

About this help file
This file was made with the help of Makertf 1.04 from the input file gdb.texinfo.

START-INFO-DIR-ENTRY
* Gdb: (gdb).  The GNU debugger.
END-INFO-DIR-ENTRY
This file documents the GNU debugger GDB.

This is the Fifth Edition, April 1998, of Debugging with GDB: the GNU Source-Level Debugger
for GDB Version .

Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 Free
Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions.   

Node: Top, Next: Summary, Prev: , Up: (dir) About this help file

Debugging with GDB
by Richard M. Stallman and Roland H. Pesch

Debugging with GDB
This file describes GDB, the GNU symbolic debugger.

This is the Fifth Edition, April 1998, for GDB Version .

* Menu:

Summary Summary of GDB
Sample Session A sample GDB session
Invocation Getting in and out of GDB
Commands GDB commands
Running Running programs under GDB
Stopping Stopping and continuing
Stack Examining the stack
Source Examining source files
Data Examining data
Languages Using GDB with different languages
Symbols Examining the symbol table
Altering Altering execution
GDB Files GDB files
Targets Specifying a debugging target
Controlling GDB Controlling GDB
Sequences Canned sequences of commands
Emacs Using GDB under GNU Emacs
GDB Bugs Reporting bugs in GDB
Command Line Editing Facilities of the readline library
Using History Interactively
Formatting Documentation How to format and print GDB documentation
Installing GDB Installing GDB
Index Index

Node: Summary, Next: Sample Session, Prev: Top, Up: Top

Summary of GDB
The purpose of a debugger such as GDB is to allow you to see what is going on "inside"
another program while it executes--or what another program was doing at the moment it
crashed.

{No Value For "rd{}GDBN"} can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

· Start your program, specifying anything that might affect its behavior.

· Make your program stop on specified conditions.

· Examine what has happened, when your program has stopped.

· Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.   

You can use GDB to debug programs written in C or C++.    For more information, see C and
C++.

Support for Modula-2 and Chill is partial.    For information on Modula-2, see Modula-2.   
There is no further documentation on Chill yet.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work.    GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it does not yet support
entering expressions, printing values, or similar features using Fortran syntax.    It may be
necessary to refer to some variables with a trailing underscore.   

* Menu:

Free Software Freely redistributable software
Contributors Contributors to GDB

Node: Free Software, Next: Contributors, Prev: , Up: Summary

Free software
{No Value For "rd{}GDBN"} is "free software", protected by the GNU General Public License
(GPL).    The GPL gives you the freedom to copy or adapt a licensed program--but every
person getting a copy also gets with it the freedom to modify that copy (which means that
they must get access to the source code), and the freedom to distribute further copies.   
Typical software companies use copyrights to limit your freedoms; the Free Software
Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Node: Contributors, Next: , Prev: Free Software, Up: Summary

Contributors to GDB
Richard Stallman was the original author of GDB, and of many other GNU programs.    Many
others have contributed to its development.    This section attempts to credit major
contributors.    One of the virtues of free software is that everyone is free to contribute to it;
with regret, we cannot actually acknowledge everyone here.    The file ChangeLog in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome.    If you or your friends (or enemies,
to be evenhanded) have been unfairly omitted from this list, we would like to add your
names!

So that they may not regard their long labor as thankless, we particularly thank those who
shepherded GDB through major releases: Stan Shebs (release 4.14), Fred Fish (releases 4.13,
4.12, 4.11, 4.10, and 4.9), Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and
4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and
3.3); and Randy Smith (releases 3.2, 3.1, and 3.0).    As major maintainer of GDB for some
period, each contributed significantly to the structure, stability, and capabilities of the entire
debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and Richard
Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner.    James Clark wrote the GNU C++ demangler.   
Early work on C++ was by Peter TerMaat (who also did much general update work leading to
release 3.0).   

{No Value For "rd{}GDBN"} 4 uses the BFD subroutine library to examine multiple object-file
formats; BFD was a joint project of David V.    Henkel-Wallace, Rich Pixley, Steve
Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support for
encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support.    Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support.    Jean-Daniel Fekete
contributed Sun 386i support.    Chris Hanson improved the HP9000 support.    Noboyuki
Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.    David Johnson
contributed Encore Umax support.    Jyrki Kuoppala contributed Altos 3068 support.    Jeff Law
contributed HP PA and SOM support.    Keith Packard contributed NS32K support.    Doug
Rabson contributed Acorn Risc Machine support.    Bob Rusk contributed Harris Nighthawk
CX-UX support.    Chris Smith contributed Convex support (and Fortran debugging).   
Jonathan Stone contributed Pyramid support.    Michael Tiemann contributed SPARC support. 
Tim Tucker contributed support for the Gould NP1 and Gould Powernode.    Pace Willison
contributed Intel 386 support.    Jay Vosburgh contributed Symmetry support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several machine
instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging.    Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the i960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 support,
and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4.    He also enhanced the command-
completion support to cover C++ overloaded symbols.   

Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.

Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable bug
fixes and cleanups throughout GDB.

Cygnus Solutions has sponsored GDB maintenance and much of its development since 1991.

Node: Sample Session, Next: Invocation, Prev: Summary, Up: Top

A Sample GDB Session
You can use this manual at your leisure to read all about GDB.    However, a handful of
commands are enough to get started using the debugger.    This chapter illustrates those
commands.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the following
bug: sometimes, when we change its quote strings from the default, the commands used to
capture one macro definition within another stop working.    In the following short m4 session,
we define a macro foo which expands to 0000; we then use the m4 built-in defn to define
bar as the same thing.    However, when we change the open quote string to <QUOTE> and
the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym baz:

$ cd gnu/m4
$./m4
define(foo,0000)

foo
0000
define(bar,defn(`foo'))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.

$ gdb m4
GDB is free software and you are welcome to distribute copies
 of it under certain conditions; type "show copying" to see
 the conditions.
There is absolutely no warranty for GDB; type "show warranty"
 for details.

GDB , Copyright 1995 Free Software Foundation, Inc...
(gdb)

{No Value For "\pard{}GDBN"} reads only enough symbol data to know where to find the
rest when needed; as a result, the first prompt comes up very quickly.    We now tell GDB to
use a narrower display width than usual, so that examples fit in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works.    Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the GDB
break command.

(gdb) break m4_changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long as control does not
reach the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote.    GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
        at builtin.c:879
879                  if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
 : nil,

set_quotes looks like a promising subroutine.    We can go into it by using the command s
(step) instead of next.    step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
 at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display.    It shows a summary of the stack.    We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
 at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
 at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
 at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens.    The first two times, we can use s;

the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup(rq);
(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables lquote and rquote
to see if they are in fact the new left and right quotes we specified.    We use the command p
(print) to see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

lquote and rquote are indeed the new left and right quotes.    To look at some context, we
can display ten lines of source surrounding the current line with the l (list) command.

(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
 : xstrdup (lq);
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len_lquote
$3 = 9
(gdb) p len_rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of lquote and rquote respectively.    We can set them to better values using the p
command, since it can print the value of any expression--and that expression can include
subroutine calls and assignments.

(gdb) p len_lquote=strlen(lquote)
$5 = 7
(gdb) p len_rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn?    We can
allow m4 to continue executing with the c (continue) command, and then try the example
that caused trouble initially:

(gdb) c
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

Success!    The new quotes now work just as well as the default ones.    The problem seems
to have been just the two typos defining the wrong lengths.    We allow m4 exit by giving it an
EOF as input:

C-d
Program exited normally.

The message Program exited normally. is from GDB; it indicates m4 has finished
executing.    We can end our GDB session with the GDB quit command.

(gdb) quit

Node: Invocation, Next: Commands, Prev: Sample Session, Up: Top

Getting In and Out of GDB
This chapter discusses how to start GDB, and how to get out of it.    The essentials are:
· type gdb to start GDB.

· type quit or C-d to exit.   

* Menu:

Invoking GDB How to start GDB
Quitting GDB How to quit GDB
Shell Commands How to use shell commands inside GDB

Node: Invoking GDB, Next: Quitting GDB, Prev: , Up: Invocation

Invoking GDB
Invoke GDB by running the program gdb.    Once started, GDB reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations; in
some environments, some of these options may effectively be unavailable.   

The most usual way to start GDB is with one argument, specifying an executable program:

{No Value For "\keep\li720\f1{}GDBP"} program

You can also start with both an executable program and a core file specified:

{No Value For "\keep\li720\f1{}GDBP"} program core

You can, instead, specify a process ID as a second argument, if you want to debug a running
process:

{No Value For "\keep\li720\f1{}GDBP"} program 1234

would attach GDB to process 1234 (unless you also have a file named 1234; GDB does check
for a core file first).

Taking advantage of the second command-line argument requires a fairly complete
operating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of "process", and there is often no way to get a core dump.   

You can run gdb without printing the front material, which describes GDB's non-warranty, by
specifying -silent:

{No Value For "\keep\li720\f1{}GDBP"} -silent

You can further control how GDB starts up by using command-line options.    GDB itself can
remind you of the options available.

Type

{No Value For "\keep\li720\f1{}GDBP"} -help

to display all available options and briefly describe their use (gdb -h is a shorter equivalent).

All options and command line arguments you give are processed in sequential order.    The
order makes a difference when the -x option is used.

* Menu:

File Options Choosing files
Mode Options Choosing modes

Node: File Options, Next: Mode Options, Prev: , Up: Invoking GDB

Choosing files
When GDB starts, it reads any arguments other than options as specifying an executable file
and core file (or process ID).    This is the same as if the arguments were specified by the -se
and -c options respectively.    (GDB reads the first argument that does not have an
associated option flag as equivalent to the -se option followed by that argument; and the
second argument that does not have an associated option flag, if any, as equivalent to the -
c option followed by that argument.)

Many options have both long and short forms; both are shown in the following list.    GDB
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous.    (If you prefer, you can flag option arguments with -- rather
than -, though we illustrate the more usual convention.)

-symbols file
-s file

Read symbol table from file file.

-exec file
-e file

Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.   

-se file
Read symbol table from file file and use it as the executable file.

-core file
-c file

Use file file as a core dump to examine.

-c number
Connect to process ID number, as with the attach command (unless there is a file in
core-dump format named number, in which case -c specifies that file as a core dump
to read).   

-command file
-x file

Execute GDB commands from file file.    See Command files.

-directory directory
-d directory

Add directory to the path to search for source files.

-m
-mapped
Warning: this option depends on operating system facilities that are not supported on all
systems.

If memory-mapped files are available on your system through the mmap system call,
you can use this option to have GDB write the symbols from your program into a
reusable file in the current directory.    If the program you are debugging is called
/tmp/fred, the mapped symbol file is ./fred.syms.    Future GDB debugging sessions
notice the presence of this file, and can quickly map in symbol information from it,
rather than reading the symbol table from the executable program.

The .syms file is specific to the host machine where GDB is run.    It holds an exact
image of the internal GDB symbol table.    It cannot be shared across multiple host
platforms.   

-r
-readnow
Read each symbol file's entire symbol table immediately, rather than the default, which is to
read it incrementally as it is needed.    This makes startup slower, but makes future
operations faster.   

The -mapped and -readnow options are typically combined in order to build a .syms file that
contains complete symbol information.    (See Commands to specify files, for information

a .syms file for future use is:

gdb -batch -nx -mapped -readnow programname

Node: Mode Options, Next: , Prev: File Options, Up: Invoking GDB

Choosing modes
You can run GDB in various alternative modes--for example, in batch mode or quiet mode.

-nx
-n

Do not execute commands from any initialization files (normally called .gdbinit).   
Normally, the commands in these files are executed after all the command options
and arguments have been processed.    See Command files.

-quiet
-q

"Quiet".    Do not print the introductory and copyright messages.    These messages
are also suppressed in batch mode.

-batch
Run in batch mode.    Exit with status 0 after processing all the command files
specified with -x (and all commands from initialization files, if not inhibited with -n).   
Exit with nonzero status if an error occurs in executing the GDB commands in the
command files.

Batch mode may be useful for running GDB as a filter, for example to download and
run a program on another computer; in order to make this more useful, the message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-cd directory
Run GDB using directory as its working directory, instead of the current directory.

-fullname
-f

GNU Emacs sets this option when it runs GDB as a subprocess.    It tells GDB to output
the full file name and line number in a standard, recognizable fashion each time a
stack frame is displayed (which includes each time your program stops).    This
recognizable format looks like two \032 characters, followed by the file name, line
number and character position separated by colons, and a newline.    The Emacs-to-
GDB interface program uses the two \032 characters as a signal to display the source
code for the frame.   

-b bps
Set the line speed (baud rate or bits per second) of any serial interface used by GDB
for remote debugging.

-tty device
Run using device for your program's standard input and output.   

Node: Quitting GDB, Next: Shell Commands, Prev: Invoking GDB, Up: Invocation

Quitting GDB

quit
To exit GDB, use the quit command (abbreviated q), or type an end-of-file character (usually
C-d).    If you do not supply expression, GDB will terminate normally; otherwise it will
terminate using the result of expression as the error code.   

An interrupt (often C-c) does not exit from GDB, but rather terminates the action of any GDB
command that is in progress and returns to GDB command level.    It is safe to type the
interrupt character at any time because GDB does not allow it to take effect until a time
when it is safe.

If you have been using GDB to control an attached process or device, you can release it with
the detach command (see Debugging an already-running process).   

Node: Shell Commands, Next: , Prev: Quitting GDB, Up: Invocation

Shell commands
If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a the standard shell to execute command string.    If it exists, the environment
variable SHELL determines which shell to run.    Otherwise GDB uses /bin/sh.   

The utility make is often needed in development environments.    You do not have to use the
shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments.    This is equivalent to shell make
make-args.   

Node: Commands, Next: Running, Prev: Invocation, Up: Top

GDB Commands
You can abbreviate a GDB command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain GDB commands by typing just RET.
You can also use the TAB key to get GDB to fill out the rest of a word in a command (or to
show you the alternatives available, if there is more than one possibility).

* Menu:

Command Syntax How to give commands to GDB
Completion Command completion
Help How to ask GDB for help

Node: Command Syntax, Next: Completion, Prev: , Up: Commands

Command syntax
A GDB command is a single line of input.    There is no limit on how long it can be.    It starts
with a command name, which is followed by arguments whose meaning depends on the
command name.    For example, the command step accepts an argument which is the
number of times to step, as in step 5.    You can also use the step command with no
arguments.    Some command names do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.    Other
possible command abbreviations are listed in the documentation for individual commands.   
In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s.    You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just RET) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with RET, construct new arguments
rather than repeating exactly as typed.    This permits easy scanning of source or memory.

{No Value For "rd{}GDBN"} can also use RET in another way: to partition lengthy output, in
a way similar to the common utility more (see Screen size).    Since it is easy to press one
RET too many in this situation, GDB disables command repetition after any command that
generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing.    This is useful mainly
in command files (see Command files).

Node: Completion, Next: Help, Prev: Command Syntax, Up: Commands

Command completion
GDB can fill in the rest of a word in a command for you, if there is only one possibility; it can
also show you what the valid possibilities are for the next word in a command, at any time.   
This works for GDB commands, GDB subcommands, and the names of symbols in your
program.

Press the TAB key whenever you want GDB to fill out the rest of a word.    If there is only one
possibility, GDB fills in the word, and waits for you to finish the command (or press RET to
enter it).    For example, if you type

(gdb) info bre TAB

{No Value For "\pard{}GDBN"} fills in the rest of the word breakpoints, since that is the
only info subcommand beginning with bre:

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace
and enter something else, if breakpoints does not look like the command you expected.    (If
you were sure you wanted info breakpoints in the first place, you might as well just type
RET immediately after info bre, to exploit command abbreviations rather than command
completion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a
bell.    You can either supply more characters and try again, or just press TAB a second time;
GDB displays all the possible completions for that word.    For example, you might want to
set a breakpoint on a subroutine whose name begins with make_, but when you type b
make_TAB GDB just sounds the bell.    Typing TAB again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_ TAB
{No Value For "\pard\keep\li720{}GDBN"} sounds bell; press TAB again, to
see:
make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (b make_ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather than
pressing TAB twice. M-?    means META ?.    You can type this either by holding down a key
designated as the META shift on your keyboard (if there is one) while typing ?, or as ESC
followed by ?.

Sometimes the string you need, while logically a "word", may contain parentheses or other
characters that GDB normally excludes from its notion of a word.    To permit word
completion to work in this situation, you may enclose words in ' (single quote marks) in GDB

commands.

The most likely situation where you might need this is in typing the name of a C++ function. 
This is because C++ allows function overloading (multiple definitions of the same function,
distinguished by argument type).    For example, when you want to set a breakpoint you may
need to distinguish whether you mean the version of name that takes an int parameter,
name(int), or the version that takes a float parameter, name(float).    To use the word-
completion facilities in this situation, type a single quote ' at the beginning of the function
name.    This alerts GDB that it may need to consider more information than usual when you
press TAB or M-? to request word completion:

(gdb) b 'bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b 'bubble(

In some cases, GDB can tell that completing a name requires using quotes.    When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub TAB
{No Value For "\pard\keep\li720{}GDBN"} alters your input line to the
following, and rings a bell:
(gdb) b 'bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.   

Node: Help, Next: , Prev: Completion, Up: Commands

Getting help
You can always ask GDB itself for information on its commands, using the command help.

help
h

You can use help (abbreviated h) with no arguments to display a short list of named
classes of commands:

(gdb) help
List of classes of commands:

running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class
Using one of the general help classes as an argument, you can get a list of the
individual commands in that class.    For example, here is the help display for the
class status:

(gdb) help status
Status inquiries.

List of commands:

show -- Generic command for showing things set
 with "set"
info -- Generic command for printing status

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, GDB displays a short paragraph on how to
use that command.

complete args
The complete args command lists all the possible completions for the beginning of a
command.    Use args to specify the beginning of the command you want completed.   
For example:

complete i

results in:

info
inspect
ignore

This is intended for use by GNU Emacs.   

In addition to help, you can use the GDB commands info and show to inquire about the
state of your program, or the state of GDB itself.    Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context.    The listings under
info and under show in the Index point to all the sub-commands.    See Index.

info
This command (abbreviated i) is for describing the state of your program.    For
example, you can list the arguments given to your program with info args, list the
registers currently in use with info registers, or list the breakpoints you have set
with info breakpoints.    You can get a complete list of the info sub-commands with
help info.

set
You can assign the result of an expresson to an environment variable with set.    For
example, you can set the GDB prompt to a $-sign with set prompt $.

show
In contrast to info, show is for describing the state of GDB itself.    You can change most of
the things you can show, by using the related command set; for example, you can control
what number system is used for displays with set radix, or simply inquire which is
currently in use with show radix.

To display all the settable parameters and their current values, you can use show with no
arguments; you may also use info set.    Both commands produce the same display.   

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version
Show what version of GDB is running.    You should include this information in GDB
bug-reports.    If multiple versions of GDB are in use at your site, you may occasionally
want to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away.    The version number is
also announced when you start GDB.

show copying
Display information about permission for copying GDB.

show warranty
Display the GNU "NO WARRANTY" statement.   

Node: Running, Next: Stopping, Prev: Commands, Up: Top

Running Programs Under GDB
When you run a program under GDB, you must first generate debugging information when
you compile it.    You may start GDB with its arguments, if any, in an environment of your
choice.    You may redirect your program's input and output, debug an already running
process, or kill a child process.   

* Menu:

Compilation Compiling for debugging
Starting Starting your program
Arguments Your program's arguments
Environment Your program's environment
Working Directory Your program's working directory
Input/Output Your program's input and output
Attach Debugging an already-running process
Kill Process Killing the child process
Process Information Additional process information
Threads Debugging programs with multiple threads
Processes Debugging programs with multiple processes

Node: Compilation, Next: Starting, Prev: , Up: Running

Compiling for debugging
In order to debug a program effectively, you need to generate debugging information when
you compile it.    This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the -g option when you run the compiler.

Many C compilers are unable to handle the -g and -O options together.    Using those
compilers, you cannot generate optimized executables containing debugging information.

{No Value For "rd{}NGCC"}, the GNU C compiler, supports -g with or without -O, making it
possible to debug optimized code.    We recommend that you always use -g whenever you
compile a program.    You may think your program is correct, but there is no sense in pushing
your luck.

When you debug a program compiled with -g -O, remember that the optimizer is
rearranging your code; the debugger shows you what is really there.    Do not be too
surprised when the execution path does not exactly match your source file!    An extreme
example: if you define a variable, but never use it, GDB never sees that variable--because
the compiler optimizes it out of existence.

Some things do not work as well with -g -O as with just -g, particularly on machines with
instruction scheduling.    If in doubt, recompile with -g alone, and if this fixes the problem,
please report it to us as a bug (including a test case!).

Older versions of the GNU C compiler permitted a variant option -gg for debugging
information.    GDB no longer supports this format; if your GNU C compiler has this option, do
not use it.

Node: Starting, Next: Arguments, Prev: Compilation, Up: Running

Starting your program

run
r

Use the run command to start your program under GDB.    You must first specify the
program name (except on VxWorks) with an argument to GDB (see Getting In and
Out of GDB), or by using the file or exec-file command (see Commands to specify
files).

If you are running your program in an execution environment that supports processes, run
creates an inferior process and makes that process run your program.    (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior.   
GDB provides ways to specify this information, which you must do before starting your
program.    (You can change it after starting your program, but such changes only affect your
program the next time you start it.)    This information may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of the run command.   
If a shell is available on your target, the shell is used to pass the arguments, so that
you may use normal conventions (such as wildcard expansion or variable
substitution) in describing the arguments.    In Unix systems, you can control which
shell is used with the SHELL environment variable. See Your program's arguments.

The environment.
Your program normally inherits its environment from GDB, but you can use the GDB
commands set environment and unset environment to change parts of the
environment that affect your program.    See Your program's environment.

The working directory.
Your program inherits its working directory from GDB.    You can set the GDB working
directory with the cd command in GDB.    See Your program's working directory.

The standard input and output.
Your program normally uses the same device for standard input and standard output as GDB
is using.    You can redirect input and output in the run command line, or you can use the tty
command to set a different device for your program.    See Your program's input and output.

Warning: While input and output redirection work, you cannot use pipes to pass the output
of the program you are debugging to another program; if you attempt this, GDB is likely to
wind up debugging the wrong program.   

When you issue the run command, your program begins to execute immediately.    See
Stopping and continuing, for discussion of how to arrange for your program to stop.    Once
your program has stopped, you may call functions in your program, using the print or call
commands.    See Examining Data.

If the modification time of your symbol file has changed since the last time GDB read its

symbols, GDB discards its symbol table, and reads it again.    When it does this, GDB tries to
retain your current breakpoints.

Node: Arguments, Next: Environment, Prev: Starting, Up: Running

Your program's arguments
The arguments to your program can be specified by the arguments of the run command.   
They are passed to a shell, which expands wildcard characters and performs redirection of
I/O, and thence to your program.    Your SHELL environment variable (if it exists) specifies
what shell GDB uses.    If you do not define SHELL, GDB uses /bin/sh.

run with no arguments uses the same arguments used by the previous run, or those set by
the set args command.

set args
Specify the arguments to be used the next time your program is run.    If set args
has no arguments, run executes your program with no arguments.    Once you have
run your program with arguments, using set args before the next run is the only
way to run it again without arguments.

show args
Show the arguments to give your program when it is started.   

Node: Environment, Next: Working Directory, Prev: Arguments, Up: Running

Your program's environment
The "environment" consists of a set of environment variables and their values.    Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run.    Usually you set up environment
variables with the shell and they are inherited by all the other programs you run.    When
debugging, it can be useful to try running your program with a modified environment
without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path for
executables), for both GDB and your program.    You may specify several directory
names, separated by : or whitespace.    If directory is already in the path, it is moved
to the front, so it is searched sooner.

You can use the string $cwd to refer to whatever is the current working directory at
the time GDB searches the path.    If you use . instead, it refers to the directory where
you executed the path command.    GDB replaces . in the directory argument (with
the current path) before adding directory to the search path.

show paths
Display the list of search paths for executables (the PATH environment variable).

show environment [varname]
Print the value of environment variable varname to be given to your program when it
starts.    If you do not supply varname, print the names and values of all environment
variables to be given to your program.    You can abbreviate environment as env.

set environment varname [=] value
Set environment variable varname to value.    The value changes for your program
only, not for GDB itself.    value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program itself.   
The value parameter is optional; if it is eliminated, the variable is set to a null value.

For example, this command:

set env USER = foo

tells a Unix program, when subsequently run, that its user is named foo.    (The
spaces around = are used for clarity here; they are not actually required.)

unset environment varname

Remove variable varname from the environment to be passed to your program.    This is
different from set env varname =; unset environment removes the variable from the
environment, rather than assigning it an empty value.   

Warning: GDB runs your program using the shell indicated by your SHELL environment
variable if it exists (or /bin/sh if not).    If your SHELL variable names a shell that runs an
initialization file--such as .cshrc for C-shell, or .bashrc for BASH--any variables you set in
that file affect your program.    You may wish to move setting of environment variables to
files that are only run when you sign on, such as .login or .profile.

Node: Working Directory, Next: Input/Output, Prev: Environment, Up: Running

Your program's working directory
Each time you start your program with run, it inherits its working directory from the current
working directory of GDB.    The GDB working directory is initially whatever it inherited from
its parent process (typically the shell), but you can specify a new working directory in GDB
with the cd command.

The GDB working directory also serves as a default for the commands that specify files for
GDB to operate on.    See Commands to specify files.

cd directory
Set the GDB working directory to directory.

pwd
Print the GDB working directory.   

Node: Input/Output, Next: Attach, Prev: Working Directory, Up: Running

Your program's input and output
By default, the program you run under GDB does input and output to the same terminal that
GDB uses.    GDB switches the terminal to its own terminal modes to interact with you, but it
records the terminal modes your program was using and switches back to them when you
continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program is using.   

You can redirect your program's input and/or output using shell redirection with the run
command.    For example,

run > outfile

starts your program, diverting its output to the file outfile.

Another way to specify where your program should do input and output is with the tty
command.    This command accepts a file name as argument, and causes this file to be the
default for future run commands.    It also resets the controlling terminal for the child
process, for future run commands.    For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and
output on the terminal /dev/ttyb and have that as their controlling terminal.

An explicit redirection in run overrides the tty command's effect on the input/output device,
but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input for
your program is affected.    The input for GDB still comes from your terminal.

Node: Attach, Next: Kill Process, Prev: Input/Output, Up: Running

Debugging an already-running process

attach process-id
This command attaches to a running process--one that was started outside GDB.    (info
files shows your active targets.)    The command takes as argument a process ID.    The
usual way to find out the process-id of a Unix process is with the ps utility, or with the jobs
-l shell command.

attach does not repeat if you press RET a second time after executing the command.   

To use attach, your program must be running in an environment which supports processes;
for example, attach does not work for programs on bare-board targets that lack an
operating system.    You must also have permission to send the process a signal.

When using attach, you should first use the file command to specify the program running
in the process and load its symbol table.    See Commands to Specify Files.

The first thing GDB does after arranging to debug the specified process is to stop it.    You
can examine and modify an attached process with all the GDB commands that are ordinarily
available when you start processes with run.    You can insert breakpoints; you can step and
continue; you can modify storage.    If you would rather the process continue running, you
may use the continue command after attaching GDB to the process.

detach
When you have finished debugging the attached process, you can use the detach command
to release it from GDB control.    Detaching the process continues its execution.    After the
detach command, that process and GDB become completely independent once more, and
you are ready to attach another process or start one with run.    detach does not repeat if
you press RET again after executing the command.   

If you exit GDB or use the run command while you have an attached process, you kill that
process.    By default, GDB asks for confirmation if you try to do either of these things; you
can control whether or not you need to confirm by using the set confirm command (see
Optional warnings and messages).

Node: Kill Process, Next: Process Information, Prev: Attach, Up: Running

Killing the child process

kill
Kill the child process in which your program is running under GDB.   

This command is useful if you wish to debug a core dump instead of a running process.   
GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB.    You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program, since on
many systems it is impossible to modify an executable file while it is running in a process.   
In this case, when you next type run, GDB notices that the file has changed, and reads the
symbol table again (while trying to preserve your current breakpoint settings).

Node: Process Information, Next: Threads, Prev: Kill Process, Up: Running

Additional process information
Some operating systems provide a facility called /proc that can be used to examine the
image of a running process using file-system subroutines.    If GDB is configured for an
operating system with this facility, the command info proc is available to report on several
kinds of information about the process running your program.    info proc works only on
SVR4 systems that support procfs.

info proc
Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with information on whether
your program may read, write, or execute each range.

info proc times
Starting time, user CPU time, and system CPU time for your program and its children.

info proc id
Report on the process IDs related to your program: its own process ID, the ID of its
parent, the process group ID, and the session ID.

info proc status
General information on the state of the process.    If the process is stopped, this report
includes the reason for stopping, and any signal received.

info proc all
Show all the above information about the process.   

Node: Threads, Next: Processes, Prev: Process Information, Up: Running

Debugging programs with multiple threads
In some operating systems, a single program may have more than one "thread" of
execution.    The precise semantics of threads differ from one operating system to another,
but in general the threads of a single program are akin to multiple processes--except that
they share one address space (that is, they can all examine and modify the same variables). 
On the other hand, each thread has its own registers and execution stack, and perhaps
private memory.

{No Value For "rd{}GDBN"} provides these facilities for debugging multi-thread programs:

· automatic notification of new threads

· thread threadno, a command to switch among threads

· info threads, a command to inquire about existing threads

· thread apply [threadno] [all] args, a command to apply a command to a list of
threads

· thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configuration where the
operating system supports threads.    If your GDB does not support threads, these commands
have no effect.    For example, a system without thread support shows no output from info
threads, and always rejects the thread command, like this:

(gdb) info threads
(gdb) thread 1
Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program
runs--but whenever GDB takes control, one thread in particular is always the focus of
debugging.    This thread is called the "current thread".    Debugging commands show
program information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system's
identification for the thread with a message in the form [New systag].    systag is a thread
identifier whose form varies depending on the particular system.    For example, on LynxOS,
you might see

[New process 35 thread 27]

when GDB notices a new thread.    In contrast, on an SGI system, the systag is simply
something like process 368, with no further qualifier.

For debugging purposes, GDB associates its own thread number--always a single integer--
with each thread in your program.

info threads

Display a summary of all threads currently in your program.    GDB displays for each
thread (in this order):

1. the thread number assigned by GDB

2. the target system's thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk * to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
 3 process 35 thread 27 0x34e5 in sigpause ()
 2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
 at threadtest.c:68

thread threadno
Make thread number threadno the current thread.    The command argument
threadno is the internal GDB thread number, as shown in the first field of the info
threads display.    GDB responds by displaying the system identifier of the thread you
selected, and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the [New ...] message, the form of the text after Switching to depends on
your system's conventions for identifying threads.

thread apply [threadno] [all] args
The thread apply command allows you to apply a command to one or more threads.   
Specify the numbers of the threads that you want affected with the command argument
threadno.    threadno is the internal GDB thread number, as shown in the first field of the
info threads display.    To apply a command to all threads, use thread apply all args.   

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically selects
the thread where that breakpoint or signal happened.    GDB alerts you to the context switch
with a message of the form [Switching to systag] to identify the thread.

See Stopping and starting multi-thread programs, for more information about how GDB
behaves when you stop and start programs with multiple threads.

See Setting watchpoints, for information about watchpoints in programs with multiple
threads.   

Node: Processes, Next: , Prev: Threads, Up: Running

Debugging programs with multiple processes
GDB has no special support for debugging programs which create additional processes using
the fork function.    When a program forks, GDB will continue to debug the parent process
and the child process will run unimpeded.    If you have set a breakpoint in any code which
the child then executes, the child will get a SIGTRAP signal which (unless it catches the
signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn't too
painful.    Put a call to sleep in the code which the child process executes after the fork.    It
may be useful to sleep only if a certain environment variable is set, or a certain file exists, so
that the delay need not occur when you don't want to run GDB on the child.    While the child
is sleeping, use the ps program to get its process ID.    Then tell GDB (a new invocation of
GDB if you are also debugging the parent process) to attach to the child process (see
Attach).    From that point on you can debug the child process just like any other process
which you attached to.

Node: Stopping, Next: Stack, Prev: Running, Up: Top

Stopping and Continuing
The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out
why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a GDB command such as step.    You may then
examine and change variables, set new breakpoints or remove old ones, and then continue
execution.    Usually, the messages shown by GDB provide ample explanation of the status of
your program--but you can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running or not, what
process it is, and why it stopped.   

* Menu:

Breakpoints Breakpoints, watchpoints, and exceptions
Continuing and Stepping Resuming execution
Signals Signals
Thread Stops Stopping and starting multi-thread programs

Node: Breakpoints, Next: Continuing and Stepping, Prev: , Up: Stopping

Breakpoints, watchpoints, and exceptions
A "breakpoint" makes your program stop whenever a certain point in the program is
reached.    For each breakpoint, you can add conditions to control in finer detail whether your
program stops.    You can set breakpoints with the break command and its variants (see
Setting breakpoints), to specify the place where your program should stop by line number,
function name or exact address in the program.    In languages with exception handling (such
as GNU C++), you can also set breakpoints where an exception is raised (see Breakpoints and
exceptions).   

In SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can now set breakpoints in shared
libraries before the executable is run.

A "watchpoint" is a special breakpoint that stops your program when the value of an
expression changes.    You must use a different command to set watchpoints (see Setting
watchpoints), but aside from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints using the same
commands.

You can arrange to have values from your program displayed automatically whenever GDB
stops at a breakpoint.    See Automatic display.

GDB assigns a number to each breakpoint or watchpoint when you create it; these numbers
are successive integers starting with one.    In many of the commands for controlling various
features of breakpoints you use the breakpoint number to say which breakpoint you want to
change.    Each breakpoint may be "enabled" or "disabled"; if disabled, it has no effect on
your program until you enable it again.

* Menu:

Set Breaks Setting breakpoints
Set Watchpoints Setting watchpoints
Exception Handling Breakpoints and exceptions
Delete Breaks Deleting breakpoints
Disabling Disabling breakpoints
Conditions Break conditions
Break Commands Breakpoint command lists
Breakpoint Menus Breakpoint menus

Node: Set Breaks, Next: Set Watchpoints, Prev: , Up: Breakpoints

Setting breakpoints
Breakpoints are set with the break command (abbreviated b).    The debugger convenience
variable $bpnum records the number of the breakpoints you've set most recently; see
Convenience variables, for a discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function.    When using source languages that
permit overloading of symbols, such as C++, function may refer to more than one
possible place to break.    See Breakpoint menus, for a discussion of that situation.   

break +offset
break -offset

Set a breakpoint some number of lines forward or back from the position at which
execution stopped in the currently selected frame.

break linenum
Set a breakpoint at line linenum in the current source file.    That file is the last file
whose source text was printed.    This breakpoint stops your program just before it
executes any of the code on that line.

break filename:linenum
Set a breakpoint at line linenum in source file filename.

break filename:function
Set a breakpoint at entry to function function found in file filename.    Specifying a file
name as well as a function name is superfluous except when multiple files contain
similarly named functions.

break *address
Set a breakpoint at address address.    You can use this to set breakpoints in parts of
your program which do not have debugging information or source files.

break
When called without any arguments, break sets a breakpoint at the next instruction
to be executed in the selected stack frame (see Examining the Stack).    In any
selected frame but the innermost, this makes your program stop as soon as control
returns to that frame.    This is similar to the effect of a finish command in the frame
inside the selected frame--except that finish does not leave an active breakpoint.   
If you use break without an argument in the innermost frame, GDB stops the next
time it reaches the current location; this may be useful inside loops.

{No Value For "\li720{}GDBN"} normally ignores breakpoints when it resumes execution,
until at least one instruction has been executed.    If it did not do this, you would be unable to
proceed past a breakpoint without first disabling the breakpoint.    This rule applies whether
or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time the
breakpoint is reached, and stop only if the value is nonzero--that is, if cond evaluates
as true.    ... stands for one of the possible arguments described above (or no

argument) specifying where to break.    See Break conditions, for more information on
breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop.    args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there.    See Disabling
breakpoints.

hbreak args
Set a hardware-assisted breakpoint.    args are the same as for the break command
and the breakpoint is set in the same way, but the breakpoint requires hardware
support and some target hardware may not have this support.    The main purpose of
this is EPROM/ROM code debugging, so you can set a breakpoint at an instruction
without changing the instruction.    This can be used with the new trap-generation
provided by SPARClite DSU.    DSU will generate traps when a program accesses some
date or instruction address that is assigned to the debug registers.    However the
hardware breakpoint registers can only take two data breakpoints, and GDB will
reject this command if more than two are used.    Delete or disable usused hardware
breakpoints before setting new ones.    See Break conditions.

thbreak args
Set a hardware-assisted breakpoint enabled only for one stop.    args are the same as
for the hbreak command and the breakpoint is set in the same way.    However, like
the tbreak command, the breakpoint is automatically deleted after the first time
your program stops there.    Also, like the hbreak command, the breakpoint requires
hardware support and some target hardware may not have this support.    See
Disabling breakpoints.    Also See Break conditions.

rbreak regex
Set breakpoints on all functions matching the regular expression regex.    This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set.    Once these breakpoints are set, they are treated just like the
breakpoints set with the break command.    You can delete them, disable them, or
make them conditional the same way as any other breakpoint.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.   

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not deleted, with the
following columns for each breakpoint:

Breakpoint Numbers
Type

Breakpoint or watchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when hit.

Enabled or Disabled
Enabled breakpoints are marked with y.    n marks breakpoints that are not
enabled.

Address
Where the breakpoint is in your program, as a memory address

What
Where the breakpoint is in the source for your program, as a file and line number.   

If a breakpoint is conditional, info break shows the condition on the line following
the affected breakpoint; breakpoint commands, if any, are listed after that.

info break with a breakpoint number n as argument lists only that breakpoint.    The
convenience variable $_ and the default examining-address for the x command are
set to the address of the last breakpoint listed (see Examining memory).

info break now displays a count of the number of times the breakpoint has been hit.    This
is especially useful in conjunction with the ignore command.    You can ignore a large
number of breakpoint hits, look at the breakpoint info to see how many times the breakpoint
was hit, and then run again, ignoring one less than that number.    This will get you quickly to
the last hit of that breakpoint.   

{No Value For "rd{}GDBN"} allows you to set any number of breakpoints at the same place
in your program.    There is nothing silly or meaningless about this.    When the breakpoints
are conditional, this is even useful (see Break conditions).

GDB itself sometimes sets breakpoints in your program for special purposes, such as proper
handling of longjmp (in C programs).    These internal breakpoints are assigned negative
numbers, starting with -1; info breakpoints does not display them.

You can see these breakpoints with the GDB maintenance command maint info
breakpoints.

maint info breakpoints
Using the same format as info breakpoints, display both the breakpoints you've
set explicitly, and those GDB is using for internal purposes.    Internal breakpoints are
shown with negative breakpoint numbers.    The type column identifies what kind of
breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp
Internal breakpoint, used to handle correctly stepping through longjmp calls.

longjmp resume
Internal breakpoint at the target of a longjmp.

until
Temporary internal breakpoint used by the GDB until command.

finish
Temporary internal breakpoint used by the GDB finish command.   

Node: Set Watchpoints, Next: Exception Handling, Prev: Set Breaks, Up: Breakpoints

Setting watchpoints
You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other breakpoints,
but this can be well worth it to catch errors where you have no clue what part of your
program is the culprit.

watch expr
Set a watchpoint for an expression.    GDB will break when expr is written into by the
program and its value changes.    This can be used with the new trap-generation
provided by SPARClite DSU.    DSU will generate traps when a program accesses some
date or instruction address that is assigned to the debug registers.    For the data
addresses, DSU facilitates the watch command.    However the hardware breakpoint
registers can only take two data watchpoints, and both watchpoints must be the
same kind.    For example, you can set two watchpoints with watch commands, two
with rwatch commands, or two with awatch commands, but you cannot set one
watchpoint with one command and the other with a different command.    {No Value
For "GBDN"} will reject the command if you try to mix watchpoints.    Delete or
disable unused watchpoint commands before setting new ones.

rwatch expr
Set a watchpoint that will break when watch args is read by the program.    If you use
both watchpoints, both must be set with the rwatch command.

awatch expr
Set a watchpoint that will break when args is read and written into by the program.   
If you use both watchpoints, both must be set with the awatch command.

info watchpoints
This command prints a list of watchpoints and breakpoints; it is the same as info break.   

Warning: in multi-thread programs, watchpoints have only limited usefulness.    With
the current watchpoint implementation, GDB can only watch the value of an
expression in a single thread.    If you are confident that the expression can only
change due to the current thread's activity (and if you are also confident that no
other thread can become current), then you can use watchpoints as usual.    However,
GDB may not notice when a non-current thread's activity changes the expression.

Node: Exception Handling, Next: Delete Breaks, Prev: Set Watchpoints, Up: Breakpoints

Breakpoints and exceptions
Some languages, such as GNU C++, implement exception handling.    You can use GDB to
examine what caused your program to raise an exception, and to list the exceptions your
program is prepared to handle at a given point in time.

catch exceptions
You can set breakpoints at active exception handlers by using the catch command.   
exceptions is a list of names of exceptions to catch.   

You can use info catch to list active exception handlers.    See Information about a frame.

There are currently some limitations to exception handling in GDB:

· If you call a function interactively, GDB normally returns control to you when the
function has finished executing.    If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program to simply
continue running until it hits a breakpoint, catches a signal that GDB is listening for, or exits.

· You cannot raise an exception interactively.

· You cannot install an exception handler interactively.   

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place.    If you set a
breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation.    In the case of GNU C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

 /* addr is where the exception identifier is stored.
 ID is the exception identifier. */
 void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Breakpoints; watchpoints; and exceptions).

With a conditional breakpoint (see Break conditions) that depends on the value of id, you
can stop your program when a specific exception is raised.    You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions are raised.   

Node: Delete Breaks, Next: Disabling, Prev: Exception Handling, Up: Breakpoints

Deleting breakpoints
It is often necessary to eliminate a breakpoint or watchpoint once it has done its job and you
no longer want your program to stop there.    This is called "deleting" the breakpoint.    A
breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program.    With the delete command you can delete individual breakpoints or watchpoints
by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it.    GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear
Delete any breakpoints at the next instruction to be executed in the selected stack
frame (see Selecting a frame).    When the innermost frame is selected, this is a good
way to delete a breakpoint where your program just stopped.

clear function
clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the specified line.

delete [breakpoints] [bnums...]
Delete the breakpoints or watchpoints of the numbers specified as arguments.    If no
argument is specified, delete all breakpoints (GDB asks confirmation, unless you have set
confirm off).    You can abbreviate this command as d.   

Node: Disabling, Next: Conditions, Prev: Delete Breaks, Up: Breakpoints

Disabling breakpoints
Rather than deleting a breakpoint or watchpoint, you might prefer to "disable" it.    This
makes the breakpoint inoperative as if it had been deleted, but remembers the information
on the breakpoint so that you can "enable" it again later.

You disable and enable breakpoints and watchpoints with the enable and disable
commands, optionally specifying one or more breakpoint numbers as arguments.    Use info
break or info watch to print a list of breakpoints or watchpoints if you do not know which
numbers to use.

A breakpoint or watchpoint can have any of four different states of enablement:

· Enabled.    The breakpoint stops your program.    A breakpoint set with the break
command starts out in this state.

· Disabled.    The breakpoint has no effect on your program.

· Enabled once.    The breakpoint stops your program, but then becomes disabled.    A
breakpoint set with the tbreak command starts out in this state.

· Enabled for deletion.    The breakpoint stops your program, but immediately after it
does so it is deleted permanently.   

You can use the following commands to enable or disable breakpoints and watchpoints:

disable [breakpoints] [bnums...]
Disable the specified breakpoints--or all breakpoints, if none are listed.    A disabled
breakpoint has no effect but is not forgotten.    All options such as ignore-counts,
conditions and commands are remembered in case the breakpoint is enabled again
later.    You may abbreviate disable as dis.

enable [breakpoints] [bnums...]
Enable the specified breakpoints (or all defined breakpoints).    They become effective
once again in stopping your program.

enable [breakpoints] once bnums...
Enable the specified breakpoints temporarily.    GDB disables any of these breakpoints
immediately after stopping your program.

enable [breakpoints] delete bnums...
Enable the specified breakpoints to work once, then die.    GDB deletes any of these
breakpoints as soon as your program stops there.   

Except for a breakpoint set with tbreak (see Setting breakpoints), breakpoints that you set
are initially enabled; subsequently, they become disabled or enabled only when you use one
of the commands above.    (The command until can set and delete a breakpoint of its own,
but it does not change the state of your other breakpoints; see Continuing and stepping.)

Node: Conditions, Next: Break Commands, Prev: Disabling, Up: Breakpoints

Break conditions
The simplest sort of breakpoint breaks every time your program reaches a specified place.   
You can also specify a "condition" for a breakpoint.    A condition is just a Boolean expression
in your programming language (see Expressions).    A breakpoint with a condition evaluates
the expression each time your program reaches it, and your program stops only if the
condition is true.

This is the converse of using assertions for program validation; in that situation, you want to
stop when the assertion is violated--that is, when the condition is false.    In C, if you want to
test an assertion expressed by the condition assert, you should set the condition ! assert
on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint is
inspecting the value of an expression anyhow--but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program.    This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address.    (In that case, GDB might
see the other breakpoint first and stop your program without checking the condition of this
one.)    Note that breakpoint commands are usually more convenient and flexible for the
purpose of performing side effects when a breakpoint is reached (see Breakpoint command
lists).

Break conditions can be specified when a breakpoint is set, by using if in the arguments to
the break command.    See Setting breakpoints.    They can also be changed at any time with
the condition command.    The watch command does not recognize the if keyword;
condition is the only way to impose a further condition on a watchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint or watchpoint number
bnum.    After you set a condition, breakpoint bnum stops your program only if the
value of expression is true (nonzero, in C).    When you use condition, GDB checks
expression immediately for syntactic correctness, and to determine whether symbols
in it have referents in the context of your breakpoint.    GDB does not actually
evaluate expression at the time the condition command is given, however.    See
Expressions.

condition bnum
Remove the condition from breakpoint number bnum.    It becomes an ordinary unconditional
breakpoint.   

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times.    This is so useful that there is a special way to do it,
using the "ignore count" of the breakpoint.    Every breakpoint has an ignore count, which is
an integer.    Most of the time, the ignore count is zero, and therefore has no effect.    But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues.    As a result, if the ignore count

value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count.    The next count times the
breakpoint is reached, your program's execution does not stop; other than to
decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a breakpoint, you
can specify an ignore count directly as an argument to continue, rather than using
ignore.    See Continuing and stepping.

If a breakpoint has a positive ignore count and a condition, the condition is not checked.   
Once the ignore count reaches zero, GDB resumes checking the condition.

You could achieve the effect of the ignore count with a condition such as $foo-- <= 0 using
a debugger convenience variable that is decremented each time.    See Convenience
variables.   

Node: Break Commands, Next: Breakpoint Menus, Prev: Conditions, Up: Breakpoints

Breakpoint command lists
You can give any breakpoint (or watchpoint) a series of commands to execute when your
program stops due to that breakpoint.    For example, you might want to print the values of
certain expressions, or enable other breakpoints.

commands [bnum]
... command-list ...
end
Specify a list of commands for breakpoint number bnum.    The commands themselves
appear on the following lines.    Type a line containing just end to terminate the commands.

To remove all commands from a breakpoint, type commands and follow it immediately with
end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint or watchpoint set (not to the
breakpoint most recently encountered).   

Pressing RET as a means of repeating the last GDB command is disabled within a command-
list.

You can use breakpoint commands to start your program up again.    Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored.    This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint--which could have its own command list, leading to
ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed.    This may be desirable for breakpoints that are to
print a specific message and then continue.    If none of the remaining commands print
anything, you see no sign that the breakpoint was reached.    silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output, and
are often useful in silent breakpoints.    See Commands for controlled output.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can test for
another.    Put a breakpoint just after the erroneous line of code, give it a condition to detect

the case in which something erroneous has been done, and give it commands to assign
correct values to any variables that need them.    End with the continue command so that
your program does not stop, and start with the silent command so that no output is
produced.    Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

Node: Breakpoint Menus, Next: , Prev: Break Commands, Up: Breakpoints

Breakpoint menus
Some programming languages (notably C++) permit a single function name to be defined
several times, for application in different contexts.    This is called "overloading".    When a
function name is overloaded, break function is not enough to tell GDB where you want a
breakpoint.    If you realize this is a problem, you can use something like break
function(types) to specify which particular version of the function you want.    Otherwise,
GDB offers you a menu of numbered choices for different possible breakpoints, and waits for
your selection with the prompt >.    The first two options are always [0] cancel and [1]
all.    Typing 1 sets a breakpoint at each definition of function, and typing 0 aborts the break
command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String::after.    We choose three particular definitions of that function
name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
 breakpoints.
(gdb)

Node: Continuing and Stepping, Next: Signals, Prev: Breakpoints, Up: Stopping

Continuing and stepping
"Continuing" means resuming program execution until your program completes normally.    In
contrast, "stepping" means executing just one more "step" of your program, where "step"
may mean either one line of source code, or one machine instruction (depending on what
particular command you use).    Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal.    (If due to a signal, you may want to use
handle, or use signal 0 to resume execution.    See Signals.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed.    The optional argument ignore-count
allows you to specify a further number of times to ignore a breakpoint at this
location; its effect is like that of ignore (see Break conditions).

The argument ignore-count is meaningful only when your program stopped due to a
breakpoint.    At other times, the argument to continue is ignored.

The synonyms c and fg are provided purely for convenience, and have exactly the same
behavior as continue.   

To resume execution at a different place, you can use return (see Returning from a function)
to go back to the calling function; or jump (see Continuing at a different address) to go to an
arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Breakpoints; watchpoints;
and exceptions) at the beginning of the function or the section of your program where a
problem is believed to lie, run your program until it stops at that breakpoint, and then step
through the suspect area, examining the variables that are interesting, until you see the
problem happen.

step
Continue running your program until control reaches a different source line, then stop
it and return control to GDB.    This command is abbreviated s.

Warning: If you use the step command while control is within a function that was
compiled without debugging information, execution proceeds until control reaches a
function that does have debugging information.    Likewise, it will not step into a
function which is compiled without debugging information.    To step through functions
without debugging information, use the stepi command, described below.

The step command now only stops at the first instruction of a source line.    This
prevents the multiple stops that used to occur in switch statements, for loops, etc.   
step continues to stop if a function that has debugging information is called within
the line.

Also, the step command now only enters a subroutine if there is line number
information for the subroutine.    Otherwise it acts like the next command.    This
avoids problems when using cc -gl on MIPS machines.    Previously, step entered
subroutines if there was any debugging information about the routine.

step count
Continue running as in step, but do so count times.    If a breakpoint is reached, or a
signal not related to stepping occurs before count steps, stepping stops right away.

next [count]
Continue to the next source line in the current (innermost) stack frame.    This is
similar to step, but function calls that appear within the line of code are executed
without stopping.    Execution stops when control reaches a different line of code at
the original stack level that was executing when you gave the next command.    This
command is abbreviated n.

An argument count is a repeat count, as for step.

The next command now only stops at the first instruction of a source line.    This
prevents the multiple stops that used to occur in swtch statements, for loops, etc.

finish
Continue running until just after function in the selected stack frame returns.    Print
the returned value (if any).

Contrast this with the return command (see Returning from a function).

u

until
Continue running until a source line past the current line, in the current stack frame,
is reached.    This command is used to avoid single stepping through a loop more than
once.    It is like the next command, except that when until encounters a jump, it
automatically continues execution until the program counter is greater than the
address of the jump.

This means that when you reach the end of a loop after single stepping though it,
until makes your program continue execution until it exits the loop.    In contrast, a
next command at the end of a loop simply steps back to the beginning of the loop,
which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine code
does not match the order of the source lines.    For example, in the following excerpt
from a debugging session, the f (frame) command shows that execution is stopped
at line 206; yet when we use until, we get to line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated code
for the loop closure test at the end, rather than the start, of the loop--even though
the test in a C for-loop is written before the body of the loop.    The until command
appeared to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier statement--not in terms of
the actual machine code.

until with no argument works by means of single instruction stepping, and hence is
slower than until with an argument.

until location
u location

Continue running your program until either the specified location is reached, or the
current stack frame returns.    location is any of the forms of argument acceptable to
break (see Setting breakpoints).    This form of the command uses breakpoints, and
hence is quicker than until without an argument.

stepi
si

Execute one machine instruction, then stop and return to the debugger.

It is often useful to do display/i $pc when stepping by machine instructions.    This
makes GDB automatically display the next instruction to be executed, each time your
program stops.    See Automatic display.

An argument is a repeat count, as in step.

nexti
ni
Execute one machine instruction, but if it is a function call, proceed until the function
returns.

An argument is a repeat count, as in next.   

Node: Signals, Next: Thread Stops, Prev: Continuing and Stepping, Up: Stopping

Signals
A signal is an asynchronous event that can happen in a program.    The operating system
defines the possible kinds of signals, and gives each kind a name and a number.    For
example, in Unix SIGINT is the signal a program gets when you type an interrupt (often C-c);
SIGSEGV is the signal a program gets from referencing a place in memory far away from all
the areas in use; SIGALRM occurs when the alarm clock timer goes off (which happens only if
your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.   
Others, such as SIGSEGV, indicate errors; these signals are "fatal" (kill your program
immediately) if the program has not specified in advance some other way to handle the
signal.    SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

{No Value For "rd{}GDBN"} has the ability to detect any occurrence of a signal in your
program.    You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to interfere
with their role in the functioning of your program) but to stop your program immediately
whenever an error signal happens.    You can change these settings with the handle
command.

info signals
Print a table of all the kinds of signals and how GDB has been told to handle each
one.    You can use this to see the signal numbers of all the defined types of signals.

info handle is the new alias for info signals.

handle signal keywords...
Change the way GDB handles signal signal.    signal can be the number of a signal or its
name (with or without the SIG at the beginning).    The keywords say what change to make.   

The keywords allowed by the handle command can be abbreviated.    Their full names are:

nostop
{No Value For "\li720{}GDBN"} should not stop your program when this signal happens.    It
may still print a message telling you that the signal has come in.

stop
{No Value For "\li720{}GDBN"} should stop your program when this signal happens.    This
implies the print keyword as well.

print
{No Value For "\li720{}GDBN"} should print a message when this signal happens.

noprint
{No Value For "\li720{}GDBN"} should not mention the occurrence of the signal at all.    This

implies the nostop keyword as well.

pass
{No Value For "\li720{}GDBN"} should allow your program to see this signal; your program
can handle the signal, or else it may terminate if the signal is fatal and not handled.

nopass
{No Value For "\li720{}GDBN"} should not allow your program to see this signal.   

When a signal stops your program, the signal is not visible until you continue.    Your program
sees the signal then, if pass is in effect for the signal in question at that time.    In other
words, after GDB reports a signal, you can use the handle command with pass or nopass to
control whether your program sees that signal when you continue.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time.    For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as a result of the fatal
signal once it saw the signal.    To prevent this, you can continue with signal 0.    See Giving
your program a signal.   

Node: Thread Stops, Next: , Prev: Signals, Up: Stopping

Stopping and starting multi-thread programs
When your program has multiple threads (see Debugging programs with multiple threads),
you can choose whether to set breakpoints on all threads, or on a particular thread.

break linespec thread threadno
break linespec thread threadno if ...
linespec specifies source lines; there are several ways of writing them, but the effect is
always to specify some source line.

Use the qualifier thread threadno with a breakpoint command to specify that you
only want GDB to stop the program when a particular thread reaches this breakpoint. 
threadno is one of the numeric thread identifiers assigned by GDB, shown in the first
column of the info threads display.

If you do not specify thread threadno when you set a breakpoint, the breakpoint
applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this case,
place thread threadno before the breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop, not
just the current thread.    This allows you to examine the overall state of the program,
including switching between threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing.    This is true
even when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep.    Since thread scheduling is up
to your debugging target's operating system (not controlled by GDB), other threads may
execute more than one statement while the current thread completes a single step.   
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even single-
stepping.    This happens whenever some other thread runs into a breakpoint, a signal, or an
exception before the first thread completes whatever you requested.   

Node: Stack, Next: Source, Prev: Stopping, Up: Top

Examining the Stack
When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, information about the call is generated.   
That information includes the location of the call in your program, the arguments of the call,
and the local variables of the function being called.    The information is saved in a block of
data called a "stack frame".    The stack frames are allocated in a region of memory called
the "call stack".

When your program stops, the GDB commands for examining the stack allow you to see all
of this information.

One of the stack frames is "selected" by GDB and many GDB commands refer implicitly to
the selected frame.    In particular, whenever you ask GDB for the value of a variable in your
program, the value is found in the selected frame.    There are special GDB commands to
select whichever frame you are interested in. See Selecting a frame.

When your program stops, GDB automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Information about a frame).

* Menu:

Frames Stack frames
Backtrace Backtraces
Selection Selecting a frame
Frame Info Information on a frame
MIPS Stack MIPS machines and the function stack

Node: Frames, Next: Backtrace, Prev: , Up: Stack

Stack frames
The call stack is divided up into contiguous pieces called "stack frames", or "frames" for
short; each frame is the data associated with one call to one function.    The frame contains
the arguments given to the function, the function's local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.    This
is called the "initial" frame or the "outermost" frame.    Each time a function is called, a new
frame is made.    Each time a function returns, the frame for that function invocation is
eliminated.    If a function is recursive, there can be many frames for the same function.    The
frame for the function in which execution is actually occurring is called the "innermost"
frame.    This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses.    A stack frame consists
of many bytes, each of which has its own address; each kind of computer has a convention
for choosing one byte whose address serves as the address of the frame.    Usually this
address is kept in a register called the "frame pointer register" while execution is going on in
that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward.    These numbers do not really
exist in your program; they are assigned by GDB to give you a way of designating stack
frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames.    (For example, the gcc option -fomit-frame-pointer generates functions without
a frame.) This is occasionally done with heavily used library functions to save the frame
setup time.    GDB has limited facilities for dealing with these function invocations.    If the
innermost function invocation has no stack frame, GDB nevertheless regards it as though it
had a separate frame, which is numbered zero as usual, allowing correct tracing of the
function call chain.    However, GDB has no provision for frameless functions elsewhere in the
stack.

frame args
The frame command allows you to move from one stack frame to another, and to
print the stack frame you select.    args may be either the address of the frame or the
stack frame number.    Without an argument, frame prints the current stack frame.

select-frame
The select-frame command allows you to move from one stack frame to another without
printing the frame.    This is the silent version of frame.   

Node: Backtrace, Next: Selection, Prev: Frames, Up: Stack

Backtraces
A backtrace is a summary of how your program got where it is.    It shows one line per frame,
for many frames, starting with the currently executing frame (frame zero), followed by its
caller (frame one), and on up the stack.

backtrace
bt

Print a backtrace of the entire stack: one line per frame for all frames in the stack.

You can stop the backtrace at any time by typing the system interrupt character,
normally C-c.

backtrace n
bt n

Similar, but print only the innermost n frames.

backtrace -n
bt -n
Similar, but print only the outermost n frames.   

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

Each line in the backtrace shows the frame number and the function name.    The program
counter value is also shown--unless you use set print address off.    The backtrace also
shows the source file name and line number, as well as the arguments to the function.    The
program counter value is omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace.    It was made with the command bt 3, so it shows the
innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
 at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
 at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that your
program has stopped at the beginning of the code for line 993 of builtin.c.

Node: Selection, Next: Frame Info, Prev: Backtrace, Up: Stack

Selecting a frame
Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment.    Here are the commands for selecting a stack
frame; all of them finish by printing a brief description of the stack frame just selected.

frame n
f n

Select frame number n.    Recall that frame zero is the innermost (currently executing)
frame, frame one is the frame that called the innermost one, and so on.    The
highest-numbered frame is the one for main.

frame addr
f addr

Select the frame at address addr.    This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign numbers
properly to all frames.    In addition, this can be useful when your program has
multiple stacks and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary frame: a
frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a
program counter.

On the 29k architecture, it needs three addresses: a register stack pointer, a program
counter, and a memory stack pointer.   

up n
Move n frames up the stack.    For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.    n
defaults to one.

down n
Move n frames down the stack.    For positive numbers n, this advances toward the
innermost frame, to lower frame numbers, to frames that were created more recently.    n
defaults to one.    You may abbreviate down as do.   

All of these commands end by printing two lines of output describing the frame.    The first
line shows the frame number, the function name, the arguments, and the source file and
line number of execution in that frame.    The second line shows the text of that source line.

For example:

(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
 at env.c:10
10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints ten lines centered on the
point of execution in the frame.    See Printing source lines.

up-silently n
down-silently n
These two commands are variants of up and down, respectively; they differ in that they do
their work silently, without causing display of the new frame.    They are intended primarily
for use in GDB command scripts, where the output might be unnecessary and distracting.   

Node: Frame Info, Next: MIPS Stack, Prev: Selection, Up: Stack

Information about a frame
There are several other commands to print information about the selected stack frame.

frame
f

When used without any argument, this command does not change which frame is
selected, but prints a brief description of the currently selected stack frame.    It can
be abbreviated f.    With an argument, this command is used to select a stack frame.   
See Selecting a frame.

info frame
info f

This command prints a verbose description of the selected stack frame, including:

· the address of the frame

· the address of the next frame down (called by this frame)

· the address of the next frame up (caller of this frame)

· the language in which the source code corresponding to this frame is written

· the address of the frame's arguments

· the program counter saved in it (the address of execution in the caller frame)

· which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made the
stack format fail to fit the usual conventions.

info frame addr
info f addr

Print a verbose description of the frame at address addr, without selecting that
frame.    The selected frame remains unchanged by this command.    This requires the
same kind of address (more than one for some architectures) that you specify in the
frame command.    See Selecting a frame.

info args
Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line.    These are all
variables (declared either static or automatic) accessible at the point of execution of
the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack frame at the
current point of execution.    To see other exception handlers, visit the associated frame
(using the up, down, or frame commands); then type info catch.    See Breakpoints and
exceptions.   

Node: MIPS Stack, Next: , Prev: Frame Info, Up: Stack

MIPS machines and the function stack
MIPS based computers use an unusual stack frame, which sometimes requires GDB to
search backward in the object code to find the beginning of a function.

To improve response time (especially for embedded applications, where GDB may be
restricted to a slow serial line for this search) you may want to limit the size of this search,
using one of these commands:

set heuristic-fence-post limit
Restrict GDB to examining at most limit bytes in its search for the beginning of a
function.    A value of 0 (the default) means there is no limit.    However, except for 0,
the larger the limit the more bytes heuristic-fence-post must search and
therefore the longer it takes to run.

show heuristic-fence-post
Display the current limit.   

These commands are available only when GDB is configured for debugging programs on
MIPS processors.   

Node: Source, Next: Data, Prev: Stack, Up: Top

Examining Source Files
{No Value For "rd{}GDBN"} can print parts of your program's source, since the debugging
information recorded in the program tells GDB what source files were used to build it.    When
your program stops, GDB spontaneously prints the line where it stopped.    Likewise, when
you select a stack frame (see Selecting a frame), GDB prints the line where execution in that
frame has stopped.    You can print other portions of source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs facilities to
view source; see Using GDB under GNU Emacs.   

* Menu:

List Printing source lines
Search Searching source files
Source Path Specifying source directories
Machine Code Source and machine code

Node: List, Next: Search, Prev: , Up: Source

Printing source lines
To print lines from a source file, use the list command (abbreviated l).    By default, ten
lines are printed.    There are several ways to specify what part of the file you want to print.

Here are the forms of the list command most commonly used:

list linenum
Print lines centered around line number linenum in the current source file.

list function
Print lines centered around the beginning of function function.

list
Print more lines.    If the last lines printed were printed with a list command, this
prints lines following the last lines printed; however, if the last line printed was a
solitary line printed as part of displaying a stack frame (see Examining the Stack),
this prints lines centered around that line.

list -
Print lines just before the lines last printed.   

By default, GDB prints ten source lines with any of these forms of the list command.    You
can change this using set listsize:

set listsize count
Make the list command display count source lines (unless the list argument
explicitly specifies some other number).

show listsize
Display the number of lines that list prints.   

Repeating a list command with RET discards the argument, so it is equivalent to typing just
list.    This is more useful than listing the same lines again.    An exception is made for an
argument of -; that argument is preserved in repetition so that each repetition moves up in
the source file.

In general, the list command expects you to supply zero, one or two "linespecs".   
Linespecs specify source lines; there are several ways of writing them but the effect is
always to specify some source line.    Here is a complete description of the possible
arguments for list:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last.    Both arguments are linespecs.

list ,last
Print lines ending with last.

list first,
Print lines starting with first.

list +
Print lines just after the lines last printed.

list -
Print lines just before the lines last printed.

list
As described in the preceding table.   

Here are the ways of specifying a single source line--all the kinds of linespec.

number
Specifies line number of the current source file.    When a list command has two
linespecs, this refers to the same source file as the first linespec.

+offset
Specifies the line offset lines after the last line printed.    When used as the second
linespec in a list command that has two, this specifies the line offset lines down
from the first linespec.

-offset
Specifies the line offset lines before the last line printed.

filename:number
Specifies line number in the source file filename.

function
Specifies the line that begins the body of the function function.    For example: in C,
this is the line with the open brace.

filename:function
Specifies the line of the open-brace that begins the body of the function function in
the file filename.    You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

*address
Specifies the line containing the program address address.    address may be any expression.

Node: Search, Next: Source Path, Prev: List, Up: Source

Searching source files
There are two commands for searching through the current source file for a regular
expression.

forward-search regexp
search regexp

The command forward-search regexp checks each line, starting with the one
following the last line listed, for a match for regexp.    It lists the line that is found.   
You can use the synonym search regexp or abbreviate the command name as fo.

reverse-search regexp
The command reverse-search regexp checks each line, starting with the one before the
last line listed and going backward, for a match for regexp.    It lists the line that is found.   
You can abbreviate this command as rev.   

Node: Source Path, Next: Machine Code, Prev: Search, Up: Source

Specifying source directories
Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names.    Even when they do, the directories could be moved
between the compilation and your debugging session.    GDB has a list of directories to
search for source files; this is called the "source path".    Each time GDB wants a source file,
it tries all the directories in the list, in the order they are present in the list, until it finds a file
with the desired name.    Note that the executable search path is not used for this purpose.   
Neither is the current working directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object program records a
directory, GDB tries that directory too.    If the source path is empty, and there is no record of
the compilation directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any information it has
cached about where source files are found and where each line is in the file.

When you start GDB, its source path is empty.    To add other directories, use the directory
command.

directory dirname ...
dir dirname ...

Add directory dirname to the front of the source path.    Several directory names may
be given to this command, separated by : or whitespace.    You may specify a
directory that is already in the source path; this moves it forward, so GDB searches it
sooner.

You can use the string $cdir to refer to the compilation directory (if one is recorded),
and $cwd to refer to the current working directory.    $cwd is not the same as .--the
former tracks the current working directory as it changes during your GDB session,
while the latter is immediately expanded to the current directory at the time you add
an entry to the source path.

directory
Reset the source path to empty again.    This requires confirmation.

show directories
Print the source path: show which directories it contains.   

If your source path is cluttered with directories that are no longer of interest, GDB may
sometimes cause confusion by finding the wrong versions of source.    You can correct the
situation as follows:

1. Use directory with no argument to reset the source path to empty.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path.    You can add all the directories in one command.

Node: Machine Code, Next: , Prev: Source Path, Up: Source

Source and machine code
You can use the command info line to map source lines to program addresses (and vice
versa), and the command disassemble to display a range of addresses as machine
instructions.    When run under GNU Emacs mode, the info line command now causes the
arrow to point to the line specified.    Also, info line prints addresses in symbolic form as
well as hex.

info line linespec
Print the starting and ending addresses of the compiled code for source line linespec.    You
can specify source lines in any of the ways understood by the list command (see Printing
source lines).   

For example, we can use info line to discover the location of the object code for the first
line of function m4_changequote:

(gdb) info line m4_changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a
particular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting address
of the line, so that x/i is sufficient to begin examining the machine code (see Examining
memory).    Also, this address is saved as the value of the convenience variable $_ (see
Convenience variables).

disassemble
This specialized command dumps a range of memory as machine instructions.    The default
memory range is the function surrounding the program counter of the selected frame.    A
single argument to this command is a program counter value; GDB dumps the function
surrounding this value.    Two arguments specify a range of addresses (first inclusive, second
exclusive) to dump.   

We can use disassemble to inspect the object code range shown in the last info line
example (the example shows SPARC machine instructions):

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop
End of assembler dump.

set assembly-language instruction-set
This command selects the instruction set to use when disassembling the program via the
disassemble or x/i commands.    It is useful for architectures that have more than one
native instruction set.

Currently it is only defined for the Intel x86 family.    You can set instruction-set to either i386
or i8086.    The default is i386.   

Node: Data, Next: Languages, Prev: Source, Up: Top

Examining Data
The usual way to examine data in your program is with the print command (abbreviated p),
or its synonym inspect.    It evaluates and prints the value of an expression of the language
your program is written in (see Using GDB with Different Languages).   

print exp
print /f exp
exp is an expression (in the source language).    By default the value of exp is printed in a
format appropriate to its data type; you can choose a different format by specifying /f,
where f is a letter specifying the format; see Output formats.

print
print /f
If you omit exp, GDB displays the last value again (from the "value history"; see Value
history).    This allows you to conveniently inspect the same value in an alternative format.   

A more low-level way of examining data is with the x command.    It examines data in
memory at a specified address and prints it in a specified format.    See Examining memory.

If you are interested in information about types, or about how the fields of a struct or class
are declared, use the ptype exp command rather than print. See Examining the Symbol
Table.

* Menu:

Expressions Expressions
Variables Program variables
Arrays Artificial arrays
Output Formats Output formats
Memory Examining memory
Auto Display Automatic display
Print Settings Print settings
Value History Value history
Convenience Vars Convenience variables
Registers Registers
Floating Point Hardware Floating point hardware

Node: Expressions, Next: Variables, Prev: , Up: Data

Expressions
print and many other GDB commands accept an expression and compute its value.    Any
kind of constant, variable or operator defined by the programming language you are using is
valid in an expression in GDB.    This includes conditional expressions, function calls, casts
and string constants.    It unfortunately does not include symbols defined by preprocessor
#define commands.

{No Value For "rd{}GDBN"} now supports array constants in expressions input by the user.   
The syntax is {element, element...}.    For example, you can now use the command print
{1, 2, 3} to build up an array in memory that is malloc'd in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual are
in C.    See Using GDB with Different Languages, for information on how to use expressions in
other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of your
programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a number
into a pointer in order to examine a structure at that address in memory.   

{No Value For "rd{}GDBN"} supports these operators, in addition to those common to
programming languages:

@
@ is a binary operator for treating parts of memory as arrays.    See Artificial arrays, for more
information.

::
:: allows you to specify a variable in terms of the file or function where it is defined.    See
Program variables.

{type} addr
Refers to an object of type type stored at address addr in memory.    addr may be any
expression whose value is an integer or pointer (but parentheses are required around binary
operators, just as in a cast).    This construct is allowed regardless of what kind of data is
normally supposed to reside at addr.   

Node: Variables, Next: Arrays, Prev: Expressions, Up: Data

Program variables
The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Selecting a frame);
they must be either:

· global (or static)

or

· visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function

foo (a)
 int a;
{
 bar (a);
 {
 int b = test ();
 bar (b);
 }
}

you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is
executing inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single source
file even if the current execution point is not in this file.    But it is possible to have more than
one such variable or function with the same name (in different source files).    If that
happens, referring to that name has unpredictable effects.    If you wish, you can specify a
static variable in a particular function or file, using the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable.    In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word--for
example, to print a global value of x defined in f2.c:

(gdb) p 'f2.c'::x

This use of :: is very rarely in conflict with the very similar use of the same notation in C++.
GDB also supports use of the C++ scope resolution operator in GDB expressions.   

Warning: Occasionally, a local variable may appear to have the wrong value at certain points
in a function--just after entry to a new scope, and just before exit.
You may see this problem when you are stepping by machine instructions.    This is because,

on most machines, it takes more than one instruction to set up a stack frame (including local
variable definitions); if you are stepping by machine instructions, variables may appear to
have the wrong values until the stack frame is completely built.    On exit, it usually also
takes more than one machine instruction to destroy a stack frame; after you begin stepping
through that group of instructions, local variable definitions may be gone.

Node: Arrays, Next: Output Formats, Prev: Variables, Up: Data

Artificial arrays
It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an "artificial array", using
the binary operator @.    The left operand of @ should be the first element of the desired array
and be an individual object.    The right operand should be the desired length of the array.   
The result is an array value whose elements are all of the type of the left argument.    The
first element is actually the left argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on.    Here is an example.    If
a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of @ must reside in memory.    Array values made with @ in this way behave
just like other arrays in terms of subscripting, and are coerced to pointers when used in
expressions.    Artificial arrays most often appear in expressions via the value history (see
Value history), after printing one out.

Another way to create an artificial array is to use a cast.    This re-interprets a value as if it
were an array.    The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in (type)[])value) gdb calculates
the size to fill the value (as sizeof(value)/sizeof(type):

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex data
structures, the elements of interest may not actually be adjacent--for example, if you are
interested in the values of pointers in an array.    One useful work-around in this situation is
to use a convenience variable (see Convenience variables) as a counter in an expression
that prints the first interesting value, and then repeat that expression via RET.    For instance,
suppose you have an array dtab of pointers to structures, and you are interested in the
values of a field fv in each structure.    Here is an example of what you might type:

set $i = 0
p dtab[$i++]->fv
RET
RET
...

Node: Output Formats, Next: Memory, Prev: Arrays, Up: Data

Output formats
By default, GDB prints a value according to its data type.    Sometimes this is not what you
want.    For example, you might want to print a number in hex, or a pointer in decimal.    Or
you might want to view data in memory at a certain address as a character string or as an
instruction.    To do these things, specify an "output format" when you print a value.

The simplest use of output formats is to say how to print a value already computed.    This is
done by starting the arguments of the print command with a slash and a format letter.   
The format letters supported are:

x
Regard the bits of the value as an integer, and print the integer in hexadecimal.

d
Print as integer in signed decimal.

u
Print as integer in unsigned decimal.

o
Print as integer in octal.

t
Print as integer in binary.    The letter t stands for "two".    (1)

a
Print as an address, both absolute in hexadecimal and as an offset from the nearest
preceding symbol.    You can use this format used to discover where (in what function)
an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c
Regard as an integer and print it as a character constant.

f
Regard the bits of the value as a floating point number and print using typical floating point
syntax.   

For example, to print the program counter in hex (see Registers), type

p/x $pc

Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the print
command with just a format and no expression.    For example, p/x reprints the last value in
hex.

b cannot be used because these format letters are also used with the x command, where b
stands for "byte"; see Examining memory.

Node: Memory, Next: Auto Display, Prev: Output Formats, Up: Data

Examining memory
You can use the command x (for "examine") to examine memory in any of several formats,
independently of your program's data types.

x/nfu addr
x addr
x
Use the x command to examine memory.   

n, f, and u are all optional parameters that specify how much memory to display and how to
format it; addr is an expression giving the address where you want to start displaying
memory.    If you use defaults for nfu, you need not type the slash /.    Several commands set
convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1.    It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, s (null-terminated string), or
i (machine instruction).    The default is x (hexadecimal) initially.    The default
changes each time you use either x or print.

u, the unit size
The unit size is any of

b
Bytes.

h
Halfwords (two bytes).

w
Words (four bytes).    This is the initial default.

g
Giant words (eight bytes).   

Each time you specify a unit size with x, that size becomes the default unit the next
time you use x.    (For the s and i formats, the unit size is ignored and is normally not
written.)

addr, starting display address
addr is the address where you want GDB to begin displaying memory.    The expression need
not have a pointer value (though it may); it is always interpreted as an integer address of a
byte of memory.    See Expressions, for more information on expressions.    The default for
addr is usually just after the last address examined--but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint listed), info
line (to the starting address of a line), and print (if you use it to display a value from

memory).   

For example, x/3uh 0x54320 is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (u), starting at address 0x54320.    x/4xw $sp prints
the four words (w) of memory above the stack pointer (here, $sp; see Registers) in
hexadecimal (x).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works.    The output specifications 4xw and 4wx mean exactly the same thing.    (However, the
count n must come first; wx4 does not work.)

Even though the unit size u is ignored for the formats s and i, you might still want to use a
count n; for example, 3i specifies that you want to see three machine instructions, including
any operands.    The command disassemble gives an alternative way of inspecting machine
instructions; see Source and machine code.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x.    For example, after you have
inspected three machine instructions with x/3i addr, you can inspect the next seven with
just x/7.    If you use RET to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way.    Instead, GDB
makes these values available for subsequent use in expressions as values of the
convenience variables $_ and $__.    After an x command, the last address examined is
available for use in expressions in the convenience variable $_.    The contents of that
address, as examined, are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

Node: Auto Display, Next: Print Settings, Prev: Memory, Up: Data

Automatic display
If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the "automatic display list" so that GDB prints its
value each time your program stops.    Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number.    The automatic
display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values.    As with displays
you request manually using x or print, you can specify the output format you prefer; in fact,
display decides whether to use print or x depending on how elaborate your format
specification is--it uses x if you specify a unit size, or one of the two formats (i and s) that
are only supported by x; otherwise it uses print.

display exp
Add the expression exp to the list of expressions to display each time your program
stops.    See Expressions.

display does not repeat if you press RET again after using it.

display/fmt exp
For fmt specifying only a display format and not a size or count, add the expression
exp to the auto-display list but arrange to display it each time in the specified format
fmt.    See Output formats.

display/fmt addr
For fmt i or s, or including a unit-size or a number of units, add the expression addr as a
memory address to be examined each time your program stops.    Examining means in effect
doing x/fmt addr.    See Examining memory.   

For example, display/i $pc can be helpful, to see the machine instruction about to be
executed each time execution stops ($pc is a common name for the program counter; see
Registers).

undisplay dnums...
delete display dnums...

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press RET after using it.    (Otherwise you would just
get the error No display number)

disable display dnums...
Disable the display of item numbers dnums.    A disabled display item is not printed
automatically, but is not forgotten.    It may be enabled again later.

enable display dnums...
Enable display of item numbers dnums.    It becomes effective once again in auto
display of its expression, until you specify otherwise.

display
Display the current values of the expressions on the list, just as is done when your
program stops.

info display
Print the list of expressions previously set up to display automatically, each one with its item
number, but without showing the values.    This includes disabled expressions, which are
marked as such.    It also includes expressions which would not be displayed right now
because they refer to automatic variables not currently available.   

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up.    Such an expression is disabled when execution
enters a context where one of its variables is not defined.    For example, if you give the
command display last_char while inside a function with an argument last_char, GDB
displays this argument while your program continues to stop inside that function.    When it
stops elsewhere--where there is no variable last_char--the display is disabled automatically.
The next time your program stops where last_char is meaningful, you can enable the
display expression once again.

Node: Print Settings, Next: Value History, Prev: Auto Display, Up: Data

Print settings
GDB provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address
set print address on
{No Value For "\li720{}GDBN"} prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so forth, even when it also displays
the contents of those addresses.    The default is on.    For example, this is what a stack frame
display looks like with set print address on:

(gdb) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
 at input.c:530
530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents.    For example, this is the same
stack frame displayed with set print address off:

(gdb) set print addr off
(gdb) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use set print address off to eliminate all machine dependent displays
from the GDB interface.    For example, with print address off, you should get the
same text for backtraces on all machines--whether or not they involve pointer
arguments.

show print address
Show whether or not addresses are to be printed.   

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus an
offset.    If that symbol does not uniquely identify the address (for example, it is a name
whose scope is a single source file), you may need to clarify.    One way to do this is with
info line, for example info line *0x4537.    Alternately, you can set GDB to print the
source file and line number when it prints a symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the symbolic
form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol.    This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a symbol in the
symbolic form of an address.   

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code; GDB shows you the line number and source file that corresponds to
each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reasonably
close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell GDB to only display the symbolic form of an address if the offset between the
closest earlier symbol and the address is less than max-offset.    The default is 0,
which tells GDB to always print the symbolic form of an address if any symbol
precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.   

If you have a pointer and you are not sure where it points, try set print symbol-filename
on.    Then you can determine the name and source file location of the variable where it
points, using p/a pointer.    This interprets the address in symbolic form.    For example,
here GDB shows that a variable ptt points at another variable t, defined in hi2.c:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, p/a does not show the symbol name and
filename of the referent, even with the appropriate set print options turned on.

Other settings control how different kinds of objects are printed:

set print array
set print array on

Pretty print arrays.    This format is more convenient to read, but uses more space.   
The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print.    If GDB is printing a
large array, it stops printing after it has printed the number of elements set by the
set print elements command.    This limit also applies to the display of strings.   
Setting    number-of-elements to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print.    If the number is
0, then the printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL is
encountered.    This is useful when large arrays actually contain only short strings.

set print pretty on
Cause GDB to print structures in an indented format with one member per line, like
this:

$1 = {
 next = 0x0,
 flags = {
 sweet = 1,
 sour = 1
 },
 meat = 0x54 "Pork"
}

set print pretty off
Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any eight-bit
characters (in strings or character values) using the notation \nnn.    This setting is
best if you are working in English (ASCII) and you use the high-order bit of characters

as a marker or "meta" bit.

set print sevenbit-strings off
Print full eight-bit characters.    This allows the use of more international character
sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell GDB to print unions which are contained in structures.    This is the default setting.

set print union off
Tell GDB not to print unions which are contained in structures.

show print union
Ask GDB whether or not it will print unions which are contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}
 Bug_forms;

struct thing {
 Species it;
 union {
 Tree_forms tree;
 Bug_forms bug;
 } form;
};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect p foo would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print

$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle
set print demangle on

Print C++ names in their source form rather than in the encoded ("mangled") form

passed to the assembler and linker for type-safe linkage.    The default is on.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle
set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies.    The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or demangled
form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names.    The choices for style are currently:

auto
Allow GDB to choose a decoding style by inspecting your program.

gnu
Decode based on the GNU C++ compiler (g++) encoding algorithm.    This is the
default.

lucid
Decode based on the Lucid C++ compiler (lcc) encoding algorithm.

arm
Decode using the algorithm in the C++ Annotated Reference Manual.   
Warning: this setting alone is not sufficient to allow debugging cfront-
generated executables.    GDB would require further enhancement to permit
that.

foo
Show the list of formats.   

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.

set print object
set print object on

When displaying a pointer to an object, identify the actual (derived) type of the object

rather than the declared type, using the virtual function table.

set print object off
Display only the declared type of objects, without reference to the virtual function
table.    This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print static-members
set print static-members on

Print static members when displaying a C++ object.    The default is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed, or not.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables.    The default is off.

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.   

Node: Value History, Next: Convenience Vars, Prev: Print Settings, Up: Data

Value history
Values printed by the print command are saved in the GDB "value history".    This allows
you to refer to them in other expressions.    Values are kept until the symbol table is re-read
or discarded (for example with the file or symbol-file commands).    When the symbol
table changes, the value history is discarded, since the values may contain pointers back to
the types defined in the symbol table.

The values printed are given "history numbers" by which you can refer to them.    These are
successive integers starting with one.    print shows you the history number assigned to a
value by printing $num = before the value; here num is the history number.

To refer to any previous value, use $ followed by the value's history number.    The way print
labels its output is designed to remind you of this.    Just $ refers to the most recent value in
the history, and $$ refers to the value before that.    $$n refers to the nth value from the end;
$$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure.    It suffices to type

p *$

If you have a chain of structures where the component next points to the next one, you can
print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this command--which you can do by
just typing RET.

Note that the history records values, not expressions.    If the value of x is 4 and you type
these commands:

print x
set x=5

then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers.    This is like p $
$9 repeated ten times, except that show values does not change the history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed.    If no more values are available,
show values + produces no display.   

Pressing RET to repeat show values n has exactly the same effect as show values +.

Node: Convenience Vars, Next: Registers, Prev: Value History, Up: Data

Convenience variables
GDB provides "convenience variables" that you can use within GDB to hold on to a value and
refer to it later.    These variables exist entirely within GDB; they are not part of your
program, and setting a convenience variable has no direct effect on further execution of
your program.    That is why you can use them freely.

Convenience variables are prefixed with $.    Any name preceded by $ can be used for a
convenience variable, unless it is one of the predefined machine-specific register names
(see Registers).    (Value history references, in contrast, are numbers preceded by $.    See
Value history.)

You can save a value in a convenience variable with an assignment expression, just as you
would set a variable in your program.    For example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value.    You can alter the value with another assignment at any time.

Convenience variables have no fixed types.    You can assign a convenience variable any type
of value, including structures and arrays, even if that variable already has a value of a
different type.    The convenience variable, when used as an expression, has the type of its
current value.

show convenience
Print a list of convenience variables used so far, and their values.    Abbreviated show con.   

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced.    For example, to print a field from successive elements of an array
of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to be
useful.

$_
The variable $_ is automatically set by the x command to the last address examined
(see Examining memory).    Other commands which provide a default address for x to
examine also set $_ to that address; these commands include info line and info
breakpoint.    The type of $_ is void * except when set by the x command, in which
case it is a pointer to the type of $__.

$__
The variable $__ is automatically set by the x command to the value found in the last
address examined.    Its type is chosen to match the format in which the data was
printed.

$_exitcode
The variable $_exitcode is automatically set to the exit code when the program being
debugged terminates.   

Node: Registers, Next: Floating Point Hardware, Prev: Convenience Vars, Up: Data

Registers
You can refer to machine register contents, in expressions, as variables with names starting
with $.    The names of registers are different for each machine; use info registers to see
the names used on your machine.

info registers
Print the names and values of all registers except floating-point registers (in the
selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regname ...
Print the "relativized" value of each specified register regname.    As discussed in detail
below, register values are normally relative to the selected stack frame.    regname may be
any register name valid on the machine you are using, with or without the initial $.   

{No Value For "rd{}GDBN"} has four "standard" register names that are available (in
expressions) on most machines--whenever they do not conflict with an architecture's
canonical mnemonics for registers.    The register names $pc and $sp are used for the
program counter register and the stack pointer.    $fp is used for a register that contains a
pointer to the current stack frame, and $ps is used for a register that contains the processor
status.    For example, you could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add four to the stack pointer(1) with

set $sp += 4

Whenever possible, these four standard register names are available on your machine even
though the machine has different canonical mnemonics, so long as there is no conflict.    The
info registers command shows the canonical names.    For example, on the SPARC, info
registers displays the processor status register as $psr but you can also refer to it as $ps.

{No Value For "rd{}GDBN"} always considers the contents of an ordinary register as an
integer when the register is examined in this way.    Some machines have special registers
which can hold nothing but floating point; these registers are considered to have floating
point values.    There is no way to refer to the contents of an ordinary register as floating
point value (although you can print it as a floating point value with print/f $regname).

Some registers have distinct "raw" and "virtual" data formats.    This means that the data
format in which the register contents are saved by the operating system is not the same one
that your program normally sees.    For example, the registers of the 68881 floating point

coprocessor are always saved in "extended" (raw) format, but all C programs expect to work
with "double" (virtual) format.    In such cases, GDB normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Normally, register values are relative to the selected stack frame (see Selecting a frame).   
This means that you get the value that the register would contain if all stack frames farther
in were exited and their saved registers restored.    In order to see the true contents of
hardware registers, you must select the innermost frame (with frame 0).

However, GDB must deduce where registers are saved, from the machine code generated by
your compiler.    If some registers are not saved, or if GDB is unable to locate the saved
registers, the selected stack frame makes no difference.

set rstack_high_address address
On AMD 29000 family processors, registers are saved in a separate "register stack".   
There is no way for GDB to determine the extent of this stack.    Normally, GDB just
assumes that the stack is "large enough".    This may result in GDB referencing
memory locations that do not exist.    If necessary, you can get around this problem
by specifying the ending address of the register stack with the set
rstack_high_address command.    The argument should be an address, which you
probably want to precede with 0x to specify in hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000 family processors.   

This is a way of removing one word from the stack, on machines where stacks grow
downward in memory (most machines, nowadays).    This assumes that the innermost stack
frame is selected; setting $sp is not allowed when other stack frames are selected.    To pop
entire frames off the stack, regardless of machine architecture, use return; see Returning
from a function.

Node: Floating Point Hardware, Next: , Prev: Registers, Up: Data

Floating point hardware
Depending on the configuration, GDB may be able to give you more information about the
status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit.    The exact contents
and layout vary depending on the floating point chip.    Currently, info float is supported
on the ARM and x86 machines.   

Node: Languages, Next: Symbols, Prev: Data, Up: Top

Using GDB with Different Languages
Although programming languages generally have common aspects, they are rarely
expressed in the same manner.    For instance, in ANSI C, dereferencing a pointer p is
accomplished by *p, but in Modula-2, it is accomplished by p^.    Values can also be
represented (and displayed) differently.    Hex numbers in C appear as 0x1ae, while in
Modula-2 they appear as 1AEH.   

Language-specific information is built into GDB for some languages, allowing you to express
operations like the above in your program's native language, and allowing GDB to output
values in a manner consistent with the syntax of your program's native language.    The
language you use to build expressions is called the "working language".

* Menu:

Setting Switching between source languages
Show Displaying the language
Checks Type and range checks
Support Supported languages

Node: Setting, Next: Show, Prev: , Up: Languages

Switching between source languages
There are two ways to control the working language--either have GDB set it automatically, or
select it manually yourself.    You can use the set language command for either purpose.   
On startup, GDB defaults to setting the language automatically.    The working language is
used to determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source file that GDB knows about has its own
working language.    For some object file formats, the compiler might indicate which
language a particular source file is in.    However, most of the time GDB infers the language
from the name of the file.    The language of a source file controls whether C++ names are
demangled--this way backtrace can show each frame appropriately for its own language.   
There is no way to set the language of a source file from within GDB.

This is most commonly a problem when you use a program, such as cfront or f2c, that
generates C but is written in another language.    In that case, make the program use #line
directives in its C output; that way GDB will know the correct language of the source code of
the original program, and will display that source code, not the generated C code.

* Menu:

Filenames Filename extensions and languages.
Manually Setting the working language manually
Automatically Having GDB infer the source language

Node: Filenames, Next: Manually, Prev: , Up: Setting

List of filename extensions and languages
If a source file name ends in one of the following extensions, then GDB infers that its
language is the one indicated.

.mod
Modula-2 source file

.c
C source file

.C

.cc

.cxx

.cpp

.cp

.c++
C++ source file

.ch

.c186

.c286
CHILL source file.

.s

.S
Assembler source file.    This actually behaves almost like C, but GDB does not skip over
function prologues when stepping.   

Node: Manually, Next: Automatically, Prev: Filenames, Up: Setting

Setting the working language
If you allow GDB to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually.    To do this, issue the command set
language lang, where lang is the name of a language, such as c or modula-2.    For a list of
the supported languages, type set language.

Setting the language manually prevents GDB from updating the working language
automatically.    This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages--but means different things.    For instance, if the current source file were written
in C, and GDB was parsing Modula-2, a command such as:

print a = b + c

might not have the effect you intended.    In C, this means to add b and c and place the
result in a.    The result printed would be the value of a.    In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.   

Node: Automatically, Next: , Prev: Manually, Up: Setting

Having GDB infer the source language
To have GDB set the working language automatically, use set language local or set
language auto.    GDB then infers the working language.    That is, when your program stops
in a frame (usually by encountering a breakpoint), GDB sets the working language to the
language recorded for the function in that frame.    If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is not changed, and
GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source
language.    However, program modules and libraries written in one source language can be
used by a main program written in a different source language.    Using set language auto
in this case frees you from having to set the working language manually.

Node: Show, Next: Checks, Prev: Setting, Up: Languages

Displaying the language
The following commands help you find out which language is the working language, and also
what language source files were written in.

show language
Display the current working language.    This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame
Display the source language for this frame.    This language becomes the working
language if you use an identifier from this frame.    See Information about a frame, to
identify the other information listed here.

info source
Display the source language of this source file.    See Examining the Symbol Table, to identify
the other information listed here.   

Node: Checks, Next: Support, Prev: Show, Up: Languages

Type and range checking
Warning: In this release, the GDB commands for type and range checking are included, but
they do not yet have any effect.    This section documents the intended facilities.

Some languages are designed to guard you against making seemingly common errors
through a series of compile- and run-time checks.    These include checking the type of
arguments to functions and operators, and making sure mathematical overflows are caught
at run time.    Checks such as these help to ensure a program's correctness once it has been
compiled by eliminating type mismatches, and providing active checks for range errors
when your program is running.

{No Value For "rd{}GDBN"} can check for conditions like the above if you wish.    Although
GDB does not check the statements in your program, it can check expressions entered
directly into GDB for evaluation via the print command, for example.    As with the working
language, GDB can also decide whether or not to check automatically based on your
program's source language.    See Supported languages, for the default settings of supported
languages.

* Menu:

Type Checking An overview of type checking
Range Checking An overview of range checking

Node: Type Checking, Next: Range Checking, Prev: , Up: Checks

An overview of type checking
Some languages, such as Modula-2, are strongly typed, meaning that the arguments to
operators and functions have to be of the correct type, otherwise an error occurs.    These
checks prevent type mismatch errors from ever causing any run-time problems.    For
example,

1 + 2 => 3
but
error--> 1 + 2.3

The second example fails because the CARDINAL 1 is not type-compatible with the REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to skip
checking; to treat any mismatches as errors and abandon the expression; or to only issue
warnings when type mismatches occur, but evaluate the expression anyway.    When you
choose the last of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that prevent
GDB from evaluating an expression.    For instance, GDB does not know how to add an int
and a struct foo.    These particular type errors have nothing to do with the language in
use, and usually arise from expressions, such as the one described above, which make little
sense to evaluate anyway.

Each language defines to what degree it is strict about type.    For instance, both Modula-2
and C require the arguments to arithmetical operators to be numbers.    In C, enumerated
types and pointers can be represented as numbers, so that they are valid arguments to
mathematical operators.    See Supported languages, for further details on specific
languages.

{No Value For "rd{}GDBN"} provides some additional commands for controlling the type
checker:

set check type auto
Set type checking on or off based on the current working language.    See Supported
languages, for the default settings for each language.

set check type on
set check type off

Set type checking on or off, overriding the default setting for the current working
language.    Issue a warning if the setting does not match the language default.    If
any type mismatches occur in evaluating an expression while typechecking is on,
GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression.    Evaluating the expression may still be impossible for other reasons.    For
example, GDB cannot add numbers and structures.

show type
Show the current setting of the type checker, and whether or not GDB is setting it

automatically.   

Node: Range Checking, Next: , Prev: Type Checking, Up: Checks

An overview of range checking
In some languages (such as Modula-2), it is an error to exceed the bounds of a type; this is
enforced with run-time checks.    Such range checking is meant to ensure program
correctness by making sure computations do not overflow, or indices on an array element
access do not exceed the bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat range errors in one of
three ways: ignore them, always treat them as errors and abandon the expression, or issue
warnings but evaluate the expression anyway.

A range error can result from numerical overflow, from exceeding an array index bound, or
when you type a constant that is not a member of any type.    Some languages, however, do
not treat overflows as an error.    In many implementations of C, mathematical overflow
causes the result to "wrap around" to lower values--for example, if m is the largest integer
value, and s is the smallest, then

m + 1 => s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines.    See Supported languages, for further details on specific languages.

{No Value For "rd{}GDBN"} provides some additional commands for controlling the range
checker:

set check range auto
Set range checking on or off based on the current working language.    See Supported
languages, for the default settings for each language.

set check range on
set check range off

Set range checking on or off, overriding the default setting for the current working
language.    A warning is issued if the setting does not match the language default.    If
a range error occurs, then a message is printed and evaluation of the expression is
aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but attempt to
evaluate the expression anyway.    Evaluating the expression may still be impossible
for other reasons, such as accessing memory that the process does not own (a typical
example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being set
automatically by GDB.   

Node: Support, Next: , Prev: Checks, Up: Languages

Supported languages
{No Value For "rd{}GDBN"} 4 supports C, C++, and Modula-2.    Some GDB features may be
used in expressions regardless of the language you use: the GDB @ and :: operators, and
the {type}addr construct (see Expressions) can be used with the constructs of any
supported language.

The following sections detail to what degree each source language is supported by GDB.   
These sections are not meant to be language tutorials or references, but serve only as a
reference guide to what the GDB expression parser accepts, and what input and output
formats should look like for different languages.    There are many good books written on
each of these languages; please look to these for a language reference or tutorial.

* Menu:

C C and C++
Modula-2 Modula-2

Node: C, Next: Modula-2, Prev: , Up: Support

C and C++
Since C and C++ are so closely related, many features of GDB apply to both languages.   
Whenever this is the case, we discuss those languages together.   

The C++ debugging facilities are jointly implemented by the GNU C++ compiler and GDB.   
Therefore, to debug your C++ code effectively, you must compile your C++ programs with
the GNU C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debugging format.    You can
select that format explicitly with the g++ command-line options -gstabs or -gstabs+.    See
Options for Debugging Your Program or GNU CC, for more information.   

* Menu:

C Operators C and C++ operators
C Constants C and C++ constants
Cplus expressions C++ expressions
C Defaults Default settings for C and C++
C Checks C and C++ type and range checks
Debugging C GDB and C
Debugging C plus plus Special features for C++

Node: C Operators, Next: C Constants, Prev: , Up: C

C and C++ operators
Operators must be defined on values of specific types.    For instance, + is defined on
numbers, but not on structures.    Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:

· Integral types include int with any of its storage-class specifiers; char; and enum.

· Floating-point types include float and double.

· Pointer types include all types defined as (type *).

· Scalar types include all of the above.   

The following operators are supported.    They are listed here in order of increasing
precedence:

,
The comma or sequencing operator.    Expressions in a comma-separated list are
evaluated from left to right, with the result of the entire expression being the last
expression evaluated.

=
Assignment.    The value of an assignment expression is the value assigned.    Defined
on scalar types.

op=
Used in an expression of the form a op= b, and translated to a = a op b.    op= and =
have the same precendence.    op is any one of the operators |, ^, &, <<, >>, +, -, *, /,
%.

?:
The ternary operator.    a ? b : c can be thought of as:    if a then b else c.    a should
be of an integral type.

||
Logical OR.    Defined on integral types.

&&
Logical AND.    Defined on integral types.

|
Bitwise OR.    Defined on integral types.

^
Bitwise exclusive-OR.    Defined on integral types.

&
Bitwise AND.    Defined on integral types.

==, !=
Equality and inequality.    Defined on scalar types.    The value of these expressions is

0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal.    Defined on scalar
types.    The value of these expressions is 0 for false and non-zero for true.

<<, >>
left shift, and right shift.    Defined on integral types.

@
The GDB "artificial array" operator (see Expressions).

+, -
Addition and subtraction.    Defined on integral types, floating-point types and pointer
types.

*, /, %
Multiplication, division, and modulus.    Multiplication and division are defined on
integral and floating-point types.    Modulus is defined on integral types.

++, --
Increment and decrement.    When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it, the
variable's value is used before the operation takes place.

*
Pointer dereferencing.    Defined on pointer types.    Same precedence as ++.

&
Address operator.    Defined on variables.    Same precedence as ++.

For debugging C++, GDB implements a use of & beyond what is allowed in the C++
language itself: you can use &(&ref) (or, if you prefer, simply &&ref) to examine the
address where a C++ reference variable (declared with &ref) is stored.   

-
Negative.    Defined on integral and floating-point types.    Same precedence as ++.

!
Logical negation.    Defined on integral types.    Same precedence as ++.

~
Bitwise complement operator.    Defined on integral types.    Same precedence as ++.

., ->
Structure member, and pointer-to-structure member.    For convenience, GDB regards
the two as equivalent, choosing whether to dereference a pointer based on the stored
type information.    Defined on struct and union data.

[]
Array indexing.    a[i] is defined as *(a+i).    Same precedence as ->.

()
Function parameter list.    Same precedence as ->.

::
C++ scope resolution operator.    Defined on struct, union, and class types.   

::
Doubled colons also represent the GDB scope operator (see Expressions).    Same
precedence as ::, above.   

Node: C Constants, Next: Cplus expressions, Prev: C Operators, Up: C

C and C++ constants
{No Value For "rd{}GDBN"} allows you to express the constants of C and C++ in the
following ways:

· Integer constants are a sequence of digits.    Octal constants are specified by a
leading 0 (i.e. zero), and hexadecimal constants by a leading 0x or 0X.    Constants
may also end with a letter l, specifying that the constant should be treated as a long
value.

· Floating point constants are a sequence of digits, followed by a decimal point,
followed by a sequence of digits, and optionally followed by an exponent.    An
exponent is of the form: e[[+]|-]nnn, where nnn is another sequence of digits.    The +
is optional for positive exponents.

· Enumerated constants consist of enumerated identifiers, or their integral equivalents.

· Character constants are a single character surrounded by single quotes ('), or a
number--the ordinal value of the corresponding character (usually its ASCII value).   
Within quotes, the single character may be represented by a letter or by "escape
sequences", which are of the form \nnn, where nnn is the octal representation of the
character's ordinal value; or of the form \x, where x is a predefined special
character--for example, \n for newline.

· String constants are a sequence of character constants surrounded by double quotes
(").

· Pointer constants are an integral value.    You can also write pointers to constants
using the C operator &.

· Array constants are comma-separated lists surrounded by braces { and }; for
example, {1,2,3} is a three-element array of integers, {{1,2}, {3,4}, {5,6}} is a three-
by-two array, and {&"hi", &"there", &"fred"} is a three-element array of pointers.   

Node: Cplus expressions, Next: C Defaults, Prev: C Constants, Up: C

C++ expressions
GDB expression handling has a number of extensions to interpret a significant subset of C+
+ expressions.

Warning: GDB can only debug C++ code if you compile with the GNU C++ compiler.   
Moreover, C++ debugging depends on the use of additional debugging information in the
symbol table, and thus requires special support.    GDB has this support only with the stabs
debug format.    In particular, if your compiler generates a.out, MIPS ECOFF, RS/6000 XCOFF, or ELF
with stabs extensions to the symbol table, these facilities are all available.    (With GNU CC,
you can use the -gstabs option to request stabs debugging extensions explicitly.)    Where
the object code format is standard COFF or DWARF in ELF, on the other hand, most of the C++
support in GDB does not work.

1. Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame), your expressions
have the same namespace available as the member function; that is, GDB allows
implicit references to the class instance pointer this following the same rules as C+
+.

3. You can call overloaded functions; GDB resolves the function call to the right
definition, with one restriction--you must use arguments of the type required by the
function that you want to call.    GDB does not perform conversions requiring
constructors or user-defined type operators.

4. GDB understands variables declared as C++ references; you can use them in
expressions just as you do in C++ source--they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference
variables are not displayed (unlike other variables); this avoids clutter, since
references are often used for large structures.    The address of a reference variable is
always shown, unless you have specified set print address off.

5. GDB supports the C++ name resolution operator ::--your expressions can use it just
as expressions in your program do.    Since one scope may be defined in another, you
can use :: repeatedly if necessary, for example in an expression like
scope1::scope2::name.    GDB also allows resolving name scope by reference to
source files, in both C and C++ debugging (see Program variables).

Node: C Defaults, Next: C Checks, Prev: Cplus expressions, Up: C

C and C++ defaults
If you allow GDB to set type and range checking automatically, they both default to off
whenever the working language changes to C or C++.    This happens regardless of whether
you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose names
end with .c, .C, or .cc, and when GDB enters code compiled from one of these files, it sets
the working language to C or C++.    See Having GDB infer the source language, for further
details.

Node: C Checks, Next: Debugging C, Prev: C Defaults, Up: C

C and C++ type and range checks
By default, when GDB parses C or C++ expressions, type checking is not used.    However, if
you turn type checking on, GDB considers two variables type equivalent if:

· The two variables are structured and have the same structure, union, or enumerated
tag.

· The two variables have the same type name, or types that have been declared
equivalent through typedef.

Range checking, if turned on, is done on mathematical operations.    Array indices are not
checked, since they are often used to index a pointer that is not itself an array.   

Node: Debugging C, Next: Debugging C plus plus, Prev: C Checks, Up: C

GDB and C
The set print union and show print union commands apply to the union type.    When
set to on, any union that is inside a struct or class is also printed.    Otherwise, it appears
as {...}.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a memory
allocation function.    See Expressions.

Node: Debugging C plus plus, Next: , Prev: Debugging C, Up: C

GDB features for C++
Some GDB commands are particularly useful with C++, and some are designed specifically
for use with C++.    Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want.    See
Breakpoint menus.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints on
overloaded functions that are not members of any special classes.    See Setting
breakpoints.

catch exceptions
info catch

Debug C++ exception handling using these commands.    See Breakpoints and
exceptions.

ptype typename
Print inheritance relationships as well as other information for type typename.    See
Examining the Symbol Table.

set print demangle
show print demangle
set print asm-demangle
show print asm-demangle

Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies.    See Print settings.

set print object
show print object

Choose whether to print derived (actual) or declared types of objects.    See Print
settings.

set print vtbl
show print vtbl

Control the format for printing virtual function tables.    See Print settings.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same notation that
is used to declare such symbols in C++: type symbol(types) rather than just symbol.    You

can also use the GDB command-line word completion facilities to list the available choices,
or to finish the type list for you.    See Command completion, for details on how to do this.   

Node: Modula-2, Next: , Prev: C, Up: Support

Modula-2
The extensions made to GDB to support Modula-2 only support output from the GNU Modula-2
compiler (which is currently being developed).    Other Modula-2 compilers are not currently
supported, and attempting to debug executables produced by them is most likely to give an
error as GDB reads in the executable's symbol table.

* Menu:

M2 Operators Built-in operators
Built-In Func/Proc Built-in functions and procedures
M2 Constants Modula-2 constants
M2 Defaults Default settings for Modula-2
Deviations Deviations from standard Modula-2
M2 Checks Modula-2 type and range checks
M2 Scope The scope operators :: and .
GDB/M2 GDB and Modula-2

Node: M2 Operators, Next: Built-In Func/Proc, Prev: , Up: Modula-2

Operators
Operators must be defined on values of specific types.    For instance, + is defined on
numbers, but not on structures.    Operators are often defined on groups of types.    For the
purposes of Modula-2, the following definitions hold:

· Integral types consist of INTEGER, CARDINAL, and their subranges.

· Character types consist of CHAR and its subranges.

· Floating-point types consist of REAL.

· Pointer types consist of anything declared as POINTER TO type.

· Scalar types consist of all of the above.

· Set types consist of SET and BITSET types.

· Boolean types consist of BOOLEAN.   

The following operators are supported, and appear in order of increasing precedence:

,
Function argument or array index separator.

:=
Assignment.    The value of var := value is value.

<, >
Less than, greater than on integral, floating-point, or enumerated types.

<=, >=
Less than, greater than, less than or equal to, greater than or equal to on integral,
floating-point and enumerated types, or set inclusion on set types.    Same
precedence as <.

=, <>, #
Equality and two ways of expressing inequality, valid on scalar types.    Same
precedence as <.    In GDB scripts, only <> is available for inequality, since # conflicts
with the script comment character.

IN
Set membership.    Defined on set types and the types of their members.    Same
precedence as <.

OR
Boolean disjunction.    Defined on boolean types.

AND, &
Boolean conjuction.    Defined on boolean types.

@

The GDB "artificial array" operator (see Expressions).

+, -
Addition and subtraction on integral and floating-point types, or union and difference
on set types.

*
Multiplication on integral and floating-point types, or set intersection on set types.

/
Division on floating-point types, or symmetric set difference on set types.    Same
precedence as *.

DIV, MOD
Integer division and remainder.    Defined on integral types.    Same precedence as *.

-
Negative. Defined on INTEGER and REAL data.

^
Pointer dereferencing.    Defined on pointer types.

NOT
Boolean negation.    Defined on boolean types.    Same precedence as ^.

.
RECORD field selector.    Defined on RECORD data.    Same precedence as ^.

[]
Array indexing.    Defined on ARRAY data.    Same precedence as ^.

()
Procedure argument list.    Defined on PROCEDURE objects.    Same precedence as ^.

::, .
{No Value For "\li720{}GDBN"} and Modula-2 scope operators.   

Warning: Sets and their operations are not yet supported, so GDB treats the use of the
operator IN, or the use of operators +, -, *, /, =, , <>, #, <=, and >= on sets as an error.

Node: Built-In Func/Proc, Next: M2 Constants, Prev: M2 Operators, Up: Modula-2

Built-in functions and procedures
Modula-2 also makes available several built-in procedures and functions.    In describing
these, the following metavariables are used:

a
represents an ARRAY variable.

c
represents a CHAR constant or variable.

i
represents a variable or constant of integral type.

m
represents an identifier that belongs to a set.    Generally used in the same function
with the metavariable s.    The type of s should be SET OF mtype (where mtype is the
type of m).

n
represents a variable or constant of integral or floating-point type.

r
represents a variable or constant of floating-point type.

t
represents a type.

v
represents a variable.

x
represents a variable or constant of one of many types.    See the explanation of the function
for details.   

All Modula-2 built-in procedures also return a result, described below.

ABS(n)
Returns the absolute value of n.

CAP(c)
If c is a lower case letter, it returns its upper case equivalent, otherwise it returns its
argument

CHR(i)
Returns the character whose ordinal value is i.

DEC(v)
Decrements the value in the variable v.    Returns the new value.

DEC(v,i)
Decrements the value in the variable v by i.    Returns the new value.

EXCL(m,s)
Removes the element m from the set s.    Returns the new set.

FLOAT(i)
Returns the floating point equivalent of the integer i.

HIGH(a)
Returns the index of the last member of a.

INC(v)
Increments the value in the variable v.    Returns the new value.

INC(v,i)
Increments the value in the variable v by i.    Returns the new value.

INCL(m,s)
Adds the element m to the set s if it is not already there.    Returns the new set.

MAX(t)
Returns the maximum value of the type t.

MIN(t)
Returns the minimum value of the type t.

ODD(i)
Returns boolean TRUE if i is an odd number.

ORD(x)
Returns the ordinal value of its argument.    For example, the ordinal value of a
character is its ASCII value (on machines supporting the ASCII character set).    x must
be of an ordered type, which include integral, character and enumerated types.

SIZE(x)
Returns the size of its argument.    x can be a variable or a type.

TRUNC(r)
Returns the integral part of r.

VAL(t,i)
Returns the member of the type t whose ordinal value is i.   

Warning:    Sets and their operations are not yet supported, so GDB treats the use of
procedures INCL and EXCL as an error.

Node: M2 Constants, Next: M2 Defaults, Prev: Built-In Func/Proc, Up: Modula-2

Constants
{No Value For "rd{}GDBN"} allows you to express the constants of Modula-2 in the following
ways:

· Integer constants are simply a sequence of digits.    When used in an expression, a
constant is interpreted to be type-compatible with the rest of the expression.   
Hexadecimal integers are specified by a trailing H, and octal integers by a trailing B.

· Floating point constants appear as a sequence of digits, followed by a decimal point
and another sequence of digits.    An optional exponent can then be specified, in the
form E[+|-]nnn, where [+|-]nnn is the desired exponent.    All of the digits of the
floating point constant must be valid decimal (base 10) digits.

· Character constants consist of a single character enclosed by a pair of like quotes,
either single (') or double (").    They may also be expressed by their ordinal value
(their ASCII value, usually) followed by a C.

· String constants consist of a sequence of characters enclosed by a pair of like quotes,
either single (') or double (").    Escape sequences in the style of C are also allowed.   
See C and C++ constants, for a brief explanation of escape sequences.

· Enumerated constants consist of an enumerated identifier.

· Boolean constants consist of the identifiers TRUE and FALSE.

· Pointer constants consist of integral values only.

· Set constants are not yet supported.   

Node: M2 Defaults, Next: Deviations, Prev: M2 Constants, Up: Modula-2

Modula-2 defaults
If type and range checking are set automatically by GDB, they both default to on whenever
the working language changes to Modula-2.    This happens regardless of whether you, or
GDB, selected the working language.

If you allow GDB to set the language automatically, then entering code compiled from a file
whose name ends with .mod sets the working language to Modula-2. See Having GDB set the
language automatically, for further details.

Node: Deviations, Next: M2 Checks, Prev: M2 Defaults, Up: Modula-2

Deviations from standard Modula-2
A few changes have been made to make Modula-2 programs easier to debug.    This is done
primarily via loosening its type strictness:

· Unlike in standard Modula-2, pointer constants can be formed by integers.    This
allows you to modify pointer variables during debugging.    (In standard Modula-2, the
actual address contained in a pointer variable is hidden from you; it can only be
modified through direct assignment to another pointer variable or expression that
returned a pointer.)

· C escape sequences can be used in strings and characters to represent non-printable
characters.    GDB prints out strings with these escape sequences embedded.    Single
non-printable characters are printed using the CHR(nnn) format.

· The assignment operator (:=) returns the value of its right-hand argument.

· All built-in procedures both modify and return their argument.   

Node: M2 Checks, Next: M2 Scope, Prev: Deviations, Up: Modula-2

Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or range checking.

{No Value For "rd{}GDBN"} considers two Modula-2 variables type equivalent if:

· They are of types that have been declared equivalent via a TYPE t1 = t2 statement

· They have been declared on the same line.    (Note:    This is true of the GNU Modula-2
compiler, but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are not
equivalent is an error.

Range checking is done on all mathematical operations, assignment, array index bounds,
and all built-in functions and procedures.

Node: M2 Scope, Next: GDB/M2, Prev: M2 Checks, Up: Modula-2

The scope operators :: and .
There are a few subtle differences between the Modula-2 scope operator (.) and the GDB
scope operator (::).    The two have similar syntax:

module . id
scope :: id

where scope is the name of a module or a procedure, module the name of a module, and id
is any declared identifier within your program, except another module.

Using the :: operator makes GDB search the scope specified by scope for the identifier id.   
If it is not found in the specified scope, then GDB searches all scopes enclosing the one
specified by scope.

Using the . operator makes GDB search the current scope for the identifier specified by id
that was imported from the definition module specified by module.    With this operator, it is
an error if the identifier id was not imported from definition module module, or if id is not an
identifier in module.

Node: GDB/M2, Next: , Prev: M2 Scope, Up: Modula-2

GDB and Modula-2
Some GDB commands have little use when debugging Modula-2 programs.    Five
subcommands of set print and show print apply specifically to C and C++: vtbl,
demangle, asm-demangle, object, and union.    The first four apply to C++, and the last to
the C union type, which has no direct analogue in Modula-2.

The @ operator (see Expressions), while available while using any language, is not useful
with Modula-2.    Its intent is to aid the debugging of "dynamic arrays", which cannot be
created in Modula-2 as they can in C or C++.    However, because an address can be
specified by an integral constant, the construct {type}adrexp is still useful.    (see
Expressions)

In GDB scripts, the Modula-2 inequality operator # is interpreted as the beginning of a
comment.    Use <> instead.   

Node: Symbols, Next: Altering, Prev: Languages, Up: Top

Examining the Symbol Table
The commands described in this section allow you to inquire about the symbols (names of
variables, functions and types) defined in your program.    This information is inherent in the
text of your program and does not change as your program executes.    GDB finds it in your
program's symbol table, in the file indicated when you started GDB (see Choosing files), or
by one of the file-management commands (see Commands to specify files).

Occasionally, you may need to refer to symbols that contain unusual characters, which GDB
ordinarily treats as word delimiters.    The most frequent case is in referring to static
variables in other source files (see Program variables).    File names are recorded in object
files as debugging symbols, but GDB would ordinarily parse a typical file name, like foo.c,
as the three words foo . c.    To allow GDB to recognize foo.c as a single symbol, enclose it
in single quotes; for example,

p 'foo.c'::x

looks up the value of x in the scope of the file foo.c.

info address symbol
Describe where the data for symbol is stored.    For a register variable, this says which
register it is kept in.    For a non-register local variable, this prints the stack-frame
offset at which the variable is always stored.

Note the contrast with print &symbol, which does not work at all for a register
variable, and for a stack local variable prints the exact address of the current
instantiation of the variable.

whatis exp
Print the data type of expression exp.    exp is not actually evaluated, and any side-
effecting operations (such as assignments or function calls) inside it do not take
place.    See Expressions.

whatis
Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename.    typename may be the name of a type, or
for C code it may have the form class class-name, struct struct-tag, union
union-tag or enum enum-tag.

ptype exp
ptype

Print a description of the type of expression exp.    ptype differs from whatis by
printing a detailed description, instead of just the name of the type.

For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {
 double real;
 double imag;
}

As with whatis, using ptype without an argument refers to the type of $, the last
value in the value history.

info types regexp
info types

Print a brief description of all types whose name matches regexp (or all types in your
program, if you supply no argument).    Each complete typename is matched as
though it were a complete line; thus, i type value gives information on all types in
your program whose name includes the string value, but i type ^value$ gives
information only on types whose complete name is value.

This command differs from ptype in two ways: first, like whatis, it does not print a
detailed description; second, it lists all source files where a type is defined.

info source
Show the name of the current source file--that is, the source file for the function
containing the current point of execution--and the language it was written in.

info sources
Print the names of all source files in your program for which there is debugging
information, organized into two lists: files whose symbols have already been read,
and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a match
for regular expression regexp.    Thus, info fun step finds all functions whose
names include step; info fun ^step finds those whose names start with step.

info variables

Print the names and data types of all variables that are declared outside of functions
(i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp.

Some systems allow individual object files that make up your program to be replaced
without stopping and restarting your program.    For example, in VxWorks you can
simply recompile a defective object file and keep on running.    If you are running on
one of these systems, you can allow GDB to reload the symbols for automatically
relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file when an object
file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering object files of the
same name.    This is the default state; if you are not running on a system that
permits automatically relinking modules, you should leave symbol-reloading
off, since otherwise GDB may discard symbols when linking large programs,
that may contain several modules (from different directories or libraries) with
the same name.

show symbol-reloading
Show the current on or off setting.   

maint print symbols filename
maint print psymbols filename
maint print msymbols filename
Write a dump of debugging symbol data into the file filename.    These commands are used
to debug the GDB symbol-reading code.    Only symbols with debugging data are included.   
If you use maint print symbols, GDB includes all the symbols for which it has already
collected full details: that is, filename reflects symbols for only those files whose symbols
GDB has read.    You can use the command info sources to find out which files these are.   
If you use maint print psymbols instead, the dump shows information about symbols that
GDB only knows partially--that is, symbols defined in files that GDB has skimmed, but not
yet read completely.    Finally, maint print msymbols dumps just the minimal symbol
information required for each object file from which GDB has read some symbols.    See
Commands to specify files, for a discussion of how GDB reads symbols (in the description of
symbol-file).   

Node: Altering, Next: GDB Files, Prev: Symbols, Up: Top

Altering Execution
Once you think you have found an error in your program, you might want to find out for
certain whether correcting the apparent error would lead to correct results in the rest of the
run.    You can find the answer by experiment, using the GDB features for altering execution
of the program.

For example, you can store new values into variables or memory locations, give your
program a signal, restart it at a different address, or even return prematurely from a
function.

* Menu:

Assignment Assignment to variables
Jumping Continuing at a different address
Signaling Giving your program a signal
Returning Returning from a function
Calling Calling your program's functions
Patching Patching your program

Node: Assignment, Next: Jumping, Prev: , Up: Altering

Assignment to variables
To alter the value of a variable, evaluate an assignment expression.    See Expressions.    For
example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment
expression (which is 4).    See Using GDB with Different Languages, for more information on
operators in supported languages.   

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command.    set is really the same as print except that the
expression's value is not printed and is not put in the value history (see Value history).    The
expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a set
subcommand, use the set variable command instead of just set.    This command is
identical to set except for its lack of subcommands.    For example, if your program has a
variable width, you get an error if you try to set a new value with just set width=13,
because GDB has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is =47.    In order to actually set the program's variable
width, use

(gdb) set var width=47

{No Value For "rd{}GDBN"} allows more implicit conversions in assignments than C; you
can freely store an integer value into a pointer variable or vice versa, and you can convert
any structure to any other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the {...} construct to generate a value
of specified type at a specified address (see Expressions).    For example, {int}0x83040
refers to memory location 0x83040 as an integer (which implies a certain size and
representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

Node: Jumping, Next: Signaling, Prev: Assignment, Up: Altering

Continuing at a different address
Ordinarily, when you continue your program, you do so at the place where it stopped, with
the continue command.    You can instead continue at an address of your own choosing, with
the following commands:

jump linespec
Resume execution at line linespec.    Execution stops again immediately if there is a
breakpoint there.    See Printing source lines, for a description of the different forms of
linespec.

The jump command does not change the current stack frame, or the stack pointer, or
the contents of any memory location or any register other than the program counter. 
If line linespec is in a different function from the one currently executing, the results
may be bizarre if the two functions expect different patterns of arguments or of local
variables.    For this reason, the jump command requests confirmation if the specified
line is not in the function currently executing.    However, even bizarre results are
predictable if you are well acquainted with the machine-language code of your
program.

jump *address
Resume execution at the instruction at address address.   

You can get much the same effect as the jump command by storing a new value into the
register $pc.    The difference is that this does not start your program running; it only
changes the address of where it will run when you continue.    For example,

set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather
than at the address where your program stopped.    See Continuing and stepping.

The most common occasion to use the jump command is to back up- perhaps with more
breakpoints set-over a portion of a program that has already executed, in order to examine
its execution in more detail.

Node: Signaling, Next: Returning, Prev: Jumping, Up: Altering

Giving your program a signal

signal signal
Resume execution where your program stopped, but immediately give it the signal
signal.    signal can be the name or the number of a signal.    For example, on many
systems signal 2 and signal SIGINT are both ways of sending an interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal.    This is
useful when your program stopped on account of a signal and would ordinary see the
signal when resumed with the continue command; signal 0 causes it to resume
without a signal.

signal does not repeat when you press RET a second time after executing the command.   

Invoking the signal command is not the same as invoking the kill utility from the shell.   
Sending a signal with kill causes GDB to decide what to do with the signal depending on
the signal handling tables (see Signals).    The signal command passes the signal directly to
your program.

Node: Returning, Next: Calling, Prev: Signaling, Up: Altering

Returning from a function

return
return expression
You can cancel execution of a function call with the return command.    If you give an
expression argument, its value is used as the function's return value.   

When you use return, GDB discards the selected stack frame (and all frames within it).    You
can think of this as making the discarded frame return prematurely.    If you wish to specify a
value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Selecting a frame), and any other frames inside of
it, leaving its caller as the innermost remaining frame.    That frame becomes selected.    The
specified value is stored in the registers used for returning values of functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned.    In contrast, the finish command
(see Continuing and stepping) resumes execution until the selected stack frame returns
naturally.

Node: Calling, Next: Patching, Prev: Returning, Up: Altering

Calling program functions

call expr
Evaluate the expression expr without displaying void returned values.   

You can use this variant of the print command if you want to execute a function from your
program, but without cluttering the output with void returned values.    If the result is not
void, it is printed and saved in the value history.

A new user-controlled variable, call_scratch_address, specifies the location of a scratch area
to be used when GDB calls a function in the target.    This is necessary because the usual
method of putting the scratch area on the stack does not work in systems that have
separate instruction and data spaces.

Node: Patching, Next: , Prev: Calling, Up: Altering

Patching programs
By default, GDB opens the file containing your program's executable code (or the corefile)
read-only.    This prevents accidental alterations to machine code; but it also prevents you
from intentionally patching your program's binary.

If you'd like to be able to patch the binary, you can specify that explicitly with the set write
command.    For example, you might want to turn on internal debugging flags, or even to
make emergency repairs.

set write on
set write off

If you specify set write on, GDB opens executable and core files for both reading
and writing; if you specify set write off (the default), GDB opens them read-only.

If you have already loaded a file, you must load it again (using the exec-file or
core-file command) after changing set write, for your new setting to take effect.

show write
Display whether executable files and core files are opened for writing as well as reading.   

Node: GDB Files, Next: Targets, Prev: Altering, Up: Top

GDB Files
{No Value For "rd{}GDBN"} needs to know the file name of the program to be debugged,
both in order to read its symbol table and in order to start your program.    To debug a core
dump of a previous run, you must also tell GDB the name of the core dump file.   

* Menu:

Files Commands to specify files
Symbol Errors Errors reading symbol files

Node: Files, Next: Symbol Errors, Prev: , Up: GDB Files

Commands to specify files
You may want to specify executable and core dump file names.    The usual way to do this is
at start-up time, using the arguments to GDB's start-up commands (see Getting In and Out
of GDB).   

Occasionally it is necessary to change to a different file during a GDB session.    Or you may
run GDB and forget to specify a file you want to use.    In these situations the GDB
commands to specify new files are useful.

file filename
Use filename as the program to be debugged.    It is read for its symbols and for the
contents of pure memory.    It is also the program executed when you use the run
command.    If you do not specify a directory and the file is not found in the GDB
working directory, GDB uses the environment variable PATH as a list of directories to
search, just as the shell does when looking for a program to run.    You can change the
value of this variable, for both GDB and your program, using the path command.

On systems with memory-mapped files, an auxiliary file filename.syms may hold
symbol table information for filename.    If so, GDB maps in the symbol table from
filename.syms, starting up more quickly.    See the descriptions of the file options -
mapped and -readnow (available on the command line, and with the commands file,
symbol-file, or add-symbol-file, described below), for more information.

file
file with no argument makes GDB discard any information it has on both executable file
and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol table) is found in filename.   
GDB searches the environment variable PATH if necessary to locate your program.   
Omitting filename means to discard information on the executable file.

symbol-file [filename]
Read symbol table information from file filename.    PATH is searched when necessary. 
Use the file command to get both symbol table and program to run from the same
file.

symbol-file with no argument clears out GDB information on your program's symbol
table.

The symbol-file command causes GDB to forget the contents of its convenience
variables, the value history, and all breakpoints and auto-display expressions.    This
is because they may contain pointers to the internal data recording symbols and data
types, which are part of the old symbol table data being discarded inside GDB.

symbol-file does not repeat if you press RET again after executing it once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment; you
may use either a GNU compiler, or other compilers that adhere to the local
conventions.    Best results are usually obtained from GNU compilers; for example,
using gcc you can generate debugging information for optimized code.

On some kinds of object files, the symbol-file command does not normally read the
symbol table in full right away.    Instead, it scans the symbol table quickly to find
which source files and which symbols are present.    The details are read later, one
source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster.    For
the most part, it is invisible except for occasional pauses while the symbol table
details for a particular source file are being read.    (The set verbose command can
turn these pauses into messages if desired.    See Optional warnings and messages.)

We have not implemented the two-stage strategy for COFF yet.    When the symbol
table is stored in COFF format, symbol-file reads the symbol table data in full right
away.

symbol-file filename [-readnow] [-mapped]
file filename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading symbol tables by using the -
readnow option with any of the commands that load symbol table information, if you
want to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system call,
you can use another option, -mapped, to cause GDB to write the symbols for your
program into a reusable file.    Future GDB debugging sessions map in symbol
information from this auxiliary symbol file (if the program has not changed), rather
than spending time reading the symbol table from the executable program.    Using
the -mapped option has the same effect as starting GDB with the -mapped command-
line option.

You can use both options together, to make sure the auxiliary symbol file has all the
symbol information for your program.

The auxiliary symbol file for a program called myprog is called myprog.syms.    Once
this file exists (so long as it is newer than the corresponding executable), GDB always
attempts to use it when you debug myprog; no special options or commands are
needed.

The .syms file is specific to the host machine where you run GDB.    It holds an exact
image of the internal GDB symbol table.    It cannot be shared across multiple host
platforms.

core-file [filename]
Specify the whereabouts of a core dump file to be used as the "contents of memory". 

Traditionally, core files contain only some parts of the address space of the process
that generated them; GDB can access the executable file itself for other parts.

core-file with no argument specifies that no core file is to be used.

Note that the core file is ignored when your program is actually running under GDB.   
So, if you have been running your program and you wish to debug a core file instead,
you must kill the subprocess in which the program is running.    To do this, use the
kill command (see Killing the child process).   

load filename
Depending on what remote debugging facilities are configured into GDB, the load command
may be available.    Where it exists, it is meant to make filename (an executable) available
for debugging on the remote system--by downloading, or dynamic linking, for example.   
load also records the filename symbol table in GDB, like the add-symbol-file command.

If your GDB does not have a load command, attempting to execute it gets the error
message "You can't do that when your target is ..."

The file is loaded at whatever address is specified in the executable.    For some
object file formats, you can specify the load address when you link the program; for
other formats, like a.out, the object file format specifies a fixed address.

On VxWorks, load links filename dynamically on the current target system as well as
adding its symbols in GDB.   

With the Nindy interface to an Intel 960 board, load downloads filename to the 960
as well as adding its symbols in GDB.   

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board (see
GDB and Hitachi Microprocessors), the load command downloads your program to
the Hitachi board and also opens it as the current executable target for GDB on your
host (like the file command).   

load does not repeat if you press RET again after using it.

add-symbol-file filename address
add-symbol-file filename address [-readnow] [-mapped]

The add-symbol-file command reads additional symbol table information from the
file filename.    You would use this command when filename has been dynamically
loaded (by some other means) into the program that is running.    address should be
the memory address at which the file has been loaded; GDB cannot figure this out for
itself.    You can specify address as an expression.

The symbol table of the file filename is added to the symbol table originally read with
the symbol-file command.    You can use the add-symbol-file command any
number of times; the new symbol data thus read keeps adding to the old.    To discard
all old symbol data instead, use the symbol-file command.

add-symbol-file does not repeat if you press RET after using it.

You can use the -mapped and -readnow options just as with the symbol-file
command, to change how GDB manages the symbol table information for filename.

add-shared-symbol-file
The add-shared-symbol-file command can be used only under Harris' CXUX
operating system for the Motorola 88k.    GDB automatically looks for shared libraries,
however if GDB does not find yours, you can run add-shared-symbol-file.    It takes
no arguments.   

section
The section command changes the base address of section SECTION of the exec file
to ADDR.    This can be used if the exec file does not contain section addresses, (such
as in the a.out format), or when the addresses specified in the file itself are wrong.   
Each section must be changed separately.    The "info files" command lists all the
sections and their addresses.

info files
info target
info files and info target are synonymous; both print the current target (see Specifying
a Debugging Target), including the names of the executable and core dump files currently in
use by GDB, and the files from which symbols were loaded.    The command help target
lists all possible targets rather than current ones.   

All file-specifying commands allow both absolute and relative file names as arguments.   
GDB always converts the file name to an absolute file name and remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries.    GDB automatically
loads symbol definitions from shared libraries when you use the run command, or when you
examine a core file.    (Before you issue the run command, GDB does not understand
references to a function in a shared library, however--unless you are debugging a core file).

info share
info sharedlibrary

Print the names of the shared libraries which are currently loaded.

sharedlibrary regex
share regex
Load shared object library symbols for files matching a Unix regular expression.    As with
files loaded automatically, it only loads shared libraries required by your program for a core
file or after typing run.    If regex is omitted all shared libraries required by your program are
loaded.   

Node: Symbol Errors, Next: , Prev: Files, Up: GDB Files

Errors reading symbol files
While reading a symbol file, GDB occasionally encounters problems, such as symbol types it
does not recognize, or known bugs in compiler output.    By default, GDB does not notify you
of such problems, since they are relatively common and primarily of interest to people
debugging compilers.    If you are interested in seeing information about ill-constructed
symbol tables, you can either ask GDB to print only one message about each such type of
problem, no matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints command
(see Optional warnings and messages).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at the
start of a function or a block of statements).    This error indicates that an inner scope
block is not fully contained in its outer scope blocks.

{No Value For "\li720{}GDBN"} circumvents the problem by treating the inner block as if it
had the same scope as the outer block.    In the error message, symbol may be shown as
"(don't know)" if the outer block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur in order of increasing
addresses.    This error indicates that it does not do so.

{No Value For "\li720{}GDBN"} does not circumvent this problem, and has trouble locating
symbols in the source file whose symbols it is reading.    (You can often determine what
source file is affected by specifying set verbose on.    See Optional warnings and
messages.)

bad block start address patched
The symbol information for a symbol scope block has a start address smaller than the
address of the preceding source line.    This is known to occur in the SunOS 4.1.1 (and
earlier) C compiler.

{No Value For "\li720{}GDBN"} circumvents the problem by treating the symbol scope block
as starting on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table which is larger than the size
of the string table.

{No Value For "\li720{}GDBN"} circumvents the problem by considering the symbol to have
the name foo, which may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn
The symbol information contains new data types that GDB does not yet know how to
read.    0xnn is the symbol type of the misunderstood information, in hexadecimal.

{No Value For "\li720{}GDBN"} circumvents the error by ignoring this symbol information.   
This usually allows you to debug your program, though certain symbols are not accessible.   
If you encounter such a problem and feel like debugging it, you can debug gdb with itself,

breakpoint on complain, then go up to the function read_dbx_symtab and examine *bufp to
see the symbol.

stub type has NULL name
{No Value For "\li720{}GDBN"} could not find the full definition for a struct or class.   

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++ member function is missing some information that recent
versions of the compiler should have output for it.   

info mismatch between compiler and debugger
{No Value For "\li720{}GDBN"} could not parse a type specification output by the compiler.   

Node: Targets, Next: Controlling GDB, Prev: GDB Files, Up: Top

Specifying a Debugging Target
A "target" is the execution environment occupied by your program.    Often, GDB runs in the
same host environment as your program; in that case, the debugging target is specified as a
side effect when you use the file or core commands.    When you need more flexibility--for
example, running GDB on a physically separate host, or controlling a standalone system
over a serial port or a realtime system over a TCP/IP connection--you can use the target
command to specify one of the target types configured for GDB (see Commands for
managing targets).

* Menu:

Active Targets Active targets
Target Commands Commands for managing targets
Remote Remote debugging

Node: Active Targets, Next: Target Commands, Prev: , Up: Targets

Active targets
There are three classes of targets: processes, core files, and executable files.    GDB can work
concurrently on up to three active targets, one in each class.    This allows you to (for
example) start a process and inspect its activity without abandoning your work on a core
file.

For example, if you execute gdb a.out, then the executable file a.out is the only active
target.    If you designate a core file as well--presumably from a prior run that crashed and
coredumped--then GDB has two active targets and uses them in tandem, looking first in the
corefile target, then in the executable file, to satisfy requests for memory addresses.   
(Typically, these two classes of target are complementary, since core files contain only a
program's read-write memory--variables and so on--plus machine status, while executable
files contain only the program text and initialized data.)

When you type run, your executable file becomes an active process target as well.    When a
process target is active, all GDB commands requesting memory addresses refer to that
target; addresses in an active core file or executable file target are obscured while the
process target is active.

Use the core-file and exec-file commands to select a new core file or executable target
(see Commands to specify files).    To specify as a target a process that is already running,
use the attach command (see Debugging an already-running process).   

Node: Target Commands, Next: Remote, Prev: Active Targets, Up: Targets

Commands for managing targets
target type parameters

Connects the GDB host environment to a target machine or process.    A target is
typically a protocol for talking to debugging facilities.    You use the argument type to
specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include things
like device names or host names to connect with, process numbers, and baud rates.   

The target command does not repeat if you press RET again after executing the
command.

help target
Displays the names of all targets available.    To display targets currently selected, use
either info target or info files (see Commands to specify files).

help target name
Describe a particular target, including any parameters necessary to select it.

set gnutarget args
{No Value For "\li720{}GDBN"}uses its own library BFD to read your files.    GDB knows
whether it is reading an "executable", a "core", or a ".o" file, however you can specify the file
format with the set gnutarget command.    Unlike most target commands, with gnutarget
the target refers to a program, not a machine.

Warning: To specify a file format with set gnutarget, you must know the actual BFD name.

See Commands to specify files.

show gnutarget
Use the show gnutarget command to display what file format gnutarget is set to read.    If
you have not set gnutarget, GDB will determine the file format for each file automatically
and show gnutarget displays The current BDF target is "auto".   

Here are some common targets (available, or not, depending on the GDB configuration):

target exec program
An executable file.    target exec program is the same as exec-file program.

target core filename
A core dump file.    target core filename is the same as core-file filename.   

target remote dev
Remote serial target in GDB-specific protocol.    The argument dev specifies what
serial device to use for the connection (e.g.    /dev/ttya). See Remote debugging.   
target remote now supports the load command.    This is only useful if you have
some other way of getting the stub to the target system, and you can put it
somewhere in memory where it won't get clobbered by the download.   

target sim
CPU simulator.    See Simulated CPU Target.   

target udi keyword
Remote AMD29K target, using the AMD UDI protocol.    The keyword argument
specifies which 29K board or simulator to use.    See The UDI protocol for AMD29K.

target amd-eb dev speed PROG
Remote PC-resident AMD EB29K board, attached over serial lines.    dev is the serial
device, as for target remote; speed allows you to specify the linespeed; and PROG is
the name of the program to be debugged, as it appears to DOS on the PC.    See The
EBMON protocol for AMD29K.

target hms dev
A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host.    Use
special commands device and speed to control the serial line and the
communications speed used.    See GDB and Hitachi Microprocessors.

target nindy devicename
An Intel 960 board controlled by a Nindy Monitor.    devicename is the name of the
serial device to use for the connection, e.g.    /dev/ttya.    See GDB with a remote
i960 (Nindy).

target st2000 dev speed
A Tandem ST2000 phone switch, running Tandem's STDBUG protocol.    dev is the
name of the device attached to the ST2000 serial line; speed is the communication
line speed.    The arguments are not used if GDB is configured to connect to the
ST2000 using TCP or Telnet.    See GDB with a Tandem ST2000.   

target vxworks machinename
A VxWorks system, attached via TCP/IP.    The argument machinename is the target
system's machine name or IP address.    See GDB and VxWorks.   

target bug dev
BUG monitor, running on a MVME187 (m88k) board.

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an IDP board.

target array dev
Array Tech LSI33K RAID controller board.

target sparclite dev
Fujitsu sparclite boards, used only for the purpose of loading.    You must use an additional
command to debug the program.    For example: target remote dev using GDB standard
remote protocol.   

Different targets are available on different configurations of GDB; your configuration may
have more or fewer targets.   

Choosing target byte order

You can now choose which byte order to use with a target system.    Use the set endian big
and set endian little commands.    Use the set endian auto command to instruct GDB
to use the byte order associated with the executable.    You can see the current setting for
byte order with the show endian command.

Warning: Currently, only embedded MIPS configurations support dynamic selection of target
byte order.

Node: Remote, Next: , Prev: Target Commands, Up: Targets

Remote debugging
If you are trying to debug a program running on a machine that cannot run GDB in the usual
way, it is often useful to use remote debugging.    For example, you might use remote
debugging on an operating system kernel, or on a small system which does not have a
general purpose operating system powerful enough to run a full-featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this work with
particular debugging targets.    In addition, GDB comes with a generic serial protocol (specific
to GDB, but not specific to any particular target system) which you can use if you write the
remote stubs--the code that runs on the remote system to communicate with GDB.

Other remote targets may be available in your configuration of GDB; use help target to list
them.

* Menu:

Remote Serial GDB remote serial protocol
i960-Nindy Remote GDB with a remote i960 (Nindy)
UDI29K Remote The UDI protocol for AMD29K
EB29K Remote The EBMON protocol for AMD29K
VxWorks Remote GDB and VxWorks
ST2000 Remote GDB with a Tandem ST2000
Hitachi Remote GDB and Hitachi Microprocessors
MIPS Remote GDB and MIPS boards
Sparclet Remote GDB and Sparclet boards
Simulator Simulated CPU target

Node: Remote Serial, Next: i960-Nindy Remote, Prev: , Up: Remote

The GDB remote serial protocol
To debug a program running on another machine (the debugging "target" machine), you
must first arrange for all the usual prerequisites for the program to run by itself.    For
example, for a C program, you need:

1. A startup routine to set up the C runtime environment; these usually have a name
like crt0.    The startup routine may be supplied by your hardware supplier, or you
may have to write your own.

2. You probably need a C subroutine library to support your program's subroutine calls,
notably managing input and output.

3. A way of getting your program to the other machine--for example, a download
program.    These are often supplied by the hardware manufacturer, but you may
have to write your own from hardware documentation.

The next step is to arrange for your program to use a serial port to communicate with the
machine where GDB is running (the "host" machine).    In general terms, the scheme looks
like this:

On the host,
{No Value For "\li720{}GDBN"} already understands how to use this protocol; when
everything else is set up, you can simply use the target remote command (see Specifying
a Debugging Target).

On the target,
you must link with your program a few special-purpose subroutines that implement the GDB
remote serial protocol.    The file containing these subroutines is called    a "debugging stub".

On certain remote targets, you can use an auxiliary program gdbserver instead of linking a
stub into your program.    See Using the gdbserver program , for details.   

The debugging stub is specific to the architecture of the remote machine; for example, use
sparc-stub.c to debug programs on SPARC boards.

These working remote stubs are distributed with GDB:

i386-stub.c
For Intel 386 and compatible architectures.

m68k-stub.c
For Motorola 680x0 architectures.

sh-stub.c
For Hitachi SH architectures.

sparc-stub.c
For SPARC architectures.

sparcl-stub.c
For Fujitsu SPARCLITE architectures.

The README file in the GDB distribution may list other recently added stubs.

* Menu:

Stub Contents What the stub can do for you
Bootstrapping What you must do for the stub
Debug Session Putting it all together
Protocol Outline of the communication protocol
Server Using the `gdbserver' program
NetWare Using the `gdbserve.nlm' program

Node: Stub Contents, Next: Bootstrapping, Prev: , Up: Remote Serial

What the stub can do for you
The debugging stub for your architecture supplies these three subroutines:

set_debug_traps
This routine arranges for handle_exception to run when your program stops.    You
must call this subroutine explicitly near the beginning of your program.

handle_exception
This is the central workhorse, but your program never calls it explicitly--the setup
code arranges for handle_exception to run when a trap is triggered.

handle_exception takes control when your program stops during execution (for
example, on a breakpoint), and mediates communications with GDB on the host
machine.    This is where the communications protocol is implemented;
handle_exception acts as the GDB representative on the target machine; it begins
by sending summary information on the state of your program, then continues to
execute, retrieving and transmitting any information GDB needs, until you execute a
GDB command that makes your program resume; at that point, handle_exception
returns control to your own code on the target machine.

breakpoint
Use this auxiliary subroutine to make your program contain a breakpoint.    Depending
on the particular situation, this may be the only way for GDB to get control.    For
instance, if your target machine has some sort of interrupt button, you won't need to
call this; pressing the interrupt button transfers control to handle_exception--in
effect, to GDB.    On some machines, simply receiving characters on the serial port
may also trigger a trap; again, in that situation, you don't need to call breakpoint
from your own program--simply running target remote from the host GDB session
gets control.

Call breakpoint if none of these is true, or if you simply want to make certain your program
stops at a predetermined point for the start of your debugging session.   

Node: Bootstrapping, Next: Debug Session, Prev: Stub Contents, Up: Remote Serial

What you must do for the stub
The debugging stubs that come with GDB are set up for a particular chip architecture, but
they have no information about the rest of your debugging target machine.

First of all you need to tell the stub how to communicate with the serial port.

int getDebugChar()
Write this subroutine to read a single character from the serial port.    It may be
identical to getchar for your target system; a different name is used to allow you to
distinguish the two if you wish.

void putDebugChar(int)
Write this subroutine to write a single character to the serial port.    It may be identical to
putchar for your target system; a different name is used to allow you to distinguish the two
if you wish.   

If you want GDB to be able to stop your program while it is running, you need to use an
interrupt-driven serial driver, and arrange for it to stop when it receives a ^C (\003, the
control-C character).    That is the character which GDB uses to tell the remote system to
stop.

Getting the debugging target to return the proper status to GDB probably requires changes
to the standard stub; one quick and dirty way is to just execute a breakpoint instruction (the
"dirty" part is that GDB reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception_number, void *exception_address)
Write this function to install exception_address in the exception handling tables.    You
need to do this because the stub does not have any way of knowing what the
exception handling tables on your target system are like (for example, the
processor's table might be in ROM, containing entries which point to a table in RAM).   
exception_number is the exception number which should be changed; its meaning is
architecture-dependent (for example, different numbers might represent divide by
zero, misaligned access, etc).    When this exception occurs, control should be
transferred directly to exception_address, and the processor state (stack, registers,
and so on) should be just as it is when a processor exception occurs.    So if you want
to use a jump instruction to reach exception_address, it should be a simple jump, not
a jump to subroutine.

For the 386, exception_address should be installed as an interrupt gate so that
interrupts are masked while the handler runs.    The gate should be at privilege level 0
(the most privileged level).    The SPARC and 68k stubs are able to mask interrup
themselves without help from exceptionHandler.

void flush_i_cache()
(sparc and sparclite only) Write this subroutine to flush the instruction cache, if any, on your
target machine.    If there is no instruction cache, this subroutine may be a no-op.

On target machines that have instruction caches, GDB requires this function to make certain
that the state of your program is stable.   

You must also make sure this library routine is available:

void *memset(void *, int, int)
This is the standard library function memset that sets an area of memory to a known value.   
If you have one of the free versions of libc.a, memset can be found there; otherwise, you
must either obtain it from your hardware manufacturer, or write your own.   

If you do not use the GNU C compiler, you may need other standard library subroutines as
well; this varies from one stub to another, but in general the stubs are likely to use any of
the common library subroutines which gcc generates as inline code.

Node: Debug Session, Next: Protocol, Prev: Bootstrapping, Up: Remote Serial

Putting it all together
In summary, when your program is ready to debug, you must follow these steps.

1. Make sure you have the supporting low-level routines (see What you must do for the
stub):

getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines near the top of your program:

set_debug_traps();
breakpoint();

3. For the 680x0 stub only, you need to provide a variable called exceptionHook.   
Normally you just use:

void (*exceptionHook)() = 0;

but if before calling set_debug_traps, you set it to point to a function in your
program, that function is called when GDB continues after stopping on a trap (for
example, bus error).    The function indicated by exceptionHook is called with one
parameter: an int which is the exception number.

4. Compile and link together: your program, the GDB debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the GDB
host, and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means
the manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an
executable file the program that is running in the remote machine.    This tells GDB
how to find your program's symbols and the contents of its pure text.

Then establish communication using the target remote command.    Its argument
specifies how to communicate with the target machine--either via a devicename
attached to a direct serial line, or a TCP port (usually to a terminal server which in
turn has a serial line to the target).    For example, to use a serial line connected to
the device named /dev/ttyb:

target remote /dev/ttyb

To use a TCP connection, use an argument of the form host:port.    For example, to
connect to port 2828 on a terminal server named manyfarms:

target remote manyfarms:2828

Now you can use all the usual commands to examine and change data and to step and
continue the remote program.

To resume the remote program and stop debugging it, use the detach command.

Whenever GDB is waiting for the remote program, if you type the interrupt character (often
C-C), GDB attempts to stop the program.    This may or may not succeed, depending in part
on the hardware and the serial drivers the remote system uses.    If you type the interrupt
character once again, GDB displays this prompt:

Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)

If you type y, GDB abandons the remote debugging session.    (If you decide you want to try
again later, you can use target remote again to connect once more.)    If you type n, GDB
goes back to waiting.

Node: Protocol, Next: Server, Prev: Debug Session, Up: Remote Serial

Communication protocol
The stub files provided with GDB implement the target side of the communication protocol,
and the GDB side is implemented in the GDB source file remote.c.    Normally, you can
simply allow these subroutines to communicate, and ignore the details.    (If you're
implementing your own stub file, you can still ignore the details: start with one of the
existing stub files.    sparc-stub.c is the best organized, and therefore the easiest to read.)

However, there may be occasions when you need to know something about the protocol--for
example, if there is only one serial port to your target machine, you might want your
program to do something special if it recognizes a packet meant for GDB.

All GDB commands and responses (other than acknowledgements, which are single
characters) are sent as a packet which includes a checksum.    A packet is introduced with
the character $, and ends with the character # followed by a two-digit checksum:

$packet info#checksum

checksum is computed as the modulo 256 sum of the packet info characters.

When either the host or the target machine receives a packet, the first response expected is
an acknowledgement: a single character, either + (to indicate the package was received
correctly) or - (to request retransmission).

The host (GDB) sends commands, and the target (the debugging stub incorporated in your
program) sends data in response.    The target also sends data when your program stops.

Command packets are distinguished by their first character, which identifies the kind of
command.

These are some of the commands currently supported (for a complete list of commands,
look in gdb/remote.c.):

g
Requests the values of CPU registers.

G
Sets the values of CPU registers.

maddr,count
Read count bytes at location addr.

Maddr,count:...
Write count bytes at location addr.

c
caddr

Resume execution at the current address (or at addr if supplied).

s
saddr

Step the target program for one instruction, from either the current program counter
or from addr if supplied.

k
Kill the target program.

?
Report the most recent signal.    To allow you to take advantage of the GDB signal
handling commands, one of the functions of the debugging stub is to report CPU
traps as the corresponding POSIX signal values.

T
Allows the remote stub to send only the registers that GDB needs to make a quick decision
about single-stepping or conditional breakpoints.    This eliminates the need to fetch the
entire register set for each instruction being stepped through.

The GDB remote serial protocol now implements a write-through cache for registers.    GDB
only re-reads the registers if the target has run.   

If you have trouble with the serial connection, you can use the command set remotedebug. 
This makes GDB report on all packets sent back and forth across the serial line to the remote
machine.    The packet-debugging information is printed on the GDB standard output stream. 
set remotedebug off turns it off, and show remotedebug shows you its current state.

Node: Server, Next: NetWare, Prev: Protocol, Up: Remote Serial

Using the gdbserver program

gdbserver is a control program for Unix-like systems, which allows you to connect your
program with a remote GDB via target remote--but without linking in the usual debugging
stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that GDB itself does.    In fact, a system that
can run gdbserver to connect to a remote GDB could also run GDB locally!    gdbserver is
sometimes useful nevertheless, because it is a much smaller program than GDB itself.    It is
also easier to port than all of GDB, so you may be able to get started more quickly on a new
system by using gdbserver.    Finally, if you develop code for real-time systems, you may
find that the tradeoffs involved in real-time operation make it more convenient to do as
much development work as possible on another system, for example by cross-compiling.   
You can use gdbserver to make a similar choice for debugging.

{No Value For "rd{}GDBN"} and gdbserver communicate via either a serial line or a TCP
connection, using the standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug.    gdbserver does not
need your program's symbol table, so you can strip the program if necessary to save
space.    GDB on the host system does all the symbol handling.

To use the server, you must tell it how to communicate with GDB; the name of your
program; and the arguments for your program.    The syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber.    For example, to debug Emacs with the argument foo.txt and
communicate with GDB over the serial port /dev/com1:

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host GDB to communicate with it.

To use a TCP connection instead of a serial line:

target> gdbserver host:2345 emacs foo.txt

The only difference from the previous example is the first argument, specifying that
you are communicating with the host GDB via TCP.    The host:2345 argument means
that gdbserver is to expect a TCP connection from machine host to local TCP port
2345.    (Currently, the host part is ignored.)    You can choose any number you want
for the port number as long as it does not conflict with any TCP ports already in use
on the target system (for example, 23 is reserved for telnet).(1) You must use the
same port number with the host GDB target remote command.

On the GDB host machine,
you need an unstripped copy of your program, since GDB needs symbols and
debugging information.    Start up GDB as usual, using the name of the local copy of

your program as the first argument.    (You may also need the --baud option if the
serial line is running at anything other than 9600 bps.)    After that, use target
remote to establish communications with gdbserver.    Its argument is either a device
name (usually a serial device, like /dev/ttyb), or a TCP port descriptor in the form
host:PORT.    For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line /dev/ttyb, and

(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host the-target.    For TCP connections,
you must start up gdbserver prior to using the target remote command.    Otherwise you
may get an error whose text depends on the host system, but which usually looks something
like Connection refused.   

If you choose a port number that conflicts with another service, gdbserver prints an error
message and exits.

Node: NetWare, Next: , Prev: Server, Up: Remote Serial

Using the gdbserve.nlm program

gdbserve.nlm is a control program for NetWare systems, which allows you to connect your
program with a remote GDB via target remote.

{No Value For "rd{}GDBN"} and gdbserve.nlm communicate via a serial line, using the
standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug.    gdbserve.nlm does not
need your program's symbol table, so you can strip the program if necessary to save
space.    GDB on the host system does all the symbol handling.

To use the server, you must tell it how to communicate with GDB; the name of your
program; and the arguments for your program.    The syntax is:

load gdbserve [BOARD=board] [PORT=port]
 [BAUD=baud] program [args ...]

board and port specify the serial line; baud specifies the baud rate used by the
connection.    port and node default to 0, baud defaults to 9600 bps.

For example, to debug Emacs with the argument foo.txtand communicate with GDB
over serial port number 2 or board 1 using a 19200 bps connection:

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine,
you need an unstripped copy of your program, since GDB needs symbols and
debugging information.    Start up GDB as usual, using the name of the local copy of
your program as the first argument.    (You may also need the --baud option if the
serial line is running at anything other than 9600 bps.    After that, use target
remote to establish communications with gdbserve.nlm.    Its argument is a device
name (usually a serial device, like /dev/ttyb).    For example:

(gdb) target remote /dev/ttyb

communications with the server via serial line /dev/ttyb.   

Node: i960-Nindy Remote, Next: UDI29K Remote, Prev: Remote Serial, Up: Remote

GDB with a remote i960 (Nindy)
"Nindy" is a ROM Monitor program for Intel 960 target systems.    When GDB is configured to
control a remote Intel 960 using Nindy, you can tell GDB how to connect to the 960 in
several ways:

· Through command line options specifying serial port, version of the Nindy protocol,
and communications speed;

· By responding to a prompt on startup;

· By using the target command at any point during your GDB session.    See
Commands for managing targets.

* Menu:

Nindy Startup Startup with Nindy
Nindy Options Options for Nindy
Nindy Reset Nindy reset command

Node: Nindy Startup, Next: Nindy Options, Prev: , Up: i960-Nindy Remote

Startup with Nindy
If you simply start gdb without using any command-line options, you are prompted for what
serial port to use, before you reach the ordinary GDB prompt:

Attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (after /dev/tty) identifies the serial port you
want to use.    You can, if you choose, simply start up with no Nindy connection by
responding to the prompt with an empty line.    If you do this and later wish to attach to
Nindy, use target (see Commands for managing targets).

Node: Nindy Options, Next: Nindy Reset, Prev: Nindy Startup, Up: i960-Nindy Remote

Options for Nindy
These are the startup options for beginning your GDB session with a Nindy-960 board
attached:

-r port
Specify the serial port name of a serial interface to be used to connect to the target
system.    This option is only available when GDB is configured for the Intel 960 target
architecture.    You may specify port as any of: a full pathname (e.g. -r /dev/ttya), a
device name in /dev (e.g. -r ttya), or simply the unique suffix for a specific tty
(e.g. -r a).

-O
(An uppercase letter "O", not a zero.)    Specify that GDB should use the "old" Nindy
monitor protocol to connect to the target system.    This option is only available when
GDB is configured for the Intel 960 target architecture.

Warning: if you specify -O, but are actually trying to connect to a target system that
expects the newer protocol, the connection fails, appearing to be a speed mismatch.   
GDB repeatedly attempts to reconnect at several different line speeds.    You can
abort this process with an interrupt.

-brk
Specify that GDB should first send a BREAK signal to the target system, in an attempt
to reset it, before connecting to a Nindy target.

Warning: Many target systems do not have the hardware that this requires; it only
works with a few boards.

The standard -b option controls the line speed used on the serial port.

Node: Nindy Reset, Next: , Prev: Nindy Options, Up: i960-Nindy Remote

Nindy reset command
reset
For a Nindy target, this command sends a "break" to the remote target system; this is only
useful if the target has been equipped with a circuit to perform a hard reset (or some other
interesting action) when a break is detected.   

Node: UDI29K Remote, Next: EB29K Remote, Prev: i960-Nindy Remote, Up: Remote

The UDI protocol for AMD29K
GDB supports AMD's UDI ("Universal Debugger Interface") protocol for debugging the a29k
processor family.    To use this configuration with AMD targets running the MiniMON monitor,
you need the program MONTIP, available from AMD at no charge.    You can also use GDB with
the UDI-conformant a29k simulator program ISSTIP, also available from AMD.

target udi keyword
Select the UDI interface to a remote a29k board or simulator, where keyword is an entry in
the AMD configuration file udi_soc.    This file contains keyword entries which specify
parameters used to connect to a29k targets.    If the udi_soc file is not in your working
directory, you must set the environment variable UDICONF to its pathname.   

Node: EB29K Remote, Next: VxWorks Remote, Prev: UDI29K Remote, Up: Remote

The EBMON protocol for AMD29K
AMD distributes a 29K development board meant to fit in a PC, together with a DOS-hosted
monitor program called EBMON.    As a shorthand term, this development system is called the
"EB29K".    To use GDB from a Unix system to run programs on the EB29K board, you must
first connect a serial cable between the PC (which hosts the EB29K board) and a serial port
on the Unix system.    In the following, we assume you've hooked the cable between the PC's
COM1 port and /dev/ttya on the Unix system.

* Menu:

Comms (EB29K) Communications setup
gdb-EB29K EB29K cross-debugging
Remote Log Remote log

Node: Comms (EB29K), Next: gdb-EB29K, Prev: , Up: EB29K Remote

Communications setup
The next step is to set up the PC's port, by doing something like this in DOS on the PC:

C:\> MODE com1:9600,n,8,1,none

This example--run on an MS DOS 4.0 system--sets the PC port to 9600 bps, no parity, eight
data bits, one stop bit, and no "retry" action; you must match the communications
parameters when establishing the Unix end of the connection as well.

To give control of the PC to the Unix side of the serial line, type the following at the DOS
console:

C:\> CTTY com1

(Later, if you wish to return control to the DOS console, you can use the command CTTY
con--but you must send it over the device that had control, in our example over the COM1
serial line).

From the Unix host, use a communications program such as tip or cu to communicate with
the PC; for example,

cu -s 9600 -l /dev/ttya

The cu options shown specify, respectively, the linespeed and the serial port to use.    If you
use tip instead, your command line may look something like the following:

tip -9600 /dev/ttya

Your system may require a different name where we show /dev/ttya as the argument to
tip.    The communications parameters, including which port to use, are associated with the
tip argument in the "remote" descriptions file--normally the system table /etc/remote.

Using the tip or cu connection, change the DOS working directory to the directory
containing a copy of your 29K program, then start the PC program EBMON (an EB29K control
program supplied with your board by AMD).    You should see an initial display from EBMON
similar to the one that follows, ending with the EBMON prompt #--

C:\> G:

G:\> CD \usr\joe\work29k

G:\USR\JOE\WORK29K> EBMON
Am29000 PC Coprocessor Board Monitor, version 3.0-18
Copyright 1990 Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc.

Enter '?' or 'H' for help

PC Coprocessor Type = EB29K
I/O Base = 0x208
Memory Base = 0xd0000

Data Memory Size = 2048KB
Available I-RAM Range = 0x8000 to 0x1fffff
Available D-RAM Range = 0x80002000 to 0x801fffff

PageSize = 0x400
Register Stack Size = 0x800
Memory Stack Size = 0x1800

CPU PRL = 0x3
Am29027 Available = No
Byte Write Available = Yes

~.

Then exit the cu or tip program (done in the example by typing ~. at the EBMON prompt).   
EBMON keeps running, ready for GDB to take over.

For this example, we've assumed what is probably the most convenient way to make sure
the same 29K program is on both the PC and the Unix system: a PC/NFS connection that
establishes "drive G:" on the PC as a file system on the Unix host.    If you do not have
PC/NFS or something similar connecting the two systems, you must arrange some other
way--perhaps floppy-disk transfer--of getting the 29K program from the Unix system to the
PC; GDB does not download it over the serial line.

Node: gdb-EB29K, Next: Remote Log, Prev: Comms (EB29K), Up: EB29K Remote

EB29K cross-debugging
Finally, cd to the directory containing an image of your 29K program on the Unix system,
and start GDB--specifying as argument the name of your 29K program:

cd /usr/joe/work29k
gdb myfoo

Now you can use the target command:

target amd-eb /dev/ttya 9600 MYFOO

In this example, we've assumed your program is in a file called myfoo.    Note that the
filename given as the last argument to target amd-eb should be the name of the program
as it appears to DOS.    In our example this is simply MYFOO, but in general it can include a
DOS path, and depending on your transfer mechanism may not resemble the name on the
Unix side.

At this point, you can set any breakpoints you wish; when you are ready to see your program
run on the 29K board, use the GDB command run.

To stop debugging the remote program, use the GDB detach command.

To return control of the PC to its console, use tip or cu once again, after your GDB session
has concluded, to attach to EBMON.    You can then type the command q to shut down EBMON,
returning control to the DOS command-line interpreter.    Type CTTY con to return command
input to the main DOS console, and type ~. to leave tip or cu.

Node: Remote Log, Next: , Prev: gdb-EB29K, Up: EB29K Remote

Remote log
The target amd-eb command creates a file eb.log in the current working directory, to help
debug problems with the connection.    eb.log records all the output from EBMON, including
echoes of the commands sent to it.    Running tail -f on this file in another window often
helps to understand trouble with EBMON, or unexpected events on the PC side of the
connection.

Node: ST2000 Remote, Next: Hitachi Remote, Prev: VxWorks Remote, Up: Remote

GDB with a Tandem ST2000
To connect your ST2000 to the host system, see the manufacturer's manual.    Once the
ST2000 is physically attached, you can run:

target st2000 dev speed

to establish it as your debugging environment.    dev is normally the name of a serial device,
such as /dev/ttya, connected to the ST2000 via a serial line.    You can instead specify dev
as a TCP connection (for example, to a serial line attached via a terminal concentrator) using
the syntax hostname:portnumber.

The load and attach commands are not defined for this target; you must load your program
into the ST2000 as you normally would for standalone operation.    GDB reads debugging
information (such as symbols) from a separate, debugging version of the program available
on your host computer.

These auxiliary GDB commands are available to help you with the ST2000 environment:

st2000 command
Send a command to the STDBUG monitor.    See the manufacturer's manual for
available commands.

connect
Connect the controlling terminal to the STDBUG command monitor.    When you are done
interacting with STDBUG, typing either of two character sequences gets you back to the
GDB command prompt: RET~. (Return, followed by tilde and period) or RET~C-d (Return,
followed by tilde and control-D).   

Node: VxWorks Remote, Next: ST2000 Remote, Prev: EB29K Remote, Up: Remote

GDB and VxWorks
GDB enables developers to spawn and debug tasks running on networked VxWorks targets
from a Unix host.    Already-running tasks spawned from the VxWorks shell can also be
debugged.    GDB uses code that runs on both the Unix host and on the VxWorks target.    The
program gdb is installed and executed on the Unix host.    (It may be installed with the name
vxgdb, to distinguish it from a GDB for debugging programs on the host itself.)

VxWorks-timeout args
All VxWorks-based targets now support the option vxworks-timeout.    This option is set by
the user, and    args represents the number of seconds GDB waits for responses to rpc's.   
You might use this if your VxWorks target is a slow software simulator or is on the far side of
a thin network line.   

The following information on connecting to VxWorks was current when this manual was
produced; newer releases of VxWorks may use revised procedures.

To use GDB with VxWorks, you must rebuild your VxWorks kernel to include the remote
debugging interface routines in the VxWorks library rdb.a.    To do this, define INCLUDE_RDB
in the VxWorks configuration file configAll.h and rebuild your VxWorks kernel.    The
resulting kernel contains rdb.a, and spawns the source debugging task tRdbTask when
VxWorks is booted.    For more information on configuring and remaking VxWorks, see the
manufacturer's manual.

Once you have included rdb.a in your VxWorks system image and set your Unix execution
search path to find GDB, you are ready to run GDB.    From your Unix host, run gdb (or vxgdb,
depending on your installation).

{No Value For "rd{}GDBN"} comes up showing the prompt:

(vxgdb)

* Menu:

VxWorks Connection Connecting to VxWorks
VxWorks Download VxWorks download
VxWorks Attach Running tasks

Node: VxWorks Connection, Next: VxWorks Download, Prev: , Up: VxWorks Remote

Connecting to VxWorks
The GDB command target lets you connect to a VxWorks target on the network.    To
connect to a target whose host name is "tt", type:

(vxgdb) target vxworks tt

{No Value For "rd{}GDBN"} displays messages like these:

Attaching remote machine across net...
Connected to tt.

{No Value For "rd{}GDBN"} then attempts to read the symbol tables of any object modules
loaded into the VxWorks target since it was last booted.    GDB locates these files by
searching the directories listed in the command search path (see Your program's
environment); if it fails to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB command
path, and execute the target command again.

Node: VxWorks Download, Next: VxWorks Attach, Prev: VxWorks Connection, Up: VxWorks
Remote

VxWorks download
If you have connected to the VxWorks target and you want to debug an object that has not
yet been loaded, you can use the GDB load command to download a file from Unix to
VxWorks incrementally.    The object file given as an argument to the load command is
actually opened twice: first by the VxWorks target in order to download the code, then by
GDB in order to read the symbol table.    This can lead to problems if the current working
directories on the two systems differ.    If both systems have NFS mounted the same
filesystems, you can avoid these problems by using absolute paths.    Otherwise, it is
simplest to set the working directory on both systems to the directory in which the object file
resides, and then to reference the file by its name, without any path.    For instance, a
program prog.o may reside in vxpath/vw/demo/rdb in VxWorks and in
hostpath/vw/demo/rdb on the host.    To load this program, type this on VxWorks:

-> cd "vxpath/vw/demo/rdb"
v Then, in GDB, type:

(vxgdb) cd hostpath/vw/demo/rdb
(vxgdb) load prog.o

{No Value For "rd{}GDBN"} displays a response similar to this:

Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after editing and
recompiling the corresponding source file.    Note that this makes GDB delete all currently-
defined breakpoints, auto-displays, and convenience variables, and to clear the value
history.    (This is necessary in order to preserve the integrity of debugger data structures
that reference the target system's symbol table.)

Node: VxWorks Attach, Next: , Prev: VxWorks Download, Up: VxWorks Remote

Running tasks
You can also attach to an existing task using the attach command as follows:

(vxgdb) attach task

where task is the VxWorks hexadecimal task ID.    The task can be running or suspended
when you attach to it.    Running tasks are suspended at the time of attachment.   

Node: Sparclet Remote, Next: Simulator, Prev: MIPS Remote, Up: Remote

GDB and Sparclet
GDB enables developers to debug tasks running on Sparclet targets from a Unix host.    GDB
uses code that runs on both the Unix host and on the Sparclet target.    The program gdb is
installed and executed on the Unix host.

timeout args
GDB now supports the option remotetimeout.    This option is set by the user, and    args
represents the number of seconds GDB waits for responses.   

When compiling for debugging, include the options "-g" to get debug information and "-
Ttext" to relocate the program to where you wish to load it on the target.    You may also
want to add the options "-n" or "-N" in order to reduce the size of the sections.

sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N

You can use objdump to verify that the addresses are what you intended.

sparclet-aout-objdump --headers --syms prog

Once you have set your Unix execution search path to find GDB, you are ready to run GDB.   
From your Unix host, run gdb (or sparclet-aout-gdb, depending on your installation).

{No Value For "rd{}GDBN"} comes up showing the prompt:

(gdbslet)

* Menu:

Sparclet File Setting the file to debug
Sparclet Connection Connecting to Sparclet
Sparclet Download Sparclet download
Sparclet Execution Running and debugging

Node: Sparclet File, Next: Sparclet Connection, Prev: , Up: Sparclet Remote

Setting file to debug
The GDB command file lets you choose with program to debug.

(gdbslet) file prog

{No Value For "rd{}GDBN"} then attempts to read the symbol table of prog.    GDB locates
the file by searching the directories listed in the command search path.    If the file was
compiled with debug information (option "-g"), source files will be searched as well.    GDB
locates the source files by searching the directories listed in the directory search path (see
Your program's environment).    If it fails to find a file, it displays a message such as:

prog: No such file or directory.

When this happens, add the appropriate directories to the search paths with the GDB
commands path and dir, and execute the target command again.

Node: Sparclet Connection, Next: Sparclet Download, Prev: Sparclet File, Up: Sparclet
Remote

Connecting to Sparclet
The GDB command target lets you connect to a Sparclet target.    To connect to a target on
serial port "ttya", type:

(gdbslet) target sparclet /dev/ttya
Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3

{No Value For "rd{}GDBN"} displays messages like these:

Connected to ttya.

Node: Sparclet Download, Next: Sparclet Execution, Prev: Sparclet Connection, Up:
Sparclet Remote

Sparclet download
Once connected to the Sparclet target, you can use the GDB load command to download
the file from the host to the target.    The file name and load offset should be given as
arguments to the load command.    Since the file format is aout, the program must be
loaded to the starting address.    You can use objdump to find out what this value is.    The
load offset is an offset which is added to the VMA (virtual memory address) of each of the
file's sections.    For instance, if the program prog was linked to text address 0x1201000,
with data at 0x12010160 and bss at 0x12010170, in GDB, type:

(gdbslet) load prog 0x12010000
Loading section .text, size 0xdb0 vma 0x12010000

If the code is loaded at a different address then what the program was linked to, you may
need to use the section and add-symbol-file commands to tell GDB where to map the
symbol table.

Node: Sparclet Execution, Next: , Prev: Sparclet Download, Up: Sparclet Remote

Running and debugging
You can now begin debugging the task using GDB's execution control commands, b, step,
run, etc.    See the GDB manual for the list of commands.

(gdbslet) b main
Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run
Starting program: prog
Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
3 char *symarg = 0;
(gdbslet) step
4 char *execarg = "hello!";
(gdbslet)

Node: Hitachi Remote, Next: MIPS Remote, Prev: ST2000 Remote, Up: Remote

GDB and Hitachi microprocessors
{No Value For "rd{}GDBN"} needs to know these things to talk to your Hitachi SH, H8/300,
or H8/500:

1. that you want to use target hms, the remote debugging interface for Hitachi
microprocessors, or target e7000, the in-circuit emulator for the Hitachi SH and the
Hitachi 300H.    (target hms is the default when GDB is configured specifically for the
Hitachi SH, H8/300, or H8/500.)

2. what serial device connects your host to your Hitachi board (the first serial device
available on your host is the default).

3. what speed to use over the serial device.   

* Menu:

Hitachi Boards Connecting to Hitachi boards.
Hitachi ICE Using the E7000 In-Circuit Emulator.
Hitachi Special Special GDB commands for Hitachi micros.

Node: Hitachi Boards, Next: Hitachi ICE, Prev: , Up: Hitachi Remote

Connecting to Hitachi boards
Use the special gdb command device port if you need to explicitly set the serial device.   
The default port is the first available port on your host.    This is only necessary on Unix
hosts, where it is typically something like /dev/ttya.

gdb has another special command to set the communications speed: speed bps.    This
command also is only used from Unix hosts; on DOS hosts, set the line speed as usual from
outside GDB with the DOS mode command (for instance, mode com2:9600,n,8,1,p for a
9600 bps connection).

The device and speed commands are available only when you use a Unix host to debug
your Hitachi microprocessor programs.    If you use a DOS host, GDB depends on an auxiliary
terminate-and-stay-resident program called asynctsr to communicate with the
development board through a PC serial port.    You must also use the DOS mode command to
set up the serial port on the DOS side.

Node: Hitachi ICE, Next: Hitachi Special, Prev: Hitachi Boards, Up: Hitachi Remote

Using the E7000 in-circuit emulator
You can use the E7000 in-circuit emulator to develop code for either the Hitachi SH or the
H8/300H.    Use one of these forms of the target e7000 command to connect GDB to your
E7000:

target e7000 port speed
Use this form if your E7000 is connected to a serial port.    The port argument
identifies what serial port to use (for example, com2).    The third argument is the line
speed in bits per second (for example, 9600).

target e7000 hostname
If your E7000 is installed as a host on a TCP/IP network, you can just specify its hostname;
GDB uses telnet to connect.   

Node: Hitachi Special, Next: , Prev: Hitachi ICE, Up: Hitachi Remote

Special GDB commands for Hitachi micros
Some GDB commands are available only on the H8/300 or the H8/500 configurations:

set machine h8300
set machine h8300h

Condition GDB for one of the two variants of the H8/300 architecture with set
machine.    You can use show machine to check which variant is currently in effect.

set memory mod
show memory
Specify which H8/500 memory model (mod) you are using with set memory; check which
memory model is in effect with show memory.    The accepted values for mod are small, big,
medium, and compact.   

Node: MIPS Remote, Next: Sparclet Remote, Prev: Hitachi Remote, Up: Remote

GDB and remote MIPS boards
GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to a serial
line.    This is available when you configure GDB with --target=mips-idt-ecoff.

Use these GDB commands to specify the connection to your target board:

target mips port
To run a program on the board, start up gdb with the name of your program as the
argument.    To connect to the board, use the command target mips port, where
port is the name of the serial port connected to the board.    If the program has not
already been downloaded to the board, you may use the load command to download
it.    You can then use all the usual GDB commands.

For example, this sequence connects to the target board through a serial port, and
loads and runs a program called prog through the debugger:

host$ gdb prog
GDB is free software and ...
(gdb) target mips /dev/ttyb
(gdb) load prog
(gdb) run

target mips hostname:portnumber
On some GDB host configurations, you can specify a TCP connection (for instance, to
a serial line managed by a terminal concentrator) instead of a serial port, using the
syntax hostname:portnumber.

target pmon port

target ddb port

target lsi port

{No Value For "\pard{}GDBN"} also supports these special commands for MIPS targets:

set processor args
show processor

Use the set processor command to set the type of MIPS processor when you want
to access processor-type-specific registers.    For example, set processor r3041 tells
GDB to use the CPO registers appropriate for the 3041 chip.    Use the show
processor command to see what MIPS processor GDB is using.    Use the info reg
command to see what registers GDB is using.

set mipsfpu double
set mipsfpu single
set mipsfpu none
show mipsfpu

If your target board does not support the MIPS floating point coprocessor, you should
use the command set mipsfpu none (if you need this, you may wish to put the

command in your .gdbinit file).    This tells GDB how to find the return value of
functions which return floating point values.    It also allows GDB to avoid saving the
floating point registers when calling functions on the board.    If you are using a
floating point coprocessor with only single precision floating point support, as on the
R4650 processor, use the command set mipsfpu single.    The default double
precision floating point coprocessor may be selected using set mipsfpu double.

In previous versions the only choices were double precision or no floating point, so
set mipsfpu on will select double precision and set mipsfpu off will select no
floating point.

As usual, you can inquire about the mipsfpu variable with show mipsfpu.

set remotedebug n
show remotedebug

You can see some debugging information about communications with the board by
setting the remotedebug variable.    If you set it to 1 using set remotedebug 1, every
packet is displayed.    If you set it to 2, every character is displayed.    You can check
the current value at any time with the command show remotedebug.

set timeout seconds
set retransmit-timeout seconds
show timeout
show retransmit-timeout

You can control the timeout used while waiting for a packet, in the MIPS remote
protocol, with the set timeout seconds command.    The default is 5 seconds.   
Similarly, you can control the timeout used while waiting for an acknowledgement of
a packet with the set retransmit-timeout seconds command.    The default is 3
seconds.    You can inspect both values with show timeout and show retransmit-
timeout.    (These commands are only available when GDB is configured for --
target=mips-idt-ecoff.)

The timeout set by set timeout does not apply when GDB is waiting for your program to
stop.    In that case, GDB waits forever because it has no way of knowing how long the
program is going to run before stopping.   

Node: Simulator, Next: , Prev: Sparclet Remote, Up: Remote

Simulated CPU target
For some configurations, GDB includes a CPU simulator that you can use instead of a
hardware CPU to debug your programs.    Currently, a simulator is available when GDB is
configured to debug Zilog Z8000 or Hitachi microprocessor targets.   

For the Z8000 family, target sim simulates either the Z8002 (the unsegmented variant of
the Z8000 architecture) or the Z8001 (the segmented variant).    The simulator recognizes
which architecture is appropriate by inspecting the object code.   

target sim
Debug programs on a simulated CPU (which CPU depends on the GDB configuration)

After specifying this target, you can debug programs for the simulated CPU in the same style
as programs for your host computer; use the file command to load a new program image,
the run command to run your program, and so on.

As well as making available all the usual machine registers (see info reg), this debugging
target provides three additional items of information as specially named registers:

cycles
Counts clock-ticks in the simulator.

insts
Counts instructions run in the simulator.

time
Execution time in 60ths of a second.   

You can refer to these values in GDB expressions with the usual conventions; for example, b
fputc if $cycles>5000 sets a conditional breakpoint that suspends only after at least
5000 simulated clock ticks.   

Node: Controlling GDB, Next: Sequences, Prev: Targets, Up: Top

Controlling GDB
You can alter the way GDB interacts with you by using the set command.    For commands
controlling how GDB displays data, see Print settings; other settings are described here.

* Menu:

Prompt Prompt
Editing Command editing
History Command history
Screen Size Screen size
Numbers Numbers
Messages/Warnings Optional warnings and messages

Node: Prompt, Next: Editing, Prev: , Up: Controlling GDB

Prompt
GDB indicates its readiness to read a command by printing a string called the "prompt".   
This string is normally (gdb).    You can change the prompt string with the set prompt
command.    For instance, when debugging GDB with GDB, it is useful to change the prompt
in one of the GDB sessions so that you can always tell which one you are talking to.

Note:    set prompt no longer adds a space for you after the prompt you set.    This allows
you to set a prompt which ends in a space or a prompt that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string henceforth.

show prompt
Prints a line of the form: Gdb's prompt is: your-prompt

Node: Editing, Next: History, Prev: Prompt, Up: Controlling GDB

Command editing
GDB reads its input commands via the "readline" interface.    This GNU library provides
consistent behavior for programs which provide a command line interface to the user.   
Advantages are GNU Emacs-style or "vi"-style inline editing of commands, csh-like history
substitution, and a storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing
set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.   

Node: History, Next: Screen Size, Prev: Editing, Up: Controlling GDB

Command history
{No Value For "rd{}GDBN"} can keep track of the commands you type during your
debugging sessions, so that you can be certain of precisely what happened.    Use these
commands to manage the GDB command history facility.

set history filename fname
Set the name of the GDB command history file to fname.    This is the file where GDB
reads an initial command history list, and where it writes the command history from
this session when it exits.    You can access this list through history expansion or
through the history command editing characters listed below.    This file defaults to
the value of the environment variable GDBHISTFILE, or to ./.gdb_history if this
variable is not set.

set history save
set history save on

Record command history in a file, whose name may be specified with the set
history filename command.    By default, this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history list.    This defaults to the value
of the environment variable HISTSIZE, or to 256 if this variable is not set.   

History expansion assigns special meaning to the character !.

Since ! is also the logical not operator in C, history expansion is off by default. If you decide
to enable history expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an expression) with a space or
a tab to prevent it from being expanded.    The readline history facilities do not attempt
substitution on the strings != and !(, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on
set history expansion

Enable history expansion.    History expansion is off by default.

set history expansion off
Disable history expansion.

The readline code comes with more complete documentation of editing and history
expansion features.    Users unfamiliar with GNU Emacs or vi may wish to read it.

show history
show history filename
show history save
show history size
show history expansion
These commands display the state of the GDB history parameters.    show history by itself
displays all four states.   

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.   

Node: Screen Size, Next: Numbers, Prev: History, Up: Controlling GDB

Screen size
Certain commands to GDB may produce large amounts of information output to the screen.   
To help you read all of it, GDB pauses and asks you for input at the end of each page of
output.    Type RET when you want to continue the output, or q to discard the remaining
output.    Also, the screen width setting determines when to wrap lines of output.   
Depending on what is being printed, GDB tries to break the line at a readable place, rather
than simply letting it overflow onto the following line.

Normally GDB knows the size of the screen from the termcap data base together with the
value of the TERM environment variable and the stty rows and stty cols settings. If this is
not correct, you can override it with the set height and set width commands:

set height lpp
show height
set width cpl
show width
These set commands specify a screen height of lpp lines and a screen width of cpl
characters.    The associated show commands display the current settings.

If you specify a height of zero lines, GDB does not pause during output no matter how long
the output is.    This is useful if output is to a file or to an editor buffer.

Likewise, you can specify set width 0 to prevent GDB from wrapping its output.   

Node: Numbers, Next: Messages/Warnings, Prev: Screen Size, Up: Controlling GDB

Numbers
You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with 0, decimal numbers end with ., and hexadecimal
numbers begin with 0x.    Numbers that begin with none of these are, by default, entered in
base 10; likewise, the default display for numbers--when no particular format is specified--is
base 10.    You can change the default base for both input and output with the set radix
command.

set input-radix base
Set the default base for numeric input.    Supported choices for base are decimal 8,
10, or 16.    base must itself be specified either unambiguously or using the current
default radix; for example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal.    On the other hand, set radix 10 leaves the radix
unchanged no matter what it was.

set output-radix base
Set the default base for numeric display.    Supported choices for base are decimal 8,
10, or 16.    base must itself be specified either unambiguously or using the current
default radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.   

Node: Messages/Warnings, Next: , Prev: Numbers, Up: Controlling GDB

Optional warnings and messages
By default, GDB is silent about its inner workings.    If you are running on a slow machine,
you may want to use the set verbose command.    This makes GDB tell you when it does a
lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the
symbol table for a source file is being read; see symbol-file in Commands to specify files.

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whether set verbose is on or off.   

By default, if GDB encounters bugs in the symbol table of an object file, it is silent; but if you
are debugging a compiler, you may find this information useful (see Errors reading symbol
files).

set complaints limit
Permits GDB to output limit complaints about each type of unusual symbols before
becoming silent about the problem.    Set limit to zero to suppress all complaints; set
it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.   

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid questions
to confirm certain commands.    For example, if you try to run a program which is already
running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can
disable this "feature":

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.   

Node: Sequences, Next: Emacs, Prev: Controlling GDB, Up: Top

Canned Sequences of Commands
Aside from breakpoint commands (see Breakpoint command lists), GDB provides two ways
to store sequences of commands for execution as a unit: user-defined commands and
command files.

* Menu:

Define User-defined commands
Hooks User-defined command hooks
Command Files Command files
Output Commands for controlled output

Node: Define, Next: Hooks, Prev: , Up: Sequences

User-defined commands
A "user-defined command" is a sequence of GDB commands to which you assign a new
name as a command.    This is done with the define command.    User commands may
accept up to 10 arguments separated by whitespace.    Arguments are accessed within the
user command via $arg0...$arg9.    A trivial example:

define adder
 print $arg0 + $arg1 + $arg2

To execute the command use:

adder 1 2 3

This defines the command adder, which prints the sum of its three arguments.    Note the
arguments are text substitutions, so they may reference variables, use complex expressions,
or even perform inferior functions calls.

define commandname
Define a command named commandname.    If there is already a command by that
name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which are
given following the define command.    The end of these commands is marked by a
line containing end.

if
Takes a single argument, which is an expression to evaluate.    It is followed by a
series of commands that are executed only if the expression is true (nonzero).    There
can then optionally be a line else, followed by a series of commands that are only
executed if the expression was false.    The end of the list is marked by a line
containing end.

while
The syntax is similar to if: the command takes a single argument, which is an
expression to evaluate, and must be followed by the commands to execute, one per
line, terminated by an end.    The commands are executed repeatedly as long as the
expression evaluates to true.

document commandname
Document the user-defined command commandname, so that it can be accessed by
help.    The command commandname must already be defined.    This command
reads lines of documentation just as define reads the lines of the command
definition, ending with end.    After the document command is finished, help on

command commandname displays the documentation you have written.

You may use the document command again to change the documentation of a
command.    Redefining the command with define does not change the
documentation.

help user-defined
List all user-defined commands, with the first line of the documentation (if any) for
each.

show user
show user commandname
Display the GDB commands used to define commandname (but not its documentation).    If
no commandname is given, display the definitions for all user-defined commands.   

When user-defined commands are executed, the commands of the definition are not printed. 
An error in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command.    Many GDB commands that normally print
messages to say what they are doing omit the messages when used in a user-defined
command.

Node: Hooks, Next: Command Files, Prev: Define, Up: Sequences

User-defined command hooks
You may define hooks, which are a special kind of user-defined command.    Whenever you
run the command foo, if the user-defined command hook-foo exists, it is executed (with no
arguments) before that command.

In addition, a pseudo-command, stop exists.    Defining (hook-stop) makes the associated
commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally during
normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, but not for command aliases;
you should define a hook for the basic command name, e.g.    backtrace rather than bt.    If
an error occurs during the execution of your hook, execution of GDB commands stops and
GDB issues a prompt (before the command that you actually typed had a chance to run).

If you try to define a hook which does not match any known command, you get a warning
from the define command.

Node: Command Files, Next: Output, Prev: Hooks, Up: Sequences

Command files
A command file for GDB is a file of lines that are GDB commands.    Comments (lines starting
with #) may also be included.    An empty line in a command file does nothing; it does not
mean to repeat the last command, as it would from the terminal.

When you start GDB, it automatically executes commands from its "init files".    These are
files named .gdbinit.    GDB reads the init file (if any) in your home directory, then
processes command line options and operands, and then reads the init file (if any) in the
current working directory.    This is so the init file in your home directory can set options
(such as set complaints) which affect the processing of the command line options and
operands.    The init files are not executed if you use the -nx option; see Choosing modes.

On some configurations of GDB, the init file is known by a different name (these are typically
environments where a specialized form of GDB may need to coexist with other forms, hence
a different name for the specialized version's init file).    These are the environments with
special init file names:

· VxWorks (Wind River Systems real-time OS): .vxgdbinit

· OS68K (Enea Data Systems real-time OS): .os68gdbinit

· ES-1800 (Ericsson Telecom AB M68000 emulator): .esgdbinit

You can also request the execution of a command file with the source command:

source filename
Execute the command file filename.   

The lines in a command file are executed sequentially.    They are not printed as they are
executed.    An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file.    Many GDB commands that normally print messages to say
what they are doing omit the messages when called from command files.

Node: Output, Next: , Prev: Command Files, Up: Sequences

Commands for controlled output
During the execution of a command file or a user-defined command, normal GDB output is
suppressed; the only output that appears is what is explicitly printed by the commands in
the definition.    This section describes three commands useful for generating exactly the
output you want.

echo text
Print text.    Nonprinting characters can be included in text using C escape sequences,
such as \n to print a newline.    No newline is printed unless you specify one.    In
addition to the standard C escape sequences, a backslash followed by a space stands
for a space.    This is useful for displaying a string with spaces at the beginning or the
end, since leading and trailing spaces are otherwise trimmed from all arguments.    To
print and foo = , use the command echo \ and foo = \ .

A backslash at the end of text can be used, as in C, to continue the command onto
subsequent lines.    For example,

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression
Print the value of expression and nothing but that value: no newlines, no $nn = .   
The value is not entered in the value history either.    See Expressions, for more
information on expressions.

output/fmt expression
Print the value of expression in format fmt.    You can use the same formats as for
print.    See Output formats, for more information.

printf string, expressions...
Print the values of the expressions under the control of string.    The expressions are
separated by commas and may be either numbers or pointers.    Their values are
printed as specified by string, exactly as if your program were to execute the C
subroutine

printf (string, expressions...);

For example, you can print two values in hex like this:

printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the simple
ones that consist of backslash followed by a letter.   

Node: Emacs, Next: GDB Bugs, Prev: Sequences, Up: Top

Using GDB under GNU Emacs
A special interface allows you to use GNU Emacs to view (and edit) the source files for the
program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs.    Give the executable file you
want to debug as an argument.    This command starts GDB as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for two things:

· All "terminal" input and output goes through the Emacs buffer.   

This applies both to GDB commands and their output, and to the input and output done by
the program you are debugging.

This is useful because it means that you can copy the text of previous commands and input
them again; you can even use parts of the output in this way.

All the facilities of Emacs' Shell mode are available for interacting with your program.    In
particular, you can send signals the usual way--for example, C-c C-c for an interrupt, C-c
C-z for a stop.

· GDB displays source code through Emacs.   

Each time GDB displays a stack frame, Emacs automatically finds the source file for that
frame and puts an arrow (=>) at the left margin of the current line.    Emacs uses a separate
buffer for source display, and splits the screen to show both your GDB session and the
source.

Explicit GDB list or search commands still produce output as usual, but you probably have
no reason to use them from Emacs.

Warning: If the directory where your program resides is not your current directory, it can be
easy to confuse Emacs about the location of the source files, in which case the auxiliary
display buffer does not appear to show your source.    GDB can find programs by searching
your environment's PATH variable, so the GDB input and output session proceeds normally;
but Emacs does not get enough information back from GDB to locate the source files in this
situation.    To avoid this problem, either start GDB mode from the directory where your
program resides, or specify an absolute file name when prompted for the M-x gdb argument.

A similar confusion can result if you use the GDB file command to switch to
debugging a program in some other location, from an existing GDB buffer in Emacs.

By default, M-x gdb calls the program called gdb.    If you need to call GDB by a different
name (for example, if you keep several configurations around, with different names) you can
set the Emacs variable gdb-command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by ESC ESC, or typed in the *scratch* buffer, or in your .emacs file) makes
Emacs call the program named "mygdb" instead.

In the GDB I/O buffer, you can use these special Emacs commands in addition to the
standard Shell mode commands:

C-h m
Describe the features of Emacs' GDB Mode.

M-s
Execute to another source line, like the GDB step command; also update the display
window to show the current file and location.

M-n
Execute to next source line in this function, skipping all function calls, like the GDB
next command.    Then update the display window to show the current file and
location.

M-i
Execute one instruction, like the GDB stepi command; update display window
accordingly.

M-x gdb-nexti
Execute to next instruction, using the GDB nexti command; update display window
accordingly.

C-c C-f
Execute until exit from the selected stack frame, like the GDB finish command.

M-c
Continue execution of your program, like the GDB continue command.

Warning: In Emacs v19, this command is C-c C-p.

M-u
Go up the number of frames indicated by the numeric argument (see Numeric
Arguments), like the GDB up command.

Warning: In Emacs v19, this command is C-c C-u.

M-d
Go down the number of frames indicated by the numeric argument, like the GDB
down command.

Warning: In Emacs v19, this command is C-c C-d.

C-x &
Read the number where the cursor is positioned, and insert it at the end of the GDB I/O
buffer.    For example, if you wish to disassemble code around an address that was displayed
earlier, type disassemble; then move the cursor to the address display, and pick up the
argument for disassemble by typing C-x &.

You can customize this further by defining elements of the list gdb-print-command; once it is
defined, you can format or otherwise process numbers picked up by C-x & before they are
inserted.    A numeric argument to C-x & indicates that you wish special formatting, and also
acts as an index to pick an element of the list.    If the list element is a string, the number to

be inserted is formatted using the Emacs function format; otherwise the number is passed
as an argument to the corresponding list element.   

In any source file, the Emacs command C-x SPC (gdb-break) tells GDB to set a breakpoint
on the source line point is on.

If you accidentally delete the source-display buffer, an easy way to get it back is to type the
command f in the GDB buffer, to request a frame display; when you run under Emacs, this
recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way.    You can edit the files with these buffers if you wish; but keep
in mind that GDB communicates with Emacs in terms of line numbers.    If you add or delete
lines from the text, the line numbers that GDB knows cease to correspond properly with the
code.

Node: GDB Bugs, Next: Command Line Editing, Prev: Emacs, Up: Top

Reporting Bugs in GDB
Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.    But in
any case the principal function of a bug report is to help the entire community by making
the next version of GDB work better.    Bug reports are your contribution to the maintenance
of GDB.

In order for a bug report to serve its purpose, you must include the information that enables
us to fix the bug.

* Menu:

Bug Criteria Have you found a bug?
Bug Reporting How to report bugs

Node: Bug Criteria, Next: Bug Reporting, Prev: , Up: GDB Bugs

Have you found a bug?
If you are not sure whether you have found a bug, here are some guidelines:

· If the debugger gets a fatal signal, for any input whatever, that is a GDB bug.   
Reliable debuggers never crash.

· If GDB produces an error message for valid input, that is a bug.

· If GDB does not produce an error message for invalid input, that is a bug.    However,
you should note that your idea of "invalid input" might be our idea of "an extension" or
"support for traditional practice".

· If you are an experienced user of debugging tools, your suggestions for improvement
of GDB are welcome in any case.   

Node: Bug Reporting, Next: , Prev: Bug Criteria, Up: GDB Bugs

How to report bugs
A number of companies and individuals offer support for GNU products.    If you obtained GDB
from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
etc/SERVICE in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for GDB to one of these
addresses:

bug-gdb@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb

Do not send bug reports to info-gdb, or to help-gdb, or to any newsgroups. Most
users of GDB do not want to receive bug reports.    Those that do have arranged to receive
bug-gdb.

The mailing list bug-gdb has a newsgroup gnu.gdb.bug which serves as a repeater.    The
mailing list and the newsgroup carry exactly the same messages.    Often people think of
posting bug reports to the newsgroup instead of mailing them.    This appears to work, but it
has one problem which can be crucial: a newsgroup posting often lacks a mail path back to
the sender.    Thus, if we need to ask for more information, we may be unable to reach you.   
For this reason, it is better to send bug reports to the mailing list.

As a last resort, send bug reports on paper to:

GNU Debugger Bugs
Free Software Foundation Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA

The fundamental principle of reporting bugs usefully is this: report all the facts.    If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume
that some details do not matter.    Thus, you might assume that the name of the variable you
use in an example does not matter.    Well, probably it does not, but one cannot be sure.   
Perhaps the bug is a stray memory reference which happens to fetch from the location
where that name is stored in memory; perhaps, if the name were different, the contents of
that location would fool the debugger into doing the right thing despite the bug.    Play it safe
and give a specific, complete example.    That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to us. 
Therefore, always write your bug reports on the assumption that the bug has not been
reported previously.

Sometimes people give a few sketchy facts and ask, "Does this ring a bell?"    Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

· The version of GDB.    GDB announces it if you start with no arguments; you can also
print it at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the
current version of GDB.

· The type of machine you are using, and the operating system name and version
number.

· What compiler (and its version) was used to compile GDB--e.g.    "gcc-2.0".

· What compiler (and its version) was used to compile the program you are
debugging--e.g.    "gcc-2.0".

· The command arguments you gave the compiler to compile your example and
observe the bug.    For example, did you use -O?    To guarantee you will not omit
something important, list them all.    A copy of the Makefile (or the output from make)
is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then
we might not encounter the bug.

· A complete input script, and all necessary source files, that will reproduce the bug.

· A description of what behavior you observe that you believe is incorrect.    For
example, "It gets a fatal signal."

Of course, if the bug is that GDB gets a fatal signal, then we will certainly notice it.   
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.   
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.   
Suppose something strange is going on, such as, your copy of GDB is out of synch, or
you have encountered a bug in the C library on your system.    (This has happened!)   
Your copy might crash and ours would not.    If you told us to expect a crash, then
when ours fails to crash, we would know that the bug was not happening for us.    If
you had not told us to expect a crash, then we would not be able to draw any
conclusion from our observations.

· If you wish to suggest changes to the GDB source, send us context diffs.    If you even
discuss something in the GDB source, refer to it by context, not by line number.

The line numbers in our development sources will not match those in your sources.    Your
line numbers would convey no useful information to us.   

Here are some things that are not necessary:

· A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the

bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples.    We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us.    Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

· A patch for the bug.

A patch for the bug does help us if it is a good one.    But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need.   
We might see problems with your patch and decide to fix the problem another way,
or we might not understand it at all.

Sometimes with a program as complicated as GDB it is very hard to construct an
example that will make the program follow a certain path through the code.    If you
do not send us the example, we will not be able to construct one, so we will not be
able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it.    A test case will help us to understand.

· A guess about what the bug is or what it depends on.

Such guesses are usually wrong.    Even we cannot guess right about such things without
first using the debugger to find the facts.   

Node: Command Line Editing, Next: Using History Interactively, Prev: GDB Bugs, Up: Top

Command Line Editing
This text describes GNU's command line editing interface.

* Menu:

Introduction and Notation Notation used in this text.
Readline Interaction The minimum set of commands for editing a line.
Readline Init File Customizing Readline from a user's view.

Node: Introduction and Notation, Next: Readline Interaction, Prev: , Up: Command Line
Editing

Introduction to Line Editing
The following paragraphs describe the notation we use to represent keystrokes.

The text C-k is read as `Control-K' and describes the character produced when the Control
key is depressed and the k key is struck.

The text M-k is read as `Meta-K' and describes the character produced when the meta key (if
you have one) is depressed, and the k key is struck.    If you do not have a meta key, the
identical keystroke can be generated by typing ESC first, and then typing k.    Either process
is known as "metafying" the k key.

The text M-C-k is read as `Meta-Control-k' and describes the character produced by
"metafying" C-k.

In addition, several keys have their own names.    Specifically, DEL, ESC, LFD, SPC, RET, and
TAB all stand for themselves when seen in this text, or in an init file (see Readline Init File,
for more info).

Node: Readline Interaction, Next: Readline Init File, Prev: Introduction and Notation, Up:
Command Line Editing

Readline Interaction
Often during an interactive session you type in a long line of text, only to notice that the first
word on the line is misspelled.    The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing you
to retype the majority of the line.    Using these editing commands, you move the cursor to
the place that needs correction, and delete or insert the text of the corrections.    Then, when
you are satisfied with the line, you simply press RET.    You do not have to be at the end of
the line to press RET; the entire line is accepted regardless of the location of the cursor
within the line.

* Menu:

Readline Bare Essentials The least you need to know about Readline.
Readline Movement Commands Moving about the input line.
Readline Killing Commands How to delete text, and how to get it back!
Readline Arguments Giving numeric arguments to commands.

Node: Readline Bare Essentials, Next: Readline Movement Commands, Prev: , Up:
Readline Interaction

Readline Bare Essentials
In order to enter characters into the line, simply type them.    The typed character appears
where the cursor was, and then the cursor moves one space to the right.    If you mistype a
character, you can use DEL to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice your
error until you have typed several other characters.    In that case, you can type C-b to move
the cursor to the left, and then correct your mistake.    Aftwerwards, you can move the cursor
to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right of the
cursor get `pushed over' to make room for the text that you have inserted.    Likewise, when
you delete text behind the cursor, characters to the right of the cursor get `pulled back' to
fill in the blank space created by the removal of the text.    A list of the basic bare essentials
for editing the text of an input line follows.

C-b
Move back one character.

C-f
Move forward one character.

DEL
Delete the character to the left of the cursor.

C-d
Delete the character underneath the cursor.

Printing characters
Insert itself into the line at the cursor.

C-_
Undo the last thing that you did.    You can undo all the way back to an empty line.   

Node: Readline Movement Commands, Next: Readline Killing Commands, Prev: Readline
Bare Essentials, Up: Readline Interaction

Readline Movement Commands
The above table describes the most basic possible keystrokes that you need in order to do
editing of the input line.    For your convenience, many other commands have been added in
addition to C-b, C-f, C-d, and DEL.    Here are some commands for moving more rapidly about
the line.

C-a
Move to the start of the line.

C-e
Move to the end of the line.

M-f
Move forward a word.

M-b
Move backward a word.

C-l
Clear the screen, reprinting the current line at the top.   

Notice how C-f moves forward a character, while M-f moves forward a word.    It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

Node: Readline Killing Commands, Next: Readline Arguments, Prev: Readline Movement
Commands, Up: Readline Interaction

Readline Killing Commands
"Killing" text means to delete the text from the line, but to save it away for later use, usually
by "yanking" it back into the line.    If the description for a command says that it `kills' text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k
Kill the text from the current cursor position to the end of the line.

M-d
Kill from the cursor to the end of the current word, or if between words, to the end of
the next word.

M-DEL
Kill from the cursor to the start of the previous word, or if between words, to the start
of the previous word.

C-w
Kill from the cursor to the previous whitespace.    This is different than M-DEL because
the word boundaries differ.

And, here is how to "yank" the text back into the line.

C-y
Yank the most recently killed text back into the buffer at the cursor.

M-y
Rotate the kill-ring, and yank the new top.    You can only do this if the prior command is C-y
or M-y.   

When you use a kill command, the text is saved in a "kill-ring".    Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one clean
sweep.    The kill ring is not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

Node: Readline Arguments, Next: , Prev: Readline Killing Commands, Up: Readline
Interaction

Readline Arguments
You can pass numeric arguments to Readline commands.    Sometimes the argument acts as
a repeat count, other times it is the sign of the argument that is significant.    If you pass a
negative argument to a command which normally acts in a forward direction, that command
will act in a backward direction.    For example, to kill text back to the start of the line, you
might type M- C-k.

The general way to pass numeric arguments to a command is to type meta digits before the
command.    If the first `digit' you type is a minus sign (-), then the sign of the argument will
be negative.    Once you have typed one meta digit to get the argument started, you can
type the remainder of the digits, and then the command.    For example, to give the C-d
command an argument of 10, you could type M-1 0 C-d.

Node: Readline Init File, Next: , Prev: Readline Interaction, Up: Command Line Editing

Readline Init File
Although the Readline library comes with a set of GNU Emacs-like keybindings, it is possible
that you would like to use a different set of keybindings.    You can customize programs that
use Readline by putting commands in an "init" file in your home directory.    The name of this
file is ~/.inputrc.

When a program which uses the Readline library starts up, the ~/.inputrc file is read, and
the keybindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes that
you might have made to it.

* Menu:

Readline Init Syntax Syntax for the commands in ~/.inputrc.
Readline vi Mode Switching to vi mode in Readline.

Node: Readline Init Syntax, Next: Readline vi Mode, Prev: , Up: Readline Init File

Readline Init Syntax
There are only four constructs allowed in the ~/.inputrc file:

Variable Settings
You can change the state of a few variables in Readline.    You do this by using the set
command within the init file.    Here is how you would specify that you wish to use vi
line editing commands:

set editing-mode vi

Right now, there are only a few variables which can be set; so few in fact, that we just
iterate them here:

editing-mode
The editing-mode variable controls which editing mode you are using.    By
default, GNU Readline starts up in Emacs editing mode, where the keystrokes
are most similar to Emacs.    This variable can either be set to emacs or vi.

horizontal-scroll-mode
This variable can either be set to On or Off.    Setting it to On means that the
text of the lines that you edit will scroll horizontally on a single screen line
when they are larger than the width of the screen, instead of wrapping onto a
new screen line.    By default, this variable is set to Off.

mark-modified-lines
This variable when set to On, says to display an asterisk (*) at the starts of
history lines which have been modified.    This variable is off by default.

prefer-visible-bell
If this variable is set to On it means to use a visible bell if one is available, rather than
simply ringing the terminal bell.    By default, the value is Off.   

Key Bindings
The syntax for controlling keybindings in the ~/.inputrc file is simple.    First you
have to know the name of the command that you want to change.    The following
pages contain tables of the command name, the default keybinding, and a short
description of what the command does.

Once you know the name of the command, simply place the name of the key you
wish to bind the command to, a colon, and then the name of the command on a line
in the ~/.inputrc file.    The name of the key can be expressed in different ways,
depending on which is most comfortable for you.

keyname: function-name or macro
keyname is the name of a key spelled out in English.    For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, C-u is bound to the function universal-argument, and
C-o is bound to run the macro expressed on the right hand side (that is, to

insert the text >&output into the line).

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an entire key sequence
can be specified.    Simply place the key sequence in double quotes.    GNU Emacs style
key escapes can be used, as in the following example:

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, C-u is bound to the function universal-argument (just
as it was in the first example), C-x C-r is bound to the function re-read-init-
file, and ESC [1 1 ~ is bound to insert the text Function Key 1.

* Menu:

Commands For Moving Moving about the line.
Commands For History Getting at previous lines.
Commands For Text Commands for changing text.
Commands For Killing Commands for killing and yanking.
Numeric Arguments Specifying numeric arguments, repeat counts.
Commands For Completion Getting Readline to do the typing for you.
Miscellaneous Commands Other miscillaneous commands.

Node: Commands For Moving, Next: Commands For History, Prev: , Up: Readline Init
Syntax

Commands For Moving
beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)
Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word.

backward-word (M-b)
Move back to the start of this, or the previous, word.

clear-screen (C-l)
Clear the screen leaving the current line at the top of the screen.

Node: Commands For History, Next: Commands For Text, Prev: Commands For Moving, Up:
Readline Init Syntax

Commands For Manipulating The History
accept-line (Newline, Return)

Accept the line regardless of where the cursor is.    If this line is non-empty, add it to
the history list.    If this line was a history line, then restore the history line to its
original state.

previous-history (C-p)
Move `up' through the history list.

next-history (C-n)
Move `down' through the history list.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line you are entering.

reverse-search-history (C-r)
Search backward starting at the current line and moving `up' through the history as
necessary.    This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving `down' through the the history
as necessary.

Node: Commands For Text, Next: Commands For Killing, Prev: Commands For History, Up:
Readline Init Syntax

Commands For Changing Text
delete-char (C-d)

Delete the character under the cursor.    If the cursor is at the beginning of the line,
and there are no characters in the line, and the last character typed was not C-d,
then return EOF.

backward-delete-char (Rubout)
Delete the character behind the cursor.    A numeric argument says to kill the
characters instead of deleting them.

quoted-insert (C-q, C-v)
Add the next character that you type to the line verbatim.    This is how to insert
things like C-q for example.

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-t)
Drag the character before point forward over the character at point.    Point moves
forward as well.    If point is at the end of the line, then transpose the two characters
before point.    Negative arguments don't work.

transpose-words (M-t)
Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

upcase-word (M-u)
Uppercase all letters in the current (or following) word.    With a negative argument,
do the previous word, but do not move point.

downcase-word (M-l)
Lowercase all letters in the current (or following) word.    With a negative argument,
do the previous word, but do not move point.

capitalize-word (M-c)
Uppercase the first letter in the current (or following) word.    With a negative
argument, do the previous word, but do not move point.

Node: Commands For Killing, Next: Numeric Arguments, Prev: Commands For Text, Up:
Readline Init Syntax

Killing And Yanking
kill-line (C-k)

Kill the text from the current cursor position to the end of the line.

backward-kill-line ()
Kill backward to the beginning of the line.    This is normally unbound.

kill-word (M-d)
Kill from the cursor to the end of the current word, or if between words, to the end of
the next word.

backward-kill-word (M-DEL)
Kill the word behind the cursor.

unix-line-discard (C-u)
Kill the whole line the way C-u used to in Unix line input.    The killed text is saved on
the kill-ring.

unix-word-rubout (C-w)
Kill the word the way C-w used to in Unix line input.    The killed text is saved on the
kill-ring.    This is different than backward-kill-word because the word boundaries
differ.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)
Rotate the kill-ring, and yank the new top.    You can only do this if the prior command is
yank or yank-pop.   

Node: Numeric Arguments, Next: Commands For Completion, Prev: Commands For Killing,
Up: Readline Init Syntax

Specifying Numeric Arguments
digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument.    M-
starts a negative argument.

universal-argument ()
Do what C-u does in GNU Emacs.    By default, this is not bound.   

Node: Commands For Completion, Next: Miscellaneous Commands, Prev: Numeric
Arguments, Up: Readline Init Syntax

Letting Readline Type For You
complete (TAB)

Attempt to do completion on the text before point.    This is implementation defined.   
Generally, if you are typing a filename argument, you can do filename completion; if
you are typing a command, you can do command completion, if you are typing in a
symbol to GDB, you can do symbol name completion, if you are typing in a variable
to Bash, you can do variable name completion.

possible-completions (M-?)
List the possible completions of the text before point.   

Node: Miscellaneous Commands, Next: , Prev: Commands For Completion, Up: Readline
Init Syntax

Some Miscellaneous Commands
re-read-init-file (C-x C-r)

Read in the contents of your ~/.inputrc file, and incorporate any bindings found
there.

abort (C-g)
Stop running the current editing command.

prefix-meta (ESC)
Make the next character that you type be metafied.    This is for people without a
meta key.    Typing ESC f is equivalent to typing M-f.

undo (C-_)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line.    This is like typing the `undo' command enough times to
get back to the beginning.   

Node: Readline vi Mode, Next: , Prev: Readline Init Syntax, Up: Readline Init File

Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line.

In order to switch interactively between GNU Emacs and vi editing modes, use the command
M-C-j (toggle-editing-mode).

When you enter a line in vi mode, you are already placed in `insertion' mode, as if you had
typed an `i'.    Pressing ESC switches you into `edit' mode, where you can edit the text of the
line with the standard vi movement keys, move to previous history lines with `k', and
following lines with `j', and so forth.

Node: Using History Interactively, Next: Formatting Documentation, Prev: Command Line
Editing, Up: Top

Using History Interactively
This chapter describes how to use the GNU History Library interactively, from a user's
standpoint.

* Menu:

History Interaction What it feels like using History as a user.

Node: History Interaction, Next: , Prev: , Up: Using History Interactively

History Interaction
The History library provides a history expansion feature similar to the history expansion in
csh.    The following text describes the syntax you use to manipulate history information.

History expansion takes two parts.    In the first part, determine which line from the previous
history will be used for substitution.    This line is called the "event".    In the second part,
select portions of that line for inclusion into the current line.    These portions are called
"words".    GDB breaks the line into words in the same way that the Bash shell does, so that
several English (or Unix) words surrounded by quotes are considered one word.

* Menu:

Event Designators How to specify which history line to use.
Word Designators Specifying which words are of interest.
Modifiers Modifying the results of susbstitution.

Node: Event Designators, Next: Word Designators, Prev: , Up: History Interaction

Event Designators
An "event designator" is a reference to a command line entry in the history list.

!
Start a history subsititution, except when followed by a space, tab, or the end of the
line... = or (.

!!
Refer to the previous command.    This is a synonym for !-1.

!n
Refer to command line n.

!-n
Refer to the command line n lines back.

!string
Refer to the most recent command starting with string.

!?string[?]
Refer to the most recent command containing string.

Node: Word Designators, Next: Modifiers, Prev: Event Designators, Up: History Interaction

Word Designators
A : separates the event designator from the "word designator".    It can be omitted if the
word designator begins with a ^, $, * or %.    Words are numbered from the beginning of the
line, with the first word being denoted by a 0 (zero).

0 (zero)
The zero'th word.    For many applications, this is the command word.

n
The n'th word.

^
The first argument.    that is, word 1.

$
The last argument.

%
The word matched by the most recent ?string? search.

x-y
A range of words; -y Abbreviates 0-y.

*
All of the words, excepting the zero'th.    This is a synonym for 1-$.    It is not an error
to use * if there is just one word in the event.    The empty string is returned in that
case.

Node: Modifiers, Next: , Prev: Word Designators, Up: History Interaction

Modifiers
After the optional word designator, you can add a sequence of one or more of the following
"modifiers", each preceded by a :.

#
The entire command line typed so far.    This means the current command, not the
previous command.

h
Remove a trailing pathname component, leaving only the head.

r
Remove a trailing suffix of the form .suffix, leaving the basename.

e
Remove all but the suffix.

t
Remove all leading    pathname    components, leaving the tail.

p
Print the new command but do not execute it.   

Node: Formatting Documentation, Next: Installing GDB, Prev: Using History Interactively,
Up: Top

Formatting Documentation
The GDB 4 release includes an already-formatted reference card, ready for printing with
PostScript or Ghostscript, in the gdb subdirectory of the main source directory(1).    If you can
use PostScript or Ghostscript with your printer, you can print the reference card immediately
with refcard.ps.

The release also includes the source for the reference card.    You can format it, using TeX, by
typing:

make refcard.dvi

The GDB reference card is designed to print in "landscape" mode on US "letter" size paper;
that is, on a sheet 11 inches wide by 8.5 inches high.    You will need to specify this form of
printing as an option to your DVI output program.

All the documentation for GDB comes as part of the machine-readable distribution.    The
documentation is written in Texinfo format, which is a documentation system that uses a
single source file to produce both on-line information and a printed manual.    You can use
one of the Info formatting commands to create the on-line version of the documentation and
TeX (or texi2roff) to typeset the printed version.

{No Value For "rd{}GDBN"} includes an already formatted copy of the on-line Info version of
this manual in the gdb subdirectory.    The main Info file is gdb-version-
number/gdb/gdb.info, and it refers to subordinate files matching gdb.info* in the same
directory.    If necessary, you can print out these files, or read them with any editor; but they
are easier to read using the info subsystem in GNU Emacs or the standalone info program,
available as part of the GNU Texinfo distribution.

If you want to format these Info files yourself, you need one of the Info formatting programs,
such as texinfo-format-buffer or makeinfo.

If you have makeinfo installed, and are in the top level GDB source directory (gdb-, in the
case of version), you can make the Info file by typing:

cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TeX, a program to print its
DVI output files, and texinfo.tex, the Texinfo definitions file.

TeX is a typesetting program; it does not print files directly, but produces output files called
DVI files.    To print a typeset document, you need a program to print DVI files.    If your system
has TeX installed, chances are it has such a program.    The precise command to use depends
on your system; lpr -d is common; another (for PostScript devices) is dvips.    The DVI print
command may require a file name without any extension or a .dvi extension.

TeX also requires a macro definitions file called texinfo.tex.    This file tells TeX how to
typeset a document written in Texinfo format.    On its own, TeX cannot either read or typeset
a Texinfo file.    texinfo.tex is distributed with GDB and is located in the gdb-version-
number/texinfo directory.

If you have TeX and a DVI printer program installed, you can typeset and print this manual.   
First switch to the the gdb subdirectory of the main source directory (for example, to
gdb-/gdb) and then type:

make gdb.dvi

In gdb-/gdb/refcard.ps of the version    release.

Node: Installing GDB, Next: Index, Prev: Formatting Documentation, Up: Top

Installing GDB
GDB comes with a configure script that automates the process of preparing GDB for
installation; you can then use make to build the gdb program.

The GDB distribution includes all the source code you need for GDB in a single directory,
whose name is usually composed by appending the version number to gdb.

For example, the GDB version    distribution is in the gdb- directory.    That directory contains:

gdb-/configure (and supporting files)
script for configuring GDB and all its supporting libraries

gdb-/gdb
the source specific to GDB itself

gdb-/bfd
source for the Binary File Descriptor library

gdb-/include
GNU include files

gdb-/libiberty
source for the -liberty free software library

gdb-/opcodes
source for the library of opcode tables and disassemblers

gdb-/readline
source for the GNU command-line interface

gdb-/glob
source for the GNU filename pattern-matching subroutine

gdb-/mmalloc
source for the GNU memory-mapped malloc package

The simplest way to configure and build GDB is to run configure from the gdb-version-
number source directory, which in this example is the gdb- directory.

First switch to the gdb-version-number source directory if you are not already in it; then run
configure.    Pass the identifier for the platform on which GDB will run as an argument.

For example:

cd gdb-
./configure host
make

where host is an identifier such as sun4 or decstation, that identifies the platform where
GDB will run.    (You can often leave off host; configure tries to guess the correct value by
examining your system.)

Running configure host and then running make builds the bfd, readline, mmalloc, and
libiberty libraries, then gdb itself.    The configured source files, and the binaries, are left in
the corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directories for multiple libraries
or programs, such as the gdb- source directory for version , configure creates configuration
files for every directory level underneath (unless you tell it not to, with the --norecursion
option).

You can run the configure script from any of the subordinate directories in the GDB
distribution if you only want to configure that subdirectory, but be sure to specify a path to
it.

For example, with version , type the following to configure only the bfd subdirectory:

cd gdb-/bfd
../configure host

You can install gdb anywhere; it has no hardwired paths.    However, you should make sure
that the shell on your path (named by the SHELL environment variable) is publicly readable.   
Remember that GDB uses the shell to start your program--some systems refuse to let GDB
debug child processes whose programs are not readable.

* Menu:

Separate Objdir Compiling GDB in another directory
Config Names Specifying names for hosts and targets
configure Options Summary of options for configure

Node: Separate Objdir, Next: Config Names, Prev: , Up: Installing GDB

Compiling GDB in another directory
If you want to run GDB versions for several host or target machines, you need a different
gdb compiled for each combination of host and target.    configure is designed to make this
easy by allowing you to generate each configuration in a separate subdirectory, rather than
in the source directory.    If your make program handles the VPATH feature (GNU make does),
running make in each of these directories builds the gdb program specified there.

To build gdb in a separate directory, run configure with the --srcdir option to specify
where to find the source.    (You also need to specify a path to find configure itself from your
working directory.    If the path to configure would be the same as the argument to --
srcdir, you can leave out the --srcdir option; it is assumed.)

For example, with version , you can build GDB in a separate directory for a Sun 4 like this:

cd gdb-
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-/configure sun4
make

When configure builds a configuration using a remote source directory, it creates a tree for
the binaries with the same structure (and using the same names) as the tree under the
source directory.    In the example, you'd find the Sun 4 library libiberty.a in the directory
gdb-sun4/libiberty, and GDB itself in gdb-sun4/gdb.

One popular reason to build several GDB configurations in separate directories is to
configure GDB for cross-compiling (where GDB runs on one machine--the "host"--while
debugging programs that run on another machine--the "target").    You specify a cross-
debugging target by giving the --target=target option to configure.

When you run make to build a program or library, you must run it in a configured directory--
whatever directory you were in when you called configure (or one of its subdirectories).

The Makefile that configure generates in each source directory also runs recursively.    If
you type make in a source directory such as gdb- (or in a separate configured directory
configured with --srcdir=dirname/gdb-), you will build all the required libraries, and then
build GDB.

When you have multiple hosts or targets configured in separate directories, you can run
make on them in parallel (for example, if they are NFS-mounted on each of the hosts); they
will not interfere with each other.

Node: Config Names, Next: configure Options, Prev: Separate Objdir, Up: Installing GDB

Specifying names for hosts and targets
The specifications used for hosts and targets in the configure script are based on a three-
part naming scheme, but some short predefined aliases are also supported.    The full
naming scheme encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target in a
--target=target option.    The equivalent full name is sparc-sun-sunos4.

The configure script accompanying GDB does not provide any query facility to list all
supported host and target names or aliases.    configure calls the Bourne shell script
config.sub to map abbreviations to full names; you can read the script, if you wish, or you
can use it to test your guesses on abbreviations--for example:

% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub decstation
mips-dec-ultrix4.2
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-unknown-sysv
% sh config.sub i786v
Invalid configuration `i786v': machine `i786v' not recognized

config.sub is also distributed in the GDB source directory (gdb-, for version).

Node: configure Options, Next: , Prev: Config Names, Up: Installing GDB

configure options

Here is a summary of the configure options and arguments that are most often useful for
building GDB.    configure also has several other options not listed here.    See What
Configure Does, for a full explanation of configure.

configure [--help]
 [--prefix=dir]
 [--srcdir=dirname]
 [--norecursion] [--rm]
 [--target=target] host

You may introduce options with a single - rather than -- if you prefer; but you may
abbreviate option names if you use --.

--help
Display a quick summary of how to invoke configure.

-prefix=dir
Configure the source to install programs and files under directory dir.

--srcdir=dirname
Warning: using this option requires GNU make, or another make that implements the
VPATH feature.

Use this option to make configurations in directories separate from the GDB source
directories.    Among other things, you can use this to build (or maintain) several
configurations simultaneously, in separate directories.    configure writes
configuration specific files in the current directory, but arranges for them to use the
source in the directory dirname.    configure creates directories under the working
directory in parallel to the source directories below dirname.

--norecursion
Configure only the directory level where configure is executed; do not propagate
configuration to subdirectories.

--rm
Remove files otherwise built during configuration.

--target=target
Configure GDB for cross-debugging programs running on the specified target.   
Without this option, GDB is configured to debug programs that run on the same
machine (host) as GDB itself.

There is no convenient way to generate a list of all available targets.

host ...
Configure GDB to run on the specified host.

There is no convenient way to generate a list of all available hosts.   

configure accepts other options, for compatibility with configuring other GNU tools
recursively; but these are the only options that affect GDB or its supporting libraries.   

Node: Index, Next: , Prev: Installing GDB, Up: Top

Index
#: Command Syntax.
$_: Convenience Vars.
$__: Convenience Vars.
$_exitcode: Convenience Vars.
$bpnum: Set Breaks.
$cdir: Source Path.
$cwd: Source Path.
.: M2 Scope.
.esgdbinit: Command Files.
.os68gdbinit: Command Files.
.vxgdbinit: Command Files.
/proc: Process Information.
@: Arrays.
in Modula-2: GDB/M2.
$$: Value History.
$_ and info breakpoints: Set Breaks.
$_ and info line: Machine Code.
$_, $__, and value history: Memory.
$: Value History.
breakpoint subroutine, remote: Stub Contents.
heuristic-fence-post (MIPS): MIPS Stack.
remotedebug, MIPS protocol: MIPS Remote.
retransmit-timeout, MIPS protocol: MIPS Remote.
timeout, MIPS protocol: MIPS Remote.
vi style command editing: Readline vi Mode.
.gdbinit: Command Files.
coff versus C++: Cplus expressions.
ecoff and C++: Cplus expressions.
elf/dwarf and C++: Cplus expressions.
elf/stabs and C++: Cplus expressions.
gnu C++: C.
gnu Emacs: Emacs.
xcoff and C++: Cplus expressions.
GDB bugs, reporting: Bug Reporting.
GDB reference card: Formatting Documentation.
{type}: Expressions.
a.out and C++: Cplus expressions.
abbreviation: Command Syntax.
active targets: Active Targets.
add-shared-symbol-file: Files.
add-symbol-file: Files.
AMD 29K register stack: Registers.
AMD EB29K: Target Commands.
AMD29K via UDI: UDI29K Remote.
arguments (to your program): Arguments.
artificial array: Arrays.
assembly instructions: Machine Code.
assignment: Assignment.
attach: Attach.
automatic display: Auto Display.
automatic thread selection: Threads.

awatch: Set Watchpoints.
b: Set Breaks.
backtrace: Backtrace.
break: Set Breaks.
break ... thread threadno: Thread Stops.
break in overloaded functions: Debugging C plus plus.
breakpoint commands: Break Commands.
breakpoint conditions: Conditions.
breakpoint numbers: Breakpoints.
breakpoint on memory address: Breakpoints.
breakpoint on variable modification: Breakpoints.
breakpoints: Breakpoints.
breakpoints and threads: Thread Stops.
bt: Backtrace.
bug criteria: Bug Criteria.
bug reports: Bug Reporting.
bugs in GDB: GDB Bugs.
c: Continuing and Stepping.
C and C++: C.
C and C++ checks: C Checks.
C and C++ constants: C Operators.
C and C++ defaults: C Defaults.
C and C++ operators: C.
C++: C.
C++ and object formats: Cplus expressions.
C++ exception handling: Debugging C plus plus.
C++ scope resolution: Variables.
C++ support, not in coff: Cplus expressions.
C++ symbol decoding style:Print Settings.
C++ symbol display: Debugging C plus plus.
call: Calling.
call overloaded functions: Cplus expressions.
call stack: Stack.
calling functions: Calling.
calling make: Shell Commands.
casts, to view memory: Expressions.
catch: Exception Handling.
catch exceptions: Frame Info.
cd: Working Directory.
cdir: Source Path.
checks, range: Type Checking.
checks, type: Checks.
checksum, for GDB remote: Protocol.
choosing target byte order: Target Commands.
clear: Delete Breaks.
clearing breakpoints, watchpoints: Delete Breaks.
colon, doubled as scope operator: M2 Scope.
colon-colon <1>: M2 Scope.
colon-colon: Variables.
command files <1>: Command Files.
command files: Hooks.
command line editing: Editing.
commands: Break Commands.
commands for C++: Debugging C plus plus.
commands to STDBUG (ST2000): ST2000 Remote.

comment: Command Syntax.
compilation directory: Source Path.
Compiling: Sparclet Remote.
complete: Help.
completion: Completion.
completion of quoted strings: Completion.
condition: Conditions.
conditional breakpoints: Conditions.
configuring GDB: Installing GDB.
confirmation: Messages/Warnings.
connect (to STDBUG): ST2000 Remote.
continue: Continuing and Stepping.
continuing: Continuing and Stepping.
continuing threads: Thread Stops.
control C, and remote debugging: Bootstrapping.
controlling terminal: Input/Output.
convenience variables: Convenience Vars.
core: Files.
core dump file: Files.
core-file: Files.
CPU simulator: Simulator.
crash of debugger: Bug Criteria.
current directory: Source Path.
current thread: Threads.
cwd: Source Path.
d: Delete Breaks.
debugger crash: Bug Criteria.
debugging optimized code: Compilation.
debugging stub, example: Protocol.
debugging target: Targets.
define: Define.
delete: Delete Breaks.
delete breakpoints: Delete Breaks.
delete display: Auto Display.
deleting breakpoints, watchpoints: Delete Breaks.
demangling: Print Settings.
detach: Attach.
device: Hitachi Boards.
dir: Source Path.
directories for source files: Source Path.
directory: Source Path.
directory, compilation: Source Path.
directory, current: Source Path.
dis: Disabling.
disable: Disabling.
disable breakpoints: Disabling.
disable display: Auto Display.
disassemble: Machine Code.
display: Auto Display.
display of expressions: Auto Display.
do: Selection.
document: Define.
documentation: Formatting Documentation.
down: Selection.
down-silently: Selection.

download to H8/300 or H8/500: Files.
download to Hitachi SH: Files.
download to Nindy-960: Files.
download to Sparclet: Sparclet Download.
download to VxWorks: VxWorks Download.
dynamic linking: Files.
eb.log: Remote Log.
EB29K board: EB29K Remote.
EBMON: Comms (EB29K).
echo: Output.
editing: Editing.
editing-mode: Readline Init Syntax.
else: Define.
Emacs: Emacs.
enable: Disabling.
enable breakpoints: Disabling.
enable display: Auto Display.
end: Break Commands.
entering numbers: Numbers.
environment (of your program): Environment.
error on valid input: Bug Criteria.
event designators: Event Designators.
examining data: Data.
examining memory: Memory.
exception handlers <1>: Frame Info.
exception handlers: Exception Handling.
exceptionHandler: Bootstrapping.
exec-file: Files.
executable file: Files.
exiting GDB: Quitting GDB.
expansion: History Interaction.
expressions: Expressions.
expressions in C or C++: C.
expressions in C++: Cplus expressions.
expressions in Modula-2: Modula-2.
f: Selection.
fatal signal: Bug Criteria.
fatal signals: Signals.
fg: Continuing and Stepping.
file: Files.
finish: Continuing and Stepping.
flinching: Messages/Warnings.
floating point: Floating Point Hardware.
floating point registers: Registers.
floating point, MIPS remote: MIPS Remote.
flush_i_cache: Bootstrapping.
focus of debugging: Threads.
foo: Symbol Errors.
fork, debugging programs which call: Processes.
format options: Print Settings.
formatted output: Output Formats.
Fortran: Summary.
forward-search: Search.
frame <1>: Selection.
frame: Frames.

frame number: Frames.
frame pointer: Frames.
frameless execution: Frames.
Fujitsu: Remote Serial.
g++: C.
GDBHISTFILE: History.
gdbserve.nlm: NetWare.
gdbserver: Server.
getDebugChar: Bootstrapping.
h: Help.
H8/300 or H8/500 download: Files.
H8/300 or H8/500 simulator:Simulator.
handle: Signals.
handle_exception: Stub Contents.
handling signals: Signals.
hbreak: Set Breaks.
help: Help.
help target: Target Commands.
help user-defined: Define.
history expansion: History.
history file: History.
history number: Value History.
history save: History.
history size: History.
history substitution: History.
Hitachi: Remote Serial.
Hitachi SH download: Files.
Hitachi SH simulator: Simulator.
horizontal-scroll-mode: Readline Init Syntax.
i: Help.
i/o: Input/Output.
i386: Remote Serial.
i386-stub.c: Remote Serial.
i960: i960-Nindy Remote.
if: Define.
ignore: Conditions.
ignore count (of breakpoint): Conditions.
INCLUDE_RDB: VxWorks Remote.
info: Help.
info address: Symbols.
info all-registers: Registers.
info args: Frame Info.
info breakpoints: Set Breaks.
info catch: Frame Info.
info display: Auto Display.
info f: Frame Info.
info files: Files.
info float: Floating Point Hardware.
info frame <1>: Show.
info frame: Frame Info.
info functions: Symbols.
info line: Machine Code.
info locals: Frame Info.
info proc: Process Information.
info proc id: Process Information.

info proc mappings: Process Information.
info proc status: Process Information.
info proc times: Process Information.
info program: Stopping.
info registers: Registers.
info s: Backtrace.
info set: Help.
info share: Files.
info sharedlibrary: Files.
info signals: Signals.
info source <1>: Symbols.
info source: Show.
info sources: Symbols.
info stack: Backtrace.
info target: Files.
info terminal: Input/Output.
info threads: Threads.
info types: Symbols.
info variables: Symbols.
info watchpoints: Set Watchpoints.
inheritance: Debugging C plus plus.
init file: Command Files.
init file name: Command Files.
initial frame: Frames.
innermost frame: Frames.
inspect: Data.
installation: Installing GDB.
instructions, assembly: Machine Code.
Intel: Remote Serial.
interaction, readline: Readline Interaction.
internal GDB breakpoints: Set Breaks.
interrupt: Quitting GDB.
interrupting remote programs: Debug Session.
interrupting remote targets: Bootstrapping.
invalid input: Bug Criteria.
jump: Jumping.
kill: Kill Process.
l: List.
languages: Languages.
latest breakpoint: Set Breaks.
leaving GDB: Quitting GDB.
linespec: List.
list: List.
listing machine instructions: Machine Code.
load filename: Files.
log file for EB29K: Remote Log.
m680x0: Remote Serial.
m68k-stub.c: Remote Serial.
machine instructions: Machine Code.
maint info breakpoints: Set Breaks.
maint print psymbols: Symbols.
maint print symbols: Symbols.
make: Shell Commands.
mapped: Files.
mark-modified-lines: Readline Init Syntax.

member functions: Cplus expressions.
memory models, H8/500: Hitachi Special.
memory tracing: Breakpoints.
memory, viewing as typed object: Expressions.
memory-mapped symbol file: Files.
memset: Bootstrapping.
MIPS remotedebug protocol: MIPS Remote.
MIPS boards: MIPS Remote.
MIPS remote floating point: MIPS Remote.
MIPS stack: MIPS Stack.
Modula-2: Modula-2.
Modula-2 built-ins: M2 Operators.
Modula-2 checks: M2 Checks.
Modula-2 constants: Built-In Func/Proc.
Modula-2 defaults: M2 Defaults.
Modula-2 operators: M2 Operators.
Modula-2, deviations from: Deviations.
Motorola 680x0: Remote Serial.
multiple processes: Processes.
multiple targets: Active Targets.
multiple threads: Threads.
n: Continuing and Stepping.
names of symbols: Symbols.
namespace in C++: Cplus expressions.
negative breakpoint numbers: Set Breaks.
New systag: Threads.
next: Continuing and Stepping.
nexti: Continuing and Stepping.
ni: Continuing and Stepping.
Nindy: i960-Nindy Remote.
number representation: Numbers.
numbers for breakpoints: Breakpoints.
object formats and C++: Cplus expressions.
online documentation: Help.
optimized code, debugging: Compilation.
outermost frame: Frames.
output: Output.
output formats: Output Formats.
overloading: Breakpoint Menus.
overloading in C++: Debugging C plus plus.
packets, reporting on stdout: Protocol.
partial symbol dump: Symbols.
patching binaries: Patching.
path: Environment.
pauses in output: Screen Size.
pipes: Starting.
pointer, finding referent: Print Settings.
prefer-visible-bell: Readline Init Syntax.
print: Data.
print settings: Print Settings.
printf: Output.
printing data: Data.
process image: Process Information.
processes, multiple: Processes.
prompt: Prompt.

protocol, GDB remote serial: Protocol.
ptype: Symbols.
putDebugChar: Bootstrapping.
pwd: Working Directory.
q: Quitting GDB.
quit [expression]: Quitting GDB.
quotes in commands: Completion.
quoting names: Symbols.
raise exceptions: Exception Handling.
range checking: Type Checking.
rbreak: Set Breaks.
reading symbols immediately: Files.
readline: Editing.
readnow: Files.
redirection: Input/Output.
reference card: Formatting Documentation.
reference declarations: Cplus expressions.
register stack, AMD29K: Registers.
registers: Registers.
regular expression: Set Breaks.
reloading symbols: Symbols.
remote connection without stubs: Server.
remote debugging: Remote.
remote programs, interrupting: Debug Session.
remote serial debugging summary: Debug Session.
remote serial debugging, overview: Remote Serial.
remote serial protocol: Protocol.
remote serial stub: Stub Contents.
remote serial stub list: Remote Serial.
remote serial stub, initialization: Stub Contents.
remote serial stub, main routine: Stub Contents.
remote stub, example: Protocol.
remote stub, support routines: Bootstrapping.
remotetimeout: Sparclet Remote.
repeating commands: Command Syntax.
reporting bugs in GDB: GDB Bugs.
reset: Nindy Reset.
response time, MIPS debugging: MIPS Stack.
resuming execution: Continuing and Stepping.
RET: Command Syntax.
return: Returning.
returning from a function: Returning.
reverse-search: Search.
run: Starting.
Running: Sparclet Remote.
running: Starting.
running 29K programs: EB29K Remote.
running and debugging Sparclet programs:Sparclet Execution.
running VxWorks tasks: VxWorks Attach.
rwatch: Set Watchpoints.
s: Continuing and Stepping.
saving symbol table: Files.
scope: M2 Scope.
search: Search.
searching: Search.

section: Files.
select-frame: Frames.
selected frame: Stack.
serial connections, debugging: Protocol.
serial device, Hitachi micros: Hitachi Boards.
serial line speed, Hitachi micros: Hitachi Boards.
serial line, target remote: Debug Session.
serial protocol, GDB remote: Protocol.
set: Help.
set args: Arguments.
set assembly-language: Machine Code.
set check <1>: Range Checking.
set check: Type Checking.
set check range: Range Checking.
set check type: Type Checking.
set complaints: Messages/Warnings.
set confirm: Messages/Warnings.
set demangle-style: Print Settings.
set editing: Editing.
set endian auto: Target Commands.
set endian big: Target Commands.
set endian little: Target Commands.
set environment: Environment.
set gnutarget: Target Commands.
set height: Screen Size.
set history expansion: History.
set history filename: History.
set history save: History.
set history size: History.
set input-radix: Numbers.
set language: Manually.
set listsize: List.
set machine: Hitachi Special.
set memory mod: Hitachi Special.
set mipsfpu: MIPS Remote.
set output-radix: Numbers.
set print address: Print Settings.
set print array: Print Settings.
set print asm-demangle: Print Settings.
set print demangle: Print Settings.
set print elements: Print Settings.
set print max-symbolic-offset: Print Settings.
set print null-stop: Print Settings.
set print object: Print Settings.
set print pretty: Print Settings.
set print sevenbit-strings: Print Settings.
set print static-members: Print Settings.
set print symbol-filename: Print Settings.
set print union: Print Settings.
set print vtbl: Print Settings.
set processor args: MIPS Remote.
set prompt: Prompt.
set remotedebug <1>: MIPS Remote.
set remotedebug: Protocol.
set retransmit-timeout: MIPS Remote.

set rstack_high_address: Registers.
set symbol-reloading: Symbols.
set timeout: MIPS Remote.
set variable: Assignment.
set verbose: Messages/Warnings.
set width: Screen Size.
set write: Patching.
set_debug_traps: Stub Contents.
setting variables: Assignment.
setting watchpoints: Set Watchpoints.
SH: Remote Serial.
sh-stub.c: Remote Serial.
share: Files.
shared libraries: Files.
sharedlibrary: Files.
shell: Shell Commands.
shell escape: Shell Commands.
show: Help.
show args: Arguments.
show check range: Range Checking.
show check type: Type Checking.
show commands: History.
show complaints: Messages/Warnings.
show confirm: Messages/Warnings.
show convenience: Convenience Vars.
show copying: Help.
show demangle-style: Print Settings.
show directories: Source Path.
show editing: Editing.
show endian: Target Commands.
show environment: Environment.
show gnutarget: Target Commands.
show height: Screen Size.
show history: History.
show input-radix: Numbers.
show language: Show.
show listsize: List.
show machine: Hitachi Special.
show mipsfpu: MIPS Remote.
show output-radix: Numbers.
show paths: Environment.
show print address: Print Settings.
show print array: Print Settings.
show print asm-demangle: Print Settings.
show print demangle: Print Settings.
show print elements: Print Settings.
show print max-symbolic-offset: Print Settings.
show print object: Print Settings.
show print pretty: Print Settings.
show print sevenbit-strings: Print Settings.
show print static-members: Print Settings.
show print symbol-filename: Print Settings.
show print union: Print Settings.
show print vtbl: Print Settings.
show processor: MIPS Remote.

show prompt: Prompt.
show remotedebug <1>: MIPS Remote.
show remotedebug: Protocol.
show retransmit-timeout: MIPS Remote.
show rstack_high_address: Registers.
show symbol-reloading: Symbols.
show timeout: MIPS Remote.
show user: Define.
show values: Value History.
show verbose: Messages/Warnings.
show version: Help.
show warranty: Help.
show width: Screen Size.
show write: Patching.
si: Continuing and Stepping.
signal: Signaling.
signals: Signals.
silent: Break Commands.
sim: Simulator.
simulator: Simulator.
simulator, H8/300 or H8/500: Simulator.
simulator, Hitachi SH: Simulator.
simulator, Z8000: Simulator.
size of screen: Screen Size.
source: Command Files.
source path: Source Path.
Sparc: Remote Serial.
sparc-stub.c: Remote Serial.
sparcl-stub.c: Remote Serial.
Sparclet: Sparclet Remote.
SparcLite: Remote Serial.
speed: Hitachi Boards.
st2000 cmd: ST2000 Remote.
ST2000 auxiliary commands: ST2000 Remote.
stack frame: Frames.
stack on MIPS: MIPS Stack.
stacking targets: Active Targets.
starting: Starting.
STDBUG commands (ST2000): ST2000 Remote.
step: Continuing and Stepping.
stepi: Continuing and Stepping.
stepping: Continuing and Stepping.
stopped threads: Thread Stops.
stub example, remote debugging: Protocol.
stupid questions: Messages/Warnings.
switching threads: Threads.
switching threads automatically: Threads.
symbol decoding style, C++: Print Settings.
symbol dump: Symbols.
symbol names: Symbols.
symbol overloading: Breakpoint Menus.
symbol table: Files.
symbol-file: Files.
symbols, reading immediately: Files.
target: Targets.

target amd-eb: Target Commands.
target array: Target Commands.
target bug: Target Commands.
target byte order: Target Commands.
target core: Target Commands.
target cpu32bug: Target Commands.
target ddb port: MIPS Remote.
target e7000: Hitachi ICE.
target est: Target Commands.
target exec: Target Commands.
target hms: Target Commands.
target lsi port: MIPS Remote.
target mips port: MIPS Remote.
target nindy: Target Commands.
target op50n: Target Commands.
target pmon port: MIPS Remote.
target remote: Target Commands.
target rom68k: Target Commands.
target sim <1>: Simulator.
target sim: Target Commands.
target sparclite: Target Commands.
target st2000: Target Commands.
target udi: Target Commands.
target vxworks: Target Commands.
target w89k: Target Commands.
tbreak: Set Breaks.
TCP port, target remote: Debug Session.
terminal: Input/Output.
thbreak: Set Breaks.
this: Cplus expressions.
thread threadno: Threads.
thread apply: Threads.
thread breakpoints: Thread Stops.
thread identifier (GDB): Threads.
thread identifier (system): Threads.
thread number: Threads.
threads and watchpoints: Set Watchpoints.
threads of execution: Threads.
threads, automatic switching: Threads.
threads, continuing: Thread Stops.
threads, stopped: Thread Stops.
toggle-editing-mode: Readline vi Mode.
tty: Input/Output.
type casting memory: Expressions.
type checking: Checks.
type conversions in C++: Cplus expressions.
u: Continuing and Stepping.
UDI: UDI29K Remote.
undisplay: Auto Display.
unknown address, locating: Output Formats.
unset environment: Environment.
until: Continuing and Stepping.
up: Selection.
up-silently: Selection.
user-defined command: Define.

value history: Value History.
variable name conflict: Variables.
variable values, wrong: Variables.
variables, setting: Assignment.
version number: Help.
VxWorks: VxWorks Remote.
vxworks-timeout: VxWorks Remote.
watch: Set Watchpoints.
watchpoints: Breakpoints.
watchpoints and threads: Set Watchpoints.
whatis: Symbols.
where: Backtrace.
while: Define.
wild pointer, interpreting: Print Settings.
word completion: Completion.
working directory: Source Path.
working directory (of your program): Working Directory.
working language: Languages.
writing into corefiles: Patching.
writing into executables: Patching.
wrong values: Variables.
x: Memory.
Z8000 simulator: Simulator.

About Makertf
Makertf is a program that converts "Texinfo" files into "Rich Text Format" (RTF) files. It can be
used to make WinHelp Files from GNU manuals and other documentation written in Texinfo.

Makertf is derived from GNU Makeinfo, which is a part of the GNU Texinfo documentation
system.

Christian Schenk
cschenk@berlin.snafu.de

