more information about handling transactions, see the Embedded SQL
Guide.

CONNECT
Attaches to one or more databases. Available in SQL. A subset of CONNECT
options is available in isql.

Syntax isql form:
CONNECT 'filespec' [USER 'username'][PASSWORD 'password']

[CACHE int] [ROLE 'rolename']

SQL form:
CONNECT [TO] {ALL | DEFAULT} <config_opts>

| <db_specs> <config_opts> [, <db_specs> <config_opts>...];
<db_specs> = dbhandle

| {'filespec' | :variable} AS dbhandle
<config_opts> = [USER {'username' | :variable}]

[PASSWORD {'password' | :variable}]
[ROLE {'rolename' | :variable}]
[CACHE int [BUFFERS]]

Argument Description
{ALL | DEFAULT} Connects to all databases specified with SET

DATABASE; options specified with CONNECT TO
ALL affect all databases.

'filespec' Database file name; can include path
specification and node. The filespec must be
in quotes if it includes spaces.

dbhandle Database handle declared in a previous SET
DATABASE statement;
available in embedded SQL but not in isql.

:variable Host-language variable specifying a
database, user name, or password; available
in embedded SQL but not in isql.

AS dbhandle Attaches to a database and assigns a
previously declared handle to it; available in
embedded SQL but not in isql.

USER {'username'
| :variable}

String or host-language variable that
specifies a user name for use when attaching
to the database. The server checks the user
name against the security database. User
names are case insensitive on the server.

PASSWORD
{'password'
| :variable}

String or host-language variable, up to 8
characters in size, that specifies password
for use when attaching to the database. The
server checks the user name and password
against the security database. Case
sensitivity is retained for the comparison.

ROLE {'rolename'
| :variable}

String or host-language variable, up to 31
characters in size, which specifies the role
that the user adopts on connection to the
database. The user must have previously
been granted membership in the role to gain
the privileges of that role. Regardless of role
memberships granted, the user has the
privileges of a role at connect time only if a
ROLE clause is specified in the connection.
The user can adopt at most one role per
connection, and cannot switch roles except
by reconnecting.

CACHE int [BUFFERS] Sets the number of cache buffers for a
database, which determines the number of
database pages a program can use at the
same time. Values for int:

Default: 256
Maximum value: system-dependent

Do not use the filespec form of database
name with cache assignments.

Description The CONNECT statement:

n Initializes database data structures.
n Determines if the database is on the originating node (a local database) or

on another node (a remote database). An error message occurs if InterBase
cannot locate the database.

n Optionally specifies one or more of a user name, password, or role for use
when attaching to the database. PC clients must always send a valid user
name and password. InterBase recognizes only the first 8 characters of a
password.
If an InterBase user has ISC_USER and ISC_PASSWORD environment variables
set and the user defined by those variables is not in the isc4.gdb, the user
will receive the following error when attempting to view isc4.gdb users from
the local server manager connection: "undefined user name and password."
This applies only to the local connection; the automatic connection made
through Server Manager bypasses user security.

n Attaches to the database and verifies the header page. The database file
must contain a valid database, and the on-disk structure (ODS) version
number of the database must be the one recognized by the installed version
of InterBase on the server, or InterBase returns an error.

n Optionally establishes a database handle declared in a SET DATABASE
statement.

n Specifies a cache buffer for the process attaching to a database.
In SQL programs before a database can be opened with CONNECT, it must be
declared with the SET DATABASE statement. isql does not use SET DATABASE.
In SQL programs while the same CONNECT statement can open more than
one database, use separate statements to keep code easy to read.

When CONNECT attaches to a database, it uses the default character set
(NONE), or one specified in a previous SET NAMES statement.
In SQL programs the CACHE option changes the database cache size count
(the total number of available buffers) from the default of 75. This option can
be used to:

n Sets a new default size for all databases listed in the CONNECT statement that
do not already have a specific cache size.

n Specifies a cache for a program that uses a single database.
n Changes the cache for one database without changing the default for all

databases used by the program.
The size of the cache persists as long as the attachment is active. If a
database is already attached through a multi-client server, an increase in
cache size due to a new attachment persists until all the attachments end. A
decrease in cache size does not affect databases that are already attached
through a server.
A subset of CONNECT features is available in isql: database file name, USER,
and PASSWORD. isql can only be connected to one database at a time. Each
time CONNECT is used to attach to a database, previous attachments are
disconnected.

Examples The following statement opens a database for use in isql. It uses all the
CONNECT options available to isql:
CONNECT 'employee.gdb' USER 'ACCT_REC' PASSWORD 'peanuts';
The next statement, from an embedded application, attaches to a database
file stored in the host-language variable and assigns a previously declared
database handle to it:
EXEC SQL

SET DATABASE DB1 = 'employee.gdb';
EXEC SQL

CONNECT :db_file AS DB1;
The following embedded SQL statement attaches to employee.gdb and
allocates 150 cache buffers:
EXEC SQL

CONNECT 'accounts.gdb' CACHE 150;
The next embedded SQL statement connects the user to all databases
specified with previous SET DATABASE statements:
EXEC SQL

CONNECT ALL USER 'ACCT_REC' PASSWORD 'peanuts'
CACHE 50;

The following embedded SQL statement attaches to the database,
employee.gdb, with 80 buffers and database employee2.gdb with the default
of 75 buffers:
EXEC SQL

CONNECT 'employee.gdb' CACHE 80, 'employee2.gdb';
The next embedded SQL statement attaches to all databases and allocates
50 buffers:

EXEC SQL
CONNECT ALL CACHE 50;

The following embedded SQL statement connects to EMP1 and v, setting the
number of buffers for each to 80:
EXEC SQL

CONNECT EMP1 CACHE 80, EMP2 CACHE 80;
The next embedded SQL statement connects to two databases identified by
variable names, setting different user names and passwords for each:
EXEC SQL

CONNECT
:orderdb AS DB1 USER 'ACCT_REC' PASSWORD 'peanuts',
:salesdb AS DB2 USER 'ACCT_PAY' PASSWORD 'payout';

See Also DISCONNECT, SET DATABASE, SET NAMES
Se the Data Definition Guide for more information about cache buffers and
the Operations Guide for more information about database security and isql.

COUNT()
Calculates the number of rows that satisfy a query's search condition.
Available in SQL, DSQL, and isql.

Syntax COUNT (* | [ALL] value | DISTINCT value)

Argume
nt

Description

* Retrieves the number of rows in a specified table,
including NULL values

ALL Counts all non-NULL values in a column
DISTINCT Returns the number of unique, non-NULL values for the

column
val A column or expression

Description COUNT() is an aggregate function that returns the number of rows that

satisfy a query's search condition. It can be used in views and joins as well
as in tables.

Example The following embedded SQL statement returns the number of unique
currency values it encounters in the COUNTRY table:
EXEC SQL

SELECT COUNT (DISTINCT CURRENCY) INTO :cnt FROM COUNTRY;

See Also AVG() , MAX() , MIN() SUM()

CREATE DATABASE
Creates a new database. Available in SQL, DSQL, and isql.

Syntax CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>];

<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]
<fileinfo> = [LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }

[<fileinfo>]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
'filespec' A new database file specification; file naming

conventions are platform-specific
USER
'username'

Checks the username against valid user name
and password combinations in the security
database on the server where the database will
reside

Windows client applications must provide
a user name on attachment to a server

Any client application attaching to a
database on NT or NetWare must provide a user
name on attachment

PASSWORD
'password'

Checks the password against valid user name
and password combinations in the security
database on the server where the database will
reside; can be up to 8 characters

Windows client applications must provide
a user name and password on attachment to a
server

Any client application attaching to a
database on NT or NetWare must provide a
password on attachment

PAGE_SIZE [=]
int

Size, in bytes, for database pages
int can be 1024 (default), 2048, 4096, or 8192

DEFAULT
CHARACTER SET
charset

Sets default character set for a database
charset is the name of a character set; if
omitted, character set defaults to NONE

FILE 'filespec' Names one or more secondary files to hold
database pages after the primary file is filled.
For databases created on remote servers,

secondary file specifications cannot include a
node name.

STARTING [AT
[PAGE]] int

Specifies the starting page number for a
secondary file.

LENGTH [=]
int [PAGE[S]]

Specifies the length of a primary or secondary
database file. Use for primary file only if
defining a secondary file in the same
statement.

Description CREATE DATABASE creates a new, empty database and establishes the

following characteristics for it:
n The name of the primary file that identifies the database for users.

By default, databases are contained in single files.
n The name of any secondary files in which the database is stored.

A database can reside in more than one disk file if additional file names are
specified as secondary files. If a database is created on a remote server,
secondary file specifications cannot include a node name.

n The size of database pages.
Increasing page size can improve performance for the following reasons:
· Indexes work faster because the depth of the index is kept to a minimum.
· Keeping large rows on a single page is more efficient.
· Blob data is stored and retrieved more efficiently when it fits on a single

page.
If most transactions involve only a few rows of data, a smaller page size
might be appropriate, since less data needs to be passed back and forth and
less memory is used by the disk cache.

n The number of pages in each database file.
n The dialect of the database.

The initial dialect of the database is the dialect of the client that creates it.
For example, if you are using isql, either start it with the -sql_dialect n switch
or issue the SET SQL DIALECT n command before issuing the CREATE DATABASE
command. Typically, you would create all databases in dialect 3. Dialect 1
exists to ease the migration of legacy databases.
Note To change the dialect of a database, use gfix or the Properties dialog in
IBConsole. See the Migration chapter in Getting Started for information about
migrating databases.

n The character set used by the database.
Choice of DEFAULT CHARACTER SET limits possible collation orders to a subset of
all available collation orders. Given a specific character set, a specific
collation order can be specified when data is selected, inserted, or updated
in a column.
If you do not specify a default character set, the character set defaults to
NONE. Using character set NONE means that there is no character set

assumption for columns; data is stored and retrieved just as you originally
entered it. You can load any character set into a column defined with NONE,
but you cannot load that same data into another column that has been
defined with a different character set. In that case, no transliteration is
performed between the source and destination character sets, and
transliteration errors may occur during assignment.

n System tables that describe the structure of the database.
After creating the database, you define its tables, views, indexes, and
system views as well as any triggers, generators, stored procedures, and
UDFs that you need.

Important In DSQL, you must execute CREATE DATABASE EXECUTE IMMEDIATE. The database
handle and transaction name, if present, must be initialized to zero prior to
use.

Read-only databases
Databases are always created in read-write mode. You can change a table to
read-only mode in wither of two ways: You can specify mode -read_only
when you restore a backup or you can use gfix -mode read_only to change
the mode of a table to read-only. See "Read-only databases"    in Chapter 6:
"Database Configuration and Maintenance"     in the Operations Guide.

About file sizes
InterBase dynamically expands the last file in a database as needed until it
reaches the 4GB limit. This applies to single-file database as well as to the
last file of multifile databases. You should be aware that specifying a LENGTH
for such files has no effect. InterBase database files are limited to 4GB. The
total file size is the product of the number of database pages times the page
size. The default page size is 1KB and the maximum page size is 8KB.
However, InterBase files are small at creation time and increase in size as
needed. The product of number of pages times page size represents a
potential maximum size, not the size at creation.

Examples The following isql statement creates a database in the current directory
using isql:
CREATE DATABASE 'employee.gdb';
The next embedded SQL statement creates a database with a page size of
2048 bytes rather than the default of 1024:
EXEC SQL

CREATE DATABASE 'employee.gdb' PAGE_SIZE 2048;
The following embedded SQL statement creates a database stored in two
files and specifies its default character set:
EXEC SQL

CREATE DATABASE 'employee.gdb'
DEFAULT CHARACTER SET ISO8859_1
FILE 'employee2.gdb' STARTING AT PAGE 10001;

See Also ALTER DATABASE, DROP DATABASE
See the Data Definition Guide for more information about secondary files,
character set specification, and collation order; see the Operations Guide for

more information about page size.

CREATE DOMAIN
Creates a column definition that is global to the database. Available in SQL,
DSQL, and isql.

Syntax CREATE DOMAIN domain [AS] <datatype>
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [CHECK (<dom_search_condition>)]
[COLLATE collation];

<datatype> =
{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION}[<array_dim>]
| {DATE|TIME|TIMESTAMP}[<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]

<array_dim> = [[x:]y [, [x:]y …]]
<dom_search_condition> = {

VALUE <operator> value
| VALUE [NOT] BETWEEN value AND value
| VALUE [NOT] LIKE value [ESCAPE value]
| VALUE [NOT] IN (value [, value …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING value
| VALUE [NOT] STARTING [WITH] value
| (<dom_search_condition>)
| NOT <dom_search_condition>
| <dom_search_condition> OR <dom_search_condition>
| <dom_search_condition> AND <dom_search_condition>
}

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

Note on the CREATE DOMAIN syntax
n You cannot specify a COLLATE clause for Blob columns.
n When declaring arrays, you must include the outermost brackets, shown

below in bold. For example, the following statement creates a 5 by 5 two-
dimensional array of strings, each of which is 6 characters long:
my_array = varchar(6)[5,5]
Use the colon (:) to specify an array with a starting point other than 1. The
following example creates an array of integers that begins at 10 and ends at
20:
my_array = integer[20:30]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
domain Unique name for the domain
datatype SQL datatype
DEFAULT Specifies a default column value that is

entered when no other entry is made;
possible values are:
literal—Inserts a specified string, numeric
value, or date value
NULL—Enters a NULL value
USER—Enters the user name of the current
user; column must be of compatible
character type to use the default

NOT NULL Specifies that the values entered in a
column cannot be NULL

CHECK
(dom_search_condition)

Creates a single CHECK constraint for the
domain

VALUE Placeholder for the name of a column
eventually based on the domain

COLLATE collation Specifies a collation sequence for the
domain

Description CREATE DOMAIN builds an inheritable column definition that acts as a

template for columns defined with CREATE TABLE or ALTER TABLE. The domain
definition contains a set of characteristics, which include:

n Datatype
n An optional default value
n Optional disallowing of NULL values
n An optional CHECK constraint
n An optional collation clause

The CHECK constraint in a domain definition sets a dom_search_condition
that must be true for data entered into columns based on the domain. The
CHECK constraint cannot reference any domain or column.
Note Be careful not to create a domain with contradictory constraints, such
as declaring a domain NOT NULL and assigning it a DEFAULT value of NULL.
The datatype specification for a CHAR or VARCHAR text domain definition can
include a CHARACTER SET clause to specify a character set for the domain.
Otherwise, the domain uses the default database character set.
If you do not specify a default character set, the character set defaults to
NONE. Using character set NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally
entered it. You can load any character set into a column defined with NONE,
but you cannot load that same data into another column that has been

defined with a different character set. In these cases, no transliteration is
performed between the source and destination character sets, so errors can
occur during assignment.
The COLLATE clause enables specification of a particular collation order for
CHAR, VARCHAR, and BLOB text datatypes. Choice of collation order is
restricted to those supported for the domain's given character set, which is
either the default character set for the entire database, or a different set
defined in the CHARACTER SET clause as part of the datatype definition.
Columns based on a domain definition inherit all characteristics of the
domain. The domain default, collation clause, and NOT NULL setting can be
overridden when defining a column based on a domain. A column based on a
domain can add additional CHECK constraints to the domain CHECK constraint.

Examples The following isql statement creates a domain that must have a positive
value greater than 1,000, with a default value of 9,999. The keyword VALUE
substitutes for the name of a column based on this domain.
CREATE DOMAIN CUSTNO

AS INTEGER
DEFAULT 9999
CHECK (VALUE > 1000);

The next isql statement limits the values entered in the domain to four
specific values:
CREATE DOMAIN PRODTYPE

AS VARCHAR(12)
CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

The following isql statement creates a domain that defines an array of CHAR
datatype:
CREATE DOMAIN DEPTARRAY AS CHAR(31) [4:5];
In the following isql example, the first statement creates a domain with USER
as the default. The next statement creates a table that includes a column,
ENTERED_BY, based on the USERNAME domain.
CREATE DOMAIN USERNAME AS VARCHAR(20)

DEFAULT USER;
CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,

ORDER_AMT DECIMAL(8,2));
INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)

VALUES ('1-MAY-93', 512.36);
The INSERT statement does not include a value for the ENTERED_BY column, so
InterBase automatically inserts the user name of the current user, JSMITH:
SELECT * FROM ORDERS;
1-MAY-93 JSMITH 512.36
The next isql statement creates a BLOB domain with a TEXT subtype that has
an assigned character set:
CREATE DOMAIN DESCRIPT AS

BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SJIS;

See Also ALTER DOMAIN, ALTER TABLE, CREATE TABLE, DROP DOMAIN
For more information about character set specification and collation orders,
see the Data Definition Guide.

CREATE EXCEPTION
Creates a used-defined error and associated message for use in stored
procedures and triggers. Available in DSQL and isql.

Syntax CREATE EXCEPTION name 'message';

Important In SQL statements passed to DSQL, omit the terminating semicolon. In isql,
the semicolon is a terminating symbol for the statement, so it must be
included.

Argumen
t

Description

name Name associated with the exception
message; must be unique among exception
names in the database

'message
'

Quoted string containing alphanumeric
characters and punctuation; maximum
length = 78 characters.

Description CREATE EXCEPTION creates an exception, a user-defined error with an

associated message. Exceptions may be raised in triggers and stored
procedures.
Exceptions are global to the database. The same message or set of
messages is available to all stored procedures and triggers in an application.
For example, a database can have English and French versions of the same
exception messages and use the appropriate set as needed.
When raised by a trigger or a stored procedure, an exception:

n Terminates the trigger or procedure in which it was raised and undoes any
actions performed (directly or indirectly) by it.

n Returns an error message to the calling application. In isql, the error
message appears on the screen, unless output is redirected.
Exceptions may be trapped and handled with a WHEN statement in a stored
procedure or trigger.

Examples This isql statement creates the exception, UNKNOWN_EMP_ID:
CREATE EXCEPTION UNKNOWN_EMP_ID 'Invalid employee number

or project id.';
The following statement from a stored procedure raises the previously
created exception when SQLCODE -530 is set, which is a violation of a FOREIGN
KEY constraint:
. . .

WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

. . .

See Also ALTER EXCEPTION, ALTER PROCEDURE, ALTER TRIGGER, CREATE PROCEDURE, CREATE
TRIGGER, DROP EXCEPTION
For more information on creating, raising, and handling exceptions, see the

Data Definition Guide.

CREATE GENERATOR
Declares a generator to the database. Available in SQL, DSQL, and isql.

Syntax CREATE GENERATOR name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name for the generator

Description CREATE GENERATOR declares a generator to the database and sets its

starting value to zero. A generator is a sequential number that can be
automatically inserted in a column with the GEN_ID() function. A generator is
often used to ensure a unique value in a PRIMARY KEY, such as an invoice
number, that must uniquely identify the associated row.
A database can contain any number of generators. Generators are global to
the database, and can be used and updated in any transaction. InterBase
does not assign duplicate generator values across transactions.
You can use SET GENERATOR to set or change the value of an existing
generator when writing triggers, procedures, or SQL statements that call
GEN_ID().
Note There is no "drop generator" statement. To remove a generator, delete
it from the system table. For example:
DELETE FROM RDB$GENERATOR WHERE RDB$GENERATOR_NAME = 'EMPNO_GEN';

Example The following isql script fragment creates the generator, EMPNO_GEN, and the
trigger, CREATE_EMPNO. The trigger uses the generator to produce sequential
numeric keys, incremented by 1, for the NEW.EMPNO column:
CREATE GENERATOR EMPNO_GEN;
COMMIT;
SET TERM !! ;
CREATE TRIGGER CREATE_EMPNO FOR EMPLOYEES

BEFORE INSERT POSITION 0
AS BEGIN

NEW.EMPNO = GEN_ID(EMPNO_GEN, 1);
END

SET TERM ; !!

Important Because each statement in a stored procedure body must be terminated by
a semicolon, you must define a different symbol to terminate the CREATE
TRIGGER in isql. Use SET TERM before CREATE TRIGGER to specify a terminator
other than a semicolon. After CREATE TRIGGER, include another SET TERM to
change the terminator back to a semicolon.

See Also GEN_ID() , SET GENERATOR

CREATE INDEX
Creates an index on one or more columns in a table. Available in SQL, DSQL,
and isql.

Syntax CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX index
ON table (col [, col …]);

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
UNIQUE Prevents insertion or updating of duplicate values

into indexed columns
ASC[ENDING] Sorts columns in ascending order, the default

order if none is specified
DESC[ENDING] Sorts columns in descending order
index Unique name for the index
table Name of the table on which the index is defined
col Column in table to index

Description Creates an index on one or more columns in a table. Use CREATE INDEX to

improve speed of data access. Using an index for columns that appear in a
WHERE clause may improve search performance.

Important You cannot index Blob columns or arrays.
A UNIQUE index cannot be created on a column or set of columns that already
contains duplicate or NULL values.
ASC and DESC specify the order in which an index is sorted. For faster
response to queries that require sorted values, use the index order that
matches the query's ORDER BY clause. Both an ASC and a DESC index can be
created on the same column or set of columns to access data in different
orders.

Tip To improve index performance, use SET STATISTICS to recompute index
selectivity, or rebuild the index by making it inactive, then active with
sequential calls to ALTER INDEX.

Examples The following isql statement creates a unique index:
CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);
The next isql statement creates a descending index:
CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);
The following isql statement creates a two-column index:
CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

See Also ALTER INDEX, DROP INDEX, SELECT, SET STATISTICS

CREATE PROCEDURE
Creates a stored procedure, its input and output parameters, and its actions.
Available in DSQL, and isql.

Syntax CREATE PROCEDURE name
[(param <datatype> [, param <datatype> …])]
[RETURNS <datatype> [, param <datatype> …])]
AS <procedure_body> [terminator]

<procedure_body> =
[<variable_declaration_list>]
<block>

<variable_declaration_list> =
DECLARE VARIABLE var <datatype>;
[DECLARE VARIABLE var <datatype>; …]

<block> =
BEGIN

<compound_statement>
[<compound_statement> …]

END
<compound_statement> = {<block> | statement;}
<datatype> = SMALLINT

| INTEGER
| FLOAT
| DOUBLE PRECISION
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}

[(int)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]

Argument Description
name Name of the procedure. Must be unique

among procedure, table, and view names in
the database

param datatype Input parameters that the calling program
uses to pass values to the procedure:
param: Name of the input parameter,
unique for variables in the procedure
datatype: An InterBase datatype

RETURNS param
datatype

Output parameters that the procedure uses
to return values to the calling program:
param: Name of the output parameter,
unique for variables within the procedure
datatype: An InterBase datatype
The procedure returns the values of output
parameters when it reaches a SUSPEND
statement in the procedure body

AS Keyword that separates the procedure
header and the procedure body

DECLARE VARIABLE
var datatype

Declares local variables used only in the
procedure; must be preceded by DECLARE
VARIABLE and followed by a semicolon (;).
var is the name of the local variable, unique
for variables in the procedure.

statement Any single statement in InterBase
procedure and trigger language; must be
followed by a semicolon (;) except for BEGIN
and END statements

terminator Terminator defined by SET TERM
Signifies the end of the procedure

body;
Used only in isql

Description CREATE PROCEDURE defines a new stored procedure to a database. A stored

procedure is a self-contained program written in InterBase procedure and
trigger language, and stored as part of a database's metadata. Stored
procedures can receive input parameters from and return values to
applications.
InterBase procedure and trigger language includes all SQL data manipulation
statements and some powerful extensions, including IF … THEN … ELSE, WHILE
… DO, FOR SELECT … DO, exceptions, and error handling.
There are two types of procedures:

n Select procedures that an application can use in place of a table or view in a
SELECT statement. A select procedure must be defined to return one or more
values, or an error will result.

n Executable procedures that an application can call directly, with the EXECUTE
PROCEDURE statement. An executable procedure need not return values to
the calling program.
A stored procedure is composed of a header and a body.
The procedure header contains:

n The name of the stored procedure, which must be unique among procedure
and table names in the database.

n An optional list of input parameters and their datatypes that a procedure
receives from the calling program.

n RETURNS followed by a list of output parameters and their datatypes if the
procedure returns values to the calling program.
The procedure body contains:

n An optional list of local variables and their datatypes.
n A block of statements in InterBase procedure and trigger language,

bracketed by BEGIN and END. A block can itself include other blocks, so that
there may be many levels of nesting.

Important Because each statement in a stored procedure body must be terminated by
a semicolon, you must define a different symbol to terminate the CREATE
PROCEDURE statement in isql. Use SET TERM before CREATE PROCEDURE to
specify a terminator other than a semicolon. After the CREATE PROCEDURE
statement, include another SET TERM to change the terminator back to a
semicolon.
InterBase does not allow database changes that affect the behavior of an
existing stored procedure (for example, DROP TABLE or DROP EXCEPTION). To see
all procedures defined for the current database or the text and parameters
of a named procedure, use the isql internal commands SHOW PROCEDURES or
SHOW PROCEDURE procedure.
InterBase procedure and trigger language is a complete programming
language for stored procedures and triggers. It includes:

n SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton
SELECT.

n SQL operators and expressions, including generators and UDFs that are
linked with the database.

n Extensions to SQL, including assignment statements, control-flow
statements, context variables (for triggers), event-posting statements,
exceptions, and error-handling statements.
The following table summarizes language extensions for stored procedures.

TABLE 3 Procedure and trigger language extensions
Statement Description
BEGIN … END Defines a block of statements that executes

as one
The BEGIN keyword starts the block; the

END keyword terminates it
Neither should end with a semicolon

variable = expression Assignment statement: assigns the value of
expression to variable, a local variable, input
parameter, or output parameter

/* comment_text */ Programmer's comment, where
comment_text can be any number of lines of
text

EXCEPTION
exception_name

Raises the named exception: an exception is
a user-defined error that returns an error
message to the calling application unless
handled by a WHEN statement

EXECUTE PROCEDURE
proc_name [var [, var
…]]
[RETURNING_VALUES
var [, var …]]

Executes stored procedure, proc_name, with
the listed input arguments, returning values
in the listed output arguments following
RETURNING_VALUES; input and output
arguments must be local variables

EXIT Jumps to the final END statement in the

procedure
FOR select_statement
DO
compound_statement

Repeats the statement or block following DO
for every qualifying row retrieved by
select_statement
select_statement is like a normal SELECT
statement, except that there is an INTO clause
that is required and which must come last

compound_statement Either a single statement in procedure and
trigger language or a block of statements
bracketed by BEGIN and END

IF (condition)
THEN
compound_statement

[ELSE
compound_statement
]

Tests condition, and if it is TRUE, performs the
statement or block following THEN; otherwise,
performs the statement or block following
ELSE, if present
condition: a Boolean expression (TRUE, FALSE,
or UNKNOWN), generally two expressions as
operands of a comparison operator

NEW.column New context variable that indicates a new
column value in an INSERT or UPDATE operation

OLD.column Old context variable that indicates a column
value before an UPDATE or DELETE operation

POST_EVENT
event_name | col

Posts the event, event_name, or uses the
value in col as an event name

SUSPEND In a SELECT procedure:
Suspends execution of procedure until

next FETCH is issued by the calling application
Returns output values, if any, to the

calling application
Not recommended for executable

procedures
WHILE (condition)
DO
compound_statement

While condition is TRUE, keep performing
compound_statement

Tests condition, andperforms
compound_statement if condition is TRUE

Repeats this sequence until condition is
no longer TRUE

WHEN {error [, error
…] | ANY}
 DO
compound_statement

Error-handling statement: when one of the
specified errors occurs, performs
compound_statement

WHEN statements, if present, must come
at the end of a block, just before END

error: EXCEPTION exception_name,
SQLCODE errcode or GDSCODE number

ANY: Handles any errors

Examples The following procedure, SUB_TOT_BUDGET, takes a department number as its

input parameter, and returns the total, average, minimum, and maximum
budgets of departments with the specified HEAD_DEPT.
/* Compute total, average, smallest, and largest department budget.
*Parameters:
* department id
*
*Returns:
* total budget
* average budget
* min budget
* max budget */
SET TERM !! ;
CREATE PROCEDURE SUB_TOT_BUDGET (HEAD_DEPT CHAR(3))

RETURNS (tot_budget DECIMAL(12, 2), avg_budget DECIMAL(12, 2),
min_budget DECIMAL(12, 2), max_budget DECIMAL(12, 2))

AS
BEGIN

SELECT SUM(BUDGET), AVG(BUDGET), MIN(BUDGET), MAX(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

EXIT;
END !!

SET TERM ; !!
The following select procedure, ORG_CHART, displays an organizational
chart:
/* Display an org-chart.
*
* Parameters:
* --
* Returns:
* parent department
* department name
* department manager
* manager's job title
* number of employees in the department */
CREATE PROCEDURE ORG_CHART

RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

AS
DECLARE VARIABLE mngr_no INTEGER;
DECLARE VARIABLE dno CHAR(3);

BEGIN
FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO, D.DEPT_NO

FROM DEPARTMENT D
LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO
ORDER BY D.DEPT_NO
INTO :head_dept, :department, :mngr_no, :dno

DO
BEGIN

IF (:mngr_no IS NULL) THEN

BEGIN
MNGR_NAME = '--TBH--';
TITLE = '';

END
ELSE

SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE
WHERE EMP_NO = :mngr_no
INTO :mngr_name, :title;

SELECT COUNT(EMP_NO)
FROM EMPLOYEE
WHERE DEPT_NO = :dno
INTO :emp_cnt;

SUSPEND;
END

END !!
When ORG_CHART is invoked, for example in the following isql statement:
SELECT * FROM ORG_CHART
it displays the department name for each department, which department it
is in, the department manager's name and title, and the number of
employees in the department.

HEAD_DEPT DEPARTMENT MGR_NAME TITLE EMP_CNT
===================== =================== ================ ==== =======

Corporate
Headquarters

Bender, Oliver H. CEO 2

Corporate HeadquartersSales and Marketing MacDonald, Mary S.VP 2
Sales and Marketing Pacific Rim

Headquarters
Baldwin, Janet Sales 2

Pacific Rim
Headquarters

Field Office: Japan Yamamoto, Takashi SRep 2

Pacific Rim
Headquarters

Field Office:
Singapore

—TBH— 0

ORG_CHART must be used as a select procedure to display the full
organization. If called with EXECUTE PROCEDURE, the first time it encounters
the SUSPEND statement, it terminates, returning the information for Corporate
Headquarters only.

See Also ALTER EXCEPTION, ALTER PROCEDURE, CREATE EXCEPTION, DROP EXCEPTION, DROP
PROCEDURE, EXECUTE PROCEDURE, SELECT
For more information on creating and using procedures, see the Data
Definition Guide.

CREATE ROLE
Creates a role.

Syntax CREATE ROLE rolename;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
rolename Name associated with the role; must be

unique among role names in the database

Description Roles created with CREATE ROLE can be granted privileges just as users can.

These roles can be granted to users, who then inherit the privilege list that
has been granted to the role. Users must specify the role at connect time.
Use GRANT to grant privileges (ALL, SELECT, INSERT, UPDATE, DELETE, EXECUTE,
REFERENCES) to a role and to grant a role to users. Use REVOKE to revoke
them.

Example The following statement creates a role called "administrator."
CREATE ROLE administrator;

See Also GRANT, REVOKE, DROP ROLE

CREATE SHADOW
Creates one or more duplicate, in-sync copies of a database. Available in
SQL, DSQL, and isql.

Syntax CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]
'filespec' [LENGTH [=] int [PAGE[S]]]
[<secondary_file>];

<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]
<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int

[<fileinfo>]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
set_num Positive integer that designates a shadow set

to which all subsequent files listed in the
statement belong

AUTO Specifies the default access behavior for
databases in the event no shadow is
available

All attachments and accesses succeed
Deletes all references to the shadow

and detaches the shadow file
MANUAL Specifies that database attachments and

accesses fail until a shadow becomes
available, or until all references to the
shadow are removed from the database

CONDITIONAL Creates a new shadow, allowing shadowing
to continue if the primary shadow becomes
unavailable or if the shadow replaces the
database due to disk failure

'filespec' Explicit path name and file name for the
shadow file; must be a local filesystem and
must not include a node name or be on a
neworked filesystem

LENGTH [=] int
[PAGE[S]]

Length in database pages of an additional
shadow file; page size is determined by the
page size of the database itself

secondary_file Specifies the length of a primary or
secondary shadow file; use for primary file
only if defining a secondary file in the same
statement

STARTING [AT
[PAGE]] int

Starting page number at which a secondary
shadow file begins

Description CREATE SHADOW is used to guard against loss of access to a database by

establishing one or more copies of the database on secondary storage
devices. Each copy of the database consists of one or more shadow files,
referred to as a shadow set. Each shadow set is designated by a unique
positive integer.
Disk shadowing has three components:

n A database to shadow.
n The RDB$FILES system table, which lists shadow files and other information

about the database.
n A shadow set, consisting of one or more shadow files.

When CREATE SHADOW is issued, a shadow is established for the database
most recently attached by an application. A shadow set can consist of one or
multiple files. In case of disk failure, the database administrator (DBA)
activates the disk shadow so that it can take the place of the database. If
CONDITIONAL is specified, then when the DBA activates the disk shadow to
replace an actual database, a new shadow is established for the database.
If a database is larger than the space available for a shadow on one disk, use
the secondary_file option to define multiple shadow files. Multiple shadow
files can be spread over several disks.

Tip To add a secondary file to an existing disk shadow, drop the shadow with
DROP SHADOW and use CREATE SHADOW to recreate it with the desired number
of files.

Examples The following isql statement creates a single, automatic shadow file for
employee.gdb:
CREATE SHADOW 1 AUTO 'employee.shd';
The next isql statement creates a conditional, single, automatic shadow file
for employee.gdb:
CREATE SHADOW 2 CONDITIONAL 'employee.shd' LENGTH 1000;
The following isql statements create a multiple-file shadow set for the
employee.gdb database. The first statement specifies starting pages for the
shadow files; the second statement specifies the number of pages for the
shadow files.
CREATE SHADOW 3 AUTO

'employee.sh1'
FILE 'employee.sh2'

STARTING AT PAGE 1000
FILE 'employee.sh3'

STARTING AT PAGE 2000;
CREATE SHADOW 4 MANUAL 'employee.sdw'

LENGTH 1000
FILE 'employee.sh1'

LENGTH 1000
FILE 'employee.sh2';

See Also DROP SHADOW
For more information about using shadows, see the Operations Guide or the

Data Definition Guide.

CREATE TABLE
Creates a new table in an existing database. Available in SQL, DSQL, and
isql.

Syntax CREATE TABLE table [EXTERNAL [FILE] 'filespec']
(<col_def> [, <col_def> | <tconstraint> …]);

<col_def> = col {<datatype> | COMPUTED [BY] (<expr>) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[<col_constraint>]
[COLLATE collation]

<datatype> =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[<array_dim>]
| (DATE | TIME | TIMESTAMP}[<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]<array_dim> = [[x:]y [, [x:]y …]]

<expr> = A valid SQL expression that results in a single value.
<col_constraint> = [CONSTRAINT constraint]

{ UNIQUE
| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition>)}
<tconstraint> = [CONSTRAINT constraint]

{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …]) REFERENCES other_table

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition>)}
<search_condition> = <val> <operator> {<val> | (<select_one>)}

| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]
| <val> [NOT] IN (<val> [, <val> …] | <select_list>)
| <val> IS [NOT] NULL
| <val> {>= | <=}
| <val> [NOT] {= | < | >}
| {ALL | SOME | ANY} (<select_list>)
| EXISTS (<select_expr>)
| SINGULAR (<select_expr>)
| <val> [NOT] CONTAINING <val>
| <val> [NOT] STARTING [WITH] <val>
| (<search_condition>)
| NOT <search_condition>
| <search_condition> OR <search_condition>

| <search_condition> AND <search_condition>
<val> = { col [<array_dim>] | :variable

| <constant> | <expr> | <function>
| udf ([<val> [, <val> …]])
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]

<constant> = num | 'string' | charsetname 'string'
<function> = COUNT (* | [ALL] <val> | DISTINCT <val>)

| SUM ([ALL] <val> | DISTINCT <val>)
| AVG ([ALL] <val> | DISTINCT <val>)
| MAX ([ALL] <val> | DISTINCT <val>)
| MIN ([ALL] <val> | DISTINCT <val>)
| CAST (<val> AS <datatype>)
| UPPER (<val>)
| GEN_ID (generator, <val>)

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}
<select_one> = SELECT on a single column; returns exactly one value.
<select_list> = SELECT on a single column; returns zero or more values.
<select_expr> = SELECT on a list of values; returns zero or more values.

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Notes on the CREATE TABLE statement
n When declaring arrays, you must include the outermost brackets, shown

below in bold. For example, the following statement creates a 5 by 5 two-
dimensional array of strings, each of which is 6 characters long:
my_array VARCHAR(6)[5,5]
Use the colon (:) to specify an array with a starting point other than 1. The
following example creates an array of integers that begins at 10 and ends at
20:
my_array INTEGER[10:20]

n In SQL and isql, you cannot use val as a parameter placeholder (like "?").
n In DSQL and isql, val cannot be a variable.
n You cannot specify a COLLATE clause for Blob columns.
n expr is any complex SQL statement or equation that produces a single value.

Argument Description
table Name for the table; must be unique among

table and procedure names in the database
EXTERNAL [FILE]
'filespec'

Declares that data for the table under creation
resides in a table or file outside the database;
filespec is the complete file specification of the
external file or table

col Name for the table column; unique among
column names in the table

datatype SQL datatype for the column
COMPUTED [BY]
(expr)

Specifies that the value of the column's data is
calculated from expr at runtime and is
therefore not allocated storage space in the
database

expr can be any arithmetic expression
valid for the datatypes in the expression

Any columns referenced in expr must
exist before they can be used in expr

expr cannot reference Blob columns
expr must return a single value, and

cannot return an array
domain Name of an existing domain
DEFAULT Specifies a default column value that is

entered when no other entry is made; possible
values are:

literal: Inserts a specified string, numeric
value, or date value

NULL: Enters a NULL value
USER: Enters the user name of the current

user. Column must be of compatible text type to
use the default
Defaults set at column level override defaults
set at the domain level.

CONSTRAINT
constraint

Name of a column or table constraint; the
constraint name must be unique within the
table

constraint_def Specifies the kind of column constraint; valid
options are UNIQUE, PRIMARY KEY, CHECK, and
REFERENCES

REFERENCES Specifies that the column values are derived
from column values in another table; if you do
not specify column names, InterBase looks for
a column with the same name as the
referencing column in the referenced table

ON DELETE |
ON UPDATE

Used with REFERENCES: Changes a foreign key
whenever the referenced primary key changes;
valid options are:

[Default] NO ACTION: Does not change the
foreign key; may cause the primary key update
to fail due to referential integrity checks

CASCADE: For ON DELETE, deletes the
corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the

new value of the primary key
SET NULL: Sets all the columns of the

corresponding foreign key to NULL
SET DEFAULT: Sets every column of the

corresponding foreign key is set to its default
value in effect when the referential integrity
constraint is defined; when the default for a
foreign column changes after the referential
integrity constraint is defined, the change does
not have an effect on the default value used in
the referential integrity constraint

CHECK
search_condition

An attempt to enter a new value in the column
fails if the value does not meet the
search_condition

COLLATE collation Establishes a default sorting behavior for the
column

Description CREATE TABLE establishes a new table, its columns, and integrity constraints

in an existing database. The user who creates a table is the table's owner
and has all privileges for it, including the ability to GRANT privileges to other
users, triggers, and stored procedures.

n CREATE TABLE supports several options for defining columns:
· Local columns specify the name and datatype for data entered into the

column.
· Computed columns are based on an expression. Column values are

computed each time the table is accessed. If the datatype is not specified,
InterBase calculates an appropriate one. Columns referenced in the
expression must exist before the column can be defined.

· Domain-based columns inherit all the characteristics of a domain, but the
column definition can include a new default value, a NOT NULL attribute,
additional CHECK constraints, or a collation clause that overrides the domain
definition. It can also include additional column constraints.

· The datatype specification for a CHAR, VARCHAR, or Blob text column
definition can include a CHARACTER SET clause to specify a particular
character set for the single column. Otherwise, the column uses the default
database character set. If the database character set is changed, all
columns subsequently defined have the new character set, but existing
columns are not affected.

· If you do not specify a default character set, the character set defaults to
NONE. Using character set NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally
entered it. You can load any character set into a column defined with NONE,
but you cannot load that same data into another column that has been
defined with a different character set. In this case, no transliteration is
performed between the source and destination character sets, and errors
may occur during assignment.

· The COLLATE clause enables specification of a particular collation order for
CHAR, VARCHAR, and Blob text datatypes. Choice of collation order is

restricted to those supported for the column's given character set, which is
either the default character set for the entire database, or a different set
defined in the CHARACTER SET clause as part of the datatype definition.

n NOT NULL is an attribute that prevents the entry of NULL or unknown values in
column. NOT NULL affects all INSERT and UPDATE operations on a column.

Important A DECLARE TABLE must precede CREATE TABLE in embedded applications if the
same SQL program both creates a table and inserts data in the table.

n The EXTERNAL FILE option creates a table whose data resides in an external
file, rather than in the InterBase database. Use this option to:
· Define an InterBase table composed of data from an external source, such

as data in files managed by other operating systems or in non-database
applications.

· Transfer data to an existing InterBase table from an external file.

Referential integrity constraints
n You can define integrity constraints at the time you create a table. These

constraints are rules that validate data entries by enforcing column-to-table
and table-to-table relationships. They span all transactions that access the
database and are automatically maintained by the system. CREATE TABLE
supports the following integrity constraints:

n A PRIMARY KEY is one or more columns whose collective contents are
guaranteed to be unique. A PRIMARY KEY column must also define the NOT
NULL attribute. A table can have only one primary key.

n UNIQUE keys ensure that no two rows have the same value for a specified
column or ordered set of columns. A unique column must also define the NOT
NULL attribute. A table can have one or more UNIQUE keys. A UNIQUE key can
be referenced by a FOREIGN KEY in another table.

n Referential constraints (REFERENCES) ensure that values in the specified
columns (known as the foreign key) are the same as values in the referenced
UNIQUE or PRIMARY KEY columns in another table. The UNIQUE or PRIMARY KEY
columns in the referenced table must be defined before the REFERENCES
constraint is added to the secondary table. REFERENCES has ON DELETE and ON
UPDATE clauses that define the action on the foreign key when the referenced
primary key is updated or deleted. The values for ON UPDATE and ON DELETE
are as follows:

Action
specified

Effect on foreign key

NO ACTION [Default] The foreign key does not change. This may
cause the primary key update or delete to fail due to
referential integrity checks.

CASCADE The corresponding foreign key is updated or deleted as
appropriate to the new value of the primary key.

SET DEFAULT Every column of the corresponding foreign key is set to
its default value. If the default value of the foreign key
is not found in the primary key, the update or delete

on the primary key fails.
The default value is the one in effect when the
referential integrity constraint was defined. When the
default for a foreign key column is changed after the
referential integrity constraint is set up, the change
does not have an effect on the default value used in
the referential integrity constraint.

SET NULL Every column of the corresponding foreign key is set to
NULL.

n You can create a FOREIGN KEY reference to a table that is owned by someone

else only if that owner has explicitly granted you REFERENCES privilege on
that table. Any user who updates your foreign key table must have
REFERENCES or SELECT privileges on the referenced primary key table.

n CHECK constraints enforce a search_condition that must be true for inserts or
updates to the specified table. search_condition can require a combination or
range of values or can compare the value entered with data in other
columns.
Note Specifying USER as the value for a search_condition references the login
of the user who is attempting to write to the referenced table.

n Creating PRIMARY KEY and FOREIGN KEY constraints requires exclusive access to
the database.

n For unnamed constraints, the system assigns a unique constraint name
stored in the RDB$RELATION_CONSTRAINTS system table.
Note Constraints are not enforced on expressions.

Examples The following isql statement creates a simple table with a PRIMARY KEY:
CREATE TABLE COUNTRY (COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
 CURRENCY VARCHAR(10) NOT NULL);
The next isql statement creates both a column-level and a table-level UNIQUE
constraint:
CREATE TABLE STOCK (

MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

The following isql statemnent illustrates table-level PRIMARY KEY, FOREIGN KEY,
and CHECK constraints. The PRIMARY KEY constraint is based on three columns.
This example also illustrates creating an array column of VARCHAR.
CREATE TABLE JOB (

JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
JOB_TITLE VARCHAR(25) NOT NULL,
MIN_SALARY SALARY NOT NULL,
MAX_SALARY SALARY NOT NULL,
JOB_REQUIREMENT BLOB(400,1),
LANGUAGE_REQ VARCHAR(15) [5],

PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY),
CHECK (MIN_SALARY < MAX_SALARY));

In the next example, the F2 column in table T2 is a foreign key that
references table T1 through T1's primary key P1. When a row in T1 changes,
that change propagates to all affected rows in table T2. When a row in T1 is
deleted, all affected rows in the F2 column of table T2 are set to NULL.
CREATE TABLE T1 (P1 INTEGER NOT NULL PRIMARY KEY);
CREATE TABLE T2 (F2 INTEGER FOREIGN KEY REFERENCES T1.P1

ON UPDATE CASCADE
ON DELETE SET NULL);

The next isql statement creates a table with a calculated column:
CREATE TABLE SALARY_HISTORY (

EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECISION

DEFAULT 0
NOT NULL
CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),

NEW_SALARY COMPUTED BY
(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),

PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO));

In the following isql statement the first column retains the default collating
order for the database's default character set. The second column has a
different collating order, and the third column definition includes a character
set and a collating order.
CREATE TABLE BOOKADVANCE (

BOOKNO CHAR(6),
TITLE CHAR(50) COLLATE ISO8859_1,
EUROPUB CHAR(50) CHARACTER SET ISO8859_1 COLLATE FR_FR);

See Also CREATE DOMAIN, DECLARE TABLE, GRANT, REVOKE
For more information on creating metadata, using integrity constraints,
external tables, datatypes, collation order, and character sets, see the Data
Definition Guide.

CREATE TRIGGER
Creates a trigger, including when it fires, and what actions it performs.
Available in DSQL, and isql.

Syntax CREATE TRIGGER name FOR table
[ACTIVE | INACTIVE]
{BEFORE | AFTER}
{DELETE | INSERT | UPDATE}
[POSITION number]
AS <trigger_body> terminator

<trigger_body> = [<variable_declaration_list>] <block>
<variable_declaration_list> =

DECLARE VARIABLE variable <datatype>;
[DECLARE VARIABLE variable <datatype>; …]

<block> =
BEGIN

<compound_statement>
[<compound_statement> …]

END
<datatype> = SMALLINT

| INTEGER
| FLOAT
| DOUBLE PRECISION
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}

[(int)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]

<compound_statement> = {<block> | statement;}

Argument Description
name Name of the trigger; must be unique in the

database
table Name of the table or view that causes the

trigger to fire when the specified operation
occurs on the table or view

ACTIVE|INACTIVE Optional. Specifies trigger action at transaction
end:

ACTIVE: [Default] Trigger takes effect
INACTIVE: Trigger does not take effect

BEFORE|AFTER Required. Specifies whether the trigger fires:
BEFORE: Before associated operation
AFTER: After associated operation

Associated operations are DELETE, INSERT, or
UPDATE

DELETE|INSERT
|UPDATE

Specifies the table operation that causes the
trigger to fire

POSITION
number

Specifies firing order for triggers before the
same action or after the same action; number
must be an integer between 0 and 32,767,
inclusive.

Lower-number triggers fire first
Default: 0 = first trigger to fire
Triggers for a table need not be

consecutive; triggers on the same action with
the same position number will fire in random
order.

DECLARE
VARIABLE
var datatype

Declares local variables used only in the trigger.
Each declaration must be preceded by DECLARE
VARIABLE and followed by a semicolon (;).

var: Local variable name, unique in the
trigger

datatype: The datatype of the local
variable

statement Any single statement in InterBase procedure
and trigger language; each statement except
BEGIN and END must be followed by a semicolon
(;)

terminator Terminator defined by the SET TERM statement;
signifies the end of the trigger body. Used in isql
only.

Description CREATE TRIGGER defines a new trigger to a database. A trigger is a self-

contained program associated with a table or view that automatically
performs an action when a row in the table or view is inserted, updated, or
deleted.
A trigger is never called directly. Instead, when an application or user
attempts to INSERT, UPDATE, or DELETE a row in a table, any triggers
associated with that table and operation automatically execute, or fire.
Triggers defined for UPDATE on non-updatable views fire even if no update
occurs.
A trigger is composed of a header and a body.
The trigger header contains:

n A trigger name, unique within the database, that distinguishes the trigger
from all others.

n A table name, identifying the table with which to associate the trigger.
n Statements that determine when the trigger fires.

The trigger body contains:
n An optional list of local variables and their datatypes.
n A block of statements in InterBase procedure and trigger language,

bracketed by BEGIN and END. These statements are performed when the
trigger fires. A block can itself include other blocks, so that there may be
many levels of nesting.

Important Because each statement in the trigger body must be terminated by a
semicolon, you must define a different symbol to terminate the trigger body
itself. In isql, include a SET TERM statement before CREATE TRIGGER to specify a
terminator other than a semicolon. After the body of the trigger, include
another SET TERM to change the terminator back to a semicolon.
A trigger is associated with a table. The table owner and any user granted
privileges to the table automatically have rights to execute associated
triggers.
Triggers can be granted privileges on tables, just as users or procedures can
be granted privileges. Use the GRANT statement, but instead of using TO
username, use TO TRIGGER trigger_name. Triggers' privileges can be revoked
similarly using REVOKE.
When a user performs an action that fires a trigger, the trigger will have
privileges to perform its actions if one of the following conditions is true:

n The trigger has privileges for the action.
n The user has privileges for the action.

InterBase procedure and trigger language is a complete programming
language for stored procedures and triggers. It includes:

n SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton
SELECT.

n SQL operators and expressions, including generators and UDFs that are
linked with the calling application.

n Powerful extensions to SQL, including assignment statements, control-flow
statements, context variables, event-posting statements, exceptions, and
error-handling statements.
The following table summarizes language extensions for triggers.

TABLE 4 Procedure and trigger language extensions
Statement Description
BEGIN … END Defines a block of statements that

executes as one
The BEGIN keyword starts the

block; the END keyword terminates it
Neither should be followed by a

semicolon
variable = expression Assignment statement that assigns the

value of expression to variable, a local
variable, input parameter, or output
parameter

/* comment_text */ Programmer's comment, where
comment_text can be any number of
lines of text

EXCEPTION
exception_name

Raises the named exception; an
exception is a user-defined error that
returns an error message to the calling

application unless handled by a WHEN
statement

EXECUTE PROCEDURE
proc_name [var [, var
…]]
[RETURNING_VALUES
var [, var …]]

Executes stored procedure, proc_name,
with the listed input arguments

Returns values in the listed
output arguments following
RETURNING_VALUES

Input and output arguments must
be local variables.

EXIT Jumps to the final END statement in the
procedure

FOR select_statement
DO
compound_statement

Repeats the statement or block
following DO for every qualifying row
retrieved by select_statement

select_statement A normal SELECT statement, except that
the INTO clause is required and must
come last

compound_statement Either a single statement in procedure
and trigger language or a block of
statements bracketed by BEGIN and END

IF (condition)
THEN
compound_statement
[ELSE
compound_statement]

Tests condition, and if it is TRUE,
performs the statement or block
following THEN; otherwise, performs the
statement or block following ELSE, if
present

condition A Boolean expression (TRUE, FALSE, or
UNKNOWN), generally two expressions
as operands of a comparison operator

NEW.column New context variable that indicates a
new column value in an INSERT or
UPDATE operation

OLD.column Old context variable that indicates a
column value before an UPDATE or
DELETE operation

POST_EVENT event_name
| col

Posts the event, event_name, or uses
the value in col as an event name

WHILE (condition)
 DO
compound_statement

While condition is TRUE, keep
performing compound_statement

Tests condition, andperforms
compound_statement if condition is TRUE

Repeats this sequence until
condition is no longer TRUE

WHEN {error [, error
…] | ANY}

Error-handling statement. When one of
the specified errors occurs, performs

 DO
compound_statement

compound_statement. WHEN
statements, if present, must come at
the end of a block, just before END

ANY: Handles any errors
error EXCEPTION exception_name, SQLCODE

errcode or GDSCODE number

Examples The following trigger, SAVE_SALARY_CHANGE, makes correlated updates to the

SALARY_HISTORY table when a change is made to an employee's salary in the
EMPLOYEE table:
SET TERM !! ;
CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE

AFTER UPDATE AS
BEGIN

IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)

VALUES (OLD.EMP_NO, 'now', USER,OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);

END !!
SET TERM ; !!
The following trigger, SET_CUST_NO, uses a generator to create unique
customer numbers when a new customer record is inserted in the CUSTOMER
table:
SET TERM !! ;
CREATE TRIGGER SET_CUST_NO FOR CUSTOMER

BEFORE INSERT AS
BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END !!

SET TERM ; !!
The following trigger, POST_NEW_ORDER, posts an event named "new_order"
whenever a new record is inserted in the SALES table:
SET TERM !! ;
CREATE TRIGGER POST_NEW_ORDER FOR SALES

AFTER INSERT AS
BEGIN

POST_EVENT 'new_order';
END !!

SET TERM ; !!
The following four fragments of trigger headers demonstrate how the
POSITION option determines trigger firing order:
CREATE TRIGGER A FOR accounts

BEFORE UPDATE
POSITION 5 … /*Trigger body follows*/

CREATE TRIGGER B FOR accounts
BEFORE UPDATE
POSITION 0 … /*Trigger body follows*/

CREATE TRIGGER C FOR accounts
AFTER UPDATE
POSITION 5 … /*Trigger body follows*/

CREATE TRIGGER D FOR accounts
AFTER UPDATE
POSITION 3 … /*Trigger body follows*/

When this update takes place:
UPDATE accounts SET account_status = 'on_hold'

WHERE account_balance <0;
The triggers fire in this order:
1. Trigger B fires.
2. Trigger A fires.
3. The update occurs.
4. Trigger D fires.
5. Trigger C fires.

See Also ALTER EXCEPTION, ALTER TRIGGER, CREATE EXCEPTION, CREATE PROCEDURE, DROP
EXCEPTION, DROP TRIGGER, EXECUTE PROCEDURE
For more information on creating and using triggers, see the Data Definition
Guide.

CREATE VIEW
Creates a new view of data from one or more tables. Available in SQL, DSQL,
and isql.

Syntax CREATE VIEW name [(view_col [, view_col …])]
AS <select> [WITH CHECK OPTION];

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name for the view; must be unique among all view,

table, and procedure names in the database
view_col Names the columns for the view

Column names must be unique among all
column names in the view

Required if the view includes columns based
on expressions; otherwise optional

Default: Column name from the underlying
table

select Specifies the selection criteria for rows to be
included in the view

WITH CHECK
OPTION

Prevents INSERT or UPDATE operations on an
updatable view if the INSERT or UPDATE violates the
search condition specified in the WHERE clause of
the view's SELECT clause

Description CREATE VIEW describes a view of data based on one or more underlying

tables in the database. The rows to return are defined by a SELECT statement
that lists columns from the source tables. Only the view definition is stored in
the database; a view does not directly represent physically stored data. It is
possible to perform select, project, join, and union operations on views as if
they were tables.
The user who creates a view is its owner and has all privileges for it,
including the ability to GRANT privileges to other users, roles, triggers, views,
and stored procedures. A user may have privileges to a view without having
access to its base tables. When creating views:

n A read-only view requires SELECT privileges for any underlying tables.
n An updatable view requires ALL privileges to the underlying tables.

The view_col option ensures that the view always contains the same
columns and that the columns always have the same view-defined names.
View column names correspond in order and number to the columns listed in
the SELECT clause, so specify all view column names or none.
A view_col definition can contain one or more columns based on an
expression that combines the outcome of two columns. The expression must
return a single value, and cannot return an array or array element. If the

view includes an expression, the view-column option is required.
Note Any columns used in the value expression must exist before the
expression can be defined.
A SELECT statement clause cannot include the ORDER BY clause.
When SELECT * is used rather than a column list, order of display is based on
the order in which columns are stored in the base table.
WITH CHECK OPTION enables InterBase to verify that a row added to or updated
in a view is able to be seen through the view before allowing the operation to
succeed. Do not use WITH CHECK OPTION for read-only views.
Note You cannot select from a view that is based on the result set of a stored
procedure.
Note DSQL does not support view definitions containing UNION clauses. To
create such a view, use embedded SQL.
A view is updatable if:

n It is a subset of a single table or another updatable view.
n All base table columns excluded from the view definition allow NULL values.
n The view's SELECT statement does not contain subqueries, a DISTINCT

predicate, a HAVING clause, aggregate functions, joined tables, user-defined
functions, or stored procedures.
If the view definition does not meet these conditions, it is considered read-
only.
Note Read-only views can be updated by using a combination of user-defined
referential constraints, triggers, and unique indexes.

Examples The following isql statement creates an updatable view:
CREATE VIEW SNOW_LINE (CITY, STATE, SNOW_ALTITUDE) AS

SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 5000;

The next isql statement uses a nested query to create a view:
CREATE VIEW RECENT_CITIES AS

SELECT STATE, CITY, POPULATION
FROM CITIES WHERE STATE IN

(SELECT STATE FROM STATES WHERE STATEHOOD > '1-JAN-1850');
In an updatable view, the WITH CHECK OPTION prevents any inserts or updates
through the view that do not satisfy the WHERE clause of the CREATE VIEW
SELECT statement:
CREATE VIEW HALF_MILE_CITIES AS

SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 2500
WITH CHECK OPTION;

The WITH CHECK OPTION clause in the view would prevent the following
insertion:
INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)

VALUES ('Chicago', 'Illinois', 250);
On the other hand, the following UPDATE would be permitted:
INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)

VALUES ('Truckee', 'California', 2736);
The WITH CHECK OPTION clause does not allow updates through the view which
change the value of a row so that the view cannot retrieve it. For example,
the WITH CHECK OPTION in the HALF_MILE_CITIES view prevents the following
update:
UPDATE HALF_MILE_CITIES

SET ALTITUDE = 2000
WHERE STATE = 'NY';

The next isql statement creates a view that joins two tables, and so is read-
only:
CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

See Also CREATE TABLE, DROP VIEW, GRANT, INSERT, REVOKE, SELECT, UPDATE
For a complete discussion of views, see the Data Definition Guide.

DECLARE CURSOR
Defines a cursor for a table by associating a name with the set of rows
specified in a SELECT statement. Available in SQL and DSQL.

Syntax SQL form:
DECLARE cursor CURSOR FOR <select> [FOR UPDATE OF <col> [, <col>…]];
DSQL form:
DECLARE cursor CURSOR FOR <statement_id>
Blob form: See DECLARE CURSOR (BLOB)

Argument Description
cursor Name for the cursor
select Determines which rows to retrieve. SQL only
FOR UPDATE OF col
[, col …]

Enables UPDATE and DELETE of specified column
for retrieved rows

statement_id SQL statement name of a previously prepared
statement, which in this case must be a SELECT
statement. DSQL only

Description DECLARE CURSOR defines the set of rows that can be retrieved using the

cursor it names. It is the first member of a group of table cursor statements
that must be used in sequence.
select specifies a SELECT statement that determines which rows to retrieve.
The SELECT statement cannot include INTO or ORDER BY clauses.
The FOR UPDATE OF clause is necessary for updating or deleting rows using
the WHERE CURRENT OF clause with UPDATE and DELETE.
A cursor is a one-way pointer into the ordered set of rows retrieved by the
select expression in the DECLARE CURSOR statement. It enables sequential
access to retrieved rows in turn. There are four related cursor statements:

Stag
e

Statemen
t

Purpose

1 DECLARE
CURSOR

Declares the cursor; the SELECT statement
determines rows retrieved for the cursor

2 OPEN Retrieves the rows specified for retrieval with
DECLARE CURSOR; the resulting rows become the
cursor's active set

3 FETCH Retrieves the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the set

4 CLOSE Closes the cursor and releases system
resources

Examples The following embedded SQL statement declares a cursor with a search
condition:
EXEC SQL

DECLARE C CURSOR FOR
SELECT CUST_NO, ORDER_STATUS

FROM SALES
WHERE ORDER_STATUS IN ('open', 'shipping');

The next DSQL statement declares a cursor for a previously prepared
statement, QUERY1:
DECLARE Q CURSOR FOR QUERY1

See Also CLOSE, DECLARE CURSOR (BLOB), FETCH, OPEN, PREPARE, SELECT

DECLARE CURSOR (BLOB)
Declares a Blob cursor for read or insert. Available in SQL.

Syntax DECLARE cursor CURSOR FOR
{READ BLOB column FROM table
| INSERT BLOB column INTO table}
[FILTER [FROM subtype] TO subtype]
[MAXIMUM_SEGMENT length];

Argument Description
cursor Name for the Blob cursor
column Name of the Blob column
table Table name
READ BLOB Declares a read operation on the Blob
INSERT BLOB Declares a write operation on the Blob
[FILTER [FROM
subtype] TO
subtype]

Specifies optional Blob filters used to translate
a Blob from one user-specified format to
another; subtype determines which filters are
used for translation

MAXIMUM_
SEGMENT length

Length of the local variable to receive the Blob
data after a FETCH operation

Description Declares a cursor for reading or inserting Blob data. A Blob cursor can be

associated with only one Blob column.
To read partial Blob segments when a host-language variable is smaller than
the segment length of a Blob, declare the Blob cursor with the
MAXIMUM_SEGMENT clause. If length is less than the Blob segment, FETCH
returns length bytes. If the same or greater, it returns a full segment (the
default).

Examples The following embedded SQL statement declares a READ BLOB cursor and
uses the MAXIMUM_SEGMENT option:
EXEC SQL

DECLARE BC CURSOR FOR
READ BLOB JOB_REQUIREMENT FROM JOB MAXIMUM_SEGMENT 40;

The next embedded SQL statement declares an INSERT BLOB cursor:
EXEC SQL

DECLARE BC CURSOR FOR
INSERT BLOB JOB_REQUIREMENt INTO JOB;

See Also CLOSE (BLOB), FETCH (BLOB), INSERT CURSOR (BLOB), OPEN (BLOB)

DECLARE EXTERNAL FUNCTION
Declares an existing user-defined function (UDF) to a database. Available in
SQL, DSQL, and isql.

Syntax DECLARE EXTERNAL FUNCTION name [datatype | CSTRING (int)
[, datatype | CSTRING (int) …]]

RETURNS {datatype [BY VALUE] | CSTRING (int)} [FREE_IT]
ENTRY_POINT 'entryname'
MODULE_NAME 'modulename';

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.
Note Whenever a UDF returns a value by reference to dynamically allocated
memory, you must declare it using the FREE_IT keyword in order to free the
allocated memory.

Argumen
t

Description

name Name of the UDF to use in SQL statements; can be
different from the name of the function specified after
the ENTRY_POINT keyword

datatype Datatype of an input or return parameter
All input parameters are passed to a UDF by

reference
Return parameters can be passed by value
Cannot be an array element

CSTRING
(int)

Specifies a UDF that returns a null-terminated string
int bytes in length

RETURNS Specifies the return value of a function
BY VALUE Specifies that a return value should be passed by

value rather than by reference
FREE_IT Frees memory of the return value after the UDF

finishes running
Use only if the memory is allocated dynamically

in the UDF
See also Language Reference, Chapter 5

'entryna
me'

Quoted string specifying the name of the UDF in the
source code as stored in the UDF library

'modulen
ame'

Quoted file name identifying the library that contains
the UDF; the placement of the library in the file
system must meet one of the following criteria:

The library is in ib_install_dir/UDF
The library in a directory other than

ib_install_dir/UDF and the complete pathname to the
directory, including a drive letter in the case of a

Windows server, is listed in the InterBase configuration
file.

See the UDF chapter of the Developer's Guide
for more about how InterBase finds the library

Description DECLARE EXTERNAL FUNCTION provides information about a UDF to a

database: where to find it, its name, the input parameters it requires, and
the single value it returns. Each UDF in a library must be declared once to
each database where it will be used. As long as the entry point and module
name do not change, there is no need to redelcare a UDF, even if the
function itself is modified.
entryname is the actual name of the function as stored in the UDF library. It
does not have to match the name of the UDF as stored in the database.
The module name does not need to include a path. However, the module
must either be placed in ib_install_dir/UDF or must be listed in the InterBase
configuration file.
To specify a location for UDF libraries in a configuration file, enter a line of
the following form for Windows platforms:
EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase
For UNIX and NetWare, the line does not include a drive letter:
EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase
Note that beginning with InterBase 6, it is no longer sufficient to include a
complete path name for the module in the DECLARE EXTERNAL FUNCTION
statement. You must list the path in the InterBase configuration file if it is
other than ib_install_dir/UDF. A path name is no longer useful in the DECLARE
EXTERNAL FUNCTION statement.
The InterBase configuration file is called ibconfig on Windows machines,
isc_config on UNIX machines, and isc_conf on Netware.
FOR NETWARE SERVERS Beginning with InterBase 5.6, the UDF library is
statically linked to NetWare servers so that the UDFs are available as
external functions. To make them available to a database on a Netware
server, follow htese steps:
1. On a Windows client, connect to the database where you need the

functions.
2. Run the ib_udf.sql script that is located in the

ib_install_dir/Examples/UDF directory (InterBase 6 and later) or
Examples/API directory (InterBase 5.6) using ISQL with the -i
switch:

Examples The following isql statement declares the TOPS() UDF to a database:
DECLARE EXTERNAL FUNCTION TOPS

CHAR(256), INTEGER, BLOB
RETURNS INTEGER BY VALUE
ENTRY_POINT 'te1' MODULE_NAME 'tm1.dll';

This example does not need the FREE_IT keyword because only cstrings,
CHAR, and VARCHAR return types require memory allocation.
The next example declares the LOWERS() UDF and frees the memory

allocated for the return value:
DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)

RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'udflib.dll';

See Also DROP EXTERNAL FUNCTION
For more information about writing UDFs, see "Working with UDFs" in the
Developer's Guide.

DECLARE FILTER
Declares an existing Blob filter to a database. Available in SQL, DSQL, and
isql.

Syntax DECLARE FILTER filter
INPUT_TYPE subtype OUTPUT_TYPE subtype
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
filter Name of the filter; must be unique among

filter names in the database
INPUT_TYPE
subtype

Specifies the Blob subtype from which data is
to be converted

OUTPUT_TYPE
subtype

Specifies the Blob subtype into which data is
to be converted

'entryname' Quoted string specifying the name of the Blob
filter as stored in a linked library

'modulename' Quoted file specification identifying the object
module in which the filter is stored

Description DECLARE FILTER provides information about an existing Blob filter to the

database: where to find it, its name, and the Blob subtypes it works with. A
Blob filter is a user-written program that converts data stored in Blob
columns from one subtype to another.
INPUT_TYPE and OUTPUT_TYPE together determine the behavior of the Blob
filter. Each filter declared to the database should have a unique combination
of INPUT_TYPE and OUTPUT_TYPE integer values. InterBase provides a built-in
type of 1, for handling text. User-defined types must be expressed as
negative values.
entryname is the name of the Blob filter stored in the library. When an
application uses a Blob filter, it calls the filter function with this name.

Important Do not use DECLARE FILTER when creating a database on a NetWare server.
Blob filters cannot be created or used on NetWare servers.

Example The following isql statement declares a Blob filter:
 DECLARE FILTER DESC_FILTER

 INPUT_TYPE 1
 OUTPUT_TYPE -4
 ENTRY_POINT 'desc_filter'
 MODULE_NAME 'FILTERLIB';

See Also DROP FILTER
For instructions on writing Blob filters, see the Embedded SQL Guide.

For more information about Blob subtypes, see the Data Definition Guide.

DECLARE STATEMENT
Identifies dynamic SQL statements before they are prepared and executed in
an embedded program. Available in SQL.

Syntax DECLARE <statement> STATEMENT;

Argument Description
statement Name of an SQL variable for a user-supplied SQL

statement to prepare and execute at runtime

Description DECLARE STATEMENT names an SQL variable for a user-supplied SQL

statement to prepare and execute at run time. DECLARE STATEMENT is not
executed, so it does not produce run-time errors. The statement provides
internal documentation.

Example The following embedded SQL statement declares Q1 to be the name of a
string for preparation and execution.
EXEC SQL

DECLARE Q1 STATEMENT;

See Also EXECUTE, EXECUTE IMMEDIATE, PREPARE

DECLARE TABLE
Describes the structure of a table to the preprocessor, gpre, before it is
created with CREATE TABLE. Available in SQL.

Syntax DECLARE table TABLE (<table_def>);

Argume
nt

Description

table Name of the table; table names must be unique within
the database

table_def Definition of the table; for complete table definition
syntax, see CREATE TABLE

Description DECLARE TABLE causes gpre to store a table description. You must use it if

you both create and populate a table with data in the same program. If the
declared table already exists in the database or if the declaration contains
syntax errors, gpre returns an error.
When a table is referenced at run time, the column descriptions and
datatypes are checked against the description stored in the database. If the
table description is not in the database and the table is not declared, or if
column descriptions and datatypes do not match, the application returns an
error.
DECLARE TABLE can include an existing domain in a column definition, but
must give the complete column description if the domain is not defined at
compile time.
DECLARE TABLE cannot include integrity constraints and column attributes,
even if they are present in a subsequent CREATE TABLE statement.

Important DECLARE TABLE cannot appear in a program that accesses multiple databases.
Example The following embedded SQL statements declare and create a table:

EXEC SQL
DECLARE STOCK TABLE
(MODEL SMALLINT,
MODELNAME CHAR(10),
ITEMID INTEGER);

EXEC SQL
CREATE TABLE STOCK
(MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,

CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

See Also CREATE DOMAIN, CREATE TABLE

DELETE
Removes rows in a table or in the active set of a cursor. Available in SQL,
DSQL, and isql.

Syntax SQL and DSQL form:

Important Omit the terminating semicolon for DSQL.
DELETE [TRANSACTION transaction] FROM table

{[WHERE <search_condition>] | WHERE CURRENT OF cursor};
<search_condition> = Search condition as specified in SELECT.
isql form:
DELETE FROM TABLE [WHERE <search_condition>];

Argument Description
TRANSACTION
transaction

Name of the transaction under control of which
the statement is executed; SQL only

table Name of the table from which to delete rows
WHERE
search_conditio
n

Search condition that specifies the rows to
delete; without this clause, DELETE affects all
rows in the specified table or view

WHERE CURRENT
OF cursor

Specifies that the current row in the active set
of cursor is to be deleted

DELETE specifies one or more rows to delete from a table or updatable view.
DELETE is one of the database privileges controlled by the GRANT and REVOKE
statements.
The TRANSACTION clause can be used in multiple transaction SQL applications
to specify which transaction controls the DELETE operation. The TRANSACTION
clause is not available in DSQL or isql.
For searched deletions, the optional WHERE clause can be used to restrict
deletions to a subset of rows in the table.

Important Without a WHERE clause, a searched delete removes all rows from a table.
When performing a positioned delete with a cursor, the WHERE CURRENT OF
clause must be specified to delete one row at a time from the active set.

Examples The following isql statement deletes all rows in a table:
DELETE FROM EMPLOYEE_PROJECT;
The next embedded SQL statement is a searched delete in an embedded
application. It deletes all rows where a host-language variable equals a
column value.
EXEC SQL

DELETE FROM SALARY_HISTORY
WHERE EMP_NO = :emp_num;

The following embedded SQL statements use a cursor and the WHERE
CURRENT OF option to delete rows from CITIES with a population less than the

host variable, min_pop. They declare and open a cursor that finds qualifying
cities, fetch rows into the cursor, and delete the current row pointed to by
the cursor.
EXEC SQL

DECLARE SMALL_CITIES CURSOR FOR
SELECT CITY, STATE
FROM CITIES
WHERE POPULATION < :min_pop;

EXEC SQL
OPEN SMALL_CITIES;

EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;
WHILE (!SQLCODE)

{EXEC SQL
DELETE FROM CITIES
WHERE CURRENT OF SMALL_CITIES;

EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;}

EXEC SQL
CLOSE SMALL_CITIES;

See Also DECLARE CURSOR, FETCH, GRANT, OPEN, REVOKE, SELECT
For more information about using cursors, see the Embedded SQL Guide.

DESCRIBE
Provides information about columns that are retrieved by a dynamic SQL
(DSQL) statement, or information about dynamic parameters that statement
passes. Available in SQL.

Syntax DESCRIBE [OUTPUT | INPUT] statement
{INTO | USING} SQL DESCRIPTOR xsqlda;

Argument Description
OUTPUT [Default] Indicates that column

information should be returned in the
XSQLDA

INPUT Indicates that dynamic parameter
information should be stored in the
XSQLDA

statement A previously defined alias for the
statement to DESCRIBE.

Use PREPARE to define aliases
{INTO | USING} SQL
DESCRIPTOR xsqlda

Specifies the XSQLDA to use for the
DESCRIBE statement

Description DESCRIBE has two uses:

n As a describe output statement, DESCRIBE stores into an XSQLDA a description
of the columns that make up the select list of a previously prepared
statement. If the PREPARE statement included an INTO clause, it is
unnecessary to use DESCRIBE as an output statement.

n As a describe input statement, DESCRIBE stores into an XSQLDA a description
of the dynamic parameters that are in a previously prepared statement.
DESCRIBE is one of a group of statements that process DSQL statements.

Statement Purpose
PREPARE Readies a DSQL statement for execution
DESCRIBE Fills in the XSQLDA with information about

the statement
EXECUTE Executes a previously prepared

statement
EXECUTE
IMMEDIATE

Prepares a DSQL statement, executes it
once, and discards it

Separate DESCRIBE statements must be issued for input and output
operations. The INPUT keyword must be used to store dynamic parameter
information.

Important When using DESCRIBE for output, if the value returned in the sqld field in the
XSQLDA is larger than the sqln field, you must:

n Allocate more storage space for XSQLVAR structures.
n Reissue the DESCRIBE statement.

Note The same XSQLDA structure can be used for input and output if desired.
Example The following embedded SQL statement retrieves information about the

output of a SELECT statement:
EXEC SQL

DESCRIBE Q INTO xsqlda
The next embedded SQL statement stores information about the dynamic
parameters passed with a statement to be executed:
EXEC SQL

DESCRIBE INPUT Q2 USING SQL DESCRIPTOR xsqlda;

See Also EXECUTE, EXECUTE IMMEDIATE, PREPARE
For more information about DSQL programming and the XSQLDA, see the
Embedded SQL Guide.

DISCONNECT
Detaches an application from a database. Available in SQL.

Syntax DISCONNECT {{ALL | DEFAULT} | dbhandle [, dbhandle] …]};

Argument Description
ALL|DEFAULT Either keyword detaches all open databases
dbhandle Previously declared database handle specifying

a database to detach

Description DISCONNECT closes a specific database identified by a database handle or

all databases, releases resources used by the attached database, zeroes
database handles, commits the default transaction if the gpre -manual
option is not in effect, and returns an error if any non-default transaction is
not committed.
Before using DISCONNECT, commit or roll back the transactions affecting the
database to be detached.
To reattach to a database closed with DISCONNECT, reopen it with a CONNECT
statement.

Examples The following embedded SQL statements close all databases:
EXEC SQL

DISCONNECT DEFAULT;
EXEC SQL

DISCONNECT ALL;
The next embedded SQL statements close the databases identified by their
handles:
EXEC SQL

DISCONNECT DB1;
EXEC SQL

DISCONNECT DB1, DB2;

See Also COMMIT, CONNECT, ROLLBACK, SET DATABASE

DROP DATABASE
Deletes the currently attached database. Available in isql.

Syntax DROP DATABASE;

Description DROP DATABASE deletes the currently attached database, including any
associated secondary, shadow, and log files. Dropping a database deletes
any data it contains.
A database can be dropped by its creator, the SYSDBA user, and any users
with operating system root privileges.

Example The following isql statement deletes the current database:
DROP DATABASE;

See Also ALTER DATABASE, CREATE DATABASE

DROP DOMAIN
Deletes a domain from a database. Available in SQL, DSQL, and isql.

Syntax DROP DOMAIN name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing

domain

Description DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the
DROP operation fails. To prevent failure, use ALTER TABLE to delete the columns
based on the domain before executing DROP DOMAIN.
A domain may be dropped by its creator, the SYSDBA, and any users with
operating system root privileges.

Example The following isql statement deletes a domain:
DROP DOMAIN COUNTRYNAME;

See Also ALTER DOMAIN, ALTER TABLE, CREATE DOMAIN

DROP EXCEPTION
Deletes an exception from a database. Available in DSQL and isql.

Syntax DROP EXCEPTION name

Argument Description
name Name of an existing exception

message

Description DROP EXCEPTION removes an exception from a database.

Exceptions used in existing procedures and triggers cannot be dropped.
Tip In isql, SHOW EXCEPTION displays a list of exceptions' dependencies, the

procedures and triggers that use the exceptions.
An exception can be dropped by its creator, the SYSDBA user, and any user
with operating system root privileges.

Example This isql statement drops an exception:
DROP EXCEPTION UNKNOWN_EMP_ID;

See Also ALTER EXCEPTION, ALTER PROCEDURE, ALTER TRIGGER, CREATE EXCEPTION, CREATE
PROCEDURE, CREATE TRIGGER

DROP EXTERNAL FUNCTION
Removes a user-defined function (UDF) declaration from a database.
Available in SQL, DSQL, and isql.

Syntax DROP EXTERNAL FUNCTION name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing UDF

Description DROP EXTERNAL FUNCTION deletes a UDF declaration from a database.

Dropping a UDF declaration from a database does not remove it from the
corresponding UDF library, but it does make the UDF inaccessible from the
database. Once the definition is dropped, any applications that depend on
the UDF will return run-time errors.
A UDF can be dropped by its declarer, the SYSDBA user, or any users with
operating system root privileges.

Important UDFs are not available for databases on NetWare servers. If a UDF is
accidentally declared for a database on a NetWare server, DROP EXTERNAL
FUNCTION should be used to remove the declaration.

Example This isql statement drops a UDF:
DROP EXTERNAL FUNCTION TOPS;

See Also DECLARE EXTERNAL FUNCTION

DROP FILTER
Removes a Blob filter declaration from a database. Available in SQL, DSQL,
and isql.

Syntax DROP FILTER name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing Blob filter

Description DROP FILTER removes a Blob filter declaration from a database. Dropping a

Blob filter declaration from a database does not remove it from the
corresponding Blob filter library, but it does make the filter inaccessible from
the database. Once the definition is dropped, any applications that depend
on the filter will return run-time errors.
DROP FILTER fails and returns an error if any processes are using the filter.
A filter can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Important Blob filters are not available for databases on NetWare servers. If a Blob filter
is accidentally declared for a database on a NetWare server, DROP FILTER
should be used to remove the declaration.

Example This isql statement drops a Blob filter:
DROP FILTER DESC_FILTER;

See Also DECLARE FILTER

DROP INDEX
Removes an index from a database. Available in SQL, DSQL, and isql.

Syntax DROP INDEX name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing index

Description DROP INDEX removes a user-defined index from a database.

An index can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Important You cannot drop system-defined indexes, such as those for UNIQUE, PRIMARY
KEY, and FOREIGN KEY.
An index in use is not dropped until it is no longer in use.

Example The following isql statement deletes an index:
DROP INDEX MINSALX;

See Also ALTER INDEX, CREATE INDEX
For more information about integrity constraints and system-defined
indexes, see the Data Definition Guide.

DROP PROCEDURE
Deletes an existing stored procedure from a database. Available in DSQL,
and isql.

Syntax DROP PROCEDURE name

Argument Description
name Name of an existing stored procedure

Description DROP PROCEDURE removes an existing stored procedure definition from a

database.
Procedures used by other procedures, triggers, or views cannot be dropped.
Procedures currently in use cannot be dropped.

Tip In isql, SHOW PROCEDURE displays a list of procedures' dependencies, the
procedures, triggers, exceptions, and tables that use the procedures.
A procedure can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Example The following isql statement deletes a procedure:
DROP PROCEDURE GET_EMP_PROJ;

See Also ALTER PROCEDURE, CREATE PROCEDURE, EXECUTE PROCEDURE

DROP ROLE
Deletes a role from a database. Available in SQL, DSQL, and isql.

Syntax DROP ROLE rolename;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
rolename Name of an existing role

Description DROP ROLE deletes a role that was previously created using CREATE ROLE.

Any privileges that users acquired or granted through their membership in
the role are revoked.
A role can be dropped by its creator, the SYSDBA user, or any user with
superuser privileges.

Example The following isql statement deletes a role from its database:
DROP ROLE administrator;

See Also CREATE ROLE, GRANT, REVOKE

DROP SHADOW
Deletes a shadow from a database. Available in SQL, DSQL, and isql.

Syntax DROP SHADOW set_num;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
set_num Positive integer to identify an existing

shadow set

Description DROP SHADOW deletes a shadow set and detaches from the shadowing

process. The isql SHOW DATABASE command can be used to see shadow set
numbers for a database.
A shadow can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Example The following isql statement deletes a shadow set from its database:
DROP SHADOW 1;

See Also CREATE SHADOW

DROP TABLE
Removes a table from a database. Available in SQL, DSQL, and isql.

Syntax DROP TABLE name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
name Name of an existing table

Description DROP TABLE removes a table's data, metadata, and indexes from a

database. It also drops any triggers that reference the table.
A table referenced in an SQL expression, a view, integrity constraint, or
stored procedure cannot be dropped. A table used by an active transaction is
not dropped until it is free.
Note When used to drop an external table, DROP TABLE only removes the table
definition from the database. The external file is not deleted.
A table can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Example The following embedded SQL statement drops a table:
EXEC SQL

DROP TABLE COUNTRY;

See Also ALTER TABLE, CREATE TABLE

DROP TRIGGER
Deletes an existing user-defined trigger from a database. Available in DSQL
and isql.

Syntax DROP TRIGGER name

Argument Description
name Name of an existing trigger

Description DROP TRIGGER removes a user-defined trigger definition from the database.

System-defined triggers, such as those created for CHECK constraints, cannot
be dropped. Use ALTER TABLE to drop the CHECK clause that defines the
trigger.
Triggers used by an active transaction cannot be dropped until the
transaction is terminated.
A trigger can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Tip To inactivate a trigger temporarily, use ALTER TRIGGER and specify INACTIVE in
the header.

Example The following isql statement drops a trigger:
DROP TRIGGER POST_NEW_ORDER;

See Also ALTER TRIGGER, CREATE TRIGGER

DROP VIEW
Removes a view definition from the database. Available in SQL, DSQL, and
isql.

Syntax DROP VIEW name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argumen
t

Description

name Name of an existing view
definition to drop

Description DROP VIEW enables a view's creator to remove a view definition from the

database if the view is not used in another view, stored procedure, or CHECK
constraint definition.
A view can be dropped by its creator, the SYSDBA user, or any user with
operating system root privileges.

Example The following isql statement removes a view definition:
DROP VIEW PHONE_LIST;

See Also CREATE VIEW

END DECLARE SECTION
Identifies the end of a host-language variable declaration section. Available
in SQL.

Syntax END DECLARE SECTION;

Description END DECLARE SECTION is used in embedded SQL applications to identify the
end of host-language variable declarations for variables used in subsequent
SQL statements.

Example The following embedded SQL statements declare a section, and single host-
language variable:
EXEC SQL

BEGIN DECLARE SECTION;
BASED_ON EMPLOYEE.SALARY salary;

EXEC SQL
END DECLARE SECTION;

See Also BASED ON, BEGIN DECLARE SECTION

EVENT INIT
Registers interest in one or more events with the InterBase event manager.
Available in SQL.

Syntax EVENT INIT request_name [dbhandle]
[('string' | :variable [, 'string' | :variable …]);

Argument Description
request_name Application event handle
dbhandle Specifies the database to examine for

occurrences of the events; if omitted, dbhandle
defaults to the database named in the most
recent SET DATABASE statement

'string' Unique name identifying an event associated
with event_name

:variable Host-language character array containing a list
of event names to associate with

Description EVENT INIT is the first step in the InterBase two-part synchronous event

mechanism:
1. EVENT INIT registers an application's interest in an event.
2. EVENT WAIT causes the application to wait until notified of the

event's occurrence.
EVENT INIT registers an application's interest in a list of events in parentheses.
The list should correspond to events posted by stored procedures or triggers
in the database. If an application registers interest in multiple events with a
single EVENT INIT, then when one of those events occurs, the application must
determine which event occurred.
Events are posted by a POST_EVENT call within a stored procedure or trigger.
The event manager keeps track of events of interest. At commit time, when
an event occurs, the event manager notifies interested applications.

Example The following embedded SQL statement registers interest in an event:
EXEC SQL

EVENT INIT ORDER_WAIT EMPDB ('new_order');

See Also CREATE PROCEDURE, CREATE TRIGGER, EVENT WAIT, SET DATABASE
For more information about events, see the Embedded SQL Guide.

EVENT WAIT
Causes an application to wait until notified of an event's occurrence.
Available in SQL.

Syntax EVENT WAIT request_name;

Argumen
t

Description

request_n
ame

Application event handle declared in a previous
EVENT INIT statement

Description EVENT WAIT is the second step in the InterBase two-part synchronous event

mechanism. After a program registers interest in an event, EVENT WAIT causes
the process running the application to sleep until the event of interest
occurs.

Examples The following embedded SQL statements register an application event name
and indicate the program is ready to receive notification when the event
occurs:
EXEC SQL

EVENT INIT ORDER_WAIT EMPDB ('new_order');
EXEC SQL

EVENT WAIT ORDER_WAIT;
See Also EVENT INIT

For more information about events, see the Embedded SQL Guide.

EXECUTE
Executes a previously prepared dynamic SQL (DSQL) statement. Available in
SQL.

Syntax EXECUTE [TRANSACTION transaction] statement
[USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

Argument Description
TRANSACTION
transaction

Specifies the transaction under which
execution occurs

statement Alias of a previously prepared statement to
execute

USING SQL
DESCRIPTOR

Specifies that values corresponding to the
prepared statement's parameters should
be taken from the specified XSQLDA

INTO SQL
DESCRIPTOR

Specifies that return values from the
executed statement should be stored in the
specified XSQLDA

xsqlda XSQLDA host-language variable

Description EXECUTE carries out a previously prepared DSQL statement. It is one of a

group of statements that process DSQL statements.

Statement Purpose
PREPARE Readies a DSQL statement for execution
DESCRIBE Fills in the XSQLDA with information about the

statement
EXECUTE Executes a previously prepared statement
EXECUTE
IMMEDIATE

Prepares a DSQL statement, executes it once,
and discards it

Before a statement can be executed, it must be prepared using the PREPARE
statement. The statement can be any SQL data definition, manipulation, or
transaction management statement. Once it is prepared, a statement can be
executed any number of times.
The TRANSACTION clause can be used in SQL applications running multiple,
simultaneous transactions to specify which transaction controls the EXECUTE
operation.
USING DESCRIPTOR enables EXECUTE to extract a statement's parameters from
an XSQLDA structure previously loaded with values by the application. It need
only be used for statements that have dynamic parameters.
INTO DESCRIPTOR enables EXECUTE to store return values from statement
execution in a specified XSQLDA structure for application retrieval. It need
only be used for DSQL statements that return values.

Note If an EXECUTE statement provides both a USING DESCRIPTOR clause and an
INTO DESCRIPTOR clause, then two XSQLDA structures must be provided.

Example The following embedded SQL statement executes a previously prepared
DSQL statement:
EXEC SQL

EXECUTE DOUBLE_SMALL_BUDGET;
The next embedded SQL statement executes a previously prepared
statement with parameters stored in an XSQLDA:
EXEC SQL

EXECUTE Q USING DESCRIPTOR xsqlda;
The following embedded SQL statement executes a previously prepared
statement with parameters in one XSQLDA, and produces results stored in a
second XSQLDA:
EXEC SQL

EXECUTE Q USING DESCRIPTOR xsqlda_1 INTO DESCRIPTOR xsqlda_2;
See Also DESCRIBE, EXECUTE IMMEDIATE, PREPARE

For more information about DSQL programming and the XSQLDA, see the
Embedded SQL Guide.

EXECUTE IMMEDIATE
Prepares a dynamic SQL (DSQL) statement, executes it once, and discards it.
Available in SQL.

Syntax EXECUTE IMMEDIATE [TRANSACTION transaction]
{:variable | 'string'} [USING SQL DESCRIPTOR xsqlda];

Argument Description
TRANSACTION
transaction

Specifies the transaction under which
execution occurs

:variable Host variable containing the SQL statement
to execute

'string' A string literal containing the SQL statement
to execute

USING SQL
DESCRIPTOR

Specifies that values corresponding to the
statement's parameters should be taken
from the specified XSQLDA

xsqlda XSQLDA host-language variable

Description EXECUTE IMMEDIATE prepares a DSQL statement stored in a host-language

variable or in a literal string, executes it once, and discards it. To prepare and
execute a DSQL statement for repeated use, use PREPARE and EXECUTE
instead of EXECUTE IMMEDIATE.
The TRANSACTION clause can be used in SQL applications running multiple,
simultaneous transactions to specify which transaction controls the EXECUTE
IMMEDIATE operation.
The SQL statement to execute must be stored in a host variable or be a
string literal. It can contain any SQL data definition statement or data
manipulation statement that does not return output.
USING DESCRIPTOR enables EXECUTE IMMEDIATE to extract the values of a
statement's parameters from an XSQLDA structure previously loaded with
appropriate values.

Example The following embedded SQL statement prepares and executes a statement
in a host variable:
EXEC SQL

EXECUTE IMMEDIATE :insert_date;

See Also DESCRIBE, EXECUTE IMMEDIATE, PREPARE
For more information about DSQL programming and the XSQLDA, see the
Embedded SQL Guide.

EXECUTE PROCEDURE
Calls a stored procedure. Available in SQL, DSQL, and isql.

Syntax SQL form:
EXECUTE PROCEDURE [TRANSACTION transaction]

name [:param [[INDICATOR]:indicator]]
[, :param [[INDICATOR]:indicator] …]

[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator] …]];

DSQL form:
EXECUTE PROCEDURE name [param [, param …]]

[RETURNING_VALUES param [, param …]]
isql form:
EXECUTE PROCEDURE name [param [, param …]]

Argument Description
TRANSACTION
transaction

Specifies the transaction under which
execution occurs

name Name of an existing stored procedure in the
database

param Input or output parameter; can be a host
variable or a constant

RETURNING_VALUES
: param

Host variable which takes the values of an
output parameter

[INDICATOR] :indic
ator

Host variable for indicating NULL or unknown
values

Description EXECUTE PROCEDURE calls the specified stored procedure. If the procedure

requires input parameters, they are passed as host-language variables or as
constants. If a procedure returns output parameters to an SQL program, host
variables must be supplied in the RETURNING_VALUES clause to hold the values
returned.
In isql, do not use the RETURN clause or specify output parameters. isql will
automatically display return values.
Note In DSQL, an EXECUTE PROCEDURE statement requires an input descriptor
area if it has input parameters and an output descriptor area if it has output
parameters.
In embedded SQL, input parameters and return values may have associated
indicator variables for tracking NULL values. Indicator variables are integer
values that indicate unknown or NULL values of return values.
An indicator variable that is less than zero indicates that the parameter is
unknown or NULL. An indicator variable that is zero or greater indicates that
the associated parameter is known and not NULL.

Examples The following embedded SQL statement demonstrates how the executable

procedure, DEPT_BUDGET, is called from embedded SQL with literal
parameters:
EXEC SQL

EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;
The next embedded SQL statement calls the same procedure using a host
variable instead of a literal as the input parameter:
EXEC SQL

EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;
See Also ALTER PROCEDURE, CREATE PROCEDURE, DROP PROCEDURE

For more information about indicator variables, see the Embedded SQL
Guide.

FETCH
Retrieves the next available row from the active set of an opened cursor.
Available in SQL and DSQL.

Syntax SQL form:
FETCH cursor

[INTO :hostvar [[INDICATOR] :indvar]
[, :hostvar [[INDICATOR] :indvar] …]];

DSQL form:
FETCH cursor {INTO | USING} SQL DESCRIPTOR xsqlda
Blob form: See FETCH (BLOB).

Argument Description
cursor Name of the opened cursor from which to fetch

rows
:hostvar A host-language variable for holding values

retrieved with the FETCH
Optional if FETCH gets rows for DELETE or

UPDATE
Required if row is displayed before DELETE

or UPDATE
:indvar Indicator variable for reporting that a column

contains an unknown or NULL value
[INTO|USING] SQL
DESCRIPTOR

Specifies that values should be returned in the
specified XSQLDA

xsqlda XSQLDA host-language variable

Description FETCH retrieves one row at a time into a program from the active set of a

cursor. The first FETCH operates on the first row of the active set. Subsequent
FETCH statements advance the cursor sequentially through the active set one
row at a time until no more rows are found and SQLCODE is set to 100.
A cursor is a one-way pointer into the ordered set of rows retrieved by the
select expression in the DECLARE CURSOR statement. A cursor enables
sequential access to retrieved rows. There are four related cursor
statements:

Sta
ge

Statemen
t

Purpose

1 DECLARE
CURSOR

Declare the cursor; the SELECT statement
determines rows retrieved for the cursor

2 OPEN Retrieve the rows specified for retrieval with
DECLARE
CURSOR; the resulting rows become the
cursor's active set

3 FETCH Retrieve the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the
set

4 CLOSE Close the cursor and release system
resources

The number, size, datatype, and order of columns in a FETCH must be the
same as those listed in the query expression of its matching DECLARE CURSOR
statement. If they are not, the wrong values can be assigned.

Examples The following embedded SQL statement fetches a column from the active set
of a cursor:
EXEC SQL

FETCH PROJ_CNT INTO :department, :hcnt;

See Also CLOSE, DECLARE CURSOR, DELETE, FETCH (BLOB), OPEN
For more information about cursors and XSQLDA, see the Embedded SQL
Guide.

FETCH (BLOB)
Retrieves the next available segment of a Blob column and places it in the
specified local buffer. Available in SQL.

Syntax FETCH cursor INTO
[:<buffer> [[INDICATOR] :segment_length];

Argument Description
cursor Name of an open Blob cursor from which to

retrieve segments
:buffer Host-language variable for holding segments

fetched from the Blob column; user must
declare the buffer before fetching segments
into it

INDICATOR Optional keyword indicating that a host-
language variable for indicating the number of
bytes returned by the FETCH follows

:segment_lengt
h

Host-language variable used to indicate he
number of bytes returned by the FETCH

Description FETCH retrieves the next segment from a Blob and places it into the

specified buffer.
The host variable, segment_length, indicates the number of bytes fetched.
This is useful when the number of bytes fetched is smaller than the host
variable, for example, when fetching the last portion of a Blob.
FETCH can return two SQLCODE values:

n SQLCODE = 100 indicates that there are no more Blob segments to retrieve.
n SQLCODE = 101 indicates that a partial segment was retrieved and placed in

the local buffer variable.
Note To ensure that a host variable buffer is large enough to hold a Blob
segment buffer during FETCH operations, use the SEGMENT option of the BASED
ON statement.
To ensure that a host variable buffer is large enough to hold a Blob segment
buffer during FETCH operations, use the SEGMENT option of the BASED ON
statement.

Example The following code, from an embedded SQL application, performs a BLOB
FETCH:
while (SQLCODE != 100)
{

EXEC SQL
OPEN BLOB_CUR USING :blob_id;

EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;

while (SQLCODE !=100 || SQLCODE == 101)
{

blob_segment{blob_seg_len + 1] = '\0';

printf("%*.*s",blob_seg_len,blob_seg_len,blob_segment);
blob_segment{blob_seg_len + 1] = ' ';

EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;

}
. . .

}

See Also BASED ON, CLOSE (BLOB), DECLARE CURSOR (BLOB), INSERT CURSOR (BLOB), OPEN
(BLOB)

GEN_ID()
Produces a system-generated integer value. Available in SQL, DSQL, and isql.

Syntax gen_id (generator, step)

Argumen
t

Description

generator Name of an existing generator
step Integer or expression specifying the increment for

increasing or decreasing the current generator

value. Values can range from –(2)

to 2 – 1

Description The GEN_ID() function:

1. Increments the current value of the specified generator by step.
2. Returns the new value of the specified generator.
GEN_ID() is useful for automatically producing unique values that can be
inserted into a UNIQUE or PRIMARY KEY column. To insert a generated number
in a column, write a trigger, procedure, or SQL statement that calls GEN_ID().
Note A generator is initially created with CREATE GENERATOR. By default, the
value of a generator begins at zero. It can be set to a different value with SET
GENERATOR.

Examples The following isql trigger definition includes a call to GEN_ID():
SET TERM !! ;
CREATE TRIGGER CREATE_EMPNO FOR EMPLOYEES

BEFORE INSERT
POSITION 0
AS BEGIN

NEW.EMPNO = GEN_ID (EMPNO_GEN, 1);
END

SET TERM ; !!
The first time the trigger fires, NEW.EMPNO is set to 1. Each subsequent firing
increments NEW.EMPNO by 1.

See Also CREATE GENERATOR, SET GENERATOR

GRANT
Assigns privileges to users for specified database objects. Available in SQL,
DSQL, and isql.
GRANT <privileges> ON [TABLE] {tablename | viewname}

TO {<object> | <userlist> | GROUP UNIX_group}
| EXECUTE ON PROCEDURE procname TO {<object> | <userlist>}
| <role_granted> TO {PUBLIC | <role_grantee_list>};

<privileges> = {ALL [PRIVILEGES] | <privilege_list>}
<privilege_list> = SELECT

| DELETE
| INSERT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
[, <privilege_list> …]

<object> = PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
[, <object> …]

<userlist> = [USER] username
| rolename
| Unix_user}
[, <userlist> …]
[WITH GRANT OPTION]

<role_granted> = rolename [, rolename …]
<role_grantee_list> = [USER] username [, [USER] username …]

[WITH ADMIN OPTION]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
privilege_list Name of privilege to be granted; valid options

are SELECT, DELETE, INSERT, UPDATE, and
REFERENCES

col Column to which the granted privileges apply
tablename Name of an existing table for which granted

privileges apply
viewname Name of an existing view for which granted

privileges apply
GROUP
unix_group

On a UNIX system, the name of a group defined
in /etc/group

object Name of an existing procedure, trigger, or view;
PUBLIC is also a permitted value

userlist A user in isc4.gdb or a rolename created with
CREATE ROLE

WITH GRANT
OPTION

Passes GRANT authority for privileges listed in
the GRANT statement to userlist

rolename An existing role created with the CREATE ROLE
statement

role_grantee_lis
t

A list of users to whom rolename is granted;
users must be in isc4.gdb

WITH ADMIN
OPTION

Passes grant authority for roles listed to
role_grantee_list

Description GRANT assigns privileges and roles for database objects to users, roles, or

other database objects. When an object is first created, only its creator has
privileges to it and only its creator can GRANT privileges for it to other users
or objects.

n The following table summarizes available privileges:

Privilege Enables users to …
ALL Perform SELECT, DELETE, INSERT, UPDATE, and

REFERENCES
SELECT Retrieve rows from a table or view
DELETE Remove rows from a table or view
INSERT Store new rows in a table or view
UPDATE Change the current value in one or more columns in

a table or view; can be restricted to a specified
subset of columns

EXECUTE Execute a stored procedure
REFERENCE
S

Reference the specified columns with a foreign key;
at a minimum, this must be granted to all the
columns of the primary key if it is granted at all

Note ALL does not include REFERENCES in code written for InterBase 4.0 or
earlier.

n To access a table or view, a user or object needs the appropriate SELECT,
INSERT, UPDATE, DELETE, or REFERENCES privileges for that table or view. SELECT,
INSERT, UPDATE, DELETE, and REFERENCES privileges can be assigned as a unit
with ALL.

n A user or object must have EXECUTE privilege to call a stored procedure in an
application.

n To grant privileges to a group of users, create a role using CREATE ROLE. Then
use GRANT privilege TO rolename to assign the desired privileges to that role
and use GRANT rolename TO user to assign that role to users. Users can be

added or removed from a role on a case-by-case basis using GRANT and
REVOKE. A user must specify the role at connection time to actually have
those privileges. See SQL roles on page 102 of the Operations Guide for
more on invoking a role when connecting to a database.

n On UNIX systems, privileges can be granted to groups listed in /etc/groups
and to any UNIX user listed in /etc/passwd on both the client and server, as
well as to individual users and to roles.

n To allow another user to reference a columns from a foreign key, grant
REFERENCES privileges on the primary key table or on the table's primary key
columns to the owner of the foreign key table. You must also grant
REFERENCES or SELECT privileges on the primary key table to any user who
needs to write to the foreign key table.

Tip Make it easy: if read security is not an issue, GRANT REFERENCES on the
primary key table to PUBLIC.

n If you grant the REFERENCES privilege, it must, at a minimum, be granted to
all columns of the primary key. When REFERENCES is granted to the entire
table, columns that are not part of the primary key are not affected in any
way.

n When a user defines a foreign key constraint on a table owned by someone
else, InterBase checks that that user has REFERENCES privileges on the
referenced table.

n The privilege is used at runtime to verify that a value entered in a foreign
key field is contained in the primary key table.

n You can grant REFERENCES privileges to roles.
n To give users permission to grant privileges to other users, provide a userlist

that includes the WITH GRANT OPTION. Users can grant to others only the
privileges that they themselves possess.

n To grant privileges to all users, specify PUBLIC in place of a list of user names.
Specifying PUBLIC grants privileges only to users, not to database objects.
Privileges can be removed only by the user who assigned them, using
REVOKE. If ALL privileges are assigned, then ALL privileges must be revoked. If
privileges are granted to PUBLIC, they can be removed only for PUBLIC.

Examples The following isql statement grants SELECT and DELETE privileges to a user.
The WITH GRANT OPTION gives the user GRANT authority.
GRANT SELECT, DELETE ON COUNTRY TO CHLOE WITH GRANT OPTION;
The next embedded SQL statement, from an embedded program, grants
SELECT and UPDATE privileges to a procedure for a table:
EXEC SQL

GRANT SELECT, UPDATE ON JOB TO PROCEDURE GET_EMP_PROJ;
This embedded SQL statement grants EXECUTE privileges for a procedure to
another procedure and to a user:
EXEC SQL

GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
TO PROCEDURE ADD_EMP_PROJ, LUIS;

The following example creates a role called "administrator", grants UPDATE

privileges on table1 to that role, and then grants the role to user1, user2,
and user3. These users then have UPDATE and REFERENCES privileges on
table1.
CREATE ROLE administrator;
GRANT UPDATE ON table1 TO administrator;
GRANT administrator TO user1, user2, user3;

See Also REVOKE
For more information about privileges, see the Data Definition Guide.

INSERT
Adds one or more new rows to a specified table. Available in SQL, DSQL, and
isql.

Syntax INSERT [TRANSACTION transaction] INTO <object> [(col [, col …])]
{VALUES (<val> [, <val> …]) | <select_expr>};

<object> = tablename | viewname
<val> = {:variable | <constant> | <expr>

| <function> | udf ([<val> [, <val> …]])
| NULL | USER | RDB$DB_KEY | ?
} [COLLATE collation]

<constant> = num | 'string' | charsetname 'string'
<function> = CAST (<val> AS <datatype>)

| UPPER (<val>)
| GEN_ID (generator, <val>)

Argumen
t

Description

expr A valid SQL expression that results in a single
column value

select_ex
pr

A SELECT that returns zero or more rows and
where the number of columns in each row is the
same as the number of items to be inserted

Notes on the INSERT statement

n In SQL and isql, you cannot use val as a parameter placeholder (like "?").
n In DSQL and isql, val cannot be a variable.
n You cannot specify a COLLATE clause for Blob columns.

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
TRANSACTION
transaction

Name of the transaction that controls the
execution of the INSERT

INTO object Name of an existing table or view into which to
insert data

col Name of an existing column in a table or view
into which to insert values

VALUES
(val [, val …])

Lists values to insert into the table or view;
values must be listed in the same order as the
target columns

select_expr Query that returns row values to insert into

target columns

Description INSERT stores one or more new rows of data in an existing table or view.

INSERT is one of the database privileges controlled by the GRANT and REVOKE
statements.
Values are inserted into a row in column order unless an optional list of
target columns is provided. If the target list of columns is a subset of
available columns, default or NULL values are automatically stored in all
unlisted columns.
If the optional list of target columns is omitted, the VALUES clause must
provide values to insert into all columns in the table.
To insert a single row of data, the VALUES clause should include a specific list
of values to insert.
To insert multiple rows of data, specify a select_expr that retrieves existing
data from another table to insert into this one. The selected columns must
correspond to the columns listed for insert.

Important It is legal to select from the same table into which insertions are made, but
this practice is not advised because it may result in infinite row insertions.
The TRANSACTION clause can be used in multiple transaction SQL applications
to specify which transaction controls the INSERT operation. The TRANSACTION
clause is not available in DSQL or isql.

Examples The following statement, from an embedded SQL application, adds a row to a
table, assigning values from host-language variables to two columns:
EXEC SQL

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:emp_no, :proj_id);

The next isql statement specifies values to insert into a table with a SELECT
statement:
INSERT INTO PROJECTS

SELECT * FROM NEW_PROJECTS
WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

See Also GRANT, REVOKE, SET TRANSACTION, UPDATE

INSERT CURSOR (BLOB)
Inserts data into a Blob cursor in units of a Blob segment-length or less in
size. Available in SQL.

Syntax INSERT CURSOR cursor
VALUES (:buffer [INDICATOR] :bufferlen);

Argument Description
cursor Name of the Blob cursor
VALUES Clause containing the name and length of the

buffer variable to insert
:buffer Name of host-variable buffer containing

information to insert
INDICATOR Indicates that the length of data placed in the

buffer follows
:bufferlen Length, in bytes, of the buffer to insert

Description INSERT CURSOR writes Blob data into a column. Data is written in units equal

to or less than the segment size for the Blob. Before inserting data into a
Blob cursor:

n Declare a local variable, buffer, to contain the data to be inserted.
n Declare the length of the variable, bufferlen.
n Declare a Blob cursor for INSERT and open it.

Each INSERT into the Blob column inserts the current contents of buffer.
Between statements fill buffer with new data. Repeat the INSERT until each
existing buffer is inserted into the Blob.

Important INSERT CURSOR requires the INSERT privilege, a table privilege controlled by the
GRANT and REVOKE statements.

Example The following embedded SQL statement shows an insert into the Blob cursor:
EXEC SQL

INSERT CURSOR BC VALUES (:line INDICATOR :len);

See Also CLOSE (BLOB), DECLARE CURSOR (BLOB), FETCH (BLOB), OPEN (BLOB)

MAX()
Retrieves the maximum value in a column. Available in SQL, DSQL, and isql.

Syntax MAX ([ALL] <val> | DISTINCT <val>)

Argument Description
ALL Searches all values in a column
DISTINCT Eliminates duplicate values before finding the

largest
val A column, constant, host-language variable,

expression, non-aggregate function, or UDF

Description MAX() is an aggregate function that returns the largest value in a specified

column, excluding NULL values. If the number of qualifying rows is zero, MAX()
returns a NULL value.
When MAX() is used on a CHAR, VARCHAR, or Blob text column, the largest
value returned varies depending on the character set and collation in use for
the column. A default character set can be specified for an entire database
with the DEFAULT CHARACTER SET clause in CREATE DATABASE, or specified at the
column level with the COLLATE clause in CREATE TABLE.

Example The following embedded SQL statement demonstrates the use of SUM(),
AVG(), MIN(), and MAX():
EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also AVG() , COUNT() , CREATE DATABASE, CREATE TABLE, MIN() , SUM()

MIN()
Retrieves the minimum value in a column. Available in SQL, DSQL, and isql.

Syntax MIN ([ALL] <val> | DISTINCT <val>)

Argument Description
ALL Searches all values in a column
DISTINCT Eliminates duplicate values before finding the

smallest
val A column, constant, host-language variable,

expression, non-aggregate function, or UDF

Description MIN() is an aggregate function that returns the smallest value in a specified

column, excluding NULL values. If the number of qualifying rows is zero, MIN()
returns a NULL value.
When MIN() is used on a CHAR, VARCHAR, or Blob text column, the smallest
value returned varies depending on the character set and collation in use for
the column. Use the DEFAULT CHARACTER SET clause in CREATE DATABASE to
specify a default character set for an entire database, or the COLLATE clause in
CREATE TABLE to specify a character set at the column level.

Example The following embedded SQL statement demonstrates the use of SUM(),
AVG(), MIN(), and MAX():
EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also AVG() , COUNT() , CREATE DATABASE, CREATE TABLE, MAX() , SUM()

OPEN
Retrieve specified rows from a cursor declaration. Available in SQL and DSQL.

Syntax SQL form:
OPEN [TRANSACTION transaction] cursor;
DSQL form:
OPEN [TRANSACTION transaction] cursor [USING SQL DESCRIPTOR xsqlda]
Blob form: See OPEN (BLOB).

Argument Description
TRANSACTION
transaction

Name of the transaction that controls execution
of OPEN

cursor Name of a previously declared cursor to open
USING
DESCRIPTOR
xsqlda

Passes the values corresponding to the
prepared statement's parameters through the
extended descriptor area (XSQLDA)

Description OPEN evaluates the search condition specified in a cursor's DECLARE CURSOR

statement. The selected rows become the active set for the cursor.
A cursor is a one-way pointer into the ordered set of rows retrieved by the
SELECT in a DECLARE CURSOR statement. It enables sequential access to
retrieved rows in turn. There are four related cursor statements:

Stag
e

Statement Purpose

1 DECLARE
CURSOR

Declares the cursor; the SELECT statement determines
rows retrieved for the cursor

2 OPEN Retrieves the rows specified for retrieval with DECLARE
CURSOR; the resulting rows become the cursor's active
set

3 FETCH Retrieves the current row from the active set, starting
with the first row

Subsequent FETCH statements advance the
cursor through the set

4 CLOSE Closes the cursor and release system resources

Examples The following embedded SQL statement opens a cursor:

EXEC SQL
OPEN C;

See Also CLOSE, DECLARE CURSOR, FETCH

OPEN (BLOB)
Opens a previously declared Blob cursor and prepares it for read or insert.
Available in SQL.

Syntax OPEN [TRANSACTION name] cursor
{INTO | USING} :blob_id;

Argument Description
TRANSACTION
name

Specifies the transaction under which the
cursor is opened
Default: The default transaction

cursor Name of the Blob cursor
INTO | USING Depending on Blob cursor type, use one of

these:
INTO: For INSERT BLOB
USING: For READ BLOB

blob_id Identifier for the Blob column

Description OPEN prepares a previously declared cursor for reading or inserting Blob

data. Depending on whether the DECLARE CURSOR statement declares a READ
or INSERT BLOB cursor, OPEN obtains the value for Blob ID differently:

n For a READ BLOB, the blob_id comes from the outer TABLE cursor.
n For an INSERT BLOB, the blob_id is returned by the system.

Examples The following embedded SQL statements declare and open a Blob cursor:
EXEC SQL

DECLARE BC CURSOR FOR
INSERT BLOB PROJ_DESC INTO PRJOECT;

EXEC SQL
OPEN BC INTO :blob_id;

See Also CLOSE (BLOB), DECLARE CURSOR (BLOB), FETCH (BLOB),INSERT CURSOR (BLOB)

PREPARE
Prepares a dynamic SQL (DSQL) statement for execution. Available in SQL.

Syntax PREPARE [TRANSACTION transaction] statement
[INTO SQL DESCRIPTOR xsqlda] FROM {:variable | 'string'};

Argument Description
TRANSACTION
transaction

Name of the transaction under control of which
the statement is executed

statement Establishes an alias for the prepared statement
that can be used by subsequent DESCRIBE and
EXCUTE statements

INTO xsqlda Specifies an XSQLDA to be filled in with the
description of the select-list columns in the
prepared statement

:variable | 'string' DSQL statement to PREPARE; can be a host-
language variable or a string literal

Description PREPARE readies a DSQL statement for repeated execution by:

n Checking the statement for syntax errors.
n Determining datatypes of optionally specified dynamic parameters.
n Optimizing statement execution.
n Compiling the statement for execution by EXECUTE.

PREPARE is part of a group of statements that prepare DSQL statements for
execution.

Statement Purpose
PREPARE Readies a DSQL statement for execution
DESCRIBE Fills in the XSQLDA with information about the

statement
EXECUTE Executes a previously prepared statement
EXECUTE
IMMEDIATE

Prepares a DSQL statement, executes it once,
and discards it

After a statement is prepared, it is available for execution as many times as
necessary during the current session. To prepare and execute a statement
only once, use EXECUTE IMMEDIATE.
statement establishes a symbolic name for the actual DSQL statement to
prepare. It is not declared as a host-language variable. Except for C
programs, gpre does not distinguish between uppercase and lowercase in
statement, treating "B" and "b" as the same character. For C programs, use
the gpre -either_case switch to activate case sensitivity during
preprocessing.

If the optional INTO clause is used, PREPARE also fills in the extended SQL
descriptor area (XSQLDA) with information about the datatype, length, and
name of select-list columns in the prepared statement. This clause is useful
only when the statement to prepare is a SELECT.
Note The DESCRIBE statement can be used instead of the INTO clause to fill in
the XSQLDA for a select list.
The FROM clause specifies the actual DSQL statement to PREPARE. It can be a
host-language variable, or a quoted string literal. The DSQL statement to
PREPARE can be any SQL data definition, data manipulation, or transaction-
control statement.

Examples The following embedded SQL statement prepares a DSQL statement from a
host-variable statement. Because it uses the optional INTO clause, the
assumption is that the DSQL statement in the host variable is a SELECT.
EXEC SQL

PREPARE Q INTO xsqlda FROM :buf;
Note The previous statement could also be prepared and described in the
following manner:
EXEC SQL

PREPARE Q FROM :buf;
EXEC SQL

DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

See Also DESCRIBE, EXECUTE, EXECUTE IMMEDIATE

REVOKE
Withdraws privileges from users for specified database objects. Available in
SQL, DSQL, and isql.
REVOKE [GRANT OPTION FOR] <privileges> ON [TABLE]

{tablename | viewname}
FROM {<object> | <userlist> | <rolelist> | GROUP UNIX_group}

| EXECUTE ON PROCEDURE procname
FROM {<object> | <userlist>}

| <role_granted> FROM {PUBLIC | <role_grantee_list>}};
<privileges> = {ALL [PRIVILEGES] | <privilege_list>}
<privilege_list> = {

SELECT
| DELETE
| INSERT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
[, <privilege_list> …]}}

<object> ={
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
[, <object>]}

<userlist> = [USER] username [, [USER] username …]
<rolelist> = rolename [, rolename]
<role_granted> = rolename [, rolename …]
<role_grantee_list> = [USER] username [, [USER] username …]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
privilege_list Name of privilege to be granted; valid options

are SELECT, DELETE, INSERT, UPDATE, and
REFERENCES

GRANT OPTION
FOR

Removes grant authority for privileges listed in
the REVOKE statement from userlist; cannot be
used with object

col Column for which the privilege is revoked
tablename Name of an existing table for which privileges

are revoked
viewname Name of an existing view for which privileges

are revoked
GROUP On a UNIX system, the name of a group defined

unix_group in /etc/group
object Name of an existing database object from

which privileges are to be revoked
userlist A list of users from whom privileges are to be

revoked
rolename An existing role created with the CREATE ROLE

statement
role_grantee_list A list of users to whom rolename is granted;

users must be in isc4.gdb

Description REVOKE removes privileges from users or other database objects. Privileges

are operations for which a user has authority. The following table lists SQL
privileges:

TABLE 5 SQL privileges
Privilege Removes a user's privilege to …
ALL Perform SELECT, DELETE, INSERT, UPDATE, REFERENCES,

and EXECUTE

SELECT Retrieve rows from a table or view
DELETE Remove rows from a table or view
INSERT Store new rows in a table or view
UPDATE Change the current value in one or more columns in

a table or view; can be restricted to a specified
subset of columns

REFERENCE
S

Reference the specified columns with a foreign key;
at a minimum, this must be granted to all the
columns of the primary key if it is granted at all

EXECUTE Execute a stored procedure

GRANT OPTION FOR revokes a user's right to GRANT privileges to other users.
The following limitations should be noted for REVOKE:

n Only the user who grants a privilege can revoke that privilege.
n A single user can be assigned the same privileges for a database object by

any number of other users. A REVOKE issued by a user only removes
privileges previously assigned by that particular user.

n Privileges granted to all users with PUBLIC can only be removed by revoking
privileges from PUBLIC.

n When a role is revoked from a user, all privileges that granted by that user to
others because of authority gained from membership in the role are also
revoked.

Examples The following isql statement takes the SELECT privilege away from a user for
a table:
REVOKE SELECT ON COUNTRY FROM MIREILLE;
The following isql statement withdraws EXECUTE privileges for a procedure
from another procedure and a user:
REVOKE EXECUTE ON PROCEDURE GET_EMP_PROJ

FROM PROCEDURE ADD_EMP_PROJ, LUIS;
See Also GRANT

ROLLBACK
Restores the database to its state prior to the start of the current
transaction. Available in SQL, DSQL, and isql.

Syntax ROLLBACK [TRANSACTION name] [WORK] [RELEASE];

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
TRANSACTION
name

Specifies the transaction to roll back in a
multiple-transaction application [Default: roll
back the default transaction]

WORK Optional word allowed for compatibility
RELEASE Detaches from all databases after ending the

current transaction; SQL only

Description ROLLBACK undoes changes made to a database by the current transaction,

then ends the transaction. It breaks the program's connection to the
database and frees system resources. Use RELEASE in the last ROLLBACK to
close all open databases. Wait until a program no longer needs the database
to release system resources.
The TRANSACTION clause can be used in multiple-transaction SQL applications
to specify which transaction to roll back. If omitted, the default transaction is
rolled back. The TRANSACTION clause is not available in DSQL.
Note RELEASE, available only in SQL, detaches from all databases after ending
the current transaction. In effect, this option ends database processing.
RELEASE is supported for backward compatibility with older versions of
InterBase. The preferred method of detaching is with DISCONNECT.

Examples The following isql statement rolls back the default transaction:
ROLLBACK;
The next embedded SQL statement rolls back a named transaction:
EXEC SQL

ROLLBACK TRANSACTION MYTRANS;
See Also COMMIT, DISCONNECT

For more information about controlling transactions, see the Embedded SQL
Guide.

SELECT
Retrieves data from one or more tables. Available in SQL, DSQL, and isql.

Syntax SELECT [TRANSACTION transaction]
[DISTINCT | ALL]
{* | <val> [, <val> …]}
[INTO :var [, :var …]]
FROM <tableref> [, <tableref> …]
[WHERE <search_condition>]
[GROUP BY col [COLLATE collation] [, col [COLLATE collation] …]
[HAVING <search_condition>]
[UNION <select_expr> [ALL]]
[PLAN <plan_expr>]
[ORDER BY <order_list>]
[FOR UPDATE [OF col [, col …]]];

<val> = {
col [<array_dim>] | :variable
| <constant> | <expr> | <function>
| udf ([<val> [, <val> …]])
| NULL | USER | RDB$DB_KEY | ?
} [COLLATE collation] [AS alias]

<array_dim> = [[x:]y [, [x:]y …]]
<constant> = num | 'string' | charsetname 'string'
<function> = COUNT (* | [ALL] <val> | DISTINCT <val>)

| SUM ([ALL] <val> | DISTINCT <val>)
| AVG ([ALL] <val> | DISTINCT <val>)
| MAX ([ALL] <val> | DISTINCT <val>)
| MIN ([ALL] <val> | DISTINCT <val>)
| CAST (<val> AS <datatype>)
| UPPER (<val>)
| GEN_ID (generator, <val>)

<tableref> = <joined_table> | table | view | procedure
[(<val> [, <val> …])] [alias]

<joined_table> = <tableref> <join_type> JOIN <tableref>
ON <search_condition> | (<joined_table>)

<join_type> = [INNER] JOIN
| {LEFT | RIGHT | FULL } [OUTER]} JOIN

<search_condition> = <val> <operator> {<val> | (<select_one>)}
| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]
| <val> [NOT] IN (<val> [, <val> …] | <select_list>)
| <val> IS [NOT] NULL
| <val> {>= | <=}
| <val> [NOT] {= | < | >}
| {ALL | SOME | ANY} (<select_list>)
| EXISTS (<select_expr>)
| SINGULAR (<select_expr>)
| <val> [NOT] CONTAINING <val>
| <val> [NOT] STARTING [WITH] <val>
| (<search_condition>)

| NOT <search_condition>
| <search_condition> OR <search_condition>
| <search_condition> AND <search_condition>

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}
<plan_expr> =

[JOIN | [SORT] [MERGE]] ({<plan_item> | <plan_expr>}
[, {<plan_item> | <plan_expr>} …])

<plan_item> = {table | alias}
{NATURAL | INDEX (<index> [, <index> …])| ORDER <index>}

<order_list> =
{col | int} [COLLATE collation]

[ASC[ENDING] | DESC[ENDING]]
[, <order_list> …]

Argument Description
expr A valid SQL expression that results in a single

value
select_one A SELECT on a single column that returns

exactly one value
select_list A SELECT on a single column that returns zero

or more rows
select_expr A SELECT on a list of values that returns zero or

more rows

Notes on SELECT syntax
n When declaring arrays, you must include the outermost brackets, shown

below in bold. For example, the following statement creates a 5 by 5 two-
dimensional array of strings, each of which is 6 characters long:
my_array = varchar(6)[5,5]
Use the colon (:) to specify an array with a starting point other than 1. The
following example creates an array of integers that begins at 10 and ends at
20:
my_array = integer[20:30]

n In SQL and isql, you cannot use val as a parameter placeholder (like "?").
n In DSQL and isql, val cannot be a variable.
n You cannot specify a COLLATE clause for Blob columns.

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
TRANSACTION
transaction

Name of the transaction under control of which the
statement is executed; SQL only

SELECT [DISTINCT |
ALL]

Specifies data to retrieve. DISTINCT prevents
duplicate values from being returned. ALL, the
default, retrieves every value

{*|val [, val …]} The asterisk (*) retrieves all columns for the
specified tables
val [, val …] retrieves a list of specified columns,
values, and expressions

INTO :var [, var
…]

Singleton select in embedded SQL only; specifies a
list of host-language variables into which to retrieve
values

FROM tableref
[, tableref …]

List of tables, views, and stored procedures from
which to retrieve data; list can include joins and
joins can be nested

table Name of an existing table in a database
view Name of an existing view in a database
procedure Name of an existing stored procedure that

functions like a SELECT statement
alias Brief, alternate name for a table, view, or column;

after declaration in tableref, alias can stand in for
subsequent references to a table or view

joined_table A table reference consisting of a JOIN

join_type Type of join to perform. Default: INNER

WHERE
search_condition

Specifies a condition that limits rows retrieved to a
subset of all available rows

GROUP BY col [,
col …]

Partitions the results of a query into groups
containing all rows with identical values based on a
column list

COLLATE collation Specifies the collation order for the data retrieved
by the query

HAVING
search_condition

Used with GROUP BY; specifies a condition that limits
grouped rows returned

UNION [ALL] Combines two or more tables that are fully or
partially identical in structure; the ALL option keeps
identical rows separate instead of folding them
together into one

PLAN plan_expr Specifies the access plan for the InterBase
optimizer to use during retrieval

plan_item Specifies a table and index method for a plan
ORDER BY
order_list

Specifies columns to order, either by column name
or ordinal number in the query, and the order (ASC

or DESC) in which rows to return the rows

Description SELECT retrieves data from tables, views, or stored procedures. Variations

of the SELECT statement make it possible to:
n Retrieve a single row, or part of a row, from a table. This operation is referred

to as a singleton select.
In embedded applications, all SELECT statements that occur outside the
context of a cursor must be singleton selects.

n Retrieve multiple rows, or parts of rows, from a table.
In embedded applications, multiple row retrieval is accomplished by
embedding a SELECT within a DECLARE CURSOR statement.
In isql, SELECT can be used directly to retrieve multiple rows.

n Retrieve related rows, or parts of rows, from a join of two or more tables.
n Retrieve all rows, or parts of rows, from union of two or more tables.

All SELECT statements consist of two required clauses (SELECT, FROM), and
possibly others (INTO, WHERE, GROUP BY, HAVING, UNION, PLAN, ORDER BY). The
following table explains the purpose of each clause, and when they are
required:

TABLE 6 SELECT statement clauses
Clause Purpose Singlet

on
SELECT

Multi-
row
SELECT

SELECT Lists columns to retrieve Require
d

Require
d

INTO Lists host variables for storing retrieved
columns

Require
d

Not
allowed

FROM Identifies the tables to search for values Require
d

Require
d

WHERE Specifies the search conditions used to
restrict retrieved rows to a subset of all
available rows; a WHERE clause can
contain its own SELECT statement,
referred to as a subquery

Optiona
l

Optional

GROUP
BY

Groups related rows based on common
column values; used in conjunction with
HAVING

Optiona
l

Optional

HAVING Restricts rows generated by GROUP BY to
a subset of those rows

Optiona
l

Optional

UNION Combines the results of two or more
SELECT statements to produce a single,
dynamic table without duplicate rows

Optiona
l

Optional

ORDER
BY

Specifies which columns to order, either
by column name or by ordinal number
in the query, and the sort order of rows
returned: ascending (ASC) [default] or
descending (DESC)

Optiona
l

Optional

PLAN Specifies the query plan that should be
used by the query optimizer instead of
one it would normally choose

Optiona
l

Optional

FOR
UPDATE

Specifies columns listed after the SELECT
clause of a DECLARE CURSOR statement
that can be updated using a WHERE
CURRENT OF clause

— Optional

Because SELECT is such a ubiquitous and complex statement, a meaningful
discussion lies outside the scope of this reference. To learn how to use SELECT
in isql, see the Operations Guide. For a complete explanation of SELECT and
its clauses, see the Embedded SQL Guide.

Examples The following isql statement selects columns from a table:
SELECT JOB_GRADE, JOB_CODE, JOB_COUNTRY, MAX_SALARY FROM PROJECT;
The next isql statement uses the * wildcard to select all columns and rows
from a table:
SELECT * FROM COUNTRIES;
The following embedded SQL statement uses an aggregate function to count
all rows in a table that satisfy a search condition specified in the WHERE
clause:
EXEC SQL

SELECT COUNT (*) INTO :cnt FROM COUNTRY
WHERE POPULATION > 5000000;

The next isql statement establishes a table alias in the SELECT clause and
uses it to identify a column in the WHERE clause:
SELECT C.CITY FROM CITIES C

WHERE C.POPULATION < 1000000;
The following isql statement selects two columns and orders the rows
retrieved by the second of those columns:
SELECT CITY, STATE FROM CITIES

ORDER BY STATE;
The next isql statement performs a left join:
SELECT CITY, STATE_NAME FROM CITIES C

LEFT JOIN STATES S ON S.STATE = C.STATE
WHERE C.CITY STARTING WITH 'San';

The following isql statement specifies a query optimization plan for ordered
retrieval, utilizing an index for ordering:
SELECT * FROM CITIES

PLAN (CITIES ORDER CITIES_1);
ORDER BY CITY

The next isql statement specifies a query optimization plan based on a
three-way join with two indexed column equalities:
SELECT * FROM CITIES C, STATES S, MAYORS M

WHERE C.CITY = M.CITY AND C.STATE = M.STATE
PLAN JOIN (STATE NATURAL, CITIES INDEX DUPE_CITY,
MAYORS INDEX MAYORS_1);

The next example queries two of the system tables, RDB$CHARACTER_SETS and
RDB$COLLATIONS to display all the available character sets, their ID numbers,
number of bytes per character, and collations. Note the use of ordinal
column numbers in the ORDER BY clause.
SELECT RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID,

RDB$BYTES_PER_CHARACTER, RDB$COLLATION_NAME
FROM RDB$CHARACTER_SETS JOIN RDB$COLLATIONS
ON RDB$CHARACTER_SETS.RDB$CHARACTER_SET_ID =

RDB%COLLATIONS.RDB$CHARACTER_SET_ID
ORDER BY 1, 4;

See Also DECLARE CURSOR, DELETE, INSERT, UPDATE
For an introduction to using SELECT in isql, see the Operations Guide.
For a full discussion of data retrieval in embedded programming using
DECLARE CURSOR and SELECT, see the Embedded SQL Guide.

SET DATABASE
Declares a database handle for database access. Available in SQL.

Syntax SET {DATABASE | SCHEMA} dbhandle =
[GLOBAL | STATIC | EXTERN][COMPILETIME][FILENAME] 'dbname'

[USER 'name' PASSWORD 'string']
[RUNTIME [FILENAME]
{'dbname' | :var}
[USER {'name' | :var} PASSWORD {'string' |:var}]];

Argument Description
dbhandle An alias for a specified database

Must be unique within the program
Used in subsequent SQL statements that

support database handles
GLOBAL [Default] Makes this database declaration

available to all modules
STATIC Limits scope of this database declaration to the

current module
EXTERN References a database declaration in another

module, rather than actually declaring a new
handle

COMPILETIME Identifies the database used to look up column
references during preprocessing

If only one database is specified in SET
DATABASE, it is used both at runtime and
compiletime

'dbname' Location and path name of the database
associated with dbhandle; platform-specific

RUNTIME Specifies a database to use at runtime if
different than the one specified for use during
preprocessing

:var Host-language variable containing a database
specification, user name, or password

USER 'name' A valid user name on the server where the
database resides

Used with PASSWORD to gain database
access on the server

Required for PC client attachments,
optional for all others

PASSWORD
'string'

A valid password on the server where the
database resides

Used with USER to gain database access on
the server

Required for PC client attachments,

optional for all others.

Description SET DATABASE declares a database handle for a specified database and

associates the handle with that database. It enables optional specification of
different compile-time and run-time databases. Applications that access
multiple databases simultaneously must use SET DATABASE statements to
establish separate database handles for each database.
dbhandle is an application-defined name for the database handle. Usually
handle names are abbreviations of the actual database name. Once
declared, database handles can be used in subsequent CONNECT, COMMIT, and
ROLLBACK statements. They can also be used within transactions to
differentiate table names when two or more attached databases contain
tables with the same names.
dbname is a platform-specific file specification for the database to associate
with dbhandle. It should follow the file syntax conventions for the server
where the database resides.
GLOBAL, STATIC, and EXTERN are optional parameters that determine the scope
of a database declaration. The default scope, GLOBAL, means that a database
handle is available to all code modules in an application. STATIC limits
database handle availability to the code module where the handle is
declared. EXTERN references a global database handle in another module.
The optional COMPILETIME and RUNTIME parameters enable a single database
handle to refer to one database when an application is preprocessed, and to
another database when an application is run by a user. If omitted, or if only a
COMPILETIME database is specified, InterBase uses the same database during
preprocessing and at run time.
The USER and PASSWORD parameters are required for all PC client
applications, but are optional for all other remote attachments. The user
name and password are verified by the server in the security database
before permitting remote attachments to succeed.

Examples The following embedded SQL statement declares a handle for a database:
EXEC SQL

SET DATABASE DB1 = 'employee.gdb';
The next embedded SQL statement declares different databases at compile
time and run time. It uses a host-language variable to specify the run-time
database.
EXEC SQL

SET DATABASE EMDBP = 'employee.gdb' RUNTIME :db_name;

See Also COMMIT, CONNECT, ROLLBACK, SELECT
For more information on the security database, see the Operations Guide.

SET GENERATOR
Sets a new value for an existing generator. Available in SQL, DSQL, and isql.

Syntax SET GENERATOR name TO int;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argumen
t

Description

name Name of an existing generator
int Value to which to set the generator, an integer

from –2 to 2 – 1

Description SET GENERATOR initializes a starting value for a newly created generator, or

resets the value of an existing generator. A generator provides a unique,
sequential numeric value through the GEN_ID() function. If a newly created
generator is not initialized with SET GENERATOR, its starting value defaults to
zero.
int is the new value for the generator. When the GEN_ID() function inserts or
updates a value in a column, that value is int plus the increment specified in
the GEN_ID() step parameter.

Tip To force a generator's first insertion value to 1, use SET GENERATOR to specify
a starting value of 0, and set the step value of the GEN_ID() function to 1.

Important When resetting a generator that supplies values to a column defined with
PRIMARY KEY or UNIQUE integrity constraints, be careful that the new value
does not enable duplication of existing column values, or all subsequent
insertions and updates will fail.

Example The following isql statement sets a generator value to 1,000:
SET GENERATOR CUST_NO_GEN TO 1000;
If GEN_ID() now calls this generator with a step value of 1, the first number it
returns is 1,001.

See Also CREATE GENERATOR, CREATE PROCEDURE, CREATE TRIGGER, GEN_ID()

SET NAMES
Specifies an active character set to use for subsequent database
attachments. Available in SQL, and isql.

Syntax SET NAMES [charset | :var];

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argumen
t

Description

charset Name of a character set that identifies the active
character set for a given process; default: NONE

:var Host variable containing string identifying a known
character set name

Must be declared as a character set name
SQL only

Description SET NAMES specifies the character set to use for subsequent database

attachments in an application. It enables the server to translate between the
default character set for a database on the server and the character set
used by an application on the client.
SET NAMES must appear before the SET DATABASE and CONNECT statements it is
to affect.

Tip Use a host-language variable with SET NAMES in an embedded application to
specify a character set interactively.
Choice of character sets limits possible collation orders to a subset of all
available collation orders. Given a specific character set, a specific collation
order can be specified when data is selected, inserted, or updated in a
column.

Important If you do not specify a default character set, the character set defaults to
NONE. Using character set NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally
entered it. You can load any character set into a column defined with NONE,
but you cannot load that same data into another column that has been
defined with a different character set. No transliteration is performed
between the source and destination character sets, so in most cases, errors
occur during assignment.

Example The following statements demonstrate the use of SET NAMES in an embedded
SQL application:
EXEC SQL

SET NAMES ISO8859_1;
EXEC SQL

SET DATABASE DB1 = 'employee.gdb';
EXEC SQL

CONNECT;
The next statements demonstrate the use of SET NAMES in isql:
SET NAMES LATIN1;
CONNECT 'employee.gdb';

See Also CONNECT, SET DATABASE
For more information about character sets and collation orders, see the Data
Definition Guide.

SET SQL DIALECT
Declares the SQL Dialect for database access. Available in gpre, isql, wisql,
and SQL.

Syntax SET SQL DIALECT n;

Argument Description
n The SQL Dialect type, either 1, 2, or 3

Description SET SQL DIALECT declares the SQL Dialect for database access.

n is the SQL Dialect type, either 1, 2, or 3.    If no dialect is specified, the
default dialect is set to that of the specified compile-time database. If the
default dialect is different than the one specified by the user, a warning is
generated and the the default dialect is set to the user-specified value

TABLE 7 SQL Dialects
SQL Dialect Used for
1 InterBase 5.5 and earlier compatibility
2 Transitional dialect used to flag changes

when migrating from dialect 1 to dialect 3
3 InterBase 6.0; allows you to use delimited

identifiers, exact numerics, and DATE, TIME,
and TIMESTAMP datatypes

Examples The following embedded SQL statement sets the SQL Dialect to 3:

EXEC SQL
SET SQL DIALECT 3;

See Also SHOW SQL DIALECT

SET STATISTICS
Recomputes the selectivity of a specified index. Available in SQL, DSQL, and
isql.

Syntax SET STATISTICS INDEX name;

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argume
nt

Description

name Name of an existing index for which to
recompute selectivity

Description SET STATISTICS enables the selectivity of an index to be recomputed. Index

selectivity is a calculation, based on the number of distinct rows in a table,
that is made by the InterBase optimizer when a table is accessed. It is
cached in memory, where the optimizer can access it to calculate the
optimal retrieval plan for a given query. For tables where the number of
duplicate values in indexed columns radically increases or decreases,
periodically recomputing index selectivity can improve performance.
Only the creator of an index can use SET STATISTICS.
Note SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER
INDEX.

Example The following embedded SQL statement recomputes the selectivity for an
index:
EXEC SQL

SET STATISTICS INDEX MINSALX;

See Also ALTER INDEX, CREATE INDEX, DROP INDEX

SET TRANSACTION
Starts a transaction and optionally specifies its behavior. Available in SQL,
DSQL, and isql.

Syntax SET TRANSACTION [NAME transaction]
[READ WRITE | READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
[RESERVING <reserving_clause>

| USING dbhandle [, dbhandle …]];
<reserving_clause> = table [, table …]

[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_clause>]

Important In SQL statements passed to DSQL, omit the terminating semicolon. In
embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description
NAME
transaction

Specifies the name for this transaction
transaction is a previously declared and

initialized host-language variable
SQL only

READ WRITE [Default] Specifies that the transaction can read and
write to tables

READ ONLY Specifies that the transaction can only read tables
WAIT [Default] Specifies that a transaction wait for access

if it encounters a lock conflict with another
transaction

NO WAIT Specifies that a transaction immediately return an
error if it encounters a lock conflict

ISOLATION
LEVEL

Specifies the isolation level for this transaction when
attempting to access the same tables as other
simultaneous transactions; default: SNAPSHOT

RESERVING
reserving_cl
ause

Reserves lock for tables at transaction start

USING
dbhandle
[, dbhandle
…]

Limits database access to a subset of available
databases; SQL only

Description SET TRANSACTION starts a transaction, and optionally specifies its database

access, lock conflict behavior, and level of interaction with other concurrent
transactions accessing the same data. It can also reserve locks for tables. As
an alternative to reserving tables, multiple database SQL applications can

restrict a transaction's access to a subset of connected databases.
Important Applications preprocessed with the gpre -manual switch must explicitly start

each transaction with a SET TRANSACTION statement.
SET TRANSACTION affects the default transaction unless another transaction is
specified in the optional NAME clause. Named transactions enable support for
multiple, simultaneous transactions in a single application. All transaction
names must be declared as host-language variables at compile time. In
DSQL, this restriction prevents dynamic specification of transaction names.
By default a transaction has READ WRITE access to a database. If a
transaction only needs to read data, specify the READ ONLY parameter.
When simultaneous transactions attempt to update the same data in tables,
only the first update succeeds. No other transaction can update or delete
that data until the controlling transaction is rolled back or committed. By
default, transactions WAIT until the controlling transaction ends, then attempt
their own operations. To force a transaction to return immediately and report
a lock conflict error without waiting, specify the NO WAIT parameter.
ISOLATION LEVEL determines how a transaction interacts with other
simultaneous transactions accessing the same tables. The default ISOLATION
LEVEL is SNAPSHOT. It provides a repeatable-read view of the database at the
moment the transaction starts. Changes made by other simultaneous
transactions are not visible.
SNAPSHOT TABLE STABILITY provides a repeatable read of the database by
ensuring that transactions cannot write to tables, though they may still be
able to read from them.
READ COMMITTED enables a transaction to see the most recently committed
changes made by other simultaneous transactions. It can also update rows
as long as no update conflict occurs. Uncommitted changes made by other
transactions remain invisible until committed. READ COMMITTED also provides
two optional parameters:

n NO RECORD_VERSION, the default, reads only the latest version of a row. If the
WAIT lock resolution option is specified, then the transaction waits until the
latest version of a row is committed or rolled back, and retries its read.

n RECORD_VERSION reads the latest committed version of a row, even if more
recent uncommitted version also resides on disk.
The RESERVING clause enables a transaction to register its desired level of
access for specified tables when the transaction starts instead of when the
transaction attempts its operations on that table. Reserving tables at
transaction start can reduce the possibility of deadlocks.
The USING clause, available only in SQL, can be used to conserve system
resources by limiting the number of databases a transaction can access.

Examples The following embedded SQL statement sets up the default transaction with
an isolation level of READ COMMITTED. If the transaction encounters an update
conflict, it waits to get control until the first (locking) transaction is
committed or rolled back.
EXEC SQL

SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:
EXEC SQL

SET TRANSACTION NAME T1 READ COMMITTED;
The following embedded SQL statement reserves three tables:
EXEC SQL

SET TRANSACTION NAME TR1
ISOLATION LEVEL READ COMMITTED
NO RECORD_VERSION WAIT
RESERVING TABLE1, TABLE2 FOR SHARED WRITE,

TABLE3 FOR PROTECTED WRITE;
See Also COMMIT, ROLLBACK, SET NAMES

For more information about transactions, see the Embedded SQL Guide.

SHOW SQL DIALECT
Returns the current client SQL Dialect setting and the database SQL Dialect
value. Available in gpre, isql, wisql, and SQL.

Syntax SHOW SQL DIALECT;

Description SHOW SQL DIALECT returns the current client SQL Dialect setting and the
database SQL Dialect value, either 1, 2, or 3.

TABLE 8 SQL Dialects
SQL Dialect Used for
1 InterBase 5.5 and earlier compatibility
2 Transitional dialect used to flag changes

when migrating from dialect 1 to dialect 3
3 InterBase 6.0; allows you to use delimited

identifiers, exact numerics, and DATE, TIME,
and TIMESTAMP datatypes

Examples The following embedded SQL statement returns the SQL Dialect:

EXEC SQL
SHOW SQL DIALECT;

See Also SET SQL DIALECT

SUM()
Totals the numeric values in a specified column. Available in SQL, DSQL, and
isql.

Syntax SUM ([ALL] <val> | DISTINCT <val>)

Argumen
t

Description

ALL Totals all values in a column
DISTINCT Eliminates duplicate values before calculating the

total
val A column, constant, host-language variable,

expression, non-aggregate function, or UDF that
evaluates to a numeric datatype

Description SUM() is an aggregate function that calculates the sum of numeric values

for a column. If the number of qualifying rows is zero, SUM() returns a NULL
value.

Example The following embedded SQL statement demonstrates the use of SUM(),
AVG(), MIN(), and MAX():
EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also AVG() , COUNT() , MAX() , MIN()

UPDATE
Changes the data in all or part of an existing row in a table, view, or active
set of a cursor. Available in SQL, DSQL, and isql.

Syntax SQL form:
UPDATE [TRANSACTION transaction] {table | view}

SET col = <val> [, col = <val> …]
[WHERE <search_condition> | WHERE CURRENT OF cursor];

DSQL and isql form:
UPDATE {table | view}

SET col = <val> [, col = <val> …]
[WHERE <search_condition>

<val> = {
col [<array_dim>]
| :variable
| <constant>
| <expr>
| <function>
| udf ([<val> [, <val> …]])
| NULL
| USER
| ?}
[COLLATE collation]

<array_dim> = [[x:]y [, [x:]y …]]
<constant> = num | 'string' | charsetname 'string'
<function> = CAST (<val> AS <datatype>)

| UPPER (<val>)
| GEN_ID (generator, <val>)

<expr> = A valid SQL expression that results in a single value.
<search_condition> = See CREATE TABLE for a full description.

Notes on the UPDATE statement
n In SQL and isql, you cannot use val as a parameter placeholder (like "?").
n In DSQL and isql, val cannot be a variable.
n You cannot specify a COLLATE clause for Blob columns.

Argument Description
TRANSACTION
transaction

Name of the transaction under control of which
the statement is executed

table | view Name of an existing table or view to update.
SET col = val Specifies the columns to change and the values to

assign to those columns
WHERE
search_condition

Searched update only; specifies the conditions a
row must meet to be modified

WHERE CURRENT
OF cursor

Positioned update only; specifies that the current
row of a cursor's active set is to be modified

Not available in DSQL and isql

Description UPDATE modifies one or more existing rows in a table or view. UPDATE is one

of the database privileges controlled by GRANT and REVOKE.
For searched updates, the optional WHERE clause can be used to restrict
updates to a subset of rows in the table. Searched updates cannot update
array slices.

Important Without a WHERE clause, a searched update modifies all rows in a table.
When performing a positioned update with a cursor, the WHERE CURRENT OF
clause must be specified to update one row at a time in the active set.
Note When updating a Blob column, UPDATE replaces the entire Blob with a
new value.

Examples The following isql statement modifies a column for all rows in a table:
UPDATE CITIES

SET POPULATION = POPULATION * 1.03;
The next embedded SQL statement uses a WHERE clause to restrict column
modification to a subset of rows:
EXEC SQL

UPDATE PROJECT
SET PROJ_DESC = :blob_id
WHERE PROJ_ID = :proj_id;

See Also DELETE, GRANT, INSERT, REVOKE, SELECT

UPPER()
Converts a string to all uppercase. Available in SQL, DSQL, and isql.

Syntax UPPER (<val>)

Argum
ent

Description

val A column, constant, host-language variable,
expression, function, or UDF that evaluates to a
character datatype

Description UPPER() converts a specified string to all uppercase characters. If applied to

character sets that have no case differentiation, UPPER() has no effect.
Examples The following isql statement changes the name, BMatthews, to BMATTHEWS:

UPDATE EMPLOYEE
SET EMP_NAME = UPPER (BMatthews)
WHERE EMP_NAME = 'BMatthews';

The next isql statement creates a domain called PROJNO with a CHECK
constraint that requires the value of the column to be all uppercase:
CREATE DOMAIN PROJNO

AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

See Also CAST()

WHENEVER
Traps SQLCODE errors and warnings. Available in SQL.

Syntax WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
{GOTO label | CONTINUE};

Argument Description
NOT FOUND Traps SQLCODE = 100, no qualifying rows found

for the executed statement
SQLERROR Traps SQLCODE < 0, failed statement
SQLWARNING Traps SQLCODE > 0 AND < 100, system warning

or informational message
GOTO label Jumps to program location specified by label

when a warning or error occurs
CONTINUE Ignores the warning or error and attempts to

continue processing

Description WHENEVER traps for SQLCODE errors and warnings. Every executable SQL

statement returns an SQLCODE value to indicate its success or failure. If
SQLCODE is zero, statement execution is successful. A non-zero value
indicates an error, warning, or not found condition.
If the appropriate condition is trapped for, WHENEVER can:

n Use GOTO label to jump to an error-handling routine in an application.
n Use CONTINUE to ignore the condition.

WHENEVER can help limit the size of an application, because the application
can use a single suite of routines for handling all errors and warnings.
WHENEVER statements should precede any SQL statement that can result in
an error. Each condition to trap for requires a separate WHENEVER statement.
If WHENEVER is omitted for a particular condition, it is not trapped.

Tip Precede error-handling routines with WHENEVER … CONTINUE statements to
prevent the possibility of infinite looping in the error-handling routines.

Example In the following code from an embedded SQL application, three WHENEVER
statements determine which label to branch to for error and warning
handling:
EXEC SQL

WHENEVER SQLERROR GO TO Error; /* Trap all errors. */
EXEC SQL

WHENEVER NOT FOUND GO TO AllDone; /* Trap SQLCODE = 100 */
EXEC SQL

WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings. */
For a complete discussion of error-handling methods and programming, see
the Embedded SQL Guide.

