

About this help file
This file was made with the help of Makertf 1.04 from the input file cvscli.tex.

Node: Top, Next: Introduction, Prev: , Up: (dir) About this help file

CVS Client/Server
This document describes the client/server protocol used by CVS.    It does not describe how
to use or administer client/server CVS; see the regular CVS manual for that.    This is version
{No Value For "CVSVN"} of the protocol specification--See Introduction, for more on what
this version number means.

* Menu:

Introduction What is CVS and what is the client/server protocol for?
Goals Basic design decisions, requirements, scope, etc.
Connection and Authentication Various ways to connect to the server
Password scrambling Scrambling used by pserver
Protocol Complete description of the protocol
Protocol Notes Possible enhancements, limitations, etc. of the protocol

Node: Introduction, Next: Goals, Prev: Top, Up: Top

Introduction
CVS is a version control system (with some additional configuration management
functionality).    It maintains a central "repository" which stores files (often source code),
including past versions, information about who modified them and when, and so on.    People
who wish to look at or modify those files, known as "developers", use CVS to "check out" a
"working directory" from the repository, to "check in" new versions of files to the repository,
and other operations such as viewing the modification history of a file.    If developers are
connected to the repository by a network, particularly a slow or flaky one, the most efficient
way to use the network is with the CVS-specific protocol described in this document.

Developers, using the machine on which they store their working directory, run the CVS
"client" program.    To perform operations which cannot be done locally, it connects to the
CVS "server" program, which maintains the repository.    For more information on how to
connect see Connection and Authentication.

This document describes the CVS protocol.    Unfortunately, it does not yet completely
document one aspect of the protocol--the detailed operation of each CVS command and
option--and one must look at the CVS user documentation, cvs.texinfo, for that
information.    The protocol is non-proprietary (anyone who wants to is encouraged to
implement it) and an implementation, known as CVS, is available under the GNU Public
License.    The CVS distribution, containing this implementation, cvs.texinfo, and a copy
(possibly more or less up to date than what you are reading now) of this document,
cvsclient.texi, can be found at the usual GNU FTP sites, with a filename such as cvs-
version.tar.gz.

This is version {No Value For "CVSVN"} of the protocol specification.    This version number is
intended only to aid in distinguishing different versions of this specification.    Although the
specification is currently maintained in conjunction with the CVS implementation, and carries
the same version number, it also intends to document what is involved with interoperating
with other implementations (such as other versions of CVS); see Requirements.    This
version number should not be used by clients or servers to determine what variant of the
protocol to speak; they should instead use the valid-requests and Valid-responses
mechanism (see Protocol), which is more flexible.

Node: Goals, Next: Connection and Authentication, Prev: Introduction, Up: Top

Goals
· Do not assume any access to the repository other than via this protocol.    It does not

depend on NFS, rdist, etc.

· Providing a reliable transport is outside this protocol.    The protocol expects a reliable
transport that is transparent (that is, there is no translation of characters, including
characters such as such as linefeeds or carriage returns), and can transmit all 256
octets (for example for proper handling of binary files, compression, and encryption). 
The encoding of characters specified by the protocol (the names of requests and so
on) is the invariant ISO 646 character set (a subset of most popular character sets
including ASCII and others).    For more details on running the protocol over the TCP
reliable transport, see Connection and Authentication.

· Security and authentication are handled outside this protocol (but see below about
cvs kserver and cvs pserver).

· The protocol makes it possible for updates to be atomic with respect to checkins; that
is if someone commits changes to several files in one cvs command, then an update
by someone else would either get all the changes, or none of them.    The current CVS
server can't do this, but that isn't the protocol's fault.

· The protocol is, with a few exceptions, transaction-based.    That is, the client sends
all its requests (without waiting for server responses), and then waits for the server to
send back all responses (without waiting for further client requests).    This has the
advantage of minimizing network turnarounds and the disadvantage of sometimes
transferring more data than would be necessary if there were a richer interaction.   
Another, more subtle, advantage is that there is no need for the protocol to provide
locking for features such as making checkins atomic with respect to updates.    Any
such locking can be handled entirely by the server.    A good server implementation
(such as the current CVS server) will make sure that it does not have any such locks in
place whenever it is waiting for communication with the client; this prevents one
client on a slow or flaky network from interfering with the work of others.

· It is a general design goal to provide only one way to do a given operation (where
possible).    For example, implementations have no choice about whether to terminate lines
with linefeeds or some other character(s), and request and response names are case-
sensitive.    This is to enhance interoperability.    If a protocol allows more than one way to do
something, it is all too easy for some implementations to support only some of them
(perhaps accidentally).   

Node: Connection and Authentication, Next: Password scrambling, Prev: Goals, Up: Top

How to Connect to and Authenticate Oneself to the CVS server
Connection and authentication occurs before the CVS protocol itself is started.    There are
several ways to connect.

server
If the client has a way to execute commands on the server, and provide input to the
commands and output from them, then it can connect that way.    This could be the
usual rsh (port 514) protocol, Kerberos rsh, SSH, or any similar mechanism.    The
client may allow the user to specify the name of the server program; the default is
cvs.    It is invoked with one argument, server.    Once it invokes the server, the client
proceeds to start the cvs protocol.

kserver
The kerberized server listens on a port (in the current implementation, by having
inetd call "cvs kserver") which defaults to 1999.    The client connects, sends the
usual kerberos authentication information, and then starts the cvs protocol.    Note:
port 1999 is officially registered for another use, and in any event one cannot register
more than one port for CVS, so GSS-API (see below) is recommended instead of
kserver as a way to support kerberos.

pserver
The name "pserver" is somewhat confusing.    It refers to both a generic framework
which allows the CVS protocol to support several authentication mechanisms, and a
name for a specific mechanism which transfers a username and a cleartext password.
Servers need not support all mechanisms, and in fact servers will typically want to
support only those mechanisms which meet the relevant security needs.

The pserver server listens on a port (in the current implementation, by having inetd
call "cvs pserver") which defaults to 2401 (this port is officially registered).    The
client connects, and sends the following:

· the string BEGIN AUTH REQUEST, a linefeed,

· the cvs root, a linefeed,

· the username, a linefeed,

· the password trivially encoded (see Password scrambling), a linefeed,

· the string END AUTH REQUEST, and a linefeed.   

The client must send the identical string for cvs root both here and later in the Root
request of the cvs protocol itself.    Servers are encouraged to enforce this restriction. 
The possible server responses (each of which is followed by a linefeed) are the
following.    Note that although there is a small similarity between this authentication
protocol and the cvs protocol, they are separate.

I LOVE YOU
The authentication is successful.    The client proceeds with the cvs protocol
itself.

I HATE YOU

The authentication fails.    After sending this response, the server may close
the connection.    It is up to the server to decide whether to give this response,
which is generic, or a more specific response using E and/or error.

E text
Provide a message for the user.    After this reponse, the authentication
protocol continues with another response.    Typically the server will provide a
series of E responses followed by error.    Compatibility note: CVS 1.9.10 and
older clients will print unrecognized auth response and text, and then exit,
upon receiving this response.

error code text
The authentication fails.    After sending this response, the server may close the
connection.    The code is a code describing why it failed, intended for computer
consumption.    The only code currently defined is 0 which is nonspecific, but clients
must silently treat any unrecognized codes as nonspecific.    The text should be
supplied to the user.    Compatibility note: CVS 1.9.10 and older clients will print
unrecognized auth response and text, and then exit, upon receiving this response. 

If the client wishes to merely authenticate without starting the cvs protocol, the
procedure is the same, except BEGIN AUTH REQUEST is replaced with BEGIN
VERIFICATION REQUEST, END AUTH REQUEST is replaced with END VERIFICATION
REQUEST, and upon receipt of I LOVE YOU the connection is closed rather than
continuing.

Another mechanism is GSSAPI authentication.    GSSAPI is a generic interface to
security services such as kerberos.    GSSAPI is specified in RFC2078 (GSSAPI version
2) and RFC1508 (GSSAPI version 1); we are not aware of differences between the two
which affect the protocol in incompatible ways, so we make no attempt to specify one
version or the other.    The procedure here is to start with BEGIN GSSAPI REQUEST.   
GSSAPI authentication information is then exchanged between the client and the
server.    Each packet of information consists of a two byte big endian length, followed
by that many bytes of data.    After the GSSAPI authentication is complete, the server
continues with the responses described above (I LOVE YOU, etc.).

future possibilities
There are a nearly unlimited number of ways to connect and authenticate.    One might want
to allow access based on IP address (similar to the usual rsh protocol but with different/no
restrictions on ports < 1024), to adopt mechanisms such as Pluggable Authentication
Modules (PAM), to allow users to run their own servers under their own usernames without
root access, or any number of other possibilities.    The way to add future mechanisms, for
the most part, should be to continue to use port 2401, but to use different strings in place of
BEGIN AUTH REQUEST.   

Node: Password scrambling, Next: Protocol, Prev: Connection and Authentication, Up: Top

Password scrambling algorithm
The pserver authentication protocol, as described in Connection and Authentication, trivially
encodes the passwords.    This is only to prevent inadvertent compromise; it provides no
protection against even a relatively unsophisticated attacker.    For comparison, HTTP Basic
Authentication (as described in RFC2068) uses BASE64 for a similar purpose.    CVS uses its
own algorithm, described here.

The scrambled password starts with A, which serves to identify the scrambling algorithm in
use.    After that follows a single octet for each character in the password, according to a
fixed encoding.    The values are shown here, with the encoded values in decimal.    Control
characters, space, and characters outside the invariant ISO 646 character set are not shown;
such characters are not recommended for use in passwords.    There is a long discussion of
character set issues in Protocol Notes.

 0 111 P 125 p 58
! 120 1 52 A 57 Q 55 a 121 q 113
" 53 2 75 B 83 R 54 b 117 r 32
 3 119 C 43 S 66 c 104 s 90
 4 49 D 46 T 124 d 101 t 44
% 109 5 34 E 102 U 126 e 100 u 98
& 72 6 82 F 40 V 59 f 69 v 60
' 108 7 81 G 89 W 47 g 73 w 51
(70 8 95 H 38 X 92 h 99 x 33
) 64 9 65 I 103 Y 71 i 63 y 97
* 76 : 112 J 45 Z 115 j 94 z 62
+ 67 ; 86 K 50 k 93
, 116 < 118 L 42 l 39
- 74 = 110 M 123 m 37
. 68 > 122 N 91 n 61
/ 87 ? 105 O 35 _ 56 o 48

Node: Protocol, Next: Protocol Notes, Prev: Password scrambling, Up: Top

The CVS client/server protocol
In the following, \n refers to a linefeed and \t refers to a horizontal tab; "requests" are what
the client sends and "responses" are what the server sends.    In general, the connection is
governed by the client--the server does not send responses without first receiving requests
to do so; see Response intro for more details of this convention.

It is typical, early in the connection, for the client to transmit a Valid-responses request,
containing all the responses it supports, followed by a valid-requests request, which elicits
from the server a Valid-requests response containing all the requests it understands.    In
this way, the client and server each find out what the other supports before exchanging
large amounts of data (such as file contents).

* Menu:

    General protocol conventions:

Entries Lines Transmitting RCS data
File Modes Read, write, execute, and possibly more...
Filenames Conventions regarding filenames
File transmissions How file contents are transmitted
Strings Strings in various requests and responses
Dates Times and dates

    The protocol itself:

Request intro General conventions relating to requests
Requests List of requests
Response intro General conventions relating to responses
Response pathnames The "pathname" in responses
Responses List of responses
Text tags More details about the MT response

    An example session, and some further observations:

Example A conversation between client and server
Requirements Things not to omit from an implementation
Obsolete Former protocol features

Node: Entries Lines, Next: File Modes, Prev: , Up: Protocol

Entries Lines
Entries lines are transmitted as:

/ name / version / conflict / options / tag_or_date

tag_or_date is either T tag or D date or empty.    If it is followed by a slash, anything after the
slash shall be silently ignored.

version can be empty, or start with 0 or -, for no user file, new user file, or user file to be
removed, respectively.

conflict, if it starts with +, indicates that the file had conflicts in it.    The rest of conflict is = if
the timestamp matches the file, or anything else if it doesn't.    If conflict does not start with
a +, it is silently ignored.

options signifies the keyword expansion options (for example -ko).    In an Entry request,
this indicates the options that were specified with the file from the previous file updating
response (see Response intro, for a list of file updating responses); if the client is specifying
the -k or -A option to update, then it is the server which figures out what overrides what.

Node: File Modes, Next: Filenames, Prev: Entries Lines, Up: Protocol

File Modes
A mode is any number of repetitions of

mode-type = data

separated by ,.

mode-type is an identifier composed of alphanumeric characters.    Currently specified: u for
user, g for group, o for other (see below for discussion of whether these have their POSIX
meaning or are more loose).    Unrecognized values of mode-type are silently ignored.

data consists of any data not containing ,, \0 or \n.    For u, g, and o mode types, data
consists of alphanumeric characters, where r means read, w means write, x means execute,
and unrecognized letters are silently ignored.

The two most obvious ways in which the mode matters are: (1) is it writeable?    This is used
by the developer communication features, and is implemented even on OS/2 (and could be
implemented on DOS), whose notion of mode is limited to a readonly bit. (2) is it executable?
Unix CVS users need CVS to store this setting (for shell scripts and the like).    The current
CVS implementation on unix does a little bit more than just maintain these two settings, but
it doesn't really have a nice general facility to store or version control the mode, even on
unix, much less across operating systems with diverse protection features.    So all the ins
and outs of what the mode means across operating systems haven't really been worked out
(e.g. should the VMS port use ACLs to get POSIX semantics for groups?).

Node: Filenames, Next: File transmissions, Prev: File Modes, Up: Protocol

Conventions regarding transmission of file names
In most contexts, / is used to separate directory and file names in filenames, and any use of
other conventions (for example, that the user might type on the command line) is converted
to that form.    The only exceptions might be a few cases in which the server provides a
magic cookie which the client then repeats verbatim, but as the server has not yet been
ported beyond unix, the two rules provide the same answer (and what to do if future server
ports are operating on a repository like e:/foo or CVS_ROOT:[FOO.BAR] has not been carefully
thought out).

Characters outside the invariant ISO 646 character set should be avoided in filenames.    This
restriction may need to be relaxed to allow for characters such as [and] (see above about
non-unix servers); this has not been carefully considered (and currently implementations
probably use whatever character sets that the operating systems they are running on allow,
and/or that users specify).    Of course the most portable practice is to restrict oneself
further, to the POSIX portable filename character set as specified in POSIX.1.

Node: File transmissions, Next: Strings, Prev: Filenames, Up: Protocol

File transmissions
File contents (noted below as file transmission) can be sent in one of two forms.    The
simpler form is a number of bytes, followed by a linefeed, followed by the specified number
of bytes of file contents.    These are the entire contents of the specified file.    Second, if both
client and server support gzip-file-contents, a z may precede the length, and the `file
contents' sent are actually compressed with gzip (RFC1952/1951) compression.    The length
specified is that of the compressed version of the file.

In neither case are the file content followed by any additional data.    The transmission of a
file will end with a linefeed iff that file (or its compressed form) ends with a linefeed.

The encoding of file contents depends on the value for the -k option.    If the file is binary (as
specified by the -kb option in the appropriate place), then it is just a certain number of
octets, and the protocol contributes nothing towards determining the encoding (using the
file name is one widespread, if not universally popular, mechanism).    If the file is text (not
binary), then the file is sent as a series of lines, separated by linefeeds.    If the keyword
expansion is set to something other than -ko, then it is expected that the file conform to the
RCS expectations regarding keyword expansion--in particular, that it is in a character set
such as ASCII in which 0x24 is a dollar sign ($).

Node: Strings, Next: Dates, Prev: File transmissions, Up: Protocol

Strings
In various contexts, for example the Argument request and the M response, one transmits
what is essentially an arbitrary string.    Often this will have been supplied by the user (for
example, the -m option to the ci request).    The protocol has no mechanism to specify the
character set of such strings; it would be fairly safe to stick to the invariant ISO 646
character set but the existing practice is probably to just transmit whatever the user
specifies, and hope that everyone involved agrees which character set is in use, or sticks to
a common subset.

Node: Dates, Next: Request intro, Prev: Strings, Up: Protocol

Dates
The protocol contains times and dates in various places.

For the -D option to the annotate, co, diff, export, history, rdiff, rtag, tag, and update
requests, the server should support two formats:

26 May 1997 13:01:40 GMT ; RFC 822 as modified by RFC 1123
5/26/1997 13:01:40 GMT ; traditional

The former format is preferred; the latter however is sent by the CVS command line client
(versions 1.5 through at least 1.9).

For the -d option to the log request, servers should at least support RFC 822/1123 format.   
Clients are encouraged to use this format too (traditionally the command line CVS client has
just passed along the date format specified by the user, however).

For Mod-time, see the description of that response.

For Notify, see the description of that request.

Node: Request intro, Next: Requests, Prev: Dates, Up: Protocol

Request intro
By convention, requests which begin with a capital letter do not elicit a response from the
server, while all others do - save one.    The exception is gzip-file-contents.   
Unrecognized requests will always elicit a response from the server, even if that request
begins with a capital letter.

Node: Requests, Next: Response intro, Prev: Request intro, Up: Protocol

Requests
Here are the requests:

Root pathname \n
Response expected: no.    Tell the server which CVSROOT to use.    Note that pathname
is a local directory and not a fully qualified CVSROOT variable.    pathname must
already exist; if creating a new root, use the init request, not Root.    pathname does
not include the hostname of the server, how to access the server, etc.; by the time
the CVS protocol is in use, connection, authentication, etc., are already taken care of.

The Root request must be sent only once, and it must be sent before any requests
other than Valid-responses, valid-requests, UseUnchanged, or init.

Valid-responses request-list \n
Response expected: no.    Tell the server what responses the client will accept.   
request-list is a space separated list of tokens.

valid-requests \n
Response expected: yes.    Ask the server to send back a Valid-requests response.

Directory local-directory \n
Additional data: repository \n.    Response expected: no.    Tell the server what
directory to use.    The repository should be a directory name from a previous server
response.    Note that this both gives a default for Entry and Modified and also for ci
and the other commands; normal usage is to send Directory for each directory in
which there will be an Entry or Modified, and then a final Directory for the original
directory, then the command.    The local-directory is relative to the top level at which
the command is occurring (i.e. the last Directory which is sent before the
command); to indicate that top level, . should be sent for local-directory.

Here is an example of where a client gets repository and local-directory.    Suppose
that there is a module defined by

moddir 1dir

That is, one can check out moddir and it will take 1dir in the repository and check it
out to moddir in the working directory.    Then an initial check out could proceed like
this:

C: Root /home/kingdon/zwork/cvsroot
. . .
C: Argument moddir
C: Directory .
C: /home/kingdon/zwork/cvsroot
C: co
S: Clear-sticky moddir/
S: /home/kingdon/zwork/cvsroot/1dir/
. . .
S: ok

In this example the response shown is Clear-sticky, but it could be another

response instead.    Note that it returns two pathnames.    The first one, moddir/,
indicates the working directory to check out into.    The second one, ending in 1dir/,
indicates the directory to pass back to the server in a subsequent Directory request.
For example, a subsequent update request might look like:

C: Directory moddir
C: /home/kingdon/zwork/cvsroot/1dir
. . .
C: update

For a given local-directory, the repository will be the same for each of the responses,
so one can use the repository from whichever response is most convenient.    Typically
a client will store the repository along with the sources for each local-directory, use
that same setting whenever operating on that local-directory, and not update the
setting as long as the local-directory exists.

A client is free to rename a local-directory at any time (for example, in response to an
explicit user request).    While it is true that the server supplies a local-directory to the
client, as noted above, this is only the default place to put the directory.    Of course,
the various Directory requests for a single command (for example, update or ci
request) should name a particular directory with the same local-directory.

Each Directory request specifies a brand-new local-directory and repository; that is,
local-directory and repository are never relative to paths specified in any previous
Directory request.

Here's a more complex example, in which we request an update of a working
directory which has been checked out from multiple places in the repository.

C: Argument dir1
C: Directory dir1
C: /home/foo/repos/mod1
. . .
C: Argument dir2
C: Directory dir2
C: /home/foo/repos/mod2
. . .
C: Argument dir3
C: Directory dir3/subdir3
C: /home/foo/repos/mod3
. . .
C: update

While directories dir1 and dir2 will be handled in similar fashion to the other
examples given above, dir3 is slightly different from the server's standpoint.    Notice
that module mod3 is actually checked out into dir3/subdir3, meaning that directory
dir3 is either empty or does not contain data checked out from this repository.

The above example will work correctly in CVS 1.10.1 and later.    The server will
descend the tree starting from all directories mentioned in Argument requests and
update those directories specifically mentioned in Directory requests.

Previous versions of CVS (1.10 and earlier) do not behave the same way.    While the
descent of the tree begins at all directories mentioned in Argument requests, descent
into subdirectories only occurs if a directory has been mentioned in a Directory

request.    Therefore, the above example would succeed in updating dir1 and dir2,
but would skip dir3 because that directory was not specifically mentioned in a
Directory request.    A functional version of the above that would run on a 1.10 or
earlier server is as follows:

C: Argument dir1
C: Directory dir1
C: /home/foo/repos/mod1
. . .
C: Argument dir2
C: Directory dir2
C: /home/foo/repos/mod2
. . .
C: Argument dir3
C: Directory dir3
C: /home/foo/repos/.
. . .
C: Directory dir3/subdir3
C: /home/foo/repos/mod3
. . .
C: update

Note the extra Directory dir3 request.    It might be better to use Emptydir as the
repository for the dir3 directory, but the above will certainly work.

One more peculiarity of the 1.10 and earlier protocol is the ordering of Directory
arguments.    In order for a subdirectory to be registered correctly for descent by the
recursion processor, its parent must be sent first.    For example, the following would
not work to update dir3/subdir3:

. . .
C: Argument dir3
C: Directory dir3/subdir3
C: /home/foo/repos/mod3
. . .
C: Directory dir3
C: /home/foo/repos/.
. . .
C: update

The implementation of the server in 1.10 and earlier writes the administration files
for a given directory at the time of the Directory request.    It also tries to register
the directory with its parent to mark it for recursion.    In the above example, at the
time dir3/subdir3 is created, the physical directory for dir3 will be created on disk,
but the administration files will not have been created.    Therefore, when the server
tries to register dir3/subdir3 for recursion, the operation will silently fail because
the administration files do not yet exist for dir3.

Max-dotdot level \n
Response expected: no.    Tell the server that level levels of directories above the
directory which Directory requests are relative to will be needed.    For example, if
the client is planning to use a Directory request for ../../foo, it must send a Max-
dotdot request with a level of at least 2.    Max-dotdot must be sent before the first
Directory request.

Static-directory \n
Response expected: no.    Tell the server that the directory most recently specified
with Directory should not have additional files checked out unless explicitly
requested.    The client sends this if the Entries.Static flag is set, which is
controlled by the Set-static-directory and Clear-static-directory responses.

Sticky tagspec \n
Response expected: no.    Tell the server that the directory most recently specified
with Directory has a sticky tag or date tagspec.    The first character of tagspec is T
for a tag, or D for a date.    The remainder of tagspec contains the actual tag or date.

The server should remember Static-directory and Sticky requests for a particular
directory; the client need not resend them each time it sends a Directory request
for a given directory.    However, the server is not obliged to remember them beyond
the context of a single command.

Checkin-prog program \n
Response expected: no.    Tell the server that the directory most recently specified
with Directory has a checkin program program.    Such a program would have been
previously set with the Set-checkin-prog response.

Update-prog program \n
Response expected: no.    Tell the server that the directory most recently specified
with Directory has an update program program.    Such a program would have been
previously set with the Set-update-prog response.

Entry entry-line \n
Response expected: no.    Tell the server what version of a file is on the local machine. 
The name in entry-line is a name relative to the directory most recently specified with
Directory.    If the user is operating on only some files in a directory, Entry requests
for only those files need be included.    If an Entry request is sent without Modified,
Is-modified, or Unchanged, it means the file is lost (does not exist in the working
directory).    If both Entry and one of Modified, Is-modified, or Unchanged are sent
for the same file, Entry must be sent first.    For a given file, one can send Modified,
Is-modified, or Unchanged, but not more than one of these three.

Kopt option \n
This indicates to the server which keyword expansion options to use for the file
specified by the next Modified or Is-modified request (for example -kb for a binary
file).    This is similar to Entry, but is used for a file for which there is no entries line.   
Typically this will be a file being added via an add or import request.    The client may
not send both Kopt and Entry for the same file.

Checkin-time time \n
For the file specified by the next Modified request, use time as the time of the
checkin.    The time is in the format specified by RFC822 as modified by RFC1123.   
The client may specify any timezone it chooses; servers will want to convert that to
their own timezone as appropriate.    An example of this format is:

26 May 1997 13:01:40 -0400

There is no requirement that the client and server clocks be synchronized.    The client
just sends its recommendation for a timestamp (based on file timestamps or
whatever), and the server should just believe it (this means that the time might be in

the future, for example).

Note that this is not a general-purpose way to tell the server about the timestamp of
a file; that would be a separate request (if there are servers which can maintain
timestamp and time of checkin separately).

This request should affect the import request, and may optionally affect the ci
request or other relevant requests if any.

Modified filename \n
Response expected: no.    Additional data: mode, \n, file transmission.    Send the
server a copy of one locally modified file.    filename is relative to the most recent
repository sent with Directory.    If the user is operating on only some files in a
directory, only those files need to be included.    This can also be sent without Entry,
if there is no entry for the file.

Is-modified filename \n
Response expected: no.    Additional data: none.    Like Modified, but used if the
server only needs to know whether the file is modified, not the contents.

The commands which can take Is-modified instead of Modified with no known
change in behavior are: admin, diff (if and only if two -r or -D options are specified),
watch-on, watch-off, watch-add, watch-remove, watchers, editors, log, and
annotate.

For the status command, one can send Is-modified but if the client is using
imperfect mechanisms such as timestamps to determine whether to consider a file
modified, then the behavior will be different.    That is, if one sends Modified, then
the server will actually compare the contents of the file sent and the one it derives
from to determine whether the file is genuinely modified.    But if one sends Is-
modified, then the server takes the client's word for it.    A similar situation exists for
tag, if the -c option is specified.

Commands for which Modified is necessary are co, ci, update, and import.

Commands which do not need to inform the server about a working directory, and
thus should not be sending either Modified or Is-modified: rdiff, rtag, history,
init, and release.

Commands for which further investigation is warranted are: remove, add, and export.
Pending such investigation, the more conservative course of action is to stick to
Modified.

Unchanged filename \n
Response expected: no.    Tell the server that filename has not been modified in the
checked out directory.    The name is relative to the most recent repository sent with
Directory.

UseUnchanged \n
Response expected: no.    To specify the version of the protocol described in this
document, servers must support this request (although it need not do anything) and
clients must issue it.

Notify filename \n

Response expected: no.    Tell the server that a edit or unedit command has taken
place.    The server needs to send a Notified response, but such response is deferred
until the next time that the server is sending responses.    Response expected: no.   
Additional data:
notification-type \t time \t clienthost \t
working-dir \t watches \n
where notification-type is E for edit, U for unedit, undefined behavior if C, and all
other letters should be silently ignored for future expansion.    time is the time at
which the edit or unedit took place, in a user-readable format of the client's choice
(the server should treat the time as an opaque string rather than interpreting it).   
clienthost is the name of the host on which the edit or unedit took place, and
working-dir is the pathname of the working directory where the edit or unedit took
place.    watches are the temporary watches to set.    If watches is followed by \t then
the \t and the rest of the line should be ignored, for future expansion.

Note that a client may be capable of performing an edit or unedit operation without
connecting to the server at that time, and instead connecting to the server when it is
convenient (for example, when a laptop is on the net again) to send the Notify
requests.    Even if a client is capable of deferring notifications, it should attempt to
send them immediately (one can send Notify requests together with a noop request,
for example), unless perhaps if it can know that a connection would be impossible.

Questionable filename \n
Response expected: no.    Additional data: no.    Tell the server to check whether
filename should be ignored, and if not, next time the server sends responses, send
(in a M response) ? followed by the directory and filename.    filename must not
contain /; it needs to be a file in the directory named by the most recent Directory
request.

Case \n
Response expected: no.    Tell the server that filenames should be matched in a case-
insensitive fashion.    Note that this is not the primary mechanism for achieving case-
insensitivity; for the most part the client keeps track of the case which the server
wants to use and takes care to always use that case regardless of what the user
specifies.    For example the filenames given in Entry and Modified requests for the
same file must match in case regardless of whether the Case request is sent.    The
latter mechanism is more general (it could also be used for 8.3 filenames, VMS
filenames with more than one ., and any other situation in which there is a
predictable mapping between filenames in the working directory and filenames in the
protocol), but there are some situations it cannot handle (ignore patterns, or
situations where the user specifies a filename and the client does not know about
that file).

Argument text \n
Response expected: no.    Save argument for use in a subsequent command.   
Arguments accumulate until an argument-using command is given, at which point
they are forgotten.

Argumentx text \n
Response expected: no.    Append \n followed by text to the current argument being
saved.

Global_option option \n
Response expected: no.    Transmit one of the global options -q, -Q, -l, -t, -r, or -n.   
option must be one of those strings, no variations (such as combining of options) are

allowed.    For graceful handling of valid-requests, it is probably better to make new
global options separate requests, rather than trying to add them to this request.

Gzip-stream level \n
Response expected: no.    Use zlib (RFC 1950/1951) compression to compress all
further communication between the client and the server.    After this request is sent,
all further communication must be compressed.    All further data received from the
server will also be compressed.    The level argument suggests to the server the level
of compression that it should apply; it should be an integer between 1 and 9,
inclusive, where a higher number indicates more compression.

Kerberos-encrypt \n
Response expected: no.    Use Kerberos encryption to encrypt all further
communication between the client and the server.    This will only work if the
connection was made over Kerberos in the first place.    If both the Gzip-stream and
the Kerberos-encrypt requests are used, the Kerberos-encrypt request should be
used first.    This will make the client and server encrypt the compressed data, as
opposed to compressing the encrypted data.    Encrypted data is generally
incompressible.

Note that this request does not fully prevent an attacker from hijacking the
connection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Kerberos-encrypt request.

Gssapi-encrypt \n
Response expected: no.    Use GSSAPI encryption to encrypt all further communication
between the client and the server.    This will only work if the connection was made
over GSSAPI in the first place.    See Kerberos-encrypt, above, for the relation
between Gssapi-encrypt and Gzip-stream.

Note that this request does not fully prevent an attacker from hijacking the
connection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Gssapi-encrypt request.

Gssapi-authenticate \n
Response expected: no.    Use GSSAPI authentication to authenticate all further
communication between the client and the server.    This will only work if the
connection was made over GSSAPI in the first place.    Encrypted data is automatically
authenticated, so using both Gssapi-authenticate and Gssapi-encrypt has no
effect beyond that of Gssapi-encrypt.    Unlike encrypted data, it is reasonable to
compress authenticated data.

Note that this request does not fully prevent an attacker from hijacking the
connection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Gssapi-authenticate request.

Set variable=value \n
Response expected: no.    Set a user variable variable to value.

expand-modules \n
Response expected: yes.    Expand the modules which are specified in the arguments. 
Returns the data in Module-expansion responses.    Note that the server can assume
that this is checkout or export, not rtag or rdiff; the latter do not access the working
directory and thus have no need to expand modules on the client side.

Expand may not be the best word for what this request does.    It does not necessarily
tell you all the files contained in a module, for example.    Basically it is a way of
telling you which working directories the server needs to know about in order to
handle a checkout of the specified modules.

For example, suppose that the server has a module defined by

aliasmodule -a 1dir

That is, one can check out aliasmodule and it will take 1dir in the repository and
check it out to 1dir in the working directory.    Now suppose the client already has
this module checked out and is planning on using the co request to update it.   
Without using expand-modules, the client would have two bad choices: it could either
send information about all working directories under the current directory, which
could be unnecessarily slow, or it could be ignorant of the fact that aliasmodule
stands for 1dir, and neglect to send information for 1dir, which would lead to
incorrect operation.

With expand-modules, the client would first ask for the module to be expanded:

C: Root /home/kingdon/zwork/cvsroot
. . .
C: Argument aliasmodule
C: Directory .
C: /home/kingdon/zwork/cvsroot
C: expand-modules
S: Module-expansion 1dir
S: ok

and then it knows to check the 1dir directory and send requests such as Entry and
Modified for the files in that directory.

ci \n
diff \n
tag \n
status \n
log \n
admin \n
history \n
watchers \n
editors \n
annotate \n

Response expected: yes.    Actually do a cvs command.    This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.    The last
Directory sent specifies the working directory at the time of the operation.    No
provision is made for any input from the user.    This means that ci must use a -m
argument if it wants to specify a log message.

co \n
Response expected: yes.    Get files from the repository.    This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.   
Arguments to this command are module names; the client cannot know what
directories they correspond to except by (1) just sending the co request, and then
seeing what directory names the server sends back in its responses, and (2) the
expand-modules request.

export \n
Response expected: yes.    Get files from the repository.    This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.   
Arguments to this command are module names, as described for the co request.   
The intention behind this command is that a client can get sources from a server
without storing CVS information about those sources.    That is, a client probably
should not count on being able to take the entries line returned in the Created
response from an export request and send it in a future Entry request.    Note that
the entries line in the Created response must indicate whether the file is binary or
text, so the client can create it correctly.

rdiff \n
rtag \n

Response expected: yes.    Actually do a cvs command.    This uses any previous
Argument requests, if they have been sent.    The client should not send Directory,
Entry, or Modified requests for this command; they are not used.    Arguments to
these commands are module names, as described for co.

init root-name \n
Response expected: yes.    If it doesn't already exist, create a CVS repository root-
name.    Note that root-name is a local directory and not a fully qualified CVSROOT
variable.    The Root request need not have been previously sent.

update \n
Response expected: yes.    Actually do a cvs update command.    This uses any
previous Argument, Directory, Entry, or Modified requests, if they have been sent. 
The last Directory sent specifies the working directory at the time of the operation.   
The -I option is not used-files which the client can decide whether to ignore are not
mentioned and the client sends the Questionable request for others.

import \n
Response expected: yes.    Actually do a cvs import command.    This uses any
previous Argument, Directory, Entry, or Modified requests, if they have been sent. 
The last Directory sent specifies the working directory at the time of the operation.   
The files to be imported are sent in Modified requests (files which the client knows
should be ignored are not sent; the server must still process the CVSROOT/cvsignore
file unless -I ! is sent).    A log message must have been specified with a -m argument.

add \n
Response expected: yes.    Add a file or directory.    This uses any previous Argument,
Directory, Entry, or Modified requests, if they have been sent.    The last
Directory sent specifies the working directory at the time of the operation.

To add a directory, send the directory to be added using Directory and Argument
requests.    For example:

C: Root /u/cvsroot
. . .
C: Argument nsdir
C: Directory nsdir
C: /u/cvsroot/1dir/nsdir
C: Directory .
C: /u/cvsroot/1dir
C: add
S: M Directory /u/cvsroot/1dir/nsdir added to the repository
S: ok

You will notice that the server does not signal to the client in any particular way that
the directory has been successfully added.    The client is supposed to just assume
that the directory has been added and update its records accordingly.    Note also that
adding a directory is immediate; it does not wait until a ci request as files do.

To add a file, send the file to be added using a Modified request.    For example:

C: Argument nfile
C: Directory .
C: /u/cvsroot/1dir
C: Modified nfile
C: u=rw,g=r,o=r
C: 6
C: hello
C: add
S: E cvs server: scheduling file `nfile' for addition
S: Mode u=rw,g=r,o=r
S: Checked-in ./
S: /u/cvsroot/1dir/nfile
S: /nfile/0///
S: E cvs server: use 'cvs commit' to add this file permanently
S: ok

Note that the file has not been added to the repository; the only effect of a successful
add request, for a file, is to supply the client with a new entries line containing 0 to
indicate an added file.    In fact, the client probably could perform this operation
without contacting the server, although using add does cause the server to perform a
few more checks.

The client sends a subsequent ci to actually add the file to the repository.

Another quirk of the add request is that with CVS 1.9 and older, a pathname specified
in an Argument request cannot contain /.    There is no good reason for this
restriction, and in fact more recent CVS servers don't have it.    But the way to
interoperate with the older servers is to ensure that all Directory requests for add
(except those used to add directories, as described above), use . for local-directory.   
Specifying another string for local-directory may not get an error, but it will get you
strange Checked-in responses from the buggy servers.

remove \n
Response expected: yes.    Remove a file.    This uses any previous Argument,
Directory, Entry, or Modified requests, if they have been sent.    The last
Directory sent specifies the working directory at the time of the operation.

Note that this request does not actually do anything to the repository; the only effect
of a successful remove request is to supply the client with a new entries line
containing - to indicate a removed file.    In fact, the client probably could perform
this operation without contacting the server, although using remove may cause the
server to perform a few more checks.

The client sends a subsequent ci request to actually record the removal in the
repository.

watch-on \n
watch-off \n
watch-add \n
watch-remove \n

Response expected: yes.    Actually do the cvs watch on, cvs watch off, cvs watch
add, and cvs watch remove commands, respectively.    This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.    The last
Directory sent specifies the working directory at the time of the operation.

release \n
Response expected: yes.    Note that a cvs release command has taken place and
update the history file accordingly.

noop \n
Response expected: yes.    This request is a null command in the sense that it doesn't
do anything, but merely (as with any other requests expecting a response) sends
back any responses pertaining to pending errors, pending Notified responses, etc.

update-patches \n
Response expected: yes.    This request does not actually do anything.    It is used as a
signal that the server is able to generate patches when given an update request.   
The client must issue the -u argument to update in order to receive patches.

gzip-file-contents level \n
Response expected: no.    Note that this request does not follow the response
convention stated above.    Gzip-stream is suggested instead of gzip-file-
contents as it gives better compression; the only reason to implement the latter is to
provide compression with CVS 1.8 and earlier.    The gzip-file-contents request asks
the server to compress files it sends to the client using gzip (RFC1952/1951)
compression, using the specified level of compression.    If this request is not made,
the server must not compress files.

This is only a hint to the server.    It may still decide (for example, in the case of very
small files, or files that already appear to be compressed) not to do the compression. 
Compression is indicated by a z preceding the file length.

Availability of this request in the server indicates to the client that it may compress
files sent to the server, regardless of whether the client actually uses this request.

wrapper-sendme-rcsOptions \n
Response expected: yes.    Request that the server transmit mappings from filenames
to keyword expansion modes in Wrapper-rcsOption responses.

other-request text \n
Response expected: yes.    Any unrecognized request expects a response, and does not

contain any additional data.    The response will normally be something like error
unrecognized request, but it could be a different error if a previous request which doesn't
expect a response produced an error.   

When the client is done, it drops the connection.

Node: Response intro, Next: Response pathnames, Prev: Requests, Up: Protocol

Introduction to Responses
After a command which expects a response, the server sends however many of the following
responses are appropriate.    The server should not send data at other times (the current
implementation may violate this principle in a few minor places, where the server is printing
an error message and exiting--this should be investigated further).

Any set of responses always ends with error or ok.    This indicates that the response is over.

The responses Checked-in, New-entry, Updated, Created, Update-existing, Merged, and
Patched are refered to as "file updating" responses, because they change the status of a file
in the working directory in some way.    The responses Mode, Mod-time, and Checksum are
referred to as "file update modifying" responses because they modify the next file updating
response.    In no case shall a file update modifying response apply to a file updating
response other than the next one.    Nor can the same file update modifying response occur
twice for a given file updating response (if servers diagnose this problem, it may aid in
detecting the case where clients send an update modifying response without following it by
a file updating response).

Node: Response pathnames, Next: Responses, Prev: Response intro, Up: Protocol

The "pathname" in responses
Many of the responses contain something called pathname.    The name is somewhat
misleading; it actually indicates a pair of pathnames.    First, a local directory name relative
to the directory in which the command was given (i.e. the last Directory before the
command).    Then a linefeed and a repository name.    Then a slash and the filename
(without a ,v ending).    For example, for a file i386.mh which is in the local directory
gas.clean/config and for which the repository is /rel/cvsfiles/devo/gas/config:

gas.clean/config/
/rel/cvsfiles/devo/gas/config/i386.mh

If the server wants to tell the client to create a directory, then it merely uses the directory in
any response, as described above, and the client should create the directory if it does not
exist.    Note that this should only be done one directory at a time, in order to permit the
client to correctly store the repository for each directory.    Servers can use requests such as
Clear-sticky, Clear-static-directory, or any other requests, to create directories.

Some server implementations may poorly distinguish between a directory which should not
exist and a directory which contains no files; in order to refrain from creating empty
directories a client should both send the -P option to update or co, and should also detect
the case in which the server asks to create a directory but not any files within it (in that case
the client should remove the directory or refrain from creating it in the first place).    Note
that servers could clean this up greatly by only telling the client to create directories if the
directory in question should exist, but until servers do this, clients will need to offer the -P
behavior described above.

Node: Responses, Next: Text tags, Prev: Response pathnames, Up: Protocol

Responses
Here are the responses:

Valid-requests request-list \n
Indicate what requests the server will accept.    request-list is a space separated list of
tokens.    If the server supports sending patches, it will include update-patches in this
list.    The update-patches request does not actually do anything.

Checked-in pathname \n
Additional data: New Entries line, \n.    This means a file pathname has been
successfully operated on (checked in, added, etc.).    name in the Entries line is the
same as the last component of pathname.

New-entry pathname \n
Additional data: New Entries line, \n.    Like Checked-in, but the file is not up to date.

Updated pathname \n
Additional data: New Entries line, \n, mode, \n, file transmission.    A new copy of the
file is enclosed.    This is used for a new revision of an existing file, or for a new file, or
for any other case in which the local (client-side) copy of the file needs to be
updated, and after being updated it will be up to date.    If any directory in pathname
does not exist, create it.    This response is not used if Created and Update-existing
are supported.

Created pathname \n
This is just like Updated and takes the same additional data, but is used only if no
Entry, Modified, or Unchanged request has been sent for the file in question.    The
distinction between Created and Update-existing is so that the client can give an
error message in several cases: (1) there is a file in the working directory, but not one
for which Entry, Modified, or Unchanged was sent (for example, a file which was
ignored, or a file for which Questionable was sent), (2) there is a file in the working
directory whose name differs from the one mentioned in Created in ways that the
client is unable to use to distinguish files.    For example, the client is case-insensitive
and the names differ only in case.

Update-existing pathname \n
This is just like Updated and takes the same additional data, but is used only if a
Entry, Modified, or Unchanged request has been sent for the file in question.

This response, or Merged, indicates that the server has determined that it is OK to
overwrite the previous contents of the file specified by pathname.    Provided that the
client has correctly sent Modified or Is-modified requests for a modified file, and
the file was not modified while CVS was running, the server can ensure that a user's
modifications are not lost.

Merged pathname \n
This is just like Updated and takes the same additional data, with the one difference
that after the new copy of the file is enclosed, it will still not be up to date.    Used for
the results of a merge, with or without conflicts.

It is useful to preserve an copy of what the file looked like before the merge.    This is

basically handled by the server; before sending Merged it will send a Copy-file
response.    For example, if the file is aa and it derives from revision 1.3, the Copy-
file response will tell the client to copy aa to .#aa.1.3.    It is up to the client to
decide how long to keep this file around; traditionally clients have left it around
forever, thus letting the user clean it up as desired.    But another answer, such as
until the next commit, might be preferable.

Rcs-diff pathname \n
This is just like Updated and takes the same additional data, with the one difference
that instead of sending a new copy of the file, the server sends an RCS change text.   
This change text is produced by diff -n (the GNU diff -a option may also be used).   
The client must apply this change text to the existing file.    This will only be used
when the client has an exact copy of an earlier revision of a file.    This response is
only used if the update command is given the -u argument.

Patched pathname \n
This is just like Rcs-diff and takes the same additional data, except that it sends a
standard patch rather than an RCS change text.    The patch is produced by diff -c
for CVS 1.6 and later (see POSIX.2 for a description of this format), or diff -u for
previous versions of CVS; clients are encouraged to accept either format.    Like Rcs-
diff, this response is only used if the update command is given the -u argument.

The Patched response is deprecated in favor of the Rcs-diff response.    However,
older clients (CVS 1.9 and earlier) only support Patched.

Mode mode \n
This mode applies to the next file mentioned in Checked-in.    Mode is a file update
modifying response as described in Response intro.

Mod-time time \n
Set the modification time of the next file sent to time.    Mod-time is a file update
modifying response as described in Response intro.    The time is in the format
specified by RFC822 as modified by RFC1123.    The server may specify any timezone
it chooses; clients will want to convert that to their own timezone as appropriate.    An
example of this format is:

26 May 1997 13:01:40 -0400

There is no requirement that the client and server clocks be synchronized.    The
server just sends its recommendation for a timestamp (based on its own clock,
presumably), and the client should just believe it (this means that the time might be
in the future, for example).

Checksum checksum\n
The checksum applies to the next file sent (that is, Checksum is a file update
modifying response as described in Response intro).    In the case of Patched, the
checksum applies to the file after being patched, not to the patch itself.    The client
should compute the checksum itself, after receiving the file or patch, and signal an
error if the checksums do not match.    The checksum is the 128 bit MD5 checksum
represented as 32 hex digits (MD5 is described in RFC1321).    This response is
optional, and is only used if the client supports it (as judged by the Valid-responses
request).

Copy-file pathname \n

Additional data: newname \n.    Copy file pathname to newname in the same directory
where it already is.    This does not affect CVS/Entries.

This can optionally be implemented as a rename instead of a copy.    The only use for
it which currently has been identified is prior to a Merged response as described
under Merged.    Clients can probably assume that is how it is being used, if they want
to worry about things like how long to keep the newname file around.

Removed pathname \n
The file has been removed from the repository (this is the case where cvs prints file
foobar.c is no longer pertinent).

Remove-entry pathname \n
The file needs its entry removed from CVS/Entries, but the file itself is already gone
(this happens in response to a ci request which involves committing the removal of a
file).

Set-static-directory pathname \n
This instructs the client to set the Entries.Static flag, which it should then send
back to the server in a Static-directory request whenever the directory is
operated on.    pathname ends in a slash; its purpose is to specify a directory, not a
file within a directory.

Clear-static-directory pathname \n
Like Set-static-directory, but clear, not set, the flag.

Set-sticky pathname \n
Additional data: tagspec \n.    Tell the client to set a sticky tag or date, which should
be supplied with the Sticky request for future operations.    pathname ends in a
slash; its purpose is to specify a directory, not a file within a directory.    The client
should store tagspec and pass it back to the server as-is, to allow for future
expansion.    The first character of tagspec is T for a tag, D for a date, or something
else for future expansion.    The remainder of tagspec contains the actual tag or date.

Clear-sticky pathname \n
Clear any sticky tag or date set by Set-sticky.

Template pathname \n
Additional data: file transmission (note: compressed file transmissions are not
supported).    pathname ends in a slash; its purpose is to specify a directory, not a file
within a directory.    Tell the client to store the file transmission as the template log
message, and then use that template in the future when prompting the user for a log
message.

Set-checkin-prog dir \n
Additional data: prog \n.    Tell the client to set a checkin program, which should be
supplied with the Checkin-prog request for future operations.

Set-update-prog dir \n
Additional data: prog \n.    Tell the client to set an update program, which should be
supplied with the Update-prog request for future operations.

Notified pathname \n
Indicate to the client that the notification for pathname has been done.    There should

be one such response for every Notify request; if there are several Notify requests
for a single file, the requests should be processed in order; the first Notified
response pertains to the first Notify request, etc.

Module-expansion pathname \n
Return a file or directory which is included in a particular module.    pathname is
relative to cvsroot, unlike most pathnames in responses.    pathname should be used
to look and see whether some or all of the module exists on the client side; it is not
necessarily suitable for passing as an argument to a co request (for example, if the
modules file contains the -d option, it will be the directory specified with -d, not the
name of the module).

Wrapper-rcsOption pattern -k 'option' \n
Transmit to the client a filename pattern which implies a certain keyword expansion
mode.    The pattern is a wildcard pattern (for example, *.exe.    The option is b for
binary, and so on.    Note that although the syntax happens to resemble the syntax in
certain CVS configuration files, it is more constrained; there must be exactly one
space between pattern and -k and exactly one space between -k and ', and no
string is permitted in place of -k (extensions should be done with new responses, not
by extending this one, for graceful handling of Valid-responses).

M text \n
A one-line message for the user.

Mbinary \n
Additional data: file transmission (note: compressed file transmissions are not
supported).    This is like M, except the contents of the file transmission are binary and
should be copied to standard output without translation to local text file conventions. 
To transmit a text file to standard output, servers should use a series of M requests.

E text \n
Same as M but send to stderr not stdout.

F \n
Flush stderr.    That is, make it possible for the user to see what has been written to
stderr (it is up to the implementation to decide exactly how far it should go to ensure
this).

MT tagname data \n
This response provides for tagged text.    It is similar to SGML/HTML/XML in that the
data is structured and a naive application can also make some sense of it without
understanding the structure.    The syntax is not SGML-like, however, in order to fit
into the CVS protocol better and (more importantly) to make it easier to parse,
especially in a language like perl or awk.

The tagname can have several forms.    If it starts with a to z or A to Z, then it
represents tagged text.    If the implementation recognizes tagname, then it may
interpret data in some particular fashion.    If the implementation does not recognize
tagname, then it should simply treat data as text to be sent to the user (similar to an
M response).    There are two tags which are general purpose.    The text tag is similar
to an unrecognized tag in that it provides text which will ordinarily be sent to the
user.    The newline tag is used without data and indicates that a newline will
ordinarily be sent to the user (there is no provision for embedding newlines in the
data of other tagged text responses).

If tagname starts with + it indicates a start tag and if it starts with - it indicates an
end tag.    The remainder of tagname should be the same for matching start and end
tags, and tags should be nested (for example one could have tags in the following
order +bold +italic text -italic -bold but not +bold +italic text -bold -
italic).    A particular start and end tag may be documented to constrain the tagged
text responses which are valid between them.

Note that if data is present there will always be exactly one space between tagname
and data; if there is more than one space, then the spaces beyond the first are part
of data.

Here is an example of some tagged text responses.    Note that there is a trailing
space after Checking in and initial revision: and there are two trailing spaces
after <--.    Such trailing spaces are, of course, part of data.

MT +checking-in
MT text Checking in
MT fname gz.tst
MT text ;
MT newline
MT rcsfile /home/kingdon/zwork/cvsroot/foo/gz.tst,v
MT text <--
MT fname gz.tst
MT newline
MT text initial revision:
MT init-rev 1.1
MT newline
MT text done
MT newline
MT -checking-in

If the client does not support the MT response, the same responses might be sent as:

M Checking in gz.tst;
M /home/kingdon/zwork/cvsroot/foo/gz.tst,v <-- gz.tst
M initial revision: 1.1
M done

For a list of specific tags, see Text tags.

error errno-code text \n
The command completed with an error.    errno-code is a symbolic error code (e.g.
ENOENT); if the server doesn't support this feature, or if it's not appropriate for this
particular message, it just omits the errno-code (in that case there are two spaces
after error).    Text is an error message such as that provided by strerror(), or any
other message the server wants to use.

ok \n
The command completed successfully.   

Node: Text tags, Next: Example, Prev: Responses, Up: Protocol

Tags for the MT tagged text response
The MT response, as described in Responses, offers a way for the server to send tagged text
to the client.    This section describes specific tags.    The intention is to update this section as
servers add new tags.

In the following descriptions, text and newline tags are omitted.    Such tags contain
information which is intended for users (or to be discarded), and are subject to change at the
whim of the server.    To avoid being vulnerable to such whim, clients should look for the tags
listed here, not text, newline, or other tags.

The following tag means to indicate to the user that a file has been updated.    It is more or
less redundant with the Created and Update-existing responses, but we don't try to
specify here whether it occurs in exactly the same circumstances as Created and Update-
existing.    The name is the pathname of the file being updated relative to the directory in
which the command is occurring (that is, the last Directory request which is sent before the
command).

MT +updated
MT fname name
MT -updated

The importmergecmd tag is used when doing an import which has conflicts.    The client can
use it to report how to merge in the newly imported changes.    The count is the number of
conflicts.    The newly imported changes can be merged by running the following command:

cvs checkout -j tag1 -j tag2 repository

MT +importmergecmd
MT conflicts count
MT mergetag1 tag1
MT mergetag2 tag2
MT repository repository
MT -importmergecmd

Node: Example, Next: Requirements, Prev: Text tags, Up: Protocol

Example
Here is an example; lines are prefixed by C: to indicate the client sends them or S: to
indicate the server sends them.

The client starts by connecting, sending the root, and completing the protocol negotiation.   
In actual practice the lists of valid responses and requests would be longer.

C: Root /u/cvsroot
C: Valid-responses ok error Checked-in M E
C: valid-requests
S: Valid-requests Root Directory Entry Modified Argument Argumentx ci co
S: ok
C: UseUnchanged

The client wants to check out the supermunger module into a fresh working directory.   
Therefore it first expands the supermunger module; this step would be omitted if the client
was operating on a directory rather than a module.

C: Argument supermunger
C: Directory .
C: /u/cvsroot
C: expand-modules

The server replies that the supermunger module expands to the directory supermunger (the
simplest case):

S: Module-expansion supermunger
S: ok

The client then proceeds to check out the directory.    The fact that it sends only a single
Directory request which specifies .    for the working directory means that there is not
already a supermunger directory on the client.

C: Argument -N
C: Argument supermunger
C: Directory .
C: /u/cvsroot
C: co

The server replies with the requested files.    In this example, there is only one file,
mungeall.c.    The Clear-sticky and Clear-static-directory requests are sent by the
current implementation but they have no effect because the default is for those settings to
be clear when a directory is newly created.

S: Clear-sticky supermunger/
S: /u/cvsroot/supermunger/
S: Clear-static-directory supermunger/
S: /u/cvsroot/supermunger/
S: E cvs server: Updating supermunger
S: M U supermunger/mungeall.c
S: Created supermunger/
S: /u/cvsroot/supermunger/mungeall.c
S: /mungeall.c/1.1///
S: u=rw,g=r,o=r
S: 26
S: int mein () { abort (); }
S: ok

The current client implementation would break the connection here and make a new
connection for the next command.    However, the protocol allows it to keep the connection
open and continue, which is what we show here.

After the user modifies the file and instructs the client to check it back in.    The client sends
arguments to specify the log message and file to check in:

C: Argument -m
C: Argument Well, you see, it took me hours and hours to find
C: Argumentx this typo and I searched and searched and eventually
C: Argumentx had to ask John for help.
C: Argument mungeall.c

It also sends information about the contents of the working directory, including the new
contents of the modified file.    Note that the user has changed into the supermunger
directory before executing this command; the top level directory is a user-visible concept
because the server should print filenames in M and E responses relative to that directory.

C: Directory .
C: /u/cvsroot/supermunger
C: Entry /mungeall.c/1.1///
C: Modified mungeall.c
C: u=rw,g=r,o=r
C: 26
C: int main () { abort (); }

And finally, the client issues the checkin command (which makes use of the data just sent):

C: ci

And the server tells the client that the checkin succeeded:

S: M Checking in mungeall.c;
S: E /u/cvsroot/supermunger/mungeall.c,v <-- mungeall.c
S: E new revision: 1.2; previous revision: 1.1
S: E done
S: Mode u=rw,g=r,o=r
S: Checked-in ./
S: /u/cvsroot/supermunger/mungeall.c
S: /mungeall.c/1.2///
S: ok

Node: Requirements, Next: Obsolete, Prev: Example, Up: Protocol

Required versus optional parts of the protocol
The following are part of every known implementation of the CVS protocol (except obsolete,
pre-1.5, versions of CVS) and it is considered reasonable behavior to completely fail to work
if you are connected with an implementation which attempts to not support them.   
Requests: Root, Valid-responses, valid-requests, Directory, Entry, Modified,
Unchanged, Argument, Argumentx, ci, co, update.    Responses: ok, error, Valid-requests,
Checked-in, Updated, Merged, Removed, M, E.

A server need not implement Repository, but in order to interoperate with CVS 1.5 through
1.9 it must claim to implement it (in Valid-requests).    The client will not actually send the
request.

Node: Obsolete, Next: , Prev: Requirements, Up: Protocol

Obsolete protocol elements
This section briefly describes protocol elements which are obsolete.    There is no attempt to
document them in full detail.

There was a Repository request which was like Directory except it only provided
repository, and the local directory was assumed to be similarly named.

If the UseUnchanged request was not sent, there was a Lost request which was sent to
indicate that a file did not exist in the working directory, and the meaning of sending
Entries without Lost or Modified was different.    All current clients (CVS 1.5 and later) will
send UseUnchanged if it is supported.

Node: Protocol Notes, Next: , Prev: Protocol, Up: Top

Notes on the Protocol
A number of enhancements are possible.    Also see the file TODO in the CVS source distribution,
which has further ideas concerning various aspects of CVS, some of which impact the
protocol.

· The Modified request could be speeded up by sending diffs rather than entire files.   
The client would need some way to keep the version of the file which was originally
checked out; probably requiring the use of "cvs edit" in this case is the most sensible
course (the "cvs edit" could be handled by a package like VC for emacs).    This would
also allow local operation of cvs diff without arguments.

· The current procedure for cvs update is highly sub-optimal if there are many
modified files.    One possible alternative would be to have the client send a first
request without the contents of every modified file, then have the server tell it what
files it needs.    Note the server needs to do the what-needs-to-be-updated check
twice (or more, if changes in the repository mean it has to ask the client for more
files), because it can't keep locks open while waiting for the network.    Perhaps this
whole thing is irrelevant if there is a multisite capability (as noted in TODO), and
therefore the rcsmerge can be done with a repository which is connected via a fast
connection.

· The fact that pserver requires an extra network turnaround in order to perform
authentication would be nice to avoid.    This relates to the issue of reporting errors;
probably the clean solution is to defer the error until the client has issued a request
which expects a response.    To some extent this might relate to the next item (in
terms of how easy it is to skip a whole bunch of requests until we get to one that
expects a response).    I know that the kerberos code doesn't wait in this fashion, but
that probably can cause network deadlocks and perhaps future problems running
over a transport which is more transaction oriented than TCP.    On the other hand I'm
not sure it is wise to make the client conduct a lengthy upload only to find there is an
authentication failure.

· The protocol uses an extra network turnaround for protocol negotiation (valid-
requests).    It might be nice to avoid this by having the client be able to send
requests and tell the server to ignore them if they are unrecognized (different
requests could produce a fatal error if unrecognized).    To do this there should be a
standard syntax for requests.    For example, perhaps all future requests should be a
single line, with mechanisms analogous to Argumentx, or several requests working
together, to provide greater amounts of information.    Or there might be a standard
mechanism for counted data (analogous to that used by Modified) or continuation
lines (like a generalized Argumentx).    It would be useful to compare what HTTP is
planning in this area; last I looked they were contemplating something called Protocol
Extension Protocol but I haven't looked at the relevant IETF documents in any detail.   
Obviously, we want something as simple as possible (but no simpler).

· The scrambling algorithm in the CVS client and server actually support more
characters than those documented in Password scrambling.    Someday we are going
to either have to document them all (but this is not as easy as it may look, see
below), or (gradually and with adequate process) phase out the support for other
characters in the CVS implementation.    This business of having the feature partly
undocumented isn't a desirable state long-term.

The problem with documenting other characters is that unless we know what
character set is in use, there is no way to make a password portable from one system
to another.    For example, a with a circle on top might have different encodings in
different character sets.

It almost works to say that the client picks an arbitrary, unknown character set
(indeed, having the CVS client know what character set the user has in mind is a hard
problem otherwise), and scrambles according to a certain octet<->octet mapping.   
There are two problems with this.    One is that the protocol has no way to transmit
character 10 decimal (linefeed), and the current server and clients have no way to
handle 0 decimal (NUL).    This may cause problems with certain multibyte character
sets, in which octets 10 and 0 will appear in the middle of other characters.    The
other problem, which is more minor and possibly not worth worrying about, is that
someone can type a password on one system and then go to another system which
uses a different encoding for the same characters, and have their password not work.

The restriction to the ISO646 invariant subset is the best approach for strings which
are not particularly significant to users.    Passwords are visible enough that this is
somewhat doubtful as applied here.    ISO646 does, however, have the virtue (!?) of
offending everyone.    It is easy to say "But the $ is right on people's keyboards!   
Surely we can't forbid that".    From a human factors point of view, that makes quite a
bit of sense.    The contrary argument, of course, is that a with a circle on top, or
some of the characters poorly handled by Unicode, are on someone's keyboard.

About Makertf
Makertf is a program that converts "Texinfo" files into "Rich Text Format" (RTF) files. It can be
used to make WinHelp Files from GNU manuals and other documentation written in Texinfo.

Makertf is derived from GNU Makeinfo, which is a part of the GNU Texinfo documentation
system.

Christian Schenk
cschenk@berlin.snafu.de

