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plot3d1 : z=sin(x)* cos{y)

-=>// simple rectangle
-->xrect(0,1,3,1)
-=>// filling a rectangle

-->xfrect(3.1,1,3,1)
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Chapter 1

Introduction

1.1 Whatis Scilab

Developed at INRIA, Scilab has been developed for system control and signal processing applic-
ations. It is freely distributed in source code format (see thenfikice.tex ).

Scilab is made of three distinct parts: an interpreter, libraries of functions (Scilab procedures)
and libraries of Fortran and C routines. These routines (which, strictly speaking, do not belong to
Scilab but are interactively called by the interpreter) are of independent interest and most of them
are available through Netlib. A few of them have been slightly modified for better compatibility
with Scilab’s interpreter.

A key feature of the Scilab syntax is its ability to handle matrices: basic matrix manipula-
tions such as concatenation, extraction or transpose are immediately performed as well as basic
operations such as addition or multiplication. Scilab also aims at handling more complex objects
than numerical matrices. For instance, control people may want to manipulate rational or polyno-
mial transfer matrices. This is done in Scilab by manipulating lists and typed lists which allows
a natural symbolic representation of complicated mathematical objects such as transfer functions,
linear systems or graphs (see Sectof).

Polynomials, polynomials matrices and transfer matrices are also defined and the syntax used
for manipulating these matrices is identical to that used for manipulating constant vectors and
matrices.

Scilab provides a variety of powerful primitives for the analysis of non-linear systems. Integ-
ration of explicit and implicit dynamic systems can be accomplished numericallysdibes
toolbox allows the graphic definition and simulation of complex interconnected hybrid systems.

There exist numerical optimization facilities for non linear optimization (including non differ-
entiable optimization), quadratic optimization and linear optimization.

Scilab has an open programming environment where the creation of functions and libraries
of functions is completely in the hands of the user (see Cha)tefunctions are recognized as
data objects in Scilab and, thus, can be manipulated or created as other data objects. For example,
functions can be defined inside Scilab and passed as input or output arguments of other functions.

In addition Scilab supports a character string data type which, in particular, allows the on-line
creation of functions. Matrices of character strings are also manipulated with the same syntax as
ordinary matrices.

Finally, Scilab is easily interfaced with Fortran or C subprograms. This allows use of stand-
ardized packages and libraries in the interpreted environment of Scilab.

The general philosophy of Scilab is to provide the following sort of computing environment:
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To have data types which are varied and flexible with a syntax which is natural and easy to
use.

To provide a reasonable set of primitives which serve as a basis for a wide variety of calcu-
lations.

To have an open programming environment where new primitives are easily added. A useful
tool distributed with Scilab igntersci which is a tool for building interface programs to
add new primitives i.e. to add new modules of Fortran or C code into Scilab.

To support library development through “toolboxes” of functions devoted to specific applic-
ations (linear control, signal processing, network analysis, non-linear control, etc.)

The objective of this introduction manual is to give the user an idea of what Scilab can do. On
line documentation on all functions is available(p command).

1.2

Software Organization

Scilab is divided into a set of directories. The main direc®GIDIR contains the filescilab.star
(startup file), the copyright filaotice.tex , and theconfigure file (see(.3)). The subdir-
ectories are the following:

bin is the directory of the executable files. The starting s@giiab  on Unix/Linux sys-
tems andunscilab.exe on Windows95/NT, The executable code of Scilabilex

on Unix/Linux systems anscilex.exe ~ on Windows95/NT are there. This directory also
contains Shell scripts for managing or printing PostscAf! files produced by Scilab.

demos s the directory of demos. The fil@ldems.dem allows to add a new demo which

can be run by clicking the “Demos” button. This directory contains the codes corresponding
to various demos. They are often useful for inspiring new users. Most of plot commands
are illustrated by simple demo examples. Note that running a graphic function without input
parameter provides an example of use for this function (for instatat@d()  displays

an example for usinglot2d function).

examples contains useful examples of how to link external programs to scilab, using
dynamic link orintersci

doc is the directory of the Scilab documentatioATgX , dvi and Postscript files. This doc-
umentation isSCIDIR/doc/intro/intro.tex . See also the manual (on-litelp )
in the directorySCIDIR/man

geci contains source code and binaries for GeCl which is an interactive communication
manager created in order to manage remote executions of softwares and allow exchanges of
messages beetwen those programs. It offers the possibility to exploit numerous machines
on a network, as a virtual computer, by creating a distributed group of independent soft-
wares belp communications for a detailed description). GeCl is used for the link of
Xmetanet with Scilab.

pvma3 contains source code and binaries of the PVM version 3 which is another interactive
communication managetr.

imp is the directory of the routines managing the Postscript files for print.
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e libs contains the Scilab libraries (compiled code).

e macros contains the libraries of functions which are available on-line. New libraries can
easily be added (see the Makefile). This directory is divided into a number of subdirectories
which contain “Toolboxes” for control, signal processing, etc... Strictly speaking Scilab is
not organized in toolboxes : functions of a specific subdirectory can call functions of other
directories; so, for example, the subdirectsignal is not self-contained but its functions
are all devoted to signal processing.

e manis the directory containing the manual divided into submanuals, corresponding to the
on-line help and to &AIeX format of the reference manual. THEEX code is produced by
a translation of the Unix format Scilab manual (see the subdire&@GipDIR/man ). To get
information about an item, one should erttetp item in Scilab or use the help window
facility obtained with help button. To get information corresponding to a key-word, one
should enteapropos key-word  or useapropos in the help window. All thetem s
andkey-words known by thehelp andapropos commands are ircat andwhatis
files located in thenansubdirectories.

To add new items to thbelp andapropos commands the user can extend the list of
directories available to the help browser by editing the 8feIDIR/man/Chapters
See the README file.

e maple is the directory which contains the source code of Maple functions which allow the
transfer of Maple objects into Scilab functions. For efficiency, the transfer is made through
Fortran code generation which is dynamically linked to Scilab.

e routines is a directory which contains the source code of all the numerical routines.
The subdirectoryglefault is important since it contains the source code of routines which
are necessary to customize Scilab. In particular user’s C or Fortran routines for ODE/DAE
simulation or optimization can be included here (they can be also dynamically linked).

e intersci contains the program provided for building interface programs necessary to add
new Fortran or C primitives to Scilab. This program is executed byrttegsci script
in thebin/intersci directory.

e scripts s the directory which contains the source code of shell scripts files. Note that
the list of printers names known by Scilab is defined there by an environment variable.

e tests : this directory contains evaluation programs for testing Scilab’s installation on a
machine. The file “demos.tst” tests all the demos.

e tmp : some examples written by users for courses, etc have been added in this directory.

e util  contains some utility functions for calling Scilab as a sub-routine or for making the
documentation

e xless isthe Berkeley file browsing tool

e xmetanet is the directory which containsmetanet , a graphic display for networks.
Typemetanet() in Scilab to use it.
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1.3 Installing Scilab. System Requirements

Scilab is distributed in source code format; binaries for Windows95/NT systems and several pop-
ular Unix/Linux-XWindow systems are also available: Dec Alpha (OSF V4), Dec Mips (ULTRIX
4.2), Sun Sparc stations (Sun OS), Sun Sparc stations (Sun Solaris), HP9000 (HP-UX V10), SGI
Mips Irix, PC Linux. All of these binaries versions include tk/tcl interface.

The installation requirements are the following :

- for the source version: Scilab requires approximately 130Mb of disk storage to unpack and
install (all sources included). You need X Window (X11R4, X11R5 or X11R6, C compiler and
Fortran compiler (e.g. f2c or g77 or Visual C++ for Windows systems).

- for the binary version: the minimum for running Scilab (without sources) is about 40 Mb
when decompressed. These versions are partially statically linked and in principle do not require
a fortran compiler.

Scilab uses a large internal stack for its calculations. This size of this stack can be reduced
or enlarged by thastacksize . command. The default dimension of the internal stack can be
adapted by modifying the variablewstacksize in thescilab.star script.

- For more information on the installation, please look at the README files

1.4 Documentation

The documentation is made of this User’s guide (Introduction to Scilab) and the Scilab Manual.
Both are distributed as Postscript files and generated by a set of Makefiles. In addition, there are re-
ports devoted to specific toolboxes: Scicos (graphic system builder and simulator), Signal (Signal
processing toolbox), Lmitool (interface for LMI problems), Metanet (graph and network toolbox).
An FAQ is available at Scilab home pad&tp://www-rocg.inria.fr/scilab ).

1.5 Scilab at a Glance. A Tutorial

1.5.1 Getting Started

Scilab is called by running thecilab  script in the directonylSCIDIR/bin  (SCIDIR denotes

the directory where Scilab is installed). This shell script runs Scilab in an Xwindow environment
(this script file can be invoked with specific parameters sucmasfor “no-window”). You will
immediatly get the Scilab window with the following banner and prompt represented by-the

Scilab-2.4 (12 July 1998 )
Copyright (C) 1989-98 INRIA

Startup execution:
loading initial environment
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>

A first contact with Scilab can be made by clicking Bemoswith the left mouse button and

clicking then onintroduction to SCILAB : the execution of the session is then done by
entering empty lines and can be stopped with the butBiop andAbort .
Several libraries (see tH&CIDIR/scilab.star file) are automatically loaded.

To give the user an idea of some of the capabilities of Scilab we will give later a sample session
in Scilab.

1.5.2 Editing a command line

Before the sample session, we briefly present how to edit a command line. You can enter a com-
mand line by typing after the prompt or clicking with the mouse on a part on a window and copy it
at the prompt in the Scilab window. The usual Emacs commands are at your disposal for modify-
ing a command (Ctrischr> means hold the CONTROL key while typing the charastehr>),

for example:

e Ctrl-p recall previous line

e Ctrl-n recall next line

e Ctrl-b move backward one character
e Ctrl-f move forward one character

e Delete delete previous character

e Ctrl-h delete previous character

e Ctrl-d delete one character (at cursor)
¢ Ctrl-a move to beginning of line

e Ctrl-e move to end of line

e Ctrl-k delete to the end of the line

e Ctrl-u cancel current line

e Ctrl-y yank the text previously deleted
e Iprev recall the last command line which beginsmgv

e Ctrl-c interrupt Scilab and pause after carriage return. Clicking on the Control/stop button
enters a Ctrl-c.

As said before you can also cut and paste using the mouse. This way will be useful if you type
your commands in an editor. Another way to “load” files containing Scilab statements is available
with the File/File Operations button.
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1.5.3 Buttons

The Scilab window has the followinGontrol buttons.

e Stop interrupts execution of Scilab and enterpanise mode

¢ Resume continues execution aftgraause entered as a command in a function or generated
by theStop button or Control C.

e Abort aborts execution after one (or sevega)se , and returns to top-level prompt

¢ Restart clears all variables and executes startup files

e Quit quits Scilab

¢ Kill kills Scilab shell script

e Demos for interactive run of some demos

¢ File Operations facility for loading functions or data into Scilab, or executing script files.

e Help : invokes on-line help with the tree of the man and the names of the corresponding
items. It is possible to type directlyelp <item> in the Scilab window.

e Graphic Window : select active graphic window

New buttons can be added by #i@dmenu command. Note that the comma8&IDIR/bin/scilab
-nw invokes Scilab in the “no-window” mode.

1.5.4 Customizing your Scilab

The parameters of the different windows opened by Scilab can be easily changed. The way for
doing that is to edit the files contained in the direct&iy/1-defaults . The first possibility is
to directly customize these files. Another way is to copy the right lines with the modifications in
the . Xdefaults file of the home directory. These modifications are activated by starting again
Xwindow or with the commanardb .Xdefaults . Scilab will read theXdefaults file:
the lines of this file will cancel and replace the corresponding lines of X11-defaults.

A simple example :

Xscilab.color*Scrollbar.background:red
Xscilab*vpane.height: 500
Xscilab*vpane.width: 500

in .Xdefaults  will change the 500x650 window to a square window of 500x500 and the
scrollbar background color changes from green to red.
An important parameter for customizing Scilalstacksize  discussed ifi.3.
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1.5.5 Sample Session for Beginners

We present now some simple commands. At the carriage return all the commands typed since the
last prompt are interpreted.

-->a=1;
-->A=2:

-->a+A
ans =

3.
-->//Two commands on the same line

>c=[1 2]:b=15
b =

1.5
-->//A command on several lines

-->u=1000000.000000*(a*sin(A))"2+...

> 2000000.000000*a*b*sin(A)*cos(A)+...
> 1000000.000000*(b*cos(A)) 2
u =
81268.994

Give the values of 1 and 2 to the variab&eand A . The semi-colon at the end of the command
suppresses the display of the result. Note that Scilab is case-sensitive. Then two commands are
processed and the second result is displayed because it is not followed by a semi-colon. The last
command shows how to write a command on several lines by using™ This sign is only
needed in the on-line typing for avoiding the effect of the carriage return. The chain of characters

which follow the// is not interpreted (it is a comment line).

-->a=1;b=1.5;

-->2*%a+b"2
ans =

4.25

-->//We have now created variables and can list them by typing:
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-->who
your variables are...

ans b a bugmes MSDOS home PWD
TMPDIR percentlib fraclablib soundlib  xdesslib
utillib  tdeslib  siglib s2flib roblib optlib metalib
elemlib  commlib polylib  autolib  armalib  alglib mtlblib
SCI %F %T %z %s %nan %inf
old newstacksize $ %t %f %eps
%i0 %i %e %pi
using 3978 elements out of 1000000.
and 43 variables out of 1023

We get the list of previously defined variablesb ¢ A together with the initial environment
composed of the different libraries and some specific “permanent” variables.

Below is an example of an expression which mixes constants with existing variables. The
result is retained in the standard default variedots .

-->W=rand(2,4);

~>W(L))
ans =

! 0.2113249 0.0002211 0.6653811 !

-=->W(,I)
ans =

! 0.2113249 0.0002211 0.6653811 !
! 0.7560439 0.3303271 0.6283918 !

->W($,$-1)
ans =

0.6283918

Definingl , a vector of indicesWa random?2 x 4 marix, and extracting submatrices frovid
The$ symbol stands for the last row or last column index of a matrix or vector. The colon symbol
stands for “all rows” or “all columns”.
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-->sqrt([4  -4])
ans =

! 2. 2. !

Calling a function (or primitive) with a vector argument. The response is a complex vector.

__>p:p0|y([1 2 3],’z’,’coeff’)
p =

2
1+ 2z + 3z

-->[[p is the polynomial in z with coefficients 1,2,3.
-->[[p can also be defined by :

-->s=poly(0,’s’);p=1+2*s+s"2
p =

2
1+ 2s + s

A more complicated command which creates a polynomial.

-->M=[p, p-1; p+1 ,2]

M =
I 2 21
! 1+ 2s + s 2s + s |
| |
! 2 !
! 2 +2s + s 2 !
-->det(M)
ans =
2 3 4

2 -4 -4s - s
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Definition of a polynomial matrix. The syntax for polynomial matrices is the same as for
constant matrices. Calculation of the determinant of the polynomial matrix byethdunction.

-->F=[1/s ,(s+1)/(1-s)

--> s/p , 2 ]

F =

! 1 1+s !
! - e !

! S 1-s !
! !
! 2 !
! S S !
I e - !

! 2 !
! 1+ 2s + s 1 !
-->F(num’)

ans =

! 1 1+s !

! !

! 2 !

! S S !

-->F('den’)

ans =

! S 1-s !
! !
! 2 !
! 1+ 2s + s 1 !

-->F('num’)(1,2)
ans =

1+ s

Definition of a matrix of rational polynomials. (The internal representatior isfa typed list
of the formtlist('the type’,num,den) wherenumandden are two matrix polynomi-
als). Retrieving the numerator and denominator matricdskmf extraction operations in a typed
list. Last command is the direct extraction of entr of the numerator matrig('num’)
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-->pause
-1->pt=return(s*p)

__>pt
pt =

2 3
S + 25 + s

Here we move into a new environment using the commpaaugse and we obtain the new
prompt-1-> which indicates the level of the new environment (level 1). All variables that are
available in the first environment are also available in the new environment. Variables created
in the new environment can be returned to the original environment by usiogn . Use of
return  without an argument destroys all the variables created in the new environment before
returning to the old environment. Tlpause facility is very useful for debugging purposes.

-->F21=F(2,1);v=0:0.01:%pi;frequencies=exp(%i*v);
-->response=freq(F21('num’),F21('den’),frequencies);
-->plot2d(v’,abs(response)’,[-1],'011’," ',[0,0,3.5,0.7],[5,4,5,7]);

-->xtitle(" ’,’radians’,’magnitude’);

Definition of a rational polynomial by extraction of an entry of the makixlefined above.
This is followed by the evaluation of the rational polynomial at the vector of complex frequency
values defined bfrequencies . The evaluation of the rational polynomial is done by the prim-
itive freq . F12('num’) is the numerator polynomial arfell2('den’) is the denominator
polynomial of the rational polynomid12. Note that the polynomidf12('num’)  can be also
obtained by extraction from the matrikusing the synta¥('num’)(1,2) . The visualization
of the resulting evaluation is made by using the basic plot commb&otdd (see Figurel.l).

1+ 25 + s
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-->horner(f,w)
ans =

The functionhorner performs a (possibly symbolic) change of variables for a polynomial
(for example, here, to perform the bilinear transformation f(w(s))).

-->A=[-1,0;1,2];B=[1,2;2,3];C=[1,0];

-->S|=syslin(’c’,A,B,C);

-->ss2tf(Sl)

ans =

| 1 2 |
I e e [

! 1+s 1+s !

Definition of a linear system in state-space representation. The fursstglim  defines here
the continuous time'¢’ ) systemS| with state-space matrices,B,C ). The functionss2tf
transformsSI into transfer matrix representation.

-->s=poly(0,’'s’);

-->R=[1/s,s/(1+s),5°2]

-->S|=syslin('c’,R);

-->tf2ss(Sl)
ans =
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ans(l) (state-space system:)

Iss A B C D X0 dt !

ans(2) = A matrix

- 05 -05!
-05 -05!

ans(3) = B matrix

F- 1. 1. 0. !
! 1. 1. 0. !

ans(4) = C matrix =
F-1 0. !

ans(5) = D matrix

! 2!
0 1 s |

Q
>
(%]
—~
(<))
~
1

X0 (initial state) =

ans(7) = Time domain =

Definition of the rational matribR. Sl is the continuous-time linear system with (improper)
transfer matrix®. tf2ss  putsSl in state-space representation with a polynorbiabatrix. Note
that linear systems are represented by specific typed lists (with 7 entries).

-->s|1=[Sl;2*Sl+eye()]
sl =



CHAPTERL INTRODUCITTON

-->size(sll)
ans =

! 2. 3. !

-->size(tf2ss(sl1))
ans =

! 2. 3. !

sl1l isthe linear system in transfer matrix representation obtained by the parallel inter-connection
of SI and2*Sl +eye() . The same syntax is valid witBl in state-space representation.

-->deff('[Cl]=compen(SI,Kr,Ko)",[ '[A,B,C,D]=abcd(Sl);’;

--> 'Al1=[A-B*Kr ,B*Kr; 0*A ,A-Ko*C]; ld=eye(A);;
-> 'B1=[B; 0*B];’;
-> 'C1=[C ,0*C];Cl=syslin(’c”,A1,B1,C1) ])

On-line definition of a function, callecompen which calculates the state space representation
(Cl) of alinear system§l ) controlled by an observer with gaito and a controller with gaiir .
Note that matrices are constructed in block form using other matrices.

-->A=[1,1 ;0,1];B=[0;1];C=[1,0];Sl=syslin('c’,A,B,C);

-->Cl=compen(Sl,ppol(A,B,[-1,-1]),...

-—>> ppOI(A’1C’,['1+%i,'l-%i])1);
-->Aclosed=CI('A’"),spec(Aclosed)

Aclosed =

LoL 1. 0. 0!

t-4. -3 4. 4.1

o0 0 -3 1/

+ 0 0. -5 1.1

ans =
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Call to the functioncompen defined above where the gains were calculated by a call to the
primitive ppol which performs pole placement. The resultisgjosed matrix is displayed and
the placement of its poles is checked using the primisipec which calculates the eigenvalues
of a matrix. (The functiorcompen is defined here on-line bgteff as an example of function
which receive a linear systerl() as input and returns a linear syste@i ] as output. In general
Scilab functions are defined in files and loaded in Scilaly&ty ).

-->//Saving the environment in a file named : myfile
-->save('myfile”)

-->//Request to the host system to perform a system command
-->unix_s('rm myfile’)

-->//[Request to the host system with output in this Scilab window

-->unix_w('date’)
Fri Nov 6 10:35:40 MET 1998

Relation with the Unix environment.

-->foo=['void foo(a,b,c)’;

--> 'double *a,*b,*c;’
> {*c = a + *b)]
foo =

Ilvoid foo(a,b,c) !
! !

Idouble *a,*b,*c; !

| !
I{ *¢ = *a + *b;} !
-->write('foo.c’,foo);

-->unix_s('make f00.0’)

-->link(’foo.0’,'foo’,'C’);
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-->deff(’[c]=myplus(a,b)’,...
-->  ’c=fort(”foo”,a,1,”d”,b,2,”d”,”out”,[1,1],3,7d")’)

-->myplus(5,7)
ans =

12.

Definition of a column vector of character strings used for defining a C function file. The
routine is compiled (needs a compiler), dynamically linked to Scilab byitilke command, and
interactively called by the functiomyplus .

-->deff(’[ydot]=f(t,y)’,'ydot=[a-y(2)*y(2) -1;1 O]*y’)
-->a=1;y0=[1;0];t0=0;instants=0:0.02:20;
-->y=0de(y0,t0,instants,f);
-->plot2d(y(1,))",y(2,:)',[-1],’011"," ’,[-3,-3,3,3],[10,2,10,2])
-->xtitle("Van der Pol’)

Definition of a function which calculates a first order vector differentfgly) . This is
followed by the definition of the constaatused in the function. The primitivede then integrates
the differential equation defined by the Scilab functi¢iry)  fory0=[1;0] att=0 and where
the solution is given at the time values= 0,.02, .04, ...,20. (Functionf can be defined asa C

or Fortran program). The result is plotted in Figur@ where the first element of the integrated
vector is plotted against the second element of this vector.

-->m=[a’ ’cos(b)’;’sin(a)’ 'c’]

m =

la cos(b) !

! !

Isin(a) c !

-->//m*m’  --> error message : not implemented in scilab

-->deff(’[x]=%c_m_c(a,b)’,[[l,m]=size(a);[m,n]=size(b);x=[];";
-> for j=1:ny=[];;

->  Cfor i=LLt=" "

-->  ’for k=1:m;;
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-> it k>1 then t=t+"+("+a(i,k)+")*"+"("+b(k,j)+")";;
> Celse t="(" + a(ik) + )+ (7 + blk) + )
--> 'end,end;’;

> 'y=[y;t],end;’;

-->  'x=[x y],end,])

-->m*m’
ans =

I(a)*(a)+(cos(b))*(cos(b)) (a)*(sin(a))+(cos(b))*(c) !
! !

(sin(@)*(@)+(O)"(cos(b))  (sin(@)*(sin(@)+C)(C) !

Definition of a matrix containing character strings. By default, the operation of symbolic
multiplication of two matrices of character strings is not defined in Scilab. However, the (on-line)
function definition for%scmcdefines the multiplication of matrices of character strings (note that
the double quote is necessary because the body adffe contains quotes inside of quotes).
The %which begins the function definition fécmcallows the definition of an operation which
did not previously exist in Scilab, and the naomc means “chain multiply chain”. This example
is not very useful: it is simply given to show haperationssuch ag can be defined on complex
data structures by mean of scpecific Scilab functions.

-->deff(’[y]=calcul(x,method)’,’z=method(x),y=poly(z,”x")’)
-->deff(’[z]=meth1(x)’,’z=x)
-->deff(’'[z]=meth2(X)’,'z=2*X")

-->calcul([1,2,3],methl)
ans =

2 3
-6 + 11x - 6X + X

-->calcul([1,2,3],meth2)
ans =

2 3
- 48 + 44x - 12x + X

A simple example which illustrates the passing of a function as an argument to another func-
tion. Scilab functions are objects which may be defined, loaded, or manipulated as other objects
such as matrices or lists.
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Exit from Scilab.
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Figure 1.1: A Simple Response
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Van der Pol

Figure 1.2: Phase Plot



Chapter 2

Data Types

Scilab recognizes several data types. Scalar objects are constants, booleans, polynomials, strings
and rationals (quotients of polynomials). These objects in turn allow to define matrices which
admit these scalars as entries. Other basic objects are lists, typed-lists and functions. Only constant
and boolean sparse matrices are defined. The objective of this chapter is to describe the use of each
of these data types.

2.1 Special Constants

Scilab provides special constarits, %pi, %e and%eps as primitives. Theéxbi constant rep-
resentsy/—1, %pi is ™ = 3.1415927 - - - , %eis the trigonometric constant = 2.7182818 - - -,
and%epsis a constant representing the precision of the macBisep6 is the biggest number for
which 1 4+ %eps = 1). %inf and%nanstand for “Infinity” and “NotANumber” respectivelyos

is the polynomial spoly(0,’s") with symbols.
(More generally, given a vectats , p=poly(rts,’x’) defines the polynomial p(x) with
variablex and such thatoots(p) =rts ).

Finally boolean constants a¥ét and%f which stand for “true” and “false” respectively. Note
that%t is the same a$==1 and%f is the same a¥xot .

These variables are considered as “predefined”. They are protected, cannot be deleted and are
not saved by theave command. It is possible for a user to have his own “predefined” variables
by using thepredef command. The best way is probably to set these special variables in his own
startup file<home dir>/.scilab . Of course, the user can use exsqrt(-1) instead of
%i.

2.2 Constant Matrices

Scilab considers a number of data objects as matrices. Scalars and vectors are all considered as
matrices. The details of the use of these objects are revealed in the following Scilab sessions.

Scalars Scalars are either real or complex numbers. The values of scalars can be assigned to
variable names chosen by the user.

--> a=5+2*U%j
a =

5. + 2.

21
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--> B=-2+%i;

> b=4-3*%
b =

4. - 3.

--> a*b
ans =

26. - 7.

-->a*B
ans =

- 12, + i

Note that Scilab evaluates immediately lines that end with a carriage return. Instructions that ends
with a semi-colon are evaluated but are not displayed on screen.

Vectors The usual way of creating vectors is as follows, using commas (or blanks) and semi-
columns:

> v=[2,-3+%i,7]
\V; =

! 2. - 3.+ 7. !

Y
ans =

! 2. !
-3, -1 !
! 7. !

--> w=[-3;-3-%:i; 2]
W =
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--> VW
ans =

18.

--> W.RY
ans =

I - 6. 8. - 6. 14. !

Notice that vector elements that are separated by commas (or by blanks) yield row vectors and
those separated by semi-colons give column vectors. The empty mdirix;ig has zero rows
and zero columns. Note also that a single quote is used for transposing a vector (one obtains the
complex conjugate for complex entries). Vectors of same dimension can be added and subtracted.
The scalar product of a row and column vector is demonstrated above. Element-wise multiplica-
tion (* ) and division (/ ) is also possible as was demonstrated.

Note with the following example the role of the position of the blank:

_->V:[]_ +3]
V =
o1 3. !
-->w=[1 + 3]
w =
| 3.1
-->w=[1+ 3]
w =

4.
-->u=[1, + 8- 7]
u =
I 1. !

Vectors of elements which increase or decrease incrementely are constructed as follows

--> y=5:-5:3
V =

! 5. 4.5 4. 3.5 3. !

The resulting vector begins with the first value and ends with the third value stepping in increments
of the second value. When not specified the default increment is one. A constant vector can be
created using thenes andzeros facility
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—> v=[1 5 6]
vV =

--> ones(v)
ans =

--> ones(V’)
ans =

--> ones(1:4)
ans =

--> 3*ones(1:4)
ans =

! 3. 3. 3. 3. !

-->zeros(v)
ans =

! 0. 0. 0. !

-->zeros(1:5)
ans =

Notice thatones or zeros replace its vector argument by a vector of equivalent dimensions
filled with ones or zeros.

Matrices Row elements are separated by commas or spaces and column elements by semi-
colons. Multiplication of matrices by scalars, vectors, or other matrices is in the usual sense.
Addition and subtraction of matrices is element-wise and element-wise multiplication and division
can be accomplished with the and./ operators.

> A=[2 1 45 -8 2]
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b =

! 1. 1. 1.
I 1 1. 1.1
--> A*b

ans =

I 2. 1 4. 1
! 5. -8 2.1
--> A*b’

ans =

I 7 7.1

- 1. - 1.

Notice that theones operator with two real numbers as arguments separated by a comma creates
a matrix of ones using the arguments as dimensions (sanzefos ). Matrices can be used as
elements to larger matrices. Furthermore, the dimensions of a matrix can be changed.

--> A=[1 2;3 4]
! 1. 2.1
! 3. 4, |
--> B=[5 6;7 8];
--> C=[9 10;11 12];

—> D=[A,B,C]
D =

! 1. 2. 5. 6. 9. 10. !
! 3. 4. 7. 8. 11. 12. !

--> E=matrix(D,3,4)

[EEN
P
(o2}

11. !
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! 2. 7. 9. 12. !

-->F=eye(E)

F =

! 1 0. 0. 0. !
! 0 1. 0. 0. !
! 0 0. 1. 0. !
-->G=eye(4,3)

G =

! 1. 0. 0. !

! 0. 1. 0. !

! 0. 0. 1. !

! 0. 0. 0. !

Notice that matrixD is created by using other matrix elements. Thatrix primitive creates
a new matrixE with the elements of the matriR using the dimensions specified by the second
two arguments. The element ordering in the malris top to bottom and then left to right which
explains the ordering of the re-arranged matriin

The functioneye creates amn x n matrix with 1 along the main diagonal (if the argument is
a matrixE , m andn are the dimensions &) .

Sparse constant matrices are defined through their nonzero entries (typspasdp for
more details). Once defined, they are manipulated as full matrices.

2.3 Matrices of Character Strings

Character strings can be created by using single or double quotes. Concatenation of strings is
performed by ther operation. Matrices of character strings are constructed as ordinary matrices,
e.g. using brackets. A very important feature of matrices of character strings is the capacity to
manipulate and create functions. Furthermore, symbolic manipulation of mathematical objects
can be implemented using matrices of character strings. The following illustrates some of these
features.

--> A=['X Y2 'wHV

A =
IX vy !
I !
1z w+v !

--> At=trianfml(A)
At =

Iz w+v !
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10 z*y-x*(w+v) !
--> x=1,y=2;z=3;,w=4,v=5;

--> evstr(At)
ans =

! 3.

9. !
! 0. -3.!

Note that in the above Scilab session the functidanfml performs the symbolic triangu-
larization of the matrixA. The value of the resulting symbolic matrix can be obtained by using
evstr

A very important aspect of character strings is that they can be used to automatically create
new functions (for more on functions see Sect®f). An example of automatically creating a
function is illustrated in the following Scilab session where it is desired to study a polynomial of
two variabless andt . Since polynomials in two independent variables are not directly supported
in Scilab, we can construct a new data structure using a list (see S2dijoThe polynomial to
be studied it + 2t3) — (t + t%)s + ts? + 5.

-->getf("macros/make_macro.sci");
-->s=poly(0,'s’);t=poly(0,'t);
-->p:| iSt(tA2+2*t"3,_t_t"2 ,t’ 1+0*t),

-->pst=makefunction(p) //pst is a function t->p (number -> polynomial)
pst =

[p]=pst(t)

-->pst(1)
ans =

2 3
3-25+s + s

Here the polynomial is represented by the command which puts the coefficients of the variable
s in the listp. The listp is then processed by the functiomakefunction  which makes a

new functionpst . The contents of the new function can be displayed and this function can be
evaluated at values of. The creation of the new functigest is accomplished as follows

function [newfunction]=makefunction(p)
/I Copyright INRIA
num=mulf(makestr(p(1)),'1’);
for k=2:size(p);
new=mulf(makestr(p(k)),’s™ +string(k-1));
num=addf(num,new);
end,
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text="p="+num;
deff(’[p]=newfunction(t)’,text),

function [str]=makestr(p)
n=degree(p)+1;c=coeff(p);str=string(c(1));x=part(varn(p),1);
xstar=x+"",
for k=2:n,
if c(k)<>0 then,
str=addf(str,mulf(string(c(k)),(xstar+string(k-1))));
end;
end

Here the functiormakefunction takes the lisp and creates the functigost . Inside of
makefunction  there is a call to another functiomakestr which makes the string which
represents each term of the new two variable polynomial. The funaiidtds andmulf are used
for adding and multiplying strings (i.eddf(x,y)  vyields the string+y ). Finally, the essential
command for creating the new function is the primitdeff . Thedeff primitive creates a
function defined by two matrices of character strings. Here the fungtiendefined by the two
character string§p]=newfunction(t)’ andtext where the stringext evaluates to the
polynomial in two variables.

2.4 Polynomials and Polynomial Matrices

Polynomials are easily created and manipulated in Scilab. Manipulation of polynomial matrices
is essentially identical to that of constant matrices. pbly primitive in Scilab can be used to
specify the coefficients of a polynomial or the roots of a polynomial.

-->p=poly([1 2],’s’) //polynomial defined by its roots
p =

2
2 -3 + s

-->g=poly([1 2],’s’,’c’) [/polynomial defined by its coefficients

q =
1+ 2s
-->p+q
ans =
2
3-s+ s
-->p*q

ans =
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2 3
2+ s -5s + 2s

> alp
ans =

2 -3 +s

Note that the polynomigb has theroots 1 and 2 whereas the polynomiglhas thecoefficientsl
and 2. Itis the third argument in thmly primitive which specifies the coefficient flag option. In
the case where the first argumentpafly is a square matrix and the roots option is in effect the
result is the characteristic polynomial of the matrix.

--> poly([1 2;3 4],’s)
ans =

-2 -5s + s

Polynomials can be added, subtracted, multiplied, and divided, as usual, but only between poly-
nomials of same formal variable.

Polynomials, like real and complex constants, can be used as elements in matrices. This is a
very useful feature of Scilab for systems theory.

-->s=poly(0,’'s’);

-->A=[1 s;s 1+572]
A =

--> B=[1/s 1/(1+s);1/(1+s) 1/s72]
B =

[
[
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From the above examples it can be seen that matrices can be constructed from polynomials and
rationals.

2.4.1 Rational polynomial simplification

Scilab automatically performs pole-zero simplifications when the the built-in primdinrg

finds a common factor in the numerator and denominator of a rational polynorniaiden .
Pole-zero simplification is a difficult problem from a numerical viewpoint aimdp function is
usually conservative. When making calculations with polynomials, it is sometimes desirable to
avoid pole-zero simplifications: this is possible by switching Scilab into a “no-simplify” mode:
help simp_mode . The functiontrfmod can also be used for simplifying specific pole-zero
pairs.

2.5 Boolean Matrices

Boolean constants akét and%f. They can be used in boolean matrices. The syntax is the same
as for ordinary matrices i.e. they can be concatenated, transposed, etc...
Operations symbols used with boolean matrices or used to create boolean matricesiade

If Bis a matrix of booleansr(B) andand(B) perform the logicabr andand.

-->%0t
%t =

T

_->[]_,2]::[1,3]
ans =

I T F I

->[1,2]==1
ans =

I T F I

-->a=1:5; a(a>2)
ans =

I 3. 4. 5. |
-->A=[%t,%f, %t, %f, %f, %f];

—->B=[%t, %f, %t, %f, %t, %t]
B =

'TFTFTT!

-->A|B
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ans =
'TFTFTT!

-->A&B
ans =

| TFTFFF!

Sparse boolean matrices are generated when, e.g., two constant sparse matrices are compared.
These matrices are handled as ordinary boolean matrices.

2.6 Lists

Scilab has a list data type. The list is a collection of data objects not necessarily of the same type.
A list can contain any of the already discussed data types (including functions) as well as other
lists. Lists are useful for defining structured data objects.

There are two kinds of lists, ordinary lists and typed-lists. A list is defined bylishe
function. Here is a simple example:

-->L=list(1,'w’,ones(2,2)) //L is a list made of 3 entries

L =

L(1)

1.

L(2)
w

L(3)
I T
L1 1

-->L(3) [/lextracting entry 3 of list L
ans =

-->1(3)(2,2) /lentry 2,2 of matrix L(3)
ans =



CHAPITERZ DAIA TYPES

-->L(2)=list('w’,rand(2,2)) /Inested list: L(2) is now a list

L =
L(1)
1.
L(2)
L(2)(1)
w
L(2)(2)

! 0.6653811 0.8497452 !
! 0.6283918 0.6857310 !

L(3)

! 1. 1!
! 1. 1!

-->1(2)(2)(1,2) [/lextracting entry 1,2 of entry 2 of L(2)
ans =

0.8497452

-->L(2)(2)(1,2)=5; //assigning a new value to this entry.

Typed lists have a specific first entry. This first entry must be a character string (the type) or
a vector of character string (the first component is then the type, and the following elements the
names given to the entries of the list). Typed lists entries can be manipulated by using character
strings (the names) as shown below.

-->L=tlist(['Car’;’Name’;’Dimensions’],'Nevada’,[2,3])
L =

L(1)

ICar !
I !

IName !
| |

IDimensions !
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L(2)
Nevada
L(3)
! 2. 3. !

-->L('Name’) /[same as L(2)
ans =

Nevada
-->L('Dimensions’)(1,2)=2.3

L =

L(2)
ICar !

| |
IName !

I !
IDimensions !
L(2)
Nevada

L(3)

! 2. 23!

->L(3)(1,2)
ans =

2.3

->L(1)(1)
ans =

Car

An important feature of typed-lists is that it is possible to define operators acting on them (over-
loading), i.e., it is possible to define e.g. the multiplicatiot¥L2 of the two typed listd 1
andL2. An example of use is given below, where linear systems manipulations (concatenation,
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addition, multiplication,...) are done by such operations.

2.7 Linear system representation

Linear systems are treated as specific typed tligs . The basic function which is used for
defining linear systems isyslin . This function receives as parameters the constant matrices
which define a linear system in state-space form or, in the case of system in transfer form, its
input must be a rational matrix. To be more specific, the calling sequenegsif  is either
Sl=syslin("”dom’,A,B,C,D,x0) or Sl=syslin('”dom’,trmat) . domis one of the
character stringe’ or’d’ for continuous time or discrete time systems respectively. Itis useful
to note thatD can be a polynomial matrix (improper system3)andx0 are optional arguments.
trmat is a rational matrix i.e. it is defined as a matrix of rationals (ratios of polynomials).
syslin  just converts its arguments (e.g. the four matrices A,B,C,D) into a typedl lisEor state
space representatid@l is thetlist(['Iss’,’A’,’B’,’C’,’'D’],A,B,C,D,’dom’)

This tlist representation allows to access the A-matrix i.e. the second enBly by the syntax
SICA’)  (equivalent tdSI(2) ). Conversion from a representation to another is donesByf

ortf2ss . Improper systems are also treatsgslin  defines linear systems as specifist

(help syslin ).

-->//list defining a linear system
-->A=[0 -1;1 -3];B=[0;1];C=[-1 0];
-->Sys=syslin('c’,A,B,C)
Sys =

Sys(1) (state-space system:)

Iss A B C D X0 dt !

Sys(2) = A matrix =
0. - 1.1
! 1. -3.!

Sys(3) = B matrix =
I 0. !
! 1.1

Sys(4) = C matrix =
F-1 0. !

(2]
<
2
<

I

O

matrix
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Sys(6) = XO (initial state) =

Sys(7) = Time domain =
c
-->//conversion from state-space form to transfer form

-->Sys('A’) /[The A-matrix
ans =

-->Sys('B’)
ans =

! 0. !
1!

-->hs=ss2tf(Sys)
hs =

1+ 3s + s

-->size(hs)
ans =

! 1. 1!

-->hs(’num’)
ans =

1

-->hs('den’)
ans =

2
1+ 3s + s
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-->typeof(hs)
ans =

rational
-->//inversion of transfer matrix

-->inv(hs)
ans =

2
1+ 3s + s

-->//linversion of state-space form
-->inv(Sys)
ans =

ans(l) (state-space system:)

Iss A B C D X0 dt !

ans(2) = A matrix =
I
ans(3) = B matrix =
I
ans(4) = C matrix =
I
ans(5) = D matrix =
2
1+ 3s + s
ans(6) = X0 (initial state) =

I

ans(7)

Time domain =
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Sy Sy S2*S1
Si
| 6%—‘ S1+S2
Sa
S1
%9 [S1,52]
Sa
S
— [S1 ; S2]
Sy o
> ® S1
S1/.S2
Sa

Figure 2.1: Inter-Connection of Linear Systems

-->//converting this inverse to transfer representation

-->ss2tf(ans)
ans =

2
1+ 3s + s

The list representation allows manipulating linear systems as abstract data objects. For ex-
ample, the linear system can be combined with other linear systems or the transfer function rep-
resentation of the linear system can be obtained as was done abovess&iihg. Note that the
transfer function representation of the linear system is itself a tlist. A very useful aspect of the
manipulation of systems is that a system can be handled as a data object. Linear systems can be
inter-connected, their representation can easily be changed from state-space to transfer function
and vice versa.

The inter-connection of linear systems can be made as illustrated in Riguréor each of
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the possible inter-connections of two systeStsand S2 the command which makes the inter-
connection is shown on the right side of the corresponding block diagram in Fdunidote that
feedback interconnection is performed ®¥/.S2 .

The representation of linear systems can be in state-space form or in transfer function form.
These two representations can be interchanged by using the furiéfieas andss2tf  which
change the representations of systems from transfer function to state-space and from state-space
to transfer function, respectively. An example of the creation, the change in representation, and
the inter-connection of linear systems is demonstrated in the following Scilab session.

-->//system connecting
-->s=poly(0,’s’);

->S1=1/(s-1)
s1 =

S2 =

-->S1=syslin('c’,S1);
-->S2=syslin('c’,S2);
-->Gls=tf2ss(S2);

-->ssprint(Gls)

< -
1

| 2 Ix + ] 1 Ju
y=11]Ix
-->hls=GIs*S1;

-->ssprint(hls)

|2 1] | 0]
| 0O 1 |x+|1]u

x -
1]

| 1 0 |x

<
1
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-->ht=ss2tf(hls)
ht =

-->52*S1
ans =

2 -3 +s

ans =

ans =

ans =
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2
3-3 + s

->S1./(2*S2)
ans =

The above session is a bit long but illustrates some very important aspects of the handling of
linear systems. First, two linear systems are created in transfer function form using the function
calledsyslin . This function was used to label the systems in this example as being continuous
(as opposed to discrete). The primitif@ss is used to convert one of the two transfer functions
to its equivalent state-space representation which is in list form (note that the fussfidnt
creates a more readable format for the state-space linear system). The following multiplication of
the two systems yields their series inter-connection. Notice that the inter-connection of the two
systems is effected even though one of the systems is in state-space form and the other is in transfer
function form. The resulting inter-connection is given in state-space form. Finally, the function
ss2tf  is used to convert the resulting inter-connected systems to the equivalent transfer function
representation.

2.8 Functions (Macros)

Functions are collections of commands which are executed in a new environment thus isolating
function variables from the original environments variables. Functions can be created and executed
in a number of different ways. Furthermore, functions can pass arguments, have programming
features such as conditionals and loops, and can be recursively called. Functions can be arguments
to other functions and can be elements in lists. The most useful way of creating functions is by
using a text editor, however, functions can be created directly in the Scilab environment using the
deff primitive.

--> deff(’[x]=foo(y)’,’if y>0 then, x=1; else, x=-1; end’)

--> foo(5)
ans =

1.

--> foo(-3)
ans =

- 1.

Usually functions are defined in a file using an editor and loaded into Scilalyeiififilename’)
This can be done also by clicking in tikée operation button. This latter syntax loads the
function(s) infilename and compiles them. The first line blename  must be as follows:
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function [y1,...,yn]=macname(x1,...,xk)

where theyi s are output variables and tlxé ’s the input variables.
For more on the use and creation of functions see Se8tibn

2.9 Libraries

Libraries are collections of functions which can be either automatically loaded into the Scilab
environment when Scilab is called, or loaded when desired by the user. Libraries are created by
thelib command. Examples of librairies are given in 8@IDIR/macros directory. Note that

in these directory there is an ASCII file “names” which contains the names of each function of the
library, a set ofsci files which contains the source code of the functions and a skirof files

which contains the compiled code of the functions. The Makefile invekgab  for compiling

the functions and generating th®n files. The compiled functions of a library are automatically
loaded into Scilab at their first call.

2.10 Objects

We conclude this chapter by noting that the functigpeof returns the type of the various Scilab
objects. The following objects are defined:

usual for matrices with real or complex entries.

e polynomial for polynomial matrices: coefficients can be real or complex.
e boolean for boolean matrices.

e character for matrices of character strings.

e function  for functions.

e rational  for rational matricesqyslin  lists)

e state-space for linear systems in state-space forayglin  lists).
e sparse for sparse constant matrices (real or complex)

e boolean sparse for sparse boolean matrices.

e list for ordinary lists.

e tlist  fortyped lists.

e state-space (or rational) for syslin lists.

e library  for library definition.
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2.11 Matrix Operations

The following table gives the syntax of the basic matrix operations available in Scilab.

| SYMBOL | OPERATION |
[] matrix definition, concatenation
; row separator
() extractionm=a(k)
() insertion:a(k)=m
’ transpose
+ addition
subtraction
multiplication
left division
right division
exponent
elementwise multiplication
elementwise left division
elementwise right division
elementwise exponent

A

| ~| —

Tk

| | —

X, kronecker product

A kronecker right division

A kronecker left division
2.12 Indexing
The following sample sessions shows the flexibility which is offered for extracting and inserting
entries in matrices or lists. For additional details ehdp extraction orhelp insertion

2.12.1 Indexing in matrices

Indexing in matrices can be done by giving the indices of selected rows and columns or by boolean
indices or by using th& symbol.

->A=[1 2 3;4 5 6]

A =
! 1. 2. 3. !
! 4 5. 6. !
-->A(1,2)
ans =
2.
-->A([1 11,2)

ans =
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-->A(:,1)
ans =

1.
! 4.1

-->A(:,3:-1:1)
ans =

Q
>
%2}
1

oOwanN AR

—>A([%t %F %f %t])
ans =

1.
! 5!

~->A([%t %f],[2 3])

ans =
! 2. 3. !
->A(1:2,$-1)

ans =
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2. !
! 51!

—->A($:-111,2)
ans =

-->//

-->x="test’
X =

test

-->x([1 1;1 1;1 1))
ans =

ltest test |
I !

ltest test |
I !

ltest test |

-->//

—>B=[1/%s, (%s+1)/(%s-1)]
B =

! 1 1+s !
| T, |
! s -1+s !
->B(1,1)
ans =
1
S

-->B(1,%)
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-->B(2) // the numerator
ans =

! 1 1+s |
-->//

~>A=[1 2 3;4 5 6]

A =
! 1. 2. 3. !
! 4 5. 6. !
->A(1,2)=10

A =

~>A([1 1],2)=[-1;-2]

A =
! 1. -2 3. !
! 4 5 6. !
—->A(:,1)=[8:5]

A =
! 8. - 2. 3. !
! 5. 5. 6. !

-->A(1,3:-1:1)=[77 44 99]
A =

! 99. 44, 77. !
! 5. 5. 6. !
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—>A(1)=%s
A =
! S 10 10 !
!
! 5 5 6

-->A(6)=%s+1

A =
! S 10 10
!
! 5 5 1+
-->A(1)=1:6

A =
! 1. 3. 5.1
! 2. 4, 6. !

—>A([%t %f],1)=33

! 33. 3. !
! 2. 4. 6. !

o

w
w
N
o

A =
! 7. 2. 5.1
! 8 4, 6. !
—>A($)=123
A =
! 7 2. 5 !

-->//

-->x="test’
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X =
test

—->x([4 S5])=[4'5]
X =

ltest 4 5 |

2.12.2 Indexing in lists

The following session illustrates how to create lists and insert/extract entlistsin andtlists

-->a=33:b=11:c=0:;
-->|=list();I(0)=a
| =
(1)
33.
-->|=list();1(1)=a
| =
(1)
33.
-->|=list(a);I(2)=b
| =
(1)
33.
1(2)
11.

—->I=list(a);1(0)=b
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I(1)
11.
12)
33.
--I>I=Iist(a);|(1)=c
(1)
0.

-->|=list():1(0)=null()
| =

0

-->|=list():1(1)=null()
| =

0
-->//
-->i=

-->|=list(a,list(c,b),i);I(1)=null()

I(2)
1(1)(1)
0.
1(1)(2)
11.

I(2)
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-->|=list(a,list(c,list(a,c,b),b),’'h");
-->[(2)(2)(3)=null()
| =
(1)

33.

12)

1(2)(1)

1(2)(2)

1(2)(2)(1)

33.

1(2)(2)(2)

1(2)(3)
11.
I(3)
h
>
—>dts=list(1, tlist(’x’;a’7b,10,[2 3]));

-->dts(2)('a’)
ans =

10.

—->dts(2)(b")(1,2)
ans =
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3.

-->[a,b]=dts(2)(['a’,’b’])
b =

10.

-->//

-->|=list(1, qwerw’,%s)

(1)

I(2)
qwerw
I(3)
s

-->|(1)="Changed’

I(1)
Changed
12)
qwerw
I(3)
s

—->|(0)="Added’
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(1)
Added

1(2)
Changed

1(3)
qwerw

1(4)

s

__I>|(6)=[’one more’;’added’]

(1)
Added

1(2)
Changed

(3)

qwerw

1(4)

1(5)
Undefined
1(6)
lone more !
I !

ladded !

-->//
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—>dts=list(1,tist(’x’;a’;’p’],10,[2 3])):;

-->dts(2)('a’)=33

dts =
dts(1)
1.
dts(2)
dts(2)(1)
Ix I
! !
la !
! !
b !
dts(2)(2)
33.
dts(2)(3)
! 2. 3. !

->dts(2)(b’)(1,2)=-100

dts =
dts(1)
1.
dts(2)
dts(2)(1)

Ix |
!
la
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dts(2)(2)

33.
dts(2)(3)
I 2. - 100. !

-->//

-->|=list(1, qwerw’,%s)

I(1)
1.
12)
qwerw
I(3)
s
->I(1)
ans =
1.

-->[a,b]=I([3 2])
b =

qwerw
a =

S

->|($)

ans =

-->//

-->L=list(33,list(l,33))
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L(1)
33.

L(2)

L(2)(1)

L(2)(1)(2)

L(2)(1)(2)

qwerw

L(2)(1)(3)

L(2)(2)

33.
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Programming

One of the most useful features of Scilab is its ability to create and use functions. This allows the
development of specialized programs which can be integrated into the Scilab package in a simple
and modular way through, for example, the use of libraries. In this chapter we treat the following
subjects:

e Programming Tools

e Defining and Using Functions

e Definition of Operators for New Data Types
e Debbuging

Creation of libraries is discussed in a later chapter.

3.1 Programming Tools

Scilab supports a full list of programming tools including loops, conditionals, case selection, and
creation of new environments. Most programming tasks should be accomplished in the environ-
ment of a function. Here we explain what programming tools are available.

3.1.1 Comparison Operators

There exist five methods for making comparisons between the values of data objects in Scilab.
These comparisons are listed in the following table.

== or= equal to
< smaller than
> greater than
<= smaller or equal tg
>= greater or equal tg
<> or’= not equal to

These comparison operators are used for evaluation of conditionals.
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3.1.2 Loops
Two types of loops exist in Scilab: tlier loop and thevhile loop. Thefor loop steps through

a vector of indices performing each time the commands delimitezhiy

--> x=1;for k=1:4,x=x*k,end

X =
1.

X =
2.

X =
6.

X =
24.

Thefor loop can iterate on any vector or matrix taking for values the elements of the vector or
the columns of the matrix.

--> x=1;for k=[-1 3 0],x=x+k,end

X =
0.

X =
3.

X =
3.

Thefor loop can also iterate on lists. The syntax is the same as for matrices. The index takes as
values the entries of the list.

-->|=list(1,[1,2;3,4],’str")
-->for k=I, disp(k),end

1.

str

Thewhile loop repeatedly performs a sequence of commands until a condition is satisfied.
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--> x=1; while x<14,x=2*x,end

X =
2.

X =
4.

X =
8.

X =
16.

A for orwhile loop can be ended by the commameak :

-->a=0;for i=1:5:100,a=a+1;if i > 10 then break,end; end

-->a
a =

In nested loopshreak exits from the innermost loop.

-->for k=1:3; for j=1:4; if k+j>4 then break;else disp(k);end;end;end

1.

3.1.3 Conditionals

Two types of conditionals exist in Scilab: tlie -then -else conditional and theselect
case conditional. Thef -then -else conditional evaluates an expression and if true executes
the instructions between tlileen statement and thelse statement (oend statement). If false
the statements between thlse and theend statement are executed. Télse is not required.
Theelseif  has the usual meaning and is a also a keyword recognized by the interpreter.
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--> if x>0 then,y=-x,else,y=x,end
y =
- 1.

Theselect -case conditional compares an expression to several possible expressions and
performs the instructions following the first case which equals the initial expression.

--> select x,case 1,y=x+5,case -1,y=sqrt(x),end
y =
[

It is possible to include aalse statement for the condition where none of the cases are satisfied.

3.2 Defining and Using Functions

It is possible to define a function directly in the Scilab environment, however, the most convenient
way is to create a file containing the function with a text editor. In this section we describe
the structure of a function and several Scilab commands which are used almost exclusively in a
function environment.

3.2.1 Function Structure

Function structure must obey the following format

function [y1,...,yn]=foo(x1,...,xm)
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wherefoo is the function name, the are them input arguments of the function, tlyg are the
n output arguments from the function, and the three vertical dots represent the list of instructions
performed by the function. An example of a function which calcul&tds as follows

function [x]=fact(k)

k=int(k);

if k<1 then,
k=1;

end,

x=1;

for j=1:k,
X=X*];

end,

If this function is contained in a file calle@dct.sci the function must be “loaded” into Scilab
by thegetf command and before it can be used:

--> exists('fact’)
ans =

0.
--> getf(’../macros/fact.sci’)

--> exists('fact’)
ans =

1.

--> x=fact(5)
X =
120.

In the above Scilab session, the commarists indicates thafact is not in the environment
(by the0 answer toexist ). The function is loaded into the environment usgegtf and now
exists indicates that the function is there (th@answer). The example calculatés

3.2.2 Loading Functions

Functions are usually defined in files. A file which contains a function must obey the following
format

function [y1,...,yn]=foo(x1,...,xm)
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wherefoo is the function name. Thgi 's are the input parameters and the tljes are the
output parameters, and the three vertical dots represent the set of instructions performed by the
function to evaluate thgj ’s, given thexi 's. Inputs and ouputs parameters cando Scilab
object (including functions themeselves).

Functions are Scilab objects and should not be considered as files. To be used in Scilab, func-
tions defined in filesnustbe loaded by the commamgtf(filename) . If the file filename
contains the functiofoo , the functionfoo can be executed only if it has been previously loaded
by the commandgetf(filename) . A file may containseveralfunctions. Functions can also
be defined “on line” by the commareff . This is useful if one wants to define a function as the
output parameter of a other function.

Collections of functions can be organized as libraries (fee command). Standard Scilab
librairies (linear algebra, control,...) are defined in the subdirectori&CtDIR/macros/

3.2.3 Global and Local Variables

If a variable in a function is not defined (and is not among the input parameters) then it takes
the value of a variable having the same name in the calling environment. This variable however
remains local in the sense that modifying it within the function does not alter the variable in the
calling environment unlesgsume is used (see below). Functions can be invoked with less input
or output parameters. Here is an example:

function [yl,y2]=f(x1,x2)
y1=x1+x2
y2=x1-x2

-->[y1,y2]=f(1,1)
y2 =
0.
yl =
2.

->f(1,1)
ans =
2.

-->f(1)
y1=x1+x2;
l--error 4
undefined variable : x2
at line 2 of function f

-->x2=1;

-->[y1,y2]=f(1)
y2 =
0.
yl =
2.
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-->f(1)
ans =

Note that it is not possible to call a function if one of the parameter of the calling sequence is
not defined:

function [y]=f(x1,x2)
if x1<0 then y=x1, else y=x2;end

-->f(-1)
ans =

- 1.

-->f(-1,x2)
I--error 4
undefined variable : x2

-->f(1)

undefined variable : x2

at line 2 of function f called by :
f(1)

-->x2=3;f(1)

-->f(1)
ans =

3.2.4 Special Function Commands

Scilab has several special commands which are used almost exclusively in functions. These are
the commands

e argn : returns the number of input and output arguments for the function

e error : used to suspend the operation of a function, to print an error message, and to return
to the previous level of environment when an error is detected.

e warning ,

e pause : temporarily suspends the operation of a function.
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e break : forces the end of a loop

e return orresume : used to return to the calling environment and to pass local variables
from the function environment to the calling environment.

The following example runs the followinigo function which illustrates these commands.

function [z]=foo(x,y)
[out,in]=argn(0);
if x=0 then,

error('division by zero’);
end,
slope=y/x;
pause,
z=sqrt(slope);
s=resume(slope);

--> z=f00(0,1)
error(’division by zero’);

I--error 10000
division by zero
at line 4 of function foo called by :
z=fo0(0,1)

--> z=f00(2,1)

-1-> resume
Z =

0.7071068

--> g
IS =

0.5

In the example, the first call tno passes an argument which cannot be used in the calculation
of the function. The function discontinues operation and indicates the nature of the error to the
user. The second call to the function suspends operation after the calculasiop®f. Here the

user can examine values calculated inside of the function, perform plots, and, in fact perform any
operations allowed in Scilab. Th&-> prompt indicates that the current environment created by
thepause command is the environment of the function and not that of the calling environment.
Control is returned to the function by the commaeturn . Operation of the function can be
stopped by the commargiit orabort . Finally the function terminates its calculation returning

the value ofz. Also available in the environment is the variaBlevhich is a local variable from

the function which is passed to the global environment.
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3.3 Definition of Operations on New Data Types

It is possible to transparently define fundamental operations for new data types in Scilab. That is,
the user can give a sense to multiplication, division, addition, etc. on any two data types which
exist in Scilab. As an example, two linear systems (represented by lists) can be added together
to represent their parallel inter-connection or can be multiplied together to represent their series
inter-connection. Scilab performs these user defined operations by searching for functions (written
by the user) which follow a special naming convention described below.

The naming convention Scilab uses to recognize operators defined by the user is determined
by the following conventions. The name of the user defined function is composed of four (or
possibly three) fields. The first field is always the symior he third field is one of the characters
in the following table which represents the type of operation to be performed between the two data

types.

\ Third field |
\ SYMBOL \ OPERATION \
+
; (row separator)

[ 1 (matrix definition)
A
() extraction:m=a(k)
() insertion:a(k)=m

*

\ left division

*

" exponent
A
/ right division

" (transpose)

NI<|IX|s|I<|lg|T|»w|T™Q|D|3|~ |~ ~|@o|e0|T|D

The second and fourth fields represent the type of the first and second data objects, respectively,
to be treated by the function and are represented by the symbols given in the following table.

\ Second and Fourth fields |
[ SYMBOL | VARIABLE TYPE |

S scalar
p polynomial
I list (untyped)
c character string
m function

XXX list (typed)




CHAPITERs. PROGRKAMMIN G

A typed list is one in which the first entry of the list is a character string where the first charac-
ters of the string are represented by & in the above table. For example a typed list represent-
ing a linear system has the fottist(['Iss’,’A’,’'B’,’C’,'D’,’X0’,'dt'],a,b,c,d,x0,'c")
and, thus, thexxx above idss .

An example of the function name which multiplies two linear systems together (to represent
their series inter-connection) #lss _mlss . Here the first field is %, the second fieldlss
(linear state-space), the third field ns“multiply” and the fourth one idss . A possible user
function which performs this multiplication is as follows

function [s]=%lss_m_Iss(s1,s2)

[A1,B1,C1,D1,x1,dom1]=s1(2:7),

[A2,B2,C2,D2,x2]=s2(2:6),

B1C2=B1*C2,

s=lsslist([A1,B1C2;0*B1C2’ ,AZ],...
[B1*D2;B2],[C1,D1*C2],D1*D2,[x1;x2],dom1),

An example of the use of this function after having loaded it into Scilab (using for exayafile
or inserting it in a library) is illustrated in the following Scilab session

-->A1=[1 2;3 4];B1=[1;1];C1=[0 1;1 O];

-->A2=[1 -1;0 1];B2=[1 0;2 1];C2=[1 1];D2=[1,1];
-->s1=syslin(’c’,A1,B1,C1);
-->s2=syslin('c’,A2,B2,C2,D2);

-->ssprint(sl)

x=13 4|x+|1]u

-->ssprint(s2)

: | 1 -1 | 1 0|
x=]10 1|x+]2 1]|u
y=|1 1|x+]|1 1]|u

-->s12=s1*s2;  /[This is equivalent to s12=%lss_m_Iss(s1,s2)

-->ssprint(s12)

|1 2 1 1| | 1 1]
: |3 4 1 1| | 1 1]
x=]0 0 1-1|x+|1 O0|u
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|0 0 0 1| |2 1]

|0 1 0 O]
y=|1 0 0 0|x

Notice that the use dflss _mlss is totally transparent in that the multiplication of the two lists
sl ands2 is performed using the usual multiplication operator

The directorySCIDIR/macros/percent contains all the functions (a very large num-
ber...) which perform operations on linear systems and transfer matrices. Conversions are auto-
matically performed. For example the code for the funcitiss _-mlss is there (note that it is
much more complicated that the code given here!).

3.4 Debbuging

The simplest way to debug a Scilab function is to introdugaase command in the function.
When executed the function stops at this point and prorripts which indicates a different
“level”; anotherpause gives-2-> ... Atthe level 1 the Scilab commands are analog to a dif-
ferent session but the user can display all the current variables present in Scilab, which are inside
or outside the function i.e. local in the function or belonging to the calling environment. The
execution of the function is resumed by the commeatdrn  or resume (the variables used at
the upper level are cleaned). The execution of the function can be interruptdabhly .

It is also possible to insert breakpoints in functions. See the comnsatdpt |, delbpt
disbpt . Finally, note that it is also possible to trap errors during the execution of a function:
see the commandsrclear anderrcatch . Finally the experts in Scilab can use the function
debug(i) where i=0,..,4 denotes a debugging level.



Chapter 4

Basic Primitives

This chapter briefly describes some basic primitives of Scilab. More detailed information is given
in the manual (see the directoBCIDIR/man/LaTex-doc ).

4.1 The Environment and Input/Output

In this chapter we describe the most important aspects of the environment of Scilab: how to
automatically perform certain operations when entering Scilab, and how to read and write data
from and to the Scilab environment.

4.1.1 The Environment

Scilab is loaded with a number of variables and primitives. The commadradists the variables
which are available.

Thewho command also indicates how many elements and variables are available for use. The
user can obtain on-line help on any of the functions listed by typelg <function-name>

Variables can be saved in an external binary file usiage . Similarly, variables previously
saved can be reloaded into Scilab usiogd .

Note that after the commarddear x y the variablex andy no longer exist in the envir-
onment. The commarshve without any variable arguments saves the entire Scilab environment.
Similarly, the commandlear used without any arguments clears all of the variables, functions,
and libraries in the environment.

Functions which exist in files can be seen by ugiigp and loaded by usingetf .

Libraries of functions are loaded usifily .

The list of functions available in the library can be obtained by uslisg .

4.1.2 Startup Commands by the User

When Scilab is called the user can automatically load into the environment functions, libraries,
variables, and perform commands using the the.fitglab  in his home directory. This is
particularly useful when the user wants to run Scilab programs in the background (such as in
batch mode). Another useful aspect of theilab  file is when some functions or libraries are
often used. In this case the commagetf can be used in thescilab  file to automatically

load the desired functions and libraries whenever Scilab is invoked.
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4.1.3 Input and Output

Although the commandsave andload are convenient, one has much more control over the
transfer of data between files and Scilab by using the commaads andwrite . These two
commands work similarly to the read and write commands found in Fortran. The syntax of these
two commands is as follows.

--> x=[1 2 %pi;%e 3 4]
X =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

--> write('x.dat’,x)
--> clear X

--> xnew=read('x.dat’,2,3)
xnew =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

Notice thatread specifies the number of rows and columns of the matri€omplicated formats
can be specified.

4.2 Help

On-line help is available either by clicking on thelp button or by enteringpelp item (where

item is usually the name of a function or primitivegpropos keyword looks forkeyword

in awhatis file. This facility is equivalent to the Uniwhatis command. To add a new item

or keyword is easy. Just createcat ASCII file describing the item andwahatis file in your
directory. Then add your directory path (and a title) in the $leIDIR/man/Chapters  (see

also the README file there). You may use the standard format of the scilab manual (see the
SCIDIR/man/subdirectories ). The ScilabATEX manual is automatically obtained from

the manual items by Klakefile . See the director§CIDIR/man/Latex-doc . Note that the
commandmanedit opens an help file with an editor (default editoeimacs).

4.3 Useful functions

We give here a short list of useful functions and keywords that can be used as entry points in the
Scilab manual. All the functions available can be obtained by entérétiy . For each manual
entry theSEE ALSdine refers to related functions.

e Elementary functionssum, prod, sqrt, diag, cos, max, round, sign,
fft

e Sorting:sort, gsort, find
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e Specific Matriceszeros, eye, ones, matrix, empty

e Linear Algebra:det, inv, gr, svd, bdiag, spec, schur

e Polynomials:poly, roots, coeff, horner, clean, freq

e Buttons, dialogx_choose, x_dialog, x_mdialog, getvalue, addmenu
e Linear systemssyslin

¢ Random numbergand

e Programmingfunction, deff, argn, for, if, end, while, select, warning,
error, break, return

e Comparison symbols:=,>=,>, = &(and),| (or)

e Execution of a fileexec

e Debugging:pause, return, abort

¢ Spline functions, interpolatiorsplin, interp, interpin

e Character stringsstring, part, evstr, execstr

e Graphics:plot, xset, driver, plot2d, xgrid, locate, plot3d, Graphics
e Ode solversnde, dassl, dassrt, odedc

e Optimization:optim, quapro, linpro, Imitool

¢ Interconnected dynamic systensicos

e Adding a C or Fortran routindink, fort, addinter, intersci

4.4 Nonlinear Calculation

Scilab has several powerful non-linear primitives for simulation or optimization.

4.4.1 Nonlinear Primitives

Scilab provides several facilities for nonlinear calculations.

Numerical simulation of systems of differential equations is made bgdleeprimitive. Many
solvers are available, mostly froodepack , for solving stiff or non-stiff systems. Implicit sys-
tems can be solved gass| . Itis also possible to solve systems with stopping time: integration
is performed until the state is crossing a given surface.c8eeanddassrt commands. There is
a number of optional arguments available for solving ode’s (tolerance parameters, jacobian, order
of approximation, time steps etc). Fade solvers, these parameters are set by the global variable
%ODEOPTIONS

Minimizing non linear functions is done thaptim function. Several algorithms (including
non differentiable optimization) are available. Codes are from INRi#&=lulopt library. Enter
help optim for more a more detailed description.
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4.4.2 Argument functions

Specific Scilab functions or C or Fortran routines can be used as an argument of some high-level
primitives (such a®de, optim , dassl ...). These fonctions are called argument functions or
externals. The calling sequence of this function or routine is imposed by the high-level primitive
which sets the argument of this function or routine.

For example the functiocostfunc is an argument of theptim primitive. Its calling
sequence must b, g,ind]=costfunc(x,ind) as imposed by theptim primitive. The
following non-linear primitives in Scilab need argument functions or subroutioés; optim ,
impl , dassl ,intg , odedc, fsolve . For problems where computation time is important, it
is recommended to use C or Fortran subroutines. Examples of such subroutines are given in the
directory SCIDIR/routines/default . See the README file there for more details.

When such a subroutine is written it must be linked to Scilab. This link operation can be done
dynamically by thdink command. It is also possible to introduce the code in a more permanent
manner by inserting it in a specific interface SCIDIR/routines/default and rebuild a
new Scilab by anake all command in the Scilab directory.

4.5 XWindow Dialog

It may be convenient to open a specific XWindow window for entering interactively parameters
inside a function or for a demo. This facility is possible thanks to e.g. the functiotiglog
x_choose , x_mdialog ,x_matrix andx_message . The demos which can be executed by
clicking on thedemo button provide simple examples of the use of these functions.
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Graphics

This section introduces graphics in Scilab.

5.1 The Graphics Window

It is possible to use several graphics winddalabGraphicx x being the number used for
the management of the windows, but at any time only one window is active. On the main Scilab
window the buttorGraphic Window x is used to manage the windows : x denotes the number
of the active window, and we can set (create), raise or delete the window numbered X : in particular
we can directly create the graphics window numbered 10. The execution of a plotting command
automatically creates a window if necessary.

We will see later that Scilab usegeaphics environment defining some parameters of
the plot, these parameters have default values and can be changed by the user; every graphics win-
dow has its specific context so the same plotting command van give different results on different
windows.

There are 4 buttons on the graphics window:

e 3D Rot. : for applying a rotation with the mouse to a 3D plot. This button is inhibited
for a 2D plot. For the help of manipulations (rotation with specific angles ...) the rotation
angles are given at the top of the window.

e 2D Zoom zooming on a 2D plot. This command can be recursively invoked. For a 3D plot
this button is not inhibited but it has no effect.

e UnZoom return to the initial plot (not to the plot corresponding to the previous zoom in
case of multiple zooms).

These 3 buttons affecting the plot in the window are not always in use; we will see later that
there are different choices for the underlying device and zoom and rotation need the record
of the plotting commands which is one of the possible choices (this is the default).

e File : this button opens different commands and menus.

The first one is simple Clear simply rubs out the window (without affecting the graphics
context of the window).

The commandPrint... opens a selection panel for printing. The printers are defined in
the main scilab scrippCIDIR/bin/scilab (obtained by “make all” from the origin file
SCIDIR/bin/scilab.g ).

70
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TheExport command opens a panel selection for getting a copy of the plot on a file with
a specified format (Postscript, Postscript-Latex, Xfig).

Thesave command directly saves the plot on a file with a specified name. This file can be
loaded later in Scilab for replotting.

TheClose is the same command than the previ@elete Graphic Window  of the
menu of the main window, but simply applied to its window (the graphic context is, of
course deleted).

5.2 The Media

There are different graphics devices in Scilab which can be used to send graphics to windows or
paper. The default for the output$ilabGraphicO  window .
The different drivers are:

e X11 : graphics driver for the X11 window system

e Rec: an X Window driver (X11) which also records all the graphic commands. This is the
default (required for the zoom and rotate).

e Wdp: an X11 driver without recorded graphics; the graphics are done on a pixmap and are
send to the graphic window with the commaxget("wshow") . The pixmap is cleared
with the commandset("wwpc")  or with the usual commanxbasc()

e Pos : graphics driver for Postscript printers

e Fig : graphics driver for the Xfig system

In the 3 first cases the 'implicit’ device is a graphics window (existing or created by the plot).
For the 2 last cases we will see later how to affect a specific device to the plot : a file where the
plot will be recorded in the Postscript or Xfig format.

The basic Scilab graphics commands are :

e driver : selects a graphic driver
The next 3 commands are specific of the X-drivers :

e Xxclear : clears one or more graphic windows; does not affect the graphics context of these
windows.

e Xxbasc : clears a graphic window and erase the recorded graphics; does not affect the graph-
ics context of the window.

e Xpause : a pause in milliseconds

e Xxselect :raises the current graphic window (for X-drivers)
e xclick : waits for a mouse click

e Xxbasr : redraws the plot of a graphic window

e xdel : deletes a graphic window (equivalent to tBlwse button
The following commands are specific of the Postscript and Xfig drivers :
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e Xinit : initializes a graphic device simply opens a graphics window for the X-drivers this
command is necessary for Postscript and Xfig drivers.

e xend : closes a graphic session (and the associated device).

In fact, the regular driver for a common useRec and there are special commands in order
to avoid a change of driver; in many cases, one can ignore the existence of drivers and use the
functionsxbasimp , xs2fig in order to send a graphic to a printer or in a file for iy
system. For example with :

-->driver(’Pos’)
-->Xinit("foo.ps’)
-->plot(1:10)
-->xend()
-->driver('Rec’)
-->plot(1:10)

-->xbasimp(0,’fool.ps’)

we get two identical Postscript files'foo.ps’ and’fool.ps.0’ (the appending O is the
number of the active window where the plot has been done).

The default for plotting is the superposition; this means that between 2 different plots one of
the 2 following command is neededbasc(window-number) which clears the window and
erase the recorded Scilab graphics command associated with the wividdew-number or
xclear ) which simply clears the window.

If you enlarge a graphic window, the commaxishsr(window-number) is executed by
Scilab. This command clears the graphic windaswmdow-number and replays the graphic
commands associated with it. One can call this function manually, in order to verify the associated
recorded graphics commands.

Any number of graphics windows can be created with buttons or with the commants
or xselect . The environment variable DISPLAY can be used to specify an X11 Display or one
can use the&init  function in order to open a graphic window on a specific display.

5.3 Global Parameters of a Plot

Graphics Context

Some parameters of the graphics are controlled by a graphic context ( for example the line thick-
ness) and others are controlled through graphics arguments of a plotting command. The graphics
context has a default definition and can be change by the comrsaihd : the command without
argumenti.exset() opens thescilab Toggles Panel and the user can changes the para-
meters by simple mouse clickings. We give here different parameters controlled by this command
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e xset : setgraphic context values.

(h-xset("font",fontid,fontsize) . fix the current font and its current size.
(i)-xset("mark",markid,marksize) . set the current mark and current mark size.
(ii)- xset("use color",flag) . change to color or gray plot according to the values
(1 or 0) offlag

(iv)-xset("colormap"”,cmap) : set the colormap as a m x 3 matrix. m is the number

of colors. Color number i is given as a 3-uple cmapli,1],cmapli,2], cmap]i,3] corresponding
respectively to Red, Green and Blue intensity between 0 and 1. Calling =stif)
shows the colormap with the indices of the colors.

(v)-xset("window",window-number) . sets the current window to the windawndow-number
and creates the window if it doesn’t exist.

(vi)-xset("wpos",x,y) . fixes the position of the upper left point of the graphic win-

dow.

Many other choices are done kget

-use of a pixmap : the plot can be directly displayed on the screen or executed on a pixmap
and then expose by the commaxskt("wshow") ; this is the usual way for animation
effect.

-logical function for drawing : this parameter can be changed for specific effects (superpos-
ition or adding or substracting of colors). Looking at the successive plots of the following
simple commands give an example of 2 possible effects of this parameter :

xset('default’);
plot3d();

plot3d();
xset("alufunction’,7);
xset('window’,0);
plot3d();
xset('default’);
plot3d();
xset('alufunction’,6);
xset('window’,0);
plot3d();

We have seen that some choices exist for the fonts and this choice can be extended by the
command:

e xlfont : toload a new family of fonts from the XWindow Manager
There exists the function “reciprocal” tset

e Xget :to getinformations about the current graphic context.
All the values of the parameters fixed kget can be obtained byget . An example :

-->pos=xget("wpos")
pos =
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! 105. 121. !

pos is the position of the upper left point of the graphic window.

Some Manipulations

Coordinates transforms:

e isoview :isometric scale without window change

allows an isometric scale in the window of previous plots without changing the window
size:

t=(0:0.1:2*%pi)’;
plot2d(sin(t),cos(t));
xbasc()

isoview(-1,1,-1,1);
plot2d(sin(t),cos(t),-1,/001");

e square :isometric scale with resizing the window

the window is resized according to the parameters of the command.
e scaling : scaling on data

e rotate : rotation

scaling androtate executes respectively an affine transform and a geometric rotation
of a 2-lines-matrix corresponding to tkiey) values of a set of points.

e Xgetech, xsetech . change of scale inside the graphic window

The current graphic scale can be fixed by a high level plot command. You may want to get
this parameter or to fix it directly : this is the role xfetech, xsetech . Xsetech
is a simple way to cut the window in differents parts for different plots :

t=(0:0.1:2*%pi)’;
xsetech([0.,0.,0.6,0.3],[-1,1,-1,1]);
plot2d(sin(t),cos(t));
xsetech([0.5,0.3,0.4,0.6],[-1,1,-1,1]);
plot2d(sin(t),cos(t));
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5.4 2D Plotting

5.4.1 Basic 2D Plotting

The simplest 2D plot iplot(X,y) orplot(y) :thisis the plot ofy as function ofx wherex
andy are 2 vectors; ik is missing, it is replaced by the vectt,...,size(y)) fyisa
matrix, its rows are plotted. There are optional arguments.

A first example is given by the following commands and one of the results is represented on
figure5.L

t=(0:0.05:1)’;

ct=cos(2*%pi*t);

/I plot the cosine

plot(t,ct);

I/l xset() opens the toggle panel and

/I some parameters can be changed with mouse clicks
/I given by commands for the demo here
xset("font",5,4);xset("thickness",3);

/I plot with captions for the axis and a title for the plot
/[ if a caption is empty the argument ’ ' is needed
plot(t,ct, Time’,’Cosine’,’'Simple Plot’);

/Il click on a color of the xset toggle panel and do the previous plot again
/I to get the title in the chosen color

10

08 o
0.6 o
04 4

02 4

02 4
-04 —
-06 —

-08 —

120 4 ]
0 01 02 03 04 05 06 07 08 09 10

Figure 5.1: First example of plotting

The generic 2D multiple plot is
plot2di(str,x,y,[style,strf,leg,rect,nax])
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e index ofplot2d :i=missing,1,2,3,4
For the different values af we have:
i=missing : piecewise linear plotting
i=1 : as previous with possible logarithmic scales
i=2 : piecewise constant drawing style
i=3 : vertical bars
i=4 : arrows style (e.g. ode in a phase space)

t=(1:0.1:8)";xset("font",2,3);
xsetech([0.,0.,0.5,0.5],[-1,1,-1,1]);
plot2d([t t],[1.5+0.2*sin(t) 2+cos(1)]);
xtitle('Plot2d’);

tittepage('Piecewise linear’);

I

xsetech([0.5,0.,0.5,0.5],[-1,1,-1,1]);
plot2d1(’oll’,t,[1.5+0.2*sin(t) 2+cos(t)]);
xtitle("Plot2d1);

tittepage('Logarithmic scale(s)’);

1

xsetech([0.,0.5,0.5,0.5],[-1,1,-1,1]);
plot2d2('onn’,t,[1.5+0.2*sin(t) 2+cos(t)]);
xtitle('Plot2d2’);

titlepage('Piecewise constant’);

I

xsetech([0.5,0.5,0.5,0.5],[-1,1,-1,1]);
plot2d3('onn’,t,[1.5+0.2*sin(t) 2+cos(t)]);
xtitle('Plot2d3’)

titlepage('Vertical bar plot’)
xset('default’)

e Parametestr : itis the string"abc"
str is empty ifi is missing.

a=e : means empty; the valuesfare not used; (The user must give a dummy value)to

a=0 : means one; the x-values are the same for all the curves
a=g : means general.

b=l : alogarithmic scale is used on the X-axis

c=| : alogarithmic scale is used on the Y-axis

-Parameters,y : two matrices of the same siZel,nc] (nc is the number of curves

andnl is the number of points of each curve).

For a single curve the vector can be row or colurptot2d(t’,cos(t)’) plot2d(t,cos(t))
are equivalent.

e Parametestyle :itis a real vector of sizél,nc) ;the style to use for curve jis defined
by size(j)  (when only one curve is drawstyle can specify the style and a position to

use for the caption).
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Figure 5.2: Different 2D plotting

x=0:0.1:2*%pi;
u=[-0.8+sin(x);-0.6+sin(x);-0.4+sin(x);-0.2+sin(x);sin(x)];
u=[u;0.2+sin(x);0.4+sin(x);0.6+sin(x);0.8+sin(X)[’;
/Istart trying the color with the 2 following lines
lIsty=[-9,-8,-7,-6,-5,-4,-3,-2,-1,0];
/lplot2d1(onn’x’,u,sty,"111"" " [0,-2,2*%pi,3],[2,10,2,10]);
plot2d1(’onn’,x’,u,...

[9,8,7,6,5,4,3,2,1,0],"011"," ",[0,-2,2*%pi,3],[2,10,2,10]);
x=0:0.2:2*%pi;
v=[1.4+sin(x);1.8+sin(x)]’;
xset("mark",1,5);
plot2d1(onn’,x’,v,[7,8],"011"," ",[0,-2,2*%pi,3],[2,10,2,10]);
xset('default’);

e Parametestrf :itis a string of length 3xyz" corresponding to :
x=1 : captions displayed

y=1 : the argumentect is used to specify the boundaries of the plot.
rect=[xmin,ymin,xmax,ymax]

y=2 : the boundaries of the plot are computed
y=0 : the current boundaries
z=1 : an axis is drawn and the number of tics can be specified bgdkeargument
z=2 : the plot is only surrounded by a box
e Parameteleg : itisthe string of the captions for the different plotted curves . This string
is composed of fields separated by @symbol: for examplémodule @phase” (see

example below). These strings are displayed under the plot with small segments recalling
the styles of the corresponding curves.
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Figure 5.3: Black and white plotting styles

e Parameterect : itisavector of 4 values specifying the boundaries of the q@dot=[xmin,ymin,xmax,y

e Parametenax :itis a vector [nx,Nx,ny,Ny] where nx (ny) is the number of subgrads on
the x (y) axis and Nx (Ny) is the number of graduations on the x (y) axis.

llcaptions for identifying the curves

/[controlling the boundaries of the plot and the tics on axes
x=-%pi:0.3:%pi;

y1=sin(x);y2=cos(X);y3=X;

X=[x;x:x]; Y=[yl,y2;y3];

plot2d1("gnn",X",Y’,[1 2 3],"111","captionl@caption2@caption3",...
[-3,-3,3,2],[2,20,5,5]);

For different plots the simple commands without any argument show a denmde2d3()

5.4.2 Captions and Presentation
e xgrid : adds a grid on a 2D graphic; the calling parameter is the number of the color.
o Xtitle . adds title above the plot and axis names on a 2D graphic

e titlepage : graphic title page in the middle of the plot

/IPresentation
x=-%pi:0.3:%pi;
yl:sin(X);y2=COS(X);y3=X;
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Figure 5.4: Box, captions and tics

X=[x;xx]; Y=[yl;y2;y3];

plot2d1("gnn",X’,Y’,[1 2 3],"111","captionl@caption2@caption3",...
[-3,-3,3,2],[2,20,2,5]);

xtitle(["General Title";"(with xtitle command)”],"x-axis title","y-axis tit
xgrid();

xclea(-2.7,1.5,1.5,1.5);

titlepage("Titlepage");

xstring(0.6,.45,"(with titlepage command)");

xstring(0.05,.7,["xstring command after";"xclea command”],0,1);

e plotframe : graphic frame with scaling and grid

We have seen that it is possible to control the tics on the axes, choose the size of the rectangle
for the plotand add a grid. This operation can be prepared once and then used for a sequence of
different plots. One of the most useful aspect is to get graduations by choosing the number of

graduations and getting rounded numbers.

rect=[-%pi,-1,%pi,1];

tics=[2,10,4,10];

plotframe(rect,tics,[%ot,%t],...

[Plot with grids and automatic bounds’,’angle’,'velocity’]);

e graduate : asimple tool for computing pretty axis graduations before a plot.
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General Title
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Figure 5.5: Grid, Title eraser and comments

5.4.3 Specialized 2D Plottings

e champ : vector field inR?

/ltry champ

x=[-1:0.1:1];y=x;u=ones(x);

fx=x.*.u";fy=u.*.y";

champ(x,y,fx,fy);

xset("font",2,3);

xtitle(['Vector field plot’;’(with champ command)’]);
/lwith the color (and a large stacksize)
x=[-1:0.004:1];y=x;u=0ones(x);

fx=x.*.u";fy=u.*.y’;

champl(x,y,fx,fy);

e fchamp : for a vector field inR? defined by a function. The same plot theimamp for a
vector field defined for example by a scilab program.

e fplot2d : 2D plotting of a curve described by a function. This function plays the same
role forplot2d than the previous fochamp.

e grayplot : 2D plot of a surface using gray levels; the surface being defined by the matrix
of the values for a grid.

e fgrayplot . the same than the previous for a surface defined by a function (scilab pro-
gram).

In fact these 2 functions can be replaced by a usual color plot with an appropriate colormap
where the 3 RGB components are the same.
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Vector field plot
(with champ command)
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Figure 5.6: Vector field in the plane

R=[1:256]/256;RGB=[R’ R’ R’;

xset(’colormap’,RGB);
deff([z]=surf(x,y)’,'z=-((abs(x)-1)**2+(abs(y)-1)**2));
fgrayplot(-1.8:0.02:1.8,-1.8:0.02:1.8,surf,"111",[-2,-2,2,2]);
xset('font’,2,3);

xtitle(["Grayplot";"(with fgrayplot command)"]);

/lthe same plot can be done with a “unique” given color
R=[1:256]/256;

G=0.1*ones(R);

RGB=[R" G’ GT7;

xset(’colormap’,RGB);
fgrayplot(-1.8:0.02:1.8,-1.8:0.02:1.8,surf,"111"[-2,-2,2,2]);

e errbar : creates a plot with error bars

5.4.4 Plotting Some Geometric Figures
Polylines Plotting

e Xsegs : draws a set of unconnected segments

e Xxrect : draws a single rectangle

e xfrect : fills a single rectangle

e xrects : fills or draws a set of rectangles
e Xxpoly : draws a polyline

xpolys

. draws a set of polylines
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Grayplot
(with fgrayplot command)

Figure 5.7: Gray plot with a gray colormap

xfpoly : fills a polygon

xfpolys : fills a set of polygons

xarrows : draws a set of unconnected arrows

xfrect : fills a single rectangle

xclea : erases a rectangle on a graphic window

Curves Plotting
e xarc : draws an ellipsis
e xfarc :fills an ellipsis

e xarcs : fills or draws a set of ellipsis

5.4.5 Writting by Plotting

e Xstring : draws a string or a matrix of strings
e Xstringl . computes a rectangle which surrounds a string
e Xstringb  : draws a string in a specified box

e xnumb : draws a set of numbers

We give now the sequence of the commands for obtaining the figLge
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/I initialize default environment variables
xset('default’);

xset("use color",0);

plot([1:10]);

xbasc()

xrect(0,1,3,1)

xfrect(3.1,1,3,1)
xstring(0.5,0.5,"xrect(0,1,3,1)")
xstring(4.,0.5,"xfrect(3.1,1,3,1)")
xset("alufunction”,6)
xstring(4.,0.5,"xfrect(3.1,1,3,1)")
xset("alufunction”,3)

xv=[0 1 2 3 4]

yv=[2.5 1.5 1.8 1.3 2.5]
xpoly(xv,yv,"lines",1)
xstring(0.5,2.,"xpoly(xv,yv,™lines™,1)")

xa=[5 6 6 77 8 89 9 5]

ya=[2.5 15 15 1.8 1.8 1.3 1.3 2.5 2.5 2.5]
xarrows(xa,ya)

xstring(5.5,2.,"xarrows(xa,ya)")
xarc(0.,5.,4.,2.,0.,64*300.)
xstring(0.5,4,"xarc(0.,5.,4.,2.,0.,64*300.)")
xfarc(5.,5.,4.,2.,0.,64*360.)
/Ixset("alufunction”,6)

xclea(5.6,4.4,2.8,0.8);

xstring(5.8,4.,"xfarc and then xclea")
IIxset("alufunction”,3)
xstring(0.,4.5,"WRITING-BY-XSTRING()",-22.5)
xnumb([5.5 6.2 6.9],[5.5 5.5 5.5],[3 14 15],1)
isoview(0,12,0,12)
xarc(-5.,12.,5.,5.,0.,64*360.)
xstring(-4.5,9.25,"isoview + xarc",0.)
xset("font",4,5)

A=[" 1" " 2" " 3t o4 5" e%"e8" " 17.2" " 9";
xstring(7.,10.,A);

rect=xstringl(7,10,A);
xrect(rect(1),rect(2),rect(3),rect(4));

e have seen that some parameters of the graphics are controlled by a graphic context ( for
example the line thickness) and others are controlled through graphics arguments .

e xset :to set graphic context values. Some examples of the ussedf :

(i)-xset("use color",flag) changes to color or gray plot according to the values (1
or 0) offlag
(i)- xset("window",window-number) sets the current window to the windawndow-number

and creates the window if it doesn’t exist.
(ii)- xset("wpos",x,y) fixes the position of the upper left point of the graphic window.
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isoview + xarc

poly(xv,yv,"lines",

A

Figure 5.8: Geometric Graphics and Comments
The choice of the font, the width and height of the window, the driver... can be done by
xset .

xget : to get informations about the current graphic context. All the values of the paramet-
ers fixed byxset can be obtained byget .

xlfont  : to load a new family of fonts from the XWindow Manager

5.4.6 Some Classical Graphics for Automatic Control

bode : plot magnitude and phase of the frequency response of a linear system.
gainplot : same as bode but plots only the magnitude of the frequency response.

nyquist : plot of imaginary part versus real part of the frequency response of a linear
system.

m_circle : M-circle plot used with nyquist plot.

chart : plot the Nichols’chart

black : plot the Black’s diagram (Nichols’chart) for a linear system.
evans : plot the Evans root locus for a linear system.

plzr : pole-zero plot of the linear system

s=poly(0,’s’);
h=syslin('c’,(s"2+2*0.9*10*s+100)/(s"2+2*0.3*10.1*s+102.01));
hl=h*syslin(’c’,(s"2+2*0.1*15.1*s+228.01)/(s"2+2*0.9*15*s+225));
//lbode

xsetech([0.,0.,0.5,0.5],[-1,1,-1,1]);
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gainplot([h1;h],0.01,100);

/Inyquist
xsetech([0.5,0.,0.5,0.5],[-1,1,-1,1]);
nyquist([h1;h])

/lchart and black
xsetech([0.,0.5,0.5,0.5],[-1,1,-1,1]);
black([h1;h],0.01,100,[’h1’;’h])
chart([-8 -6 -4],[80 120],list(1,0));
/llevans
xsetech([0.5,0.5,0.5,0.5],[-1,1,-1,1]);
H=syslin(’c’,352*poly(-5,’s")/poly([0,0,2000,200,25,1],’s’,’c"));
evans(H,100)

- Nyaquist plot
10,_db _ IE(i*pi* ) Yaus plo

\ 10 e

05

5
o LI YA 51 \\\
00 (2.4 9 ,'\
5 \55 \L.1
-05 L /

\’1'8\ /}é\,@“,,/’m

-10 v 10
Hz Re(h(pi* pi*f))
-15 -15
2 1 0 1 2 0 1 2 3
10 10 10 10 10

{5, ads Evans root locus

-101

-15

-400__ El -300
=== 2.3db curve

T L Tt -12 T T T T T T :
-200 -100 0 2 deisianiet®e  Qopenfioppeides  ©

Figure 5.9: Some Plots in Automatic Control

5.4.7 Miscellaneous

e edit_curv  :interactive graphic curve editor.

e gr_menu : simple interactive graphic editor. It is a Xfig-like simple editor with a flexible
use for a nice presentation of graphics : the user can superpose the elengnts@fiu
and use it with the usual possibilities xget .

e |locate :to getthe coordinates of one or more points selected with the mouse on a graphic
window.
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Figure 5.10: Presentation of Plots

5.5 3D Plotting

5.5.1 Generic 3D Plotting

e plot3d : 3D plotting of a matrix of points : plot3d(x,y,z) with X,y,z 3 matrices, z being the
values for the points with coordinates x,y. Other arguments are optional

e plot3dl : 3d plotting of a matrix of points with gray levels

e fplot3d : 3d plotting of a surface described by a function; z is given by an external
z=f(x,y)

e fplot3d1l : 3d plotting of a surface described by a function with gray levels

5.5.2 Specialized 3D Plotting

e param3d : plots parametric curves in 3d space

e contour : level curves for a 3d function given by a matrix

grayplotl0 : gray level on a 2d plot

fcontourlO : level curves for a 3d function given by a function

hist3d : 3d histogram

secto3d : conversion of a surface description from sector to plot3d compatible data

eval3d : evaluates a function on a regular grid. (see also feval)
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5.5.3 Mixing 2D and 3D graphics

When one uses 3D plotting function, default graphic boundaries are fixed, Bt ifione wants
to use graphic primitives to add informations on 3D graphics gé@n3d function can be used
to convert 3D coordinates to 2D-graphics coordinates. The figuté illustrates this feature.

Xinit('d7-10.ps");
r=(%pi):-0.01:0;x=r.*cos(10*r);y=r.*sin(10*r);
deff("[z]=surf(x,y)","z=sin(X)*cos(y)");
t=%pi*(-10:10)/10;
fplot3d(t,t,surf,35,45,"X@Y@Z2",[-3,2,3));
z=sin(x).*cos(y);

[x1,y1l]=geom3d(x,y,z);
xpoly(x1,y1,"lines");
[x1,y1l]=geom3d([0,0],[0,0],[5,0]);
xsegs(x1,yl);

xstring(x1(1),y1(1),” The point (0,0,0));

The point (0,0,0)

Figure 5.11: 2D and 3D plot

5.5.4 Sub-windows
It is also possible to make multiple plotting in the same graphic window (Figur3.

Xinit('d7-8.ps");
t=(0:.05:1)’;st=sin(2*%pi*t);
xsetech([0,0,1,0.5)]);
plot2d2("onn",t,st);
xsetech([0,0.5,1,0.5)]);
plot2d3("onn",t,st);
xsetech([0,0,1,1]);
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Figure 5.12: Use of xsetech

5.5.5 A Set of Figures

In this next example we give a brief summary of different plotting functions for 2D or 3D graph-
ics. The figure 5.13is obtained and inserted in this document with the help of the command
Blatexprs

/[some examples
str_I=list();
I
str_I(1)=['plot3d1();’;
title=["plot3d1 : z=sin(x)*cos(y)"];;
title(title,” " ");];
I
str_I(2)=['contour();’;
title=["contour "];’;
title(title,” " ");];
I
str_I(3)=['champ();’;
title=["champ "];’;
xtitle(title,” ., );';
I
str_I(4)=[t=%pi*(-10:10)/10;’;
deff("[z]=surf(x,y)",”z=sin(x)*cos(y)");’;
'rect=[-%pi,%pi,-%pi,%pi,-5,1];;
'z=fevall(t,t,surf);’;
‘contour(t,t,z,10,35,45,"X@Y@Z",[1,1,0],rect,-5);;
‘plot3d(t,t,z,35,45,"X@Y@Z",[2,1,3],rect);’;
‘title=["plot3d and contour ";’;
title(title,” " ");];
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I
for i=1:4 xinit(d7all.ps’+string(i)’);
execstr(str_I(i)),xend();end

5.6 Printing and Inserting Scilab Graphics in IATEX

We describe here the use of programs (Unix shells) for handling Scilab graphics and printing the
results. These programs are located in the sub-diretioryof Scilab.

5.6.1 Window to Paper

The simplest command to get a paper copy of a plot is to click orptive  button of the
ScilabGraphic window.

5.6.2 Creating a Postscript File

We have seen at the beginning of this chapter that the simplest way to get a Postscript file contain-
ing a Scilab plot is :

-->driver('Pos’)
-->xinit(*foo.ps’)
-->plot3d1();
-->xend()
-->driver('Rec’)
-->plot3d1()

-->xbasimp(0,'fool.ps’)

The Postscript filesf¢o.ps  orfool.ps ) generated by Scilab cannot be directly sent to
a Postscript printer, they need a preamble. Therefore, printing is done through the use of Unix
scripts or programs which are provided with Scilab. The progBdpn is used to print a set of
Scilab Graphics on a single sheet of paper and is used as follows :

Blpr string-title filel.ps file2.ps > result
You can then print the fileesult  with the classical Unix command :
Ipr -Pprinter-name result

or use thgghostview  Postscript interpreter on your Unix workstation to see the result.
You can avoid the fileesult  with a pipe, replacing result by the printing comman{
lpr or the previewing commanid ghostview -
The best result (best sized figures) is obtained when printing two pictures on a single page.
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Figure 5.13: Group of figures
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5.6.3 Including a Postscript File in ETEX

TheBlatexpr Unix shell and the progranatexpr2 andBlatexprs are provided in order
to help inserting Scilab graphics IfiTEX.

Taking the previous filéoo.ps and typing the following statement under a Unix shell :
Blatexpr 1.0 1.0 foo.ps

creates two filegoo.epsf  andfoo.tex . The original Postscript file is left unchanged. To
include the figure in aAlEX document you should insert the followingTEX code in your
IATEX document :

\input foo.tex
\dessin{The caption of your picture{The-label}

You can also see your figure by using the Postscript previgivestview

The progranBlatexprs  does the same thing: it is used to insert a set of Postscript figures
in one BTpXpicture.

In the following example, we begin by using the Postscript drives and then initialize
successively 4 Postscript filégl.ps, ..., fig4.ps for 4 different plots and at the end
return to the driveRec (X11 driver with record).

-->//multiple Postscript files for Latex

-->driver(’Pos")

-->t=%pi*(-10:10)/10;

-->plot3d1(t,t,sin(t)*cos(t),35,45,’ X@Y@Z',[2,2,4]);

-->xend()

-->contour(1:5,1:10,rand(5,10),5);

-->xend()

-->champ(1:10,1:10,rand(10,10),rand(10,10));

-->xend()
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-->t=%pi*(-10:10)/10;
-->deff('[z]=surf(x,y)’,’z=sin(x)*cos(y)’);
-->rect=[-%pi,%pi,-%pi,%pi,-5,1];
-->z=feval(t,t,surf);
-->contour(t,t,z,10,35,45,’X@Y@2Z',[1,1,0],rect,-5);
-->plot3d(t,t,2,35,45,’ X@Y@2',[2,1,3],rect);
-->title=["plot3d and contour ’J;

-->xtitle(title,” *," );

-->xend()

-->driver('Rec’)

Then we execute the command :
Blatexprs multi figl.ps fig2.ps fig3.ps fig4.ps

and we get 2 filesnulti.tex andmulti.ps  and you can include the result inAgX source
file by :

\input multi.tex
\dessin{The caption of your picture{The-label}

Note that the second lirgessin... is absolutely necessary and you have of course to give
the absolute path for the input file if you are working in another directory (see below). The file
multi.tex is only the definition of the commartdkssin  with 2 parameters : the caption and
the label; the commandessin can be used with one or two empty argumehts if you
want to avoid the caption or the label.

The Postscipt files are inserted ATEX with the help of thespecial command and with
a syntax that works with thdvips program.

The progranBlatexpr2 is used when you want two pictures side by side.

Blatexpr2 Fileres filel.ps file2.ps

It is sometimes convenient to have a maifgX document in a directory and to store all the
figures in a subdirectory. The proper way to insert a picture file in the main document, when the
picture is stored in the subdirectdfigures , is the following :

\def\Figdir{figures/} % My figures are in the {\tt figures/ } subdirectory.
\input{figures/fig.tex}
\dessin{The caption of you picturel{The-label}
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plot2d and xgrid macro histplot : Histogram plot
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Figure 5.14: Blatexp2 Example

The declarationdef\Figdir{figures/} is used twice, first to find the fileg.tex
(when you uséatex ), and second to produce a correct pathname fospleeial IATEX com-
mand found irfig.tex . (used at dvips level).

-WARNING : the default driver ifRRec, i.e. all the graphic commands are recorded, one record
corresponding to one window. Théasc() command erases the plot on the active window
and all the records corresponding to this window. Thear button has the same effect; the
xclear command erases the plot but the record is preserved. So you almost never need to use
the xbasc() orclear commands. If you use such a command and if you re-do a plot you
may have a surprising result (if you forget that the environment is wiped out); the scale only is
preserved and so you may have the “window-plot” and the “paper-plot” completely different.

5.6.4 Postscript by Using Xfig

Another useful way to get a Postscript file for a plot is to use Xfig. By the simple command
xs2fig(active-window-number,file-name) you get a file in Xfig syntax.

This command needs the use of the driRerc.

The window ScilabGraphic0 being active, if you enter :

-->t=-%pi:0.3:%pi;
-->plot3d1(t,t,sin(t)*cos(t),35,45,'X@Y@Z',[2,2,4]);

-->xs2fig(0,'"demo.fig’);

you get the filedemo.fig  which contains the plot of window 0.
Then you can use Xfig and after the modifications you want, get a Postscript file that you can
insert in aATEX file. The following figure is the result of Xfig after adding some comments.

5.6.5 Encapsulated Postscript Files

As it was said before, the use Blatexpr creates 2 files : aex file to be inserted in the
IATEX file and a.epsf  file.
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LOCAL MAX

Figure 5.15: Encapsulated Postscript by Using Xfig
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It is possible to get the encapsulated Postscript file correspondingp® dile by using the

commandBEpsf .
Notice that theepsf file generated blatexpr is not an encapsulated Postscript file : it
has no bounding box arBEpsf generates aps file which is an encapsulated Postscript file

with a bounding box.
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Interfacing C or Fortran programs

Scilab can be easily interfaced with Fortran or C programs. This is useful to have faster code or
to use specific numerical code for, e.g., the simulation or optimization of user defined systems,
or specific Lapack onetlib  modules. In fact, interfacing numerical code appears necessary in
most nontrivial applications. For interfacing C or Fortran programs, it is of course necessary to
link these programs with Scilab. This can be done by a dynamic (incremental) link or by creating
a new executable code for Scilab. For executing a C or Fortran program linked with Scilab, its
input parameters must be given specific values transferred from Scilab and its output parameters
must be transformed into Scilab variables. Itis also possible that a linked program is automatically
executed by a high-level primitive: for instance Scitadte function can integrate the differential
equationi = f(t, z) with a rhs functionf defined as a C or Fortran program which is dynamically
linked to Scilab (seé.4.2.

The simplest way to call external programs is to uselitiie  primitive (which dynamically
links the user's program with Scilab) and then to interactively call the linked routin@rby
primitive which transmits Scilab variables (matrices or strings) to the linked program and trans-
forms back the output parameters into Scilab variables. Note that ode/dae solvers and non linear
optimization primitives can be directly used with C or Fortran user-defined programs dynamically
linked(see6.1.]). .

An other way to add C or Fortran code to Scilab is by building an interface program. The inter-
face program can be written by the user following the examples given motiimes/examples
directory. This interface program is dynamically linked to Scilab byatidinter command.

The interface program can also be generatethtsrsci . Intersci builds the interface
program from adesc file which describes both the C or Fortran program(s) to be used and the
name and parameters of the corresponding Scilab function(s).

Finally it is possible to add a permanent new primitive to Scilab by building an interface
program as above and making a new executable code for Scilab. This is done by updating the
fundef file. In this case, the interface program madergrsci should be given a specific
name (e.g. the default nam@atus2 ) and a number. The fildefault/fundef should also be
updated as done bgtersci . A new executable code is generated by typing “make all” in the
main Scilab directory.

6.1 Using dynamic link

Several simple examples of dynamic link are given in the direcgamples/link-examples
In this section, we briefly describe how to call a dynamically linked program.

96
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6.1.1 Dynamic link

The commandink(’path/pgm.o’,’pgm’,flag) links the compiled progranpgm to
Scilab. Herepgm.o is an object file located in thpath directory andpgmis an entry point
(program name) in the filpgm.o (An object file can have several entry points: to link them, use
a vector of character strings such[ggym1’,’pgm2’] ).

flag should be settdC’ for a C-coded program and t®’ for a Fortran subroutine!R’
is the default flag and can be omitted).

If the link operation is OK, scilab returns an integeassociated with this linked program. To
undo the link entealink(n)

The command_link('pgm’) returns true ifpgmis currently linked to Scilab and false if
not.
Here is a example, with the Fortran BLAfaxpy subroutine used in Scilab:

-->n=link(SCI+'/routines/calelm/daxpy.o’,'daxpy’)

linking files /usr/locall/lib/scilab-2.4/routines/calelm/daxpy.o
to create a shared executable.

Linking daxpy (in fact daxpy_ )

Link done

n =

0.

-->c_link("daxpy’)
ans =

T
-->ulink(n)

-->C_link('daxpy’)
ans =

F

For more details, entdrelp link

6.1.2 Calling a dynamically linked program

Thefort function can be used to call a dynamically linked program. Consider for example the
daxpy Fortran routine. It performs the simple vector operagieg+a*x or, to be more specific,
y(1)=y(1)+a*x(1), y(1+incy)=y(1+incy)+a*x(1+incx),... y(1+n*incy)=y(1+n*incy)+

wherey andx are two real vectors. The calling sequencedaxpy is as follows:

subroutine daxpy(n,a,x,incx,y,incy)
To calldaxpy from Scilab we must use a syntax as follows:

[y1,y2,y3,...]=fort(daxpy’, inputs description, 'out’, outputs description)
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Hereinputs description is a set of parameters

x1,p1,t1  ,x2,p2,t2 ,x3,p3,t3
wherexi is the Scilab variable (real vector or matrix) sentdexpy , pi is the position number
of this variable in the calling sequence a@dxpy andti is the type ofxi in daxpy (=1
t="r t="d’ stands for integer, real or double).
outputs description is a set of parameters

[r1,c1],pl,t1 ,[r2,c2],p2,t2 ,[r3,c3],p3,t3
which describes each output variabjg,ci] is the 2 x 1 integer vector giving the number of
rows and columns of the ith output varialyle. pi andti are as for input variables (they can be
omitted if a variable is both input and output).

We see that the argumentsfoft divided into four groups. The first argumeiaxpy’
is the name of the called subroutine. The argumeut  divides the remaining arguments into
two groups. The group of arguments betwataxpy’ and’out’ s the list of input arguments,
their positions in the call talaxpy , and their data type. The group of arguments to the right of
‘out’” are the dimensions of the output variables, their positions in the cddxpy , and their
data type. The possible data types are real, integer, and double precision which are indicated,

respectively, by the strings  ,’i" ,and'd’ . Here we calculatg=y+a*x by a call todaxpy
(assuming that thenk command has been done). We have six input variatiles, x2=a,
x3=x, x4=incx, x5=y, x6=incy . Variablesx1, x4 andx6 are integers and variables

x2, x3, x5 are double. There is one output variaple=y at positionpl=5. To simplify, we
assume here thatandy have the same length and we takex=incy=1

-->a=3;
-->x=[1,2,3,4];
-->y=[1,1,1,1];
-->incx=1;incy=1;
-->n=size(X,”);
-->y=fort('daxpy’,...
n,1,7,...
a2,'d,...
x,3,'d’,...
incx,4,'1',...
y,5,'d,...

incy,6,'1,...

[1,n],5,d%);

! 4. 7. 10. 13. !

(Sincey is both input and output parameter, we could also use the simplified dypmtax,’out’,5)
instead offort(...,’out’[1,n],5,'d") ).
The same example with the C functidaxpy (from CBLAS):
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int daxpy(int *n, double *da, double *dx, int *incx, double *dy, int *incy)

-->link('daxpy.o’,’daxpy’,'C’)

linking files daxpy.o to create a shared executable
Linking daxpy (in fact daxpy)

Link done

ans =

1.

-->y=fort('daxpy’,...
n,a1,,...
a,2,’'d,...
x,3,'d’,...
incx,4,'1,...
y,5,'d,...
incy,6,'1,...

out',...
[1.n],5,dY);

-->y

! 4. 7. 10. 13. !

The routines which are linked to Scilab can also access internal Scilab variables: see the
examples in given in thexamples/links directory.

6.2 Interface programs

6.2.1 Building an interface program

Examples of interface programs are given in the direcexgmples/addinter-examples
The two filestemplate.c  andtemplate.f  are skeletons of interface programs.

e The fileExamplc.c is a C interface for the functiofoubare2c  which is defined in the
file src/foubare2c.c . This interface can be tested with the Scilab sdeigamplc.sce

e ThefileExamplf.f isa Fortran interface for the functidaubare2f whichis defined in
the filesrc/foubare2f.f . This interface can be tested with the Scilab sdgxamplc.sce

The interface programs use a set of C or Fortran routines which should be used to build the in-
terface program. The simplest way to learn how to build an interface program is to customize

the previous skeletons files and to look at the examples provided in this directory. An interface

program defines a set of Scilab functions and the calls to the corresponding numerical programs.
Note that a unique interface program can be used to interface an arbitrary (but 1883 thahber

of functions.

The functions used to build an interface are Fortran subroutines when the interface is written in

Fortran and are coded as C macros (definestack-c.h ) when the interface is coded in C.

The main functions are as follows:
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e CheckRhs(minrhs, maxrhs)
CheckLhs(minlhs, maxlhs)

FunctionCheckRhs is used to check that the Scilab function is called with
minrhs <= Rhs <= maxrhs . FunctionCheckLhs is used to check that the expec-

ted return values are in the rangeninlhs <= Lhs <= maxlhs . (Usually one has
minlhs=1 since a Scilab function can be always be called with less lhs arguments than
expected).

e GetRhsVar(k,ct,mk,nk,IKk)

Note thatk (integer) andct (string) are inputs andhk,nk andlk (integers) are outputs

of GetRhsVar . This function defines the typet() of input variable numberek, i.e. the

kth input variable in the calling sequence of the Scilab function. Therplajnk gives the
dimensions (number of rows and columns) of variable numbkrédt is a matrix. If it

is a chainmk*nk is its length. Ik is the adress of variable numberedn Scilab internal
stack. The type of variable numbks ct , should be set tod’, 'r’, T’ or’c’

which stands for double, float (real), integer or character respectively. The interface should
call function GetRhsVar for each of the rhs variables of the Scilab function wktHi,

k=2,..., k=Rhs . Note that if the Scilab argument doesn’'t match the requested type
then Scilab enters an error function and returns from the interface function.

e CreateVar(k,ct,mk,nk,Ik)

Herek,ct,mk,nk  are inputs ofCreateVar andlk is an output ofCreateVar . The
parameters are as above. Variable numbérégicreated in Scilab internal satck at adress
Ik . When callingCreateVar , k must be greater thaRhs i.e. k=Rhs+1, k=Rhs+2,

. If due to memory lack, the argument can’t be created, then a Scilab error function is
called and the interface function returns.

e CreateVarFromPtr(k,ct,mk,nk,Ik)

Herek,ct,mk,nk,lk are all inputs oCreateVarFromPtr  andlk is pointer created

by a call to a C function. This function is used when a C object was created inside the
interfaced function and a Scilab object is to be created using a pointer to this C object
(see functionintfce2c  in file examples/addinter-examples/Testc.c ). The
functionFreePtr should be used to free the pointer.

Once the variables have been processedsbyRhsVar or created byCreateVar , they
are given values by calling one or several numerical routine. The call to the numerical routine
is done in such a way that each argument of the routine points to the corresponding Scilab vari-
able (see example below). Character, integer, real, double type variables are#tkthéresp.
istk, sstk, stk ) Scilab internal stack at the adresdks's returned byGetRhsVar or
CreateVar

Then they are returned to Scilab as lhs variables (this is done by furititithnsVar ). The
interface should define how the lhs (output) variables are numbered. This is done by the global
variableLhsVar . For instance

Lhsvar(1) = 5;
Lhsvar(2) = 3;
Lhsvar(3) = 1;
Lhsvar(4) = 2;

PutLhsVar();
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means that the Scilab function has at most 4 output parameters which are variables numbered
k=5, k=3, k=1, k=2 respectively.

The functionssciprint(amessage) andError(k)  are used for managing messages
and errors.

Other useful functions which can be used are the following.
¢ ReadMatrix(aname,m,n,w)

This function reads a matrix in Scilab internal staakame is a character string, name of a
Scilab matrix. Outputs are integersn andw, the entries of the matrix orderedlumnwise
wis a copy of the Scilab variable calleshame.

¢ ReadString(aname,n,w)
This function reads a string in Scilab internal stagks the length of the string.

e GetMatrixptr(aname,m,n,l)
This function returns the dimensions, n and the addreds of Scilab variableaname.

The Fortran functions have the same syntax and return logical values.

6.2.2 Example

The following interface is taken from the examples in éh@mples/addinter-examples
directory. The function to be interfaced has the following calling sequence:

int foubare2c (char *ch, int *a, int *ia, float *b, int *ib,
double *c, int *mc, int *nc, double *d, double *w,
int *err));

The associated Scilab function is:
function [yl1,y2,y3,y4,y5]=foobar(x1,x2,x3,x4)

wherex1 is a character string, an®, x3, x4 are matrices which, in the called C function,
foubare2c are respectively integer, real and double arrays.

The interface program is the following:

int intsfoubare(fname)
char *fname;
{
int i1, i2;
static int ierr;
static int 11, ml, nl, m2, n2, 12, m3, n3, 13, m4, n4, 14, I5, I6;
static int minlhs=1, minrhs=4, maxlhs=5, maxrhs=4;

Nbvars = 0;

CheckRhs(minrhs,maxrhs) ;
CheckLhs(minlhs,maxlhs) ;

GetRhsVar(1, "c", &ml, &nl, &l1);
GetRhsVar(2, ", &m2, &n2, &l2);
GetRhsVar(3, "r', &m3, &n3, &I3);
GetRhsVar(4, "d", &m4, &n4, &l4);

CreateVar(s, "d", &m4, &n4, &I5);
CreateVar(6, "d", &m4, &n4, &I6);
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i1
i2

n2 * m2;
n3 * m3;

foubare2c(cstk(11), istk(12), &i1, sstk(I3), &i2, stk(l4),
&m4, &n4, stk(I5),stk(I6), &ierr);

if (ierr > 0)
{
sciprint(“Internal Error");
Error(999);
return O;

}

LhsVar(1)
LhsVar(2)
LhsVar(3)
LhsVar(4)
LhsVar(5) =
PutLhsVar();
return O;

}

static TabF Tab[]={
{intsfoubare, "foobar"}

b

int C2F(foobar)()
{

5;
4;
3;
2;
1

Rhs = Max(0, Rhs);
(*(Tab[Fin-1].f))(Tab[Fin-1].name);
return O;

}

Note that the last part of the interface program should contain in the TatlE the pair =
(name of the interface program, name of the associated Scilab function). If several functions are
interfaced in the interface a pair of names should be given for each function. The entrypoint
foobar is used by the dynamic link commaaddinter

6.2.3 addinter command

Once the interface program is written, it must be compiled to produce an object file. It is then
linked to Scilab by the addinter command.

The syntax of addinter is the following:

addinter([‘interface.o’, ’userfiles.o’],’entrypt’,['scifcts’])

Hereinterface.o is the object file of the interfacayserfiles.o is the set of user’s
routines to be linkedgntrypt is the entry point of the interface routine and ’scifcts’ is the set of
Scilab functions to be interfaced.

In the previous exampladdinter  can be called as follows:

addinter([Examplc.o’,'foubare2c.o’],’ foobar’,'foubare’);

6.3 Intersci

Intersci is a program for building an interface file between Scilab and Fortran subroutines or C
functions. This interface describes both the routine called and the associated Scilab function. The
interface is automatically generated from a description file vd#sc suffix.
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<Scilab function nante <function arguments
<Scilab variable- <Scilab type- <possible arguments

<Fortran subroutine nane <subroutine arguments
<Fortran argument- <Fortran type>

out <type> <formal output names
<formal output name <variable>
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Table 6.1: Description of a pair of Scilab function and Fortran subroutine

6.3.1 Using Intersci

In the following, we will only consider Fortran subroutine interfacing. The process is nearly the
same for C functions (se®3.1).

To use Intersci execute the command:
intersci <interface namg
where<interface namg.desc is the file describing the interface.

Theintersci script file is located in the directory SCIDIR/bin.

Then the interface file<interface name.f is created. A Scilab script filesce is also
created. This file, with appropriate changes, can be used to link the interface with Scilab.

The file <interface name.desc is a sequence of descriptions of pairs formed by the Scilab
function and the corresponding Fortran subroutine (see €afje
Each description is made of three parts:

e description of Scilab function and its arguments
¢ description of Fortran subroutine and its arguments

¢ description of the output of Scilab function.

Description of Scilab function The first line of the description is composed by the name of the
Scilab function followed by its input arguments.

The next lines describe Scilab variables: the input arguments and the outputs of the Scilab
function, together with the arguments of the Fortran subprogram with wyqré& (for which
memory must be allocated). It is an error not to describe such arguments.

The description of a Scilab variable begins by its name, then its type followed by possible
informations depending on the type.

Types of Scilab variables are:

any any type: only used for an input argument of Scilab function.
column column vector: must be followed by its dimension.

list list: must be followed by the name of the list)ist name>. This name must correspond to a
file <list name>.list ~ which describes the structure of the list ($c2.1).
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matrix matrix: must be followed by its two dimensions.

polynom polynomial: must be followed by its dimension (size) and the name of the unknown.
row row vector: must be followed by its dimension.

scalar scalar.

string character string: must be followed by its dimension (length).

vector row or column vector: must be followed by its dimension.

work working array: must be followed by its dimension. It must not correspond to an input
argument or to the output of the Scilab function.

A blank line and only one ends this description.

Optional input arguments  Optional arguments are defined as follows:

e [c val] . This means that is an optional argument with default valwval . val
can be a scalar: e.gc 10] , an array: e.g. [c (4)/1,2,3,4]] or a chain: e.g.
[c pipo]

e {b xx} . This means thab is an optional argument. If not found, one looks for in
current existing Scialb variables.

Description of Fortran subroutine  The first line of the description is composed by the name of
the Fortran subroutine followed by its arguments.

The next lines describe Fortran variables: the arguments of the Fortran subroutine.

The description of a Fortran variable is made of its name and its type. Most Fortran variables
correspond to Scilab variables (except for dimensionsgs&é and must have the same name as
the corresponding Scilab variable.

Types of Fortran variables are:
char character array.
double double precision variable.
int integer variable.
real real variable.
Other types types also exist, that are called “external” type$ S

A blank line and only one ends this description.

Description of the output of Scilab function The first line of this description must begin by the
word out followed by the type of Scilab output.

Types of output are:
empty the Scilab function returns nothing.

list a Scilab list: must be followed by the names of Scilab variables which form the list.
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sequencea Scilab sequence: must be followed by the names of Scilab variables elements of the
sequence. This is the usual case.

This first line must be followed by other lines corresponding to output type conversion. This
is the case when an output variable is also an input variable with different Scilab type: for instance
an input column vector becomes an output row vector. The line which describes this conversion
begins by the name of Scilab output variable followed by the name of the corresponding Scilab
input variable. Seé.3.1as an example.

A line beginning with a star*” ends the description of a pair of Scilab function and Fortran
subroutine. This line is compulsory even if it is the end of the file. Do not forget to end the file by
a carriage return.

Dimensions of non scalar variables When defining non scalar Scilab variables (vectors, matrices,
polynomials and character strings) dimensions must be given. There are a few ways to do that:

e |tis possible to give the dimension as an integer G&el).

e The dimension can be the dimension of an input argument of Scilab function. This dimen-
sion is then denoted by a formal name (82 1).

e The dimension can be defined as an output of the Fortran subroutine. This means that
the memory for the corresponding variable is allocated by the Fortran subroutine. The
corresponding Fortran variable must necessary have an external tyfe3sSesd6.3.1).

Intersci is not able to treat the case where the dimension is an algebraic expression of other
dimensions. A Scilab variable corresponding to this value must defined.

Fortran variables with external type External types are used when the dimension of the For-
tran variable is unknown when calling the Fortran subroutine and when its memory size is alloc-
ated in this subroutine. This dimension must be an output of the Fortran subroutine. In fact, this
will typically happen when we want to interface a C function in which memory is dynamically
allocated.

Existing external types:

cchar character string allocated by a C function to be copied into the corresponding Scilab vari-
able.

ccharf the same aschar but the C character string is freed after the copy.

cdouble C double array allocated by a C function to be copied into the corresponding Scilab
variable.

cdoublef the same asdouble but the C double array is freed after the copy.
cint C integer array allocated by a C function to be copied into the corresponding Scilab variable.

cintf the same asint but the C integer array is freed after the copy.

In fact, the name of an external type corresponds to the name of a C function. This C function
has three arguments: the dimension of the variable, an input pointer and an output pointer.
For instance, below is the code for external tgpef
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<comment on the variable element of theslist
<name of the variable element of liskctype> <possible arguments
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Table 6.2: Description of a variable element of a list

#include "../machine.h"
/* ip is a pointer to a Fortran variable coming from SCILAB
which is itself a pointer to an array of n integers typically
coming from a C function
cintf converts this integer array into a double array in op
moreover, pointer ip is freed */

void C2F(cintf)(n,ip,op)
int *n;
int *ip(];
double *op;
{ . .
int i;
for (i = 0; i < *n; i++)
op[i]=(double)(*ip)[il;
free((char *)(*ip));
}

For the meaning ofinclude "../machine.h" andC2F see6.3.1

Then, the user can create its own external types by creating its own C functions with the same
arguments. Intersci will generate the call of the function.

Using lists as input Scilab variables An input argument of the Scilab function can be a Scilab
list. If <list name> is the name of this variable, a file calledist name>.list must describe
the structure of the list. This file permits to associate a Scilab variable to each element of the list by
defining its name and its Scilab type. The variables are described in order into the file as described
by table6.2
Then, such a variable element of the list, in the filmterface name.desc is referred to
as its name followed by the name of the corresponding list in parenthesis. For insdrige,
denotes the variable nam&d. element of the list namegl.
An example is shown i6.3.1

C functions interfacing

The C function must be considered as a procedure i.e. its type mustdeor the returned value
must not be used.

The arguments of the C function must be considered as Fortran arguments i.e. they must be
only pointers.

Moreover, the name of the C function must be recognized by Fortran. For that, the include file
machine.h located in the directoryScilab directory-/routines should be included in C
functions and the macrG2F should be used.
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Writing compatible code

Messages and Error Messages To write messages in the Scilab main window, user must call
theout Fortran routine ocout C procedure with the character string of the desired message as
input argument.

To return an error flag of an interfaced routine user must calletme Fortran routine or
cerro C procedure with the character string of the desired message as input argument. This call
will produce the edition of the message in the Scilab main window and the error exit of Scilab
associated function.

Input and output

To open files in Fortran, it is highly recommended to use the Scilabroatimét . If the
interfaced routine uses the Fortrapen instruction, logical units must in any case be greater than
40.

call clunit( lunit, file, mode)
with:
e file the file namecharacter string

e mode a two integer vector defining the opening madede(2) defines the record length
for a direct access file if positivenode(1) is an integer formed with three digitsa and
S

— f defines if file is formattedQ) or not (1)
— a defines if file has sequentiad) or direct accessl(
— s defines if file status must be ne@)( old (1), scratch 2) or unknown 8)

Files opened by a call tdunit  must be close by
call clunit( -lunit, file, mode)

In this case théile andmode arguments are not referenced.

Examples
Example 1 The Scilab function is=calc(str) . Its input is a string and its output is a scalar.
The corresponding Fortran subroutinesigoroutine fcalc(str,a) . Its arguments are

a stringstr  (used as input) and an integeused as output).
We reserve a fixed dimension of 10 for the string.
The description file is the following:

calc str

str string 10
a scalar
fcalc str a
str char

a integer

out a

kkkkkkkkkkkhkkkkkhkkhkkkhkk
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Example 2 The name of the Scilab function &s=som(a,b) . Its two inputs are row vectors
and its output is a column vector.

The corresponding Fortran subroutinesisbroutine fsom(a,n,b,m,c) . lts argu-
ments are a real array with dimension n (used as input), another real array with dimension m
(used as input) and a real array (used as output). These dimensés are determined at the
calling of the Scilab function and do not need to appear as Scilab variables.

Intersci will do the job to make the necessary conversions to transform the double precision
(default in Scilab) row vectoa into a real array and to transform the real arcainto a double
precision row vector.

The description file is the following:

som a b
a row m
b row n
C column n
fsom a n b m C
a real
n integer
b real
m integer
C real
out sequence c
kkkkkkkkkkkkkkkkkkkkkkk
Example 3 The Scilab function igo,b]=ext(a) . Its input is a matrix and its outputs are a
matrix and a column vector.
The corresponding Fortran subroutinefégt(a,m,n,b,p) and its arguments are an in-

teger array (used as input and output), its dimensions m,n (used as input) and another integer array
and its dimension p (used as outputs).

The dimensiorp of the outputb is computed by the Fortran subroutine and the memaory for
this variable is also allocated by the Fortran subroutine (perhaps by to a call to another C function).
So the type of the variable is external and we chamst

Moreover, the outpua of the Scilab function is the same as the input but its type changes from
am x n matrix to an x m matrix. This conversion is made my introducing the Scilab variable

The description file is the following:

ext a

a matrix m n

b column p

o] matrix n m

fext a m n b p
a integer

m integer

n integer

b cintf

p integer
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out sequence o] b
o] a

*kkkkkkkkkkkkkhkhkhkhkkhkkkkkkkkk

Example 4 The name of the Scilab function ®ntr . Its input is a list representing a linear
system given by its state representation and a tolerance. Its return is a scalar (for instance the
dimension of the controllable subspace).

The name of the corresponding Fortran subroutireoigr and its arguments are the dimen-
sion of the state of the system (used as input), the number of inputs of the system (used as input),
the state matrix of the system (used as input), the input matrix of the system (used as input), an
integer giving the dimension of the controllable subspace (used as output), and the tolerance (used
as input).

The description file is the following:

contr  sys tol
tol scalar
sys list Iss

icontr scalar

contr  nstate(sys) nin(sys) a(sys) b(sys) icontr tol
a(sys) double
b(sys) double

tol double
nstate(sys) integer
nin(sys) integer

icontr integer

out sequence icontr
*hkkkkkhkkkkkkhkhkkhkkhkhkkhhkkhhkkk
The type of the list idss and a file describing the ligés.list is needed. It is shown
below:
1 type

type string 3

B T T e e e S e S R R R R P e e e P e e e

2 state matrix

a matrix nstate nstate
kkkkkkkkkkhkkkkkkkkhkhkhkkkhkkhkkhkhikikk

3 input matrix

b matrix nstate nin
B T e e e e e e S R R R R P e e e P e e e e

4 output matrix

c matrix nout nstate
kkhkkkkkkkkkkkkkkkkhkhhkkkhkhkhikhkk

5 direct tranfer matrix

d matrix nout nin

kkkkkkkkkkkhkkkhkhkkhkkkhkkkkkkkkkx
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6 initial state
x0 column nstate

kkkkkkkkkkkhkkkhhkkhkkkkkkkkkkkkx

7 time domain
t any
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The number of the elements is not compulsory in the comment describing the elements of the
list but is useful.

Adding a new primitive

It is possible to add a set a new built-in functions to Scilab by a permanent link the interface pro-

gram. For that, itis necessary to update the filefault/fundef androutines/callinter.h
Whenintersci is invoked as follows:
intersci <interface name <interface numbes
intersci then builds afundef  file which is used to update thieefault/fundef file.
To add a new interface the user needs also to updateothimes/callinter.h file

with a particular value ofun Fortran variable corresponding to the new interface number.

Two unused empty interface routines called by defanlitUsr.f andmatus2.f ) are pre-
defined and may be replaced by the interface program. Their interface nuiebersd 24 re-
spectively. They can be used as default interface programs. The executable code of Scilab is then
made by typing “make all” or “make bin/scilex” in Scilab directory.

6.4 Theroutines/default directory

The SCIDIR/routines/default directory contains a set of C and Fortran routines which
can be customized by the user. When customizing a routine in this directory a new executable
code for Scilab is made by typingake all in the main Scilab directory. It is possible to add
new primitives by modifying the default files given in this directory. The Bbefort.f con-
tains a example of a subroutineigon2 ) which can be interactively called by the Scilfadst
command. Thus, it is possible to call a C or Fortran routine by modifyingEkdort.f
file, re-making Scilab and then using tfe@rt function. Thelink operation now made out-
side Scilab by thenake all command which creates a full new executable code for Scilab
(SCIDIR/bin/scilex ).

Let us consider again the example of thexpy function. We want to call it from Scilab by
the following function

function y=scilabdaxpy(a,x,incx,y,incy)
y=fort('daxpyl’,a,x,incx,y,incy)

which performs the following:
y(1:incy:n*incy)=y(1:incy:n*incy)+a*x(1:incx:n*incx)
Thefort function looks for the called program (hataxpyl ) in the interface filelefault/Ex-fort.f

for that, it is necessary that the namhaxpyl appear in the filelefault/Flist . (We do not
use thdink command here).
Note that thefort  function just sends the Scilab variables,incx,y,incy to the in-

terface prograntx-fort.f . These variables are associated with the numb&8,4,5,6 ,
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respectively in the interface prograax-fort.f . For ourscilabdaxpy  function, we perform
the following steps:

e Addthe namelaxpyl to the appropriate list of functions in the fidist  in theroutines/default
directory:

interf_list= ... daxpyl
¢ Edit the fileroutines/default/Ex-fort.f and insert the following code:

subroutine daxpy1()
include '../stack.h’

n=msize(2,mx,nx)

call alloc(1,1,1,1,'d")
call alloc(2,n,mx,nx,’d")
call alloc(3,1,1,1,'")
call alloc(4,n,mx,nx,’d")
call alloc(5,1,1,1,'")

call daxpy(n,stk(ladr(1)),stk(ladr(2)),stk(ladr(3)),
+ stk(ladr(4)),stk(ladr(5)))

call back(4)

return

end

The interface is done using the functiomsize , alloc andback . When the command
fort(daxpyl’,a,x,incx,y,incy) isissued, each variab#ex,incx,y,incy is auto-
matically assigned a number Ex-fort |, in increasing order. Her@ is assighed number &, is
assigned number 2, etc. Variablen#s located in Scilab internal stasitk at adressadr(n)

For instancex, (the third variable indaxpy calling sequence), is associated with the pointer
ladr(2) instk sincex is variable #2.

The statement=msize(2,mx,nx) retrieves the dimensiomax, nx of variable # 2 i.ex
andn=mx*mx i.e. n=number of rowsx number of columns.

This function allows to know the dimensions of all the variables passfettto . At this stage,
the user can test that the dimensions of the variables are correct; the corresponding error message
can be done as follows:

buf="error message’
call error(9999)
return

The functionalloc  defines the type of a variable (integer, real, double), sets its dimensions
and allocate memory for it. For instancall alloc(4,mx*nx,mx,nx,’d") is used to
define the fourth variabley( as a matrix withmxrows andnx columns of type “double”. The last
parameter olloc  should bei’  for integer,’r’ for real or’d’ for double.

Whenalloc is called with a numben (as first parameter) which does not correspond to
a input offort , a valid new adress (pointeladr(n)  is automatically set. For instance the
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statementall alloc(6,12,4,3,') will return inladr(6)  a pointer for a 6th matrix
variable (not in the parametersfofit ) with dimensions3 x 4 and integer type.

Note that the default type for variables’® i.e. double. For such variables, the call to
alloc can be omitted: in our example, only the statemeal$ alloc(3,...,'1") and
call alloc(5,...,") which convertincx andincy to integers are necessary. How-
ever, the call talloc is always necessary for defining a variable which does not appear in the
fort parameters.

After the call todaxpy , the functionback(i)  returns variable number to Scilab. This
variable has the dimensions set by the previous cadlltac  and is converted into a Scilab
matrix.

6.4.1 Argument functions

Some built-in nonlinear solvers, such@de or optim , require a specific function as argument.
For instance in the Scilab commande(x0,t0,t,fydot) , fydot is the specific argument
function for theode primitive. This function can be a either Scilab function or an external function
written in C or Fortran. In both cases, the argument function must obey a specific syntax. In the
following we will consider, as running example, using thée primitive with a rhs function
written in Fortran. The same steps should be followed for all primitives which require a function
as argument.

If the argument function is written in C or Fortran, there are two ways to call it:

e -Use dynamic link

-->link(’myfydot.o’,’myfydot’) //or -->link(’'myfydot.o’,’myfydot’,’C’)
-->0de(x0,t0,t,'myfydot’)

e -Use theEx-ode.f interface in theoutines/default directory (andmake all in
Scilab directory). The call to thede function is as above:

-->0de(x0,t0,t,’myfydot’)

In this latter case, to add a new function, two files should be updated:

e TheFlist file: Flist is list of entry points. Just add the name of your function at in the
appropriate list of functions.

ode_list= ... myfydot

e TheEx-ode.f (orEx-ode-more.f )file: this file contains the source code for argument
functions. Add your function here.

Many exemples are provided in tliefault  directory. More complex examples are also
given. For instance it is shown how to use Scilab variables as optional paramédigistof.

6.5 Maple to Scilab Interface

To combine symbolic computation of the computer algebra system Maple with the numerical
facilities of Scilab, Maple objects can be transformed into Scilab functions. To assure efficient
numerical evaluation this is done through numerical evaluation in Fortran. The whole process is
done by a Maple procedure callethple2scilab
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6.6 Maple2scilab

The procedurenaple2scilab  converts a Maple object, either a scalar function or a matrix into
a Fortran subroutine and writes the associated Scilab function. The codepbé2scilab  is
in the directorySCIDIR/maple

The calling sequence ofiaple2scilab  is as follows:
maple2scilab(function-name,object,args)

e The first argumentiunction-name is a name indicating the function-name in Scilab.

e The second argumermbject is the Maple name of the expression to be transferred to
Scilab.

e The third argument is a list of arguments containing the formal parameters of the Maple-
objectobject

When maple2scilab  is invoked in Maple, two files are generated, one which contains the
Fortran code and another which contains the associated Scilab function. Aside their existence, the
user has not to know about their contents.

The Fortran routine which is generated has the following calling sequence:
<Scilab-name>(x1,x2,...,xn,matrix)
and this subroutine computes matrix(i,j) as a function of the argum@mn2,...,xn . Each
argument can be a Maple scalar or array which should be in the argument list. The Fortran
subroutine is put into a file namedscilab-name>.f |, the Scilab-function into a file named
<Scilab-name>.sci . For numerical evaluation in Scilab the user has to compile the Fortran
subroutine, to link it with Scilab (e.g. Menu-bar optidink ") and to load the associated func-
tion (Menu-bar optiongetf ’). Information aboutink operation is given in Scilab’s manual:
Fortran routines can be incorporated into Scilab by dynamic link or througBxfert.f file
in thedefault  directory. Of course, this two-step procedure can be automatized using a shell-
script (or usingunix in Scilab). Maple2scilab uses the “Macrofort” library which is in the share
library of Maple.

6.6.1 Simple Scalar Example

Maple-Session

> read(‘maple2scilab.maple’):
> fi=b+a*sin(x);

f:=Db+ a sinXx)

> maple2scilab(’f_m’.f,[x,a,b]);

Here the Maple variablé is a scalar expression but it could be also a Maple vector or matrix.

f m"  will be the name off in Scilab (note that the Scilab name is restricted to contain at
most 6 characters). The procedumaple2scilab  creates two filesf m.f andf _m.sci
in the directory where Maple is started. To specify another directory just define in Maple the
path :rpath:="  /work /*; then all files are written in the sub-directowyork . The filef_m.f
contains the source code of a stand alone Fortran routine which is dynamically linked to Scilab by
the functionf_m in defined in the fild_m.sci
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Scilab Session

-->unix('make f_m.o’);
-->link('f_m.o’,’f_m);

linking _f_m_ defined in f_m.o
-->getf('f_m.sci’,'c’)

-->f m(%pi,1,2)
ans =

6.6.2 Matrix Example

This is an example of transferring a Maple matrix into Scilab.

Maple Session

> with(linalg):read(‘maple2scilab.maple’):
> Xx:=vector(2):par:=vector(2):

> mat.=matrix(2,2,[X[1] 2+par[1],x[1]*x[2],par[2].X[2]]);

[ 2

[ x[1] + par[l] Xx[1] x[2] ]
mat = [

[ par([2]

> maple2scilab(’'mat’,mat,[x,par]);

Scilab Session

-->unix('make mat.o’);
-->link('mat.o’,’mat’)

linking _mat_ defined in mat.o
-->getf('mat.sci’,'c’)

-->par=[50;60];x=[1,2];

-->mat(x,par)
ans =

X[2]

]

]

114
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Generated code Below is the code (Fortran subroutines and Scilab functions) which is automatically
generated bynaple2scilab  in the two preceding examples.

Fortran routines

c

c SUBROUTINE f m

c
subroutine f_m(x,a,b,fmat)
doubleprecision x,a,b
implicit doubleprecision (t)
doubleprecision fmat(1,1)

fmat(1,1) = b+a*sin(x)

end

c

c SUBROUTINE mat

c

subroutine mat(x,par,fmat)
doubleprecision x,par(2)

implicit doubleprecision (t)
doubleprecision fmat(2,2)

t2 = x(1)**2
fmat(2,2) = x(2)
fmat(2,1) = par(2)
fmat(1,2) = x(1)*x(2)
fmat(1,1) = t2+par(l)

end

Scilab functions

function [var]=f_m(x,a,b)
var=fort('f_m’,x,1,'d’,a,2,’d’,b,3,'d’,’out’,[1,1],4,'d")

function [var]=fmat(x,par)
var=fort('fmat’,x,1,’d’,par,2,’d’,’out’,[2,2],3,’d")
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Demo session

We give here the Scilab session corresponding to the first demo.

-->// SCILAB OBJECTS
>/ 1. SCALARS
-->a=1 /lreal constant
a =
1.
-->1==1 //boolean
ans =
T
-->'string’ /lcharacter string
ans =
string
-->z=poly(0,'z’) /I polynomial with variable 'z’ and with one root at zero
z =
z

-->p=1+3*z+4.5*2"2 /Ipolynomial
p =

1+ 3z + 4.5z

-->r=z/p /Irational
r =

116



APPENDIXA. DEMO SESJ 0N 11/

z
2
1+ 3z + 452

-->// 2. MATRICES

-->A=[a+l 2 3

-> 0 0 atan(l)

--> 59 -1] /I3 x 3 constant matrix
A =

! 2. 2. 3. !

! 0. 0. 0.7853982 !

! 5. 9. -1 !

-->p=[%t,%f] /11 x 2 boolean matrix
b =

I'T F !

-->Mc=["this’,"is’;

--> ‘a’ Jmatrix’] /] 2 X 2 matrix of strings
Mc =

Ithis is !

! !

la matrix !

-->Mp=[p,1-z;

--> 1,z*p] /12 x 2 polynomial matrix
Mp =

! 2 !

! 1+ 3z + 45z 1-2z !

! !

! 2 3!

! 1 z + 3z + 45z |

-->F=Mp/poly([1+%i 1-%i 1],’z’) //rational matrix
F =
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! 1+ 3z + 4.5z -1 !
e !

I 2 3 2 !
| -2+ 4z - 32 + z 2 -2z + z !
I 1
! 2 3 |
I 1 z + 3z + 452 !
I e e !

I 2 3 2 3!
| -2+ 4z - 32 + z -2+ 4z - 3z + z !

-->Sp=sparse([1,2;4,5;3,10],[1,2,3])  //sparse matrix

Sp =

( 4, 10) sparse matrix

( 1, 2) 1.

( 3, 10) 3.

( 4, 5) 2.

-->Sp(1,10)==Sp(1,1) //boolean sparse matrix
ans =

( 1, 1) sparse matrix

( 1, 1) T
-->// 3. LISTS
-->L=list(a,-(1:5), Mp,['this’’is’;’a’list’])  /list

L =

L(1)

L(3)

! 1+ 3z + 45z 1-2z !
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I 2 3!
I 1 zZ + 3z + 45z |
L(4)
Ithis is !
! !
la list !
-->L(2)(3) /l/sub-entry in list
ans =
- 3.

-->Lt=tlist(['mylist’,’color’,’position’,'weight’],’'blue’,[0,1],10)  //typed-li
Lt =

Lt(1)
Imylist color position weight !

Lt(2)

blue

10.

-->Lt(’color’) /lextracting
ans =

blue

-->Lt('weight’) /lextracting
ans =

10.
-->A=diag([2,3,4]);B=[1 0;0 1;0 0];C=[1 -1 0];D=0*C*B;x0=[0;0;0];

-->S|=syslin(’c’,A,B,C,D,x0) //Standard state-space linear system
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SI =

SI(1) (state-space system:)
Iss A B C D X0 dt !

SI(2) = A matrix

! 2. 0 0. !
! 0. 3 0. !
! 0. 0 4.

SI(3) = B matrix

L 0. !
! 0. 1.!
0. 0. !
SI(4) = C matrix =
I 1. -1.  0.!
SI(5) = D matrix =
! 0 0.!
SI(6) = X0 (initial state) =
! 0. !
! 0.!
! 0. !
SI(7) = Time domain =
c
-->SI("A"), SI("C") /IRetrieving elements of a typed list
ans =
! 2. 0. 0. !
0. 3 0. !
1 0. O 4.
ans =
o1 - 1. 0.1

-->Slt=ss2tf(Sl) /I Transfer matrix
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ans =
I 1 -1 1

ans =

I -2+ s -3 +s |

-->// OPERATIONS

-->v=1:5;W=v"*v /lconstant matrix multiplication
W =

! 1. 2. 3. 4, 5

! 2. 4, 6. 8. 10. !

! 3. 6. 9. 12. 15. !

! 4, 8. 12. 16. 20. !

! 5. 10. 15. 20. 25. !

-->W(1,) /lextracting first row

ans =

->W(,9) /lextracting last column

10.
15.
20.
25.

-->Mp*Mp+eye() /lpolynomial matrix
ans =
column 1

! 2 3 4 1
! 3+ 6z + 18z + 27z + 20.25z !

1z1
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! 1+ 3z + 45z

column 2

1+ 3z + 45z

2 3
-->Mp1=Mp(1,1)+4.5*%i
Mpl =

real part

1+ 3z + 4.5z
imaginary part

4.5
-->Fi=C*(z*eye()-A)"(-1)*B;
->F(,1)*Fi

ans =

1+ 3z + 45z

4 - 10z + 10z - 5z + z

4 - 10z + 10z - 5z + z

-->M=[Mp -Mp; Mp’ Mp+eye()]

M =

column 1 to 3

! 2

! 1+ 3z + 45z 1-2z

1z7

4 5 6 !

2 -2z + 2z + 6z + 18z + 27z + 20.25z !

/lcomplex

/ltransfer function evaluation

/loperations with rationals

-1 -3z - 45z !

4 2 3 4 1
6 - 14z + 13z - 6z + z !

4 2 3 4 1
6 - 14z + 13z - 62z + z !

/Iconcatenation of polynomial matrices

-1-3z - 45z !
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2 3 !
1 z + 3z + 4.5z -1 !
1+ 3z + 45z 1 2 + 3z + 45z !

2 3 !
1-2 z + 3z + 4.5z 1 !

column 4
I -1+ 2 !
I !

! 2 3 !
|l -z -3z - 45z !

2 3!

I
! !
! !
!

! 1+2z+ 32+ 45z !

-->[Fi, Fi(:,1)] /Il ... or rationals
ans =

-->F=syslin(’c’,F);

-->Num=F('num’);Den=F('den’); /loperation on transfer matrix

-->// SOME NUMERICAL PRIMITIVES

-->inv(A) /linverse
ans =

! 0.5 0. 0. !
! 0. 0.3333333 0. !
! 0. 0. 0.25 !

-->inv(Mp) /linverse
ans =

column 1
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2 3 !
z + 32 + 4.5z !
!
2 3 4 51
-1+ 2z + 6z + 18z + 27z + 20.25z !

2 3 4 51
-1+ 2z + 6z + 18z + 27z + 20.25z !

column 2

2 3 4 51
-1+ 2z + 6z + 18z + 27z + 20.25z !

2 !
1+ 3z + 45z !
|
2 3 4 51
-1+ 2z + 6z + 18z + 27z + 20.25z !

-->inv(SI*SI") /IProduct of two linear systems and inverse
ans =

ans(1) (state-space system:)
Iss A B C D X0 dt !
ans(2) = A matrix =

2.8641369 - 0.9304438 0. 0.
0.4111970 2.1358631 0. 0. !
0. - 9.339D-16 4. 0.
0. 0. 0. 4. |

ans(3) = B matrix

0.7027925 !
0.3620534 !
1.665D-16 !
0. !

ans(4) = C matrix
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I - 0.3238304 0.6285968 1.890D-15

ans(5) = D matrix =

2.75 - 25s + 0.5s

ans(6) = X0 (initial state) =

cooo
I

ans(7) = Time domain =

c

-->w=ss2tf(ans) /[Transfer function representation

W =

2 3
18 - 30s + 18.5s - 55 + 0.5s

2
6.5 - 55 + s

-->wl=inv(ss2tf(Sl)*ss2tf(SI)) /[Product of two transfer functions and inve

wl =

2 3 4
36 - 60s + 37s - 10s + s

2
13 - 10s + 2s

-->clean(w-w1)
ans =

1.730D-09 - 6.605D-10s

2
6.5 - 55 + s

-->A=rand(3,3);;B=rand(3,1);n=contr(A,B)
n =

/IControllability

1z0
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3.

-->K=ppol(A,B,[-1-%i -1+%i -1]) //IPole placement
K =

! 7.1638394 7.2295307 0.3176982 !

-->poly(A-B*K,’z")-poly([-1-%i -1+%i -1],'2") /ICheck...

ans =
2
- 8.882D-16 + 1.776D-15z - 1.332D-15z
-->s5=sin(0:0.1:5*%pi);
-->ss=fft(s(1:128),-1); IIFFT
-->xbasc();
-->plot2d3("enn",1,abs(ss)’); /Isimple plot
-->// ON LINE DEFINITION OF FUNCTION

-->deff(’[x]=fact(n)’,'if n=0 then x=1,else x=n*fact(n-1),end’)
Warning: obsolete use of = instead of ==
if n=0 then x=1,else x=n*fact(n-1),end

!

at line 2 of function fact called by :
deff([x]=fact(n)’,’if n=0 then x=1,else x=n*fact(n-1),end’)

-->10+fact(5)
ans =

130.
-->// OPTIMIZATION

-->deff(’[f,g,ind]=rosenbro(x,ind)’, 'a=x(2)-x(1)"2 , b=1-x(2) ,...
-->f=100.*a"2 + b"2 , g(1)=-400.*x(1)*a , g(2)=200.*a -2.*b °);

-->[f,x,g]=optim(rosenbro,[2;2],’qn’)
g =
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->// SIMULATION

-->a=rand(3,3)
a =

! 0.7263507 0.2320748 0.8833888 !
! 0.1985144 0.2312237 0.6525135 !
! 0.5442573 0.2164633 0.3076091 !

-->e=expm(a)
e =

! 2.6034702 0.5788017 1.7895052 !
! 0.6508072 1.4242213 1.1108378 !
! 1.0616116 0.4238856 1.8909166 !
-->deff(’[ydot]=f(t,y)’,'ydot=a*y");

-->e(;,1)-o0de([1;0;0],0,1,)
ans =

I - 1.425D-07 !
I - 7.368D-08 !
! - 8.683D-08 !
-->// SYSTEM DEFINITION
-->s=poly(0,’s");

-->h=[1/s,1/(s+1);1/s/(s+1),1/(s+2)/(s+2)]
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S + S 4 + 4s + s |

-->w=tf2ss(h);

-->35s2tf(w)

ans =

! 1 1 !
e e !

I - 4.710D-16 + s 1+s !

! !
! 1 + 6.935D-16s 1 + 2.448D-16s !

L et P e !

! 2 2 !
I - 1.610D-15 +s+s 4 + 4s + s !

-->hl=clean(ans)

hl =

| 1 1 |

! T !

! S 1+ s !

! !

| 1 1 |

| e e I

! 2 21

! s +s 4 + 4s + s |

-->// EXAMPLE: SECOND ORDER SYSTEM ANALYSIS

-->g|=syslin(’c’,1/(s*s+0.2*s+1))
sl =

1+ 02s + s
-->instants=0:0.05:20;
-->// step response:

-->y=csim(’step’,instants,sl);
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-->xbasc();plot2d(instants’,y’)
-->// Delayed step response
-->deff(’[in]=u(t)’,if t<3 then in=0;else in=1;end’);

-->y1=csim(u,instants,sl);plot2d(instants’,y1");

-->[/ Impulse response;
-->yi=csim('imp’,instants,sl);xbasc();plot2d(instants’,yi’);

-->yil=csim('step’,instants,s*sl);plot2d(instants’,yil’);

-->// Discretization
-->dt=0.05;

-->sld=dscr(tf2ss(sl),0.05);

-->// Step response
-->u=ones(instants);

Warning :redefining function: u
-->yyy=flts(u,sld);

-->xbasc();plot(instants,yyy)

-->// Impulse response
-->u=0*ones(instants);u(1)=1/dt;
-->yy=flts(u,sld);

-->xbasc();plot(instants,yy)

-->// system interconnexion
-->w1=[w,w];

-->clean(ss2tf(w1l))
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ans =
I 1 1 1

| - e -

! S 1+ s S

!

I 1 1 1
e
I 2 2 2
! S + s 4 + 4s + s S + S
-->W2=[w;w];

-->clean(ss2tf(w2))

ans =
! 1 1 !

! - !

! S 1+s !

! !

! 1 1 !
e s !

! 2 2!

! S + s 4 + 4s + s |

| |

! 1 1 !

! - !

! S 1+s !

! !

! 1 1 !
e e !

! 2 2!

! S +s 4 + 4s + s |

-->// change of variable

-->z=poly(0,'z’);

-->horner(h,(1-z)/(1+z)) //bilinear transform
ans =

1+ 2z + z 1+2z+ 2z !

150
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I 2 - 2z
-->//

-->H=[1. 1.
--> 2. -1
--> 1. 0
--> 0. 1

-->ww=spec(H)
ww =

! 2.7320508 !
I - 2.7320508 !
! 0.7320508 !
I - 0.7320508 !

-->//

-->[X,d]=schur(H,

—>XHHEX
ans =

I - 2.7320508
! 0.
! 7.216D-16
! 0.

-->[X,d]=schur(H,

-->X*H*X
ans =

! 0.7320508
! 0.
! 0.
! 7.772D-16

9 +6z + 2z !

PRIMITIVES

0.;
1

1.;
-11:

[ha—

STABLE SUBSPACES

‘cont’);

- 1.110D-15 0. 1. !
- 0.7320508 - 1. - 7.772D-16 !
0. 2.7320508 0. !
- 6.106D-16 0. 0.7320508 !
‘disc’);
0. 7.772D-16 1. !
- 0.7320508 - 1. 8.604D-16 !
0. 2.7320508 - 1.166D-15 !
1.110D-15 - 1.277D-15 - 2.7320508 !

-->//Selection of user-defined eigenvalues (# 3 and 4 here);

1ol
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-->deff([flg]=sel(x)’,...
-->'flg=0,ev=x(2)/x(3),...
--> if abs(ev-ww(3))<0.0001]|abs(ev-ww(4))<0.00001 then flg=1,end’)

-->[X,d]=schur(H,sel)
d =

2.
X =

I - 0.5705632 - 0.2430494 - 0.6640233 - 0.4176813 !

I - 0.4176813 0.6640233 - 0.2430494 0.5705632 !
! 0.5705632 - 0.2430494 - 0.6640233 0.4176813 !
! 0.4176813 0.6640233 - 0.2430494 - 0.5705632 !

-->X*H*X

ans =

! 0.7320508 0. 7.772D-16 1. !
! 0. - 0.7320508 - 1. 8.604D-16 !
! 0 0 2.7320508 - 1.166D-15 !
!

7.772D-16 1.110D-15 - 1.277D-15 - 2.7320508 '!

-->// With matrix pencil

-->[X,d]=gschur(H,eye(H),sel)
d =

! 0.5705632 0.2430494 0.6640233 0.4176813 !
! 0.4176813 - 0.6640233 0.2430494 - 0.5705632 !
I - 0.5705632 0.2430494 0.6640233 - 0.4176813 !
I - 04176813 - 0.6640233 0.2430494 0.5705632 !

-->XFH*X
ans =
! 0.7320508 0. 9.576D-16 1. !
! 0. - 0.7320508 - 1. 0. !
! 8.882D-16 0. 2.7320508 0. !
! 0. 0. 0. - 2.7320508 !

-->// block diagonalization

1oz
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-->[ab,x,bs]=bdiag(H):

-->inv(X)*H*x

ans =

I 2.7320508 1.610D-15 0. 0. !
I - 3.664D-15 - 2.7320508 0. 6.661D-16 !
0. 0. 0.7320508 - 7.910D-16 !
0. 0. 0. - 0.7320508 !
-->// Matrix pencils

-->E=rand(3,2)*rand(2,3);
-->A=rand(3,2)*rand(2,3);
-->s=poly(0,’s");
-->w=det(s*D-A)  //determinant
W =

- 0.0149837s + 0.0004193s
-->[al,be]=gspec(A,E);

-->al./(be+%eps*ones(be))
ans =

! 9.202D+14 !
! 35.734043 !
I - 1.170D-16 !

-->roots(w)
ans =

! 0 !
! 35.734043 !

-->[Ns,d]=coffg(s*D-A); /linverse of polynomial matrix;

_>clean(Ns/d*(s*D-A))
ans =
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! 1 0 0o !
I - - -

! 1 1 1!
! !
! 0 1 0o !
I - - -

! 1 1 1!
! !
! 0 0 1!
! - - -

! 1 1 1 !

-->[Q,M,il]=pencan(E,A); /I Canonical form;

rank A’k rcond
2. 0.169D-01
rank A’k rcond
2. 0.847D+00
-->clean(M*E*Q)
ans =
! 1 0. 0. !
! 0. 1 0. !
! 0. 0 0. !
-->clean(M*A*Q)
ans =

! 35.774235 - 3.0560234 0. !
! 0.4704929 - 0.0401920 0.

! 0. 0. 1. !
->// PAUSD-RESUME

-->write(%io(2),’pause command...”);
pause command...

—->write(%io(2), TO CONTINUE...);
TO CONTINUE...

-->write(%io(2),ENTER “"resume (or return) or click on resume!!™);
ENTER ’resume (or return) or click on resume!?

-->//pause;

-->// CALLING EXTERNAL ROUTINE
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-->foo=["void foo(a,b,c)’;

> 'double *a,*b,*c;’;

> {*c = *a + *b } |
-->unix_s('rm -f foo.c’)
-->write('foo.c’,foo);

-->unix_s(’'make f00.0’) /I[Compiling...(needs a compiler)

-->link(’foo.0’,'foo’,'C’) /ILinking to Scilab
ans =

0.
-->//5+7 by C function

—->fort(foo’,5,1,d’,7,2,'d’,out’,[1,1],3,'d")
ans =

12.
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System interconnexion

The purpose of this appendix is to illustrate some of the more sophisticated aspects of Scilab by
the way of an example. The example shows how Scilab can be used to symbolically represent the
inter-connection of multiple systems which in turn can then be used to numerically evaluate the
performance of the inter-connected systems. The symbolic representation of the inter-connected
systems is done with a function calletbc2exp and the evaluation of the resulting system is
done withevstr

The example illustrates the symbolic inter-connection of the systems shown in Edure
FigureB.1 illustrates the classic regulator problem where the block labeted is to be con-
trolled using feedback from th8ensor block andReg block. TheReg block compares the
output from theModel block to the output from th&€ensor block to decide how to regulate the
Proc block. There is also a feed-forward block which filters the input sighaltheProc block.
The outputs of the system aveandUP.

The system illustrated in Figui 1 can be represented in Scilab by using the fundblmt2exp
The use obloc2exp s illustrated in the following Scilab session. There a two kinds of objects:
“transfer” and “links”. The example considered here admits 5 transfers and 7 links. First the trans-
fer are defined in a symbolic manner. Then links are defined and an “interconnected system” is
defined as a specific list. The functibioc2exp evaluates symbolically the global transfer and
evstr evaluates numerically the global transfer function once the systems are given “values”, i.e.
are defined as Scilab linear systems.

-->model=2;reg=3;proc=4;sensor=5;ff=6;somm=7;
-->tm=list('transfer’,’model’);tr=list('transfer’,['reg(:,1)",'reg(:,2)']);

-->tp=list('transfer’,’proc’);ts=list('transfer’,’s
ensor’);

-->tf=list('transfer’,'ff’);tsum=list(transfer’,['1’,’1]);
-->lum=list(link’," input’,[-1],[model, 1],[ff,1]);
-->Imr=list(’link’,’model output’,[model,1],[reg,1]);

-->[rs=list(’link’,’regulator output’,[reg,1],[somm,1]);
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Figure B.1: Inter-Connected Systems

-->Ifs=list(’link’,'feed-forward output’,[ff,1],[somm,2]);
-->Isp=list(’link’,’proc input’,[somm,1],[proc,1],[-2]);
-->|py=list(’link’,’proc output’,[proc,1],[sensor,1],[-1]);
-->|sup=list(’link’,’sensor output’,[sensor,1],[reg,2]);

-->gyst=...
list('blocd’,tm,tr,tp,ts,tf,tsum,lum,lmr.,Irs,Ifs,Isp,Ipy,Isup);

-->[sysf,names]=bloc2exp(syst)
names =
names>1
input
names>2
Iproc output !
! !

Iproc input !
sysf

Iproc*((eye()-reg(:,2)*sensor*proc)\(-(-ff-reg(:,1)*model))) !
|

i(eye()-reg(: ,2)*sensor*proc)\(-(-ff-reg(:,1)*model)) !
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Note that the argument f@oc2exp s a list of lists. The first element of the lisyst is (ac-
tually) the character stringplocd’  which indicates that the list represents a block-diagram
inter-connection of systems. Each list entry in the §gst represents a block or an inter-
connection in Figurd3.1. The form of a list which represents a block begins with a character
string’'transfer’ followed by a matrix of character strings which gives the symbolic name of
the block. If the block is multi-input multi-output the matrix of character strings must be repres-
ented as is illustrated by the blo&eg.

The inter-connections between blocks is also represented by lists. The first element of the list
is the character stringink’ . The second element of the inter-connection is its symbolic name.
The third element of the inter-connection is the input to the connection. The remaining elements
are all the outputs of the connection. Each input and output to an inter-connection is a vector
which contains as its first element the block humber (for instancentbiel block is assigned
the number). The second element of the vector is the port number for the block (for the case of
multi-input multi-output blocks). If an inter-connection is not attached to anything the value of the
block number is negative (as for example the inter-connection latiajmat’ or is omitted.

The result of thébloc2exp function is a list of names which give the unassigned inputs and
outputs of the system and the symbolic transfer function of the system giveysby. The sym-
bolic names irsysf can be associated to polynomials and evaluated using the furestiin .

This is illustrated in the following Scilab session.

-->s=poly(0,'s’);ff=1;sensor=1;model=1;proc=s/(s"2+3*s+2);

-->reg=[1/s 1/s];sys=evstr(sysf)
sys =

The resulting polynomial transfer function links the input of the block system to the two out-
puts. Note that the output efvstr is the rational polynomial matrigys whereas the output of
bloc2exp is a matrix of character strings.

The symbolic evaluation which is given here is not very efficient with large interconnected
systems. The functiobloc2ss performs the previous calculation in state-space format. Each
system is given now in state-space asyalin  list or simply as a gain (constant matrix). Note
bloc2ss performs the necessary conversions if this is not done by the user. Each system must be
given a value before bloc2ss is called. All the calculations are made in state-space representation
even if the linear systems are given in transfer form.



Appendix C

Converting Scilab functions to Fortran

C.1 Converting Scilab Functions to Fortran Routines

Scilab provides a compiler (under development) to transform some Scilab functions into Fortran
subroutines. The routines which are thus obtained make use of the routines which are in the
Fortran libraries. All the basic matrix operations are available.

Let us consider the following Scilab function:

function [x]=macr(a,b,n)
Z=n+m-+n,
c(1,1)=z,
c(2,1)=z+1,
c(1,2)=2,
c(2,2)=0,

if n=1 then,
x=a+b+a,

else,
x=a+b-a'+b,

end,
y=a(3,z+1)-x(z,5),
X=2*x*x*2.21,

sel=1:5,

t=a*b,

for k=1:n,
z1=z*a(k+1,k)+3,
end,
t(sel,5)=a(2:4,7),
x=[a b;-b’ a’]

which can be translated into Fortran by using the functiac2for . Each input parameter
of the subroutine is described by a list which contains its type and its dimensions. Here, we have
three input variablea,b,c  which are, saydouble precision, double precision,
integer  with dimensiongm,m), (m,m), (1,1) . This information is gathered in the fol-
lowing list:

[=list();
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I(1)=listC1’,’m’,'m’);

[(2)=list('1’,’m’,’m’);

I(3)=list('0’,’1",'1");

The call tomac2for is made as follows:

comp(macr);
mac2for(macr2lst(macr),l)

The output of this command is a string containing a stand-alone Fortran subroutine.

subroutine macr(a,b,n,x,m,work,iwork)
c!
¢ automatic translation

double precision a(m,m),b(m,m),x(m+m,m+m),y,z1,24(m,m),work(*)
integer n,m,z,c(2,2),sel(5),k,iwork(*)

call dmcopy(b,m,x(1,m+1),m+m,m,m)

call dmcopy(work(iwl),m,x(m+1,1),m+m,m,m)
call dmcopy(work(iwl),m,x(m+1,m+1),m+m,m,m)
return

end

This routine can be linked to Scilab and interactively called.
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