

About this help file
This file was made with the help of Makertf 1.04 from the input file
../../binutils-2.9.1/ld/ld.texinfo.

START-INFO-DIR-ENTRY
* Ld: (ld).  The GNU linker.
END-INFO-DIR-ENTRY

This file documents the GNU linker LD.

Copyright (C) 1991, 92, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions.

Node: Top, Next: Overview, Prev: , Up: (dir) About this help file

Using ld
by Steve Chamberlain and Cygnus Support

Using ld
This file documents the GNU linker ld.

* Menu:

Overview Overview
Invocation Invocation
Commands Command Language
Machine Dependent Machine Dependent Features
BFD BFD
Reporting Bugs Reporting Bugs
MRI MRI Compatible Script Files
Index Index

Node: Overview, Next: Invocation, Prev: Top, Up: Top

Overview
ld combines a number of object and archive files, relocates their data and ties up symbol
references. Usually the last step in compiling a program is to run ld.

ld accepts Linker Command Language files written in a superset of AT&T's Link Editor
Command Language syntax, to provide explicit and total control over the linking process.

This version of ld uses the general purpose BFD libraries to operate on object files. This
allows ld to read, combine, and write object files in many different formats--for example,
COFF or a.out.    Different formats may be linked together to produce any available kind of
object file.    See BFD, for more information.   

Aside from its flexibility, the GNU linker is more helpful than other linkers in providing
diagnostic information.    Many linkers abandon execution immediately upon encountering an
error; whenever possible, ld continues executing, allowing you to identify other errors (or, in
some cases, to get an output file in spite of the error).

Node: Invocation, Next: Commands, Prev: Overview, Up: Top

Invocation
The GNU linker ld is meant to cover a broad range of situations, and to be as compatible as
possible with other linkers.    As a result, you have many choices to control its behavior.

* Menu:

Options Command Line Options
Environment Environment Variables

Node: Options, Next: Environment, Prev: , Up: Invocation

Command Line Options
The linker supports a plethora of command-line options, but in actual practice few of them
are used in any particular context.    For instance, a frequent use of ld is to link standard
Unix object files on a standard, supported Unix system.    On such a system, to link a file
hello.o:

ld -o output /lib/crt0.o hello.o -lc

This tells ld to produce a file called output as the result of linking the file /lib/crt0.o with
hello.o and the library libc.a, which will come from the standard search directories.    (See
the discussion of the -l option below.)

The command-line options to ld may be specified in any order, and may be repeated at will. 
Repeating most options with a different argument will either have no further effect, or
override prior occurrences (those further to the left on the command line) of that option.   
Options which may be meaningfully specified more than once are noted in the descriptions
below.

Non-option arguments are objects files which are to be linked together.    They may follow,
precede, or be mixed in with command-line options, except that an object file argument may
not be placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you can specify other forms of
binary input files using -l, -R, and the script command language.    If no binary input files at
all are specified, the linker does not produce any output, and issues the message No input
files.

If the linker can not recognize the format of an object file, it will assume that it is a linker
script.    A script specified in this way augments the main linker script used for the link (either
the default linker script or the one specified by using -T).    This feature permits the linker to
link against a file which appears to be an object or an archive, but actually merely defines
some symbol values, or uses INPUT or GROUP to load other objects.    Note that specifying a
script in this way should only be used to augment the main linker script; if you want to use
some command that logically can only appear once, such as the SECTIONS or MEMORY
command, you must replace the default linker script using the -T option.    See Commands.

For options whose names are a single letter, option arguments must either follow the option
letter without intervening whitespace, or be given as separate arguments immediately
following the option that requires them.

For options whose names are multiple letters, either one dash or two can precede the option
name; for example, --oformat and --oformat are equivalent.    Arguments to multiple-letter
options must either be separated from the option name by an equals sign, or be given as
separate arguments immediately following the option that requires them.    For example, --
oformat srec and --oformat=srec are equivalent.    Unique abbreviations of the names of
multiple-letter options are accepted.

-akeyword
This option is supported for HP/UX compatibility.    The keyword argument must be

one of the strings archive, shared, or default.    -aarchive is functionally
equivalent to -Bstatic, and the other two keywords are functionally equivalent to -
Bdynamic.    This option may be used any number of times.

-Aarchitecture

--architecture=architecture
In the current release of ld, this option is useful only for the Intel 960 family of
architectures.    In that ld configuration, the architecture argument identifies the
particular architecture in the 960 family, enabling some safeguards and modifying
the archive-library search path.    See ld and the Intel 960 family , for details.

Future releases of ld may support similar functionality for other architecture families. 

-b input-format
--format=input-format
ld may be configured to support more than one kind of object file.    If your ld is configured
this way, you can use the -b option to specify the binary format for input object files that
follow this option on the command line.    Even when ld is configured to support alternative
object formats, you don't usually need to specify this, as ld should be configured to expect
as a default input format the most usual format on each machine.    input-format is a text
string, the name of a particular format supported by the BFD libraries.    (You can list the
available binary formats with objdump -i.) See BFD.

You may want to use this option if you are linking files with an unusual binary format. 
You can also use -b to switch formats explicitly (when linking object files of different
formats), by including -b input-format before each group of object files in a
particular format.

The default format is taken from the environment variable GNUTARGET.    See
Environment.    You can also define the input format from a script, using the command
TARGET; see Option Commands.   

-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, ld accepts script files written in an
alternate, restricted command language, described in MRI Compatible Script Files.   
Introduce MRI script files with the option -c; use the -T option to run linker scripts
written in the general-purpose ld scripting language.    If MRI-cmdfile does not exist,
ld looks for it in the directories specified by any -L options.

-d
-dc
-dp

These three options are equivalent; multiple forms are supported for compatibility

with other linkers.    They assign space to common symbols even if a relocatable
output file is specified (with -r).    The script command FORCE_COMMON_ALLOCATION
has the same effect.    See Option Commands.

-e entry
--entry=entry

Use entry as the explicit symbol for beginning execution of your program, rather than
the default entry point. See Entry Point, for a discussion of defaults and other ways of
specifying the entry point.

-E
--export-dynamic

When creating a dynamically linked executable, add all symbols to the dynamic
symbol table.    The dynamic symbol table is the set of symbols which are visible from
dynamic objects at run time.

If you do not use this option, the dynamic symbol table will normally contain only
those symbols which are referenced by some dynamic object mentioned in the link.

If you use dlopen to load a dynamic object which needs to refer back to the symbols
defined by the program, rather than some other dynamic object, then you will
probably need to use this option when linking the program itself.

-f
--auxiliary name

When creating an ELF shared object, set the internal DT_AUXILIARY field to the
specified name.    This tells the dynamic linker that the symbol table of the shared
object should be used as an auxiliary filter on the symbol table of the shared object
name.

If you later link a program against this filter object, then, when you run the program,
the dynamic linker will see the DT_AUXILIARY field.    If the dynamic linker resolves
any symbols from the filter object, it will first check whether there is a definition in
the shared object name.    If there is one, it will be used instead of the definition in the
filter object.    The shared object name need not exist.    Thus the shared object name
may be used to provide an alternative implementation of certain functions, perhaps
for debugging or for machine specific performance.

This option may be specified more than once.    The DT_AUXILIARY entries will be
created in the order in which they appear on the command line.

-F name
--filter name

When creating an ELF shared object, set the internal DT_FILTER field to the specified
name.    This tells the dynamic linker that the symbol table of the shared object which
is being created should be used as a filter on the symbol table of the shared object
name.

If you later link a program against this filter object, then, when you run the program,
the dynamic linker will see the DT_FILTER field.    The dynamic linker will resolve
symbols according to the symbol table of the filter object as usual, but it will actually
link to the definitions found in the shared object name.    Thus the filter object can be
used to select a subset of the symbols provided by the object name.

Some older linkers used the -F option throughout a compilation toolchain for
specifying object-file format for both input and output object files.    The GNU linker
uses other mechanisms for this purpose: the -b, --format, --oformat options, the
TARGET command in linker scripts, and the GNUTARGET environment variable.    The GNU
linker will ignore the -F option when not creating an ELF shared object.

--force-exe-suffix
Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a .exe or .dll suffix, this
option forces the linker to copy the output file to one of the same name with a .exe
suffix. This option is useful when using unmodified Unix makefiles on a Microsoft
Windows host, since some versions of Windows won't run an image unless it ends in a
.exe suffix.

-g
Ignored.    Provided for compatibility with other tools.

-Gvalue
--gpsize=value

Set the maximum size of objects to be optimized using the GP register to size.    This
is only meaningful for object file formats such as MIPS ECOFF which supports putting
large and small objects into different sections.    This is ignored for other object file
formats.

-hname
-soname=name

When creating an ELF shared object, set the internal DT_SONAME field to the
specified name.    When an executable is linked with a shared object which has a
DT_SONAME field, then when the executable is run the dynamic linker will attempt to
load the shared object specified by the DT_SONAME field rather than the using the
file name given to the linker.

-i
Perform an incremental link (same as option -r).

-larchive
--library=archive

Add archive file archive to the list of files to link.    This option may be used any
number of times.    ld will search its path-list for occurrences of libarchive.a for
every archive specified.

On systems which support shared libraries, ld may also search for libraries with
extensions other than .a.    Specifically, on ELF and SunOS systems, ld will search a
directory for a library with an extension of .so before searching for one with an
extension of .a.    By convention, a .so extension indicates a shared library.

The linker will search an archive only once, at the location where it is specified on the
command line.    If the archive defines a symbol which was undefined in some object
which appeared before the archive on the command line, the linker will include the
appropriate file(s) from the archive.    However, an undefined symbol in an object
appearing later on the command line will not cause the linker to search the archive
again.

See the -(option for a way to force the linker to search archives multiple times.

You may list the same archive multiple times on the command line.

This type of archive searching is standard for Unix linkers.    However, if you are using
ld on AIX, note that it is different from the behaviour of the AIX linker.   

-Lsearchdir
--library-path=searchdir

Add path searchdir to the list of paths that ld will search for archive libraries and ld
control scripts.    You may use this option any number of times.    The directories are
searched in the order in which they are specified on the command line.    Directories
specified on the command line are searched before the default directories.    All -L
options apply to all -l options, regardless of the order in which the options appear.

The default set of paths searched (without being specified with -L) depends on which
emulation mode ld is using, and in some cases also on how it was configured.    See
Environment.   

The paths can also be specified in a link script with the SEARCH_DIR command.   
Directories specified this way are searched at the point in which the linker script
appears in the command line.

-memulation
Emulate the emulation linker.    You can list the available emulations with the --
verbose or -V options.

If the -m option is not used, the emulation is taken from the LDEMULATION
environment variable, if that is defined.

Otherwise, the default emulation depends upon how the linker was configured.

-M
--print-map

Print a link map to the standard output.    A link map provides information about the
link, including the following:

· Where object files and symbols are mapped into memory.

· How common symbols are allocated.

· All archive members included in the link, with a mention of the symbol which
caused the archive member to be brought in.   

-n
--nmagic

Set the text segment to be read only, and mark the output as NMAGIC if possible.

-N
--omagic

Set the text and data sections to be readable and writable.    Also, do not page-align
the data segment.    If the output format supports Unix style magic numbers, mark
the output as OMAGIC.

-o output
--output=output

Use output as the name for the program produced by ld; if this option is not
specified, the name a.out is used by default.    The script command OUTPUT can also
specify the output file name.

-r
--relocateable

Generate relocatable output--i.e., generate an output file that can in turn serve as
input to ld.    This is often called "partial linking".    As a side effect, in environments
that support standard Unix magic numbers, this option also sets the output file's
magic number to OMAGIC.    If this option is not specified, an absolute file is produced. 
When linking C++ programs, this option will not resolve references to constructors;
to do that, use -Ur.

This option does the same thing as -i.

-R filename
--just-symbols=filename

Read symbol names and their addresses from filename, but do not relocate it or
include it in the output.    This allows your output file to refer symbolically to absolute

locations of memory defined in other programs.    You may use this option more than
once.

For compatibility with other ELF linkers, if the -R option is followed by a directory
name, rather than a file name, it is treated as the -rpath option.

-s
--strip-all

Omit all symbol information from the output file.

-S
--strip-debug

Omit debugger symbol information (but not all symbols) from the output file.

-t
--trace

Print the names of the input files as ld processes them.

-T commandfile
--script=commandfile

Read link commands from the file commandfile.    These commands replace ld's
default link script (rather than adding to it), so commandfile must specify everything
necessary to describe the target format.    You must use this option if you want to use
a command which can only appear once in a linker script, such as the SECTIONS or
MEMORY command.    See Commands.    If commandfile does not exist, ld looks for it in
the directories specified by any preceding -L options.    Multiple -T options
accumulate.

-u symbol
--undefined=symbol

Force symbol to be entered in the output file as an undefined symbol.    Doing this
may, for example, trigger linking of additional modules from standard libraries.    -u
may be repeated with different option arguments to enter additional undefined
symbols.

-v
--version
-V

Display the version number for ld.    The -V option also lists the supported
emulations.

-x
--discard-all

Delete all local symbols.

-X
--discard-locals

Delete all temporary local symbols.    For most targets, this is all local symbols whose
names begin with L.

-y symbol
--trace-symbol=symbol

Print the name of each linked file in which symbol appears.    This option may be
given any number of times.    On many systems it is necessary to prepend an
underscore.

This option is useful when you have an undefined symbol in your link but don't know
where the reference is coming from.

-Y path
Add path to the default library search path.    This option exists for Solaris
compatibility.

-z keyword
This option is ignored for Solaris compatibility.

-(archives -)
--start-group archives --end-group

The archives should be a list of archive files.    They may be either explicit file names,
or -l options.

The specified archives are searched repeatedly until no new undefined references are
created.    Normally, an archive is searched only once in the order that it is specified
on the command line.    If a symbol in that archive is needed to resolve an undefined
symbol referred to by an object in an archive that appears later on the command line,
the linker would not be able to resolve that reference.    By grouping the archives,
they all be searched repeatedly until all possible references are resolved.

Using this option has a significant performance cost.    It is best to use it only when
there are unavoidable circular references between two or more archives.

-assert keyword
This option is ignored for SunOS compatibility.

-Bdynamic
-dy
-call_shared

Link against dynamic libraries.    This is only meaningful on platforms for which shared
libraries are supported.    This option is normally the default on such platforms.    The
different variants of this option are for compatibility with various systems.    You may
use this option multiple times on the command line: it affects library searching for -l
options which follow it.

-Bstatic
-dn
-non_shared
-static

Do not link against shared libraries.    This is only meaningful on platforms for which
shared libraries are supported.    The different variants of this option are for
compatibility with various systems.    You may use this option multiple times on the
command line: it affects library searching for -l options which follow it.

-Bsymbolic
When creating a shared library, bind references to global symbols to the definition
within the shared library, if any.    Normally, it is possible for a program linked against
a shared library to override the definition within the shared library.    This option is
only meaningful on ELF platforms which support shared libraries.

--cref
Output a cross reference table.    If a linker map file is being generated, the cross
reference table is printed to the map file.    Otherwise, it is printed on the standard
output.

The format of the table is intentionally simple, so that it may be easily processed by a
script if necessary.    The symbols are printed out, sorted by name.    For each symbol,
a list of file names is given.    If the symbol is defined, the first file listed is the location
of the definition.    The remaining files contain references to the symbol.

--defsym symbol=expression
Create a global symbol in the output file, containing the absolute address given by
expression.    You may use this option as many times as necessary to define multiple
symbols in the command line.    A limited form of arithmetic is supported for the
expression in this context: you may give a hexadecimal constant or the name of an
existing symbol, or use + and - to add or subtract hexadecimal constants or symbols. 
If you need more elaborate expressions, consider using the linker command language
from a script (see Assignment: Symbol Definitions).    Note:    there should be no white
space between symbol, the equals sign ("="), and expression.

--dynamic-linker file
Set the name of the dynamic linker.    This is only meaningful when generating
dynamically linked ELF executables.    The default dynamic linker is normally correct;
don't use this unless you know what you are doing.

-EB
Link big-endian objects.    This affects the default output format.

-EL
Link little-endian objects.    This affects the default output format.

--embedded-relocs
This option is only meaningful when linking MIPS embedded PIC code, generated by
the -membedded-pic option to the GNU compiler and assembler.    It causes the linker
to create a table which may be used at runtime to relocate any data which was
statically initialized to pointer values.    See the code in testsuite/ld-empic for details.

--help
Print a summary of the command-line options on the standard output and exit.

-Map mapfile
Print a link map to the file mapfile.    See the description of the -M option, above.

--no-keep-memory
ld normally optimizes for speed over memory usage by caching the symbol tables of input
files in memory.    This option tells ld to instead optimize for memory usage, by rereading the
symbol tables as necessary.    This may be required if ld runs out of memory space while
linking a large executable.

--no-warn-mismatch
Normally ld will give an error if you try to link together input files that are
mismatched for some reason, perhaps because they have been compiled for different
processors or for different endiannesses.    This option tells ld that it should silently
permit such possible errors.    This option should only be used with care, in cases
when you have taken some special action that ensures that the linker errors are
inappropriate.

--no-whole-archive

Turn off the effect of the --whole-archive option for subsequent archive files.

--noinhibit-exec
Retain the executable output file whenever it is still usable.    Normally, the linker will
not produce an output file if it encounters errors during the link process; it exits
without writing an output file when it issues any error whatsoever.

--oformat output-format
ld may be configured to support more than one kind of object file.    If your ld is
configured this way, you can use the --oformat option to specify the binary format
for the output object file.    Even when ld is configured to support alternative object
formats, you don't usually need to specify this, as ld should be configured to produce
as a default output format the most usual format on each machine.    output-format is
a text string, the name of a particular format supported by the BFD libraries.    (You
can list the available binary formats with objdump -i.)    The script command
OUTPUT_FORMAT can also specify the output format, but this option overrides it.    See
BFD.   

-qmagic
This option is ignored for Linux compatibility.

-Qy
This option is ignored for SVR4 compatibility.

--relax
An option with machine dependent effects.    This option is only supported on a few
targets.    See ld and the H8/300 .    See ld and the Intel 960 family .   

On some platforms, the --relax option performs global optimizations that become
possible when the linker resolves addressing in the program, such as relaxing address
modes and synthesizing new instructions in the output object file.

On platforms where this is not supported, --relax is accepted, but ignored.   

--retain-symbols-file filename
Retain only the symbols listed in the file filename, discarding all others.    filename is
simply a flat file, with one symbol name per line.    This option is especially useful in
environments (such as VxWorks) where a large global symbol table is accumulated
gradually, to conserve run-time memory.

--retain-symbols-file does not discard undefined symbols, or symbols needed for
relocations.

You may only specify --retain-symbols-file once in the command line.    It
overrides -s and -S.

-rpath dir
Add a directory to the runtime library search path.    This is used when linking an ELF
executable with shared objects.    All -rpath arguments are concatenated and passed
to the runtime linker, which uses them to locate shared objects at runtime.    The -
rpath option is also used when locating shared objects which are needed by shared
objects explicitly included in the link; see the description of the -rpath-link option.   
If -rpath is not used when linking an ELF executable, the contents of the
environment variable LD_RUN_PATH will be used if it is defined.

The -rpath option may also be used on SunOS.    By default, on SunOS, the linker will
form a runtime search patch out of all the -L options it is given.    If a -rpath option is
used, the runtime search path will be formed exclusively using the -rpath options,
ignoring the -L options.    This can be useful when using gcc, which adds many -L
options which may be on NFS mounted filesystems.

For compatibility with other ELF linkers, if the -R option is followed by a directory
name, rather than a file name, it is treated as the -rpath option.   

-rpath-link DIR
When using ELF or SunOS, one shared library may require another.    This happens
when an ld -shared link includes a shared library as one of the input files.

When the linker encounters such a dependency when doing a non-shared, non-
relocateable link, it will automatically try to locate the required shared library and
include it in the link, if it is not included explicitly.    In such a case, the -rpath-link
option specifies the first set of directories to search.    The -rpath-link option may
specify a sequence of directory names either by specifying a list of names separated
by colons, or by appearing multiple times.

The linker uses the following search paths to locate required shared libraries.   
1. Any directories specified by -rpath-link options.

2. Any directories specified by -rpath options.    The difference between -rpath
and -rpath-link is that directories specified by -rpath options are included
in the executable and used at runtime, whereas the -rpath-link option is
only effective at link time.

3. On an ELF system, if the -rpath and rpath-link options were not used,
search the contents of the environment variable LD_RUN_PATH.

4. On SunOS, if the -rpath option was not used, search any directories specified
using -L options.

5. For a native linker, the contents of the environment variable
LD_LIBRARY_PATH.

6. The default directories, normally /lib and /usr/lib.

If the required shared library is not found, the linker will issue a warning and continue

with the link.   

-shared
-Bshareable

Create a shared library.    This is currently only supported on ELF, XCOFF and SunOS
platforms.    On SunOS, the linker will automatically create a shared library if the -e
option is not used and there are undefined symbols in the link.

--sort-common
This option tells ld to sort the common symbols by size when it places them in the
appropriate output sections.    First come all the one byte symbols, then all the two
bytes, then all the four bytes, and then everything else.    This is to prevent gaps
between symbols due to alignment constraints.

--split-by-file
Similar to --split-by-reloc but creates a new output section for each input file.

--split-by-reloc count
Trys to creates extra sections in the output file so that no single output section in the
file contains more than count relocations.    This is useful when generating huge
relocatable for downloading into certain real time kernels with the COFF object file
format; since COFF cannot represent more than 65535 relocations in a single section. 
Note that this will fail to work with object file formats which do not support arbitrary
sections.    The linker will not split up individual input sections for redistribution, so if a
single input section contains more than count relocations one output section will
contain that many relocations.

--stats
Compute and display statistics about the operation of the linker, such as execution
time and memory usage.

--traditional-format
For some targets, the output of ld is different in some ways from the output of some
existing linker.    This switch requests ld to use the traditional format instead.

For example, on SunOS, ld combines duplicate entries in the symbol string table.   
This can reduce the size of an output file with full debugging information by over 30
percent.    Unfortunately, the SunOS dbx program can not read the resulting program
(gdb has no trouble).    The --traditional-format switch tells ld to not combine
duplicate entries.

-Tbss org
-Tdata org

-Ttext org
Use org as the starting address for--respectively--the bss, data, or the text segment
of the output file.    org must be a single hexadecimal integer; for compatibility with
other linkers, you may omit the leading 0x usually associated with hexadecimal
values.

-Ur
For anything other than C++ programs, this option is equivalent to -r: it generates
relocatable output--i.e., an output file that can in turn serve as input to ld.    When
linking C++ programs, -Ur does resolve references to constructors, unlike -r.    It
does not work to use -Ur on files that were themselves linked with -Ur; once the
constructor table has been built, it cannot be added to.    Use -Ur only for the last
partial link, and -r for the others.

--verbose
Display the version number for ld and list the linker emulations supported.    Display
which input files can and cannot be opened.    Display the linker script if using a
default builtin script.

--version-script=version-scriptfile
Specify the name of a version script to the linker.    This is typically used when
creating shared libraries to specify additional information about the version heirarchy
for the library being created.    This option is only meaningful on ELF platforms which
support shared libraries.    See Version Script.

--warn-common
Warn when a common symbol is combined with another common symbol or with a
symbol definition.    Unix linkers allow this somewhat sloppy practice, but linkers on
some other operating systems do not.    This option allows you to find potential
problems from combining global symbols.    Unfortunately, some C libraries use this
practice, so you may get some warnings about symbols in the libraries as well as in
your programs.

There are three kinds of global symbols, illustrated here by C examples:

int i = 1;
A definition, which goes in the initialized data section of the output file.

extern int i;
An undefined reference, which does not allocate space.    There must be either
a definition or a common symbol for the variable somewhere.

int i;
A common symbol.    If there are only (one or more) common symbols for a variable, it
goes in the uninitialized data area of the output file.    The linker merges multiple
common symbols for the same variable into a single symbol.    If they are of different
sizes, it picks the largest size.    The linker turns a common symbol into a declaration,

if there is a definition of the same variable.   

The --warn-common option can produce five kinds of warnings.    Each warning
consists of a pair of lines: the first describes the symbol just encountered, and the
second describes the previous symbol encountered with the same name.    One or
both of the two symbols will be a common symbol.

1. Turning a common symbol into a reference, because there is already a
definition for the symbol.   

file(section): warning: common of `symbol'
      overridden by definition
file(section): warning: defined here

2. Turning a common symbol into a reference, because a later definition for the
symbol is encountered.    This is the same as the previous case, except that
the symbols are encountered in a different order.   

file(section): warning: definition of `symbol'
      overriding common
file(section): warning: common is here

3. Merging a common symbol with a previous same-sized common symbol.   
file(section): warning: multiple common

      of `symbol'
file(section): warning: previous common is here

4. Merging a common symbol with a previous larger common symbol.   
file(section): warning: common of `symbol'

      overridden by larger common
file(section): warning: larger common is here

5. Merging a common symbol with a previous smaller common symbol.    This is
the same as the previous case, except that the symbols are encountered in a
different order.   

file(section): warning: common of `symbol'
      overriding smaller common
file(section): warning: smaller common is here

--warn-constructors
Warn if any global constructors are used.    This is only useful for a few object file
formats.    For formats like COFF or ELF, the linker can not detect the use of global
constructors.

--warn-multiple-gp
Warn if multiple global pointer values are required in the output file.    This is only
meaningful for certain processors, such as the Alpha.    Specifically, some processors
put large-valued constants in a special section.    A special register (the global
pointer) points into the middle of this section, so that constants can be loaded
efficiently via a base-register relative addressing mode.    Since the offset in base-
register relative mode is fixed and relatively small (e.g., 16 bits), this limits the
maximum size of the constant pool.    Thus, in large programs, it is often necessary to
use multiple global pointer values in order to be able to address all possible

constants.    This option causes a warning to be issued whenever this case occurs.

--warn-once
Only warn once for each undefined symbol, rather than once per module which refers
to it.

--warn-section-align
Warn if the address of an output section is changed because of alignment.    Typically,
the alignment will be set by an input section.    The address will only be changed if it
not explicitly specified; that is, if the SECTIONS command does not specify a start
address for the section (see SECTIONS).

--whole-archive
For each archive mentioned on the command line after the --whole-archive option,
include every object file in the archive in the link, rather than searching the archive
for the required object files.    This is normally used to turn an archive file into a
shared library, forcing every object to be included in the resulting shared library.   
This option may be used more than once.

--wrap symbol
Use a wrapper function for symbol.    Any undefined reference to symbol will be
resolved to __wrap_symbol.    Any undefined reference to __real_symbol will be
resolved to symbol.

This can be used to provide a wrapper for a system function.    The wrapper function
should be called __wrap_symbol.    If it wishes to call the system function, it should
call __real_symbol.

Here is a trivial example:

void *
__wrap_malloc (int c)
{
 printf ("malloc called with %ld\n", c);
 return __real_malloc (c);
}

If you link other code with this file using --wrap malloc, then all calls to malloc will
call the function __wrap_malloc instead.    The call to __real_malloc in
__wrap_malloc will call the real malloc function.

You may wish to provide a __real_malloc function as well, so that links without the
--wrap option will succeed.    If you do this, you should not put the definition of
__real_malloc in the same file as __wrap_malloc; if you do, the assembler may
resolve the call before the linker has a chance to wrap it to malloc.

Node: Environment, Next: , Prev: Options, Up: Invocation

Environment Variables
You can change the behavior of ld with the environment variables GNUTARGET and
LDEMULATION.

GNUTARGET determines the input-file object format if you don't use -b (or its synonym --
format).    Its value should be one of the BFD names for an input format (see BFD).    If there
is no GNUTARGET in the environment, ld uses the natural format of the target. If GNUTARGET is
set to default then BFD attempts to discover the input format by examining binary input
files; this method often succeeds, but there are potential ambiguities, since there is no
method of ensuring that the magic number used to specify object-file formats is unique.   
However, the configuration procedure for BFD on each system places the conventional
format for that system first in the search-list, so ambiguities are resolved in favor of
convention.

LDEMULATION determines the default emulation if you don't use the -m option.    The
emulation can affect various aspects of linker behaviour, particularly the default linker script.
You can list the available emulations with the --verbose or -V options.    If the -m option is
not used, and the LDEMULATION environment variable is not defined, the default emulation
depends upon how the linker was configured.   

Node: Commands, Next: Machine Dependent, Prev: Invocation, Up: Top

Command Language
The command language provides explicit control over the link process, allowing complete
specification of the mapping between the linker's input files and its output.    It controls:
· input files

· file formats

· output file layout

· addresses of sections

· placement of common blocks

You may supply a command file (also known as a linker script) to the linker either explicitly
through the -T option, or implicitly as an ordinary file.    Normally you should use the -T
option.    An implicit linker script should only be used when you want to augment, rather than
replace, the default linker script; typically an implicit linker script would consist only of INPUT
or GROUP commands.

If the linker opens a file which it cannot recognize as a supported object or archive format,
nor as a linker script, it reports an error.

* Menu:

Scripts Linker Scripts
Expressions Expressions
MEMORY MEMORY Command
SECTIONS SECTIONS Command
PHDRS PHDRS Command
Entry Point The Entry Point
Version Script Version Script
Option Commands Option Commands

Node: Scripts, Next: Expressions, Prev: , Up: Commands

Linker Scripts
The ld command language is a collection of statements; some are simple keywords setting a
particular option, some are used to select and group input files or name output files; and two
statement types have a fundamental and pervasive impact on the linking process.

The most fundamental command of the ld command language is the SECTIONS command
(see SECTIONS).    Every meaningful command script must have a SECTIONS command: it
specifies a "picture" of the output file's layout, in varying degrees of detail.    No other
command is required in all cases.

The MEMORY command complements SECTIONS by describing the available memory in the
target architecture.    This command is optional; if you don't use a MEMORY command, ld
assumes sufficient memory is available in a contiguous block for all output.    See MEMORY.

You may include comments in linker scripts just as in C: delimited by /* and */.    As in C,
comments are syntactically equivalent to whitespace.

Node: Expressions, Next: MEMORY, Prev: Scripts, Up: Commands

Expressions
Many useful commands involve arithmetic expressions.    The syntax for expressions in the
command language is identical to that of C expressions, with the following features:
· All expressions evaluated as integers and are of "long" or "unsigned long" type.

· All constants are integers.

· All of the C arithmetic operators are provided.

· You may reference, define, and create global variables.

· You may call special purpose built-in functions.   

* Menu:

Integers Integers
Symbols Symbol Names
Location Counter The Location Counter
Operators Operators
Evaluation Evaluation
Assignment Assignment: Defining Symbols
Arithmetic Functions Built-In Functions
Semicolons Semicolon Usage

Node: Integers, Next: Symbols, Prev: , Up: Expressions

Integers
An octal integer is 0 followed by zero or more of the octal digits (01234567).   

_as_octal = 0157255;

A decimal integer starts with a non-zero digit followed by zero or more digits (0123456789).   
_as_decimal = 57005;

A hexadecimal integer is 0x or 0X followed by one or more hexadecimal digits chosen from
0123456789abcdefABCDEF.   

_as_hex = 0xdead;

To write a negative integer, use the prefix operator - (see Operators).   
_as_neg = -57005;

Additionally the suffixes K and M may be used to scale a constant by 1024 or 1024*1024
respectively. For example, the following all refer to the same quantity:

 _fourk_1 = 4K;
 _fourk_2 = 4096;
 _fourk_3 = 0x1000;

Node: Symbols, Next: Location Counter, Prev: Integers, Up: Expressions

Symbol Names
Unless quoted, symbol names start with a letter, underscore, or point and may include any
letters, underscores, digits, points, and hyphens.    Unquoted symbol names must not conflict
with any keywords.    You can specify a symbol which contains odd characters or has the
same name as a keyword, by surrounding the symbol name in double quotes:

 "SECTION" = 9;
 "with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit symbols
with spaces.    For example, A-B is one symbol, whereas A - B is an expression involving
subtraction.

Node: Location Counter, Next: Operators, Prev: Symbols, Up: Expressions

The Location Counter
The special linker variable "dot" . always contains the current output location counter. Since
the . always refers to a location in an output section, it must always appear in an expression
within a SECTIONS command. The . symbol may appear anywhere that an ordinary symbol is
allowed in an expression, but its assignments have a side effect. Assigning a value to the .
symbol will cause the location counter to be moved.    This may be used to create holes in
the output section.    The location counter may never be moved backwards.   

SECTIONS
{
 output :
 {
 file1(.text)
 . = . + 1000;
 file2(.text)
 . += 1000;
 file3(.text)
 } = 0x1234;
}

In the previous example, file1 is located at the beginning of the output section, then there
is a 1000 byte gap.    Then file2 appears, also with a 1000 byte gap following before file3
is loaded.    The notation = 0x1234 specifies what data to write in the gaps (see Section
Options).

Node: Operators, Next: Evaluation, Prev: Location Counter, Up: Expressions

Operators
The linker recognizes    the standard C set of arithmetic operators, with the standard bindings
and precedence levels:

precedence associativity Operators Notes
(highest)
1 left ! - ~ (1)
2 left * / %
3 left + -
4 left >> <<
5 left == != > < <= >=
6 left &
7 left |
8 left &&
9 left ||
10 right ? :
11 right &= += -= *= /= (2)
(lowest)

Notes: (1) Prefix operators (2) See Assignment.   

Node: Evaluation, Next: Assignment, Prev: Operators, Up: Expressions

Evaluation
The linker uses "lazy evaluation" for expressions; it only calculates an expression when
absolutely necessary.    The linker needs the value of the start address, and the lengths of
memory regions, in order to do any linking at all; these values are computed as soon as
possible when the linker reads in the command file.    However, other values (such as symbol
values) are not known or needed until after storage allocation.    Such values are evaluated
later, when other information (such as the sizes of output sections) is available for use in the
symbol assignment expression.

Node: Assignment, Next: Arithmetic Functions, Prev: Evaluation, Up: Expressions

Assignment: Defining Symbols
You may create global symbols, and assign values (addresses) to global symbols, using any
of the C assignment operators:

symbol = expression ;
symbol &= expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;
Two things distinguish assignment from other operators in ld expressions.   
· Assignment may only be used at the root of an expression; a=b+3; is allowed, but

a+b=3; is an error.

· You must place a trailing semicolon (";") at the end of an assignment statement.   

Assignment statements may appear:
· as commands in their own right in an ld script; or

· as independent statements within a SECTIONS command; or

· as part of the contents of a section definition in a SECTIONS command.   

The first two cases are equivalent in effect--both define a symbol with an absolute address.   
The last case defines a symbol whose address is relative to a particular section (see
SECTIONS).

When a linker expression is evaluated and assigned to a variable, it is given either an
absolute or a relocatable type. An absolute expression type is one in which the symbol
contains the value that it will have in the output file; a relocatable expression type is one in
which the value is expressed as a fixed offset from the base of a section.

The type of the expression is controlled by its position in the script file.    A symbol assigned
within a section definition is created relative to the base of the section; a symbol assigned in
any other place is created as an absolute symbol. Since a symbol created within a section
definition is relative to the base of the section, it will remain relocatable if relocatable output
is requested.    A symbol may be created with an absolute value even when assigned to
within a section definition by using the absolute assignment function ABSOLUTE.    For
example, to create an absolute symbol whose address is the last byte of an output section
named .data:

SECTIONS{ ...
 .data :
 {
 *(.data)
 _edata = ABSOLUTE(.) ;
 }
... }

The linker tries to put off the evaluation of an assignment until all the terms in the source
expression are known (see Evaluation).    For instance, the sizes of sections cannot be known

until after allocation, so assignments dependent upon these are not performed until after
allocation. Some expressions, such as those depending upon the location counter "dot", .
must be evaluated during allocation. If the result of an expression is required, but the value
is not available, then an error results.    For example, a script like the following

SECTIONS { ...
 text 9+this_isnt_constant :
 { ...
 }
... }

will cause the error message "Non constant expression for initial address".

In some cases, it is desirable for a linker script to define a symbol only if it is referenced, and
only if it is not defined by any object included in the link.    For example, traditional linkers
defined the symbol etext.    However, ANSI C requires that the user be able to use etext as
a function name without encountering an error.    The PROVIDE keyword may be used to
define a symbol, such as etext, only if it is referenced but not defined.    The syntax is
PROVIDE(symbol = expression).

Node: Arithmetic Functions, Next: Semicolons, Prev: Assignment, Up: Expressions

Arithmetic Functions
The command language includes a number of built-in functions for use in link script
expressions.   

ABSOLUTE(exp)
Return the absolute (non-relocatable, as opposed to non-negative) value of the
expression exp.    Primarily useful to assign an absolute value to a symbol within a
section definition, where symbol values are normally section-relative.

ADDR(section)
Return the absolute address of the named section.    Your script must previously have
defined the location of that section. In the following example, symbol_1 and
symbol_2 are assigned identical values:

SECTIONS{ ...
 .output1 :
 {
 start_of_output_1 = ABSOLUTE(.);
 ...
 }
 .output :
 {
 symbol_1 = ADDR(.output1);
 symbol_2 = start_of_output_1;
 }
... }

LOADADDR(section)
Return the absolute load address of the named section.    This is normally the same as
ADDR, but it may be different if the AT keyword is used in the section definition (see
Section Options).

ALIGN(exp)
Return the result of the current location counter (.) aligned to the next exp boundary. 
exp must be an expression whose value is a power of two.    This is equivalent to

(. + exp - 1) & ~(exp - 1)

ALIGN doesn't change the value of the location counter--it just does arithmetic on it.   
As an example, to align the output .data section to the next 0x2000 byte boundary
after the preceding section and to set a variable within the section to the next 0x8000
boundary after the input sections:

SECTIONS{ ...
 .data ALIGN(0x2000): {
 *(.data)
 variable = ALIGN(0x8000);
 }
... }

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional start attribute of a section definition (see Section Options).    The
second use simply defines the value of a variable.

The built-in NEXT is closely related to ALIGN.

DEFINED(symbol)
Return 1 if symbol is in the linker global symbol table and is defined, otherwise return
0.    You can use this function to provide default values for symbols.    For example, the
following command-file fragment shows how to set a global symbol begin to the first
location in the .text section--but if a symbol called begin already existed, its value is
preserved:

SECTIONS{ ...
 .text : {
 begin = DEFINED(begin) ? begin : . ;
 ...
 }
... }

NEXT(exp)
Return the next unallocated address that is a multiple of exp.    This function is closely
related to ALIGN(exp); unless you use the MEMORY command to define discontinuous
memory for the output file, the two functions are equivalent.

SIZEOF(section)
Return the size in bytes of the named section, if that section has been allocated.    In
the following example, symbol_1 and symbol_2 are assigned identical values:

SECTIONS{ ...
 .output {
 .start = . ;
 ...
 .end = . ;
 }
 symbol_1 = .end - .start ;
 symbol_2 = SIZEOF(.output);
... }

SIZEOF_HEADERS
sizeof_headers

Return the size in bytes of the output file's headers.    You can use this number as the
start address of the first section, if you choose, to facilitate paging.

MAX(exp1, exp2)
Returns the maximum of exp1 and exp2.

MIN(exp1, exp2)
Returns the minimum of exp1 and exp2.

Node: Semicolons, Next: , Prev: Arithmetic Functions, Up: Expressions

Semicolons
Semicolons (";") are required in the following places.    In all other places they can appear for
aesthetic reasons but are otherwise ignored.

Assignment
Semicolons must appear at the end of assignment expressions.    See Assignment

PHDRS
Semicolons must appear at the end of a PHDRS statement.    See PHDRS

Node: MEMORY, Next: SECTIONS, Prev: Expressions, Up: Commands

Memory Layout
The linker's default configuration permits allocation of all available memory.    You can
override this configuration by using the MEMORY command.    The MEMORY command describes
the location and size of blocks of memory in the target.    By using it carefully, you can
describe which memory regions may be used by the linker, and which memory regions it
must avoid.    The linker does not shuffle sections to fit into the available regions, but does
move the requested sections into the correct regions and issue errors when the regions
become too full.

A command file may contain at most one use of the MEMORY command; however, you can
define as many blocks of memory within it as you wish.    The syntax is:

MEMORY
 {
 name (attr) : ORIGIN = origin, LENGTH = len
 ...
 }

name
is a name used internally by the linker to refer to the region. Any symbol name may
be used.    The region names are stored in a separate name space, and will not
conflict with symbols, file names or section names.    Use distinct names to specify
multiple regions.

(attr)
is an optional list of attributes that specify whether to use a particular memory to
place sections that are not listed in the linker script.    Valid attribute lists must be
made up of the characters "ALIRWX" that match section attributes.    If you omit the
attribute list, you may omit the parentheses around it as well.    The attributes
currently supported are:

Letter
Section Attribute

R
Read-only sections.

W
Read/write sections.

X
Sections containing executable code.

A
Allocated sections.

I
Initialized sections.

L
Same as I.

!
Invert the sense of any of the following attributes.   

origin
is the start address of the region in physical memory.    It is an expression that must
evaluate to a constant before memory allocation is performed. The keyword ORIGIN
may be abbreviated to org or o (but not, for example, ORG).

len
is the size in bytes of the region (an expression).    The keyword LENGTH may be abbreviated
to len or l.   

For example, to specify that memory has two regions available for allocation--one starting at
0 for 256 kilobytes, and the other starting at 0x40000000 for four megabytes.    The rom
memory region will get all sections without an explicit memory register that are either read-
only or contain code, while the ram memory region will get the sections.

MEMORY
 {
 rom (rx) : ORIGIN = 0, LENGTH = 256K
 ram (!rx) : org = 0x40000000, l = 4M
 }

Once you have defined a region of memory named mem, you can direct specific output
sections there by using a command ending in >mem within the SECTIONS command (see
Section Options).    If the combined output sections directed to a region are too big for the
region, the linker will issue an error message.

Node: SECTIONS, Next: PHDRS, Prev: MEMORY, Up: Commands

Specifying Output Sections
The SECTIONS command controls exactly where input sections are placed into output
sections, their order in the output file, and to which output sections they are allocated.

You may use at most one SECTIONS command in a script file, but you can have as many
statements within it as you wish.    Statements within the SECTIONS command can do one of
three things:

· define the entry point;

· assign a value to a symbol;

· describe the placement of a named output section, and which input sections go into
it.   

You can also use the first two operations--defining the entry point and defining symbols--
outside the SECTIONS command: see Entry Point, and Assignment.    They are permitted here
as well for your convenience in reading the script, so that symbols and the entry point can
be defined at meaningful points in your output-file layout.

If you do not use a SECTIONS command, the linker places each input section into an
identically named output section in the order that the sections are first encountered in the
input files.    If all input sections are present in the first file, for example, the order of sections
in the output file will match the order in the first input file.

* Menu:

Section Definition Section Definitions
Section Placement Section Placement
Section Data Expressions Section Data Expressions
Section Options Optional Section Attributes
Overlays Overlays

Node: Section Definition, Next: Section Placement, Prev: , Up: SECTIONS

Section Definitions
The most frequently used statement in the SECTIONS command is the "section definition",
which specifies the properties of an output section: its location, alignment, contents, fill
pattern, and target memory region.    Most of these specifications are optional; the simplest
form of a section definition is

SECTIONS { ...
 secname : {
 contents
 }
... }

secname is the name of the output section, and contents a specification of what goes there--
for example, a list of input files or sections of input files (see Section Placement).    The
whitespace around secname is required, so that the section name is unambiguous.    The
other whitespace shown is optional.    You do need the colon : and the braces {}, however.

secname must meet the constraints of your output format.    In formats which only support a
limited number of sections, such as a.out, the name must be one of the names supported
by the format (a.out, for example, allows only .text, .data or .bss). If the output format
supports any number of sections, but with numbers and not names (as is the case for
Oasys), the name should be supplied as a quoted numeric string.    A section name may
consist of any sequence of characters, but any name which does not conform to the
standard ld symbol name syntax must be quoted.    See Symbol Names.

The special secname /DISCARD/ may be used to discard input sections.    Any sections which
are assigned to an output section named /DISCARD/ are not included in the final link output.

The linker will not create output sections which do not have any contents.    This is for
convenience when referring to input sections that may or may not exist.    For example,

.foo { *(.foo) }
will only create a .foo section in the output file if there is a .foo section in at least one input
file.

Node: Section Placement, Next: Section Data Expressions, Prev: Section Definition, Up:
SECTIONS

Section Placement
In a section definition, you can specify the contents of an output section by listing particular
input files, by listing particular input-file sections, or by a combination of the two.    You can
also place arbitrary data in the section, and define symbols relative to the beginning of the
section.

The contents of a section definition may include any of the following kinds of statement.   
You can include as many of these as you like in a single section definition, separated from
one another by whitespace.

filename
You may simply name a particular input file to be placed in the current output
section; all sections from that file are placed in the current section definition.    If the
file name has already been mentioned in another section definition, with an explicit
section name list, then only those sections which have not yet been allocated are
used.

To specify a list of particular files by name:
.data : { afile.o bfile.o cfile.o }

The example also illustrates that multiple statements can be included in the contents
of a section definition, since each file name is a separate statement.

filename(section)
filename(section , section, ...)
filename(section section ...)

You can name one or more sections from your input files, for insertion in the current
output section.    If you wish to specify a list of input-file sections inside the
parentheses, separate the section names with whitespace.

* (section)
* (section, section, ...)
* (section section ...)

Instead of explicitly naming particular input files in a link control script, you can refer
to all files from the ld command line: use * instead of a particular file name before
the parenthesized input-file section list.

If you have already explicitly included some files by name, * refers to all remaining
files--those whose places in the output file have not yet been defined.

For example, to copy sections 1 through 4 from an Oasys file into the .text section of
an a.out file, and sections 13 and 14 into the .data section:

SECTIONS {
 .text :{
 *("1" "2" "3" "4")
 }

 .data :{
 *("13" "14")
 }
}

[section ...] used to be accepted as an alternate way to specify named sections
from all unallocated input files.    Because some operating systems (VMS) allow
brackets in file names, that notation is no longer supported.

filename(COMMON)
*(COMMON)
Specify where in your output file to place uninitialized data with this notation.    *(COMMON)
by itself refers to all uninitialized data from all input files (so far as it is not yet allocated);
filename(COMMON) refers to uninitialized data from a particular file.    Both are special cases
of the general mechanisms for specifying where to place input-file sections: ld permits you
to refer to uninitialized data as if it were in an input-file section named COMMON, regardless of
the input file's format.   

In any place where you may use a specific file or section name, you may also use a wildcard
pattern.    The linker handles wildcards much as the Unix shell does.    A * character matches
any number of characters.    A ? character matches any single character.    The sequence
[chars] will match a single instance of any of the chars; the - character may be used to
specify a range of characters, as in [a-z] to match any lower case letter.    A \ character
may be used to quote the following character.

When a file name is matched with a wildcard, the wildcard characters will not match a /
character (used to separate directory names on Unix).    A pattern consisting of a single *
character is an exception; it will always match any file name.    In a section name, the
wildcard characters will match a / character.

Wildcards only match files which are explicitly specified on the command line.    The linker
does not search directories to expand wildcards.    However, if you specify a simple file
name--a name with no wildcard characters--in a linker script, and the file name is not also
specified on the command line, the linker will attempt to open the file as though it appeared
on the command line.

In the following example, the command script arranges the output file into three consecutive
sections, named .text, .data, and .bss, taking the input for each from the correspondingly
named sections of all the input files:

SECTIONS {
 .text : { *(.text) }
 .data : { *(.data) }
 .bss : { *(.bss) *(COMMON) }
}

The following example reads all of the sections from file all.o and places them at the start
of output section outputa which starts at location 0x10000. All of section .input1 from file

foo.o follows immediately, in the same output section.    All of section .input2 from foo.o
goes into output section outputb, followed by section .input1 from foo1.o.    All of the
remaining .input1 and .input2 sections from any files are written to output section
outputc.

SECTIONS {
 outputa 0x10000 :
 {
 all.o
 foo.o (.input1)
 }
 outputb :
 {
 foo.o (.input2)
 foo1.o (.input1)
 }
 outputc :
 {
 *(.input1)
 *(.input2)
 }
}

This example shows how wildcard patterns might be used to partition files.    All .text
sections are placed in .text, and all .bss sections are placed in .bss.    For all files
beginning with an upper case character, the .data section is placed into .DATA; for all other
files, the .data section is placed into .data.

SECTIONS {
 .text : { *(.text) }
 .DATA : { [A-Z]*(.data) }
 .data : { *(.data) }
 .bss : { *(.bss) }
}

Node: Section Data Expressions, Next: Section Options, Prev: Section Placement, Up:
SECTIONS

Section Data Expressions
The foregoing statements arrange, in your output file, data originating from your input files.   
You can also place data directly in an output section from the link command script.    Most of
these additional statements involve expressions (see Expressions).    Although these
statements are shown separately here for ease of presentation, no such segregation is
needed within a section definition in the SECTIONS command; you can intermix them freely
with any of the statements we've just described.

CREATE_OBJECT_SYMBOLS
Create a symbol for each input file in the current section, set to the address of the
first byte of data written from that input file.    For instance, with a.out files it is
conventional to have a symbol for each input file.    You can accomplish this by
defining the output .text section as follows:

SECTIONS {
 .text 0x2020 :
 {
 CREATE_OBJECT_SYMBOLS
 *(.text)
 _etext = ALIGN(0x2000);
 }
 ...
}

If sample.ld is a file containing this script, and a.o, b.o, c.o, and d.o are four input
files with contents like the following--

/* a.c */

afunction() { }
int adata=1;
int abss;

ld -M -T sample.ld a.o b.o c.o d.o would create a map like this, containing symbols
matching the object file names:

00000000 A __DYNAMIC
00004020 B _abss
00004000 D _adata
00002020 T _afunction
00004024 B _bbss
00004008 D _bdata
00002038 T _bfunction
00004028 B _cbss
00004010 D _cdata
00002050 T _cfunction
0000402c B _dbss
00004018 D _ddata
00002068 T _dfunction
00004020 D _edata
00004030 B _end
00004000 T _etext
00002020 t a.o
00002038 t b.o
00002050 t c.o
00002068 t d.o

symbol = expression ;
symbol f= expression ;
symbol is any symbol name (see Symbols).    "f=" refers to any of the operators &= += -= *=
/= which combine arithmetic and assignment.

When you assign a value to a symbol within a particular section definition, the value
is relative to the beginning of the section (see Assignment).    If you write

SECTIONS {
 abs = 14 ;
 ...
 .data : { ... rel = 14 ; ... }
 abs2 = 14 + ADDR(.data);
 ...
}

abs and rel do not have the same value; rel has the same value as abs2.

BYTE(expression)
SHORT(expression)
LONG(expression)
QUAD(expression)
SQUAD(expression)

By including one of these four statements in a section definition, you can explicitly
place one, two, four, eight unsigned, or eight signed bytes (respectively) at the
current address of that section.    When using a 64 bit host or target, QUAD and SQUAD
are the same.    When both host and target are 32 bits, QUAD uses an unsigned 32 bit
value, and SQUAD sign extends the value.    Both will use the correct endianness when
writing out the value.

Multiple-byte quantities are represented in whatever byte order is appropriate for the

output file format (see BFD).   

FILL(expression)
Specify the "fill pattern" for the current section.    Any otherwise unspecified regions of
memory within the section (for example, regions you skip over by assigning a new value to
the location counter .) are filled with the two least significant bytes from the expression
argument.    A FILL statement covers memory locations after the point it occurs in the
section definition; by including more than one FILL statement, you can have different fill
patterns in different parts of an output section.   

Node: Section Options, Next: Overlays, Prev: Section Data Expressions, Up: SECTIONS

Optional Section Attributes
Here is the full syntax of a section definition, including all the optional portions:

SECTIONS {
...
secname start BLOCK(align) (NOLOAD) : AT (ldadr)
 { contents } >region :phdr =fill
...
}

secname and contents are required.    See Section Definition, and Section Placement, for
details on contents.    The remaining elements--start, BLOCK(align), (NOLOAD), AT (
ldadr), >region, :phdr, and =fill--are all optional.

start
You can force the output section to be loaded at a specified address by specifying
start immediately following the section name.    start can be represented as any
expression. The following example generates section output at location 0x40000000:

SECTIONS {
 ...
 output 0x40000000: {
 ...
 }
 ...
}

BLOCK(align)
You can include BLOCK() specification to advance the location counter . prior to the
beginning of the section, so that the section will begin at the specified alignment.   
align is an expression.

(NOLOAD)
The (NOLOAD) directive will mark a section to not be loaded at run time.    The linker
will process the section normally, but will mark it so that a program loader will not
load it into memory.    For example, in the script sample below, the ROM section is
addressed at memory location 0 and does not need to be loaded when the program is
run.    The contents of the ROM section will appear in the linker output file as usual.

SECTIONS {
 ROM 0 (NOLOAD) : { ... }
 ...
}

AT (ldadr)
The expression ldadr that follows the AT keyword specifies the load address of the
section.    The default (if you do not use the AT keyword) is to make the load address
the same as the relocation address.    This feature is designed to make it easy to build
a ROM image.    For example, this SECTIONS definition creates two output sections:
one called .text, which starts at 0x1000, and one called .mdata, which is loaded at
the end of the .text section even though its relocation address is 0x2000.    The
symbol _data is defined with the value 0x2000:

SECTIONS
 {
 .text 0x1000 : { *(.text) _etext = . ; }
 .mdata 0x2000 :
 AT (ADDR(.text) + SIZEOF (.text))
 { _data = . ; *(.data); _edata = . ; }
 .bss 0x3000 :
 { _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}
}

The run-time initialization code (for C programs, usually crt0) for use with a ROM
generated this way has to include something like the following, to copy the initialized
data from the ROM image to its runtime address:

char *src = _etext;
char *dst = _data;

/* ROM has data at end of text; copy it. */
while (dst < _edata) {
 *dst++ = *src++;
}

/* Zero bss */
for (dst = _bstart; dst< _bend; dst++)
 *dst = 0;

>region
Assign this section to a previously defined region of memory.    See MEMORY.

:phdr
Assign this section to a segment described by a program header.    See PHDRS.    If a
section is assigned to one or more segments, then all subsequent allocated sections
will be assigned to those segments as well, unless they use an explicitly :phdr
modifier.    To prevent a section from being assigned to a segment when it would
normally default to one, use :NONE.

=fill
Including =fill in a section definition specifies the initial fill value for that section.   
You may use any expression to specify fill.    Any unallocated holes in the current
output section when written to the output file will be filled with the two least

significant bytes of the value, repeated as necessary.    You can also change the fill
value with a FILL statement in the contents of a section definition.

Node: Overlays, Next: , Prev: Section Options, Up: SECTIONS

Overlays
The OVERLAY command provides an easy way to describe sections which are to be loaded as
part of a single memory image but are to be run at the same memory address.    At run time,
some sort of overlay manager will copy the overlaid sections in and out of the runtime
memory address as required, perhaps by simply manipulating addressing bits.    This
approach can be useful, for example, when a certain region of memory is faster than
another.

The OVERLAY command is used within a SECTIONS command.    It appears as follows:
OVERLAY start : [NOCROSSREFS] AT (ldaddr)
 {
 secname1 { contents } :phdr =fill
 secname2 { contents } :phdr =fill
 ...
 } >region :phdr =fill

Everything is optional except OVERLAY (a keyword), and each section must have a name
(secname1 and secname2 above).    The section definitions within the OVERLAY construct are
identical to those within the general SECTIONS contruct (see SECTIONS), except that no
addresses and no memory regions may be defined for sections within an OVERLAY.

The sections are all defined with the same starting address.    The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load address
used for the OVERLAY as a whole (as with normal section definitions, the load address is
optional, and defaults to the start address; the start address is also optional, and defaults to
.).

If the NOCROSSREFS keyword is used, and there any references among the sections, the linker
will report an error.    Since the sections all run at the same address, it normally does not
make sense for one section to refer directly to another.    See NOCROSSREFS.

For each section within the OVERLAY, the linker automatically defines two symbols.    The
symbol __load_start_secname is defined as the starting load address of the section.    The
symbol __load_stop_secname is defined as the final load address of the section.    Any
characters within secname which are not legal within C identifiers are removed.    C (or
assembler) code may use these symbols to move the overlaid sections around as necessary.

At the end of the overlay, the value of . is set to the start address of the overlay plus the
size of the largest section.

Here is an example.    Remember that this would appear inside a SECTIONS construct.

OVERLAY 0x1000 : AT (0x4000)
 {
 .text0 { o1/*.o(.text) }
 .text1 { o2/*.o(.text) }
 }

This will define both .text0 and .text1 to start at address 0x1000.    .text0 will be loaded
at address 0x4000, and .text1 will be loaded immediately after .text0.    The following
symbols will be defined: __load_start_text0, __load_stop_text0, __load_start_text1,

__load_stop_text1.

C code to copy overlay .text1 into the overlay area might look like the following.

extern char __load_start_text1, __load_stop_text1;
 memcpy ((char *) 0x1000, &__load_start_text1,
 &__load_stop_text1 - &__load_start_text1);

Note that the OVERLAY command is just syntactic sugar, since everything it does can be
done using the more basic commands.    The above example could have been written
identically as follows.

.text0 0x1000 : AT (0x4000) { o1/*.o(.text) }
 __load_start_text0 = LOADADDR (.text0);
 __load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);
 .text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
 __load_start_text1 = LOADADDR (.text1);
 __load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);
 . = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

Node: PHDRS, Next: Entry Point, Prev: SECTIONS, Up: Commands

ELF Program Headers
The ELF object file format uses "program headers", which are read by the system loader and
describe how the program should be loaded into memory.    These program headers must be
set correctly in order to run the program on a native ELF system.    The linker will create
reasonable program headers by default.    However, in some cases, it is desirable to specify
the program headers more precisely; the PHDRS command may be used for this purpose.   
When the PHDRS command is used, the linker will not generate any program headers itself.

The PHDRS command is only meaningful when generating an ELF output file.    It is ignored in
other cases.    This manual does not describe the details of how the system loader interprets
program headers; for more information, see the ELF ABI.    The program headers of an ELF
file may be displayed using the -p option of the objdump command.

This is the syntax of the PHDRS command.    The words PHDRS, FILEHDR, AT, and FLAGS are
keywords.

PHDRS
{
 name type [FILEHDR] [PHDRS] [AT (address)]
 [FLAGS (flags)] ;
}

The name is used only for reference in the SECTIONS command of the linker script.    It does
not get put into the output file.

Certain program header types describe segments of memory which are loaded from the file
by the system loader.    In the linker script, the contents of these segments are specified by
directing allocated output sections to be placed in the segment.    To do this, the command
describing the output section in the SECTIONS command should use :name, where name is
the name of the program header as it appears in the PHDRS command.    See Section Options.

It is normal for certain sections to appear in more than one segment.    This merely implies
that one segment of memory contains another.    This is specified by repeating :name, using
it once for each program header in which the section is to appear.

If a section is placed in one or more segments using :name, then all subsequent allocated
sections which do not specify :name are placed in the same segments.    This is for
convenience, since generally a whole set of contiguous sections will be placed in a single
segment.    To prevent a section from being assigned to a segment when it would normally
default to one, use :NONE.

The FILEHDR and PHDRS keywords which may appear after the program header type also
indicate contents of the segment of memory.    The FILEHDR keyword means that the
segment should include the ELF file header.    The PHDRS keyword means that the segment
should include the ELF program headers themselves.

The type may be one of the following.    The numbers indicate the value of the keyword.

PT_NULL (0)
Indicates an unused program header.

PT_LOAD (1)
Indicates that this program header describes a segment to be loaded from the file.

PT_DYNAMIC (2)
Indicates a segment where dynamic linking information can be found.

PT_INTERP (3)
Indicates a segment where the name of the program interpreter may be found.

PT_NOTE (4)
Indicates a segment holding note information.

PT_SHLIB (5)
A reserved program header type, defined but not specified by the ELF ABI.

PT_PHDR (6)
Indicates a segment where the program headers may be found.

expression
An expression giving the numeric type of the program header.    This may be used for types
not defined above.   

It is possible to specify that a segment should be loaded at a particular address in memory.   
This is done using an AT expression.    This is identical to the AT command used in the
SECTIONS command (see Section Options).    Using the AT command for a program header
overrides any information in the SECTIONS command.

Normally the segment flags are set based on the sections.    The FLAGS keyword may be used
to explicitly specify the segment flags.    The value of flags must be an integer.    It is used to
set the p_flags field of the program header.

Here is an example of the use of PHDRS.    This shows a typical set of program headers used
on a native ELF system.

PHDRS
{
 headers PT_PHDR PHDRS ;
 interp PT_INTERP ;
 text PT_LOAD FILEHDR PHDRS ;
 data PT_LOAD ;
 dynamic PT_DYNAMIC ;
}

SECTIONS
{
 . = SIZEOF_HEADERS;
 .interp : { *(.interp) } :text :interp
 .text : { *(.text) } :text
 .rodata : { *(.rodata) } /* defaults to :text */
 ...
 . = . + 0x1000; /* move to a new page in memory */
 .data : { *(.data) } :data
 .dynamic : { *(.dynamic) } :data :dynamic
 ...
}

Node: Entry Point, Next: Version Script, Prev: PHDRS, Up: Commands

The Entry Point
The linker command language includes a command specifically for defining the first
executable instruction in an output file (its "entry point").    Its argument is a symbol name:

ENTRY(symbol)

Like symbol assignments, the ENTRY command may be placed either as an independent
command in the command file, or among the section definitions within the SECTIONS
command--whatever makes the most sense for your layout.

ENTRY is only one of several ways of choosing the entry point.    You may indicate it in any of
the following ways (shown in descending order of priority: methods higher in the list override
methods lower down).   
· the -e entry command-line option;

· the ENTRY(symbol) command in a linker control script;

· the value of the symbol start, if present;

· the address of the first byte of the .text section, if present;

· The address 0.   

For example, you can use these rules to generate an entry point with an assignment
statement: if no symbol start is defined within your input files, you can simply define it,
assigning it an appropriate value--

start = 0x2020;

The example shows an absolute address, but you can use any expression.    For example, if
your input object files use some other symbol-name convention for the entry point, you can
just assign the value of whatever symbol contains the start address to start:

start = other_symbol ;

Node: Version Script, Next: Option Commands, Prev: Entry Point, Up: Commands

Version Script
The linker command script includes a command specifically for specifying a version script,
and is only meaningful for ELF platforms that support shared libraries.    A version script can
be build directly into the linker script that you are using, or you can supply the version script
as just another input file to the linker at the time that you link.    The command script syntax
is:

VERSION { version script contents }
The version script can also be specified to the linker by means of the --version-script
linker command line option.    Version scripts are only meaningful when creating shared
libraries.

The format of the version script itself is identical to that used by Sun's linker in Solaris 2.5.   
Versioning is done by defining a tree of version nodes with the names and
interdependencies specified in the version script.    The version script can specify which
symbols are bound to which version nodes, and it can reduce a specified set of symbols to
local scope so that they are not globally visible outside of the shared library.

The easiest way to demonstrate the version script language is with a few examples.

VERS_1.1 {
 global:

 foo1;
 local:

 old*;
 original*;
 new*;

};

VERS_1.2 {
 foo2;

} VERS_1.1;

VERS_2.0 {
 bar1; bar2;

} VERS_1.2;

In this example, three version nodes are defined.    VERS_1.1 is the first version node
defined, and has no other dependencies.    The symbol foo1 is bound to this version node,
and a number of symbols that have appeared within various object files are reduced in
scope to local so that they are not visible outside of the shared library.

Next, the node VERS_1.2 is defined.    It depends upon VERS_1.1.    The symbol foo2 is bound
to this version node.

Finally, the node VERS_2.0 is defined.    It depends upon VERS_1.2.    The symbols bar1 and
bar2 are bound to this version node.

Symbols defined in the library which aren't specifically bound to a version node are
effectively bound to an unspecified base version of the library.    It is possible to bind all
otherwise unspecified symbols to a given version node using global: * somewhere in the
version script.

Lexically the names of the version nodes have no specific meaning other than what they
might suggest to the person reading them.    The 2.0 version could just as well have
appeared in between 1.1 and 1.2.    However, this would be a confusing way to write a
version script.

When you link an application against a shared library that has versioned symbols, the
application itself knows which version of each symbol it requires, and it also knows which
version nodes it needs from each shared library it is linked against.    Thus at runtime, the
dynamic loader can make a quick check to make sure that the libraries you have linked
against do in fact supply all of the version nodes that the application will need to resolve all
of the dynamic symbols.    In this way it is possible for the dynamic linker to know with
certainty that all external symbols that it needs will be resolvable without having to search
for each symbol reference.

The symbol versioning is in effect a much more sophisticated way of doing minor version
checking that SunOS does.    The fundamental problem that is being addressed here is that
typically references to external functions are bound on an as-needed basis, and are not all
bound when the application starts up.    If a shared library is out of date, a required interface
may be missing; when the application tries to use that interface, it may suddenly and
unexpectedly fail.    With symbol versioning, the user will get a warning when they start their
program if the libraries being used with the application are too old.

There are several GNU extensions to Sun's versioning approach.    The first of these is the
ability to bind a symbol to a version node in the source file where the symbol is defined
instead of in the versioning script.    This was done mainly to reduce the burden on the
library maintainer.    This can be done by putting something like:

__asm__(".symver original_foo,foo@VERS_1.1");

in the C source file.    This renamed the function original_foo to be an alias for foo bound
to the version node VERS_1.1.    The local: directive can be used to prevent the symbol
original_foo from being exported.

The second GNU extension is to allow multiple versions of the same function to appear in a
given shared library.    In this way an incompatible change to an interface can take place
without increasing the major version number of the shared library, while still allowing
applications linked against the old interface to continue to function.

This can only be accomplished by using multiple .symver directives in the assembler.    An
example of this would be:

__asm__(".symver original_foo,foo@");
__asm__(".symver old_foo,foo@VERS_1.1");
__asm__(".symver old_foo1,foo@VERS_1.2");
__asm__(".symver new_foo,foo@@VERS_2.0");

In this example, foo@ represents the symbol foo bound to the unspecified base version of
the symbol.    The source file that contains this example would define 4 C functions:
original_foo, old_foo, old_foo1, and new_foo.

When you have multiple definitions of a given symbol, there needs to be some way to
specify a default version to which external references to this symbol will be bound.    This can
be accomplished with the foo@@VERS_2.0 type of .symver directive.    Only one version of a
symbol can be declared 'default' in this manner - otherwise you would effectively have
multiple definitions of the same symbol.

If you wish to bind a reference to a specific version of the symbol within the shared library,
you can use the aliases of convenience (i.e. old_foo), or you can use the .symver directive
to specifically bind to an external version of the function in question.

Node: Option Commands, Next: , Prev: Version Script, Up: Commands

Option Commands
The command language includes a number of other commands that you can use for
specialized purposes.    They are similar in purpose to command-line options.

CONSTRUCTORS
When linking using the a.out object file format, the linker uses an unusual set
construct to support C++ global constructors and destructors.    When linking object
file formats which do not support arbitrary sections, such as ECOFF and XCOFF, the
linker will automatically recognize C++ global constructors and destructors by name. 
For these object file formats, the CONSTRUCTORS command tells the linker where this
information should be placed.    The CONSTRUCTORS command is ignored for other
object file formats.

The symbol __CTOR_LIST__ marks the start of the global constructors, and the
symbol __DTOR_LIST marks the end.    The first word in the list is the number of
entries, followed by the address of each constructor or destructor, followed by a zero
word.    The compiler must arrange to actually run the code.    For these object file
formats GNU C++ calls constructors from a subroutine __main; a call to __main is
automatically inserted into the startup code for main.    GNU C++ runs destructors
either by using atexit, or directly from the function exit.

For object file formats such as COFF or ELF which support multiple sections, GNU C++
will normally arrange to put the addresses of global constructors and destructors into
the .ctors and .dtors sections.    Placing the following sequence into your linker
script will build the sort of table which the GNU C++ runtime code expects to see.

 __CTOR_LIST__ = .;
 LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
 *(.ctors)
 LONG(0)
 __CTOR_END__ = .;
 __DTOR_LIST__ = .;
 LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
 *(.dtors)
 LONG(0)
 __DTOR_END__ = .;

Normally the compiler and linker will handle these issues automatically, and you will
not need to concern yourself with them.    However, you may need to consider this if
you are using C++ and writing your own linker scripts.

FLOAT
NOFLOAT

These keywords were used in some older linkers to request a particular math
subroutine library.    ld doesn't use the keywords, assuming instead that any
necessary subroutines are in libraries specified using the general mechanisms for
linking to archives; but to permit the use of scripts that were written for the older
linkers, the keywords FLOAT and NOFLOAT are accepted and ignored.

FORCE_COMMON_ALLOCATION
This command has the same effect as the -d command-line option: to make ld
assign space to common symbols even if a relocatable output file is specified (-r).

INCLUDE filename
Include the linker script filename at this point.    The file will be searched for in the
current directory, and in any directory specified with the -L option.    You can nest
calls to INCLUDE up to 10 levels deep.

INPUT (file, file, ...)
INPUT (file file ...)

Use this command to include binary input files in the link, without including them in a
particular section definition.    Specify the full name for each file, including .a if
required.

ld searches for each file through the archive-library search path, just as for files you
specify on the command line.    See the description of -L in Command Line Options.

If you use -lfile, ld will transform the name to libfile.a as with the command
line argument -l.

GROUP (file, file, ...)
GROUP (file file ...)

This command is like INPUT, except that the named files should all be archives, and
they are searched repeatedly until no new undefined references are created.    See
the description of -(in Command Line Options.

OUTPUT (filename)
Use this command to name the link output file filename.    The effect of
OUTPUT(filename) is identical to the effect of -o filename, which overrides it.    You
can use this command to supply a default output-file name other than a.out.

OUTPUT_ARCH (bfdname)
Specify a particular output machine architecture, with one of the names used by the
BFD back-end routines (see BFD).    This command is often unnecessary; the
architecture is most often set implicitly by either the system BFD configuration or as
a side effect of the OUTPUT_FORMAT command.

OUTPUT_FORMAT (bfdname)
When ld is configured to support multiple object code formats, you can use this

command to specify a particular output format.    bfdname is one of the names used
by the BFD back-end routines (see BFD).    The effect is identical to the effect of the
--oformat command-line option.    This selection affects only the output file; the
related command TARGET affects primarily input files.   

SEARCH_DIR (path)
Add path to the list of paths where ld looks for archive libraries.    SEARCH_DIR(path)
has the same effect as -Lpath on the command line.

STARTUP (filename)
Ensure that filename is the first input file used in the link process.

TARGET (format)
When ld is configured to support multiple object code formats, you can use this
command to change the input-file object code format (like the command-line option -
b or its synonym --format).    The argument format is one of the strings used by BFD
to name binary formats.    If TARGET is specified but OUTPUT_FORMAT is not, the last
TARGET argument is also used as the default format for the ld output file.    See BFD.

If you don't use the TARGET command, ld uses the value of the environment variable
GNUTARGET, if available, to select the output file format.    If that variable is also
absent, ld uses the default format configured for your machine in the BFD libraries.   

NOCROSSREFS (section section ...)
This command may be used to tell ld to issue an error about any references among certain
sections.

In certain types of programs, particularly on embedded systems, when one section is loaded
into memory, another section will not be.    Any direct references between the two sections
would be errors.    For example, it would be an error if code in one section called a function
defined in the other section.

The NOCROSSREFS command takes a list of section names.    If ld detects any cross
references between the sections, it reports an error and returns a non-zero exit status.    The
NOCROSSREFS command uses output section names, defined in the SECTIONS command.    It
does not use the names of input sections.   

Node: Machine Dependent, Next: BFD, Prev: Commands, Up: Top

Machine Dependent Features
ld has additional features on some platforms; the following sections describe them.   
Machines where ld has no additional functionality are not listed.

* Menu:

H8/300 ld and the H8/300
i960 ld and the Intel 960 family

Node: H8/300, Next: i960, Prev: , Up: Machine Dependent

ld and the H8/300

For the H8/300, ld can perform these global optimizations when you specify the --relax
command-line option.

relaxing address modes
ld finds all jsr and jmp instructions whose targets are within eight bits, and turns them into
eight-bit program-counter relative bsr and bra instructions, respectively.

synthesizing instructions
ld finds all mov.b instructions which use the sixteen-bit absolute address form, but refer to
the top page of memory, and changes them to use the eight-bit address form.    (That is: the
linker turns mov.b @aa:16 into mov.b @aa:8 whenever the address aa is in the top page of
memory).   

Node: i960, Next: , Prev: H8/300, Up: Machine Dependent

ld and the Intel 960 family

You can use the -Aarchitecture command line option to specify one of the two-letter
names identifying members of the 960 family; the option specifies the desired output target,
and warns of any incompatible instructions in the input files.    It also modifies the linker's
search strategy for archive libraries, to support the use of libraries specific to each particular
architecture, by including in the search loop names suffixed with the string identifying the
architecture.

For example, if your ld command line included -ACA as well as -ltry, the linker would look
(in its built-in search paths, and in any paths you specify with -L) for a library with the
names

try
libtry.a
tryca
libtryca.a

The first two possibilities would be considered in any event; the last two are due to the use
of -ACA.

You can meaningfully use -A more than once on a command line, since the 960 architecture
family allows combination of target architectures; each use will add another pair of name
variants to search for when -l specifies a library.

ld supports the --relax option for the i960 family.    If you specify --relax, ld finds all balx
and calx instructions whose targets are within 24 bits, and turns them into 24-bit program-
counter relative bal and cal instructions, respectively.    ld also turns cal instructions into
bal instructions when it determines that the target subroutine is a leaf routine (that is, the
target subroutine does not itself call any subroutines).

Node: BFD, Next: Reporting Bugs, Prev: Machine Dependent, Up: Top

BFD
The linker accesses object and archive files using the BFD libraries.    These libraries allow
the linker to use the same routines to operate on object files whatever the object file format. 
A different object file format can be supported simply by creating a new BFD back end and
adding it to the library.    To conserve runtime memory, however, the linker and associated
tools are usually configured to support only a subset of the object file formats available.   
You can use objdump -i (see objdump) to list all the formats available for your
configuration.

As with most implementations, BFD is a compromise between several conflicting
requirements. The major factor influencing BFD design was efficiency: any time used
converting between formats is time which would not have been spent had BFD not been
involved. This is partly offset by abstraction payback; since BFD simplifies applications and
back ends, more time and care may be spent optimizing algorithms for a greater speed.

One minor artifact of the BFD solution which you should bear in mind is the potential for
information loss.    There are two places where useful information can be lost using the BFD
mechanism: during conversion and during output. See BFD information loss.

* Menu:

BFD outline How it works: an outline of BFD

Node: BFD outline, Next: , Prev: , Up: BFD

How it works: an outline of BFD

When an object file is opened, BFD subroutines automatically determine the format of the
input object file.    They then build a descriptor in memory with pointers to routines that will
be used to access elements of the object file's data structures.

As different information from the the object files is required, BFD reads from different
sections of the file and processes them.    For example, a very common operation for the
linker is processing symbol tables.    Each BFD back end provides a routine for converting
between the object file's representation of symbols and an internal canonical format. When
the linker asks for the symbol table of an object file, it calls through a memory pointer to the
routine from the relevant BFD back end which reads and converts the table into a canonical
form.    The linker then operates upon the canonical form. When the link is finished and the
linker writes the output file's symbol table, another BFD back end routine is called to take
the newly created symbol table and convert it into the chosen output format.

* Menu:

BFD information loss Information Loss
Canonical format The BFD canonical object-file format

Node: BFD information loss, Next: Canonical format, Prev: , Up: BFD outline

Information Loss
Information can be lost during output. The output formats supported by BFD do not provide
identical facilities, and information which can be described in one form has nowhere to go in
another format. One example of this is alignment information in b.out. There is nowhere in
an a.out format file to store alignment information on the contained data, so when a file is
linked from b.out and an a.out image is produced, alignment information will not propagate
to the output file. (The linker will still use the alignment information internally, so the link is
performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing the
desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is no
direct representation internally.    This means that the BFD back ends cannot maintain all
possible data richness through the transformation between external to internal and back to
external formats.

This limitation is only a problem when an application reads one format and writes another.   
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only to
the back ends. When a file is read in one format, the canonical form is generated for BFD
and the application. At the same time, the back end saves away any information which may
otherwise be lost. If the data is then written back in the same format, the back end routine
will be able to use the canonical form provided by the BFD core as well as the information it
prepared earlier.    Since there is a great deal of commonality between back ends, there is no
information lost when linking or copying big endian COFF to little endian COFF, or a.out to
b.out.    When a mixture of formats is linked, the information is only lost from the files whose
format differs from the destination.

Node: Canonical format, Next: , Prev: BFD information loss, Up: BFD outline

The BFD canonical object-file format
The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and that
needed by the destination format. A brief description of the canonical form may help you
understand which kinds of data you can count on preserving across conversions.   
files

Information stored on a per-file basis includes target machine architecture, particular
implementation format type, a demand pageable bit, and a write protected bit.   
Information like Unix magic numbers is not stored here--only the magic numbers'
meaning, so a ZMAGIC file would have both the demand pageable bit and the write
protected text bit set.    The byte order of the target is stored on a per-file basis, so
that big- and little-endian object files may be used with one another.

sections
Each section in the input file contains the name of the section, the section's original
address in the object file, size and alignment information, various flags, and pointers
into other BFD data structures.

symbols
Each symbol contains a pointer to the information for the object file which originally
defined it, its name, its value, and various flag bits.    When a BFD back end reads in a
symbol table, it relocates all symbols to make them relative to the base of the section
where they were defined.    Doing this ensures that each symbol points to its
containing section.    Each symbol also has a varying amount of hidden private data
for the BFD back end.    Since the symbol points to the original file, the private data
format for that symbol is accessible.    ld can operate on a collection of symbols of
wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output file
(no matter its format) will retain symbols pointing to functions and to global, static,
and common variables.    Some symbol information is not worth retaining; in a.out,
type information is stored in the symbol table as long symbol names.    This
information would be useless to most COFF debuggers; the linker has command line
switches to allow users to throw it away.

There is one word of type information within the symbol, so if the format supports
symbol type information within symbols (for example, COFF, IEEE, Oasys) and the
type is simple enough to fit within one word (nearly everything but aggregates), the
information will be preserved.

relocation level
Each canonical BFD relocation record contains a pointer to the symbol to relocate to,
the offset of the data to relocate, the section the data is in, and a pointer to a
relocation type descriptor. Relocation is performed by passing messages through the
relocation type descriptor and the symbol pointer. Therefore, relocations can be
performed on output data using a relocation method that is only available in one of
the input formats. For instance, Oasys provides a byte relocation format.    A
relocation record requesting this relocation type would point indirectly to a routine to
perform this, so the relocation may be performed on a byte being written to a 68k
COFF file, even though 68k COFF has no such relocation type.

line numbers

Object formats can contain, for debugging purposes, some form of mapping between
symbols, source line numbers, and addresses in the output file.    These addresses have to
be relocated along with the symbol information.    Each symbol with an associated list of line
number records points to the first record of the list.    The head of a line number list consists
of a pointer to the symbol, which allows finding out the address of the function whose line
number is being described. The rest of the list is made up of pairs: offsets into the section
and line numbers. Any format which can simply derive this information can pass it
successfully between formats (COFF, IEEE and Oasys).   

Node: Reporting Bugs, Next: MRI, Prev: BFD, Up: Top

Reporting Bugs
Your bug reports play an essential role in making ld reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.    But in
any case the principal function of a bug report is to help the entire community by making
the next version of ld work better.    Bug reports are your contribution to the maintenance of
ld.

In order for a bug report to serve its purpose, you must include the information that enables
us to fix the bug.

* Menu:

Bug Criteria Have you found a bug?
Bug Reporting How to report bugs

Node: Bug Criteria, Next: Bug Reporting, Prev: , Up: Reporting Bugs

Have you found a bug?
If you are not sure whether you have found a bug, here are some guidelines:

· If the linker gets a fatal signal, for any input whatever, that is a ld bug.    Reliable
linkers never crash.

· If ld produces an error message for valid input, that is a bug.

· If ld does not produce an error message for invalid input, that may be a bug.    In the
general case, the linker can not verify that object files are correct.

· If you are an experienced user of linkers, your suggestions for improvement of ld are
welcome in any case.   

Node: Bug Reporting, Next: , Prev: Bug Criteria, Up: Reporting Bugs

How to report bugs
A number of companies and individuals offer support for GNU products.    If you obtained ld
from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
etc/SERVICE in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for ld to bug-gnu-
utils@gnu.org.

The fundamental principle of reporting bugs usefully is this: report all the facts.    If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume
that some details do not matter.    Thus, you might assume that the name of a symbol you
use in an example does not matter.    Well, probably it does not, but one cannot be sure.   
Perhaps the bug is a stray memory reference which happens to fetch from the location
where that name is stored in memory; perhaps, if the name were different, the contents of
that location would fool the linker into doing the right thing despite the bug.    Play it safe
and give a specific, complete example.    That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to us. 
Therefore, always write your bug reports on the assumption that the bug has not been
reported previously.

Sometimes people give a few sketchy facts and ask, "Does this ring a bell?"    Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

· The version of ld.    ld announces it if you start it with the --version argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of ld.

· Any patches you may have applied to the ld source, including any patches made to
the BFD library.

· The type of machine you are using, and the operating system name and version
number.

· What compiler (and its version) was used to compile ld--e.g.    "gcc-2.7".

· The command arguments you gave the linker to link your example and observe the
bug.    To guarantee you will not omit something important, list them all.    A copy of
the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then
we might not encounter the bug.

· A complete input file, or set of input files, that will reproduce the bug.    It is generally
most helpful to send the actual object files, uuencoded if necessary to get them
through the mail system.    Making them available for anonymous FTP is not as good,
but may be the only reasonable choice for large object files.

If the source files were assembled using gas or compiled using gcc, then it may be
OK to send the source files rather than the object files.    In this case, be sure to say
exactly what version of gas or gcc was used to produce the object files.    Also say
how gas or gcc were configured.

· A description of what behavior you observe that you believe is incorrect.    For
example, "It gets a fatal signal."

Of course, if the bug is that ld gets a fatal signal, then we will certainly notice it.    But
if the bug is incorrect output, we might not notice unless it is glaringly wrong.    You
might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.   
Suppose something strange is going on, such as, your copy of ld is out of synch, or
you have encountered a bug in the C library on your system.    (This has happened!)   
Your copy might crash and ours would not.    If you told us to expect a crash, then
when ours fails to crash, we would know that the bug was not happening for us.    If
you had not told us to expect a crash, then we would not be able to draw any
conclusion from our observations.

· If you wish to suggest changes to the ld source, send us context diffs, as generated
by diff with the -u, -c, or -p option.    Always send diffs from the old file to the new
file.    If you even discuss something in the ld source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your sources.    Your
line numbers would convey no useful information to us.   

Here are some things that are not necessary:

· A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples.    We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us.    Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

· A patch for the bug.

A patch for the bug does help us if it is a good one.    But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need.   
We might see problems with your patch and decide to fix the problem another way,
or we might not understand it at all.

Sometimes with a program as complicated as ld it is very hard to construct an
example that will make the program follow a certain path through the code.    If you
do not send us the example, we will not be able to construct one, so we will not be
able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it.    A test case will help us to understand.

· A guess about what the bug is or what it depends on.

Such guesses are usually wrong.    Even we cannot guess right about such things without
first using the debugger to find the facts.   

Node: MRI, Next: Index, Prev: Reporting Bugs, Up: Top

MRI Compatible Script Files
To aid users making the transition to GNU ld from the MRI linker, ld can use MRI compatible
linker scripts as an alternative to the more general-purpose linker scripting language
described in Command Language.    MRI compatible linker scripts have a much simpler
command set than the scripting language otherwise used with ld.    GNU ld supports the most
commonly used MRI linker commands; these commands are described here.

In general, MRI scripts aren't of much use with the a.out object file format, since it only has
three sections and MRI scripts lack some features to make use of them.

You can specify a file containing an MRI-compatible script using the -c command-line option.

Each command in an MRI-compatible script occupies its own line; each command line starts
with the keyword that identifies the command (though blank lines are also allowed for
punctuation).    If a line of an MRI-compatible script begins with an unrecognized keyword, ld
issues a warning message, but continues processing the script.

Lines beginning with * are comments.

You can write these commands using all upper-case letters, or all lower case; for example,
chip is the same as CHIP.    The following list shows only the upper-case form of each
command.

ABSOLUTE secname
ABSOLUTE secname, secname, ... secname

Normally, ld includes in the output file all sections from all the input files.    However,
in an MRI-compatible script, you can use the ABSOLUTE command to restrict the
sections that will be present in your output program.    If the ABSOLUTE command is
used at all in a script, then only the sections named explicitly in ABSOLUTE commands
will appear in the linker output.    You can still use other input sections (whatever you
select on the command line, or using LOAD) to resolve addresses in the output file.

ALIAS out-secname, in-secname
Use this command to place the data from input section in-secname in a section called
out-secname in the linker output file.

in-secname may be an integer.

ALIGN secname = expression
Align the section called secname to expression.    The expression should be a power
of two.

BASE expression

Use the value of expression as the lowest address (other than absolute addresses) in
the output file.

CHIP expression
CHIP expression, expression

This command does nothing; it is accepted only for compatibility.

END
This command does nothing whatever; it's only accepted for compatibility.

FORMAT output-format
Similar to the OUTPUT_FORMAT command in the more general linker language, but
restricted to one of these output formats:

1. S-records, if output-format is S

2. IEEE, if output-format is IEEE

3. COFF (the coff-m68k variant in BFD), if output-format is COFF

LIST anything...
Print (to the standard output file) a link map, as produced by the ld command-line
option -M.

The keyword LIST may be followed by anything on the same line, with no change in
its effect.

LOAD filename
LOAD filename, filename, ... filename

Include one or more object file filename in the link; this has the same effect as
specifying filename directly on the ld command line.

NAME output-name
output-name is the name for the program produced by ld; the MRI-compatible command
NAME is equivalent to the command-line option -o or the general script language command
OUTPUT.

ORDER secname, secname, ... secname
ORDER secname secname secname

Normally, ld orders the sections in its output file in the order in which they first
appear in the input files.    In an MRI-compatible script, you can override this ordering

with the ORDER command.    The sections you list with ORDER will appear first in your
output file, in the order specified.

PUBLIC name=expression
PUBLIC name,expression
PUBLIC name expression

Supply a value (expression) for external symbol name used in the linker input files.

SECT secname, expression
SECT secname=expression
SECT secname expression
You can use any of these three forms of the SECT command to specify the start address
(expression) for section secname.    If you have more than one SECT statement for the same
secname, only the first sets the start address.   

Node: Index, Next: , Prev: MRI, Up: Top

Index
": Symbols.
*(COMMON): Section Placement.
*(section): Section Placement.
-(: Options.
-architecture=arch: Options.
-auxiliary: Options.
-cref: Options.
-defsym symbol=exp: Options.
-discard-all: Options.
-discard-locals: Options.
-dynamic-linker file: Options.
-embedded-relocs: Options.
-entry=entry: Options.
-export-dynamic: Options.
-filter: Options.
-force-exe-suffix: Options.
-format=format: Options.
-gpsize: Options.
-help: Options.
-just-symbols=file: Options.
-library-path=dir: Options.
-library=archive: Options.
-mri-script=MRI-cmdfile: Options.
-nmagic: Options.
-no-keep-memory: Options.
-no-warn-mismatch: Options.
-no-whole-archive: Options.
-noinhibit-exec: Options.
-oformat: Options.
-omagic: Options.
-output=output: Options.
-print-map: Options.
-relax: Options.
-relocateable: Options.
-script=script: Options.
-sort-common: Options.
-split-by-file: Options.
-split-by-reloc: Options.
-stats: Options.
-strip-all: Options.
-strip-debug: Options.
-trace: Options.
-trace-symbol=symbol: Options.
-traditional-format: Options.
-undefined=symbol: Options.
-verbose: Options.
-version: Options.
-version-script=version-scriptfile: Options.
-warn-comon: Options.
-warn-constructors: Options.
-warn-multiple-gp: Options.

-warn-once: Options.
-warn-section-align: Options.
-whole-archive: Options.
-wrap: Options.
-Aarch: Options.
-akeyword: Options.
-assert keyword: Options.
-b format: Options.
-Bdynamic: Options.
-Bshareable: Options.
-Bstatic: Options.
-Bsymbolic: Options.
-c MRI-cmdfile: Options.
-call_shared: Options.
-d: Options.
-dc: Options.
-dn: Options.
-dp: Options.
-dy: Options.
-E: Options.
-e entry: Options.
-EB: Options.
-EL: Options.
-f: Options.
-g: Options.
-hname: Options.
-i: Options.
-larchive: Options.
-Ldir: Options.
-M: Options.
-m emulation: Options.
-Map: Options.
-n: Options.
-non_shared: Options.
-o output: Options.
-qmagic: Options.
-Qy: Options.
-r: Options.
-R file: Options.
-rpath: Options.
-rpath-link: Options.
-s: Options.
-shared: Options.
-soname=name: Options.
-static: Options.
-t: Options.
-T script: Options.
-Tbss org: Options.
-Tdata org: Options.
-Ttext org: Options.
-u symbol: Options.
-Ur: Options.
-v: Options.
-x: Options.
-Y path: Options.

-y symbol: Options.
-z keyword: Options.
.: Location Counter.
x: Integers.
:phdr: Section Options.
;: Assignment.
=fill: Section Options.
>region: Section Options.
-relax on i960: i960.
[section...], not supported: Section Placement.
ABSOLUTE (MRI): MRI.
ALIAS (MRI): MRI.
ALIGN (MRI): MRI.
BASE (MRI): MRI.
CHIP (MRI): MRI.
END (MRI): MRI.
FORMAT (MRI): MRI.
ld bugs, reporting: Bug Reporting.
LIST (MRI): MRI.
LOAD (MRI): MRI.
NAME (MRI): MRI.
ORDER (MRI): MRI.
PUBLIC (MRI): MRI.
SECT (MRI): MRI.
gnu linker: Overview.
filename: Section Placement.
filename(section): Section Placement.
symbol = expression ;: Section Data Expressions.
symbol f= expression ;: Section Data Expressions.
absolute and relocatable symbols: Assignment.
ABSOLUTE(exp): Arithmetic Functions.
ADDR(section): Arithmetic Functions.
ALIGN(exp): Arithmetic Functions.
aligning sections: Section Options.
allocating memory: MEMORY.
architectures: Options.
archive files, from cmd line: Options.
arithmetic: Expressions.
arithmetic operators: Operators.
assignment in scripts: Assignment.
assignment, in section defn: Section Data Expressions.
AT (ldadr): Section Options.
back end: BFD.
BFD canonical format: Canonical format.
BFD requirements: BFD.
big-endian objects: Options.
binary input files: Option Commands.
binary input format: Options.
BLOCK(align): Section Options.
bug criteria: Bug Criteria.
bug reports: Bug Reporting.
bugs in ld: Reporting Bugs.
BYTE(expression): Section Data Expressions.
C++ constructors, arranging in link: Option Commands.
combining symbols, warnings on: Options.

command files: Commands.
command line: Options.
commands, fundamental: Scripts.
comments: Scripts.
common allocation <1>: Option Commands.
common allocation: Options.
commons in output: Section Placement.
compatibility, MRI: Options.
CONSTRUCTORS: Option Commands.
constructors: Options.
constructors, arranging in link: Option Commands.
contents of a section: Section Placement.
crash of linker: Bug Criteria.
CREATE_OBJECT_SYMBOLS: Section Data Expressions.
cross reference table: Options.
cross references: Option Commands.
current output location: Location Counter.
dbx: Options.
decimal integers: Integers.
default emulation: Environment.
default input format: Environment.
DEFINED(symbol): Arithmetic Functions.
deleting local symbols: Options.
direct output: Section Data Expressions.
discontinuous memory: MEMORY.
dot: Location Counter.
dynamic linker, from command line: Options.
dynamic symbol table: Options.
ELF program headers: PHDRS.
emulation: Options.
emulation, default: Environment.
endianness: Options.
entry point, defaults: Entry Point.
entry point, from command line: Options.
ENTRY(symbol): Entry Point.
error on valid input: Bug Criteria.
expression evaluation order:Evaluation.
expression syntax: Expressions.
expression, absolute: Arithmetic Functions.
expressions in a section: Section Data Expressions.
fatal signal: Bug Criteria.
filename symbols: Section Data Expressions.
files and sections, section defn: Section Placement.
files, including in output sections: Section Placement.
fill pattern, entire section: Section Options.
FILL(expression): Section Data Expressions.
first input file: Option Commands.
first instruction: Entry Point.
FLOAT: Option Commands.
FORCE_COMMON_ALLOCATION: Option Commands.
format, output file: Option Commands.
functions in expression language: Arithmetic Functions.
fundamental script commands: Scripts.
GNUTARGET <1>: Option Commands.
GNUTARGET: Environment.

GROUP (files): Option Commands.
grouping input files: Option Commands.
groups of archives: Options.
H8/300 support: H8/300.
header size: Arithmetic Functions.
help: Options.
hexadecimal integers: Integers.
holes: Location Counter.
holes, filling: Section Data Expressions.
i960 support: i960.
INCLUDE filename: Option Commands.
including a linker script: Option Commands.
including an entire archive: Options.
incremental link: Options.
INPUT (files): Option Commands.
input file format: Option Commands.
input filename symbols: Section Data Expressions.
input files, displaying: Options.
input files, section defn: Section Placement.
input format: Options.
input sections to output section: Section Placement.
integer notation: Integers.
integer suffixes: Integers.
internal object-file format: Canonical format.
invalid input: Bug Criteria.
K and M integer suffixes: Integers.
l =: MEMORY.
L, deleting symbols beginning: Options.
layout of output file: Scripts.
lazy evaluation: Evaluation.
LDEMULATION: Environment.
len =: MEMORY.
LENGTH =: MEMORY.
link map: Options.
link-time runtime library search path: Options.
linker crash: Bug Criteria.
little-endian objects: Options.
load address, specifying: Section Options.
LOADADDR(section): Arithmetic Functions.
loading, preventing: Section Options.
local symbols, deleting: Options.
location counter: Location Counter.
LONG(expression): Section Data Expressions.
M and K integer suffixes: Integers.
machine architecture, output: Option Commands.
machine dependencies: Machine Dependent.
MAX: Arithmetic Functions.
MEMORY: MEMORY.
memory region attributes: MEMORY.
memory regions and sections: Section Options.
memory usage: Options.
MIN: Arithmetic Functions.
MIPS embedded PIC code: Options.
MRI compatibility: MRI.
names: Symbols.

naming memory regions: MEMORY.
naming output sections: Section Definition.
naming the output file <1>: Option Commands.
naming the output file: Options.
negative integers: Integers.
NEXT(exp): Arithmetic Functions.
NMAGIC: Options.
NOCROSSREFS (sections): Option Commands.
NOFLOAT: Option Commands.
NOLOAD: Section Options.
Non constant expression: Assignment.
o =: MEMORY.
objdump -i: BFD.
object file management: BFD.
object files: Options.
object formats available: BFD.
object size: Options.
octal integers: Integers.
OMAGIC: Options.
opening object files: BFD outline.
Operators for arithmetic: Operators.
options: Options.
org =: MEMORY.
ORIGIN =: MEMORY.
OUTPUT (filename): Option Commands.
output file after errors: Options.
output file layout: Scripts.
OUTPUT_ARCH (bfdname): Option Commands.
OUTPUT_FORMAT (bfdname): Option Commands.
OVERLAY: Overlays.
overlays: Overlays.
partial link: Options.
path for libraries: Option Commands.
PHDRS: PHDRS.
precedence in expressions: Operators.
prevent unnecessary loading: Section Options.
program headers: PHDRS.
program headers and sections: Section Options.
provide: Assignment.
QUAD(expression): Section Data Expressions.
quoted symbol names: Symbols.
read-only text: Options.
read/write from cmd line: Options.
regions of memory: MEMORY.
relaxing addressing modes: Options.
relaxing on H8/300: H8/300.
relaxing on i960: i960.
relocatable and absolute symbols: Assignment.
relocatable output: Options.
reporting bugs in ld: Reporting Bugs.
requirements for BFD: BFD.
retaining specified symbols: Options.
rounding up location counter: Arithmetic Functions.
runtime library name: Options.
runtime library search path: Options.

scaled integers: Integers.
script files: Options.
search directory, from cmd line: Options.
search path, libraries: Option Commands.
SEARCH_DIR (path): Option Commands.
section address <1>: Section Options.
section address: Arithmetic Functions.
section alignment: Section Options.
section alignment, warnings on: Options.
section definition: Section Definition.
section defn, full syntax: Section Options.
section fill pattern: Section Options.
section load address: Arithmetic Functions.
section size: Arithmetic Functions.
section start: Section Options.
section, assigning to memory region: Section Options.
section, assigning to program header: Section Options.
SECTIONS: SECTIONS.
segment origins, cmd line: Options.
semicolon: Assignment.
shared libraries: Options.
SHORT(expression): Section Data Expressions.
SIZEOF(section): Arithmetic Functions.
SIZEOF_HEADERS: Arithmetic Functions.
specify load address: Section Options.
SQUAD(expression): Section Data Expressions.
standard Unix system: Options.
start address, section: Section Options.
start of execution: Entry Point.
STARTUP (filename): Option Commands.
strip all symbols: Options.
strip debugger symbols: Options.
stripping all but some symbols: Options.
suffixes for integers: Integers.
symbol defaults: Arithmetic Functions.
symbol definition, scripts: Assignment.
symbol names: Symbols.
symbol tracing: Options.
symbol versions: Version Script.
symbol-only input: Options.
symbols, from command line: Options.
symbols, relocatable and absolute: Assignment.
symbols, retaining selectively: Options.
synthesizing linker: Options.
synthesizing on H8/300: H8/300.
TARGET (format): Option Commands.
traditional format: Options.
unallocated address, next: Arithmetic Functions.
undefined symbol: Options.
undefined symbols, warnings on: Options.
uninitialized data: Section Placement.
unspecified memory: Section Data Expressions.
usage: Options.
variables, defining: Assignment.
verbose: Options.

version: Options.
VERSION {script text}: Version Script.
version script: Version Script.
version script, symbol versions: Options.
versions of symbols: Version Script.
warnings, on combining symbols: Options.
warnings, on section alignment: Options.
warnings, on undefined symbols: Options.
what is this?: Overview.

About Makertf
Makertf is a program that converts "Texinfo" files into "Rich Text Format" (RTF) files. It can be
used to make WinHelp Files from GNU manuals and other documentation written in Texinfo.

Makertf is derived from GNU Makeinfo, which is a part of the GNU Texinfo documentation
system.

Christian Schenk
cschenk@berlin.snafu.de

