
XBasic
Program Development Environment

(PDE)

Programming Language

Programmer Guide
Programmer Reference

Revision 0.0017
February 1, 1996

Copyright 1988-2000

Table of Contents

Conventions...1
TRUE..1
FALSE..1
TRUE vs $$TRUE...2
FALSE vs $$FALSE..2
Implicit TRUE and FALSE...3

Language Elements..5
Character Set..5
Parse Method..5
Case Sensitive..6
Names and Symbols...6
Type Suffixes...6
Scope Prefixes..6
Symbols..6
Name Conventions...7

Keywords..7
Type Names..7
User Defined aka Composite Type Names..7
Variable Names..7
GOTO Label Names...7
Subroutine Names..7
Function Names..7
Reserved Names...7

Source Lines...8
Line Names..8
Subroutine Names..8
Comments...8
Assignment...8
Statements..9
Intrinsics...9
Operators..10

Unary Operators...10
Binary Operators..10
Operator Precedence..10
Operator Kind...10

Operator Class..11
Class 1...11
Class 2...11
Class 3...11
Class 4...11
Class 5...11
Class 6...11
Class 7...11
Class 8...12
Class 9...12
Class 10...12
Class 11...12

Operator Summary...12

Table of Contents

Unary Address Operators...13
&...13
&&..13

Unary Arithmetic Operators..13
+..13
-...13

Unary Bitwise Operators..14
~ aka NOT..14

Unary Logical Operators..14
!...14
!!..14

Binary Shift Operators...14
>>>...14
<<<...14
>>..14
<<..14

Binary Arithmetic Operators...15
**..15
/...15
*..15
-...15
+..15
\...15
MOD...15

Binary Bitwise Operators...16
& aka AND...16
| aka OR..16
^ aka XOR..16

Binary Logical Operators...16
&&..16
^^...16
||...16

Binary String Operators...16
+..16

Binary Relational Operators..17
> aka !<=..17
>= aka !<..17
<= aka !>..17
< aka !>=..17
<> aka !=..17
= aka ==..17

Operator Considerations..17
Subroutines...18
Functions..18
Block Structure...19
Execution Order...19
Multi-Level Control...19

Table of Contents

Data..21
Data Type...21
Type Suffix...21
Simple Type...21
String..21
Composite Type...21
Built In Types...22
Coersion aka Type Conversion..22
Type Sizes..22
Storage Type..23
Kind..24
Literal...24

Numeric Literal..24
Character Literal...24
Integer Literal...25
Decimal Literal...25
Scientific Literal...25
Hexadecimal Literal...26
Octal Literal..26
Binary Literal...26
SINGLE Image...27
DOUBLE Image...27
String Literal...28

Constant..29
Local Constant..29
Shared Constant..29
System Constant...29

Variable..29
Simple Variable..29
Bit Field..30
Bit Field Intrinsics..30
Brace Notation for Bitfields...30
BITFIELD()..30
String Variable...31
Brace Notation Extract...31
Brace Notation Assign...31
Brace Notation Warning..32
String Support...33
Composite Data Type...34
Composite Type Declaration...34
Composite Variable..35
Component...35
SCOMPLEX and DCOMPLEX...35
Array Variable..36
DIM...36
REDIM...36
DIM vs REDIM..36
Dimension...36
Empty Array...36
Passing Array Arguments...36
Array Element..37
Array Implementation..37
Tree Structure...37
Regular Array...37
Irregular Array..37
Nodes and Data..37
Building Irregular Arrays...38
ATTACH and SWAP...38
Excess Comma Notation..39
Natural Data Type..39
Considerations of Tree Structure Arrays...40

Table of Contents

Scope..41
Visible Scope..41
AUTO...42
AUTOX..42
STATIC..42
SHARED..42
SHARED /groupname/...43
EXTERNAL...43
EXTERNAL /groupname/...43

Programs..45
Program..45
Prolog...45

Prolog Elements Example..45
Function Library aka Library...46
System Functions and Foreign Functions..46
IMPORT...47
EXPORT ... END EXPORT..47
Blowback Function - Blowback()..47

Functions..49
Functions..49
Entry Function..49
Function Names...49
Encapsulation...49
Arguments..49
Function Declaration..50
Argument Checking...50

ANY..50
. . ..50

Return Type..51
Function Definition..51
Default Type...51
Function Arguments...51
RETURN and EXIT FUNCTION..51
END FUNCTION...51
Function Arguments...52

Numeric Arguments...52
String Arguments...52
Array Arguments..52

Argument Kind and Type Checking..52
Pass by Value...53
Pass by Reference..53

Implementation...53
Consequences of Pass by Reference Implementation...54
Example Illustrates Pass by Reference..54

Pass by Address..54
Argument Checking...54
Return Value..55
Function Call..55
Computed Function Call..55

Fall Through...56
Recursion..56

Table of Contents

Execution Control..57
Execution Order...57
Conventional GOTO..57
Computed GOTO...57
Conventional GOSUB..58

GOSUB Example...58
Computed GOSUB...58
Conventional Function Call...59
Computed Function Call..59
Decisions..60
IF statement..60
IF and IFZ...61
SELECT CASE..62

Syntax...62
Test Expression..62
SELECT CASE - zero or one of many..62
SELECT CASE ALL - n of many...62
SELECT CASE TRUE...63
SELECT CASE FALSE...63
Example 1...63
Example 2...63
EXIT SELECT...64
NEXT CASE..64
ELSEIF...64

Loops and Iteration..65
DO ... LOOP...65
DO Options...65
EXIT DO Example...65

FOR ... NEXT..66
FOR Example...66
FOR Options...66
STEP...66

File Processing...67
Overview..67
File Number..67
File Pointer...67
OPEN..67
CLOSE...67
INFILE$()...68
WRITE...68
READ and WRITE Composite Variables...70

Errors..71
Compile Time Errors...71
Runtime Errors and Exceptions...74
Runtime Errors...74
ERROR() and ERROR$()..74
Runtime Error Handling..74
Error Numbers..75
Programmer Defined Errors...75
Runtime Exceptions...76

Appendix A : Standard Character Set...77
Appendix B : Translating Programs..78
Appendix C : Keywords..82
Appendix D : Operators...86
Appendix E : Statements...88
Appendix F : Intrinsics..89
Appendix G : Language Reference...91

Table of Contents

Table of Contents

Conventions
TRUE
Numeric variables and values not equal to zero are TRUE .

String variables with contents are TRUE, regardless of how many bytes they contain, and regardless of
the values of the bytes. For example, the string variable a$ is TRUE after any the following:

 a$ = "0"
 a$ = " "
 a$ = "\0"

The last example illustrates that strings can contain null characters, characters with a value of 0x00.
Even a string containing one null character is not empty.

Arrays having any elements are TRUE, regardless of how many dimensions they have, or how many
elements in any given dimension. Even an array with only one element is not empty and therefore
TRUE. All of the array variables are made TRUE by the following statements:

 DIM a[63]
 DIM a[0]
 DIM a$[63]
 DIM a$[0]

FALSE
Numeric variables and values that equal zero are FALSE.

String variables with no contents are called empty strings and are FALSE. Strings start out empty, so
until they are assigned values, they are FALSE. Strings become empty and FALSE when empty strings
are assigned to them, as in a$ = "".

Arrays with no elements are called empty arrays and are FALSE. Arrays start out empty, so they are
FALSE until dimensioned. Arrays become empty when dimensioned or redimensioned to empty arrays,
as in:

 DIM a[] ' a[] becomes empty
 REDIM a[] ' a[] becomes empty

or when attached elsewhere, as in

 ATTACH a[] TO b[c,] ' a[] becomes empty

Programming Language - Guide and Reference - Page 1

TRUE vs $$TRUE
Don't confuse TRUE with the pre-defined constant $$TRUE, which has the numeric value -1.

 IF a THEN PRINT "a"

is not the same as

 IF (a = $$TRUE) THEN PRINT "a"

The first statement prints "a" as long as a is not zero. The second prints "a" only if a equals -1.

FALSE vs $$FALSE
Don't confuse FALSE with the pre-defined constant $$FALSE, which has a numeric value 0.

 IFZ a$ THEN PRINT "a$ is empty"

is not the same as

 IF (a$ = $$FALSE) THEN PRINT "a$ is empty"

The second statement is a type mismatch since a$ is a string while $$FALSE is a number.

Programming Language - Guide and Reference - Page 2

Implicit TRUE and FALSE
The notion of TRUE and FALSE are implicit in many statements, including:

 IF, IFZ, CASE, DO WHILE, DO UNTIL, LOOP WHILE, LOOP UNTIL.

The following examples illustrate the nature of TRUE and FALSE and how convenient they can be.

a = 0 ' a is FALSE because it's value is zero
b = -3 ' b is TRUE because it's value is non-zero
c = 2 ' c is TRUE because it's value is non-zero
a$ = "" ' a$ is FALSE because it has no contents
b$ = "0" ' a$ is TRUE because it has contents ("0")
c$ = " " ' a$ is TRUE because it has contents (" ")
d$ = "\0" ' a$ is TRUE because it has contents (1 byte)
DIM a[] ' a[] is FALSE because it has no contents
DIM b[0] ' b[] is TRUE because it has contents
DIM c[1] ' c[] is TRUE because it has contents
DIM d$[7] ' d$[] is TRUE because it has contents
' ' d$[0] is FALSE because it has no contents
'
IF a THEN PRINT a ' Nothing will print because a is FALSE
IF b THEN PRINT b ' "-1" will print because b is TRUE
IF c THEN PRINT c ' "2" will print because c is TRUE
IF a$ THEN PRINT "a$" ' Nothing will print because a$ is FALSE
IF b$ THEN PRINT b$ ' "0" will print because b$ is TRUE
IF c$ THEN PRINT "c$" ' "c$" will print because c$ is TRUE
IF d$ THEN PRINT "d$" ' "d$" will print because d$ is TRUE
IF a[] THEN PRINT "a[]" ' Nothing will print because a[] is FALSE
IF b[] THEN PRINT "b[]" ' "b[]" will print because b[] is TRUE
IF c[] THEN PRINT "c[]" ' "c[]" will print because c[] is TRUE
IF d$[] THEN PRINT "d$[]" ' "d$[]" will print because d$[] is TRUE
IF d$[1] THEN PRINT "YES" ' Nothing will print because d$[1] is FALSE
'
DO WHILE b ' The loop will execute because b is TRUE
 INC b ' b = b + 1
 IF c THEN PRINT "hi" ' "hi" will print because c is TRUE
LOOP WHILE a$ ' The loop will end because a$ is FALSE
'
SELECT CASE ALL TRUE ' Do all CASEs that are true
 CASE a: PRINT "a" ' Nothing will print because a is FALSE
 CASE b: PRINT "b" ' "b" will print because b is TRUE
 CASE a, b: PRINT "a, b" ' "a, b" will print because b is TRUE
 CASE a, a$: PRINT a, a$ ' Nothing will print because a and a$ are FALSE
 CASE a[]: PRINT "a[]" ' Nothing will print because a[] is FALSE
 CASE b[]: PRINT "b[]" ' "b[]" will print because b is TRUE
 CASE d$[]: PRINT "d$[]" ' "d$[]" will print because d$ is TRUE
 CASE d$[e]: PRINT d$[e] ' Nothing will print because d$[e] is FALSE
END SELECT

Programming Language - Guide and Reference - Page 3

Programming Language - Guide and Reference - Page 4

Language Elements
Character Set
Standard character sets contain 128 standard characters, numbered 0 to 127, encoded in one 8-bit byte.
Extended character sets contain an additional 128 extended characters, numbered 128 to 255, encoded
in the same 8-bit byte.

Source programs contain only the standard character set characters. Extended characters are discarded.
All language elements are composed of printable standard characters, plus three whitespace characters,
space, tab, newline. - which are have values 0x20, 0x09, 0x0A.

To programs, however, characters are unsigned bytes. How these bytes are interpreted depends on the
programs, though many built-in intrinsic functions assume the standard character set.

Certain groups of characters are referred to by the following names:

 Alphabetic "A - Z", "a - z"
 Alphanumeric "A - Z", "a - z", "0 - 9"
 Numeric "0 - 9"
 Binary "0 - 1"
 Octal "0 - 7"
 Hexadecimal "0 - 9", "A - F", "a - f"
 Symbol Characters "A - Z", "a - z", "0 - 9"
 Type Suffixes @ @@ % %% & && ~ ! # $$ $
 Scope Prefixes # ##

Parse Method
To parse means to break program text into language elements. For example, thisVar=thatVar parses
into three language elements:

 thisVar - variable
 = - assignment operator
 thatVar - variable

The following process is performed to find each language element. First, leading whitespace is ignored.
Then, successive characters are collected until adding the next character would produce an invalid
language element.

Whitespace separates language elements that would otherwise be inappropriately combined into one.
For example, FORK=ATOM means "assign variable ATOM to variable FORK". In contrast, most
conventional BASIC languages interpret FORK=ATOM to mean FOR K = A TO M. To write the FOR
statement requires the FOR and TO keywords be separated from the adjacent variables.

Programming Language - Guide and Reference - Page 5

Case Sensitive
All keyword characters are upper case, and the language is case sensitive. Thus FOR is a keyword
while for , foR, For, FOr, FoR, fOr, fOR are seven valid independent symbols, but not keywords.
Thus the following is valid code, though no sane programmer would ever write it.

FOR For = foR TO to STEP Step ' FOR, TO, STEP are keywords
 PRINT For ' For, foR, to, Step are variables
NEXT For ' Don't ever write code like this!

Names and Symbols
Names or Symbols are strings of one or more characters, beginning with an alphabetic character and
including all subsequent characters up to the first non-symbol character. Characters that immediately
follow symbols and constitute valid type-suffixes are considered part of the symbol and determine its
data type. Characters that immediately precede symbols and constitute valid scope-prefixes are
considered part of the symbol and determine its scope.

Type Suffixes
The type suffixes that can be appended to variables to explicitly specify their date type are:

 @ SBYTE 8-bit signed byte integer
 @@ UBYTE 8-bit unsigned byte integer
 % SSHORT 16-bit signed short integer
 %% USHORT 16-bit unsigned short integer
 & SLONG 32-bit signed long integer
 && ULONG 32-bit unsigned long integer
 ~ XLONG 32/64-bit signed machine integer
 $$ GIANT 64-bit signed giant (financial) integer
 ! SINGLE IEEE single precision floating point
 # DOUBLE IEEE double precision floating point
 $ STRING String of unsigned bytes

Scope Prefixes
The scope prefixes that can be prepended to variables to explicitly specify their scope are:

 # SHARED variable shared within a program
 ## EXTERNAL variable shared between multiple programs
 $ Local Constant constant visible within one function
 $$ Shared Constant constant visible throughout a program

Symbols
Most language elements are symbols. Language keywords symbols contain only upper-case characters,
never a lower case character. Symbols begin with an alphabetic character followed by zero or more
symbol characters, possibly terminated by a type-suffix or begun by a prefix, both of which become part
of the symbol. Local and shared constants are symbols prefixed by $ and $$, as in $PI and $$PIE.

Array names are always followed by square-brackets, though whitespace between the symbol and
square brackets is permissible, so a$[j] and a$ [j] are equivalent. Function names are always
followed by parentheses, though whitespace between the symbol and square brackets is permissible, so
Func() and Func () are equivalent.

Programming Language - Guide and Reference - Page 6

Name Conventions
Symbols represent many kinds of language elements, yet each kind is always visually distinguishable.
Arrays always have square brackets, functions always have parentheses, etc. Programs are easy to read
because you can always tell what the elements of the program are.

Consistent, naming conventions also promote program readability. The following naming conventions
are generally observed, hopefully by your programs too.

Keywords
All characters of keywords are upper case.
Examples : IF DO FOR GOSUB FUNCTION DOUBLE STRING

Type Names
Built-in data type names are upper case.
Examples : SBYTE USHORT STRING DOUBLE DCOMPLEX

User Defined aka Composite Type Names
User-defined data type names are upper case in most instances.
Examples : COLOR WINDOW LENS SURFACE GLASS XWindowAttributes

Variable Names
The first character is lower case and the 1st character of each imbedded word is upper case.
Examples : value value$ thisValue thoseValues[]

GOTO Label Names
The first character is lower case and the first character of imbedded words are upper case.
Examples : label goHere goEveryWhichWay

Subroutine Names
The first character is upper case and the 1st character of each imbedded word is upper case.
Examples : Create CreateWindow CreateTrouble NukeWashingtonDC

Function Names
The first character is upper case and the first character of each imbedded word is upper case.
Examples : FuncName() Rotate() SingeTheUniverse()

Reserved Names
Function and sharename symbols that begin with three consecutive x characters (Xxx, xxx, XXX etc)
are reserved symbols. Do not create, call, or reference any such variables or functions. Also don't
create functions with prefixes that conflict with known function libraries, like Xst, Xma, Xcm, Xgr,
Xui, etc.

Programming Language - Guide and Reference - Page 7

Source Lines
Source lines are separated by newline characters, labeled Enter on most keyboards. Statements and
expressions are terminated by the end of source lines.

Line Names
Source lines can be given names, called labels. Line labels begin in the first character position on a line
and are terminated by a : character, as in thisLabel:. Program execution can be transferred to line
labels by GOTO statements, as in GOTO thisLabel.

Subroutine Names
Subroutines are named sections of functions that can be called from elsewhere in the function.
Subroutines begin with SUB SubName and include all lines to the next END SUB statement.
Subroutines are called by GOSUB statements, as in GOSUB SubName.

Comments
The ' character begins a comment, except when it forms a valid character constant or appears in a
literal string. The ' and the rest of the source line are taken as a comment and have no affect on
program operation, size, or speed. See character literals and literal strings for the exceptions.

Assignment
Statements that begin with a variable or array names are assignment statements, and must be followed
by an = assignment operator. typenameAT() statements may also begin assignment statements, and
must also be followed by an = assignment operator. See Direct Memory Access for typenameAT().

Programming Language - Guide and Reference - Page 8

Statements
Statements are keywords that specify an action to be performed, followed by language elements
appropriate to the statement. In general, it is preferable to implement programming language
capabilities with functions rather than statements. But statements have two advantages that are
sometimes very important.

Since they do not involve function call overhead, statements execute quicker. Where the action
performed is limited, the speed advantage of statements is significant. Decisions and execution control,
like IF, DO, FOR, and SELECT CASE, execute much faster than functions.

Since statements are not constrained by function syntax, each statement can define its own syntax to
make the action performed as clear and readable as possible. The flexibility and readability of the FOR
statement is a good example.

Multiple statements on the same line are separated by : characters, as in INC x : INC y : INC z.

Certain statements may be preceded on lines only by whitespace. In general, these are statements that
declare, define, begin, or end block structures. They include the following:

DECLARE FUNCTION Declare a module-shared function
INTERNAL FUNCTION Declare a private function
EXTERNAL FUNCTION Declare an external function
FUNCTION Begin a function block
END FUNCTION End a function block
EXTERNAL Declare external variables
SHARED Declare shared variables
STATIC Declare static variables
AUTOX Declare autox variables
AUTO Declare auto variables
DO Begin a DO loop
LOOP End a DO loop
FOR Begin a FOR loop
NEXT End a FOR loop
SELECT CASE Begin a SELECT CASE block
CASE Check another CASE
END SELECT End a SELECT CASE block
SUB Begin a subroutine
END SUB End a subroutine
TYPE Begin a type definition
UNION Begin a union definition
END TYPE End a TYPE definition
END UNION End a UNION definition

Intrinsics
Intrinsics, short for intrinsic functions, are often-called functions like ABS(), INT(), LEFT$() that are
built into the language and thus always callable without declaration or importing a function library.

Intrinsics take one or more arguments which are not changed, and return a value. The names of
intrinsics are fully capitalized keyword symbols. Intrinsics execute quickly, and some handle variable
number of arguments. The intrinsics are described in detail in the reference manual.

Programming Language - Guide and Reference - Page 9

Operators
Like algebraic operators, programming language operators perform common operations on one or more
operands. Arithmetic, logical, bitwise, and address operators are provided. Each has a precedence, and
each is a member of a class that determines its valid operand types, type of result, and conversions rules.

Unary Operators
Unary operators operate on a single data object or expression to the right of the unary operator. For
example, - is the common negative operator, used to negate arithmetic sign, as in -x or -ABS(x+y).
Unary operators have the highest precedence, so unary operators are always executed before adjacent
binary operators. Adjacent unary operators execute from right to left.

Binary Operators
Binary operators combine two operands into a single value. When the operands are of different data
type, the operand with the lower data type is promoted aka converted to the higher data type before the
operation is performed.

Operator Precedence
As in algebra, operators have precedence. Operators with higher precedence are executed before
adjacent operators, even when they appear later in an expression.

In a+b*c, the b*c is performed first, then added to a. Precedence limits the need for parentheses to
group sub-expressions. Parentheses can make natural execution order more visible, and override natural
execution order when desired.

For example, a+(b*c) operates the same as the previous example, while (a+b)*c forces a+b to
occur first, the result of which is then multiplied by c.

Operator Kind
Arithmetic operators are the kind usually encountered in algebra. They combine numeric operands and
produce a numeric result.

Bitwise operators combine numeric integer operands and produce a numeric integer result, but operate
on a bit-by-bit basis, without carry/borrow propagation from bit to bit.

Logical operators combine numeric or string operands, and produce a logical result, meaning $$TRUE
(-1), or $$FALSE (0).

Programming Language - Guide and Reference - Page 10

Operator Class
Operator class determines certain aspects of how operators behave.

Class 1
Class 1 operators include binary logical operators &&, ^^, ||.

The operands must be integer or floating point variables or expressions. The result is always XLONG $
$TRUE or $$FALSE.

Class 2
Class 2 operators include the binary relational operators =, <>, <, <=, >=, > and their equivalents
==, !=, !>=, !>, !<, !<=.

The operands must be integer, floating point, or string. If one operand is a string, so must the other.
String characters are compared until a byte differs or the end of one string is reached, so the effect is
alphabetic comparison. The result is always XLONG $$TRUE or $$FALSE.

Class 3
Class 3 operators include binary bitwise operators AND, XOR, OR, and symbolic equivalents &, ^, |.

The operands must be integer variables or expressions. The result is the operand data type.

Class 4
Class 4 operators include binary arithmetic operators +, -, *, /, **.

The operands must be integer or floating point variables or expressions. The result is the data type of
the highest type operand.

Class 5
Class 5 operators include the binary arithmetic operator + and the string concatenate operator +.

The operands must both be integer or floating point variables or expressions, or both be string variables
or expressions. The result is the operand data type.

Class 6
Class 6 operators include the binary arithmetic operators MOD, /.

The operands must be integer or floating point variables or expressions. If either operand is GIANT, the
other operand is converted to GIANT and the result is GIANT. Otherwise, if either operand is XLONG,
the other operand is converted to XLONG and the result is XLONG. Otherwise, if either operand is
ULONG, the other operand is converted to ULONG and the result is ULONG. Otherwise, both operands are
converted to SLONG and the result is SLONG. Note that this means that SINGLE and DOUBLE operands
are converted to one integer type or another before the operation takes place. Class 6 operators are
integer operators.

Class 7
Class 7 operators include the binary arithmetic and bitwise shift operators <<, >>, <<<, >>>>.

The operands must be integer variables or expressions. The result is the data type of the left operand.

Programming Language - Guide and Reference - Page 11

Class 8
Class 8 operators include the unary arithmetic operators +, -.

The operand must be an integer or floating point expression. The result is the data type of the operand.

Class 9
Class 9 operators include the unary logical operators !, !!.

The operand must be an integer or floating point expression. The result is always $$TRUE or $$FALSE.

Class 10
Class 10 operators include the unary bitwise operators ~ and NOT.

The operand must be an integer variable or expression, or a function name. When applied to GIANT
operands, the result data type is GIANT. Otherwise the result data type is XLONG.

Class 11
Class 11 operators include the unary address operators & and &&.

The operand of & must be a variable, string, composite, whole array, array node, or array data element.
The operand of && must be a string, whole array, or string in a string array. The result data type is
always XLONG.

Operator Summary
The following table is a summary of the characteristics of all operators recognized by the language.
OP ALT KIND CLASS OPERANDS RETURNS PREC COMMENTS
& unary 11 AnyType Address 12 Address of Object Data
&& unary 11 AnyType Address 12 Address of Object Handle
NOT ~ unary 10 Integer SameType 12 Bitwise NOT
! unary 9 Numeric T/F 12 Logical Not (TRUE if 0, else FALSE)
!! unary 9 Numeric T/F 12 Logical Test (FALSE if 0, else TRUE)
+ unary 8 Numeric SameType 12 Plus
- unary 8 Numeric SameType 12 Minus
>>> binary 7 Integer LeftType 11 Arithmetic Up Shift
<<< binary 7 Integer LeftType 11 Arithmetic Down Shift
<< binary 7 Integer LeftType 11 Bitwise Left Shift
>> binary 7 Integer LeftType 11 Bitwise Right Shift
** binary 4 Numeric HighType 10 Power
/ binary 4 Numeric HighType 9 Divide
* binary 4 Numeric HighType 9 Multiply
\\ binary 6 Numeric Integer 9 Integer Divide
MOD binary 6 Numeric Integer 9 Modulus (Integer Remainder)
+ binary 5 Numeric HighType 8 Add
+ binary 5 String String 8 Concatenate
- binary 4 Numeric HighType 8 Subtract
AND & binary 3 Integer HighType 7 Bitwise AND
XOR ^ binary 3 Integer HighType 6 Bitwise XOR
OR | binary 3 Integer HighType 6 Bitwise OR
> !<= binary 2 NumStr T/F 5 Greater-Than
>= !< binary 2 NumStr T/F 5 Greater-Or-Equal
<= !> binary 2 NumStr T/F 5 Less-Or-Equal
< !>= binary 2 NumStr T/F 5 Less-Than
<> != binary 2 NumStr T/F 4 Not-Equal
= == binary 2 NumStr T/F 4 Equal (also "!<>")
&& binary 1 Integer T/F 3 Logical AND
^^ binary 1 Integer T/F 2 Logical XOR
|| binary 1 Integer T/F 2 Logical OR
= binary NumStr RightType 1 Assignment
 T/F T/F always returned as XLONG

Programming Language - Guide and Reference - Page 12

Unary Address Operators
The unary address operators are & and &&.

&
& returns the memory address of the following variable, array, array node, array data element, or
composite element. Applying & to numeric AUTO variables may produce compile-time "Bad Scope"
errors because AUTO variables may be assigned space in CPU registers, which do not have addresses.
String and composite variables are always located in memory, so applying & to strings and composites
is always valid. The valid forms of & are:

&numeric-variable &count
&string-variable &name$
&whole-array &token[]
&whole-string-array &symbols$[]
&array-node &token[func,]
&array-data &token[func, line, element]
&string-array-node &name$[dept,]
&string-array-data &name$[dept, stationNumber]

&&
&& returns the handle address of the following string variable , composite variable, whole array, or
string array element. Numeric variables and components of composite variables do not have handles, so
applying && to them produces compile-time errors. Applying && to AUTO strings, arrays, and
composites produces compile-time errors because they may be assigned space in CPU registers, which
do not have addresses. The valid forms of && are:

&&string-variable (non-AUTO) &&name$
&&whole-array (non-AUTO) &&token[]
&&whole-string-array (non-AUTO) &&symbols$[]
&&string-array-data &&name$[dept, stationNumber]
...(same result as above) &name$[dept, stationNumber,]

Unary Arithmetic Operators
The unary arithmetic operators are + and -.

+
+, when used as a unary operator, is the unary positive operator, which performs no operation on the
following operand. It makes sign visible and explicit where appropriate for program clarity.

-
-, when used as a unary operator, is the unary negative operator which changes the sign of the following
operand. The sign bit of the operand value is inverted, or the operand value is subtracted from zero,
whichever is appropriate for the operand data type.

Programming Language - Guide and Reference - Page 13

Unary Bitwise Operators
The unary bitwise operators are ~ aka NOT.

~ aka NOT
~ and NOT return the bitwise inversion of the following operand. All bits are flipped, so every zero bit
is made a one, and every one bit is made a zero.

Unary Logical Operators
The unary logical operators are ! and !!.

!
! returns the logical NOT of the following operand. If the value of the operand is zero, ! returns $
$TRUE (-1). If the value is any non-zero value, ! returns $$FALSE (0).

!!
!! returns the logical TEST of the following operand. If the value of the operand is zero, !! returns $
$FALSE (0). If the value is any non-zero value, !! returns $$TRUE (-1).

Binary Shift Operators
The binary shift operators are >>>, <<<, >>, <<.

>>>
>>>, the arithmetic shift right operator, shifts the value of the left integer operand n bits to the right,
where n is the value of the integer operand following the >>> operator. When the left operand is
unsigned, all vacated upper bits are filled with zeros. When the left operand is signed, all vacated upper
bits are filled with the most significant bit of the original value. >>> is explicitly arithmetic.

<<<
<<<, the arithmetic shift left operator, shifts the value of the left integer operand n bits to the left, where
n is the value of the integer operand to the right of the <<< operator. All vacated lower bits are filled
with zeros, regardless of data-type. <<< is explicitly arithmetic. The data type of the result is the same
as the shifted integer; if significant bits are shifted out of the integer, they are lost and no error occurs.

>>
>>, the bitwise shift right operator, shifts the left integer operand n bits to the right, where n is the value
of the integer operand to the right of the >> operator. All the vacated upper bits are filled with zeros.
>> is explicitly bitwise.

<<
>>, the bitwise shift left operator, shifts the left integer operand n bits to the left, where n is the value of
the integer operand to the right of the << operator. All the vacated lower bits are filled with zero bits.
<< is explicitly bitwise. The data type of the result is the same as the shifted integer; if significant bits
are shifted out of the integer, they are lost and no error occurs.

Programming Language - Guide and Reference - Page 14

Binary Arithmetic Operators
The binary arithmetic operators are **, /, *, -, +, \, MOD.

**
**, the raise to power operator, raises the left operand to the power of the right operand. ** replaces
the ^ in conventional BASIC because ^ is bitwise XOR.

/
/, the floating point divide operator, divides the left operand by the right operand. / is a floating point
divide, so if either operand is an integer type, it is converted to DOUBLE before the operation is
performed. The result of / is SINGLE if both operands are SINGLE, otherwise it is DOUBLE. / will
also divide SCOMPLEX and DCOMPLEX numbers.

*
*, the multiply operator, multiplies the left operand by the right operand. * will also multiply
SCOMPLEX and DCOMPLEX numbers.

-
-, the subtract operator, subtracts the right operand from the left operand. - will also subtract
SCOMPLEX and DCOMPLEX numbers.

+
+, the add operator, adds the right numeric operand to the left numeric operand. + will also add
SCOMPLEX and DCOMPLEX numbers. + will also concatenate strings - see Binary String Operators.

\
\, the integer divide operator, divides the left operand by the right operand. \ is an integer divide, so
if either operand is a floating point type, it is converted to SLONG before the operation is performed.
The result of \ is always SLONG or XLONG or GIANT.

MOD
MOD, the integer modulus operator, divides the left operand by the right operand, but returns the
remainder left over from the divide instead of the result of the divide. MOD is defined to use an integer
divide, so if either operand is a floating point type, it is converted to SLONG before the operation is
performed. The result of MOD is always SLONG or XLONG or GIANT.

Programming Language - Guide and Reference - Page 15

Binary Bitwise Operators
The binary bitwise operators are &, |, ^, aka AND, OR, XOR.

& aka AND
AND and &, the bitwise AND operators, AND the left and right operands on a bit by bit basis.

| aka OR
XOR and ^, the bitsize XOR operators, XOR the left and right operands on a bit by bit basis.

^ aka XOR
OR and |, the bitwise OR operators, OR the left and right operands on a bit by bit basis.

Binary Logical Operators
The binary logical operators are &&, ^^, ||.

&&
&&, the logical AND operator, returns XLONG $$TRUE if both the left and right operand is non-zero;
otherwise it returns $$FALSE.

^^
^^, the logical XOR operator, returns XLONG $$TRUE if either one but not both of the left and right
operands is non-zero; otherwise it returns $$FALSE.

||
||, the logical OR operator, returns XLONG $$TRUE if either one or both of the left and right operands
is non-zero; otherwise it returns $$FALSE.

Binary String Operators
The only binary string operator is +.

+
+, the string concatenate operator, appends the right string operand to the end of the left string operand.
+ also adds numeric and complex values; see Binary Arithmetic Operators.

Programming Language - Guide and Reference - Page 16

Binary Relational Operators
The binary relational operators are >, >=, <=, <, <>, =, aka !<=, !<, !>=, !=, ==.

> aka !<=
> and !<= return $$TRUE if the left operand is greater than the right operand; otherwise they return $
$FALSE.

>= aka !<
>= and !< return $$TRUE if the left operand is greater or equal to the right operand; otherwise they
return $$FALSE.

<= aka !>
<= and !> return $$TRUE if the left operand is less than or equal to the right operand; otherwise they
return $$FALSE.

< aka !>=
< and !>= return $$TRUE if the left operand is less than the right operand; otherwise they return $
$FALSE.

<> aka !=
<> and != return $$TRUE if the left operand is not equal to the right operand; otherwise they return $
$FALSE.

= aka ==
= and == return $$TRUE if the left operand is equal to the right operand; otherwise they return $
$FALSE.

Operator Considerations
Conventional BASIC does not have logical operators: && ^^ || ! !!

In conventional BASIC, the bitwise operators AND, XOR, OR, NOT are used in place of the corresponding
logical operators, sometimes with undesirable results. For example, if x=1 and y=2, then x AND y
returns zero, which is FALSE, while x&&y returns TRUE. Furthermore, x XOR y returns 3, which is
TRUE, while x^^y returns FALSE.

Programming Language - Guide and Reference - Page 17

Subroutines
Subroutines are blocks of code that can be called from elsewhere in the same function. Subroutines do
not take arguments, but have access to all variables and constants available in that function.

Subroutines begin with a SUB SubName statement, end with an END SUB statement, and are called with
a GOSUB SubName statement. It is an error to attempt to GOTO labels within a subroutine from outside
the subroutine. However, it is possible to GOTO a label outside a subroutine from within.

Subroutines cannot be nested. Each must end before another begins.

Subroutines are not recursive. They may not call themselves directly or indirectly. A compile-time
error occurs if a subroutine tries to call itself directly, that is, from within itself. However a subroutine
can call itself indirectly by calling another subroutine that calls it. This error is not detected at compile-
time or run-time. Programs may hang up when subroutines call themselves indirectly.

But functions are recursive, so a function can call itself from within a subroutine without restrictions.
For example, SUB Blivit in function ThisFunc() may not contain GOSUB Blivit. But function
ThisFunc() may be called from within SUB Blivit, and the newly called ThisFunc() may execute
SUB Blivit. Stated differently, the prohibition against recursive execution of subroutines applies only
within each call of the function that contains it.

Functions
Functions are blocks of code that can be called from anywhere in a program, receive 0 to 16 input
values called arguments, carry out actions based upon the input values, and finally return control to the
point in the program immediately following the call, sometimes returning a value.

Arguments can be passed to functions by value, by reference, or by address (for calling C functions).
Numeric values, string values, arrays, and composite values can be passed to functions.

Programming Language - Guide and Reference - Page 18

Block Structure
Programs are composed of blocks which look and act like units. Most block structures can be nested,
which means located inside other blocks. To promote clarity, readability, and visibility of program
structure, source lines in block structures should be indented by a tab or two spaces.

Functions are the outermost blocks. Within functions, five block structures are common:

· IF ... END IF
· SELECT CASE ... END SELECT
· DO ... LOOP
· FOR ... NEXT
· SUB ... END SUB

Except for functions and subroutines, blocks can be nested. It is common to find these blocks nested
several levels deep in many programs.

Each block must fully enclose all blocks within it. In other words, a block must end before any block in
which it is imbedded. This does not mean that execution necessarily proceeds through blocks in the
order of the source program. Statements exist to control execution within and between blocks, and for
multi-level exits.

The reference section describes statements that control execution in and between blocks, including:

· DO DO
· DO LOOP
· DO FOR
· DO NEXT
· EXIT DO
· EXIT IF
· EXIT FOR
· EXIT FUNCTION
· EXIT SUB
· EXIT SELECT
· NEXT CASE

Execution Order
Execution need not proceed linearly through blocks. DO xxx and EXIT xxx statements control the
execution path through blocks. For example, it is perfectly acceptable to do the next iteration of a DO
loop by executing a DO DO or DO LOOP statement, even if there are other blocks between the ends of
the DO block and the DO DO or DO LOOP.

Multi-Level Control
Multi-level DO xxx # and EXIT xxx # statements are provided. For example, EXIT DO 2 escapes
two levels of DO loops instead of just one, DO DO 3 jumps to the DO statement three levels back, and
DO LOOP 1 is the same as DO LOOP.

If you modify code near multi-level statements, be careful to adjust the # level counts as necessary.

Programming Language - Guide and Reference - Page 19

Programming Language - Guide and Reference - Page 20

Data
Data Type
A number of data types are built in, including signed and unsigned integers, single and double precision
floating point numbers, single and double precision floating point complex numbers, and strings.
Additional user-defined types can be defined in programs. These composite types are fixed-size
collections of built-in and other user-defined types.

The type suffix, type name, and format of the built-in data types are given in the following table:

@ SBYTE Signed byte (8-bits)
@@ UBYTE Unsigned byte (8-bits)
% SSHORT Signed short (16-bits)
%% USHORT Unsigned short (16-bits)
& SLONG Signed long (32-bits)
&& ULONG Unsigned long (32-bits)
 XLONG Natural long (32/64-bits)
 GOADDR GOTO address (32/64-bits)
 SUBADDR GOSUB address (32/64-bits)
 FUNCADDR FUNCTION address (32/64-bits)
$$ GIANT Signed giant (64-bits)
! SINGLE IEEE Single Precision Floating Point (32-bits)
DOUBLE IEEE Double Precision Floating Point (64-bits)
$ STRING String of unsigned bytes (characters)
 SCOMPLEX Single Precision Complex (Two SINGLEs)
 DCOMPLEX Double Precision Complex (Two DOUBLEs)

Type Suffix
Type suffixes make the data types of variables instantly visible, but are not required. They can be
appended to variables and arrays to specify data type when type visibility is important.

Simple Type
Integer and floating point types are called simple types, because they contain a single element, a
number.

String
Strings are sequences of unsigned bytes normally used to hold characters. Strings are very common in
most programs, so special capabilities make string programming faster and more convenient.

Composite Type
Composite types are collections of simple types, composite types, fixed-size strings, and fixed-size one
dimensional arrays of any of these. Two complex number data types, SCOMPLEX and DCOMPLEX, are
built in composite types. Additional composite types defined in the prolog of programs, and are called
user-defined types.

Programming Language - Guide and Reference - Page 21

Built In Types
The following table gives the name, size, format, type suffix, and the minimum and maximum value of
every built in data type.

SUFFIX BITS NAME FORMAT MIN VALUE MAX VALUE
@ 8 SBYTE Signed Byte Integer -128 +127
@@ 8 UBYTE Unsigned Byte Integer 0 +255
% 16 SSHORT Signed Short Integer -32768 +32767
%% 16 USHORT Unsigned Short Integer 0 +65535
& 32 SLONG Signed Long Integer -2147483648 +2147483647
&& 32 ULONG Unsigned Long Integer 0 +4294967395
 32/64 XLONG Natural Long Integer MIN SLONG / GIANT MAX SLONG / GIANT
 32/64 GOADDR Computed GOTO address MIN XLONG MAX XLONG
 32/64 SUBADDR Computed GOSUB address MIN XLONG MAX XLONG
 32/64 FUNCADDR Computed function address MIN XLONG MAX XLONG
$$ 64 GIANT Signed Giant Integer -9223372036854775808 +9223372036854775807
! 32 SINGLE IEEE Single Floating Point -1e38 +1e38
64 DOUBLE IEEE Double Floating Point -1d308 +1d308
$ STRING Unsigned Byte String zero characters 2147483647 characters
 64 SCOMPLEX IEEE Single Complex 1e38 : -1e38 +1e38 : +1e38
 128 DCOMPLEX IEEE Double Complex 1d308 : -1d308 +1d308 : +1d308

Coersion aka Type Conversion
Type conversion, also called coersion, is performed automatically when appropriate. For example,
when an operator combines two operands in expression evaluation, the smaller type is promoted to the
larger type before the operation is performed.

A consistent set of intuitive, efficient intrinsics for explicit type conversion are also provided. For all
explicit type conversions, the name of the intrinsic is the name of the data type to convert to, as the
following table illustrates. The argument can be any built-in simple (numeric) or string type.

SBYTE() Convert to SBYTE
UBYTE() Convert to UBYTE
SSHORT() Convert to SSHORT
USHORT() Convert to USHORT
SLONG() Convert to SLONG
ULONG() Convert to ULONG
XLONG() Convert to XLONG
GOADDR() Convert to GOADDR
SUBADDR() Convert to SUBADDR
FUNCADDR() Convert to FUNCADDR
GIANT() Convert to GIANT
SINGLE() Convert to SINGLE
DOUBLE() Convert to DOUBLE
STRING() Convert to STRING
STRING$() Ditto

Type Sizes
XLONG, GOADDR, SUBADDR, and FUNCADDR data types are 32-bit on some CPUs and 64-bit on others.
These natural integer and address types are 64-bit if the logical address of the computer CPU is 64-bits.
This does not alter how properly written programs operate. To assure portability, avoid writing
programs that depend on the size of these data types being 32-bits or 64-bits.

Programming Language - Guide and Reference - Page 22

Storage Type
The values of individual integer variables smaller than SLONG are held in memory as SLONG values.
Therefore overflow does not occur for integer types until an overflow of the SLONG data type occurs.
Array elements, on the other hand, are always held as their specified data type.

Range checking is not performed when values are assigned to array elements because the overhead is
considerable and in most cases the nature of the program avoids truncation or overflow. In cases where
assigning an integer variable to an array might result in undesired truncation, apply a type conversion
intrinsic to the result before assigning to the array.

The conversion intrinsics range check their arguments and cause overflow errors if the value is out of
range for the specified result type. For example, the following two lines assign an expression value to
SSHORT array k[] without range checking, then with range checking:

k%[n] = a * b + c * d ' no range checking
k%[n] = SSHORT (a * b + c * d) ' do range checking

Programming Language - Guide and Reference - Page 23

Kind
There are three principal kinds of data objects, literals, constants, and variables.

Literal
A literals is a specific numeric or string value. 23 is a numeric literal, while "hello" is a string
literal. The many literal formats supported are described in the following pages.

Numeric Literal
A numeric literal is a specific numeric value represented in one of the following formats:

Character Literal 'x' ASCII character between single quotes.
Integer Literal 88110 Decimal digits.
Decimal Literal 88.110 Decimal digits plus and decimal point.
Scientific Literal .88110d+5 Decimal number with power of 10 exponent
Hexadecimal Literal 0xDEADC0DE "0x" plus 0 to 16 hexadecimal digits.
Octal Literal 0o37777777777 "0o" plus 0 to 22 octal digits.
Binary Literal 0b0010100010101011 "0b" plus 0 to 64 binary digits.
SINGLE Image 0s3F880000 "0s" plus exactly 8 hexadecimal digits.
DOUBLE Image 0d4018000080000000 "0d" plus exactly 16 hexadecimal digits.

Character Literal
Character literals are single ASCII characters enclosed in single quotes, like 'x' or '!'. Simple
backslash codes like '\a', '\n', '\V', '\\', and '\"' are also valid representations of non-
printing characters. The valid backslash codes are the single character backslash codes defined for
string literals. Character literals are unsigned bytes UBYTE.

Character literals are a convenient, efficient way to specify the numeric value of any single ASCII
character. 'a', '!', and '"' are equivalent to ASC("a"), ASC("!"), and ASC(CHR$(34)), but
execute much faster. Remember, character literals represent the ASCII value of characters, so '5'
does not represent the number 5, but 0x35 or 53. See Appendix A for character values of ASCII
characters. The following code segment illustrates character literals:

FUNCTION CheckChars (n$) '
 FOR i = 1 TO LEN(n$) ' for each character in n$
 v = ASC(n$, i) ' v = value of character #i
 SELECT CASE TRUE '
 CASE (v >= 'A') AND (v <= 'Z') : PRINT "Upper case letter."
 CASE (v >= 'a') AND (v <= 'z') : PRINT "Lower case letter."
 CASE (v >= '0') AND (v <= '9') : PRINT "Decimal digit."
 CASE (v = '.') : PRINT "Decimal point."
 CASE (v = '$') : PRINT "Dollar sign."
 CASE (v = '\t') : PRINT "Tab character."
 CASE (v = '\\') : PRINT "Backslash character."
 CASE ELSE : PRINT "Nothing interesting."
 END SELECT
 NEXT i
END FUNCTION

Programming Language - Guide and Reference - Page 24

Integer Literal
Integer literals are series of decimal digits without decimal point or scientific exponent. All but huge
integers (more than 19 digits) can be stored in one of the integer data types SBYTE to GIANT.

Values from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 can be represented
in at least one of the integer formats. Numeric literals are stored in the smallest type that can hold them.
The ranges of the integer data types are as follows:

SBYTE -128 to +127
UBYTE 0 to +255
SSHORT -32,768 to +32,767
USHORT 0 to +65,535
SLONG -2,147,483,648 to +2,147,483,647
ULONG 0 to +4,294,967,295
XLONG Same as SLONG / GIANT on 32-bit / 64-bit systems
GIANT -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Decimal Literal
Decimal literals are series of decimal digits with a decimal point, but no scientific exponent. Integer
data types cannot store the fractional part of numbers, so decimal literals become one of the two floating
point data types, SINGLE or DOUBLE.

Positive or negative numbers with exponents larger than about 1038 or smaller than about 10-38 cannot
be held in SINGLE, so they are typed DOUBLE.

Numbers that are more precisely represented in DOUBLE than SINGLE are typed DOUBLE. Numbers
with more than 7 significant decimal digits can always be represented more precisely in DOUBLE, as can
many shorter numbers. For example, .1 is typed DOUBLE because floating point representations of .1
are binary continuing fractions (like 1/3 in decimal), and DOUBLE stores more of the fraction.

Decimal literals can be explicitly typed SINGLE or DOUBLE appending a type-suffix character, as
in .100! or .100#.

Scientific Literal
Scientific literals are decimal digits, with or without a decimal point, followed by a scientific exponent.
The format of a valid scientific exponent is {d|e|D|E}[+/-]XXX} where XXX is 1 to 3 decimal digits.
e and E exponent specifiers identify numbers as SINGLE, while d and D specify DOUBLE.

-3e-2 is -0.03 in SINGLE, while 88.110d3 is 88110 in DOUBLE. The range of SINGLE and DOUBLE
data types are:

 SINGLE < 0 -3.402823e+38 to -1.175494e-38
 SINGLE = 0 0
 SINGLE > 0 +1.175494e-38 to +3.402823e+38
 DOUBLE < 0 -1.79769313486232d+308 to -2.22507385850719d-308
 DOUBLE = 0 0
 DOUBLE > 0 +2.22507385850719d-308 to +1.79769313486232d+308

Programming Language - Guide and Reference - Page 25

Hexadecimal Literal
Hexadecimal literals begin with 0x and are followed by 0 to 16 hexadecimal digits (0-9,A-F,a-f).
Hexadecimal literals are images of 32-bit or 64-bit integers in 4-bit chunks.

0 to 8 hex digit literals are typed XLONG, while 9 to 16 hex digit literals are typed GIANT. Hexadecimal
literals with less than 8 hex digits have implicit zeros in the more significant digit positions, so 0xFEED
is equivalent to 0x0000FEED. Therefore, 8 hex digits are required to specify negative numbers. For
example, the value -1 is 0xFFFFFFFF, not 0xFFFF (+65535) or 0xFF (+255).

Similarly, 16 hex digits are required to specify negative numbers in the GIANT hexadecimal format.
When 16 hex digits have been collected, the hexadecimal literal is complete and any further characters,
whether hex digits or not, are not counted as being part of the hexadecimal literal.

0x followed by an invalid hexadecimal character has a value of zero. Type suffixes are invalid
following hexadecimal literals.

Octal Literal
Octal literals begin with 0o and are followed by 0 to 22 octal digits (0-7). Octal literals are images
of 32-bit or 64-bit integers in 3-bit chunks.

0 to 11 octal digit literals are typed XLONG, while 12 to 22 octal digit literals are typed GIANT. The one
exception is an 11 octal digit number with the most significant bit set, which is type GIANT. Octal
literals with less than 11 octal digits have implicit zeros in the more significant digit positions, so
0o7777 is equivalent to 0o00007777. This means that 11 octal digits are required to specify negative
numbers. For example, the value -1 is 0o37777777777.

Similarly, 22 octal digits are required to specify negative numbers in the GIANT octal format. When
adding another octal digit would cause significant bits to be lost (shifted out most significant end),
further characters, whether valid octal digits or not, are not counted as being part of the octal literal.

0o followed by an invalid octal character has a value of zero. Type suffixes are invalid following octal
literals.

Binary Literal
Binary literals begin with 0b and are followed by 0 to 64 binary digits (0-1). Binary literals are
images of 32-bit or 64-bit integers in 1-bit chunks.

0 to 32 binary digit literals are typed XLONG, while 33 to 64 binary digit literals are typed GIANT.
Binary literals with less than 32 significant binary digits have implicit zeros in the more significant digit
positions, so 0b1111 is equivalent to 0b0000000000001111. This means that 32 binary digits are
required to specify negative numbers. For example, -1 is 0b11111111111111111111111111111111.

Similarly, 64 binary digits are required to specify negative numbers in the GIANT binary format. When
adding another binary digit would cause significant a bit to be lost (shifted out most significant end),
further characters, whether valid binary digits or not, are not counted as being part of the binary literal.

0b followed by an invalid binary character has a value of zero. Type suffixes are invalid following
binary literals.

Programming Language - Guide and Reference - Page 26

SINGLE Image
Single image literals begin with 0s and are followed by 8 hexadecimal digits. Single image literals are
images of the 32-bit SINGLE data type in 4-bit chunks. Exactly 8 hex digits must follow the 0s prefix.
Any fewer will result in an erroneous value, while hex digits beyond 8 are not included in the single
image value.

0s40800000 4.00000 1.000 x 22
0s40400000 3.00000 1.500 x 21
0s40000000 2.00000 1.000 x 21
0s3F800000 1.00000 1.000 x 20
0s3F400000 0.75000 1.500 x 2-1
0s3F000000 0.50000 1.000 x 2-1
0s3E800000 0.25000 1.000 x 2-2
0s3E000000 0.12500 1.000 x 2-3

Single image format is useful when exact specification of SINGLE numbers is necessary, as when
creating values for math functions where the highest possible precision is important.

DOUBLE Image
Double image literals begin with 0d and are followed by exactly 16 significant hexadecimal digits (any
beyond 16 are not part of the number). Double Image literals are images of the 64-bit DOUBLE data
type in 4-bit chunks.

0d4010000000000000 4.00000 1.000 x 22
0d4008000000000000 3.00000 1.500 x 21
0d4000000000000000 2.00000 1.000 x 21
0d3FF0000000000000 1.00000 1.000 x 20
0d3FE8000000000000 0.75000 1.500 x 2-1
0d3FE0000000000000 0.50000 1.000 x 2-1
0d3FD0000000000000 0.25000 1.000 x 2-2
0d3FC0000000000000 0.12500 1.000 x 2-3

Double image format is useful when exact specification of DOUBLE numbers is necessary, as when
creating values for math functions where the highest possible precision is important.

Programming Language - Guide and Reference - Page 27

String Literal
String literals are sequences of zero or more ASCII standard characters between "double quotes".
For example, in x$ = "mark", x$ is a string variable, while "mark" is a string literal.

Backslash characters are defined for imbedding non-printable characters in literal strings. The \ and
the following character are converted to one character, as summarized in the following table.

 \0 0x00 null
 \a 0x07 alarm (bell)
 \b 0x08 backspace
 \d 0x7F delete
 \e 0x1B escape
 \f 0x0C form-feed
 \n 0x0A newline
 \r 0x0D return
 \t 0x09 tab
 \v 0x0B vertical-tab
 \\ 0x5C backslash
 \' 0x27 single-quote
 \" 0x22 double-quote
 \OOO 0oOOO octal value
 \xHH 0xHH hex value 0xHH

In \OOO (octal format), values from \000 to \377 are valid. \OOO format is initiated by \ followed
by an octal digit 0-7, and continues to the first non-octal digit or until three octal digits have been
collected. The most significant bit of \400 through \777 is lost.

In \xHH (hex format), values from \x00 to \xFF are valid. xHH format is initiated by \x and
continues to the first non-hex digit or until two hex digits have been collected.

When \ is followed by any non-alphanumeric character, the \ is ignored and the character is included
in the string.

When \ is followed by an alphabetic character not shown the preceding table, the backslash is ignored
and the character is included in the string. New backslash characters may be defined in subsequent
versions, so undefined backslash characters may result in inconsistent behavior.

Programming Language - Guide and Reference - Page 28

Constant
Constants are symbols used as descriptive replacements for literal values. They represent fixed numeric
or string values that do not change as programs run. Attempts to redefine constants cause compile time
errors. The data type of constants is determined by the data type of the literal or constant assigned to it.
Type suffixes are not valid on constants, except for $ on string constants. Only literals, constants, and
bitfield specs can be assigned to constants.

Local Constant
Local constants are distinguished by $ prefixes, as in $SIZE and $SHAPE. They are declared, defined,
and typed within functions when values are assigned to them. Local constants are visible only within
the function that defines them.

Shared Constant
Shared constants have $$ prefixes, as in $$YES and $$NO. They are declared, defined, and typed
when values are assigned to them. Shared constants must be defined in the prolog after all function and
shared data declarations. Shared constants that are "exported" by a library become defined in a program
when it "imports" the library.

System Constant
System constants are shared constants predefined for all programs. The only ones currently defined are
$$FALSE and $$TRUE.

Variable
Variables are symbols representing values, or groups of values, that can change as a program executes.
Simple variables, often just called variables, are single numeric values in one of several data types.
String variables, or strings, are elastic series of unsigned bytes. Array variables, or arrays are one or
more dimensional arrays of any type of data. Composite variables, or composites are fixed-size
collections of simple variables, fixed-size arrays, fixed-length strings, and other composites.

Variables, strings, arrays, and composites are all are called variables. When distinction between the
various kinds are important, the individual names are used.

Simple Variable
Simple variables are analogous to algebraic variables and represent single numeric values. Simple
variables range from 1 byte (SBYTE,UBYTE) to 8 bytes (GIANT,DOUBLE).

Signed integers, unsigned integers, and floating point numbers are simple data types. The built-in
simple data types include:

 SBYTE 8-bit signed integer
 UBYTE 8-bit unsigned integer
 SSHORT 16-bit signed integer
 USHORT 16-bit unsigned integer
 SLONG 32-bit signed integer
 ULONG 32-bit unsigned integer
 XLONG 32/64 bit generic integer
 GOADDR 32/64 bit address integer
 SUBADDR 32/64 bit address integer
 FUNCADDR 32/64 bit address integer
 GIANT 64-bit signed integer
 SINGLE 32-bit floating point
 DOUBLE 64-bit floating point

Bit Field

Programming Language - Guide and Reference - Page 29

Bit fields are arbitrary length fields of bits in integer variables. Bit field operations work with 1 - 32 bit
wide fields starting at any bit position from 0 (LSb) to 31 (MSb).

Bit Field Intrinsics
CLR() clear arbitrary bit field to zeros
SET() set arbitrary bit field to ones
MAKE() make an arbitrarily bit field
EXTS() extract arbitrary bit field signed
EXTU() extract arbitrary bit field unsigned

Brace Notation for Bitfields
Brace notation can be used to extract signed and unsigned bit fields, as in aa=token{{3,24}} (signed)
and aa = token{3,24} (unsigned).

In aa = token{3,24}, the three bit field starting at bit 24 is extracted from token and assigned to
aa. The upper 29 bits of aa become zero since single braces specify unsigned bitfields. Double
braces specify signed bitfields, so aa = token{{3,24}} fills the upper bits of aa with the most
significant bit of the extracted 3-bits.

BITFIELD()
The BITFIELD() intrinsic creates descriptive bitfield constants and variables in a portable, machine
independent, way.

The following examples show four variables and constants being given values by the BITFIELD()
intrinsic, then extracted as signed and unsigned bitfields from variable token.

 $$TYPE = BITFIELD (5, 16) ' 5 bits 16-20
 $SCOPE = BITFIELD (3, 21) ' 3 bits 21-23
 white = BITFIELD (3, 29) ' 3 bits 29-31
 kind = BITFIELD (5, 24) ' 5 bits 24-28
 ...
 tokenType = token{$$TYPE} ' 5 bits 16-20
 tokenScope = token{$SCOPE} ' 3 bits 21-23
 tokenWhite = token{{white}} ' 3 bits 29-31
 tokenKind = token{kind} ' 5 bits 24-28

Programming Language - Guide and Reference - Page 30

String Variable
String variables are sequences of UBYTE characters. Strings generally contain ASCII text, but can hold
arbitrary byte sequences. Strings are automatically elastic, meaning they automatically resize to contain
whatever number of bytes are put into them. When a string resizes, its location in memory may change,
as when a longer string is assigned and there is insufficient room after the string to store the extra bytes.
For this reason, every string has a handle, an XLONG value at a fixed location in memory (or CPU
register) that always contains the current address of the string data. If the string is empty, the handle
contains zero.

Empty strings are FALSE, while strings with any contents are TRUE. This makes testing for empty
strings simple and efficient, as illustrated by the following examples:

IF a$ THEN PRINT "a$ has contents"
IFZ a$ THEN PRINT "a$ is empty"

Brace Notation Extract
Brace notation can be used to extract individual bytes from strings. thisByte = var${byteOffset}
extracts the UBYTE from var$ that is byteOffset characters from the beginning of var$, and
assigns it to numeric variable thisByte. The first character is at byteOffset = 0.

Brace notation extract is hundreds of times faster than ASC(MID$(var$,n,1)), which is the
conventional BASIC way to extract one byte from a string. It is faster because intrinsic function call
overhead is eliminated, string space management is avoided, and erroneous access outside the string is
not restricted (unless bounds checking is enabled).

The two argument ASC() intrinsic (as in ASC(var$,pos)) as a safe, intermediate efficiency alternative
to brace notation extract. Brace notation extract is an advanced feature to be employed with care.

Brace Notation Assign
Brace notation can also be used to assign individual bytes into strings. var${byteOffset} =
newByte replaces the existing character at byteOffset in var$ with the low byte of newByte.

For the same reasons as brace notation extract, brace notation assign is much faster than conventional
alternatives, and is an advanced feature to be used with care.

Brace notation assign has an additional danger. Unlike brace notation extract, it writes to memory.
Since bounds checking is not automatically performed, brace notation assign can write outside the
memory allocated for a string, modifying other variables and memory allocation headers, either of
which can crash the program and possibly even the development environment. It is particularly
important, therefore, to avoid invalid offset values in brace notation assign.

Programming Language - Guide and Reference - Page 31

Brace Notation Warning
Brace notation extract and assign are much faster than conventional alternatives for reading and writing
single bytes in a string. But either will cause memory faults if used on empty strings, and brace notation
assign will cause obscure and disastrous results if used to write beyond the current end of a string. The
byte written will overwrite the zero terminator, another variable, or, even worse, a memory allocation
header. In most cases, the program and probably the program development environment will crash.

Therefore, brace notation assign in particular should be considered an advanced feature for experienced
programmers when the fastest possible string processing is needed.

When programs run in the development environment with bounds checking enabled, dangerous brace
notation accesses are prevented. Instead, recoverable out-of-bounds errors occur. If bounds checking is
disabled, the program and the environment will probably crash. Programs that use brace notation must
be designed so improper brace notation accesses are impossible.

Internally, every string is represented by a handle, an XLONG value at a fixed location in memory. It
contains the address of the string data, which is elsewhere in memory. Empty strings are represented by
a handle containing 0. Any attempt to access an empty string element is therefore an error, usually one
that will cause a segment violation or memory fault.

Accesses beyond the end of strings return invalid values, and may cause segment violations.
LEN(theString$) returns the offset of the null character that terminates strings, so as long as the
length of the string is non-zero, offsets up to LEN(theString$) are valid. Be careful not to write over
the zero terminator at offset LEN(theString$) !

To prevent access of empty strings, test for contents first, as in the following example:

 IF a$ THEN firstChar = a${0} ELSE firstChar = -1

To prevent an attempted read or write from the null terminator or beyond, the brace notation offset
should be limited to the length of the string minus one, as in either of the following two-line examples:

 stringLength = LEN (a$)
 IF (n < stringLength) THEN thisChar = a${n} ELSE thisChar = -1

 maxOffset = UBOUND (a$)
 IF (n <= maxOffset) THEN thisChar = a${n} ELSE thisChar = -1

The following examples illustrate a similar strategy to prevent improper brace notation accesses in
loops. The first calculates a hash value for a symbol, and the second converts a symbol to lower case
with a UBYTE conversion array. UBOUND() returns -1 for empty strings, so these examples will not
accidentally attempt to access empty strings - which cause run memory access violations.

 hash = 0
 FOR i = 0 TO UBOUND (symbol$)
 hash = hash + symbol${i}
 NEXT i
'
 i = 0
 z = UBOUND (symbol$)
 DO WHILE (i <= z)
 symbol${i} = charsetUpperToLower[symbol${i}]
 INC i
 LOOP

Programming Language - Guide and Reference - Page 32

String Support
Strings are important in most programs, so many efficient string intrinsics are built in, including:

ASC() Intrinsic ASCII value of 1st character of string
CHR$() Intrinsic Convert number to 1 char ASCII string
CJUST$() Intrinsic Center justify string in field of spaces
CSIZE() Intrinsic Number of bytes before null character
CSIZE$() Intrinsic Clip string off at 1st null character
CSTRING$() Intrinsic Convert C string into native string
FORMAT$() Intrinsic Create formatted string from format spec and value
HEX$() Intrinsic Hexadecimal string representation of number
HEXX$() Intrinsic HEX$ with "0x" prefix
INCHR() Intrinsic Find first search-set character in string
INCHRI() Intrinsic Same as INCHR() except case insensitive
INFILE$() Intrinsic Input line of text from disk file
INLINE$() Intrinsic Input line of text from keyboard
INSTR() Intrinsic Find first substring in string
INSTRI() Intrinsic Same as INSTR() except case insensitive
LCASE$() Intrinsic Lower case of string
LCLIP$() Intrinsic Clip n bytes from left end of string
LEFT$() Intrinsic Leftmost n characters of string
LEN() Intrinsic # of elements in string
LJUST$() Intrinsic Left justify string in field of spaces
LTRIM$() Intrinsic Trim spaces and tabs from left of string
MID$() Intrinsic Extract arbitrary part of string
NULL$() Intrinsic Create string of n null characters
RCLIP$() Intrinsic Clip n bytes from right end of string
RIGHT$() Intrinsic Extract rightmost n characters of string
RINCHR() Intrinsic Same as INCHR except reverse search direction
RINCHRI() Intrinsic Same as RINCHR() except case insensitive
RINSTR() Intrinsic Same as INSTR() except reverse search direction
RINSTRI() Intrinsic Same as RINSTR() except case insensitive
RJUST$() Intrinsic Right justify string in field of spaces
RTRIM$() Intrinsic Trim spaces and tabs from right end of string
SPACE$() Intrinsic String of n space characters
STRING() Intrinsic Convert to type STRING... STRING$() is identical
STUFF$() Intrinsic Stuff one string into another
SWAP Statement Swap the values of numeric or string variables
TRIM$() Intrinsic Remove spaces and tabs from left & right of string
UCASE$() Intrinsic Upper case of a string

Programming Language - Guide and Reference - Page 33

Composite Data Type
Composite data types are declared and defined in TYPE statements in the prolog, before the first
function declaration. The names of these user-defined types become keywords that can be used just like
built-in type names.

Composite variables are fixed-size collections of fixed-size, named components. Every component is
one of the following:

· Built-in simple numeric type.
· Fixed-size string.
· Previously defined composite type.
· Fixed size one-dimensional array of any of the above.

Composite Type Declaration
Composite types are created by TYPE blocks in the prolog, before the first function is declared. The
name of the type follows the TYPE statement. The types and names of the components are defined on
subsequent lines, one component per line. An END TYPE statement marks the end of the type
definition. The following example shows how a composite type called VICTIM is created.

TYPE VICTIM
 USHORT .number ' victim # from 0 to 65535
 STRING * 50 .name ' victim name up to 50 bytes
 STRING * 50 .address[3] ' array with (4) 50 byte strings
 SLONG .zipcode ' zip code part of address
 GIANT .phone ' victim phone number
 UBYTE .kids ' number of kids victim has
 UBYTE .ages[15] ' age of victim and upto 14 kids
 FUNCADDR .Poison (STRING) ' function that poisons the victim
 FUNCADDR .Shoot (XLONG) ' function that shoots the victim
 FUNCADDR .BuryAlive () ' function that buries the victim
 FUNCADDR .Drown () ' function that drowns the victim
END TYPE

Creating a composite type fixes several things:

· The overall size of variables of the specified type.
· The name of each component.
· The type of each component.
· The size of each component.
· The location of each component within the composite.

Components are naturally aligned. In other words, the addresses of SSHORT, USHORT components are
multiples of 2, the addresses of SLONG, ULONG, SINGLE components are multiples of 4, and the
addresses of GIANT, DOUBLE components are multiples of 8. Sometimes space must be left after a
component so the next component begins in natural alignment. This unused space is called padding.
Careful ordering of elements can eliminate or reduce padding. Composite types larger than 65535 bytes
cannot be declared or defined.

Programming Language - Guide and Reference - Page 34

Composite Variable
All variables of a given composite type are the same size. This is important, because locating
composite variables within disk files is enormously simpler with fixed-size records.

Composite variables are declared in type declaration statements, just like other variables, with the
composite type name replacing the built-in type name. For example:

 SHARED DOUBLE xx, yy, zz[] ' Declare conventional variables
 SHARED VICTIM last, current, all[] ' Declare composite variables
 DCOMPLEX nn, oo, jj[] ' Declare composite variables
 STATIC VICTIM first, last, sorted[] ' Declare composite variables

Component
Components of composite variables are accessed by appending component names, which always begins
with a . , to the composite variable name, as in employee.phone where employee is a composite
variable and .phone is the name of a component. Dots are not valid characters in other symbols, so
component names are easy to distinguish from normal symbols.

SCOMPLEX and DCOMPLEX
Two complex number composite types are predefined for all programs, SCOMPLEX and DCOMPLEX.
SCOMPLEX has two SINGLE components, while DCOMPLEX has two DOUBLE components. For both
complex types, the component names are .R and .I, and contain the real and imaginary parts.

The +, -, *, and / operators can operate on complex variables, so expressions like:

 xx = (xx * yy) + (yy / zz)

are valid (where xx, yy, zz are all SCOMPLEX or DCOMPLEX). The components of complex numbers
are accessed like any composite variable, as in:

 xx.R = j#
 k# = xx.I
 yy.I = zz.I

Functions can take composite variables arguments, and/or return composite results. Dozens of
SCOMPLEX and DCOMPLEX functions are provided in the complex number function library.

Programming Language - Guide and Reference - Page 35

Array Variable
Arrays are collections of variables of any single data type, including strings. Elements are numbered
from a lower bound of 0 to an upper bound less than 2147483648.

DIM
Arrays start out empty; they have no elements and take up no space in memory, except for their XLONG
handle that initially contains 0. Arrays must be dimensioned before their contents can be read or
written. When an array is dimensioned by a DIM statement, any existing content are freed, a new array
is created, and its contents is initialized to zero. When an array is dimensioned, the address of element
0 of its highest dimension is stored in its handle.

REDIM
When an array is redimensioned in a REDIM statement, the values of elements in the old array that are
also in the new array are preserved. All new elements are zeroed.

DIM vs REDIM
After DIM creates or resizes an array, it clears all elements to zero. In contrast, REDIM preserves the
values of all elements in the original array that are also in the new array, and initializes any new
elements to zero. REDIM preserves data even in multi-dimensional arrays.

Dimension
DIM and REDIM can create arrays with 0 to 8 dimensions. Zero dimension arrays are empty arrays.
The lowest dimension is the rightmost. All other dimensions are called higher dimensions. Element
indices are separated by commas and appear between square brackets, as in a[b,c,d]. Arrays are thus
easily distinguishable from expressions, intrinsics, and functions.

An entire array is referenced when the square brackets are empty, as in n[] or n$[].

Empty Array
Empty arrays are FALSE, while arrays with any number of elements are TRUE. This makes testing for
empty arrays simple and efficient, as illustrated by the following examples:

 IF a[] THEN PRINT "a[] has contents"
 IFZ a[] THEN PRINT "a[] is empty"

Passing Array Arguments
A whole array can be passed by reference to a function by leaving the square brackets empty, as in:

 a = Func(a,@b[],@c[]).

When arrays are passed to functions, their type is checked against the argument list in the declaration of
the function being called. If the type of the array is not the same as the declared type, a type-mismatch
error occurs. However, if the keyword ANY appears before an array argument in the function
declaration, any type of array may be passed. The called function will receive the array as whatever
type array is shown in the argument list on its FUNCTION line. The type of the array can be tested with
TYPE(), as in t=TYPE(a[]), and ATTACH can attach it to an array of the appropriate type.

Programming Language - Guide and Reference - Page 36

Array Element
The elements of an array are variables, and are used in expressions just like normal variables, as in the
following examples:

FUNCTION Demo (w, x, y, z$)
 SHARED a%[] ' a%[] has SHARED scope
 SHARED k[] ' k[] has SHARED scope
 STATIC j$[] ' j$[] has STATIC scope

 IFZ j$[] THEN DIM j$[63] ' DIM j$[] on first entry
 a%[w] = x ' wth element of a%[] = x
 k[z] = x * a%[w] * a%[y] ' use arrays in an expression
 j$[x] = z$ ' put a string in j$[x]
END FUNCTION

Array Implementation
One-dimensional arrays are implemented as a contiguous set of elements, much like other languages.
Multi-dimensional arrays, however, are implemented as multi-level trees of one-dimensional arrays. As
long as they are created and used in the conventional manner, this implementation difference is
invisible. But tree-structure arrays have enormous advantages.

Tree Structure
Multi-dimensional arrays are arrays of array addresses, except for the lowest dimension which contains
data. This permits the construction of irregular arrays, for which there are supporting features.

Regular Array
There's no difference between conventional vs tree structure, or regular vs irregular in one dimensional
arrays. And multi-dimensional arrays behave just like conventional arrays as long as the features
provided to create and manipulate irregular arrays are not employed.

Irregular Array
The distinction between regular and irregular arrays applies only to multi-dimensional arrays.
Furthermore, irregular arrays need not be built or manipulated until and unless their special properties
are needed. Many programmers may never need them. On the other hand, system programs, and other
sophisticated applications are often vastly more efficient and easier to implement with irregular arrays.

Regular arrays have the same number of elements in every instance of a given dimension. In an array
created by DIM a[3,7], the upper bound of the low dimension is 7 for all three upper dimension values
(a[0,7], a[1,7], a[2,7], a[3,7]). Regular arrays can be thought of as rectangular.

Irregular arrays don't need to have the same number of elements in every instance of a given dimension.
For example, the upper bounds of the low dimension of a similar irregular array could be b[0,3],
b[1,*], b[2,5], b[3,2] (where "*" means no elements are allocated in this subdimension).
Therefore, irregular arrays cannot be thought of as rectangular, but can be thought of as ragged arrays.

Nodes and Data
Arrays contain two kinds of contents, nodes and data. Elements in the lowest dimension are data.
Elements in higher dimensions are nodes, meaning addresses of sub-arrays.

Consider a[], created by DIM a[3,7]. Five one-dimensional arrays are created. The first array
corresponds to the higher dimension, a[3,], and contains elements 0 to 3. These elements are nodes,
addresses of four arrays that contain data elements 0 to 7.

Programming Language - Guide and Reference - Page 37

Building Irregular Arrays
To build an irregular array, the individual one-dimensional sub-arrays of a multi-dimensional array are
created separately, then assembled into the complete irregular array. Alternatively, a regular array can
be converted into an irregular array by detaching subarrays, redimensioning them, then reattaching them
(ATTACH, REDIM, ATTACH).

The five one-dimensional arrays created and assembled by

 DIM a[3,7]

in the preceding example could also be created and assembled by either of the following two functions:

FUNCTION DimDemo1 ()
 SHARED a[] ' let's say a[] is a SHARED array
'
 DIM a[3,] ' create upper dimension of a[]
 DIM a0[7] ' create a0[7] to be data in a[0,]
 DIM a1[7] ' create a1[7] to be data in a[1,]
 DIM a2[7] ' create a2[7] to be data in a[2,]
 DIM a3[7] ' create a3[7] to be data in a[3,]
 ATTACH a0[] TO a[0,] ' attach a0[] to a[0,]
 ATTACH a1[] TO a[1,] ' attach a1[] to a[1,]
 ATTACH a2[] TO a[2,] ' attach a2[] to a[2,]
 ATTACH a3[] TO a[3,] ' attach a3[] to a[3,]
END FUNCTION
FUNCTION DimDemo2 ()
 SHARED a[] ' let's say a[] is a SHARED array
'
 DIM a[3,] ' create upper dimension of a[]
 FOR i = 0 TO 3 ' for each element of upper dimension
 DIM n[7] ' create an array with 7 data elements
 ATTACH n[] TO a[i,] ' attach to upper dimension element
 NEXT i ' next element of upper dimension
END FUNCTION '

ATTACH and SWAP
The ATTACH statement first verifies the destination array or node is empty, then swaps it with source
array or node. This has the effect of attaching the source to the destination, leaving the source empty.
SWAP is identical except the destination is not checked for zero before the arrays or nodes are swapped.

 ATTACH xx[] TO yy[]
 ATTACH xx[] TO nn[a, b,]
 ATTACH nn[a, b,] TO xx[]
 ATTACH nn[a, b,] TO oo[c, d, e,]
 SWAP b[], c[]
 SWAP b[], c[n,]
 SWAP a$[n,], a$[m,]

It follows that irregular arrays may have different number of nodes down various branches of the tree
structure. Nodes that contain a zero are called empty nodes and mark the termination of the tree
structure prior to arriving at data. It cannot be known at compile time or runtime what nodes will be
empty, the structure of programs must assure that accesses beyond empty nodes are not attempted. It is
wise to leave bounds checking enabled during program development to catch errors of this kind because
memory corruption and development environment crashes could result.

Programming Language - Guide and Reference - Page 38

Excess Comma Notation
The contents of any node can be checked with excess comma notation, as in the following examples:

 IF a[x,] THEN PRINT "non-empty-node"
 IFZ j[x, y,] THEN PRINT "empty-node"

Excess comma notation says a node is being accessed, not data. When nodes are being accessed, excess
comma notation is mandatory. When data is begin accessed, excess comma notation is an error. When
bounds checking is enabled, node/data mismatches are caught before the offending access occurs.

How would an irregular array a%[] be created with upper bounds of a%[0,3], a%[1,*], a%[2,5], a
%[3,2] where * = empty-node?

The following code illustrates:

FUNCTION demo ()
 SHARED a%[] ' let's say a%[] is a SHARED array
 DIM a%[3,] ' create upper dimension of a[]
 DIM a0%[3] ' create a0%[3] to be data in a%[0,]
' DIM a1%[] ' create a1%[] to be data in a%[1,]
 DIM a2%[5] ' create a2%[5] to be data in a%[2,]
 DIM a3%[2] ' create a3%[2] to be data in a%[3,]
 ATTACH a0%[] TO a%[0] ' attach a0%[] data array to a%[0,]
' ATTACH a1%[] TO a%[1] ' attach a1%[] data array to a%[1,]
 ATTACH a2%[] TO a%[2] ' attach a2%[] data array to a%[2,]
 ATTACH a3%[] TO a%[3] ' attach a3%[] data array to a%[3,]
 IF a%[0,] THEN PRINT "0" ' will print "0"
 IF a%[1,] THEN PRINT "1" ' will not print
 IF a%[2,] THEN PRINT "2" ' will print "2"
 IF a%[3,] THEN PRINT "3" ' will print "3"
END FUNCTION

The two lines commented out in the preceding example are not needed because DIM a[3,] initializes
all nodes to zero. Since a[1,] is already a empty-node, there's no need to create a empty array to
attach to a[1,].

Natural Data Type
Arrays have a natural data type, determined by type-suffix, declaration, or default. Any access of a
data element in an array is a read or write of natural type data.

Programming Language - Guide and Reference - Page 39

Considerations of Tree Structure Arrays

· Lowest dimension may be any valid type, including structure types.

· Higher dimensions MUST be dimensioned as higher dimensions DIM a[h,].

· A given array or subarray must contain all nodes or all data of one type.

· Irregular arrays may contain variable numbers of dimensions.

· Irregular arrays may contain empty nodes (node contents = 0) at any level.

· Programs must assure accesses through empty nodes are not attempted.

· Programs must assure accesses through data elements are not attempted.

· Valid irregular arrays have only data in the lowest dimension.

· Valid irregular arrays have only nodes in higher dimensions.

· All subarrays below a node are freed when the node is detached and freed.

· Array nodes are accessed/tested with "excess comma" syntax (a%[n,m,]).

· An array of any number of dimensions can be attached at any empty node.

· Arrays must never be attached to the lowest dimension (data element).

· Arrays must never be attached to non-empty nodes.

· An empty array is one kind of empty node.

Programming Language - Guide and Reference - Page 40

Scope
The scope of variables can be:

 AUTO
 AUTOX
 STATIC
 SHARED
 SHARED /groupname/
 EXTERNAL
 EXTERNAL /groupname/

Scope controls access to variables in the following way:

EXTERNAL variables are accessible to all programs in a single executable, which may be more than one
program if linked together into an executable or library. EXTERNAL variables are not shared between
separate executables, whether programs or libraries.

SHARED variables are accessible to all functions in a program.

STATIC variables are accessible to a single function, but are common to all instances of the function.

AUTO and AUTOX variables are accessible only by a single instance of a function - they are newly
created each time the function is called.

Visible Scope
Two scope prefixes are defined so SHARED and EXTERNAL variables can be visibly marked and not
redeclared in every function that accesses them.

Variable names with a # prefix are SHARED, whether or not they appear in a SHARED variable
declaration statement or not.

Variable names with a ## prefix are EXTERNAL, whether or not they appear in an EXTERNAL variable
declaration or not.

Note that variables xx and #xx and ##xx are three independent variables, no matter the scope and/or
data type of xx. # and ## prefixes are considered part of the variable name or symbol.

Programming Language - Guide and Reference - Page 41

AUTO
AUTO variables are accessible to one instance of a single function. Each time the function is called a
new set of AUTO variables are assigned to CPU registers or memory on the local frame, so several sets
of a function's AUTO variables may exist at any time, each of which is accessible to only one instance of
the function. AUTO variables are temporary, they exist only until the function completes and returns to
the caller. Variables are AUTO by default, so all undeclared variables are AUTO.

In well written programs, most variables are AUTO. They are the default because they are completely
insulated from all other functions and programs, including other instances of the same function.

AUTO variables are assigned to registers in the order they appear, so putting important variables in AUTO
statements will cause as many as possible to be assigned to registers. When registers are no longer
available, AUTO variables are assigned locations on the local stack frame along with AUTOX variables.
Executing from registers is faster, so register variables can speed program execution.

AUTOX
AUTOX variables are the same as AUTO variables except they are always assigned locations on the local
stack frame, never in CPU registers. Numeric variables whose addresses are taken must not be declared
AUTO, since CPU registers do not have addresses.

String, array, and composite variables whose handle addresses are taken must not be declared AUTO for
the same reason. AUTOX is generally needed only when calling C functions written to receive
arguments that are addresses.

STATIC
STATIC variables are accessible to all instances of a single function. STATIC variables are assigned
fixed memory locations for the lifetime of the program, so they are local to a single function, but
common to all instances of the function, and their values persist between function calls.

SHARED
SHARED variables are accessible to all functions in a single program that declare SHARED variables of
the same name. SHARED variables are allocated space at fixed memory locations for the program
lifetime, so their values persist between calls of the functions that access them, and are common to all
functions that access them.

A # prefix on a variable name declares the variable as SHARED, even when the variable is not declared
in a SHARED statement.

Programming Language - Guide and Reference - Page 42

SHARED /groupname/
SHARED /groupname/ variables are accessible to all functions in a single program that declare
SHARED /groupname/ variables of the same name and /groupname/.

SHARED /groupname/ variables are allocated space at fixed memory locations for the lifetime of the
program, so their values persist between calls of the functions that access them, and are common to all
functions that access them.

The flexibility of /groupname/ is illustrated in the following example, where the comments describe
the variable sharing between two functions:

FUNCTION One ()
 SHARED /groupOne/ a,b,c ' a shared with Two(), b, c shared with nobody
 SHARED /groupTwo/ i,j,k ' i shared with Two(), j, k shared with nobody
 SHARED x, y, z ' z shared with Two(), x, y shared with nobody
 x = a * i ' a, i shared with Two(), x shared with nobody
 y = b * j ' b, j, y shared with nobody
 z = c * k ' z shared with Two(), c, y shared with nobody
END FUNCTION
'
FUNCTION Two ()
 SHARED /groupOne/ a,n ' a shared with One(), n shared with nobody
 SHARED /groupTwo/ i,o ' i shared with One(), o shared with nobody
 SHARED c, k, z ' z shared with One(), c, k shared with nobody
 x = a * j * n ' x,j are AUTO, a shared with One(), n not shared
 y = b * i * o ' y, b are AUTO, i shared with One(), o not shared
 z = c * p ' z shared with One(), c, p shared with nobody
END FUNCTION

EXTERNAL
EXTERNAL variables are accessible to all functions in all programs in a single executable that declare
EXTERNAL variables of the same name. EXTERNAL variables are allocated space at fixed memory
locations for the lifetime of the executable, so their values persist between calls of functions that access
them, and are shared among all functions (in all linked programs) that access them.

A ## prefix on a variable name declares the variable as EXTERNAL, even when the variable is not
declared in an EXTERNAL statement.

EXTERNAL variables and arrays may not have the same name, so a and a[] cannot both be EXTERNAL.

EXTERNAL /groupname/
EXTERNAL /groupname/ variables are accessible to all functions in a single executable that declare
EXTERNAL /groupname/ variables of the same name and /groupname/.

EXTERNAL /groupname/ variables are allocated space at fixed memory locations for the lifetime of the
executable, so their values persist between calls of the functions that access them, and are common to all
functions (in all linked programs) that access them.

EXTERNAL variables and arrays may not have the same name, so aaa and aaa[] cannot both be
EXTERNAL /x/.

Programming Language - Guide and Reference - Page 43

Programming Language - Guide and Reference - Page 44

Programs
Program
Programs consist of a prolog, followed by one or more functions. Programs may be terminated by an
END PROGRAM statement after the last function, but it is not required.

The following program contains a 2 line prolog and a 3 line function:

DECLARE FUNCTION Hello () ' PROLOG - Declare program function
' ' PROLOG - Comment line
FUNCTION Hello () ' FUNCTION - Begin function definition
 PRINT "Hello World" ' FUNCTION - Function body or contents
END FUNCTION ' FUNCTION - End function definition

Prolog
A prolog consists of the following elements in the listed order:

1. Declarations of all external programs/libraries referenced by the program, if any.
2. Declarations/Definitions of all user-defined data-types, if any.
3. Declarations of all functions in the program (at least one).
4. Declarations of special external functions called by program (optional).
5. Declarations of shared & external variables, if any (optional).
6. Declarations/Definitions of all shared constants, if any.

The first declared function is the entry function - execution begins here when the program is run.

The functions declared in the prolog immediately follow the prolog. Only blank lines and comment
lines may appear between functions. Comment lines and blank lines between functions are associated
with the function that follows, so function comments must precede the function they describe.

Prolog Elements Example
PROGRAM "trouble" ' name the program or library
VERSION "0.0000" ' keep version number updated
IMPORT "xst" ' make standard library available
IMPORT "mylib" ' make custom library available
'
EXPORT ' begin exporting types, funcs, etc
 TYPE HANDLE = XLONG ' declare user-defined type HANDLE
 TYPE LINK ' declare user-defined type LINK
 XLONG .backward ' define component of type LINK
 XLONG .forward ' define component of type LINK
 END TYPE ' end declaration of type LINK
'
 DECLARE FUNCTION Entry () ' declare function in this program
END EXPORT ' stop exporting (temporarily)
'
 SHARED lastIndex, thisIndex ' declare shared variables
 EXTERNAL flexStatus ' declare external variable
EXPORT ' resume exporting
 $$Off = 0 ' define and export shared constant
 $$On = -1 ' define and export shared constant
END EXPORT ' stop exporting (the end)

Programming Language - Guide and Reference - Page 45

Function Library aka Library
A function library aka library is a collection of functions designed to be called by other programs and/or
function libraries. A function library is like a conventional program, except:

· its PROGRAM statement argument must be the same as its filename.
· its external variables are not accessible to other programs or dlls.
· its entry function does little or nothing except initialization.
· its entry function is called automatically when imported.
· it doesn't usually perform a complete activity by itself.
· it is compiled as a function library.

The math library is a good example: "xma" has no external variables, its entry function does nothing,
and it performs no coherent activity. It exists only to make its individual math functions and constants
available to other programs. Accessory toolsets for GuiDesigner are also function libraries.

When a function library is created, the PDE saves a file called libname.dec, where libname is the name of
the program. libname.dec contains all lines in EXPORT ... END EXPORT blocks in library prologs.

libname.dec is needed by programs that IMPORT "libname".

System Functions and Foreign Functions
System functions are library functions in the operating system, for example Win32s for Windows 3.1,
Win32 for Windows95 and WindowsNT, OS/2, UNIX,, etc. Foreign functions are library functions
written in some other programming language that has a compatible function interface.

Both are treated as foreign functions in the following discussion.

Programs can call foreign functions just like its own functions and functions in native function libraries.
To make foreign functions visible, list the libraries that contains them in the PROLOG, in IMPORT
statements - as in IMPORT "kernel32".

Foreign functions and function libraries must have libname.dec files. You'll have to create them
yourself or find a company that sells them as an accessory product. It isn't difficult to create or
suppliment libname.dec files yourself, since you only have to include declarations for the types,
functions, and constants that your program references. Later you can add new type, function, and
constant declarations on an as needed basis. The definitions for type and functions are available in
operating system documentation as well as libname.h files.

Some libname.dec files are provided with the PDE to make it easy to call common system functions,
and kernel32.dec is one example. These system declaration files don't usually contain every data
type, constant, and function in the system function library, but you can add them on an as needed basis.

libname.def files are not required to access foreign functions referenced by programs being run in the
program development environment, but they are usually required to make standalone executables.
libname.def is not needed for system functions since libname.lib files already exist.

Programming Language - Guide and Reference - Page 46

IMPORT
IMPORT "libname" statements make function libraries available to a program. The functions and shared
constants of the function library are imported into the program. Programs can call functions in imported
libraries as if those functions were in the same program, and programs can reference shared constants
defined in imported libraries as if those shared constants were in the same program. External and
shared variables in libraries are not visible however.

When IMPORT "libname" is compiled:

· libname.dec is read in and compiled as if it was in the program.
· libname.dll is loaded and linked with the program (if it exists).
· libname.dll entry function is called (to initialize the library).

libname.dec contains statements that define types, declare functions, and define shared constants in the
function library.

libname.dec is created automatically when a program is compiled as a function library by the program
development environment (see the following EXPORT statement). For libraries written in other
languages, libname.dec must be written by the programmer or supplier of the function libraries.

EXPORT ... END EXPORT
EXPORT and END EXPORT statements enclose type definitions, function declarations, and shared
constant definitions that programs want to export - make visible and accessible to other programs.

When a program is compiled into a function library, the lines between EXPORT and END EXPORT are
exported to any program that imports the library with IMPORT "libname".

Blowback Function - Blowback()
Programs running in the PDE are terminated when you "kill" them and when they "crash" due to fatal
errors like segment violations. Unfinished business may be pending when programs are terminated.
For example, files may have been opened and never closed.

For programs that execute only built-in statements and intrinsics and only call functions in the built-in
libraries (Xst, Xma, Xcm, Xgr, Xui), all such issues are resolved automatically by the PDE and libraries.

But the PDE and built-in libraries have no idea what happens when your program directly calls system
functions and unknown libraries. For example, if a program calls a system function instead of the
OPEN() intrinsic to open a file, the file may still be open when the program crashes, is terminated, or
finishes without closing the file. Any subsequent attempt to open the file will therefore fail.

To resolve this problem, whenever a program terminates, the PDE calls the Blowback() function in
the program and every library. Any program or library that calls system functions should contain a
Blowback() function to detect and resolve all "unfinished business".

Programming Language - Guide and Reference - Page 47

Programming Language - Guide and Reference - Page 48

Functions
Functions
Functions consist of the following elements, in the specified order:

· FUNCTION statement.
· Declarations of variables used in function.
· Declarations / Definitions of all local constants.
· Executable statements including any number of RETURN statements.
· END FUNCTION statement.

Executable statements are valid only within functions.

Entry Function
The entry function is the first function declared in the prolog in an INTERNAL or DECLARE statement.
The first time the entry function is called, all SHARED and EXTERNAL variables are cleared.

Function Names
Function names are valid symbols followed by a left parenthesis. Unlike other symbols, function names
may not take type-suffixes, except $ is valid to specify string return type.

By convention, the first character in each word in function names is capitalized, including the first
character in the function name. Function names are always followed by [whitespace plus]
parentheses(), whether they take arguments or not.

Encapsulation
By default, functions are fully encapsulated. All variables are AUTO unless explicitly declared
otherwise within the function. Variables declared SHARED or EXTERNAL in other functions do not
intrude upon same named variables within a function unless they are also declared in a SHARED or
EXTERNAL statement within the function, or prefixed with an explicit SHARED or EXTERNAL scope
prefix like #shared or ##external.

Arguments
Functions take arguments, values passed to them each time they are called. Functions can take as few
as zero, or as many as 16 arguments. GIANT and DOUBLE arguments count as two arguments, as do the
preceding arguments.

Input argument data types are specified in DECLARE FUNCTION statements at the beginning of
programs, and in FUNCTION statements that begin each function. When functions are called, numeric
arguments are automatically converted to the declared types before function execution begins. Strings
and composite arguments must match the declared type.

Programming Language - Guide and Reference - Page 49

Function Declaration
All functions that are defined and/or referenced in a program must be declared in the prolog of that
program in one of the following declaration statements:

 DECLARE FUNCTION [typename] FuncName ([arglist])
 INTERNAL FUNCTION [typename] FuncName ([arglist])
 EXTERNAL FUNCTION [typename] FuncName ([arglist])

DECLARE FUNCTION declares functions that will be defined in the current program, and makes them
visible to other programs.

INTERNAL FUNCTION declares functions that are defined in the current program, and only visible from
this program.

EXTERNAL FUNCTION declares functions that are defined in another program, and must be visible from
this program.

Function declarations determine the number and data type of arguments expected by functions, and the
data type of the return value. When functions are called, the compiler examines the declaration
information to:

· Verify that the correct number of arguments have been passed to the function.
· Convert each argument to the data type expected by the function before calling the function.
· Convert each argument passed by reference back to original data type after the function returns.
· Know the data type of the value returned by the function so it can be used properly in an expression or assignment.

Argument Checking
In functions that take no arguments, a right parenthesis must follow the left parenthesis, as in Func()
or Func (). Otherwise a comma separated list of parameters is placed between the parentheses. The
number of arguments the function will accept, and the data type of each is determined by the parameter
list. The data type of each parameter can be specified in one of the following ways:

 Typename. Func (XLONG, STRING, GIANT, ANY)
 Typename followed by symbol. Func (XLONG x, DOUBLE ddd)
 A symbol with a type-suffix. Func (rip!, tear#, shred$)
 Any of these followed by []. Func (XLONG[], ANY a[], n$[])
 ... (final parameter) Func (a$, ...) (EXTERNALs only)

ANY
Arguments can be declared as type ANY, as shown in the preceding examples. This permits any type of
variable or array to be passed in this argument position. When arrays of different types are passed this
way, the called function must check the type of its corresponding array argument with the TYPE()
intrinsic, and attach it to an appropriate type array, before accessing its elements.

. . .
The ... parameter exists to make it possible to declare and call C functions that have a
corresponding ... parameter. ... must be the final entry in the parameter list. ... tells the compiler
to accept zero or more additional arguments of any data type. This capability exists in C for
implementing functions like printf(), where the number of arguments and their types will vary.
Native functions cannot be declared with a ... parameter.

Programming Language - Guide and Reference - Page 50

Return Type
The typename field in function declarations is optional. Functions that return an XLONG value or no
value do not have to specify a return type. Type-suffixes other than $ are not valid on function names,
so typename is needed on functions that do not return XLONG or no value (or STRING with $ suffix).

Function Definition
A function definition is the code that executes when a function is called, and includes everything from
the FUNCTION statement through the next END FUNCTION statement.

FUNCTION statements have the following syntax:

 FUNCTION [typename] FuncName([arglist]) [default-typename]

Default Type
The data type of variables not typed by type-suffixes or variable type declaration statements become the
default type, which is XLONG.

Function Arguments
If a function takes no arguments, a right parenthesis must follow the left parenthesis (separable only by
whitespace). Otherwise a comma separated list of arguments is placed between the parentheses. The
data type of each argument is specified in one of the following ways:

 Typename plus argument name XLONG x, DOUBLE ddd
 Argument name with type-suffix n!, bend#, name$
 Any of these followed by [] SINGLE j[], name$[]

RETURN and EXIT FUNCTION
RETURN and EXIT FUNCTION statements cause the same action as END FUNCTION, except any number
of these statements can be used in each function, they need not start a source line, and they may appear
within block structures. RETURN and EXIT FUNCTION are often used within decision blocks like IF
and SELECT CASE.

The syntax of RETURN and EXIT FUNCTION are:

 RETURN [expression]
 EXIT FUNCTION [expression]

END FUNCTION
END FUNCTION statements mark the end of function definitions and have have the following syntax:

 END FUNCTION [expression]

END FUNCTION mark the end of function and causes execution to return to the function that called it.
The value of the expression following END FUNCTION is returned by the function, or, if there is no
expression, zero or null-string is returned.

Programming Language - Guide and Reference - Page 51

Function Arguments
When functions are called, 0 to 16 values are passed to them. Each of these arguments can be a numeric
value, a string value, or a whole array. Every GIANT and DOUBLE variable counts as two arguments, as
does the preceding argument. Arrays and composites count as one argument, regardless of type.

Numeric Arguments
a = Func (b, c#+d#, e$$[f,g])

String Arguments
a = Func (b$, c$+d$, e$[f,g])

Array Arguments
a = Func (@b[], @c%[], @d#[], @e$[])

Argument Kind and Type Checking
The kind and data type of each argument must be compatible with the corresponding argument in the
function declaration. The data type of numeric arguments do not have to be identical to the
corresponding parameter in the function declaration. When they differ, the compiler converts the value
to the declared type before passing it to the function. The compiler will not, however, convert string or
composite arguments to numeric types or vice versa. The types of array arguments must be identical,
except for arrays given the ANY type in the function declaration.

Functions may not be called within a function argument list. This prevents argument evaluation order
differences from occuring when programs are ported from system to system.

ERROR: a = Func1 (b, Func2()) ' argument attempted to call Func2()
OK: a = Func1 (b, &Func2()) ' no argument attempt to call Func2()

Programming Language - Guide and Reference - Page 52

Pass by Value
Pass by Value is the most natural way to pass arguments to functions. As the name implies, the value of
a variable or expression is passed to the called function. In the following example, three numeric and
two string values are passed by value to Func().

 a = Func (b%, c#+d#, f$$, a$, b$+c$)

Pass by Reference
Pass by Reference is another way to pass arguments to functions. In other languages, the address of a
variable is passed to the called function. Since the called function accesses the argument through this
address, the calling and called function are sharing the variable. Therefore, if the called function alters
its argument, the calling function will find the value of its variable has been changed.

Though functions can return at most one non-argument value, additional values can be returned in pass
by reference arguments. In the following statement, x#,y#,z# are passed to Rotate() by reference
so Rotate() can return three values in these variables.

From the values of object,crossSection,vertex, Rotate() computes three DOUBLE values and
assigns them to its first three arguments (which might be a#,b#,c#). Since the calling function passed
x#,y#,z# by reference, it receives these final values of a#,b#,c# from Rotate() in x#,y#,z#.

 Rotate (@x#, @y#, @z#, object, crossSection, vertex)

Implementation
Unlike other languages, arguments passed by reference are actually passed by value to the specified
function. But after the called function returns, the calling function grabs the final value of the argument
and assigns it to the original variable.

Therefore the result is the same as conventional pass by reference. The original variable is altered in
accordance with the operation of the called function. But the native implementation is faster, supports
arbitrary mixing of pass by value and pass by reference, and works on variables in registers , which
passing by address (ala C) does not.

Programming Language - Guide and Reference - Page 53

Consequences of Pass by Reference Implementation
Any combination of arguments can be passed by reference by prefixing them with @.

Example Illustrates Pass by Reference
The following contrived program segment demonstrates that each and every time a function is invoked,
arguments can be passed to it in any mix of pass by value and pass by reference:

FUNCTION IncSum (x, y, z) ' IncSum takes three arguments...
 INC x : INC y : INC z ' increments them...
END FUNCTION (x + y + z) ' End of function
. . .
FUNCTION TestByRef ()
 a = 0 : b = 10 : c = 20 ' Give initial values to a, b, c
 ' retval after after after
 x = IncSum (a, b, c) ' x = 33: a = 0: b = 10: c = 20
 x = IncSum (a, b, @c) ' x = 33: a = 0: b = 10: c = 21
 x = IncSum (a, @b, c) ' x = 34: a = 0: b = 11: c = 21
 x = IncSum (a, @b, @c) ' x = 35: a = 0: b = 12: c = 22
 x = IncSum (@a, b,c) ' x = 37: a = 1: b = 12: c = 22
 x = IncSum (@a, b, @c) ' x = 38: a = 2: b = 12: c = 23
 x = IncSum (@a, @b, c) ' x = 40: a = 3: b = 13: c = 23
 x = IncSum (@a, @b, @c) ' x = 42: a = 4: b = 14: c = 24
END FUNCTION

Function IncSum() is called eight different ways. Conventional pass by value languages would
require eight separate functions.

Because various C implementations handle arguments differently, arguments cannot be passed by
reference to C functions.

Pass by Address
Pass by Address is provided for calling C functions that expect argument addresses. To pass by address,
an & (address operator) can be prefixed to numeric, composite, string, array, and function arguments to
produce an XLONG address. Pass by address is of little value within native programs because pass by
value and pass by reference are sufficient, more efficient, and avoid allocation problems caused by pass
by address.

Argument Checking
Functions require a specific kind (variable or array), and data type for each argument, as declared in the
DECLARE FUNCTION parameter list and specified in the FUNCTION argument list.

Passing an array where a variable is expected, or vice versa, causes a kind mismatch error. The
compiler compares the data type of each argument passed to a function against the declared type. If
they are the same, the argument is passed directly. If they are different types, but both numeric, the
argument is converted to the declared type before it is passed. Otherwise a type-mismatch error occurs.

Arrays can only be passed by reference because accidentally passing an array by value would degrade
overall program performance by a factor of hundreds to millions.

Programming Language - Guide and Reference - Page 54

Return Value
Calling functions are free to receive return values or ignore them. Functions are also free to return
values or not. When a function returns no value, the compiler returns a zero in the data type declared
for the function.

The following examples illustrate that there can be any number of RETURN and EXIT FUNCTION
statements in a function, but only one END FUNCTION:

FUNCTION blivit ()
 RETURN ' return zero/empty string
 RETURN (a+b*c+d) ' return result of expression "(a+b*c+d)"
 EXIT FUNCTION ' return zero / empty string
 EXIT FUNCTION (retval) ' return the value of variable "retval"
END FUNCTION final ' return the value of variable "final"

Function Call
Functions sometimes appear in expressions in much the same way as algebreic functions, the value
returned by the function being one value in the evaluation of the expression. For example:

 a = b * Func (c,d) + e

Sometimes the value returned by a function is unimportant, but the actions performed by it are desired,
as in the following example:

 Func (c,d)

Computed Function Call
Sometimes the function to be executed in an expression depends upon the value of a variable or
expression. For these situations, computed function calls through variables and arrays of the FUNCADDR
data type are provided. The addresses of functions can be loaded into FUNCADDR variables and arrays
during program execution. When a FUNCADDR variable or array appears in an expression with a @
prefix, the function whose address is read from the variable is called. For example:

 a = b * @funcVar(j) + e
 a = b * @funcArray[c,d](x,y) + e

In this example, variable j is an argument to the function whose address was most recently assigned to
FUNCADDR variable funcVar. Variables x and y are arguments to the function whose address was
most recently assigned to FUNCADDR array element funcArray[c,d].

Sometimes the return value from a computed function invocation is not needed, but the action
performed by it is. For example:

 @funcVar (j)
 @funcArray[c,d](x,y)

Programming Language - Guide and Reference - Page 55

Fall Through
Before calling a function through a FUNCADDR variable or array, code checks the address in the variable
or array element. If the address is zero, no function is called, but a return value of zero is simulated and
execution continues at the next statement. Therefore, invalid array elements can be left at zero, and zero
can be assigned to FUNCADDR variables and array elements to cancel existing entries.

Recursion
Functions are recursive, meaning they can call themselves directly or indirectly. AUTO and AUTOX
variables are allocated anew each time the function is invoked. STATIC variables are shared by every
instance of the function.

Programming Language - Guide and Reference - Page 56

Execution Control
Execution Order
In most programs, the execution of source lines does not proceed strictly in the order of the source
statements. Execution control statements provide capabilities to alter program flow in several ways.

Conventional GOTO
GOTO labelName statements transfer execution to labelName in the same function. Labels are local,
so the same labelName can appear in any number of functions.

Computed GOTO
Computed GOTO statements transfer execution to labels whose addresses are contained in variables and
arrays of the GOADDR data type. For example:

 GOTO @goVar
 GOTO @goArray[n]

GOTO @goVar jumps to the address in the GOADDR variable goVar, while GOTO @goArray[n] jumps to
the address in element n of array goArray[]. If the address is zero, no GOTO is performed and
execution continues with the next statement.

The GOADDRESS() intrinsic loads label addresses into GOADDR variables and arrays as follows:

 goVar = GOADDRESS (labelName)
 goArray[n] = GOADDRESS (labelName)

Computed GOTO statements are most useful when one of a number of actions must be performed based
on some variable or condition. For example, the following code segment uses computed GOTO to jump
to one of eight labels whose addresses are in dispatch[], based on a 3-bit field in variable message:
FUNCTION Process (message)
 action = message{3, 29}
 GOTO @dispatch[action]
 ' ...
END FUNCTION

Programming Language - Guide and Reference - Page 57

Conventional GOSUB
GOSUB SubName calls subroutine SUB SubName, which executes until an EXIT SUB or END SUB
returns execution to the point following the call. Subroutines are more effective than functions the more
the following are true:

· A large number of arguments would have to be passed to a function.
· A routine uses many of the current function's AUTO variables.
· A routine is needed only in the current function.
· A routine is not very extensive.

Some routines are better implemented as subroutines than functions. Consider converting a 20 line
subroutine into a function. Many AUTO variables needed by the subroutine would become SHARED so
the new function could access them. SHARED variables reduce encapsulation. A few variables could be
passed as arguments, but passing more than a few is awkward and time consuming. In contrast,
subroutine variables need not be passed or SHARED. All function variables are available to the
subroutine without overhead. Subroutines can result in more efficient, better structured programs.

GOSUB Example
Complex decision structures can be difficult to grasp. They stretch over many lines, and executed lines
are often scattered throughout the structure. A subroutine call can replace several lines with a single
name that describes the routine. The size of the decision structure shrinks considerably, and descriptive
routine names replace lines of code whose purpose could not be understood at a glance.

 SELECT CASE message$
 CASE "CloseWindow" : GOSUB CloseWindow
 CASE "DisplayWindow" : GOSUB DisplayWindow
 CASE "ResizeWindow" : GOSUB ResizeWindow
 CASE "HideWindow" : GOSUB HideWindow
 CASE ELSE : GOSUB UnknownMessage
 END SELECT

Computed GOSUB
Computed GOSUB statements call subroutines whose addresses are in SUBADDR variables and arrays.

 GOSUB @subVar
 GOSUB @subArray[i]

GOSUB @subVar calls the subroutine address in SUBADDR variable subVar. GOSUB @subArray[i]
calls the subroutine address in element i of subArray[]. If subVar or subArray[i] is zero, no
subroutine is called.

The SUBADDRESS() intrinsic returns subroutine addresses to be assigned to SUBADDR variables and
arrays as follows:

 subVar = SUBADDRESS (SubName)
 subArray[i] = SUBADDRESS (SubName)

Computed GOSUB statements are especially efficient when one of a number of actions must be
performed depending on some condition. The following computed GOSUB calls one of eight
subroutines depending on a three bit field in token:
 GOSUB @subAction[token{3,29}]

Programming Language - Guide and Reference - Page 58

Conventional Function Call
Function calls invoke functions that perform some action and possibly return a value. Functions are
called by naming them, and passing arguments between the parentheses following the function name:

 time$ = GimmeTime$ (format)
 SetTimeGMT (currentGMT)

Computed Function Call
Computed function calls work like computed GOSUBs, except a function is called, not a subroutine.
Return type and argument types are specified for FUNCADDR variables when they are declared.
Function calls through FUNCADDR variables work like conventional function calls, except the address of
the called function is taken from the FUNCADDR variable. The syntax for declaring FUNCADDR variables
is:

 [scopeName] FUNCADDR [returnTypeName] funcaddrVariable (typeNameList)
 [scopeName] FUNCADDR [returnTypeName] funcaddrArray[] (typeNameList)

When a function is called through a FUNCADDR variable, the value returned by the called function is the
data type specified in the declaration statement. The called function also expects to receive arguments
as specified in the declaration statement. The compiler normally makes sure the arguments and return
type of functions assigned to FUNCADDR variables and arrays are compatible with their declarations.
The compiler also makes sure the correct number of arguments is supplied in the invocation, and uses
the declaration to type-convert arguments as necessary. Several computed function calls are shown
below:

 @funcVar ()
 j = @funcVar (n)
 @funcArray[i] (x#, y#)
 k = @funcArray[i] (i, j, k)

@funcVar() calls the function whose address is in variable funcVar. @funcArray[x](n) calls the
function whose address is in element x of array funcArray[]. If funcVar or funcArray[x] is
zero, no function is called, a return value of zero is simulated, and execution continues with the next
statement. FUNCADDR variables can be tested for zero with conventional test statements like IF.

 IF (funcArray[n]) THEN
 j = @funcArray[n] (arg1, arg2)
 ELSE
 j = -1
 END IF

The FUNCADDRESS() intrinsic, or & address operator, returns function addresses which can be loaded
into FUNCADDR variables and arrays as follows:

 funcVar = &FuncName()
 funcVar = FUNCADDRESS (FuncName())
 subArray[i] = &FuncName()
 subArray[i] = FUNCADDRESS (FuncName())

Computed function calls are especially efficient when one of several functions must be called based on a
variable or condition. For example, the following computed function call to execute one of eight
functions whose addresses are in funcAction[] depending on a 3-bit field in variable token:
 result = @funcAction [token{3,29}] ()

Programming Language - Guide and Reference - Page 59

Decisions
There are types of decisions, two-way, many-way, plus the already discussed computed decisions.

IF statement
The IF statement is the most basic decision mechanism, providing for a simple choice between two
possibilites. In its simplest form, without the ELSE part, the IF statement executes a block of
statements if a variable or expression is TRUE (non-zero), or skips it is FALSE (zero). In its full form,
with the ELSE part, the IF statement executes the first block of statements if a variable or expression
is TRUE, or the second block if it is FALSE.

The following example shows the two kinds of 2-way decisions that can be built with IF statements.

FUNCTION IfDemo(x, y)
 IF (x < y) THEN x = y: RETURN (-1)
 IF (x > y) THEN RETURN (0) ELSE y = x: RETURN (+1)
END FUNCTION

In the first IF statement, x=y and RETURN(-1) are executed if (x<y) is TRUE (x is less than y),
otherwise nothing is executed and program execution continues with the next source line.

In the second IF statement, RETURN(0) is executed if (x>y) is TRUE (x is greater than y), otherwise
y=x : RETURN(+1) executes.

If an executable statement follows THEN on the same source line, a one-line IF statement is assumed
and the end-of-line serves as an implicit END IF.

Otherwise a multi-line block structured IF is assumed and an explicit END IF is required to end it, as
in the following example:

FUNCTION IfDemo(x, y)
 IF (x < y) THEN
 x = y
 RETURN (-1)
 END IF
'
 IF (x > y) THEN
 RETURN (0)
 ELSE
 y = x
 RETURN (+1)
 END IF
END FUNCTION

Simple IF statements, like IF (x<y) THEN x=y, are normally written on one line. When more than
one statement follows THEN, or when an ELSE section follows the THEN section, multiline form is
generally more readable and less error prone.

Programming Language - Guide and Reference - Page 60

IF and IFZ
IF statements test the following expression for TRUE (non-zero), as does the synonym statement IFT
(if TRUE). Quite often, however, it is more natural to test for FALSE. IFZ (if zero) and IFF (if false)
are equivalent and provided to test for zero aka false. The following examples illustrate all forms of the
IF statement.

FUNCTION IfDemo(x, y) lines=none
 IF x THEN PRINT "x is TRUE, (non-zero)"
 IFT x THEN PRINT "x is TRUE, (non-zero)"
 IFF x THEN PRINT "x is FALSE, (zero)"
 IFZ x THEN PRINT "x is ZERO, (zero)"
 IF x$ THEN PRINT "x$ is TRUE, (non-empty-string)"
 IFT x$ THEN PRINT "x$ is TRUE, (non-empty-string)"
 IFF x$ THEN PRINT "x$ is FALSE, (empty-string)"
 IFZ x$ THEN PRINT "x$ is ZERO, (empty-string)"
 IF x[] THEN PRINT "x[] is TRUE, (non-empty-array)"
 IFT x[] THEN PRINT "x[] is TRUE, (non-empty-array)"
 IFF x[] THEN PRINT "x[] is FALSE, (empty-array)"
 IFZ x[] THEN PRINT "x[] is ZERO, (empty-array)"
 IF f() THEN PRINT "f() returned TRUE, (non-zero)"
 IFT f() THEN PRINT "f() returned TRUE, (non-zero)"
 IFF f() THEN PRINT "f() returned FALSE, (zero)"
 IFZ f() THEN PRINT "f() returned ZERO, (zero)"
END FUNCTION

Programming Language - Guide and Reference - Page 61

SELECT CASE
SELECT CASE statements select zero or more of many alternatives. These multi-line block structures
have sufficient flexibility and options that they are appropriate for all but the simplest decisions.

Syntax
SELECT CASE [ALL] <test-expression>
 CASE <case-expressions> ' any number of these
 ... zero or more statements
 CASE <case-expressions> ' another one
 ... zero or more statements
 CASE ELSE ' only one CASE ELSE
 ... zero or more statements
END SELECT

Test Expression
In the SELECT CASE statement, the test-expression can be TRUE, FALSE, a numeric expression, or a
string expression. As they are encountered, the values in the CASE statements are compared with this
test expression. For example, in a block that begins with SELECT CASE x , the values of the
subsequent CASE expressions are compared with the value x had when SELECT CASE x was executed.
In this example, x is the test-expression.

SELECT CASE - zero or one of many
When a match between the test-expression and a case-expression is found, the code following the CASE
statement is executed, until a CASE, EXIT SELECT, CASE ELSE, or END SELECT is executed. This is a
one of many test, because at most one CASE block is executed.

If the test expression doesn't equal any of the CASE expressions and there is no CASE ELSE, none are
executed (none of many).

The last CASE statement can be CASE ELSE. If the CASE ELSE is reached, the code following it will be
executed. This catch-all statement can be used to eliminate the none of many possibility, and is useful
for catching unexpected conditions.

SELECT CASE ALL - n of many
The ALL option can appear in a SELECT CASE statement to create an n of many test. The code
following all CASE statements having a case-expression matching the test-expression will be executed.
CASE ELSE is not compatible with the ALL option, as no way exists to know whether a match was
found.

A CASE ALL can be used in place of CASE ELSE however, and as the name implies, the code following
CASE ALL is executed if the CASE ALL is reached.

Programming Language - Guide and Reference - Page 62

SELECT CASE TRUE
When the TRUE option is used in the SELECT CASE statement, CASE expressions match if they are
TRUE. The TRUE option can be used with any mix of numeric and string cases. ALL can be combined
with TRUE if desired.

 SELECT CASE TRUE
 SELECT CASE ALL TRUE

SELECT CASE FALSE
The FALSE option works like the TRUE option except the CASE expressions are tested for FALSE
instead of TRUE. SELECT CASE FALSE is similar to SELECT CASE 0, but it is faster and can test any
mix of numeric and string types.

 SELECT CASE FALSE
 SELECT CASE ALL FALSE

Example 1
With the TRUE option, any combination of test conditions can be accomodated, as demonstrated below:

SELECT CASE TRUE
 CASE a: PRINT "Variable 'a' is TRUE"
 CASE a*b+c*d: PRINT "Expression 'a*b+c*d' is TRUE"
 CASE (x < y), (y < z): PRINT "(x < y) or (y < z) is TRUE"
 CASE p$, q$, r$, s$: PRINT "At least 1 string has contents"
 CASE a[], b[], c[]: PRINT "At least 1 array has contents"
 CASE j, r$, p[a-b]: PRINT "At least 1 is TRUE"
 CASE j, k, l: PRINT j, k, l
 CASE humidity > 100: PRINT "The sky is falling."
 CASE a$, b$+c$: PRINT "a$ or b$+c$ or both empty."
 CASE !raining: PRINT "You can go out now."
 CASE ERROR(-1): PRINT "There's an ERROR."
 CASE hope[]: PRINT "There is hope[]."
 CASE x$ < CHR$(x): PRINT "x string < x number."
 CASE ELSE: PRINT "Nothing tested is true."
END SELECT

Example 2
In the following example, ALL cases that are true will execute.

SELECT CASE ALL TRUE
 CASE j, k, l: PRINT j, k, l
 CASE humidity > 100: PRINT "The sky is falling."
 CASE a$, b$+c$: PRINT "a$ or b$+c$ not empty."
 CASE !raining: PRINT "You can go out now."
 CASE ERROR(-1): PRINT "There's an ERROR."
 CASE hope[]: PRINT "There is hope[]."
 CASE x$ < CHR$(x): PRINT "x string < x number."
 CASE ALL: PRINT "All printed are true."
END SELECT

Programming Language - Guide and Reference - Page 63

EXIT SELECT
EXIT SELECT transfers execution past the matching END SELECT statement, bypassing any CASE ELSE
or CASE ALL statements.

NEXT CASE
NEXT CASE transfers execution directly to the next CASE statement where execution continues as if no
CASE statement had matched. NEXT CASE transfers execution to the next CASE statement, not into the
block, so the next CASE block and subsequent CASE blocks are executed only if one of its case-
expressions matches the test expressions.

ELSEIF
There is no ELSEIF statement because SELECT CASE TRUE is equivalent, more flexible, better
structured, easier to read, more compact, and faster.

Programming Language - Guide and Reference - Page 64

Loops and Iteration
Two iteration or loop structures are supported:

 DO...LOOP DO loops
 FOR...NEXT FOR loops

DO ... LOOP
DO loops are the most flexible form of interation. WHILE and UNTIL can be appended to DO, LOOP,
both, or neither.

DO Options
The order of execution in DO loops is altered when any of the following statements execute:

 DO DO continue at the top (the DO)
 DO LOOP continue at the bottom (the LOOP)
 EXIT DO exit (past the LOOP)

The following example illustrates these options:

 DO WHILE (x < y) ' jump past LOOP if (x < y)
 Shuffle (@k, @n, @z) ' new values for k, n, z
 PRINT "Start DO" '
 IF z THEN DO LOOP ' jump down to LOOP
 PRINT "z = 0" '
 IF k THEN DO DO ' jump up to DO
 PRINT "k = 0" '
 IF n THEN EXIT DO ' jump past LOOP
 PRINT "n = 0" '
 LOOP UNTIL (j > p) ' jump to DO if (j > p)

EXIT DO Example
The following example utilizes two DO loops. The outer DO loop has no test conditions on the DO or
LOOP statements. This would cause an endless loop condition if not for the EXIT DO that executes
when testString$ is empty.

FUNCTION PlayTheHashGame ()
 $BYTE0 = BITFIELD (8, 0)
 DO
 testString$ = INLINE$ ("Compute hash for string ===>> ")
 IFZ testString$ THEN EXIT DO
 stringLength = LEN (testString$)
 byteOffset = 0
 hash = 0
 DO WHILE (byteOffset < stringLength)
 testByte = testString${byteOffset}
 hash = hash + testByte
 INC byteOffset ' DANGER: don't forget this line !!!
 LOOP
 hash = hash{$BYTE0}
 PRINT "The hash for "; testString$; " is: "; HEXX$(hash, 2)
 LOOP
 PRINT "***** DONE *****"
END FUNCTION

Programming Language - Guide and Reference - Page 65

FOR ... NEXT
FOR loops eliminate a common programming error that occurs with DO loops, namely failure to update
a loop variable or test variable.

If INC byteOffset is left out of the preceeding example, the 1st byte of testString$ is added to
hash indefinitely, instead of each byte being added once as intended. The following example performs
the same function, except the inner DO loop is replaced by a FOR loop. byteOffset is incremented
automatically by the NEXT statement, avoiding the possibility of an inadvertent endless loop.

FOR Example

FUNCTION PlayTheHashGame ()
 $BYTE0 = BITFIELD (8, 0)
 DO
 testString$ = INLINE$("Compute hash for string ===>> ")
 hash = 0
 IF testString$ THEN EXIT DO
 FOR byteOffset = 0 TO LEN (testString$) - 1
 testByte = testString${byteOffset}
 hash = hash + testByte
 NEXT byteOffset
 hash = hash{$BYTE0}
 PRINT "The hash for "; testString$; " is: "; HEXX$(hash, 2)
 LOOP
 PRINT "***** DONE *****"
END FUNCTION

FOR Options
The order of execution in FOR loops is altered when any of the following statements execute:

 DO FOR continue at the top (the FOR)
 DO NEXT continue at the bottom (the NEXT)
 EXIT FOR exit (past the NEXT)

The following example illustrates these options:

 FOR i = j TO k STEP x '
 Shuffle (@x, @y, @z) ' new values for x, y, z
 PRINT "Start FOR" '
 IF x THEN DO NEXT ' jump down to NEXT statement
 PRINT "x = 0" '
 IF y THEN DO FOR ' jump up to FOR statement
 PRINT "y = 0" '
 IF z THEN EXIT FOR ' jump past NEXT statement
 PRINT "z = 0" '
 NEXT i '

STEP
If no STEP is given, the step size defaults to 1.

Programming Language - Guide and Reference - Page 66

File Processing
Overview
Many programs need to save and/or access information from permanent devices, usually hard disks.
File I/O statements and intrinsics built in to the language create, access, manipulate, and close files.
More elaborate I/O functions are easily built from these capabilities - the standard library contains
many.

File Number
Programs refer to a specific file by means of the file number returned by OPEN(). Until a file has been
opened, programs cannot access its contents.

File Pointer
A file pointer variable is maintained for every open file. It points to a byte location within the file.
When a file is opened, its file pointer is initialized to zero. When a file is read or written, the file
pointer is advanced to the byte after the data read or written. Since the file pointer is a byte offset from
the beginning of the file, the first byte of a file is at file position zero. The file position intrinsics are:

 Name Meaning Returns
 EOF() End of file TRUE if file pointer past last byte
 POF() Position of file File pointer
 LOF() Length of file Number of bytes (position of last byte)
 SEEK() Move file pointer Moves file pointer to specified offset

OPEN
Files must be opened by OPEN() before their contents can be accessed. OPEN() takes two arguments,
the name of the file, and an open mode. The mode determines whether the file is open for reading,
writing, or both. It also specifies non-standard behavior such as opening a fresh version of the file for
writing (delete any existing copies and start with an empty file), versus work with the existing contents.

 $$RD Open file for reading only
 $$WR Open file for writing only
 $$RW Open file for reading and writing
 $$WRNEW Open file for writing only (delete existing)
 $$RWNEW Open file for reading and writing (delete existing)
 $$RDSHARE Open file for reading only - other programs can also open the file
 $$WRSHARE Open file for writing only - other programs can also open the file
 $$RWSHARE Open file for reading and writing - other programs can open the file

OPEN() returns an XLONG filenumber. All file references, whether use filenumbers to identify the file
to operate on. File numbers, not file names, are the key to accessing opened files.

CLOSE
CLOSE() complements OPEN(). CLOSE() closes a file and releases its file number.

Programming Language - Guide and Reference - Page 67

INFILE$()
INFILE$() reads a line of text from a file. For example, stringVar$=INFILE$(file) reads bytes
from an open file into stringVar$ up to the next newline character, or the end of the file,
whichever comes first. The newline character is not put in the string, but the file pointer is moved
beyond it.

INFILE$() reads newline-terminated strings of the kind written by PRINT [filenumber],
statements.

READ
READ [filenumber], variable-list

The READ statement reads binary data from an open file into one or more variables. READ reads the
number of bytes into each variable that is appropriate to the type of the variable. For example, one byte
is read into UBYTE variables, whether they are simple variables or elements of arrays or composites.
Since simple UBYTE variables are held as 32-bit or 64-bit values, READ reads a byte and converts it into
the 32-bit or 64-bit value before storing it in the variable. The extra bits of unsigned variables are filled
with zeros, while the extra bits of signed variables are filled with the most-significant bit of the value
read from the file.

READ also reads data into strings, arrays, composites, and portions of composites. Bytes are read from
the file to fill the variable or component, unless the end of file is reached first. For example, if abc$
contains six bytes, READ [n], abc$ will read six bytes from the file into abc$.

WRITE
WRITE [filenumber], variable-list

The WRITE statement writes binary data from one or more variables to file filenumber. WRITE writes
the number of bytes appropriate to the type of the variable. For example, one byte is written for UBYTE
variables, whether they are simple variables or elements of arrays or composites. Though simple UBYTE
variables are held as 32-bit or 64-bit values, WRITE writes only the least significant byte. This has the
effect of clipping off any higher bits that may exist. Where adverse effects are possible when reading
back out-of-range values, programs should range check the values with type-conversion intrinsics before
writing the variables to disk.

WRITE also writes strings, arrays, composites, and components of composites. All bytes in the variable,
array, composite, or component are written to the file.

Programming Language - Guide and Reference - Page 68

READ and WRITE Simple Variables, Strings, Arrays
READ and WRITE are binary I/O statements. They read and write data without alteration, interpretation,
or conversion.

Strings are written without a length, and neither null terminators nor newline characters are appended.
Only the string data itself is written. If a string is empty, nothing is written. Arrays are handled much
like strings. No length is written, only the array data.

Except for arrays and strings, all variables including those of user-defined composite types, have a
known, fixed size. Reading fixed-size variables from a file is simple. Reading into variables of the
same types that were written guarantees correct operation.

Arrays and strings of known size can be written much like fixed-size variables. Before they are read
back correctly, however, the array or string must be sized properly. Arrays and strings can be sized by
DIM and NULL$() in preparation for a READ.

When arrays or strings of unknown size or type must be stored in a binary file, additional information
must be written before the data.

For example, when a variable size string is written, an SLONG variable containing the number of
elements could be written before the string. Before the string is read, the number of elements is read
into an SLONG variable, which is used in NULL$() to size string appropriately for the read.

For example:

 READ [ifile], n
 a$ = NULL$ (n)
 READ [ifile], a$
'
 READ [ifile], n
 IF (n <= 0) THEN
 DIM a[]
 ELSE
 DIM a[n-1]
 READ [ifile], a[]
 END IF

Programming Language - Guide and Reference - Page 69

READ and WRITE Composite Variables
Components of composite variables can be read or written with READ and WRITE. Components can be
simple variables, fixed-size strings, fixed-size arrays, or array elements. The follow code segment
illustrates these combinations:

'
' ***** PROLOG *****
'
TYPE POINT ' User defined type POINT
 XLONG .x ' component .x
 XLONG .y ' component .y
 XLONG .z ' component .z
END TYPE
'
TYPE LINE
 POINT .a ' POINT in the line
 POINT .b ' POINT in the line
 USHORT .color[2] ' three color values (r, g, b)
END TYPE
'
TYPE BOX
 LINE .top ' top line in box
 LINE .left ' left line in box
 LINE .right ' right line in box
 LINE .bottom ' bottom line in box
 STRING * 20 .name ' name of this box
END TYPE
'
DECLARE FUNCTION ReadWrite (o, i) '
 ... '
FUNCTION ReadWriteDemo (o, i) '
 SHARED BOX box0, box1 '
 SHARED LINE a, b, c, d '
 SHARED POINT a0, a1, b0, b1 '
' '
 WRITE [o], box0 ' write entire BOX variable
 WRITE [o], box1.top ' write .top LINE component
 WRITE [o], box1.name ' write .name STRING * 20
 WRITE [o], box0.top.color[] ' write .color array
 WRITE [o], box1.left.color[n] ' write .color array element
'
 READ [i], box1 ' read entire BOX variable
 READ [i], box0.left ' read .left LINE component
 READ [i], box0.name ' read .name STRING * 20
 READ [i], box0.right.color[] ' read .color array
 READ [i], box0.bottom.color[1] ' read .color array element
END FUNCTION

Programming Language - Guide and Reference - Page 70

Errors
Compile Time Errors
When programs under development are compiled, the compiler sometimes finds text that is not valid
code. Typing mistakes and upper/lower case errors are most common.

When the compiler detects an error in the source program, it prints the line containing the error, points
at the position of the error on the line, and displays an error message like syntax error or type mismatch.

The error pointer is not always accurate. Sometimes the compiler does not realize there is an error until
later on the line, and does not know where the error begins.

The general purpose compile-time error is syntax error, which means that something invalid or
unexpected was encountered on the source line. In many cases, the compiler gives more helpful
messages like type mismatch or overflow.

The compile-time error messages are listed and described in the following section.

Programming Language - Guide and Reference - Page 71

 After CASE ELSE CASE statement after CASE ELSE or CASE ALL.
Bad CASE ALL CASE ALL without ALL in SELECT CASE statement.

Bad GOSUB destination GOSUB something other than a subroutine.
Bad GOTO destination GOTO something other than GOTO label.

Bad Symbol A symbol that is valid in some contexts appears in an invalid context.
Bad Bitspec Width not 0 to 32 or Offset not 0 to 31.

Bad Pass By Reference Pass by reference not supported. Only individual variables can be
passed by reference, so it is invalid to attempt to pass expressions by
reference. It is invalid to pass by reference to C functions, because
different implementations of C allocate arguments differently.

Bad Pass By Value Pass by value not supported. Arrays cannot be passed by value.
Compiler Error Error possibly due to error in compiler. If an error cannot be found in

the source code, these errors should be reported so fixes can be included
in future releases. Be sure to isolate as narrowly as possible the source
code necessary to create this error.

Component Error Poorly formed component of composite variable, or a component name
that was never defined for the composite type.

Crossed Functions (X/S/C) Declared a native function but defined with CFUNCTION line, or
function declare as C function but defined with FUNCTION line.

DECLARE after SHARED In the PROLOG, SHARED statements must appear after the last function
is declared, so DECLARE statements after SHARED statements are errors.

DECLARE too late Attempt to declare function after FUNCTION or SHARED statement.
Duplicate Declaration Attempt to declare a function or variable twice.
Duplicate Definition Attempt to define the same function twice.

Duplicate Label Attempt to have two labels of the same name in a function.
Duplicate Type Attempt to declare the same composite type twice.

CASE ELSE in CASE ALL CASE ELSE following CASE ALL in same SELECT CASE block.
Entry Function Error Attempt to declare entry function in an EXTERNAL statement.

Expect Assignment An assignement was expected but not found.
Expression Error Expression doesn't resolve properly. Expression error or bug.
Internal / External Attempt to define a function that was declared EXTERNAL.

Kind Mismatch The kind of a language element is incorrect. For example, it is a kind-
mismatch error to attempt to pass a variable as a function argument
when an array argument was declared.

Literal Error Error involving a literal number or string. For example, an attempt to
take the handle address of a literal number or string is a literal error.

Programming Language - Guide and Reference - Page 72

Need Excess Comma Excess comma notation required in ATTACH, SWAP, or elsewhere.
Need Subscript One dimensional array subscripts are required in composite array

component declarations.
Nesting Error The kind of block structure being ended is not properly nested. Note

that errors in IF statement and other block structures may cause
subsequent erroneous reporting of nesting errors. The termination of
statement processing by an error blinds the compiler to the termination
of a block structure on the same line. This is especially common with
IF statements. When the compiler reports many nesting errors, all
errors other than nesting errors should be fixed, then another
compilation attempted before attention is paid to nesting errors. The
reporting of bad nesting error messages generally terminates when END
FUNCTION is reached, as nesting variables are all reset to zero.

Node / Data Mismatch Attempt to mix an array node with data in ATTACH or SWAP.
Outside Functions Error Attempt to put an executable statement outside the bounds of a function.

Overflow Error A value is outside the acceptable range.
Register Address Attempt to take the address of a variable in a register, or the handle of a

variable whose handle is in a register.
Duplicate Type Spec Attempt to define the same composite type more than one time.

Scope Mismatch Attempt to declare a GOADDR or SUBADDR variable in an EXTERNAL or
SHARED statement. Since GOTO labels and subroutines are limited to
local execution (from within) the function, variables and arrays that
hold these addresses should never be visible outside the function.

Sharename Error Invalid /sharename/ field in type declaration statement.
Syntax Error General purpose error to denote invalid syntax.

Too Few Arguments Too few arguments to an intrinsic or function.
Too Late Attempt to declare variables or constants in a function after an

executable statement. Following the FUNCTION statement are variable
declarations followed by local constant declarations followed by
executable statement.

Too Many Arguments Too many arguments to an intrinsic or function.
Type Mismatch The type of a variable is improper or incompatible with the type of

another variable in the same statement.
Undeclared Attempt to define or call an undeclared function.
Undefined Attempt to call an undefined function.

Unimplemented Attempt to executed a statement, intrinsic, or language feature that is
planned but not yet implemented, or no longer implemented.

Within Function FUNCTION statement within another function statement.

Programming Language - Guide and Reference - Page 73

Runtime Errors and Exceptions
Errors can occur while programs run. Serious errors like memory faults are unexpected exceptions,
while other errors, like overflow caused by improper user input are forseeable and even preventable.
Errors like reaching the end of a file during a read operation may even be counted on by programs.

Runtime Errors
When an error occur, the program continue running. Therefore programs can, and usually should test
to see if an error occured after any operation or function call that could produce an error. Programs can
then take appropriate actions depending on the source and nature of each error. Depending on the
situation, programs can:

· ignore the error.
· retry the attempt.
· try to perform the operation in another way.
· request user assistance to work around the problem.
· terminate the program.

ERROR() and ERROR$()
When an error occurs, an error number is assigned to an internal ##ERROR system variable, which can
be quickly and efficiently examined and/or modified with the error = ERROR(newError) intrinsic.
error is the existing value of ##ERROR returned by ERROR(), and newError is a new error number
assigned to ##ERROR. Set newError to 0 to clear the error to 0 to ready ##ERROR for the next error,
to -1 to leave ##ERROR unaltered, or to an appropriate error number to report an error.

error$ = ERROR$(error) converts error into an error string.

Runtime Error Handling
Many programs follow operations that can produce an error with:

 IF ERROR(-1) THEN RETURN ' -1 means don't change value in ##ERROR
 ... or
 IF ERROR(-1) THEN ' detect error (no change to ##ERROR)
 error = ERROR(0) ' clear ##ERROR
 ... error
 ... handler
 ... code
 END IF
 ... or
 error = ERROR ($$ErrorNatureOverflow) ' get old error & set new one

Programming Language - Guide and Reference - Page 74

Error Numbers
The error numbers assigned to ##ERROR have two parts. $$ErrorObject is an unsigned byte value
in the next to lowest byte that identifies the source of the error, while $$ErrorNature is an unsigned
byte value in the low byte to identify the kind of error. Error values assigned to ##ERROR are therefore:

 (($$ErrorObject << 8) + $$ErrorNature)

The $$ErrorObject and $$ErrorNature constants are defined in the standard library file "xst.dec".

Programmer Defined Errors
Programs can combine their own error handling with the built-in error handling by assigning
programmer-defined error numbers to ##ERROR whenever they detect an error. In this way, one quick

 IF ERROR(-1) THEN ...
 or
 error = ERROR(0)
 IF error THEN ...

will test for any system or program generated detected error.

Consider a function that opens a file and reads some formatted data. If there are errors opening the file
or reading it, the function could simply RETURN and expect the calling function to find the error in
##ERROR. On the other hand, the function might not encounter errors opening, reading, and closing the
file, but might find improperly formatted data in the file.

The function could return an error message in ##ERROR to indicate the error condition, for example:

 error = ERROR($$ErrorObjectFile << 8 OR $$ErrorNatureInvalidFormat)

If none of the pre-defined messages is appropriate, a program can define its own $$ErrorObject
and/or $$ErrorNature constants to create its own error numbers. These numbers should start at 255
and work lower to assure they won't conflict with values defined in later versions of the standard library.

Programming Language - Guide and Reference - Page 75

Runtime Exceptions
When runtime exceptions occur, programs do not continue running. An exception handler function is
executed immediately, before even the next machine instruction executes, much less the next statement.

When a program is running in the PDE, the exception handler invokes the PDE, which reports the error
in a runtime error window. The program has not been terminated yet, however, so debug features like
the function call window and variables window are available to help determine the cause of the
exception. It's even possible to fix certain problems and let the program continue in some situations.
For example, if a=b/c causes a divide-by-zero exception because c=0, you can set c to a non-zero
value in the variable window and continue execution of the program. You could also move the current
execution pointer to the next line with DebugJump to skip the divide statement completely.

By default, standalone programs and libraries terminate upon exceptions, though they can install their
own exception handler to work around many exceptions or at least terminate more gracefully - see
XstGetExceptionFunction() and XstSetExceptionFunction() in the standard library.

 $$ExceptionNone
 $$ExceptionSegmentViolation
 $$ExceptionOutOfBounds
 $$ExceptionBreakpoint
 $$ExceptionBreakKey
 $$ExceptionAlignment
 $$ExceptionDenormal
 $$ExceptionDivideByZero
 $$ExceptionInvalidOperation
 $$ExceptionOverflow
 $$ExceptionStackCheck
 $$ExceptionUnderflow
 $$ExceptionInvalidInstruction
 $$ExceptionPrivilege
 $$ExceptionStackOverflow
 $$ExceptionReserved
 $$ExceptionUnknown
 $$ExceptionUpper

Programming Language - Guide and Reference - Page 76

Appendix A : Standard Character Set
Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

 0 00 <null> 32 20 <space> 64 40 @ 96 60 `
 1 01 33 21 ! 65 41 A 97 61 a
 2 02 34 22 " 66 42 B 98 62 b
 3 03 35 23 # 67 43 C 99 63 c
 4 04 36 24 $ 68 44 D 100 64 d
 5 05 37 25 % 69 45 E 101 65 e
 6 06 38 26 & 70 46 F 102 66 f
 7 07 <alarm> 39 27 ' 71 47 G 103 67 g
 8 08 <back> 40 28 (72 48 H 104 68 h
 9 09 <tab> 41 29) 73 49 I 105 69 i
 10 0A <newline> 42 2A * 74 4A J 106 6A j
 11 0B 43 2B + 75 4B K 107 6B k
 12 0C 44 2C , 76 4C L 108 6C l
 13 0D <return> 45 2D - 77 4D M 109 6D m
 14 0E 46 2E . 78 4E N 110 6E n
 15 0F 47 2F / 79 4F O 111 6F o
 16 10 48 30 0 80 50 P 112 70 p
 17 11 49 31 1 81 51 Q 113 71 q
 18 12 50 32 2 82 52 R 114 72 r
 19 13 51 33 3 83 53 S 115 73 s
 20 14 52 34 4 84 54 T 116 74 t
 21 15 53 35 5 85 55 U 117 75 u
 22 16 54 36 6 86 56 V 118 76 v
 23 17 55 37 7 87 57 W 119 77 w
 24 18 56 38 8 88 58 X 120 78 x
 25 19 57 39 9 89 59 Y 121 79 y
 26 1A 58 3A : 90 5A Z 122 7A z
 27 1B 59 3B ; 91 5B [123 7B {
 28 1C 60 3C < 92 5C \ 124 7C |
 29 1D 61 3D = 93 5D] 125 7D }
 30 1E 62 3E > 94 5E ^ 126 7E ~
 31 1F 63 3F ? 95 5F _ 127 7F

Programming Language - Guide and Reference - Page 77

Appendix B : Translating Programs
BASIC Native Native Comments
ABS() ABS() More types
ACCESS
ALIAS
AND AND More types
ANY
APPEND
AS
ASC() ASC() More capable
ATN() ATAN() Math function library
BEEP
BINARY
BLOAD XstBinLoad() also READ
BSAVE XstBinSave() also WRITE
BYVAL Functions are BYVAL by default
CALL
CALLS
CASE CASE More capable
CCUR() GIANT() More intuitive, capable
CDBL() DOUBLE() More intuitive, capable
CDECL CFUNCTION More intuitive, capable
CHAIN
CHDIR
CHDRIVE
CHR$() CHR$() More capable
CINT() SSHORT() More intuitive, capable
CIRCLE See GraphicsDesigner
CLEAR
CLNG() SLONG() More intuitive, capable
CLOSE CLOSE()
CLS See GraphicsDesigner
COLOR See GraphicsDesigner
COM
COMMAND$ XstGetCommandLineArguments()
COMMON
CONST $$NAME = More intuitive, visible
COS() COS()
CSNG() SINGLE() More intuitive, capable
CSRLIN()
CURDIR$()
CURRENCY GIANT More intuitive, capable
CVC() GIANT() More intuitive, capable
CVD() DOUBLE() More intuitive, capable
CVI() SSHORT() More intuitive, capable
CVL() SLONG() More intuitive, capable
CVS() SINGLE() More intuitive, capable

Programming Language - Guide and Reference - Page 78

DATA
DATE$() XstGetDateAndTime()
DECLARE DECLARE More capable
DEF
DEFCUR GIANT More intuitive, capable
DEFDBL DOUBLE More intuitive, capable
DEFINT SSHORT More intuitive, capable
DEFLNG SLONG More intuitive, capable
DEFSNG SINGLE More intuitive, capable
DEFSTR STRING More intuitive, capable
DELETE
DIM DIM More intuitive, capable
DIR$()
DO DO More capable
DOUBLE DOUBLE More intuitive, capable
DRAW ===>> See GraphicsDesigner
ELSE ELSE
ELSEIF SELECT CASE More capable
END END More capable
ENDIF ENDIF
ENVIRON
ENVIRON$() XstGetEnvironmentVariable() : XstGetEnvironmentVariables()
EOF() EOF()
EQV
ERASE
ERDEV()
ERDEV$()
ERL()
ERR() ERROR() Get and Set error #
ERROR
EVENT
EXIT EXIT More capable
EXP() EXP() Math function library
FIELD
FILEATTR()
FILES XstGetFiles() ???
FIX() FIX() More types
FOR FOR
FRE()
FREEFILE()
FUNCTION FUNCTION More intuitive, capable
GET READ More convenient, capable
GOSUB GOSUB More capable
GOTO GOTO More capable
HEX$() HEX$() More capable
IF IF More capable
IMP
INKEY$()
INP()
INPUT INLINE$() Also INFILE$()
INPUT$() INLINE$() Also INFILE$()
INSTR() INSTR()
INT() INT() More types
INTEGER SSHORT More intuitive
IOCTL()
IS
KILL

Programming Language - Guide and Reference - Page 79

LBOUND() Lower bound is always 0
LCASE$() LCASE$()
LEFT$() LEFT$()
LEN() LEN()
LET
LINE See GraphicsDesigner
LIST
LOC()
LOCAL AUTO, AUTOX, STATIC
LOCATE See GuiDesigner
LOCK XstLockFileSection()
LOF() LOF()
LOG() LOG() Math function library
LONG SLONG More intuitive
LOOP LOOP
LPOS()
LPRINT
LSET
LTRIM$() LTRIM$()
MID$() MID$(), STUFF$()
MKC$() STRING()
MKD$() STRING()
MKI$() STRING()
MKL$() STRING()
MKS$() STRING()
MKDIR XstMakeDirectory()
MOD MOD
NAME
NEXT NEXT
NOT NOT
OCT$() OCT$(), OCTO$()
OFF
ON GOTO @, GOSUB @
OPEN OPEN
OPTION
OR OR
OUT
OUTPUT
PAINT See GraphicsDesigner
PALETTE See GraphicsDesigner
PCOPY
PEEK() UBYTEAT()
PMAP()
POINT() See GraphicsDesigner
POKE UBYTEAT()
POS()
PRESET See GraphicsDesigner
PRINT PRINT
PSET
RANDOM
RANDOMIZE
READ
REDIM REDIM
REM '
RESET
RESTORE
RESUME
RETURN END SUB
RIGHT$() RIGHT$()
RMDIR
RND()
RSET
RTRIM$() RTRIM$()

Programming Language - Guide and Reference - Page 80

RUN

Programming Language - Guide and Reference - Page 81

SADD() &stringVar$
SCREEN()
SEEK() SEEK()
SEG
SELECT SELECT
SETMEM()
SGN() SGN()
SHARED SHARED
SHELL SHELL()
SIGNAL() XstCauseException() ???
SIN() SIN() Math function library
SINGLE SINGLE
SLEEP XstSleep()
SOUND
SPACE$() SPACE$()
SPC()
SQR() SQRT() Math function library
SSEG()
SSEGADD()
STACK()
STATIC STATIC SIMILAR (More intuitive, capable)
STEP STEP SAME
STICK()
STOP STOP
STR$() STR$(), STRING$(), SIGNED$(), STRING()
STRING STRING
STRING$() CHR$()
SUB FUNCTION
SWAP SWAP more capable
SYSTEM SHELL() ???
TAB() TAB()
TAN() TAN() Math function library
THEN THEN
TIME$() XstGetDateAndTime()
TIMER() XstStartTimer() : XstKillTimer()
TO TO
TYPE TYPE
UBOUND() UBOUND()
UCASE$() UCASE$()
UEVENT
UNLOCK
UNTIL UNTIL
UPDATE
USING FORMAT$()
VAL() DOUBLE()
VARPTR() & address operator
VARPTR$()
VIEW ===>> See GraphicsDesigner
WAIT
WEND
WHILE DO WHILE
WIDTH
WINDOW ===>> See GraphicsDesigner
WRITE WRITE SIMILAR
XOR XOR More types

Programming Language - Guide and Reference - Page 82

Appendix C : Keywords
Keyword Catagory Description
ABS() Intrinsic Absolute Value
ALL Auxiliary In SELECT CASE, execute all matching cases
AND Operator Bitwise AND (integer only)
ASC() Intrinsic Numeric value of ASCII character in string
ATTACH Statement Attach one array/subarray to another
AUTO Statement Declare variable to be AUTO scope
AUTOS Auxiliary CLEAR AUTOS initializes AUTO and AUTOX variables
AUTOX Statement Declare variable to be AUTOX scope
BIN$() Intrinsic Binary format string of integer (010010111...)
BINB$() Intrinsic Binary format string of integer (0b010010111...)
BITFIELD() Intrinsic Define bitfield constant or variable
CASE Statement In SELECT CASE; test cases, execute block on match
CFUNCTION Statement Declare/Define C function or C callable function
CHR$() Intrinsic Convert ASCII numeric value to 1 byte string
CJUST$() Intrinsic Center justify string in field of spaces
CLEAR Statement CLEAR AUTOS initializes AUTO and AUTOX variables
CLOSE() Intrinsic Close disk, console, or communications file
CLR() Intrinsic Clear bit field in integer
CSIZE() Intrinsic Count number of bytes before 1st zero byte
CSIZE$() Intrinsic Clip string off at 1st null character
CSTRING$() Intrinsic Convert C string into native string
DCOMPLEX Statement Declare variables to be type DCOMPLEX
DEC Statement Decrement numeric variable
DECLARE Statement Declare function prototype
DHIGH() Intrinsic Extract high 32-bits from DOUBLE
DIM Statement Dimension an array and zero contents
DLOW() Intrinsic Extract low 32-bits from DOUBLE
DMAKE() Intrinsic Make DOUBLE from two 32-bit integers
DO Statement Initiate a DO...LOOP loop block
DOUBLE Statement Declare variables to be type DOUBLE
DOUBLE() Intrinsic Convert numeric or string to type DOUBLE
DOUBLEAT() Intrinsic Write DOUBLE value into specified memory address
DOUBLEAT() Intrinsic Read DOUBLE value from specified memory address
ELSE Statement Optional in IF...THEN...ELSE...ENDIF blocks
END Statement END program, function, or block structure
ENDIF Statement End of IF...THEN...ELSE...ENDIF block
EOF() Intrinsic Is file pointer beyond end of file
ERROR() Intrinsic Return and/or set error number
ERROR$() Intrinsic Convert error number to error string
EXIT Statement EXIT function or block structure
EXPORT Statement Export type, constant, function declarations
EXTERNAL Statement Declare variables to be EXTERNAL scope
EXTS() Intrinsic Extract signed bit field
EXTU() Intrinsic Extract unsigned bit field
FALSE Auxiliary Optional in SELECT CASE statements
FIX() Intrinsic Integerize with round towards zero
FOR Statement Initiate a FOR...NEXT loop block
FORMAT$() Intrinsic Create a formatted string from format spec and value
FUNCADDR Statement Declare variable to be FUNCADDR type
FUNCADDR() Intrinsic Convert to type FUNCADDR
FUNCADDRESS() Intrinsic Get address of function

Programming Language - Guide and Reference - Page 83

FUNCTION Statement Declare/Define a function

Programming Language - Guide and Reference - Page 84

GHIGH() Intrinsic Extract high 32-bits from GIANT
GIANT Statement Declare variable to be type GIANT
GIANT() Intrinsic Convert to type GIANT
GIANTAT() Intrinsic Write GIANT value into specified memory address
GIANTAT() Intrinsic Read GIANT value from specified memory address
GLOW() Intrinsic Extract low 32-bits from GIANT
GMAKE() Intrinsic Create GIANT from two 32-bit integers
GOADDR Statement Declare variable to be type GOADDR
GOADDR() Intrinsic Convert to type GOADDR
GOADDRESS() Intrinsic Get address of GOTO label
GOSUB Statement Call a local subroutine
GOTO Statement Jump to a local label
HEX$() Intrinsic Create hexadecimal string form of integer
HEXX$() Intrinsic HEX$ with "0x" prefix
HIGH0() Intrinsic Find bit number of most significant 0 bit
HIGH1() Intrinsic Find bit number of most significant 1 bit
IF Statement IF TRUE test in IF...ENDIF block
IFF Statement IF FALSE test in IF...ENDIF block
IFT Statement IF TRUE test in IF...ENDIF block
IFZ Statement IF ZERO test in IF...ENDIF block
IMPORT Statement Import function library
INC Statement Increment a variable
INCHR() Intrinsic Find first search-set character in string
INCHRI() Intrinsic Case insensitive INCHR()
INFILE$() Intrinsic Input string from file
INLINE$() Intrinsic Input string from main console
INSTR() Intrinsic Find first substring in string
INSTRI() Intrinsic Case insensitive INSTR()
INT() Intrinsic Integer part of number
INTERNAL Statement Declare function to have INTERNAL scope
LCASE$() Intrinsic Convert constents of string to lower case
LCLIP$() Intrinsic Clip n bytes from left end of string
LEFT$() Intrinsic Leftmost n characters of string
LEN() Intrinsic # of elements in string
LIBRARY Statement Reserved
LIBRARY() Intrinsic Returns TRUE if compiled as library
LJUST$() Intrinsic Left justify string in field of spaces
LOF() Intrinsic Length of file in bytes
LOOP Statement End DO...LOOP block
LTRIM$() Intrinsic Trim spaces and tabs from left of string
MAKE() Intrinsic Make a bit-field
MAX() Intrinsic Return maximum of two arguments (larger)
MID$() Intrinsic Extract arbitrary part of string
MIN() Intrinsic Return minimum of two arguments (smaller)
MOD Operator Arithmetic MODULUS operator
NEXT Statement End FOR...NEXT loop
NOT Operator Bitwise NOT operator (invert all bits)
NULL$() Intrinsic Create string of n null characters
OCT$() Intrinsic Octal string from integer (1234567012...)
OCTO$() Intrinsic Octal string from integer (0o1234567012...)
OPEN() Intrinsic Open a disk, console, or communications file
OR Operator Bitwise OR operator

Programming Language - Guide and Reference - Page 85

POF() Intrinsic Position of file pointer
PRINT Statement Print to console, disk, or communications file
PROGRAM Statement Name program or END PROGRAM
PROGRAM$() Intrinsic Return program name defined by PROGRAM statement
QUIT() Intrinsic Quit executing the program (terminate program)
RCLIP$() Intrinsic Clip n bytes from right end of string
READ Statement Read from file into variables
REDIM Statement Redimension an array, preserve contents
RETURN Statement Return from function (not from GOSUB)
RIGHT$() Intrinsic Extract rightmost n characters of string
RINCHR() Intrinsic Same as INCHR except reverse search direction
RINCHRI() Intrinsic Same as RINCHR() except case insensitive
RINSTR() Intrinsic Same as INSTR() except reverse search direction
RINSTRI() Intrinsic Same as RINSTR() except case insensitive
RJUST$() Intrinsic Right justify string in field of spaces
ROTATER() Intrinsic Rotate word right n bits
RTRIM$() Intrinsic Trim spaces and tabs from right end of string
SBYTE Statement Declare variables to be type SBYTE
SBYTE() Intrinsic Convert to type SBYTE
SBYTEAT() Intrinsic Write SBYTE value into specified memory address
SBYTEAT() Intrinsic Read SBYTE value from specified memory address
SCOMPLEX Statement Declare variables to be type SCOMPLEX
SEEK() Intrinsic Set file pointer position
SELECT Statement Select from one of n alternatives
SET() Intrinsic Set specified range of bits = 1s
SFUNCTION() Intrinsic Declare or define a "system" function
SGN() Intrinsic Sign of number (-1, 0, +1)
SHARED Statement Declare variables to have SHARED scope
SHELL() Intrinsic Execute a command line string
SIGN() Intrinsic Sign of number (-1, +1)
SIGNED$() Intrinsic Convert to type STRING (leading "-" or "+")
SINGLE Statement Declare variables to be type SINGLE
SINGLE() Intrinsic Convert to type SINGLE
SINGLEAT() Intrinsic Write SINGLE value into specified memory address
SINGLEAT() Intrinsic Read SINGLE value from specified memory address
SIZE() Intrinsic Size of string or array in bytes
SLONG Statement Declare variables to be type SLONG
SLONG() Intrinsic Convert to type SLONG
SLONGAT() Intrinsic Write SLONG value into specified memory address
SLONGAT() Intrinsic Read SLONG value from specified memory address
SMAKE() Intrinsic Make a type SINGLE from a 32-bit integer value
SPACE$() Intrinsic Create a string of n space characters
SSHORT Statement Declare variables to be type SSHORT
SSHORT() Intrinsic Convert to type SSHORT
SSHORTAT() Intrinsic Write SSHORT value into specified memory address
SSHORTAT() Intrinsic Read SSHORT value from specified memory address
STATIC Statement Declare variables to be STATIC scope
STEP Auxiliary Increment size in FOR.TO.STEP...NEXT blocks
STOP Statement Stop program execution here
STR$() Intrinsic Convert to type STRING (leading "-" or " ")
STRING Statement Declare variables to be type STRING
STRING() Intrinsic Convert to type STRING (leading "-" or "")
STRING$() Intrinsic Convert to type STRING (leading "-" or "")
STUFF$() Intrinsic Stuff one string into another
SUB Statement Begin a subroutine
SUBADDR Statement Declare variables to be type SUBADDR
SUBADDR() Intrinsic Convert to type SUBADDR
SUBADDRESS() Intrinsic Get address of subroutine
SWAP Statement Swap the values of the same type

Programming Language - Guide and Reference - Page 86

TAB() Intrinsic Append spaces to PRINT string to get to column n
THEN Auxiliary Used in IF...THEN...ELSE...ENDIF blocks
TO Auxiliary Used in FOR...NEXT blocks and ATTACH statements
TRIM$() Intrinsic Remove spaces and tabs from left & right of string
TRUE Statement Optional in SELECT CASE statements
TYPE Statement Declare/Define user-defined composite data type
TYPE() Intrinsic Return type number of variable, array, component
UBOUND() Intrinsic Upper bound of any dimension of an array
UBYTE Statement Declare variables to be type UBYTE
UBYTE() Intrinsic Convert variable to type UBYTE
UBYTEAT() Intrinsic Write UBYTE value into specified memory address
UBYTEAT() Intrinsic Read UBYTE value from specified memory address
UCASE$() Intrinsic Convert contents of string to upper case
ULONG Statement Declare variables to be type ULONG
ULONG() Intrinsic Convert variable to type ULONG
ULONGAT() Intrinsic Write ULONG value into specified memory address
ULONGAT() Intrinsic Read ULONG value from specified memory address
UNION Statement Declare/Define user-defined composite data type
UNTIL Auxiliary Used in DO and LOOP statements
USHORT Statement Declare variables to be type USHORT
USHORT() Intrinsic Convert variable to type USHORT
USHORTAT() Intrinsic Write USHORT value into specified memory address
USHORTAT() Intrinsic Read USHORT value from specified memory address
VERSION Statement Define version number of program
VERSION$() Intrinsic Return version number defined by VERSION statement
VOID Statement Declare that a function returns no value
WHILE Auxiliary Used in DO and LOOP statements
WRITE Statement Write variables to a file
XLONG Statement Declare variables to be type XLONG
XLONG() Intrinsic Convert variable to type XLONG
XLONGAT() Intrinsic Write XLONG value into memory at specified address
XLONGAT() Intrinsic Read XLONG value from memory at specified address
XMAKE() Intrinsic Retype to XLONG from any type (MSW if GIANT/DOUBLE)
XOR Operator Bitwise exclusive-OR operator

Programming Language - Guide and Reference - Page 87

Appendix D : Operators
Operator Description
~ NOT BITWISE NOT
& AND BITWISE AND
^ XOR BITWISE XOR
| OR BITWISE OR
!! LOGICAL TEST
! LOGICAL NOT
&& LOGICAL AND
^^ LOGICAL XOR
|| LOGICAL OR
= ASSIGNMENT
= LOGICAL COMPARE FOR EQUAL
<> LOGICAL COMPARE FOR NOT EQUAL
< LOGICAL COMPARE FOR LESS THAN
<= LOGICAL COMPARE FOR LESS THAN OR EQUAL
> LOGICAL COMPARE FOR GREATER THAN
>= LOGICAL COMPARE FOR GREATER THAN OR EQUAL
== LOGICAL COMPARE FOR EQUAL
!= LOGICAL COMPARE FOR NOT EQUAL
!< LOGICAL COMPARE FOR NOT LESS THAN
!<= LOGICAL COMPARE FOR NOT LESS THAN OR EQUAL
!> LOGICAL COMPARE FOR NOT GREATER THAN
!>= LOGICAL COMPARE FOR NOT GREATER THAN OR EQUAL
<< BITWISE LEFT SHIFT (carry in zeros)
>> BITWISE RIGHT SHIFT (carry in zeros)
<<< ARITHMETIC UP SHIFT (carry in zeros)
>>> ARITHMETIC DOWN SHIFT (carry in most significant bit)
+ CONCATENATE
+ ARITHMETIC ADD
- ARITHMETIC SUBTRACT
* ARITHMETIC MULTIPLY
\ ARITHMETIC INTEGER DIVIDE
/ ARITHMETIC FLOATING POINT DIVIDE
+ ARITHMETIC UNARY PLUS
- ARITHMETIC UNARY MINUS
& ADDRESS OF DATA
&& ADDRESS OF HANDLE

Programming Language - Guide and Reference - Page 88

 OP ALT KIND CLASS OPERANDS RETURNS PREC COMMENTS
& unary 10 AnyType Address 12 Address of Object Data
&& unary 10 AnyType Address 12 Address of Object Handle
! unary 9 Numeric T/F 12 Logical Not (TRUE if 0, else FALSE)
!! unary 9 Numeric T/F 12 Logical Test (FALSE if 0, else TRUE)
NOT ~ unary 9 Integer SameType 12 Bitwise NOT
+ unary 8 Numeric SameType 12 Plus
- unary 8 Numeric SameType 12 Minus
>>> binary 7 Integer LeftType 11 Arithmetic Up Shift
<<< binary 7 Integer LeftType 11 Arithmetic Down Shift
<< binary 7 Integer LeftType 11 Bitwise Left Shift
>> binary 7 Integer LeftType 11 Bitwise Right Shift
** binary 4 Numeric HighType 10 Power
/ binary 4 Numeric HighType 9 Divide
* binary 4 Numeric HighType 9 Multiply
\\ binary 6 Numeric Integer 9 Integer Divide
MOD binary 6 Numeric Integer 9 Modulus (Integer Remainder)
+ binary 5 Numeric HighType 8 Add
+ binary 5 String String 8 Concatenate
- binary 4 Numeric HighType 8 Subtract
AND & binary 3 Integer HighType 7 Bitwise AND
XOR ^ binary 3 Integer HighType 6 Bitwise XOR
OR | binary 3 Integer HighType 6 Bitwise OR
> !<= binary 2 NumStr T/F 5 Greater-Than
>= !< binary 2 NumStr T/F 5 Greater-Or-Equal
<= !> binary 2 NumStr T/F 5 Less-Or-Equal
< !>= binary 2 NumStr T/F 5 Less-Than
<> != binary 2 NumStr T/F 4 Not-Equal
= == binary 2 NumStr T/F 4 Equal (also "!<>")
&& binary 1 Integer T/F 3 Logical AND
^^ binary 1 Integer T/F 2 Logical XOR
|| binary 1 Integer T/F 2 Logical OR
= binary NumStr RightType 1 Assignment
 T/F T/F always returned as XLONG

Programming Language - Guide and Reference - Page 89

Appendix E : Statements
ATTACH Attach array node
AUTO Declare AUTO scope
AUTOX Declare AUTOX scope
DECLARE Declare a function and it's parameters
DIM Dimension an array
DO Begin a DO...LOOP block
DOUBLE Declare DOUBLE type (IEEE double-float)
END End the program, a function, some block structure
EXIT Exit a function or some block structure
EXPORT Begin exporting type and constant declarations and function definitions
FOR Begin a FOR...NEXT block
FUNCTION Define a function and it's arguments
GOADDR Declare a GOADDR type
GOSUB Go to a subroutine
GOTO Go to a line-label
IF Begin IF...THEN...ELSE...ENDIF decision block
IMPORT Import function library
INTERNAL Declare function, scope = INTERNAL (local)
LIBRARY Reserved
PRINT Print to screen or file
PROGRAM Begin and name program
READ Read variables from diskfile
REDIM Re-dimension an array; preserve overlapping data
RETURN Return [value] from a function
SBYTE Declare SBYTE type
SELECT Begin SELECT_CASE block
SHARED Declare SHARED scope
SINGLE Declare SINGLE type
SLONG Declare SLONG type
SSHORT Declare SSHORT type
STATIC Declare STATIC scope
STOP Stop the program
STRING Declare STRING type
SUB Begin subroutine (SUB SubName...END SUB block)
SUBADDR Declare SUBADDR type
TYPE Declare and Define user-defined composite data type
UBYTE Declare UBYTE type
ULONG Declare ULONG type
UNION Declare and Define user-defined composite data type
USHORT Declare USHORT type
WRITE Write variables to file
XLONG Declare XLONG type

Programming Language - Guide and Reference - Page 90

Appendix F : Intrinsics
ABS() Absolute value
ASC() Value of ASCII character
CHR$() String with n characters of specified value
CJUST$() Center justify string in field of spaces
CLR() Clear a bit field
CSIZE() Size of C string (to 1st null byte)
CSIZE$() String up to null terminator
CSTRING$() Clip string at 1st null byte
DHIGH() High word of DOUBLE type
DLOW() Low word of DOUBLE type
DMAKE() Make DOUBLE type from two XLONGs
DOUBLE() Convert to DOUBLE type
DOUBLEAT() Direct memory access
ERROR() Return and/or set error number
ERROR$() Convert error number into error string
EXTS() Extract signed bit field
EXTU() Extract unsigned bit field
FIX() Fix rouding
FUNCADDR() Convert to FUNCADDR type
FUNCADDRAT() Direct memory access
FUNCADDRESS() Get address of function (type FUNCADDR)
GHIGH() Get high word of GIANT value
GIANT() Convert to GIANT type
GIANTAT() Direct memory access
GLOW() Get low word of GIANT value
GMAKE() Make GIANT from two XLONGs
GOADDR() Convert to GOADDR type
GOADDRAT() Direct memory access
GOADDRESS() Get address of GOTO label (type GOADDR)
HEX$() n digit hexadecimal string
HEXX$() n digit hexadecimal string with "0x" prefix
HIGH0() Bit # of highest 0 bit
HIGH1() Bit # of highest 1 bit
INCHR() 1st character in string to match one in list
INCHRI() Case insensitive INCHR()
INSTR() Find string within string
INSTRI() Case insensitive INSTR()
INT() Integerize
LCASE$() Lower case a string
LCLIP$() Clip left n bytes from string
LEFT$() Left n characters of a string
LEN() Length of a string in elements
LIBRARY() Return TRUE if compiled as library
LJUST$() Left justify string in field of spaces
LTRIM$() Trim spaces and tabs from left end of string
MAKE() Make an arbitrary bit field
MID$() Extract arbitrary substring from a string
NULL$() Return string of null characters
PROGRAM$() Return program name defined by PROGRAM statement
RCLIP$() Clip right n bytes from string
RIGHT$() Right n characters of a string
RINCHR() last character in string to match one in list
RINCHRI() Case insensitive RINCHR()
RINSTR() Reverse direction INSTR()
RINSTRI() Case insensitive RINSTR()
RJUST$() Right justify string in field of spaces
RND() Rounding
ROTATER() n bit rotate right

Programming Language - Guide and Reference - Page 91

ROUND() Rounding
RTRIM$() Trim spaces and tabs from right end of string

Programming Language - Guide and Reference - Page 92

SBYTE() Convert to SBYTE type
SBYTEAT() Direct memory access
SET() Set a bit field
SIGN() Sign (-1 or +1)
SIGNED$() Convert to STRING type (leading "-" or "+")
SINGLE() Convert to SINGLE type
SINGLEAT() Direct memory access
SIZE() Size of variable
SGN() Sign (-1, 0, +1)
SLONG() Convert to SLONG type
SLONGAT() Direct memory access
SMAKE() Make a SINGLE type from an XLONG (not a convert)
SPACE$() String of n space characters
SQR() Square root
SSHORT() Convert to SSHORT type
SSHORTAT() Direct memory access
STR$() Convert to STRING type (leading "-" or " ")
STRING() Convert to STRING type (leading "-" or "")
STRING$() Convert to STRING type (leading "-" or "")
STUFF$() Stuff one string into another
SUBADDR() Convert to SUBADDR type
SUBADDRAT() Direct memory access
SUBADDRESS() Get address of subroutine
TAB() Tab to column n in PRINT statements
TRIM$() Trim tabs and spaces from both ends of string
TRUNC() Truncate
TYPE() Type of variable, array, component
UBOUND() Upper bound of array (at any node)
UBYTE() Convert to UBYTE type
UBYTEAT() Direct memory access
UCASE$() Upper case a string
ULONG() Convert to ULONG type
ULONGAT() Direct memory access
USHORT() Convert to USHORT type
USHORTAT() Direct memory access
VERSION$() Return version number defined by VERSION statement
XLONG() Convert to XLONG type
XLONGAT() Direct memory access
XMAKE() Retype to XLONG from any type (not a convert)

Programming Language - Guide and Reference - Page 93

Appendix G : Language Reference
KEYWORD

intrinsic
statement
operator

returnValues and arguments are XLONG unless otherwise stated.
SLONG and ULONG accepted for XLONG with no overhead.

integer - any integer type except GIANT

integers - any integer type including GIANT

numeric - integers or floating point

float - SINGLE or DOUBLE

single - SINGLE

double - DOUBLE

string - character string (string of unsigned bytes)

numString - numeric or string

expression - numeric or string

bitspec - bitfield specification returned by BITFIELD()

Programming Language - Guide and Reference - Page 94

ABS()
intrinsic

numeric = ABS(numeric)

Return the absolute value of any simple numeric type. The return
type is the same as the argument.
a = +23
b = -23
c = ABS(a) ' c = 23
d = ABS(b) ' d = 23

ALL See SELECT CASE.
AND

binary bitwise operator

integers = integers AND integers

Bitwise AND two integer operands to produce an integer result.
a = 0x05F0
b = 0xFFA0
c = a AND b ' c = 0x05A0

ASC()
intrinsic

integer = ASC(string)
integer = ASC(string, position)

Return one byte from a string. The first argument is the string to
extract the byte from. The second argument is the position of the
byte to extract, or 1 if no second argument is given.
a$ = "abcde"
b = ASC(a$) ' b = 'a'
c = ASC(a$,4) ' c = 'd'
d = ASC(a$,6) ' d = -1 (specified byte not within string)

ATTACH
statement

ATTACH arrayNode TO arrayNode

Move an array from source node to destination node. If the
destination node is not empty a runtime error occurs. After the array
is moved to the destination node, the source node is zeroed.
ATTACH a[] TO b[] ' attach array to array
ATTACH a[] TO b[i,] ' attach array to node
ATTACH a[i,] TO b[] ' attach node to array
ATTACH a[i,] TO b[j,k,] ' attach node to node
ATTACH a$ TO b$[i] ' attach string to node
ATTACH b$[i] TO a$ ' attach node to string

AUTO
AUTOX
statement

AUTO [typename] variables
AUTOX [typename] variables

Declare variables with AUTO and AUTOX scope.
AUTO a, b$, c[]
AUTO SINGLE x, y, z
AUTO MYTYPE first[], middle[], last[]
AUTOX i, j$, k[]
AUTOX DOUBLE p[], q[], r[], s[], t[]
AUTOX TYPERS fast[], accurate[], both[]

BIN$()
BINB$()

intrinsic

string = BIN$(integers)
string = BINB$(integers)
string = BIN$(integers, digits)
string = BINB$(integers, digits)

Return the binary string representation of an integer. The return

Programming Language - Guide and Reference - Page 95

string has as many characters as necessary to represent the integer, or
the number specified by the second argument, whichever is larger.
a = 0xF0F5
a$ = BIN$(a) ' a$ = "1111000011110101"
a$ = BINB$(a) ' a$ = "0b1111000011110101"
a$ = BIN$(a,20) ' a$ = "00001111000011110101"
a$ = BINB$(a,20) ' a$ = "0b00001111000011110101"
a$ = BIN$(a,5) ' a$ = "1111000011110101"
a$ = BINB(a,5) ' a$ = "0b1111000011110101"

BITFIELD()
intrinsic

bitspec = BITFIELD(width, offset)

Return a bitfield specification appropriate for bitfield extract and
bitfield intrinsics. The first argument is the width of the bitfield.
The second argument is the offset of the bitfield from the least
significant bit. Valid widths are 1 to 31, and valid offsets are 0 to
31.

Works in prolog given two integer constants, and elsewhere in
programs with integer values.
$$BYTE0 = BITFIELD(8, 0) ' bits 00-07 : low byte
$$BYTE1 = BITFIELD(8, 8) ' bits 08-15 : next higher
$$BYTE2 = BITFIELD(8, 16) ' bits 16-23 : next higher
$$BYTE3 = BITFIELD(8, 24) ' bits 24-31 : high byte
$$KINDS = BITFIELD(5, 21) ' bits 21-25 : 5 wide bitfield at bit 21
spacing = BITFIELD(3, 29) ' bits 29-31 : 3 wide bitfield at bit 29

CASE See SELECT CASE.
CFUNCTION See FUNCTION.
CHR$()
intrinsic

string = CHR$(integer)
string = CHR$(integer, count)

Return a string of 1 or more copies of a character. The first
argument is the value of the character. The second argument is the
number of copies of the character, which defaults to 1 when not
given.
a$ = CHR$(32) ' a$ = " " (1 space character)
a$ = CHR$(32, 8) ' a$ = " " (8 space characters)
a$ = CHR$('x', 8) ' a$ = "xxxxxxxx" (8 'x' characters)

CJUST$()
LJUST$()
RJUST$()

intrinsic

string = CJUST$(string, length)
string = LJUST$(string, length)
string = RJUST$(string, length)

Return a string center-justified, left-justified, or right-justified in a
field of space characters. The first argument is the string to justify.
The second argument is the field width. The return string is always
the specified width. If a string cannot be exactly centered, the extra
space follows the string. If the string is longer than the field, the
string is left justified and clipped at the end of the field.
a$ = "cat"
b$ = "catamaran"
a$ = CJUST$(a$,7) ' a$ = " cat " (exact centering)
a$ = CJUST$(a$,8) ' a$ = " cat " (excess space on right)
a$ = CJUST$("xxx",9) ' a$ = " xxx " (exact centering)
a$ = CJUST$(b$,3) ' a$ = "cat" (no fit, left justify)
a$ = LJUST$(a$,6) ' a$ = "cat " (left justify cat in 6)
a$ = LJUST$(b$,7) ' a$ = "catamar" (string longer than 7)
a$ = LJUST$("xxx",8) ' a$ = "xxx " (left justify xxx in 8)

Programming Language - Guide and Reference - Page 96

a$ = LJUST$(b$,3) ' a$ = "cat" (string longer than 3)
a$ = RJUST$(a$,6) ' a$ = " cat" (right justify in 6)
a$ = RJUST$(a$,7) ' a$ = "tamaran" (clip leading to fit)
a$ = RJUST$("xxx",8) ' a$ = " xxx" (right justify in 8)
a$ = RJUST$(b$,3) ' a$ = "ran" (clip leading to fit)

CLOSE()
intrinsic

integer = CLOSE(fileNumber)

Close an open file and return 0 to indicate success. The argument is
the filenumber assigned to the file when it was opened. If the
argument is not the filenumber of an open file, -1 is returned.
err = CLOSE (ifile) ' test for close error
CLOSE (ofile) ' ... or don't bother

CLR()
SET()
intrinsic

integer = CLR(integer, bitspec)
integer = CLR(integer, width, offset)
integer = CLR(integer, bitspec)
integer = CLR(integer, width, offset)
integer = SET(integer, bitspec)
integer = SET(integer, width, offset)
integer = SET(integer, bitspec)
integer = SET(integer, width, offset)

Clear or set a field of bits. The first argument is the integer value in
which the bits are cleared or set. In the two argument version, the
second argument is a bitspec that contains the width and offset of the
bitfield to clear or set. In the three argument version the second and
third arguments are the width and offset of the bitfield to clear or set.
$$TYPE = BITFIELD(5,16) ' in PROLOG
$KIND = BITFIELD(5,24) ' in a function
kind = BITFIELD(5,24) ' variable as bitspec
i = 0xFFFFFFFF ' i = 0xFFFFFFFF
j = 0x00000000 ' j = 0x00000000
a = CLR(i, $$TYPE) ' a = 0xFFE0FFFF
a = CLR(i, $KIND) ' a = 0xE0FFFFFF
a = CLR(i, kind) ' a = 0xE0FFFFFF
a = CLR(i, 8, 4) ' a = 0xFFFFF00F
a = SET(j, $$TYPE) ' a = 0x001F0000
a = SET(j, $KIND) ' a = 0x1F000000
a = SET(j, kind) ' a = 0x1F000000
a = SET(j, 8, 4) ' a = 0x00000FF0

CSIZE()
intrinsic

integer = CSIZE(string)

Return the number of bytes in a string before the first zero byte.

a$ = ""
b$ = "abcdefg"
c$ = "abc\0defg"
a = CSIZE(a$) ' a = 0
a = CSIZE(b$) ' a = 7
a = CSIZE(c$) ' a = 3

CSIZE$()
intrinsic

string = CSIZE$(string)

Return a copy of a zero terminated string. The end of the string is
the byte before the first zero byte.
a$ = ""
b$ = "abcdefg"
c$ = "abc\0defg"
s$ = CSIZE$(a$) ' s$ = ""
s$ = CSIZE$(b$) ' s$ = "abcdefg"
s$ = CSIZE$(c$) ' s$ = "abc"

Programming Language - Guide and Reference - Page 97

CSTRING$()
intrinsic

string = CSTRING$(address)

Return a copy of a string at a memory address. The end of the string
is the byte before the first zero byte. This intrinsic converts C style
strings into native strings. The string at the specified address is not
altered or freed.
cstr = cfunc()
a$ = CSTRING$(cstr)

DCOMPLEX
statement

[scope] DCOMPLEX variables

Declare double precision complex variables.
Also see Declarations after the alphabetical listing.
DCOMPLEX ii, jj, kk
DCOMPLEX x[], y[], z[]
SHARED DCOMPLEX a, b, c, a[], b[], c[]

DECLARE FUNCTION
EXTERNAL FUNCTION
INTERNAL FUNCTION

statement

DECLARE FUNCTION [type] Func([parameters])
EXTERNAL FUNCTION [type] Func([parameters])
INTERNAL FUNCTION [type] Func([parameters])

Declare a function:

DECLARE - function in current program, visible to all programs.
INTERNAL - function in current program, invisible to other programs.
EXTERNAL - function not in current program, visible to all programs.

The optional return type is any built-in or user-defined data type.

parameters is an optional comma-separated list of up to 16 built-in
or user-defined type names or symbols from which the kind and type
of each function argument can be determined.
DECLARE FUNCTION Twist ()
INTERNAL FUNCTION DOUBLE DarkSine (a#, b#, c#[])
EXTERNAL FUNCTION DCOMPLEX DoodleDuxis (DCOMPLEX dd, DCOMPLEX ee)

DHIGH()
DLOW()
intrinsic

integer = DHIGH(double)
integer = DLOW(double)

Return the high or low 32-bits of a double precision floating point
number. The high 32-bits of a double precision floating point
number contains the sign bit, exponent, and high part of the
mantissa, while the low 32-bits contains the low part of the mantissa.
a# = 0d40010802DEADCODE ' a# = double variable
b# = 0d4000800080000000 ' b# = double variable
i = DHIGH(a#) ' i = 0x40010802
j = DHIGH(b#) ' j = 0x40008000
i = DLOW(a#) ' i = 0xDEADCODE
j = DLOW(b#) ' j = 0x80000000

DIM
REDIM
statement

DIM array[subscripts]
REDIM array[subscripts]

Dimension or redimension an array. 0 to 8 comma-separated integer
subscripts give the upper bounds for 0 to 8 dimensions. The lower

Programming Language - Guide and Reference - Page 98

bound of all arrays is 0.

When an array is dimensioned, the existing contents are first freed,
then memory space for the array is allocated and filled with zeros.
When an array is redimensioned, the existing contents not in the new
size are lost, the existing contents in both the old and new size are
unchanged, and contents in the new size only are zeroed.
DIM a[] ' a[] becomes an empty array
DIM a#[upper] ' dimension a#[], upper bound = u
DIM points[100000] ' dimension points[], upper bound = 100000
DIM a$[tops] ' dimension string array, upper bound = tops
DIM a[i,j,k] ' dimension a three dimensional array
DIM a[i,j,] ' dimension a two dimensional array of nodes

DLOW() See DHIGH().
DMAKE()

intrinsic

double = DMAKE(high32, low32)

Return a 64-bit double precision floating point number assembled
from two 32-bit integer parts.
hi = 0x40008000 ' high 32-bits of desired DOUBLE
lo = 0x80000000 ' low 32-bits of desired DOUBLE
i# = DMAKE(hi, lo) ' i# = 0d4000800080000000
i# = DMAKE(si OR uman, lman) ' i# = assemble sign, hi/lo mantissa

DO
DO WHILE
DO UNTIL
DO DO

DO LOOP
EXIT DO
LOOP

LOOP WHILE
LOOP UNTIL

statement

DO
DO WHILE numString
DO UNTIL numString
DO DO [level]
DO LOOP [level]
EXIT DO [level]
LOOP
LOOP WHILE numString
LOOP UNTIL numString

DO...LOOP blocks.

DO begins a loop, and execution continues on the next line.

DO WHILE continues execution on the next line if the numeric or
string value is TRUE, otherwise execution continues after the
matching LOOP statement.

DO UNTIL continues execution on the next line if the numeric or
string value is FALSE, otherwise execution continues after the
matching LOOP statement.

DO DO jumps directly to the DO statement at the beginning of a loop
block from anywhere inside the block.

DO LOOP jumps directly to the LOOP statement at the end of a loop
block from anywhere inside the block.

EXIT DO jumps directly past the LOOP statement at the end of the
loop block, from anywhere inside the block.

LOOP jumps to the matching DO statement.

Programming Language - Guide and Reference - Page 99

LOOP WHILE jumps to the matching DO statement if the numeric or
string expression is TRUE.

LOOP UNTIL jumps to the matching DO if the numeric or string
expression is FALSE.
hash = 0
IF a$ THEN
 o = 0 ' offset = 0
 u = UBOUND(a$) ' u = upper offset in a$
 DO WHILE (o <= u) ' do hash loop while offset <= upper offset
 hash = hash + a${o} ' add next byte to hash
 INC o ' offset to next byte in a$
 LOOP
END IF

DOUBLE See Declarations after the alphabetical listing.
DOUBLE() See Type Conversions after the alphabetical listing.
DOUBLEAT() See Direct Memory Access after the alphabetical listing.

ELSE See IF.
END FUNCTION

statement

END FUNCTION [expression]

End a function and return a value. If no return expression is given, a
zero or empty string is returned.

END IF See IF.
END SELECT See SELECT CASE.
END SUB See SUB.
END TYPE See TYPE.
EOF()
intrinsic

integer = EOF(fileNumber)

Return TRUE if filepointer points beyond the end of a file.
a = EOF(ifile)
DO UNTIL EOF(ifile)

ERROR()
intrinsic

error = ERROR(newError)

Return ##ERROR error number and assign a new error number unless
newError = -1.
IF ERROR(-1) THEN ' test ##ERROR without clearing it
error = ERROR(0) ' get current ##ERROR, then clear it
error = ERROR(-1) ' get current ##ERROR without changing it
error = ERROR(new) ' get current ##ERROR and assign a new value

ERROR$()
intrinsic

error$ = ERROR$(error)

Convert an error number into an error string.
error = ERROR(0) ' get error number
error$ = ERROR$(error) ' error$ = error string

EXIT DO
statement

EXIT DO [level]

Exit a DO loop.

Jump past the nth LOOP statement, where n=1 or level.

Programming Language - Guide and Reference - Page 100

DO
 a$ = INLINE$ ("Enter another choice ===>> ")
 IFZ a$ THEN EXIT DO
 RegisterEntry (a$)
LOOP

EXIT FOR
statement

EXIT FOR [level]

Exit a FOR loop.

Jump past the nth NEXT statement, where n=1 or level.
FOR i = 0 TO 1000
 a$ = INLINE$ ("Enter another choice ===>> ")
 IFZ a$ THEN EXIT FOR
 RegisterEntry (i, a$)
NEXT i

EXIT FUNCTION See RETURN.
EXIT IF
statement

EXIT IF [level]

Exit an IF block.

Jump past the nth END IF statement, where n=1 or level.
IF enabled THEN
 IF (value < max) THEN
 IF verify[entry] THEN
 a = verify[entry]
 IF (a < 0) THEN EXIT IF 4
 verify[entry] = a+1
 END IF
 END IF
END IF

EXIT SELECT
statement

EXIT SELECT [level]

Exit a SELECT CASE block.

Jump past the nth END SELECT statement, where n=1 or level.
SELECT CASE a
 CASE 1: GOSUB FireAway
 CASE 2: GOSUB BreakOut
 CASE 3: k = Prefix(n)
 IFZ k THEN EXIT SELECT
 GOSUB PassOff
END SELECT

EXIT SUB See SUB.
EXPORT EXPORT

Begin exporting type and shared constant definitions and function
declarations from a program being compiled as a function library.
All source lines between EXPORT and END EXPORT statements are
put in "filename.dec".
EXPORT
 TYPE LINK
 XLONG .backward
 XLONG .forward
 END TYPE
'
 DECLARE FUNCTION DOUBLE Square (x#)
 DECLARE FUNCTION DOUBLE Cube (x#)
END EXPORT
'

Programming Language - Guide and Reference - Page 101

EXPORT
 $$Off = 0
 $$On = -1
END EXPORT

EXTERNAL See Declarations after the alphabetical listing.
EXTERNAL FUNCTION See DECLARE FUNCTION.

EXTS()
EXTU()
intrinsic

integer = EXTS(integer, bitspec)
integer = EXTS(integer, width, offset)
integer = EXTU(integer, bitspec)
integer = EXTU(integer, width, offset)

Extract a signed or unsigned field of bits. The first argument is the
integer value from which the bits are extracted. In the two argument
version, the second argument is a bitspec that contains the width and
offset of the bitfield to extract. In the three argument version the
second and third arguments are the width and offset of the bitfield to
extract.

The extracted bitfield is returned in the low bits of the result, either
sign-extended or zero-extended to fill the 32-bit integer result.
$$TYPE = BITFIELD(4,16) ' in PROLOG
$KIND = BITFIELD(4,20) ' in a function
spaz = BITFIELD(8,24) ' variable as bitspec
i = 0x89ABCDEF ' i = 0x89ABCDEF
a = SET(i, $$TYPE) ' a = 0x0000000B
a = SET(i, $KIND) ' a = 0x0000000A
a = SET(i, spaz) ' a = 0x00000089
a = SET(i, 8, 4) ' a = 0x000000DE

FALSE See SELECT CASE.
FIX() See INT().
FOR

DO FOR
DO NEXT
EXIT FOR

NEXT
statement

FOR var = numeric TO numeric [STEP numeric]
DO FOR [level]
DO NEXT [level]
EXIT FOR [level]
NEXT [var]

Begin and end a FOR...NEXT loop.

DO FOR jumps directly to the FOR statement.

DO NEXT jumps directly to the NEXT statement.

EXIT FOR jumps directly past the NEXT statement.
FOR i = 0 TO last
 i$ = item$[i]
 IFZ i$ THEN DO NEXT
 IF i$ = "outta here" THEN EXIT FOR
 IF (i$ = "trash") THEN i = i + 3 : DO FOR
 Register (i$)
NEXT i

FORMAT$()
intrinsic

string = FORMAT$(format$, argument)

Return a string formatted per a format spec string and argument.

FORMAT$() creates and returns a string representation of up a

Programming Language - Guide and Reference - Page 102

numeric or string argument, formatted according to a format$ string.

The following are valid format fields for string arguments:
 & Print string exactly, no upper or lower length limit
 < Left justify string in <<<<< field (1 to 255 "<" characters)
 > Right justify string in >>>>> field (1 to 255 ">" characters)
 | Center justify string in ||||| field (1 to 255 "|" characters)

The following are valid character sequences for numeric arguments:
digit positions ###### 54321
. decimal point ###.## 23.00
, commas every 3 places ##,###.## 27,654,321.80
^^^^ short exponent #.###^^^^ 3.711e+22
^^^^^ long exponent #.##^^^^^ 3.71d+022
(###) negative #s in parens (#####) (54321)
$ leading $ symbol $###.## $3.76
* * in leading zeros *####.## ****3.76
+ print leading +/- sign +####.## +234.56
+ print trailing +/- sign ####.##+ 234.56+
- print trailing - if negative ####.##- 234.56-
_ print next character exactly a_$_#_._-_+ a$#.-+
x = 23
y$$ = 23456
z# = 11111.222
j$ = "scam"
fa$ = " ###"
fb$ = "###,###"
fc$ = "###.####^^^^^"
fd$ = "||||||"
PRINT FORMAT$ (fa$,x) ' " 23"
PRINT FORMAT$ (fb$,y$$) ' " 23,456"
PRINT FORMAT$ (fc$,z#) ' " 111.1122d+002
PRINT FORMAT$ (fd$,j$) ' " scam "
a$ = FORMAT$ (fa$,x) + FORMAT$ (fb$,y$$) ' a$ = " 23 23,456"

FUNCADDR
statement

[scope] FUNCADDR [type] variable([parameters])
[scope] FUNCADDR [type] array[]([parameters])

Declare a FUNCADDR variable or array.
STATIC FUNCADDR a (STRING, XLONG, XLONG, XLONG)
SHARED FUNCADDR DOUBLE Manglex[] (DOUBLE, DOUBLE)

FUNCADDR() See Type Conversion after the alphabetical listing.
FUNCADDRESS()

intrinsic

funcaddr = FUNCADDRESS(FuncName())

Return the address of a function. Same as &Func().

process[GetColor] = FUNCADDRESS (XuiGetColor())
process[SetColor] = FUNCADDRESS (XuiSetColor())

FUNCTION
SFUNCTION
CFUNCTION

statement

FUNCTION [type] FuncName(arguments) [defaultType]
SFUNCTION [type] FuncName(arguments) [defaultType]
CFUNCTION [type] FuncName(arguments) [defaultType]

Begin the body of a function. The return type defaults to XLONG
unless specified otherwise. The arguments are a comma-separated
list of variables receiving input values from calling functions. The
type of variables in the function not declared otherwise defaults to
XLONG unless a defaultType is specified.

FUNCTION denotes a normal function.

SFUNCTION denotes operating system functions with standard
Programming Language - Guide and Reference - Page 103

operating system function protocol, or native functions to be called
by the operating system expecting standard operating system
protocol (STDCALL).

CFUNCTION denotes C functions or native functions to be called by
functions expecting standard C function protocol (CDECL).
FUNCTION Blivit (a, b, c$, d[])
FUNCTION Bondar (i#, j#, k#, l#, m#)
SFUNCTION DOUBLE DoLittle (DOUBLE lo, DOUBLE hi) DOUBLE
CFUNCTION DOUBLE ArcCosh (DOUBLE arg)

GHIGH()
GLOW()
intrinsic

integer = GHIGH(giant)

Return the high or low 32-bits of a 64-bit signed integer.
a$$ = 0x40010802DEADCODE ' a$$ = giant variable
b$$ = 0x4000800080000000 ' b$$ = giant variable
i = GHIGH(a$$) ' i = 0x40010802
j = GHIGH(b$$) ' j = 0x40008000
i = GLOW(a$$) ' i = 0xDEADCODE
j = GLOW(b$$) ' j = 0x80000000

GIANT See Declarations after the alphabetical listing.
GIANT() See Type Conversions after the alphabetical listing.

GIANTAT() See Direct Memory Access after the alphabetical listing.
GLOW() See GHIGH().
GMAKE()

intrinsic

giant = GMAKE(high32, low32)

Return a 64-bit signed integer assembled from two 32-bit integers.
hi = 0x40008000 ' hi 32-bits of desired GIANT
lo = 0x80000000 ' lo 32-bits of desired GIANT
i$$ = GMAKE(hi, lo) ' i$$ = 0x4000800080000000
i$$ = GMAKE(upper, lower) ' i$$ = make GIANT from two XLONGs

GOADDR See Declarations after the alphabetical listing.
GOADDR() See Type Conversions after the alphabetical listing.
GOADDRAT() See Direct Memory Access after the alphabetical listing.
GOADDRESS()

intrinsic

goaddr = GOADDRESS(label)

Return the address of a GOTO label.
g = GOADDRESS (label)
h[i] = GOADDRESS (another)

GOSUB
statement

GOSUB SubName
GOSUB @subVar
GOSUB @subArray[indices]

Call a subroutine directly, through a variable, or through an array.
GOSUB subroutine
GOSUB @subVar
GOSUB @subArray[i]

GOTO
statement

GOTO label

Jump to a label directly, through a variable, or through an array.
GOTO label
GOTO @goVar

Programming Language - Guide and Reference - Page 104

GOTO @goArray[i]

HEX$()
HEXX$()

intrinsic

string = HEX$(integers)
string = HEXX$(integers)
string = HEX$(integers, digits)
string = HEXX$(integers, digits)

Return the hexadecimal string representation of an integer. The
return string has as many characters as necessary to represent the
integer in hexadecimal, or the number specified by the second
argument, whichever is larger.
a = 0xDEADC0DE
a$ = HEX$(a) ' a$ = "DEADC0DE"
a$ = HEXX$(a) ' a$ = "0xDEADC0DE"
a$ = HEX$(a,2) ' a$ = "DEADC0DE"
a$ = HEXX$(a,2) ' a$ = "0xDEADC0DE"
a$ = HEX$(a,12) ' a$ = "0000DEADC0DE"
a$ = HEXX$(a,12) ' a$ = "0x0000DEADC0DE"

HIGH0()
HIGH1()

intrinsic

integer = HIGH0(integer)
integer = HIGH1(integer)

Return the bit number of the most significant 0 or 1 bit.
a = 0x00C03333
b = 0xFFFE0000
c = HIGH0(a) ' c = 31
d = HIGH0(b) ' d = 16
e = HIGH1(a) ' e = 23
f = HIGH1(b) ' f = 31

IF
IFZ
ELSE

END IF
statement

IF expression THEN statements
IF expression THEN statements ELSE statements
IF expression THEN
 statements
END IF
IF expression THEN
 statements
ELSE
 statements
END IF

Execute statements conditionally.

IF a THEN PRINT "a is non-zero"
IFZ a THEN PRINT "a is zero"
IF a$ THEN PRINT "a$ has contents"
IFZ a$ THEN PRINT "a$ is empty"
IF a[] THEN PRINT "a[] has contents"
IFZ a[] THEN PRINT "a[] is empty"
IF (humidity > 80) THEN PRINT "Close The Roof"
IF a THEN
 IFZ b THEN
 PRINT "a is true, b is not"
 ELSE
 PRINT "a is true, b is true"
 END IF
END IF

IMPORT IMPORT "libname"

Import function library libname to make its exported types, constants
and functions visible to this program. "libname.dec" is read and
compiled, and if it exists, "libname.dll" is loaded, linked to the

Programming Language - Guide and Reference - Page 105

program, and its entry function is called to initialize the library.
IMPORT "xma"
IMPORT "xst"

INC
DEC

statement

INC variable
DEC variable

Add one to a variable or subtract one from a variable.
INC a
INC a[i]
INC x#
INC parent.kids
INC parent[grid].kids
DEC a
DEC a[i]
DEC x#
DEC parent.kids
DEC parent[grid].kids

INCHR()
INCHRI()
RINCHR()
RINCHRI()

intrinsic

integer = INCHR(searchMe$, searchFor$)
integer = INCHR(searchMe$, searchFor$, start)
integer = INCHRI(searchMe$, searchFor$)
integer = INCHRI(searchMe$, searchFor$, start)
integer = RINCHR(searchMe$, searchFor$)
integer = RINCHR(searchMe$, searchFor$, start)
integer = RINCHRI(searchMe$, searchFor$)
integer = RINCHRI(searchMe$, searchFor$, start)

Search a string for any of the characters in another string. Return the
position of the first match.

INCHR() = forward search, case sensitive
INCHRI() = forward search, case insensitive
RINCHR() = reverse search, case sensitive
RINCHRI() = reverse search, case insensitive
a$ = "Help me please!"
b$ = "ABCDEFG"
c$ = "mromjtp"
a = INCHR(a$,b$) ' a = 0 "e" != "E"
a = INCHR(a$,c$) ' a = 4 "p"
a = INCHR(a$,c$,10) ' a = 0 past matches
a = INCHRI(a$,b$) ' a = 2 "e" = "E"
a = INCHRI(a$,c$) ' a = 4 "p"
a = INCHRI(a$,c$,5) ' a = 6 "m"
a = RINCHR(a$,b$) ' a = 0 "e" != "e"
a = RINCHR(a$,c$) ' a = 9 "p"
a = RINCHR(a$,c$,7) ' a = 6 "m"
a = RINCHRI(a$,b$) ' a = 14 "e" = "E"
a = RINCHRI(a$,c$) ' a = 9 "p"
a = RINCHRI(a$,c$,3) ' a = 0 before matches

INFILE$()
intrinsic

string = INFILE$(fileNumber)

Return the next line from an open file.
FUNCTION FindStringInFile (test$, fileName$)
 line = 0
 ERROR (0)
 found = $$FALSE
 ifile = OPEN (fileName$, $$RD)
 IF ERROR (-1) THEN RETURN (-1)
 DO UNTIL EOF(ifile)
 line$ = INFILE$ (ifile)
 check = INSTR (line$, test$)
 IF check THEN

Programming Language - Guide and Reference - Page 106

 found = $$TRUE
 PRINT "Found ===>> "; line$
 EXIT DO
 END IF
 INC line
 LOOP
 CLOSE (ifile)
END FUNCTION

INLINE$()
intrinsic

string = INLINE$(prompt$)

Return a line from the standard input device (the keyboard).
a$ = INLINE$ ("Enter your name here ===>> ")
IF (a$ = "Bill Gates") THEN PRINT "Yeah, tell me another one."

INSTR()
INSTRI()
RINSTR()
RINSTRI()

intrinsic

integer = INSTR(searchMe$, searchFor$)
integer = INSTR(searchMe$, searchFor$, start)
integer = INSTRI(searchMe$, searchFor$)
integer = INSTRI(searchMe$, searchFor$, start)
integer = RINSTR(searchMe$, searchFor$)
integer = RINSTR(searchMe$, searchFor$, start)
integer = RINSTRI(searchMe$, searchFor$)
integer = RINSTRI(searchMe$, searchFor$, start)

Search a string for another string. Return the position of the match.

INSTR() = forward search, case sensitive
INSTRI() = forward search, case insensitive
RINSTR() = reverse search, case sensitive
RINSTRI() = reverse search, case insensitive
a$ = "HEALTHY, wealthy, and wise!"
b$ = "He"
c$ = "alt"
a = INSTR(a$,b$) ' a = 0 no match
a = INSTR(a$,c$) ' a = 12 "alt"
a = INSTR(a$,c$,13) ' a = 0 past match
a = INSTRI(a$,b$) ' a = 1 "HE" = "He"
a = INSTRI(a$,c$) ' a = 4 "ALT" = "alt"
a = INSTRI(a$,c$,5) ' a = 12 "alt" = "alt"
a = RINSTR(a$,b$) ' a = 0 no match
a = RINSTR(a$,c$) ' a = 12 "alt" = "alt"
a = RINSTR(a$,c$,7) ' a = 0 before match
a = RINSTRI(a$,b$) ' a = 1 "HE" = "He"
a = RINSTRI(a$,c$) ' a = 12 "alt" = "alt"
a = RINSTRI(a$,c$,4) ' a = 3 "ALT" = "alt"

INT()
FIX()
intrinsic

float = INT(float)
float = FIX(float)

Return argument rounded toward nearest integer or toward zero.
b# = 2.552
c# = -2.552
w# = INT(b#) ' w# = 3.000#
x# = INT(c#) ' x# = -3.000#
y# = FIX(b#) ' y# = 2.000#
z# = FIX(c#) ' z# = -2.000#

INTERNAL FUNCTION See DECLARE FUNCTION.
LCASE$()
UCASE$()

intrinsic

string = LCASE$(string)
string = UCASE$(string)

Convert all characters in a string to lower case or upper case.

Programming Language - Guide and Reference - Page 107

a$ = LCASE$ ("THE big LIE") ' a$ = "the big lie"
a$ = LCASE$ ("BIGGER LIES") ' a$ = "bigger lies"
a$ = UCASE$ ("THE big LIE") ' a$ = "THE BIG LIE"
a$ = UCASE$ ("bigger lies") ' a$ = "BIGGER LIES"

LCLIP$()
RCLIP$()

intrinsic

string = LCLIP$(string)
string = LCLIP$(string, count)
string = RCLIP$(string)
string = RCLIP$(string, count)

Clip characters off the left or right end of a string.
a$ = LCLIP$ ("This old man", 5) ' a$ = "old man"
a$ = LCLIP$ ("This old man", 15) ' a$ = ""
a$ = RCLIP$ ("This old man", 5) ' a$ = "This ol"
a$ = RCLIP$ ("This old man", 15) ' a$ = ""

LEFT$()
RIGHT$()

intrinsic

string = LEFT$(string)
string = LEFT$(string, length)
string = RIGHT$(string)
string = RIGHT$(string, length)

Copy the first or last characters from a string. The first argument is
the string to copy characters from. The second argument is the
desired length of the result string, or 1 if no second argument is
given. If the string has fewer characters than the desired length, the
result string is a copy of the argument string.
x$ = "This old man"
a$ = LEFT$(x$) ' a$ = "T"
a$ = LEFT$(x$, 5) ' a$ = "This "
a$ = LEFT$(x$, 15) ' a$ = "This old man"
a$ = RIGHT$(x$) ' a$ = "n"
a$ = RIGHT$(x$, 5) ' a$ = "d man"
a$ = RIGHT$(x$, 15) ' a$ = "This old man"

LEN()
intrinsic

integer = LEN(string)

Return the number of characters in a string.
x$ = ""
y$ = "four"
a = LEN(x$) ' a = 0
a = LEN(y$) ' a = 4

LIBRARY() integer = LIBRARY(integer)

Return $$TRUE if program is compiled as library.
FUNCTION Entry ()
 Xui ()
 InitGui ()
 InitProgram ()
 IF LIBRARY(0) THEN RETURN ' main program processes messages
'
 DO
 XgrProcessMessages (1)
 LOOP UNTIL #terminateProgram
END FUNCTION

LJUST$() See CJUST$().
LOF()
intrinsic

integer = LOF(fileNumber)

Return the length of a disk file. The argument is the filenumber.
FUNCTION GimmeFile (filename$)

Programming Language - Guide and Reference - Page 108

 ifile = OPEN (filename$, $$RD) ' open filename$ for read only
 length = LOF (ifile) ' length = # of bytes in filename$
 a$ = NULL$ (length) ' make a string that long
 READ [ifile], a$ ' and read the file into it
 CLOSE (ifile) ' then close the file
 RETURN (a$) ' and return the string
END FUNCTION

LOOP See DO.
LTRIM$() See TRIM$().
MAKE()
intrinsic

integer = MAKE(integer, bitspec)
integer = MAKE(integer, width, offset)

Shift a field of bits up from the least significant bits. The first
argument contains the source bitfield in its least significant bits. In
the two argument version, the second argument is a bitspec that
contains the width and offset of the bitfield to create. In the three
argument version the second and third arguments are the width and
offset of the bitfield to create. The bitfield of the specified width is
shifted left from the least significant bits by offset bits. All bits
outside the bitfield are cleared.

i = 0xAAAAAAAA ' i = 0b10101010101010101010101010101010
j = BITFIELD(5,7) ' j = bitspec for 5-bit wide field at bit 7-11
a = MAKE(i,j) ' a = 0b00000000000000000000010100000000
 ' *****

MAX()
MIN()
intrinsic

numeric = MAX(numeric, numeric)
numeric = MIN(numeric, numeric)

Return the maximum or minimum of two values. Maximum means
closest to positive infinity and negative means closest to negative
infinity. Both values must be the same data type, and the result is the
same type as the arguments.
a = 23
b = 123
c = -47
a# = 23
b# = 123.45
c# = .0001
d# = -4d+22
m = MAX(a,b) ' m = 123
m = MAX(a,c) ' m = 23
m# = MAX(a#,b#) ' m# = 123#
m# = MAX(a#,c#) ' m# = 23#
m# = MAX(a#,d#) ' m# = 23#
m = MIN(a,b) ' m = 23
m = MIN(a,c) ' m = -47
m# = MIN(a#,b#) ' m# = 23#
m# = MIN(a#,c#) ' m# = .0001
m# = MIN(a#,d#) ' m# = -4d+22

MID$()
intrinsic

string = MID$(string, start)
string = MID$(string, start, length)

Copy part of a string. The first argument is the string to copy from.
The second argument is the position of the first character to copy.
The third argument is the number of characters to copy. If no third
argument is given, the rest of the characters in the string are copied.
x$ = "This old man"
a$ = MID$(a$, 5) ' a$ = " old man"
a$ = MID$(a$, 5, 6) ' a$ = " old m"
a$ = MID$(a$, 7, 4) ' a$ = "ld m"

Programming Language - Guide and Reference - Page 109

a$ = MID$(a$, 7, 9) ' a$ = "ld man"

MIN() See MAX().
MOD

binary arithmetic operator

integers = numeric MOD numeric

Return the integer modulus, which is the remainder from a division.
Floating point operands are converted to XLONG before the modulus
operation is performed.
a = 23 : b = 5 : c = 9 : d = 2
x = a MOD b ' x = 3 (23/5 = 4 + remainder 3)
x = b MOD a ' x = 5 (5/23 = 0 + remainder 5)

NEXT See FOR.
NOT

unary bitwise operator

integer = NOT integer

Return an integer with all bits inverted.
a = 0xAAAAFF00
a = NOT a ' a = 0x555500FF

NULL$()
intrinsic

string = NULL$(length)

Create a string of null characters. The argument is the number of
null characters in the result string. The string returned has the
specified number of null characters, plus the additional null character
that serves as a terminator. The null terminator is not part of the
string and must not be changed.
FUNCTION GimmeFile (filename$)
 ifile = OPEN (filename$, $$RD) ' open filename$ for read only
 length = LOF (ifile) ' length = # of bytes in filename$
 a$ = NULL$ (length) ' make a string that long
 READ [ifile], a$ ' and read the file into it
 CLOSE (ifile) ' then close the file
 RETURN (a$) ' and return the string
END FUNCTION

OCT$()
OCTO$()

intrinsic

string = OCT$(integers)
string = OCTO$(integers)
string = OCT(integers, digits)
string = OCTO$(integers, digits)

Return the octal string representation of an integer. The return string
has as many characters as necessary to represent the integer in octal,
or the number specified by the second argument, whichever is larger.
a = 0o00007643210
a$ = OCT$(a) ' a$ = "76543210"
a$ = OCTO$(a) ' a$ = "0o76543210"
a$ = OCT$(a,2) ' a$ = "76543210"
a$ = OCTO$(a,2) ' a$ = "0x76543210"
a$ = OCT$(a,12) ' a$ = "000076543210"
a$ = OCTO$(a,12) ' a$ = "0x000076543210"

OPEN()
intrinsic

integer = OPEN(fileName$, mode)

Open a disk file. The first argument is the filename. The second
argument contains an integer value that determines how the file will
be open as follows (values from xst.dec):
0x00 = $$RD = Open existing file for reading only.
0x01 = $$WR = Open existing file for writing only.

Programming Language - Guide and Reference - Page 110

0x02 = $$RW = Open existing file for reading and writing.
0x03 = $$WRNEW = Open new file for writing only.
0x04 = $$RWNEW = Open new file for reading and writing.
0x10 = $$RDSHARE = Open existing file for reading only.
0x20 = $$WRSHARE = Open existing file for writing only.
0x30 = $$RWSHARE = Open existing file for reading and writing.

Opening an existing file prepares the existing file for reading and/or
writing, or if no file yet exists, creates a new file. Opening a new
file deletes any existing file with the same name before it creates the
new, empty file. The filenumber of the opened file is returned.
FUNCTION UpperFile (filename$, newname$)
 ifile = OPEN (filename$, $$RD)
 ofile = OPEN (newname$, $$WRNEW)
 length = LOF (ifile)
 a$ = NULL$ (length)
 READ [ifile], a$
 WRITE [ofile], a$
 CLOSE (ifile)
 CLOSE (ofile)
END FUNCTION

OR
binary bitwise operator

integers = integers OR integers

Bitwise OR two integer operands to produce an integer result.
a = 0x05F5
b = 0xFFA0
c = a OR b ' c = 0xFFF5

POF()
intrinsic

integer = POF(fileNumber)

Return the position of the file pointer for an open diskfile. The
argument is the filenumber of the open file.
ifile = OPEN (filename$, $$RD) ' open a file to read
final = LOF(ifile) ' final = length of filename$
line$ = INFILE$(ifile) ' line$ = first text line in file
pos = POF(ifile) ' pos = file pointer after first line

PRINT
statement

PRINT [[fileNumber,]] [arguments] [, | ;]

Print numeric and/or string arguments to display screen or disk file.
No space is printed between arguments separated by a semi-colon,
though each subsequent semi-colon prints one space. Arguments
preceded by a comma are spaced to the next tab position before they
are printed. A semi-colon at the end of the argument list suppresses
the newline character ("\n") that is otherwise printed.
age = 25
name$ = "Sophia"
a = 4
b$ = "cat"
c# = -3.3
PRINT ' Print a blank line
PRINT [ofile] ' Print a blank line to a file
PRINT "Her age is"; age ' Print "Her age is 25"
PRINT "Her age is";;; age ' Print "Her age is 25"
PRINT "Her name is "; name$ ' Print "Her name is Sophia"
PRINT "Her name is", name$ ' Print "Her name is Sophia"
PRINT "Her name is",, name$ ' Print "Her name is Sophia"
PRINT a; b$; c ' Print " 4cat-3.3"
PRINT a, b$, c ' Print " 4 cat -3.3"
PRINT c; b$, a ' Print "-3.3cat 4"
PRINT [ofile], a, b, c ' Print " 4 cat -3.3" to ofile

PROGRAM PROGRAM "name"

Programming Language - Guide and Reference - Page 111

statement
Begin and name a program. Argument must be a literal string.
PROGRAM statements are required when compiling libraries.
PROGRAM "xma"

PROGRAM$()
intrinsic

string = PROGRAM$(integer)

Return program name defined in PROGRAM statement.
program$ = PROGRAM$(0)

QUIT()
intrinsic

[integer =] QUIT(integer)

Quit a program and return to program that ran this one, which
usually is the operating system. The return value is lost since the
program is terminated before it can return from the call. The
argument is passed to the program that ran the current program.
IF #terminate THEN
 DisasterHandler () ' prepare for quit
 QUIT() ' quit the program
END IF

RCLIP$() See LCLIP$().
READ

statement

READ [fileNumber], variables

Read data from a disk file into variables. The first argument is the
filenumber of the file to read from. The variables can be any
combination of numeric variables, string variables, composite
variables, composite variable components, or one dimensional arrays
of any type except strings.

The number of bytes read into each variable equals the data size of
the variable. For example, one byte is read into SBYTE and UBYTE
variables, two bytes into SSHORT and USHORT variables, etc.

This is true even though simple variables shorter than 32-bit are held
in memory as 32-bit or 64-bit values. In cases where the data size
and storage size are not equal, the data size is read, zero or sign-
extended to 32-bits or 64-bits, then saved in the storage variable.

When data is read into a string variable, the number of bytes needed
to fill the string are read directly into the string, overwriting the
previous contents.

When data is read into an array variable, the number of bytes needed
to fill the array are read directly into the array, overwriting the
previous contents.

READ and WRITE are complementary statements.
DIM a[31]
DIM a#[63]
a$ = NULL$(256)
READ [ifile], a@@, b@@, c@@ ' read 1 byte each into UBYTE variables
READ [ifile], a, b, c ' read 4 bytes each into XLONG variables
READ [ifile], a!, b!, c! ' read 4 bytes each into SINGLE varaibles
READ [ifile], a#, b#, c# ' read 8 bytes each into DOUBLE variables
READ [ifile], a$ ' read 256 bytes to fill STRING a$
READ [ifile], a[] ' read 128 bytes to fill XLONG a[31]

Programming Language - Guide and Reference - Page 112

READ [ifile], a#[] ' read 512 bytes to fill DOUBLE a#[63]
READ [ofile], pixel ' read all bytes in composite variable
READ [ofile], pixel.color ' read all bytes in component
READ [ofile], name.kid[] ' read all bytes in component array

REDIM See DIM.
RETURN

EXIT FUNCTION
statement

RETURN [expression]
EXIT FUNCTION [expression]

Return from the currently executing function to the one that called it.
The value of the expression is returned to the calling function. If no
expression is given, a zero or empty string is returned.
RETURN ' return zero or empty string
RETURN a ' return value of a
RETURN a$ ' return string a$
RETURN ((a+b)*(c+d)) ' return value of numeric expression
RETURN (a$ + b$ + c$) ' return value of string expression

RIGHT$() See LEFT$().
RINCHR() See INCHR().
RINCHRI() See INCHR().
RINSTR() See INSTR().
RINSTRI() See INSTR().
RJUST$() See CJUST$().
ROTATER()

instrinsic

integer = ROTATER(integer, count)

Closed rotate bits right any number of bits. Bits shifted out the least
significant bit are recirculated back into the most significant bit.
x = 0xDEADC0DE
y = 0x01020304
a = ROTATER(x, 16) ' a = 0xC0DEDEAD
a = ROTATER(y, 4) ' a = 0x40102030

RTRIM$() See TRIM$().
SBYTE See Declarations after the alphabetical listing.

SBYTE() See Type Conversions after the alphabetical listing.
SBYTEAT() See Direct Memory Access after the alphabetical listing.
SCOMPLEX

statement

[scope] SCOMPLEX variables

Declare single precision complex variables.

Also see Declarations after the alphabetical listing.
SCOMPLEX ii, jj, kk
SCOMPLEX x[], y[], z[]
SHARED SCOMPLEX a, b, c, a[], b[], c[]

SEEK()
intrinsic

[filePointer =] SEEK(fileNumber, filePointer)

Move the file pointer of a file to a new position. The new position
can be beyond the end of the file.
SEEK (dataFile, recordNumber * recordSize)
fp = SEEK(ifile, d3)

SELECT CASE
END SELECT

SELECT CASE TRUE
SELECT CASE FALSE
SELECT CASE expression

Programming Language - Guide and Reference - Page 113

statement
SELECT CASE ALL TRUE
SELECT CASE ALL FALSE
SELECT CASE ALL expression
END SELECT

Begin a multi-way decision block and establish the test expression
that subsequent CASE statements test against. The test expression
can be TRUE, FALSE, or a numeric or string expression.

Each expression in the subsequent CASE statements is tested agains
the test expression. If any expression matches the test expression,
the statements following the CASE statement are executed, up to the
next CASE or END SELECT statement.

To match TRUE requires a non-zero number or a non-empty string.
To match FALSE requires a zero number or an empty string. To
match expression requires an equal numeric value or string.

Normal SELECT CASE blocks are called one-of-many decision
blocks because at most one CASE statement block is executed. This
occurs because an invisible jump past the matching END SELECT is
inserted before every CASE statement except the first.

SELECT CASE ALL blocks are called n-of-many decision blocks ine
because all CASE statements are tested for matches. Whether or not
the code in the preceeding block was executed, tests are performed
for each successive CASE statement.

END SELECT marks the end of every SELECT CASE block.
SELECT CASE a ' test against the contents of a
SELECT CASE a$ ' test against the contents of a$
SELECT CASE TRUE ' test for non-zero or non-empty string
SELECT CASE FALSE ' test for zero or empty string
SELECT CASE ALL a ' test all cases against the contents of a
SELECT CASE ALL a$ ' test all cases against the contents of a$
SELECT CASE ALL TRUE ' test all cases for non-zero or non-empty$
SELECT CASE ALL FALSE ' test all cases for zero or empty string
'
SELECT CASE x
 CASE a : PRINT "a = x"
 CASE b,c,d : PRINT "a or b or c = x"
 CASE e+f : PRINT "a = e+f"
 CASE ELSE : PRINT "None of the above"
END SELECT
'
SELECT CASE ALL TRUE
 CASE i, j, k : PRINT "i or j or k is non-zero"
 CASE humidity > 100 : PRINT "The sky is falling"
 CASE a$, b$+c$: PRINT "a$ or b$+c$ is has contents"
 CASE !raining : PRINT "You can go out now"
 CASE ERROR(-1) : PRINT "Something bad happened"
 CASE hope[] : PRINT "There is hope[]"
 CASE ALL : PRINT "All printed are true"
END SELECT

SET() See CLR().
SFUNCTION See FUNCTION.

SGN()
SIGN()

integer = SGN(numeric)
integer = SIGN(numeric)

Return the sign of a number. If the argument is negative, return -1.
Programming Language - Guide and Reference - Page 114

intrinsic If the argument is positive, return +1. If the argument is zero,
SGN() returns 0 while SIGN() returns +1.

i = -23
j = 0
k = +74
x# = -123.4
y# = +.0002
PRINT SGN(i), SIGN(i) ' Print "-1 -1"
PRINT SGN(j), SIGN(j) ' Print " 0 +1"
PRINT SGN(k), SIGN(k) ' Print "+1 +1"
PRINT SGN(x#), SIGN(x#) ' Print "-1 -1"
PRINT SGN(y#), SIGN(y#) ' Print "+1 +1"

SHARED See Declarations after the alphabetical listing.
SHELL()

intrinsic

[integer =] SHELL(command$)

Execute a program. The command string executes as it would at an
operating system prompt except the full program name including
extent must be specified. Control then returns control to the
program. Some operating systems support concurrent execution of
both processes, meaning the program does not wait until the newly
started program completes.
SHELL ("xb.exe acircle.x -bc") ' wait for xb.exe to complete
SHELL (":xb.exe acircle.x -bc") ' execute concurrently if supported

SIGN() See SGN().
SIGNED$() See STRING().
SINGLE See Declarations after the alphabetical listing.

SINGLE() See Type Conversions after the alphabetical listing.
SINGLEAT() See Direct Memory Access after the alphabetical listing.
SIZE()
intrinsic

integer = SIZE(typename)
integer = SIZE(variable)
integer = SIZE(array[])
integer = SIZE(array[n])
integer = SIZE(array[n,])
integer = SIZE(composite)
integer = SIZE(composite.component)
integer = SIZE(composite.component[])
integer = SIZE(composite.component[n])
integer = SIZE(composite.componentString)

Return the size of data in bytes. The argument can be a built-in or
user-defined typename, a numeric or string variable, the highest
dimension of an array[], an array[n] element, an intermediate
dimension of an array[n,], a composite variable, a component of a
composite variable, a component[] array, a component[n] array
element, or a componentString.
name$ = "John Galt"
a = SIZE(SLONG) ' size of built-in type SLONG (4 bytes)
a = SIZE(COLOR) ' size of user-defined composite type COLOR
a = SIZE(employee) ' size of variable 'employee'
a = SIZE(name$) ' size of string variable (9 bytes)
a = SIZE(prog[]) ' size of highest dimension of prog[]
a = SIZE(prog[n,] ' size of sub-array prog[n,]
a = SIZE(prog[m,] ' size of sub-array prog[m,]
a = SIZE(box) ' size of composite variable box
a = SIZE(box.top) ' size of composite.component box.top

Programming Language - Guide and Reference - Page 115

a = SIZE(box.ele[]) ' size of composite.array box.ele[]
a = SIZE(box.ele[1]) ' size of composite.array element box.ele[1]
a = SIZE(box.name) ' size of composite string box.name

SLONG See Declarations after the alphabetical listing.
SLONG() See Type Conversions after the alphabetical listing.

SLONGAT() See Direct Memory Access after the alphabetical listing.
SMAKE()

intrinsic

single = SMAKE(integer)

Change the type of a 32-bit integer to SINGLE. The bit pattern of the
return value is the same as the integer argument, but the return type
is SINGLE.

x = 0x48000000 ' x = 0x48000000 (a large integer number)
a! = SMAKE(x) ' a! = 0s48000000 (a small SINGLE number)

SPACE$()
intrinsic

string = SPACE$(length)

Create a string of space characters. The length of the return string is
given by the argument.
a$ = SPACE$(4) ' a$ = " "
a$ = "x" + SPACE$(2) + "x" ' a$ = "x x"

SSHORT See Declarations after the alphabetical listing.
SSHORT() See Type Conversions after the alphabetical listing.
SSHORTAT() See Direct Memory Access after the alphabetical listing.
STATIC See Declarations after the alphabetical listing.
STEP See FOR.

STRING()
STRING$()
SIGNED$()
STR$()
intrinsic

string = STRING(numeric)
string = STRING$(numeric)
string = SIGNED$(numeric)
string = STR$(numeric)

Convert a numeric argument into a string. The only difference
between these intrinsics is the form the sign takes in the returned
string. STRING() and STRING$() puts a leading "-" on negative
numbers and nothing on positive numbers. SIGNED$() puts a
leading "+" or "-" on all numbers, including "+0". STR$() puts a
leading "-" on negative numbers and a leading space character " "
on positive numbers.

a# = -23.456
b# = +11.111
a$ = STRING(a#) + STRING(b#) ' a$ = "-23.45611.111"
a$ = STRING$(a#) + STRING$(b#) ' a$ = "-23.45611.111"
a$ = SIGNED$(a#) + SIGNED$(b#) ' a$ = "-23.456+11.111"
a$ = STR$(a#) + STR$(b#) ' a$ = "-23.456 11.111"

STUFF$()
intrinsic

string = STUFF(stringInto$, stringFrom$, start)
string = STUFF(stringInto$, stringFrom$, start, length)

Stuff one string into another. Stuff stringFrom$ into stringInto$
starting at start. Stuff no more than length characters.
x$ = "This lazy man"
y$ = "flabberghast"
z$ = "is wolf"
a$ = STUFF$(x$, y$, 6, 4) ' a$ = "This flab man"

Programming Language - Guide and Reference - Page 116

a$ = STUFF$(x$, y$, 6) ' a$ = "This flabberg"
a$ = STUFF$(x$, z$, 6) ' a$ = "This is wolfn"
a$ = STUFF$(x$, z$, 6, 5) ' a$ = "This is woman"

SUB
EXIT SUB
END SUB
statement

SUB SubroutineName

SUB - Begin subroutine.
EXIT SUB - Exit subroutine before its end.
END SUB - End subroutine.

A subroutine is a portion of a function that can be called only from
within the same function by GOSUB SubroutineName.

END SUB returns to the statement following the GOSUB.
EXIT SUB jumps to the END SUB which then returns.
SUB Sandwitch
 entry = Convert (a, b)
 IFZ entry THEN EXIT SUB ' exit the subroutine
 entry = Chew (a, b)
END SUB

SUBADDR See Declarations after the alphabetical listing.
SUBADDR() See Type Conversions after the alphabetical listing.

SUBADDRAT() See Direct Memory Access after the alphabetical listing.
SUBADDRESS()

instrinsic

subaddr = SUBADDRESS(label)

Return the address of a subroutine.
g = SUBADDRESS (SubName) ' g = address of subroutine SubName
h[i] = SUBADDRESS (SumArray) ' h[i] = address of subroutine SumArray

SWAP
statement

SWAP string, string
SWAP variable, variable
SWAP arrayNode, arrayNode

Swap the contents of:
· string variables
· numeric variables of the same type
· array elements of the same type
· strings, arrays, array nodes

SWAP a, b ' swap XLONG variables
SWAP a#, b# ' swap DOUBLE variables
SWAP a$, b$ ' swap STRING variables
SWAP a, b[n] ' swap XLONG variable with XLONG array element
SWAP a[i], b[j] ' swap XLONG array elements
SWAP a$[i], b$[j] ' swap STRING array elements
SWAP a$[i], b$ ' swap STRING array element with string
SWAP a[], b[] ' swap two entire arrays
SWAP a[], b[i,] ' swap array with a sub-array
SWAP a[i,], b[i,] ' swap two sub-arrays

TAB()
intrinsic

TAB(integer)

Append spaces to PRINT string to reach a horizontal character
position. TAB() is valid only in PRINT statements.
PRINT a; TAB(10); b; TAB(24); c; TAB(40); d$; TAB(60); e
PRINT TAB(40); x, y, z

THEN See IF.

Programming Language - Guide and Reference - Page 117

TO See FOR.
TRIM$()
LTRIM$()
RTRIM$()

intrinsic

string = TRIM$(string)
string = LTRIM$(string)
string = RTRIM$(string)

Trim whitespace and non-printable characters from both ends of a
string, the left end of a string, or the right end of a string. All
characters from 0x00 to 0x20 and 0x80 to 0xFF are removed.
x$ = "\n\nXXX\t\0\1\2 "
y$ = "\t \nZZZ \t\t\n"
a$ = LTRIM$(x$) ' a$ = "XXX\t\0\1\2 "
a$ = LTRIM$(y$) ' a$ = "ZZZ \t\t\n"
a$ = RTRIM$(x$) ' a$ = "\n\nXXX"
a$ = RTRIM$(y$) ' a$ = "\t \nZZZ"
a$ = TRIM$(x$) ' a$ = "XXX"
a$ = TRIM$(y$) ' a$ = "YYY"

TRUE See SELECT CASE.
TYPE
UNION

END TYPE
statement

TYPE TypeName
UNION
END TYPE
END UNION

Declare user-defined composite types and begin/end union overlays.
UNION statements are valid only within TYPE declaration blocks.
TYPE COLOR
 USHORT .red
 USHORT .green
 USHORT .blue
 USHORT .intensity
END TYPE
'
TYPE POINT
 XLONG .x
 XLONG .y
 COLOR .color
END TYPE
'
TYPE LINE
 POINT .a
 POINT .b
 XLONG .thickness
END TYPE
'
TYPE DPOINT
 DOUBLE .x
 DOUBLE .y
 COLOR .color
END TYPE
'
TYPE ARBITRARY ' hold an arbitrary data type value
 UNION ' the following overlay each other
 SBYTE .sbyte
 UBYTE .ubyte
 SSHORT .sshort
 USHORT .ushort
 SLONG .slong
 ULONG .ulong
 XLONG .xlong
 GIANT .giant
 SINGLE .single
 DOUBLE .double
 SCOMPLEX .scomplex
 DCOMPLEX .dcomplex
 END UNION ' end overlay
 XLONG .type ' type currently stored in the variable
END TYPE

TYPE() integer = TYPE(typeName)

Programming Language - Guide and Reference - Page 118

intrinsic
integer = TYPE(typeName.component)
integer = TYPE(variable)
integer = TYPE(variable.component)
integer = TYPE(array[])
integer = TYPE(array[subscripts,])

Return the type number of a built-in type, composite type, composite
type component, variable, component of a composite variable, array,
or array node.

Shared constants are defined for the built-in types. User-defined
types are assigned during compilation. A given user-defined type is
not necessarily assigned the same type number on subsequent
compilations, or from library to library. Don't make any
assumptions about the assignment of type numbers in function
libraries or other external modules.
a = TYPE(SLONG) ' a = type number of SLONG ($$SLONG)
a = TYPE(DCOMPLEX) ' a = type number of DCOMPLEX ($$DCOMPLEX)
a = TYPE(DCOMPLEX.I) ' a = type number of component ($$DOUBLE)
a = TYPE(employee) ' a = type number of variable employee
a = TYPE(maxValue[]) ' a = type number of array maxValue[]
a = TYPE(prog[func,]) ' a = type number of node ($$XLONG)
a = TYPE(employee.salary) ' a = type number of variable component

UBOUND()
intrinsic

integer = UBOUND(string)
integer = UBOUND(array[])
integer = UBOUND(array[subscripts,])

Return the upper bound of a string or array dimension.
x$ = ""
y$ = "0"
z$ = "012345"
DIM a[]
DIM b[0]
DIM c[7]
DIM d[3,]
DIM x[11]
DIM y[15]
DIM z[31]
ATTACH x[] TO d[0]
ATTACH y[] TO d[1]
ATTACH z[] TO d[2]
a = UBOUND(x$) ' a = -1 (empty string)
a = UBOUND(y$) ' a = 0 (upper bound = 0 : 1 element)
a = UBOUND(z$) ' a = 5 (upper bound = 5 : 6 elements)
a = UBOUND(a[]) ' a = -1 (empty array)
a = UBOUND(b[]) ' a = 0 (upper bound = 0 : 1 element)
a = UBOUND(c[]) ' a = 7 (upper bound = 7 : 8 elements)
a = UBOUND(d[]) ' a = 3 (upper bound of highest dimension)
a = UBOUND(d[0,]) ' a = 11 (upper bound of d[0,])
a = UBOUND(d[1,]) ' a = 15 (upper bound of d[1,])
a = UBOUND(d[2,]) ' a = 31 (upper bound of d[2,])
a = UBOUND(d[3,]) ' a = -1 (d[3,] is an empty array)

UBYTE See Declarations after the alphabetical listing.
UBYTE() See Type Conversions after the alphabetical listing.

UBYTEAT() See Direct Memory Access after the alphabetical listing.
UCASE$() See LCASE$().
ULONG See Declarations after the alphabetical listing.

ULONG() See Type Conversions after the alphabetical listing.
ULONGAT() See Direct Memory Access after the alphabetical listing.

Programming Language - Guide and Reference - Page 119

UNION See TYPE.
UNTIL See DO.
USHORT See Declarations after the alphabetical listing.

USHORT() See Type Conversions after the alphabetical listing.
USHORTAT() See Direct Memory Access after the alphabetical listing.
VERSION
statement

VERSION "number"

Give the program a version number. Argument must be literal
string.
VERSION "0.1234"

VERSION$()
intrinsic

string = VERSION$(integer)

Return version number string defined in VERSION statement.
version$ = VERSION$(0)

VOID See DECLARE and FUNCTION.
WHILE See DO.
WRITE
statement

WRITE [fileNumber], variables

Write variables to a disk file. The first argument is the filenumber of
the file to write to. The remaining arguments are any combination of
numeric variables, string variables, composite variables, composite
variable components, or one dimensional arrays of any type except
strings.

The number of byte written from each variable equals the data size
of the variable. For example, one byte is written from SBYTE and
UBYTE variables, two bytes from SSHORT and USHORT variables,
four bytes from SLONG and SINGLE variables, etc.

This is true even though simple variables shorter than 32-bits are
held in memory as 32-bit or 64-bit values. In cases where the data
size and storage size are not equal, the least significant part of the
variable is written.

When a string variable is written, the number of bytes written is the
number of bytes in the string..

When an array variable is written, the number of bytes written is the
number of bytes in the array. Only one dimension can be written.
DIM a[31] ' a[] contains 32 XLONG values
DIM a#[63] ' a#[] contains 64 DOUBLE values
a$ = CHR$('*', 256) ' a$ contains 256 '*' characters
WRITE [ifile], a@, b@, c@ ' WRITE 1 byte each from SBYTE variables
WRITE [ifile], a, b, c ' WRITE 4 bytes each from XLONG variables
WRITE [ifile], a!, b!, c! ' WRITE 4 bytes each from SINGLE variables
WRITE [ifile], a#, b#, c# ' WRITE 8 bytes each from DOUBLE variables
WRITE [ifile], a$ ' WRITE all 256 bytes from STRING a$
WRITE [ifile], a[] ' WRITE all 128 bytes from XLONG a[31]
WRITE [ifile], a#[] ' WRITE all 512 bytes from DOUBLE a#[63]
WRITE [ofile], pixel ' WRITE all bytes in composite variable
WRITE [ofile], pixel.color ' WRITE all bytes in component
WRITE [ofile], name.kid[] ' WRITE all bytes in component array

Programming Language - Guide and Reference - Page 120

XLONG See Declarations after the alphabetical listing.
XLONG() See Type Conversions after the alphabetical listing.

XLONGAT() See Direct Memory Access after the alphabetical listing.
XMAKE()

intrinsic

xlong = XMAKE(integer)
xlong = XMAKE(single)

Make an XLONG value from an integer or single argument.
x! = 2.000
a = XMAKE(x!) ' a = XLONG with same bit pattern as x!

Programming Language - Guide and Reference - Page 121

Declaration

statements

AUTO
AUTOX
STATIC
SHARED
EXTERNAL
SBYTE
UBYTE
SSHORT
USHORT
SLONG
ULONG
XLONG
GOADDR
SUBADDR
FUNCADDR
GIANT
SINGLE
DOUBLE
STRING
SCOMPLEX
DCOMPLEX

[scope] [type] variables

Declare the scope and data type of variables. Variables that do not
appear in a declaration statement default to AUTO scope and the
default data type, which is XLONG unless an explicit default type is
specified on the FUNCTION line.

Composite variables with user-defined types are declared in the same
way as built-in type variables. Substitute the name of the composite
type for DOUBLE in the syntax example above.

The valid scopes are:
AUTO local, temporary, possibly registered
AUTOX local, temporary, never registered
STATIC local, permanent
SHARED sharable within program
SHARED /name/ sharable within program (/name/ must match)
EXTERNAL sharable between programs
EXTERNAL /nane/ sharable between programs (/name/ must match)

The built-in data types are:
SBYTE signed byte 8-bit integer
UBYTE unsigned byte 8-bit integer
SSHORT signed short 16-bit integer
USHORT unsigned short 16-bit integer
SLONG signed long 32-bit integer
ULONG unsigned long 32-bit integer
XLONG register type 32-bit integer (or 64-bit integer)
GOADDR address type 32-bit integer (or 64-bit integer)
SUBADDR address type 32-bit integer (or 64-bit integer)
FUNCADDR address type 32-bit integer (or 64-bit integer)
GIANT signed giant 64-bit integer
SINGLE single float 32-bit floating point
DOUBLE double float 64-bit floating point
STRING ubyte string 8-bit unsigned byte characters
SCOMPLEX single complex 32-bit : 32-bit floating point
DCOMPLEX double complex 64-bit : 64-bit floating point

DOUBLE ii, jj, kk
SINGLE x[], y[], z[]
AUTOX USHORT width[], height[]
STATIC DCOMPLEX a, b, c, d, e, f
SHARED UBYTE a[], b[], c[]
SHARED STRING victum, name[], address[], phone[], excuse[]

Programming Language - Guide and Reference - Page 122

Type Conversion

intrinsics

SBYTE()
UBYTE()
SSHORT()
USHORT()
SLONG()
ULONG()
XLONG()
GOADDR()
SUBADDR()
FUNCADDR()
GIANT()
SINGLE()
DOUBLE()
STRING()
STRING$()

type = type(numString)

Convert a numeric or string value to the specified type.

The argument can be any built-in numeric or string data type, except
the complex number types. The argument is converted to the data
type specified by the name of the intrinsic.

These intrinsics will convert any built-in numeric or string type to
any other. The return type is always the name of the intrinsic.

Range checking is performed by these conversion intrinsics, even
when conversion is not required. An overflow error occurs at
runtime when a value cannot be represented in the specified return
type.

a# = DOUBLE(temp)
a# = DOUBLE(value$)
a# = DOUBLE(a*b+c*d)
a@@[i] = UBYTE(n*p+q)
a[n] = USHORT(i+j+k)
a$ = STRING$(i&)
a$ = STRING$(j!)
a$ = STRING$(k#)

Programming Language - Guide and Reference - Page 123

Direct Memory Access

intrinsics

SBYTEAT()
UBYTEAT()
SSHORTAT()
USHORTAT()
SLONGAT()
ULONGAT()
XLONGAT()
GIANTAT()
SINGLEAT()
DOUBLEAT()

double = DOUBLEAT(address)
double = DOUBLEAT(address, offset)
double = DOUBLEAT(address, [element])
DOUBLEAT(address) = double
DOUBLEAT(address, offset) = double
DOUBLEAT(address, [element]) = double

The Direct Memory Access intrinsics read directly from a memory
address, or write directly to a memory address. They are provided
for the rare cases it is necessary to read or write a memory address
directly, as when the operating system or another language provides
an address of data, rather than data itself.

Address validation is not performed, so misaligned accesses, segment
faults, and other memory access errors are not prevented. Therefore
these intrinsics should be avoided when possible, and used with care.
The name of any direct memory access intrinsic can be substituted
for DOUBLEAT in any of the six syntax examples shown above.

The first three forms read from a memory address, while the second
three forms write to a memory address.

The address is specified in one of three ways:

address address = address
address, offset address = address + offset
address, [element] address = address + (element * size)

In the first form, the address is given directly. In the second form,
the address is computed by adding a byte offset to the address. In the
third form, the address is computed by adding the element number
times its size in bytes to the address.
a# = DOUBLEAT(address)
a# = DOUBLEAT(address, offset)
a# = DOUBLEAT(address, [element])
DOUBLEAT(address) = a#
DOUBLEAT(address, offset) = a#
DOUBLEAT(address, [element]) = a#

Programming Language - Guide and Reference - Page 124

!, 6, 14, 21, 22
!!, 14
!<, 17
!<=, 17
!=, 17
!>, 17
!>=, 17

", 28

#, 6, 21, 22, 41
##, 6, 41

$, 6, 21, 22, 29, 49
$$, 6, 21, 22, 29
$$ErrorNature, 75
$$ErrorObject, 75
$$FALSE, 2
$$RD, 67
$$RDSHARE, 67
$$RW, 67
$$RWNEW, 67
$$RWSHARE, 67
$$TRUE, 2
$$WR, 67
$$WRNEW, 67
$$WRSHARE, 67

%, 6, 21, 22
%%, 6, 21, 22

&, 6, 13, 16, 21, 22, 54, 59
&&, 6, 13, 16, 21, 22

', 8

*, 15
**, 15

+, 13, 15, 16

-, 13, 15

..., 50

/, 15

<, 17
<<<, 14
<=, 17
<>, 17

=, 8, 17
==, 17

>, 17
>=, 17
>>, 14
>>>, 14

@, 6, 21, 22, 54, 55, 57, 58, 59
@@, 6, 21, 22

\, 15
\", 28
\', 28
\\, 28
\0, 28
\a, 28
\b, 28
\d, 28
\e, 28
\f, 28
\n, 28
\OOO, 28
\r, 28
\t, 28
\v, 28
\xHH, 28

^, 15, 16
^^, 16

|, 16
||, 16

~, 6, 14

0b, 26
0d, 27
0o, 26
0s, 27
0x, 26

Programming Language - Guide and Reference - Page 125

ABS(), 92
add, 15
address, 10, 53, 54, 57, 58, 59
address operator, 13
alignment, 34
ALL, 62, 63, 92
alphabetic, 5
alphanumeric, 5
AND, 16, 92
ANY, 36, 50, 52
argument, 18, 51, 52, 53, 54
arguments, 49
arithmetic, 10
arithmetic shift left, 14
arithmetic shift right, 14
array, 6, 7, 13, 29, 36, 54
array data element, 13
array node, 13
ASC(), 33, 92
ASCII, 77
assignment, 8
ATTACH, 1, 38, 92
AUTO, 13, 41, 42, 49, 56, 92, 124
AUTOX, 41, 42, 56, 92, 124

backslash, 24, 28
BIN$(), 93
binary, 5
binary literal, 26
binary operator, 10
BINB$(), 93
bit field, 30
bitfield constant, 30
BITFIELD(), 30
bitsize XOR, 16
bitwise, 10
bitwise AND, 16
bitwise not, 14
bitwise OR, 16
bitwise shift left, 14
bitwise shift right, 14
block structure, 19
Blowback(), 47
bounds checking, 39
brace notation, 30, 31
brace notation warning, 32

CASE, 3, 62, 63, 64, 93
CASE ALL, 62, 64
CASE ELSE, 62, 64
case sensitive, 6
CFUNCTION, 93, 103
character, 5
character constant, 8
character literal, 8, 24
CHR$(), 33, 93
CJUST$(), 33, 94
CLOSE(), 67, 94
CLR(), 30, 95
coersion, 22, 52
comment, 8
complex number, 21, 35
component, 34, 35, 70
composite, 13, 21, 29, 34, 35, 70
composite element, 13
computed function call, 55, 59
Computed GOSUB, 58
Computed GOTO, 57
concatenate, 16
constant, 29
conversion, 22, 52
convert, 10, 52
CSIZE$(), 33, 95
CSIZE(), 33, 95
CSTRING$(), 33, 95

Programming Language - Guide and Reference - Page 126

data, 37, 39
data type, 7, 21, 50, 51, 52, 54
DCOMPLEX, 15, 21, 22, 35, 96, 124
DEC, 105
decimal literal, 25
decision statement, 60
DECLARE, 49, 50, 96
declare, 45
DECLARE FUNCTION, 54
default type, 51
DHIGH(), 96
DIM, 1, 36, 37, 38, 69, 97
dimension, 36
divide, 15
DLOW(), 96, 97
DMAKE(), 97
DO, 65, 98
DO DO, 65, 98
DO FOR, 66, 101
DO LOOP, 65, 98
DO NEXT, 66, 101
DO UNTIL, 3, 98
DO WHILE, 3, 98
DOUBLE, 6, 21, 22, 25, 29, 98, 124
double image literal, 27
DOUBLE(), 22, 98, 125
DOUBLEAT(), 98, 126

ELSE, 60, 98, 105
ELSEIF, 64
empty array, 1, 36
empty node, 38
empty string, 1, 31
END EXPORT, 47
END FUNCTION, 49, 51, 99
END IF, 60, 99, 105
END PROGRAM, 45
END SELECT, 62, 99, 115
END SUB, 8, 18, 58, 99, 118
END TYPE, 34, 99, 120
entry function, 45, 49
EOF(), 67, 99
equal, 17
error, 71, 74, 75
error number, 75
ERROR$(), 99
ERROR(), 74, 99
exception, 74, 76
excess comma notation, 39
executable statement, 49
EXIT DO, 65, 98, 99
EXIT FOR, 66, 99, 101
EXIT FUNCTION, 51, 99, 113
EXIT IF, 100
EXIT SELECT, 62, 64, 100
EXIT SUB, 58, 100, 118
EXPORT, 47, 100
export, 47
expression, 55
EXTERNAL, 6, 41, 43, 49, 50, 96, 100, 124
EXTERNAL /groupname/, 41, 43
EXTS(), 30, 101
EXTU(), 30, 101

Programming Language - Guide and Reference - Page 127

FALSE, 1, 2, 3, 31, 36, 61, 62, 63, 101
file, 67
file number, 67
file pointer, 67
filenumber, 67, 68
FIX(), 101, 107
floating point, 6, 21, 29
FOR, 66, 101
foreign function, 46
FORMAT$(), 33, 102
FUNCADDR, 21, 22, 29, 55, 56, 59, 102, 124
FUNCADDR(), 22, 102, 125
FUNCADDRESS(), 59, 102
FUNCTION, 49, 51, 54, 103
function, 6, 7, 18, 45, 49, 50, 51, 52, 53, 54, 55
function address, 59
function call, 59
function definition, 51
function library, 46, 47

GHIGH(), 103
GIANT, 6, 21, 22, 29, 103, 124
GIANT(), 22, 103, 125
GIANTAT(), 103, 126
GLOW(), 103
GMAKE(), 103
GOADDR, 21, 22, 29, 57, 103, 124
GOADDR(), 22, 103, 125
GOADDRAT(), 103
GOADDRESS(), 57, 104
GOSUB, 8, 58, 104
GOTO, 8, 57, 104
greater or equal, 17
greater than, 17
GuiDesigner, 46

handle, 31, 42
handle operator, 13
HEX$(), 33, 104
hexadecimal, 5
hexadecimal literal, 26
HEXX$(), 33, 104
HIGH0(), 104
HIGH1(), 104

I/O, 67
IF, 3, 60, 61, 105
IFF, 61
IFT, 61
IFZ, 3, 61, 105
IMPORT, 46, 47, 105
import, 47
INC, 105
INCHR(), 33, 106
INCHRI(), 33, 106
INFILE$(), 33, 106
INLINE$(), 33, 106
INSTR(), 33, 107
INSTRI(), 33, 107
INT(), 107
integer, 21
integer literal, 25
INTERNAL, 50, 96, 107
intrinsic function, 9
intrinsics, 9
irregular array, 37, 38

keyword, 6, 9
keywords, 7
kind, 24, 52, 54
kind mismatch, 54

Programming Language - Guide and Reference - Page 128

label, 7, 57
labels, 8
LCASE$(), 33, 107
LCLIP$(), 33, 108
LEFT$(), 33, 108
LEN(), 33, 108
less than, 17
library, 46
library function, 46
LIBRARY(), 108
literal, 24
literal string, 8
LJUST$(), 33, 94, 108
local constant, 6, 29
LOF(), 67, 109
logical, 10
logical address, 22
logical AND, 16
logical not, 14
logical OR, 16
logical test, 14
logical XOR, 16
LOOP, 65, 98, 109
loop, 65
LOOP UNTIL, 3, 98
LOOP WHILE, 3, 98
lower bound, 36
LTRIM$(), 33, 109, 119

MAKE(), 30, 109
MAX(), 109
MID$(), 33, 110
MIN(), 109, 110
MOD, 15, 110
modulus, 15
multiply, 15

name, 6
natural data type, 39
natural integer, 22
nest, 19
newline, 5, 8, 68
NEXT, 66, 101, 110
NEXT CASE, 64
node, 37, 38, 39
NOT, 14, 110
not equal, 17
null character, 1
NULL$(), 33, 69, 110
numeric, 5
numeric literal, 24

OCT$(), 111
octal, 5
octal literal, 26
OCTO$(), 111
OPEN(), 67, 111
operand, 10
operator, 10
OR, 16, 111

padding, 34
parameter, 50
parentheses, 6, 7, 10, 49, 51
parse, 5
pass by address, 18, 54
pass by reference, 18, 36, 53, 54
pass by value, 18, 53, 54
persist, 42, 43
POF(), 67, 112
power, 15
precedence, 10
preserve, 36
PRINT, 68, 112
PROGRAM, 46, 112
program, 45
PROGRAM$(), 112
prolog, 45
promote, 10, 22

QUIT(), 112

Programming Language - Guide and Reference - Page 129

ragged array, 37
RCLIP$(), 33, 108, 112
READ, 68, 69, 70, 113
rectangular array, 37
recursive, 56
REDIM, 1, 36, 38, 97, 113
redimension, 36
register, 42, 53
regular array, 37
reserved symbols, 7
RETURN, 51, 113
return type, 51
return value, 55
RIGHT$(), 33, 108, 113
RINCHR(), 33, 106, 113
RINCHRI(), 33, 106, 113
RINSTR(), 33, 107, 114
RINSTRI(), 33, 107, 114
RJUST$(), 33, 94, 114
ROTATER(), 114
RTRIM$(), 33, 114, 119

SBYTE, 6, 21, 22, 29, 114, 124
SBYTE(), 22, 114, 125
SBYTEAT(), 114, 126
scientific literal, 25
SCOMPLEX, 15, 21, 22, 35, 114, 124
scope, 41
scope prefix, 6, 41, 49
scope prefixes, 5
SEEK(), 67, 114
SELECT CASE, 62, 63, 115
SELECT CASE ALL, 63
SELECT CASE FALSE, 63
SELECT CASE TRUE, 63, 64
SET(), 30, 95, 115
SFUNCTION, 103, 115
SGN(), 116
SHARED, 6, 41, 42, 49, 116, 124
SHARED /groupname/, 41, 43
shared constant, 6, 29
SHELL(), 116
shift left, 14
shift right, 14
SIGN(), 116
signed, 21
signed bitfield, 30
signed integer, 29
SIGNED$(), 116, 118
simple types, 21
simple variable, 29

SINGLE, 6, 21, 22, 25, 29, 116, 124
single image literal, 27
SINGLE(), 22, 116, 125
SINGLEAT(), 116, 126
SIZE(), 117
SLONG, 6, 21, 22, 29, 117, 124
SLONG(), 22, 117, 125
SLONGAT(), 117, 126
SMAKE(), 117
source, 8
space, 5
SPACE$(), 33, 117
square brackets, 6, 7
SSHORT, 6, 21, 22, 29, 117, 124
SSHORT(), 22, 117, 125
SSHORTAT(), 117, 126
statement, 9
STATIC, 41, 42, 56, 117, 124
STEP, 66, 117
STR$(), 118
STRING, 6, 21, 22, 124
string, 13, 21, 29, 31
string intrinsics, 33
string literal, 28
STRING$(), 22, 118, 125
STRING(), 22, 33, 118, 125
STUFF$(), 33, 118
SUB, 8, 18, 58, 118
sub array, 37
SUBADDR, 21, 22, 29, 58, 118, 124
SUBADDR(), 22, 118, 125
SUBADDRAT(), 118
SUBADDRESS(), 58, 119
subroutine, 7, 8, 18, 58
subtract, 15
SWAP, 33, 38, 119
symbol, 6
symbol characters, 5
system constant, 29
system function, 46

Programming Language - Guide and Reference - Page 130

tab, 5
TAB(), 119
temporary, 42
THEN, 119
TO, 119
tree structure array, 37, 38
TRIM$(), 33, 119
TRUE, 1, 2, 3, 31, 36, 61, 62, 63, 119
TYPE, 34, 120
type conversion, 22
type suffix, 6, 21
type suffixes, 5
TYPE(), 50, 121
type-mismatch, 54
type-suffix, 51
typename, 51
typenameAT(), 8

UBOUND(), 121
UBYTE, 6, 21, 22, 29, 121, 124
UBYTE(), 22, 121, 125
UBYTEAT(), 121, 126
UCASE$(), 33, 107, 121
ULONG, 6, 21, 22, 29, 121, 124
ULONG(), 22, 122, 125
ULONGAT(), 122, 126
unary negative, 13
unary operator, 10
unary positive, 13
UNION, 120, 122
unsigned, 21
unsigned bitfield, 30
unsigned integer, 29
UNTIL, 65, 122
upper bound, 36
user defined type, 21, 34
USHORT, 6, 21, 22, 29, 122, 124
USHORT(), 22, 122, 125
USHORTAT(), 122, 126

variable, 7, 13, 29, 41, 42, 43, 49
VERSION, 122
VERSION$(), 122
VOID, 122

WHILE, 65, 122
whitespace, 5, 6
WRITE, 68, 69, 70, 123

XLONG, 6, 21, 22, 29, 51, 123, 124
XLONG(), 22, 123, 125
XLONGAT(), 123, 126
XMAKE(), 123
XOR, 16
XstGetExceptionFunction(), 76
XstSetExceptionFunction(), 76

Programming Language - Guide and Reference - Page 131

Programming Language - Guide and Reference - Page 132

	Conventions
	TRUE
	FALSE
	TRUE vs $$TRUE
	FALSE vs $$FALSE
	Implicit TRUE and FALSE

	Language Elements
	Character Set
	Parse Method
	Case Sensitive
	Names and Symbols
	Type Suffixes
	Scope Prefixes
	Symbols
	Name Conventions
	Keywords
	Type Names
	User Defined aka Composite Type Names
	Variable Names
	GOTO Label Names
	Subroutine Names
	Function Names
	Reserved Names

	Source Lines
	Line Names
	Subroutine Names
	Comments
	Assignment
	Statements
	Intrinsics
	Operators
	Unary Operators
	Binary Operators
	Operator Precedence
	Operator Kind

	Operator Class
	Class 1
	Class 2
	Class 3
	Class 4
	Class 5
	Class 6
	Class 7
	Class 8
	Class 9
	Class 10
	Class 11

	Operator Summary
	Unary Address Operators
	&
	&&

	Unary Arithmetic Operators
	+
	-

	Unary Bitwise Operators
	~ aka NOT

	Unary Logical Operators
	!
	!!

	Binary Shift Operators
	>>>
	<<<
	>>
	<<

	Binary Arithmetic Operators
	**
	/
	*
	-
	+
	
	MOD

	Binary Bitwise Operators
	& aka AND
	| aka OR
	^ aka XOR

	Binary Logical Operators
	&&
	^^
	||

	Binary String Operators
	+

	Binary Relational Operators
	> aka !<=
	>= aka !<
	<= aka !>
	< aka !>=
	<> aka !=
	= aka ==

	Operator Considerations
	Subroutines
	Functions
	Block Structure
	Execution Order
	Multi-Level Control

	Data
	Data Type
	Type Suffix
	Simple Type
	String
	Composite Type
	Built In Types
	Coersion aka Type Conversion
	Type Sizes
	Storage Type
	Kind
	Literal
	Numeric Literal
	Character Literal
	Integer Literal
	Decimal Literal
	Scientific Literal
	Hexadecimal Literal
	Octal Literal
	Binary Literal
	SINGLE Image
	DOUBLE Image
	String Literal

	Constant
	Local Constant
	Shared Constant
	System Constant

	Variable
	Simple Variable
	Bit Field
	Bit Field Intrinsics
	Brace Notation for Bitfields
	BITFIELD()
	String Variable
	Brace Notation Extract
	Brace Notation Assign
	Brace Notation Warning
	String Support
	Composite Data Type
	Composite Type Declaration
	Composite Variable
	Component
	SCOMPLEX and DCOMPLEX
	Array Variable
	DIM
	REDIM
	DIM vs REDIM
	Dimension
	Empty Array
	Passing Array Arguments
	Array Element
	Array Implementation
	Tree Structure
	Regular Array
	Irregular Array
	Nodes and Data
	Building Irregular Arrays
	ATTACH and SWAP
	Excess Comma Notation
	Natural Data Type
	Considerations of Tree Structure Arrays

	Scope
	Visible Scope
	AUTO
	AUTOX
	STATIC
	SHARED
	SHARED /groupname/
	EXTERNAL
	EXTERNAL /groupname/

	Programs
	Program
	Prolog
	Prolog Elements Example

	Function Library aka Library
	System Functions and Foreign Functions
	IMPORT
	EXPORT ... END EXPORT
	Blowback Function - Blowback()

	Functions
	Functions
	Entry Function
	Function Names
	Encapsulation
	Arguments
	Function Declaration
	Argument Checking
	ANY
	. . .

	Return Type
	Function Definition
	Default Type
	Function Arguments
	RETURN and EXIT FUNCTION
	END FUNCTION
	Function Arguments
	Numeric Arguments
	String Arguments
	Array Arguments

	Argument Kind and Type Checking
	Pass by Value
	Pass by Reference
	Implementation
	Consequences of Pass by Reference Implementation
	Example Illustrates Pass by Reference

	Pass by Address
	Argument Checking
	Return Value
	Function Call
	Computed Function Call
	Fall Through

	Recursion

	Execution Control
	Execution Order
	Conventional GOTO
	Computed GOTO
	Conventional GOSUB
	GOSUB Example

	Computed GOSUB
	Conventional Function Call
	Computed Function Call
	Decisions
	IF statement
	IF and IFZ
	SELECT CASE
	Syntax
	Test Expression
	SELECT CASE - zero or one of many
	SELECT CASE ALL - n of many
	SELECT CASE TRUE
	SELECT CASE FALSE
	Example 1
	Example 2
	EXIT SELECT
	NEXT CASE
	ELSEIF

	Loops and Iteration
	DO ... LOOP
	DO Options
	EXIT DO Example

	FOR ... NEXT
	FOR Example
	FOR Options
	STEP

	File Processing
	Overview
	File Number
	File Pointer
	OPEN
	CLOSE
	INFILE$()
	WRITE
	READ and WRITE Composite Variables

	Errors
	Compile Time Errors
	Runtime Errors and Exceptions
	Runtime Errors
	ERROR() and ERROR$()
	Runtime Error Handling
	Error Numbers
	Programmer Defined Errors
	Runtime Exceptions

	Appendix A : Standard Character Set
	Appendix B : Translating Programs
	Appendix C : Keywords
	Appendix D : Operators
	Appendix E : Statements
	Appendix F : Intrinsics
	Appendix G : Language Reference

