
QuickBASIC to XBasic
Conversion Notes

The following notes were provided by an XBasic programmer who converted an approximately 10,000 line
QuickBASIC 4.5 program to XBasic in about two days, first running in character mode, then in another
day with a GUI added.

First and foremost, keep the BASIC to XBasic conversion table nearby - that's an appendix in the XBasic
programming language manual.

Most changes are easy to make, often with a monitored wildcard replace. I burned myself a few times with
unmonitored wildcard replaces, so I suggest you look at each one before you replace. With XBasic, you
can do this quickly with the F11 / F12 function keys.

Load your program as a text file, otherwise XBasic will have a real hard time trying to figure out what's
going on. After all, XBasic understands XBasic, not QuickBASIC.

Save a new copy of the file you're converting every 5 minutes as a separate file. For example, you should
end up with prog0000.x, prog0001.x, prog0002.x, ... prog0025.x by the time you finish. That way if you
royally screw up some conversion you can go back to a recent decent working copy.

Type .h in the upper text area to get a list of shortcut "dot commands" including some real good
find/replace examples. Entering dot commands in the upper text area is often much faster.

By the way, I've found that most of the find and replace stuff goes much easier if you set the find and
replace to be case sensitive, which you only need to do once. Just select "Edit" then "Find" and depress the
toggle button labeled "Case Sensitive". Also note that you can do reverse find and replace with F11 and
F12 if you hold the shift key down.

 0: Remember, XBasic is case sensitive. So FOR is a keyword and for is a variable. Also note that
for and For and foR and FoR are all different variables because case matters.

If you don't find an equivalent for something that is pretty fundamental, check the standard function
library. Check the "\xb\doc\library.doc" manual, or better yet, select "Help" + "StandardLibrary" from the
menu bar in the main XBasic window. For graphics, take a couple hours and read the"\xb\doc\
graphics.doc" manual.

 1: Replace all occurrences of SUB with FUNCTION.

In XBasic every function is called a FUNCTION, whether it returns an argument or not.

You need to monitor this else you'll accidentally change all occurrences of GOSUB into GOFUNCTION.

 2: Go through your program and find all subroutines, which in the meaning of XBasic is everywhere your
program GOSUBs to. Find the beginning and end of each subroutine and:

a: Put a SUB keyword before the subroutine name and remove the trailing colon from the name.
For example, if the beginning of a subroutine is a line dothis:, change it to "SUB dothis".

b: Replace the RETURN keyword at the end of the subroutine with END SUB.
c: Find all RETURN keywords within the subroutine and change them to EXIT SUB.

 3: Make sure no RETURN keywords remain in your program.

 4: In every context, XBasic functions require parentheses after the function name, even if the function
takes no arguments. Find every occurrence of functions that take no arguments and add () after the
function name. For example, change funcname to funcname().

 5: As I recall, in QuickBASIC you return a value from a function by assigning a value to a variable with
the same name as the function. In XBasic you simply say RETURN (value). If you have a function
named a() it can contain a variable named a that is just like every other variable in the function and
has nothing whatever to do with returning values from the function.

 6: XBasic array names are always followed by square brackets, as array[n] instead of array(n).
This makes it much easier to read XBasic programs because you can always tell when something is a
variable, an array, or a function. So go find all your arrays and change the parentheses to square brackets.

 7: Execution of XBasic programs always begins with the first declared function. The “PROLOG” of
XBasic programs is for type declarations, for function declarations, and for constant declarations - nothing
else. If you have any executable code before your first function, put it in an Entry() function and
make sure it's the first function declared in the PROLOG.

 8: I don't remember the scope rules for QuickBASIC very well any more, but with XBasic all variables
are automatic local variables to the function they're in unless declared otherwise after the beginning of the
function. If you want to share a variable with another function you need to put the variable in SHARED
statements in both functions, or add a # prefix to the variable name wherever it appears.

 Available scopes are:

AUTO - automatic and local - maybe in a CPU register
AUTOX - automatic and local - never in a CPU register
STATIC - permanent and local - value retained between calls
SHARED - permanent and shared - share in other functions too
EXTERNAL - permanent and shared - with statically linked modules

 9: Shared constants must be defined in the PROLOG, and have a $$ prefix, as in $$MyConstant.
So CONST MyConstant = 32 in QuickBASIC becomes $$MyConstant = 23 in XBasic.

 10: Local constants are defined within a function must begin with a $ prefix, as in $ThisConstant.
So CONST ThisConstant = 11 in QuickBASIC becomes $ThisConstant = 11 in XBasic.

 10: To convert strings to numbers in other BASICs you write:

value# = VAL (string$) ' VAL returns double precision
In XBasic you can convert strings to any data type you want:

 value = SBYTE (string$) ' signed byte (16-bits)
 value = UBYTE (string$) ' unsigned byte (16-bits)
 value = SSHORT (string$) ' signed short (16-bits)
 value = USHORT (string$) ' unsigned short (16-bits)
 value = SLONG (string$) ' signed long (32-bits)
 value = ULONG (string$) ' unsigned long (32-bits)
 value = XLONG (string$) ' native long (signed 32-bits)
 value = GIANT (string$) ' signed giant (64-bits)
 value = SINGLE (string$) ' 32-bit IEEE floating point
 value = DOUBLE (string$) ' 64-bit IEEE floating point
 value$ = STRING (string$) ' character string
 value$ = STRING$ (string$) ' character string

To exactly duplicate VAL(), replace it with DOUBLE().

 11: To generate a string of several of the same character, QuickBASIC has the STRING$() intrinsic.
But STRING$() in XBasic converts any data type to a string representation. To generate a series of the
same character with XBasic, change STRING$() to the two argument form of CHR$(). For example,
change QuickBASIC a$ = STRING$("a",5) to a$ = CHR$('a', 5).

 12: To create formatted strings, see FORMAT$().

 13: XBasic replaces MID$() on the left side of the assignment operator (=) with STUFF$().

 14: Remember, by default XBasic function arguments are passed by value, not by reference like
QuickBASIC. To make an argument passed by reference, prefix the argument with a @, as in

a = func (@a, @b, @c$)
 15: Remember, by default the type of XBasic variables/arrays is 32-bit integer XLONG, not SINGLE.

