
Help file produced by

HELLLP!
www.guysoftware.com/helllp.html

(If this topic is presented in file testing the
author should use the HELLLP! I
button to define a contents topic)

noyesTRUEnono&AboutC&lose&PrintyesyesyesWinEdit
HelpWinEdityes20/02/00

         
  Select an item
for display

Help file produced by    HELLLP! v2.7 , a product of Guy Software, on 02/20/00 for WILSON
WINDOWWARE, INC..
The above table of contents will be automatically completed and will also provide an excellent cross-
reference for context strings and topic titles.    You may leave it as your main table of contents for your
help file, or you may create your own and cause it to be displayed instead by using the I button on the
toolbar.    This page will not be displayed as a topic.    It is given a context string of _._ , but this is not
presented for jump selection.
HINT:    If you do not wish some of your topics to appear in the table of contents as displayed to your
users (you may want them ONLY as PopUps), move the lines with their titles and contexts to below this
point.    If you do this remember to move the whole line, not part.    As an alternative, you may wish to set
up your own table of contents, see Help under The Structure of a Help File.
    Do not delete any codes in the area above the Table of Contents title, they are used internally by
HELLLP!

How To ...
Use command line options
Use menu scripts
Write WIL scripts

Wwhatis Wi

                 
WIL Function Reference

Commands
File menu
Edit menu
View menu
Search menu
Project menu
Macro menu
Window menu
Help menu

Reference

WIL commands
WinEdit Command Reference

Copyright © 2000 WinEdit Software Co.

Page Setup
Print Setup
Print
Print Progress Dialog
Print Preview
Print Preview Toolbar

Debugging WIL Scripts
Toolbars dialog box

Options dialog box
Options - Editor tab
Options - File types tab

Edit File Types

Syntax coloring
Font Selection

Options - Keyboard tab

Using Regular Expressions

mserror.wbt

Command Line Options

Contacting WinEdit Software Co.
How to get technical support
Registering your software
Ordering Information
ORDER FORM

What is WIL
TUTORIAL
Menu Files
WinEdit Menus
Toolbars
Debug Tool
Color Files
WIL Functions
Project configuration
Recording Macros

wRedo
wUndo()
wPrintDirect()
wProperties()
wViewOptions()
wClearSel()
wSelUp()
wSelDown()
wSelLeft()
wSelRight()
wSelEnd()
wSelHome()
wSelPgUp()
wSelPgDn()
wSelWordLeft()
wSelWordRight()
wSelTop()
wSelBottom()
wStartSel

wEndSel
wInvertCase()
wUpperCase()
wLowerCase()
wCutAppend()
wCutMarked()
wCopyMarked()
wCopyAppend()
wFileSave()
wSetBookmark()

Context Menu
Special Help
WinEdit Key Mappings

WinEdit Menus
Select a menu for further information on menu options

File menu
Edit menu
View menu
Search menu
Project menu
Macro menu
Window menu
Help menu

Context Menu

File menu commands

The File menu offers the following commands:

New Creates a new document.
Open
Previous Files

Opens an existing document.
Displays a list of previously opened documents.

Close
Close All
Merge

Closes an opened document.
Closes all opened documents.
Inserts the contents of a new document into the current document.

Save Saves an opened document using the same file name.
Save As
Save All
Revert
Page Setup

Saves an opened document to a specified file name.
Saves all opened documents.
Rereads the current document from disk, returning to its original state.
Displays printing options.

Print Setup Selects a printer and printer connection.
Print Prints a document.
Print Preview Displays the document on the screen as it would appear printed.
Send...
Properties

Sends the active document through electronic mail.
Displays information about the current document.

Exit Exits WinEdit.

Edit menu commands

The Edit menu offers the following commands:

Undo Reverse previous editing operation.
Redo Reverse previous undo operation.
Cut Deletes data from the document and moves it to the clipboard.
Copy Copies data from the document to the clipboard.
Paste Pastes data from the clipboard into the document.
Delete Deletes data from the document.
Copy
Other

Copies specific data from the document to the clipboard.

Cut
Other

Cuts specific data from the document to the clipboard.

Change
Case

Changes the case of selected data from the document.

Select
All

Selects all the data in the document.

Column
Block

When checked, changes text selection mode to allow column selection.

View menu commands
The View menu offers the following commands:

Toolbars Shows, hides, or customizes the toolbars.
Status Bar Shows or hides the status bar.
Directory Tree Shows or hides the directory tree window.

In the Show files of type edit box, the file type can be
changed by adding a new file extension or comma
delimited file extension list.    To make the changes take
effect select the Refresh button.

Output Shows or hides the output window.
Watch Shows or hides the watch window.
Workbook mode Toggles Workbook mode on or off.    In Workbook

mode, each MDI document window has a tab showing
the document name.    Click on the tab to switch to that
window.

Options Editor, keyboard, and file specific settings are
maintained in this dialog box.

Search menu commands

The Search menu offers the following commands:
See Also:

Regular Expressions

Find Searches the current document for the specified text.
Find next Repeats the last find operation, using the same options.
Replace Searches the current document for the specified text, and

replaces the found text with specified text.
Find In Files Searches one or more files for the specified text.
Next Error Opens the source file with the error or warning and

moves the caret to the beginning of the line with the next
error or warning.    See Options / File Type for more
information on customizing WinEdit’s error parsing.

Previous Error Moves back to the previous error or warning that was
displayed with the Next Error command.

Go To Line Moves the caret to the specified line number.
Match Brace If the caret is placed on a brace character (“().{}, or [] “

the caret is moved to the matching brace character.
Toggle
bookmark

Places a bookmark on the current line if one does not
already exist, or removes it if it does..

Next bookmark Moves the caret to the next bookmark.
Previous
bookmark

Moves the caret to the previous bookmark.

Clear all
bookmarks

Removes all defined bookmarks from the current
document.

Project menu commands

The Project menu offers the following commands:

Compile Executes the Compile command defined in the Options /
File Type dialog box.

Customize
Tools...

Allows a program or WIL script to be added to the Project
menu.

Record macro Starts or stops recording of a WinEdit macro.
Playback
recording

Executes the recorded macro.

Save recorded
macro

Saves recorded macro as a WIL script file.

Debug macro Allows interactive debugging of a WIL script file.
New... Allows the current workspace to be named and saved.
Save as... Allows the current named workspace to be saved with a

new name..
Close Closes the current workspace, including all document

windows and defined tools.
Delete Allows a named workspace to be deleted.

Recording Macros

You can create a macro by recording it or writing it. The easiest way to create a macro is to record
it.
To record a macro

On the Project menu, click Record Macro.
Perform the actions you want to record.
To stop recording, click the Stop button.

To play back the recorded macro, on the Project menu, click Playback Recording.

To save a recorded macro
On the Project menu, click Save Recorded Macro.    You will be prompted for a name
for the new macro and WinEdit will, by default, propose to save the macro in the WinEdit\
Macros subdirectory.

After saving the macro, you will be asked if you wish to add the macro to the Project
menu.

To edit a recorded macro
Open the text file that was saved as a macro.
Add any additional programming logic you wish to include.
Save the edited macro.

Project Configuration

The Project Menu offers an environment for working with projects.   

The Project Manager creates
and saves projects which
remember all your tools and
open windows.    Your projects
will automatically be added as
items to the bottom of the
Project Menu allowing for quick
changes from project to
project.

Programs can be added to the Project Menu either with the Customize Tools / Add button or by
recording and saving a macro.   

In this dialog,
Difference is
added as an
example.   

Click on a dialog
box item for more
information.

Macro menu commands
The Macro Menu is a completely configurable menu.    It is here for your
use.    You can make it hop, jump and skip through your code in any
way, shape or fashion you desire.    The Macro menu dubs you master
of the WinEdit universe and gives you the power through the Windows
Interface Language to make your scripting tool fantasies come true.
As the Macro menu is completely configurable, we are not going to
discuss the handy items we've included as samples of the power at
your fingertips.    Instead, we're nudging you in the right direction and
giving you the do's and don'ts of macro menu configuration.

Customize this menu
The last option on the Macro Menu is Customize this menu.
Selecting this item opens the Winedit.mnu file where all the
code for this menu is kept.    The language used to
configure the menu is the Windows Interface Language.    If
you're not familiar with using the WIL language, you can
find out more about it at "What is WIL?".

In order to place your items successfully onto the Macro
menu, you must follow a few guidelines.   

    Menus can be up to four levels deep.

    Levels are determined by the position of the first letter in the menu
title.

    The top level menu starts at Column 1, the second starts in Column
2, and so on. The WIL code must begin at Column 5 or greater.

    Same level menu items must be separated by WIL code.

That's it.    Those are the simplified rules.    However, if you
need more info, don't despair, everything you could ever
want to know about writing Menu files can be found under
this topic Menu file structure.

Good luck, and remember, "Use your power wisely".

See Also:
Debug macro

Context Menu

Context Menu

WinEdit has a completely configurable context menu accessed by
clicking the right mouse button anywhere within an open file.    Right
clicking results in a context menu drop down list filled with many
useful macros.    Using the Windows Interface Language, you can
write your own macros and place them on this menu for easy access.

See Also:
Macro Menu
Commands

Menu file
structure.

To make changes to the context menu, open the
WEPOPUP.MNU file with File/Open, or access it from the
context menu itself.    Right click in the file, from the context
menu dialog box select More / How do I? / Customize this
menu.

Window menu commands

The Window menu offers the following commands, which enable you to arrange multiple views of
multiple documents in the application window:

New Window Creates a new window that views the same document.
Split Split the active window into panes.
Cascade Arranges windows in an overlapped fashion.
Tile Arranges windows in non-overlapped tiles.
Arrange Icons Arranges icons of closed windows.
Close Closes the current window.
Close All Closes all open windows.
Window
manager

Lists all open windows.    Multiple selections may be made.

Window 1,
2, ...

Goes to specified window.

Help menu commands

The Help menu offers the following commands, which provide you assistance with this application:

Help Topics Offers you an index to topics on which you can get help.
About Displays the version number of this application.

Command Line Options

WinEdit supports the following command line options:

Wildcard filenames: WinEdit *.c
Multiple filenames WinEdit fileone.txt filetwo.txt *.c
Line number: WinEdit filename.txt -# 25
Macro: WinEdit -M macroname.wbt
Print: WinEdit -P filename.txt
PrintTo: WinEdit -PT filename.txt printer driver port

Note:    A space is required between the command line option and its parameters.

Debugging WIL Scripts

WinEdit is used to both edit and debug scripts.   

There are various ways to debug a script.

See Also:
Debug macro

Macro Menu
Commands

Experienced programmers who can write relatively bug-free code might
just write a script and then hit the “Go” button and see if it works.        If
an error occurs, the line causing the error on it will be indicated and the
current state of all variables displayed.

The rest of us will find that debugging a script is a more interesting
process.    We might write a few lines of code and then press the “Step
Into” button to step through the code one line at a time.    As each line is
executed the current state of all variables is displayed in a special
“watch window”.

Once large sections of code are bug free, it becomes rather boring to
step, step, step through each statement.    There are several different
solutions to this problem.    One is the “Step Over” button that can be
used to execute entire sections of code in a GoSub or Call function.    In
addition there is a “Run to Cursor” hot-key combination (Ctrl-F10) and
menu item that allows you to place the mouse cursor on a line and
execute to that point.    In this way, it is possible to avoid step, step,
stepping through large blocks of code.

For serious debugging there are “breakpoints”.    Breakpoints are useful
where there is a large quantity of code and you are interested in
debugging a specific section of it.    To use breakpoints you    click on a
line of code and hit the “Insert/Remove Breakpoint” button.    A red
square will appear next to the line indicating a breakpoint is active on
the line.    Next you would click the “Go” button.    The script will start
executing and will stop when it hits a line with a breakpoint.    You may
have several different lines with breakpoints.   

The Watch Window allows you to view the contents of script variables. 
From the View Menu select the “Watch” menu option to display the
Watch Window at the bottom of the document area.    Step through a
script that contains several variables and observe the changing values. 
Notice that the latest variable assignment is displayed as the first line of
text in the window.     

Not only can you observe variable values, you can also change them.   
To make a change double-click on the variable name in the Watch
Window, type a new value and click the OK button in the dialog that
appears.    Continue stepping to see the effect of your change.       

Why change a value?    It may not be necessary in simple scripts.
However, as your scripts become more complex the relationships

between values and results may not be obvious.    The suspected cause
of a bug can quickly be verified or eliminated by placing a known good
or bad value in a variable.

Also, the best time to test a block of script is right after you write it.   
When will you know it better?    By setting variables in the debugger you
can determine how your code fragment or subroutine will behave when
it encounters normal, extreme and out of range values.    This can be
accomplished without having to write throwaway test driver scripts.   
You will be much more confident in your final script, if you know that
each element is doing its job.

Debug Macro

WinEdit offers a complete interactive debugging environment for WIL
script files.    To debug a WIL script, first make sure the saved file is
loaded and is the active document.

NOTE:    The Debug commands will not be enabled unless the current
document is defined as a WIL file type.

See Also:
Debugging WIL
Scripts

Macro Menu
Commands

Click on a dialog box item for more information or scroll down
for a complete list of option descriptions.

Go Begins executing the script commands.    Execution will
continue to the end of the script or until a breakpoint is
encountered.

Step Into Executes the current line of the script.    If the current
line is a goto, gosub, or call command, execution stops
at the first line of the goto, gosub, or call code.

Step Over Executes the current line of the script.    If the current
line is a goto, gosub, or call command, all the code at
the goto, gosub, or call location is also executed.

Run To Cursor Begins executing script commands at the current
location and continues to the point in the script where
the cursor (caret) is located.

Stop Debugging Stops execution of the script.

Insert/Remove
Breakpoint

Inserts a breakpoint at the current line, or removes it if it
already exists.    When execution of the script is initiated
with the Go or Run To Cursor commands, execution will
still stop if a line with a breakpoint is encountered.

Remove All
Breakpoints

Removes all defined breakpoints in the current script.

Toolbars

WinEdit has four configurable toolbars; File, Window, Debug and Tools.

File The File bar displays buttons for the typical File
Management commands; Open, Save, Print etc.

Window The Window bar allows for easy selection of window
viewing options; Tiled; Cascade etc.

Debug The Debug bar displays buttons for the WIL script
debugging commands

Tools The Tools bar displays programmable buttons for user
defined tools.

See Also:

 Toolbar Dialog
Box

 Debug Macro

 Print Preview
Toolbar

Toolbars dialog box

The View / Toolbars dialog box offers the following paged dialog boxes:

Toolbar Place a check mark by the toolbars you wish to display.   
Click New to add additional toolbars you can create.
Highlight a standard toolbar and click Reset to restore the
toolbar to its original state.

Commands Shows all available toolbar buttons for each standard toolbar.
To customize toolbars, drag a button to or from this dialog
box to any toolbar on display.

Options dialog box

Preferences for WinEdit are set from the Options View menu in one of the following paged dialog boxes.

Editor Sets general options for WinEdit.
File type Sets options for specific file types.
Keyboard Sets keyboard shortcuts for menu

commands.

Special Help
Background File Checking
Null Characters

Options - Editor tab

The View / Options Editor dialog page offers the following items:

Click on a dialog box item for more information or scroll down for a complete list of
option descriptions.

Restore workspace at
startup

Reload all documents that were open at the
end of the last editing session.

Leave cursor at start of
pasted text

When checked, the cursor (caret) is
positioned at the beginning of the pasted
text.    When unchecked, it is placed at the
end of the pasted text.

Allow multiple instances of
WinEdit

When unchecked, double clicking an
associated file or starting WinEdit itself
activates the already running instance
instead of launching an additional copy.

Show horizontal scrollbar When unchecked, no horizontal scrollbar is

shown.
Allow virtual whitespace When checked, the caret can be positioned

in any column.    When unchecked, the
caret cannot be moved beyond the end of
the text of any line.

Make backup files When checked, a backup copy of a
document is made whenever the document
is saved.

Backup specification Create a file specification to use when
naming a backup file.    Choose options
based on the original document name from
the menu button.

Automatically backup files When checked, a backup copy of a
document is made automatically at the time
interval selected.

Autosave file specification Create a file specification to use when
naming an autosave file.    Choose options
based on the original document name from
the menu button.

Options - File types tab

In WinEdit, many editing options are associated with a particular file type.    WinEdit classifies file types
based upon the file extension.   

Click on a dialog box item for more information or scroll down for a complete list of
option descriptions.

File type Chooses a file type from the dropdown list.
Edit Allows adding or deleting of file types from the list.
Syntax coloring Sets options for coloring keywords for this file type,

and for specifying the characters which flag text as
a ‘comment’.

Font Selects a fixed pitch font to be used to display this
file type.

Tab size Sets the number of columns each tab character
represents.

Show tabs When selected, tab characters are displayed on

screen.
Insert spaces/Keep
tabs

Selects whether to insert a tab character, or a
corresponding number of space characters, when
pressing the tab key.

Insert mode When checked, text typed is inserted at the caret
position.    When unchecked, overtype mode is
used, where text typed replaces text at the caret
position.

Line End Selects the characters that are inserted when the
Enter key is pressed.

Compile command Enter the command line used to compile this file
type.    Command line parameters based upon the
original document name can be selected from the
menu button.

Redirect to output
window

Captures command line output and displays it in
the output window when this file type is compiled
from within WinEdit.    Double click on an error or
warning or choose Next Error/Previous Error from
the Search menu to move to that position in your
source code file.

Custom error
parsing

If the compiler output from this file type does not
match the format “filename(lineno):text”, you can
process the output in a WIL script files so that Next
Error/Previous Error will work correctly.    The
sample script mserror.wbt demonstrates the
required processing.

Edit File Types

Allows adding or deleting of file types from the list.   

Edit existing or Add new file extensions in the Extensions edit box.    Delimit extension lists with a comma.

Options - Keyboard tab

The View / Options Keyboard dialog box allows you to choose the accelerator keys for any WinEdit
command.

Choose a command from the list, and then click Create Shortcut to assign a keystroke shortcut.   

To Remove an existing shortcut, select the command name then highlight the existing accelerator key in
the second list and click Remove.   

In order to change accelerator keys, first remove any existing keystroke then use Create Shortcut to
reassign the command.

For a list of default key mappings, see WinEdit Key Mappings.

Syntax coloring

Syntax Coloring sets options for coloring keywords and characters
which comment text for the selected file type.    This option can be
accessed through the View / Options File types dialog box.

WinEdit comes Pre-loaded with keywords for the fifteen most common
languages.    However, there is no limit.    See the instructions in Color
Files for information on creating your own keyword files.

See Also:   
Color Files

Color Files

Pick your colors

WinEdit has the capability to color highlight Keywords, Comments
and String Literals for any language file.    After defining a File type
from the View Menu / Options File types dialog box, colors can be
chosen for the selected file type using the Syntax Coloring button
to access the Syntax Coloring dialog box.   

Set your Keywords

Once you've established colors for your file, you then need to define
your keywords in a language specific initialization file with an
extension of .CLR    WinEdit is pre-loaded with keyword .CLR files
for the 15 most common languages.    If your language is not pre-
loaded, you can easily create a .CLR file by either copying an
existing file and making the necessary changes or by opening a
new file and starting from scratch.

See Also:   
Syntax Coloring

Characteristics of a valid language.CLR file:

          The name of the file is the same name which appears in the File Types list box.    As an example,
an entry of WIL Files in the View Menu / Options File types dialog box will correspond to a .clr filename
of WIL.clr in the WinEdit directory.   

            Any File extension listed under a "file type" will use the corresponding clr file for its color
highlighting.    The File type list box shows extensions of WIL, WBT, MNU, MNW, and MAC under the
entry WIL files.    The file WIL.clr will provide color highlighting for all of these extensions.

            All language CLR files must be comprised of two sections;    [COLORS] and [KEYWORDS].

In the [COLORS] section you can define additional colors to be used for color
highlighting.    This allows color changes to be made to certain file types or
specific keywords types independent of the default color specified in the Syntax
Coloring dialog box.

[COLORS]
WBT=128,0,128
MNU=255,0,255

Your Keywords need to be listed in the [KEYWORDS] section.    As you list
your keywords, you can specify that additional colors override the default color
previously established in the Syntax Coloring dialog box.   

[KEYWORDS]
else=1 (value of 1 uses the default color.)

end=WBT (uses WBT color set up in [COLORS] section.)
endif=MNU (uses MNU color set up in [COLORS] section.)

Font Selection

The font which appears on the screen is not necessarily the font used when you print.    Print and Screen
Fonts are established using separate Font Dialog boxes.

Print Font
From the File menu Page Setup command, use the radio button to emulate the Screen Font or
select the Printer Font button to change your Printer font.

Screen Font
From the View menu Options File type command, the Font button selects a fixed pitch font to be
used to display the selected file type.

Using Regular Expressions
A regular expression is a search or replace string that uses special characters to match text patterns.   
WinEdit supports UNIX style regular expressions.
When WinEdit conducts a search using regular expressions, it must check character by character in your
text.    For this reason, searches using regular expressions are slower than regular searches.
The following table describes the regular expression characters recognized by WinEdit.

Expression Description
\ Escape. WinEdit will ignore any special meaning of the character that follows the

Escape expression.    Use the Escape if you need to search for a literal character that
matches a regular expression character.

. Wild Card. Matches any character.    For example, the expression 'X.X' will match
'XaX', 'XbX, and 'XcX', but not 'XaaX'.

^ Beginning Of Line. The expression matches only if it occurs at the beginning of a line.
For example, '^for' matches the text 'for' only when it occurs at the beginning of a line.

$ End Of Line. The expression matches only if it occurs at the end of a line.    For
example, '(void)$' matches the text '(void)' only when it occurs at the end of a line.

[] Character Class. The expression matches any character in the class specified within
the brackets.    Use a dash (-) to specify a range of character values. For example,
'[a-zA-Z0-9]' matches any letter or number, and '[xyz]' matches 'x', 'y', or 'z'.

[^] Inverse Class. The expression matches any character not specified in the class.    For
example, '[^a-zA-Z]' matches any character that is not a letter.

* Repeat Operator. Matches zero or more occurrences of the character that precedes
the '*'.    For example, 'XY*X' matches 'XX', 'XYX', and 'XYYX.

+ Repeat Operator. Matches one or more occurrences of the character that precedes
the '+'.    For example, 'XY+X' matches 'XYX' and 'XYYX, but not 'XX'.

mserror.wbt

This is a sample script that shows the processing necessary to enable error parsing In WinEdit, if the
compiler output does not match “Microsoft style” compiler output (“filename(lineno):text”).

;--;
; mserror.wbt ;
; ;
; Error parsing for Microsoft style output: ;
; "filename(lineno):text" ;
; ;
; This script is included only as a template for you to use in ;
; creating a custom error parsing script, since Microsoft style ;
; output is handled internally by WinEdit. ;
; ;
; 1. If called with param1 == "@GetErrorWords", return ;
; a comma-delimited list of words which identify a line ;
; as containing an error. In Microsoft style output that ;
; would be "error,warning". ;
; ;
; 2. Otherwise, parse the variable @strLine to extract the filename ;
; and line number. In this case, the filename is all the ;
; characters up to the opening parenthesis, and the line number ;
; is all of the following characters up to the closing ;
; parenthesis. ;
; ;
;--;

@ErrFile = "" ; return value
@ErrLine = 0 ; return value
@ErrWords = "" ; return value

;--;
; Return the error words ;
;--;
if param1 == "@GetErrorWords"
@ErrWords = "error,warning"
exit
endif

;--;
; extract the file name by searching for the '(' character ;
;--;
finish = StrScan(@strLine, "(", 0, @FWDSCAN)
if finish == 0
exit
endif
strFile = strsub(@strLine,1,finish-1)
if (FileExist(strFile))
@ErrFile = strFile
else
drop(strFile,finish)
exit
endif

;--;
; extract the line number, which follows the '(' character ;
;--;
start = finish+1
finish = StrScan(@strLine, ")", start, @FWDSCAN)
if finish == 0
@ErrFile = ""
drop(strFile,start,finish)
exit
endif
strLine = StrSub(@strLine,start,finish-start)
if IsInt(strLine)
@ErrLine = strLine
else
@ErrFile = ""
endif

drop(strLine,strFile,start,finish)

WinEdit Command Reference

The following script commands are specific to WinEdit.    In addition to
these commands, any WIL command may be used in a script.

See Also:   
Basic Box
Functions

Editing
wCopy()
wCopyLine()
wCopyAppend()
wCopyMarked()
wCut()
wCutLine()
wDelete()
wInsString(string)
wNewLine()
wPaste()
wBackspace()
wInvertCase()
wUpperCase()
wLowerCase()
wRedo
wUndo()

Text Selection
wClearSel()
wSelUp()
wSelDown()
wSelLeft()
wSelRight()
wSelEnd()
wSelHome()
wSelPgUp()
wSelPgDn()
wSelWordLeft()
wSelWordRight()
wSelTop()
wSelBottom()
wSelectAll()
wSetColBlk()
wStartSel()
wEndSel()
wSelInfo()

Cursor Movement
wHome()
wEnd()
wTopOfFile()
wEndOfFile()
wUpLine()
wDownLine()
wLeft()
wRight()
wPageUp()
wPageDown()
wWordLeft()
wWordRight()
wTab()
wBackTab()
wToggleIns()
wSetBookmark()

File
wFileNew()
wFileOpen(filename)
wFileMerge(filename)
wFileRevert()
wFileSave()
wFileSaveAs(filename)
wFilePgSetup()
wFilePrint()
wPrintDirect()
wPrinSetup()
wProperties()
wFileExit()

Window
wWinArrIcons()
wWinCascade()
wWinClose()
wWinCloseAll()
wWinMaximize()
wWinMinimize()
wWinNext()
wWinRestore()
wWinTile()

Status
wGetChar()
wGetColNo()
wGetFileName()
wGetIns()
wGetLineNo()
wGetModified()
wGetRedo()
wGetSelState()
wGetUndo()
wGetWord()
wGoToLine(lineno)
wGoToCol(colno)

Compiling
wCompile()
wNextError()
wPrevError()
wSetProject(ProjectName)

Internet
wFTPOpen()
wFTPSave()
wViewHTML()

Searching
wFind
wRepeat()
wChange()

Miscellaneous
wStatusMsg(message)
wViewOptions()
wViewOutput()
wGetOutput()
wLineCount()

Additional Macro Commands
Graphical box drawing functions have been added to WinEdit    They're nothing fancy but they get
the job done.

Basic boxes functions :

BoxOpen(title, text) Opens a WinBatch message box.
BoxShut()                                  Closes the WinBatch message box.
BoxText(text)                            Changes the text in the WinBatch
message box.
BoxTitle(title)                      Changes the title of the WinBatch message box.

Additional Box functions are:

BoxButtonDraw(box ID, button ID, text, coordinates)
BoxButtonKill(box ID, button ID)
BoxButtonStat(box ID, button ID)
BoxButtonWait()BoxCaption(box ID, caption)
BoxColor(box ID, color, wash color)
BoxDestroy(box ID)
BoxDrawCircle(box ID, coordinates, style)
BoxDrawLine(box ID, coordinates)
BoxDrawRect(box ID, coordinates, style)
BoxDrawText(box ID,coordinates,text,erase flag,alignment)
BoxesUp(coordinates, show mode)
BoxMapMode(box ID, map mode)
BoxNew(box ID, coordinates, style)
BoxPen(box ID, color, width)
BoxTextColor(box ID, color)
BoxTextFont(box ID, name, size, style, pitch & family)
BoxUpdates(box ID, update flag)

More Useful functions:

BreakPoint Causes a breakpoint on the next statement when used with a script
debugger.    Otherwise the command does nothing.

intcontrol(...) (see WIL manual) 
reload
rtstatus
version() New function that returns the Winedit99+ version number

wFileNew()

Comments
wFileNew creates a new MDI child window.

Example:
wSelectAll()
wCopy()
wFileNew()
wPaste()

The above commands will copy the contents of the active document window and paste the contents
of the window into a new document window.

wFileOpen(filename)

Comments:
wFileOpen creates a new MDI child window and reads an existing file into the window.   
To open a file without prompting, pass a valid file name to wFileOpen.    If the FileName
parameter is "", the File Open dialog box will appear prompting the user for a filename.

Example:
wFileOpen("")

The above command will prompt the user for a filename to open.    To open a file directly without
prompting, use the following syntax:

wFileOpen("FILENAME.TXT")

wFileMerge(filename)

Comments:
wFileMerge reads an existing file into the active MDI child window.    To merge a file
without prompting, pass a valid file name to wFileMerge in the FileName parameter.        If
FileName is "", the File Merge dialog box will be used to obtain a file name from the user.

Example:
wFileMerge("")

The above command will prompt the user for a filename to merge.    To merge in a file directly
without prompting, use the following syntax:

wFileMerge("FILENAME.TXT")

The indicated file is merged at the insertion position in the active document window.

wFileRevert()

Comments:
wFileRevert rereads the current document from disk.    Use this command when you wish
to discard all changes you have made to a document.

wFileSave()

Comments:
wFileSave saves the file in the currently active MDI child window without prompting
(same as selecting Save from the File menu).

wFileSaveAs(filename)

Comments:
wFileSaveAs saves the file in the currently active MDI child window to a new filename.

Example:
wFileSaveAs("")

The above command will prompt the user for a filename.    To save the file directly to new file name
without prompting, use the following syntax:

wFileSaveAs("FILENAME.TXT")

wFilePrint()

Comments:
wFilePrint prints the text in the currently active MDI child window (same as choose Print
from the File menu).

wFilePgSetup()

Comments:
wFilePgSetup brings up the Page Setup dialog box (same as choosing Page Setup from
the File menu).

wPrinSetup()

Comments:
wPrinSetup brings up a dialog box listing all installed printers (same as selecting Printer
Setup from the File menu).    The user can choose a printer from the list and WinEdit will
use the selected driver for all print jobs.    The user can also access the printer driver
setup dialog by choosing the Setup button.

wFileExit()

Comments:
Command to exit WinEdit.    If there are any unsaved files, the user will be prompted to
save before closing.    The user can cancel the exit operation at that point.    If there are no
unsaved files, the exit is automatics (no chance to cancel the exit).

wFind(SearchText,Forward,MatchCase,Regex,Wrap)

Comments:
wFind searches for the text identified by SearchText parameter.    If Forward is TRUE, the
search direction is forward.    If MatchCase is TRUE, then the search is case sensitive.    If
Regex is TRUE, then regular expressions are used. If Wrap is TRUE, the entire file will be
searched from the current position, to the end of the file, and then continuing at the
beggining of the file, if not found.

Example:
wFind("Blue",1,1,0,1)

The above example searches forward through the document window for the word Blue.

wGetChar()
Return Value

Returns the character to the right of the insertion point.

Example:
a=wGetChar()
wInsString(a)

This example gets the character to the right of the insertion point and inserts the character into the
document window.

wGetFileName()

Comments:
wGetFileName returns a string with the fully qualified path name of the active MDI child
window.

Example:
a=wGetFileName()
wInsString(a)

This example gets the filename for the active document window and inserts the filename (with the
path information) at the insertion point.

wGetIns()

Return Value
Returns TRUE (1) if Insert is on, FALSE (0) if Overtype is on.

Example:
a=wGetIns()
If a == 0 Then Message ("Title", "Overtype is on")
If a == 1 Then Message ("Title", "Insert Mode is on")

The above commands assign the return value of wGetIns() to the "a" variable and then test for
whether "a" is True or False.    The If command used above to evaluate the "a" variable is a WIL
(Windows Interface Language) command.    Look to the WIL.HLP file for more information on the
WIL commands.

wGetSelState()

Return Value
The result is TRUE if there is a selection, otherwise the function returns zero.

Example:
a=wGetSelState()
If a == 1 Then wCopy()

This example checks whether there is a selection, and if True copies the selection to the clipboard.

wGetRedo()

Return Value
The result is TRUE (1) if any operation can be redone.    Otherwise wGetRedo returns
zero.

Example:
a=wGetRedo()
If a == 1 Then wRedo()

The above example checks whether the last edit can be redone and if the return value is TRUE, the
edit if redone ("wRedo()" is the same as choosing Redo from the Edit menu).

wGetUndo()

Return Value
The result is TRUE (1) if any operation can be undone.    Otherwise wGetUndo returns
zero.    ("wUndo()" is the same as choosing Undo from the Edit menu).

Example:
a=wGetUndo()
If a == 1 Then wUndo()

The above example checks whether the last edit can be undone and if the return value is TRUE,
the edit if undone.

wGetColNo()

Return Value
Returns the column number position for the insertion position in the active MDI child
window.    wGetColNo returns 0 if unsuccessful.

Example:
a=wGetColNo()
Message("Column Number", a)

The above commands get the column number for the insertion point and post the results in a
message box.    Look to the WIL.HLP file for more information on WIL commands such as the
Message command.

wGetLineNo()

Return Value
Returns the line number position for the insertion position in the active MDI child window.
wGetLineNo returns0 if unsuccessful.

Example:
a=wGetLineNo()
Message("Line Number", a)

The above commands get the line number for the insertion point and post the results in a message
box.    Look to the WIL.HLP file for more information on WIL commands such as the Message
command.

wGetModified()

Return Value
TRUE if the active MDI child has been modified.

Example:
a=wGetModified()
If a == 1 Then Message ("Mod", "Text has been modified")

The above example will post a message if the text in the document window has been modified.

wNextError()

Comments:
wNextError displays the next warning or error message on the status line.

wPrevError()

Comments:
wPrevError displays the previous warning or error message on the status line.

wRepeat()

Comments:
wRepeat conducts a search using the same search string used in the previous search.

Example:
wFind("Blue",1,1)
PlayWaveForm("tada.wav", 0)
wRepeat()

This example searches forward for the word Blue, plays the TADA.WAV file and then repeats the
wFind statement.    The PlayWaveForm command used above is a WIL (Windows Interface
Language) command.    Look to the WIL.HLP file for more information on the WIL commands.

wSetProject(ProjectName)

Comments:
wSetProject sets the current project to ProjectName, without bringing up the Project
Management dialog box.

wCompile()

Comments:
wCompile executes the Compile command syntax entered in the View / Options File
types dialog box.

wStatusMsg(message)

Comments:
wStatusMsg() displays the string "message" on the WinEdit status line.

wViewOutput()

Comments:
wViewOutput() shows the Output window, where compiler output or Find In Files results
are displayed.

wWinArrIcons()

Comments:
wWinArrIcons rearranges all minimized MDI child windows icons along the bottom of the
WinEdit application window.

Example:
wFileOpen("accel.rc")
wWinMinimize()
wFileNew()
wWinMinimize()
wWinArrIcons()

The above example opens the ACCEL.RC file and a new document window, minimizes them both
and then arranges the icons left to right along the bottom of the WinEdit application window.

wWinCascade()

Comments:
wWinCascade cascades all MDI child windows (arranges all of the open windows in a
stack).   

wWinClose()

Comments:
wWinClose closes the active MDI child window.    If there are unsaved changes, the user
is prompted to save the changes before the file is closed.

wWinCloseAll()

Comments:
wWinCloseAll closes all MDI child windows.    If there are unsaved changes, the user is
prompted to save the changes to each file before the file is closed.

wWinMaximize()

Comments:
wWinMaximize maximizes the active MDI child window.

Example:
wFileNew()
wWinMaximize()

This example opens a new document window and maximizes the window.

wWinMinimize()

Comments:
wWinMinimize minimizes the active MDI child window to an icon at the bottom of the
WinEdit application window.

Example:
wFileOpen("accel.rc")
wWinMaximize()

This example opens the ACCEL.RC file and minimizes the window to an icon.

wWinNext()

Comments:
wWinNext brings the focus to the next MDI child window.

wWinRestore()

Comments:
wWinRestore restores the active MDI child window to its non-minimized, non-maximized
state.

wWinTile()

Comments:
wWinTile tiles all MDI child windows.    If there are three or less windows, the windows will
be tiled horizontally left to right.

wChange()

Comments:
wChange brings up the Replace dialog box.

wBackspace()

Comments:
wBackSpace deletes the character to the left of the current position.    This command is
the equivalent of pressing the backspace character on the keyboard.

Example:
wBackSpace()
wHome()

The above example deletes the character to the left of the cursor and moves the cursor to the
beginning of the line.

wCopy()

Comments:
wCopy copies the selected text to the Windows clipboard.

Example:
wSelWordLeft()
wCopy()

The above commands will select the word to the left of the cursor and copy it to the Windows
clipboard.

wPaste()

Comments:
wPaste pastes text from the clipboard into the active WinEdit document window.

Example:
wSelectAll()
wCopy()
wFileNew()
wPaste()

The above commands will copy the contents of the active document window and paste the contents
of the window into a new document window.

wCopyLine()

Comments:
wCopyLine copies the current line to the clipboard if there is no selection.    If there is a
selection, wCopyLine calls wCopy and copies the selected text to the clipboard.

Example:
wCopyLine()
wDownLine()
wPaste()

The above example copies the line of text where the cursor resides, moves down a line, and pastes
the line of text from the clipboard.

wCut()

Comments:
wCut cuts the current selection to the clipboard.    The text cut to the clipboard can be
later inserted into a document with the wPaste command.

See Also:
wDelete
wPaste

wCutLine()

Comments:
wCutLine cuts the current line to the clipboard if there is no selection.    If text is selected,
then wCutLine calls wCut and cuts the selected text to the clipboard.

Example:
wCutLine()
wGoToLine(4)
wPaste()

The above example cuts the contents of the current line to the clipboard and pastes the line on line
4 of the active document.

wDelete()

Comments:
wDelete deletes either the current selection or, if there is no selection, the character
following the current position without copying the text to the clipboard.    This command is
the equivalent of pressing the Del or Delete character on the keyboard.

Example:
wDelete()
wHome()

The above example deletes the character to the right of the cursor and moves the cursor to the
beginning of the line.

See Also:
wCut

wGoToLine(lineno)

Comments:
wGoToLine moves the current position to the line number identified by the lineno
parameter.    If the line number is greater than the last line in the file, the current position
is moved to the last line in the file.   

Example:
wGoToLine(6)

The above command will move the cursor to line 6 in the document file while maintaining the
current column position.    So if your cursor is positioned on Line 13, Col 21, the cursor position will
be Line 6, Col 21 after the above command is executed.

See Also:
wGoToCol

wGoToCol(colno)

Comments:
wGoToCol moves the current cursor position to the column identified by the colno
parameter.

Example:
wGoToCol(10)

The above command will move the cursor to colum 10 in the document file while maintaining the
current line position.    So if your cursor is positioned on Line 13, Col 21, the cursor position will be
Line 13, Col 10 after the above command is executed.

See Also:
wGoToLine

wHome()

Comments:
wHome moves the current cursor position to Column 1 (the beginning of the line).

Example:
wHome()
wPaste()

The above commands will move the cursor to the beginning of the line and paste in the contents of
the clipboard.

wEnd()

Comments:
wEnd moves the cursor position to the column following the last text or space character in
the current line.

Example:
wEnd()
wInsString("Hello")

The above commands will insert the text Hello at the end of the current line.

wTopOfFile()

Comments:
wTopOfFile moves the cursor position to Line 1, Column 1 (the equivalent of pressing
CTRL+Home).

Example:
wTopOfFile()
wInsString("Top of File")

The above commands will insert the text "Top of File" at the beginning of the document window
(Line 1 Column 1).

wEndOfFile()

Comments:
wEndOfFile moves the cursor position to the column following the last text character on
the last line of the file (the equivalent of pressing CTRL+End).

Example:
wEndOfFile()
wInsString("End of File")

The above commands will insert the text "End of File" after the last text in the document window.

wUpLine()

Comments:
wUpLine moves the current cursor position to the previous line (moves to the line above
the current line).

Example:
wUpLine()
wHome()

The above commands will move the cursor position to the beginning of the previous line.

wDownLine()

Comments:
wDownLine moves the current position to the next line (moves to the line below the
current line).

Example:
wDownLine()
wEnd()

The above commands will move the cursor position to the end of the next line.

wLeft()

Comments:
wLeft moves the current position one column to the left.    If the current position is Column
1, the current position is moved to the end of the previous line.

Example:
wLeft()
wTab()

The above commands will move the cursor position one position to the left and insert a tab.

wRight()

Comments:
wRight moves the current position one column to the right.

Example:
wRight()
wTab()

The above commands will move the cursor position one position to the right and insert a tab .

wPageUp()

Comments:
wPageUp moves the current position up one screenful of text (equivalent of pressing
PgUp on the keyboard).

wPageDown()

Comments:
wPageDown moves the current position down one screenful of text (equivalent of
pressing PgDn on the keyboard).

wWordLeft()

Comments:
wWordLeft moves the cursor position one word to the left (the cursor will be positioned
just before the word to the left of the current cursor position).

wWordRight()

Comments:
wWordRight moves the current position one word to the right (the cursor will be
positioned just before the word to the right of the current cursor position).

wTab()

Comments:
wTab inserts a number of spaces and moves the current position to the next tab stop.    If
more than one line is selected, every line within the selection is shifted to the right one
tab stop.

wBackTab()

Comments:
wBackTab moves the current position to the previous tab stop.    If there is a selection,
every line within the selection is shifted to the left one tab stop.   

wGetWord()

Comments:
wGetWord returns the word at the current cursor position.    If the cursor is not on an
alphanumeric character, an empty string is returned.

Example:
A=wGetWord()
Message("Title",A) ; WIL Command, see WIL.HLP

The above commands get the word where the insertion point is positioned and assign the text to the
variable "A".    The Message command is used to display the contents of the A variable in a
message box.    The "Message" command is a WIL (Windows Interface Language) command.   
Look to the WIL.HLP file for more information on the WIL commands.   

wSelectAll()

Comments:
wSelectAll selects all the text in the active document window.    The insertion position is
moved to the end of the file.

Example:
wSelectAll()
wCopy()
wFileNew()
wPaste()

The above commands will copy the contents of the active document window and paste the contents
of the window into a new document window.

wInsString(string)

Comments:
wInsString inserts string at the current position.

Example:
A=wGetWord()
wDownLine()
wGoToCol(1)
wInsString(A)

The above commands get the word where the insertion point is positioned and assign the text to the
variable "A".    The remaining commands insert the contents of the A variable at the beginning of the
next line.

wNewLine()

Comments:
wNewLine is equivalent to pressing the "Enter" key to break a line at the current position.

Example:
wGoToCol(10)
wNewLine()

The above commands move the current position to column 10 and inserts a new line at that point.

wSetColBlk()

Comments:
wSetColBlk enables column block marking for the next block operation.    WinEdit
automatically returns to stream block marking after the next block operation.

Example:
wSetColBlk()
wHome()
wSelEnd()
wSelDown()
wSelDown()
wCopy()
wHome()
wDownLine()
wPaste()

The first five lines above will block select all characters to the right of the insertion point on the
current line and the two line below.    Once marked, the text is copied to the clipboard and pasted at
the beginning of the following line.

wToggleIns()

Comments:
wToggleIns toggles the insert state between Insert and Overtype modes (INS or OVR
indicates the insert state on the status bar).    If Insert Mode is selected under the Edit
menu (turned "on"), then the wToggleIns() command will toggle to OverType mode.

See Also:
wGetIns

wRedo()

Comments:
Equivalent of selecting Redo from the Edit menu.    The wRedo() command allows you to
reverse any Undo command.

See Also:
wGetRedo

wUndo()

Comments:
Allows you to "undo" the most recent editing action.

See Also:
wGetUndo

wPrintDirect()

Comments:
wPrintDirect prints the current document without first bringing up the Print dialog box.

wProperties()

Comments:
wProperties brings up the Properties dialog box, which displays information about the
current document.

wViewOptions()

Comments:
wViewOptions brings up the View / Options dialog box.

wSelInfo()

Comments:
wSelInfo returns information about the current selection (if any);    It returns a TAB
delimited list with the line number and column number of the beginning of the selection,
and the line number and column number of the end of the selection.

Example:
wGoToLine(20)
wGoToCol(10)
wStartSel()
wGoToLine(40)
wGoToCol(20)
wEndSel()
list = wSelInfo() ; returns a tab-delimited list of the block bounds
BlockStartLine = ItemExtract(1, list, @TAB)
BlockStartCol = ItemExtract(2, list, @TAB)
BlockEndLine = ItemExtract(3, list, @TAB)
BlockEndCol = ItemExtract(4, list, @TAB)
Message("BlockInfo", "Block start: Line %BlockStartLine% Column
%BlockStartCol%%@CRLF%Block End: Line %BlockEndLine% Column
%BlockEndCol%")

wLineCount()

Comments:
wLineCount returns the number of lines in the current document.

Example:
count = wLineCount()
Message(“LineCount”, “Total lines in this file: %count%”)

wFTPOpen()

Comments:
wFTPOpen launches WinEdit’s FTP application, WE_FTP.EXE, to retrieve and open a
remote file.

wFTPSave()

Comments:
wFTPSave launches WinEdit’s FTP application, WE_FTP.EXE, to allow you to save the
currently open file on a remote system.    WE_FTP will be passed the current file name,
which will be displayed near the bottom of its screen.    Navigate to the remote site and
directory in which you wish to save the file, and press the “Save” button.

wViewHTML()

Comments:
wViewHTML opens the current file in WEXPLORER.EXE, WinEdit’s HTML browser.

wInsLine(string)

Comments:
wInsLine inserts text into the current document, followed by a linefeed.    It is equivalent to
calling wInsString(string), followed by wNewLine().

wGetOutput()

Comments:
wGetOutput returns the text (if any) in the Output window.    You can use this command if
you need to parse a tool’s output in ways that WinEdit is not designed to do.

Example:
string = wGetOutput()
Message(“output window”, “The output window contains this: %string%”)

wStartSel()

Comments:
wStartSel inserts an ‘anchor’ at the current cursor position, which, when followed by a
matching call to wEndSel() completes the marking of a selection.    In between the two
commands any cursor movement commands may be used.

wEndSel()

Comments:
wEndSel completes the marking of a selection that was begun with the wStartSel
command.    In between the two commands any cursor movement commands may be
used.

wClearSel()

Comments:
wClearSel removes any selection from the text in the current document.

wSelUp()

Comments:
wSelUp begins selecting text if not currently selecting, and extends the selection up one
line from the current position.

wSelDown()

Comments:
wSelDown begins selecting text if not currently selecting, and extends the selection down
one line from the current position.

wSelLeft()

Comments:
wSelLeft begins selecting text if not currently selecting, and extends the selection left one
character from the current position.

wSelRight()

Comments:
wSelRight begins selecting text if not currently selecting, and extends the selection right
one character from the current position.

wSelEnd()

Comments:
wSelEnd begins selecting text if not currently selecting, and extends the selection to the
end of the current line.

wSelHome()

Comments:
wSelHome begins selecting text if not currently selecting, and extends the selection to the
beginning of the current line.

wSelPgUp()

Comments:
wSelPgUp begins selecting text if not currently selecting, and extends the selection up
one screenful from the current position.

wSelPgDn()

Comments:
wSelPgDn begins selecting text if not currently selecting, and extends the selection down
one screenful from the current position.

wSelWordLeft()

Comments:
wSelWordLeft begins selecting text if not currently selecting, and extends the selection
from the current position to the beginning of the next complete word (whitespace
delimited text).

wSelWordRight()

Comments:
wSelWordRight begins selecting text if not currently selecting, and extends the selection
from the current position to the end of the next complete word (whitespace delimited text).

wSelTop()

Comments:
wSelTop begins selecting text if not currently selecting, and extends the selection up to
the beginning of the document.

wSelBottom()

Comments:
wSelBottom begins selecting text if not currently selecting, and extends the selection to
the end of the document.

wInvertCase()

Comments:
wInvertCase switches the case of the character at the current position if there is no
selection, or of the entire selection if there is a selection.

wUpperCase()

Comments:
wUpperCase changes the case of the character at the current position if there is no
selection, or of the entire selection if there is a selection, to all uppercase characters.

wLowerCase()

Comments:
wLowerCase switches the case of the character at the current position if there is no
selection, or of the entire selection if there is a selection, to all lower case characters.

wCutAppend()

Comments:
wCutAppend cuts the selected text from the document and appends it to whatever is in
the clipboard, rather than replacing what is in the clipboard as wCut does.

wCutMarked()

Comments:
wCutMarked cuts all lines in the current document that are bookmarked and copies the
cut text to the clipboard.

wCopyMarked()

Comments:
wCopyMarked copies all lines in the current document that are bookmarked to the
clipboard.

wCopyAppend()

Comments:
wCopyAppend copies the selected text from the document and appends it to whatever is
in the clipboard, rather than replacing what is in the clipboard as wCopy does.

wSetBookmark()

Comments:

Places a bookmark on the current line if one does not already exist, or removes it if it
does..

Page Setup

The following options allow you to set print options for each page that will be printed.
Click on a dialog box item for more information.

Print Setup

Use this command to select a printer and a printer connection.    This command presents a Print
Setup dialog box, where you specify the printer and its connection.

Click on a
dialog box
item for
more
information
or scroll
down for a
complete list
of option
descriptions.

Printer Select the printer you want to use.    Choose the Default Printer; or choose the
Specific Printer option and select one of the current installed printers shown in the
box.    You install printers and configure ports using the Windows Control Panel.

Orientation Choose Portrait or Landscape.

Paper Size Select the size of paper that the document is to be printed on.

Paper Source Some printers offer multiple trays for different paper sources.    Specify the tray here.

Options Displays a dialog box where you can make additional choices about printing,
specific to the type of printer you have selected.

Network Choose this button to connect to a network location, assigning it a new drive letter.

Print

Use this command to print a document.     
The Print command presents the Print dialog box, where you may specify the range of pages to be
printed, the number of copies, the destination printer, and other printer setup options.

Click on a
dialog box
item for
more
information
or scroll
down for a
complete list
of option
descriptions.

Printer This is the active printer and printer connection.    Choose the Setup option to change the
printer and printer connection.

Properties Displays a Properties dialog box, so    you can select a printer and printer connection.
Print Range Specify the pages you want to print.

All Prints the entire document.
Selection Prints the currently selected text.
Pages Prints the range of pages you specify in the From and To boxes.

Copies Specify the number of copies you want to print for the above page range.
Collate Copies Prints copies in page number order, instead of separated multiple copies of each page.

Print Progress Dialog

The Printing dialog box is shown during the time that WinEdit is sending output to the printer.    The
page number indicates the progress of the printing.
To abort printing, choose Cancel.

Print Preview

Use this command to display the active document as it would appear when printed.    When you
choose this command, the main window will be replaced with a print preview window in which one
or two pages will be displayed in their printed format.
The print preview toolbar offers you options to view either one or two pages at a time; move back
and forth through the document; zoom in and out of pages; and initiate a print job.
The number of pages displayed in Print Preview also depends upon whether the Two Up printing
mode is selected in the Page Setup dialog box.    If Two Up is selected, the font size will
automatically become smaller and the orientation of the page will change to Landscape.

One Up Printing /
One Page Preview

One Up Printing /
Two Page Preview

Two Up Printing /
Two Page Preview

Print Preview Toolbar

The print preview toolbar offers you the following options:

Print Bring up the print dialog box, to start a print job.
Next Page
Prev Page
One Page / Two Page

Preview the next printed page.
Preview the previous printed page.
Preview one or two printed pages at a time.

Zoom In
Zoom Out
Close

Take a closer look at the printed page.
Take a larger look at the printed page.
Return from print preview to the editing window.

WinEdit Key Mappings

Key Normal Shift Contr
ol

Shift
+Control

Alt

F1 Help
F2 Bookmark Next Bookmark

Previous
Bookmark Toggle

F3 Find Next
F4 Copy Line to Clip Previous Error
F5
F5 Debug Go
F7 Project Compile
F8 Edit Col Block
F9 Debug Breakpoint DB: Remove All

Breakpoints
F10 Step Over DB: Run to

Cursor
F11 Step Into
F12

a Select All
b
c Copy Copy Append
d
e
f Search Find
g Go to Line
h Search Replace
i
j
k
l Lower

m Match Brace, etc
n File New
o File Open
p Print
q Macro Record
r
s File Save
t
u Upper
v Paste
w
x Cut Cut Append
y ReDo
z UnDo

Home Select Home Top of File
End Select End Bottom of File
Left Select Left Word Left

Right Select Right Word Right
Up Select Up

Down Select Down
Scrlock Debug Break

Special Help

Some special configuration items are hidden in the Registry: Background File Checking and the
Reading of Null Characters.    See the documentation below for specific instructions.

Background File Change Checking

Winedit checks open documents periodically in the background, to determine if the file on disk has
changed since it was opened in WinEdit.    In certain situations, such as a slow network or floppy
drives, you may wish to prevent this check from occurring.

To turn off WinEdit's background file change checking, add the following DWORD value,
BackgroundCheck, to the Main Window key in the Registry:

HKEY_CURRENT_USER\Software\WinEdit Software Co.\WinEdit\Settings\MainWindow\
BackgroundCheck

Reading Null Characters

WinEdit 99 does not allow null characters in a file to be read.    When null characters are found, the
user is prompted to either replace them with the ASCII value 255, or abort the file read.

By adding the value FilterControlChars=1, to the Main Window key in the Registry all control
characters except tab, carriage return, and line feed will also be filtered in the same manner.

HKEY_CURRENT_USER\Software\ WinEdit Software Co.\WinEdit\Settings\Main
Window\FilterControlChars=1

Copyright

Copyright © 1988-2000
Steve Schauer, Morrie Wilson

All rights reserved.

No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of WinEdit Software
Co.    Information in this document is subject to change
without notice and does not represent a commitment by
WinEdit Software Co.

The software described herein is furnished under a license
agreement.    It is against the law to copy this software under
any circumstances except as provided by the license
agreement.

U.S. Government Restricted Rights
Use, duplication, or disclosure by the Government is subject
to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause at
252.227-7013.    Contractor/manufacturer is WinEdit
Software Co. / PO Box 1435 / Hilo, HI 96721 /    Orders: 800-
699-6395 /    Support: 808-934-8199 /    Fax: 808-934-8314.

Trademarks
Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.
Windows, Word for Windows, and Excel are trademarks of Microsoft
Corporation.

WinEdit is a registered trademark of WinEdit Software Co.

Acknowledgments

This software designed by
Steve Schauer and Morrie
Wilson.

Documentation and Help
written by Tina Browning.

What is WIL?

Windows Interface Language (WIL) is an easy-to-use yet very
powerful general-purpose programming language with over 500
functions for file management, sending keystrokes, disk drive
management, directory management, binary file access,
multimedia support, DDE support, clipboard handling, system
control, program management, string handling, displaying
information, user prompting, window management, floating point
& integer arithmetic, execution control and more. Many
operations that require pages of code in other programming
languages can be accomplished with a single WIL function call.

WIL scripts are written in a plain text file, which can be created
by Notepad or most word processors. (Of course, we
recommend our own WinEdit, which has many features
designed expressly for programmers, including a full-featured
implementation of WIL itself.)

These text files can take one of two forms, depending on your
particular implementation of WIL: batch files or menu files.

Batch Files
A batch file is simply a list of WIL commands and function
calls, executed in order (just like the old DOS batch
language).

Menu Files
A menu file is similar to a batch file, except that multiple
chunks of WIL code are organized into menu and sub-
menus, and each routine is launched by pressing the
appropriate keystroke or selecting an item from the menu.
(The name and location of the menus vary depending on the
particular implementation of WIL menu files.)

 What WIL is good for

 Products that use WIL

 Using WIL

 Reference

 Step by step guide to
learning WIL

Step by step guide to learning WIL

The Windows Interface Language (WIL) is a scripting
language.    In order to use it, you must open up an
editor and Create a Script using the WIL commands.
Once written, the script is saved and run with an
extension already associated with the WIL interpreter.   
In our examples, we use the extension .WBT.   

The WIL language is not hard to learn. A general
knowledge of batch file programming is helpful, but not
necessary.

Suggestions for Tutorial use
Everyone has different learning styles.    The contents of
the WIL Tutorial can be accessed in several ways.

Topic by Topic    -    Arranged so each new concept builds
on the last.    Scroll through the topics from
the top or select the ones which catch your
eye.

Step by Step Tutorial Course    -    For those who have the
general idea and don't want to be bogged
down with the absolute particulars. Follow
along and write a working script.

The Complete Tutorial    -    For some, the printed word is
mightier than the hypertext jump. Here the
tutorial has been arranged for easy printing.   

The WIL Tutorial
 The Complete WIL

Tutorial
 Topic by Topic
 The Tutorial Course

 Getting started
 Using WIL
 Reference
 Notational

Conventions
 Notes

Menu Files

WIL scripts can be implemented in two ways: via batch files   
or menu files. In a batch    process, WIL scripts are associated
with the WIL processor, allowing them to be initiated and run on
the desktop just as any true executable is launched and run.

WIL scripts can also be launched as menu items from a drop
down menu. However, you must have an implementation of
WIL with the capability of generating the menu either within one
of our applications or as an enhancement to standard Windows
applications. In Windows 95/98/NT, WIL adds menu capability
to the Windows Task Bar and the Shortcut Menu in the
Windows 95/98/NT Explorer.

Please see either the help file or printed documentation that
came with your program for more information.

 Menu file structure

 Modifying menus

 Menu hotkeys

 Menu items

 Batch files

 Products that use WIL

 Reference

 Step by step guide to
learning WIL

Contacting Winedit Software Co.

            Winedit Software Co.
            PO Box 1435
            Hilo, HI    96721 USA

            Orders: (800) 699-6395
            Voice: (800) 595-3248
            Fax: (808) 934-8314

            Email: info@winedit.com…..
Registered users of our software receive: manuals, technical
support, use of on-line information services, and special
offers on new versions of our products.

 Registering your copy

 Ordering Information

 Order form

 Technical support

How to get technical support

The Winedit website is an excellent technical resource. .You
will find additional up-to-date topics on Java setup, adding
new file types, and more.    You can also check for newer
releases of WinEdit.    Your WinEdit 99 or WinEdit 2000
registration information will work with all future maintenance
releases.   

See the information on registering your copy if you haven't
done so yet.

Internet Web page: http://www.winedit.com

Internet Technical Support Articles:
http://www.winedit.com/support.html
Internet FTP: ftp.winedit.com

 Registering your copy

 Ordering Information

 Order form

 Step by step guide to
learning WIL

Windows Interface Language Reference

 Function List

 Full Reference

 Using WIL

 Step by step guide to learning
WIL

 Context Menu

Windows Interface Language (WIL) is an easy-to-use
yet very powerful general-purpose programming
language with over 500 functions for file management,
sending keystrokes, disk drive management, directory
management, binary file access, multimedia support,
DDE support, clipboard handling, system control,
program management, string handling, displaying
information, user prompting, window management,
floating point & integer arithmetic, execution control and
more.

WinEdit can also access the Windows Interface
Language Help file via its context menu.    In your script,
highlight a function name then click with the right mouse
button.    The context menu will open as a drop down list.
Select    the option "Keyword Help".    The help file will
launch and display the function page you selected.

Registering your software

Registered users of our software receive: manuals,
technical support, use of WinEdit Software Co. on-line
information services, and special offers on new versions of
WinEdit and other products.
You can register online, through our secure commerce
server:
            http://www.winedit.comYou can register your software
by mailing, faxing, or telephoning    your registration
information to WinEdit Software Co.
            Winedit Software Co.
            PO Box 1435
            Hilo, HI 96721 USA

            Orders: (888) 595-3248
            Voice: (808) 595-3248
            Fax: (808) 934-8314

 Ordering Information

 Order form

 Contacting WinEdit
Software Co.

Ordering Information

Licensing our products brings you wonderful benefits. Some of
these are:

Gets rid of that pesky reminder window that comes up
when you start up the software.

Entitles you to one hour free phone support for 90 days
(Your dime).

Ensures that you have the latest version of the product.
Encourages the authors of these programs to continue

bringing you updated/better versions and new products.
Gets you on our mailing list so you are occasionally

notified of spectacular updates and our other Windows
products.

And, of course, our 90-day money back guarantee.

We have contracted with another company, NorthStar
Solutions, to process our orders.    The easiest way to order is
to use your Discover, Visa, Mastercard, or American Express
card and submit your order quickly, conveniently, and securely
on the Internet at

http://www.winedit.com
To telephone your order, call WinEdit Software Co. at

1-888-595-3248
1-808-934-8199

To mail your order, print the Order Form, and FAX or mail it to:

WinEdit Software Co.
PO Box 1435
Hilo, HI 96721

To FAX your order, use the following telephone number:
FAX: 1-808-934-8314

Please make any checks or money orders payable to “WinEdit
Software Co.”.    US Currency only, drawn on U.S. Banks,
please.

 Order form

 Contacting WinEdit
Software Co.

WINEDIT SOFTWARE CO. ORDER FORM

WINEDIT SOFTWARE CO.
PO Box 1435
Hilo, HI 96721

Order Lines:
(888) 934-8199
(808) 934-8199
Fax - (808) 934-8314

 Ordering Information

 Contacting WinEdit
Software Co.

 Name: __

 Company:___

 Address:__

__

City:      ________________________    St:______    Zip:___________

Phone: (______)_________________       
Country:________________

Products

____ WinEdit 2000 – Full Package @    $99.00 : _______.____   
____ WinEdit 2000 – Electronic Download @    $89.00 : _______.____   
____ WinEdit 2000 – 5 User Pack @ $425.00 : _______.____   
____ WinEdit 2000 – 25 User Pack @ $1495.00 : _______.____   

Shipping      (each copy, except Electronic Download)
____ US and Canada shipping @        $9.00 : _______.____   

____ Foreign air shipping    (except Canada) @    $20.00 : _______.____

                Total :    _______.____

Please enclose a check payable to WinEdit Software Co., or you may use Amex, Visa,
MasterCharge, or Discover.      For credit cards,    please enter the information below:

 Card #:__ __ __ __ - __ __ __ __ - __ __ __ __ - __ __ __ __          Expiration date: ____/____

 Signature:    ___

 Where did you hear about or get a copy of our products?

__

International customers please note, payments must be made in U.S. Currency, drawn on a

U.S. Bank.

noyesyesyesWinEdit PopupTRUEWEPOPUPyesyes23/10/98

Table of Contents

Header / Footer
Print Options
Font
File type
Edit
Syntax coloring
Font
Tab size
Show tabs
Insert spaces/Keep tabs
Insert mode
Line End
Compile command
Redirect to output window
Custom error parsing
Print
Next Page
Prev Page
One Page / Two Page
Zoom In
Zoom Out
Close
Printer
Properties
Print Range
Copies
Collate Copies
Go
Step Into
Step Over
Run To Cursor
Stop Debugging
Insert/Remove Breakpoint
Remove All Breakpoints
Printer
Orientation
Paper Size
Options
Restore workspace at startup
Show Horizontal Scrollbar
Make backup files
Automatically backup files
Buttons
Menu Text
Arguments
Initial Directory

WinEdit Menus

Help file produced by    HELLLP! v2.7 , a product of Guy Software, on 10/23/98 for WILSON
WINDOWWARE, INC..
The above table of contents will be automatically completed and will also provide an
excellent cross-reference for context strings and topic titles.    You may leave it as your main
table of contents for your help file, or you may create your own and cause it to be displayed
instead by using the I button on the toolbar.    This page will not be displayed as a topic.    It is
given a context string of _._ , but this is not presented for jump selection.
HINT:    If you do not wish some of your topics to appear in the table of contents as displayed
to your users (you may want them ONLY as PopUps), move the lines with their titles and
contexts to below this point.    If you do this remember to move the whole line, not part.    As
an alternative, you may wish to set up your own table of contents, see Help under The
Structure of a Help File.
    Do not delete any codes in the area above the Table of Contents title, they are used
internally by HELLLP!

Page Setup

Header / Footer
Select optional Header/Footer print fields from the drop down list.

Print Options

Two up Printing Prints two pages side by side in Landscape format.
(Font may appear smaller than selected Screen or Printer font.)

Line numbers Prints line numbers in the left hand margin.
Color syntax printing Prints document using the designated color syntax highlighting for

that file.

Font
Mirror Screen Font Emulates the Screen font while ignoring Printer Font information.
Use Printer Font Uses the font selected in the Printer font dialog.

OPTIONS Editor

Restore workspace at startup
Reload all documents that were open at the end of the last editing session.

Leave cursor at start of pasted text
When checked, the cursor (caret) is positioned at the beginning of the pasted text.   
When unchecked, it is placed at the end of the pasted text.

Allow multiple instances of WinEdit
When unchecked, double clicking an associated file or starting WinEdit itself activates
the already running instance instead of launching an additional copy.

Show Horizontal Scrollbar
When unchecked, no horizontal scrollbar is shown.

Allow Virtual Whitespace
When checked, the caret can be positioned in any column.    When unchecked, the
caret cannot be moved beyond the end of the text of any line

Make backup files
When checked, a backup copy of a document is made whenever the document is
saved.

Backup specification
Create a file specification to use when naming a backup file.    Choose options based
on the original document name from the menu button.

Automatically backup files
When checked, a backup copy of a document is made automatically at the time
interval selected.

Autosave file specification
Create a file specification to use when naming an autosave file.    Choose options
based on the original document name from the menu button.

Options FileType dialog box

File type
Chooses a file type from the dropdown list.

Edit
Allows adding or deleting of file types from the list.

Syntax coloring
Sets options for coloring keywords for this file type, and for specifying the characters which
flag text as a ‘comment’.

Font
Selects a fixed pitch font to be used to display this file type.

Tab size
Sets the number of columns each tab character represents.

Show tabs
When selected, tab characters are displayed on screen.

Insert spaces/Keep tabs
Selects whether to insert a tab character, or a corresponding number of space characters,
when pressing the tab key.

Insert mode
When checked, text typed is inserted at the caret position.    When unchecked, overtype
mode is used, where text typed replaces text at the caret position.

Line End
Selects the characters that are inserted when the Enter key is pressed.

Compile command
Enter the command line used to compile this file type.    Command line parameters based
upon the original document name can be selected from the menu button.

Redirect to output window
Captures command line output and displays it in the output window when this file type is
compiled from within WinEdit.    Double click on an error or warning or choose Next
Error/Previous Error from the Search menumenu_search to move to that position in your
source code file.

Custom error parsing
If the compiler output from this file type does not match the format “filename(lineno):text”,
you can process the output in a WIL script filehowto_writewil so that Next Error/Previous
Error will work correctly.    The sample script mserror.wbt demonstrates the required
processing.

Print Preview

Print
Bring up the print dialog box, to start a print job.

Next Page
Preview the next printed page.

Prev Page
Preview the previous printed page.

One Page / Two Page
Preview one or two printed pages at a time.

Zoom In
Take a closer look at the printed page.

Zoom Out
Take a larger look at the printed page.

Close
Return from print preview to the editing window.

Print Dialog

Printer
This is the active printer and printer connection.    Choose the Setup option to change
the printer and printer connection.

Properties
Displays a Print Properties dialog box, so    you can select a printer and printer
connection.

Print Range
Specify the pages you want to print:

All Prints the entire document.
Selection Prints the currently selected text.
Pages Prints the range of pages you specify in the From and To

boxes.

Copies
Specify the number of copies you want to print for the above page range.

Collate Copies
Prints copies in page number order, instead of separated multiple copies of each
page.

DEBUG

Go
Begins executing the script commands.    Execution will continue to the end of the
script or until a breakpoint is encountered.

Step Into
Executes the current line of the script.    If the current line is a goto, gosub, or call
command, execution stops at the first line of the goto, gosub, or call code.

Step Over
Executes the current line of the script.    If the current line is a goto, gosub, or call
command, all the code at the goto, gosub, or call location is also executed.

Run To Cursor
Begins executing script commands at the current location and continues to the point
in the script where the cursor (caret) is located.

Stop Debugging
Stops execution of the script.

Insert/Remove Breakpoint
Inserts a breakpoint at the current line, or removes it if it already exists.    When
execution of the script is initiated with the Go or Run To Cursor commands, execution
will still stop if a line with a breakpoint is encountered.

Remove All Breakpoints
Removes all defined breakpoints in the current script.

PRINT SETUP

Printer
Select the printer you want to use.    Choose the Default Printer; or choose the
Specific Printer option and select one of the current installed printers shown in the
box.    You install printers and configure ports using the Windows Control Panel.

Orientation
Choose Portrait or Landscape.

Paper Size
Select the size of paper that the document is to be printed on.

Paper Source
Some printers offer multiple trays for different paper sources.    Specify the tray here.

Properties
Displays a dialog box where you can make additional choices about printing, specific
to the type of printer you have selected.

Project Customize Tools

Buttons
Add / Remove            Adds or removes items.

Move up /
Move down                  Changes the position of an item in the list.

Menu Text
The text which will appear on the Project Menu.    An & before the first character
creates a hotkey.   

Arguments

The command line
parameters
required for the
program.   

Arguments, can be
selected from the
drop down list.

Initial Directory
The directory set to be the current directory when the command is executed.

If this screen is the first to display you are probably not using the latest
version of the Microsoft HCW help file compiler.    You need at least version
4.03 which may be downloaded via a link on
http://www.guysoftware.com/helllp.html in order to handle files produced
by Microsoft Word version 8 (Office 97) or later.

Unregistered
Message

This Help file was produced by an unregistered demonstration copy of the HELLLP! file authoring
system.

HELLLP! is a user-friendly system to aid in the production of Windows help files. It requires Microsoft
Word for Windows version 2.0 or higher.    Users of Word versions up to Word 7/Office 95 need version
2.7 of HELLLP! users of Word version 8/Office 97 or later need version 3 of HELLLP!

HELLLP! is available as shareware from many sources and is always available from
http://www.guysoftware.com/helllp.html at which site the author and distributor may also be contacted.   
Registration and payment, which will remove this screen from files produced by the system may also be
accomplished by links from this site.

 About Shareware:
Shareware is copyrighted software that is distributed by authors through bulletin boards, on-line services and disk vendors.

Shareware allows you to try the software for a reasonable limited period.    If you decide not to continue using it, you throw it away
and forget about it. You only pay for it if you continue to use it. Shareware is a distribution method, not a type of software. You
benefit because you get to use the software to determine whether it meets your needs, before you pay for it.

The shareware system and the continued availability of quality shareware products depend on your willingness to register and pay
for the shareware you use. It's the registration fees you pay which allow authors to support and continue to develop our products.
Please show your support for shareware by registering those programs you actually use.

