
XBasic
Program Development Environment

(PDE)

GuiDesigner

Programmer Guide

Revision 0.0016
November 1, 1995

Copyright 1990-2000

Console Window Behavior Window Design Window

Toolkit Appearance Window Main Window

More windows than normally displayed at once.

· Main Window - enter, edit, load, save, run, debug programs - and set options, get help, do most
development.

· Console Window - conventional BASIC console I/O.
· Toolkit Window - create, destroy, load, save design windows - and select controls into visible design window.
· Design Window - interactive graphical GUI design layout.
· Appearance Window - set appearance properties of the selected grid.
· Behavior Window - display the actions of the selected grid for each message.

Table of Contents
Introduction..1

What's a GUI ?...1
GUI Approach..1
Easy To Learn..1
GuiDesigner..1
Instant Help..2
The Ideal Lifetime Program Development Environment...2

A Quick Tour of GuiDesigner...3
Quick Tour...3
GuiDesigner Toolkit..3
Window Menu..4
Grid Menu..5
Appearance Window..6
Your Own GUI Programs..7
Modify Your GUI Windows..8

Fundamental Concepts...9
Window..9
Window Type...9
Window Function...9
Grid...9
Kid..9
Grid Type...10
GridFunction..10
Callback Function aka Code Function..11
GraphicsDesigner Messages..11
GuiDesigner Messages...11
Send Message...12
GraphicsDesigner vs GuiDesigner...12

GuiDesigner Programs...13
GuiDesigner Convenience Function Programs...13
GuiDesigner Programs...13
Basic Steps...13
Core GuiDesigner Program..13
PROLOG..14
Entry()..14

Entry() is your GUI program..14
The Nature of GUI Programs...14
Entry() - Initialization..15
Entry() - Create Windows..15
Entry() - Message Loop..15

InitGui()..16
InitProgram() and InitWindows()..16
CreateWindows()...16
Design()..16
DesignCode()...16

GuiDesigner - Programmer Guide - Table of Contents

Interactive Window Design...17
Design Window..17
GridFunction..17
Layout Grids...18
Move and Resize Grids..18
No Overlap...18
Nesting Grids..18
Grid Appearance..18
Grid Behavior...18
Design Mode vs Test Mode...19
WindowToFunction...19
Quick Start..19
Callback Arguments...19
WindowFromFunction...20
Operating Grid Functions..21
To Code or Not To Code...22
Learning Curve...22

Instant Help..23
InstantHelp...23
Help On Everything...23
Posting InstantHelp..23
Browsing Programs..23
Solve the "Great Icon Problem"...23
Copy from the InstantHelp Window...23
Update Instant Help...23
Help Files...24
HelpFile Format...24
HelpString..24
:entryname..25
Default :entryname...25
Multiple HelpFiles...25
Set HelpFile..25

GuiDesigner - Programmer Guide - Table of Contents

Messages..27
Messages...27
GraphicsDesigner Messages..27
Window Messages and Grid Messages...27

Window Messages..27
Grid Messages..27

Message Anatomy..28
window, grid, wingrid..28
message...28
v0,v1,v2,v3,r0,r1..28
kid...28

GraphicsDesigner Messages..29
Keyboard Messages..30

Keyboard Focus..30
xWin, yWin..30
state...30
time...30
Examples..30
WindowKeyUp vs WindowKeyDown...30
Virtual Key Codes..31

Mouse Messages...32
x,y...32
state...32
time...32
Mouse Message Algorithm..32

Message Queue..33
Process Message...33
XgrProcessMessages()...33
Message Loop..34
Process a Message..35
Window Function...35
Window Functions Process Window Messages..36
Window Functions Process Grid Messages...36
Grid Function...37
Send Message...38
XuiSendMessage()...38
Runtime Messages...39

Example..39
Callback Messages...40
Callback Functions...40
Monitor Messages..41
CEO Function...41
Slow Pokes...42
Advanced Message Processing..42

GuiDesigner - Programmer Guide - Table of Contents

Anatomy of Grid Functions...43
Overview..43
Grid Functions and Callback Functions..43
Merged Grid Function..43
Grid Function Example..44
Function Declaration..47
Function Definition..47
Variable Declarations...48
Kid Constant Definitions...48
Initialize - Process Message - RETURN...49

Initialize..49
Process Message with Message Processing Function..49
Process Message with Message Processing Subroutine..49
Done..49

Callback Subroutine...50
Create Subroutine...51
CreateWindow Subroutine...51
GetSmallestSize Subroutine..52
Resize Subroutine..53
Selection Subroutine..54
Initialize Subroutine...55

Get Default Message Functions...56
Establish Message Functions...56
Establish Message Subroutines and Register Grid Type...57
Establish Grid Type Properties..58

GuiDesigner - Programmer Guide - Table of Contents

Introduction
What's a GUI ?
GUI is an acronym for Graphical User Interface.

Most popular computer programs interact with people through a GUI. Users prefer GUI programs
because they are easier to learn. GUI programs ...

· Display text and graphics in windows.
· Accept input from a keyboard and mouse.

GUI Approach
GUI programs repeat three basic steps indefinitely ...

1. The program displays its capabilities on labels, buttons, lists, menus, etc # .
2. The user presses a button, selects a menu or list entry, to tell the program what to do.
3. The program executes the user command, then returns to step 1.

This process repeats until the user tells the program to quit.

Easy To Learn
Well designed GUI programs are easy to learn because they anticipate and accommodate user wishes.
Conventional programs often make users conform to the program.

GuiDesigner
GuiDesigner and the program development environment help you develop attractive, efficient programs
that are easy to learn, a delight to operate, and portable between diverse computer systems.

You can create sophisticated custom GUIs quickly, interactively, and graphically with GuiDesigner
design windows. GuiDesigner creates the basic core of your program, complete with functions that
create and operate the GUI you designed graphically. You can focus on the goals of your program.
You're the ProgramDesigner.

Your programs can be as large and sophisticated as you like, because every program is fully 32 or 64-
bit, top to bottom, no holds barred. And your programs run fast because the compiler translates them
into binary machine code - the fastest kind there is!

GUI components like labels, buttons, lists and menus are commonly called grids, controls, widgets, and probably other names too, depending on the
source. This documentation calls GUI components grids, a name derived from "graphics identity" by GraphicsDesigner.

GuiDesigner - Programmer Guide - Page 1

Instant Help
GuiDesigner programs are easier to learn than other GUI programs. That's because GuiDesigner
imbeds automatic, user-extensible documentation into every program you develop. Users can click the
right mouse button on any GUI component to learn its purpose and operation. GuiDesigner displays an
InstantHelp window and fills it with whatever informative text you provided for the occasion.

But there's more. Users can edit the InstantHelp window!

Users can copy text from the InstantHelp window and insert it into any text component in their GUI.
Which means they can extract samples from your help text and try 'em out. But that's not all.

Users can change the help text. They can copy, delete, insert, and type in the InstantHelp window just
like any other text area. So they can expand, contract, reword, and update help text in whatever way
best suits their style, experience, and preferences. When they press the Update button, GuiDesigner
updates the help files. Henceforth the InstantHelp window will contain the new, improved information!

The Ideal Lifetime Program Development Environment
The program development environment and GuiDesigner are powerful, efficient, professional software
development tools, appropriate for all kinds of programming projects.

At the same time, the program development environment and GuiDesigner are easy and fun to learn, so
they're perfect for novice programmers too. That's why they're ideal lifetime programming tools.

GuiDesigner - Programmer Guide - Page 2

A Quick Tour of GuiDesigner
Quick Tour
The best way to learn GuiDesigner is to look it over a bit, then create a simple GUI program.

Often it's better to experiment with GUI programs for awhile before reading about them in abstract
terms. It's easier to relate to general discussions that refer to things you've already "seen and touched".

GuiDesigner Toolkit

.

Click on the toolkit hot button in the PDE main window to display
the toolkit along the lower left side of the display.

TestMode CheckBox : Click to toggle between DesignMode and TestMode.

Toolkit Menu : Work with design windows and grids in the design windows.

Design Window Name : Give a valid function name to every design window.

Another Button : Create another grid of the same type as the last selected grid.

 XuiColor : Color grid (select one of the 125 standard GraphicsDesigner colors).

 XuiLabel : Label grid (display single or multi-line message text and/or image).

 XuiCheckBox : CheckBox grid (toggle on/off).

 XuiRadioBox : RadioBox grid (toggle on turns all other RadioBox grids in group off).

 XuiPressButton : PressButton grid (selection on MouseDown).

 XuiPushButton : PushButton grid (selection on MouseDown - MouseUp).

 XuiToggleButton : ToggleButton grid (toggle on/off on MouseDown).

 XuiScrollBarH : ScrollBarH grid (horizontal motion / position control).

 XuiScrollBarV : ScrollBarV grid (vertical motion / position control).

 XuiTextLine : TextLine grid (one line text input / output).

 XuiTextArea : TextArea grid (multi-line text input / output).

 XuiMenu : Menu grid (create / manage pulldown list for MenuBar entries).

 XuiMenuBar : MenuBar grid (select one of several horizontal entries).

 XuiPullDown : Pulldown grid (select one of several vertical entries).

 XuiList : List grid (scrollable list - select one of several vertical entries).

 XuiMessage1B/2B/3B/4B : Message box with 1,2,3,4 buttons.

 XuiProgress : Progress box.

 XuiDialog2B/3B/4B : Dialog box with 2,3,4 buttons.

 XuiDropButton : Button activated PullDown List.

 XuiDropBox : PullDownList box.

 XuiListButton : Button activated scrollable List.

 XuiListBox : Scrollable List box.

 XuiRange : Set value within a Range.

 XuiFile : Select File Dialog List.

 XuiFont : Select Font Dialog List.

 XuiListDialog2B : Select List Entry Dialog with 2 buttons.

GuiDesigner - Programmer Guide - Page 3

Window Menu
Select Window in the toolkit menu and the following entries appear:

WindowNew Create and display a new design window. Hide any current one.
WindowHide Hide design window.
WindowLoad Load a grid function from disk and convert into a design window.
WindowSave Convert design window into a grid function and save it on disk.
WindowDelete Delete design window and remove it from display.
WindowToFunction Convert design window into grid/callback functions in your program.
WindowFromFunction .. Convert grid function in your program to design window.
WindowCloseToolkit .. Hide toolkit from view - redisplay with toolkit hot button.

WindowNew creates a new design window and displays it in the upper
right corner of the screen. Only one design window can be visible at a
time, so any displayed design windows are hidden before the new one is
created.

WindowHide removes any visible design window from the display.

WindowLoad reads a grid function from disk, converts it into a new
design window, and displays it on the screen.

WindowSave converts a design window into a grid function, then saves
it to disk. The grid function can be loaded with WindowLoad.

WindowDelete destroys the visible design window. All information is
lost and is not recoverable, so think carefully before you delete.

WindowToFunction converts the visible design window into:
A grid function with the same name as the design window.
A callback function called by the grid function when important events occur in the design window.
Three lines of code that create, activate, initialize, and display the design window.

WindowFromFunction converts the displayed grid function into a
design window that you can modify, then convert back to a function.

WindowCloseToolkit hides the toolkit from view. Click on the toolkit
hot button to redisplay the toolkit.

The names of all design windows follow WindowCloseToolkit. Select
any of these design window names to hide the currently visible design
window and display the design window you selected.

GuiDesigner - Programmer Guide - Page 4

Grid Menu
Select Grid in the toolkit menu and an XuiPullDown with the
following entries appears:

GridAppearance displays an AppearanceWindow that shows the
appearance properties of the selected grid. The appearance properties
can be changed interactively. You can also make the Appearance
window appear by double clicking on a selected grid.

GridBehavior displays a Behavior window that lists the function
and/or subroutine that processes every message recognized by the
selected grid.

GridSortKids reorders the grids in the design window so that grids
enclosed by other grids are higher kid numbers, and therefore drawn
later. The sort orders from top to bottom, left to right.

GridDelete destroys the selected grid and removes it from the design
window. A delete keystroke will also delete a selected grid.

A simple design window

GuiDesigner - Programmer Guide - Page 5

Appearance Window
Double-click a selected grid to display an Appearance Window that displays grid properties, including
its name, help string, text string, border, eight currently selected color properties, and lots more.

You can enter new text values to change gridName, helpString, hintString, and textString
properties. Click Text$[] to display a window that accepts the multiline textArray property. Click
Text$[] again to hide the window and update the grid.

You can change any or all of the color properties by clicking on the color property button you want to
change, then colors in the palette. The appearance of the grid changes instantly to reflect your choices.

You can change border styles by clicking on border samples. To set the secondary border style for grids
that support two styles, hold the Shift key down when you click on the border sample.

You can align text to one of nine different nominal positions, then fine tune text location them with
indent controls. And you can select left, center, right, or both justification for grids that support it.

Click Restore to reset the properties of the grid to the values they had when you starting editing it.

Click Defaults to make all its properties revert to the nominal values of its grid type.

Click Cancel to hide the Appearance window.

 Toolkit Appearance Window

GuiDesigner - Programmer Guide - Page 6

Your Own GUI Programs
To create your first GuiDesigner program, perform the following steps:

PS: If you have trouble, compare your program with afirst.x in your development directory.

· Select FileNew GuiProgram in the main menu bar.
GuiDesigner creates a skeleton GUI program, some of which appears in the lower text area.

· Select the Toolkit hot button in the main window.
A toolkit of GUI components (called grids) appears along the lower left side of the display.

· Select WindowNew in the toolkit menu bar.
A design window appears in the upper right corner of the display screen.

· Enter "First" into the text line near the top of the toolkit.
This names the design window. The name appears in the design window title bar.

· Click on the PushButton button in the toolkit.
A double-box "grip" appears in the design window - the movable, resizable "selected grid".
Only one grid can be selected at a time. Selecting one deselects any other.
Click on bachground or another grid to deselect the selected grid and make it appear normally.

· Resize and move the grip in the design window (about 5 dots high and 10 dots wide).
Move by dragging center of grip. Resize by dragging sides or corners of grip.
Position it near the top center of the design window.

· Click on the PushButton button in the toolkit again to create another push button.
Position it below your first push button.

· Click on your first push button to select it.
The selected grid is always drawn as the resizable grip.

· Double click on the grip.
The Appearance window appears next to the toolkit.

· Enter "First" in the TextString entry in the Appearance window and press <enter>.
"First" appears on the first push button you created.

· Enter "FirstButton" in the GridName entry in the Appearance window and press <enter>.
The button is named "FirstButton", but nothing visible changes.

· Click on medium-light colors until you find one you like.
Try a medium-light green or cyan - top row, 11th or 16th color from left.

· Click on your second push button to select it.
Your second push button is selected and turns into a grip.

· Double click on the grip.
The contents of the Appearance window changes to reflect your second push button.

· Set color of your second push button, set TextString to "Second", set GridName to "SecondButton".
"Second" appears in your second push button.

· Click the Cancel button in the Appearance window to make the Appearance window disappear.
· Select WindowToFunction in the toolkit menu bar.

GuiDesigner adds First() and FirstCode() function declarations to your program.
GuiDesigner converts the design window into two functions, First() and FirstCode().
First() is a "grid function" that contains the code that creates and operates your window.
FirstCode() is a "callback function" that responds to important events in your window.
FirstCode() is visible in the lower text area of the main window.
When FirstCode() gets callbacks, the first executable line reports the message and arguments.

· Select WindowDelete in the toolkit menu bar.
Your design window is deleted and disappears.

· Click on the Start hot button.
Your program parses, compiles, runs. Your window appears in the upper right portion of the display.
The ReportMessage window appears in the upper left portion of the display (for testing only).

· Look in ReportMessage window as you click on your "First" and "Second" push buttons.
A "Selection" callback message prints in the ReportMessage window each time you click a button.
The kid argument should be 1 for your "FirstButton" button and 2 for your "SecondButton" button.

· Click the Kill hot button in the main window to terminate your program.

 Toolkit hot button

 PushButton button

 Start hot button

 Kill hot button

· Complete the following code in the SELECT CASE block in FirstCode():
 CASE $FirstButton : XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, kid, "Hello")
 XuiSendMessage (grid, #Redraw, 0, 0, 0, 0, kid, 0)
 CASE $SecondButton : XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, kid, "World")
 XuiSendMessage (grid, #Redraw, 0, 0, 0, 0, kid, 0)
· Select the Start hot button again and click the buttons again.

The labels on your buttons will change the first time they're clicked.
Hey, it works !!!

Congratulations. You've created a simple but complete GuiDesigner program that presents a GUI
window and responds to user events!

What if you want to modify your window design? The next page tells how.

GuiDesigner - Programmer Guide - Page 7

Modify Your GUI Windows
· Click the Kill button in the main window to stop your program.

Your window disappears.
· Select ViewFunction in the main menu bar.

A list of the functions in your program appears.
· Select function First() or FirstCode() from the function list.

First() or FirstCode() is displayed in the lower text area of the main window.
· Click the GuiDesigner toolkit hot button near the right end of the horizontal row of hot buttons in the main window.

The toolkit window reappears.
· Select WindowFromFunction in the toolkit menu bar.

GuiDesigner converts the code in the displayed function First() into a new design window and displays it.
· Click on the PushButton button in the toolkit.

A grip appears in the recreated design window.
· Position and resize the grip below your "Second" push button.
· Double click the grip to redisplay the Appearance window.
· Set the color of your third button, set GridName to "ThirdButton" set TextString to "Third".
· Click the Cancel button in the Appearance window.

The Appearance window disappears.
· Select WindowToFunction in the toolkit menu.

GuiDesigner converts the modified design window into a modified First() function.
GuiDesigner asks whether you want to Update or Replace the existing First() and FirstCode().

· Click the Update buttons so the code you added to FirstCode() isn't changed.
GuiDesigner updates your existing First() and FirstCode() functions to reflect your changes.

· Select WindowDelete in the toolkit menu.
The modified design window is deleted and disappears.

· Add the following code to the SELECT CASE block at the bottom of FirstCode().
 CASE $ThirdButton : XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, kid, "Champ")
 XuiSendMessage (grid, #Redraw, 0, 0, 0, 0, kid, 0)
· Click the Start hot button in the main window.

Your modified design window appears.
· Click your buttons and watch your program work.

Congratulations. You've now modified your first GuiDesigner program and made it work again.

Better yet, you're a GuiDesigner pro! That's because developing all GUI programs is essentially the
same. And you've already been there.

afirst.x - Your First GUI Design ReportMessage Window

GuiDesigner - Programmer Guide - Page 8

Fundamental Concepts
Window
Your programs can create and operate any number of graphics windows, each of which is a rectangular
area on the display screen.

Each window can contain any number of GUI components: buttons, labels, text-areas, dialog-boxes,
etc.

Window Type
Windows have several optional features, including minimize and maximize buttons, system menu
button, title-bar, and resize frame. Any combination of these defines the window type of a window.

Window Function
The function responsible for operating a particular window is called its window function. In most
programs, every window is controlled by XuiWindow(), the GuiDesigner standard window function, so
you may never think about window functions again.

Grid
A GUI components is called a grid, a term from GraphicsDesigner.

To GraphicsDesigner programs, a grid is a rectangular area in a window with its own coordinate system
and graphics properties like backgroundColor, drawingColor, etc.

To GuiDesigner programs, a grid is a familiar GUI component like a label, pushbutton, text-line,
dialog-box, etc. At heart, all grids are graphics grids. But you'll probably never think of them that way
because GuiDesigner adds properties and a "grid function" to make them look and act like the GUI
components in your GUI programs.

Each GuiDesigner grid is:
· A basic graphics grid from GraphicsDesigner, plus
· Properties that make it look and behave like a GUI component, plus
· A "grid function" that creates, operates, and responds to events in the grid

Kid
Some kinds of grids contain other grids. Dialog boxes, for example, contain a Label grid, a TextLine
grid, and one or more PushButton grids. The grids inside other grids are called kid grids, or just kids,
and are identified by kid numbers. The Dialog box is their parent.

Kid numbers begin with 0 for the grid itself, followed by 1,2,3... for its kids, numbered from left to
right from top to bottom.

GuiDesigner - Programmer Guide - Page 9

Grid Type
Many kinds of grids are supplied with GuiDesigner. Each kind is called a grid type and has a name
like:

Grid Type Grid Function - Description
XuiArea XuiArea() - mouse/keyboard even forwarding
XuiCheckBox XuiCheckBox() - check / uncheck an item
XuiDialog2B XuiDialog2B() - Label + TextLine + 2 buttons
XuiDialog3B XuiDialog3B() - Label + TextLine + 3 buttons
XuiFile XuiFile() - select drive/directory/file
XuiLabel XuiLabel() - message Label
XuiList XuiList() - scrollable List
XuiListBox XuiListBox() - pulldown ListBox
XuiMessage2B XuiMessage2B() - message Label + 2 PushButtons
XuiMessage3B XuiMessage3B() - message Label + 3 PushButtons
XuiMessage4B XuiMessage4B() - message Label + 4 PushButtons
XuiPullDown XuiPullDown() - fixed length list (no scroll)
XuiPushButton XuiPushButton() - selected by down/up click
XuiRadioButton XuiRadioButton() - only one in group selected
XuiScrollBarH XuiScrollBarH() - horizontal scroll bar
XuiScrollBarV XuiScrollBarV() - vertical scroll bar
XuiTextArea XuiTextArea() - multiple line editable text
XuiTextLine XuiTextLine() - single line editable text
XuiToggleButton XuiToggleButton() - toggles ON / OFF

Grid type names always contain a prefix that identifies the origin of the grid, hence grid type names like
XuiLabel, XuiPushButton, etc. Xui identifies standard grid types. Grids from other vendors carry their
own pre-arranged identifying prefix.

GridFunction
The function that creates and operates a particular grid is called its grid function.

· Every grid type has its own grid function.
· Each grid function creates and operates every grid of its grid type.
· The the name of every grid function is the same as its grid type.

Grid functions give each grid type its individual characteristics. XuiLabel() and XuiPushButton()
make XuiLabel and XuiPushButton grids look and act different.

When WindowToFunction converts design windows to functions, it's converting them to grid
functions.

You don't need to modify grid functions. They know how to create grids and perform all routine chores
that make the grids functional.

To perform their function, however, most grid functions have to report certain events or conditions to
your program. For example, when a user clicks on a PushButton, you're program needs to know.
Otherwise nothing would happen.

In other words, grid functions create and operate the GUI, and report important events. How your
program responds to these reports determines the nature of your program.

GuiDesigner - Programmer Guide - Page 10

Callback Function aka Code Function
WindowToFunction converts any design window into a grid function and a callback function.

When important events occur in a grid, its grid function calls the callback function and passes it
message arguments that describe the situation. You can put code in callback functions to respond to any
combination of events reported by the grid function, from none to all.

What constitutes an important event depends on the grid type. MouseDown + MouseUp generates a
callback message in an XuiPushButton grid, but not in an XuiTextLine, while an Enter keystroke
generates a callback in both grid types.

GraphicsDesigner Messages
When a basic event takes place in a graphics window, GraphicsDesigner creates a message to describe
the event. Whenever the state of keyboard, mouse, or window changes, GraphicsDesigner creates a
message. Every message contains 8 arguments:

 A window or grid number to identify the window or grid the message refers to.
 A message number to identify the nature of the event that occurred.
 6 general purpose arguments whose meanings depend on the message number.

GraphicsDesigner messages include WindowKeyDown, WindowResized, MouseDown, TimeOut.

GuiDesigner Messages
Processing each GraphicsDesigner message typically causes other activity, involving additional
GuiDesigner messages. GuiDesigner automatically maintains the GUI, tells your program about the
event, and processes messages your program sends to update the GUI.

Each step in this process is a function in GuiDesigner or your program processing a message sent to it
by another function.

GuiDesigner recognizes over 100 messages like Create, Destroy, HideWindow, Redraw, Resize,
SetColor, SetTextString.

Messages are a fundamental part of GuiDesigner and GUI programs. Messages are pre-defined for
every standard aspect of GUIs, and standard message processing functions are provided with
GuiDesigner to process these messages appropriately.

· Routine messages are processed automatically by grid functions.
· Your programs send messages to grids to control the GUI.
· Grid functions send callback messages to your program when important events occur.

GuiDesigner - Programmer Guide - Page 11

Send Message
To send a message means to call a function and pass it a standard 8 argument message.

For example, to send a message to a window or grid, call:

 XuiSendMessage (window, message, v0, v1, v2, v3, r0, r1)
 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1)

window or grid contains a window number or grid number, message contains the message number
of the desired operation to perform. The meaning of the other arguments depends on message. For
messages sent to grids, the kid argument contains the kid number within grid to send the message to,
or 0 for grid itself.

XuiSendMessage() looks up the function responsible for operating window or grid, then calls it,
passing it all 8 message arguments.

GraphicsDesigner vs GuiDesigner
GraphicsDesigner and GuiDesigner have many similar functions.

You can write pure graphics programs (without GUI) by calling only GraphicsDesigner functions
(prefix Xgr).

But GUI programs must call GuiDesigner functions whenever equivalent functions exist in both
function libraries, or GuiDesigner will malfunction. Always check GuiDesigner first.

To draw graphics, however, your program calls Xgr drawing functions in the GraphicsDesigner
library. GuiDesigner grids are GraphicsDesigner grids. So your program passes GuiDesigner grid
numbers to GraphicsDesigner functions to draw in them.

GuiDesigner - Programmer Guide - Page 12

GuiDesigner Programs
GuiDesigner Convenience Function Programs
You can develop programs with simple GUIs without designing your own windows. Your programs
call convenience functions that create and operate windows containing just about any kind of grid.
GuiDesigner convenience functions let you avoid messages, window functions and grid functions,
because all are hidden from your programs by the convenience functions.

With convenience functions you can write programs that create and operate simple GUIs with nothing
more than simple function calls. The GuiDesigner convenience functions, GuiDesigner convenience
function programs, and the standard GuiDesigner toolkit grids are described in a separate document.

GuiDesigner Programs
Though you can develop reasonably capable programs with convenience functions, they tap only part of
the power and flexibility GuiDesigner has to offer. Eventually you'll want to design your own windows
and/or grids, which are always part of standard GuiDesigner programs.

GuiDesigner programs that control GUI windows of your own design are both easy and fun to create.
You can create a basic GuiDesigner program, complete with any number of custom GUI windows that
you design interactively and graphically - all without writing single line of code.

Basic Steps
To create a complete, functional, standard GuiDesigner program:

· You tell GuiDesigner to create a complete core GUI program.
· You interactively design a main window, or choose an existing one.
· You write code to respond to user requests when they operate the GUI.

Core GuiDesigner Program
All GuiDesigner programs are created equal. They don't stay that way, but they do start out that way.
When you select FileNew GuiProgram from the main menu, GuiDesigner creates a GUI program:

· PROLOG - Declarations of composite types, functions, shared constants.
· Entry() - Calls initialization functions and enters main message loop.
· InitGui() - Initializes message numbers, and basic GUI variables.
· InitProgram() - Initializes your program.
· CreateWindows() - Creates, initializes, and displays the GUI windows you designed.
· InitWindows() - Initializes windows created by your program.

GuiDesigner creates this core GuiDesigner program for you, though it doesn't put anything in
InitProgram() or InitWindows() because it has no way to know what your program needs to do.
After all, you're the ProgramDesigner.

GuiDesigner - Programmer Guide - Page 13

PROLOG
The core PROLOG contains:

· IMPORT "xgr" - Declares GraphicsDesigner types, functions, constants.
· IMPORT "xui" - Declares GuiDesigner types, functions, constants.
· Declarations for functions GuiDesigner automatically creates for you.

Entry()
Entry() contains three sections:

1. Initialize GuiDesigner, GuiDesigner variables, and your program.
Xui() ' initialize GuiDesigner
InitGui() ' initialize messages, etc.
InitProgram() ' initialize your program

2. Create and display the main window and any others you design.
CreateWindows() ' create your program's windows
InitWindows() ' initialize windows if needed

3. Process messages in the message loop.
DO ' the message loop ...
 XgrProcessMessages (1) ' processes one message ...
LOOP UNTIL terminateProgram ' and repeat until program terminates

Entry() is your GUI program
No matter how large, sophisticated, and elaborate your GUI program is, Entry() is your program.
Everything else is support for Entry(). That may seem far fetched, but consider:

Entry() initializes everything, displays your main window, then enters the message loop where it waits
for a message. From then on, the message loop is the "base of operations" for your program. The
message loop calls other functions to process user-generated messages as they occur, but those functions
always return to the message loop when they're done. Your program spends its life in the message loop,
except for occasional excursions to process a message.

The Nature of GUI Programs
That's how GUI programs work. Most of the time they sleep in the message loop at the bottom of the
entry function, waiting for activity. When the user presses a keyboard key or mouse button or otherwise
generates a message, the message loop wakes up and calls the function that knows how to process the
message. After the function responds to the user action, it returns to the message loop where the
program again falls asleep until the user generates another message.

1. Sleep in the message loop until a message arrives. When it does...
2. Call the function that knows how to process the message.
3. Go to step 1.

The basic structure of GuiDesigner programs is amazingly simple. What's more amazing is that this
basic structure is flexible enough for any kind of program.

Hey !!! GUI programs don't have to be difficult after all !!!

GuiDesigner - Programmer Guide - Page 14

Entry() - Initialization
Xui() initializes GuiDesigner.
InitGui() initializes message variables in your program.
InitProgram() initializes your program.

If your program calls library functions, their initialization functions should be called after Xui().

Entry() - Create Windows
CreateWindows() is a function that calls the grid functions that create the windows in your program.
Each time you design a new window for your program, GuiDesigner adds code to CreateWindows()
to create, activate, and display the window.

The code typically looks like the following:
 Design (@Design, #Create, x, y, width, height, 0, &XuiWindow())
 XuiSendMessage (Design, #SetCallback, Design, &DesignCode(), -1, -1, -1, 0)
 XuiSendMessage (Design, #DisplayWindow, 0, 0, 0, 0, 0, 0)

This creates a window, sets its callback function, and displays it. Comment out the DisplayWindow
line for any window you don't want to appear when your program starts up.

These three lines set the following important example:

· Your programs must call grid functions directly to create grids and windows.
· Your programs can send all other messages with XuiSendMessage().

Specifically, your programs must call grid functions directly with Create and CreateWindow
messages. For all other messages your programs can call XuiSendMessage() and let it look up and
call the function associated with the grid argument.

Entry() - Message Loop
The message loop is the base of operation for your program.

XgrProcessMessages(1) goes to sleep until a message becomes available. This keeps your program
from wasting computer time, and lets other programs run when they can.

When the user operates the keyboard or mouse, GraphicsDesigner adds a message to the queue and
wakes up XgrProcessMessages().

XgrProcessMessages(1) calls the window function associated with the message. The window
function processes the message and returns, or sends the message to a grid function, then returns.

Until processing a message makes terminateProgram non-zero, the message loop repeats indefinitely.

GuiDesigner - Programmer Guide - Page 15

InitGui()
InitGui() initializes message number variables for every message GraphicsDesigner and GuiDesigner
recognize. If you create new messages of your own, add them to InitProgram(). Don't forget to
make your new message variables shared, as in #MyMessage.

InitProgram() and InitWindows()
InitProgram() and InitWindows() are empty functions waiting for code your program needs to
initialize itself and / or its windows. If your program doesn't need initialization, leave InitProgram()
and / or InitWindows() empty, but don't delete them.

CreateWindows()
CreateWindows() is the function that creates and displays the windows for your program with the
following lines:
 Design (@Design, #CreateWindow, x, y, width, height, 0, "")
 XuiSendMessage (Design, #SetCallback, Design, &DesignCode(), -1, -1, 0, 0)
 XuiSendMessage (Design, #DisplayWindow, 0, 0, 0, 0, 0, 0)

As you design more windows for your program, GuiDesigner adds similar sets of lines. This creates
every window in your program, even if most won't be displayed until later. Comment out the
DisplayWindow line for windows that shouldn't appear at startup.

Design()
When you're ready, GuiDesigner will convert a design window into:

· Code in CreateWindows() to create, initialize, and display the window.
· A grid function that knows how to create and operate the window.
· A callback function to handle callback messages from the grid function.

The name of the grid function is the name you gave to the design window. The callback function is the
same with Code appended. For example:

 Design - Name you gave to your design window.
 Design - Name of the grid type created from your design window.
 Design() - Name of the grid function that creates and operates the design window.
 DesignCode() - Name of the callback function that handles callbacks from the grid function.

DesignCode()
DesignCode() is the callback function or "code function" that callback messages are sent to when
important events occur in your window. This connection was established when CreateWindows() sent
a SetCallback message to the Design grid.

DesignCode() is the function in your program that responds to events in the Design window. When
the user clicks on a PushButton or selects an item from a Menu or List, DesignCode() hears about it,
because Design() sends it a callback message.

The code in DesignCode() examines the callback message and arguments to determine the nature of
the callback message, and takes appropriate action. Though GuiDesigner creates callback functions
complete with code to receive callback messages, you have to add the code that responds to user actions.

GuiDesigner - Programmer Guide - Page 16

Interactive Window Design
Design Window
To design custom grids or windows, you select grids from the GuiDesigner toolkit and lay them out in
design windows. To reduce screen clutter and make it easier for you to focus on your work, only one
design window is active at a time - all other design windows are hidden from view.

You can display, hide, delete, and switch between design windows whenever you want. Be sure to enter
a descriptive name into the toolkit TextLine for each window when you create it.

GridFunction
On request, GuiDesigner will convert the active design window into:

· Three lines of code to create, initialize, and display the window.
· A grid function containing the code to create and operate the grid.
· A callback function to receive callback messages from it.

If your program contains an existing version of the grid and/or callback functions, GuiDesigner lets you
keep the function unchanged, keep the function but update the kid constants and Create subroutine, or
replace it with the new one - in which case any code you added to the existing function is lost.

If CreateWindows() contains code to create, initialize, and display a previous version of the window,
that code is replaced with equivalent code for the new design window.

Whenever your program calls the grid function with a CreateWindow message, a window of the
specified size and position is created, containing a grid of the type you designed.

Your program can send messages like SetBorder, SetColor, SetTextString to the grid and its
kids to configure and control them. When your program is finished with the window, it can send a
Destroy message to the grid to destroy the window and grid.

At any time during development you can convert grid functions back into design windows and modify
them interactively and graphically, the way you designed them. Or you can edit the grid functions
GuiDesigner wrote for you just like any other function.

The grid functions GuiDesigner writes for you are so modular you don't even have to look at them to
use them, though you're free to inspect and modify them when you want.

GuiDesigner - Programmer Guide - Page 17

Layout Grids
Click on a grid type button in the toolkit to create a grid of that type. Whether you choose a simple
Label or a complex special purpose grid, GuiDesigner draws the selected grid in the design window as a
double rectangle with resize grips along the sides and corners.

To select a grid, click on it. To deselect it, click on the background or another grid. Except when
they're selected, grids look the same in design windows as finished programs. So you can fine tune your
design window layout before you write code to interact with them.

Move and Resize Grids
You can move and resize selected grids anywhere in the design window. To move the selected grid,
place the mouse cursor over its central area, press the left button, and drag the mouse. To resize the
selected grid, place the mouse cursor over one of the side or corner grips, press the left button, and drag
the mouse.

No Overlap
Don't let grids overlap each other. Before you continue working, place the grid properly. You can
resize the design window to accommodate any grid layout. But keep windows reasonably small. They
share screen space with other windows, including your own.

Programs that create, move or resize grids at runtime must make sure they don't overlap unintentionally.
Nothing in GuiDesigner prevents it, but peculiar appearance and behavior will usually result.

Nesting Grids
Though grids should not overlap, they can nest within each other to any depth. This is how composite
grids like dialog boxes and file boxes are constructed.

Grid Appearance
To display an Appearance Window, double click the selected grid or select GridAppearance in the
toolkit. With it you can change the appearance of the grid and its kids.

When you change color, border style, text, or other property in the AppearanceWindow, the grid
changes to reflect the new setting. So it's easy to fine tune your grids to get exactly the look you want.

Grid Behavior
To display a Behavior Window, select GridBehavior in the toolkit. This window lists the messages a
grid processes to give its behavior. Unlisted messages are ignored. Next to every message is the
message processing function and/or message processing subroutine that the grid function calls to
process the message.

GuiDesigner - Programmer Guide - Page 18

Design Mode vs Test Mode
At any point during design, you can toggle the design window back and forth between DesignMode and
TestMode with the CheckBox at the top of the toolkit.

In design mode you select grids from the toolkit, lay them out in the design window, and assign
appearance properties to them.

In test mode, grids in the design window will operate much as they will in your program. Actions in the
design window that would cause callback messages print information to the console window for
preliminary inspection.

WindowToFunction
When you want to convert a design window into a grid function and callback function, select
WindowToFunction in the toolkit Menu.

GuiDesigner creates code to create, operate, and respond to the window, and adds it to your program, or
updates the current contents.

The callback function is displayed in the lower text area of the program development environment.

Quick Start
Believe it or not, you can run your program right away, even though you haven't written a line of code.
GuiDesigner puts a line of code in callback functions to display the arguments of every message it
receives in a ReportMessage window. So go ahead. Click the Start button to compile and execute your
program. When your design windows appear, play with it and watch the ReportMessage window.

Callback Arguments
The primary arguments to the callback function are the Callback message in message, the original
message in r1, and a kid number in kid or r0. Most callbacks contain a Selection message in r1.
The kid number in kid or r0 tells which kid initiated the callback. To respond to a particular event,
add code to the callback function to process the arguments you see printed in the Report window.

Activate a grid in the window, see what's printed in the console, then add code to the code function to
process it. When you add code to callback functions, be sure to write kid number constants, not the
literal kid numbers printed in the console. The kid number constants are defined near the top of
callback functions.

You'll probably execute different code for each message,kid.

GuiDesigner - Programmer Guide - Page 19

WindowFromFunction
When you exit the development environment, your design windows are lost. You can reload any
program you have saved, of course, but the design windows no longer exist. The grid functions
GuiDesigner created from your design windows are part of your program, but not the design windows.

So how do you tweak your original designs if you ever want to?

You can edit the grid function, which is not hard, since grid functions are to easy to read. Better yet,
select WindowFromFunction in the toolkit Menu and let GuiDesigner convert the grid function back
into a design window.

That's right! GuiDesigner reads the text in your grid function, figures out what it means, and recreates a
design window like the one that generated the grid function in the first place.

GuiDesigner looks at the kid constant definitions, the Create subroutine, plus four lines of code near
the bottom that assign values to designX,designY,designWidth,designHeight. This is all the
information necessary to recreate the design window.

Any custom code you've added, like a Resize routine for example, does not affect the design window.
When the design window is converted back into a grid function, code outside the Create subroutine is
not modified if you select Update. Any code you added is lost if you specify Replace - be careful !!!

Be sure any code you add to grid functions and callback functions contains kid number constants, not
literal kid numbers. Kid numbers may change when you change the layout of a design window and
convert it back into code, while kid names don't change unless you change them purposely in the
Appearance Window.

WindowFromFunction stops at the first blank or comment line in the Create subroutine, so don't add
any unless that's your intent.

GuiDesigner - Programmer Guide - Page 20

Operating Grid Functions
To create a window that contains a grid you designed, your program calls its grid function, passing it a
CreateWindow message and other pertinent arguments. The grid function creates a window containing
one of your grids and returns its grid number.

 Design (@grid, #CreateWindow, xDisp, yDisp, width, height, 0, 0)

To request notification of important events from the grid, your program sends a SetCallback
message:

 XuiSendMessage (grid, #SetCallback, grid, &DesignCode(), -1,-1,0,0)

To control the window containing a grid, your program sends messages to the grid. For example, to
control a window:

 XuiSendMessage (grid, #DisplayWindow, 0, 0, 0, 0, 0, 0)
 XuiSendMessage (grid, #HideWindow, 0, 0, 0, 0, 0, 0)
 XuiSendMessage (grid, #IconifyWindow, 0, 0, 0, 0, 0, 0)

There are literally dozens of messages your program can send to grid and its kids to get their current
properties and states, for example:

 XuiSendMessage (grid, #GetBorder, @b, @bu, @bd, 0, kid, @width)
 XuiSendMessage (grid, #GetColor, @back, @draw, @hi, @lo, kid, 0)
 XuiSendMessage (grid, #GetTextString, 0, 0, 0, 0, kid, @text$)
 XuiSendMessage (grid, #GetTextArray, 0, 0, 0, 0, kid, @text$[])

There are also dozens of messages your program can send to grid and its kids to set new properties
and states, for example:

 XuiSendMessage (grid, #SetBorder, b, bu, bd, -1, kid, 0)
 XuiSendMessage (grid, #SetColor, back, draw, -1, -1, kid, 0)
 XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, kid, @text$)
 XuiSendMessage (grid, #SetTextArray, 0, 0, 0, 0, kid, @text$[])

The grid functions GuiDesigner creates from your design windows are your functions. You can view
them, learn from them, even modify them, though you probably won't since there's rarely any need.

GuiDesigner - Programmer Guide - Page 21

To Code or Not To Code
In most cases, you can design a GUI without writing a line of code. You might not even have to look at
the code GuiDesigner wrote. To interact with the GUI, all your program does is send messages to grid
functions and receive messages from grid functions.

What messages do your programs send to achieve a particular result? The same ones GuiDesigner puts
in the grid functions it creates from your design windows. Which means there's an easy way to learn
how to do it yourself.

Learning Curve
Let GuiDesigner show you. Build a window interactively, then look at the code GuiDesigner generates
from it. Change the design a little and look again. Change it again and peek again. Learn as you go.

The code GuiDesigner puts in the Create subroutines is the same as the code you need in your
program to control grids at runtime. Which means you can make GuiDesigner do your work for you.

Say you need code to change the color and text on an XuiLabel grid at runtime. Create a design
window, give it a name, select an XuiLabel from the toolkit, bring up the AppearanceWindow, and
give the XuiLabel new colors and a new text string.

Then select WindowToFunction to make GuiDesigner create a grid function from the design window.
You'll have no trouble finding the code that accomplishes what you want in the Create subroutine.
Copy the relevant lines, paste them into your function, then delete the cheater window and function.
Who needs 'em? You got what you wanted. Right?

By stealing code GuiDesigner writes, you can learn just about everything there is to know about writing
code to control grids at runtime. It's not even a misdemeanor in most jurisdictions! After a few capers
you'll see how simple runtime code is, and you'll realize how easy it is to write yourself. You'll be a pro
in no time.

GuiDesigner - Programmer Guide - Page 22

Instant Help
InstantHelp
GuiDesigner programs are typically easy to learn. That's because GuiDesigner builds an automatic,
user-extensible help mechanism into every grid in every GUI program you develop. You don't even
have to write a single line of code.

Help On Everything
Users can click the right mouse button on any grid to learn about the grids purpose and operation.
GuiDesigner displays an InstantHelp window that displays information you prepared for the occasion.

Posting InstantHelp
Press the HelpButton to display the InstantHelp window. Release it while the mouse cursor is in the
same grid to post the InstantHelp window and keep it visible. Release the HelpButton over another grid
and the InstantHelp window disappears.

Browsing Programs
To browse an entire program, users can hold down the HelpButton and drag the mouse cursor over
every grid in the main window. Whenever the mouse cursor enters a new GUI component, the old
InstantHelp window is instantly replaced by a new one. What a fast and easy way to learn a new
program !!!

Solve the "Great Icon Problem"
What a great way around the "great icon problem" - the difficulty of finding a really expressive image
for every grid in your program. Just point and click the right button for InstantHelp.

Copy from the InstantHelp Window
And that's just for starters. Users can edit the InstantHelp window!

Users can copy text from the InstantHelp window and insert it into any text component in their GUI.
Which means they can extract samples from your help text and try 'em out. And that's not all.

Update Instant Help
Users can change help text. They can copy, delete, insert, and type in the InstantHelp window just like
any other TextArea. So they can expand, contract, and reword documentation in any way they want.
When they press the Update button, the help files are updated. Henceforth InstantHelp displays new,
improved information.

GuiDesigner - Programmer Guide - Page 23

Help Files
The information displayed in the HelpWindow usually comes from a simple text file called a HelpFile.
The default HelpFile starts out the same as your program, except it ends with ".hlp". You shouldn't
rely on this name, however, because you might rename your program someday and loose all your help!
Call XuiSetHelpFile() to explicitly set the default HelpFile.

HelpFile Format
Each HelpFile contains one or more help entries. Each entry starts with a heading line and ends just
before the next heading line. Any line that begins with a ":" character is assumed to be a heading line.
Two complete entries and the beginning of a third are shown in the following example:

:AcceptIdentity
Press "Accept" to confirm the name in
the TextLine grid. This will be your
working identity for this mission.
:RetryIdentity
Press "Retry" to request a new name.
You must accept one of the first three
names offered or you will be terminated.
:AbortMission

HelpString
When you design GUIs interactively, you select grids from the toolkit, lay them out in design windows,
and set their initial states with the AppearanceWindow. One of the properties you can set for each grid
is called its HelpString, which has one of the following three formats:

 *** format *** *** example ***
 filename:entryname mission.hlp:AcceptIdentity
 :entryname :RetryIdentity
 "help text string" "[Abort]\nPrepare to die, Bond."

filename:entryname explicitly specifies the filename of the HelpFile to search and
the :entryname of the help entry within it.

:entryname specifies the :entryname, but not the HelpFile. The default HelpFile is searched for the
specified :entryname.

"help text string" is one or more lines of help text, with newline characters ("\n") separating lines.
This format supplies help text directly, so no HelpFile is searched. If the first line of the entry begins
with a "[" character, the first line is displayed on the title label above the InstantHelp window in place
of filename:entryname.

GuiDesigner - Programmer Guide - Page 24

:entryname
Be sure to choose :entryname strings carefully. Simple names like :Retry aren't very descriptive,
and you'll run into problems when you create another "Retry" button. The same help text would be
displayed for both buttons.

Remember, filename:entryname is the title displayed in the InstantHelp window for the world to
see, so choose an appropriate title!

Default :entryname
In many programs, you don't need to assign help string names. When help is requested on a grid and
GuiDesigner finds an empty help string, it synthesizes one by prefixing ":" to the gridName
property. For example, if a GridName is "CancelButton", the synthesized :entryname is
":CancelButton".

As long as you name your grids intelligently, which is very important anyway, you need not assign help
strings to grids. Only where this proves inadequate are explicit help strings necessary. Make sure you
don't give the same grid name to two or more grids !

Multiple HelpFiles
Most programs assign "filename:entryname" help strings to their grids because it's easy and
absolutely prevents confusion. Some programs assign ":entryname" help strings to their grids to
support "personalized" help text stored in multiple helpfiles.

Not so much to support:
 CARL.HLP - help for Carl
 MARY.HLP - help for Mary
 FRED.HLP - help for Fred
 BILL.HLP - help for Bill

More likely to support:
 EXPERT.HLP - help for advanced users
 NORMAL.HLP - help for typical users
 NOVICE.HLP - help for beginners

Or perhaps to support:
 MARKET.HLP - help for marketing wizards
 ENGINE.HLP - help for engineer wizards
 BOSSES.HLP - help for administrators

Set HelpFile
Programs can call XuiHelp() to establish a specific HelpFile as follows:

 XuiHelp (grid, #SetHelpFile, 0, 0, 0, 0, 0, @"helpfile.hlp")

XuiHelp() accepts any valid grid number to set the HelpFile. Programs that support multiple
HelpFiles can let users select their own category of help from pull down menus or radio buttons.

GuiDesigner - Programmer Guide - Page 25

GuiDesigner - Programmer Guide - Page 26

Messages
Messages
Messages are a fundamental part of GuiDesigner and most programs that interact with GUIs.
GuiDesigner communicates within itself, and with your programs, by sending and receiving messages.
To communicate with window functions, grid functions, and GuiDesigner, your programs must also
send and receive messages.

Processing messages is what animates and gives life to GUIs.

GraphicsDesigner Messages
When an event occurs in a graphics window, GraphicsDesigner creates a message to describe it. When
a keyboard key is pressed, a WindowKeyDown message is created. When the mouse moves or one of its
buttons is pressed, a WindowMouseMove or WindowMouseDown message is created. When a user clicks
on an inactive window, a WindowSelected message is created.

In general, whenever the state of the keyboard, mouse, or a window changes, GraphicsDesigner creates
a message that describes it. GuiDesigner programs rarely expect window messages such as these.
That's because window functions convert window messages into corresponding grid messages like
KeyDown, MouseMove, MouseDown and sends them to the appropriate grid.

Window Messages and Grid Messages
Any message, like WindowKeyDown or TimeOut, is a window message or a grid message, never both.

Window Messages
· Names must start with "Window".
· First argument is a window number, window.
· Are sent to window functions by XuiSendMessage().

The following are typical window messages:

WindowDeselected WindowHide WindowMinimize
WindowDisplayed WindowHidden WindowResize
WindowDestroy WindowKeyDown WindowSelect
WindowDestroyed WindowKeyUp WindowSelected

Grid Messages
· Names must not start with "Window".
· First argument is a grid number, grid.
· Are sent to grid functions by XuiSendMessage().

GuiDesigner - Programmer Guide - Page 27

Message Anatomy
Every message contains 8 values, or arguments:

(window, message, v0, v1, v2, v3, r0, r1)
 ... or ...
(grid, message, v0, v1, v2, v3, kid, r1)
 ... or ...
(wingrid, message, v0, v1, v2, v3, r0, r1)
(wingrid, message, v0, v1, v2, v3, kid, r1)

GraphicsDesigner messages contain only XLONG arguments.

The first 7 arguments of GuiDesigner messages are always XLONG too, but the last may be XLONG,
STRING, or an array of any valid type. The type of the last argument must be the type appropriate to the
message argument.

window, grid, wingrid
· window contains the window number the message refers to.
· grid contains the grid number the message refers to.
· wingrid contains the window or grid the message refers to.

wingrid is the name given to arguments that contain a window number in some contexts and a grid
number in others.

When a message refers to one of the kids of grid, it is identified by grid,kid. When kid=0 the
message refers to grid itself.

message
message contains a message number, a numeric stand-in for an original message name like
"KeyDown". Most programs communicate with message numbers exclusively because that's what
messages contain. Message numbers are assigned to equivalent XLONG message variables like
#KeyDown in InitGui() during initialization.

v0,v1,v2,v3,r0,r1
v0,v1,v2,v3,r0,r1 are general purpose arguments whose meanings depend on message. In
GraphicsDesigner mouse messages, for example, they contain xWin,yWin,state,time,0,grid.

In some messages, one or more argument contains no defined value. GraphicsDesigner and
GuiDesigner always fill these arguments with zero and expect other programs to do the same.

kid
r0 aka kid is a general purpose argument that always contains a kid number in grid messages.

GuiDesigner - Programmer Guide - Page 28

GraphicsDesigner Messages
The messages in the following tables are added to the message queue by GraphicsDesigner, and sent to
window functions when they are processed by XgrProcessMessages(). No function is called by
XgrProcessMessages() if the window the message relates to has no window function.

window and grid messages are distinguished by w or g before the message name.

g MouseDown A mouse button was depressed.
g MouseDrag A mouse button was down when the mouse moved.
g MouseEnter A mouse cursor entered a grid.
g MouseExit A mouse cursor exited a grid.
g MouseMove A mouse cursor moved.
g MouseUp A mouse button was released.
g Redraw A grid should redraw itself and have its kids redraw themselves.
g RedrawGrid A grid should redraw itself (but not its kids).
g TimeOut A grid timer has timed out (counted down to zero).
w WindowDeselected A window was deselected (because another was selected).
w WindowDestroyed A window was destroyed (by user or program).
w WindowDisplayed A window was just displayed (became visible).
w WindowHidden A window was just hidden (is no longer visible).
w WindowKeyDown A keyobard key was depressed with keyboard focus in window.
w WindowKeyUp A keyboard key was released with keyboard focus in window.
w WindowMaximized A window was maximized (asked to fill the screen).
w WindowMinimized A window was minimized (is now a small icon).
w WindowMouseDown A mouse button was depressed with mouse focus in window.
w WindowMouseDrag A mouse button was down when mouse moved with mouse focus in window.
w WindowMouseEnter A mouse cursor entered a grid in the window with mouse focus.
w WindowMouseExit A mouse cursor exited a grid in the window with mouse focus.
w WindowMouseMove A mouse cursor moved in the window with mouse focus.
w WindowMouseUp A mouse button was released with muse focus in window.
w WindowRedraw A window was exposed partially or totally and needs redrawing.
w WindowResized A window was moved and/or resized (its grids might need resizing).
w WindowSelected A window was selected (user pressed mouse button on window).

g MouseDown (grid, #MouseDown, x, y, state, time, 0, grid)
g MouseDrag (grid, #MouseDrag, x, y, state, time, 0, grid)
g MouseEnter (grid, #MouseEnter, x, y, state, time, 0, grid)
g MouseExit (grid, #MouseExit, x, y, state, time, 0, grid)
g MouseMove (grid, #MouseMove, x, y, state, time, 0, grid)
g MouseUp (grid, #MouseUp, x, y, state, time, 0, grid)
g Redraw (grid, #Redraw, x, y, width, height, 0, grid)
g RedrawGrid (grid, #RedrawGrid, x, y, width, height, 0, grid)
g TimeOut (grid, #TimeOut, 0, 0, 0, 0, 0, grid)
w WindowDeselected (window, #WindowDeselected, 0, 0, 0, 0, 0, window)
w WindowDestroyed (window, #WindowDestroyed, 0, 0, 0, 0, 0, window)
w WindowDisplayed (window, #WindowDisplayed, 0, 0, 0, 0, 0, window)
w WindowHidden (window, #WindowHidden, 0, 0, 0, 0, 0, window)
w WindowKeyDown (window, #WindowKeyDown, x, y, state, time, 0, window)
w WindowKeyUp (window, #WindowKeyUp, x, y, state, time, 0, window)
w WindowMaximized (window, #WindowMaximized, 0, 0, 0, 0, 0, window)
w WindowMinimized (window, #WindowMinimized, 0, 0, 0, 0, 0, window)
w WindowMouseDown (window, #WindowMouseDown, x, y, state, time, 0, grid)
w WindowMouseDrag (window, #WindowMouseDrag, x, y, state, time, 0, grid)
w WindowMouseEnter (window, #WindowMouseEnter, x, y, state, time, 0, grid)
w WindowMouseExit (window, #WindowMouseExit, x, y, state, time, 0, grid)
w WindowMouseMove (window, #WindowMouseMove, x, y, state, time, 0, grid)
w WindowMouseUp (window, #WindowMouseUp, x, y, state, time, 0, grid)
w WindowRedraw (window, #WindowRedraw, x, y, width, height, 0, window)
w WindowResized (window, #WindowResized, x, y, width, height, 0, window)
w WindowSelected (window, #WindowSelected, 0, 0, 0, 0, 0, window)

GuiDesigner - Programmer Guide - Page 29

Keyboard Messages
Keyboard messages contain the window number of the window that was selected when the keyboard
event was detected. v0,v1,v2,v3 contain xWin,yWin,state,time.

Keyboard Focus
Window functions generally convert WindowKeyDown and WindowKeyUp messages into equivalent grid
messages KeyDown and KeyUp and send them to the grid that currently has keyboard focus.

Window functions generally move keyboard focus from grid to grid in response to Alt+LeftArrow
and Alt+RightArrow keystrokes.

xWin, yWin
xWin,yWin may the position of the mouse cursor in the window coordinates of the selected window at
the time the keyboard event was detected. If xWin or yWin is negative, the mouse cursor was outside
the selected window, or the position of the mouse was unavailable.

state
state contains the state of the keyboard when the keyboard event was detected, and reflects the new
state of the keyboard.

Bit 00 - 15 : Character code of some kind (see bits 20-22)
Bit 16 - 23 : Keyboard "mode" keys (16=Shift, 17=Control, 18=Alt)
Bit 24 - 31 : Virtual Key Code
Bit 16 = 1 : Shift key was down when the keyboard event occured.
Bit 17 = 1 : Control key was down when the keyboard event occured.
Bit 18 = 1 : Alt key was down when the keyboard event occured.
Bit 19 : Reserved
Bit 20 - 22 : Type of character code in Bit 00 - 15 (see below)
Bit 20 - 22 : 0 = Bit 00 - 15 = Virtual Key Code (8-bits)
 : 1 = Bit 00 - 15 = ASCII character (8-bits)
 : 2 = Bit 00 - 15 = WIDE character (16-bits)
 : values 3 to 7 are reserved

time
time contains the system time that the keyboard event was detected. time is not related to time of day.
time is a free running millisecond timer that computer systems usually initialize to zero when they
start.

Examples
Key 20-22 18 17 16 0-15 "." mode key states, key event
Down 1 0 0 0 97 a None down, "a" down
 Up 0 0 0 0 97 - None down, "a" up
Down 1 0 0 1 65 A Shift down, "a" down
 Up 0 0 0 1 65 - Shift down, "a" up
Down 0 0 1 0 65 ^A Ctl down, "a" down
Down 0 0 1 1 65 ? Ctl+Shift down, "a" down
Down 0 1 0 0 65 ? Alt down, "a" down
Down 0 1 0 1 65 ? Alt+Shift down, "a" down
Down 0 1 1 0 65 ? Alt+Ctl down, "a" down
Down 0 1 1 1 65 ? Alt+Ctl+Shift down, "a" down
 Up 0 1 1 1 65 ? Alt+Ctl+Shift down, "a" up
Down 0 0 1 0 39 Left Ctl down, LeftArrow press

WindowKeyUp vs WindowKeyDown
Most programs respond only to WindowKeyDown messages, since that is sufficient to respond to all
keystrokes. WindowKeyDown messages are created at a rate of about 10 per second when a key is held
down, followed by a single WindowKeyUp when the key is finally released.

GuiDesigner - Programmer Guide - Page 30

Virtual Key Codes

 8 0x08 KeyBackspace
 9 0x09 KeyTab
12 0x0C KeyClear
13 0x0D KeyEnter
16 0x10 KeyShift
17 0x11 KeyControl
18 0x12 KeyAlt
19 0x13 KeyPause
20 0x14 KeyCapLock
27 0x1B KeyEscape
32 0x20 KeySpace
33 0x21 KeyPageUp
34 0x22 KeyPageDown
35 0x23 KeyEnd
36 0x24 KeyHome
37 0x25 KeyLeftArrow
38 0x26 KeyUpArrow
39 0x27 KeyRightArrow
40 0x28 KeyDownArrow
44 0x2C KeyPrintScreen
45 0x2D KeyInsert
46 0x2E KeyDelete
47 0x2F KeyHelp

48 0x30 Key0
49 0x31 Key1
50 0x32 Key2
51 0x33 Key3
52 0x34 Key4
53 0x35 Key5
54 0x36 Key6
55 0x37 Key7
56 0x38 Key8
57 0x39 Key9
65 0x41 KeyA
66 0x42 KeyB
67 0x43 KeyC
68 0x44 KeyD
69 0x45 KeyE
70 0x46 KeyF
71 0x47 KeyG
72 0x48 KeyH
73 0x49 KeyI
74 0x4A KeyJ
75 0x4B KeyK
76 0x4C KeyL
77 0x4D KeyM
78 0x4E KeyN
79 0x4F KeyO
80 0x50 KeyP
81 0x51 KeyQ
82 0x52 KeyR
83 0x53 KeyS
84 0x54 KeyT
85 0x55 KeyU
86 0x56 KeyV
87 0x57 KeyW
88 0x58 KeyX
89 0x59 KeyY
90 0x5A KeyZ

 96 0x60 KeyPad0
 97 0x61 KeyPad1
 98 0x62 KeyPad2
 99 0x63 KeyPad3
100 0x64 KeyPad4
101 0x65 KeyPad5
102 0x66 KeyPad6
103 0x67 KeyPad7
104 0x68 KeyPad8
105 0x69 KeyPad9
106 0x6A KeyPadMultiply
107 0x6B KeyPadAdd
108 0x6C _
109 0x6D KeyPadSubtract
110 0x6E KeyPadDecimalPoint
111 0x6F KeyPadDivide
112 0x70 KeyF1
113 0x71 KeyF2
114 0x72 KeyF3
115 0x73 KeyF4
116 0x74 KeyF5
117 0x75 KeyF6
118 0x76 KeyF7
119 0x77 KeyF8
120 0x78 KeyF9
121 0x79 KeyF10
122 0x7A KeyF11
123 0x7B KeyF12
124 0x7C KeyF13
125 0x7D KeyF14
126 0x7E KeyF15
127 0x7F KeyF16
144 0x90 KeyNumLock

GuiDesigner - Programmer Guide - Page 31

Mouse Messages
Mouse messages contain the grid number of the grid with mouse focus when the event was detected.
The grid with mouse focus is generally the grid the mouse cursor is in, except in the following situation.
When the state of the mouse buttons changes from no buttons depressed to one or more depressed, the
grid that contains the mouse cursor grabs mouse focus and keeps it until all mouse buttons are released.
v0,v1,v2,v3 contain x,y,state,time.

x,y
x,y contain the local coordinates of the mouse cursor in grid at the time the mouse event was detected.
x,y may indicate a mouse cursor position outside the grid if mouse focus has been grabbed.

state
Bit 00 - 03 : Button # causing event (MouseDown and MouseUp only)
Bit 04 - 06 : # of clicks (MouseDown only)
Bit 07 : 1 if grid has mouse focus
Bit 08 - 15 : Reserved
Bit 16 - 23 : Keyboard "mode" keys (16=Shift, 17=Control, 18=Alt)
Bit 24 - 31 : Up/Down image of up to 8 mouse buttons (1 = down)
Bit 00 - 03 : Button #: None=0 : Left=1 : Center=2 : Right=3...
Bit 16 = 1 : Shift key is down
Bit 17 = 1 : Control key is down
Bit 18 = 1 : Alt key is down
Bit 24 = 1 : Left button is down
Bit 25 = 1 : Center button is down
Bit 26 = 1 : Right button is down
Bit 27 - 31 : Other buttons down (assignments not guaranteed)

time
time contains the system time that the keyboard event was detected. time is not related to time of day.
time is a free running millisecond timer that computer systems usually initialize to zero when they
start.

Mouse Message Algorithm
Your program doesn't receive a mouse message for every change in mouse position the system detects.
When your task is too busy to process messages, GraphicsDesigner does not flood your message queue
with #MouseMove messages. Instead, GraphicsDesigner adds #MouseMove messages to the message
queue only when the message queue is empty. All other mouse messages, including #MouseDrag, are
added to the message queue whether it has contents or not.

This method of generating mouse messages is best for most programs, and avoids overflowing your
message queue with superfluous #MouseMove messages. In rare instances, however, your program may
want to receive every mouse message. To achieve high-speed mouse position tracking, programs must
access the message queue often. This keeps the message queue empty and assures new mouse messages
are put in the queue immediately. Programs can achieve high-speed tracking by responding to messages
quickly and returning to the main message loop, or by processing them often with:

 XgrProcessMessages(0)

XgrProcessMessages(0) returns immediately if there are no messages in the message queue and the
mouse state has not changed. Otherwise it processes one message, then returns.

Be careful with this technique, however. If your program processes a new #MouseMove message while
it's in the middle of processing the previous #MouseMove, will your program produce adverse effects
when it finishes processing the earlier #MouseMove?

GuiDesigner - Programmer Guide - Page 32

Message Queue
GraphicsDesigner combines message arguments into a message and adds it to its message queue.
Messages wait in the message queue until your program is ready to process them.

In summary, GraphicsDesigner detects events, makes messages to describe them, and puts them in the
message queue - automatically and invisibly, without the knowledge or support of your programs.

Process Message
This is where your program takes over. Your programs must process the messages GraphicsDesigner
put in the message queue. Otherwise the messages will sit in the queue forever and your programs will
be permanently dead and lifeless. Processing messages animates and gives life to your GUI programs.
In short, processing messages is how GUI programs run themselves.

XgrProcessMessages()
Programs call XgrProcessMessages(1) to process a message. XgrProcessMessages() processes
messages in the order they were added to the queue. First come, first served. Or in computer lingo,
First-In, First-Out ... or FIFO.

The basic operation of GUI programs is almost unbelievably simple. Process a message completely.
Then process the next one. Then the next, then the next, then the next... indefinitely. That's all there is!

Processing each GraphicsDesigner message is reacting to a keystroke, button click, or other user action.
Processing messages is nothing more than obeying a series of user instructions, one by one. If it sounds
like the user controls your program, you're right! It's the reason most people prefer GUI programs -
they like to run the show.

Actually it's just a variety of the grand illusion. Users can only select from choices your program gives them. They're playing your
game. But you don't have to tell them that, and they'll never catch on. People are conditioned not to recognize the grand scam.

GuiDesigner - Programmer Guide - Page 33

Message Loop
GUI programs process messages in a message loop. The message loop is usually the last three lines in
the entry function of GUI programs. In fact, the entry function of most GUI programs are almost
identical to the following example:

FUNCTION Entry ()
 SHARED terminateProgram
 STATIC entered
'
 IF entered THEN RETURN
 entered = $$TRUE
'
 Xui() ' initialize GuiDesigner
 InitGui() ' initialize message variables
 InitProgram() ' initialize this program
 CreateWindows() ' create program windows
 InitWindows() ' initialize windows
 IF LIBRARY(0) THEN RETURN ' libraries don't execute message loop
'
 DO ' begin the message loop ...
 XgrProcessMessages (1) ' process one message ...
 LOOP UNTIL terminateProgram ' repeat until program is terminated
END FUNCTION

Entry() initializes GuiDesigner and itself, then creates, activates, and displays its main window.
Finally it falls into its message loop, where it stays until the program is terminated.

The message loop is the "base of operations" for GUI programs. Until the user operates the keyboard or
mouse, programs sleep in XgrProcessMessages(1). Computer time is given to other programs that
have work to do.

When the user finally gets around to operating the GUI, GraphicsDesigner creates a message, puts it in
the queue, and wakes up XgrProcessMessages(1).

XgrProcessMessages(1) processes a message, then LOOP loops back to XgrProcessMessages(1),
where it awaits the next message.

Only when your program assigns a non-zero value to shared variable terminateProgram does the
message loop end, usually followed by the entry function and the program.

But how does XgrProcessMessages(1) "process a message"?

What does it mean, to "process a message"?

GuiDesigner - Programmer Guide - Page 34

Process a Message
To process a message, XgrProcessMessages() calls the window function the message refers to
directly or indirectly. For window messages, XgrProcessMessages() calls the window function assigned
to the window argument. For grid messages, XgrProcessMessages() calls the window function assigned to
the window that contains the grid argument.

XgrProcessMessages() passes the 8 XLONG message arguments to the functions it calls. All window
functions accept 8 arguments. But window functions sometimes expect to receive other types from
GuiDesigner and your program. So the last argument of window functions is declared to be ANY type
to also accept STRING variables and all types of arrays.

Window functions are usually declared and defined as follows:

DECLARE FUNCTION Name (wingrid, message, v0, v1, v2, v3, r0, ANY)
FUNCTION Name (wingrid, message, v0, v1, v2, v3, r0, (r1, r1$))

XgrProcessMessages() calls window functions as follows:

 @func (wingrid, message, v0, v1, v2, v3, r0, r1)

Window Function
Every window is assigned a window function when it is created. In response to CreateWindow
messages, most grid functions assign standard window function XuiWindow().

Most GUI programs rely entirely on the standard window function supplied with GuiDesigner,
XuiWindow(). Only when special message processing is necessary and cannot be handled in other ways
should you write custom window functions. Custom window functions should only contain code to
perform actions that existing standard window functions do not provide.

Messages not requiring custom processing should be passed on to the existing standard window function
for default processing. Those that do require custom processing should be passed to an existing
standard window function either before or after custom processing, whichever is appropriate.
Exceptions are possible, but not common.

GuiDesigner - Programmer Guide - Page 35

Window Functions Process Window Messages
When a window function receives a window message, it can:

· Ignore it and return.
· Take action, then return.
· Pass to standard window function, then return.
· Pass to standard window function, then take action, then return.
· Take action, then pass to standard window function, then return.

Standard window functions generally take action on window messages, then return. Custom window
functions pass most messages to a standard window function then return. For messages that require
non-standard actions, custom window functions generally perform their custom action either before or
after passing the messages to a standard window function.

To process some window messages, window functions have to send messages to grid functions. For
example, in response to WindowKeyDown and WindowKeyUp messages, window functions usually send
KeyDown and KeyUp messages to the grid with keyboard focus.

Window Functions Process Grid Messages
When a window function receives a grid message, it can:

· Ignore it and return.
· Take action, then return.
· Pass to standard window function then return.
· Pass to standard window function, take action, then return.
· Take action, pass to standard window function, then return.
· Pass to the grid function responsible for operating the grid, then return.

In almost every case, standard and custom window functions pass grid messages to the grid function
responsible for operating the grid specified by the grid argument in the message, then return.

GuiDesigner - Programmer Guide - Page 36

Grid Function
Every grid is created, operated, and destroyed by its grid function. Each grid function is responsible for
every grid of its grid type. Grid functions give each grid type its individual characteristics.

You'll probably never write a grid function. Grid functions are provided with GuiDesigner for popular
grids, and GuiDesigner will create grid functions for other purposes from design windows you develop
interactively and graphically. But you may want to modify the grid functions GuiDesigner creates for
you - to make your custom windows and grids resizable, or to give special purpose behavior to the new
grid types you developed.

Grid functions are usually declared and defined as follows:

DECLARE FUNCTION Name (grid, message, v0, v1, v2, v3, kid, ANY)
FUNCTION Name (grid, message, v0, v1, v2, v3, kid, (r1, r1$, r1$[]))

Grid functions typically ignore dozens of grid messages, and process dozens of others. The character of
each grid type is determined by which messages its grid function ignores, and what it does to process
the messages it recognizes. To ignore messages, grid functions simply return.

To process most messages, grid functions call standard message processing functions provided with
GuiDesigner. The standard message processing functions look like message names with an Xui prefix,
for example XuiGetBorder(), XuiGetColor(), XuiSetTextString(), XuiRedrawGrid() etc.

To process messages in a way not supported by standard functions, grid functions either execute a
custom message processing subroutine within the grid function, or call a non-standard message
processing function written to perform the new activity.

Grid functions ignore messages containing invalid grid or message arguments, and attempt to ignore
messages containing other invalid arguments, though some are difficult to detect.

GuiDesigner - Programmer Guide - Page 37

Send Message
To send a message simply means to call a window or grid function, or any other function designed to
take window and/or grid messages.

To send a message to a window means to call the window function assigned to the window specified in
the message. That's what XgrProcessMessages() does when it processes a message.

To send a message to a grid means to call the grid function assigned to the grid specified in the
message. That's what window functions do to process grid messages.

XuiSendMessage()
The best way to send a message is to pass the whole message to XuiSendMessage() and let it look up
and call the window or grid function assigned to the window or grid in the message:

 XuiSendMessage (wingrid, message, v0, v1, v2, v3, r0, r1)
 XuiSendMessage (window, message, v0, v1, v2, v3, r0, r1)
 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1)

XuiSendMessage() looks at message to determine whether each message is a window message or
grid message, which determines whether the first argument is window or grid. This makes it possible
for XuiSendMessage() to call the correct window or grid function.

XuiSendMessage() passes 8 message arguments to the functions it calls, so all window and grid
functions must accept 8 XLONG arguments. The last argument of window and grid functions are
declared to accept ANY data type so they can also receive a STRING variable, composite variable, or an
array of any valid type.

Your programs can pass any combination of the v0,v1,v2,v3,r0,r1 arguments by reference to
receive return values from the function called by XuiSendMessage().

XuiSendMessage() validates the grid,message,kid arguments, looks up the grid function and
calls it, passing all 8 arguments. The last 6 arguments are passed by reference so those arguments
passed to XuiSendMessage() by reference can be returned to the calling function.

GuiDesigner - Programmer Guide - Page 38

Runtime Messages
To interrogate or control a grid at runtime, GuiDesigner and your program send a message to the grid,
just like window functions do:

 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1)
 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1$)
 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1$[])

grid,kid are the grid number of the base grid and the kid within it the message is sent to. kid=0
designates the base grid. message is the message sent to grid,kid.

v0,v1,v2,v3,r1,r1$,r1$[] are values passed to the grid function in support of message. For many
messages, some or all of these arguments are undefined. 0 must be passed for all undefined arguments.
For some messages one or more of these arguments are assigned return values by the grid function. To
receive a return value the calling function must pass a variable by reference.

Example
For example your program can change the text string on the left XuiPushButton kid in a XuiDialog3B
grid as follows:

 XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, 3, @" Hide ")
 XuiSendMessage (grid, #Redraw, 0, 0, 0, 0, 3, 0)

grid contains the grid number of the XuiDialog3B grid.

#SetTextString is the message number variable that tells grids to set their text string to the value in
the r1$ argument.

v0,v1,v2,v3 are undefined in SetTextString messages, so they contain 0.

kid=3 designates the left pushbutton in XuiDialog3B grids. Kids are numbered from zero, starting
with the base grid itself, followed by its kids in the order created or as sorted by GridSortKids:

 kid #0 = Dialog3B
 kid #1 = Label
 kid #2 = TextLine
 kid #3 = LeftButton
 kid #4 = CenterButton
 kid #5 = RightButton

r1$ contains the text string referred to by the #SetTextString message. Since only the final
argument of grid functions can receive non-XLONG values, text strings are always passed in r1$.
Numeric arguments are passed in as many of the v0,v1,v2,v3,r1 arguments as necessary.

GuiDesigner - Programmer Guide - Page 39

Callback Messages
Grid functions process messages automatically, without bothering your program. In other words, grids
operate themselves, independent of your program, without its knowledge or assistance.

On the other hand, sometimes events occur that your program needs to know about. For example, when
you click on an XuiPushButton or press the Enter key in an XuiTextLine grid, your program usually
needs to know it happened.

That's when grids send a callback message.

Callback Functions
Who receives callback messages from a particular grid?

The callback function most recently assigned to the grid as follows:
 XuiSendMessage (grid, #SetCallback, gridToCall, &FuncToCall(), -1, -1, -1, 0)

This makes FuncToCall() the callback function for grid. Thereafter, when grid has a callback
message to send, it calls:

 FuncToCall (gridToCall, message, v0, v1, v2, v3, kid, grid)

FuncToCall() and gridToCall are taken from the SetCallback message. message is the
callback message that grid has decided to send, v0,v1,v2,v3 are arguments in support of message,
and kid,grid contain the grid and kid that was the initiator of the callback message.

When you click on an XuiPushButton in an XuiDialog2B, or type an Enter key into its XuiTextLine,
grid sends a Selection message to FuncToCall(). What FuncToCall() or the functions it calls
do is up to your program.

GuiDesigner - Programmer Guide - Page 40

Monitor Messages
GuiDesigner processes GraphicsDesigner messages without the knowledge or assistance of your
programs by sending them to the window function responsible for the window or grid in the message.
Window functions process window messages and send grid messages to the appropriate grid functions.

This directs each message to the function designed to handle it, and nowhere else. Some programs,
however, need to watch for certain events, no matter where or when they occur.

For example, many programs let the keyboard "function keys" perform specific actions, regardless of
which window is selected. When processed by XgrProcessMessages(), however, keyboard
messages for function keys are sent to the same place as any keyboard message - to the window function
of the selected window.

To watch for special messages, GraphicsDesigner lets programs register one CEO function.

CEO Function
The CEO function receives every message processed by XgrProcessMessages().

XgrProcessMessages() sends every message to the CEO function first, before it sends it anywhere
else. The CEO can cancel the message to prevent its propogation to other functions.

Programs call XgrSetCEO(&Func()), to make a CEO function, active, where &Func() is the address
of the CEO function. XgrSetCEO(0) cancels CEO processing.

When messages are processed by XgrProcessMessages() they are first sent to the CEO function,
then to the appropriate window function. The window function may issue MonitorContext,
MonitorKeyboard, MonitorMouse messages.

XgrProcessMessages() calls the CEO function, passing the message arguments, 0 in r0, and a
copy of window or grid argument in r1. The CEO can examine the message and take whatever
action it needs to perform its function. If the CEO returns -1 in r0, XgrProcessMessages()
cancels the message and returns without calling the window function it would otherwise.

GuiDesigner - Programmer Guide - Page 41

Slow Pokes
Some program let users initiate responses that take a long time to complete, like seconds instead of
milliseconds. Users get antsy after a second or two. They expect programs to be responsive.

You'll probably want to let users break out of slow-poke responses. Users sometimes realize they
entered a bad starting value and want to change it. Sometimes users didn't realize how long an
operation would take and changed their mind. And sometimes they just plain pressed the wrong button!

But your program isn't going to see this "break" message until it returns to the message loop, right?
And your program won't return to the message loop until it finishes its slow-poke response.

Wow. What a dilemma. Right?

Actually, it's no problem. Have your slow-poke functions process pending messages occasionally,
perhaps this way:

 XgrProcessMessages (0)
 IF #breakOut THEN RETURN

XgrProcessMessages(0) returns immediately if no messages are waiting in the message queue,
otherwise it processes one message and returns. If a processed message sets #breakOut and your
function returns as a result, well, that solves delay and lock-up problems, doesn't it?

Advanced Message Processing
Most applications contain a call to XgrProcessMessages(1) in their entry function, and perhaps a
couple slow-poke checks like the one described above. But occasionally sophisticated programs need to
do something tricky. Fortunately, GuiDesigner message loops are accessible and a whole arsenal of
message processing functions are available, including:

Message Processing...

 XuiSendMessage (grid, message, v0, v1, v2, v3, kid, r1)
 XuiSendToKid (grid, message, v0, v1, v2, v3, kid, r1)
 XuiSendStringMessage (grid, message$, v0, v1, v2, v3, kid, r1)

Message Queue Processing...

 XgrAddMessage (grid, message, v0, v1, v2, v3, r0, r1)
 XgrDeleteMessages (count)
 XgrGetMessages (@count, @messages[])
 XgrGetMessageType (message, @messageType)
 XgrJamMessage (grid, message, v0, v1, v2, v3, r0, r1)
 XgrMessageNameToNumber (messageName$, @messageNumber)
 XgrMessageNames (@count, messages$[])
 XgrMessageNumberToName (messageNumber, @messageName$)
 XgrPeekMessage (@grid, @message, @v0, @v1, @v2, @v3, @r0, @r1)
 XgrProcessMessages (count)
 XgrRegisterMessage (@messageNumber, messageName$)

GuiDesigner - Programmer Guide - Page 42

Anatomy of Grid Functions
Overview
A grid function defines, controls, and supports the grid type with the same name. For instance, grid
function XuiLabel() defines, controls, and supports all grids of XuiLabel grid type.

A grid function creates, operates, destroys every grid of its grid type. To send a message to a grid
means to call its grid function. The way a grid function responds to the messages it receives determines
the character of all grids of its grid type.

Grid Functions and Callback Functions
When you design a window interactively with GuiDesigner, then select WindowToFunction, you create
a new grid type and add a corresponding grid function and callback function to your program.

As created by GuiDesigner, the grid function defines and handles the visual aspects of your new grid
type and sends callback messages to your callback function. When your callback function receives
callback messages it executes whatever code you put there for the occasion, which gives the grids their
functionality and character.

Merged Grid Function
When you design a window to be a custom application window, it's more convenient to separate the
visual and functional aspects into the grid function and callback function respectively.

But you don't have to. You can put the functional aspects directly in the grid function, and do away
with the callback function completely. And if you want to create a new generic grid type you can
distribute and/or add to the toolkit, you'll have to merge the functional part into the grid function
eventually, or just put it there right from the start.

If you decide to add your code to the grid function, you'll need to understand grid functions in more
detail than if you don't.

The rest of this section explain grid functions by discussing a standard grid function already in the
toolkit, XuiDialog2B.

The code for XuiDialog2B is presented first, followed by a detailed line by line description. The
numbers on the left of each line are added to facilitate discussion - they are not line numbers!

GuiDesigner - Programmer Guide - Page 43

Grid Function Example

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

DECLARE FUNCTION XuiDialog2B (grid, message, v0, v1, v2, v3, r0, ANY)
'
'
' ############################
' ##### XuiDialog2B () #####
' ############################
'
FUNCTION XuiDialog2B (grid, message, v0, v1, v2, v3, r0, (r1, r1$, r1[], r1$[]))
 STATIC designX, designY, designWidth, designHeight
 STATIC SUBADDR sub[]
 STATIC upperMessage
 STATIC XuiDialog2B
'
 $XuiDialog2B = 0 ' kid 0
 $Label = 1 ' kid 1
 $TextLine = 2 ' kid 2
 $Button0 = 3 ' kid 3
 $Button1 = 4 ' kid 4
 $UpperKid = 4 '
'
 IFZ sub[] THEN GOSUB Initialize
 IF XuiProcessMessage (grid, message, @v0, @v1, @v2, @v3, @r0, @r1, XuiDialog2B) THEN RETURN
 IF (message <= upperMessage) THEN GOSUB @sub[message]
 RETURN
'
'
' ***** Callback ***** message = Callback : r1 = original message
'
SUB Callback
 message = r1
 callback = message
 IF (message <= upperMessage) THEN GOSUB @sub[message]
END SUB
'
'
' ***** Create ***** v0123 = xywh : r0 = window : r1 = parent
'
SUB Create
 IF (v0 <= 0) THEN v0 = 0
 IF (v1 <= 0) THEN v1 = 0
 IF (v2 <= 0) THEN v2 = designWidth
 IF (v3 <= 0) THEN v3 = designHeight
 XuiCreateGrid (@grid, XuiDialog2B, @v0, @v1, @v2, @v3, r0, r1, &XuiDialog2B())
 XuiLabel (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiTextLine (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $TextLine, grid)
 XuiPushButton (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $Button0, grid)
 XuiSendMessage (g, #SetTextString, 0, 0, 0, 0, 0, @"Enter")
 XuiPushButton (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $Button1, grid)
 XuiSendMessage (g, #SetTextString, 0, 0, 0, 0, 0, @"Cancel")
 GOSUB Resize
END SUB
'
'
' ***** CreateWindow ***** r0 = windowType : r1$ = display$
'
SUB CreateWindow
IF (v0 = 0) THEN v0 = designX
IF (v1 = 0) THEN v1 = designY
IF (v2 <= 0) THEN v2 = designWidth
IF (v3 <= 0) THEN v3 = designHeight
XuiWindow (@window, #WindowCreate, v0, v1, v2, v3, r0, @r1$)
v0 = 0 : v1 = 0 : r0 = window : ATTACH r1$ TO display$
GOSUB Create
r1 = 0 : ATTACH display$ TO r1$
XuiWindow (window, #WindowRegister, grid, -1, v2, v3, @r0, @"XuiDialog2B")

END SUB

GuiDesigner - Programmer Guide - Page 44

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

'
'
' ***** GetSmallestSize *****
'
SUB GetSmallestSize
 XuiSendMessage (grid, #GetBorder, 0, 0, 0, 0, $XuiDialog2B, @bw)
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @labelWidth, @labelHeight, $Label, 8)
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @textWidth, @textHeight, $TextLine, 8)
'
 FOR i = $Button0 TO $Button1
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @width, @height, i, 8)
 IF (width > buttonWidth) THEN buttonWidth = width
 IF (height > buttonHeight) THEN buttonHeight = heigh
 NEXT i
'
 width = buttonWidth + buttonWidth
 IF (width < labelWidth) THEN width = labelWidth
 v2 = width + bw + bw
 v3 = labelHeight + buttonHeight + textHeight + bw + bw
END SUB
'
'
' ***** Resize *****
'
SUB Resize
 vv2 = v2
 vv3 = v3
 GOSUB GetSmallestSize ' returns bw and heights
 v2 = MAX (vv2, v2)
 v3 = MAX (vv3, v3)
'
 XuiPositionGrid (grid, @v0, @v1, @v2, @v3)
'
 h = labelHeight + buttonHeight + textHeight + bw + bw
 IF (v3 >= h + 4) THEN
 buttonHeight = buttonHeight + 4 : h = h + 4
 IF (v3 >= h + 4) THEN textHeight = textHeight + 4
 END IF
'
 labelWidth = v2 - bw - bw
 labelHeight = v3 - buttonHeight - textHeight - bw - bw
 buttonWidth = labelWidth >> 1
 w0 = buttonWidth
 w1 = labelWidth - w0
'
 x = v0 + bw
 y = v1 + bw
 w = labelWidth
 XuiSendMessage (grid, #Resize, x, y, w, labelHeight, $Label, 0)
'
 y = y + labelHeight
 XuiSendMessage (grid, #Resize, x, y, w, textHeight, $TextLine, 0)
'
 h = buttonHeight
 y = y + textHeight
 XuiSendMessage (grid, #Resize, x, y, w0, h, $Button0, 0) : x = x + w0
 XuiSendMessage (grid, #Resize, x, y, w1, h, $Button1, 0) : x = x + w1
 XuiResizeWindowToGrid (grid, #ResizeWindowToGrid, v0, v1, v2, v3, 0, 0)
END SUB
'
'
' ***** Selection *****
'
SUB Selection
 SELECT CASE r0
 CASE $XuiDialog2B :
 CASE $TextLine :
 CASE $Button0 :
 CASE $Button1 :
 END SELECT
END SUB

GuiDesigner - Programmer Guide - Page 45

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

'
'
' ***** Initialize ****
'
SUB Initialize
 XuiGetDefaultGridFunctions (@func[])
 XgrMessageNameToNumber (@"LastMessage", @upperSub)
'
 func[#Callback] = &XuiCallback ()
 func[#GetSmallestSize] = 0
 func[#Resize] = 0
'
 DIM sub[upperSub]
' sub[#Callback] = SUBADDRESS (Callback)
 sub[#Create] = SUBADDRESS (Create)
 sub[#CreateWindow] = SUBADDRESS (CreateWindow)
 sub[#GetSmallestSize] = SUBADDRESS (GetSmallestSize)
 sub[#Resize] = SUBADDRESS (Resize)
 sub[#Selection] = SUBADDRESS (Selection)
'
 IF sub[0] THEN PRINT "XuiDialog2B() : Initialize : error ::: (undefined message)"
 IF func[0] THEN PRINT "XuiDialog2B() : Initialize : error ::: (undefined message)"
 XuiRegisterGridType (@XuiDialog2B, @"XuiDialog2B", &XuiDialog2B(), @func[], @sub[])
'
 designX = 0
 designY = 0
 designWidth = 160
 designHeight = 68
'
 gridType = XuiDialog2B
 XuiSetGridTypeValue (gridType, @"xWin", designX)
 XuiSetGridTypeValue (gridType, @"yWin", designY)
 XuiSetGridTypeValue (gridType, @"width", designWidth)
 XuiSetGridTypeValue (gridType, @"height", designHeight)
' XuiSetGridTypeValue (gridType, @"minWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"minHeight", designHeight)
' XuiSetGridTypeValue (gridType, @"maxWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"maxHeight", designHeight)
 XuiSetGridTypeValue (gridType, @"border", $$BorderFrame)
 XuiSetGridTypeValue (gridType, @"can", $$Focus OR $$Respond OR $$Callback OR $$InputTextString)
 XuiSetGridTypeValue (gridType, @"focusKid", $TextLine)
 XuiSetGridTypeValue (gridType, @"inputTextString", $TextLine)
 XuiSetGridTypeValue (gridType, @"redrawFlags", $$RedrawBorder)
 IFZ message THEN RETURN
END SUB
END FUNCTION

GuiDesigner - Programmer Guide - Page 46

Function Declaration
DECLARE FUNCTION XuiDialog2B (grid, message, v0, v1, v2, v3, r0, ANY)

Line 0 is the function declaration line from the PROLOG.

It is typical of all grid function declarations, since all grid functions must take the same eight arguments.
The last argument is declared as ANY type because, depending on message, it must contain:

· XLONG variable
· STRING variable
· XLONG array
· STRING array

It is very important to pass the correct type in the final argument. Failure to do so can crash your
program and sometimes even the program development environment itself. It's easy to avoid such
mistakes, however, since the argument is always XLONG unless the message explicitly calls for
something else, as do the following:

 STRING - XuiGetTextString, XuiGetHelpString
 STRING array - XuiGetTextArray, XuiSetHelpStrings
 XLONG array - XuiGetKidsArray

Function Definition
FUNCTION XuiDialog2B (grid, message, v0, v1, v2, v3, r0, (r1, r1$, r1$[]))
Line 7 is the function definition line, the line that begins the function. It shows the same eight
arguments, except the ANY argument expands to r1,r1$,r1$[] to carry the different type arguments.

These arguments are aliased, meaning assigned the same address. It's crucially important that your
program refer only to the one appropriate argument - as determined by the message argument.

GuiDesigner - Programmer Guide - Page 47

Variable Declarations
STATIC designX, designY, designWidth, designHeight
STATIC SUBADDR sub[]
STATIC upperMessage
STATIC XuiDialog2B

Lines 8 - 11 declare static variables. These variables are local to the grid function and they retain their
values between subsequent calls.

designX,designY are the x,y position of the design window when it was converted into a grid function
by WindowToFunction, in display coordinates, with 0,0 in upper-left corner of the display.

designWidth,designHeight are the width and height of the design window in pixels when it was
converted into a grid function.

sub[] is an array that contains a subroutine address for every message number. In typical grid
functions, most locations contain a zero, so no subroutine is executed for the corresponding message.

upperMessage holds the highest defined message number.

XuiDialog2B contains the grid type number.

Kid Constant Definitions
$XuiDialog2B = 0 ' kid 0
$Label = 1 ' kid 1
$TextLine = 2 ' kid 2
$Button0 = 3 ' kid 3
$Button1 = 4 ' kid 4

Lines 13 - 17 define kid constants to name the grid type components.

As always, the grid itself is always kid 0. The XuiLabel grid at the top of XuiDialog2B is kid 1, the
XuiTextLine grid below it is kid 2, and the left and right hand XuiPushButton grids are kids 3 & 4.

WindowToFunction numbers kids in the order they are created in the Create subroutine. This
correspondence is absolutely necessary and must be maintained if you edit the Create subroutine.

GuiDesigner - Programmer Guide - Page 48

Initialize - Process Message - RETURN
IFZ sub[] THEN GOSUB Initialize
IF XuiProcessMessage (grid, message, @v0, @v1, @v2, @v3, @r0, @r1, XuiDialog2B) THEN RETURN
IF (message <= upperMessage) THEN GOSUB @sub[message]
RETURN

Lines 20-23 initialize the grid type and basic grid function variables, invoke the appropriate routines to
process the message, and return.

Initialize
IFZ sub[] THEN GOSUB Initialize

The first time a grid function is entered, it must initialize certain variables and register its grid type.
sub[] is a local variable and is therefore empty the first time the function is entered. This line calls the
Initialize subroutine the first time the function is entered, but never again since sub[] is
dimensioned in the subroutine.

Process Message with Message Processing Function
IF XuiProcessMessage (grid, message, @v0, @v1, @v2, @v3, @r0, @r1, XuiDialog2B) THEN RETURN

In typical grid functions, most messages are ignored or processed by a message processing function
called by XuiProcessMessage(). The message processing functions for the grid function are
established in the Initialize subroutine.

If the r0 argument is not zero, the message is for a kid of the grid, and XuiProcessMessage() sends
the message on to the kid. The return value of XuiProcessMessage() is the kid number the message
was sent to, so this line returns from the grid function if the message was sent to a kid of the grid, not
the grid itself, thus preventing the grid function from receiving a message intended for a kid and not
itself.

Process Message with Message Processing Subroutine
GOSUB @sub[message]

If a message processing subroutine is defined for a particular message, GOSUB @sub[message] line
calls the subroutine.

Done
RETURN

Return to the routine that called the grid function.

GuiDesigner - Programmer Guide - Page 49

Callback Subroutine
'
'
' ***** Callback ***** message = Callback : r1 = original message
'
SUB Callback
 message = r1
 callback = message
 IF (message <= upperMessage) THEN GOSUB @sub[message]
END SUB

The Callback subroutines in grid functions generated by GuiDesigner are not executed. That's
because GuiDesigner puts the following statements near the bottom of the grid function:

 func[#Callback] = &XuiCallback ()
' sub[#Callback] = SUBADDRESS (Callback)

The first statement makes the grid function pass Callback messages back to the function that set itself
as its callback function, while the second statement is commented to disable the Callback subroutine.

Thus GuiDesigner generated grid functions create visual only grids. Any functionality or special
purpose is provided by the callback function set for each grid. As a result, every grid can have unique
functionality, since each can have its own callback function.

To create grids with special purpose functionality, a grid function must process the callback messages it
receives from its kid grids. Comment out the func[#Callback] line and enable sub[#Callback].
The Callback subroutine will now execute when the grid function receives Callback messages.

The lines in the Callback subroutine transfer the original message from r1 to message, set variable
callback = message, then call the subroutine that processes the original message. The transfer from
r1 to message is necessary because XuiCallback() puts the original message in r1 and a
Callback message in message.

Almost all callback messages carry a Selection message in r1. So in most cases, all you have to do
to add special purpose functionality to a grid function is add a SELECT CASE block to the Selection
subroutine, with one CASE entry for each kid constant. In fact, if you've already added the special
purpose functionality in a callback function, you can simply copy its Selection subroutine into the
grid function, plus any other code that supports it.

Whenever a function needs to know whether it received a particular message in a callback or not, it can
test its local callback variable. callback = 0 means the message is not a callback message,
otherwise callback contains the callback message number.

GuiDesigner - Programmer Guide - Page 50

Create Subroutine
'
'
' ***** Create ***** v0123 = xywh : r0 = window : r1 = parent
'
SUB Create
 IF (v0 <= 0) THEN v0 = 0
 IF (v1 <= 0) THEN v1 = 0
 IF (v2 <= 0) THEN v2 = designWidth
 IF (v3 <= 0) THEN v3 = designHeight
 XuiCreateGrid (@grid, XuiDialog2B, @v0, @v1, @v2, @v3, r0, r1, &XuiDialog2B())
 XuiLabel (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiTextLine (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $TextLine, grid)
 XuiPushButton (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $Button0, grid)
 XuiSendMessage (g, #SetTextString, 0, 0, 0, 0, 0, @"Enter")
 XuiPushButton (@g, #Create, 0, 0, 0, 0, r0, grid)
 XuiSendMessage (g, #SetCallback, grid, &XuiDialog2B(), -1, -1, $Button1, grid)
 XuiSendMessage (g, #SetTextString, 0, 0, 0, 0, 0, @"Cancel")
 GOSUB Resize
END SUB

Every grid function has a Create subroutine to process Create messages. Each time a grid function
receives a Create message, it must create a new grid of its own grid type. It does this by calling
XuiCreateGrid() to create the base grid. Then, if the grid type has kid grids, it calls the appropriate
grid functions to create them.

After it creates each kid grid, the grid function sets itself as the callback function for the kid grid -
assuming it wants to receive callback messages from the kid. Configuration messages like SetBorder,
SetColor, SetTextString must be sent to each kid grid before the next kid grid is created as are the
PushButton "Enter" and "Cancel" strings in the example above.

After it creates and configures all its kids, the Create subroutine must call its Resize subroutine,
even if its Resize subroutine is empty. Any additional code required in the Create subroutine,
should be carried out in separate subroutines and called immediately before and/or after GOSUB Resize.

CreateWindow Subroutine
'
'
' ***** CreateWindow ***** r0 = windowType : r1 = &WindowFunc()
'
SUB CreateWindow
 IF (v0 = 0) THEN v0 = designX
 IF (v1 = 0) THEN v1 = designY
 IF (v2 <= 0) THEN v2 = designWidth
 IF (v3 <= 0) THEN v3 = designHeight
 XuiWindow (@window, #WindowCreate, v0, v1, v2, v3, r0, @r1$)
 v0 = 0 : v1 = 0 : r0 = window : ATTACH r1$ TO display$
 GOSUB Create
 r1 = 0 : ATTACH display$ TO r1$
 XuiWindow (window, #WindowRegister, grid, -1, v2, v3, @r0, @"XuiDialog2B")
END SUB
Virtually every grid function has a CreateWindow subroutine to process CreateWindow messages.
Each time a grid function receives a CreateWindow message, it creates a new grid of its own grid type
surrounded by a new window. Since grids must be created in a window, it first creates the window,
then calls the Create subroutine to create the grid. There are few ways to modify the CreateWindow
subroutine successfully, so it is rarely if ever attempted.

GuiDesigner - Programmer Guide - Page 51

GetSmallestSize Subroutine
'
'
' ***** GetSmallestSize *****
'
SUB GetSmallestSize
 XuiSendMessage (grid, #GetBorder, 0, 0, 0, 0, XuiDialog2B, @bw)
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @labelWidth, @labelHeight, $Label, 8)
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @textWidth, @textHeight, $TextLine, 8)
'
 FOR i = $Button0 TO $Button1
 XuiSendMessage (grid, #GetSmallestSize, 0, 0, @width, @height, i, 8)
 IF (width > buttonWidth) THEN buttonWidth = width
 IF (height > buttonHeight) THEN buttonHeight = height
 NEXT i
'
 width = buttonWidth + buttonWidth
 IF (width < labelWidth) THEN width = labelWidth
 v2 = width + bw + bw
 v3 = labelHeight + textHeight + buttonHeight + bw + bw
END SUB

A GetSmallestSize subroutine is needed in any resizable grid. Grid functions generated by
GuiDesigner are not resizable - they are initially set up to return the fixed design size when they receive
a GetSmallestSize message.

The GetSmallestSize and Resize subroutines in this function are a good model, since most grid
functions employ the similar methods.

GetSmallestSize first sends a GetBorder message to itself get its own border width. Next it sends
GetSmallestSize messages to its kids - the XuiLabel at the top, the XuiTextLine below it, and the
two XuiPushButtons at the bottom. It sets the smaller of the buttons equal the larger, sets the overall
width v2 to the largest width plus twice the border width, and sets the overall height v3 to the sum of
the label height, text height, button height, and twice the border width.

GuiDesigner - Programmer Guide - Page 52

Resize Subroutine
'
'
' ***** Resize *****
'
SUB Resize
 vv2 = v2
 vv3 = v3
 GOSUB GetSmallestSize ' returns bw and heights
 v2 = MAX (vv2, v2)
 v3 = MAX (vv3, v3)
'
 XuiPositionGrid (grid, @v0, @v1, @v2, @v3)
'
 h = labelHeight + buttonHeight + textHeight + bw + bw
 IF (v3 >= h + 4) THEN
 buttonHeight = buttonHeight + 4 : h = h + 4
 IF (v3 >= h + 4) THEN textHeight = textHeight + 4
 END IF
'
 labelWidth = v2 - bw - bw
 labelHeight = v3 - buttonHeight - textHeight - bw - bw
 buttonWidth = labelWidth >> 1
 w0 = buttonWidth
 w1 = labelWidth - w0
'
 x = v0 + bw
 y = v1 + bw
 w = labelWidth
 XuiSendMessage (grid, #Resize, x, y, w, labelHeight, $Label, 0)
'
 y = y + labelHeight
 XuiSendMessage (grid, #Resize, x, y, w, textHeight, $TextLine, 0)
'
 h = buttonHeight
 y = y + textHeight
 XuiSendMessage (grid, #Resize, x, y, w0, h, $Button0, 0) : x = x + w0
 XuiSendMessage (grid, #Resize, x, y, w1, h, $Button1, 0) : x = x + w1
 XuiResizeWindowToGrid (grid, #ResizeWindowToGrid, v0, v1, v2, v3, 0, 0)
END SUB

The Resize subroutine is supposed to change the x,y,width,height position and size of the
XuiDialog2B grid to v0,v1,v2,v3.

Resize first it calls its own GetSmallestSize subroutine to see if the requested width,height is
smaller than the grid can resize. XuiPositionGrid() sets the position and size of the XuiDialog2B
grid in window coordinates.

Taking advantage of several variables that GetSmallestSize already computed, the Resize
subroutine computes the width and height of all the kid grids, and sends a Resize message to each kid
to set its position and size.

Finally, Resize calls ResizeWindowToGrid() function, which resizes the window to the
XuiDialog2B grid if the XuiDialog2B grid was created by a CreateWindow message. In other
words, ResizeWindowToGrid() resizes the window only if the grid is supposed to fill the grid.

GuiDesigner - Programmer Guide - Page 53

Selection Subroutine
'
'
' ***** Selection *****
'
SUB Selection
 PRINT "Selection callback from kid #"; r0
END SUB

XuiDialog2B doesn't process callback messages internally because its Callback subroutine sends
callback messages back to the function that set itself as the XuiDialog2B grid.

If you modify the Callback subroutine as described previously, however, Selection callback
messages will be sent to this subroutine. Here you can add functionality code to process callback
messages from the XuiDialog2B kid grids, and send Selection and/or other callback messages back
under appropriate circumstances.

As a simple example, if you made the described modifications to the Callback subroutine, the
following code will convert this function into a simplified name input dialog.

First, add

 XuiSendMessage (g, #SetTextString, 0, 0, 0, 0, 0, @"Enter your name below")

to the Create subroutine after the line that creates the XuiLabel kid to tell the user what to do when
the grid appears.

Second, fill the Selection subroutine with these lines:

SUB Selection
 SELECT CASE r0
 CASE $TextLine, $Button0
 XuiSendMessage (grid, #GetTextString, 0, 0, 0, 0, $TextLine, @name$)
 XuiSendMessage (grid, #SetTextString, 0, 0, 0, 0, 0, @name$)
 IF name$ THEN value = 0 ELSE value = -1
 CASE $Button1
 value = -1 ' 0 = ok : -1 = cancel
 END SELECT
 XuiCallback (grid, #Selection, value, 0, 0, 0, 0, 0)
END SUB

GuiDesigner - Programmer Guide - Page 54

Initialize Subroutine
'
'
' ***** Initialize ****
'
SUB Initialize
 XuiGetDefaultGridFunctions (@func[])
 XgrMessageNameToNumber (@"LastMessage", @upperSub)
'
 func[#GetSmallestSize] = 0 ' cancel default standard message function
 func[#Resize] = 0 ' cancel default standard message function
'
 DIM sub[upperSub]
 sub[#Callback] = SUBADDRESS (Callback)
 sub[#Create] = SUBADDRESS (Create)
 sub[#CreateWindow] = SUBADDRESS (CreateWindow)
 sub[#GetSmallestSize] = SUBADDRESS (GetSmallestSize)
 sub[#Resize] = SUBADDRESS (Resize)
 sub[#Selection] = SUBADDRESS (Selection)
'
 IF func[0] THEN PRINT "XuiDialog2B() : Initialize : error ::: (undefined message)"
 IF sub[0] THEN PRINT "XuiDialog2B() : Initialize : error ::: (undefined message)"
 XuiRegisterGridType (@XuiDialog2B, @"XuiDialog2B", &XuiDialog2B(), @func[], @sub[])
'
 designX = 0
 designY = 0
 designWidth = 160
 designHeight = 68
'
 gridType = XuiDialog2B
 XuiSetGridTypeValue (gridType, @"xWin", designX)
 XuiSetGridTypeValue (gridType, @"yWin", designY)
 XuiSetGridTypeValue (gridType, @"width", designWidth)
 XuiSetGridTypeValue (gridType, @"height", designHeight)
 XuiSetGridTypeValue (gridType, @"minWidth", 64)
 XuiSetGridTypeValue (gridType, @"minHeight", 24)
' XuiSetGridTypeValue (gridType, @"minWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"minHeight", designHeight)
' XuiSetGridTypeValue (gridType, @"maxWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"maxHeight", designHeight)
 XuiSetGridTypeValue (gridType, @"border", $$BorderFrame)
 XuiSetGridTypeValue (gridType, @"can", $$Focus OR $$Respond ...
 XuiSetGridTypeValue (gridType, @"focusKid", $TextLine)
 XuiSetGridTypeValue (gridType, @"inputTextString", $TextLine)
 XuiSetGridTypeValue (gridType, @"redrawFlags", $$RedrawBorder)
 IFZ message THEN RETURN
END SUB
END FUNCTION

The Initialize subroutine is executed only once - the first time the grid function is called. It
establishes the initial or default appearance and behavior of every grid of a grid type by setting its:

· default message processing functions
· default message processing subroutines
· default properties

When a grid is created, it is given the default values of its grid type. After a grid is created, programs
can send any number of messages to a grid to change its properties, message processing functions, and
message processing subroutines.

Programs often send a few messages to a grid to change properties like grid name, help string, or color.
Most programs should rarely if ever change a message processing function or subroutine, however.

GuiDesigner - Programmer Guide - Page 55

Get Default Message Functions
'
'
' ***** Initialize ****
'
SUB Initialize
 XuiGetDefaultMessageFunctions (@func[])
 XgrMessageNameToNumber (@"LastMessage", @upperMessage)

The Initialize subroutine first gets a copy of the default message processing functions in func[],
and finds the highest message number, which it will soon need.

The default message processing functions give a grid basic, straightforward functionality by routing
common messages to standard message processing functions that handle the messages in an obvious,
direct, expected way. For example, XuiSetColor() is the standard message processing function for
message SetColor, and it sets any combination of background, drawing, lowlight, highlight colors for
the grid (a -1 argument means leave unchanged).

Establish Message Functions
 func[#Callback] = &XuiCallback()
 func[#GetSmallestSize] = 0
 func[#Resize] = 0

Three message processing functions are changed from the default values established by
XuiGetDefaultMessageFunctions():

func[#Callback] = &XuiCallback sets the message processing function for Callback messages to
&XuiCallback(). This is normal practice for "visual only grids" - those without internal functionality.
Whenever this function receives a Callback message, XuiCallback() sends the message back to
whatever function set itself as the callback function for the XuiDialog2B grid whose kid produced the
Callback message. When GuiDesigner creates grid functions, it inserts this line of code. To give a
visual grid type functionality, remove this line, enable the sub[#Callback] = SUBADDRESS
(Callback) line a few lines below, and add code to the Selection and/or any other relevant callback
message processing subroutines (most callback messages are Selection messages).

func[#GetSmallestSize]=0 cancels default message processing function XuiGetSmallestSize()
for message GetSmallestSize. XuiGetSmallestSize() returns the original design size because
minWidth,maxWidth,minHeight,maxHeight properties are set to the designWidth,designHeight.
This fixes the size of the grid, while XuiDialog2B is supposed to be resizable. An internal
GetSmallestSize subroutine replaces the message function.

func[#Resize] = 0 cancels the default message processing function XuiResizeNot() for message
Resize. XuiResizeNot() does not resize grids and is therefore designed for fixed-size "non-resizable"
grids, while XuiDialog2B is resizable. An internal Resize subroutine replaces the message function.

GuiDesigner - Programmer Guide - Page 56

Establish Message Subroutines and Register Grid Type
 DIM sub[upperMessage]
' sub[#Callback] = SUBADDRESS (Callback)
 sub[#Create] = SUBADDRESS (Create)
 sub[#CreateWindow] = SUBADDRESS (CreateWindow)
 sub[#GetSmallestSize] = SUBADDRESS (GetSmallestSize)
 sub[#Resize] = SUBADDRESS (Resize)
 sub[#Selection] = SUBADDRESS (Selection)
'
 IF sub[0] THEN PRINT "XuiDialog2B(): Initialize: Error::: (Undefined Message)"
 IF func[0] THEN PRINT "XuiDialog2B(): Initialize: Error::: (Undefined Message)"
 XuiRegisterGridType (@XuiDialog2B, @"XuiDialog2B", &XuiDialog2B(), @func[], @sub[])

The sub[] array, which must contain the message processing subroutine addresses for this grid
function, is dimensioned large enough to hold subroutine addresses for the highest message number.
Then subroutine addresses are then assigned to sub[] for those messages to be processed by internal
message processing subroutines.

Every grid function must have message processing subroutines for Create and CreateWindow
messages, so whenever GuiDesigner creates a grid function, it generates message subroutines and
corresponding message subroutine address assignments for Create and CreateWindow.

 sub[#Create] = SUBADDRESS (Create)
 sub[#CreateWindow] = SUBADDRESS (CreateWindow)

GuiDesigner also creates subroutines and address assignments for Callback and Selection
messages. But the Callback address assignment is disabled, since
func[#Callback]=&XuiCallback() handles callback messages for visual grid types.

To add functionality to a visual only grid type, disable the func[#Callback]=&XuiCallback() line,
then enable the sub[#Callback]=SUBADDRESS(Callback) line and add functionality code to the
Selection subroutine and/or any other callback relevant callback message processing subroutines.

To make XuiDialog2B grids resizable, a programmer provided message subroutines for
GetSmallestSize and Resize messages. To make these subroutines execute when this grid function
receives these messages, the following lines were added to Initialize :

 func[#GetSmallestSize] = 0 ' cancel standard function
 func[#Resize] = 0 ' cancel standard function
 sub[#GetSmallestSize] = SUBADDRESS (GetSmallestSize) ' enable internal subroutine
 sub[#Resize] = SUBADDRESS (Resize) ' enable internal subroutine

The first two lines cancel any default standard message functions that might exist, and the second two
lines install the programmer written message subroutines.

Finally, the XuiDialog2B grid type is registered with GraphicsDesigner and GuiDesigner by
XuiRegisterGridType().

GuiDesigner - Programmer Guide - Page 57

Establish Grid Type Properties
 designX = 4
 designY = 23
 designWidth = 160
 designHeight = 68
'
 gridType = XuiDialog2B
 XuiSetGridTypeValue (gridType, @"xWin", designX)
 XuiSetGridTypeValue (gridType, @"yWin", designY)
 XuiSetGridTypeValue (gridType, @"width", designWidth)
 XuiSetGridTypeValue (gridType, @"height", designHeight)
' XuiSetGridTypeValue (gridType, @"minWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"minHeight", designHeight)
' XuiSetGridTypeValue (gridType, @"maxWidth", designWidth)
' XuiSetGridTypeValue (gridType, @"maxHeight", designHeight)
 XuiSetGridTypeValue (gridType, @"border", $$BorderFrame)
 XuiSetGridTypeValue (gridType, @"can", $$Focus OR $$Respond OR $$Callback OR $
$InputTextString)
 XuiSetGridTypeValue (gridType, @"focusKid", $TextLine)
 XuiSetGridTypeValue (gridType, @"inputTextString", $TextLine)
 XuiSetGridTypeValue (gridType, @"redrawFlags", $$RedrawBorder)
 IFZ message THEN RETURN
END SUB
END FUNCTION

The Initialize subroutine also establishes basic grid type properties. Whenever a grid of this grid
type is created, it is given the properties assigned in this section.

designX, designY, designWidth, designHeight are the position and size of the design window
GuiDesigner created the grid function from. Windows created sending a CreateWindow message to
this grid with a -1 in v0,v1,v2,v3 will position and size the window as designed. Otherwise, it is
placed and sized to the values in v0,v1,v2,v3.

When WindowToFunction translates a design window into a grid function, it sets
minWidth,minHeight,maxWidth,maxHeight to designWidth,designHeight. This makes all grids
of this grid type fixed-size and non-resizable. These four lines were disabled in XuiDialog2B when
GetSmallestSize and Resize subroutines were added to make the grid resizable.

GuiDesigner - Programmer Guide - Page 58

align, 6
appearance, 18
AppearanceWindow, 5, 6, 18, 22, 24
argument, 28, 33, 35, 38, 39, 47
arguments, 11

BehaviorWindow, 5, 18
border, 6, 18

Callback, 19, 50, 54, 56, 57
callback, 11
callback function, 11, 16, 17, 19, 20, 40, 43, 50
callback message, 11, 16, 19, 40, 54, 57
CEO function, 41
code function, 16
color, 6, 18
convenience functions, 13
coordinate system, 9
Create, 15, 20, 22, 48, 51, 54, 57
CreateWindow, 15, 17, 21, 35, 51, 53, 57, 58
CreateWindows(), 13, 15, 16, 17

design mode, 19
design window, 10, 16, 17, 18, 19, 20, 21, 22,
24, 48, 58
designHeight, 20, 48, 56, 58
DesignMode, 3
designWidth, 20, 48, 56, 58
designX, 20, 48, 58
designY, 20, 48, 58
Destroy, 17
display, 9
DisplayWindow, 15, 16

entry function, 14, 34, 42
Entry(), 13, 14, 34

frame, 9
func[], 56

GetBorder, 52
GetSmallestSize, 52, 53, 56, 57, 58
Graphical User Interface, 1
graphics, 12
graphics programs, 12
GraphicsDesigner, 9, 11, 12, 27, 28, 32, 33, 34,
41
grid, 9, 12, 21, 28, 38, 39
grid function, 10, 11, 16, 17, 19, 20, 21, 22, 27,
35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 57,
58
grid message, 27, 28, 35, 36, 37, 38
grid name, 6
grid number, 12, 21, 39
grid property, 58
grid type, 10, 18, 37, 43, 49, 58
GridAppearance, 5, 18
GridBehavior, 5, 18
GridDelete, 5
GridName, 25
GridSortGrids, 5
GUI, 1
GUI components, 9
GUI programs, 12

help string, 6
HelpFile, 24
HelpString, 24

indent, 6
InitGui(), 13, 15, 16, 28
Initialize subroutine, 49, 55, 56, 58
InitProgram(), 13, 15, 16
InstantHelp, 2, 23, 24

justification, 6

keyboard, 27, 30
keyboard focus, 30, 36
keyboard message, 41
KeyDown, 27, 30, 36
KeyUp, 30, 36
kid, 9, 12, 19, 21, 28, 39, 48
kid constants, 48
kid number, 19, 20
kid number constant, 19
kid numbers, 9

GuiDesigner - Programmer Guide - Page 59

layout, 18

maxHeight, 56, 58
maximize, 9
maxWidth, 56, 58
message, 11, 12, 21, 22, 27, 28, 33, 38, 39, 47
message loop, 15, 34, 42
message number, 12, 16, 28, 39
message processing function, 18, 37, 49, 55, 56
message processing subroutine, 18, 37, 49, 55,
57
message queue, 33, 42
minHeight, 56, 58
minimize, 9
minWidth, 56, 58
MonitorContext, 41
MonitorKeyboard, 41
MonitorMouse, 41
mouse, 27, 32
mouse button, 27
mouse cursor, 32
mouse focus, 32
mouse message, 32
MouseDown, 11, 27
MouseMove, 27
MouseUp, 11

parent, 9
process message, 33, 34, 37, 40, 49
PROLOG, 13

r0, 12, 19, 28
r1, 19
Resize, 20, 51, 52, 53, 56, 57, 58
ResizeWindowToGrid(), 53

selected grid, 18
Selection, 19, 40, 54, 56, 57
send message, 11, 12, 38
SetBorder, 17, 51
SetCallback, 16, 21, 40
SetColor, 17, 51, 56
SetTextString, 17, 39, 51
sub[], 48, 49, 57

terminateProgram, 15
test mode, 19
TestMode, 3
text array, 6
text string, 6
TimeOut, 27
title-bar, 9
toolkit, 3, 17, 22

upperMessage, 48

window, 9, 12, 28, 35, 38, 51
window function, 9, 27, 30, 35, 36, 38, 39, 41
window message, 27, 35, 36, 38
window number, 12
window type, 9
WindowDelete, 4
WindowFromFunction, 4, 20
WindowHide, 4
WindowKeyDown, 27, 30, 36
WindowKeyUp, 30, 36
WindowLoad, 4
WindowMouseDown, 27
WindowMouseMove, 27
WindowNew, 4
WindowSave, 4
WindowSelected, 27
WindowToFunction, 4, 10, 19, 22, 43, 48
wingrid, 28

XgrProcessMessages(), 15, 29, 32, 33, 34, 35,
41, 42
Xui(), 15
XuiCallback(), 50, 56
XuiCreateGrid(), 51
XuiGetDefaultMessageFunctions(), 56
XuiGetSmallestSize(), 56
XuiPositionGrid(), 53
XuiProcessMessage(), 49
XuiResizeNot(), 56
XuiSendMessage(), 12, 15, 38
XuiSetColor(), 56
XuiWindow(), 35

GuiDesigner - Programmer Guide - Page 60

	Introduction
	What's a GUI ?
	GUI Approach
	Easy To Learn
	GuiDesigner
	Instant Help
	The Ideal Lifetime Program Development Environment

	A Quick Tour of GuiDesigner
	Quick Tour
	GuiDesigner Toolkit
	Window Menu
	Grid Menu
	Appearance Window
	Your Own GUI Programs
	Modify Your GUI Windows

	Fundamental Concepts
	Window
	Window Type
	Window Function
	Grid
	Kid
	Grid Type
	GridFunction
	Callback Function aka Code Function
	GraphicsDesigner Messages
	GuiDesigner Messages
	Send Message
	GraphicsDesigner vs GuiDesigner

	GuiDesigner Programs
	GuiDesigner Convenience Function Programs
	GuiDesigner Programs
	Basic Steps
	Core GuiDesigner Program
	PROLOG
	Entry()
	Entry() is your GUI program
	The Nature of GUI Programs
	Entry() - Initialization
	Entry() - Create Windows
	Entry() - Message Loop

	InitGui()
	InitProgram() and InitWindows()
	CreateWindows()
	Design()
	DesignCode()

	Interactive Window Design
	Design Window
	GridFunction
	Layout Grids
	Move and Resize Grids
	No Overlap
	Nesting Grids
	Grid Appearance
	Grid Behavior
	Design Mode vs Test Mode
	WindowToFunction
	Quick Start
	Callback Arguments
	WindowFromFunction
	Operating Grid Functions
	To Code or Not To Code
	Learning Curve

	Instant Help
	InstantHelp
	Help On Everything
	Posting InstantHelp
	Browsing Programs
	Solve the "Great Icon Problem"
	Copy from the InstantHelp Window
	Update Instant Help
	Help Files
	HelpFile Format
	HelpString
	:entryname
	Default :entryname
	Multiple HelpFiles
	Set HelpFile

	Messages
	Messages
	GraphicsDesigner Messages
	Window Messages and Grid Messages
	Window Messages
	Grid Messages

	Message Anatomy
	window, grid, wingrid
	message
	v0,v1,v2,v3,r0,r1
	kid

	GraphicsDesigner Messages
	Keyboard Messages
	Keyboard Focus
	xWin, yWin
	state
	time
	Examples
	WindowKeyUp vs WindowKeyDown
	Virtual Key Codes

	Mouse Messages
	x,y
	state
	time
	Mouse Message Algorithm

	Message Queue
	Process Message
	XgrProcessMessages()
	Message Loop
	Process a Message
	Window Function
	Window Functions Process Window Messages
	Window Functions Process Grid Messages
	Grid Function
	Send Message
	XuiSendMessage()
	Runtime Messages
	Example

	Callback Messages
	Callback Functions
	Monitor Messages
	CEO Function
	Slow Pokes
	Advanced Message Processing

	Anatomy of Grid Functions
	Overview
	Grid Functions and Callback Functions
	Merged Grid Function
	Grid Function Example
	Function Declaration
	Function Definition
	Variable Declarations
	Kid Constant Definitions
	Initialize - Process Message - RETURN
	Initialize
	Process Message with Message Processing Function
	Process Message with Message Processing Subroutine
	Done

	Callback Subroutine
	Create Subroutine
	CreateWindow Subroutine
	GetSmallestSize Subroutine
	Resize Subroutine
	Selection Subroutine
	Initialize Subroutine
	Get Default Message Functions
	Establish Message Functions
	Establish Message Subroutines and Register Grid Type
	Establish Grid Type Properties

