
XBasic
Program Development Environment

(PDE)

GraphicsDesigner

Programmer Guide
Programmer Reference

Revision 0.0020
January 10, 1996

Copyright 1990-2000

Table of Contents

Overview..1
GraphicsDesigner...1
Windows...1
window...1
Window Types...1
Grids...2
grid..2
Grid Type...2
Coordinate Systems..2
Coordinate Conversion..3
Grid Location Coordinates...3
Drawing Coordinates...3
Display Coordinates...4
Window Coordinates..4
Local Coordinates..4
Grid Coordinates..5
Scaled Coordinates...5
Grid Box...6

Example..6
Grid Placement...6
Grid Advantages...6
Grid Attributes...7

grid..7
window...7
parent..7
gridType..7
gridFunction...7
bufferGrid...7
font, fontName, fontSize, fontWeight, fontItalic,fontAngle...7
x,y,width,height..8
x1,y1:x2,y2...8
x1Grid,y1Grid:x2Grid,y2Grid...8
x1#,y1#:x2#,y2#...8
drawpoint, drawpointGrid, drawpointScaled...8
backgroundColor..9
drawingColor..9
lowlightColor, highlightColor..9
dullColor...9
accentColor...9
lowtextColor, hightextColor..9

Create Grid...10
Get and Set Grid Attributes...10
Destroy Grid...10
Image Grids..11
Buffering..11

Color...13
Colors...13
RGB Colors..13
Color Functions..14
color..14
Standard Colors..15

Messages..17
Messages...17
Window Messages and Grid Messages...17
Message Anatomy..18
window, grid, wingrid..18
message aka message number...18
v0,v1,v2,v3,r0,r1..18
Message Queue..19
Process Message...19
Window Function...20
Grid Functions..20
Sending Messages..21
Program Wide Messages..21
CEO Function...22
Messages NOT...23
Messages Simple..23
Messages Advanced...23
Messages Sophisticated..23
GraphicsDesigner Messages..24
Keyboard Messages..25

x,y...25
state...25
time...25
Keyboard Message Examples..25
WindowKeyDown vs WindowKeyUp...26
Virtual Key Codes..26

Mouse Messages...27
x,y...27
state...27
time...27

GraphicsDesigner Functions..29
Function Categories...29
Reference Pages...29
Arguments - Pass By Reference..29
Return Values...29
Runtime Errors...29
GraphicsDesigner Function Quick Reference...29

Miscellaneous Functions..30
Color Functions..30
Window Functions...30
Grid Functions..31
Drawing Functions...32
Image Functions...33
Focus Functions..33
Message Functions...33
Messages...33

Miscellaneous Functions..34
Color Functions..38
Window Functions...40
Grid Functions..44
Drawing Functions...52
Image Functions...58
Focus Functions..62
Message Functions...63
Messages...68

Overview
GraphicsDesigner
To draw graphics, programs call functions in GraphicsDesigner, a built-in function library. Programs
can also monitor keyboard and mouse activity by processing messages from the general purpose
message queue built into GraphicsDesigner.

GraphicsDesigner is the basis for all graphics, from simple line drawings to sophisticated graphical user
interfaces. For example, GuiDesigner, the interactive GUI design tool built into the program
development environment, is a program that calls GraphicsDesigner functions.

All GraphicsDesigner functions begin with Xgr, as in:

 XgrCreateWindow()
 XgrDestroyWindow()
 XgrCreateGrid()
 XgrDestroyGrid()
 XgrProcessMessage()
 ... etc ...

Windows
Graphics is displayed in graphics windows, each of which is a rectangular area on the display with a
unique window number.

window
Programs can create any number of windows. To create a window, a program calls:

XgrCreateWindow (@window, winType, x, y, w, h, &winFunc(), disp$)

XgrCreateWindow() returns a unique window number to identify each window it creates, or 0 if for
any reason no window was created.

Window Types
Windows can have attributes like a title bar, a resize border, a minimize button or maximize button, etc.
A particular combination of the following window type attribute bits is called a window type:

 $$WindowTopMost - stays above other windows
 $$WindowNoSelect - window is not selected by mouse button events
 $$WindowNoFrame - window has no resize frame
 $$WindowResizeFrame - window has a resize frame
 $$WindowTitleBar - window has a title bar to display a window name
 $$WindowSystemMenu - window has a system menu button
 $$WindowMinimizeBox - window has a minimize button
 $$WindowMaximizeBox - window has a maximize button

Some window systems do not support individual selection of the window features shown above, so
windows may display more or less features than requested.

GraphicsDesigner - Programmer Guide and Reference - Page 1

Grids
Programs do not draw directly into windows. Programs create one or more grids in each window, each
of which is a rectangular area with its own coordinate systems and attributes like size, background
color, drawing color, drawpoints, etc.

The attribute settings in each grid are private, so graphics operations in one grid have no effect on other
grids. No matter how many grids a program creates, each grid is independent.

To create a grid, programs call:

XgrCreateGrid (@grid, gridType, x, y, w, h, window, parent, func)
 grid - unique grid number returned to identify the grid
 gridType - number that specifies the grid type of the grid
 x - horizontal location of left edge of grid
 y - vertical location of upper edge of grid
 w - width of grid in pixels
 h - height of grid in pixels
 window - window number of window that contains grid
 parent - parent grid (0 if window is its parent)
 func - address of grid function that operates grid

grid
XgrCreateGrid() assigns a unique grid number to each grid. grid is the first argument to most
GraphicsDesigner functions, so all graphics operations are directed at a single grid, and all other grids
are unaffected.

Grid Type
Every grid has a grid type. Simple coordinate grids, suitable for all kinds of graphics, are grid type 0.
Image grids are grid type 1.

These two grid types are pre-defined by GraphicsDesigner, and pure graphics programs need not create
others. On the other hand, dozens of grid types exist in GUI programs - see GuiDesigner.

Coordinate Systems
GraphicsDesigner supports five coordinate systems:

 Display Coordinates - 0,0 is upper left corner of display
 Window Coordinates - 0,0 is upper left corner of window
 Local Coordinates - 0,0 is upper left corner of grid
 Grid Coordinates - specifies corners of grid in pixel units
 Scaled Coordinates - specifies corners of grid in any units

Page 2 - GraphicsDesigner - Programmer Guide and Reference

Coordinate Conversion
Conversions between coordinate systems are provided by:

 XgrConvertDisplayToGrid (grid, xDisp, yDisp, @xGrid, @yGrid)
 XgrConvertDisplayToLocal (grid, xDisp, yDisp, @x, @y)
 XgrConvertDisplayToScaled (grid, xDisp, yDisp, @x#, @y#)
 XgrConvertDisplayToWindow (grid, xDisp, yDisp, @xWin, @yWin)
 XgrConvertGridToDisplay (grid, xGrid, yGrid, @xDisp, @yDisp)
 XgrConvertGridToLocal (grid, xGrid, yGrid, @x, @y)
 XgrConvertGridToScaled (grid, xGrid, yGrid, @x#, @y#)
 XgrConvertGridToWindow (grid, xGrid, yGrid, @xWin, @yWin)
 XgrConvertLocalToDisplay (grid, x, y, @xDisp, @yDisp)
 XgrConvertLocalToGrid (grid, x, y, @xGrid, @yGrid)
 XgrConvertLocalToScaled (grid, x, y, @x#, @y#)
 XgrConvertLocalToWindow (grid, x, y, @xWin, @yWin)
 XgrConvertScaledToDisplay (grid, x#, y#, @xDisp, @yDisp)
 XgrConvertScaledToGrid (grid, x#, y#, @xGrid, @yGrid)
 XgrConvertScaledToLocal (grid, x#, y#, @x, @y)
 XgrConvertScaledToWindow (grid, x#, y#, @xWin, @yWin)

Grid Location Coordinates
The upper-left : lower-right corners of grids are provided by:

 XgrGetGridBoxDisplay (grid, @x1Disp, @y1Disp, @x2Disp, @y2Disp)
 XgrGetGridBoxGrid (grid, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
 XgrGetGridBoxLocal (grid, @x1, @y1, @x2, @y2)
 XgrGetGridBoxScaled (grid, @x1#, @y1#, @x2#, @y2#)
 XgrGetGridBoxWindow (grid, @x1Win, @y1Win, @x2Win, @y2Win)

Drawing Coordinates
Graphics is drawn in any combination of three coordinate systems:

 Local Coordinates - XgrDrawPoint (grid, color, x, y)
 Grid Coordinates - XgrDrawPointGrid (grid, color, xGrid, yGrid)
 Scaled Coordinates - XgrDrawPointScaled (grid, color, x#, y#)

GraphicsDesigner includes a complete set of drawing functions for local coordinates, grid coordinates,
and scaled coordinates.

For example, a line is drawn from the upper-left to lower-right corner of the following grid by all three
of the line drawing functions:

 XgrCreateWindow (@win, winType, 300, 300, 200, 200, &winFunc(), "")
 XgrCreateGrid (@grid, gridType, 10, 10, 100, 100, win, 0, gfunc)
 XgrSetGridBoxGrid (grid, -49, 50, 50, -49)
 XgrSetGridBoxScaled (grid, -320, +85, +14495, -40)
 XgrDrawLine (grid, $$Red, 0, 0, 99, 99)
 XgrDrawLineGrid (grid, $$Green, -49, 50, 50, -49)
 XgrDrawLineScaled (grid, $$Blue, -320, +85, +14495, -40)

GraphicsDesigner - Programmer Guide and Reference - Page 3

Display Coordinates
Display coordinates are the natural coordinates of display screens.

The display coordinates of the upper-left corner of every display is fixed at (xDisp,yDisp) = (0,0).

Display coordinates (xDisp,yDisp) increase by 1 unit per pixel rightward and downward, and cannot
be offset, inverted or scaled.

Window Coordinates
Window coordinates are the natural coordinates of windows.

The window coordinates of the upper-left corner of every window is fixed at (xWin,yWin) = (0,0).

Window coordinates (xWin,yWin) increase by 1 unit per pixel rightward and downward and cannot be
offset, inverted or scaled.

Local Coordinates
Local coordinates are the natural coordinates of grids.

The local coordinates of the upper-left corner of every grid is fixed at (x,y) = (0,0).

Local coordinates (x,y) increase by 1 unit per pixel rightward and downward and cannot be offset,
inverted or scaled.

Page 4 - GraphicsDesigner - Programmer Guide and Reference

Grid Coordinates
Grid coordinates can be offset and/or inverted.

Consider a 100x100 pixel grid created by:

 XgrCreateGrid (@grid, 0, 200, 200, 100, 100, window, 0, 0)

The upper-left : lower-right corners of this grid are located at window coordinates (200,200:299,299),
local coordinates (0,0:99,99), and grid coordinates (0,0:99,99).

When a grid is created, its grid coordinates and local coordinates are the same, (0,0:w-1,h-1), where
w = width and h = height in pixels.

But XgrSetGridBoxGrid (grid, x1Grid, y1Grid, x2Grid, y2Grid) can redefine the grid
coordinates of the upper-left : lower-right corners of a grid to offset its grid coordinates horizontally
and/or vertically from its local coordinates, as well as invert horizontally and/or vertically.

But grid coordinates are always measured in 1 pixel units, and XgrSetGridBoxGrid() cannot move
grids or alter grid coordinates scale. So any time XgrSetGridBoxGrid() is called with x2Grid
and/or y2Grid arguments that are not consistent with grid width and/or height, x2Grid and/or
y2Grid are computed as follows:

 IF (x1Grid <= x2Grid) THEN
 x2Grid = x1Grid + (width - 1)
 ELSE
 x2Grid = x1Grid - (width - 1)
 END IF
 IF (y1Grid <= y2Grid) THEN
 y2Grid = y1Grid + (height - 1)
 ELSE
 y2Grid = y1Grid - (height - 1)
 END IF

Scaled Coordinates
Scaled coordinates can be offset and/or inverted and/or scaled.

A pair of floating-point scaled coordinates can be assigned to the upper-left : lower-right corners of
every grid. For example, scaled coordinates (-320,+85:+14495,-40) could be assigned to the
(upper-left:lower-right) corners of the grid by:

 XgrSetGridBoxScaled (grid, -320, 85, 14495, -40)

The corners of this grid are now:

 Coordinates Upper-Left Lower-Right
 Local (0, 0) (99, 99)
 Scaled (-320, +85) (+14495, -40)

GraphicsDesigner - Programmer Guide and Reference - Page 5

Grid Box
The rectangle defined by the upper-left and lower-right corners of a grid is its grid box. Drawing to a
grid is confined to the grid-box.

Example
The following program segment creates a window and grid, clears the grid to black, then draws red,
green, and blue lines between its upper-left and lower-right corners.

 XgrCreateWindow (@win, 0, 0, 0, 600, 400, 0, "")
 XgrCreateGrid (@grid, 0, 200, 200, 100, 100, win, 0, 0)
 XgrSetGridBoxGrid (grid, -99, -99, 0, 0)
 XgrSetGridBoxScaled (grid, -320, +85, +14995, -40)
'
 XgrClearGrid (grid, $$Black)
 XgrDrawLine (grid, $$Red, 0, 0, 99, 99)
 XgrDrawLineGrid (grid, $$Green, -99, -99, 0, 0)
 XgrDrawLineScaled (grid, $$Blue, -320, +85, +14495, -40)

Grid Placement
Grids can be positioned at any location within a graphics window. They can nest within each other, but
should generally not overlap.

Grids obscure each other. Grids are analogous to opaque objects.

Grid Advantages
Grids simplify graphics applications considerably. Programs can compute in natural units, create grids
of any size, position them anywhere, and define their dimensions in any convenient units. Drawing in
grids is then scaled and positioned automatically, and drawn with the current attributes of the grid.

Page 6 - GraphicsDesigner - Programmer Guide and Reference

Grid Attributes
Each grid has a number of attributes or properties that determine its appearance and behavior. The
value of a particular property is called its setting. For example, backgroundColor is a property, while
$$Blue is a setting it might have. GraphicsDesigner has functions to get and set all its grid attributes.

grid
grid is the grid number XgrCreateGrid() assigns a grid when it is created. grid is passed to all
GraphicsDesigner functions that perform an operation associated with a grid.

window
window is the window number of the window that contains grid.

parent
parent is the grid number of another grid that contains and may take certain responsibilities for the
operation of grid.

gridType
gridType is provided by GraphicsDesigner to make it easy for programs to groups similar grids into a
single catagory. GraphicsDesigner assigns a new gridType each time XgrRegisterGridType() is
called with a new grid type name.

gridType = 0 means the grid is a simple coordinate grid. Mouse events are never directed to
coordinate grids, but to the next larger enabled grid that contains it that is not a coordinate grid.

gridType = 1 means the grid is an image grid. Drawing can be directed at image grids, but the image
does not appear on the display, it is simply held in memory. On the other hand, the image can be
transferred quickly to the display by GraphicsDesigner functions, and image grids can be attached to
other grids to buffer them.

gridFunction
gridFunction is the function address called by XgrSendMessage() when it is called with a valid
window or grid number and a valid message number.

bufferGrid
bufferGrid is the image grid that will buffer grid. The gridType of the grid assigned to
bufferGrid must be 1, which is the gridType reserved for image grids.

bufferGrid is initialized to 0 when a grid is created, which disables buffering and thereby speeds
drawing operations.

font, fontName, fontSize, fontWeight, fontItalic,fontAngle
font is a font number created by XgrCreateFont() to refer to a specific font created to represent
specified fontName, fontSize, fontWeight, fontItalic, fontAngle. font is passed to all
GraphicsDesigner functions that require a font argument.

fontName is the typeface name of the font, fontSize is ten times the point size, fontWeight
specifies the boldness of a font between 0 and 1000, fontItalic specifes the degree of italic tilt of a
font between 0 and 1000, and fontAngle is the angle in 1/10th degrees the characters are rotated from
normal horizontal orientation.

GraphicsDesigner - Programmer Guide and Reference - Page 7

x,y,width,height
x,y,width,height are the position of grid within its parent grid, and its size in pixels. If a grid has
no parent grid, x,y is its position within the window that contains it.

x1,y1:x2,y2
x1,y1:x2,y2 are the upper-left:lower-right corners of grid in local coordinates. x1,y1 are
fixed at 0,0 in local coordinates, while x2,y2 are always width-1,height-1.

x1,y1:x2,y2 are established when grid is created by XgrCreateGrid() or resized by
XgrSetGridPositionAndSize().

x1Grid,y1Grid:x2Grid,y2Grid
x1Grid,y1Grid:x2Grid,y2Grid are the upper-left:lower-right corners of grid in grid coordinates.
When a grid is created, its x1Grid,y1Grid:x2Grid,y2Grid is set to 0,0:width-1,height-1.

No matter what values x1Grid,y1Grid:x2Grid,y2Grid contain, x1Grid,y1Grid are the grid
coordinates of the grids upper-left corner and x2Grid,y2Grid are the grid coordinates of the grids
lower-right corner.

Sometimes it is convenient to reverse x-axis and/or y-axis direction. x2Grid < x1Grid makes x-axis
grid coordinates increase toward the left, while y2Grid < y1Grid makes y-axis grid coordinates
increase toward the top.

x1#,y1#:x2#,y2#
x1#,y1#:x2#,y2# are the upper-left:lower-right corners of grid in scaled coordinates. When a grid
is created, x1#,y1#:x2#,y2# are set to 0,0:x2,x2, same as the local coordinates.

No matter what values x1#,y1#:x2#,y2# contain, x1#,y1# are the scaled coordinates of the grids
upper-left corner and x2#,y2# are the scaled coordinates of the grids lower-right corner.

Sometimes it is convenient to reverse x-axis and/or y-axis direction. x2# < x1# makes x-axis scaled
coordinates increase toward the left, while y2# < y1# makes y-axis scaled coordinates increase toward
the top.

drawpoint, drawpointGrid, drawpointScaled
drawpoint, drawpointGrid, drawpointScaled are the current drawing coordinates for local, grid,
and scaled coordinates, which means the final point specified in the previous draw or move function.
For example, drawpoints are left at the endpoint of lines drawn line drawing functions, and at the
position specified in move functions.

drawpoint, drawpointGrid, drawpointScaled are independent, one for each coordinate system.

Page 8 - GraphicsDesigner - Programmer Guide and Reference

backgroundColor
When a grid is cleared, it is filled with its backgroundColor unless specified otherwise in the
function. When text is drawn with XgrDrawTextFill(), backgroundColor specifies the background
color the text rectangle is cleared to before the text is drawn.

drawingColor
Points, lines, and text are drawn in the drawingColor unless specified otherwise in the function.

lowlightColor, highlightColor
When three dimensional shading effects are drawn at the border of grids, downslopes and upslopes are
generally drawn in the lowlightColor and highlightColor respectively.

dullColor
When all or part of a grid needs to be deemphasized, part of it is usually drawn in its dullColor to
make it less obvious and often to indicate some feature is temporarily disabled. For example, text that
does not currently apply is often drawn in dullColor.

GraphicsDesigner does not draw deselect effects automatically. It only holds the dullColor setting
so programs have a convenient place to keep all the important colors for each grid.

accentColor
When all or part of a grid needs to be emphasized, part of it is usually drawn in its accentColor to
attract attention. For example, selected text items are often drawn in the accentColor.

GraphicsDesigner does not draw accent effects automatically. It only holds the accentColor setting
so programs have a convenient place to keep the important colors for each grid.

lowtextColor, hightextColor
When text is drawn with three dimensional shading, the downslopes and upslopes of characters are
generally drawn in the lowtextColor and hightextColor respectively.

GraphicsDesigner does not draw three dimensional text. It only holds lowtextColor and
hightextColor so programs have a convenient place to keep the important colors for each grid.

GraphicsDesigner - Programmer Guide and Reference - Page 9

Create Grid
XgrCreateGrid (@grid, gridType, x, y, w, h, window, parent, gridFunction)

creates a grid in window, positions its upper-left corner at x,y in the local coordinates of its
parent, sets its local coordinates to 0,0:w-1,h-1, and initializes its attributes to default values.

When grid is passed to graphics functions, operations are performed with the grid attributes.

Get and Set Grid Attributes
Functions XgrGetAttributeName() and XgrSetAttributeName() get and set the named grid attribute.
These functions perform the action described by their name and arguments. For example:

 XgrGetDrawingRGB (exhaustManifold, @red, @green, @blue)
 red=red+deltaRed : green=green+deltaGreen : blue=blue+deltaBlue
 XgrSetDrawingRGB (exhaustManifold, red, green, blue)
'
 XgrGetGridBoxGrid (grid, x1Grid, y1Grid, x2Grid, y2Grid)
 XgrSetBackgroundColor (grid, $$DarkBlue)

Destroy Grid

XgrDestroyGrid() discards grids when they are no longer needed. It is important to destroy grids
when they are not longer needed, since since every grid consumes about 1KB of system memory.
XgrDestroyGrid() frees grid numbers for reuse.

XgrDestroyWindow() destroys all the grids in the window and removes the window from the display.

 XgrDestroyGrid (grid) ' destroy grid
 XgrDestroyWindow (window) ' destroy window and all grids in window

Page 10 - GraphicsDesigner - Programmer Guide and Reference

Image Grids
Image grids, or images, are like regular grids except they're invisible. Graphics operations directed at
them are stored in a memory image, not displayed. Image grids can be saved on disk, loaded from disk,
copied into other image grids, and copied into regular grids.

Image grids are created by XgrCreateGrid(), when gridType=1. All graphics operations that apply
to regular grids can be directed at image grids too.

 XgrCreateGrid (@grid,0,x,y,w,h,win,0,0) ' create grid
 XgrCreateGrid (@image0,1,x,y,w,h,win,0,0) ' and image0
 XgrCreateGrid (@image1,1,x,y,w,h,win,0,0) ' and image1
 XgrLoadImage (yourFace$, @image[]) ' image[]=face
 XgrSetImage (image0, @image[]) ' image0=face
 XgrDrawImage (image1,image0,startX,startY,endX,endY) ' image1=face
 XgrDrawImage (grid,image0,startX,startY,endX,endY) ' grid=face
 XgrDestroyGrid (image0) ' trash image0

Buffering
When one window is moved over another, contents of the covered window are lost. When the top
window is removed, the obscured area of the covered window is exposed, revealing an invalid image.
Under such circumstances, programs must redraw their grids to update their windows. But some
programs may find it difficult, time consuming, or even impossible to reconstruct the drawing area.
Image grids provide an easy way around this problem.

Image grids can be attached to regular displayable grids. Graphics operations directed at the grid are
also performed on the image. This has the effect of buffering the displayable grid.

 XgrSetGridBuffer (grid, image0) ' buffer grid with image0
 XgrDrawLine (grid,$$Blue,x1,y1,x2,y2) ' line in grid and image0
 XgrDrawCircle (image0, $$Red, radius) ' draw circle on image0 only
 XgrSetGridBuffer (grid, 0) ' stop buffering grid
 XgrClearGrid (grid, $$Black) ' clear grid to black
 XgrRefreshGrid (grid) ' line and circle on grid
 XgrDestroyGrid (image0) ' release image0 memory

When a grid needs to be redrawn, XgrRefreshGrid() will do it quickly and efficiently. Buffering
displayable grids with image grids is convenient, but involves two costs. First, graphics operations
directed at buffered grids are slowed significantly, since they are performed twice, once to the
displayable grid and once to the image grid. Second, image grids consume memory. A 64x64 pixel
image consumes between 2KB and 32KB, depending on the image type, while a 512x512 pixel image
consumes 128KB to 2MB.

Buffering is performed automatically for grids that have a valid image grid attached. When image grids
are created, their pixels are cleared to zero (black).

GraphicsDesigner - Programmer Guide and Reference - Page 11

Page 12 - GraphicsDesigner - Programmer Guide and Reference

Color
Colors
Inside GraphicsDesigner, background and drawing colors are held as four USHORT values, one each for
red,green,blue intensity RGB, plus one for a standard color number.

Programs can specify colors as:

· Separate 16-bit values for (red,green,blue)
· 32-bit value containing 8-bit values for (red,green,blue,color)
· Standard colorNumber between 0 and 124

RGB Colors
16-bit per color RGB easily represents every displayable and printable color. Over 48 trillion different
colors can be specified in this RGB format. Human beings can distinguish only about 48 million colors.

Colors that are not red, green, or blue are created by combinations of red, green, blue intensities. The
following table shows how a number of colors are often synthesized (values in hex):

 Color R-16 G-16 B-16 R-8 G-8 B-8 color#
 $$Black 0000 0000 0000 00 00 00 00
 $$DarkGrey 4000 4000 4000 40 40 40 1F
 $$MediumGrey 8000 8000 8000 80 80 80 3E
 $$LightGrey C000 C000 C000 C0 C0 C0 5D
 $$White FFFF FFFF FFFF FF FF FF 7C
 $$DarkRed 4000 0000 0000 40 00 00 19
 $$MediumRed 8000 0000 0000 80 00 00 32
 $$BrightRed C000 0000 0000 C0 00 00 4B
 $$LightRed FFFF 0000 0000 FF 00 00 64
 $$LightGreen 0000 FFFF 0000 00 FF 00 14
 $$LightBlue 0000 0000 FFFF 00 00 FF 04
 $$LightCyan 0000 FFFF FFFF 00 FF FF 18
 $$LightYellow FFFF FFFF 0000 FF FF 00 78
 $$LightMagenta FFFF 0000 FFFF FF 00 FF 3C
 $$MediumAqua 4000 C000 8000 40 C0 80 2A
 $$DarkBrown 4000 4000 0000 40 40 00 1E

The number of colors a computer can display at one time varies considerably from system to system.
Some represent each primary color with an 8-bit intensity value, for 16 million simultaneously
displayable colors. Others display only 256 different colors at one time, though each color can be any
of these 16 million colors.

The colors actually displayed by GraphicsDesigner are as close to the specified colors as possible, given
the state of computer system. No matter what system applications run on, they function identically, and
graphics will appear as similar to the original results as practical.

GraphicsDesigner - Programmer Guide and Reference - Page 13

Color Functions
Functions that draw into grids do not change their color attributes. Only functions that explicitly set
colors alter color attributes. A color argument of -1 means draw with the previously set colors.

The following functions convert colors between color formats, and get and set colors for a grid :

 XgrConvertColorToRGB (color, @red, @green, @blue)
 XgrConvertRGBToColor (red, green, blue, @color)
 XgrGetBackgroundColor (grid, @color)
 XgrGetBackgroundRGB (grid, @red, @green, @blue)
 XgrGetDefaultColors (@back, @draw, @lo, @hi, @dull, @acc, @l, @h)
 XgrGetDrawingColor (grid, @color)
 XgrGetDrawingRGB (grid, @red, @green, @blue)
 XgrGetGridColors (grid, @back, @draw, @lo, @hi, @dull, @acc, @l, @h)
 XgrSetBackgroundColor (grid, color)
 XgrSetBackgroundRGB (grid, red, green, blue)
 XgrSetDefaultColors (back, draw, lo, hi, dull, acc, l, h)
 XgrSetDrawingColor (grid, color)
 XgrSetDrawingRGB (grid, red, green, blue)
 XgrSetGridColors (grid, back, draw, lo, hi, dull, acc, l, h)

color
Graphics operations take an abbreviated color argument containing four 8-bit fields, one each for
red,green,blue intensity, plus a standard colorNumber in the low byte. This argument is converted
into internal RGB form as follows:

 color = rgbc : 24-31 = r : 16-23 = g : 8-15 = b : 0-7 = colorNumber
 color = 0 RGB = (0, 0, 0) = black
 color = -1 RGB = current background or drawing color
 colorNumber = 0 RGB = red << 24 : green << 16 : blue << 8
 colorNumber < 124 RGB = from standard color[] array
 colorNumber >= 124 RGB = reserved

The standard colorNumber is more than adequate for most applications. When accurate, high-quality
color is needed, 8-bit per RGB is almost always sufficient. For the very highest quality image
rendering, 8-bit per RGB is not quite sufficient, however.

16-bit per RGB is more than sufficient for the most demanding applications. 16-bit per RGB colors
cannot be passed to drawing functions however. They must be set in advance by
XgrSetBackgroundRGB() and/or XgrSetDrawingRGB().

A -1 color argument tells drawing functions to clear or draw in the previously set background or
drawing color. A -1 color argument tells color setting functions to leave the current value unchanged.

Functions that draw into grids do not change their color attributes. Only functions that explicitly set
colors alter color attributes.

Page 14 - GraphicsDesigner - Programmer Guide and Reference

Standard Colors
An internal standardColor[] array contains a 5-intensity per color array of equally spaced colors
created as follows:

DIM color[255]
DIM intensity[4]
intensity[0] = 0x0000 ' OFF
intensity[1] = 0x4000 ' 1/4 intensity
intensity[2] = 0x8000 ' 1/2 intensity
intensity[3] = 0xC000 ' 3/4 intensity
intensity[4] = 0xFFFF ' full intensity
colorNumber = 0
FOR r = 0 TO 4
 red = intensity[r]
 FOR g = 0 TO 4
 green = intensity[g]
 FOR b = 0 TO 4
 blue = intensity[b]
 color[colorNumber].r = red
 color[colorNumber].g = green
 color[colorNumber].b = blue
 color[colorNumber].x = colorNumber
 INC colorNumber
 NEXT
 NEXT
NEXT
color = 25 * red + 5 * green + blue
red,green,blue are intensities 0 to 4.

Human beings do not perceive color intensities linearly. It is much harder to distinguish similar colors
from each other when they are dark or bright, as opposed to intermediate. Some computers and system
software compensate by adjusting colors so equally spaced intensities appear equally spaced. If they
don't, GraphicsDesigner performs color compensation, but only if it knows this kind of compensation
hasn't already been performed, and the correction can be made without replacing solid colors with
colors simulated by dithering. Color compensation has no effect on program values.

GraphicsDesigner - Programmer Guide and Reference - Page 15

Page 16 - GraphicsDesigner - Programmer Guide and Reference

Messages
Messages
When certain kinds of events take place in graphics windows, GraphicsDesigner creates messages to
describe them.

For example, when a keyboard key is pressed, GraphicsDesigner creates a WindowKeyDown message.
When the mouse moves or a button is depressed, a MouseMove or MouseDown message is created.
When a user clicks on a window, a WindowSelected message is created.

In general, whenever the state of the keyboard, mouse, or a window changes, GraphicsDesigner creates
a message that describes it.

Only events in graphics windows are detected by GraphicsDesigner, so only events in graphics
windows cause the creation of messages.

Window Messages and Grid Messages
Any particular message name, like WindowKeyDown or MouseDown, refers to either windows or grids,
never both.

Window messages refer to windows.

Grid messages refer to grids.

Window message names must start with "Window".
Grid message names must not start with "Window".

GraphicsDesigner - Programmer Guide and Reference - Page 17

Message Anatomy
Every GraphicsDesigner message contains 8 XLONG values:

 (window, message, v0, v1, v2, v3, r0, r1)
 ... or ...
 (grid, message, v0, v1, v2, v3, r0, r1)
 ... or ...
 (wingrid, message, v0, v1, v2, v3, r0, r1)

window, grid, wingrid
window contains the window number the message refers to.

grid contains the grid number the message refers to.

wingrid contains the window or grid number a message refers to. wingrid is the name given to
arguments that contain a window number in some contexts, and a grid number in others.

message aka message number
message contains a message number. Message numbers are initially based on strings like
"MouseDown", but messages contain message numbers so programs must get the message number for
every message they use when they start up and assign them to similar named variables like
#MouseDown.

The message number for any message name string is returned by two functions, the only difference
being that XgrRegisterMessage() creates a new message number for message names that don't
already exist, while XgrMessageNameToNumber() returns zero, which is an invalid message number.

 XgrRegisterMessage (messsage$, @message)
 XgrMessageNameToNumber (message$, @message)

v0,v1,v2,v3,r0,r1
v0,v1,v2,v3,r0,r1 contain message arguments whose meanings depend on message. For example,
in mouse messages v0,v1,v2,v3,r0,r1 contain x,y,state,time,0,0.

In some messages, one or more arguments contains no defined value. GraphicsDesigner and
GuiDesigner always fill these arguments with zero when calling other programs, and expect to receive
zeros in these arguments from other programs.

Page 18 - GraphicsDesigner - Programmer Guide and Reference

Message Queue
GraphicsDesigner combines these arguments into a complete message and places it in a message queue.
Since it is built into GraphicsDesigner, the message queue is accessible by all programs.

GraphicsDesigner stores messages in the message queue until a program is ready to process them.
Programs receive messages in the order they were put in the queue. First come, first served. Or in
computer lingo, first-in, first-out, or FIFO.

Programs can add their own messages to the queue too. The message queue is a general purpose
mechanism for one part of a program to communicate with another, even if the program creates no
windows or graphics at all.

Process Message
Programs can call XgrPeekMessage() to extract a message from the queue, examine its arguments,
and possibly call other functions and/or take actions in response.

 XgrPeekMessage (@grid, @message, @v0, @v1, @v2, @v3, @r0, @r1)
 XgrDeleteMessages (1)
 [... examine and take action based on grid,message,v0,v1,v2,v3,r0,r1]

Alternatively, programs can have GraphicsDesigner call the appropriate functions to process n
messages by calling:

 XgrProcessMessages (n)

GraphicsDesigner - Programmer Guide and Reference - Page 19

Window Function
Windows can be assigned a window function when they are created by XgrCreateWindow(), or later by
XgrSetWindowFunction().

XgrProcessMessages() calls the window function the message refers to directly or indirectly...

For window messages, XgrProcessMessages() calls the window function assigned to the window
specified by the window argument.

For grid messages, XgrProcessMessages() calls the window function assigned to the window that
contains the grid specified by the grid argument.

XgrProcessMessages() calls window functions as follows:

 @func (wingrid, message, v0, v1, v2, v3, 0, wingrid)

XgrProcessMessages() calls functions that expect eight XLONG arguments.

Window functions are usually declared and defined as follows:

 DECLARE FUNCTION Name (wingrid, message, v0, v1, v2, v3, r0, ANY)
 FUNCTION Name (wingrid, message, v0, v1, v2, v3, r0, (r1, r1$))

Grid Functions
When window functions receive a window message, they can ignore it or take some action. When
finished, they return to the calling function, which is generally XgrProcessMessages().

When window functions receive a grid message, they can ignore it, take some action, or pass it on to the
grid function whose address was func in the XgrCreateGrid() call that created the grid. The easiest
way to call grid functions is to pass the arguments to XgrSendMessage() and let XgrSendMessage()
look up the grid function assigned to grid and call it, as in:

XgrSendMessage (wingrid, message, v0, v1, v2, v3, 0, wingrid)

XgrSendMessage() calls only 8 argument functions, so all grid functions must take eight arguments.
The first seven arguments are always XLONG, while the type of the last can be XLONG, STRING, a
composite type, or an array of any valid type.

Grid functions are usually declared and defined as follows:

 DECLARE FUNCTION Name (grid, message, v0, v1, v2, v3, r0, ANY)
 FUNCTION Name (grid, message, v0, v1, v2, v3, r0, (r1, r1$))

Page 20 - GraphicsDesigner - Programmer Guide and Reference

Sending Messages
To send a message means to call a window function, a grid function, or any other function designed to
take window and/or grid messages.

To send a message to a window means to call the window function associated with the window
argument in the message.

To send a message to a grid means to call the grid function associated with the grid argument in the
message.

To think of "sending a message to a grid" may seem strange at first, since sending messages is not part
of the programming language. But "send message" is a lot more compact than "look up the window or
grid function assigned to the window or grid argument in the message and call the function, passing the
message arguments".

When you write GuiDesigner programs, you'll find the notion of sending a message is practically
indespensible.

Program Wide Messages
Sending messages to windows and grids simplifies the structure of a program by directing messages to
only that part of a program that is designed to handle it. But certain events are important or relevant to
all or most parts of a program.

For example, many programs display a set of function keys that are supposed to perform certain
functions whenever they are pressed, regardless of which window is selected. When processed by
XgrProcessMessages(), however, keyboard messages for function keys are sent to the same place as
any keyboard message - to the window function of the selected window. Since programs can have
several window functions, every window function would have to be prepared to check for function keys
and take appropriate action.

To make it easier for programs to process messages that are relevant to several parts of a program,
GraphicsDesigner lets each program register one CEO function.

GraphicsDesigner - Programmer Guide and Reference - Page 21

CEO Function
A program can register only one CEO function, but XgrProcessMessages(), sends every message it
processes to that function, no matter what the message contains. Furthermore, XgrProcessMessages()
sends each message to the CEO function before any other, and the CEO can cancel the message to
prevent its propogation to other functions.

Programs call XgrSetCEO(func) to set the address of the CEO function to func. An address of 0
means no CEO function is active. Only one CEO function can be active at a time, so each time
XgrSetCEO(func) is called, the previous CEO function is replaced by func.

When messages are processed by XgrProcessMessages(), they are sent to the CEO function, then to
the window function appropriate to the window/grid and message. This sequence is initiated when
programs call XgrProcessMessages().

XgrProcessMessages() checks to see if a CEO function exists. If it does, it calls the CEO function,
passing it the message arguments, plus 0 in r0 and a duplicate of the window or grid argument in r1.
The CEO can examine the message and take whatever action it needs to perform its function.

The CEO function can return -1 in r0 to cancel the message. When XgrProcessMessages() finds
the CEO function returned -1 in r0, it cancels the message and returns without calling any window
functions it otherwise would have called to process the message.

Page 22 - GraphicsDesigner - Programmer Guide and Reference

Messages NOT
Simple graphics programs don't need messages or the message queue, and can simpy ignore them. Only
programs that need to detect keyboard and mouse events in graphics windows need messages.

Messages Simple
Programs that need to monitor keyboard and/or mouse activities in graphics windows have to recognize
keyboard and/or mouse messages, but can discard others.

XgrPeekMessage() and XgrDeleteMessages() are all they need to extract a message from the queue,
take whatever action is appropriate, then remove the message from the queue so the next one becomes
accessible. In this method, only your own program calls functions in your program.

Messages Advanced
When a program controls several windows, it's sometimes appropriate to write separate functions for
windows that have special functionality that's awkward to handle in a single window function.

Whenever a program is ready to process a message, it can call XgrProcessMessages() and let it call
the window function assigned to the window.

Messages Sophisticated
Sophisticated programs, like those with graphical user interfaces often send, receive, and process a wide
variety of messages. Often they have a wide variety of special purpose grids, supported by one grid
function per grid type.

The GuiDesigner programmer guide contains additional discussion of messages and the message queue,
since message passing is a central part of its architecture. Furthermore, GuiDesigner contains additional
message functions that work together to support sophisticated message passing for any program,
whether they perform graphics or not.

GraphicsDesigner - Programmer Guide and Reference - Page 23

GraphicsDesigner Messages
The messages in the following table are put in the message queue by GraphicsDesigner in response to
system events. XgrProcessMessages() sends these messages to window functions when it processes
them, unless no window function is defined for the associated window.

In the following table, window and grid messages are distinguished by a w or g before the message
name. More detailed descriptions of these messages follows the "Message Functions" descriptions at the
end of the next section.

 g MouseDown A mouse button was depressed.
 g MouseDrag The mouse moved while one or more buttons was down.
 g MouseEnter The mouse cursor moved into a grid.
 g MouseExit The mouse cursor moved out of a grid.
 g MouseMove The mouse moved while no buttons were down.
 g MouseUp A mouse button was released.
 g RedrawGrid Redraw a grid to update its contents.
 g TimeOut A grid timer started with XgrSetGridTimer() counted down to zero.
 w WindowDeselected A window was deselected and no longer has keyboard focus.
 w WindowDestroyed A window was destroyed.
 w WindowDisplayed A window was displayed.
 w WindowHidden A window was hidden or minimized.
 w WindowKeyDown A keyboard key was depressed.
 w WindowKeyUp A keyboard key was released.
 w WindowRedraw A window needs to be redrawn partially or completely.
 w WindowResized A window was resized.
 w WindowSelected A window was selected and now has keyboard focus.

Page 24 - GraphicsDesigner - Programmer Guide and Reference

Keyboard Messages
Keyboard messages contain the window number of the window that was selected when the keyboard
event was detected.

v0,v1,v2,v3,r0,r1 contain x,y,state,time,0,grid.

x,y
x,y contain the position of the mouse cursor in the local coordinates of the specified grid at the time
the keyboard event was detected. If x or y is negative, the mouse cursor was outside the specified
grid, or the mouse coordinates were unavailable.

state
state contains the state of the keyboard when the keyboard event was detected, and reflects the new
state of the keyboard.

 Bit 00 - 15 : Character code of some kind (see bits 20-21)
 Bit 16 - 23 : Keyboard "mode" keys (16=Shift, 17=Control, 18=Alt)
 Bit 24 - 31 : Virtual Key Code
 Bit 16 = 1 : Shift key was down when the keyboard event occured.
 Bit 17 = 1 : Control key was down when the keyboard event occured.
 Bit 18 = 1 : Alt key was down when the keyboard event occured.
 Bit 19 : Reserved (right Alt key down?)
 Bit 20 - 21 : Type of character code in Bit 00 - 15 (see below)
 Bit 20 - 21 : 0 = Bit 00 - 15 = Virtual Key Code (8-bits)
 : 1 = Bit 00 - 15 = ASCII character (8-bits)
 : 2 = Bit 00 - 15 = WIDE character (16-bits)
 : values 3 to 7 are reserved
 Bit 22 : Reserved (right Shift key down?)
 Bit 23 : Reserved (right Control key down?)

time
time contains the system millisecond time that the keyboard event was detected. time is not related to
time of day. It is simply a free running millisecond timer that computer systems usually initialize to
zero when they are started.

Keyboard Message Examples
Key 24-31 20-21 18 17 16 0-15 "." mode key states, key event
Down 97 1 0 0 0 97 a None down, "a" down
 Up 97 0 0 0 0 97 - None down, "a" up
Down 65 1 0 0 1 65 A Shift down, "a" down
 Up 65 0 0 0 1 65 - Shift down, "a" up
Down 65 0 0 1 0 65 ^A Ctl down, "a" down
Down 65 0 0 1 1 65 ? Ctl+Shift down, "a" down
Down 65 0 1 0 0 65 ? Alt down, "a" down
Down 65 0 1 0 1 65 ? Alt+Shift down, "a" down
Down 65 0 1 1 0 65 ? Alt+Ctl down, "a" down
Down 65 0 1 1 1 65 ? Alt+Ctl+Shift down, "a" down
 Up 65 0 1 1 1 65 ? Alt+Ctl+Shift down, "a" up
Down 39 0 0 1 0 39 Left Ctl down, LeftArrow press

GraphicsDesigner - Programmer Guide and Reference - Page 25

WindowKeyDown vs WindowKeyUp
Most programs respond to WindowKeyDown messages, but not WindowKeyUp messages, because that is
sufficient to react to all keystrokes.

WindowKeyDown messages are created at a rate of about 20 per second if a key is held down for more
than about .5 seconds, followed by a single WindowKeyUp when the key is released.

Virtual Key Codes
 8 0x08 KeyBackspace
 9 0x09 KeyTab
12 0x0C KeyClear
13 0x0D KeyEnter
16 0x10 KeyShift
17 0x11 KeyControl
18 0x12 KeyAlt
19 0x13 KeyPause
20 0x14 KeyCapLock
27 0x1B KeyEscape
32 0x20 KeySpace
33 0x21 KeyPageUp
34 0x22 KeyPageDown
35 0x23 KeyEnd
36 0x24 KeyHome
37 0x25 KeyLeftArrow
38 0x26 KeyUpArrow
39 0x27 KeyRightArrow
40 0x28 KeyDownArrow
44 0x2C KeyPrintScreen
45 0x2D KeyInsert
46 0x2E KeyDelete
47 0x2F KeyHelp

48 0x30 Key0
49 0x31 Key1
50 0x32 Key2
51 0x33 Key3
52 0x34 Key4
53 0x35 Key5
54 0x36 Key6
55 0x37 Key7
56 0x38 Key8
57 0x39 Key9
65 0x41 KeyA
66 0x42 KeyB
67 0x43 KeyC
68 0x44 KeyD
69 0x45 KeyE
70 0x46 KeyF
71 0x47 KeyG
72 0x48 KeyH
73 0x49 KeyI
74 0x4A KeyJ
75 0x4B KeyK
76 0x4C KeyL
77 0x4D KeyM
78 0x4E KeyN
79 0x4F KeyO
80 0x50 KeyP
81 0x51 KeyQ
82 0x52 KeyR
83 0x53 KeyS
84 0x54 KeyT
85 0x55 KeyU
86 0x56 KeyV
87 0x57 KeyW
88 0x58 KeyX
89 0x59 KeyY
90 0x5A KeyZ

 96 0x60 KeyPad0
 97 0x61 KeyPad1
 98 0x62 KeyPad2
 99 0x63 KeyPad3
100 0x64 KeyPad4
101 0x65 KeyPad5
102 0x66 KeyPad6
103 0x67 KeyPad7
104 0x68 KeyPad8
105 0x69 KeyPad9
106 0x6A KeyPadMultiply
107 0x6B KeyPadAdd
108 0x6C _
109 0x6D KeyPadSubtract
110 0x6E KeyPadDecimalPoint
111 0x6F KeyPadDivide
112 0x70 KeyF1
113 0x71 KeyF2
114 0x72 KeyF3
115 0x73 KeyF4
116 0x74 KeyF5
117 0x75 KeyF6
118 0x76 KeyF7
119 0x77 KeyF8
120 0x78 KeyF9
121 0x79 KeyF10
122 0x7A KeyF11
123 0x7B KeyF12
124 0x7C KeyF13
125 0x7D KeyF14
126 0x7E KeyF15
127 0x7F KeyF16
144 0x90 KeyNumLock

Page 26 - GraphicsDesigner - Programmer Guide and Reference

Mouse Messages
Mouse messages contain the grid number of the grid the message is prepared for and has mouse focus.
When no mouse buttons are down, the grid that contains the mouse cursor is also the mouse focus grid.
When a mouse button is depressed when none are currently down, the grid that contains the mouse
cursor automatically grabs mouse focus and holds it until all mouse buttons are released, at which time
mouse focus goes to the grid that contains the mouse cursor. Mouse messages are normally routed to
the grid with mouse focus, but MouseExit and MouseEnter messages may be generated for other
grids as the mouse cursor moves from grid to grid while mouse focus is grabbed.

v0,v1,v2,v3,r0,r1 contain x,y,state,time,0,grid.

x,y
x,y contain the position of the mouse cursor in the local coordinates of focusGrid at the time the
mouse event was detected.

x,y may indicate a mouse cursor position outside grid and/or focusGrid if mouse focus has been
grabbed by focusGrid.

state
 Bit 00 - 03 : Button # causing event (MouseDown and MouseUp only)
 Bit 04 - 06 : # of clicks (MouseDown only)
 Bit 07 : 1 if grid has mouse focus
 Bit 08 - 15 : Reserved
 Bit 16 - 23 : Keyboard "mode" keys (16=Shift, 17=Control, 18=Alt)
 Bit 24 - 31 : Up/Down image of up to 8 mouse buttons (1 = down)
 Bit 00 - 03 : Button #: None=0 : Left=1 : Center=2 : Right=3...
 Bit 16 = 1 : Shift key is down
 Bit 17 = 1 : Control key is down
 Bit 18 = 1 : Alt key is down
 Bit 24 = 1 : Left button is down
 Bit 25 = 1 : Center button is down
 Bit 26 = 1 : Right button is down
 Bit 27 - 31 : Other buttons down (assignments not guaranteed)

time
time contains the system millisecond time that the keyboard event was detected. time is not related to
time of day. It is simply a free running millisecond timer that computer systems usually initialize to
zero when they are started.

GraphicsDesigner - Programmer Guide and Reference - Page 27

Page 28 - GraphicsDesigner - Programmer Guide and Reference

GraphicsDesigner Functions
Function Categories
The tables on the following pages list the GraphicsDesigner functions, grouped into the following
catagories for easy access.

 Miscellaneous Display information
 Color Functions Get and Set Background and Drawing Colors
 Window Functions Create, Destroy, Position, Size, Iconify
 Grid Functions Create, Destroy, GetInfo, SetInfo, GridBox
 Drawing Functions Arc, Box, Circle, Line, Point
 Image Functions Load, Save, Copy, RefreshGrid
 Focus Functions Keyboard and Mouse Focus
 Message Functions Add, Delete, Get, Jam, Peek, Process, Send
 Messages KeyDown, KeyUp, MouseDown, MouseDrag...

Reference Pages
Following the function tables are reference pages that describe these functions in more detail, organized
in the same order as the listings.

Arguments - Pass By Reference
Function arguments with @ prefixes return a value in the argument. In some cases, arguments are
passed to a function and back from the function in the same variable. @ is prefixed to all arrays
because arrays are always passed by reference. String and array contents are not modified unless so
stated.

Return Values
Most GraphicsDesigner functions do not return a value. Exceptions are noted in the following sections.

Runtime Errors
GraphicsDesigner functions call ERROR() to log errors, and may return a non-zero value to so indicate.
Errors can be retrieved, and cleared or set by intrinsic function ERROR().

GraphicsDesigner Function Quick Reference
The following summary of GraphicsDesigner functions are grouped by category.

GraphicsDesigner - Programmer Guide and Reference - Page 29

Miscellaneous Functions
Xgr ()
XgrCreateFont (@font, fontName$, fontSize, fontWeight, fontItalic, fontAngle)
XgrBorderNameToNumber (border$, @border)
XgrBorderNumberToName (border, @border$)
XgrBorderNumberToWidth (border, @width)
XgrCursorNameToNumber (cursorName$, @cursorNumber)
XgrCursorNumberToName (cursorNumber, @cursorName$)
XgrDestroyFont (font)
XgrGetClipboard (clipboard, @clipType, @text$, @image[])
XgrGetCursor (@cursor)
XgrGetDisplaySize (display$, @width, @height, @borderWidth, @titleHeight)
XgrGetFontInfo (font, @fontName$, @fontSize, @fontWeight, @fontItalic, fontAngle)
XgrGetFontMetrics (font, @maxCharWidth, @maxCharHeight, @ascent, @decent, @gap, @flags)
XgrGetFontNames (@count, @fontNames$[])
XgrGetKeystateModify (state, @modify, @edit)
XgrGetTextImageSize (font, text$, @dx, @dy, @width, @height, @gap, @flags)
XgrIconNameToNumber (iconName$, @iconNumber)
XgrIconNumberToName (iconNumber, @iconName$)
XgrRegisterCursor (cursorName$, @cursor)
XgrRegisterIcon (iconName$, @icon)
XgrSetClipboard (clipboard, clipType, @text$, @image[])
XgrSetCursor (cursor, @oldCursor)
version$ = XgrVersion$ ()

Color Functions
XgrConvertColorToRGB (color, @red, @green, @blue)
XgrConvertRGBToColor (red, green, blue, @color)
XgrGetBackgroundColor (grid, @color)
XgrGetBackgroundRGB (grid, @red, @green, @blue)
XgrGetDefaultColors (@back, @draw, @lo, @hi, @acc, @dull)
XgrGetDrawingColor (grid, @color)
XgrGetDrawingRGB (grid, @red, @green, @blue)
XgrGetGridColors (grid, @back, @draw, @lo, @hi, @acc, @dull)
XgrSetBackgroundColor (grid, color)
XgrSetBackgroundRGB (grid, red, green, blue)
XgrSetDefaultColors (back, draw, lo, hi, acc, dull)
XgrSetDrawingColor (grid, color)
XgrSetDrawingRGB (grid, red, green, blue)
XgrSetGridColors (grid, back, draw, lo, hi, acc, dull)

Window Functions
XgrClearWindow (window, color)
XgrClearWindowAndImages (window, color)
XgrCreateWindow (@window, winType, @xDisp, @yDisp, @width, @height, winFunc, display$)
XgrDestroyWindow (window)
XgrDisplayWindow (window)
XgrGetWindowFunction (window, @func)
XgrGetWindowIcon (window, @icon)
XgrGetWindowPositionAndSize (window, @xDisp, @yDisp, @width, @height)
XgrGetWindowState (window, @state)
XgrGetWindowTitle (window, @title$)
XgrHideWindow (window)
XgrMaximizeWindow (window)
XgrMinimizeWindow (window)
XgrRestoreWindow (window)
XgrSetWindowFunction (window, func)
XgrSetWindowIcon (window, @icon)
XgrSetWindowPositionAndSize (window, xDisp, yDisp, width, height)
XgrSetWindowState (window, state)
XgrSetWindowTitle (window, title$)
XgrShowWindow (window)

Page 30 - GraphicsDesigner - Programmer Guide and Reference

Grid Functions
XgrClearGrid (grid, color)
XgrConvertDisplayToGrid (grid, xDisp, yDisp, @xGrid, @yGrid)
XgrConvertDisplayToLocal (grid, xDisp, yDisp, @x, @y)
XgrConvertDisplayToScaled (grid, xDisp, yDisp, @x#, @y#)
XgrConvertDisplayToWindow (grid, xDisp, yDisp, @xWin, @yWin)
XgrConvertGridToDisplay (grid, xGrid, yGrid, @xDisp, @yDisp)
XgrConvertGridToLocal (grid, xGrid, yGrid, @x, @y)
XgrConvertGridToScaled (grid, xGrid, yGrid, @x#, @y#)
XgrConvertGridToWindow (grid, xGrid, yGrid, @xWin, @yWin)
XgrConvertLocalToDisplay (grid, x, y, @xDisp, @yDisp)
XgrConvertLocalToGrid (grid, x, y, @xGrid, @yGrid)
XgrConvertLocalToScaled (grid, x, y, @x#, @y#)
XgrConvertLocalToWindow (grid, x, y, @xWin, @yWin)
XgrConvertScaledToDisplay (grid, x#, y#, @xDisp, @yDisp)
XgrConvertScaledToGrid (grid, x#, y#, @xGrid, @yGrid)
XgrConvertScaledToLocal (grid, x#, y#, @x, @y)
XgrConvertScaledToWindow (grid, x#, y#, @xWin, @yWin)
XgrConvertWindowToDisplay (grid, xWin, yWin, @xDisp, @yDisp)
XgrConvertWindowToGrid (grid, xWin, yWin, @xGrid, @yGrid)
XgrConvertWindowToLocal (grid, xWin, yWin, @x, @y)
XgrConvertWindowToScaled (grid, xWin, yWin, @x#, @y#)
XgrCreateGrid (@grid, gridType, xWin, yWin, width, height, window, parent, func)
XgrDestroyGrid (grid)
XgrGetGridBoxGrid (grid, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
XgrGetGridBoxLocal (grid, @x1, @y1, @x2, @y2)
XgrGetGridBoxScaled (grid, @x1#, @y1#, @x2#, @y2#)
XgrGetGridBoxWindow (grid, @x1Win, @y1Win, @x2Win, @y2Win)
XgrGetGridBuffer (grid, @bufferGrid)
XgrGetGridCharacterMapArray (grid, @map[])
XgrGetGridCoords (grid, @xParent, @yParent, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
XgrGetGridDrawingMode (grid, @drawingMode, @lineStyle, @lineWidth)
XgrGetGridFont (grid, @font)
XgrGetGridFunction (grid, @func)
XgrGetGridParent (grid, @parent)
XgrGetGridPositionAndSize (grid, @xWin, @yWin, @width, @height)
XgrGetGridState (grid, @state)
XgrGetGridType (grid, @gridType)
XgrGetGridWindow (grid, @window)
XgrGridTypeNameToNumber (gridType$, @gridType)
XgrGridTypeNumberToName (gridType, @gridType$)
XgrRegisterGridType (gridType$, @gridType)
XgrSetGridBoxGrid (grid, x1Grid, y1Grid, x2Grid, y2Grid)
XgrSetGridBoxScaled (grid, x1#, y1#, x2#, y2#)
XgrSetGridBuffer (grid, bufferGrid)
XgrSetGridCharacterMapArray (grid, @map[])
XgrSetGridDrawingMode (grid, drawingMode, lineStyle, lineWidth)
XgrSetGridFont (grid, font)
XgrSetGridFunction (grid, funcAddr)
XgrSetGridPositionAndSize (grid, xWin, yWin, width, height)
XgrSetGridState (grid, state)
XgrSetGridTimer (grid, msTimeInterval)
XgrSetGridType (grid, gridType)

GraphicsDesigner - Programmer Guide and Reference - Page 31

Drawing Functions
XgrDrawArc (grid, color, r, startAngle#, endAngle#)
XgrDrawArcGrid (grid, color, r, startAngle#, endAngle#)
XgrDrawArcScaled (grid, color, r#, startAngle#, endAngle#)
XgrDrawBorder (grid, border, draw, low, high, x1, y1, x2, y2)
XgrDrawBorderGrid (grid, border, draw, low, high, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawBorderScaled (grid, border, draw, low, high, x1#, y1#, x2#, y2#)
XgrDrawBox (grid, color, x1, y1, x2, y2)
XgrDrawBoxGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawBoxScaled (grid, color, x1#, y1#, x2#, y2#)
XgrDrawCircle (grid, color, r)
XgrDrawCircleGrid (grid, color, r)
XgrDrawCircleScaled (grid, color, r#)
XgrDrawGridBorder (grid, border)
XgrDrawIcon (grid, icon, x, y)
XgrDrawIconGrid (grid, icon, xGrid, yGrid)
XgrDrawIconScaled (grid, icon, x#, y#)
XgrDrawLine (grid, color, x1, y1, x2, y2)
XgrDrawLineGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawLineScaled (grid, color, x1#, y1#, x2#, y2#)
XgrDrawLineTo (grid, color, x, y)
XgrDrawLineToGrid (grid, color, xGrid, yGrid)
XgrDrawLineToScaled (grid, color, x#, y#)
XgrDrawLineToDelta (grid, color, dx, dy)
XgrDrawLineToDeltaGrid (grid, color, dxGrid, dyGrid)
XgrDrawLineToDeltaScaled (grid, color, dx#, dy#)
XgrDrawLines (grid, color, first, count, ANY @lines[])
XgrDrawLinesGrid (grid, color, first, count, ANY @lines[])
XgrDrawLinesScaled (grid, color, first, count, ANY @lines[])
XgrDrawLinesTo (grid, color, first, count, ANY @lines[])
XgrDrawLinesToGrid (grid, color, first, count, ANY @lines[])
XgrDrawLinesToScaled (grid, color, first, count, ANY @lines[])
XgrDrawPoint (grid, color, x, y)
XgrDrawPointGrid (grid, color, xGrid, yGrid)
XgrDrawPointScaled (grid, color, x#, y#)
XgrDrawPoints (grid, color, first, count, ANY @points[])
XgrDrawPointsGrid (grid, color, first, count, ANY @points[])
XgrDrawPointsScaled (grid, color, first, count, ANY @points[])
XgrDrawText (grid, color, text$)
XgrDrawTextGrid (grid, color, text$)
XgrDrawTextScaled (grid, color, text$)
XgrDrawTextFill (grid, color, text$)
XgrDrawTextFillGrid (grid, color, text$)
XgrDrawTextFillScaled (grid, color, text$)
XgrFillBox (grid, color, x1, y1, x2, y2)
XgrFillBoxGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrFillBoxScaled (grid, color, x1#, y1#, x2#, y2#)
XgrGetDrawpoint (grid, @x, @y)
XgrGetDrawpointGrid (grid, @xGrid, @yGrid)
XgrGetDrawpointScaled (grid, @x#, @y#)
XgrGrabPoint (grid, x, y, @red, @green, @blue, @color)
XgrGrabPointGrid (grid, xGrid, yGrid, @red, @green, @blue, @color)
XgrGrabPointScaled (grid, x#, y#, @red, @green, @blue, @color)
XgrMoveDelta (grid, dx, dy)
XgrMoveDeltaGrid (grid, dxGrid, dyGrid)
XgrMoveDeltaScaled (grid, dx#, dy#)
XgrMoveTo (grid, x, y)
XgrMoveToGrid (grid, xGrid, yGrid)
XgrMoveToScaled (grid, x#, y#)
XgrSetDrawpoint (grid, x, y)
XgrSetDrawpointGrid (grid, xGrid, yGrid)
XgrSetDrawpointScaled (grid, x#, y#)

Page 32 - GraphicsDesigner - Programmer Guide and Reference

Image Functions
XgrCopyImage (grid, imageGrid)
XgrDrawImage (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageExtend (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageExtendScaled (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageScaled (grid, imageGrid, startX, startY, endX, endY)
XgrGetImage (imageGrid, @image[])
XgrGetImageArrayInfo (@image[], @bitsPerPixel, @width, @height)
XgrLoadImage (fileName$, @image[])
XgrRefreshGrid (grid)
XgrSaveImage (fileName$, @image[])
XgrSetImage (imageGrid, @image[])

Focus Functions
XgrGetMouseInfo (window, @grid, @xWin, @yWin, @state, @time)
XgrGetSelectedWindow (@window)
XgrSetSelectedWindow (window)

Message Functions
XgrAddMessage (wingrid, message, v0, v1, v2, v3)
XgrDeleteMessages (count)
XgrGetCEO (@func)
XgrGetMessages (@count, @messages[])
XgrGetMessageType (message, @messageType)
XgrJamMessage (wingrid, message, v0, v1, v2, v3)
XgrMessageNameToNumber (message$, @message)
XgrMessageNames (@count, @messages$[])
XgrMessageNumberToName (message, @message$)
XgrMessagesPending (@count)
XgrPeekMessage (@wingrid, @message, @v0, @v1, @v2, @v3)
XgrProcessMessages (maxCount)
XgrRedrawWindow (window, xWin, yWin, width, height)
XgrRegisterMessage (message$, @message)
XgrSendMessage (wingrid, message, v0, v1, v2, v3, r0, r1)
XgrSendMessageToWindow (wingrid, message, v0, v1, v2, v3, r0, r1)
XgrSendStringMessage (wingrid, message$, v0, v1, v2, v3, r0, r1)
XgrSendStringMessageToWindow (wingrid, message$, v0, v1, v2, v3, r0, r1)
XgrSetCEO (func)

Messages
MouseDown (grid, MouseDown, x, y, state, time, 0, focusGrid)
MouseDrag (grid, MouseDrag, x, y, state, time, 0, focusGrid)
MouseEnter (grid, MouseEnter, x, y, state, time, 0, focusGrid)
MouseExit (grid, MouseExit, x, y, state, time, 0, focusGrid)
MouseMove (grid, MouseMove, x, y, state, time, 0, focusGrid)
MouseUp (grid, MouseUp, x, y, state, time, 0, focusGrid)
RedrawGrid (grid, RedrawGrid, x, y, width, height, 0, 0)
TimeOut (grid, TimeOut, 0, 0, 0, 0, 0, 0)
WindowDeselected (window, WindowDeselected, 0, 0, 0, 0, 0, 0)
WindowDestroyed (window, WindowDestroyed, 0, 0, 0, 0, 0, 0)
WindowDisplayed (window, WindowDisplayed, 0, 0, 0, 0, 0, 0)
WindowHidden (window, WindowHidden, 0, 0, 0, 0, 0, 0)
WindowKeyDown (window, WindowKeyDown, x, y, state, time, 0, 0)
WindowKeyUp (window, WindowKeyUp, x, y, state, time, 0, 0)
WindowMaximized (window, WindowMaximized, 0, 0, 0, 0, 0, 0)
WindowMinimized (window, WindowMinimized, 0, 0, 0, 0, 0, 0)
WindowRedraw (window, WindowRedraw, xWin, yWin, width, height, 0, 0)
WindowResized (window, WindowResized, xDisp, yDisp, width, height, 0, 0)
WindowSelected (window, WindowSelected, 0, 0, 0, 0, 0, 0)

GraphicsDesigner - Programmer Guide and Reference - Page 33

Miscellaneous Functions
Xgr ()
XgrBorderNameToNumber (border$, @border)
XgrBorderNumberToName (border, @border$)
XgrBorderNumberToWidth (border, @width)
XgrCreateFont (@font, fontName$, fontSize, fontWeight, fontItalic, fontAngle)
XgrCursorNameToNumber (cursorName$, @cursorNumber)
XgrCursorNumberToName (cursorNumber, @cursorName$)
XgrDestroyFont (font)
XgrGetClipboard (clipboard, @clipType, @text$, @image[])
XgrGetCursor (@cursor)
XgrGetDisplaySize (display$, @width, @height, @borderWidth, @titleHeight)
XgrGetFontInfo (font, @fontName$, @fontSize, @fontWeight, @fontItalic, @fontAngle)
XgrGetFontMetrics (font, @maxCharWidth, @maxCharHeight, @ascent, @decent, @gap, @flags)
XgrGetFontNames (@count, @fontNames$[])
XgrGetKeystateModify (state, @modify, @edit)
XgrGetTextImageSize (font, text$, @dx, @dy, @width, @height, @topGap, @flags)
XgrIconNameToNumber (iconName$, @iconNumber)
XgrIconNumberToName (iconNumber, @iconName$)
XgrRegisterCursor (cursorName$, @cursor)
XgrRegisterIcon (iconName$, @icon)
XgrSetClipboard (clipboard, clipType, @text$, @image[])
XgrSetCursor (cursor, @oldCursor)
version$ = XgrVersion$ ()

Xgr ()

Xgr() initializes GraphicsDesigner. Every program or library that
calls a graphics function must call Xgr() before any others. Calling
Xgr() more than once has no harmful effects.

XgrBorderNameToNumber (border$, @border)

XgrBorderNameToNumber() converts a border name into a border
number appropriate for XgrDrawBorder() functions.

XgrBorderNumberToName (border, @border$)

XgrBorderNumberToName() converts a border number into a border
name.

XgrBorderNumberToWidth (border, @width)

XgrBorderNumberToWidth() converts a border number into the
width of the border in pixels.

XgrCreateFont (@font, fontName$, fontSize, fontWeight, fontItalic, fontAngle)

XgrCreateFont() creates a font of the specified fontName$,
fontSize, fontWeight, fontItalic, fontAngle, and returns
its font number. All other functions that specify a font pass font
as an argument.

fontName$ is the typeface name, fontSize is ten times the point
size, fontWeight is boldness from very thin to very heavy (0 to
1000), fontItalic is tilt from none to extreme (0 to 1000), and
fontAngle is the angle the characters are rotated from horizontal in
1/10 degree units (1800 = 180 degrees = upside down).

If fontName$ cannot be found or the requested font cannot be
created for any reason, 0 is returned in font. The default font is 0,
so the font number returned by XgrCreateFont() is always valid,

Page 34 - GraphicsDesigner - Programmer Guide and Reference

though the characters may not look like those expected when the
specified font is not found.

XgrCursorNameToNumber (cursorName$, @cursorNumber)

XgrCursorNameToNumber() returns the cursorNumber assigned to
cursorName$ by XgrRegisterCursor().

XgrCursorNumberToName (cursorNumber, @cursorName$)

XgrCursorNumberToName() returns the cursorName$ to which
XgrRegisterCursor() assigned cursorNumber.

XgrDestroyFont (font)

XgrDestroyFont() destroys font. The same font number may
subsequently be assigned to a new font, so programs should not use
the font number of a destroyed font.

XgrGetClipboard (clipboard, @clipType, @text$, @image[])

XgrGetClipboard() returns the current contents of clipboard in
text$ and/or image[], depending on the type of data in
clipboard, which is returned in clipType. The interapplication
clipboard, also called the system clipboard, is clipboard=0.

clipType = 0 = $$ClipboardTypeNone
clipType = 1 = $$ClipboardTypeText
clipType = 2 = $$ClipboardTypeImage

XgrGetCursor (@cursor)

XgrGetCursor() returns the currently displayed cursor.

XgrGetDisplaySize (display$, @width, @height, @borderWidth, @titleHeight)

XgrGetDisplaySize() returns the width,height of display$
in pixels, as well as the borderWidth and titleHeight of
windows that have borders and title-bars.

display$ = "" denotes the default display.

XgrGetFontInfo (font, @fontName$, @fontSize, @fontWeight, @fontItalic, @fontAngle)

XgrGetFontInfo() returns fontName$, fontSize, fontWeight,
fontItalic, and fontAngle for font.

See XgrCreateFont() for details.

XgrGetFontMetrics (font, @maxCharWidth, @maxCharHeight, @ascent, @decent, @gap, @flags)

XgrGetFontMetrics() returns the maximum character width in
pixels, maximum character height in pixels, the ascent from the
baseline of the tallest character, the decent from the baseline for the
lowest character, the gap at the top that is normally interline spacing,
but may contain active character pixels for unusual characters,
including characters with accents and umlauts.

GraphicsDesigner - Programmer Guide and Reference - Page 35

XgrGetFontNames (@fontName$[])

XgrGetFontNames() returns the names of all typefaces from which
fonts can be created by XgrCreateFont().

XgrGetKeystateModify (state, @modify, @edit)

XgrGetKeystateModify() estimates whether a #KeyDown message
with the specified state argument would normally modify text in a
common text grids like XuiTextLine and XuiTextArea.

XgrGetTextImageSize (font, text$, @dx, @dy, @width, @height, @gap, @flags)

XgrGetTextImageSize() computes the (dx,dy) change in
drawpoint and the (width,height) of the smallest rectangle that
contain the text image of text$ when drawn with font.

Since font includes a rotation attribute, the image of the text string
may be tipped from the horizontal, shifting the drawpoint vertically
as well as horizontally. This fact is reflected in (dx,dy), but not
(width,height) because the size of the smallest rectangle does not
change as text strings are rotated.

XgrIconNameToNumber (iconName$, @iconNumber)

XgrIconNameToNumber() converts iconName$ into the
iconNumber originally assigned it by XgrRegisterIcon().
If iconName$ was never registered, iconNumber = 0.

XgrIconNumberToName (iconNumber, @iconName$)

XgrIconNumberToName() converts iconNumber into the
iconName$ it was created for by XgrRegisterIcon().

If iconNumber has not been assigned to any icon by
XgrRegisterIcon(), iconName$ = "".

XgrRegisterCursor (cursorName$, @cursorNumber)

XgrRegisterCursor() assigns a unique cursorNumber for
cursorName$, or returns its existing cursorNumber if
cursorName$ has already been registered.

XgrRegisterIcon (iconName$, @iconNumber)

XgrRegisterIcon() assigns a unique iconNumber for
iconName$, or returns its existing iconNumber if iconName$ has
already been registered.

XgrSetClipboard (clipboard, clipType, @text$, @image[])

XgrSetClipboard() installs text$ and/or image[] into
clipboard, depending on the type of data specified by clipType.
The system clipboard is clipboard=0.

clipType = 0 = $$ClipboardTypeNone
clipType = 1 = $$ClipboardTypeText
clipType = 2 = $$ClipboardTypeImage

Page 36 - GraphicsDesigner - Programmer Guide and Reference

XgrSetCursor (cursor, @oldCursor)

XgrSetCursor() sets the current cursor and returns the
oldCursor. The displayed cursor changes to cursor.

version$ = XgrVersion$ ()

XgrVersion$() returns the current GraphicsDesigner version$.

GraphicsDesigner - Programmer Guide and Reference - Page 37

Color Functions
XgrConvertColorToRGB (color, @red, @green, @blue)
XgrConvertRGBToColor (red, green, blue, @color)
XgrGetBackgroundColor (grid, @color)
XgrGetBackgroundRGB (grid, @red, @green, @blue)
XgrGetDefaultColors (@back, @draw, @lo, @hi, @dull, @acc, @lowtext, @hightext)
XgrGetDrawingColor (grid, @color)
XgrGetDrawingRGB (grid, @red, @green, @blue)
XgrGetGridColors (grid, @back, @draw, @lo, @hi, @dull, @acc, @lowtext, @hightext)
XgrSetBackgroundColor (grid, color)
XgrSetBackgroundRGB (grid, red, green, blue)
XgrSetDefaultColors (back, draw, lo, hi, dull, acc, lowtext, hightext)
XgrSetDrawingColor (grid, color)
XgrSetDrawingRGB (grid, red, green, blue)
XgrSetGridColors (grid, back, draw, lo, hi, dull, acc, lowtext, hightext)

XgrConvertColorToRGB (color, @red, @green, @blue)

XgrConvertColorToRGB() converts color into 16-bit per color
RGB format (red,green,blue) intensities.

XgrConvertRGBToColor (red, green, blue, @color)

XgrConvertRGBToColor() combines 16-bit per color RGB format
(red,green,blue) intensities into a color suitable for passing to
drawing functions.

XgrGetBackgroundColor (grid, @color)

XgrGetBackgroundColor() returns the current background color
of grid as (red,green,blue,colorNumber), each an 8-bit value.

XgrGetBackgroundRGB (grid, @red, @green, @blue)

XgrGetBackgroundRGB() returns the current background color of
grid as 16-bit (red, green, blue) intensities.

XgrGetDefaultColors (@back, @draw, @low, @high, @dull, @acc, @lowtext, @hightext)

XgrGetDefaultColors() returns the colors assigned to grids when
they are created by XgrCreateGrid().

Page 38 - GraphicsDesigner - Programmer Guide and Reference

XgrGetDrawingColor (grid, @color)

XgrGetDrawingColor() returns the current drawing color of
grid as 8-bit (red,green,blue,colorNumber).

XgrGetDrawingRGB (grid, @red, @green, @blue)

XgrGetDrawingRGB() returns the current drawing color of grid as
16-bit (red,green,blue) intensities.

XgrGetGridColors (grid, @back, @draw, @lo, @hi, @dull, @acc, @lowtext, @hightext)

XgrGetGridColors() returns the current colors of grid in
(back,draw,lo,hi,dull,acc,lowtext,hightext), each a 32-bit
value with 8-bits per red,green,blue,colorNumber.

XgrSetBackgroundColor (grid, color)

XgrSetBackgroundColor() sets the current background color of
grid to 8-bit (red,blue,green,colorNumber) values in color.

XgrSetBackgroundRGB (grid, @red, @green, @blue)

XgrSetBackgroundRGB() sets the current background color of
grid to 16-bit (red,green,blue) intensities.

XgrSetDefaultColors (back, draw, low, high, dull, acc, lowtext, hightext)

XgrSetDefaultColors() sets the colors assigned to grids when
they are created by XgrCreateGrid().

XgrSetDrawingColor (grid, color)

XgrSetDrawingColor() sets the current drawing color of grid
to 8-bit (red,green,blue,colorNumber) values.

XgrSetDrawingRGB (grid, @red, @green, @blue)

XgrSetDrawingRGB() sets the current drawing color of grid to
16-bit (red,green,blue) intensities.

XgrSetGridColors (grid, back, draw, lo, hi, dull, acc, lowtext, hightext)

XgrSetGridColors() sets the current colors of grid to
(back,draw,lo,hi,dull,acc,lowtext,hightext), each an 8-bit
per (red,green,blue,colorNumber) value.

GraphicsDesigner - Programmer Guide and Reference - Page 39

Window Functions
XgrClearWindow (window, color)
XgrClearWindowAndImages (window, color)
XgrCreateWindow (@window, winType, @xDisp, @yDisp, @width, @height, winFunc, display$)
XgrDestroyWindow (window)
XgrDisplayWindow (window)
XgrGetWindowFunction (window, @func)
XgrGetWindowIcon (window, @icon)
XgrGetWindowPositionAndSize (window, @xDisp, @yDisp, @width, @height)
XgrGetWindowState (window, @state)
XgrGetWindowTitle (window, @title$)
XgrHideWindow (window)
XgrMaximizeWindow (window)
XgrMinimizeWindow (window)
XgrRestoreWindow (window)
XgrSetWindowFunction (window, func)
XgrSetWindowIcon (window, icon)
XgrSetWindowPositionAndSize (window, xDisp, yDisp, width, height)
XgrSetWindowState (window, state)
XgrSetWindowTitle (window, title$)
XgrShowWindow (window)

XgrClearWindow (window, color)

XgrClearWindow() clears window to color. If (color=-1), the
window is cleared to the same color as last time, or to black if it has
not been cleared previously. XgrClearWindow() does not clear
image grids associated with the window.

XgrClearWindowAndImages (window, color)

XgrClearWindowAndImages() clears window to color. If
(color=-1), the window is cleared to the same color as last time, or
to black if it has not been cleared previously. All image grids
associated with a grid in the window are cleared to their current
background color.

Page 40 - GraphicsDesigner - Programmer Guide and Reference

XgrCreateWindow (@window, @winType, xDisp, yDisp, width, height, winFunc, display$)

XgrCreateWindow() creates and displays a new winType graphics
window, and returns its window number in window, which will be
no larger then the number of windows currently defined in the
system. winType contains window type bits in the upper 16-bits
and parent window in the low 16-bits. The low 16-bits are usually
zero because most windows do not have a parent window. One
exception is the pulldown list windows displayed by menu bars.

The location of the graphics window on the display can be requested
by setting (xDisp,yDisp) to coordinates within the display
boundaries. -1 for xDisp or yDisp specifies no preference for
that axis. (xDisp,yDisp) values determines window placement to
the extent supported by the window system.

If available from the window system, (xDisp,yDisp) are returned
with the display coordinates of the upper left corner of the drawable
area of the window - within the resize frame and title-bar.

(width,height) request the drawable size of the window in pixels.
(width,height) determines the size of windows to the extent
supported by the window system. Requests that extend a window
beyond the limits of the display are generally not honored. If
available from the window system, (width,height) are returned
with the size of the drawable area of the window.

In systems where windows can be directed to more than one display,
display$ is the name of the target display screen, like "max:0.0".

If the window system represents displays with numbers, display$
is a string form of the number, as in "32" or "0x4F7D192C".

disp$ = "" denotes the default display.
*** window type *** - *** characteristics ***
$$WindowTopMost - stays above other windows
$$WindowNoSelect - window is not selected by mouse button events
$$WindowNoFrame - window has no resize frame
$$WindowResizeFrame - window has a resize frame
$$WindowTitleBar - window has a title bar to display a window name
$$WindowSystemMenu - window has a system menu button
$$WindowMinimizeBox - window has a minimize button
$$WindowMaximizeBox - window has a maximize button

XgrDestroyWindow (window)

XgrDestroyWindow() destroys window after destroying its grids.
window is then removed from the display and a WindowDestroyed
message is added to the message queue. If window has child
windows, they and their grids are destroyed and additional
WindowDestroyed message is added to the message queue for each
child window. All information about the window and its grids is
permanently lost.

XgrDisplayWindow (window)

GraphicsDesigner - Programmer Guide and Reference - Page 41

XgrDisplayWindow() displays window if it hidden or inconified,
then selects window if it is not already selected.

Displaying window with XgrDisplayWindow() is the same as
selecting window with XgrSetSelectedWindow(). window is
selected and displayed above all others. The window argument of
subsequent keyboard messages will be window.

XgrGetWindowFunction (window, @func)

XgrGetWindowFunction() returns in func the address of the
window function assigned to window. func is the address function
called by XgrProcessMessages() when it processes messages for
window or a grid in window.

XgrGetWindowIcon (window, @icon)

XgrGetWindowIcon() returns the image of the icon displayed for
window when it is minimized.

XgrGetWindowPositionAndSize (window, @xDisp, @yDisp, @width, @height)

XgrGetWindowPositionAndSize() returns the display coordinates
of window on the display in (xDisp,yDisp), and its
(width,height) in pixels.

XgrGetWindowState (window, @state)

XgrGetWindowState() returns the current display state of
window.

state=0,1,2,3 for hidden, displayed, minimized, maximized.
XgrGetWindowTitle (window, @title$)

XgrGetWindowTitle() returns the title$ of window. title$ is
displayed on the title-bar of windows with title-bars.

XgrHideWindow (window)

XgrHideWindow() makes window invisible until it is made visible
again by XgrDisplayWindow().

Page 42 - GraphicsDesigner - Programmer Guide and Reference

XgrMaximizeWindow (window)

XgrMaximizeWindow() displays window as the largest size it can,
up to the size of the display screen.

XgrMinimizeWindow (window)

XgrMinimizeWindow() displays window as a small icon in the
lower part of the display. The icon can be double clicked to restore
the window to its previously displayed state.

XgrRestoreWindow (window)

XgrRestoreWindow() displays window in its most recently
displayed state (normal size, minimized, maximized).

XgrSetWindowFunction (window, func)

XgrSetWindowFunction() sets the address of the window function
of window to func. func is the address called by
XgrProcessMessages() when it processes a message for window or
a grid in window.

XgrSetWindowIcon (window, @icon)

XgrSetWindowIcon() sets the image of the icon displayed for
window when it is minimized.

XgrSetWindowPositionAndSize (window, xDisp, yDisp, width, height)

XgrSetWindowPositionAndSize() sets the position of window on
the display to (xDisp,yDisp), and resizes it to (width,height)
pixels if necessary.

XgrSetWindowState (window, state)

XgrSetWindowState() sets the current display state of window to
state.

state=0,1,2,3 for hidden, displayed, minimized, maximized.

XgrSetWindowTitle (window, title$)

XgrSetWindowTitle() sets the title$ of window. title$ is
displayed on the title-bar of windows with title-bars.

XgrShowWindow (window)

XgrShowWindow() displays window without selecting it. If window
cannot be displayed without selecting, it is displayed

GraphicsDesigner - Programmer Guide and Reference - Page 43

Grid Functions
XgrClearGrid (grid, color)
XgrConvertDisplayToGrid (grid, xDisp, yDisp, @xGrid, @yGrid)
XgrConvertDisplayToLocal (grid, xDisp, yDisp, @x, @y)
XgrConvertDisplayToScaled (grid, xDisp, yDisp, @x#, @y#)
XgrConvertDisplayToWindow (grid, xDisp, yDisp, @xWin, @yWin)
XgrConvertGridToDisplay (grid, xGrid, yGrid, @xDisp, @yDisp)
XgrConvertGridToLocal (grid, xGrid, yGrid, @x, @y)
XgrConvertGridToScaled (grid, xGrid, yGrid, @x#, @y#)
XgrConvertGridToWindow (grid, xGrid, yGrid, @xWin, @yWin)
XgrConvertLocalToDisplay (grid, x, y, @xDisp, @yDisp)
XgrConvertLocalToGrid (grid, x, y, @xGrid, @yGrid)
XgrConvertLocalToScaled (grid, x, y, @x#, @y#)
XgrConvertLocalToWindow (grid, x, y, @xWin, @yWin)
XgrConvertScaledToDisplay (grid, x#, y#, @xDisp, @yDisp)
XgrConvertScaledToGrid (grid, x#, y#, @xGrid, @yGrid)
XgrConvertScaledToLocal (grid, x#, y#, @x, @y)
XgrConvertScaledToWindow (grid, x#, y#, @xWin, @yWin)
XgrConvertWindowToDisplay (grid, xWin, yWin, @xDisp, @yDisp)
XgrConvertWindowToGrid (grid, xWin, yWin, @xGrid, @yGrid)
XgrConvertWindowToLocal (grid, xWin, yWin, @x, @y)
XgrConvertWindowToScaled (grid, xWin, yWin, @x#, @y#)
XgrCreateGrid (@grid, gridType, xWin, yWin, width, height, window, parent, func)
XgrDestroyGrid (grid)
XgrGetGridBorder (grid, @border, @borderUp, @borderDown, @borderFlags)
XgrGetGridBorderOffset (grid, @left, @top, @right, @bottom)
XgrGetGridBoxGrid (grid, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
XgrGetGridBoxLocal (grid, @x1, @y1, @x2, @y2)
XgrGetGridBoxScaled (grid, @x1#, @y1#, @x2#, @y2#)
XgrGetGridBoxWindow (grid, @x1Win, @y1Win, @x2Win, @y2Win)
XgrGetGridBuffer (grid, @bufferGrid)
XgrGetGridCharacterMapArray (grid, @map[])
XgrGetGridCoords (grid, @xParent, @yParent, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
XgrGetGridDrawingMode (grid, @drawingMode, @lineStyle, @lineWidth)
XgrGetGridFont (grid, @font)
XgrGetGridFunction (grid, @func)
XgrGetGridParent (grid, @parent)
XgrGetGridPositionAndSize (grid, @xWin, @yWin, @width, @height)
XgrGetGridState (grid, @state)
XgrGetGridType (grid, @gridType)
XgrGetGridWindow (grid, @window)
XgrGridTypeNameToNumber (gridType$, @gridType)
XgrGridTypeNumberToName (gridType, @gridType$)
XgrRegisterGridType (gridType$, @gridType)
XgrSetGridBorder (grid, border, borderUp, borderDown, borderFlags)
XgrSetGridBorderOffset (grid, left, top, right, bottom)
XgrSetGridBoxGrid (grid, x1Grid, y1Grid, x2Grid, y2Grid)
XgrSetGridBoxScaled (grid, x1#, y1#, x2#, y2#)
XgrSetGridBuffer (grid, bufferGrid)
XgrSetGridCharacterMapArray (grid, @map[])
XgrSetGridDrawingMode (grid, drawingMode, lineStyle, lineWidth)
XgrSetGridFont (grid, font)
XgrSetGridFunction (grid, funcAddr)
XgrSetGridPositionAndSize (grid, xWin, yWin, width, height)
XgrSetGridState (grid, state)
XgrSetGridTimer (grid, msTimeInterval)
XgrSetGridType (grid, gridType)

Page 44 - GraphicsDesigner - Programmer Guide and Reference

XgrClearGrid (grid, color)

XgrClearGrid() clears grid to color, or to the current
background color if (color=-1). If grid is an image grid, or an
image grid is attached to grid, it is cleared.

XgrConvertDisplayToGrid (grid, xDisp, yDisp, @xGrid, @yGrid)

XgrConvertDisplayToGrid() converts display coordinates
(xDisp,yDisp) to grid coordinates (xGrid,yGrid) for grid.

XgrConvertDisplayToLocal (grid, xDisp, yDisp, @x, @y)

XgrConvertDisplayToGrid() converts display coordinates
(xDisp,yDisp) to local coordinates (x,y) for grid.

XgrConvertDisplayToScaled (grid, xDisp, yDisp, @x#, @y#)

XgrConvertDisplayToScaled() converts display coordinates
(xDisp,yDisp) to scaled coordinates (x#,y#) for grid.

XgrConvertDisplayToWindow (grid, xDisp, yDisp, @xWin, @yWin)

XgrConvertDisplayToWindow() converts display coordinates
(xDisp,yDisp) to window coordinates (xWin,yWin) for the
window that contains grid.

XgrConvertGridToDisplay (grid, xGrid, yGrid, @xDisp, @yDisp)

XgrConvertGridToDisplay() converts grid coordinates
(xGrid,yGrid) in grid to display coordinates (xDisp,yDisp).

XgrConvertGridToLocal (grid, xGrid, yGrid, @x, @y)

XgrConvertGridToLocal() converts grid coordinates
(xGrid,yGrid) in grid to (x,y) local coordinates.

XgrConvertGridToScaled (grid, xGrid, yGrid, @x#, @y#)

XgrConvertGridToScaled() converts grid coordinates
(xGrid,yGrid) to scaled coordinates (x#,y#) for grid.

XgrConvertGridToWindow (grid, xGrid, yGrid, @xWin, @yWin)

XgrConvertGridToWindow() converts grid coordinates
(xGrid,yGrid) in grid to (xWin,yWin) window coordinates.

GraphicsDesigner - Programmer Guide and Reference - Page 45

XgrConvertLocalToDisplay (grid, x, y, @xDisp, @yDisp)

XgrConvertGridToDisplay() converts grid coordinates (x,y) in
grid to display coordinates (xDisp,yDisp).

XgrConvertLocalToGrid (grid, x, y, @xGrid, @yGrid)

XgrConvertGridToLocal() converts grid coordinates (x,y) in
grid to (xGrid,yGrid) local coordinates.

XgrConvertLocalToScaled (grid, x, y, @x#, @y#)

XgrConvertGridToScaled() converts grid coordinates (x,y) to
scaled coordinates (x#,y#) for grid.

XgrConvertLocalToWindow (grid, x, y, @xWin, @yWin)

XgrConvertGridToWindow() converts grid coordinates
(xGrid,yGrid) in grid to (xWin,yWin) window coordinates.

XgrConvertScaledToDisplay (grid, x#, y#, @xDisp, @yDisp)

XgrConvertScaledToDisplay() converts scaled coordinates
(x#,y#) in grid to display coordinates (xDisp,yDisp).

XgrConvertScaledToGrid (grid, x#, y#, @xGrid, @yGrid)

XgrConvertScaledToGrid() converts scaled coordinates (x#,y#)
into grid coordinates (xGrid,yGrid) for grid.

XgrConvertScaledToLocal (grid, x#, y#, @x, @y)

XgrConvertScaledToLocal() converts scaled coordinates
(x#,y#) into local coordinates (x,y) for grid.

XgrConvertScaledToWindow (grid, x#, y#, @xWin, @yWin)

XgrConvertScaledToWindow() converts scaled coordinates
(x#,y#) in grid to window coordinates (xWin,yWin).

Page 46 - GraphicsDesigner - Programmer Guide and Reference

XgrConvertWindowToDisplay (grid, xWin, yWin, @xDisp, @yDisp)

XgrConvertWindowToDisplay() converts window coordinates
(xWin,yWin) to display coordinates (xDisp,yDisp) for the
window that contains grid.

XgrConvertWindowToGrid (grid, xWin, yWin, @xGrid, @yGrid)

XgrConvertWindowToGrid() converts window coordinates
(xWin,yWin) to (xGrid,yGrid) grid coordinates for grid.

XgrConvertWindowToLocal (grid, xWin, yWin, @x, @y)

XgrConvertWindowToGrid() converts window coordinates
(xWin,yWin) to (x,y) local coordinates for grid.

XgrConvertWindowToScaled (grid, xWin, yWin, @x#, @y#)

XgrConvertWindowToScaled() converts window coordinates
(xWin,yWin) into (x#,y#) scaled coordinates for grid.

XgrCreateGrid (@grid, gridType, x, y, width, height, window, parent, func)

XgrCreateGrid() creates a new grid in window, returns its grid
number, initializes its settings to default values, then initializes its
(gridType,parent,func) settings.

The upper-left corner of grid is set to:
(x,y) Local Coordinates of parent grid/window (locates grid-box)
(0,0) Local Coordinates
(0,0) Grid Coorinates
(0#,0#) Scaled Coordinates

while the lower-right corner of grid is set to:
(width-1, height-1) Local Coordinates
(width-1, height-1) Grid Coordinates
(1#, 1#) Scaled Coordinates

XgrDestroyGrid (grid)

XgrDestroyGrid() destroys grid, and make the grid number
available. If grid is bufferGrid in other grids, bufferGrid is
set to 0 in those grids. If grid is an image grid type, its memory
image is freed.

XgrGetGridBorder (grid, @border, @borderUp, @borderDown, @borderFlags)

XgrGetGridBorder() returns the current grid border attribute that
specifies the border style in the XgrDrawBorder() functions, plus
additional border values borderUp, borderDown, borderFlags.

XgrGetGridBorderOffset (grid, @left, @top, @right, @bottom)

XgrGetGridBorderOffset() returns the current border offset from
the left, top, right, and bottom of grid that controls where the
border is drawn by the XgrDrawBorder() functions.

XgrGetGridBoxDisplay (grid, @x1Disp, @y1Disp, @x2Disp, @y2Disp)

GraphicsDesigner - Programmer Guide and Reference - Page 47

XgrGetGridBox() returns the display coordinates of the upper-left
and lower-right corners of the grid-box for grid in
(x1Disp,y1Disp:x2Disp,y2Disp).

XgrGetGridBoxGrid (grid, @x1Grid, @y1Grid, @x2Grid, @y2Grid)

XgrGetGridBoxGrid() returns the grid coordinates of the upper-left
and lower-right corners of the grid-box for grid in
(x1Grid,y1Grid:x2Grid,y2Grid).

XgrGetGridBoxLocal (grid, @x1, @y1, @x2, @y2)

XgrGetGridBoxLocal() returns local coordinates of the upper-left
and lower-right corners of the grid-box for grid in
(x1,y1:x2,y2).

XgrGetGridBoxScaled (grid, x1#, y1#, x2#, y2#)

XgrGetGridBoxScaled() returns the scaled coordinates of the
upper-left and lower-right corners of the grid-box for grid in
(x1#,y1#:x2#,y2#).

XgrGetGridBoxWindow (grid, @x1Win, @y1Win, @x2Win, @y2Win)

XgrGetGridBoxWindow() returns the window coordinates of the
upper-left and lower-right corners of the grid-box for grid in
(x1Win,y1Win:x2Win,y2Win).

XgrGetGridBuffer (grid, @bufferGrid)

XgrGetGridBuffer() returns in bufferGrid the image grid that is
currently performing automatic buffering for grid. bufferGrid=0
if automatic buffering is not being performed.

XgrGetGridCharacterMapArray() (grid, @map[])

XgrGetGridCharacterMapArray() returns a copy of the character
map array for the specified grid.

XgrGetGridCoords (grid, @x, @y, @x1, @y1, @x2, @y2)

XgrGetGridCoords() returns parents local coordinates of the
upper-left corner of grid in x,y, and the local coordinates of the
(upper-left:lower-right) corners of grid in (x1,y1:x2,y2).

XgrGetGridDrawingMode (grid, @drawingMode, @lineStyle, @lineWidth)

XgrGetDrawingMode() returns the current drawingMode for
grid, including (lineStyle,lineWidth).

0 in drawingMode means SET drawing mode, where pixels are
drawn with the specified color. 1 means XOR drawing mode,
where pixels are drawn with the color generated by a bitwise XOR of
the current pixel color and the specified color.

lineWidth, lineStyle may not be implemented.

XgrGetGridFont (grid, @font)

Page 48 - GraphicsDesigner - Programmer Guide and Reference

XgrGetGridFont() returns the font currently assigned to grid.
font determines the typeface, character size, and drawing angle for
text drawn in grid.

XgrGetGridFunction (grid, @func)

XgrGetGridFunction() returns the func address of the grid
function currently assigned to grid. This is the function called by
XgrProcessMessages() when it processes grid messages for grid.

XgrGetGridParent (grid, @parent)

XgrGetGridParent() returns the parent currently assigned to
grid. Grids with parent=0 have no parent. Parentless grids are the
only grids whose grid functions are called and sent Redraw
messages by XgrRedrawWindow().

XgrGetGridPositionAndSize (grid, @x, @y, @width, @height)

XgrGetGridPositionAndSize() returns the local coordinates in its
parent of the upper-left corner of the grid-box of grid in (x,y),
and the width and height of the grid-box in (width,height).

XgrGetGridState (grid, @state)

XgrGetGridState() returns the state currently assigned to grid.
state=0 disables grid.

GraphicsDesigner does not consider disabled grids in its search to
find the grid to send mouse messages to, which effectively makes
disabled grids invisible or non-existant to the mouse.

XgrGetGridType (grid, @gridType)

XgrGetGridType() returns the gridType of grid.

XgrGetGridWindow (grid, @window)

XgrGetGridWindow() returns the window that contains grid.

GraphicsDesigner - Programmer Guide and Reference - Page 49

XgrGridTypeNameToNumber (gridType$, @gridType)

XgrGridTypeNameToNumber() returns the gridType number
previously assigned to gridType$. If gridType$ was never
registered, -1 is returned in gridType.

XgrGridTypeNumberToName (gridType, @gridType$)

XgrGridTypeNumberToName() converts gridType into the
corresponding gridType$. If gridType has not been assigned, an
empty string is returned in gridType$.

gridType=0 is "Coordinate" and gridType=1 is "Image".

XgrRegisterGridType (gridType$, @gridType)

XgrRegisterGridType() registers gridType$, assigns it a grid
type number, and returns it in gridType. If gridType$ already
exists, XgrRegisterGridType() returns the already established
grid type number.

XgrSetGridBorder (grid, border, borderUp, borderDown, borderFlags)

XgrSetGridBorder() sets the current grid border attribute that
specifies the border style in the XgrDrawBorder() functions, plus
additional border values borderUp, borderDown, borderFlags.

XgrSetGridBorderOffset (grid, left, top, right, bottom)

XgrSetGridBorderOffset() sets the current border offset from the
left, top, right, and bottom of grid. These values determine
how far the grid border is drawn from the edge of the grid by the
XgrDrawBorder() functions.

XgrSetGridBoxGrid (grid, x1Grid, y1Grid, x2Grid, y2Grid)

XgrSetGridBox() sets the (upper-left:lower-right) of the
grid-box to grid coordinates (x1Grid,y1Grid:x2Grid,y2Grid).
This does not change the position or size of the grid, and values of
x2Grid,y2Grid that are inconsistent with grid width and height are
adjusted to make them so.

XgrSetGridBoxScaled (grid, x1#, y1#, x2#, y2#)

XgrSetGridBoxScaled() sets the (upper-left:lower-right)
corners of the grid-box to scaled coordinates (x1#,y1#:x2#,y2#).

This does not change the position or size of the grid.

XgrSetGridBuffer (grid, bufferGrid)

XgrSetGridBuffer() sets bufferGrid as the image grid to
perform automatic buffering for grid. The grid type of bufferGrid
must be image grid, which is 1. bufferGrid = 0 means no buffer.

XgrSetGridCharacterMapArray() (grid, @map[])

Page 50 - GraphicsDesigner - Programmer Guide and Reference

XgrSetGridCharacterMapArray() sets the character map array for
the specified grid.

XgrSetGridDrawingMode (grid, drawingMode, lineWidth, lineStyle)

XgrSetGridDrawingMode() sets drawMode for grid.

0 in drawingMode means SET drawing mode, where pixels are
drawn with the specified color. 1 means XOR drawing mode,
where pixels are drawn with the color generated by a bitwise XOR of
the current pixel color and the specified color.

lineWidth,lineStyle may not be implemented.

XgrSetGridFont (grid, font)

XgrSetGridFont() sets the font that controls the typeface, point
size, and drawing angle of text drawn in grid.

XgrSetGridFunction (grid, func)

XgrSetGridFunction() sets the func address of the grid function
assigned to grid. XgrProcessMessages() calls this function when
it processes a message for grid.

XgrSetGridPositionAndSize (grid, x, y, width, height)

XgrSetGridPositionAndSize() positions and resizes grid. The
upper-left corner of its grid-box is set to parent local coordinates
(x,y), and its (x2Grid,y2Grid) grid coordinates are adjusted if
the size is changed.

XgrSetGridState (grid, state)

XgrSetGridState() sets the disable/enable state of grid to
state. state=0 disables grids.

GraphicsDesigner does not consider disabled grids in its search to
find the grid to send mouse messages to, which effectively makes
disabled grids invisible or non-existant to the mouse.

XgrSetGridTimer (grid, interval)

XgrSetGridTimer() sets a millisecond timer for grid to
interval. When the timer counts down to zero it stops and a Timer
message for grid is added to the message queue.

XgrSetGridType (grid, gridType)

XgrSetGridType() sets the gridType of grid. This has no effect
on the functionality of GraphicsDesigner, except that gridType=0
and gridType=1 grids do not receive event messages.

GraphicsDesigner - Programmer Guide and Reference - Page 51

Drawing Functions
XgrDrawArc (grid, color, r, startAngle#, endAngle#)
XgrDrawArcGrid (grid, color, r, startAngle#, endAngle#)
XgrDrawArcScaled (grid, color, r#, startAngle#, endAngle#)
XgrDrawBorder (grid, border, back, low, high, x1, y1, x2, y2)
XgrDrawBorderGrid (grid, border, back, low, high, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawBorderScaled (grid, border, back, low, high, x1#, y1#, x2#, y2#)
XgrDrawBox (grid, color, x1, y1, x2, y2)
XgrDrawBoxGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawBoxScaled (grid, color, x1#, y1#, x2#, y2#)
XgrDrawCircle (grid, color, r)
XgrDrawCircleGrid (grid, color, r)
XgrDrawCircleScaled (grid, color, r#)
XgrDrawGridBorder (grid, border)
XgrDrawIcon (grid, icon, x, y)
XgrDrawIconGrid (grid, icon, xGrid, yGrid)
XgrDrawIconScaled (grid, icon, x#, y#)
XgrDrawLine (grid, color, x1, y1, x2, y2)
XgrDrawLineGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrDrawLineScaled (grid, color, x1#, y1#, x2#, y2#)
XgrDrawLineTo (grid, color, x, y)
XgrDrawLineToGrid (grid, color, xGrid, yGrid)
XgrDrawLineToScaled (grid, color, x#, y#)
XgrDrawLineToDelta (grid, color, dx, dy)
XgrDrawLineToDeltaGrid (grid, color, dxGrid, dyGrid)
XgrDrawLineToDeltaScaled (grid, color, dx#, dy#)
XgrDrawLines (grid, color, first, count, ANY @lines[])
XgrDrawLinesGrid (grid, color, first, count, ANY @lines[])
XgrDrawLinesScaled (grid, color, first, count, ANY @lines[])
XgrDrawLinesTo (grid, color, first, count, ANY @lines[])
XgrDrawLinesToGrid (grid, color, first, count, ANY @lines[])
XgrDrawLinesToScaled (grid, color, first, count, ANY @lines[])
XgrDrawPoint (grid, color, x, y)
XgrDrawPointGrid (grid, color, xGrid, yGrid)
XgrDrawPointScaled (grid, color, x#, y#)
XgrDrawPoints (grid, color, first, count, ANY @points[])
XgrDrawPointsGrid (grid, color, first, count, ANY @points[])
XgrDrawPointsScaled (grid, color, first, count, ANY @points[])
XgrDrawText (grid, color, text$)
XgrDrawTextGrid (grid, color, text$)
XgrDrawTextScaled (grid, color, text$)
XgrDrawTextFill (grid, color, text$)
XgrDrawTextFillGrid (grid, color, text$)
XgrDrawTextFillScaled (grid, color, text$)
XgrFillBox (grid, color, x1, y1, x2, y2)
XgrFillBoxGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
XgrFillBoxScaled (grid, color, x1#, y1#, x2#, y2#)
XgrGetDrawpoint (grid, @x, @y)
XgrGetDrawpointGrid (grid, @xGrid, @yGrid)
XgrGetDrawpointScaled (grid, @x#, @y#)
XgrGrabPoint (grid, x, y, @red, @green, @blue, @color)
XgrGrabPointGrid (grid, xGrid, yGrid, @red, @green, @blue, @color)
XgrGrabPointScaled (grid, x#, y#, @red, @green, @blue, @color)
XgrMoveDelta (grid, dx, dy)
XgrMoveDeltaGrid (grid, dxGrid, dyGrid)
XgrMoveDeltaScaled (grid, dx#, dy#)
XgrMoveTo (grid, x, y)
XgrMoveToGrid (grid, xGrid, yGrid)
XgrMoveToScaled (grid, x#, y#)
XgrSetDrawpoint (grid, x, y)
XgrSetDrawpointGrid (grid, xGrid, yGrid)
XgrSetDrawpointScaled (grid, x#, y#)

Page 52 - GraphicsDesigner - Programmer Guide and Reference

XgrDrawArc
XgrDrawArcGrid
XgrDrawArcScaled

(grid, color, r, startAngle#, endAngle#)
(grid, color, rGrid, startAngle#, endAngle#)
(grid, color, r#, startAngle#, endAngle#)

These functions draw an arc, its center of curvature at the appropriate
drawpoint, which need not be within the grid.

The arc itself is r pixels, rGrid pixels or r# scaled units from the
center of curvature. Drawing begins at startAngle# and ends at
endAngle#, both of which are expressed in radians.

Angles increase counterclockwise, and a circle is $$TWOPI radians.
Angles are folded into the range 0 to $$TWOPI before drawing.

color = -1 means draw in the current drawing color.

No drawpoint is changed. No color attribute is changed.

XgrDrawBorder
XgrDrawBorderGrid

XgrDrawBorderScaled
(grid, border, back, low, high, x1, y1, x2, y2)
(grid, border, back, low, high, x1Grid, y1Grid, x2Grid, y2Grid)
(grid, border, back, low, high, x1#, y1#, x2#, y2#)

These functions draw a border at the specified coordinates.

border, back, low, high = -1 means draw with current value.

No drawpoint is changed. No border or color attribute is changed.

XgrDrawBox
XgrDrawBoxGrid
XgrDrawBoxScaled

(grid, color, x1, y1, x2, y2)
(grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
(grid, color, x1#, y1#, x2#, y2#)

These functions draw a rectangle at the specified coordinates.

color = -1 means draw in the current drawing color.

No drawpoint is changed. No color attribute is changed.

XgrDrawCircle
XgrDrawCircleGrid

XgrDrawCircleScaled
(grid, color, r)
(grid, color, rGrid)
(grid, color, r#)

These functions draw a circle centered at the appropriate drawpoint.

color = -1 means draw in the current drawing color.

No drawpoint is changed. No color attribute is changed.

XgrDrawGridBorder (grid, border)

XgrDrawGridBorder() draws the specified border at the current
border offsets.

border = -1 means draw with the current border attribute.

No drawpoint or border attribute is changed.

XgrDrawIcon (grid, icon, x, y)
GraphicsDesigner - Programmer Guide and Reference - Page 53

XgrDrawIconGrid
XgrDrawIconScaled

(grid, icon, xGrid, yGrid)
(grid, icon, x#, y#)

These functions draw icon at the specified coordinates.

color = -1 means draw in the current drawing color.

No drawpoint is changed. No color attribute is changed.

XgrDrawLine
XgrDrawLineGrid

XgrDrawLineScaled
(grid, color, x1, y1, x2, y2)
(grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
(grid, color, x1#, y1#, x2#, y2#)

These functions draw a line between the two specified points. Then
the appropriate drawpoint is set to the second point.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawLineTo
XgrDrawLineToGrid

XgrDrawLineToScaled
(grid, color, x, y)
(grid, color, xGrid, yGrid)
(grid, color, x#, y#)

These functions draw a line from the appropriate drawpoint to the
specified coordinates. Then the appropriate drawpoint is set to the
specified coordinates.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawLineToDelta
XgrDrawLineToDeltaGrid

XgrDrawLineToDeltaScaled
(grid, color, dx, dy)
(grid, color, dxGrid, dyGrid)
(grid, color, dx#, dy#)

These functions draw a line from the appropriate drawpoint to an
endpoint offset from the drawpoint by the specified values. Then the
appropriate drawpoint is set to the endpoint.

color = -1 means draw in the current drawing color.

No color attribute is changed.

Page 54 - GraphicsDesigner - Programmer Guide and Reference

XgrDrawLines
XgrDrawLinesGrid

XgrDrawLinesScaled
(grid, color, first, count, @lines[])
(grid, color, first, count, @linesGrid[])
(grid, color, first, count, @lines#[])

These functions draw a series of independent line segments. Then
the appropriate drawpoint is set to the endpoint of the last drawn
line. Each line occupies four array elements. The first four array
elements are the start and end point of line #0.

Since the array contains the start point and end point of every line,
every line is independent, and not necessarily connected to any
previous or subsequent line.

first is the first line to draw, starting at line #0.

count is the number of lines to draw.

count = 0 means draw lines until the array is exhausted.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawLinesTo
XgrDrawLinesToGrid
XgrDrawLinesToScaled

(grid, color, first, count, @points[])
(grid, color, first, count, @pointsGrid[])
(grid, color, first, count, @points#)

These functions draw a series of connected lines between points.
Then the appropriate drawpoint is set to the end point of the last
drawn line. Each point occupies two array elements. The first two
array elements are the start point of the first line.

A move to the first point is performed, then count lines are
drawn to successive points, or until the array of points is exhausted,
whichever comes first.

Since each point in the array is the end point of one line and the start
point of the next, these functions draw a series of connected lines.

first is the start point of the first line to draw, starting at point #0.

count is the number of lines to draw.

count = 0 means draw lines until the array is exhausted.

color = -1 means draw in the current drawing color.

No color attribute is changed.

GraphicsDesigner - Programmer Guide and Reference - Page 55

XgrDrawPoint
XgrDrawPointGrid

XgrDrawPointScaled
(grid, color, x, y)
(grid, color, xGrid, yGrid)
(grid, color, x#, y#)

These functions draw a point at the specified coordinates. Then the
appropriate drawpoint is set to the specified coordinates.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawPoints
XgrDrawPointsGrid

XgrDrawPointsScaled
(grid, color, first, count, @points[])
(grid, color, first, count, @pointsGrid[])
(grid, color, first, count, @points#[])

These functions draw a series of points. Then the appropriate
drawpoint is set to the last point drawn. Each point occupies two
array elements. The first two array elements are point #0.

first is the first point drawn. Successive points are drawn until the
array is exhausted or count points have been drawn.

count = 0 means draw points until the array is exhausted.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawText
XgrDrawTextGrid

XgrDrawTextScaled
(grid, color, text$)
(grid, color, text$)
(grid, color, text$)

These functions draw text at the appropriate drawpoint without
changing the pixels around the characters. Then the appropriate
drawpoint is left after the last character.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrDrawTextFill
XgrDrawTextFillGrid
XgrDrawTextFillScaled

(grid, color, text$)
(grid, color, text$)
(grid, color, text$)

These functions draw text at the appropriate drawpoint after they fill
the rectangle that contains the text with the current background color.
Then the appropriate drawpoint is left after the last character.

color = -1 means draw in the current drawing color.

No color attribute is changed.

Page 56 - GraphicsDesigner - Programmer Guide and Reference

XgrFillBox
XgrFillBoxGrid
XgrFillBoxScaled

(grid, color, x1, y1, x2, y2)
(grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
(grid, color, x1#, y1#, x2#, y2#)

These functions fill the rectangle with opposite corners at the
specified coordinates.

color = -1 means draw in the current drawing color.

No color attribute is changed.

XgrGetDrawpoint
XgrGetDrawpointGrid
XgrGetDrawpointScaled

(grid, @x, @y)
(grid, @xGrid, @yGrid)
(grid, @x#, @y#)

These functions return the current value of the appropriate
drawpoint.

XgrGrabPoint
XgrGrabPointGrid

XgrGrabPointScaled
(grid, @x, @y, @red, @green, @blue, @color)
(grid, @xGrid, @yGrid, @red, @green, @blue, @color)
(grid, @x#, @y#, @red, @green, @blue, @color)

These functions grab the color of the pixel at the appropriate
drawpoint, and return the drawpoint coordinates and the color of the
pixel as 16-bit color intensities (red,green,blue), and a standard
color (color).

-1 is returned in (red,green,blue,color) if the drawpoint is
outside grid or the underlying graphics system does not support
this operation.

XgrMoveDelta
XgrMoveDeltaGrid

XgrMoveDeltaScaled
(grid, dx, dy)
(grid, dxGrid, dyGrid)
(grid, dx#, dy#)

These functions move the appropriate drawpoint to a new position
computed by adding the specified offset to its current value.

XgrMoveTo
XgrMoveToGrid
XgrMoveToScaled

(grid, x, y)
(grid, xGrid, yGrid)
(grid, x#, y#)

These functions set the appropriate drawpoint to the specified value.
These functions are equivalent to XgrSetDrawpoint() functions.

XgrSetDrawpoint
XgrSetDrawpointGrid
XgrSetDrawpointScaled

(grid, x, y)
(grid, xGrid, yGrid)
(grid, x#, y#)

These functions set the appropriate drawpoint to the specified value.
These functions are equivalent to XgrSetMoveTo() functions.

GraphicsDesigner - Programmer Guide and Reference - Page 57

Image Functions
XgrCopyImage (grid, imageGrid)
XgrDrawImage (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageExtend (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageExtendScaled (grid, imageGrid, startX, startY, endX, endY)
XgrDrawImageScaled (grid, imageGrid, startX, startY, endX, endY)
XgrGetImage (grid, @image[])
XgrGetImageArrayInfo (@image[], @bitsPerPixel, @width, @height)
XgrLoadImage (fileName$, @image[])
XgrRefreshGrid (grid)
XgrSaveImage (fileName$, @image[])
XgrSetImage (grid, @image[])

XgrCopyImage (grid, imageGrid)

XgrCopyImage() transfers the image in imageGrid into a
displayable grid, starting with the upper-left corner of grid and
imageGrid. The contents of imageGrid is not altered. Drawing
outside grid is not performed, which clips imageGrid if it is
larger than grid.

XgrCopyImage() is a relatively fast operation.
XgrDrawImage (grid, imageGrid, startX, startY, endX, endY)

XgrDrawImage() draws imageGrid in grid at the drawpoint.

(startX,startY:endX,endY) are pixel offsets into the image. The
left and/or upper portion of an image is skipped if startX and/or
startY is non-zero. The right and/or lower portion of an image is
not drawn if endX and/or endY is reached before the image data is
exhausted. If endX and/or endY is zero, endX and/or endY are
set to the x and/or y limits of the image.

Drawing is not performed outside the grid-box.

XgrDrawImage() is a relatively fast operation.

Page 58 - GraphicsDesigner - Programmer Guide and Reference

XgrDrawImageExtend (grid, imageGrid, startX, startY, endX, endY)

XgrDrawImageExtend() draws imageGrid in grid at the
drawpoint.

(startX,startY:endX,endY) are pixel offsets into the image. The
left and/or upper portions of an image is skipped if startX and/or
startY is non-zero. If endX is reached, or imageGrid is
exhausted before the grid-box x limit is reached, the final pixel is
repeated to the grid-box x limit. If endY is reached, or imageGrid
is exhausted before the grid-box y limit is reached, the final row of
pixels is repeated to the grid-box y limit. If endX and/or endY is
zero, endX and/or endY are set to the x and/or y limits of the
image.

Drawing is not performed outside the grid-box.

XgrDrawImageExtend() is a relatively fast operation.
XgrDrawImageExtendScaled (grid, imageGrid, startX, startY, endX, endY)

XgrDrawImageExtendScaled() draws imageGrid in grid at the
drawpoint.

(startX,startY:endX,endY) are pixel offsets into the image. The
left and/or upper portion of an image is skipped if startX and/or
startY is non-zero. If endX is reached, or imageGrid is
exhausted before the grid-box x limit is reached, the final pixel is
repeated to the grid-box x limit. If endY is reached, or imageGrid
is exhausted before the grid-box y limit is reached, the final row of
pixels is repeated to the grid-box y limit. If endX and/or endY is
zero, endX and/or endY are set to the x and/or y limits of the
image.

Drawing is not performed outside the grid-box.

XgrDrawImageExtendScaled() interprets image data as scaled
coordinates, therefore it will zoom (enlarge and compress) images of
drawings, icons, and video images.

XgrDrawImageExtendScaled() is a slow operation.

GraphicsDesigner - Programmer Guide and Reference - Page 59

XgrDrawImageScaled (grid, imageGrid, startX, startY, endX, endY)

XgrDrawImageScaled() draws imageGrid in grid at the
drawpoint.

(startX,startY:endX,endY) are pixel offsets into the image. The
left and/or upper portion of an image is skipped if startX and/or
startY is non-zero. The right and/or lower portion of an image is
not drawn if endX and/or endY is reached before the imageGrid
is exhausted. If endX and/or endY is zero, endX and/or endY are
set to the x and/or y limits of the image.

Drawing is not performed outside the grid-box.

XgrDrawImageScaled() interprets image data as scaled coordinates,
therefore it will zoom (enlarge and compress) images of drawings,
icons, and video images.

XgrDrawImageScaled() is a slow operation.
XgrGetImage (grid, @image[])

XgrGetImage() returns the image[] array from grid. This copy
of the image in grid is in 24-bits per pixel DIB format, with 8-bits
each for red,green,blue.

XgrGetImageArrayInfo (@image[], @bitsPerPixel, @width, @height)

XgrGetImageArrayInfo() returns information about the image in
XLONG array image[]. The contents of image[] must be in valid
DIB format.

XgrGetImageArrayInfo() returns the number of bitsPerPixel,
and the image (width,height) in pixels.

Page 60 - GraphicsDesigner - Programmer Guide and Reference

XgrLoadImage (fileName$, @image[])

XgrLoadImage() loads a graphics image from file fileName$ into
XLONG array image[]. fileName$ must contain a valid DIB
format file.

After loading, XgrLoadImage() converts image[] into a 24-bit
per pixel, 8-bit per red,green,blue DIB format.

XgrRefreshGrid (grid)

XgrRefreshGrid() draws an image into a displayable grid from
the image buffer attached to it. Only the portion of the image buffer
that overlaps the grid-box belonging to grid is refreshed. Drawing
is not performed outside the grid-box or image buffer area.

XgrSaveImage (fileName$, @image[])

XgrSaveImage() saves XLONG array image[] in file fileName$.
It can be loaded with XgrLoadImage(), and drawn by
XgrDrawImage().

XgrSetImage (grid, @image[])

XgrSetImage() copies the image[] array into grid. image[]
must be in valid DIB format.

GraphicsDesigner - Programmer Guide and Reference - Page 61

Focus Functions
XgrGetMouseInfo (window, @grid, @xWin, @yWin, @state, @time)
XgrGetSelectedWindow (@window)
XgrSetSelectedWindow (window)

XgrGetMouseInfo (window, @grid, @xWin, @yWin, @state, @time)

XgrGetMouseInfo() returns the grid that has mouse focus,
otherwise the grid that currently contains the mouse cursor. Also
returned is the (xWin,yWin) position of the mouse cursor in
window, and the mouse state. If the mouse cursor is not in a
window and/or grid, then window and/or grid=0.

XgrGetSelectedWindow (@window)

XgrGetSelectedWindow() returns the window that is currently
selected on the default display, which is the window to which
keyboard messages are directed. If no window created by the
program is currently selected, a 0 is returned in window. Since
many programs can have windows on the display at the same time, a
value of 0 in window is not a rare occurance.

XgrSetSelectedWindow (window)

XgrSetSelectedWindow() displays window if it is hidden or
minimized, then selects window if it is not already selected.

Selecting window gives it keyboard focus, so the window argument
of subsequent keyboard messages will be window.

Page 62 - GraphicsDesigner - Programmer Guide and Reference

Message Functions
XgrAddMessage (wingrid, message, v0, v1, v2, v3)
XgrDeleteMessages (count)
XgrGetCEO (@func)
XgrGetMessages (@count, @messages[])
XgrGetMessageType (message, @messageType)
XgrJamMessage (wingrid, message, v0, v1, v2, v3)
XgrMessageNameToNumber (message$, @message)
XgrMessageNames (@count, messages$[])
XgrMessageNumberToName (message, @message$)
XgrMessageToMessageType (message, messageType)
XgrMessagesPending (@count)
XgrPeekMessage (@wingrid, @message, @v0, @v1, @v2, @v3)
XgrProcessMessages (maxCount)
XgrRedrawWindow (window, action, xWin, yWin, width, height)
XgrRegisterMessage (message$, @message)
XgrSendMessage (wingrid, message, v0, v1, v2, v3, r0, r1)
XgrSendMessageToWindow (wingrid, message, v0, v1, v2, v3, r0, r1)
XgrSendStringMessage (wingrid, message$, v0, v1, v2, v3, r0, r1)
XgrSendStringMessageToWindow (wingrid, message$, v0, v1, v2, v3, r0, r1)
XgrSetCEO (func)

XgrAddMessage (wingrid, message, v0, v1, v2, v3)

XgrAddMessage() adds a message to the end of the message queue,
composed of (grid,message,v0,v1,v2,v3).

XgrDeleteMessages (count)

XgrDeleteMessages() deletes count messages from the message
queue or all messages in the queue, whichever is less.

XgrGetCEO (@func)

XgrGetCEO() returns the address of the CEO function in func. An
address of 0 means no CEO function exists.

When messages are processed by XgrProcessMessages(), they
are sent to the CEO function before any window functions.

See XgrProcessMessages() for more detailed information.

GraphicsDesigner - Programmer Guide and Reference - Page 63

XgrGetMessages (@count, @messages[])

XgrGetMessages() returns the first count messages from the
message queue in messages[] without removing them from the
queue. If fewer than count messages are waiting in the queue, all
are returned and count is set to the number of messages returned.
messages[] must be type MESSAGE.

XgrGetMessageType (message, @messageType)

XgrGetMessageType() returns messageType=1 if message is a
window message and messageType=2 if message is a grid
message.

XgrJamMessage (wingrid, message, v0, v1, v2, v3)

XgrJamMessage() jams the message composed of
(wingrid,message,v0,v1,v2,v3) into the front of the queue,
which makes it the next message accessed by XgrPeekMessages(),
XgrProcessMessages(), etc.

XgrMessageNameToNumber (messageName$, @messageNumber)

XgrMessageNameToNumber() converts a messageName$ into a
messageNumber. If messageName$ has never been registered, 0 is
returned in messageNumber.

XgrMessageNames (@count, @messageNames$[])

XgrMessageNames() returns all registered messageNames$[] and
count. The last message name is messageName$[count] since
(message=0) is not a valid message number. The messageNumber
for each message name is its element number in messageNames$[].

XgrMessageNumberToName (messageNumber, @messageName$)

XgrMessageNumberToName() returns the messageName$
corresponding to messageNumber. If messageNumber has never
been assigned, an empty string is returned in messageName$.

XgrMessagesPending (@count)

XgrMessagesPending() returns a count of the number of
messages in the message queue. count will be zero if there are no
messages in the message queue.

Page 64 - GraphicsDesigner - Programmer Guide and Reference

XgrPeekMessage (@wingrid, @message, @v0, @v1, @v2, @v3)

XgrPeekMessage() returns the next message in the message queue
in (wingrid,message,v0,v1,v2,v3) without removing it from
the queue. If the message queue is empty, XgrPeekMessage()
suspends the application until a message becomes available.

XgrProcessMessages (count)

XgrProcessMessages() executes the next count messages in the
message queue. If there are no messages in the queue,
XgrProcessMessages() suspends the program until a message is
available, then processes them and returns. If one or more messages
is in the queue, XgrProcessMessages() processes count
messages or all pending messages, whichever occurs first, then
returns.

count=0 tells XgrProcessMessages() to return immediately if no
messages are in the message queue, otherwise process one message
and return.

count=-1 tells XgrProcessMessages() to process all messages. If
no messages are in the message queue, XgrProcessMessages()
suspends the program until a messages becomes available, then
processes it and returns. Otherwise XgrProcessMessages()
processes all messages in the message queue, then returns.

count=-2 tells XgrProcessMessages() to process messages as
they come in, suspending program execution whenever no messages
are in the message queue, and returning only if and when it processes
an ExitMessageLoop message.

First XgrProcessMessages() checks to see if a CEO function
exists. If it does, it calls the CEO, passing it the message arguments,
plus 0 in r0 and a copy of the window or grid argument in r1.
The CEO can return -1 in r0 to cancel the message. When
XgrProcessMessages() detects the -1 in r0, it cancels the
message and returns without calling any window function it would
otherwise call.

Then XgrProcessMessages() checks to see if a window function
exists for the window or grid argument in the message. If it does, it
calls the function, passing it the message arguments plus 0 in r0
and a copy of the window or grid argument in r1.

GraphicsDesigner - Programmer Guide and Reference - Page 65

XgrRedrawWindow (window, action, xWin, yWin, width, height)

XgrRedrawWindow() calls the grid functions assigned to every
parentless grid in window. It sends each a Redraw message
including xWin,yWin,width,height to define the portion of the
window that needs to be redrawn. The grid function can determine
from xWin,yWin,width,height whether any part of the grid is in
this portion of window and needs to be redrawn.

If the grid function needs to redraw the grid, it sends Redraw
messages to all kids of grid, if any, passing them the same
xWin,yWin,width,height arguments.

XgrRegisterMessage (message$, @message)

XgrRegisterMessage() returns a message number to correspond
with a message$ name. If message$ is already registered,
XgrRegisterEvent() returns the existing message number,
otherwise it creates a new one.

XgrSendMessage (wingrid, message, v0, v1, v2, v3, r0, r1)

XgrSendMessage() calls the window or grid function assigned to
the window or grid in wingrid, passing it the message arguments it
received.

First XgrSendMessage() examines message to determine whether
the message is a window message or a grid message.

For window messages, XgrSendMessage() assumes wingrid
contains a window number, looks up its window function and calls it,
passing it the message arguments.

For grid message, XgrSendMessage() assumes wingrid is a grid
number, looks up its grid function and calls it, passing it the message
arguments.

XgrSendMessageToWindow (wingrid, message, v0, v1, v2, v3, r0, r1)

XgrSendMessageToWindow() calls the window function associated
with wingrid, passing it the arguments it received.

First XgrSendMessageToWindow() examines message to
determine whether the message is a window or grid message.

For window messages, XgrSendMessageToWindow() assumes
wingrid contains a window number, looks up its window function
and calls it, passing it the message arguments.

For grid messages, XgrSendMessageToWindow() assumes wingrid
contains a grid number, looks up the window function of the window
that contains wingrid and calls it, passing it the message
arguments.

Page 66 - GraphicsDesigner - Programmer Guide and Reference

XgrSendStringMessage (wingrid, message$, v0, v1, v2, v3, r0, ANY)

XgrSendStringMessage() converts the message$ string into a
message number, then calls XgrSendMessage().

XgrSendStringMessageToWindow (wingrid, message$, v0, v1, v2, v3, r0, ANY)

XgrSendStringMessageToWindow() converts the message$ string
into a message number, then calls XgrSetMessageToWindow().

XgrSetCEO (func)

XgrSetCEO() sets the CEO function to func, which makes func
the active CEO address. func=0 cancels CEO activity. CEO
functions must take exactly 8 XLONG arguments.

See XgrProcessMessages() for more information.

GraphicsDesigner - Programmer Guide and Reference - Page 67

Messages
MouseDown (grid, MouseDown, x, y, state, time, 0, focusGrid)
MouseDrag (grid, MouseDrag, x, y, state, time, 0, focusGrid)
MouseEnter (grid, MouseEnter, x, y, state, time, 0, focusGrid)
MouseExit (grid, MouseExit, x, y, state, time, 0, focusGrid)
MouseMove (grid, MouseMove, x, y, state, time, 0, focusGrid)
MouseUp (grid, MouseUp, x, y, state, time, 0, focusGrid)
RedrawGrid (grid, RedrawGrid, x, y, state, time, 0, 0)
TimeOut (grid, TimeOut, 0, 0, 0, 0, 0, 0)
WindowDeselected (window, WindowDeselected, 0, 0, 0, 0, 0, 0)
WindowDestroyed (window, WindowDestroyed, 0, 0, 0, 0)
WindowDisplayed (window, WindowDisplayed, 0, 0, 0, 0, 0, 0)
WindowHidden (window, WindowHidden, 0, 0, 0, 0, 0, 0)
WindowKeyDown (window, WindowKeyDown, x, y, state, time, 0, 0)
WindowKeyUp (window, WindowKeyUp, x, y, state, time, 0, 0)
WindowMaximized (window, WindowMaximized, 0, 0, 0, 0, 0, 0)
WindowMinimized (window, WindowMinimized, 0, 0, 0, 0, 0, 0)
WindowRedraw (window, WindowRedraw, xWin, yWin, width, height, 0, 0)
WindowResized (window, WindowResized, x, y, width, height, 0, 0)
WindowSelected (window, WindowSelected, 0, 0, 0, 0, 0, 0)

MouseDown (grid, MouseDown, x, y, state, time, 0, focusGrid)

A MouseDown message is added to the message queue when the
system detects a mouse button down event has occured.

grid contains the grid number of the grid the mouse cursor was in
when the mouse button down event was detected.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the button number that was depressed, plus the
up/down state of all mouse buttons when the mouse button down
event was detected.

time contains the millisecond system time at which the mouse
button down event was detected.

MouseDrag (grid, MouseDrag, x, y, state, time, 0, focusGrid)

A MouseDrag message is added to the queue when the system
detects mouse movement while one or more mouse buttons is down.

grid contains the grid number of the grid the mouse cursor was in
when the mouse drag event was detected.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the up/down state of all mouse buttons when the
mouse drag event was detected.

time contains the millisecond system time at which the mouse drag
event was detected.

Page 68 - GraphicsDesigner - Programmer Guide and Reference

MouseEnter (grid, MouseEnter, x, y, state, time, 0, focusGrid)

A MouseEnter message is added to the message queue when the
system detects mouse movement has made the mouse cursor enter a
grid-box. If the mouse movement also made the cursor exit another
grid, a MouseExit message is added to the message queue before
the MouseEnter message.

grid contains the grid number of the grid-box the mouse cursor
entered.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the up/down state of all mouse buttons when the
mouse enter event was detected.

time contains the millisecond system time at which the mouse enter
event was detected.

MouseExit (grid, MouseExit, x, y, state, time, 0, focusGrid)

A MouseExit message is added to the message queue when the
system detects mouse movement has made the mouse cursor exit a
grid-box. If the mouse movement also made the cursor enter another
grid, the MouseExit message is added to the message queue before
the MouseEnter message.

grid contains the grid number of the grid-box the mouse cursor
exited.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the up/down state of all mouse buttons when the
mouse exit event was detected.

time contains the millisecond system time at which the mouse exit
event was detected.

GraphicsDesigner - Programmer Guide and Reference - Page 69

MouseMove (grid, MouseMove, x, y, state, time, 0, focusGrid)

A MouseMove message is added to the message queue when the
system detects mouse movement while no mouse buttons are down.

grid contains the grid number of the grid the mouse cursor was in
when the mouse move event was detected.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the up/down state of all mouse buttons when the
mouse move event was detected.

time contains the millisecond system time at which the mouse move
event was detected.

MouseUp (grid, MouseUp, x, y, state, time, 0, focusGrid)

A MouseUp message is added to the message queue when the system
detects a mouse button up event has occured.

grid contains the grid number of the grid the mouse cursor was in
when the mouse button up event was detected.

x,y contain the local coordinates of the mouse cursor in focusGrid
when the mouse event was detected.

state contains the button number that was depressed, plus the
up/down state of all mouse buttons when the mouse button up event
was detected.

time contains the millisecond system time at which the mouse
button up event was detected.

Page 70 - GraphicsDesigner - Programmer Guide and Reference

RedrawGrid (grid, Redraw, x, y, width, height, 0, 0)

A RedrawGrid message is added to the message queue when all or
part of a grid is exposed or otherwise becomes visible.

XgrRedrawWindow (window, action, xWin, yWin, width,
height) queues or sends a RedrawGrid message to every grid in
window that is partially or wholly within the specified rectangle, or
all grids in window if width <= 0 and/or height <= 0.

(x,y,width,height) are the local coordinates of the smallest
rectangle in grid that includes all of the exposed area.

If width<=0 and/or height<=0 the entire grid must be redrawn
because the entire grid needs redrawing. Most programs have no
provision to partially redraw grids and ignore x,y,width,height.

TimeOut (grid, TimeOut, 0, 0, 0, 0, 0, 0)

A TimeOut message is added to the message queue when a timer
created by XgrStartGridTimer() times out. Grid timers are
destroyed when they time out, so grids that want periodic TimeOut
messages must call XgrStartGridTimer() every time they receive
a TimeOut message.

WindowDeselected (window, WindowDeselected, 0, 0, 0, 0, 0, 0)

A WindowDeselected message is added to the message queue when
a window is deselected. Windows usually stay selected until another
is selected. A window is selected when a user points at it with the
mouse cursor and presses a mouse button, and when programs call
XgrDisplayWindow() or XgrSetSelectedWindow().

Selecting a window deselects the currently selected window, because
only one window can be selected at a time. Selected windows are
recognizable on the display because their title-bar and frame are
emphasized, usually by a colorful background color. The title-bar
and frame of deselected windows are deemphasized.

Selecting a window means giving it keyboard focus. Whenever
GraphicsDesigner detects a keyboard event, it prepares a keyboard
message for the selected window.

WindowDestroyed (window, WindowDestroyed, 0, 0, 0, 0, 0, 0)

A WindowDestroyed message is added to the message queue when
a window is destroyed, whether by user action or as a result of
XgrDestroyWindow().

GraphicsDesigner - Programmer Guide and Reference - Page 71

WindowDisplayed (window, WindowDisplayed, 0, 0, 0, 0, 0, 0)

A WindowDisplayed message is added to the message queue when
a window is displayed for the first time or after being hidden or
minimized.

Windows are displayed when users click on their icons, and when
programs call XgrDisplayWindow().

WindowHidden (window, WindowHidden, 0, 0, 0, 0, 0, 0)

A WindowHidden message is added to the message queue when a
window is hidden from view or minimized.

Windows are hidden when programs call XgrHideWindow().

WindowKeyDown (window, WindowKeyDown, x, y, state, time, 0, focusGrid)

A WindowKeyDown message is added to the message queue when the
system detects a keyboard key down event.

window contains the window number of the currently selected
window, which is the window with keyboard focus.

x,y contain the position of the mouse cursor in the local coordinates
of focusGrid when the WindowKeyDown event was detected.

state identifies the depressed key and gives the state of the
keyboard mode-keys (Alt-Control-Shift) when the WindowKeyDown
event was detected.

time contains the value of the system millisecond time when the
WindowKeyDown event was detected.

In some programs, individual grids need to receive key down
messages. Furthermore, windows can contain several grids capable
of accepting keyboard focus. In these cases, window functions keep
track of the grid that most recently had keyboard focus in each
window and send it a KeyDown message when it receives
WindowKeyDown. The WindowKeyDown message must not be passed
to the grid function, because WindowKeyDown is a window message
and window messages must not be sent to grid functions.

Page 72 - GraphicsDesigner - Programmer Guide and Reference

WindowKeyUp (window, WindowKeyUp, x, y, state, time, 0, focusGrid)

A WindowKeyUp message is added to the message queue when the
system detects a keyboard key up event.

window contains the window number of the currently selected
window, which means the window with keyboard focus.

x,y contain the position of the mouse cursor in the local coordinates
of focusGrid when the WindowKeyDown event was detected.

state identifies the released key and gives the state of the keyboard
mode-keys (Alt-Control-Shift) when the WindowKeyUp event was
detected.

time contains the value of the system millisecond time when the
WindowKeyUp event was detected.

In some programs, individual grids need to receive key down
messages. Furthermore, windows can contain several grids capable
of accepting keyboard focus. In these cases, window functions keep
track of the grid that most recently had keyboard focus in each
window and send it a KeyUp message when it receives
WindowKeyUp.

WindowMaximized (window, WindowMaximized, 0, 0, 0, 0, 0, 0)

A WindowMaximized message is added to the message queue
whenever a window is maximized.

Windows are maximized when users click on the maximize button in
the window frame, and when programs call XgrMaximizeWindow().

WindowMinimized (window, WindowMinimized, 0, 0, 0, 0, 0, 0)

A WindowMinimized message is added to the message queue when
a window is minimized.

Windows are minimized when users click on the minimize button in
the window frame, and when programs call XgrMinimizeWindow().

WindowRedraw (window, WindowRedraw, xWin, yWin, width, height, 0, 0)

A WindowRedraw message is added to the message queue when all
or part of window is uncovered, displayed for the first time, or
displayed after being hidden or minimized.

xWin,yWin,width,height defines the smallest rectangle that
contains all portions of the window that have been exposed and need
to be redrawn to restore the visible part of window.

If width<=0 or height<=0, all grids in window need redrawing.

WindowResized (window, WindowResized, xDisp, yDisp, width, height, 0, 0)

GraphicsDesigner - Programmer Guide and Reference - Page 73

A WindowResized message is added to the message queue when the
position and/or size of a window is changed. Users drag window
resize grips, and programs call XgrSetWindowPositionAndSize().

xDisp,yDisp contain the display coordinates of the window, while
width,height contain the width and height of the window in
pixels.

WindowSelected (window, WindowSelected, 0, 0, 0, 0, 0, 0)

A WindowSelected message is added to the message queue when a
window is selected. Windows stay selected until another is selected.
Users select a window when they point at it with the mouse cursor
and press a mouse button. Programs select a window by calling
XgrSetSelectedWindow() or XgrDisplayWindow().

Selecting a window deselects the currently selected window, because
only one window can be selected at a time. Selected windows are
recognizable on the display because their title-bar and frame are
emphasized, usually by a colorful background color. The title-bar
and frame of deselected windows are deemphasized.

To select a window is to give it keyboard focus. Whenever
GraphicsDesigner detects a keyboard event, adds a keyboard
message for the selected window to the message queue.

Page 74 - GraphicsDesigner - Programmer Guide and Reference

$$WindowMaximizeBox, 1
$$WindowMinimizeBox, 1
$$WindowNoFrame, 1
$$WindowNoSelect, 1
$$WindowResizeFrame, 1
$$WindowSystemMenu, 1
$$WindowTitleBar, 1
$$WindowTopMost, 1

accentColor, 9
appearance, 7
attribute, 6, 7, 10

background color, 2, 13
backgroundColor, 9
behavior, 7
buffer, 7, 11
bufferGrid, 7

CEO function, 21, 22
clear, 6
color, 13, 14, 15
color number, 13
coordinate grid, 7
coordinate system, 2

display, 1, 4, 10
display coordinates, 2, 4
drawing color, 2, 13
drawingColor, 9
drawpoint, 2, 8
drawpointGrid, 8
drawpointScaled, 8
dullColor, 9

ERROR(), 29

font, 7
font number, 7
fontAngle, 7
fontItalic, 7
fontName$, 7
fontSize, 7
fontWeight, 7

graphical user interface, 1
graphics, 1
GraphicsDesigner, 1, 2, 7
grid, 2, 4, 5, 6, 7, 8, 10, 11, 17, 18, 23, 25, 27
grid coordinates, 2, 3, 5, 8
grid function, 20, 21, 23
grid message, 17, 20, 21
grid number, 2, 7, 18, 27
grid type, 2, 23
grid-box, 6
gridFunction, 7
gridType, 7, 11
GuiDesigner, 1, 2, 21

image, 11
image grid, 7, 11

keyboard, 1, 17, 21, 23, 25
keyboard message, 25

local coordinates, 2, 3, 4, 5, 8, 10
lowtextColor, 9

maximize button, 1
memory, 7, 11
message, 18, 19, 20, 21, 22, 23, 27
message argument, 18, 19, 20
message functions, 23
message number, 7, 18
message queue, 1, 19, 23
messages, 1
minimize button, 1
mouse, 1, 17, 18, 23, 25
mouse message, 27
MouseDown, 17, 18, 24, 68
MouseDrag, 24, 68
MouseEnter, 24, 27, 68, 69
MouseExit, 24, 27, 68, 69
MouseMove, 17, 24, 68, 70
MouseUp, 24, 68, 70

parent, 7, 8, 10
pixel, 4
position, 8
property, 7

GraphicsDesigner - Programmer Guide and Reference - Page 75

r0, 18
r1, 18
RedrawGrid, 24, 68, 71
resize border, 1
RGB, 13, 14

scaled coordinates, 2, 3, 5, 8
screen, 4
send a message, 21
setting, 7
size, 2, 8

TimeOut, 24, 68, 71
title bar, 1

v0, 18
v1, 18
v2, 18
v3, 18

window, 1, 2, 4, 6, 7, 8, 10, 17, 18, 23, 25
window attribute, 1
window coordinates, 2, 4
window function, 20, 21, 23
window message, 17, 20, 21
window number, 1, 7, 18
window type, 1
WindowDeselected, 24, 68, 71
WindowDestroyed, 24, 68, 71
WindowDisplayed, 24, 68, 72
WindowHidden, 24, 68, 72
WindowKeyDown, 17, 24, 26, 68, 72
WindowKeyUp, 24, 26, 68, 73
WindowMaximized, 68, 73
WindowMinimized, 68, 73
WindowRedraw, 24, 68, 74
WindowResized, 24, 68, 74
WindowSelected, 17, 24, 68, 74
wingrid, 18

Xgr, 1
Xgr(), 34
XgrAddMessage(), 63
XgrBorderNameToNumber(), 34
XgrBorderNumberToName(), 34
XgrBorderNumberToWidth(), 34
XgrClearGrid(), 6, 11, 44, 45
XgrClearWindow(), 40
XgrClearWindowAndImages(), 40
XgrConvertColorToRGB(), 14, 38
XgrConvertDisplayToGrid(), 3, 44, 45
XgrConvertDisplayToLocal(), 3, 44
XgrConvertDisplayToScaled(), 3, 44, 45
XgrConvertDisplayToWindow(), 3, 44, 45
XgrConvertGridToDisplay(), 3, 44, 45, 46
XgrConvertGridToLocal(), 3, 44, 45, 46
XgrConvertGridToScaled(), 3, 44, 45, 46
XgrConvertGridToWindow(), 3, 44, 45, 46
XgrConvertLocalToDisplay(), 3, 44
XgrConvertLocalToGrid(), 3, 44
XgrConvertLocalToScaled(), 3, 44
XgrConvertLocalToWindow(), 3, 44
XgrConvertRGBToColor(), 14, 38
XgrConvertScaledToDisplay(), 3, 44, 46
XgrConvertScaledToGrid(), 3, 44, 46
XgrConvertScaledToLocal(), 3, 44, 46
XgrConvertScaledToWindow(), 3, 44, 46
XgrConvertWindowToDisplay(), 44, 47
XgrConvertWindowToGrid(), 44, 47
XgrConvertWindowToLocal(), 44
XgrConvertWindowToScaled(), 44, 47
XgrCopyImage(), 58
XgrCreateFont(), 7, 34, 35
XgrCreateGrid(), 2, 3, 5, 6, 7, 8, 10, 11, 20, 44, 47
XgrCreateWindow(), 1, 3, 6, 20, 40, 41
XgrCursorNameToNumber(), 34, 35
XgrCursorNumberToName(), 34, 35
XgrDeleteMessages(), 19, 23, 63
XgrDestroyFont(), 34, 35
XgrDestroyGrid(), 10, 11, 44, 47
XgrDestroyWindow(), 10, 40, 42
XgrDisplayWindow(), 40, 42

Page 76 - GraphicsDesigner - Programmer Guide and Reference

XgrDrawArc(), 52, 53
XgrDrawArcGrid(), 52, 53
XgrDrawArcScaled(), 52, 53
XgrDrawBorder(), 52, 53
XgrDrawBorderGrid(), 52, 53
XgrDrawBorderScaled(), 52, 53
XgrDrawBox(), 52, 53
XgrDrawBoxGrid(), 52, 53
XgrDrawBoxScaled(), 52, 53
XgrDrawCircle(), 11, 52, 53
XgrDrawCircleGrid(), 52, 53
XgrDrawCircleScaled(), 52, 53
XgrDrawGridBorder(), 52, 54
XgrDrawIcon(), 52, 54
XgrDrawIconGrid(), 52, 54
XgrDrawIconScaled(), 52, 54
XgrDrawImage(), 11, 58
XgrDrawImageExtend(), 58, 59
XgrDrawImageExtendScaled(), 58, 59
XgrDrawImageScaled(), 58, 60
XgrDrawLine(), 3, 6, 11, 52, 54
XgrDrawLineGrid(), 3, 6, 52, 54
XgrDrawLines(), 52, 55
XgrDrawLineScaled(), 3, 6, 52, 54
XgrDrawLinesGrid(), 52, 55
XgrDrawLinesScaled(), 52, 55
XgrDrawLinesTo(), 52, 55
XgrDrawLinesToGrid(), 52, 55
XgrDrawLinesToScaled(), 52, 55
XgrDrawLineTo(), 52, 54
XgrDrawLineToDelta(), 52, 54
XgrDrawLineToDeltaGrid(), 52, 54
XgrDrawLineToDeltaScaled(), 52, 54
XgrDrawLineToGrid(), 52, 54
XgrDrawLineToScaled(), 52, 54
XgrDrawPoint(), 3, 52, 56
XgrDrawPointGrid(), 3, 52, 56
XgrDrawPoints(), 52, 56
XgrDrawPointScaled(), 3, 52, 56
XgrDrawPointsGrid(), 52, 56
XgrDrawPointsScaled(), 52, 56
XgrDrawText(), 52, 56
XgrDrawTextFill(), 52, 56
XgrDrawTextFillGrid(), 52, 56
XgrDrawTextFillScaled(), 52, 56
XgrDrawTextGrid(), 52, 56
XgrDrawTextScaled(), 52, 56
XgrFillBox(), 52, 57
XgrFillBoxGrid(), 52, 57
XgrFillBoxScaled(), 52, 57

XgrGetBackgroundColor(), 14, 38
XgrGetBackgroundRGB(), 14, 38
XgrGetCEO(), 63
XgrGetClipboard(), 34, 35
XgrGetCursor(), 34, 35
XgrGetDefaultColors(), 14, 38
XgrGetDisplaySize(), 34, 36
XgrGetDrawingColor(), 14, 38, 39
XgrGetDrawingMode(), 48
XgrGetDrawingRGB(), 10, 14, 38, 39
XgrGetDrawpoint(), 52, 57
XgrGetDrawpointGrid(), 52, 57
XgrGetDrawpointScaled(), 52, 57
XgrGetFontInfo(), 34, 36
XgrGetFontMetrics(), 34, 36
XgrGetFontNames(), 34, 36
XgrGetGridBorder(), 44, 47
XgrGetGridBorderOffset(), 44, 47
XgrGetGridBox(), 48
XgrGetGridBoxDisplay(), 3
XgrGetGridBoxGrid(), 3, 10, 44, 48
XgrGetGridBoxLocal(), 3, 44, 48
XgrGetGridBoxScaled(), 3, 44, 48
XgrGetGridBoxWindow(), 3, 44, 48
XgrGetGridBuffer(), 44, 48
XgrGetGridColors(), 14, 38, 39
XgrGetGridCoords(), 44, 48
XgrGetGridDrawingMode(), 44
XgrGetGridFont(), 44, 49
XgrGetGridFunction(), 44, 49
XgrGetGridParent(), 44, 49
XgrGetGridPositionAndSize(), 44, 49
XgrGetGridState(), 44, 49
XgrGetGridType(), 44, 49
XgrGetGridWindow(), 44, 49
XgrGetImage(), 58, 60
XgrGetImageArrayInfo(), 58, 60
XgrGetMessages(), 63, 64
XgrGetMessageType(), 63, 64
XgrGetMouseInfo(), 62
XgrGetSelectedWindow(), 62
XgrGetTextImageSize(), 34, 36
XgrGetWindowFunction(), 40, 42
XgrGetWindowIcon(), 40, 42
XgrGetWindowPositionAndSize(), 40, 42
XgrGetWindowState(), 40, 42
XgrGetWindowTitle(), 40, 42

GraphicsDesigner - Programmer Guide and Reference - Page 77

XgrGrabPoint(), 52, 57
XgrGrabPointGrid(), 52, 57
XgrGrabPointScaled(), 52, 57
XgrGridTypeNameToNumber(), 44, 50
XgrGridTypeNumberToName(), 44, 50
XgrHideWindow(), 40, 42
XgrIconNameToNumber(), 34, 36
XgrIconNumberToName(), 34, 36
XgrJamMessage(), 63, 64
XgrLoadImage(), 11, 58, 61
XgrMaximizeWindow(), 40, 43
XgrMessageNames(), 63, 64
XgrMessageNameToNumber(), 18, 63, 64
XgrMessageNumberToName(), 63, 64
XgrMessagesPending(), 63, 64
XgrMessageToMessageType(), 63
XgrMinimizeWindow(), 40, 43
XgrMoveDelta(), 52, 57
XgrMoveDeltaGrid(), 52, 57
XgrMoveDeltaScaled(), 52, 57
XgrMoveTo(), 52, 57
XgrMoveToGrid(), 52, 57
XgrMoveToScaled(), 52, 57
XgrPeekMessage(), 19, 23, 63, 65
XgrProcessMessages(), 20, 21, 22, 23, 63, 65
XgrRedrawWindow(), 63, 66
XgrRefreshGrid(), 11, 58, 61
XgrRegisterCursor(), 34, 37
XgrRegisterGridType(), 44, 50
XgrRegisterIcon(), 34, 37
XgrRegisterMessage(), 18, 63, 66
XgrRestoreWindow(), 40, 43

XgrSaveImage(), 58, 61
XgrSendMessage(), 7, 20, 63, 66
XgrSendMessageToWindow(), 63, 67
XgrSendStringMessage(), 63, 67
XgrSendStringMessageToWindow(), 63, 67
XgrSetBackgroundColor(), 10, 14, 38, 39
XgrSetBackgroundRGB(), 14, 38, 39
XgrSetCEO(), 22, 63, 67
XgrSetClipboard(), 34, 37
XgrSetCursor(), 34, 37
XgrSetDefaultColors(), 14, 38, 39
XgrSetDrawingColor(), 14, 38, 39
XgrSetDrawingRGB(), 10, 14, 38, 39
XgrSetDrawpoint(), 52, 57
XgrSetDrawpointGrid(), 52, 57
XgrSetDrawpointScaled(), 52, 57
XgrSetGridBorder(), 50
XgrSetGridBorderOffset(), 50
XgrSetGridBox(), 50
XgrSetGridBoxGrid(), 3, 5, 6, 44
XgrSetGridBoxScaled(), 3, 5, 6, 44, 50
XgrSetGridBuffer(), 11, 44, 50
XgrSetGridColors(), 14, 38, 39
XgrSetGridDrawingMode(), 44, 51
XgrSetGridFont(), 44, 51
XgrSetGridFunction(), 44, 51
XgrSetGridPositionAndSize(), 8, 44, 51
XgrSetGridState(), 44, 51
XgrSetGridTimer(), 44, 51
XgrSetGridType(), 44, 51
XgrSetImage(), 11, 58, 61
XgrSetSelectedWindow(), 62
XgrSetWindowFunction(), 20, 40, 43
XgrSetWindowIcon(), 40, 43
XgrSetWindowPositionAndSize(), 40, 43
XgrSetWindowState(), 40, 43
XgrSetWindowTitle(), 40, 43
XgrShowWindow(), 40, 43
XgrVersion$(), 34, 37

Page 78 - GraphicsDesigner - Programmer Guide and Reference

	Overview
	GraphicsDesigner
	Windows
	window
	Window Types
	Grids
	grid
	Grid Type
	Coordinate Systems
	Coordinate Conversion
	Grid Location Coordinates
	Drawing Coordinates
	Display Coordinates
	Window Coordinates
	Local Coordinates
	Grid Coordinates
	Scaled Coordinates
	Grid Box
	Example

	Grid Placement
	Grid Advantages
	Grid Attributes
	grid
	window
	parent
	gridType
	gridFunction
	bufferGrid
	font, fontName, fontSize, fontWeight, fontItalic,fontAngle
	x,y,width,height
	x1,y1:x2,y2
	x1Grid,y1Grid:x2Grid,y2Grid
	x1#,y1#:x2#,y2#
	drawpoint, drawpointGrid, drawpointScaled
	backgroundColor
	drawingColor
	lowlightColor, highlightColor
	dullColor
	accentColor
	lowtextColor, hightextColor

	Create Grid
	Get and Set Grid Attributes
	Destroy Grid
	Image Grids
	Buffering

	Color
	Colors
	RGB Colors
	Color Functions
	color
	Standard Colors

	Messages
	Messages
	Window Messages and Grid Messages
	Message Anatomy
	window, grid, wingrid
	message aka message number
	v0,v1,v2,v3,r0,r1
	Message Queue
	Process Message
	Window Function
	Grid Functions
	Sending Messages
	Program Wide Messages
	CEO Function
	Messages NOT
	Messages Simple
	Messages Advanced
	Messages Sophisticated
	GraphicsDesigner Messages
	Keyboard Messages
	x,y
	state
	time
	Keyboard Message Examples
	WindowKeyDown vs WindowKeyUp
	Virtual Key Codes

	Mouse Messages
	x,y
	state
	time

	GraphicsDesigner Functions
	Function Categories
	Reference Pages
	Arguments - Pass By Reference
	Return Values
	Runtime Errors
	GraphicsDesigner Function Quick Reference
	Miscellaneous Functions
	Color Functions
	Window Functions
	Grid Functions
	Drawing Functions
	Image Functions
	Focus Functions
	Message Functions
	Messages

	Miscellaneous Functions
	Color Functions
	Window Functions
	Grid Functions
	Drawing Functions
	Image Functions
	Focus Functions
	Message Functions
	Messages

