
XBasic
Program Development Environment

(PDE)

Questions and Answers

Revision 0.0002
February 1, 1996

Copyright 1990-2000

Table of Contents

Questions and Answers..3
Q: How is text and text cursor position controlled in XuiTextArea grids?...3
Q: How can I make my process take less CPU time under certain circumstances?...4
Q: An "autosave" feature would be valuable in the event of crashes..4
Q: When a fatal runtime error occurs, can I change a value and continue running?..4
Q: What is the hint string..5
Q: How do I put timers into my GuiDesigner application?...5
Q: Why do bitmap files have to stay in the same place as during development?...5
Q: The default font and default colors should be settable in a dialog...5
Q: Null bytes and backslash characters like \t and \n in text strings display as little blobs or images in grid text.6
Q: How can I create neat columns of text with proportional fonts?..7
Q: How do I call a callback function and have it execute a particular subroutine. ..8
Q: Can I send messages to functions whose windows don't have focus?..9
Q: Messages sent with Windows API function SendMessage() disappear. Why?...9
Q: Why does SPACE$(1) create a different width space with different fonts?..9
Q: How can I make Windows standard cut/grab/paste work in XuiTextArea?..10
Q: Sometimes it's a little hard to find the text cursor in a large XuiTextArea?..10
Q: What about differences between HelpGuiDesigner and the manuals?..11
Q: Does GraphicsDesigner support three or five coordinate systems?...11
Q: Why do my programs display the ReportMessage window without cause?..12
Q: Why aren't EXTERNAL variables visible between programs?...12
Q: Why is XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @dir$ + "my.bmp") an error?..12
Q: Why doesn't XstSleep() sleep when my programs runs on Windows 3.1?..12
Q: How can I add message queue asynchronous timer interrupts to my program?..13
Q: .mak files work with WindowsNT version 3.5 but not version 3.1. Why?...14
Q: Why do I sometimes I get unresolved external symbol errors when I shouldn't?..14
Q: Filenames that work on the Windows version sometimes don't work on UNIX...15
Q: How do I make command line arguments work the same in the environment and a standalone executable?16
Q: How can a program send text to the printer?..17
Q: How can I read items from a file, or from a string loaded from a file?...17

Questions and Answers
Q: How is text and text cursor position controlled in XuiTextArea grids?

Send a #SetTextCursor message to XuiTextArea grids to position the text cursor within the body of
text and to position the text within the grid, as follows:

XuiSendMessage (grid, #SetTextCursor, v0, v1, v2, v3, kid, 0)

v0 = cursorPos = set text cursor to this character # on the cursor line.
v1 = cursorLine = set text cursor to this line #.
v2 = leftIndent = horizontal pixel # to start displaying line.
v3 = topLine = top line of displayed text.

any argument can be -1 to say don't change current value.

Whenever one or more of these values is changed with #SetTextCursor, a check is performed to make
sure the values are reasonable and consistent. So it is not possible to place the text cursor outside the
text region, set the top line such that the cursor is not in the displayed portion of text, etc. Reasonable
values are assigned.

Incidently, #SetTextCursor is also recognized by:

 XuiDropBox - v0 sets cursorPos in the XuiTextLine kid
 v1 sets cursorLine in the XuiPullDown kid

 XuiDropButton - v1 sets cursorLine in the XuiPullDown kid

 XuiListBox - v0 sets cursorPos in the XuiTextLine kid
 v1 sets cursorLine in the XuiList kid

 XuiListButton - v1 sets cursorLine in the XuiList kid

In XuiList and XuiPullDown grids, cursorLine means the selected line. Send #SetTextCursor
to the indicated grids, not directly to the kids.

Questions and Answers - Page 1

Q: How can I make my process take less CPU time under certain circumstances?

XstSleep(msec) causes a process to yield to other processes for a specified number of milliseconds.
As a convenience, msec = 0 tells the process to yield the rest of its time slice, and be actived again the
next time it is it's turn.

Note that Windows and some versions of UNIX automatically give the process that created the selected
window a higher priority than all others. Many XBasic programs run visibly slower when none of its
windows are selected.

One way to conditionally lower the priority of an XBasic process follows:

'
' message processing loop at bottom of Entry()
'
 DO
 XuiProcessMessages (1)
 IF condition THEN XstSleep (msec) ' add this line
 LOOP UNTIL terminateProgram
END FUNCTION

Q: An "autosave" feature would be valuable in the event of crashes.

When crashes occur the PDE saves the current application code as file xb.sav. Only rarely is the PDE
unable to save the current application. Look for xb.sav !!!

Q: When a fatal runtime error occurs, can I change a value and continue running?

Yes. You can change the values of variables and/or change where the program will continue executing.
Consider the divide by zero and segment violation errors in the following function as examples.

'
' ######################
' ##### Entry () #####
' ######################
'
FUNCTION Entry ()
 x = 0
 y = 11
 z = 0
 a = y \ z ' a = 11 divided by 0 - divide by zero error
 b = XLONGAT(x) ' b = contents of memory at address 0x00000000 - invalid memory address
 PRINT x,y,z,a,b ' print results
END FUNCTION

Execute this entry function to cause a divide by zero runtime error at a = y \ z since z = 0 as set
by the previous line. But you can now display the variables window (F8) and make z non-zero and
continue program execution. Alternatively, you can set the text cursor on a later line and select
RunJump to move the execution line past the error line, then continue execution. The same solutions
apply to the following line, which also causes a "fatal" error as written.

Page 2 - Questions and Answers

Q: What is the hint string.

The GuiDesigner hint string property is currently unimplemented.

Q: How do I put timers into my GuiDesigner application?

One of the sample applications is xgrids.x. This file is a collection of grid functions that implement
many basic grid types. The XuiPressButton() grid function exercises the grid timer in all ways.
Timer related messages include:

XuiSendMessage (grid, #GetTimer, @msec, 0, 0, 0, kid, 0)
XuiSendMessage (grid, #SetTimer, msec, 0, 0, 0, kid, 0)
XuiSendMessage (grid, #StartTimer, 0, 0, 0, 0, kid, 0)

Note that running timers are disabled by #SetTimer with msec = 0.

Q: Why do bitmap files have to stay in the same place as during development?

Bitmap files can be located anywhere they can be opened. Perhaps you are referring to the fact that
images selected for grids with the GuiDesigner AppearanceWindow generate full path file names when
design windows are converted into grid functions by WindowToFunction. If you do not change these
names, the locations of the bitmap image files are in fact fixed, just as you say. To change to a relative
path name, edit the grid function as in this example:

 XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @"\\xb\\xxx\\xstart.bmp")
 XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @"xxx\\xstart.bmp")

The second example skips the leading "\\xb\\" part of the filename, which loads xstart.bmp from
the xxx subdirectory of any current directory.

Of course the name of the bitmap file can be changed to a variable or expression:

 XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @imageStart$)
 XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, imagePath$ + "start.bmp")

Q: The default font and default colors should be settable in a dialog.

Default colors are set by XgrSetDefaultColors().

The default font for XBasic, or any other XBasic application, is chosen when the application starts up.
First XBasic creates an xxx/fonts.xxx file that contains a list of bitmap fonts that may be appropriate
as the default font. Then XBasic reads in file xxx/font.xxx and sets the default font to the first font
name not preceded by a ' comment character that is known to the system. If no xxx/font.xxx file
exists, XBasic chooses the default font it thinks best.

You can select a larger font for the development environment and console windows with OptionMisc.

Questions and Answers - Page 3

Q: Null bytes and backslash characters like \t and \n in text strings display as
little blobs or images in grid text.

Many fonts have images for more than common or standard ASCII characters. ASCII values from
0x20 to 0x7E represent a reliable set of standard characters. But many fonts contain character images
for most or all extended characters from 0x00 to 0x1F, and from 0x80 to 0xFF. The font images for
these extended characters are not consistent between fonts. Nonetheless, the images for these characters
can be displayed, and in certain circumstances they are.

In most circumstances, the vast majority of extended characters display whatever image the font
contains for the specified character value. But a few of these extended characters like null=0x00,
tab=0x09, return=0x0D, newline=0x0A have common meanings. For example, when you press an
enter or newline key, you usually don't expect to insert the image the font contains for the newline
character (0x0A), you expect the text cursor to move to the next line without drawing a character.

The only reason characters like null, tab, and newline don't display images is that input functions
check for these characters and execute alternate actions. But most output/drawing functions draw the
font image for every character.

For example, XgrDrawText (grid, $$Black, @"A\tB\nC") draws five characters at the current
drawpoint, which will usually look something like:

ABC or ABC
The character images the font contains for tab and newline are displayed. The tab does not cause
blank space between the A and B, and the newline does not place the C on a separate line. When a
program draws text and needs to interpret certain characters as something other than their font images,
the program must perform multiple operations to draw the text. To draw the ABC example with
tab and newline characters interpreted as space control characters takes three XgrDrawText() calls
to draw the ABC characters, separated by two XgrSetDrawpoint() calls for tab and newline
space.

Software that wants tab, newline, and possibly other extended characters to be interpreted as non-
visible spacing commands or anything other than font images, must watch for these characters and take
appropriate actions. A number of GuiDesigner grid types take alternate actions in response to extended
characters. For example, XuiTextLine and XuiTextArea grids expand tab characters into variable
width horizontal space to support alignment of text into columns. On the other hand, XuiTextLine
and XuiTextArea display the font image for the other extended characters, including the newline
characters. Each string in the string array assigned to the TextArray property of an XuiTextArea
grid is displayed on a separate line. Any newline character in the TextArray is displayed as the
0x0A font image within the line and does not break the line.

Page 4 - Questions and Answers

Q: How can I create neat columns of text with proportional fonts?

Two grid properties relate to tabs, namely TabWidth, and TabArray. Unfortunately, many grid types
ignore TabWidth and TabArray at this time, generally because they display the font 0x09 character
image instead of space.

Common grid types that recognize TabWidth and/or TabArray include:

 XuiList
 XuiPullDown
 XuiTextArea
 XuiTextLine

The following functions get and set TabArray and TabWidth.

 XuiGetTabArray (grid, #GetTabArray, 0, 0, 0, 0, 0, @tab[])
 XuiSetTabArray (grid, #SetTabArray, 0, 0, 0, 0, 0, @tab[])
 XuiGetTabWidth (grid, #GetTabWidth, @width, 0, 0, 0, 0, 0)
 XuiSetTabWidth (grid, #SetTabWidth, width, 0, 0, 0, 0, 0)

TabArray takes precedence over TabWidth. If TabArray is not empty, its contents contain tab stop
locations. If a line of text has more tabs than TabArray has elements, TabWidth becomes active for
the rest of the line.

TabArray must be an XLONG array.

TabArray and TabWidth specify pixel tab stops.

Questions and Answers - Page 5

Q: How do I call a callback function and have it execute a particular subroutine.

When you select WindowToFunction in the toolkit, GuiDesigner converts the currently displayed
design window into a pair of functions, a "grid function" and a "callback function". When your
program is running and something important happens in the window, the grid function calls
XuiCallback(), which in turn calls the callback function with a #Callback message, and the real
message in r1. Usually the original message is #Selection.

But your programs can call callback functions too. You can arrange arguments to simulate a callback,
or you can arrange the arguments in any other way you wish. Near the top of most callback functions,
you'll find something like the following:

FUNCTION TestCode (grid, message, v0, v1, v2, v3, kid, r1)
 $MenuBar = 1 ' kid #1
 $TextLine = 2 ' kid #2
 $Button = 3 ' kid #3
 $Custom = 100 ' custom kid #
'
 IF (message = #Callback) THEN
 callback = r1
 message = r1
 END IF
'
 SELECT CASE message
 CASE #Selection : GOSUB Selection ' normal #Selection message
 CASE #Custom : GOSUB Custom ' or custom code right here
 END SELECT
 RETURN
'
SUB Selection
 SELECT CASE kid
 CASE $MenuBar : ' code to handle MenuBar selections
 CASE $TextLine : ' code to handle TextLine selections
 CASE $Button : ' code to handle Button0 selections
 CASE $Custom : ' code to handle custom capability
 END SELECT
END SUB

The following three lines were added to the GuiDesigner generated code to prepare the callback
function for special purpose messages from your program:

$Custom = 100 ' custom kid #
CASE #Custom : GOSUB Custom ' or custom code right here
CASE $Custom : ' code to handle custom capability

To invoke the CASE #Custom : GOSUB Custom line, your program calls:
 TestCode (grid, #Custom, v0, v1, v2, v3, kid, r1)

To invoke the CASE $Custom line, your program calls:
 TestCode (grid, #Selection, v0, v1, v2, v3, $Custom, r1)

Sample applications acircle.x and ademo.x contain an example. Also make sure you
XgrRegisterMessage (@"Custom", @#Custom) in InitProgram().

Page 6 - Questions and Answers

Q: Can I send messages to functions whose windows don't have focus?

Programs can call grid functions and callback functions without regard to keyboard or mouse focus.
Everything works the same with or without focus. The only thing focus does is route keyboard input to
the focus window. Your program can set the keyboard focus to a particular grid by sending the grid a
#SetKeyboardFocus message.

Q: Messages sent with Windows API function SendMessage() disappear. Why?

Windows messages are not the same as GraphicsDesigner or GuiDesigner messages. They have
different names, different values, and different arguments. They are utterly and totally incompatible.
But that's not all by a long shot !!!!!!!!

Any name similarities between Windows and GraphicsDesigner are coincidence! A Windows window
handle is not a GraphicsDesigner window or grid number. A Windows window procedure is not a
GuiDesigner window or grid function.

Windows API function SendMessage() is totally incompatible with XgrSendMessage() or
XuiSendMessage(). SendMessage() calls a Windows "window procedure". This window procedure
is not the same as any GraphicsDesigner window function or grid function.

The Windows message queue is not the GraphicsDesigner message queue !!! These message queues
are completely independent, separate, and different. GraphicsDesigner processes some of the messages
from the Windows message queue, and discards the rest. Sometimes GraphicsDesigner adds one of its
own messages to its own message queue as a result of a Windows message, but your program never,
ever sees or deals with the Windows messages. Programs should never call SendMessage() to deal
with a GraphicsDesigner window or grid.

Q: Why does SPACE$(1) create a different width space with different fonts?

SPACE$(n) creates a string containing n space characters. When strings are displayed by a
GuiDesigner grid, the character width of every character, including the space character is determined by
the font - by typeface, size, boldness, italic. In monospace typefaces, the width of the space character is
the same as the width of all other characters in the same font. In proportional typefaces, the width of
every character varies by design, so no characters, including the space character, is necessarily the same
width as any other character. In addition, when proportionally spaced text is "full justified", meaning a
straight left and right margin, the apparent width of space characters is varied to flush the margins.

Questions and Answers - Page 7

Q: How can I make Windows standard cut/grab/paste work in XuiTextArea?

Heres how cut/grab/paste works in Windows vs XuiTextArea and XuiTextLine:

 Windows XuiTextArea operation performed
 Ctl+X Ctl+X or Delete cut selected text and put in clipboard
 Ctl+C Ctl+C or Ctl+Insert copy selected text and put in clipboard
 Ctl+V Ctl+V or Insert paste clipboard text at text cursor position

Applications can process the TextEvent callback message from text grids like XuiTextArea and
XuiTextLine to implement new keystroke conventions. Related messages recognized by these text
grids include:

 GetTextSelection
 GetTextCursor : SetTextCursor
 TextDelete : TextInsert : TextReplace

Q: Sometimes it's a little hard to find the text cursor in a large XuiTextArea?

The color of the text cursor in XuiTextArea and XuiTextLine grids can be globally changed with
OptionTextCursor in the Main Window. The text cursor is drawn in XOR drawing mode, so
depending on the number of bits per pixel and whether a system is palette or direct map, the text cursor
will not be the same color on all systems. To change the color of the text cursor in a XuiTextArea or
XuiTextLine grid in a design window, change its DullColor property with the AppearanceWindow.
Remember, the cursor color is not the DullColor itself, but the XOR of the DullColor and whatever
the cursor is written over in the grid. For example, a yellow text cursor might be created by setting
DullColor to $$LightBlue.

Page 8 - Questions and Answers

Q: What about differences between HelpGuiDesigner and the manuals?

Differences between the software and manuals sometimes occur. When you request help on one of the
libraries from the Help menu in the main window, the PROLOG of the library is displayed in the
HelpWindow. Since these .dec files contain the actual declaration of types, functions, and constants
from the libraries, these files are correct - unless you didn't install a new release correctly.

Trust the .dec files (and HelpLibraryName) over printed documentation.

Q: Does GraphicsDesigner support three or five coordinate systems?

For purposes of coordinate conversion, there are five coordinate systems:

 display XgrGetGridBoxDisplay (grid, @x1Disp, @y1Disp, @x2Disp, @y2Disp)
 window XgrGetGridBoxWindow (grid, @x1Win, @y1Win, @x2Win, @y2Win)
 local XgrGetGridBoxLocal (grid, @x1, @y1, @x2, @y2)
 grid XgrGetGridBoxGrid (grid, @x1Grid, @y1Grid, @x2Grid, @y2Grid)
 scaled XgrGetGridBoxScaled (grid, @x1#, @y1#, @x2#, @y2#)

For purposes of drawing, there are three coordinate systems:

 local XuiDrawLine (grid, color, x1, y1, x2, y2)
 grid XuiDrawLineGrid (grid, color, x1Grid, y1Grid, x2Grid, y2Grid)
 scaled XuiDrawLineScaled (grid, color, x1#, y1#, x2#, y2#)

The name of every GraphicsDesigner drawing function determines the coordinate system the function
draws in, as follows:

Drawing functions that do not specify a coordinate system, like XgrDrawLine(), draw in local
coordinates and manipulate the local coordinate drawpoint.

Drawing functions that end with "Grid (", like XgrDrawLineGrid(), draw in grid coordinates and
manipulate the grid coordinate drawpoint.

Drawing functions that end with "Scaled (", like XgrDrawLineScaled(), draw in scaled coordinates
and manipulate the scaled coordinate drawpoint.

Questions and Answers - Page 9

Q: Why do my programs display the ReportMessage window without cause?

When you convert a design window into a grid function and callback function, GuiDesigner puts

 XuiReportMessage (grid, message, v0, v1, v2, v3, kid, r1)

at the top of the callback function. Whenever the callback function receives a message, the
ReportMessage window appears and displays the message arguments. Remove or disable this line to
stop this window from appearing.

Q: Why aren't EXTERNAL variables visible between programs?

EXTERNAL variables are shared between statically linked programs, not libraries. In other words, if
three programs declare EXTERNAL trouble, and the object files of the three programs are linked
together into a single executable, a single trouble variable is referenced by all three programs, and
trouble is therefore shared by all three programs. The executable can be a .EXE or a .DLL.

If three programs are linked into three executables, however, all three programs has its own trouble.

Q: Why is XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @dir$ + "my.bmp") an error?

You can only pass individual variables or arrays by reference, never expressions. The last argument can
be @dir$ or @"my.bmp", but not @dir$ + "my.bmp". Try:

 XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, dir$ + "my.bmp").

Q: Why doesn't XstSleep() sleep when my programs runs on Windows 3.1?

To implement XstSleep(), the standard library calls the Windows API Sleep(). Under WindowsNT,
Sleep() works as expected. Under Windows 3.1, however, Sleep() only sleeps if other processes
are actively executing instructions. To make XstSleep() sleep for the requested time, it calls
Sleep() repeatedly until the actual elapsed time equals or exceeds the requested sleep.

Page 10 - Questions and Answers

Q: How can I add message queue asynchronous timer interrupts to my program?

Normal programs, and especially GUI programs, are synchronized by the message queue. When a
message is processed by XgrProcessMessages(), all actions caused by processing the message are
performed in the expected order before the next message is processed. Programs can therefore assume
that program variables will not be unexpectedly modified during message processing. This reduces the
complexity of programs enormously.

Most programs with asynchronous aspects simulate asynchronous behavior by setting and starting
GraphicsDesigner grid timers which add TimeOut messages to the message queue when they expire.
When these TimeOut messages are subsequently processed by XgrProcessMessages(), a grid
function receives the TimeOut message and can process the asynchronous timer event in the normal
straightforward manner because the asynchronous timer has been synchronized by its passage through
the message queue.

Programs with asynchronous aspects that cannot be simulated by timers often employ a similar
technique. One line is added to the message processing loop in their Entry() function to call a
function that performs asynchronous activity. Again, apparently asynchronous activity is processed in a
synchronous manner.

 DO
 XgrProcessMessages (0)
 Asynchronous () ' check/process asynchronous program aspects
 LOOP

Though there are many other methods to handle asynchronous activity in a synchronous way, some
programs require some true asynchronous processing. Consider a program that needs to respond to
certain conditions within a limited period of time, but also contains one or more functions that may take
longer to complete than the response interval. The synchronous way to handle this situation is to add a
line that calls an asynchronous processing function in as many places as necessary to assure adequate
response time. The shorter the response interval gets, however, the more places the asynchronous
processing function must be called. Furthermore, the length of time required to execute various parts of
a program depends on computer speed, and is therefore not portable unless written for the slowest
possible machine.

The standard function library contains two functions that support fully asynchronous processing, namely
XstStartTimer() and XstKillTimer(). Timers created by XstStartTimer() are not associated
with GraphicsDesigner or the message queue. When they expire, the function associated with the timer
is called immediately, potentially between ANY two machine instructions. Program variables can thus
be in any state, and its even possible for these timers to interrupt programs between machine
instructions that update the two 32-bit parts of GIANT and DOUBLE variables! Therefore the program
must be written to anticipate all possible adverse interactions and avoid them. As long as asynchronous
processing functions are not themselves interrupted and do not read variables that are altered elsewhere
in the program, they can be fairly simple. Otherwise careful and detailed design of handshaking is
required to avoid disasterous interaction between the normal and asynchronous parts of programs.

Questions and Answers - Page 11

Q: .mak files work with WindowsNT version 3.5 but not version 3.1. Why?

Microsoft changed some of its development tools and procedures between version 3.1 and 3.5, and they
will probably do so from time to time in the future. In anticipation of such changes, the PDE
creates .mak files from template files \xb\xxx\xapp.xxx and \xb\xxx\xdll.xxx.

When you compile a file with RunAssembly or RunLibrary, the PDE reads in xapp.xxx or
xdll.xxx, changes the line that defines the name of the program or library and saves the result as
prog.mak, where prog is the name of your program.

Since xapp.xxx and xdll.xxx are simple text files, you can edit them in accordance with the
requirements of new and improved development tools. Subsequent .mak files generated by the PDE
will then work properly. Be sure to keep a copy of the original xapp.xxx and xdll.xxx files.

Q: Why do I sometimes I get unresolved external symbol errors when I shouldn't?

When the PDE compiles more than one program, it sometimes looks for symbols that existed in a
previous compilation. This rare bug has not yet been tracked down and exterminated. For now you'll
have to exit the PDE and restart it.

Page 12 - Questions and Answers

Q: Filenames that work on the Windows version sometimes don't work on UNIX.

The path separator character is a backslash character "\" on Windows and a foreslash aka divide
character "/" on UNIX. So "\\xb\\xxx\\entry.xxx" and "/xb/xxx/entry.xxx" are valid
filenames for Windows and UNIX respectively. Remember, a single backslash character is represented
by two backslashes in literal strings.

To make source programs as portable as possible, standard library functions and the OPEN() intrinsic
accept filenames with either separator. These functions call XstPathString$() to convert every
improper separator to the proper separator before they continue.

To make sure you avoid potential filename problems, however, substitute the $$PathSlash$ constant
defined in the standard library for every occurrence of the literal separator character. Alternately, call
XstPathString$() to convert filename strings into the correct format. This function takes either form
and returns a valid path string for the current system. XstPathString$() also expands environment
variables. "$HOME/research/lens0034.dat" and "$(HOME)\\research\\lens0034.dat" are thus
acceptable arguments - $HOME or $(HOME) are replaced by the HOME environment variable string.

Not Portable: "\\xb\\circle.x" ...or... "/xb/circle.x"
Portable: $$PathSlash$ + "xb" + $$PathSlash$ + "circle.x"
Portable: "$(XBDIR)" + $$PathSlash$ + "circle.x"

Not Portable: "\\xb\\circle.x" ...or... "/xb/circle.x"
Portable: path$ = XstPathString$ ("$XBDIR/circle.x")
Portable: path$ = XstPathString$ ("\\xb\\circle.x")
Portable: path$ = XstPathString$ ("/xb/circle.x")

Functions that return a path or file name return the path separator character appropriate to the system the
program is running on. Programs that search for path separator characters in path or file name strings
should therefore search for $$PathSlash$ instead of "\\" or "/".

Not Portable: slash = INSTR (path$, "\\")
Not Portable: slash = INSTR (path$, "/")
Portable: slash = INSTR (path$, $$PathSlash$)

A shared constant is also defined in the standard library for the binary form of the path separator.

Windows: $$PathSlash = '\\'
UNIX: $$PathSlash = '/'

Questions and Answers - Page 13

Q: How do I make command line arguments work the same in the environment and a
standalone executable?

A: Programs call XstGetCommandLineArguments (@argc, @arvg$[]) to get command line
arguments. But the command line arguments a standalone executable will receive are not available to
the program when it is run in the environment. To test the effect of various command line arguments on
a program in the environment, you need code like the following:

'
' ...
'
 XstGetApplicationEnvironment (@standalone, 0)
'
 IF standalone THEN
 XstGetCommandLineArguments (@argc, @argv$[])
 ELSE
 argc = 3
 DIM argv$[2]
 argv$[0] = "progname.exe"
 argv$[1] = "foobar.dat"
 argv$[2] = "-flag"
 END IF
'
' code that processes command line arguments in argv$[]
'

This code executes the first part of the IF block when the program is run as a standalone executable,
and the second part when the program is run in the PDE. A standalone program will thus take its
command line arguments from the command line, while the same program run in the environment will
take its command line arguments from those explicitly defined in the second part of the IF block. If
you'll be doing lots of command line argument testing, you could write a fancier second part of the IF
block to input accept a variable number of arguments from the console each time the program is run.

Alternatively XstSetCommandLineArguments (argc, @argv$[]) sets the command line arguments.

The following code returns the original command line arguments, even after they have been changed.

 argc = -1
 XstGetCommandLineArguments (@argc, @argv$[])

The following code reinstates the original command line arguments after they have been changed.

 argc = -1
 XstGetCommandLineArguments (@argc, @argv$[])
 XstSetCommandLineArguments (argc, @argv$[])

Page 14 - Questions and Answers

Q: How can a program send text to the printer?

The following line worked fine on WindowsNT 3.51

 a = SHELL ("PRINT C:\xb\test.txt") ' print file "testtext.txt"

Unfortunately, a bug in pre-release Windows95 prevented this from working on Windows95 too.
Windows95 complained "Incorrect DOS Version".

Q: How can I read items from a file, or from a string loaded from a file?

XstNextItem$() is a standard library function to parse items separated by tabs, commas, newlines. If
you want to know the item in numeric form, you'll have to convert the returned string into a number
with something like:

 var$ = XstNextItem$ (string$, @index, @term, @done)
'
 var# = DOUBLE (var$) ' if you want a floating point value
 var = XLONG (var$) ' if you want a integer value
 var$ = TRIM$ (var$) ' if you want no leading/trailing space/trash

Questions and Answers - Page 15

Page 16 - Questions and Answers

	Questions and Answers
	Q: How is text and text cursor position controlled in XuiTextArea grids?
	Q: How can I make my process take less CPU time under certain circumstances?
	Q: An "autosave" feature would be valuable in the event of crashes.
	Q: When a fatal runtime error occurs, can I change a value and continue running?
	Q: What is the hint string.
	Q: How do I put timers into my GuiDesigner application?
	Q: Why do bitmap files have to stay in the same place as during development?
	Q: The default font and default colors should be settable in a dialog.
	Q: Null bytes and backslash characters like t and n in text strings display as little blobs or images in grid text.
	Q: How can I create neat columns of text with proportional fonts?
	Q: How do I call a callback function and have it execute a particular subroutine.
	Q: Can I send messages to functions whose windows don't have focus?
	Q: Messages sent with Windows API function SendMessage() disappear. Why?
	Q: Why does SPACE$(1) create a different width space with different fonts?
	Q: How can I make Windows standard cut/grab/paste work in XuiTextArea?
	Q: Sometimes it's a little hard to find the text cursor in a large XuiTextArea?
	Q: What about differences between HelpGuiDesigner and the manuals?
	Q: Does GraphicsDesigner support three or five coordinate systems?
	Q: Why do my programs display the ReportMessage window without cause?
	Q: Why aren't EXTERNAL variables visible between programs?
	Q: Why is XuiSendMessage (g, #SetImage, 0, 0, 0, 0, 0, @dir$ + "my.bmp") an error?
	Q: Why doesn't XstSleep() sleep when my programs runs on Windows 3.1?
	Q: How can I add message queue asynchronous timer interrupts to my program?
	Q: .mak files work with WindowsNT version 3.5 but not version 3.1. Why?
	Q: Why do I sometimes I get unresolved external symbol errors when I shouldn't?
	Q: Filenames that work on the Windows version sometimes don't work on UNIX.
	Q: How do I make command line arguments work the same in the environment and a standalone executable?
	Q: How can a program send text to the printer?
	Q: How can I read items from a file, or from a string loaded from a file?

