
XBasic
Program Development Environment

(PDE)

Function Libraries

Math Library
Complex Number Library

Standard Library

Revision 0.0020
February 1, 1996

Copyright 1988-2000

Table of Contents

Math Function Library...1
Introduction..1
Function Names...1
Arguments and Return Values...1
Angles...1
Declarations..1
Math Library Functions - Summary..2

Complex Number Function Library..3
Complex Number Library Functions...3

Standard Function Library...5
Portability...5
Recent Additions..5
Return Type and Arguments..5
Pass by Reference - @variable..5
Composite Types and Constants..5
Standard Library Functions - Summary..6
Standard Function Library - Details - System Functions..8
Standard Function Library - Details - File Functions...12
Standard Function Library - Details - Array and String Functions..16
Standard Function Library - Details - Miscellaneous Functions..24

Function Libraries
Important Notes

Information in .dec files is always up to date.

In case of confusion or contradiction with this
document, the .dec files are more reliable.

The .dec files may contain library functions
not yet added to this document.

IMPORT "xst" - Standard Library
IMPORT "xui" - GuiDesigner Library
IMPORT "xgr" - GraphicsDesigner Library
IMPORT "xma" - Advanced Math Library
IMPORT "xcm" - Complex Math Library

Math Function Library
Introduction
The math function library contains a comprehensive set of mathematics functions, including:

· trigonometric
· arc-trigonometric
· hyperbolic
· arc-hyperbolic
· logarithmic (base e and base 10)
· exponential (base e and base 10)
· miscellaneous (square root, power, etc.)

Function Names
The names of library functions usually begin with a three character prefix that identifies the library - in
this case it would be Xma.

In math intensive programs, this is visually annoying and unnatural. For this reason, the math and
complex number libraries violate the naming convention in favor of familiar names. To take the sine of
angle a#, therefore, write:

 x# = SIN(a#) ' correct
 x# = XmaSin(a#) ' wrong

Arguments and Return Values
Except for POWER(), all math library functions take one DOUBLE argument and return a DOUBLE result.
POWER() takes two DOUBLE arguments and returns a DOUBLE result.

Angles
Angles are always radians, for both arguments and return values.

To convert degrees to radians, multiply by $$DEGTORAD.
To convert radians to degrees, multiply by $$RADTODEG.

Declarations
Your program must contain EXTERNAL FUNCTION statements in the PROLOG for every math library
function it calls. You can include all the function declarations and constant definition of the math
library with an IMPORT "xma" in your prolog as in:

 IMPORT "xma" ' include math library declarations
 IMPORT "xst" ' include standard library declarations

Function Libraries - Page 1

Math Library Functions - Summary
SIN() sine
COS() cosine
TAN() tangent
COT() cotangent
SEC() secant
CSC() cosecant
ASIN() arc-sine
ACOS() arc-cosine
ATAN() arc-tangent
ACOT() arc-cotangent
ASEC() arc-secant
ACSC() arc-cosecant
SINH() hyperbolic sine
COSH() hyperbolic cosine
TANH() hyperbolic tangent
COTH() hyperbolic cotangent
SECH() hyperbolic secant
CSCH() hyperbolic cosecant
ASINH() hyperbolic arc-sine
ACOSH() hyperbolic arc-cosine
ATANH() hyperbolic arc-tangent
ACOTH() hyperbolic arc-cotangent
ASECH() hyperbolic arc-secant
ACSCH() hyperbolic arc-cosecant
LOG() base e logarithm (natural log)
LOG10() base 10 logarithm
EXP() base e "anti-log" (e to the x)
EXP10() base 10 "anti-log" (10 to the x)
SQRT() square root
POWER() power (x to the y)

Page 2 - Function Libraries

Complex Number Function Library
Complex Number Library Functions
DOUBLE = DCABS (DCOMPLEX z)
DCOMPLEX = DCACOS (DCOMPLEX z)
DOUBLE = DCARG (DCOMPLEX z)
DCOMPLEX = DCASIN (DCOMPLEX z)
DCOMPLEX = DCATAN (DCOMPLEX z)
DCOMPLEX = DCCONJ (DCOMPLEX z)
DCOMPLEX = DCCOS (DCOMPLEX z)
DCOMPLEX = DCCOSH (DCOMPLEX z)
DCOMPLEX = DCEXP (DCOMPLEX z)
DCOMPLEX = DCLOG (DCOMPLEX z)
DCOMPLEX = DCLOG10 (DCOMPLEX z)
DOUBLE = DCNORM (DCOMPLEX z)
DCOMPLEX = DCPOLAR (DOUBLE magnitude, DOUBLE angle)
DCOMPLEX = DCPOWERCC (DCOMPLEX z, DCOMPLEX n)
DCOMPLEX = DCPOWERCR (DCOMPLEX z, DOUBLE n)
DCOMPLEX = DCPOWERRC (DOUBLE z, DCOMPLEX n)
DCOMPLEX = DCRMUL (DCOMPLEX x, DOUBLE y)
DCOMPLEX = DCSIN (DCOMPLEX z)
DCOMPLEX = DCSINH (DCOMPLEX z)
DCOMPLEX = DCSQRT (DCOMPLEX z)
DCOMPLEX = DCTAN (DCOMPLEX z)
DCOMPLEX = DCTANH (DCOMPLEX z)
SINGLE = SCABS (SCOMPLEX z)
SCOMPLEX = SCACOS (SCOMPLEX z)
SINGLE = SCARG (SCOMPLEX z)
SCOMPLEX = SCASIN (SCOMPLEX z)
SCOMPLEX = SCATAN (SCOMPLEX z)
SCOMPLEX = SCCONJ (SCOMPLEX z)
SCOMPLEX = SCCOS (SCOMPLEX z)
SCOMPLEX = SCCOSH (SCOMPLEX z)
SCOMPLEX = SCEXP (SCOMPLEX z)
SCOMPLEX = SCLOG (SCOMPLEX z)
SCOMPLEX = SCLOG10 (SCOMPLEX z)
SINGLE = SCNORM (SCOMPLEX z)
SCOMPLEX = SCPOLAR (SINGLE magnitude, SINGLE angle)
SCOMPLEX = SCPOWERCC (SCOMPLEX z, SCOMPLEX n)
SCOMPLEX = SCPOWERCR (SCOMPLEX z, SINGLE n)
SCOMPLEX = SCPOWERRC (SINGLE z, SCOMPLEX n)
SCOMPLEX = SCRMUL (SCOMPLEX x, SINGLE y)
SCOMPLEX = SCSIN (SCOMPLEX z)
SCOMPLEX = SCSINH (SCOMPLEX z)
SCOMPLEX = SCSQRT (SCOMPLEX z)
SCOMPLEX = SCTAN (SCOMPLEX z)
SCOMPLEX = SCTANH (SCOMPLEX z)

Function Libraries - Page 3

Page 4 - Function Libraries

Standard Function Library
Portability
The standard function library is a collection of popular functions. The standard function library is
available on every implementation and its functions behave identically.

Recent Additions
New functions are added to the standard library on an irregular basis. The standard library you have
may be ahead of this documentation.

Return Type and Arguments
To review the functions in your standard library, select HelpStandardLibrary in the main window
pulldown menu to display xst.dec in the InstantHelp window. This is the most reliable and up to
date information on standard library functions, because it's the current standard library prolog.

Pass by Reference - @variable
Many arguments in the function table have a @ pass by reference prefix. These arguments fall into one
or more of these catagories:

· The language requires this argument be passed by reference (arrays).
· The value is modified intentionally by the function to return a value.
· The string value is not changed and pass by reference is faster.

Numeric arguments with the pass by reference prefix return a value. Programs that don't need a
particular numeric argument return value can pass that argument by value to increase speed.

Array and string arguments are not modified unless such modification is a purpose of the function. For
example, in XstCopyArray (@array$[], @copy$[]), array$[] is not modified, but copy$[] is.

Unless otherwise stated, functions return non-zero to indicate error.

Composite Types and Constants
Several data types and constants defined in the standard library to support the standard library functions.
For example, FILEINFO is a data type that supports XstGetFilesAndAttributes().

A large number of constants are defined by the standard library, not only for standard library functions,
but for intrinsic functions too. Almost all programs import the standard library with IMPORT "xst".
Some of the constants defined in the standard library are: file modes for OPEN(), drive types, file
attributes, find modes, sort modes, data types returned by TYPE(), error and exception numbers, etc.

Function Libraries - Page 5

Standard Library Functions - Summary

***** System Functions *****
Xst ()
XstVersion$ ()
XstCauseException (exception)
XstErrorNameToNumber (@error$, @error)
XstErrorNumberToName (error, @error$)
XstExceptionNameToNumber (@exception$, @exception)
XstExceptionNumberToName (exception, @exception$)
XstFileToSystemFile (fileNumber, @systemFileNumber)
XstGetApplicationEnvironment (@standalone, @reserved)
XstGetCommandLineArguments (@argc, @argv$[])
XstGetConsoleGrid (@grid)
XstGetCPUName (@cpu$)
XstGetDateAndTime (@year, @month, @day, @weekDay, @hour, @minute, @second, @msec)
XstGetEndian (@endian$$)
XstGetEndianName (@endian$)
XstGetEnvironmentVariable (@name$, @value$)
XstGetEnvironmentVariables (@count, @envp$[])
XstGetException (@exception)
XstGetExceptionFunction (@function)
XstGetOSName (@name$)
XstGetOSVersion (@major, @minor)
XstGetOSVersionName (@version$)
XstGetPrintTab (@pixels)
XstGetSystemError (@error)
XstGetSystemTime (@msec)
XstKillTimer (timer)
XstSetCommandLineArguments (argc, @argv$[])
XstSetDateAndTime (year, month, day, weekDay, hour, minute, second, msec)
XstSetEnvironmentVariable (@name$, @value$)
XstSetExceptionFunction (function)
XstSetPrintTab (pixels)
XstSetSystemError (sysError)
XstSleep (msec)
XstStartTimer (@timer, count, msec, callFunc)
XstSystemErrorToError (sysError, @error)
XstSystemErrorNumberToName (sysError, @sysError$)
XstSystemExceptionNumberToName (sysException, @sysException$)
XstSystemExceptionToException (sysException, @exception)

***** File Functions *****
XstBinRead (fileNumber, bufferAddress, maxBytes)
XstBinWrite (fileNumber, bufferAddress, numBytes)
XstChangeDirectory (@directory$)
XstCopyFile (@sourceFile$, @destFile$)
XstDeleteFile (@filename$)
XstGetCurrentDirectory (@directory$)
XstGetDrives (@count, @drive$[], @driveType[], @driveType$[])
XstGetFileAttributes (@filename$, @attributes)
XstGetFiles (@filter$, @files$[])
XstGetFilesAndAttributes (@filter$, attributeFilter, @files$[], FILEINFO @info[])
XstGetPathComponents (@file$, @path$, @drive$, @dir$, @filename$, @attributes)
XstGuessFileName (@old$, @new$, @guess$, @attributes)
XstLoadString (@filename$, @text$)
XstLoadStringArray (@filename$, @text$[])
XstLockFileSection (fileNumber, mode, offset$$, length$$)
XstMakeDirectory (@directory$)
XstRenameFile (@old$, @new$)
XstSaveString (@filename$, @text$)
XstSaveStringArray (@filename$, @text$[])
XstSaveStringArrayCRLF (@filename$, @text$[])
XstSetCurrentDirectory (@directory$)
XstUnlockFileSection (fileNumber, mode, offset$$, length$$)

Page 6 - Function Libraries

***** String Functions *****
XstBackArrayToBinArray (@backArray$[], @binArray$[])
XstBackStringToBinString$ (@rawString$)
XstBinArrayToBackArray (@binArray$[], @backArray$[])
XstBinStringToBackString$ (@rawString$)
XstBinStringToBackStringNL$ (@rawString$)
XstCopyArray (@ANY[], @ANY[])
XstDeleteLines (@array$[], start, count)
XstFindArray (mode, @text$[], @find$, line, pos, reps, skip, matches[])
XstMultiStringToStringArray (@s$, @s$[])
XstNextCField$ (sourceAddr, @index, @done)
XstNextCLine$ (sourceAddr, @index, @done)
XstNextField$ (@source$, @index, @done)
XstNextLine$ (@source$, @index, @done)
XstPathString$ (path$)
XstReplaceArray (mode, @text$[], @find$, @replace$, line, pos, reps, skip)
XstReplaceLines (@dest$[], @source$[], firstD, countD, firstS, countS)
XstSetNewline (@text$, newline)
XstStringArraySectionToString (@text$[], @copy$, x1, y1, x2, y2, term)
XstStringArraySectionToStringArray (@text$[], @copy$[], x1, y1, x2, y2)
XstStringArrayToString (@s$[], @s$)
XstStringArrayToStringCRLF (@s$[], @s$)
XstStringToNumber (@s$, startOff, afterOff, rtype, value#)
XstStringToStringArray (@s$, @s$[])

***** Miscellaneous *****
XstCompareStrings (@addrString1, op, addrString2, flags)
XstQuickSort (ANY x[], n[], low, high, flags)

Function Libraries - Page 7

Standard Function Library - Details - System Functions
Xst() Xst ()

Initialize the standard function library. Every program must call this
function before it calls any other standard library function.

Xst() can be called any number of times without adverse effects.

XstVersion$() version$ = XstVersion$ ()

Return a string containing the standard function library version.

XstCauseException() XstCauseException (exception)

Cause the specified exception. exception is the native exception
number, not the system exception number.

XstErrorNameToNumber() XstErrorNameToNumber (error$, @error)

Convert the one or two part error name in error$ into an error
number. See xst.dec for $$ErrorObject and $$ErrorNature
constants.

XstErrorNumberToName() XstErrorNumberToName (error, @error$)

Convert the one or two part error number into an error$ name.

XstExceptionNameToNumber() XstExceptionNameToNumber (exception$, @exception)

Convert a native exception$ name into a native exception number.

XstExceptionNumberToName() XstExceptionNumberToName (exception, @exception$)

Convert a native exception number into a native exception$ name.

XstFileToSystemFile() XstFileToSystemFile (filenumber, @systemFilenumber)

Convert a native filenumber returned by OPEN() into the
systemFilenumber - the file number or handle the operating system
refers to the file with. This makes it possible to call operating
system functions directly to get information about the file.

XstGetApplicationEnvironment() XstGetApplicationEnvironment (@standalone, @reserved)

Return a standalone variable to tell whether the program is currently
running as a standalone executable as opposed to in the environment.

XstGetCommandLineArguments() XstGetCommandLineArguments (@argCount, @argv$[])

Return the number of command line arguments in argCount, and the
command line argument strings in argv$[]. argCount should never
be 0 or less, since the name of the program is the first argument,
unless XstSetCommandLineArguments() has changed them.

Page 8 - Function Libraries

Call XstGetCommandLineArguments() with (argCount < 0) to get
the original argCount and argv$[] in the event they have been
changed by XstSetCommandLineArguments().

XstGetConsoleGrid() XstGetConsoleGrid (@grid)

Return the grid number of the default console grid in grid.
GuiPrograms usually do not input or display information with the
console window, and its presence on the display is superfluous.
Therefore, many programs send a HideWindow or DestroyWindow
message to the console grid to remove it from the display.

XstGetCPUName() XstGetCPUName (@name$)

Return the generic name of the central processor unit in name$.

XstGetDateAndTime() XstGetDateAndTime (@year, @month, @day, @weekDay, @hour, @min, @sec, @msec)

Get the current date and time in GMT (Greenwich mean time).
weekDay refers to the day of the week, as in Sunday, Monday, etc,
and may not be available on some systems.

XstGetEndian() XstGetEndian (@endian$$)

Return a 64-bit endian descriptor that contains the following 8 bytes:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 in the lowest
to highest addresses of endian$$. The value of endian$$ is
therefore 0x0706050403020100 on little endian systems, and
0x0001020304050607 on pure big endian systems.

XstGetEndianName() XstGetEndianName (@endian$)

Return "LittleEndian" or "BigEndian" in endian$.

XstGetEnvironmentVariable() XstGetEnvironmentVariable (@name$, @value$)

Get the string value$ of the environment variable with called name$.
For example, XstGetEnvironmentVariable (@"PATH", @path$).

XstGetEnvironmentVariables() XstGetEnvironmentVariables (@count, @envp$[])

Return the number of environment variable strings in count, and the
environment variable strings in envp$[]. The strings contain both the
name of the environment variable and its value, separated by an "=",
as in "PATH=c:\windows; c:\windows\system; c:\xb".

XstGetException() XstGetException (@exception)

Return the native exception number of the most recent exception.

XstGetExceptionFunction() XstGetExceptionFunction (@functionAddress)

Get the address of the current exception function in functionAddress.

Function Libraries - Page 9

When an exception occurs in a standalone program, the exception
function established by XstSetExceptionFunction() is executed.

XstGetOSName() XstGetOSName (@name$)

Return the operating system name in name$. Examples include
"Windows", "WindowsNT", "UNIX", "OS2". See XstGetVersion().

XstGetOSVersion() XstGetOSVersion (@major, @minor)

Return the major and minor portions of the operating system
version. The major and minor part are the integer and fractional
portions of the complete version number, so version 3.10 of the
Windows operating system, major = 0x0003 and minor =
0x000A.

XstGetOSVersionName() XstGetOSVersionName (@version$)

Return the operating system version$ number.

XstGetPrintTab() XstGetPrintTab (@pixels)

Return the number of pixels between tab positions in the console.

XstGetSystemError() XstGetSystemError (@sysError)

Return the most recent operating system sysError number.

XstGetSystemTime() XstGetSystemTime (@msec)

Return the value of the free running time in msec.

XstKillTimer() XstKillTimer (timer)

Kill the specified timer.

XstSetCommandLineArguments() XstSetCommandLineArguments (argCount, @argv$[])

Set the number of command line arguments to argCount, and the
command line argument strings to argv$[]. argCount should never
be less than 0.

XstSetDateAndTime() XstSetDateAndTime (year, month, day, weekDay, hour, min, sec,
msec)

Set the current system date and time. This function may fail if the
user running the task does not have supervisor or administrator
priority.

XstSetEnvironmentVariable() XstSetEnvironmentVariable (@name$, @value$)

Set environment variable name$ to value$. For example,
XstSetEnvironmentVariable (@"PATH", @"c:\windows").

Page 10 - Function Libraries

XstSetExceptionFunction() XstSetExceptionFunction (functionAddress)

Set the exception function to functionAddress. When exceptions
occur in standalone programs, the exception function is executed.
The exception function must take zero arguments.

XstSetPrintTab() XstSetPrintTab (pixels)

Set the number of pixels between tab positions in the console.

XstSetSystemError() XstSetSystemError (error)

Set the current operating system error number.

XstSleep() XstSleep (msec)

Suspend program execution for msec milliseconds. While a program
sleeps, other programs get an opportunity to run.

XstStartTimer() XstStartTimer (@timer, count, msec, function)

Create a timer, set its cycle count, set its msec countdown time, set
its four argument timeout function() address, and start the timer.

Each time the timer times out, XstStartTimer() calls:

 @function (timer, @count, msec, time)

function() can kill the timer in the following ways:
 return -1
 set count = 0
 set count = -1
 call XstKillTimer (timer)

function() must accept four XLONG arguments, and can change
count to change the number of timeout cycles remaining.

XstSystemErrorToError() XstSystemErrorToError (sysError, @error)

Convert an operating system error number to a native error number.

XstSystemErrorNumberToName() XstSystemErrorNumberToName (error, @error$)

Convert a system error number into an error$ name string.

XstSystemExceptionNumberToName() XstSystemExceptionNumberToName (sysException, @sysException$)

Convert an operating system exception number into a string name.

XstSystemExceptionToException() XstSystemExceptionToException (sysException, @exception)

Convert an operating system exception into a native exception.

Function Libraries - Page 11

Standard Function Library - Details - File Functions
XstBinRead() bytesRead = XstBinRead (fileNumber, address, maxBytes)

Read binary data from diskfile into memory.

 bytesRead = number of bytes read into memory
 fileNumber = file number returned by OPEN()
 address = memory address to read file data into
 maxBytes = maximum number of bytes to read

XstBinRead() reads up to maxBytes into memory at address from
fileNumber, starting at the current value of the file pointer.

If fewer than maxBytes exist between the current file pointer and the
end of file, all remaining bytes are read in. The number of bytes
read into memory is returned in bytesRead unless an error occurs, in
which case bytesRead contains -1 and $$XERROR contains the
runtime error number.

An error is returned if a disk access error occurs, fileNumber is not
open for reading, or the file pointer is at or beyond the end of file.

The READ statement is more efficient, safer, and usually more
appropriate than XstBinRead(). READ never reads too much data,
thereby writing outside the target variable. XstBinRead() will
attempt to read any quantity of data into any address. Therefore, it
can write data outside the appropriate area, which almost always
leads to fatal memory faults that crash the program and the
development environment.

READ only works with variables, strings, and arrays that are part of
the language, however. When C library functions supply an address
to receive data, XstBinRead() is an appropriate choice.

XstBinWrite() error = XstBinWrite (fileNumber, address, writeBytes)

Write binary data to diskfile from memory.

 error = non-zero if an error occurred
 fileNumber = file number returned by OPEN()
 address = memory address to get data from
 writeBytes = number of bytes to write to file

XstBinWrite() writes writeBytes from memory at address to
fileNumber, starting at the current value of the file pointer.

0 is returned in error unless an error occurred, in which case
##ERROR contains the runtime error number.

An error is returned if a disk access error occurs, or fileNumber is
not open for writing.

The WRITE statement is more efficient and usually more appropriate
than XstBinWrite(). WRITE only works with variables, strings,

Page 12 - Function Libraries

and arrays that are part of the language, however. When C library
functions supply an address of data to be saved, XstBinWrite() is
an appropriate choice.

XstChangeDirectory() error = XstChangeDirectory (directory$)

Change the default or working directory to directory$.

XstCopyFile() error = XstCopyFile (sourceFilename$, newFilename$)

Create a new file called newFilename$ and copy the contents of the
existing sourceFilename$ into newFilename$.

XstDeleteFile() error = XstDeleteFile (filename$)

Delete the specified filename$.

XstGetCurrentDirectory() error = XstGetCurrentDirectory (@directory$)

Get the current default aka working directory name in directory$.

XstGetDrives() error = XstGetDrives (@count, @drive$[], @type[], @type$[])

Get the drives currently recognized by the system, where count
contains the number of drives, drive$[] contains their names, type[]
contains a drive type, and type$[] contains the name of the drive
type. The standard library defines drive type constants - see
xst.dec. Note that UNIX systems present drives as directories, so
drives are invisible.

XstGetFileAttributes() error = XstGetFileAttributes (@filename$, @attributes)

Get the file attributes of the specified filename$. The standard
library defines file attribute constants - see xst.dec.

XstGetFiles() maxLength = XstGetFiles (@filter$, @file$[])

Get the array of file names in file$[] that corresponds to the filename
filter$ string. filter$ can contain drive, path, and filename with "*"
and "?" wildcard characters.

XstGetFilesAndAttributes() maxLen = XstGetFilesAndAttributes (@filter$, @filter, @file$[], FILEINFO @info[])

Get an array of filenames in file$[] and file information in info[] for
the files specified by the drive/path/filename in filter$ and the file
attributes in filter. The info[] array is type FILEINFO, as defined in
"xst.dec". The number of characters in the longest filename is
returned in maxLen.

XstGetPathComponents() (@file$, @path$, @drive$, @dir$, @filename$, @attributes)

Get the components of a file$. The path$, drive$, dir$, and
filename$, and attributes of the specified file are returned.

Function Libraries - Page 13

XstGuessFileName() XstGuessFileName (@old$, @new$, @guess$, @attributes)
XstLoadString() error = XstLoadString (@filename$, @string$)

Load the contents of filename$ into a string$. The length of string$
is the same as the number of bytes in filename$. string$ can contain
any combination of ascii and/or binary bytes.

XstLoadStringArray() error = XstLoadStringArray (@filename$, @string$[])

Load the contents of filename$ into string array string$[]. The
contents of filename$ are broken into separate "lines" by any of the
following newline byte sequences - "\r\n", "\n\r", "\n".

The newline bytes are not put into string$[]. If the last characters in
filename$ are a newline byte sequence, the last element of string$[]
is an empty string aka "".

XstLockFileSection() error = XstLockFileSection (filenumber, mode, offset$$, length$$)
XstMakeDirectory() error = XstMakeDirectory (@directory$)
XstRenameFile() error = XstRenameFile (@oldName$, @newName$)
XstSaveString() error = XstSaveString (@filename$, @text$)

XstSaveStringArray() error = XstSaveStringArray (@filename$, @text$[])
XstSaveStringArrayCRLF() error = XstSaveStringArrayCRLF (@filename$, @text$[])
XstSetCurrentDirectory() error = XstSetCurrentDirectory (@directory$)
XstUnlockFileSection() error = XstUnlockFileSection (filenumber, mode, offset$$, length$$)

Page 14 - Function Libraries

Standard Function Library - Details - Array and String Functions
XstBackArrayToBinArray() error = XstBackArrayToBinArray (@back$[], @bin$[])

Make a duplicate of back$[] in bin$[] with all backslash characters
converted into their binary equivalents. For example, every
occurance of two character sequence "\t" in back$[] into a single
0x09 "tab" character in bin$[].

XstBackStringToBinString$() error = XstBackStringToBinString (@back$, @bin$)

Make a duplicate of back$ in bin$ with all backslash characters
converted to their binary equivalents. For example, convert every
occurrence of two character sequence "\t" in back$ into a single
0x09 "tab" character in bin$.

XstBinArrayToBackArray() error = XstBinArrayToBackArray (@bin$[], @back$[])

Make a duplicate of bin$[] in back$[] with all 0x00-0x1F and
0x80-0xFF characters converted to backslash character equivalents.
For example, convert every one byte 0x09 "tab" character in bin$[]
to the two character backslash character sequence "\t" in back$[].

XstBinStringToBackString$() error = XstBinStringToBackString (@bin$, @back$)

Make a duplicate of bin$ in back$ with every 0x00-0x1F and
0x80-0xFF character converted to backslash character equivalent.
For example, convert every one byte 0x09 "tab" character in bin$ to
the two character backslash character sequence "\t" in back$.

XstBinStringToBackStringNL$() error = XstBinStringToBackStringNL (@bin$, @back$)

Same as XstBinStringToBackString() except 0x0A newline
characters are not converted into their backslash character equivalent.

XstCopyArray() error = XstCopyArray (@array[], @copy[])

Return a copy of simple numeric type or string array[] in copy[].
XstCopyArray() cannot copy composite arrays, which includes
SCOMPLEX and DCOMPLEX arrays, as well as all user-defined and
composite type arrays. Make sure copy[] is the same type as array[].

XstDeleteLines() error = XstDeleteLines (@text$[], first, count)

Delete count lines from string array text$[] starting at line first.

XstFindArray() XstFindArray (mode, @text$[], @find$, @line, @pos, @match)

XstFindArray() looks for a find$ string within text array text$[]
starting at line, pos. text$[0] is line 0 and the first character on
each line is pos 0.

If an XstFindArray() finds an occurance of find$ in text$[] given

Function Libraries - Page 15

the instructions in the mode argument, match is assigned a non-zero
value and line, pos are assigned the line and character position of the
first character of the string in text$[] that matched find$.

XstFindArray() does not alter text$[] or find$.

mode=0 tells XstFindArray() to do a forward, case-sensitive find.
To control the find, OR together mode constants from xst.dec :

 $$FindForward
 $$FindReverse
 $$FindDirection
 $$FindCaseSensitive
 $$FindCaseInsensitive
 $$FindCaseSensitivity

XstMultiStringToStringArray() XstMultiStringToStringArray (@string$, @array$[])

XstMultiStringToStringArray() converts a string$ into a string
array$[] by breaking the string into separate strings at each
occurance of an \r character. Note that the line separator character
is not the \n aka newline character, and that the lines in array$[]
may therefore contain \n characters. \r characters are discarded.

XstNextCField$() string$ = XstNextCField$ (address, @index, @done)

Return the next text element from a C string.

 string$ = next text element from C string
 address = memory address of C string
 index = character position in C string (1st byte = 1)
 done = end of C string reached

XstNextCField$() returns the next text element in the string at
address, starting at character position index. index is advanced to
the separator that terminates the text element. Text elements are
separated by bounding characters, which are characters with a value
<= 0x20 (space, tab, newline, return, and all control characters) and
characters with a value >= 0x7F (all special characters).

All bounding characters are skipped. Then valid text characters are
collected in string$ until a bounding character is found or the end of
the string is reached, which is the first null character in the string.

index and done are normally passed by reference because useful
information is returned in these variables. index is returned with the
position of the character after the text element, and done is returned
with a non-zero value if index entered with a value greater than the
length of the string at address.

If index and done are passed by reference, XstNextCField$() can
be called repeatedly to read successive text elements from the string
at address.

If index <= 0 is passed to XstNextCField(), it is set to 1.

Page 16 - Function Libraries

XstNextCLine$() string$ = XstNextCLine$ (address, @index, @done)

Return the next newline terminated string from a C string.

 address = memory address of C string
 index = character position in C string (1st byte = 1)
 done = end of C string reached

XstNextCLine$() returns the string in from the C string at address
that starts at index and ends with the next newline character or null
character (end of string), whichever comes first.

string$ is returned without the terminating newline or null character.
index and done are normally passed by reference because useful
information is returned in these variables. index is moved past the
newline or end of string. done is returned with a non-zero value if
the character at index is a null character.

If index and done are passed by reference, XstNextCLine$() can
be called repeatedly to read successive lines from the C string at
address.

If index <= 0 is passed to XstNextCLine(), it is set to 1.

XstNextField$() string$ = XstNextField$ (@source$, @index, @done)

Return the next text element from a string.

 string$ = next text element from string
 source$ = string to extract text element from
 index = character position in source$
 done = end of string reached

XstNextField$() returns the next text element from source$,
starting at character position index. index is advanced to the
separator that terminates the text element. Text elements are
separated by bounding characters, which are characters with a value
<= 0x20 (space, tab, newline, return, and all control characters) and
characters with a value >= 0x7F (all special characters).

All bounding characters are skipped. Then valid text characters are
collected in string$ until a bounding character is found or the end of
the string is reached.

index and done are normally passed by reference because useful
information is returned in these variables. index is returned with the
position of the character after the text element, and done is returned
with a non-zero value if index entered with a value greater than the
length of source$.

If index and done are passed by reference, XstNextField$() can
be called repeatedly to read successive text elements from source$.

If index <= 0 is passed to XstNextField(), it is set to 1.
Function Libraries - Page 17

source$ is not modified by XstNextField$(), so it can be passed
by reference for optimal speed.

XstNextLine$() string$ = XstNextLine$ (@source$, @index, @done)

Return the next newline terminated string from a string.

 source$ = string to extract the next line from
 index = character position in C string (1st byte = 1)
 done = end of C string reached

XstNextLine$() returns the next string$ from source$ that starts at
index and ends with the next newline character or end of string,
whichever comes first.

string$ is returned without a terminating character. index and done
are normally passed by reference because useful information is
returned in these variables. index is moved past the newline or end
of string. done is returned with a non-zero value if index is greater
than the length of source$.

If index and done are passed by reference, XstNextLine$() can be
called repeatedly to read successive lines from source$.

If index <= 0 is passed to XstNextLine$(), it is set to 1.

source$ is not modified by XstNextLine$(), so it can be passed by
reference for optimal speed.

XstPathString$ path$ = XstPathString$ (path$)
XstReplaceArray() XstReplaceArray (mode, @text$[], @find$, @replace$, @line, @pos,

@match)

XstReplaceArray() looks for a find$ string within text array text$
[] starting at line, pos. text$[0] is line 0 and the first character on
each line is pos 0.

If an XstReplaceArray() finds an occurance of find$ in text$[]
given the instructions in the mode argument, match is assigned a
non-zero value and line, pos are assigned the line and character
position of the first character of the string in text$[] that matched
find$, and the matched string in text$[] is replaced by replace$.

XstReplaceArray() does not alter text$[], find$, or replace$.

mode=0 tells XstReplaceArray() to find forward, case-sensitive.
To control the find, OR together mode constants from xst.dec :

 $$FindForward
 $$FindReverse
 $$FindDirection
 $$FindCaseSensitive
 $$FindCaseInsensitive

Page 18 - Function Libraries

 $$FindCaseSensitivity
XstReplaceLines() XstReplaceLines (@d$[], @s$[], firstD, countD, firstS, countS)
XstSetNewline() XstSetNewline (@text$, newline)

XstStringArraySectionToString() XstStringArraySectionToString (@text$[], @copy$, x1, y1, x2, y2, term)

XstStringArraySectionToStringArray() XstStringArraySectionToStringArray (@text$[], @copy$[], x1, y1, x2, y2)

XstStringArrayToString() XstStringArrayToString (@text$[], @text$)
XstStringArrayToStringCRLF() XstStringArrayToStringCRLF (@text$[], @text$)

Function Libraries - Page 19

XstStringToNumber() specType = XstStringToNumber (@value$, start, @after, @rtype, @value$$)

Convert all or part of a string into a number of natural data type.
 specType = explicit type (or -1 for numeric format error)
 start = starting offset in value$ (not modified)
 after = returned with offset after last numeric character
 rtype = returned with "natural data type" of value
 value$$ = returned with value of number in rtype format

XstStringToNumber() converts all or part of value$ into a
numeric value. It returns the numeric value in value$$, its natural
type in rtype, and any explicit type in specType. value$ can be
passed by reference for faster execution.

XstStringToNumber() scans value$ from offset startOff, skips
leading whitespace and unprintable characters, then converts
subsequent characters into a number.

If the first of the subsequent characters cannot begin a valid number,
XstStringToNumber() returns specType=-1, rtype=0, and the
offset of the bad character in afterOff.

XstStringToNumber() collects characters until it encounters one
that is not a valid part of a number. It returns the offset of this
character in afterOff, the natural type of the number in rtype, and
the value of the number in value$$.

value$$ is a GIANT number, but the numeric value stored in
value$$ is not in GIANT format unless rtype=$$GIANT.

rtype is always SLONG, XLONG, GIANT, SINGLE, or DOUBLE.
The final return value can be extracted from value$$ as follows:
SELECT CASE rtype
 CASE $$SLONG : value = GLOW(value$$)
 CASE $$XLONG : value = value$$
 CASE $$SINGLE : value! = SMAKE(GLOW(value$$))
 CASE $$DOUBLE : value# = DMAKE(GHIGH(value$$), GLOW(value$$))
END SELECT

If specType=-1, rtype!=0, an rtype was returned in value$$,
but the format is suspect. Examples include:
0s7F8033jk ' 8 hex digits required after "0s"
0d3FED0000000 hi ' 16 hex digits required after "0d"
12.34d+8243 ' larger than largest number representable

If specType = SLONG, XLONG, GIANT, SINGLE, or DOUBLE, then
rtype=specType, and the type was specified in the number.
Examples of specified numeric types include:
0b1010010010111 ' XLONG: "0b" that fits in 32-bits
0b1010...010111 ' XLONG: "0b" that won't fit in 32-bits
0o361032723 ' XLONG: "0o" that fits in 32-bits
0o7373315631277 ' XLONG: "0o" that won't fit in 32-bits
0x12345678 ' XLONG: "0x" followed by 0-8 hex digits
0x123456789AB ' GIANT: "0x" followed by 9+ hex digits
0s3F800000 ' SINGLE: "0s" followed by 8 hex digits
0d3FE0000000000000 ' DOUBLE: "0d" followed by 16 hex digits

XstStringToStringArray() XstStringToStringArray (@text$, @text$[])

Page 20 - Function Libraries

Standard Function Library - Details - Miscellaneous Functions
XstCompareStrings XstCompareStrings (addrString1, op, addrString2, flags)
XstQuickSort() XstQuickSort (@sortArray[], @orderArray[], first, last, flags)

Sort the contents of all or part of an array.

 sortArray[] = array to sort all or part of
 orderArray[] = optional array left with original indices
 first = first element of region in sortArray[] to sort
 last = last element of region in sortArray[] to sort
 flags = see xst.dec file : OR appropriate flags together
 $$SortIncreasing vs $$SortDecreasing
 $$SortAlphabetic vs $$SortAlphaNumeric
 $$SortCaseSensitive vs $$SortCaseInsensitive

XstQuickSort() sorts the elements of sortArray[] between first
and last. Depending on flags, the sorted elements are stored in
increasing or decreasing order, are sorted alphabetic or
alphanumeric, and sorted case sensitive or case insensitive.

The data type of sortArray[] can be any of the following:

 SBYTE UBYTE
 SSHORT USHORT
 SLONG ULONG XLONG
 GIANT
 SINGLE DOUBLE
 STRING

If orderArray[] enters XstQuickSort() with no elements, it is
ignored. Otherwise it is dimensioned to the same size as
sortArray[], filled with 0,1,2,3,4,5..., then sorted in parallel
with sortArray[]. When the sort is finished, it contains the
original element number for every element in sortArray[].

sortArray[] must be a one dimension array. orderArray[] must
be a one dimensional XLONG array.

An error is generated if:
· last is less than first.
· first or last is less than zero
· first or last is greater than the upper bound of sortArray[]

Depending on the type of sortArray[], XstQuickSort() calls
internal functions that sort SLONG, XLONG, GIANT, DOUBLE, or
STRING arrays. When sortArray[] is another type, a temporary
array of the next larger type from this selection is created, the
contents of sortArray[] are transferred to the temporary array, the
sort is performed, then the contents are transferred back into the
original array.

Function Libraries - Page 21

$$DEGTORAD, 1
$$RADTODEG, 1

ACOS(), 2
ACOSH(), 2
ACOT(), 2
ACOTH(), 2
ACSC(), 2
ACSCH(), 2
angles, 1
argument, 1
ASEC(), 2
ASECH(), 2
ASIN(), 2
ASINH(), 2
ATAN(), 2
ATANH(), 2

constant definition, 1
COS(), 2
COSH(), 2
COT(), 2
COTH(), 2
CSC(), 2
CSCH(), 2

DCABS(), 3
DCACOS(), 3
DCARG(), 3
DCASIN(), 3
DCATAN(), 3
DCCONJ(), 3
DCCOS(), 3
DCCOSH(), 3
DCEXP(), 3
DCLOG(), 3
DCLOG10(), 3
DCNORM(), 3
DCPOLAR(), 3
DCPOWERCC(), 3
DCPOWERCR(), 3
DCPOWERRC(), 3
DCRMUL(), 3
DCSIN(), 3
DCSINH(), 3
DCSQRT(), 3
DCTAN(), 3
DCTANH(), 3

EXP(), 2
EXP10(), 2

function declarations, 1
function names, 1

IMPORT, 1

LOG(), 2
LOG10(), 2

math function library, 1

pass by reference, 5
POWER(), 2

radians, 1
return value, 1

SCABS(), 3
SCACOS(), 3
SCARG(), 3
SCASIN(), 3
SCATAN(), 3
SCCONJ(), 3
SCCOS(), 3
SCCOSH(), 3
SCEXP(), 3
SCLOG(), 3
SCLOG10(), 3
SCNORM(), 3
SCPOLAR(), 3
SCPOWERCC(), 3
SCPOWERCR(), 3
SCPOWERRC(), 3
SCRMUL(), 3
SCSIN(), 3
SCSINH(), 3
SCSQRT(), 3
SCTAN(), 3
SCTANH(), 3
SEC(), 2
SECH(), 2
SIN(), 2
SINH(), 2
SQRT(), 2
standard function library, 5

TAN(), 2
TANH(), 2

Page 22 - Function Libraries

Xst(), 8
xst.dec, 5
XstBackArrayToBinArray(), 17
XstBackStringToBinString$(), 17
XstBinArrayToBackArray(), 17
XstBinRead(), 13
XstBinStringToBackString$(), 17
XstBinStringToBackStringNL$(), 17
XstBinWrite(), 14
XstCauseException(), 8
XstChangeDirectory(), 14
XstCompareStrings, 25
XstCopyArray(), 17
XstCopyFile(), 14
XstDeleteFile(), 14
XstDeleteLines(), 17
XstErrorNameToNumber(), 8
XstErrorNumberToName(), 8
XstExceptionNameToNumber(), 8
XstExceptionNumberToName(), 8
XstFileToSystemFile(), 8
XstFindArray(), 18
XstGetApplicationEnvironment(), 8
XstGetCommandLineArguments(), 9
XstGetConsoleGrid(), 9
XstGetCPUName(), 9
XstGetCurrentDirectory(), 14
XstGetDateAndTime(), 9
XstGetDrives(), 14
XstGetEndian(), 9
XstGetEndianName(), 9
XstGetEnvironmentVariable(), 9
XstGetEnvironmentVariables(), 9
XstGetException(), 10
XstGetExceptionFunction(), 10
XstGetFileAttributes(), 15
XstGetFiles(), 15
XstGetFilesAndAttributes(), 15
XstGetOSName(), 10
XstGetOSVersion(), 10
XstGetOSVersionName(), 10
XstGetPathComponents(), 15
XstGetPrintTab(), 10
XstGetSystemError(), 10
XstGetSystemTime(), 10
XstGuessFileName(), 15
XstKillTimer(), 10
XstLoadString(), 15
XstLoadStringArray(), 15
XstLockFileSection(), 15
XstMakeDirectory(), 15
XstMultiStringToStringArray(), 18

XstNextCField$(), 19
XstNextCLine$(), 20
XstNextField$(), 21
XstNextLine$(), 22
XstPathString$, 22
XstQuickSort(), 25
XstRenameFile(), 15
XstReplaceArray(), 22
XstReplaceLines(), 22
XstSaveString(), 15
XstSaveStringArray(), 15
XstSaveStringArrayCRLF(), 15
XstSetCommandLineArguments(), 10
XstSetCurrentDirectory(), 16
XstSetDateAndTime(), 11
XstSetEnvironmentVariable(), 11
XstSetExceptionFunction(), 11
XstSetNewline(), 23
XstSetPrintTab(), 11
XstSetSystemError(), 11
XstSleep(), 11
XstStartTimer(), 11
XstStringArraySectionToString(), 23
XstStringArraySectionToStringArray(), 23
XstStringArrayToString(), 23
XstStringArrayToStringCRLF(), 23
XstStringToNumber(), 24
XstStringToStringArray(), 24
XstSystemErrorNumberToName(), 12
XstSystemErrorToError(), 11
XstSystemExceptionNumberToName(), 12
XstSystemExceptionToException(), 12
XstUnlockFileSection(), 16
XstVersion$(), 8

Function Libraries - Page 23

	Math Function Library
	Introduction
	Function Names
	Arguments and Return Values
	Angles
	Declarations
	Math Library Functions - Summary

	Complex Number Function Library
	Complex Number Library Functions

	Standard Function Library
	Portability
	Recent Additions
	Return Type and Arguments
	Pass by Reference - @variable
	Composite Types and Constants
	Standard Library Functions - Summary
	Standard Function Library - Details - System Functions
	Standard Function Library - Details - File Functions
	Standard Function Library - Details - Array and String Functions
	Standard Function Library - Details - Miscellaneous Functions

