
TChart Component Properties (by Group)

Axis control:

AxisVisible Boolean Show / Hide the chart axis.

BottomAxis TChartAxis The horizontal bottom axis.

DepthAxis TChartAxis The depth (Z) axis.

LeftAxis TChartAxis The vertical left axis.

RightAxis TChartAxis The vertical right axis.

TopAxis TChartAxis The horizontal top axis.

3d Related:

Chart3dPercent Integer 3d effect percent proportion.

View3d Boolean Show or hide the 3d effect.

View3dWalls Boolean Show or hide the 3d walls.

General properties:

AllowPanning TPanningMode Controls Right mouse button scrolling.

AllowZoom Boolean True to left mouse button zooming.

BackColor TColor The color used to fill the rectangle containing the Chart.

BackImage TPicture Assign an image as background to the chart.

BackImageInside Boolean Restricts an image to display inside the chart frame.

BackImageMode TTeeBackImageMode Decides how the chart background will display.

BufferedDisplay Boolean True means no flickering when drawing.

CancelMouse Boolean Toggles mouseclick sensitivity for zoom.

ClipPoints Boolean Shows/Hides points outside bounds.

TChartPen The chart frame.

Monochrome Boolean Draw the chart in monochrome (black and white) mode.

MonochromePrint Boolean Print the chart in monochrome mode.

OriginalCursor TCursor Returns original chart cursor.

Chart Legend:

Legend TChartLegend The Legend subcomponent.

Margins:

MarginBottom Integer The bottom chart margin percent.

MarginLeft Integer The left chart margin percent.

MarginRight Integer The right chart margin percent.

MarginTop Integer The top chart margin percent.

Series List:

SeriesList TChartSeriesList The chart Series.

Chart Title and Foot:

Title TChartTitle The top chart banner.

Foot TChartTitle The bottom chart banner.

Automatic Chart Paging:

MaxPointsPerPage Longint Maximum number of points per Page.

Page Longint The current Chart Page number.

NumPages Longint The total number of Pages.

See also:

TChart Component Reference

TChart public Methods

TDBChart Component Reference

List of Series Components

Canvas Property

Applies to
TChart, TDBChart components

Declaration
property Canvas : TCanvas3D;
Description
Use the Canvas property to access all Canvas and Canvas3D properties and methods.
Canvas example
//Draws a Line between co-ordinates 50,50 (
//from Chart Panel Top, Left) to 100,100
Chart1.Canvas.MoveTo(50,50);
Chart1.Canvas.LineTo(100,100);

More About TeeChart...
TeeChart Pro
TeeChart charting components have been written in Delphi by David Berneda. They are 100% Delphi
Native VCL compliant. TeeChart products are distributed and supported by teeMach SL. of Barcelona,
Catalonia, Spain.

Please email the following address for questions:
email address: info@teemach.com
www: http://www.teechart.com

Address:
teeMach SL.
Rocafort 35-37 5o3a
08015 BARCELONA
CATALONIA, (Spain)
Tel. +34 972 59 71 61
Fax: +34 972 59 71 75

Active Example
PointSeries1.Active:=not PointSeries1.Active;

Active Property
Example

Applies to
TChartSeries component

Declaration
property Active : Boolean;
Description
The Active property shows or hides the TChartSeries. It can be changed both at design time or runtime.
When hiding, all point values are preserved, so there's no need to refill the values again when showing.
The Series relatives chart axis are rescaled in order to accommodate changes.

ActiveSeriesLegend Method

Applies to
TChart, TDBChart components

Declaration
function ActiveSeriesLegend(SeriesIndex : Longint) : TChartSeries;
Description
The ActiveSeriesLegend function returns the nth Active Series.
If all Series are Active, calling then the above function is the same as using the Chart1.Series property.

Add Example

With Series1 do
Begin
 Add(40, 'Pencil' , clRed) ;
 Add(60, 'Paper', clBlue) ;
 Add(30, 'Ribbon', clGreen) ;
end;

Add Method
See also Example

Applies to
TChartSeries component

Declaration
function Add(Const AValue:Double; Const ALabel:String;
AColor:TColor):Longint; virtual;
Description
The TChartSeries Add method can be used to insert new Series points when you do not have an X
Value for the point.
This function inserts a new point in the Series. The new point only has Y values. X value is automatically
calculated.
The AXLabel parameter is optional (can be empty '').
The AColor parameter is optional (can be clTeeColor).
The function returns the new point position in the Values list.

See Also
TChartSeries.AddY

AddNull Method
See also

Applies to
TChartSeries component

Declaration
function AddNull(Const ALabel:String):Longint; virtual;
Description
The TChartSeries AddNull method can be used to insert new Series Null points when you do not have
an X Value for the point.
This function inserts a new empty point in the Series. Series points before and after do not connect
across the space left by the Null point.
The function returns the new point position in the Values list.
Example
In this example the Axis and Legend labels ("1st", "2nd", "null", etc) are generated by the ALabel
parameter of the Add and AddNull methods to clarify how points are added. In your own Chart, creating
and displaying Labels is optional.

See Also
TChartSeries.Add
TChartSeries.AddY

AddArrow Example
This code fills an ArrowSeries with two random arrows:
var
x0,y0,x1,y1 : Double;

begin
ArrowSeries1.StartXValues.DateTime:=False;
ArrowSeries1.EndXValues.DateTime:=False;
ArrowSeries1.Clear;
x0 :=Random(1000);
y0 :=Random(1000);
x1 :=x0 + Random(1000) - 500 ;
y1 :=y0 + Random(1000) - 500 ;
ArrowSeries1.AddArrow(x0, y0, x1, y1, '', clBlue);
x0 :=Random(1000);
y0 :=Random(1000);
x1 :=x0 + Random(1000) - 500 ;
y1 :=y0 + Random(1000) - 500 ;
ArrowSeries1.AddArrow(x0, y0, x1, y1, '', clYellow);

end;

AddArrow Method
See also Example

Applies to
TArrowSeries component

Declaration
function AddArrow(Const X0, Y0, X1, Y1: Double; Const ALabel: String;
AColor: TColor): Longint;
Description
The AddArrow function adds a new arrow point to the Series. Returns the position of the Arrow in the
list. Positions start at zero.
Each arrow is made of 2 points:
(X0,Y0) The starting arrow point.
(X1,Y1) The arrow head end point.

See Also
TArrowSeries.StartXValues
TArrowSeries.StartYValues
TArrowSeries.EndXValues
TArrowSeries.EndYValues

AddBar Method
See also

Applies to
TBarSeries component

Declaration
function AddBar(Const Value: Double; Const Text: String; Color: TColor) :
Longint;
Description
*Important The AddBar Method has been maintained only for this version of TeeChart to help those
migrating from previous versions of TeeChart. The AddBar method calls the Add method. For those of
you writing new code please use the Add method. The AddBar method will be removed in the next
version of TeeChart.
The AddBar method appends a new Bar to the Series Points List. The Bar point is assigned the Value,
Text and Color parameters. You can specify clTeeColor as Color parameter to draw it using a predefined
color. The Text parameter is used to draw Axis Labels, Bar Marks and Legend. If you want to specify
exact X coordinates, then you must use TChartSeries.AddXY method.

AddBar Method
See also

Applies to
THorizBarSeries component

Declaration
function AddBar(Const Value: Double; Const Text: String; Color: TColor):
LongInt;
Description
*Important The AddBar Method has been maintained only for this version of TeeChart to help those
migrating from previous versions of TeeChart. The AddBar method calls the Add method. For those of
you writing new code please use the Add method. The AddBar method will be removed in the next
version of TeeChart.
The AddBar function appends a new horizontal Bar point to the Series.
The Value parameter defines the Bar width.
New added points are optionally sorted in ascending or descending order either by their horizontal or
vertical coordinates.
You can turn sorting off by setting the XValues and YValues Order property to loNone.
This function returns the corresponding internal Bar point index. You can then refer to this Bar point by
using this index.
It calls the default AddXY method.

See Also
TChartSeries.AddY
TChartSeries.Add
TChartSeries.XValue
TChartSeries.YValue
TChartSeries.XLabel
TChartSeries.ValueColor

See Also
TChartSeries.AddXY
TChartValueList.Order

Example

This example randomly creates bubble values.

procedure TBubbleForm.FormCreate(Sender: TObject);

var t:Longint;

begin

 ComboBox1.ItemIndex:=Ord(psCircle); { <-- Circled Bubbles by default }

 BubbleSeries1.Clear;

 for t:=1 to 100 do

 BubbleSeries1.AddBubble(t,

 Random(ChartSamplesMax), { <-- y value }

 ChartSamplesMax/(20+Random(25)), { <-- radius value }

 '', { <-- label string }

 GetDefaultColor(t)); { <-- color }

end;

AddBubble Method
See also Example

Applies to
TBubbleSeries component

Declaration
function AddBubble(Const AX,AY,ARadius:Double; Const AXLabel:String;
AColor:TColor): Longint;
Description
The AddBubble method appends a new Bubble point to the Series Points List. The Bubble point is
assigned to be at AX,AY coordinates and have ARadius, Label and Color parameters. You can specify
clTeeColor as Color parameter to draw it using a predefined color. The Label parameter is used to draw
Axis Labels, Bubble Marks and Legend.

See Also
TChartSeries.AddXY
TBubbleSeries.RadiusValues
TChartSeries.XLabel
TChartSeries.XValue
TChartSeries.YValue
TChartSeries.ValueColor

AddGantt Method
See also Example

Applies to
TGanttSeries component

Declaration
function AddGantt(Const AStart,AEnd,AY: Double; Const AXLabel: String):
LongInt;
Description
The AddGantt function adds a new Gantt bar to the Series. Each Gantt bar has the following
parameters: AStart and AEnd (the starting and ending Gantt bar horizontal coordinates). These can be
normal floating values or DateTime values.
AY is the vertical Gantt bar coordinate. You can add as many Gantt bars you want, with or without same
vertical coordinate. The vertical coordinate is usually a value starting from zero, but you can choose any
other arbitrary value.
AXLabel is the associated Gantt bar text. It will be optionally shown as a Label at vertical axis and at
TGanttSeries.Marks.
You can assign connecting lines between Gantt bars by using the TGanttSeries.NextTask property. You
can assign a specific color to each Gantt bar by using the TChartSeries.ValueColor property or by
calling the TGanttBar.AddGanttColor method. This function returns the corresponding internal point
index. You can then refer to this Gantt bar by using this index. New added points are optionally sorted in
ascending or descending order either by their horizontal or vertical coordinates. You can turn sorting off
by setting the XValues and YValues Order property to loNone.

AddGantt method Example

Example
This code adds several Gantt bars and connects them:
With GanttSeries1 do
begin
{ remove all points }
Clear;

{ add several bars }
AddGantt(EncodeDate(1997,1,1), EncodeDate(1997,1,31),2,'Hello');
AddGantt(EncodeDate(1997,1,15), EncodeDate(1997,2,15),1,'Nice');
AddGantt(EncodeDate(1997,2,1), EncodeDate(1997,2,28),0,'World');
AddGantt(EncodeDate(1997,3,1), EncodeDate(1997,3,31),2,'');
AddGantt(EncodeDate(1997,4,1), EncodeDate(1997,4,30),0,'');
AddGantt(EncodeDate(1997,3,15), EncodeDate(1997,4,15),1,'');

{ connect some bars }
NextTask[0]:=3;
NextTask[1]:=5;

{ change connecting lines }
ConnectingPen.Width:=2;
ConnectingPen.Color:=clBlue;

{ increase bar heights }
Pointer.VertSize:=16;

{ remove legend }
ParentChart.Legend.Visible:=False;

{ arrange bottom axis to show exact datetime labels }
GetHorizAxis.ExactDateTime:=True;
GetHorizAxis.Increment:=DateTimeStep[dtOneMonth];

end;

See Also
TGanttSeries.NextTask
TChartSeries.ValueColor
TGanttBar.AddGanttColor
TChartValueList.Order

AddGanttColor Method
See also

Applies to
TGanttSeries component

Declaration
function AddGanttColor(Const AStart, AEnd, AY: Double; Const AXLabel:
String; AColor: TColor): LongInt;
Description
The AddGanttColor function adds a new Gantt bar point to the Series.
It calls the AddGantt function and sets the specified AColor parameter by using the
TChartSeries.ValueColor property.
This function returns the corresponding internal point index. You can then refer to this Gantt bar by using
this index.
Please refer to TGanttSeries.AddGantt function for an example of adding Gantt bars.

See Also
TGanttSeries.AddGantt
TGanttSeries.NextTask
TChartSeries.ValueColor

AddPie Example
This example adds 3 pie sectors to series1 (a pie series)
With Series1 do
Begin
 Clear ;
 AddPie(40, 'Pencil' , clRed) ;
 AddPie(60, 'Paper', clBlue) ;
 AddPie(30, 'Ribbon', clGreen) ;
end;

AddPie Method
Example

Applies to
TPieSeries component

Declaration
function AddPie(Const PieValue: Double; Const APieLabel: String; AColor:
TColor) : LongInt;
Description
*Important The AddPie Method has been maintained for this version only of TeeChart to help those
migrating code from previous versions of TeeChart. The AddPie method now calls the Add method. For
those of you writing new code please use the Add method directly. The AddPie method will be removed
in the next version of TeeChart.
AddPie appends new Pie sectors to a TPieSeries component.
The PieValue can be any integer.

AddSeries Method
See also

Applies to
TChart component

Declaration
procedure AddSeries(ASeries : TChartSeries);
Description
The AddSeries method adds a new Series component to the Chart. It's exactly the same as setting the
Series.ParentChart property to the Chart.
LineSeries1.ParentChart := Chart1;
You should use the ParentChart property if you add the Series at runtime.

See Also
TChartSeries.ParentChart

AddValue Method

Applies to
TChartSeries component

Declaration
procedure AddValue(ValueIndex : Longint) ; virtual ;
Description
You don't need to call AddValue directly.
This is an internal method.

AddXY Example

procedure TCurveFittingForm.Timer1Timer(Sender: TObject);

begin

 Timer1.Enabled:=False; { <-- stop timer }

 With StockPrice do

 Begin

 Delete(0); { <-- remove the first point }

 { Add a new random point }

 AddXY(XValues.Last+1,

 (YValues.Last/YValues.Multiplier)+(Random(ChartSamplesMax)-(ChartSamplesMax/2)),

 '',clTeeColor);

 Chart1Zoom(Self); { <-- recalculate Curve !!!! }

 end;

 Timer1.Enabled:=True; { <-- restart timer }

end;

AddXY Method
See also Example

Applies to
TChartSeries component

Declaration
function AddXY(Const AXValue, AYValue: Double; Const AXLabel: String;
AColor: TColor) : Longint;
Description
This function inserts a new point in the Series. The new point has X and Y values. The AXLabel
parameter is optional (can be empty ''). The AColor parameter is optional (can be clTeeColor). The
function returns the new point position in the Values list.

See Also
AddY function

AddY Example
Series1.AddY(6.5, 'Revenues', clTeeColor);

AddY Method
See also Example

Applies to
TChartSeries component

Declaration
function AddY(Const AYValue: Double; Const AXLabel: String; AColor: TColor):
Longint;
Description
The TChartSeries AddY method can be used to insert new Series points when you do not have an X
Value for the point.
This function inserts a new point in the Series. The new point only has Y values. X value is automatically
calculated.
The AXLabel parameter is optional (can be empty '').
The AColor parameter is optional (can be clTeeColor).
The function returns the new point position in the Values list.

See Also
AddXY Method
TChartSeries.Add

AdjustFrame Property
See also

Applies to
TChartTitle component

Declaration
property AdjustFrame : Boolean;
Description
Default: True.
The AdjustFrame property controls if Chart Title and Foot frames will be resized to full Chart dimensions
or to the title text width. It has only effect when Chart.Title or Chart.Foot.Frame.Visible property is True.

See Also
TChart.Title
TChart.Foot
TChartTitle.Frame

AdjustMaxMin Method
See also

Applies to
TChartAxis component

Declaration
procedure AdjustMaxMin;
Description
This Axis method calculates Maximum and Minimum values based on Max and Min values of the
dependent Series.
AdjustMaxMin is automatically called if Axis.Automatic is True.
The Chart UndoZoom method calls AdjustMaxMin for Left, Right,Top and Bottom axis.

See Also
Chart UndoZoom

AfterDrawValues Event

Applies to
TChartSeries component

Declaration
property AfterDrawValues : TNotifyEvent;
Description
AfterDrawValues event is called just after the Series points have been painted. You can then paint on
the Chart.Canvas your customized drawings.

WARNING:
Do not change Series properties that would force the Series to be repainted. This may cause recursion
and endless repainting !

Alignment Property
See also

Applies to
TChartLegend component

Declaration
property Alignment : TLegendAlignment;
Description
Default Value: laRight
The Alignment property defines the Legend position.
Legend can be currently placed at Top, Left, Right and Bottom side of Chart.
Left and Right Legend alignments define a vertical Legend with currently one single column of items.
Top and Bottom Legend alignments define an horizontal Legend with currently one single row of items.
The Legend itself automatically reduces the number of displayed legend items based on the available
charting space.
The Legend.ResizeChart property controls if Legend dimensions should be used to reduce Chart points
space.
The Legend.OnGetLegendRect event provides a mechanism to supply the desired Rectangle Legend
dimensions and placement.
The Legend.OnGetLegendPos event can be used to specify fixed Legend items X Y coordinates.
The Legend.HorizMargin and VertMargin properties control distance between Legend and Left and
Right margins.
The Legend.TopPos property can be used in Left or Right Legend alignments to control vertical distance
between Legend and Top Chart Margin.
These techniques allow almost complete Legend control.
TChartLegend is quite a big component with many available formatting and dimensioning properties.

Alignment Property (TChartTitle)
See also

Applies to
TChartTitle component

Declaration
property Alignment : TAlignment;
Description
Default Value: taCenter
The Alignment property controls how Chart Title and Foot text will be aligned within Chart rectangle.
A TChartTitle can optionally be surrounded by a Frame.

See Also
TChartLegend
TChartLegend.HorizMargin
TChartLegend.ResizeChart
TChartLegend.TopPos
TChartLegend.VertMargin

See Also
TChartTitle.Frame

AllowPanning Property
See also

Applies to
TChart, TDBChart components

Declaration
property AllowPanning : TPanningMode
Description
The AllowPanning property controls runtime Scrolling.
Possible values are:

pmNone Deny scrolling.
pmHorizontal Allow only Horizontal Scrolling.
pmVertical Allow only Vertical Scrolling.
pmBoth Allow complete Horizontal and Vertical Scrolling.

See Also
Scrolling and Panning

AllowSinglePoint Property
See also

Applies to
TChartSeries component

Declaration
property AllowSinglePoint : Boolean;
Description
(Advanced)
The AllowSinglePoint public property controls if a given Series type can display a single
point or needs more than one point to draw.
TLineSeries, TAreaSeries and TFastLineSeries components set AllowSinglePoint property
to False, as they need at least two points to draw.
This property can be of interest to Series components developers.
.

See Also
TChartSeries.DrawBetweenPoints
TCustomSeries.ClickableLine
TChartSeries.CalcVisiblePoints

AllowZoom Example
You can also Zoom a specific chart region by coding:
(This example uses the Bottom and Left axis)
Chart1.BottomAxis.Automatic := False ;
Chart1.BottomAxis.Minimum := 45.2 ;
Chart1.BottomAxis.Maximum := 67.1 ;
Chart1.LeftAxis.Automatic := False ;
Chart1.LeftAxis.Minimum := 150 ;
Chart1.LeftAxis.Maximum := 300 ;

AllowZoom Property
See also Example

Applies to
TChart, TDBChart components

Declaration
property AllowZoom : Boolean;
Description
The AllowZoom boolean property toggles the runtime Zoom. Setting it to True will allow runtime Zoom by
dragging the mouse.

See Also
Zooming

Angle Property
See also

Applies to
TChartAxisTitle component

Declaration
property Angle : Integer;
Description
The Angle property determines the Axis Title rotation in degree units.
Valid values are 0, 90, 180, 270 and 360 degrees.
TChartAxis.Title.Caption property should be non empty.
By default, horizontal Axis (TopAxis and BottomAxis) have a Title Angle of 0.
LeftAxis.Title.Angle is 90 by default.
RightAxis.Title.Angle is 270 by default.

Warning:
Rotated Fonts are partially supported in Windows 16bit GDI Metafile format. Some printer devices can't
print rotated fonts. Check you have the latest Printer Driver version.

See Also
TChartAxis.LabelsAngle
TChartAxisTitle.Caption

AngleToPos Method
See also

Applies to
TCircledSeries component

Declaration
function AngleToPos(Const Angle; AXRadius; AYRadius: Double;var X,Y:
Longint);
Description
The AngleToPos functions returns the exact Screen position for a given pair of Angle and Radius values.
Angles must be expressed in radians from 0 to 2*PI. Radius parameter is in number of pixels.

See Also
TCircledSeries.PointToAngle
TCircledSeries.RotationAngle
TCircledSeries.XRadius
TCircledSeries.YRadius

AnimatedZoom Property
See also

Applies to
TChart, TDBChart component

Declaration
property AnimatedZoom : Boolean;
Description
Default False
The AnimatedZoom property determines if Zoom will be performed directly or it will be displayed as an
animated sequence of zooms. The AnimatedZoomSteps property controls the number of zoom steps.
AnimatedZoom can be useful when there are a lot of points.
This boolean property controls if Zoom will be instantaneous or it will be dynamic.
When AnimatedZoom is True, Zoom is performed by applying successive Zooms. The number of Zoom
steps can be changed using the AnimatedZoomSteps property.

See Also
TChart.AllowZoom
TChart.AnimatedZoomSteps
TChart.ZoomPercent
TChart.ZoomRect

AnimatedZoomFactor Global Variable
See also

Applies to
All TeeChart components

Declaration
property AnimatedZoomFactor : Double;
Description
Default Value: 3.0
The AnimatedZoomFactor property defines the zoom proportion ratio to apply at each successive zoom
step.
The TChart.AnimatedZoom property must be True for this property to be in effect.
The TChart.AnimatedZoomSteps property determine the number of zoom steps to apply until Axis
scales are set to the desired zoom.
Change the AnimatedZoomFactor property to make those steps to go faster or slower.

See Also
TChart.AnimatedZoom
TChart.AnimatedZoomSteps

AnimatedZoomSteps Example
This code turns on the animated zoom feature:
Chart1.AnimatedZoom := True ;
Chart1.AnimatedZoomSteps := 4 ;

AnimatedZoomSteps Property
See also Example

Applies to
TChart, TDBChart components

Declaration
property AnimatedZoomSteps : Integer;
Description
Default: 8
The AnimatedZoomSteps property determines the number of steps of the animated zooming sequence.
Big number of steps can delay zooming. The AnimatedZoom property should be True.

See Also
TChart.AllowZoom
TChart.AnimatedZoom
TChart.ZoomPercent
TChart.ZoomRect

ApplyBarOffset Method
See also

Applies to
TCustomBarSeries component

Declaration
function ApplyBarOffset(Position : Longint): LongInt;
Description
The ApplyBarOffset function modifies and returns the Position parameter. BarSeries have an
OffsetPercent property that makes all Bars to be displayed horizontally a specific amount of pixels
based on Bar's width.
The Position parameter must be expressed in screen pixels.
The formula used is:
result:= Position + Round(OffsetPercent * BarWidth / 100.0)
When OffsetPercent property is zero (the default), the Position parameter is returned unmodified.

See Also
TCustomBarSeries.OffsetPercent
TCustomBarSeries.BarWidth

ApplyDark Method
See also

Applies to
All TeeChart Components

Declaration
function ApplyDark(Color: TColor; HowMuch: Byte) : TColor;
Description

Global
The ApplyDark function converts the Color parameter to a darker color. The HowMuch parameter
indicates the quantity of dark increment. It is used by TBarSeries and TPieSeries to calculate the right
color to draw Bar sides and Pie 3D zones. Series.pas must be in your uses clause.
This is the ApplyDark source code:
Function ApplyDark(Color:TColor; HowMuch:Byte):TColor;
Var r,g,b:Byte;
Begin
Color:=ColorToRGB(Color);
r:=GetRValue(Color);
g:=GetGValue(Color);
b:=GetBValue(Color);
if r>HowMuch then r:=r-HowMuch else r:=0;
if g>HowMuch then g:=g-HowMuch else g:=0;
if b>HowMuch then b:=b-HowMuch else b:=0;
result:=RGB(r,g,b);

End;

See Also
TCustomBarSeries.Dark3D
TPieSeries.Dark3D

ApplyZOrder Property
See also

Applies to
TChart component

Declaration
property ApplyZOrder : Boolean;
Description
Run-time only.
The ApplyZOrder property controls if several Series on the same TChart component should be
displayed each one in a different Z space.
It's valid only when TChart.View3D property is True and when there's more than one Series in same
chart.
When False, all Series are drawn using the full Chart Z space. The Chart output can be confusing if
Series overlap.
The "LASTVALU.PAS" example unit under TEEDEMO.DPR project shows an example of ApplyZOrder
property.

See Also
TChart.MaxZOrder
TChart.View3D
TChartSeries.ZOrder

AreaBrush Property
See also

Applies to
TAreaSeries component

Declaration
property AreaBrush : TBrushStyle;
Description
Default Value: bsSolid
The AreaBrush property indicates the kind of Brush used to fill the background Area region. You can
control the Area background color by using the AreaColor property.

See Also
TAreaSeries.SeriesColor
TAreaSeries.AreaColor
TAreaSeries.AreaLinesPen

Color Property (TChartTitle)

Applies to
TChartTitle component

Declaration
property Color : TColor;
Description
Default Value: clTeeColor
Color used to fill the Chart Title background..

AreaColor Property
See also

Applies to
TAreaSeries component

Declaration
property AreaColor : TColor;
Description
Default Value: clTeeColor
The AreaColor property defines the Color used to fill the background Area region. You can control the
Brush style by using the AreaBrush property.

See Also
TAreaSeries.SeriesColor
TAreaSeries.AreaBrush
TAreaSeries.AreaLinesPen

AreaLinesPen Property
See also

Applies to
TAreaSeries component

Declaration
property AreaLinesPen : TChartPen;
Description
The AreaLinesPen property indicates the kind of pen used to draw vertical lines across the Area region.
By default AreaLinesPen.Visible is False, so you need first to set it to True. You can control the Area
Brush style by using the AreaBrush property.

See Also
TAreaSeries.SeriesColor
TAreaSeries.AreaBrush
TAreaSeries.AreaColor

Arrow Property
See also

Applies to
TSeriesMarks component

Declaration
property Arrow : TChartPen;
Description
The Arrow property determines the kind of pen used to draw a line connecting the Point Mark to the
corresponding Series point.
Each Series component handles Marks in a different manner, thus the Arrow coordinates are specific to
each Series type.
By default, Arrow pen is defined to be a White solid pen of 1 pixel width.

See Also
TSeriesMarks.ArrowLength

ArrowCha Unit
The ArrowCha unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TArrowSeries

Types

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

ArrowHeight property example
This code checks series type and changes the ArrowHeight accordingly. Here acting like on/off.
if TheSeries is TCustomBarSeries then
 TheSeries.Marks.ArrowHeight:=10
 else
 TheSeries.Marks.ArrowHeight:=0;

ArrowHeight Property
See also Example

Applies to
TArrowSeries component

Declaration
property ArrowHeight : Integer;
Description
Default value: 4
The ArrowHeight property determines the vertical arrow head size in pixels.

See Also
TArrowSeries.ArrowWidth
TSeriesPointer.VertSize

ArrowLength property example
This code checks series type and changes the ArrowLength.
if TheSeries is TCustomBarSeries then
 TheSeries.Marks.ArrowLength:=10
 else
 TheSeries.Marks.ArrowLength:=0;

ArrowLength Property
See also Example

Applies to
TSeriesMarks component

Declaration
property ArrowLength : Integer;
Description
Default Value: 16
The ArrowLength property determines the number of pixels used to display a line connecting the Series
Marks to their corresponding points.
The Arrow property is the Pen used to draw this line.

See Also
TSeriesMarks.Arrow

ArrowWidth Property
See also

Applies to
TArrowSeries component

Declaration
property ArrowWidth : Integer;
Description
Default value: 4
The ArrowHeight property determines the horizontal arrow head size in pixels.

See Also
TArrowSeries.ArrowHeight
TArrowSeries.ArrowLength
TSeriesPointer.HorizSize

Assign method example
This code uses a button to copy a series from one chart to another.
procedure TForm1.BitBtn1Click(Sender: TObject);
begin
CopySeries(DBChart2,DBChart1, self);
BitBtn1.Visible:=False;
end;
type TChartClass=class of TChart;
Procedure TForm1.CopySeries(DestChart,SourceChart:TChart;
AOwner:TComponent);

Var tmpSeries:TChartSeries;
 tmpS:TChartSeriesClass;
 t:Longint;
begin
 for t:=0 to SourceChart.SeriesCount-1 do
 begin
 tmpS:=TChartSeriesClass(SourceChart.Series[t].ClassType);
 tmpSeries:=tmpS.Create(AOwner);
 tmpSeries.Assign(SourceChart.Series[t]);
 tmpSeries.Name:=(SourceChart.Series[t].Name) + 'copy';
 DestChart.AddSeries(tmpSeries);
 end;
end;

Assign Method
See also Example

Applies to
TChart, TDBChart components

Declaration
Procedure Assign(Source : TPersistent) : Override
Description
The Assign method copies all properties from a Series component to another.
Only the common properties shared by both source and destination Series are copied.
The following code copies all properties from Series2 into Series1:
Series1.Assign(Series2) ;
Some Series types restore property values after assigning them. For example, TPointSeries
restores the Pointer.Visible property to True after being assigned to a TLineSeries, which has
Pointers invisible by default.
Note: Series events are not assigned. Series DataSource and FunctionType properties are
assigned. Assign is used by CloneChartSeries and ChangeSeriesType methods for example.

See Also
AssignSeries
TChartSeries.AssignValues

AssignSeries Global Method
See also

Unit
Chart

Applies to
All TeeChart Components

Declaration
Procedure AssignSeries(Var OldSeries,NewSeries:TChartSeries);
Description
Global
The AssignSeries method copies all properties and event handlers from OldSeries to NewSeries, then
removes OldSeries and finally adds NewSeries to the Chart.
Data point values are not assigned, but as DataSource property is copied, NewSeries obtains points
from DataSource.
This method is used internally when changing a Series type to assign old properties to new Series type
instance.

See Also
TChart.Assign
TChartSeries.AssignValues

AssignValues Example
This code copies all points from LineSeries1 to LineSeries2 :
LineSeries2.AssignValues(LineSeries1);

AssignValues Method
See also Example

Applies to
TChartSeries component

Declaration
procedure AssignValues(Source : TChartSeries);
Description
The AssignValues method creates new Series points from Source list of points.
Source:
Procedure TChartSeries.AssignValues(Source : TChartSeries);
var t:Longint;
Begin
 Clear;
 for t:=0 to Source.Count-1 do AddedValue(Source,t);
end;
The AddedValue method creates a new clone point from Source point and inserts it using the AddXY
method.

See Also
TChartSeries.AddXY
TChartSeries.RecalcOptions
TChartSeries.RefreshSeries
TChart.Assign

AutoMarkPosition Property
See also

Applies to
TBarSeries and THorizBarSeries components

Declaration
property AutoMarkPosition : Boolean;
Description
Default: True
The AutoMarkPosition property controls if Marks on TBarSeries will be repositioned if there’s the
possibility of Mark overlapping. Marks are displaced to the top of the Bars to minimize the overlapping
effect of Marks with long text or big font sizes.
When False, no checking is performed and all Marks are drawn at their Mark.ArrowLength
distance to the top of the Bar.

See Also
TBarSeries.BarWidth
THorizBarSeries.BarHeight

AutoRefresh Property
See also

Applies to
TDBChart component

Declaration
property AutoRefresh : Boolean;
Description
Default Value: True
The AutoRefresh property determines if TDBChart will load all Table or Query records in an automatic
way just when the Table or Query are Opened.
When False, you should manually force record retrieval by calling one of the following methods:
TDBChart.RefreshDataSet
TDBChart.RefreshData
When True, TDBChart will retrieve all Series point values as soon the Table is opened or the Query is
executed.

See Also
TDBChart.RefreshData
TDBChart.RefreshDataSet

Automatic Example
You can control the Axis scale manually:
Chart1.LeftAxis.Automatic := False ;
Chart1.LeftAxis.Maximum := 1000 ;
Chart1.LeftAxis.Minimum := 0 ;
Or, in case DateTime values:
Chart1.BottomAxis.Automatic := False ;
Chart1.BottomAxis.Maximum := EncodeDate (1995, 12 , 31) ;
Chart1.BottomAxis.Minimum := EncodeDate (1995, 1 , 1) ;

Automatic Property
Example

Applies to
TChartAxis component

Declaration
property Automatic : Boolean;
Description
If Axis.Automatic property is True, then the Maximum and Minimum values for the Axis will be calculated
with all Axis dependent Series.

AutomaticMaximum Property
See also

Applies to
TChartAxis component

Declaration
property AutomaticMaximum : Boolean
Description
Default: True
The AutomaticMaximum property controls if Axis will adjust the Maximum value automatically based on
the maximum value of its associated Series.
Example
With Chart1.LeftAxis do
begin
 Automatic := False;
 AutomaticMaximum := True;
 Minimum := 500;
end;

See Also
TChartAxis.Automatic
TChartAxis.AutomaticMinimum
TChartAxis.Maximum
TChartAxis.Minimum

AutomaticMinimum Property
See also

Applies to
TChartAxis component

Declaration
property AutomaticMinimum : Boolean;
Description
Default True
The AutomaticMinimum property controls if Axis will adjust the Minimum value automatically based on
the minimum value of its associated Series.
Example
With Chart1.LeftAxis do
begin
 Automatic := False;
 Maximum := 1000;
 AutomaticMinimum := True;
end;

See Also
TChartAxis.Automatic
TChartAxis.AutomaticMaximum
TChartAxis.Maximum
TChartAxis.Minimum

Axis Property
See also

Applies to
TChartAxis component

Declaration
property Axis : TChartPen;
Description
The Axis property determines the kind of pen used to draw the Axis major lines. These are the lines
which go from Axis Minimum to Axis Maximum screen positions.

See Also
TChartAxis.Grid
TChartAxis.GridCentered
TChartAxis.Ticks
TChartAxis.MinorTicks
TChartAxis.TicksInner
TChartAxis.LabelsFont

AxisValuesFormat property Example
AxisValuesFormat examples:
1. DBChart1.LeftAxis.AxisValuesFormat:='#,##0.00'

{Outputs labels eg. 10.00, 25.00, 150.00}
2. DBChart1.LeftAxis.AxisValuesFormat:='#,##0.###'

{Outputs labels eg. 10, 25, 150}
This code can be used at the OnGetAxisLabel Chart event to paint labels only at the desired
increments. The following code is useful for logarithmic axis:
{event OnGetAxisLabel - see Object Inspector events for TChart/TDBChart}
procedure TForm1.DBChart1GetAxisLabel(Sender: TChartAxis;
 Series: TChartSeries; ValueIndex: Longint; var LabelText: string);
 Function MyLabelValue(Const Value:Double):String;
 begin
 result:=FormatFloat(Sender.AxisValuesFormat,Value);
 end;
begin
 if (Sender = DBChart1.LeftAxis) then
 With Sender do
 begin
 if (LabelText<>MyLabelValue(10)) and
 (LabelText<>MyLabelValue(100)) and
 (LabelText<>MyLabelValue(1000)) and
 (LabelText<>MyLabelValue(10000)) then
 LabelText:='';
 end;
end;

AxisValuesFormat Property
See also Example

Applies to
TChartAxis component

Declaration
property AxisValuesFormat : String;
Description
Default Value: '#,##0.###'
The AxisValuesFormat specifies the desired formatting string to be applied to Axis Labels. It has effect
when Axis associated Series have their XValues.DateTime or YValues.DateTime property set to False.
For DateTime Axis labels use the TChartAxis.DateTimeFormat property.

See Also
TChartAxis.DateTimeFormat
TChartAxis.OnGetAxisLabel
TChartAxis.LabelStyle
TChartAxis.LabelsMultiline
TChartValueList.DateTime
TChartAxis.LabelsFont

LabelsMultiline Property (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
property LabelsMultiline : Boolean;
Description
Default = False
Enables multiline Axis labels.
When True, spaces in point Labels or in Axis DateTimeFormat / ValueFormat are used to break the label
in more than one line of text).
When False, labels with #13 characters are break in lines.
Example
Series1.Add(1234, 'Hello'+#13+'World', clGreen);
Example for DateTime labels
The following will show the bottom axis labels in two lines of text, one
showing the month and day, and the second line showing the year:
Feb-28Mar-1 ..
1998 1998 ..
Series1.AddXY(EncodeDate(1998,2,28), 100, '', clTeeColor);
Series1.AddXY(EncodeDate(1998,3,1), 200, '', clTeeColor);
Series1.AddXY(EncodeDate(1998,3,2), 150, '', clTeeColor);
Series1.XValues.DateTime := True;
Chart1.BottomAxis.DateTimeFormat := 'mm/dd hh:mm'; { <-- space }
If you set the Axis.LabelsMultiLine property to True, then the axis will
automatically split labels in lines where it finds an space.
Chart1.BottomAxis.LabelsMultiLine:=True;
Will use the formatting divided in two:
'mm/dd' for the first line
'hh:mm' for the second line
At run-time you can always split the label into lines programmatically, using the OnGetAxisLabel event:
procedure TForm1.Chart1GetAxisLabel(Sender: TChartAxis;
 Series: TChartSeries; ValueIndex: Integer; var LabelText: String);
begin
 TeeSplitInLines(LabelText,' ');
end;
Multi-line DateTime axis labels:
The global "TeeSplitInLines" procedure converts all spaces in "LabelText" to
line separators (returns).
The axis LabelsAngle property (label rotation in degree angles 0, 90, 180 or 270), can
also be used with multi-line axis labels.

See Also
TChartAxis.DateTimeFormat
TChartAxis.OnGetAxisLabel
TChartAxis.LabelStyle
TChartAxis.AxisValuesFormat
TChartValueList.DateTime
TChartAxis.LabelsFont

AxisVisible Property

Applies to
TChart, TDBChart components

Declaration
property AxisVisible : Boolean;
Description
Default value: True
This property shows or hides the four Chart Axis at once.
Each Axis will be drawn depending also on their Visible property.

BackColor Property
See also

Applies to
TChart, TDBChart components

Declaration
property BackColor : TColor;
Description
The BackColor property is the color the Chart rectangle is filled with. The Chart rectangle is the screen
area between axis. Setting BackColor to clTeeColor does not fill the above rectangle. Assigning
clTeeColor to Chart.BackColor makes TeeChart to not fill the Chart back area, so Gradient fills and
Background Bitmaps can be shown.

BackColor Property
See also

Applies to
TSeriesMarks component

Declaration
property BackColor : TColor;
Description
Default Value: ChartMarkColor = $80FFFF (Yellow)
The BackColor property defines the color used to fill the Marks background rectangle.
You can make Marks transparent by setting the Transparent property to False.

See Also
Chart Color property
TChart.Gradient
TChart.BackImage

See Also
TSeriesMarks.Frame
TSeriesMarks.Font
TSeriesMarks.Transparent
TSeriesMarks.Visible

BackImage Property
See also

Applies to
TChartcomponent

Declaration
property BackImage : TPicture;
Description
The BackImage property defines the Chart background image. You may define the image at design
time.
You can use the BackImageMode property to control if the bitmap will be drawn "stretched", "normal" or
"tiled".

See Also
TChart.BackImageInside
TChart.Color
TChart.Gradient
TChart.BackImageMode

BackImageInside Property
See also

cApplies to
TChart component

Declaration
property BackImageInside : Boolean;
Description
Default False
When True this property restricts display of the BackImage to inside the chart Frame area.

See Also
TChart.BackImage
TChart.BackImageMode

BackImageMode Property
See also

cApplies to
TChart component

Declaration
property BackImageMode : TTeeBackImageMode;
Description
Default pbmStretch
The BackImageMode property determines how will the background bitmap be displayed.

See Also
TChart.BackImage

BarWallRect Example
procedure TForm1.Series1BeforeDrawValues(Sender: TObject);
begin
 With Chart1.Canvas do
 begin
 Brush.Style:=bsSolid;
 Brush.Color:=clYellow;
 With Chart1.BackWallRect do Rectangle(Left,Top,Right,Bottom);
 end;
end;

BackWallRect Method
See also Example

Applies to
TChart, TDBChart components

Declaration
function BackWallRect:TRect;
Description
The BackWallRect function returns the Axis bounding rectangle (ChartRect) but adding the 3D percent
offset in pixels to the Right and Top coordinates.
This is the rectangle coordinates of the back Chart wall.
You can use this rectangle to custom draw on Chart back wall space, using BeforeDrawValues event of
any Series in the Chart.

See Also
TChart.ChartRect
TChart.Width3D
TChart.Height3D

BarBrush Example
This code will display Bars with patterns:
BarSeries1.BarBrush.Style := bsFDiagonal;
BarSeries1.BarBrush.Color := clWhite;
BarSeries1.SeriesColor := clRed;

BarBrush Property
See also Example

Applies to
TBarSeries and THorizBarSeries components

Declaration
property BarBrush : TBrush;
Description
The BarBrush property defines the Brush used to fill Bars. You can set the Brush Color and Brush Style
properties. When BarBrush.Style is different than bsSolid, the SeriesColor color is the background bar
color.

See Also
TCustomBarSeries.BarPen
TCustomBarSeries.Dark3D

BarHeight Example
tmp := HorizBarSeries1.BarHeight;

BarHeight Property
See also Example

Applies to
THorizBarSeries component

Declaration
property BarHeight : Longint;
Description
Run-time and read only. The BarHeight property returns the height of horizontal Bars in pixels. Bar
heights change at run-time when resizing or zooming the Chart. BarHeight is a read-only property. You
can use the CustomBarHeight property to set a fixed pixels Bar height.

See Also
THorizBarSeries.CustomBarHeight
THorizBarSeries.SideMargins
TCustomBarSeries.BarWidthPercent

BarMargin Property
See also

Applies to
TBarSeries and THorizBarSeries components

Declaration
property BarMargin : LongInt;
Description
The BarMargin function returns the margin size in pixels. The SideMargins property controls if margins
will be applied or not.

See Also
TCustomBarSeries.SideMargins

BarPen Property
See also

Applies to
TCustomBarSeries component

Declaration
property BarPen : TChartPen;
Description
The BarPen property indicates the kind of pen used to draw the Bar rectangles. You can set
BarPen.Visible:=False to hide those lines.

See Also
TCustomBarSeries.BarBrush
TCustomBarSeries.BarStyle

BarStyle Property
See also Example

Applies to
TBarSeries, THorizBarSeries, TCustomBarSeries component

Declaration
property BarStyle : TBarStyle;
Description
Default Value: bsRectangle
The BarStyle property defines the Bar shape used to draw Bars.

BarStyle Property Example
This example sets the BarStyle to the Pyramid type.
BarSeries1.BarStyle := bsPyramid ;

See Also
TCustomBarSeries.BarWidthPercent
TCustomBarSeries.OffsetPercent

BarWidth Example
BarSeries1.CustomBarWidth := BarSeries1.BarWidth + 5 ;

BarWidth Property
See also Example

Applies to
TBarSeries component

Declaration
property BarWidth : LongInt;
Description
Run time and read only. The BarWidth property returns the width of vertical Bars in pixels. Bar widths
change at run-time when resizing or zooming the Chart. BarWidth is a read-only property. You can use
the CustomBarWidth property to set a fixed pixels Bar width.

See Also
TBarSeries.CustomBarWidth
TBarSeries.SideMargins
TCustomBarSeries.BarWidthPercent

BarWidthPercent Property
See also

Applies to
TCustomBarSeries component

Declaration
property BarWidthPercent : Integer;
Description
Default Value: 70
The BarWidthPercent property determines the percent of total Bar width used. Setting
BarWidthPercent := 100 makes joined Bars. You can control how many Bars appear at same time by
using TChart.MaxPointsPerPage property. The BarWidth and BarHeight properties indicate Bar
dimensions in pixels.

See Also
TCustomBarSeries.OffsetPercent
TBarSeries.BarWidth
TBarSeries.CustomBarWidth
THorizBarSeries.BarHeight
THorizBarSeries.CustomBarHeight

OnBeforeDrawValues Event

Applies to
TChartSeries component

Declaration
property OnBeforeDrawValues : TNotifyEvent;
Description
BeforeDrawValues event is called just before the Series points will be painted.
You can then paint on the Chart.Canvas your customized drawings.

WARNING:
Do not change Series properties that would force the Series to be repainted.
This may cause recursion and endless repainting !

BottomAxis Property
See also

Applies to
TChart component

Declaration
property BottomAxis : TChartAxis;
Description
The BottomAxis property is one of the two horizontal chart axis. BottomAxis has many formatting
properties and maintains the correct scales for Series X values. Each Series can be associated either to
BottomAxis or TopAxis. Charts can have some Series associated to BottomAxis and some to TopAxis.
Use the Minimum and Maximum properties to specify the scale and Increment property to control
separation between axis labels. Axis Labels and scales can optionally be DateTime values. This is
accomplished by setting MySeries1.XValues.DateTime := True.
Please refer to TChartAxis help for a complete explanation of properties.

See Also
TChart.TopAxis
TChart.DepthAxis
TChart.LeftAxis
TChart.RightAxis

BottomWall Property
See also

Applies to
TChart component

Declaration
property BottomWall : TChartWall;
Description
The BottomWall property defines the pen and brush used to fill the bottom chart side. Available
TChartWall properties are Size, Color, Pen and Brush. TChart.View3D and TChart.View3DWalls
properties should be True to use BottomWall , BackWall and LeftWall.

See Also
TChart.BackColor
TChart.BackWall
TChart.LeftWall
TChart.View3D
TChart.View3DWalls

Brush Property (TChartTitle)
See also

Applies to
TChartTitle component

Declaration
property Brush : TBrush;
Description
The Brush property determines the kind of brush used to fill the rectangle behind Chart.Title and
Chart.Foot text.

See Also
TChartTitle.Frame
TChartTitle.AdjustFrame

Size Property (TChartWall)
See also

Applies to
TChartWall component

Declaration
property Size : Longint;
Description
The Size property determines the thickness of the selected Chart wall.

See Also
TChart.View3DWalls
TChartWall.Color
TChartWall.Brush
TChartWall.Pen

Brush Property (TChartWall)
See also

Applies to
TChartWall component

Declaration
property Brush : TBrush;
Description
The Brush property determines the kind of brush used to fill the Chart Walls background.
The Chart.View3DWalls property should be True to make walls visible.

Brush Property
See also

Applies to
TSeriesPointer component

Declaration
property Brush : TBrush;
Description
The Brush property determines the kind of brush used to fill Series Pointers.

See Also
TChart.View3DWalls
TChartWall.Color
TChartWall.Size
TChartWall.Pen

See Also
TSeriesPointer.Pen

BubbleCh Unit
The BubbleCh unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TBubbleSeries

Types

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

BufferedDisplay Property

Applies to
TChart, TDBChart components

Declaration
property BufferedDisplay : Boolean;
Description
Default, BufferedDisplay is True.
Charts are drawn to an "internal" canvas and then it is shown on screen. This prevents "flickering" and,
when charts have a lot of points, can gain speed as it's faster to show an entire chart than drawing all
points directly to screen.
For real-time charts, where new points are continuously being added, this is a must.

CalcClickedPart Method

Applies to
TChart, TDBChart components

Declaration
Procedure CalcClickedPart (Pos:TPoint; Var Part:TChartClickedPart);
Description
TChartClickedPartStyle= (cpNone,

cpLegend,
cpAxis,
cpSeries,
cpTitle,
cpFoot,
cpChartRect);

TChartClickedPart=Record
Part:TChartClickedPartStyle;
PointIndex: Longint;
ASeries:TChartSeries;
AAxis:TchartAxis;

end;

CalcClickedPie Example
This code shows a message when a Pie Sector is clicked:
procedure TForm1.Chart1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
var tmp : Longint;
begin
 tmp := PieSeries1.CalcClickedPie(x, y);
 if tmp > -1 then
 ShowMessage(PieSeries1.XLabel[tmp]);
end;

CalcClickedPie Method
See also Example

Applies to
TPieSeries component

Declaration
function CalcClickedPie(x, y : Integer): LongInt;
Description
The CalcClickedPie function returns the Pie Sector Index that intersects with the X Y coordinate
parameters. It currently works if Circled property is True.

See Also
TCircledSeries.PointToAngle
TCircledSeries.AngleToPos

CalcLabelStyle Method
See also

Applies to
TChartAxis component

Declaration
function CalcLabelStyle : TAxisLabelStyle;
Description
The CalcLabelStyle function returns the most logical Axis Label style. It calculates the "best candidate"
label style based on how many Active Series are in the Chart and if the Series has point labels. The
TChartAxis.LabelStyle property must be set to talAuto for this function to do its job.
If LabelStyle is not talAuto, the LabelStyle property value is returned.

See Also
TChartAxis.LabelStyle

CalcPosPoint Example
We want to calculate the LeftAxis value in the Vertical Screen coordinate of 220 pixels.
value := Chart1.LeftAxis.CalcPosPoint (220) ;

CalcPosPoint Method
See also Example

Applies to
TChartAxis component

Declaration
function CalcPosPoint(Value : Integer) : Double;
Description
This function returns the corresponding value of a Screen position. The Screen position must be
between Axis limits.
See the user guide for more information.

See Also
TChartSeries.CalcXPos
TChartSeries.CalcYPos

CalcRect Method
See also

Applies to
TChartAxis component

Declaration
procedure CalcRect(Var R:TRect; InflateChartRectangle:Boolean);
Description
The CalcRect method determines the necessary space the Axis will need to display. It takes into
account all Axis subcomponents dimensions like Title, Labels, Ticks, Width, etc.
The Rect parameter is modified with the amount in pixels.

See Also
TChart.ChartRect

CalcSize3D Method
See also

Applies to
TChart component

Declaration
procedure CalcSize3d;
Description
The CalcSize3D calculates the amount of pixels each Series needs to display in 3D mode. The
TChart.View3D property must be True. The TChart SeriesWidth3d and SeriesHeight3d properties are
modified. CalcSize3D is called internally before drawing.

See Also
TChart.CalcSize3DWalls
TChart.Width3d
TChart.Height3d
TChart.SeriesWidth3d
TChart.SeriesHeight3d

CalcSize3DWalls Method
See also

Applies to
TChart component

Declaration
procedure CalcSize3dWalls;
Description
The CalcSize3dWalls method calculates the amount of pixels of Chart Left Wall width and Bottom Wall
height. The TChart.View3D property must be True. This method is called internally before drawing the
Chart walls and before all Series points are displayed.
This method modifies the following TChart properties:

Width3d

Height3d

SeriesWidth3d

SeriesHeight3d

See Also
TChart.CalcSize3D
TChart.Width3d
TChart.Height3d
TChart.SeriesWidth3d
TChart.SeriesHeight3d

CalcXYIncrement Method
See also

Applies to
TChartAxis component

Declaration
function CalcXYIncrement(MaxLabelSize:Integer):Double;
Description
The CalcXYIncrement function returns the distance between axis labels expressed in axis scales.
This function applies to both Chart BottomAxis and TopAxis axis components.
Basically this function calculates the most appropriate Increment to make Axis labels ‘not overlapping’.
The TChartAxis.Increment property is used as a first increment to try. If Labels will overlap, a new and
bigger increment is applied until labels fit on axis dimensions.
The TChartAxis.LabelsSeparation controls the minimum amount of allowed distance between axis
labels.
This function is called internally so you'll need to use in very special situations.

See Also
TChartAxis.LabelsSeparation

CalcXPos Method
See also Example

Applies to
TChartSeries component

Declaration
function CalcXPos(ValueIndex : Longint) : LongInt;
Description
Returns the pixel Screen Horizontal coordinate of the ValueIndex Series value.
This coordinate is calculated using the Series associated Horizontal Axis.
See the user guide for more information.

CalcXPos Example
We want to know which is the Horizontal Screen coordinate of the 4th Series point:
tmp := LineSeries1.CalcXPos(3) ; (remember points start at 0)

See Also
TChart.CalcPospoint
TChartSeries.CalcYPos

CalcXPosValue Method
See also Example

Applies to
TChartAxis component

Declaration
function CalcXPosValue(Const Value : Double) : Longint;
Description
This function calculates the Horizontal coordinate in pixels of Value parameter.
See the user guide for more information.

CalcXPosValue Example
Our bottom axis has a Minimum of 20 and a Maximum of 1000.
We need to draw a vertical line that represents the value: 500.
x := Chart1.BottomAxis.CalcXPosValue(500) ;
Chart1.Canvas.MoveTo (x , Chart1.ChartRect.Bottom);
Chart1.Canvas.LineTo (x , Chart1.ChartRect.Top);

See Also
CalcYPosValue function
CalcXSizeValue function
CalcYSizeValue function

CalcXPosValue Method
See also Example

Applies to
TChartSeries component

Declaration
function CalcXPosValue(Const Value : Double) : Longint ;
Description
Returns the pixel Screen Horizontal coordinate of the specified Value.
This coordinate is calculated using the Series associated Horizontal Axis.
See the user guide for more information.

CalcXPosValue Method Example
We want to know which is the Horizontal Screen coordinate of 1234.56 value:
tmp := LineSeries1.CalcXPosValue(1234.56) ;

CalcXSizeValue Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
function CalcXSizeValue(Const Value : Double) : Longint;
Description
This function calculates the Horizontal SIZE in pixels of Value parameter.
See the user guide for more information.

CalcXSizeValue Method (TChartSeries)
See also Example

Applies to
TChartSeries component

Declaration
function CalcXSizeValue(Const Value : Double) : Longint ;
Description
Returns the pixel Screen Horizontal DIMENSION (or size) of the specified Value.
This coordinate is calculated using the Series associated Horizontal Axis.
See the user guide for more information.

CalcXSizeValue Method (TChartSeries) Example
We want to know how much Screen pixels size corresponds to a 12.1 X value:
tmp := LineSeries1.CalcXSizeValue(12.1) ;
That means tmp is the quantity of horizontal pixels an offset of 12.1 needs.

See Also
CalcYSizeValue function
CalcXPosValue function
CalcYPosValue function

CalcYPos Method (TChartSeries)
See also Example

Applies to
TChartSeries component

Declaration
function CalcYPos(ValueIndex : Longint) : Longint ;
Description
Returns the pixel Screen Vertical coordinate of the ValueIndex Series value.
This coordinate is calculated using the Series associated Vertical Axis.
See the user guide for more information.

CalcYPos Method (TChartSeries) Example
We want to know which is the Vertical Screen coordinate of the 22nd Series point:
tmp := LineSeries1.CalcYPos(21) ; (remember points start at 0)

See Also
TChart.CalcPospoint
TChartSeries.CalcYPos

See Also
CalcXPosValue function
CalcXSizeValue function
CalcYSizeValue function

CalcYPosValue Method
See also

Applies to
TChartAxis component

Declaration
function CalcYPosValue(Const Value : Double) : Longint;
Description
This function calculates the Vertical coordinate in pixels of Value parameter.
See the user guide for more information.

CalcYPosValue Method (TChartSeries)

Applies to
TChartSeries component

Declaration
function CalcYPosValue(Const Value : Double) : Longint;
Description
Returns the pixel Screen Vertical coordinate of the specified Value.
This coordinate is calculated using the Series associated Vertical Axis.
See the user guide for more information.

See Also
CalcXPosValue function
CalcYPosValue function
CalcXSizeValue function

CalcYSizeValue Method
See also

Applies to
TChartAxis component

Declaration
function CalcYSizeValue(Const Value : Double) : Longint;
Description
This function calculates the Vertical SIZE in pixels of Value parameter.
See the user guide for more information.

CalcYSizeValue Method (TChartSeries)
See also Example

Applies to
TChartSeries component

Declaration
function CalcYSizeValue(Const Value : Double) : Longint;
Description
Returns the pixel Screen Vertical DIMENSION (or size) of the specified Value.
This coordinate is calculated using the Series associated Vertical Axis.
See the user guide for more information.

CalcYSizeValue Method (TChartSeries) Example
We want to know how much Screen pixels size corresponds to a 5.32 Y value:
tmp := LineSeries1.CalcYSizeValue(5.32) ;
That means tmp is the quantity of vertical pixels an offset of 5.32 needs.

CalcVisiblePoints Property
See also

Unit
TeEngine

Applies to
TChartSeries component

Declaration
property CalcVisiblePoints : Boolean;
Description
default is True
(Advanced)
The CalcVisiblePoints property determines if TChart will calculate the first and last visible points of a
given Series. By default it’s True, meaning TChartSeries.CalcFirstLastVisibleIndex method will calculate
the first and last point index to draw.
When False, TChart forces the Series to draw all points. This can reduce speed when drawing zoomed
or scrolled charts.

See Also
TChartSeries.AllowSinglePoint
TChartSeries.DrawBetweenPoints
TCustomSeries.ClickableLine

CalcZOrder Method
See also

Applies to
TChartSeries component

Declaration
procedure CalcZOrder; virtual;
Description
The CalcZOrder method calculates the "Z" Series position (ZOrder).
This is the order Series are drawn at 3D mode. Series with bigger ZOrder are drawn FIRST.
If Chart.View3D property is False, all Series will calculate their ZOrder as zero (no ZOrder).
This method is called internally.
The ApplyZOrder property forces, when False, to draw all Series at same ZOrder position.

See Also
TChartSeries.ZOrder
TChart.ApplyZOrder
TChart.MaxZOrder

CancelMouse property Example
procedure TGanttForm.Series1Click(Sender: TChartSeries; ValueIndex: Longint;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button=mbLeft then
With sender do

ValueColorValueIndex)
else

Chart1.CancelMouse:=False;
{Setting CancelMouse to True notifies TeeChart Engine to STOP handling

the mouseclick and NOT start zoom or scroll.}
end;
.

CancelMouse Property
See also Example

Unit

Chart

Applies to
All TeeChart components

Declaration
property CancelMouse : Boolean;
Description
Default: True
This public property substitutes the abort procedure call. If you wish the mouse to act with dual
functionality, eg. Zoom or scroll with clickable series (see OnClickSeries event), then Cancelmouse
should be used.
Set Cancelmouse to False in your mouse-handling code to make TeeChart respond to mouse clicks with
zoom or scroll.

CanvasChanged Method

Applies to
TChart, TDBChart components

Declaration
Procedure CanvasChanged(Sender:TObject);virtual;
Description

Caption Property
See also

Applies to
TChartAxisTitle component

Declaration
property Caption : String;
Description
The Caption property defines the string of text used to draw near to each Chart Axis. When empty, no
Title is displayed. Use the Angle and Font properties to control Axis Title formatting.

See Also
TChartAxis.Title
TChartAxisTitle.Font

ChangeHorizSize Method
See also

Applies to
TSeriesPointer component

Declaration
procedure ChangeHorizSize(NewSize : Integer);
Description
The ChangeHorizSize method modifies the current pointer horizontal size without forcing the Chart to
repaint.
This is equivalent to use the TSeriesPointer.HorizSize property except it doesn't calls the Repaint
method.
It is internally used by some series like TBubbleSeries and TCandleSeries.

See Also
TSeriesPointer.HorizSize
TSeriesPointer.ChangeVertSize
TChartSeries.Repaint

ChangeStyle Method
See also

Applies to
TSeriesPointer component

Declaration
procedure ChangeStyle(NewStyle : TSeriesPointerStyle);
Description
The ChangeStyle method modifies the Pointer style without forcing the Chart to repaint.
This is equivalent to use the TSeriesPointer.Style property except it doesn't calls the Repaint method.

See Also
TSeriesPointer.Style
TChartSeries.Repaint

ChangeVertSize Method
See also

Applies to
TSeriesPointer component

Declaration
procedure ChangeVertSize(NewSize : Integer);
Description
The ChangeVertSize method modifies the current pointer horizontal size without forcing the Chart to
repaint.
This is equivalent to use the TSeriesPointer.VertSize property except it doesn't calls the Repaint
method.
It is internally used by some series like TBubbleSeries and TCandleSeries.

See Also
TSeriesPointer.VertSize
TSeriesPointer.ChangeHorizSize
TChartSeries.Repaint

Chart Property
See also

Applies to
TQRChart component

Declaration
property Chart : TQRChart;
Description
The Chart property defines the TChart or TDBChart component to display on a TQRChart. TQRChart is
an "interface" component. It must be associated to a TChart or TDBChart component using the Chart
property.

Chart Scrolling and Panning
See also
TChart and TDBChart components allow, by default, runtime Scrolling. Users need to drag the mouse
while holding the right mouse button pressed. You can deny Horizontal and / or Vertical scrolling by
changing the Chart.AllowPanning property.
See the user guide for more information.

Example:
This will deny scrolling:
Chart1.AllowPanning := pmNone ;
You can also use: pmHorizontal, pmVertical, or pmBoth
Scrolling speed depends on:

The number of Series and Series Points.

The Chart Width and Height.

The computer processor and Video card processor speed.

The Video resolution and number of colors.

The Windows version and the Video driver.

The speed when dragging the mouse !

See Also
Chart Zooming
Chart Zooming by coding
Restoring Scroll and Zoom
TChart AllowPanning

Chart Unit
The Chart unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TChart
TChartGradient
TChartWall

Types
AnimatedZoomFactor global variable
TChartClick
TChartClickAxis
TGradientDirection
TeeEraseBack
TeeScrollMouseButton global variable
TeeZoomMouseButton global variable
TTeeBackImageMode

Routines
GradientFill Method
To see a listing of items declared in this unit including their declarations, use the Project Browser.

Chart Zooming
See also
TChart enables to zoom at runtime by default. To Zoom a chart area, hold the left mouse button and
drag mouse toward down/right. You'll see a rectangle around the selected area. Release the left mouse
button to Zoom. You can continue zooming again and again.
To RESTORE (or UNDO) the zoom, drag a rectangle in the opposite direction (up/left).
TChart will rescale the axis Maximum and Minimum to show all dependent Series points. This is the
default Zoom behavior. You can activate/deactivate this feature by toggling the Chart.AllowZoom
boolean property.
See the user guide for more information.

Example:
{ this will disable runtime zoom }
Chart1.AllowZoom := False;

See Also
How to Zoom a chart area by coding?
Restoring Zoom and Scroll
Chart Scrolling

How to Zoom a chart area by coding?
See also
Example 1:
Zoom an area with "pixel" coordinates:
Rect.Left := 123 ;
Rect.Top := 67 ;
Rect.Right := 175 ;
Rect.Bottom:= 100 ;
Chart1.ZoomRect(Rect);
Example 2:
Zoom an area with point value coordinates:
You need first to translate from value to pixel coordinates. To do so, you can use the Axis or Series
components.
Rect.Left := LineSeries1.CalcXPosValue(22.5) ;
Rect.Top := LineSeries1.CalcYPosValue(5000) ;
Rect.Right := LineSeries1.CalcXPosValue(57.6) ;
Rect.Bottom:= LineSeries1.CalcYPosValue(15000) ;
Chart1.ZoomRect(Rect);

See Also
TQRChart.TeePrintMethod

Chart3DPercent Property
See also

Applies to
TChart, TDBChart components

Declaration
property Chart3dPercent : Integer;
Description
Default value: 15
The Chart3DPercent property indicates the size ratio between Chart dimensions and Chart depth when
Chart.View3D is True. You can specify a percent number from 1 to 100.

See Also
TChart.View3D
TChart.View3DWalls
TChart.SeriesWidth3D
TChart.SeriesHeight3D
TChartSeries.ZOrder

ChartBounds Example
This code draws a frame around a Chart component:
procedure TForm1.Button1Click(Sender: TObject);
begin
 With Chart1,Canvas do
 begin
 Brush.Style:=bsClear;
 Pen.Color:=clRed;
 With ChartBounds do Rectangle(Left,Top,Right,Bottom);
 end;
end;

ChartBounds Property
See also Example

Applies to
TChart component

Declaration
property ChartBounds : TRect;
Description
Run-time and read only. The ChartBounds property defines the rectangle dimension the last time the
Chart was displayed. When drawing to Screen, it equals to the Left, Top, Width and Height properties.
When drawing to Printer, it equals to the paper rectangle section where Chart is printed. You should
always use the ChartBounds property. Never assume the Chart Left and Top coordinates are zero.

See Also
TChart.ChartRect
TChart.ChartWidth
TChart.ChartHeight
TChart.PrintPartial
TChart.PrintRect

See Also
TeeChart Gallery

ChartHeight Property
See also

Applies to
TChart, TDBChart component

Declaration
property ChartHeight : LongInt;
Description
Run-time and read only. The ChartHeight property indicates the total height in pixels between the Top
and Bottom Chart Axis positions.
It is equal to:
ChartHeight:=ChartRect.Bottom-ChartRect.Top;
This IS NOT the same as Chart1.Height, because Chart margins, Axis margins, Legend width, etc are
first subtracted from the Chart vertical size.

See Also
TChart.ChartRect
ChartWidth
ChartXCenter
ChartYCenter

ChartPreview Method
See also

Applies to
TChart, TDBChart component

Declaration
procedure ChartPreview(AForm: TForm; AChart: TChart);
Description
The new TChartPreview dialog allow Charts to be viewed on Screen matching as much as possible how
they will look on the printer. The ChartPreview method (teeprevi.pas unit) shows a modal dialog with the
specified Chart component. The end user can Print, change Printer properties, Paper Orientation and
drag the Chart rectangle to any Paper position.

See Also
TChart.Print
TChart.PrintResolution

ChartPrintRect Method
See also

Applies to
TChart component

Declaration
function ChartPrintRect : TRect;
Description
The ChartPrintRect function returns the printer rectangle coordinates after PrintMargins have been
applied. Coordinates are expressed in Printer device units (printer pixels).

See Also
TChart.PrintMargins

ChartRect Property
See also

Applies to
TChart component

Declaration
property ChartRect : TRect;
Description
Run-time and read only. The ChartRect property returns the screen coordinates of the chart axis
bounding rectangle. That is, the rectangular space defined by the four Chart axis.
You must use ChartRect and ChartBounds when calculating custom drawing X Y positions. So, you
should never assume Chart dimensions and origin are fixed values.
Example
Draws vertical stripes on the Chart background
procedure TDrawForm.LineSeries1BeforeDrawValues(Sender: TObject);
Const
 MyColors:array[1..5] of TColor=
 (clNavy,
 clGreen,
 clYellow,
 clRed,
 $00000080 { very red }
);
var t,partial:Longint;
 tmpRect:TRect;
 YPosition:Longint;
 tmpYCenterValue:Double;
begin
 With Chart1 do
 Begin
 { we will divide the total chart width by 5 }
 tmpRect:=ChartRect;
 tmpRect.Right:=tmpRect.Left;
 partial:=ChartWidth div 5;
 { change the brush style }
 Canvas.Brush.Style:=bsDiagCross;
 Canvas.Pen.Style:=psClear;
 { for each section, fill with a specific color }
 for t:=1 to 5 do
 Begin
 { adjust the rectangle dimension }
 tmpRect.Right :=tmpRect.Right+partial+1 ;
 { set the brush color }
 Canvas.Brush.Color:=MyColors[t];
 { paint !!! }
 With tmpRect do
 Canvas.Rectangle(Left+Width3D,Top-Height3D,Right+Width3D,Bottom-
Height3D);

 { adjust rectangle }
 tmpRect.Left:=tmpRect.Right;
 end;
 { first calculate the middle vertical value (based on LineSeries points) }
 With LineSeries1.YValues do

 tmpYCenterValue:=MinValue+Percent*(MaxValue-MinValue)/100.0;
 { then calculate the Screen Pixel coordinate of the above value }
 YPosition:=LeftAxis.CalcYPosValue(tmpYCenterValue);
 With Canvas do
 begin
 { change pen and draw the line }
 Pen.Width:=3;
 Pen.Style:=psSolid;
 Pen.Color:=clRed;
 MoveTo(ChartRect.Left,YPosition);
 LineTo(ChartRect.Left+Width3D,YPosition-Height3D);
 LineTo(ChartRect.Right+Width3D,YPosition-Height3D);
 end;
 end;
end;

See Also
TChart.ChartBounds
TChart.ChartWidth
TChart.ChartHeight
TChart.ChartXCenter
TChart.ChartYCenter
TChart.Draw

ChartRegionRect Example
You can use it, for example, to check whether mouse cursor is inside a 3D chart:
if PtInRect(ChartRegionRect, Point(x,y)) then ...

ChartRegionRect Method
See also Example

Applies to
TChart component

Declaration
function ChartRegionRect : TRect;
Description
The ChartRegionRect is the bounding Chart axis rectangle:
Source:
Function TChart.ChartRegionRect:TRect;
Begin
 Result:=ChartRect;
 if View3D then
 Begin
 Inc(Result.Right,Width3d);
 Dec(Result.Top,Height3d);
 end;
end;

See Also
TChart.ChartRect
TChart.Height3D
TChart.Width3D

ChartWidth Property
See also

Applies to
TChart component

Declaration
property ChartWidth : LongInt;
Description
Run-time and read only. The ChartWidth property indicates the total width in pixels between the Left and
Right Chart Axis positions.
It is equal to:
ChartWidth:=ChartRect.Right-ChartRect.Left;
This IS NOT the same as Chart1.Width, because Chart margins, Axis margins, Legend width, etc are
first subtracted from the Chart horizontal size.

See Also
TChart.ChartHeight
TChart.ChartRect
ChartXCenter
ChartYCenter

ChartXCenter Method
See also

Applies to
TChart, TDBChart components

Declaration
function ChartXCenter : Longint;
Description
This function returns the middle Horizontal coordinate of the Chart.
This IS NOT the same as Chart1.Width / 2, because Chart margins, Axis margins, Legend width, etc are
first subtracted from the Chart horizontal size.
i.e.: TPieSeries uses ChartXCenter for the Pie center.

See Also
ChartYCenter
ChartWidth

ChartYCenter Method
See also

Applies to
TChart, TDBChart components

Declaration
function ChartYCenter : Longint;
Description
This function returns the middle Vertical coordinate of the Chart.
This IS NOT the same as Chart1.Height / 2, because Chart margins, Axis margins, Legend width, etc
are first subtracted to the Chart vertical size.
i.e.: TPieSeries uses ChartYCenter for the Pie center.

See Also
ChartXCenter
ChartWidth

SetFunction Method
Example

Applies to
TChartSeries component

Declaration
procedure SetFunction(AFunction:TTeeFunction); virtual;
Description
The SetFunction method allows you to add a Function definition as the Datasource of any Series.

CheckDataSource Method

Applies to
TChartSeries component

Declaration
procedure CheckDataSource;
Description
The CheckDataSource method will refresh all Series point values, either from database Tables, Queries
or another Series points. You can call this method regularly if you want new or modified data to appear
in realtime in the Series. The parent Chart will be repainted to reflect any changes.

CircleBackColor Property
See also

Applies to
TCircledSeries component

Declaration
property CircleBackColor : TColor;
Description
Default: clTeeColor
The CircleBackColor determines the color to fill the ellipse. Setting it to clTeeColor indicates the
CircledSeries to use to Chart.Color color.

See Also
TCircledSeries.PiePen
TChart.Color
TChartGradient

CircleXCenter Property
See also

Applies to
TCircledSeries component

Declaration
property CircleXCenter : LongInt;
Description
Run-time and read only. The CircleXCenter public property returns the exact ellipse's center horizontal
position in pixels.
The ellipse's radius is determined by CircledSeries.XRadius and YRadius properties. The AngleToPos
function converts from angles to X and Y Screen coordinates. The PointToAngle function converts from
XY Screen positions to angles.

See Also
TCircledSeries.CircleYCenter
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.AngleToPos
TCircledSeries.PointToAngle

CircleYCenter Property
See also

Applies to
TCircledSeries component

Declaration
property CircleYCenter : LongInt;
Description
Run-time and read only. The CircleYCenter public property returns the exact ellipse's center vertical
position in pixels. The ellipse's radius is determined by CircledSeries.XRadius and YRadius properties.
The AngleToPos function converts from angles to X and Y Screen coordinates. The PointToAngle
function converts from XY Screen positions to angles.

See Also
TCircledSeries.CircleXCenter
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.AngleToPos
TCircledSeries.PointToAngle

Circled Property
See also

Applies to
TCircledSeries component

Declaration
property Circled : Boolean;
Description
Default Value: False
The Circled property defines if a CircledSeries such as TPieSeries will be drawn elliptically or with same
X and Y radius (circle).

See Also
TCircledSeries.CircleBackColor
TCircledSeries.CustomXRadius
TCircledSeries.CustomYRadius
TCircledSeries.RotationAngle
TPieSeries

Clear Method

Applies to
TChartSeries component

Declaration
procedure Clear;
Description
This method deletes all Series values. Dependent Series are notified. If no new points are appended to
the Series, nothing will be painted.

ClickableLine Property
See also

Unit
Series

Applies to
TCustomSeries component

Declaration
property ClickableLine : Boolean;
Description
default is True. (False in TPointSeries)
(Advanced)
The ClickableLine property determines if LineSeries accepts mouse clicks over the line drawn between
points.

See Also
TChartSeries.AllowSinglePoint
TChartSeries.DrawBetweenPoints
TChartSeries.CalcVisiblePoints

Clicked Method

Applies to
TChartAxis component

Declaration
function Clicked(x,y: Integer) : Boolean;
Description
This function returns if X and Y coordinates are close to the Axis position.

Clicked Method
See also

Applies to
TChartSeries component

Declaration
function Clicked(x, y: Integer) : Longint; virtual;
Description
This functions returns the ValueIndex of the "clicked" point in the Series. Clicked means the X and Y
coordinates are in the point screen region bounds. If no point is "touched", Clicked returns -1

See Also
OnClick

Clicked Method
See also

Applies to
TChartTitle component

Declaration
function Clicked(x, y: Integer) : Boolean;
Description
The Clicked method returns if mouse cursor is inside TChartTitle bound rectangle.
The Title.Visible property must be True.
The Title rectangle size depends on Title.Pen.Visible and Title.AdjustFrame properties.

See Also
TChartTitle.Frame
TChartTitle.AdjustFrame

Clip Property

Applies to
TSeriesMarks component

Declaration
property Clip : Boolean;
Description
The Clip boolean property toggles if Marks outside Chart limits will overwrite any other Chart region.
By default is True, meaning Marks will be drawn only within inner chart boundaries, keeping Axis Labels,
Titles, Legend, etc almost untouched.

ClipPoints Property

Applies to
TChart, TDBChart components

Declaration
property ClipPoints : Boolean;
Description
ClipPoints boolean property toggles the drawing of Series points within Chart boundaries, preventing
other Chart regions from being overwritten.

ClipRectangle Example
The following code creates a clipping rectangle around a Chart Legend component and
draws a diagonal line. Try with and without clipping.
procedure TForm1.Chart1AfterDraw(Sender: TObject);
begin
 Chart1.ClipRectangle(Chart1.Legend.RectLegend); { <-- comment this line }
 try
 With Chart1.Canvas do
 begin
 Pen.Style:=psSolid;
 Pen.Color:=clBlue;
 With Chart1.Legend.RectLegend do
 begin
 MoveTo(Left - 10, Bottom + 10);
 LineTo(Right + 10, Top - 10);
 end;
 end;
 finally
 Chart1.UnClipRectangle;
 end;
end;

ClipRectangle Method
See also Example

Applies to
TCanvas3D component

Declaration
Procedure ClipRectangle(Const Rect:TRect);virtual;
Description
The ClipRectangle method creates a Windows GDI clipping region and selects it into
TChart.Canvas device context handle.
The UnClipRectangle method removes any clipping region applied to TChart.Canvas.
You can use this method to avoid Series or custom drawing to go over the desired rectangle
coordinates.
Note: Printing and creating metafiles do not accept clipping regions in logical pixels.

See Also
TChart.Canvas.UnClipRectangle

Color Property
See also

Applies to
TChart, TDBChart components

Declaration
property Color : TColor;
Description
The Color property is the Color used to fill the complete Chart Panel background.

Color Property (TChartLegend)

Applies to
TChartLegend component

Declaration
property Color : TColor;
Description
Default Value: clWhite
The Color property defines the color used to fill Legend's background space.

Color Property (TChartPen)

Applies to
TChartPen component

Declaration
property Color : TColor;
Description
The Color property determines the color used by the pen to draw lines on the canvas.
The Color property can be any valid Delphi color constant like clRed, clGreen, clBtnText, etc.
A special color constant unique to TeeChart is: clTeeColor This is the "default color".
Each TeeChart drawing object has a different default color. For example, the TChart.Frame property has
a default color of clBlack.

Color Property (TChartWall)
See also

Applies to
TChartWall component

Declaration
property Color : TColor;
Description
Default clTeeColor
The Color property specifies the color used to fill the Chart Walls background. The Chart.View3DWalls
property should be True to make walls visible. Setting it to clTeeColor means TeeChart will use the
Chart.BackColor.

See Also
Chart BackColor property

See Also
TChart.BackColor
TChart.View3DWalls
TChartWall.Brush
TChartWall.Pen

Color3D Property
See also

Applies to
TPieSeries component

Declaration
property Color3D : Boolean;
Description
Default Value: True
The Color3D property controls if the Pie 3D zone will be filled or not.

See Also
TPieSeries.ShadowColor
TPieSeries.Shadowed3d

ColorEachPoint Property

Applies to
TChartSeries component

Declaration
property ColorEachPoint : Boolean;
Description
Default value: False.
The TChartSeries ColorEachPoint property is a boolean property that controls which color will be drawn
on the Series points. If False, all points will be drawn using the Series SeriesColor color property. If
True, each Series point will be "colored" with its corresponding point color. The point colors are stored in
the TChartSeries.ValueColor array property. If a point has a clTeeColor color value, then a palette color
value will be used to draw it.
You can change this property both at design and runtime:
LineSeries1.ColorEachPoint := True ;

ColorPalette Constant Array Property
See also

Unit
TeEngine

Declaration
ColorPalette : Array[1..MaxDefaultColors] of TColor = (clRed, clGreen,
clYellow, clBlue, clWhite, clGray, clFuchsia, clTeal, clNavy, clMaroon,
clLime, clOlive, clPurple, clSilver, clAqua, clBlack);
Description
This global array of color constants is used in many TeeChart situations to obtain default
color values for new added Series or to draw each Series point in a different color.
The GetDefaultColor function returns a specific color from ColorPalette array.
Note: This array is intended for read-only access, although you can customize your default
colors by changing ColorPalette values in your application.

See Also
GetDefaultColor Global function

ColorRange Example
Imagine we have a LineSeries with ten years of data and we want the year 1993 to be in clBlue color:
Then we call:
LineSeries1.ColorRange(LineSeries1.XValues, EncodeDate(1993,1,1),
EncodeDate(1993,12,31),

clBlue);
Imagine now we want all Y Values greater than 100 to be clYellow :
LineSeries1.ColorRange(LineSeries1.YValues, 100, LineSeries1.MaxYValue,
clYellow);

ColorRange Method
See also Example

Applies to
TChartSeries component

Declaration
procedure ColorRange(AValueList: TChartValueList ;Const FromValue, ToValue:
Double; AColor: TColor);
Description
This method will change the Color of a specified range of points.
The FromValue and ToValue parameters are the beginning and end of the specified AValueList range.
AValueList can be any Series ValueList such as: XValues, YValues, etc.

ColorSource Property

Applies to
TChartSeries component

Declaration
property ColorSource : String;
Description
The ColorSource property must be a valid numeric Data Field Name.
TDBChart assigns every point's color to the ColorSource field value.
Color Values in Tables or Querys must be expressed as RGB values.

ColorWidth Property
See also

Applies to
TChartLegend component

Declaration
property ColorWidth : Integer;
Description
Default Value: 12
The ColorWidth property defines the width of Legend marks in percent of total Legend width. Each
Series is shown in Chart Legend both with text and color mark. The color mark is a different shape for
each different Series type.

See Also
TChartLegend.Color

ConnectingPen Property
See also

Applies to
TGanttSeries component

Declaration
property ConnectingPen : TChartPen;
Description
The ConnectingPen property determines the kind of pen used to draw the optional lines that connect
Gantt Bars.
Gantt Bars are "connected" by using the TGanttSeries.NextTask property.

See Also
TGanttSeries.NextTask

CopyToClipboardBitmap Method

Applies to
TChart, TDBChart components

Declaration
Procedure CopyToClipboardBitmap;
Description
Copies the whole Chart area to clipboard in bitmap format.

CopyToClipboardMetafile Method

Applies to
TChart, TDBChart components

Declaration
Procedure CopyToClipboardMetafile(Enhanced:Boolean);
Description
Copies the whole chart area to the clipboard in metafile format. You may specify either Windows
Metafile (WMF) or Enhanced Metafile (EMF) using the boolean operator.
Eg. Chart1.CopyToClipboardMetafile(True);
{ Enhanced Metafile = True }

Count Example
You can, for example, use this value to iterate:
for t := 0 to LineSeries1.Count - 1 do
LineSeries1.ValueColor [t] := clRed ;

Count Method
Example

Applies to
TChartSeries component

Declaration
function Count : Longint;
Description
This function returns the number of points in the Series.

Count Method
Example

Applies to
TChartValueList component

Declaration
function Count : Longint;
Description
This function returns the number of values in the List.

Count Method (TChartValueList) Example
You can, for example, use this function to locate a specific value:
for t := 0 to LineSeries1.YValues.Count - 1 do
if LineSeries1.YValue[t] = 1234.56 then
LineSeries1.ValueColor[t] := clYellow ;

Cursor Example
You can also use the crTeeHand cursor image:
LineSeries1.Cursor:=crTeeHand ;

Cursor Property
See also Example

Applies to
TChartSeries component

Declaration
property Cursor : TCursor;
Description
Default: crDefault
The Cursor property is the image used when the mouse passes into the region covered by a Series
point. Each Series determines the intersection of points with mouse coordinates each time the mouse
moves. There are many different Cursors available. Refer to the Delphi help file. The Series ZOrder
determines the order in which Series will be examined to calculate the clicked Series point.

See Also
TChartSeries.Clicked

CustomBarHeight Example
HorizBarSeries1.CustomBarHeight := HorizBarSeries1.BarHeight * 2 ;

CustomBarHeight Property
See also Example

Applies to
THorizBarSeries component

Declaration
property CustomBarHeight : Integer;
Description
Default: 0
The CustomBarHeight property determines the fixed Bar height in pixels. You can use the BarHeight
property to get the current Bar height in pixels.

See Also
THorizBarSeries.BarHeight
THorizBarSeries.SideMargins
TCustomBarSeries.BarWidthPercent

CustomBarWidth Example
BarSeries1.CustomBarWidth := BarSeries1.BarWidth + 5 ;

CustomBarWidth Property
See also Example

Applies to
TBarSeries component

Declaration
property CustomBarWidth : Integer;
Description
Default: 0
The CustomBarWidth property determines the fixed Bar width in pixels. You can use the BarWidth
property to get the current Bar width in pixels.

See Also
TBarSeries.BarWidth
TBarSeries.SideMargins
TCustomBarSeries.BarWidthPercent

CustomDraw method Example
Example draws 2 new axis
procedure TCustomAxisForm.LineSeries1AfterDrawValues(Sender: TObject);
var posaxis:longint;
begin
 With Chart1 do
 begin
 PosAxis:=ChartRect.Left+Trunc(ChartWidth*Percent/100.0);
 LeftAxis.CustomDraw(posaxis-10,posaxis-40,posaxis,DrawGrid.Checked);
 PosAxis:=ChartRect.Top+Trunc(ChartHeight*Percent/100.0);
 BottomAxis.CustomDraw(posaxis+10,posaxis+40,posaxis,DrawGrid.Checked);
 end;
end;

CustomDraw Method
See also Example

Applies to
TChartAxis component

Declaration
Procedure CustomDraw(PosLabels, PosTitle, PosAxis: LongInt; GridVisible:
Boolean);
Description
The CustomDraw method displays an Axis at the specified screen positions with the current axis scales.
This method can be used in very special Charting applications, as it involves quite good TeeChart
internals knowledge.
For normal charting the TChart component provides two horizontal and two vertical axis that are output
to the screen automatically.
This method stores the Axis old positions, draws the Axis and restores the positions again.
The PosLabels, PosTitle and PosAxis parameters determine the Axis Labels, Title and Axis positions.
For horizontal Axis like TopAxis or BottomAxis, these positions are in vertical screen coordinates.
For vertical Axis like LeftAxis or RightAxis, these positions are in horizontal screen coordinates.
The GridVisible parameter determine if the Axis should draw or not the grid lines from the axis to chart
edges.
The Axis is drawn using the current formatting properties such as fonts, ticks and colors.

See Also
TChartAxis.CustomDrawMinMax
TChartAxis.CustomDrawMinMaxStartEnd
TChartAxis.CustomDrawStartEnd

CustomDrawMinMax Method
See also

Applies to
TChartAxis component

Declaration
Procedure CustomDrawMinMax(PosLabels, PosTitle, PosAxis: LongInt;
GridVisible: Boolean; Const AMinimum, AMaximum, AIncrement: Double);
Description
The CustomDrawMinMax method displays an Axis at the specified screen positions with the specified
axis scales.
This method can be used in very special Charting applications, as it involves quite good TeeChart
internals knowledge.
For normal charting the TChart component provides two horizontal and two vertical axis that are output
to the screen automatically.
This method stores the Axis old scales and positions, draws the Axis and restores everything again.
The PosLabels, PosTitle and PosAxis parameters determine the Axis Labels, Title and Axis positions.
For horizontal Axis like TopAxis or BottomAxis, these positions are in vertical screen coordinates.
For vertical Axis like LeftAxis or RightAxis, these positions are in horizontal screen coordinates.
The GridVisible parameter determine if the Axis should draw or not the grid lines from the axis to chart
edges.
The AMinimum,AMaximum and AIncrement parameters define the Axis Minimum, Maximum and
Increment properties.
The Axis is drawn using the current formatting properties such as fonts, ticks and colors.

See Also
TChartAxis.CustomDraw
TChartAxis.Increment
TChartAxis.LabelsSize
TChartAxis.Maximum
TChartAxis.Minimum
TChartAxis.PosAxis
TChartAxis.PosLabels
TChartAxis.PosTitle
TChartAxis.TitleSize

CustomDrawStartEnd Method
See also

Applies to
TChartAxis component

Declaration
Procedure CustomDrawStartEnd(APosLabels: Integer; APosTitle: Integer;
APosAxis: Integer; GridVisible: Boolean; AStartPos: Integer; AEndPos:
Integer);
Description
The CustomDrawStartEnd method displays an Axis at the specified screen positions with the current
axis scales and defined Start / End positions. Using this method avoids the need to use the StartPosition
and EndPosition properties.

See Also
TChartAxis.CustomDrawMinMax
TChartAxis.CustomDrawMinMaxStartEnd
TChartAxis.CustomDraw
TChartAxis.StartPosition
TChartAxis.EndPosition

CustomDrawStartEnd Method
See also

Applies to
TChartAxis component

Declaration
Procedure CustomDrawMinMaxStartEnd(APosLabels: Integer; APosTitle: Integer;
APosAxis: Integer; GridVisible: Boolean; Const AMinimum: Double; Const
AMaximum: Double; Const AIncrement: Double; AStartPos: Integer; AEndPos:
Integer);
Description
The CustomDrawStartEnd method displays an Axis at the specified screen positions with the current
axis scales and defined Min / Max and Start / End positions. Using this method avoids the need to use
the Axis Maximum, Minimum, StartPosition and EndPosition properties.

See Also
TChartAxis.CustomDrawMinMax
TChartAxis.CustomDrawStartEnd
TChartAxis.CustomDraw
TChartAxis.StartPosition
TChartAxis.EndPosition

CustomXRadius Property
See also

Applies to
TCircledSeries component

Declaration
property CustomXRadius : LongInt;
Description
Default 0
The CustomXRadius property indicates the amount in horizontal pixels used to calculate ellipse bounds.
Setting it to zero means the CircledSeries will automatically calculate the adequate ellipse radius when
necessary.

See Also
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.CustomYRadius
TCircledSeries.Circled

CustomYRadius Property
See also

Applies to
TCircledSeries component

Declaration
property CustomYRadius : LongInt;
Description
Default 0
The CustomYRadius property indicates the amount in vertical pixels used to calculate ellipse bounds.
Setting it to zero means the CircledSeries will automatically calculate the adequate ellipse radius when
necessary.

See Also
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.CustomXRadius
TCircledSeries.Circled

DBChart Unit
The DBChart unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TDBChart

Types

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

Dark3D Property
See also

Applies to
TBarSeries and THorizBarSeries components

Declaration
property Dark3D : Boolean;
Description
Default True
The Dark3D property controls if bar sides will be filled with shadowed colors. This has effect only when
Chart.View3D is True. High color video modes (greater than 256 colors) will show dark colors much
better than 256 or 16 color modes.

Dark3D Property (TPieSeries)
See also

Applies to
TPieSeries component

Declaration
property Dark3D : Boolean;
Description
Default True
The Dark3D property indicates, when True, to fill the Pie 3D effect screen areas with darker colors than
their corresponding Pie sectors. This colors look much better with 16k colors video mode or greater.
The Pie sector RGB color is increased 40 units to obtain the darker color.

See Also
TCustomBarSeries.BarBrush
TChart.View3D
TChart.IsScreenHighColor

See Also
TPieSeries.Shadowed3D
ApplyDark global function

DarkColor Property
See also Example

Applies to
TCustomBarSeries component

Declaration
property DarkColor : TColor;
Description
Run-time, read only. The DarkColor property returns the color used to fill the Bar sides or top cover. This
applies both to TBarSeries and THorizBarSeries components. DarkColor and DarkerColor are used
toghether to create a better visual effect.
First, the normal Bar color is converted to it's Red, Green and Blue values. Then, the normal Bar color is
incremented by the following constant values:
Const DarkerColorQuantity=40;
 DarkColorQuantity =30;
Every Bar series style (Cyllinder, Pyramid, etc) will use DarkColor and DarkerColor for different visual
parts.
For better visual results, you should install the video driver at a color resolution GREATER than 256
colors.
The TChart.IsScreenHighColor function returns if current video mode is a valid mode for better results.
You can change the above RGB constants to obtain lighter or darker results:

DarkColor property Example
DarkerColorQuantity:=20;
DarkColorQuantity:=10;
BarSeries1.Repaint;

See Also
TChart.IsScreenHighColor

DarkerColor Property

Applies to
TCustomBarSeries component

Declaration
property DarkerColor : TColor;
Description
Run-time, read only. The DarkerColor property returns the color used to fill the Bar sides or top cover.
This applies both to TBarSeries and THorizBarSeries components. DarkColor and DarkerColor are used
toghether to create a better visual effect.
First, the normal Bar color is converted to it's Red, Green and Blue values. Then, the normal Bar color is
incremented by the following constant values:
Const DarkerColorQuantity=40;
 DarkColorQuantity =30;
Every Bar series style (Cyllinder, Pyramid, etc) will use DarkColor and DarkerColor for different visual
parts.
For better visual results, you should install the video driver at a color resolution GREATER than 256
colors.
The TChart.IsScreenHighColor function returns if current video mode is a valid mode for better results.
You can change the above RGB constants to obtain lighter or darker results:

DataSource Property
 Example

Applies to
TChartSeries component

Declaration
property DataSource : TComponent;
Description
Any TChartSeries can be optionally connected to a "point provider" (or DataSource). The "point
provider" (or DataSource) can be:

1) Another Chart Series.

2) Any TTable, TQuery, TClientDataset or Delphi database dataset.

3) New ways of data feeding in the future. (WWW, ActiveForms, ActiveX...)
Points must be manually added by coding if no DataSource component is specified.
Please refer to Line, Bar, Point, Area, Bubble, Gantt,

DataSource property Example
{ This example shows how to connect a Series to a Table database component using DataSource
property.}
procedure TForm1.Button1Click(Sender: TObject);
begin
 { All of this can be done VISUALLY, using the Chart Editor Dialog:
 }
 { Do these 4 steps before:
 1) Place a TDBChart component and a TTable on the Form.
 2) Add a TBarSeries to DBChart1.
 3) Set Table1 to point to DBDEMOS database and ANIMALS table.
 4) Open Table1, setting Table1.Active to True.
 }
 Series1.DataSource:=Table1; { <-- the Table component }
 Series1.YValues.ValueSource:='WEIGHT'; { <-- the Field for Bar Values }
 Series1.XLabelsSource:='NAME'; { <-- the Field for Bar Labels }
end;
Points must be manually added by coding if no DataSource component is specified.
Example of manual point adding:
Begin
PieSeries1.Clear;
for t := 1 to 12 do

PieSeries1.Add(Random(1000), LongMonthNames[t], clTeeColor) ;
End;

DataSources Example
This code links 2 Series components to MySeries and sets MySeries to draw an Average on Series1
and Series2 points:
Uses TeeFunci ;
procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 With MySeries.DataSources do
 begin
 Clear;
 Add(Series1);
 Add(Series2);
 end;
 MySeries.SetFunction(TAverageTeeFunction.Create(Self));
end;

DataSources Property
See also Example

Applies to
TChartSeries component

Declaration
property DataSources : TList read FDataSources;
Description
(Advanced)
The DataSources property stores component pointers which can be Series or DataSet components.
Any Series component can be linked to a DataSet (Table, Query, etc) or to one or more other
Series components.
This standard TList property is handled internally so you will seldom use it directly.
Note: The TChartSeries.DataSource property returns the 0th element in DataSources list..

See Also
TChartSeries.DataSource

DateTime Example
LineSeries1.XValues.DateTime := False ; (we have X numbers, not DateTime X
values)

BubbleSeries1.RadiusValues.DateTime := True ;
At runtime, you can manually set the values accordingly:
LineSeries1.XValues.Value[5]:=EncodeTime(23,59,00);
if LineSeries1.XValues.DateTime equals True.
Or...
LineSeries1.XValues.Value[5]:=1234.567;
if LineSeries1.XValues.DateTime equals False. However, no type checking is performed, so both ways
will work.

See Also
TChartSeries.ExactDateTime
TChartAxis.DateTimeFormat

DateTime Property
See also Example

Applies to
TChartValueList component

Declaration
property DateTime : Boolean;
Description
TeeChart allows values to be expressed either as numbers or as Date+Time values. Delphi considers
DateTime values as Doubles, thus making easier to handle both kinds of values. Each Series value list
has a boolean property called DateTime. . The boolean DateTime property tells TeeChart what type the
numbers are.The horizontal (x axis) and vertical (y axis) value defaults are number format (DateTime
False). DateTime can be changed both at design-time and run-time, forcing the Chart to repaint. This
property is used whenever a value must be converted to text, for example, to draw it as the chart axis
labels. Axis labels will be drawn in DateTime or numeric format accordingly to the setting of the
DateTime property.
You can also set the Chart Series ValueFormat and the Chart Axis DateTimeFormat formatting strings,
to control how the values will be displayed.

DateTimeFormat Example
Chart1.BottomAxis.DateTimeFormat:='dd/mm/yy';
See Delphi help under FormatDateTime Function for complete details.

See Also
TChartAxis.Increment
TChartSeries.XValues
TChartSeries.YValues
TChartAxis.ExactDateTime
TChartValueList.DateTime

DateTimeFormat Property
See also Example

Applies to
TChartAxis component

Declaration
property DateTimeFormat : String;
Description
Chart Axis have a DateTimeFormat property. DateTimeFormat is a standard Delphi DateTime formatting
string specifier. Chart Axis uses it to draw the axis labels.

Delete Example
We want to delete the 8th point of a Line Series:
LineSeries1.Delete(7) ; (remember, points index start at zero)
This will remove completely the 8th point in the LineSeries1 Series. The chart will be repainted and all
dependent Series (whom DataSource is LineSeries1) will be recalculated and redrawn.

Delete Method
Example

Applies to
TChartSeries component

Declaration
procedure Delete(ValueIndex : LongInt);
Description
The Delete method will remove the # ValueIndex point from the Series values lists. The ParentChart will
be automatically redrawn. Dependent Series will be recalculated.

Delete Method (TChartValueList)

Applies to
TChartValueList component

Declaration
procedure Delete(ValueIndex : Longint);
Description
This method removes the specified ValueIndex value from the List.

DesignMaxPoints Property

Applies to
TChartSeries component

Declaration
property DesignMaxPoints : LongInt;
Description
The DesignMaxPoints integer property is the maximum number of points in design mode the Series will
accept.
The default value is 200. Setting to 0 means there is no limit on the number of points. This property has
no effect at runtime.
When you are dealing with DBChart components, and connecting Series to Tables or Querys, it can take
a long time to retrieve and process all records. Setting DesignMaxPoints property to for example, 100,
will reduce at design time the number of retrieved records to 100. That can speed design time
development. Setting DesignMaxPoints to 0 will not limit the design time added points.

Direction Property
See also

Applies to
TChartGradient component

Declaration
property Direction : TGradientDirection;
Description
Default: gdTopBottom
The Direction property specifies the direction the gradient fill will be applied.

See Also
TChartGradient.EndColor
TChartGradient.StartColor
TChartGradient.Visible

DividingLines Property

Applies to
TChartLegend component

Declaration
property DividingLines : TChartHiddenPen read FDividingLines write
SetDividingLines;
Description
The DividingLines property specifies the Pen attributes used to draw lines separating Legend’s items.
Lines are drawn horizontally for Left or Right aligned Legend and vertically for Top or Bottom Legend
alignments..

DoSeriesClick Method
See also

Applies to
TChartSeries component

Declaration
procedure DoSeriesClick(ValueIndex:Longint; Button:TMouseButton; Shift:
TShiftState; X, Y: Integer); virtual;
Description
The DoSeriesClick method calls the Series OnClick event (if assigned).
Use the CancelMouse property to control how the mouse button behaves with dual modes (scroll or
zoom after a Series OnClick event).

See Also
TChartSeries.OnClick

Draw Example
Printer.BeginDoc ;
Chart1.Draw(Printer.Canvas , MyRectangle) ;
Printer.EndDoc ;
Where "MyRectangle" could be any valid rectangular region for the canvas.
MyRectangle.Left := 0 ;
MyRectangle.Right := Printer.PageWidth div 2 ;
MyRectangle.Top := 0 ;
MyRectangle.Bottom:= Printer.PageHeight div 3 ;

Draw Method
Example

Applies to
TChart, TDBChart components

Declaration
procedure Draw (UserCanvas : TCanvas ; Const UserRect : TRect) ; virtual ;
Description
Use the Draw method to paint the Chart in your preferred Canvas and region.
It can also be used to Print the Chart in a customized way:

Draw Method (TChartAxis)

Applies to
TChartAxis component

Declaration
procedure Draw;
Description
This method paints the complete Axis (Ticks, Grid, Labels, Title) using the Axis.ParentChart.Canvas.
Normally you do not need to call the Draw method directly.

Draw Method (TSeriesPointer)
See also

Applies to
TSeriesPointer component

Declaration
Procedure Draw(px, py : Integer; ColorValue : TColor; AStyle :
TSeriesPointerStyle);
Description
The Draw method displays a pointer at the specified px and py screen pixel coordinates.
The pointer is drawn using the current HorizSize and VertSize dimensions.
It calls the TSeriesPointer.DrawPointer method.

See Also
TSeriesPointer.DrawPointer

Draw3D Property
See also

Applies to
TSeriesPointer component

Declaration
property Draw3D : Boolean;
Description
Default Value: True
The Draw3D property controls if Series Pointers will be drawn in a 3D way or not. Currently only
rectangle points have 3D capability.

See Also
TSeriesPointer.Style
TSeriesPointer.Brush

DrawArea Property
See also

Applies to
TCustomSeries component

Declaration
property DrawArea : Boolean;
Description
Default Value: False
The DrawArea property defines if bottom Chart side of points will be filled with a defined color.
LineSeries and PointSeries set DrawArea to False. AreaSeries set DrawArea to True. You can control
the Area Brush style by using the AreaBrush property.

See Also
TAreaSeries.SeriesColor
TAreaSeries.AreaBrush
TAreaSeries.AreaColor
TAreaSeries.AreaLinesPen

DrawBetweenPoints Property
See also

Unit
TeEngine

Applies to
TCustomSeries component

Declaration
property DrawBetweenPoints : Boolean;
Description
(Advanced)
The DrawBetweenPoints public property controls if Series needs to draw lines in the space between one
point and another. TLineSeries sets DrawBetweenPoints to True.
It is internally used to calculate the first and last visible point. When True, TChart makes the Series to
draw one more point to see the line between the last visible point and the next, if any.

See Also
TChartSeries.AllowSinglePoint
TCustomSeries.ClickableLine
TChartSeries.CalcVisiblePoints

DrawHorizontalLabel Method

Applies to
TChartAxis component

Declaration
procedure DrawHorizontalLabel(x,y:Longint; Angle:Integer; Const St:String);
Description
Horizontal Axis (TopAxis and BottomAxis) use this method to draw labels and Axis Title. Angle
parameter must be an integer value between 0 and 360. X and Y are the text position coordinates. Text
will be aligned to Left, Right, Top and / or Bottom depending on the Axis. Angles different than 0, 90, 180
or 270 may need manual XY calculation.

DrawPointer Method
See also

Applies to
TSeriesPointer component

Declaration
procedure DrawPointer(px, py, tmpHoriz, tmpVert : Integer; ColorValue :
TColor; AStyle : TSeriesPointerStyle);
Description
The Draw method displays a pointer at the specified px and py screen pixel coordinates with the
tmpHoriz and tmpVert dimensions.

See Also
TSeriesPointer.Draw

DrawValuesForward Method
See also

Applies to
TChartSeries component

Declaration
function DrawValuesForward : Boolean; virtual;
Description
The DrawValuesForward function returns whether the Series needs to draw its points in ascending or
descending order.
Some Series need to draw their points in descending order (starting from the last point to the first)
depending on certain situations. For example, when the horizontal axis Inverted property is True.

See Also
TChartAxis.Inverted

DrawVerticalLabel Method

Applies to
TChartAxis component

Declaration
procedure DrawVerticalLabel(x,y: Longint; Angle: Integer; Const St: String);
Description
Vertical Axis (LeftAxis and RightAxis) use this method to draw labels and Axis Title. Angle parameter
must be an integer value between 0 and 360. X and Y are the text position coordinates. Text will be
aligned to Left, Right, Top and / or Bottom depending on the Axis. Angles different than 0, 90, 180 or 270
may need manual XY calculation.

Drawing Text with a Rotation Angle

Rotation Angle integer number can be 0, 90, 180, 270 or any other valid Angle between 0 and 359.
If you use a custom angle, margins will need to be calculated manually.

Orthogonal Property
See also

Applies to
TView3DOptions component

Declaration
property Orthogonal : Boolean;
Description
Disabling Orthogonal (setting to False) disables the 2D Canvas and enables the 3D Canvas allowing
Elevation and Rotation displacement of the Chart.

See also
HorizOffset
Rotation
Perspective
Elevation
Tilt
VertOffset
Zoom

Tilt Property
See also

Applies to
TView3DOptions component

Declaration
property Tilt : Integer;
Description
Default = 0
Tilt will rotate the Chart Rectangle within the Chart Panel. Positive values (from 0 to 360º) rotate the
Chart anti-clockwise, negative values, clockwise.
*Important. Orthogonal should be set to False for Rotation to act on the Chart.

See also
Zoom
Orthogonal
Elevation
Rotation
HorizOffset
VertOffset

VertOffset Property
See also

Applies to
TView3DOptions component

Declaration
property VertOffset : Integer;
Description
Default = 0
VertOffset will move the Chart Rectangle vertically across the Chart Panel. Positive values move the
Chart downwards, negative values upwards.

See also
Zoom
Orthogonal
Perspective
Elevation
Rotation
Tilt
HorizOffset

HorizOffset Property
See also

Applies to
TView3DOptions component

Declaration
property HorizOffset : Integer;
Description
Default = 0
HorizOffset will move the Chart Rectangle horizontally across the Chart Panel. Positive values move the
Chart to the right, negative values to the left.

See also
Zoom
Orthogonal
Elevation
Perspective
Rotation
Tilt
VertOffset

Zoom Property (View3DOptions)
See also

Applies to
TView3DOptions component

Declaration
property Zoom : Integer;
Description
Default = 100%
View3DOptions' Zoom will zoom the whole Chart. Expressed as a percentage, Increasing the value
positively will bring the Chart towards the viewer, increasing the overall Chart size as the Zoom value
increases. The Chart may be enlarged to a size greater than the Chart panel thus bringing the axes
outside of the viewable area. View3DOptions' Zoom does not affect the use of Zoom. functionality either
by code or mouse action, which may be used to zoom on Chart Series within the axes' boundaries.
Negative values of Zoom will diminish the overall Chartsize until, at values less than 0 the Chart will re-
increase in size.

See also
HorizOffset
Orthogonal
Elevation
Perspective
Rotation
Tilt
VertOffset
ZoomText

Zoom Property (View3DOptions)
See also

Applies to
TView3DOptions component

Declaration
property ZoomText : Boolean;
Description
Default = True
ZoomText enables/disables the zooming of text when using the TView3DOptions.Zoom property.

See also
HorizOffset
Orthogonal
Elevation
Perspective
Rotation
Tilt
VertOffset
Zoom

Perspective Property
See also

Applies to
TView3DOptions component

Declaration
property Perspective : Integer;
Description
Perspective sets the view of the Chart (when orthogonal = False) with perspective effect (dimensional
appearance with respect to distance from the viewer).
Values are integer from 0 -> 100%
When set to 0 perspective id disabled.
*Important. Orthogonal should be set to False for Perspective to act on the Chart.

See also
HorizOffset
Orthogonal
Elevation
Rotation
Tilt
VertOffset
Zoom

Rotation Property
See also

Applies to
TView3DOptions component

Declaration
property Rotation : Integer;
Description
Rotation describes front plane rotation by rotation degrees (0 - 360º). Increasing the value positively will
bring the right of the Chart towards the viewer and the left of the Chart away, moving around a vertical
axis at the central horizontal point of the Chart.
*Important. Orthogonal should be set to False for Rotation to act on the Chart.

See also
HorizOffset
Orthogonal
Elevation
Perspective
Tilt
VertOffset
Zoom

Elevation Property
See also

Applies to
TView3DOptions component

Declaration
property Elevation : Integer;
Description
Elevation describes front plane rotation by rotation degrees (0 - 360º). Increasing the value positively will
bring the top of the Chart towards the viewer and the bottom of the Chart away, moving around an
horizontal axis at the central vertical point of the Chart.
*Important. Orthogonal should be set to False for Elevation to act on the Chart.

See also
HorizOffset
Orthogonal
Perspective
Rotation
Tilt
VertOffset
Zoom

EndColor Property (TChartGradient)
See also

Applies to
TChartGradient component

Declaration
property EndColor : TColor;
Description
Default: clYellow
The EndColor property is one of the two colors used to create the gradient fill. The gradient fill is
composed of two colors: StartColor and EndColor.

See also
TChartGradient.Direction
TChartGradient.StartColor
TChartGradient.Visible

EndValues Property
See also

Applies to
TGanttSeries component

Declaration
property EndValues : TChartValueList;
Description
The EndValues property defines the ending Gantt bar date value. The starting Gantt bar point is stored
at TGanttSeries.StartValues
list property.
StartValues and EndValues can be specified both as DateTime or double values.
Both are standard TChartValueList components. That means you can access their values with same
methods as you can access X or Y values.
The TGanttSeries.AddGantt and / or TGanttSeries.AddGanttColor methods must be used to add Gantt
bar points.

See Also
TGanttSeries.AddGantt
TGanttSeries.AddGanttColor
TGanttSeries.StartValues

EndXValues Example
This code sets to 123 the X1 coordinate of 6th arrow point: (Remember point index starts at zero)
ArrowSeries1.EndXValues.Value[5]:= 123;

EndXValues Property
See also Example

Applies to
TArrowSeries component

Declaration
property EndXValues : TChartValueList;
Description
Each Arrow has (X0,Y0) and (X1,Y1) coordinates.
EndXValues property is the list of X1 values.

See Also
TChartValueList
TArrowSeries.EndYValues
TArrowSeries.StartXValues
TArrowSeries.StartYValues
TArrowSeries.AddArrow

EndYValues Example
This code modifies the Y1 coordinate of first arrow point:
tmp:=ArrowSeries1.EndYValues.Value[0];
ArrowSeries1.EndYValues.Value[0]:=tmp + 123;

EndYValues Property
See also Example

Applies to
TArrowSeries component

Declaration
property EndYValues : TChartValueList
Description
Each Arrow has (X0,Y0) and (X1,Y1) coordinates.
EndYValues property is the list of Y1 values.

See Also
TChartValueList
TArrowSeries.EndXValues
TArrowSeries.StartXValues
TArrowSeries.StartYValues
TArrowSeries.AddArrow

ExactDateTime Property
See also

Applies to
TChartAxis component

Declaration
property ExactDateTime : Boolean;
Description
Default Value: False
The ExactDateTime property controls if TChartAxis.Increment property calculates Axis Labels in exact
DateTime steps.
This is very useful when TChartAxis.Increment is a DateTimeStep constant value:
Chart1.BottomAxis.Increment := DateTimeStep[dtOneMonth] ;
In this example, the Increment property should be considered to be an exact month. So, if an axis label
is:
'1-April-1996'
then the next axis label would be:
'1-May-1996'
and the next:
'1-June-1996'
When ExactDateTime is False (the default value), the dtOneMonth increment equals to 30 days, and
axis do not calculate how many days a month has.
The Series XValues or YValues properties should have the DateTime property True. (XValues for
horizontal Axis and YValues for vertical Axis).

See Also
TChartAxis.Increment
TChartSeries.XValues
TChartSeries.YValues
TChartAxis.DateTimeFormat
TChartValueList.DateTime

ExchangeSeries Method

Applies to
TChart, TDBChart components

Declaration
Procedure ExchangeSeries(Series1,Series2 : Longint);
Description
This method changes the Series order, swapping one Series Z position with
another. The Chart repaints to reflect the new Series order.
It accesses TChart.SeriesList property.

FillSampleValues Method
See also

Applies to
TChartSeries component

Declaration
procedure FillSampleValues(NumValues : Longint); virtual;
Description
Each Series draws random values at design mode unless you connect the Series component to other
Series component or to a DataSet (Table,SQL,TClientDataset) component.
This method adds some random values to the Series and redraws it.
Example
Series1.FillSampleValues(20);
{will draw a series with 20 values at runtime}

See Also
NumSampleValues function

FillSequence Property
See also

Applies to
TChartValueList component

Declaration
procedure FillSequence;
Description
(Advanced)
The FillSequence method renumbers all values in a TChartValueList component. Values start at zero.
Warning: Calling FillSequence removes any previous value in a TChartValueList.
See TChartValueList.Sort method example.

See Also
TChartValueList.Sort

First Example
This is the same value as the 0 index value:
LineSeries1.XValues[0] := 1234.56 ;
ShowMessage(FloatToStr(LineSeries1.XValues.First));

First Method
Example

Applies to
TChartValueList component

Declaration
function First : Double;
Description
This function returns the First point value.

FirstValue Property
See also

Applies to
TChartLegend component

Declaration
property FirstValue : LongInt;
Description
Default Value: 0
The FirstValue property defines the number of the first displayed Legend item. Legend can display all
active Series names or all points of a single Series.
FirstValue should be set accordingly, taking care not to overflow the number of active Series or the
number of Series points.
You can use FirstValue to show in Legend a specific subset of Series or points.
It should be greater or equal than zero, and lower than number of active Series or Series points.
See TChartLegend.LegendStyle for a description of the different Legend styles.

See Also
TChartLegend.LegendStyle
TChartLegend.Inverted

FirstValueIndex Property
See also

Applies to
TChartSeries component

Declaration
property FirstValueIndex : LongInt;
Description
This function / property returns the ValueIndex of the First point in the Series that has an X value which
is between the Horizontal Axis Maximum and Minimum values.
When no Zoom is applied to the Chart, and the Axis are Automatic, the FirstValueIndex is 0. If the Series
has no points or there are no visible points, the FirstValueIndex returns -1.

See Also
LastValueIndex

Font Property (TChartAxisTitle)
See also

Applies to
TChartAxisTitle component

Declaration
property Font : TFont;
Description
The Font property determines the kind of font used to draw each Axis Title.
TChartAxis.Title.Caption property should be non empty.
Title text can be rotated using the Angle property.

Font Property (TChartLegend)
See also

Applies to
TChartLegend component

Declaration
property Font : TFont;
Description
The Font property determines the font used to draw all Legend text items. The Legend calculates its
dimensions based on Font size and attributes as well as TChartLegend.ColorWidth and
TChartLegend.Frame properties settings.

Font Property (TChartTitle)

Applies to
TChartTitle component

Declaration
property Font : TFont;
Description
The Font property determines the Chart Title and Footer.

Font Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property Font : TFont;
Description
The Font property determines the font used to draw the Series Marks.
The TSeriesMarks.Visible property must be True.
Series Marks are little text annotations close to each Series point.

See Also
TChartSeries.Marks
TSeriesMarks.BackColor
TSeriesMarks.Visible

See Also
TChartAxis.Title
TChartAxisTitle.Caption

See Also
TChartLegend.Color
TChartLegend.ColorWidth
TChartLegend.Frame
TChartLegend.LegendStyle

FontCanvas Method
See also

Applies to
TChart component

Declaration
procedure FontCanvas(SourceFont : TFont);
Description
The FontCanvas method assigns the SourceFont parameter to the Chart.Canvas.Font property.
Internally, FontCanvas adjusts the Font PixelsPerInch property to override the default Delphi behaviour.

See Also
TChart.Canvas
TChart.PrintResolution

Foot Property
See also

Applies to
TChart component

Declaration
property Foot : TChartTitle;
Description
The Foot property defines the Text and formatting properties to be drawn at bottom Chart side. Use the
Text property to enter the desired Foot lines, set Visible to True and change the Font, Frame and Brush
properties. Use the Alignment property to control text output position.

See Also
TChart.Title
TChartTitle.Text

FormattedLegend Method

Applies to
TChart, TDBChart components

Declaration
function FormattedLegend (SeriesOrValueIndex : Longint) : String ;
Description
This function returns the text string corresponding to a Legend position.
The Legend position depends on the Legend.LegendStyle property. If LegendStyle is lsSeries, then the
text string will be the SeriesOrValueIndexth Active Series Title. If LegendStyle is lsValues, then the text
string will be the formatted SeriesOrValueIndexth value of the first Active Series in the Chart.If
LegendStyle is lsAuto and only one Active Series exists in the Chart,then the LegendStyle is considered
to be lsValues. If there's more than one Active Series then LegendStyle will be lsSeries.
Values are formatted accordingly to the LegendTextStyle property.

FormattedValue Example
This code shows the same text is used to display the Legend 5th item: (point's index starts at zero)
ShowMessage(Chart1.Legend.FormattedValue(LineSeries1, 4));

FormattedValue Method
See also Example

Applies to
TChartLegend component

Declaration
function FormattedValue(ASeries : TChartSeries; ValueIndex : Longint) :
String;
Description
This function returns the corresponding Legend text for the Series ValueIndex point. The
Legend.LegendTextStyle property is used to properly format the point values and labels.

See Also
TChartSeries.ValueFormat
TChartSeries.PercentFormat
TChartSeries.XLabel

FormattedValueLegend Method
See also

Applies to
TChart component

Declaration
function FormattedValueLegend(ASeries: TChartSeries; ValueIndex: Longint):
String;
Description
The FormattedValueLegend function returns the string representation of a Series Point value just as it
would appear in Chart.Legend.
The ValueIndex parameter is the point index.
The Legend.TextStyle property and all other TChartLegend properties are used to create the resulting
string.

See Also
TChartLegend.TextStyle

Frame Example
This code sets the Chart frame:
Chart1.Frame.Visible := True ;
Chart1.Frame.Color := clBlue ;
Chart1.Frame.Width := 1 ;
Chart1.Frame.Style := psDot ;

See Also
TChart.ChartRect
TChart.View3D
TChart.BackColor
TChartGradient
TChartWall
TChartTitle.AdjustFrame
TChartTitle
TChartTitle.Brush

Frame Property (TChartLegend)
See also

Applies to
TChartLegend component

Declaration
property Frame : TChartPen;
Description
The Frame property determines the kind of pen used to draw a frame around Legend rectangle.

Frame Property
See also Example

Applies to
TChart and TChartTitle component

Declaration
property Frame : TChartPen
Description
The Frame property indicates the Pen used to draw a frame around the Chart axis. The frame is
displayed using the Chart.ChartRect coordinates. The TChartPen also defines the TeeChart Title Frame
and is used throughout the TeeChart components to define Pen characteristics.

Frame Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property Frame : TChartPen;
Description
The Frame property determines the kind of pen used to draw a rectangle around a Series Marks.

See Also
TChartLegend.Color

See Also
TSeriesMarks.BackColor
TSeriesMarks.Font
TSeriesMarks.Transparent
TSeriesMarks.Visible

GanttCh Unit
The GanttCh unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TGanttSeries

Types

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

GetASeries Method
See also

Applies to
TChart component

Declaration
function GetASeries : TChartSeries;
Description
The GetASeries function returns the FIRST Active Series in a Chart. If Chart has no Series, or none of
the Series is Active, this function returns NIL.

See Also
TChart.Series
TChart.SeriesList
TChartSeries.Active

GetAxisSeries Method

Applies to
TChart, TDBChart components

Declaration
function GetAxisSeries (Axis : TChartAxis) : TChartSeries ;
Description
This function returns the first Series that depends on the specified Axis. If no Series depend on Axis, the
nil value is returned.

GetBarStyle Method
See also

Applies to
TCustomBarSeries component

Declaration
function GetBarStyle(ValueIndex: LongInt) : TBarStyle;
Description
The GetBarStyle function returns the corresponding Bar Style for a given "ValueIndex" Bar.
The ValueIndex parameter must be a valid bar index in the range of zero to Count - 1.
Normally Bar Styles are the same for all Bar points, but you can use the OnGetBarStyle event to supply
a different Bar style for each Bar point.
This function calls the OnGetBarStyle if assigned.

See Also
TCustomBarSeries.BarStyle
TCustomBarSeries.OnGetBarStyle

GetColorRect Method
See also

Applies to
TChartLegend component

Declaration
function GetColorRect(X1,Y0,Y1:Longint):TRect;
Description
The GetColorRect function returns the rectangle coordinates used to draw the color mark near to
Legend items.
This function needs X origin and Y origin and ending coordinates and calculates the X ending position
based on Legend.ColorWidth property value.
.

See Also
TChartLegend.ColorWidth

GetCursorPos Method

Applies to
TChart, TDBChart components

Declaration
function GetCursorPos:TPoint;
Description
The GetCursorPos function returns a TPoint record containing current mouse cursor position
coordinates in pixels. It calls Windows GetCursorPos and adjusts coordinates to TChart origin position
using ScreenToClient method.

GetCursorValueIndex Example
This code displays the point Label text under the mouse cursor:
procedure TForm1.Chart1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
tmp : Longint;

begin
tmp := PieSeries1.GetCursorValueIndex;
if tmp > -1 then
ShowMessage(PieSeries1.XLabel[tmp]);

end;

GetCursorValueIndex Method
See also Example

Applies to
TChartSeries component

Declaration
function GetCursorValueIndex : LongInt;
Description
The GetCursorValueIndex function returns the Series point index which is close to the mouse Screen
coordinates. It returns -1 if there's no point close to the mouse cursor position.

See Also
TChartSeries.Cursor
TChartSeries.Clicked
TChartSeries.GetCursorValues

GetCursorValues Method
See also

Applies to
TChartSeries component

Declaration
procedure GetCursorValues(Var x , y : Double);
Description
The GetCursorValues method returns the corresponding Series X and Y values where mouse cursor is
over. The X and Y values correspond to the Series associated Axis scales. One example of this can be
found at teedemo.dpr example project under "Cross-Hair" (ucrossh.pas) unit.

See Also
TChartSeries.GetCursorValueIndex
TChartSeries.Cursor
TChartSeries.Clicked

GetDefaultPattern Method
See also

Applies to
All TeeChart Components

Declaration
function GetDefaultPattern(PatternIndex : Longint): TBrushStyle;
Description
The GetDefaultPattern function returns a valid Windows Brush Style from an internal palette of 6
possible Brush styles. The PatterIndex parameter is reduced to one of this 6 possible cases.

See Also
TPieSeries.UsePatterns
TChartLegend.PatternColors

GetEditorClass Example
The GetEditorClass function is now a "Class" function and can be called directly without creating any
instance:
Var tmp : String;
tmp := TLineSeries.GetEditorClass;
instead of:
With TLineSeries.Create(Self) do
try
 tmp := GetEditorClass;
finally
 Free;
end;

GetEditorClass Method
See also Example

Applies to
TChartSeries component

Declaration
class function TChartSeries.GetEditorClass : String;
Description
This function returns the class name of the Series Editor Dialog. The default editor dialog classes are:

Series Editor Class Name Unit File Name
TChartSeries 'TChartSeriesEditor' SERIEDIT
TCustomSeries 'TCustomSeriesEditor' CUSTEDIT
TCustomBarSeries 'TBarSeriesEditor' BAREDIT
TPieSeries 'TPieSeriesEditor' PIEEDIT

Warning:
Series Editor Dialogs must be REGISTERED in the initialization Unit Section:
initialization
RegisterClass (TCustomSeriesEditor) ;

end.

GetFreeSeriesColor Method
See also

Applies to
TChart component

Declaration
function GetFreeSeriesColor(CheckBackground : Boolean) : TColor;
Description
The GetFreeSeriesColor function returns a color from the default color palette not used by any Series.
The CheckBackGround parameter controls if the returned color should or shouldn't be the Chart
BackColor color. This function returns a Color which is not used by any Series in the Chart.

See Also
ColorPalette
IsFreeSeriesColor

GetHorizAxis Example
You can use this to change the Axis properties:
LineSeries1.GetHorizAxis.LabelsOnAxis := False ;

GetHorizAxis Method
See also Example

Applies to
TChartSeries component

Declaration
function GetHorizAxis : TChartAxis;
Description
Every Series is associated either to the Top or Bottom Chart Horizontal Axis. This function returns this
"associated" Axis.

See Also
GetVertAxis

GetLabelsSeries Method
See also

Applies to
TChart component

Declaration
function GetLabelsSeries(Axis : TChartAxis) : TChartSeries;
Description
The GetLabelsSeries function returns the Series component associated with the Axis parameter.
Each Series is associated with an horizontal and vertical axis through the TChartSeries.HorizAxis and
VertAxis properties.
The Axis components call this function to get the correct Series component to draw all Labels.
If no Series exist, or if no Series is associated to the Axis parameter, nil is returned.

See Also
TChartAxis.LabelStyle
TChartSeries.HorizAxis
TChartSeries.VertAxis

GetMarkValue Method
See also

Applies to
TChartSeries component

Declaration
function GetMarkValue(ValueIndex : LongInt) : Double;
Description
The GetMarkValue function returns the corresponding Point value suitable for displaying at Series
Marks. Most Series return the YValue[ValueIndex] value, but some special Series like THorizBarSeries
return the XValue as Axis are inverted. Calling this virtual method assures receiving the proper value.

See Also
TChartSeries.ValueMarkText
TChartSeries.XValue
TChartSeries.YValue
TChartSeries.Marks

GetOriginPos Method
See also

Applies to
TAreaSeries component

Declaration
function GetOriginPos(ValueIndex : LongInt) : Longint;
Description
The GetOriginPos function returns the vertical point coordinate in Screen pixels for a given Area point
origin value. The MultiBar property determines if origin is the Chart.ChartRect.Bottom coordinate or if it's
the PointOrigin for Stacked and Stacked 100% styles.

GetOriginPos Method
See also

Applies to
TBarSeries and THorizBarSeries component

Declaration
function GetOriginPos(ValueIndex : Longint) : Longint;
Description
The GetOriginPos function returns the corresponding screen pixels coordinate of the leftmost horizontal
bar edge.
When MultiBar property is different than Stacked or Stacked 100%, this function returns the YOrigin
screen coordinate.
When several bar Series are stacked, this function returns a different screen coordinate for each Series.
The ValueIndex parameter specifies the bar index.

See Also
TAreaSeries.MultiArea
TChartSeries.PointOrigin

See Also
TCustomBarSeries.MultiBar
TCustomBarSeries.YOrigin
TCustomBarSeries.UseYOrigin

GetRectangle Method
See also

Applies to
TChart, TDBChart components

Declaration
function GetRectangle:TRect; virtual;
Description
The GetRectangle function returns the TChart panel bounding rectangle coordinates. It is virtual as it’s
used by TQRChart component to calculate the exact coordinates when previewing and printing Charts
in QuickReport printable components. You should use GetRectangle when custom drawing on
QuickReport Printer canvas. TChart and TDBChart simply return GetClientRect rectangle coordinates.

See Also
TChart.ChartBounds
TChart.ChartRect
TChart.GetWidthHeight

GetVertAxis Method
See also

Applies to
TChartSeries component

Declaration
function GetVertAxis:TChartAxis;
Description
Every Series is associated either to the Left or Right Chart Vertical Axis. This function returns this
"associated" Axis. You can use this to change the Axis properties:
BarSeries1.GetVertAxis.AxisValuesFormat := '#,##0.0#' ;

See Also
GetHorizAxis

GetWidthHeight Method
See also

Applies to
TChart, TDBChart components

Declaration
Procedure GetWidthHeight(Var tmpWidth,tmpHeight:Longint);
Description
The GetWidthHeight method returns TChart panel’s width and height using TChart.GetRectangle
coordinates. It is equivalent to GetRectangle (Right - Left) and (Bottom - Top) values.

See Also
TChart.GetRectangle

GetYValueList Method

Applies to
TChartSeries component

Declaration
function GetYValueList(AListName:String):TChartValueList; virtual;
Description
All Series types have at least the XValues and YValues ValueLists. Some Series have more ValueLists.
For example, CandleSeries have the "Close", "High" and "Low" valuelists. You can access these
ValueLists by name using the above function:
tmp := CandleSeries1.GetYValueList('HIGH').MaxValue ;
This can be useful if you're doing generic functions.

Gradient Property
See also

Applies to
TChart component

Declaration
property Gradient : TChartGradient;
Description
The Gradient property specifies the colors used to fill Chart background. Chart background is filled using
these two colors: StartColor and EndColor. You can control the drawing output by setting the
TChartGradient.Direction property. Use the Visible property to show / hide filling.

See Also
TChart.BackColor
TChart.Color
TChart.BackImage
TChartGradient.Direction

GradientFill Example
This code fills a Form background:
procedure TForm1.Button1Click(Sender: TObject);
begin
GradientFill(Canvas, ClientRect, clYellow, clBlue, True);

end;

GradientFill Method
See also Example

Applies to
TCanvas

Declaration
procedure GradientFill(Canvas: TCanvas; Const Rect: TRect; top, bottom:
TColor; Horizontal: Boolean);
Description
The GradientFill method is used to fill a Screen area with multi-colored lines to obtain a nice shadow
effect and coloured backgrounds. The Chart.Gradient component uses this method internally. Chart.pas
must be in your uses clause.

See Also
TChart.Gradient

Grid Property
See also

Applies to
TChartAxis component

Declaration
property Grid : TChartPen;
Description
The Grid property determines the kind of pen used to draw the Axis lines at every Axis Label position.
These are the lines which go from "cousin Axis" Minimum to "cousin Axis" Maximum screen positions at
each of our Label's position.

See Also
TChartAxis.Axis
TChartAxis.LabelsFont
TChartAxis.MinorTicks
TChartAxis.OnGetAxisLabel
TChartAxis.Ticks
TChartAxis.TicksInner

GridPen Property
See also

Applies to
TChartAxis component

Declaration
property GridPen : TChartPen
Description
The GridPen axis property indicates the kind of pen used to draw axis Grid lines. Left and Right axis
draw horizontal grid lines, while Top and Bottom axis draw vertical grid lines.
Warning:
Set GridPen.Width := 0 when printing with non solid Pen Styles.

See Also
TChartAxis.Ticks
TChartAxis

Height3D Example
This code draws a vertical "frame":
With Chart1,Canvas do
begin
MoveTo(ChartRect.Left + 10 , ChartRect.Bottom) ;
LineTo(ChartRect.Left + 10 , ChartRect.Top) ;
LineTo(ChartRect.Left + 10 + Width3D , ChartRect.Top - Height3D) ;

end;

Height3D Property
See also Example

Applies to
TChart component

Declaration
property Height3D : Longint
Description
Run-time and read only. The Height3D property determines the height in pixels of the 3D effect. The
Chart.View3D property should be True. It equals zero if Chart.View3D is False.

TChart.SeriesHeight3D
TChart.SeriesWidth3D
TChart.Width3D

HorizAxis Example
You can change the desired Horizontal Axis both at design and runtime:
BubbleSeries1.HorizAxis := aTopAxis ;

HorizAxis Property
See also Example

Applies to
TChartSeries component

Declaration
property HorizAxis : THorizAxis;
Description
The HorizAxis property is of type: THorizAxis. It means by which Horizontal Axis (Top or Bottom axis)
will be the Series horizontally scaled.

See Also
TChartSeries.VertAxis

HorizMargin Property
See also

Applies to
TChartLegend component

Declaration
property HorizMargin : Integer;
Description
Default Value: 0
The HorizMargin property speficies the number of screen pixels between Legend and Chart rectangles.
By default its 0, meaning Legend will calculate a predefined margin based on total Legend width.
It's only used when Legend position is Left or Right aligned.

See Also
TChartLegend.VertMargin
TChart.MarginLeft
TChart.MarginRight

HorizSize Property
See also

Applies to
TSeriesPointer component

Declaration
property HorizSize : Integer;
Description
Default Value: 4
The HorizSize property specifies the Series Pointer width in logical pixels.
Series that derive from TPointSeries usually override the HorizSize and VertSize properties.
For example, TBubbleSeries uses the Radius property to determine the correct HorizSize and VertSize,
so these properties have no effect in that Series.

See Also
TSeriesPointer
TSeriesPointer.VertSize

Horizontal Property
See also

Applies to
TChartAxis component

Declaration
property Horizontal : Boolean;
Description
Run-time and read only. This property returns true if the Axis is horizontal. Chart.TopAxis and
Chart.BottomAxis are horizontal. Chart.LeftAxis and Chart.RightAxis are vertical.
Chart Axis Horizontal OtherSide
================================
LeftAxis False False
TopAxis True True
RightAxis False True
BottomAxis True False
=================================

See Also
Axis.OtherSide function

How to create charts with manually inserted values
Data Aware Charts
If values are manually inserted it means that you do not want TeeChart to automatically retrieve the
Series points from a Table or Query.

1) Place a TChart component in a Delphi Form.

2) Add a Series component via the Chart Editor. (For example, you can choose a BarSeries
component.)

3) In your Form1.OnCreate event (or in a Button1.OnClick event), type the following code:
Series1.Clear; {Where Series1 is your Bar series}
Series1.Add(25 , 'Barcelona' , clTeeColor);
Series1.Add(50 , 'Rome' , clTeeColor);
Series1.Add(30 , 'San Francisco' , clTeeColor);
Series1.Add(50 , 'New York' , clTeeColor);
Series1.Add(40 , 'Los Angeles' , clTeeColor);
Series1.Add(35 , 'London' , clTeeColor);
That's it.
Now lets add a new Line Series component (Series2):

4) Place a Line Series component in the Form.

5) Add the following code to the previous code:
Series2.Clear; {Where Series2 is your LineSeries}
Series2.Add(25 , '' , clTeeColor);
Series2.Add(50 , '' , clTeeColor);
Series2.Add(30 , '' , clTeeColor);
Series2.Add(50 , '' , clTeeColor);
Series2.Add(40 , '' , clTeeColor);
Series2.Add(35 , '' , clTeeColor);
(Notice you do not need to insert the Horizontal Labels again).
clTeeColor is a TeeChart color constant that means "draw the point in the default color". You can assign
a specific color (clRed, clBlue, etc) to each point or you can set the LineSeries1.ColorEachPoint
property to True in order to automatically draw each point with a different color.

If you have X (Horizontal) Coordinates:
Replace the AddY method with AddXY:
Series2.AddXY(15.2 , 25.4 , 'Barcelona' , clBlue);
Other Chart Series types:
Other Series types may use the same methods to add points:
PieSeries1.Add(333 , 'Sales' , clTeeColor);
Whilst some series that rely on more inputs have series specific methods to add points:
BubbleSeries1.AddBubble(15.2 , 25.4 , 13 , '' , clRed); {being 13 the
bubble radius}

How to Create Data-Aware Charts
Manual Charts
The only difference between TChart and TDBChart is TChart does not need the Borland Database
Engine.
However, points must be manually added by programming.
TDBChart, in contrast, accepts Series connected to database components (like TTable, TQuery or
TClientDataset).
TDBChart will retrieve database records and will automatically add the points.

Add a data table to your form
1) Place a TTable component and assign to it an existing Table. It is not necessary to make the table

Active at this stage.

Steps to create a simple data-aware chart
(You can do all steps without programming, using the Chart editor)

2) Place a TDBChart in your form.

3) Right mouse key on the Chart to call up the TeeChart menu then select the Chart editor menu
option or Double-click on the chart to go straight to the Chart editor.

4) In the Chart editor add a Series to the Chart by clicking on the Add button. This will call the
TeeChart Gallery.Select a series type and click OK.

5) Back in the Chart editor select the Series page with the tab selector (or double-click on your series
in the editor series list)

6) On the series page select your new series in the Series Combobox (If you only have one series in
the chart it will automatically be displayed in the combobox). Click on the datasource tab to add
the new datasource.

7) Select Dataset from the dropdown combobox to define the DataSource property.

Now you can set the series data sources:
8) Set the Dataset field to Table1.

9) Now you need to set Table Fields that will be used to draw your data series: Set the Labels field to
the desired table Field. (for example: Table1.CityName) Set the Y values to the desired Vertical
Table Field. (for example: Table1.Population). The fields available in this tab page of the Chart
editor will depend on the series you are adding. For example a LineSeries will a permit the use of
X and Y co-ordinates and an optional Label field, a Pie-series only uses the label field and one
set of values. See the Series unit for more information.

Activate your data
10) Now set Active to True (or Open) the Table. Opening or closing the Table will force TDBChart to

retrieve the records again, thus allowing refresh.

Color in fields:
It is also possible to have the point colors in a Table or Query field. The field must be a Numeric field
containing RGB (Red,Green,Blue) values. Assign the LineSeries1.ColorSource property to this field.
Colors are expressed as numbers, please refer to the Delphi and Windows help to know more about
RGB colors. (TColorType)

See Also
Chart Zooming
Restoring Zoom and Scroll

Increment Example
Chart1.BottomAxis.Increment := DateTimeStep[dtOneHour] ;
Chart1.RightAxis.Increment := 1000 ;

Increment Property
See also Example

Applies to
TChartAxis component

Declaration
property Increment : Double;
Description
Axis Increment is the minimum step between axis labels. It must be a positive number or DateTime
value. TChart will use this value as the starting axis labels step. If there is not enough space for all
labels, TChart will calculate a bigger one. You can use the DateTimeStep constant array for DateTime
increments.

See Also
Axis Maximum
Axis Minimum

InflateMargins Property
See also

Applies to
TSeriesPointer component

Declaration
property InflateMargins : Boolean
Description
The InflateMargins property controls if Chart dimensions will be rescaled to accomodate the
Series.Pointer HorizSize and VertSize pixels. When False, Chart Axis scales will be preserved and
points close to the Axis limits will be partially displayed.

See Also
TSeriesPointer.HorizSize
TSeriesPointer.VertSize

Inverted Property
See also

Applies to
TChartAxis component

Declaration
property Inverted : Boolean;
Description
Default False
When Inverted is True, Axis Minimum and Maximum scales will be swapped. Axis labels and Series
points will be displayed accordingly. This applies both to vertical and horizontal axis.

Inverted Property (TChartLegend)
See also

Applies to
TChartLegend component

Declaration
property Inverted : Boolean;
Description
Default False
The Inverted property indicates, when True, to draw the Legend items in opposite direction. Legend
strings are displayed starting at top for Left and Right Aligment and starting at left for Top and Bottom
Legend orientations. You can use the Legend.FirstValue property to determine the ValueIndex for the
first Legend text item.

See Also
TChartAxis.Maximum
TChartAxis.Minimum

See Also
TChartLegend.Alignment
TChartLegend.FirstValue

InvertedStairs Property

Applies to
TLineSeries TAreaSeries component

Declaration
property InvertedStairs : Boolean;
Description
This boolean property controls the LineSeries or AreaSeries drawing.
When Stairs is set to True you may set InvertedStairs to True to alter the direction of the step. - see
Stairs.
In most normal situations, the Series draws a line between each Line point. This makes the Line appear
as a "mountain" shape. However, setting Stairs to TRUE will make the Series draw 2 Lines between
each pair of points, thus giving a "stairs" appearance. This is most used in some financial Chart
representations. You may invert the stair by setting InvertedStairs to true.

IsDateTime Example
if Chart1.BottomAxis.IsDateTime then...

IsDateTime Method
Example

Applies to
TChartAxis component

Declaration
function IsDateTime : Boolean;
Description
Each Chart Axis can consider values to be normal numbers or DateTime values. This function returns if
the Axis dependent values are DateTime or not.

IsFreeSeriesColor Example
This code sets the MySeries1.SeriesColor to the clBlue color only if clBlue is not used by any other
Series or the Chart BackColor:
if Chart1.IsFreeSeriesColor (clBlue , True) then
 MySeries1.SeriesColor := clBlue ;
IsFreeSeriesColor returns if AColor is NOT used by any Chart.Series.
If Chart1.IsFreeSeriesColor(clRed) then
LineSeries1.SeriesColor := clRed ;

IsFreeSeriesColor Method
See also Example

Applies to
TChart component

Declaration
function IsFreeSeriesColor(AColor: TColor; CheckBackground: Boolean) :
Boolean;
Description
The IsFreeSeriesColor returns whether the AColor parameter is used by any Series or not. The
CheckBackGround parameter controls if AColor will be checked against the Chart.BackColor or not.

See Also
ColorPalette
GetFreeSeriesColor

IsScreenHighColor Example
This code shows or hides the Chart.Gradient:
Chart1.Gradient.Visible := Chart1.IsScreenHighColor ;

IsScreenHighColor Method
See also Example

Applies to
TChart component

Declaration
function IsScreenHighColor : Boolean;
Description
The IsScreenHighColor function returns True if the current video mode color depth is greater than 256
colors.

See Also
WarningHighColor

IsValidDataSource Method
See also

Applies to
TChart component

Declaration
function IsValidDataSource(ASeries: TChartSeries; AComponent: TComponent):
Boolean; virtual;
Description
The IsValidDataSource function determines if the AComponent parameter is a valid component to
provide the point values for the ASeries component.
The TChart component accepts TChartSeries components as valid DataSources. The TDBChart
component accepts TChartSeries and any TDataSet (TTable, TQuery, TClientDataset, etc) components
as valid DataSources.
This function is used at design-time and run-time to control Series have valid point values sources.

See Also
TChartSeries.DataSource

IsValidSeriesSource Method

Applies to
TChartSeries component

Declaration
function IsValidSeriesSource(Value : TChartSeries): Boolean; virtual;
Description
The IsValidSeriesSource function checks if the Value series parameter is a valid candidate series point
provider.
When TChartSeries.DataSource property is assigned to another Series, all points inserted in that Series
are automatically propagated to all other associated Series.
This function is currently used only in TRSIFunction component. This special Series type allows only
one specific Series type as DataSource: a TOHLCSeries or TCandleSeries.
All other Series components will return True.

IsValidSourceOf Method

Applies to
TChartSeries component

Declaration
function IsValidSourceOf(Value: TChartSeries): Boolean; virtual;
Description
The IsValidSourceOf function returns False if the Value parameter is the same as Self.
It's used to validate the DataSource property both at design and run-time.

LabelHeight Method
See also

Applies to
TChartAxis component

Declaration
function LabelHeight(Const Value: Double): LongInt;
Description
This function returns the Axis Label height of the Value parameter. It uses the Axis formatting specifiers,
the Axis Labels Font and the Labels rotation and style.

See Also
LabelWidth

LabelStyle Property
See also

Applies to
TChartAxis component

Declaration
property LabelStyle: TAxisLabelStyle;
Description
Setting the Axis.LabelStyle property to talAuto will force the Axis to guess what labels will be drawn.
For each Active associated Series, if the Series have XLabels then the LabelStyle will be talText.
If no Series have XLabels, then LabelStyle will be talValue.
If no Active Series are associated with the Axis, the LabelStyle will be talNone.

See Also
Chart.OnGetAxisLabel event

LabelValue Method
See also

Applies to
TChartAxis component

Declaration
function LabelValue(Const Value: Double): String;
Description
This function returns the corresponding text representation of the Value parameter. It uses the Axis
formatting specifiers.

See Also
LabelHeight
LabelWidth

LabelWidth Method
See also

Applies to
TChartAxis component

Declaration
function LabelWidth(Const Value : Double) : Longint;
Description
This function returns the Axis Label width of the Value parameter. It uses the Axis formatting specifiers,
the Axis Labels Font and the Labels rotation and style.

See Also
LabelHeight

Labels Property
See also

Applies to
TChartAxis component

Declaration
property Labels : Boolean;
Description
Default Value: True
The Labels property shows or hide Axis Labels. Set it to False to draw the Axis Ticks and / or Grid lines
only.
Use the LabelsAngle and LabelStyle properties to control Label appearing.
Use the Visible property to show or hide both the Axis Labels, Ticks and Grid lines.

See Also
TChartAxis.Grid
TChartAxis.LabelsAngle
TChartAxis.LabelsFont
TChartAxis.LabelStyle
TChartAxis.OnGetAxisLabel
TChartAxis.Ticks
TChartAxis.Visible

LabelsAngle Property
See also

Applies to
TChartAxis component

Declaration
property LabelsAngle : Integer;
Description
Default Value: 0
The LabelsAngle property defines the rotation degree applied to each Axis Label. Valid degree angle
values are 0, 90, 180, 270 and 360. Some printers and video drivers fail when drawing rotated fonts or
calculating the rotated font dimensions. Metafile Charts containing rotated fonts sometimes place text at
sligthly different coordinates.

See Also
TChartAxis.Grid
TChartAxis.Labels
TChartAxis.LabelsFont
TChartAxis.LabelStyle
TChartAxis.OnGetAxisLabel
TChartAxis.Ticks
TChartAxis.Visible

LabelsFont Property
See also

Applies to
TChartAxis component

Declaration
property LabelsFont : TFont;
Description
The LabelsFont property determines the Font used to draw Axis Labels. The default Font is Arial.
TrueType fonts look much better and perform more exactly. The LabelsFont.Size determines the number
of non-overlapping axis labels.

See Also
TChartAxis.Labels
TChartAxis.LabelsAngle
TChartAxis.LabelStyle
TChartAxis.Grid
TChartAxis.OnGetAxisLabel
TChartAxis.Ticks
TChartAxis.Visible

LabelsOnAxis Property
See also

Applies to
TChartAxis component

Declaration
property LabelsOnAxis : Boolean;
Description
Default Value: True
The LabelsOnAxis property controls if Labels just at Axis Minimum and Maximum positions will be
shown or NOT.
Set it to False, for example, to remove the "0" zero axis Label when Axis scales are from 0 to 1001:
Chart1.LeftAxis.SetMinMax(0, 1001);
Chart1.LeftAxis.LabelsOnAxis := False;
When Chart.View3D is True, Axis scales can vary to adapt Series minimum and maximum points
dimensions.

See Also
TChartAxis.Labels
TChartAxis.LabelsFont
TChartAxis.LabelStyle
TChartAxis.LabelsAngle
TChartAxis.OnGetAxisLabel

LabelsSeparation Property
See also

Applies to
TChartAxis component

Declaration
property LabelsSeparation : Integer;
Description
Default Value: 10
The LabelsSeparation property specifies the percent amount of minimum distance between Axis Labels.
Setting it to "0" zero makes TChartAxis skip calculating overlapping labels. (No clipping is performed).
Labels visibility depends also on LabelsFont size, LabelsAngle and Axis.Increment properties.

See Also
TChartAxis.Labels
TChartAxis.LabelsFont
TChartAxis.LabelStyle
TChartAxis.LabelsAngle
TChartAxis.OnGetAxisLabel

LabelsSize Example
You can set this property both at design or runtime:
Chart1.RightAxis.LabelsSize := 50 ; (50 pixels separation)

LabelsSize Property
Example

Applies to
TChartAxis component

Declaration
property LabelsSize : Integer;
Description
The LabelsSize property is 0 by default.
Therefore the space between the Axis and the Chart will be automatically calculated based on the Axis
Labels Width and Height.

Last Example
This is the same value as the Count - 1 index value:
LineSeries1.YValues[LineSeries1.YValues.Count - 1] := 1234.56 ;
ShowMessage(FloatToStr(LineSeries1.YValues.Last));

Last Method
Example

Applies to
TChartValueList component

Declaration
function Last : Double;
Description
This function returns the Last point value. This is the same value as the Count - 1 index value:

LastValueIndex Property
See also

Applies to
TChartSeries component

Declaration
property LastValueIndex : Longint;
Description
This property returns the ValueIndex of the Last point in the Series that has an X value which is between
the Horizontal Axis Maximum and Minimum values.
When no Zoom is applied to the Chart, and the Axis are Automatic, the LastValueIndex is the same as
TChartSeries.Count-1.
If the Series has no points or there are no visible points, the LastValueIndex returns -1.

See Also
FirstValueIndex

DepthAxis Property
See also

Applies to
TChart component

Declaration
property DepthAxis : TChartAxis;
Description
The DepthAxis property determines the Labels and formatting attributes of Depth Chart axis (Z axis). It
also controls where Series points will be placed.
Every TChart component has five TChartAxis: Left, Top, Right, Bottom and Depth (Z).
Refer to TChartAxis help topic for a complete description.

See Also
TChartAxis
TChart.LeftAxis
TChart.TopAxis
TChart.RightAxis
TChart.BottomAxis
TChart

LeftAxis Property
See also

Applies to
TChart component

Declaration
property LeftAxis : TChartAxis;
Description
The LeftAxis property determines the Labels and formatting attributes of Left Chart side. It also controls
where Series points will be placed.
Every TChart component has five TChartAxis: Left, Top, Right, Bottom and Depth (Z).
The LeftAxis is pre-defined to be:
Horizontal := False ;
OtherSide := False ;
Refer to TChartAxis help topic for a complete description.

See Also
TChartAxis
TChart.DepthAxis
TChart.TopAxis
TChart.RightAxis
TChart.BottomAxis
TChart

BackWall Property
See also

Applies to
TChart component

Declaration
property BackWall : TChartWall;
Description
The BackWall property determines the drawing attributes of Chart Back wall. Chart.View3D and
Chart.View3DWalls properties must be
set to TRUE for BackWall to be shown.
You can use the Color, Size, Pen and Brush TChartWall's properties to control the wall appearance.
A Chart component has also a BottomWall and LeftWall properties.

See Also
TChartWall
TChart.BottomWall
TChart.LeftWall

LeftWall Property
See also

Applies to
TChart component

Declaration
property LeftWall : TChartWall;
Description
The LeftWall property determines the drawing attributes of Chart Left side. Chart.View3D and
Chart.View3DWalls properties must be
set to TRUE for LeftWall to be shown.
You can use the Color, Size, Pen and Brush TChartWall's properties to control the wall appearance.
A Chart component has also a BottomWall and BackWall properties.

See Also
TChartWall
TChart.BackWall
TChart.BottomWall

Legend Property
See also

Applies to
TChart component

Declaration
property Legend : TChartLegend;
Description
The Legend property determines the text and drawing attributes of Chart's textual representation of
Series and Series values.
The TChartLegend component draws a rectangle and for each Series in a Chart (or for each point in a
Series) outputs a text representation of that Series (or that point).
You can use the Legend.LegendStyle and Legend.TextStyle properties to control the text used to draw
the legend.
The Legend can be positioned at Left, Right, Top and Bottom chart sides using the Legend.Alignment
property.
Use the Legend.Visible property to show / hide the Legend.
The Inverted property makes Legend to draw text starting from bottom.
The Frame, Font and Color properties allow you to change Legend appearance.
The Legend.ColorWidth property determines the percent width of each item's "colored" mark.
The Legend.FirstValue property controls which Series (or Series point) will be used to draw first Legend
item.

See Also
TChart
TChartLegend

LegendStyle Property
See also

Applies to
TChartLegend component

Declaration
property LegendStyle : TLegendStyle;
Description
Default Value: lsAuto
The LegendStyle property defines which items will be displayed in Chart Legend.
lsSeries style shows the TChartSeries.Title of all active Series in a Chart. Whenever a Series Title is
empty, the Series Name property is used.
lsValues style shows a text representation of all points of the first active Series in a Chart.
lsLastValues style shows the last point value and the TChartSeries.Title of all active Series in a Chart. It
is useful for real-time charting, where new points are being added at the end of each Series.
lsAuto style (the default) means LegendStyle will be lsSeries when there's more than one Active Series,
and lsValues when there's only one Series in a Chart.
The TChartLegend.TextStyle property determines how the Series point values are formatted.

See Also
TChartLegend.TextStyle
TChartSeries.Active

LineBrush Property
See also

Applies to
TLineSeries component

Declaration
property LineBrush : TBrushStyle;
Description
Default Value: bsSolid
The LineBrush property defines the brush style used to fill LineSeries contents.
It has effect only when Chart1.View3D is True.
The Legend reflects automatically the selected brush style.
Setting different brush styles can be useful when printing on monochrome printers.

See Also
TLineBrush.LinePen

LinePen Example
This code changes FastLineSeries's pen style:
FastLineSeries1.LinePen.Style := psDot;

LinePen Property
See also Example

Applies to
TAreaSeries and TFastLineSeries components

Declaration
property LinePen : TChartPen
Description
The LinePen property determines what kind of pen will be used for drawing the line connecting all
points.

See Also
TChartPen

LinkedSeries Property

Applies to
TChartSeries component

Declaration
property LinkedSeries : TList read FLinkedSeries;
Description
(Advanced)
The LinkedSeries public property is a standard Delphi TList component that stores all Series
components linked to the Series. Series can be linked to other Series by using TeeChart gallery
Functions or setting the DataSource property directly. All Series maintain a list of dependent Series to
notify on point value changes to allow them to recalculate and redraw. TeeChart uses this list internally
so you will seldom need to access it directly.

Locate Method

Applies to
TChartValueList component

Declaration
function Locate (Const Value:Double):Longint;
Description
This new function returns the corresponding point index which has the specified “Value”. You can use it
to calculate X co-ordinates based on Y values or vice-versa:
tmp:=LineSeries1.XValues.Locate(EncodeDate(1996,1,1));
if tmp<>-1 then

ShowMessage(FloatToStr(LineSeries1.YValues.Valuetmp));

Logarithmic Property

Applies to
TChartAxis component

Declaration
property Logarithmic : Boolean;
Description
This boolean property scales the Axis Logarithmically when True. Axis Minimum and Maximum values
should be greater than 0, and Axis cannot be of DateTime type.

MandatoryValueList Example
This code shows the most important value for a Series 5th point:
(remember points start at zero)
ShowMessage(FloatToStr(LineSeries1.MandatoryValueList.Value[4]));

MandatoryValueList Method
See also Example

Applies to
TChartSeries component

Declaration
function MandatoryValueList : TChartValueList;
Description
The MandatoryValueList function returns the Series ValueList that stores the most important Series
values. Most Series types return the YValues list, but some return the XValues list (THorizBarSeries, for
example).

See Also
TChartSeries.ValueList
TChartValueList

Margin Properties
Example

Applies to
TChart, TDBChart components

Declaration
property MarginLeft : Integer;
property MarginTop : Integer;
property MarginRight : Integer;
property MarginBottom : Integer;
Description
Each Chart component has four margin properties: LeftMargin, RightMargin, TopMargin, BottomMargin.
These properties are expressed in screen pixels. Default values are 8 for top and bottom margins and
12 for left and right margins.

Margins Example
You can change both at design and runtime the margins properties:
Chart1.LeftMargin := 60 ;

MarkPercent Example
This will show the 0 Point Y Value in percent format: 12.23%
ShowMessage(LineSeries1.MarkPercent(0, False));
This adds the total to the end of the string: 12.23% of 55400
ShowMessage(LineSeries1.MarkPercent(0, True));
This function uses the PercentFormat formatting string property. When AddTotal is TRUE, then the
global string variable PercentOf is used to separate the percent text from the total text. By default,
PercentOf string is: " of ".
You can change it to the desired text:
PercentOf := ' from ' ;
This string constant is 32 char length.

MarkPercent Method
Example

Applies to
TChartSeries component

Declaration
function MarkPercent(ValueIndex: Longint; AddTotal: Boolean): String;
Description
This function returns a textual representation of a Point Value. Series components use this function
internally to paint Marks in percent format. This function uses the PercentFormat formatting string
property. When AddTotal is TRUE, then the global string variable PercentOf is used to separate the
percent text from the total text. By default, PercentOf string is: " of ".

MarkText Method

Applies to
TChart, TDBChart components

Declaration
function MarkText (ASeries : TChartSeries ; ValueIndex : Longint) : String
;
Description
This function returns the formatted Series.Mark text of the ValueIndexth Series point.

Marks Property
See also

Applies to
TChartSeries component

Declaration
property Marks : TSeriesMarks;
Description
The Marks Series subcomponent defines all necessary properties to draw a mark near to each Series
point.
A mark consist of a colored rectangle with a text string on it and a line that indicates which points
corresponds to which mark.
You can control all Marks formatting attributes and styles. The TChartSeries.OnGetMarkText event can
be used to override the default Marks text strings or to hide specific point Marks.
Each different Series type draws it's marks differently.

See Also
TChartSeries.OnGetMarkText

MaxLabelsWidth Method
See also

Applies to
TChartAxis component

Declaration
function MaxLabelsWidth : Longint;
Description
This function returns the maximum width in Screen pixels of all Axis Labels.
It is internally used to calculate the Axis Increment in order to prevent overlapped Axis Labels.

See Also
LabelWidth
LabelHeight

MaxLegendWidth Method
See also

Applies to
TChartLegend component

Declaration
function MaxLegendWidth(NumLegendValues: LongInt): LongInt;
Description
The MaxLegendWidth function returns the width in pixels of the longest Legend item string.
The NumLegendValues parameter determines how many Legend items should be considered.
This function traverses all Series Titles or Series points (depending on Legend.LegendStyle) and
calculates the maximum width.
It is used internally to calculate Legend's width.

See Also
TChartLegend.Font
TChartLegend.ColorWidth
TChartLegend.LegendStyle

MaxMarkWidth Method
See also

Applies to
TChart, TDBChart components

Declaration
function MaxMarkWidth : Longint;
Description
This function returns the Maximum width of the Active Series Maximum Marks witdh. Series Marks must
be Visible.
That can be used to adjust the Chart Margins in order to accomodate the biggest Series Mark.

MaxMarkWidth Method

Applies to
TChartSeries component

Declaration
function MaxMarkWidth : LongInt;
Description
Returns the maximum width of all Series Marks.

See Also
SeriesMarks.Clip

MaxPointsPerPage Property
See also

Applies to
TChart component

Declaration
property MaxPointsPerPage : LongInt;
Description
Default Value: 0
The MaxPointsPerPage property controls "TeeChart AutoPaging".
Setting it to a number greater than zero makes TeeChart to internally divide Series points in Pages.
You can then navigate across Chart pages by using the Chart.Page and Chart.NumPages properties.
For each Page, TeeChart will automatically calculate and display the corresponding Series points.
The last page can have less number of points than other pages. You can use the Chart.ScaleLastPage
to control if last page will be "stretched" or not.

See Also
TChart.ScaleLastPage
TChart.Page
TChart.NumPages
TChart.OnPageChange

MaxTextWidth Method

Applies to
TChart, TDBChart components

Declaration
function MaxTextWidth : LongInt;
Description
This function returns the Maximum width of the Active Series Maximum XLabels width. That applies only
to Series which have XLabels.

MaxValue Property
See also

Applies to
TChartValueList component

Declaration
property MaxValue : Double;
Description
The MaxValue property returns the highest of all values inside the list.
As new points are being added to Series, the TChartValueList object calculates the MaxValue, MinValue
and TotalABS properties.
This applies to all Series lists of values, such as XValues, YValues, etc.
Calling TChartValueList.RecalcMinMax method forces to recalculate MaxValue, MinValue and TotalABS
values.

See Also
TChartValueList.MinValue
TChartValueList.TotalABS
TChartSeries.YValues
TChartValueList.RecalcMinMax

MaxXValue Example
Chart1.BottomAxis.Automatic := False ;
Chart1.BottomAxis.Maximum := Chart1.MaxXValue(Chart1.BottomAxis) ;

MaxXValue Method
Example

Applies to
TChart, TDBChart components

Declaration
function MaxXValue (AAxis : TChartAxis): Double ;
Description
This function returns the calculted Maximum Horizontal value for the specified AAxis. AAxis can be
TopAxis or BottomAxis.
Calculated means that the return value will the Maximum value of the Maximum Series X Values. Only
Series with the HorizAxis equal to AAxis will be considered.

MaxXValue Method (TChartSeries)

Applies to
TChartSeries component

Declaration
function MaxXValue : Double; virtual;
Description
Returns the Maximum Value of the Series X Values List.

MaxYValue Example
Chart1.LeftAxis.Automatic := False ;
Chart1.LeftAxis.Maximum := Chart1.MaxYValue(Chart1.LeftAxis) ;

MaxYValue Method
Example

Applies to
TChart, TDBChart components

Declaration
function MaxYValue (AAxis : TChartAxis): Double;
Description
This function returns the calculted Maximum Vertical value for the specified AAxis. AAxis can be LeftAxis
or RightAxis.
Calculated means that the return value will the Maximum value of the Maximum Series Y Values. Only
Series with the VertAxis equal to AAxis will be considered.

MaxYValue Method (TChartSeries)
See also

Applies to
TChartSeries component

Declaration
function MaxYValue : Double; virtual;
Description
The MaxYValue function returns the highest of all the current Series Y point values.
Some special Series types override this function to calculate the maximum Y value correctly.
For example the TBubbleSeries component calculates the highest Y + Radius point.

See Also
TChartSeries.MinYValue
TChartSeries.MaxXValue
TChartSeries.MinXValue
TChart.MaxYValue
TChart.MinYValue
TChart.MaxXValue
TChart.MinXValue

MaxZOrder Property
See also

Applies to
TChart component

Declaration
property MaxZOrder : Longint
Description
Run-time and read only. The MaxZOrder property indicates the Chart depth in number of Series. When
Chart.View3D is True, each Series has a Z order. The Series Z order defines the order along the Z axis
when Series are displayed. The MaxZOrder property is the maximum Z order of all active Series. Some
Series share a same Z order (stacked Bars, stacked Areas, etc).

See Also
TChartSeries.ZOrder
TChart.SeriesHeight3D
TChart.SeriesWidth3D

Maximum Property
See also

Applies to
TChartAxis component

Declaration
property Maximum:Double
Description
Axis Maximum is the highest value an Axis will use to scale their dependent Series point values.
It can be any number or DateTime value.
It must be greater than the Axis.Minimum value.
VERY IMPORTANT:
Axis.Automatic property must be FALSE.
If Axis.Automatic is True, the Axis will set Maximum and Minimum values to Maximum and Minimum
dependent Series values.

See Also
Axis Minimum
Axis Increment

MinValue Property
See also

Applies to
TChartValueList component

Declaration
property MinValue : Double;
Description
Run-time and read only. The MinValue property returns the lowest of all values inside the list. See
TChartValueList.MaxValue property for more information.

See Also
TChartValueList.MaxValue
TChartValueList.TotalABS
TChartSeries.YValues
TChartValueList.RecalcMinMax

MinXValue Example
Chart1.TopAxis.Automatic := False ;
Chart1.TopAxis.Minimum := Chart1.MinXValue(Chart1.TopAxis) ;

MinXValue Method
Example

Applies to
TChart, TDBChart components

Declaration
function MinXValue (AAxis: TChartAxis): Double;
Description
This function returns the calculted Minimum Horizontal value for the specified AAxis. AAxis can be
TopAxis or BottomAxis.
Calculated means that the return value will the Minimum value of the Minimum Series X Values. Only
Series with the HorizAxis equal to AAxis will be considered.

MinXValue Method (TChartSeries)

Applies to
TChartSeries component

Declaration
function MinXValue : Double; virtual;
Description
Returns the Minimum Value of the Series X Values List.

MinYValue Example
Chart1.RightAxis.Automatic := False ;
Chart1.RightAxis.Minimum := Chart1.MinYValue(Chart1.RightAxis) ;

MinYValue Method
Example

Applies to
TChart, TDBChart components

Declaration
function MinYValue (AAxis: TChartAxis): Double;
Description
This function returns the calculted Minimum Vertical value for the specified AAxis. AAxis can be LeftAxis
or RightAxis.
Calculated means that the return value will the Minimum value of the Minimum Series Y Values. Only
Series with the VertAxis equal to AAxis will be considered.

MinYValue Method (TChartSeries)

Applies to
TChartSeries component

Declaration
function MinYValue : Double; virtual;
Description
Returns the Minimum Value of the Series Y Values Lists. As some Series have more than one Y Values
List, this Minimum Value is the "Minimum of Minimums" of all Series Y Values lists.

Minimum Property
See also

Applies to
TChartAxis component

Declaration
property Minimum : Double;
Description
Axis Minimum is the lowest value an Axis will use to scale their dependent Series point values. Can be
any number or DateTime value.
Must be lower than the Axis.Maximum value.
VERY IMPORTANT:
Axis.Automatic property must be FALSE. If Axis.Automatic is True, the Axis will set Maximum and
Minimum values to Maximum and Minimum dependent Series values.

See Also
Axis Maximum
Axis

MinorTickCount Example
This code sets the number of Axis Minor ticks:
Chart1.LeftAxis.MinorTickCount := 4 ;

MinorTickCount Property
See also Example

Applies to
TChartAxis component

Declaration
property MinorTickCount : Integer
Description
Default 3
The MinorTickCount property determines the number of Axis minor ticks. Axis minor ticks are the Axis
sub-ticks between major ticks.
It should be a positive number greater than zero and less than half the number of pixels between major
ticks, otherwise Minor ticks will "overlap".

See Also
TChartAxis.MinorTickLength
TChartAxis.MinorTicks

MinorTickLength Property
See also

Applies to
TChartAxis component

Declaration
property MinorTickLength : Integer;
Description
Default 2
The MinorTickLength property indicates the length in pixels of Axis Minor ticks. You can control the
number of Minor ticks by using the TChartAxis.MinorTickCount property. Minor ticks are displayed using
the TChartAxis.MinorTicks pen property.

See Also
TChartAxis.MinorTickCount
TChartAxis.MinorTicks

MinorTicks Example
This code changes the Axis Minor tick pen:
With Chart1.BottomAxis do
begin
 MinorTickCount := 5 ;
 BottomAxis.MinorTickLength := 8 ; { pixels }
 BottomAxis.MinorTicks.Visible := True ;
 BottomAxis.MinorTicks.Color := clRed ;
 BottomAxis.MinorTicks.Width := 2 ;
end;

MinorTicks Property
See also Example

Applies to
TChartAxis component

Declaration
property MinorTicks : TChartPen;
Description
The MinorTicks property is the Pen used to draw the Axis Minor ticks. Minor ticks will only be displayed if
MinorTicks.Visible is True.

See Also
TChartAxis.MinorTickCount
TChartAxis.MinorTickLength

Mode Property

Applies to
TChartPen component

Declaration
property Mode : TPenMode;
Description
The Mode property determines how the pen draws lines on the canvas.
See Delphi help: TPen.Mode

Monochrome Property
See also

Applies to
TChart component

Declaration
property Monochrome : Boolean;
Description
Default Value: False
The Monochrome property will allow Charts to be draw using only black and white colors. It's not yet
completely implemented. Right now it uses the internal Bitmap.Monochrome property, and the output
quality isn't really good.

See Also
TChart.MonochromePrinting

MonochromePrinting Property
See also

Applies to
TChart component

Declaration
property MonochromePrinting : Boolean:
Description
Default Value: True
The MonochromePrinting property will allow Charts to be sent to the printer in black and white or color
mode. This property will NOT change any Chart color. It will ONLY set the Printer to use the Black &
White printer's mode. (If the printer is a color printer, like a HP850C printer).
The Chart.Monochrome property will allow charts to be drawn using Black & White colors only.

See Also
TChart.Monochrome

MultiArea Property
See also

Applies to
TAreaSeries component

Declaration
property MultiArea : TMultiArea
Description
Default maNone
The MultiArea property determines the kind of displayed Area when there's more than one AreaSeries
with the same ParentChart. The default value is maNone, meaning all Areas will be drawn one behind
the other. maStacked and maStacked100 modes will draw each Area on top of previous one.
msStacked100 adjusts each individual point to a common 0..100 axis scale. The order which Series are
accumulated depends on the Chart.SeriesList property.

See Also
TChartSeries.PointOrigin
MultiBar

MultiBar Property
See also

Applies to
TBarSeries and THorizBarSeries component

Declaration
property MultiBar : TMultiBar
Description
If you have more than one TBarSeries in the same Chart, then you can choose if they will be drawn
side-by-side, back-to-front or Stacked. Side-by-side means the Bar width will be divided by the number
of Bar Series.

See Also
TChartSeries.PointOrigin
TAreaSeries.MultiArea

Multiplier Property
Example

Applies to
TChartValueList component

Declaration
property Multiplier : Double;
Description
The Multiplier property will be used as a factor to convert all Series points X and / or Y values.

Multiplier property Example
LineSeries1.YValues.Multiplier := -5 ;

Name Property

Applies to
TChartValueList component

Declaration
property Name : String;
Description
The Name property is used to identify all Series lists of values. All Series have an "Y" and "X" value lists.
Some Series have more lists of values, such as TCandleSeries, which have OpenValues, CloseValues,
HighValues and LowValues lists.

NextPage Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure NextPage;
Description
When MaxPointsPerPage is greater than Zero, TeeChart automatically divides point values in Pages.
Calling NextPage is the same as Page := Page + 1 The NumPages chart property returns the total
number of pages.

See Also
MaxPointsPerPage
ScaleLastPage property
PreviousPage

NextTask Property
See also Example

Applies to
TGanttSeries component

Declaration
property NextTask : TChartValueList;
Description
The NextTask property is a TList component that holds the Gantt bar index each Gantt bar is connected
to.
When a Gantt bar is added to TGanttSeries, it's NextTask value is assigned to -1 by default. That means
the Gantt bar is NOT connected to any other Gantt Bar.
You need to set a valid bar index to NextTask.

NextTask property Example

Example:

Let's add two Gantt bars:
GanttSeries1.Clear;
GanttSeries1.AddGantt(EncodeDate(1997,1,1),
 EncodeDate(1997,1,31),
 5, { <-- vertical user defined position }
 'Some period...');
GanttSeries1.AddGantt(EncodeDate(1997,3,1),
 EncodeDate(1997,3,31),
 6, { <-- vertical user defined position }
 'Other period...');
Now let's "connect" the first Gantt bar to the second:
GanttSeries1.NextTask[0] := 1 ;
GanttSeries1.Repaint;

See Also
TGanttSeries.AddGantt

NormalBarColor Property
See also

Applies to
TCustomBarSeries component

Declaration
property NormalBarColor : TColor;
Description
Run-time and read only.
The NormalBarColor property returns the color used to fill the Bar sides.
Each different Bar style uses NormalBarColor to fill a different Bar area.

See Also
TCustomBarSeries.DarkColor
TCustomBarSeries.DarkerColor

NumPages Method
See also

Applies to
TChart component

Declaration
function NumPages : Longint;
Description
The NumPages function returns the number of Chart pages. The TChart.MaxPointsPerPage property
must be greater than zero to activate auto paging.
The TChart.Page property determines the current visible page.
This code traverses all Chart pages:
for t := 1 to Chart1.NumPages do Chart1.Page := t ;

See Also
TChart.OnPageChange
TChart.MaxPointsPerPage
TChart.Page

NumSampleValues Example
The NumSampleValues function is now a "Class" function and can be called directly without creating
any instance:
Var tmp : Longint;
tmp := TLineSeries.NumSampleValues;
instead of:
With TLineSeries.Create(Self) do
try
 tmp := NumSampleValues;
finally
 Free;
end;

NumSampleValues Method
See also Example

Applies to
TChartSeries component

Declaration
function NumSampleValues : Longint;
Description
Each Series draws random values at design mode unless you connect the Series component to other
Series component or to a DataSet (Table,SQL,TClientDataset) component.
This virtual function returns the predefined number of random values each Series draws.

See Also
FillSampleValues method

OffsetPercent Example
This code sets 3 Bar series OffsetPercent to achieve an overlayed Bar chart:
BarSeries1.OffsetPercent := 25 ; { % of Bar width }
BarSeries2.OffsetPercent := 50 ; { % of Bar width }
BarSeries3.OffsetPercent := 75 ; { % of Bar width }

OffsetPercent Property
See also Example

Applies to
TBarSeries and THorizBarSeries components (TCustomBarSeries)

Declaration
property OffsetPercent : Integer
Description
Default 0
The OffsetPercent property indicates the Bar displacement in percent of Bar size. Displacement is
horizontal for TBarSeries and vertical for THorizBarSeries. This property can be used to create
"overlayed" Bar charts. You can specify positive or negative values.

See Also
TBarSeries.BarWidth
THorizBarSeries.BarHeight
TCustomBarSeries.SideMargins
TCustomBarSeries.BarWidthPercent

OnAfterAdd Example
Here we use the OnAfterAdd event to arrange the XAxis scale as new points are added. }
procedure TScrollForm.LineSeries1AfterAdd(Sender: TChartSeries;
 ValueIndex: Longint);
begin
 With Sender.GetHorizAxis do { <-- with the Horizontal Axis... }
 Begin
 Automatic := False; { <-- we dont want automatic scaling }
 { In this example, we will set the Axis Minimum and Maximum values to
show One Hour of data ending at last point Time plus 5 minutes}

 Minimum := 0;
 Maximum := Sender.XValues.MaxValue +

DateTimeStep[dtFiveMinutes];
 Minimum := Maximum - DateTimeStep[dtOneHour];
 end;
end;

OnAfterAdd Event
Example

Applies to
TChartSeries component

Declaration
property OnAfterAdd : TSeriesOnAfterAdd;
Description
Every Series component has an OnAfterAdd event. This event is triggered whenever a new point has
been Added or Inserted.

OnAfterDraw Event
See also

Applies to
TChart component

Declaration
property OnAfterDraw: TNotifyEvent;
Description
This event gets called just after TChart has drawn all series.

Warning:
Do not modify any property in this event that would force a TChart repaint. Doing this will cause a
recursive loop.

See also
TChartSeries.AfterDrawValues
TChartSeries.BeforeDrawValues

OnAllowScroll Event

Applies to
TChart component

Declaration
property OnAllowScroll: TChartAllowScrollEvent;
Description

Warning:
TChartAllowScrollEvent=Procedure (Sender:TChartAxis;
Var Amin, AMax: Double;
Var AllowScroll:Boolean) of object;

OnBeforeAdd Event
Example

Applies to
TChartSeries component

Declaration
property OnBeforeAdd : TSeriesOnBeforeAdd;
Description
Every Series component has an OnBeforeAdd event. This event is triggered whenever a new point is
going to be Added or Inserted. You can delegate this event in your Form's code to, for example, control if
new points will be really added to the Series. This event also happens when a Series component is
connected to a Table or Query.

OnBeforeAdd Example
Example 1 : In this example we'll deny points with Y values less than 100 to be added:
Function TForm1.OnBeforeAdd (Sender : TChartSeries) : Boolean ;
Begin
result := Sender.YValues.TempValue >= 100 ;

End ;
Example 2 : In this example we'll filter which Table records are valid : (Assuming Table1 is the
Series.DataSource)
Function TForm1.OnBeforeAdd (Sender : TChartSeries) : Boolean ;
Begin
result := Table1MyDateField.AsDateTime >= StrToDate ('1/1/96') ;

End ;

OnClearValues Event

Applies to
TChartSeries component

Declaration
property OnClearValues : TSeriesOnClear;
Description
This event will notify you when the Series Clears and removes their Point values.

OnClick Event
See also Example

Applies to
TChartSeries component

Declaration
property OnClick : TSeriesClick
Description
TChartSeries components will notify you when users click on a Series point. Each TChartSeries
component calculates if mouse coordinates are over a point screen regions. For example, TPieSeries
point regions are the Pie Sectors. TBarSeries detects clicked Bar regions. The ValueIndex parameter is
the Series point number.

See Also
TChartSeries.OnDblClick

OnClick Example
We will show a message to the user when he or she clicks a PieSeries chart:
procedure TForm1PieSeriesOnClick(Sender:TChartSeries; ValueIndex:Longint;
Button:TMouseButton; Shift: TShiftState; X, Y: Integer);

Begin
ShowMessage ('This point value: ' + FloatToStr (Sender.YValues
[ValueIndex])) ;

End;

OnClickAxis Event
See also

Applies to
TChart component

Declaration
property OnClickAxis : TChartClickAxis;
Description
An OnClickAxis event occurs whenever the user clicks near to a Chart axis subcomponent.
The Sender parameter specifies the Chart component that triggered the event.
The Axis parameter is the corresponding clicked Chart axis. It can be the LeftAxis, RightAxis, TopAxis or
BottomAxis Chart subcomponent.
The Button, Shift, X and Y parameters determine the mouse button and mouse cursor coordinates at the
time the axis was clicked.
This event has a higher priority than OnClickBackGround event and lower priority than OnClickSeries
event.

See Also
TChart.OnClickBackGround
TChart.OnClickLegend
TChart.OnClickSeries
TChart.OnDblClick

OnClickBackground Event
See also

Applies to
TChart component

Declaration
property OnClickBackground : TChartClick;
Description
An OnClickBackGround event occurs whenever the user clicks onto a Chart space outside Axis, Series
points or Chart Legend.
It has the lower priority of all other mouse events.
The Sender parameter specifies the Chart component that originated the event.
The Button, Shift, X and Y parameters determine the mouse button and mouse cursor coordinates at the
time the Chart was clicked.

See Also
TChart.OnClickAxis
TChart.OnClickLegend
TChart.OnClickSeries
TChart.OnDblClick

OnClickLegend Event
See also

Applies to
TChart component

Declaration
property OnClickLegend : TChartClick;
Description
An OnClickLegend event occurs whenever the user clicks onto Chart Legend rectangle.
The Sender parameter specifies the Chart component that originated the event.
The Button, Shift, X and Y parameters determine the mouse button and mouse cursor coordinates at the
time the Chart Legend was clicked.

See Also
TChart.OnClickAxis
TChart.OnClickBackGround
TChart.OnClickSeries
TChart.OnDblClick

OnClickPointer Event

Applies to
TChartSeries component

Declaration
property OnClickPointer : TSeriesClickPointerEvent
Description
TSeriesClickPointerEvent=Procedure(Sender:TCustomSeries; ValueIndex:Longint; X, Y: Integer) of
object; This event is similar to the OnClick event except it will only trigger when mouse clicks over
Pointers, not Lines.

OnClickSeries Example
This event procedure shows the user at which series point (any drawn part of series) they have clicked.
procedure TForm1.DBChart1ClickSeries (Sender: TCustomChart;
 Series: TChartSeries; ValueIndex: Longint; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 ShowMessage(' Clicked Series: '+Series.Name+' at point: '+
inttostr(valueindex));

end;

OnClickSeries Event
See also Example

Applies to
TChart component

Declaration
property OnClickSeries : TChartClickSeries;
Description
An OnClickSeries event occurs whenever the user clicks onto any Chart Series point. The Sender
parameter specifies the Chart component that originated the event. The Series parameter is the
corresponding clicked Series component, and the ValueIndex parameter refers to the exact clicked point
in the Series. Series have also an OnClick event that can be used individually to catch clicked points.
The Button, Shift, X and Y parameters determine the mouse button and mouse cursor coordinates at the
time the Series point was clicked.

WARNING:
Use the CancelMouse property to control how the mouse button behaves with dual modes (scroll or
zoom after a ClickOnSeries event)

See Also
TChart.OnClickAxis
TChart.OnClickBackGround
TChart.OnClickLegend
TChart.OnDblClick
TChartSeries.OnClick
TChartSeries.OnClickPointer

OnDblClick Event
See also

Applies to
TChart component

Declaration
property OnDblClick : TNotifyEvent;
Description
An OnDblClick event occurs whenever the user double clicks onto a Chart. The Sender parameter
specifies the Chart component that originated the event.
You must cast the Sender parameter to TChart or TDBChart class to use its properties and methods:
(Sender as TChart).Color := clYellow ;
To retrieve if user double clicked onto a Series point, you can use this code:
procedure TForm1.Chart1DblClick(Sender: TObject);
var tmp:Longint;
begin
tmp:=BarSeries1.GetCursorValueIndex;
if tmp<>-1 then
begin

{ show the point index }
ShowMessage('You double-clicked the: '+IntToStr(tmp)+' point !');

{ tell TeeChart NOT to continue with zoom or scroll }
CancelMouse;
end;

end;
The TChartSeries.GetCursorValueIndex function returns the corresponding point under mouse cursor
position. It returns -1 if no point is under mouse cursor. The TChartSeries.GetCursorValues function
returns the mouse cursor X and Y position in Axis scales coordinates. The
TChartSeries.XScreenToValue and TChartSeries.YScreenToValue functions convert from screen pixel
coordinates to Series scales.

WARNING:
Use the CancelMouse property to control how the mouse button behaves with dual modes (scroll or
zoom after the OnDblClick event)

Example:
ShowMessage('Double-Clicked Chart!');
CancelMouse;

See Also
TChartSeries.GetCursorValueIndex
TChartSeries.GetCursorValues
TChartSeries.XScreenToValue
TChartSeries.YScreenToValue
TChartSeries.CalcXPos
TChartSeries.CalcYPos
TChartSeries.CalcXPosValue
TChartSeries.CalcYPosValue

OnDblClick Event (TchartSeries)
See also

Applies to
TChartSeries component

Declaration
property OnDblClick : TSeriesClick
Description
TChartSeries components will notify you when users double click on a Series point. This is similar to the
TChartSeries.OnClick event Each TChartSeries component calculates if mouse coordinates are over a
point screen regions. For example, TPieSeries point regions are the Pie Sectors. TBarSeries detects
clicked Bar regions. The ValueIndex parameter is the Series point number.

See Also
TChartSeries.OnClick

OnGetAxisLabel Event

Applies to
TChart, TDBChart components

Declaration
property OnGetAxisLabel : TAxisOnGetLabel
Description
An Event is triggered for each Axis Label painted. There are two different uses for OnGetAxisLabel:
1) : Axis Labels are Values. Is this case, the Series parameter will be nil, and the ValueIndex will be -
1.
2) : Axis Labels are Series points. The Series parameter will be a valid TChartSeries, and the
ValueIndex will be the current Series point position. You can change the LabelText referred parameter
for drawing a different Axis Label.

OnGetBarStyle Event
See also Example

Applies to
TCustomBarSeries components

Declaration
property OnGetBarStyle : TGetBarStyleEvent;
Description
The OnGetBarStyle event is called for every Bar that's going to be displayed. You can specify a different
Bar style for each Bar point. Using this event overrides the BarStyle property.

OnGetBarStyle Example
This code will show specific Bar styles depending on Bar's Y values:
procedure TForm1.BarSeries1GetBarStyle(Sender: TCustomBarSeries; ValueIndex:
Longint; var TheBarStyle: TBarStyle);

begin
if Sender.YValue[ValueIndex] < 1000 then
TheBarStyle := bsPyramid
else

TheBarStyle := bsRectangle ;
end;

See Also
TCustomBarSeries.BarStyle

OnGetLegendPos Event
See also

Applies to
TChart component

Declaration
property OnGetLegendPos : TOnGetLegendPos;
Description
An OnGetLegendPos event occurs whenever a Legend item is going to be displayed.
You can used this event to force specific X , Y and / or XColor Legend pixel coordinates.
The Chart component calculates the default X,Y and XColor parameters before calling this event.
The Sender parameter is the Chart component that originated the event.
The Index parameter corresponds to the specific Legend item number going to be displayed. It can be
either an Active Series Title or a Series point index, depending on the TChartLegend.LegendStyle
property.

See Also
TChartLegend.LegendStyle
TChart.OnGetLegendRect

OnGetLegendRect Event
See also

Applies to
TChart component

Declaration
property OnGetLegendRect : TOnGetLegendRect;
Description
An OnGetLegendRect event occurs whenever the Chart Legend is going to be displayed.
You can use this event to force an specific Legend position and dimensions.
The Rect parameter determines the default Legend position and dimensions in screen pixels.
After drawing the Legend, the available Chart space will be decreased to not overlap with Legend
unless you set the TChartLegend.ResizeChart property to False.
When using this event you'll need to use the TChart.OnGetLegendPos event as well, to supply the exact
coordinates for each Legend item.

See Also
TChartLegend.Alignment
TChartLegend.OnGetLegendPos

OnGetLegendText Event
Example

Applies to
TChart, TDBChart components

Declaration
property OnGetLegendText : TOnGetLegendText
Description
You can use this event to override the text strings that TChartLegend paints.
TChartLegend has two different modes (or LegendStyles):

lsSeries Legend contains Series Names or Titles.

lsValues Legend contains a Series values or labels.
If the LegendStyle is lsAuto, TChartLegend paints in lsSeries mode if more than one Active Series exists
in the Chart.

OnGetLegendText Example
By using this event, you can set the LegendText string parameter to your customized text:
procedure TForm1.DBChart1GetLegendText(Sender: TCustomChart; LegendStyle:
TLegendStyle; Index: Longint; var LegendText: OpenString);

begin
if LegendStyle = lsSeries then
LegendText := 'My Series #: ' + IntToStr(Index)

else
LegendText := 'Value #: '+ IntToStr(Index) ;

end;

OnGetMarkText Event
Example

Applies to
TChartSeries component

Declaration
property OnGetMarkText : TSeriesOnGetMarkText;
Description
This event notifies the user that a Mark Text String must be supplied. MarkText string contains the
default text representation. You can alter MarkText for the Series to paint a customized mark.

OnGetMarkText Example
This example will show a customized point Mark at Point Index: 3
Procedure TForm1LineSeries1GetMarkText(Sender : TChartSeries ; ValueIndex :
Longint ; Var MarkText : String)

Begin
if ValueIndex = 3 then

MarkText := 'Hello World';
End;

OnGetNextAxisLabel Event
See also

Applies to
TChart component

Declaration
property OnGetNextAxisLabel : TAxisOnGetNextLabel;
Description
An OnGetNextAxisLabel event is used to define custom Axis Labels. Using this event you can
customize Axis Labels positions and values.
This event gets called in a loop until you set the Stop parameter to False OR the LabelValue parameter
is BIGGER than the Axis Maximum value.
The Stop parameter is True by default, meaning that if it's not set to False the first time this event gets
called, TeeChart will draw the default Axis Labels.
The Sender parameter specifies the Axis subcomponent. It can be the Chart LeftAxis, RightAxis,
TopAxis or BottomAxis axis components.
The LabelIndex parameter is an incremental counter for you to know which Label the event is asking for
a value.
The LabelValue parameter must be filled with the desired Axis Label value.
You can use the TChart.OnGetAxisLabel event to override the default Axis Labels text with your
preferred Axis Label string representation.
An example of use of this event can be as follows:
procedure TAxisLabelsForm.Chart1GetNextAxisLabel(Sender: TChartAxis;
 LabelIndex: Longint; var LabelValue: Double; var Stop: Boolean);
 begin
 if Sender=Chart1.LeftAxis then
 Begin
 { In this example, we want the Vertical Left Axis to show
 labels only for positive values, starting at zero and
 with 250 label increment.
 }
 if LabelValue>=250 then LabelValue:=LabelValue+250
 else LabelValue:=250;
 End;
 { we want more labels !! }
 Stop:=False;
 end;

See Also
TChart.OnGetAxisLabel
TChartAxis.Increment
TChartAxis.ExactDateTime

OnPageChange Event
See also Example

Applies to
TChart component

Declaration
property OnPageChange : TNotifyEvent;
Description
An OnPageChange event occurs whenever the TChart.Page property has been changed and before the
Chart repaints the new page points.
The TChart.MaxPointsPerPage property must be greater than zero to activate the automatic paging
mechanism.
This event DOES NOT get called the first time the TChart.Page property is set to 1.

OnPageChange event Example
You can use this event to, for example, display the current Chart page:
procedure TForm1.Chart1PageChange(Sender: TObject);
begin
Label1.Caption:='Current page: '+IntToStr((Sender as TChart).Page)+ ' of
'+IntToStr((Sender as TChart).NumPages) ;

end;

See Also
TChart.MaxPointsPerPage
TChart.Page
TChart.PreviousPage
TChart.NextPage
TChart.NumPages

OnProcessRecord Event
See also

Applies to
TDBChart component

Declaration
property OnProcessRecord : TProcessRecordEvent;
Description
An OnProcessRecord event occurs for each record that is retrieved from the database.
The TDBChart component triggers this event whenever a new point has been added to the Series.
The DataSet parameter is the database component (Table, Query, etc) from which records are being
loaded.
You can raise an Abort silent exception in this event to notify TDBChart to stop retrieving records and to
NOT add the current record point.

See Also
TDBChart.RefreshData
TDBChart.RefreshDataSet
TChartSeries.DataSource

OnScroll Event
See also

Applies to
TChart component

Declaration
property OnScroll : TNotifyEvent;
Description
An OnScroll event occurs when users scroll Chart contents by dragging the right mouse button.
This event gets called repeteadly while users move the mouse BEFORE the Chart component is
repainted to show the new Axis scales.
You can use this event toghether with TChart.OnZoom and TChart.OnUndoZoom events to know
changes on Axis scales.

See Also
TChartAxis.Scroll
TChartAxis.SetMinMax
TChart.OnUndoZoom
TChart.OnZoom

OnUndoZoom Event
See also Example

Applies to
TChart component

Declaration
property OnUndoZoom : TNotifyEvent;
Description
An OnUndoZoom event occurs when Chart Axis scales are reset to the Minimum and Maximum values
that fit all Series points. Users can undo zoom by dragging the left mouse button drawing a rectangle
from bottom-right to top-left. You can undo zoom by calling the TChart.UndoZoom procedure. Both
techniques cause this event to be triggered. You can use this event together with TChart.OnZoom and
TChart.OnScroll events to react to changes in Axis scales.

OnUndoZoom Example
This code will reset axis scales at UndoZoom event:
procedure TForm1.Chart1UndoZoom(Sender: TObject);
begin
With Sender as TChart do
begin

LeftAxis.SetMinMax(0, 100);
BottomAxis.SetMinMax(EncodeDate(1996,1,1), EncodeDate(1996,12,31));

end;
end;

See Also
TChart.OnScroll
TChart.UndoZoom
TChart.OnZoom
TChart.ZoomPercent
TChart.ZoomRect
TChartAxis.Scroll
TChartAxis.SetMinMax

OnZoom Event
See also

Applies to
TChart component

Declaration
property OnZoom : TNotifyEvent;
Description
An OnZoom event occurs whenever Chart contents is being zoomed.
Zoom can be performed by dragging the mouse at run-time or by calling the TChart.ZoomRect or
TChart.ZoomPercent methods.
This event gets called BEFORE the Chart component is repainted to show the new Axis scales.
You can use this event toghether with TChart.OnUndoZoom and TChart.OnScroll events to know
changes on Axis scales.

See Also
TChart.OnScroll
TChart.OnUndoZoom
TChart.UndoZoom
TChart.ZoomPercent
TChart.ZoomRect
TChartAxis.Scroll
TChartAxis.SetMinMax

Order Example
This code creates a new TLineSeries component that draws a triangle:
LineSeries1.Clear;
LineSeries1.XValues.Order:=loNone;
LineSeries1.AddXY(-100, 0,'',clRed);
LineSeries1.AddXY(0,100,'',clBlue);
LineSeries1.AddXY(100, 0,'',clGreen);
LineSeries1.AddXY(-100, 0,'',clYellow); { the closing line }

Order Property
See also Example

Applies to
TChartValueList component

Declaration
property Order : TChartListOrder
Description
Run-time only. The Order property determines if points will be automatically sorted or it they will remain
always at their original positions. This Order is used by default by the Series XValues to draw lines from
Left to Right. Setting the XValues.Order property to loNone will respect the points order at point creation.
This can be used to draw polygons.

See Also
TChartValueList

OriginalCursor Property

Unit

Chart

Applies to
All TeeChart components

Declaration
property OriginalCursor : TCursor;
Description
This public property returns the original Chart.Cursor property. Used to reset the cursor when the mouse
moves over the series.

OtherSide Property
See also

Applies to
TChartAxis component

Declaration
property OtherSide : Boolean;
Description
Run-time and read only. This property returns true if the Axis is the RightAxis or TopAxis. Chart.TopAxis
and Chart.RightAxis are in the OtherSide. Chart.LeftAxis and Chart.BottomAxis are not in the OtherSide.
Chart Axis Horizontal OtherSide
==================================
LeftAxis False False
TopAxis True True
RightAxis False True
BottomAxis True False
==================================

See Also
Axis.Horizontal function
TChartAxis.Horizontal
TChartAxis

Owner Property

Applies to
TChartValueList component

Declaration
property Owner : TChartSeries;
Description
Read-only and run time.
The Owner property returns the TChartSeries that owns the TChartValueList.
It can be only accessed at run-time and it's read-only.

Page Property
See also

Applies to
TChart component

Declaration
property Page : LongInt;
Description
Run-time only.
The Page property determines the current visible points of Series in a Chart with MaxPointsPerPage
property greater than zero.
When TChart.MaxPointsPerPage property is greater than zero, TeeChart internally divides all Series
points in "pages".
Each page is assigned a different initial and ending X coordinates.
The TChart.NumPages property returns the total number of pages. It equals to the total number of
Series points divided the MaxPointsPerPage property.
The TChart.PreviousPage and TChart.NextPage methods decrement or increment the Page property
respectively.

See also
TChart.MaxPointsPerPage
TChart.NextPage
TChart.NumPages
TChart.PreviousPage

ParentChart Example
In Form1, we'll create and show another Form (Form2), and assign Form1.LineSeries1 to
Form2.ChartInForm2 :
With TForm2.Create(Self) do
try
Self.LineSeries1.ParentChart := ChartInForm2 ;
ShowModal ;

finally
Free ;

end ;
That will show Form2 (containing a Chart component) and drawing Form1.LineSeries1.

ParentChart Property
Example

Applies to
TChartSeries component

Declaration
property ParentChart : TCustomChart
Description
The Series.ParentChart propery is mandatory. Each Series component must be "attached" to either a
TChart or a TDBChart component. You can change which Chart component will "own" the Series both at
design and run-time. When you add a series to a Chart using the Chart editor, ParentChart is set
automatically - otherwise you may set it via the Object Inspector.
Advanced:
You can also set the Series.ParentChart property to Chart components in different Forms:

ParentChart Property (TChartTitle)

Applies to
TChartTitle component

Declaration
property ParentChart : TChart;
Description
The ParentChart property is a reference to the TChart component that owns the TChartTitle.

ParentSeries Property (TSeriesPointer)
See also

Applies to
TSeriesPointer component

Declaration
property ParentSeries : TChartSeries;
Description
Run-time and read only.
The ParentSeries property returns the TChartSeries owner of Pointer subcomponent.

ParentSeries Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property ParentSeries : TChartSeries;
Description
Read-only and run time.
The ParentSeries property returns the Series component that owns the TSeriesMarks subcomponent.
All Series types own a Marks subcomponent of TSeriesMarks class.

See Also
TChartSeries.Marks

See Also
TPointSeries.Pointer

PatternColors Property
See also

Applies to
TChartLegend component

Declaration
property PatternColors : Boolean;
Description
Default True
Run-time only. The PatternColors property indicates Legend will use the corresponding Brush style of
each Series to fill the Legend.ColorWidth rectangle. It's available at run-time. It will probably be included
at design-mode in future TeeChart upgrades. Some Series like TPieSeries allow to specify a different
Brush style for each Point.

See Also
TChartLegend.ColorWidth
TLineSeries.LineBrush
TAreaSeries.AreaBrush
TPieSeries.UsePatterns
TBarSeries.BarBrush

PatternPalette Global Constant
See also

Applies to
Global Constant

Declaration
Const MaxDefaultPatterns = 6;

PatternPalette : Array[1..MaxDefaultPatterns] of TBrushStyle =
(bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross,

bsDiagCross);
Description
The PatternPalette stores a default set of Brush patterns. These patterns are used in TPieSeries
component to paint each different pie slice with a different brush style.
A future TeeChart version will increment the number of available brush patterns.

See Also
TPieSeries.UsePatterns

Pen Property (TChartWall)
See also

Applies to
TChartWall component

Declaration
property Pen : TChartPen
Description
The Pen property determines the kind of pen used to draw the Chart Walls frame. The
Chart.View3DWalls property should be True to make walls visible.

Pen Property
See also

Applies to
TSeriesPointer component

Declaration
property Pen : TChartPen;
Description
The Pen property determines the kind of pen used to draw a frame around Series Pointers.
You can make it invisible by setting Pen.Visible property to False.

See Also
TChart.View3DWalls
TChartWall.Brush
TChartWall.Color

See Also
TSeriesPointer.Brush
TSeriesPointer.Visible

PercentFormat Example
BubbleSeries1.PercentFormat := '##0.0# %';
See Delphi help under FormatFloat Function for complete details.

PercentFormat Property
Example

Applies to
TChartSeries component

Declaration
property PercentFormat : String;
Description
Chart Series components have a PercentFormat property. PercentFormat is a standard Delphi
formatting string specifier. It is used to draw the Series Marks Percent Style figures.

PercentOf Global Constant
Example

Applies to
All TeeChart components

Declaration
property PercentOf : String[10];
Description
The PercentOf global string variable contains the default text separator between percents and totals.
The default value is " of ".
This shows: " 23 % of 34555 "
Changing PercentOf at runtime will NOT automatically redraw the Chart. You will need to call
Chart.Invalidate for the Chart to being repainted.

PercentOf Global Constant Example
PercentOf := ' of total: ' ;
Chart1.Invalidate ;

PiePen Property
See also

Applies to
TCircledSeries component

Declaration
property PiePen : TChartPen;
Description
The PiePen property determines the kind of pen used to draw the outmost circle. TPolarSeries uses
CirclePen.

See Also
TCircledSeries.Circled

PieValues Property
See also

Applies to
TPieSeries component

Declaration
property PieValues : TChartValueList;
Description
The PieValues property stores the Pie slice values. It's a standard TList, so you can access it as follows:
tmp := PieSeries1.PieValues[3] ;
Warning:
You should call AddPie to ADD Pie points and Delete to REMOVE Pie points.

See Also
TPieSeries.AddPie
TChartSeries.Delete

PointOrigin Method
See also

Applies to
TChartSeries component

Declaration
function PointOrigin(ValueIndex: Longint; SumAll: Boolean): Double;
Description
The PointOrigin function returns the summed values of more than one Series point. The summed values
are those returned by GetMarkValue function. It's only used by Series types with Stacked or Stacked
100% styles such as TBarSeries, THorizBarSeries and TAreaSeries.

See Also
TChartSeries.GetMarkValue
TBarSeries.MultiBar
THorizBarSeries.MultiBar
TAreaSeries.MultiArea

PointToAngle Method
See also

Applies to
TCircledSeries component

Declaration
function PointToAngle(x , y : Longint) : Double;
Description
The PointToAngle function returns the angle from the XY point parameter to the circle center. It currently
works with Circled ellipses.
The formula used to calculate the Angle is:
result:=ArcTan(Abs(y-CircleYCenter)/Abs(x-CircleXCenter));
Angles are returned in radians from 0 to 2*PI.

PointToAngle Method (TPieSeries)

Applies to
TPieSeries component

Declaration
function PointToAngle (x , y : Longint) : Double ;
Description
Given a point in pixel coordinates (x,y) this function returns the corresponding Angle (0 to 360). This is
used internally by TPieSeries to calculated the Clicked Pie Sector.

See Also
TCircledSeries.AngleToPos
TCircledSeries.RotationAngle
TCircledSeries.XRadius
TCircledSeries.YRadius

Pointer Property

Applies to
TPointSeries component

Declaration
property Pointer : TSeriesPointer;
Description
The Pointer property is a subcomponent of TPointSeries, TLineSeries and all other derived TPointSeries
components like TBubbleSeries.
Each point in a TPointSeries is drawn using the Pointer properties.
Pointer contains several properties to control the formatting attributes of Points like Pen, Brush,
Draw3D, Visible, etc.
Please refer to TSeriesPointer help page for a complete description of TSeriesPointer subcomponent.

PositionPercent Property
See also

Applies to
TChartAxis component

Declaration
property PositionPercent : Integer;
Description
Default = 0
The PositionPercent property defines the position, as a percentage of Chart width or height (depending
on whether it is applied to a Horizontal Axis or a Vertical Axis) of the Position of the Axis to which it is
applied. Left and Top are 0,0 positions.
Use with StartPosition and EndPosition properties to define the Axis position on a Chart. You may use
these properties with default and additional Axis, see the example below:

Example
//Creates a new Vertical Axis and defines a position for it.
procedure TForm1.BitBtn2Click(Sender: TObject);
Var MyAxis : TChartAxis ;
begin
 MyAxis := TChartAxis.Create(Chart1);
 Series2.CustomVertAxis := MyAxis;
 //You can modify any property of the new created axes, such as the axis
color or axis title

 With MyAxis do
 begin
 Axis.Color:=clGreen ;
 Title.Caption := 'Extra axis' ;
 Title.Font.Style:=[fsBold];
 Title.Angle := 90;
 PositionPercent := 20; //percentage of Chart rectangle
 StartPosition:=50;
 EndPosition:=100;
 end;
end;

See Also
TChartAxis.StartPosition
TChartAxis.EndPosition
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax

EndPosition Property
See also

Applies to
TChartAxis component

Declaration
property EndPosition : Integer;
Description
Default = 0
The EndPosition property defines the position, as a percentage of Chart width or height (depending on
whether it is applied to a Horizontal Axis or a Vertical Axis) of the End position of the Axis to which it is
applied. Left and Top are 0,0 positions.
Use with StartPosition and PositionPercent properties to define the Axis position on a Chart.

See Also
TChartAxis.StartPosition
TChartAxis.PositionPercent
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax

StartPosition Property
See also

Applies to
TChartAxis component

Declaration
property StartPosition : Integer;
Description
Default = 0
The StartPosition property defines the position, as a percentage of Chart width or height (depending on
whether it is applied to a Horizontal Axis or a Vertical Axis) of the Start position of the Axis to which it is
applied. Left and Top are 0,0 positions.
Use with PositionPercent and EndPosition properties to define the Axis position on a Chart.

See Also
TChartAxis.EndPosition
TChartAxis.PositionPercent
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax

PosAxis Property
See also Example

Applies to
TChartAxis component

Declaration
property PosAxis : Integer;
Description
Run-time and read only.
The PosAxis property returns the corresponding Axis position in logical coordinate. This position
corresponds to an horizontal coordinate for LeftAxis and RightAxis, and a vertical coordinate for TopAxis
and BottomAxis components.
It is calculated when Axis line is being drawn.
It can used to detect Axis mouse clicks or to custom draw at Axis relative positions.
The TChart.ChartRect and TChart.ChartBounds properties determine the TChart rectangle and
TChartAxis dimensions.

PosAxis property Example
This code draws a second Axis line of "clRed" color:
procedure TForm1.Chart1AfterDraw(Sender: TObject);
begin
With Chart1,Canvas do
begin

Pen.Color:=clRed;
Pen.Width:=2;
MoveTo(ChartRect.Left,BottomAxis.PosAxis);
LineTo(ChartRect.Right,BottomAxis.PosAxis);

end;
end;
Using the TChart.ChartRect and TChartAxis coordinates properties makes same code to both draw onto
Screen and Printer. Never use absolute properties:
BAD: LineTo(50, 75);
GOOD: LineTo(ChartRect.Left + 50, ChartRect.Bottom + 75);

See Also
TChart.ChartBounds
TChart.ChartRect
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax
TChartAxis.PosLabels
TChartAxis.PosTitle

PosLabels Property
See also

Applies to
TChartAxis component

Declaration
property PosLabels : Integer;
Description
Run-time and read only.
The PosLabels property returns the corresponding Axis Labels position in logical coordinate. This
position corresponds to an horizontal coordinate for LeftAxis and RightAxis Labels, and a vertical
coordinate for TopAxis and BottomAxis Labels.
It is calculated when Axis labels are being drawn. Axis Labels rotation and font size do not affect this
property.
It can used to detect Axis Labels mouse clicks or to custom draw at Axis Labels relative positions.
The TChart.ChartRect and TChart.ChartBounds properties determine the TChart rectangle and
TChartAxis dimensions.
Please read TChartAxis.PosAxis property description for an example of use.

See Also
TChart.ChartBounds
TChart.ChartRect
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax
TChartAxis.PosAxis
TChartAxis.PosTitle

PosTitle Property
See also

Applies to
TChartAxis component

Declaration
property PosTitle : Integer;
Description
Run-time and read only.
The PosTitle property returns the corresponding Axis Labels position in logical coordinate. This position
corresponds to an horizontal coordinate for LeftAxis and RightAxis Labels, and a vertical coordinate for
TopAxis and BottomAxis Labels.
It is calculated when Axis Title text is being drawn. Axis Title rotation and font size do not affect this
property.
It can used to detect Axis Labels mouse clicks or to custom draw at Axis Labels relative positions.
The TChart.ChartRect and TChart.ChartBounds properties determine the TChart rectangle and
TChartAxis dimensions.
Please read TChartAxis.PosAxis property description for an example of use.

See Also
TChart.ChartBounds
TChart.ChartRect
TChartAxis.CustomDraw
TChartAxis.CustomDrawMinMax
TChartAxis.PosAxis
TChartAxis.PosLabels

PrepareCanvas Method
See also

Applies to
TSeriesPointer component

Declaration
procedure PrepareCanvas(ColorValue : TColor);
Description

The PrepareCanvas method arranges all internal Canvas properties like Pen, Brush and background
color to be ready to draw the Series pointer.

The ColorValue parameter is used as the pointer background color.

This method is internally called by many Series types.

See Also
TSeriesPointer.Draw

PreviousPage Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PreviousPage ;
Description
When MaxPointsPerPage is greater than Zero, TeeChart automatically divides point values in Pages.
Calling PreviousPage is the same as Page := Page - 1 The NumPages chart property returns the total
number of pages.

See Also
MaxPointsPerPage
ScaleLastPage property
NextPage

Print Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure Print ;
Description
This method will send the Chart to the currently selected Printer. The current Printer orientation (Portrait
or Landscape) can be changed prior to call PrintRect.

See Also
PrintPortrait
PrintOrientation
PrintLandscape
PrintRect
PrintPartial
Draw

PrintLandscape Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PrintLandscape;
Description
This method will set the current Printer orientation to Landscape (Horizontal paper). Then, the default
Chart.Print method will be called and the previous Printer orientation will be restored.

See Also
PrintPortrait
PrintOrientation
Print
PrintRect
PrintPartial
Draw

PrintMargins Example
This code prints a Chart at Top / Right paper corner:
With Chart1 do
begin
PrintMargins.Left := 60 ;
PrintMargins.Top := 5 ;
PrintMargins.Right:= 10 ;
PrintMargins.Bottom:= 75 ;
PrintLandscape;

end;

PrintMargins Property
See also Example

Applies to
TChart component

Declaration
property PrintMargins : TRect;
Description
Default (15, 15, 15, 15)
Run-time and read only. The PrintMargins property defines the Left, Top, Right and Bottom printer paper
margins. These margins are expressed in percent of paper dimensions.

See Also
TChart.Print
TChart.PrintRect
TChart.PrintResolution

PrintOrientation Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PrintOrientation (AOrientation : TPrinterOrientation) ;
Description
This method will send the Chart to the currently selected Printer forcing the paper orientation to be
AOrientation. The old Printer orientation is restored after printing.

See Also
PrintPortrait
PrintLandscape
PrintRect
PrintPartial
Draw

PrintPartial Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PrintPartial (Const R : TRect) ;
Description
This method will send the Chart to the currently selected Printer, scaled to the R rectangular region. The
current Printer orientation (Portrait or Landscape) can be changed prior to call PrintRect. The biggest
rectangular region is the (0,0,Printer.PageWidth-1,Printer.PageHeight-1)
The main difference between PrintPartial and PrintRect is that the first one does not call the Printer
BeginDoc and EndDoc methods.

See Also
PrintPortrait
PrintOrientation
PrintLandscape
PrintRect
Draw

PrintPartialCanvas Method
See also Example

Applies to
TChart component

Declaration
procedure PrintPartialCanvas(PrintCanvas: TCanvas; Const PrinterRect:
TRect);
Description
The PrintPartialCanvas method can be used to send a Chart to the Printer device. This method
assumes the Printer job has been started and do not ejects the Printer page. You can determine the
printed chart position and dimensions in the PrinterRect parameter.
This method allows printing more than one chart on the same page, or printing charts, custom text and
custom drawings.
The TChart.PrintResolution property controls how much "wysiwyg" printing will be applied.

PrintPartialCanvas method Example
This code prints a chart on an already started printed job:
Chart1.PrintPartialCanvas(Printer.Canvas, Rect(200, 200, 1000, 1000));
There are many other methods to print charts. See "See Also".

See Also
TChart.Print
TChart.PrintLandscape
TChart.PrintOrientation
TChart.PrintPartial
TChart.PrintPartialCanvasToScreen
TChart.PrintPortrait
TChart.PrintRect
TChart.PrintResolution

PrintPartialCanvasToScreen Method
See also

Applies to
TChart component

Declaration
procedure PrintPartialCanvasToScreen(PrintCanvas: TCanvas; Const
ScreenRect,PaperRect: TRect);
Description
The PrintPartialCanvasToScreen method allows drawing charts to screen canvases as they would look
on a printer device.
The ScreenRect parameter defines the destination rectangle coordinates in pixels.
The PaperRect parameter defines virtual rectangle coordinates in printer units.
This method is used internally by the Print Preview Dialog to output chart contents to an imaginary
"paper" drawn on screen.
There's currently a problem due to using Delphi canvases and anisotropic canvas mode that makes
Windows GDI resources to decrease until the application is closed.

See Also
TChart.Print
TChart.PrintLandscape
TChart.PrintOrientation
TChart.PrintPartial
TChart.PrintPartialCanvas
TChart.PrintPortrait
TChart.PrintRect
TChart.PrintResolution

PrintPortrait Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PrintPortrait ;
Description
This method will set the current Printer orientation to Portrait (Vertical paper). Then, the default
Chart.Print method will be called and the previous Printer orientation will be restored.

See Also
PrintLandscape
PrintOrientation
Print
PrintRect
PrintPartial
Draw

PrintRect Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure PrintRect (Const R : TRect) ;
Description
This method will send the Chart to the currently selected Printer, scaled to the R rectangular region. The
current Printer orientation (Portrait or Landscape) can be changed prior to call PrintRect. The biggest
rectangular region is the (0,0,Printer.PageWidth-1,Printer.PageHeight-1)

See Also
PrintPortrait
PrintOrientation
PrintLandscape
PrintPartial
Draw

PrintResolution Property
See also

Applies to
TChart component

Declaration
property PrintResolution : Integer
Description
Default 0
Run-time and read only.The PrintResolution property controls how screen pixels will be mapped to
printer pixels. By default it's zero, meaning screen proportions will be respected when printing. To get
smaller fonts and thinner lines, you should set PrintResolution to a negative number.
Chart1.PrintResolution := 0 ; { this will use screen resolution }
Chart1.PrintResolution := -100 ; { this will use more printer resolution }

See Also
TChart.Print
TChart.PrintMargins

PrintTeePanel Global Variable
See also

Applies to
Global

Declaration
property PrintTeePanel : Boolean;
Description
Default False
This variable controls if Chart background panel color will be
used when printing.
By default Chart panel is White when printing.
It affects all Chart components as it's a global variable.

See Also
TChart.Print

Printing Property
See also

Applies to
TChart component

Declaration
property Printing : Boolean;
Description
Run-time and read only. The Printing property indicates Chart is being printed.

See Also
TChart.Print

QRTee Unit
The QRTee unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TQRChart
To see a listing of items declared in this unit including their declarations, use the Project Browser.

RadiusValues Property
See also

Applies to
TBubbleSeries component

Declaration
property RadiusValues : TChartValueList;
Description
The RadiusValues property is a TList object that stores each Bubble point Radius value. You can
change Radius values by using the RadiusValues.Value[] array of doubles property:

BubbleSeries1.RadiusValues.Value[0] := 45.1 ;
This sets the first bubble point radius to 45.1
Use AddBubble and Delete methods to add and delete points.

See Also
TBubbleSeries.AddBubble
TChartValueList

ReCalcWidthHeight Method
See also

Applies to
TChart component

Declaration
procedure ReCalcWidthHeight;
Description
The ReCalcWidthHeight method recalculates the ChartWidth and ChartHeight variables.
You should maybe never call this method. It's called automatically by the TChart component.
This is the implementation of ReCalcWidthHeight:
procedure TChart.RecalcWidthHeight;
Begin
ChartWidth:=ChartRect.Right-ChartRect.Left;
if ChartWidth<=0 then ChartWidth:=1;
ChartHeight:=ChartRect.Bottom-ChartRect.Top;
if ChartHeight<=0 then ChartHeight:=1;

end;

See Also
TChart.ChartHeight
TChart.ChartWidth

RecalcMinMax Method

Applies to
TChartValueList component

Declaration
procedure RecalcMinMax;
Description
This procedure will recalculate the Axis Minimum and Maximum values. These are the Minimum of the
dependent Series Minimum values and the Maximum of the dependent Series Maximum values.

RecalcOptions Property
See also

Applies to
TChartSeries component

Declaration
property RecalcOptions : TSeriesRecalcOptions
Description
Default [rOnDelete, rOnModify, rOnInsert, rOnClear];
Run-time and read only.The RecalcOptions set property controls the events that would force a
recalculation of Series point values. This applies only to Series for which DataSource property is another
Series. Each time one of this events happens, all depending Series are emptied and assigned again all
of it's DataSource Series values. You can choose which events would force recalculation by using this
property appropiately.
See the teedemo.dpr example project under "Moving Averages" (movinave.pas) unit.

See Also
TChart.CheckDatasource

RectLegend Property
See also

Applies to
TChartLegend component

Declaration
property RectLegend : TRect;
Description
Read-only and run time.
The RectLegend property returns the Legend coordinates and dimensions. It's read-only and can only
be accessed at run-time. You can use RectLegend to, for example, custom draw on a chart based on
Legend position coordinates or dimensions.

See Also
TChartLegend.Alignment
TChartLegend.HorizMargin
TChartLegend.TopPos
TChartLegend.VertMargin

RefreshData Method
See also

Applies to
TDBChart component

Declaration
procedure RefreshData;
Description
The RefreshData method forces TDBChart to retrieve again all Series points from their associated
DataSets.
You associate DataSets (Tables, Queries, etc) to Series by setting the Series DataSource property.
It calls the RefreshDataSet method for all Series with DataSets as Series DataSources.
It do not closes nor opens nor refreshes the DataSets.
It only retrieves again all records and adds all Series points. The current DataSet filter is preserved. The
current record position is saved and restored after loading all point by using a TBookMark internal
variable.
For each record, you can optionally use the OnProcessRecord event to stop adding more points and
retrieving more records.
When refreshing datasets, the mouse cursor can be automatically to a glass cursor by using the
TDBChart.ShowGlassCursor property.

See Also
TDBChart.AutoRefresh
TDBChart.OnProcessRecord
TDBChart.RefreshDataSet
TDBChart.RefreshInterval

RefreshDataSet Method
See also

Applies to
TDBChart component

Declaration
procedure RefreshDataSet(ADataSet: TDataSet; ASeries: TChartSeries);
Description
The RefreshDataSet method will atempt to retrieve all records from the ADataSet parameter and add all
points to ASeries parameter.
You associate DataSets (Tables, Queries, etc) to Series by setting the Series DataSource property.
This method works only with Active Series, that is, ASeries.Active must be True.
It only retrieves again all records and adds all Series points. The current DataSet filter is preserved. The
current record position is saved and restored after loading all point by using a TBookMark internal
variable.
For each record, you can optionally use the OnProcessRecord event to stop adding more points and
retrieving more records.
When refreshing datasets, the mouse cursor can be automatically to a glass cursor by using the
TDBChart.ShowGlassCursor property.

See Also
TDBChart.AutoRefresh
TDBChart.OnProcessRecord
TDBChart.RefreshData
TDBChart.RefreshInterval

RefreshInterval Property
See also

Applies to
TDBChart component

Declaration
property RefreshInterval : LongInt;
Description
Default Value: 0
The RefreshInterval property defines the number of seconds TDBChart will take to refresh all Datasets.
By default is zero, meaning no refresh will occur.
When greater than zero, TDBChart installs an internal TTimer component. Every time the timer expires
TDBChart refreshes all Datasets and retrieves again all records.
The AutoRefresh property must be True for TDBChart to retrieve all record values.
This allows automatic real-time charting of database values.
It only happens at run-time.

See Also
TDBChart.AutoRefresh

RefreshSeries Method
See also

Applies to
TChartSeries component

Declaration
procedure RefreshSeries;
Description
The RefreshSeries method notifies all dependent Series to recalculate their points again. Each Series
has a DataSource property. When DataSource is a valid Series or DataSet component, Series get all
point values from the DataSource and adds them as Series points. The RefreshSeries method forces
the Series to Clear and get all points again from the DataSource component. The Refreshing process
traverses the Series tree recursively.

See Also
TChartSeries.DataSource
TChartSeries.Clear
TChartSeries.AddY

RemoveAllSeries Method
See also

Applies to
TChart component

Declaration
procedure RemoveAllSeries;
Description
The RemoveAllSeries method removes all Series in the Chart SeriesList. The removed Series are not
freed.
This is the implementation of RemoveAllSeries method:
Procedure TChart.RemoveAllSeries;
Begin
 While SeriesList.Count>0 do RemoveSeries(Series[0]);
End;

See Also
TChart.RemoveSeries
TChart.SeriesList

RemoveSeries Method
See also

Applies to
TChart component

Declaration
procedure RemoveSeries(ASeries : TChartSeries);
Description
The RemoveSeries method deletes (but not destroys) the specified ASeries parameter from the Chart
list of series.
Calling this method is exactly the same as doing:
ASeries.ParentChart := nil ;

See Also
TChart.ParentChart
TChart.RemoveAllSeries
TChart.SeriesList

Repaint Method

Applies to
TChartSeries component

Declaration
procedure Repaint;
Description
This Series method forces the whole Parent Chart to Repaint. You don't normally call Repaint directly. It
can be used within derived TChartSeries components when changing internally their properties.

ResizeChart Property
See also

Applies to
TChartLegend component

Declaration
property ResizeChart : Boolean
Description
Default True
The ResizeChart property indicates if Legend will automatically reduce the Chart rectangle to prevent
overlap between Legend and Chart rectangles. When ResizeChart is True, the Legend.HorizMargin and
Legend.VertMargin properties control the amount of pixels that Chart rectangle will be reduced.

See Also
TChartLegend.Alignment
TChartLegend.ColorWidth
TChartLegend.HorizMargin
TChartLegend.TopPos
TChartLegend.VertMargin

RightAxis Property
See also

Applies to
TChart component

Declaration
property RightAxis : TChartAxis;
Description
The RightAxis property determines the Labels and formatting attributes of Right Chart side. It also
controls where Series points will be placed.
Every TChart component has five TChartAxis: Left, Top, Right, Bottom and Depth (Z).
The RightAxis is pre-defined to be:

Horizontal := False ;
OtherSide := True ;

Refer to TChartAxis help topic for a complete description.

See Also
TChart
TChart.BottomAxis
TChart.DepthAxis
TChart.LeftAxis
TChart.TopAxis
TChartAxis

Rotate Method
See also

Applies to
TCircledSeries component

Declaration
procedure Rotate(Angle : Integer);
Description
The Rotate method adds the given Angle units to the CircledSeries.RotationAngle property. You can
specify positive or negative Angle values. Positive values rotate anti-clockwise. Negative values result in
clock-wise rotation. Angles must be expressed in degrees from 0 to 360.

See Also
TCircledSeries.RotationAngle
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.AngleToPos
TCircledSeries.PointToAngle

RotationAngle Property
See also

Applies to
TCircledSeries, TPieSeries components

Declaration
property RotationAngle : Integer;
Description
The RotationAngle can be a valid integer number between 0 and 359. This will the angle each Pie
sector will be rotated counter-clockwise.

See Also
TCircledSeries.Rotate
TCircledSeries.XRadius
TCircledSeries.YRadius
TCircledSeries.AngleToPos
TCircledSeries.PointToAngle

RoundFirstLabel Example
Given an Axis with Minimum := 70 and Maximum := 585 :
Chart1.LeftAxis.RoundFirstLabel := True ;
Axis labels: 100 200 300 400 500
Chart1.LeftAxis.RoundFirstLabel := False ;
Axis labels: 85 185 285 385 485 585

RoundFirstLabel Property
See also Example

Applies to
TChartAxis component

Declaration
property RoundFirstLabel : Boolean
Description
Default True
Run-time only. The RoundFirstLabel property controls if Axis labels will be automatically "rounded" to the
nearest magnitude. This applies both to DateTime and non-DateTime axis values. When False, Axis
labels will start at Maximum Axis value.

See Also
TChartAxis.Increment
TChartAxis.Maximum
TChartAxis.Minimum

SameClass Method

Applies to
TChartSeries component

Declaration
Function SameClass (tmpSeries:TChartSeries):Boolean;
Description
(Advanced)
The SameClass method returns if any two given Series components are of the same class or derive
from a common ancestor different than TChartSeries. It is used by TCustomBarSeries in stacked mode
when determining which Series should be considered stackable. This allows derived Bar series types to
be stacked together with normal TBarSeries instances.

SaveToBitmapFile Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure SaveToBitmapFile(Const FileName : String) ;
Description
This method will save the current chart image to the specified File Name. You should pass a valid path
and name, ending with the BMP extension.

See Also
TChart.SaveToMetafileEnh
TChart.SaveToMetafile

SaveChartToFile Method
See also

Uses
teestore

Applies to
TChart, TDBChart components

Declaration
procedure SaveChartToFile(AChart:TCustomChart; Const AName:String);
Description
This method will save the current chart as a TeeChart 'tee' template to the specified File Name. Tee
templates are an efficient way to save runtime Chart appearance and may be loaded at runtime using
the LoadChartFromFile.

See Also
TChart.SaveToMetafileEnh
TChart.SaveToBitmapfile
LoadChartFromFile
LoadChartFromURL
TChart.SaveToMetafile

LoadChartFromURL Method
See also

Uses
teestore

Declaration
procedure LoadChartFromURL(Var AChart:TCustomChart; Const URL:String);
Description
This method will import the TeeChart 'tee' template Chart from the specified URL, applying all properties
of the template to the Chart. Tee templates are an efficient way to save and load runtime Chart
appearance and may be saved at runtime using the TChart.SaveChartToFile.

See Also
LoadChartFromFile
TChart.SaveToMetafileEnh
TChart.SaveToBitmapfile
TChart.SaveChartToFile
TChart.SaveToMetafile

LoadChartFromFile Method
See also

Uses
teestore

Declaration
procedure LoadChartFromFile(Var AChart:TCustomChart; Const AName:String);
Description
This method will import the TeeChart 'tee' template Chart from the specified File Name, applying all
properties of the template to the Chart. Tee templates are an efficient way to save and load runtime
Chart appearance and may be saved at runtime using the TChart.SaveChartToFile.

See Also
LoadChartFromURL
TChart.SaveToMetafileEnh
TChart.SaveToBitmapfile
TChart.SaveChartToFile
TChart.SaveToMetafile

SaveToMetaFile Example
This code creates a new WMF metafile:
Chart1.SaveToMetafile('c:\mychart.wmf');

SaveToMetaFile Method
See also Example

Applies to
TChart component

Declaration
procedure SaveToMetafile(Const FileName : String);
Description
The SaveToMetafile method creates a new WMF file and stores Chart drawing instructions on it. WMF's
are created to be "placeable" and prefixed with the Aldus header. That means the image can be resized
when embedded in container applications like MS Word. The Metafile format has the advantadge of
being smaller than equivalent saved images in bitmap format. Disadvantages are that some Windows
GDI (graphic API) calls can't be used with metafiles. Clipping points from chart bounds is not possible
with metafiles.
The new EMF format (using the 32bit version) promises to be a much better format supporting more
graphic instructions.

See Also
TChart.TeeCreateMetafile
TChart.SaveToMetafileEnh
TChart.SaveToBitmapFile

SaveToMetaFileEnh Example
This code creates a new Enhanced WMF metafile:
Chart1.SaveToMetafileEnh('c:\mychart.wmf');

SaveToMetaFileEnh Method
See also Example

Applies to
TChart component

Declaration
procedure SaveToMetafileEnh(Const FileName : String);
Description
The SaveToMetafileEnh method creates a new Enhanced WMF file and stores Chart drawing
instructions on it. WMF's are created to be "placeable" and prefixed with the Aldus header. That means
the image can be resized when embedded in container applications like MS Word. The Metafile format
has the advantadge of being smaller than equivalent saved images in bitmap format. Disadvantages are
that some Windows GDI (graphic API) calls can't be used with metafiles. EMF format (using the 32bit
version) is a much better format supporting more graphic instructions than ‘simple’ metafile format.

See Also
TChart.TeeCreateMetafile
TChart.SaveToMetafile
TChart.SaveToBitmapFile

ScaleLastPage Property
See also

Applies to
TChart component

Declaration
property ScaleLastPage : Boolean
Description
Default True
The ScaleLastPage property controls how will be the last Chart page displayed. It only has effect when
TChart.MaxPointsPerPage property is greater than zero. When True, the last Chart page will have the
same horizontal scaling than the other pages. When False, the last Chart page scaling will be adjusted
based on the number of visible points on that last page.

See Also
TChart.MaxPointsPerPage
NextPage
PreviousPage

Scroll method example
This button right scrolls 3 points on a ‘zoomed’ DBChart
procedure TForm1.BitBtn1Click(Sender: TObject);
begin
 DBChart1.BottomAxis.Scroll(3,False);
end;

Scroll Method
See also Example

Applies to
TChartAxis component

Declaration
procedure Scroll(Const Offset:Double; InsideLimits:Boolean);
Description
This method will "scroll" or displace the Axis Maximum and Minimum values by the Offset parameter. If
you want to scroll the Axis outside Series limits, InsideLimits must be False.

See Also
Scrolling at runtime

Scroll Method (TChartValueList)

Applies to
TChartValueList component

Declaration
procedure Scroll;
Description
This procedure will Left-Scroll the List of values. All values are scrolled one position to the lower point
index. The first value is moved to be the Last value in the List.

Series Axis Dependence
By default, each Series is assigned to depend on Left and Bottom Axis. You can set which Horizontal
and Vertical axis will depend on each Series. By default, all axis are set to be Automatic. That means
TeeChart will calculate the Maximum and Minimum values for each axis based on which Series are set
to depend on it.
For example, if you want to mix both DateTime and NON-DateTime series in the same chart, you will
need to assign a different axis to the series :
Example:
LineSeries1.XValues.DateTime := True ;
LineSeries1.HorizAxis := aBottomAxis ;
LineSeries2.XValues.DateTime := False ;
LineSeries2.HorizAxis := aTopAxis ;
This will scale the X Series values accordingly.
You can also do the same for the vertical axis using the Series VertAxis property:
LineSeries1.VertAxis := aLeftAxis ;
LineSeries2.VertAxis := aRightAxis ;
You can control if Chart Axis will be scaled automatically or you can set the Axis Maximum, Minimum
and Increment manually.
If you allow users to Zoom or Scroll the Chart, then the Axis will be scaled or scrolled.

Series Example
The following example will set all Bar Series Style to Cilinders
for t := 0 to Chart1.SeriesCount - 1 do
if Chart1.Series[t] is TBarSeries then

(Chart1.Series[t] as TBarSeries).BarStyle := bsCilinder ;
The following example will count all Active Series points
counter := 0 ;
for t := 0 to Chart1.SeriesCount - 1 do
counter := counter + Chart1.Series[t].Count ;

Series Property
Example

Applies to
TChart, TDBChart components

Declaration
property Series[Index:Longint]:TChartSeries
Description
The Series array property is the list of Series that the Chart component maintains and draws.
(Series can be Active or not).

Series Unit
The Series unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:
Series are truly invisible components as they don’t show on the Form. At design time you can access
Series components using the Object Inspector or double-clicking on the chart to access the Chart Editor.
See the TeeChart Gallery, accessible via the Chart Editor for a full visual display of Series types.
Click here to see the included TeeChart Series types.
For a list of the variables that each Series type supports see the variables list.

Components
TAreaSeries
TBarSeries
TCircledSeries
TCustomBarSeries
TCustomSeries
TFastLineSeries
THorizBarSeries
TLineSeries
TPieSeries
TPointSeries
TSeriesPointer

Types
TBarStyle
TGetBarStyleEvent
TMultiArea
TMultiBar
TSeriesClickPointerEvent
TSeriesPointerStyle

Routines
ApplyDark Method
To see a listing of items declared in this unit including their declarations, use the Project Browser.

SeriesColor Example
LineSeries3.SeriesColor := clBlue ;
AreaSeries1.SeriesColor := clYellow ;

SeriesColor Property
See also Example

Applies to
TChartSeries component

Declaration
property SeriesColor : TColor
Description
Default color is clTeeColor.
The TChartSeries SeriesColor property is the default color in which the Series points will be drawn on.
This property value could be any valid Delphi or Windows color. If you add points with clTeeColor color,
then they will be drawn with the SeriesColor color. This property is the default Color associated to the
Series.
When you place a new Series component in a Chart, TeeChart will assign a free color to this property (a
Color that no other Series in the same Chart use). Some Series have the ColorEachPoint boolean
property. Setting this to TRUE will force the Series to paint each point with a different color, thus without
using its SeriesColor
SeriesColor is also used to paint the small rectangle in TChartLegend.

See Also
ColorEachPoint

SeriesCount Example
for t := 0 to Chart1.SeriesCount - 1 do
Chart1.Series[t].SeriesColor := clRed ;

SeriesCount Method
Example

Applies to
TChart, TDBChart components

Declaration
function SeriesCount : Longint ;
Description
This is the number of Series (Active or not) a Chart has.

SeriesDown Method

Applies to
TChart, TDBChart components

Declaration
procedure SeriesDown (ASeries : TChartSeries) ;
Description
The SeriesUp method will "send to back" the specified ASeries. That will change the order the Series
are drawn.
WARNING:
Series order is not saved to the DFM form file.

SeriesHeight3D Property
See also

Applies to
TChart component

Declaration
property SeriesHeight3D : Longint;
Description
Run-time and read only. The SeriesHeight3D property determines the default Series height when
drawing in 3D mode. The Chart.View3D property should be True. SeriesHeight3D changes when
resizing a Chart, when changing the number of visible Series or when changing the Chart3DPercent
property.

See Also
TChart.View3D
TChart.Chart3DPercent
TChart.SeriesWidth3D
TChart.Width3D
TChart.Height3D
TChartSeries.ZOrder

SeriesList Property
See also

Applies to
TChart, TDBChart components

Declaration
property SeriesList : TChartSeriesList;
Description
Run-time only. The SeriesList property is an array property that contains a list of pointers to all Series
linked to a TChart component.
You DO NOT NEED to use this property to traverse all Series and do specific things with them:
for t:= 0 to Chart1.SeriesCount -1 do
with Chart1.Series[t] do
begin
 SeriesColor := clRed ;
end;
So, YOU NEED this property to, for example, change the Series ordering at run-time. This allows control
of Series Z Order positioning:
Chart1.SeriesList[0] := MySeries2 ;
Chart1.SeriesList[1] := MySeries1 ;
Chart1.SeriesList[2] := MySeries3 ;
Warning: Never FREE or REMOVE SeriesList elements. Use the Series.Free to remove it or use the
Series.Active property to disable it.

See Also
TChart.Series
TChart.SerisCount
TChartSeries.Delete
TChartSeries.Active

SeriesTitleLegend Example
That will assign the first Chart Series Title to a label caption
Label1.Caption := Chart1.SeriesTitleLegend(0, False) ;
That will assign the first ACTIVE Chart Series Title to a label caption
Label1.Caption := Chart1.SeriesTitleLegend(0, True) ;

SeriesTitleLegend Method
Example

Applies to
TChart, TDBChart components

Declaration
function SeriesTitleLegend (SeriesIndex : Longint ; ActiveOnly :
Boolean) : String ;
Description
The SeriesTitleLegend function returns the Series.Title string.

SeriesUp Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure SeriesUp (ASeries : TChartSeries) ;
Description
The SeriesUp method will "bring to front" the specified ASeries. This will change the order in which
Series are drawn.
WARNING:
Series order is not saved to the DFM form file.

See Also
TChartSeries.ZOrder

SeriesWidth3D Property
See also

Applies to
TChart component

Declaration
property SeriesWidth3D : Longint;
Description
Run-time and read only. The SeriesWidth3D property determines the default Series width when drawing
in 3D mode. The Chart.View3D property should be True. SeriesWidth3D changes when resizing a Chart,
when changing the number of visible Series or when changing the Chart3DPercent property.

See Also
TChart.Chart3DPercent
TChart.Height3D
TChart.SeriesHeight3D
TChart.View3D
TChart.Width3D
TChartSeries.ZOrder

SetBrushCanvas Example
We want to custom draw a rectangle filled with White color and a Vertical pattern Brush of Red color.
The rectangle will cover all Chart screen space between Axis.
(Don't think this is useful, just an example... <g>)
Chart1.SetBrushCanvas(tmpCanvas, clRed, bsVertical, clWhite);
With Chart1.ChartRect do
Chart1.Canvas.Rectangle(Left, Top, Right, Bottom);

SetBrushCanvas Method
See also Example

Applies to
TChart component

Declaration
procedure SetBrushCanvas(tmpCanvas: TCanvas3D;AColor: TColor; APattern:
TBrushStyle; ABackColor: TColor);
Description
The SetBrushCanvas method solves an annoying problem with the Delphi standard behaviour. Delphi
VCL automatically sets the Windows GDI background mode to TRANSPARENT when the Brush.Style
property is set to a different Brush style than bsSolid. This means all filled Screen parts should be
erased previous to apply the transparent brush. This method calls the Windows GDI API directly to set
the Windows Brush mode to OPAQUE and Windows Brush Background Color to ABackColor parameter.
Use this method when you want to draw non solid patterns that need to be OPAQUE (erasing existing
pixels before filling).

See Also
TChart.Canvas
TChart.FontCanvas

SetInternalCanvas Method
See also

Applies to
TChart, TDBChart components

Declaration
Procedure SetInternalCanvas(NewCanvas:TCanvas);
Description
(Advanced)
The SetInternalCanvas method replaces TChart internal canvas component used to draw chart
contents. It can be seen as a protected Set method for TChart.Canvas property, which is read-only.

See Also
TChart.Canvas

SetMinMax Example
This call:
Chart1.LeftAxis.SetMinMax(0, 100) ;
is equivalent to:
Chart1.LeftAxis.Automatic:= False ;
Chart1.LeftAxis.Minimum := 0 ;
Chart1.LeftAxis.Maximum := 100 ;

SetMinMax Method
See also Example

Applies to
TChartAxis component

Declaration
procedure SetMinMax(Const AMin, AMax : Double);
Description
The SetMinMax method changes the current Axis Minimum and Maximum scales. The
TChartAxis.Automatic property is set to False.

See Also
TChartAxis.Automatic
TChartAxis.Maximum
TChartAxis.Minimum

ShadowColor Property
See also

Applies to
TChartLegend component

Declaration
property ShadowColor : TColor
Description
Default clBlack
The ShadowColor property specifies the color to fill the Legend shadow effect. You can control the
Shadow effect pixels size by using the Legend.ShadowSize property.

ShadowColor Property (TPieSeries)
See also

Applies to
TPieSeries component

Declaration
property ShadowColor : TColor;
Description
The ShadowColor property determines the color used to fill the PieSeries 3D zone when Shadowed3D
property is True.
The ShadowColor is used to draw many vertical lines to make Pie 3D zone darker.

See also
TPieSeries.Shadowed3D

See Also
TChartLegend.ShadowSize

ShadowSize Property
See also

Applies to
TChartLegend component

Declaration
property ShadowSize : Integer
Description
Default 3
The ShadowSize property controls the amount of pixels used to draw the Legend shadow effect. Setting
this property to zero hides the Legend shadow effect. You can change the shadow color by using the
Legend.ShadowColor property.

See Also
TChartLegend.ShadowColor

Shadowed3D Property
See also

Applies to
TPieSeries component

Declaration
property Shadowed3D : Boolean;
Description
Default Value: False
The Shadowed3D property determines if the 3D Pie zone will be filled with dark lines to make a dark
visual effect.

See Also
TPieSeries.Color3D
TPieSeries.ShadowColor

ShowGlassCursor Property
See also

Applies to
TDBChart component

Declaration
property ShowGlassCursor : Boolean;
Description
Default Value: True
The ShowGlassCursor property determines if TDBChart will change the current cursor shape to a glass
cursor whenever records are retrieved from Tables or Queries.
This notifies the user of record retrieval activity.
For fast and small queries or tables you might want to set it to False, thus not disturbing the user.

See Also
TDBChart.AutoRefresh
TDBChart.RefreshDataSet
TDBChart.RefreshInterval

ShowInLegend Property

Applies to
TChartSeries component

Declaration
property ShowInLegend : Boolean
Description
Default is true
The property controls whether or not the series title should display in Chart.Legend. It is only meaningful
when when LegendStyle is lsSeries or lsLastValues.

SideMargins Property
See also

Applies to
TBarSeries and THorizBarSeries components (TCustomBarSeries)

Declaration
property SideMargins : Boolean
Description
Default True
The SideMargins property controls if first and last displayed Bar will be separated from the Chart
rectangle. By default, margins are set to half the sum of all Bar Series bar widths.

See Also
TBarSeries.BarWidth
TBarSeries.CustomBarWidth
THorizBarSeries.BarHeight
THorizBarSeries.CustomBarHeight

Size3d Method

Applies to
TChart, TDBChart components

Declaration
procedure Size3d (Var Horiz , Vert : Longint) ;
Description
Size3d method returns in Horiz and Vert parameters the default 3d size. The 3d size depends on
Chart.Chart3dPercent property.

Sort Method
See also

Applies to
TChartValueList component

Declaration
procedure Sort;
Description
The Sort method re-orders Series points interchanging their position in the Series values lists so they
will be displayed in different coordinates. By default, Series are set to sort points in ascending order
using their X coordinates. This is accomplished with this code:
Series1.XValues.Order := loAscending ;
Series1.YValues.Order := loNone ;
By default, Series draw points using the point ValueIndex, except in some non common situations like
having the horizontal axis inverted.
Important Note: Re-Ordering Series points do NOT change point X coordinates. Series points which
have no X coordinates are assigned a unique incremental number to determine the point horizontal
positions. Automatic Point indexes start at zero. You will need to change every point X coordinate when
sorting Series points with automatic X values.
The following code re-orders a Series by it’s Y values in descending order:
Note: XValues.FillSequence should not be called when sorting XY points.
procedure TForm1.BitBtn3Click(Sender: TObject);
begin
 With Series1 do { <-- use a TBarSeries for example }
 begin
 FillSampleValues(8);
 XValues.Order:=loNone ;
 YValues.Order:=loDescending ;
 YValues.Sort ;
 XValues.FillSequence ;
 Repaint ;
 end;
end;

See Also
TChartValueList.Order
TChartValueList.FillSequence

Squared Property
See also

Applies to
TBubbleSeries component

Declaration
property Squared : Boolean
Description
Default value: True
The Squared property determines how Bubble size is calculated. By default, the horizontal and vertical
Bubble sizes are equal to each Bubble's radius. When Squared is False, Bubble horizontal and vertical
sizes are calculated independently based on Series axis scales.

See Also
TBubbleSeries.RadiusValues
TSeriesPointer.HorizSize
TSeriesPointer.VertSize

Stairs Property

Applies to
TLineSeries, TAreaSeries components

Declaration
property Stairs : Boolean;
Description
This boolean property controls the drawing of LineSeries and Areaseries.
In most normal situations, a series draws a line between each Line point. This makes the Line appear as
a "mountain" shape. However, setting Stairs to TRUE will make the Series to draw 2 Lines between
each pair of points, thus giving a "stairs" appearance. This is most used in some financial Chart
representations.
When Stairs is set to True you may set InvertedStairs to True to alter the direction of the step. - see
charts below.
Line with Stairs False

Same line with Stairs True

Same line with Stairs True and InvertedStairs False

StartColor Property (TChartGradient)
See also

Applies to
TChartGradient component

Declaration
property StartColor : TColor;
Description
Default: clWhite
The StartColor property is one of the two colors used to create the gradient fill. The gradient fill is
composed of two colors: StartColor and EndColor.

See also
TChartGradient.Direction
TChartGradient.EndColor
TChartGradient.Visible

StartValues Property (TGanttSeries)
See also

Applies to
TGanttSeries component

Declaration
property StartValues : TChartValueList;
Description
The StartValues property defines the starting Gantt bar date values. The ending Gantt bar point date is
stored at TGanttSeries.EndValues list property.
StartValues and EndValues can be specified both as DateTime or double values.
Both are standard TChartValueList components. That means you can access their values with same
methods as you can access X or Y values.
The TGanttSeries.AddGantt and / or TGanttSeries.AddGanttColor methods must be used to add Gantt
bar points.

See also
TGanttSeries.AddGantt
TGanttSeries.AddGanttColor
TGanttSeries.EndValues

StartXValues Example
This code modifies the X0 coordinate of first arrow point:
tmp:=ArrowSeries1.StartXValues.Value[0];
ArrowSeries1.StartXValues.Value[0]:=tmp + 123;

StartXValues Property
See also Example

Applies to
TArrowSeries component

Declaration
property StartXValues : TChartValueList
Description
Each Arrow has (X0,Y0) and (X1,Y1) coordinates.
StartXValues property is the list of X0 values.
StartXValues.DateTime property default value is True.

See Also
TChartValueList
TArrowSeries.AddArrow
TArrowSeries.EndXValues
TArrowSeries.EndYValues
TArrowSeries.StartYValues

StartYValues Example
This code modifies the Y0 coordinate of first arrow point:
tmp:=ArrowSeries1.StartYValues.Value[0];
ArrowSeries1.StartYValues.Value[0]:=tmp + 123;

StartYValues Property
See also Example

Applies to
TArrowSeries component

Declaration
property StartYValues : TChartValueList
Description
Each Arrow has (X0,Y0) and (X1,Y1) coordinates.
StartXValues property is the list of Y0 values.

See Also
TChartValueList
TArrowSeries.AddArrow
TArrowSeries.EndXValues
TArrowSeries.EndYValues
TArrowSeries.StartXValues

StatChar Unit
The StatChar unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TAverageTeeFunction
TTeeFunction

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

Style Property (TChartPen)

Applies to
TChartPen component

Declaration
property Style : TPenStyle;
Description
The Style property determines the style in which the pen draw lines on the canvas.
See Delphi help: TPen.Style

Style Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property Style : TSeriesMarksStyle;
Description
Default Value: smsLabel
The Style property defines how Series Marks are constructed. Each different Style value makes Marks
to output a different text. Several options are available, but you can also use the
TChartSeries.OnGetMarkText event and override the default Series Marks text.
The different Mark styles are:

smsValue
Shows the point value. It is usually the YValue, except THorizBarSeries that defaults to the XValue. The
TChartSeries.ValueFormat property is used to format the resulting string.

Example: "1234"
smsPercent
Shows the percent the point value represents. The TChartSeries.PercentFormat property is used to
format the percent value.

Example: "12 %"
smsLabel
Shows the associated Point Label.

Example: "Cars"
Warning:
If the point has no Label (empty label), then the point value is used. You can use
TChartSeries.OnGetMarkText event to force an empty label for a particular point.

smsLabelPercent
Shows the point Label and the percent value the point represents. The TChartSeries.PercentFormat
property is used to format the percent value.

Example: "Cars 12 %"
smsLabelValue
Shows the point Label and the point value. The TChartSeries.ValueFormat property is used to format
the resulting string.

Example: "Cars 1234"
smsLegend
Shows whatever is shown at Chart Legend. Please refer to TChartLegend.TextStyle property for a list of
possible values.

smsPercentTotal
Shows the percent the point represents toghether with the "of" word and the sum of all points absolute
values. The TChartSeries.PercentFormat property is used to format the percent value.

Example: "12 % of 1234"
NOTE:

You can alter or localize to your language the "of" word by using the "PercentOf" typed constant in
Teengine unit:
Example in Spanish: PercentOf := 'sobre';
Output: "12 % sobre 1234"
smsLabelPercentTotal
Shows the point Label toghether with the resulting "smsPercentTotal" style. The
TChartSeries.PercentFormat property is used to format the percent value.

Example: "Cars 12 % of 1234"
smsXValue
Shows the point XValue (same as smsValue but with X values instead of Y values).

Example: "21/6/1996"

Style Property (TSeriesPointer)
See also

Applies to
TSeriesPointer component

Declaration
property Style : TSeriesPointerStyle;
Description
Default Value: psRectangle
The Style property defines the shape used to display the Series Points.
The default psRectangle style can be optionally in 3D mode by setting the Pointer.Draw3D property to
True.
The Series Pointer.Visible property should be True.

See Also
TChartSeries.MarkPercent
TChartSeries.Marks
TChartSeries.OnGetMarkText
TChartSeries.PercentFormat
TChartSeries.ValueFormat

See Also
TSeriesPointer.Draw3D
TSeriesPointer.HorizSize
TSeriesPointer.VertSize

SwapValueIndex Method
See also

Applies to
TChartSeries component

Declaration
procedure SwapValueIndex(a, b : Longint);
Description
The SwapValueIndex method interchanges two Series points. The A and B parameter should be valid
point indexes, from 0 to Series Count-1.
The Chart component is automatically redrawn to display the new Series points order.

See Also
TChartSeries.Count

TAddTeeFunction component Example
To set the period for TAddTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

TAddTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TAddTeeFunction may be added to your project by Chart Editor at design time or at runtime using code.
Default period for the TAddTeeFunction when only 1 series is added to the function is 0 (One flat line
representing the total of all data points of the input series). When 2 or more input series form the
TAddTeeFunction series the default period is 1 axis point. Period is applicable only to the number of axis
points, Period 1 = 1 axis point; period 2 = 2 axis points, etc..
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TSubtractTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TAverageTeeFunction
THighTeeFunction
TLowTeeFunction
FunctionType_property

TAreaSeries Component
Properties Methods Events

Unit

Series

Ancestor
TCustomSeries

Description
The TAreaSeries component outputs all points by drawing a line between them and fills the area defined
by the line and the bottom side of the Chart. To see a visual representation of this Series type, go to the
TeeChart User Guide.
Set the ParentChart property to the desired Chart component. Use the AddY or AddXY method to
manually fill area points.
Use the AreaBrush property to draw patterned areas.
The AreaColor property determines the background area color.
The lines dividing area points are drawn using the AreaLinesPen property.
To build stacked area charts use the MultiArea property.
The Stairs property controls how to draw the connecting lines between points. Use then the
InvertedStairs property to change how are these steps drawn.
The top lines can be altered by using the LinePen property.
Please refer to TCustomSeries ancestor description for all common Series properties like Marks, Axis,
Pointers and events.

Methods
Key Methods
Clicked
GetOriginPos

Properties
Run-time only
Key Properties
AreaBrush InvertedStairs

AreaColor

MultiArea
AreaLinesPen Stairs
DrawArea XValues
LinePen YValues

TArrowSeries Component
Properties Methods Events

Unit
ArrowCha

Ancestor
TPointSeries

Description
The TArrowSeries component outputs all points as arrows. To see a visual representation of this Series
type, go to the TeeChart User Guide.
Set the ParentChart property to the desired Chart component. Use the AddArrow method to manually fill
area points.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
The arrow head dimensions can be changed using the ArrowHeight and ArrowWidth properties.
Each arrow is defined by four coordinates. These values can be accessed using the StartXValues,
StartYValues, EndXValues and EndYValues properties.
Arrows are always drawn in 2D mode.
Please refer to TPointSeries ancestor description for all common Series properties like Marks, Axis,
Pointers and events.

Methods
Key Methods
AddArrow

Properties
Run-time only
Key Properties
ArrowHeight
ArrowWidth

EndXValues

EndYValues
StartXValues
StartYValues

TAverageTeeFunction component Example
To set the period for TAverageTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);
.

TAverageTeeFunction Component
See also Properties Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TAverageTeeFunction performs a simple or weighted average of last Period DataSource values.
TAverageTeeFunction Period is the number of points we want to group to calculate their average. So, if
our Series has 1000 points and we have a Period of 200, then AverageTeeFunction will have 1000/200
(that is 5) points. Each Y value will be the simple Average of a group of 200 points.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TAddTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TSubtractTeeFunction
THighTeeFunction
TLowTeeFunction
FunctionType_property

Properties
Run-time only
Key Properties
Weighted

TAxisLabelStyle Type

Unit
TeEngine

Declaration
TAxisLabelStyle = (talAuto,talNone,talValue,talMark,talText);
Description
TAxisLabelStyle defines the possible values of the TChartAxis.LabelStyle property.
You can override each axis label text by using the Chart.OnGetAxisLabel event.
Possible values for TChartAxis.LabelStyle are:

talAuto Choose the Style automatically.

talNone No label. This will trigger the event with empty strings.

talValue Axis labeling is based on axis Minimum and Maximum properties.

talMark Each Series point will have a Label using SeriesMarks style.

talText Each Series point will have a Label using Series.XLabels strings.

TAxisOnGetLabel Type

Unit
TeEngine

Declaration
TAxisOnGetLabel = procedure(Sender:TChartAxis; Series:TChartSeries;
ValueIndex: LongInt; Var LabelText: String) of object;
Description
The TAxisOnGetLabel type points to a method that notifies a TChartAxis component that an event has
occurred.

TAxisOnGetNextLabel Type

Unit
TeEngine

Declaration
TAxisOnGetNextLabel = Procedure(Sender: TChartAxis; LabelIndex: LongInt; Var
LabelValue: Double; Var Stop: Boolean) of object;
Description
The TAxisOnGetNextLabel type points to a method that notifies a dataset component that an event has
occurred. It is used by the OnGetNextAxisLabel event.

TBarSeries Component
Properties Methods

Unit
Series

Ancestor
TCustomBarSeries

Description
The TBarSeries component outputs all points as vertical bars. To see a visual representation of this
Series type, go to the TeeChart User Guide.
Several TBarSeries can be displayed side-to-side, one behind the other, stacked or stacked 100% by
using the MultiBar property.
Set the ParentChart property to the desired Chart component. Use the AddBar or AddXY methods to
manually fill area points.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
The BarBrush property determines the pattern used to fill bars, while the BarPen property is used to
draw the bar edges.
Set the desired bar style (cilynder, pyramid, etc) by changing the BarStyle property.
Use the BarWidthPercent property to control the relative distance between bars.
You can specify an exact bar width by using the CustomBarWidth property.
The Dark3D property controls if bar sides are filled with a darker color than front bar faces.
The OffsetPercent property determines the bars horizontal displacement. This can be used to create
overlayed bars with several bar series components.
Bar series leave margins both at left and right chart sides. You can turn off this default behaviour setting
the SideMargins property to False.
By default, bar bottoms start at zero vertical coordinate. Set the YOrigin property to the desired starting
bottom value or set the UseYOrigin to False to make bar bottoms start at minimum bars value.
The OnGetBarStyle event can be used to supply a different bar style for each Series point.
Please refer to TCustomBarSeries ancestor description for all common Series properties like Marks,
Axis dependence, methods and events.

Methods
Key Methods
AddBar

Clicked
GetOriginPos

Properties
Run-time only
Key Properties

AutoMarkPosition

BarBrush DarkColor

UseYOrigin
BarPen DarkerColor YOrigin
BarStyle

MultiBar
BarWidth

NormalBarColor
BarWidthPercent OffsetPercent
CustomBarWidth ParentChart
Dark3D SideMargins

TBarStyle Type

Unit
Series

Declaration
TBarStyle = (bsRectangle,bsRectGradient,
bsPyramid,bsInvPyramid,bsCilinder,bsEllipse,bsArrow);
Description
TBarlStyle defines the possible values of the TCustomBarSeries.BarStyle property.
These are the possible Bar styles:

bsArrow

bsCilinder

bsEllipse

bsInvPyramid

bsPyramid

bsRectangle

TBubbleSeries Component
Properties Methods

Unit
BubbleCh

Ancestor
TPointSeries

Description
The TBubbleSeries component outputs all points as "bubbles", each one with a different bubble radius
value. To see a visual representation of this Series type, go to the TeeChart User Guide.
Set the ParentChart property to the desired Chart component. Use the AddBubble method to manually
fill area points.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
All radius values are stored at RadiusValues property.
The Pointer property determines all formatting attributes.
By default, the radius values are expressed in vertical axis coordinates. Set the Squared property to
False to calculate bubble heights in vertical coordinates and bubble widths in horizontal coordinates.
Please refer to TPointSeries ancestor description for all common Series properties like Marks, Axis
dependence, Pointers and events.

Methods
Key Methods
AddBubble

Properties
Run-time only
Key Properties
RadiusValues

Squared

TChart Component
Properties Methods Events

Unit
Chart

Ancestor
TCustomChart

Description
TChart is the most important component in TeeChart library. TChart derives from TPanel and inherits all
its functionality. In short, TChart is a standard Delphi TPanel component with many new capabilities
specific to charting and graphing purposes.
TChart is the ParentChart component for Series.

You can create Chart components both at design and run-time.
Many charts can exist in a Form.
TeeChart components can be also in an ActiveX Form.

For an indepth look at how to create Charts with TeeChart see the TeeChart User Guide.

TChart Events
Key Events
OnAfterDraw OnDblClick OnMouseUp
OnAllowScroll OnGetAxisLabel OnPageChange
OnClick OnGetLegendPos OnResize
OnClickAxis OnGetLegendRect OnScroll
OnClickBackground OnGetLegendText OnUndoZoom
OnClickLegend OnGetNextAxisLabel OnZoom
OnClickSeries OnMouseDown

Language Support

TEECONST.RES
Now TeeChart includes a resource file that's linked with TeeChart units. This resource file contains the
internal exception strings and warning messages.
In case you want to translate it to any other language, you can use the Borland Resource Workshop
editor to access and change the string contents.
If you consider a new language would be useful for other TeeChart'ers, feel free to email it to TeeChart
support.

TChart Methods
Key Methods
ActiveSeriesLegend GetFreeSeriesColor PrintPortrait

AddSeries GetLabelsSeries

Print
Assign GetRectangle PrintRect
BackWallRect GetWidthHeight ReCalcWidthHeight
CalcClickedpart IsFreeSeriesColor RemoveAllSeries
CalcSize3d IsScreenHighColor RemoveSeries

CalcSize3dWalls IsValidDataSource RotateLabel
CanvasChanged MarkText SaveChartToFile
ChartPrintRect MaxMarkWidth SaveToBitmapFile
ChartRegionRect MaxTextWidth SaveToMetafileEnh
ChartXCenter MaxXValue SaveToMetafile
ChartYCenter MaxYValue SeriesCount

CheckDatasource MinXValue SeriesDown
CopyToClipBoardBitmap MinYValue SeriesTitleLegend
CopyToClipBoardMetafile NextPage SeriesUp

ExchangeSeries NumPages SetInternalCanvas
FontCanvas PreviousPage Size3d
FormattedLegend PrintLandscape TeeCreateMetafile
FormattedValueLegend PrintOrientation UndoZoom
GetASeries PrintPartialCanvas XLabelText
GetAxisSeries PrintPartialCanvasToScreen ZoomPercent
GetCursorPos PrintPartial ZoomRect

TChart Properties
Run-time only
Key Properties
AllowPanning Color Printing

AllowZoom Foot PrintMargins
AnimatedZoom Frame PrintResolution
AnimatedZoomSteps Gradient RightAxis
AxisVisible

Height3D ScaleLastPage
BackColor LeftAxis Series
BackImage LeftWall SeriesHeight3D

BackImageInside Legend SeriesList

BottomAxis MarginBottom SeriesWidth3D
BackWall DepthAxis View3DOptions
BottomWall MarginLeft Title
BufferedDisplay MarginRight TopAxis
CancelMouse MarginTop View3d

Canvas
MaxPointsPerPage View3dWalls
Chart3dPercent MaxZOrder

Width3D
ChartBounds Monochrome
ChartHeight MonochromePrinting
ChartRect OriginalCursor
ChartWidth

BackImage
ClipPoints BackImageMode

TChartAxis Component
Properties Methods

Unit
TeEngine

Description
TChartAxis is a Chart subcomponent.
Chart components have 5 TChartAxis:
LeftAxis, RightAxis, TopAxis, BottomAxis and DepthAxis.

Methods
Key Methods
AdjustMaxMin CalcYSizeValue IsDateTime
CalcIncrement Clicked IsDepthAxis
CalcLabelStyle CustomDraw
CalcMinMax CustomDrawMinMax LabelHeight
CalcPosPoint CustomDrawMinMaxStartEnd LabelValue
CalcPosValue CustomDrawStartEnd LabelWidth
CalcRect DrawAxisLabel MaxLabelsWidth
CalcSizeValue DrawHorizontalLabel OtherSide
CalcXPosValue Draw Scroll
CalcXSizeValue DrawVerticalLabel SetMinMax
CalcXYIncrement Horizontal SizeLabels
CalcYPosValue SizeTickAxis

SizeTitle

Properties
Run-time only
Key Properties
Automatic LabelsFont

PosAxis
AutomaticMaximum LabelsOnAxis

PosLabels
AutomaticMinimum LabelsSeparation

PosTitle
Axis LabelsSize RoundFirstLabel
AxisValuesFormat LabelStyle TickInnerLength
DateTimeFormat Logarithmic TickLength

ExactDateTime Maximum TickOnLabelsOnly

Grid Minimum Ticks
Horizontal MinorTickCount TicksInner
Increment MinorTickLength Title
Inverted MinorTicks TitleSize
Labels

OtherSide Visible
LabelsAngle ParentChart LabelsMultiLine

GridCentered IStartPos IEndPos

PositionPercent StartPosition EndPosition

TChartAxisTitle Component
Properties

Unit
TeEngine

Description
The Axis will use this to draw its Title.

Properties
Run-time only
Key Properties
Angle
Caption
Font

TChartClick Type

Unit
Chart

Declaration
TChartClick = procedure(Sender: TCustomChart; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;
Description
The TChartClick type points to a method that notifies a TChart component that a click event has
occurred. It is used by OnClickLegend and OnClickBackground

TChartClickAxis Type

Unit
Chart

Declaration
TChartClickAxis = procedure(Sender : TCustomChart; Axis : TChartAxis;
Button:TMouseButton; Shift: TShiftState; X, Y: Integer) of object;
Description
The TChartClickAxis type points to a method that notifies a TChartAxis component that a click event has
occurred. It is used by OnClickAxis.

TChartClickSeries Type

Unit
TeEngine

Declaration
TChartClickSeries = procedure(Sender: TCustomChart; Series: TChartSeries;
ValueIndex: LongInt; Button: TMouseButton; Shift: TShiftState; X, Y:
Integer) of object;
Description
The TChartClickSeries type points to a method that notifies a TChart component that a click event has
occurred. It is used by the OnClickSeries event.

TChartGradient Component
Properties

Unit
Chart

Description
The TChartGradient component contains all properties used to draw a nice Chart background.
You can change gradient properties by using the TChart.Gradient subcomponent property.
The gradient effect is made of two colors and many middle transition colors between them.
The Visible property controls if the gradient will be displayed or not. Set the Direction property to the
desired orientation. Use the StartColor and EndColor properties to change the gradient colors.
The Owner public read-only property refers to the Chart component that owns the gradient.

Warning:
TeeChart do not uses custom color palettes. That means better results can be obtained using 16k or
greater video color modes.

Properties
Run-time only
Key Properties
Direction
EndColor
StartColor

Visible

TChartLegend Component
Properties Methods

Unit
TeEngine

Description
TChartLegend a TChart subcomponent.
It draws a rectangle filled with the Chart Series Titles or a Series Values formatted representation. You
switch this operation mode by setting the LegendStyle.
The Alignment property defines the Legend position.
Legend can be currently placed at Top, Left, Right and Bottom side of Chart.
Left and Right Legend alignments define a vertical Legend with currently one single column of items.
Top and Bottom Legend alignments define an horizontal Legend with currently one single row of items.
The Legend itself automatically reduces the number of displayed legend items based on the available
charting space.
The Legend.ResizeChart property controls if Legend dimensions should be used to reduce Chart points
space.
The Legend.OnGetLegendRect event provides a mechanism to supply the desired Rectangle Legend
dimensions and placement.
The Legend.OnGetLegendPos event can be used to specify fixed Legend items X Y coordinates.
The Legend.HorizMargin and VertMargin properties control distance between Legend and Left and
Right margins.
The Legend.TopPos property can be used in Left or Right Legend alignments to control vertical distance
between Legend and Top Chart Margin.
These techniques allow almost complete Legend control.
TChartLegend is quite a big component with many available formatting and dimensioning properties.

Methods
Key Methods
FormattedLegend
FormattedValue
GetColorRect
MaxLegendWidth
TotalLegendItems

Properties
Run-time only
Key Properties
Alignment Frame ResizeChart

Color HorizMargin ShadowColor
ColorWidth Inverted ShadowSize
DividingLines LegendStyle

TextStyle
FirstValue ParentChart TopPos
Font RectLegend Visible

TChartListOrder Type

Unit

Declaration
TChartListOrder =(loNone, loAscending, loDescending);
Description
TChartListOrder defines the possible values of the TChartValueList.Order property.

TChartPen Component
Properties

Unit
TeEngine

Description
TChartPen is an inherited TPen persistent object. Many TeeChart properties are TChartPen properties.
For example, the TChartLegend.Frame property is a TChartPen. The Legend draws a frame around it
with this Pen settings, but, ONLY when the Visible property is TRUE. Please refer to Delphi TPen help
page for more details about TPen objects.

Properties
Run-time only
Key Properties
Color
Mode
Style
Visible
Width

TChartSeries Component
Properties Methods Events

Unit
TeEngine

Description
TChartSeries is the ancestor of every chart series type.
Click here to see the included TeeChart Series types.

Events
Key Events
AfterDrawValues
BeforeDrawValues
OnAfterAdd
OnBeforeAdd
OnClearValues
OnClick
OnGetMarkText

Methods
Key Methods
Add

Delete MaxXValue
AddValue DoSeriesClick MaxYValue
AddNull DrawValuesForward MinXValue
AddXY FillSampleValues MinYValue
AddY GetCursorValueIndex NumSampleValues
AssignValues GetCursorValues PointOrigin
CalcXPos GetEditorClass RefreshSeries

CalcXPosValue GetHorizAxis Repaint
CalcXSizeValue GetMarkValue SameClass
CalcYPos GetVertAxis SwapValueIndex
CalcYPosValue GetYValueList ValuesListCount
CalcYSizeValue IsValidSeriesSource VisibleCount
CalcZOrder IsValidSourceOf XScreenToValue
CheckDataSource MandatoryValueList XValueToText

Clear MarkPercent YScreenToValue
Clicked MaxMarkWidth YValueToText
ColorRange
Count SetFunction

Properties
Run-time only
Key Properties
Active LinkedSeries VertAxis

AllowSinglePoint Marks XLabel
ColorEachPoint ParentChart XLabelsSource
ColorSource PercentFormat XValue
Cursor RecalcOptions

XValues
DataSource SeriesColor

YValue
Datasources ShowInlegend YValues

DesignMaxPoints Title ZOrder

FirstValueIndex
ValueColor

FunctionType ValueFormat
HorizAxis ValueList
LastValueIndex

ValueMarkText

TChartSeriesList Component

Unit
TeEngine

Ancestor
TList

Description
TChartSeriesList is a non-visible component. Maintains a list of series included in TChart. You can
double-click the Chart.Series property to access to an editor dialog.
Using the Chart.Series property is like using a standard array. You can refer to a specific series by
number: (Index starts at zero)
Chart1.Series[3].Title:='Boston Sales';
That can be useful when you do not have access to a TChartSeries or when you are doing generic
code:
Example:
for t:=0 to Chart1.SeriesCount-1 do
if Chart1.Series[t] is TLineSeries then

(Chart1.Series[t] as TLineSeries).LinePen.Width:=3;

TChartTitle Component
Properties Methods

Unit
Chart

Description
The TChartTitle component is used to display Chart Title and Foot text strings at top and bottom Chart
sides respectively. The Text property contains the text to be displayed. This property is of type TStrings
which means that it is a series of strings in a list. Whenever you change the Text property you should
repaint the Chart component manually. It's not done automatically.

Example:
With Chart1.Title.Text do
begin
Clear;
Add('ACME Monthly Sales');
Add('Year: 1997');

end;
Chart1.Repaint;
Set the Visible property to True to show the Title or Foot contents. Change the text appearance using
the Font property. You can draw a frame around text by setting the Frame pen properties. The frame
background color and pattern is defined by the Brush property. The AdjustFrame boolean property
controls if title frame will be drawn around title text or using the whole Chart width. Title text can be
aligned using the Alignment property.
The ParentChart public read-only property refers to the Chart component that owns the title.

Methods
Key Methods
Clicked

Properties
Run-time only
Key Properties
AdjustFrame
Alignment
Brush
Color
Font
Frame

ParentChart

Text
TitleRect
Visible

TChartValueList Component
Properties Methods

Unit
TeEngine

Description
The TChartValueList component is the container of point values.
Each Series component has one or more values lists.
The XValues and YValues properties are TChartValueList components.
Some other Series components have more values lists. For example, BubbleSeries component has
another value list: RadiusValues.

Methods
Key Methods
 Last
 Locate

Count
Delete
First Scroll
 sort

Properties
Run-time only
Key Properties
DateTime

TempValue
Multiplier TotalABS
MaxValue MinValue
Name Total
Order Value
Owner ValueSource

TCanvas3D Component
Methods Properties

Unit
TeCanvas

Description
The TCanvas3D component controls access to TeeChart's 3D Canvas draw properties and methods.

Methods
Run-time only
Key Properties
Calculate3DPosition
ClipRectangle
Arrow
Cylinder
HorizLine3D
VertLine3D
ZLine3D
EllipseWithZ
FrontPlaneBegin
FrontPlaneBegin
FrontPlaneEnd
LineWithZ
LineTo3D
MoveTo3D
Pie3D
Plane3D
PlaneWithZ
PlaneFour3D
Pyramid
RectangleWithZ
RectangleY
RectangleZ
RotateLabel3D
TextOut3D
TriangleWithZ
UnClipRectangle

Properties
Run-time only
Key Properties
Font
Brush
Canvas
Pen

TView3DOptions Component
Properties

Unit
TeCanvas

Description
The TView3dOptions component controls access to overall Chart Zoom and position.

Properties
Run-time only
Key Properties
Elevation
HorizOffset
Orthogonal
Perspective
Rotation
Tilt
VertOffset
Zoom

TChartWall Component
Properties

Unit
Chart

Description
The TChartWall component controls how to display the Chart left and bottom walls.
It is used by the TChart.LeftWall and TChart.BottomWall properties.
The Size property determines the walls dimensions. The Color and Brush properties are used to fill
walls, and the Pen property controls the walls frame.
Setting the Color property to "clTeeColor" means walls will not be filled so they will look transparent.
The ParentChart public read-only property refers to the Chart component that owns the wall.

Properties
Run-time only
Key Properties
Brush
Color

ParentChart
Size
Pen

TCircledSeries Component
Properties Methods

Unit
Series

Ancestor
TChartSeries

Description
The TCircledSeries component is an abstract component used as the ancestor of TPieSeries
component.
Set the ParentChart property to the desired Chart component.
To add points to the Series you should use the TPieSeries.Add method.
Right-click the component at design-time to access the Chart editor dialog to connect the Series to
another Series or to any Table or Query component.
The Circled property determines if the Series will draw as a circle or ellipse.
Change the circle background color using the CircleBackColor property.
The RotationAngle property determines the offset angle used to calculate points positions.
Use the PiePen property to change the circle lines format.
You can define exact circle dimensions by setting the CustomXRadius and CustomYRadius properties.
The Rotate method can be used to change the RotationAngle property at run-time.
The XRadius and YRadius read-only properties return the current circle half-width and half-height in
pixels.
The CircleRect read-only property returns the circle bounding rectangle in pixels.
The CircleWidth and CircleHeight read-only properties return the circle width and height in pixels.
The CircleXCenter and CircleYCenter read-only properties return the circle center coordinates in pixels.
When Chart.View3D property is True, the Offset3D read-only property returns the amount in pixels of the
circle 3D effect.
Please refer to TChartSeries ancestor description for all common Series properties like Marks, Axis
dependence and events.

Methods
Key Methods
AngleToPos
Rotate

Properties
Run-time only
Key Properties
Circled

PiePen
CircleXCenter RotationAngle
CircleYCenter

XRadius
CustomXRadius YRadius
CustomYRadius

TCustomBarSeries Component
Properties Methods Events

Unit
Series

Ancestor
TChartSeries

Description
The TCustomBarSeries component is an abstract component used as the ancestor of TBarSeries and
THorizBarSeries components.
Set the ParentChart property to the desired Chart component.
To add points to the Series you should use the TBarSeries.AddBar or THorizBarSeries.AddBar methods.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
TCustomBarSeries provides several methods and read-only properties shared by both TBarSeries and
THorizBarSeries:
The NormalBarColor,DarkColor and DarkerColor read-only properties return the colors used to fill bar
sides and top covers. The CalcBarColors method calculates the above color properties for each bar
point.
The DrawBar method is used to display each bar point.
The BarRectangle, BarPolygon and BarEllipse methods can be used to custom draw bar shapes.
The GetBarStyle function returns the corresponding BarStyle for a given bar point.
The BarMargin function returns the amount in pixels used to leave margins from Chart edges.
The ApplyBarOffset function returns a given bar screen coordinate after applying the OffsetPercent
property.
Please refer to TChartSeries ancestor description for all common Series properties like Marks, Axis
dependence and events.

Events
Key Events
OnGetBarStyle

Methods
Key Methods
ApplyBarOffset
BarMargin
Clicked
GetBarStyle

Properties
Run-time only
Key Properties
BarBrush MultiBar

BarPen NormalBarColor
BarStyle OffsetPercent
BarWidthPercent SideMargins
Dark3D UseYOrigin
DarkColor YOrigin
DarkerColor

TCustomSeries Component
Properties Events

Unit
TCustomSeries is an abstract class derived from TChartSeries.
Its the common ancestor for TLineSeries, TAreaSeries and the TPointSeries.

Events
Key Events
OnClick

Properties
Run-time only
Key Properties
AreaBrush LinePen
AreaColor Pointer
AreaLinesPen SeriesColor
DrawArea Stairs
HorizAxis VertAxis
LineBrush

TDBChart Component
Properties Methods Events

Unit
DBChart

Ancestor
TCustomChart, inherits all properties and methods associated with TChart

Description
TDBChart derives from TChart /TCustomChart and inherits all TChart functionality. When a Chart Series
is connected to a TDBChart component, TDBChart looks in the Series DataSource property.
If DataSource is a TTable, TQuery, TClientDataset or any valid Delphi DataSet component, TDBChart
will automatically retrieve its records preserving all Filters and Ranges. You can also filter which records
would be inserted by using the Series OnBeforeAdd event.
TDBChart also accepts Chart Series which are connected to another Chart Series and also Chart Series
whose points are being manually added by coding.
The main difference between TChart and TDBChart is that the last one NEEDS the Borland Database
Engine to be correctly installed in the target machine, while TChart does not.
The above would be useful in case your application do not need Tables, Querys or any standard Delphi
database components.
Changing from a TChart to a TDBChart or vice versa can be done both at design and runtime by
changing the Series ParentChart and the Series Values ValueSource properties.

Events
Key Events
OnProcessRecord

Methods
Key Methods
CheckDatasource
IsValidDataSource
RefreshData
RefreshDataSet

Properties
Run-time only
Key Properties
AutoRefresh

RefreshInterval
ShowGlassCursor

TDateTimeStep Type

Unit
TeEngine

Declaration
TDateTimeStep = (dtOneSecond, dtFiveSeconds, dtTenSeconds, dtFifteenSeconds,
dtThirtySeconds, dtOneMinute, dtFiveMinutes, dtTenMinutes, dtFifteenMinutes,
dtThirtyMinutes, dtOneHour, dtTwoHours, dtSixHours, dtTwelveHours, dtOneDay,
dtTwoDays, dtThreeDays, dtOneWeek, dtHalfMonth, dtOneMonth, dtTwoMonths,
dtSixMonths, dtOneYear);
Description
TDateTimeStep is a set of constants used to specify a date time increment.
Example:
Chart1.BottomAxis.Increment := DateTimeStep[dtTwoDays];
This array is initialized internally at CHART.DCU unit.
Example:
DateTimeStep[dtFifteenMinutes] := EncodeTime(0, 15, 0) ;
DateTimeStep[dtThreeDays] := 3 ;

TDivideTeeFunction component Example
To set the period for TDivideTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

TDivideTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TDivideTeeFunction may be added to your project by Chart Editor at design time or at runtime using
code. Default period for TDivideTeeFunction is 1 (By default, divide will show the division of all series at
each axis point). Period is applicable only to the number of axis points, Period 1 = 1 axis point; period 2
= 2 axis points, etc..
TDivideTeeFunction will work with any number of input series as datasource. The Datasource is best
defined using the Chart Editor.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TAddTeeFunction
TMultiplyTeeFunction
TSubtractTeeFunction
TAverageTeeFunction
THighTeeFunction
TLowTeeFunction
FunctionType_property

TeeCreateMetafile Example
You should always delete the returned Metafile handle after using it:
Var h : HMetafile ;
h := Chart1.TeeCreateMetafile ;
try
....
finally
DeleteObject(h);

end;

TeeCreateMetafile Method
See also Example

Applies to
TChart component

Declaration
function TeeCreateMetafile(Enhanced:Boolean; Const Rect:TRect):TMetafile;;
Description
The TeeCreateMetafile function returns a new Metafile handle. Metafiles are vector graphic formats. See
the Windows API regarding Metafile details. You should always delete the returned Metafile handle after
using it:

See Also
TChart.SaveToMetafile

TeeFunci Unit
The TeeFunci unit contains the declarations for the following components and for the enumerated type
associated with them. The following items are declared in the this unit:

Components
TAddTeeFunction
TSubractTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TAverageTeeFunction
THighTeeFunction
TLowTeeFunction
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

Routines
To see a listing of items declared in this unit including their declarations, use the Project Browser.

TFastLineSeries Component
Properties

Unit
Series

Ancestor
TChartSeries

Description
The TFastLineSeries component is an extremely simple Series component that draws its points as fast
as possible. To see a visual representation of this Series type, go to the TeeChart User Guide.
It can be used in cases where speed is the most important needed feature. TFastLineSeries has no
clicking support and no Marks.
Set the ParentChart property to the desired Chart component.
To add points to the Series use the standard AddY or AddXY methods.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
The only extra property is the LinePen property, which controls the line appearance.
Please refer to TChartSeries ancestor description for all common Series properties like Axis
dependence and events.

Properties
Run-time only
Key Properties
HorizAxis

LinePen

SeriesColor
VertAxis
XValues
YValues

TGanttSeries Component
Properties Methods

Unit
GanttCh

Ancestor
TPointSeries

Description
The TGanttSeries component outputs all points as horizontal bars with different starting and ending
horizontal coordinates and different vertical positions. To see a visual representation of this Series type,
go to the TeeChart User Guide.
It can be used to display a sequence of temporal tasks, sorted over time along the horizontal axis.
Set the ParentChart property to the desired Chart component. Use the AddGantt or AddGanttColor
methods to manually fill gantt bar points.
Each gantt bar has an start and end values. These values can be Delphi TDateTime or Double types.
The StartValues property stores all starting values for all Gantt bars. The EndValues property stores all
ending values for all Gantt bars.
You can connect gantt bars by using the NextTask property.

Example:
Var tmp1,tmp2 : Longint;
{ Clear all Series Gantt bars }
GanttSeries1.Clear;
{ Add a first Gantt bar }
tmp1 := GanttSeries1.AddGantt(EncodeDate(1996, 1,1),
 EncodeDate(1996, 1,31),
 0,
 'Programming');
{ Add a second Gantt bar }
tmp2 := GanttSeries1.AddGantt(EncodeDate(1996, 3,1),
 EncodeDate(1996, 3,31),
 1,
 'Testing');
{ Connect the first bar to the second bar }
GanttSeries1.NextTask[tmp1]:= tmp2 ;
The ConnectingLinePen property determines the pen used to draw the connecting lines between gantt
bar points.
The Pointer.VertSize property specifies the gantt bars height.
Please refer to TPointSeries ancestor description for all common Series properties like Pointer, Marks,
Axis dependence, methods and events.

Methods
Key Methods
AddGantt

Properties
Run-time only
Key Properties
ConnectingPen

EndValues

StartValues
NextTask

TGetBarStyleEvent Type

Unit
Series

Declaration
TGetBarStyleEvent = procedure(Sender : TCustomBarSeries; ValueIndex :
Longint; Var TheBarStyle : TBarStyle)
Description
The TGetBarStyleEvent type points to a method that notifies a TCustomBarSeries component that an
event has occurred. It is used by the OnGetBarStyle Event.

TGradientDirection Type

Unit
TeCanvas

Declaration
TGradientDirection = (gdTopBottom, gdBottomTop, gdLeftRight, gdRightLeft);
Description
TGradientDirection defines the possible values of the TChartGradient.Direction property.

THighTeeFunction component Example
To set the period for THighTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

THighTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
THighTeeFunction may be added to your project by Chart Editor at design time or at runtime using code.
Default period for THighTeeFunction is 0 (By default, THighTeeFunction will show the highest point of all
the series points). Period is applicable to the number of axis points, Period 1 = 1 axis point; period 2 = 2
axis points, etc..
If more than 1 data series is added as datasource for THighTeeFunction then the period default changes
to 1.
THighTeeFunction will work with any number of input series as datasource. The Datasource is best
defined using the Chart Editor.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TAddTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TAverageTeeFunction
TSubtractTeeFunction
TLowTeeFunction
FunctionType_property

THorizAxis Type

Unit
TeEngine

Declaration
THorizAxis = (aTopAxis,aBottomAxis);
Description
THorizAxis defines the possible values of the TChartSeries.HorizAxis property. Most Series components
have Horizontal and Vertical dependent axis. You can choose a given Series to have the Horizontal Axis
at Top or Bottom.
Default value: aBottomAxis
You can set the HorizAxis property both at design and runtime:
LineSeries1.HorizAxis := aTopAxis ;

THorizBarSeries Component
Properties Methods

Unit
Series

Ancestor
TCustomBarSeries

Description
The THorizBarSeries component outputs all points as horizontal bars. To see a visual representation of
this Series type, go to the TeeChart User Guide.
Several THorizBarSeries can be displayed side-to-side, one behind the other, stacked or stacked 100%
by using the MultiBar property.
Set the ParentChart property to the desired Chart component. Use the AddBar or AddXY methods to
manually fill area points.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.

Warning:
The most important concept in THorizBarSeries is that point values are INVERTED. That means Y
values are the bar order position while X values are the bars values.
The AddBar method does the conversion automatically and is the recommended method to add points.
When using the AddXY method you should calculate the correct Y position.

Example:
{ This code adds 10 horizontal bars.
 The loop counter is used as the Y bar value (the bar order) }
for t:= 1 to 10 do
Series1.AddXY(MyValues[t], t, MyLabels[t], MyColor[t]);

The BarBrush property determines the pattern used to fill bars, while the BarPen property is used to
draw the bar edges.
Set the desired bar style (cilynder, pyramid, etc) by changing the BarStyle property.
Use the BarWidthPercent property to control the relative distance between bars. You can specify an
exact bar height by using the CustomBarHeight property.
The Dark3D property controls if bar sides are filled with a darker color than front bar faces.
The OffsetPercent property determines the bars vertical displacement. This can be used to create
overlayed bars with several bar series components.
Bar series leave margins both at top and bottom Chart sides. You can turn off this default behaviour
setting the SideMargins property to False.
By default, bar left positions start at zero horizontal coordinate. Set the YOrigin property to the desired
starting left value or set the UseYOrigin to False to make bar left sides start at minimum bars value.
The OnGetBarStyle event can be used to supply a different bar style for each Series point.
Please refer to TCustomBarSeries ancestor description for all common Series properties like Marks,
Axis dependence, methods and events.

Methods
Key Methods
AddBar

Clicked
GetOriginPos

Properties
Run-time only
Key Properties
BarHeight

CustomBarHeight

TLegendAlignment Type

Unit
TeEngine

Declaration
TLegendAlignment = (laLeft,laRight,laTop,laBottom);
Description
TLegendAlignment defines the possible values of the TChartLegend.Alignment property.

TLegendStyle Type

Unit
TeEngine

Declaration
TLegendStyle = (lsAuto,lsSeries,lsValues,lsLastValues);
Description
TLegendStyle defines the possible values of the TChartLegend.LegendStyle property.
The Chart Legend can draw either the Chart Series Titles or the first Series Values.
This feature is controlled through this property:

lsAuto TChartLegend draws Series Titles if there's more than one TChartSeries in the
TChart

lsSeries TChartLegend draws the Series Titles (also if there's only one TChartSeries in the
chart.

lsValues TChartLegend draws the first Active TChartSeries values.

lsLastValues TChartLegend draws the Last Value of each Active TChartSeries (similar to
lsSeries).

TLegendTextStyle Type

Unit
TeEngine

Declaration
TLegendTextStyle =
(ltsPlain,ltsLeftValue,ltsRightValue,ltsLeftPercent,ltsRightPercent,ltsXValu
e);
Description
TLegendTextStyle defines the possible values of the TChartLegend.TextStyle property.
Several formatting options can be selected when TChartLegend draws the TChartSeries values: You
can also delegate the Legend string construction by using the OnGetLegendText Chart event.

ltsPlain Summer
ltsLeftValue 1234 Summer
ltsRightValue Summer 1234
ltsLeftPercent 5.1 % Summer
ltsRightPercent Summer 5.1 %
ltsXValue 4321 (Applies only to Series with X values. See TChartSeries.AddXY method.)

TLineSeries Component
Properties Methods Events

Unit
Series

Ancestor
TCustomSeries

Description
The TLineSeries component outputs all points by drawing a line between them. (To see a visual
representation go to the TeeChart User Guide).
Set the ParentChart property to the desired Chart component. Use the AddY or AddXY method to
manually fill line points.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
TLineSeries derives from TCustomSeries, which adds support for Series Pointers, Marks and click
events.
The LinePen property determines the kind of pen used to draw the lines between points.
Use the LineBrush in 3D mode to change the line fill pattern.
The Stairs property controls how to draw the connecting lines between points. Use then the
InvertedStairs property to change how are these steps drawn.
You can show point shapes by using the Pointer subcomponent property.
Please refer to TCustomSeries ancestor description for all common Series properties like Marks, Axis
dependence, methods and events.

Events
Key Events

OnClick

Methods
Key Methods
Clicked

Properties
Run-time only
Key Properties
LineBrush

LinePen
InvertedStairs
Stairs
XValues
YValues

TLowTeeFunction component Example
To set the period for TLowTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

TLowTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TLowTeeFunction may be added to your project by Chart Editor at design time or at runtime using code.
Default period for TLowTeeFunction is 0 (By default, TLowTeeFunction will show the lowest point of all
the series points). Period is applicable to the number of axis points, Period 1 = 1 axis point; period 2 = 2
axis points, etc..
If more than 1 data series is added as datasource for TLowTeeFunction then the period default changes
to 1.
TLowTeeFunction will work with any number of input series as datasource. The Datasource is best
defined using the Chart Editor.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TAddTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TAverageTeeFunction
THighTeeFunction
TSubtractTeeFunction
FunctionType_property

TMultiArea Type

Unit
Series

Declaration
TMultiArea = (maNone, maStacked, maStacked100);
Description
TMultiArea defines the possible values of the MultiArea property.

TMultiBar Type

Unit
Series

Declaration
TMultiBar = (mbNone, mbSide, mbStacked, mbStacked100);
Description
TMultiBar defines the possible values of the TCustomBarSeries.MultiBar property.

See Also
TAddTeeFunction
TSubtractTeeFunction
TDivideTeeFunction
TAverageTeeFunction
THighTeeFunction
TLowTeeFunction
FunctionType_property

TMultiplyTeeFunction component Example
To set the period for TMultiplyTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

TMultiplyTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TMultiplyTeeFunction may be added to your project by Chart Editor at design time or at runtime using
code. Default period for TMultiplyTeeFunction is 1 (By default, multiply will show the multiplication of all
series at each axis point). Period is applicable only to the number of axis points, Period 1 = 1 axis point;
period 2 = 2 axis points, etc..
Multiply will work with any number of input series as datasource. The Datasource is best defined using
the Chart Editor.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

TOnGetLegendPos Type

Unit
TeEngine

Declaration
TOnGetLegendPos = Procedure(Sender : TCustomChart; Index : Longint; Var
X,Y,XColor : Longint) of object;
Description
The TOnGetLegendPos type points to a method that notifies a TChart component that an event has
occurred. It is used by the OnGetLegendPos Event

TOnGetLegendRect Type

Unit
TeEngine

Declaration
TOnGetLegendRect = Procedure(Sender:TCustomChart; Var Rect:TRect) of
object;
Description
The TOnGetLegendRect type points to a method that notifies a TChart component that an event has
occurred. It is used by the OnGetLegendRect Event.

TOnGetLegendText Type

Unit
TeEngin

Declaration
TOnGetLegendText = procedure(Sender:TCustomChart; LegendStyle:TLegendStyle;
Index:Longint; Var LegendText:String);
Description
The TOnGetLegendText type points to a method that notifies a TChart component that an event has
occurred. It is used by the OnGetLegendText event.

Total property Example
This code informs the user the Total sum of “Sales1997” Series values:
ShowMessage(‘ Total Sales are: ‘ + FloatToStr(Sales1997.YValues.Total));

Total Property
See also Example

Applies to
TChartValueListcomponent

Declaration
property Total : Double;
Description
The Total double property maintains the sum of all TChartValueList values. When adding, deleting or
modifying point values using the right methods, Total is automatically incremented and decremented.
Total property is used by some Functions to improve speed when performing calculations against point
values, where having already calculated the sum of point values is necessary.

See Also
TChartValueList.TotalABS
TChartValueList.MinValue
TChartValueList.MaxValue

TotalLegendItems Example
This code shows the number of visible Legend items:
ShowMessage(IntToStr(TChartLegend(Chart2.Legend).TotalLegendItems));
Note: Casting to TChartLegend should be done due to Delphi 1 compatibility reasons.

TotalLegendItems Method

Applies to
TChartLegend component

Declaration
function TotalLegendItems:Longint;
Description
The TotalLegendItems method returns the number of displayed Legend items. Legend.LegendStyle
controls to calculate the number of visible items using either all Series Titles or foremost Series point
values. It uses FirstValue Legend property to start counting from the desired first Legend item.

See Also
TChartLegend.LegendStyle
TChartLegend.FirstValue

TPanningMode Type

Unit
Chart

Declaration
TPanningMode = (pmNone,pmHorizontal,pmVertical,pmBoth);
Description
TPanningMode defines the possible values of the AllowPanning property.

pmNone Deny scrolling.
pmHorizontal Allow only Horizontal Scrolling.
pmVertical Allow only Vertical Scrolling.
pmBoth Allow complete Horizontal and Vertical Scrolling.

TTFunction Component
Properties

Unit
StatChar

Ancestor

Description
TTFunction is an abstract Series type.
While DataSource points are being inserted, TTFunction will trigger a calculation request when the last
inserted point has overflowed the specified period.
TAverageTeeFunction is a TTeeFunction descendant.

Properties
Run-time only
Key Properties
Period

Period Property
See also Example

Applies to
TTeeFunction component

Declaration
property Period : Double;
Description
The Period property controls how many points or X range(sse note below) will trigger a new point
calculation.
For example, TAverageTeeFunction uses the Period property to calculate a new average point each
time the "Period" number of points or X range(see note below) is exceed.
You may switch between number of points or X range by using the TTeeFunction.PeriodStyle property.

See Also
FunctionType_property

Period property Example
For example, this code uses a TTeeFunction to show one point for every 5 points in the Series2
datasource series:
Series1.Pointer.Visible:= True;
Series2.Pointer.Visible:= True;
Series1.DataSource:= Series2;
Series1.FunctionType.Period:= 5;

TPieSeries Component
Properties Methods

Unit
Series

Ancestor
TCircledSeries

Description
The TPieSeries component outputs all points drawing slices forming an ellipse. To see a visual
representation of this Series type, go to the TeeChart User Guide.
Set the ParentChart property to the desired Chart component. Use the AddPie method to manually fill
pie slices.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
The PiePen property determine the kind of pen used to draw the slice frames.
The TChart.View3D and TChart.Chart3DPercent properties control the 3D pie appearance.
Set the UsePatterns property to True to fill the pie slices using brush patterns.
The Color3D property controls if the 3D pie region will be colored or not. The ShadowColor and
Shadowed3D properties apply a shadow effect on pie 3D region.
The PieValues property can be used to access the pie values.
Please refer to TCircledSeries ancestor description for all common Series properties like Marks, Axis
dependence, methods and events.

Methods
Key Methods
AddPie

AngleToPos
CalcClickedPie
Clicked
PointToAngle

Properties
Run-time only
Key Properties
Color3d
Dark3D
ExplodeBiggest
PiePen
PieValues
OtherSlice
ShadowColor
Shadowed3d

UsePatterns

TPointSeries Component
Properties Methods Events

Unit
Series

Ancestor
TCustomSeries

Description
The TPointSeries component outputs all points using the Pointer subcomponent properties. To see a
visual representation of this Series type, go to the TeeChart User Guide.
Set the ParentChart property to the desired Chart component. Use the AddY or AddXY method to
manually fill point values.
Right-click the component at design-time to access the DataSource Wizard Dialog to connect the Series
to another Series or to any Table or Query component.
TPointSeries derives from TCustomSeries, which adds support for Series Pointers, Marks and click
events.
The Pointer.Style property determines the kind of shape used to draw the points.
Use the Pointer.Brush property to change the point filling pattern. The Pointer.Pen property defines the
kind of pen used to draw the point frames.
Point dimensions can be changed using the Pointer.HorizSize and Pointer.VertSize properties.
Please refer to TCustomSeries ancestor description for all common Series properties like Marks, Axis
dependence, methods and events.

Events
Key Events
OnClickPointer

Properties
Run-time only
Key Properties
Pointer

XValues
YValues

TProcessRecordEvent Type

Unit
TeEngine

Declaration
TProcessRecordEvent = Procedure(Sender:TDBChart; DataSet:TDataSet) of
object;
Description
The TProcessRecordEvent type points to a method that notifies a TDBChart component that an event
has occurred. It is used by the OnProcessRecord Event.

TQRChart Component
Properties

Unit
QRTee

Ancestor
The TQRChart component derives from QuickReports TQRPrintable component.

Description
QuickReports is a native Delphi reporting tool Copyright by QuSoft, Norway. It's included with Borland
Delphi.
You can contact QuSoft at www.qusoft.no
The TQRChart component links TChart or TDBChart components with QuickReports.
It's an interface between both environments to allow Charts to be embedded in report bands.
The TeePrintMethod property allows two operation modes: The qtmBitmap mode outputs Charts as
bitmap pictures. This makes the Chart appear as it looks on the screen, but remember that bitmaps are
larger and slower to print.
You can set TeePrintMethod property to qtmMetafile. This is much faster and gives much better output
quality than bitmaps. Chart contents are sent to QuickReports in Windows metafile vector instructions.
There are, however, some limitations and bugs in the Windows metafile subsystem.
Clipping does not work fine as it uses physical pixel coordinates instead of logical. Rotated fonts
dimensions are very difficult to calculate in metafile mode. This makes rotated fonts overlap or leave too
much space on axis and titles.
32bit Windows enhanced metafile (EMF) mode promises better results. These problems will be
addressed in future TeeChart versions.
Please refer to QuickReports documentation and help file to know all details about creating reports. See
the TeeChart User Guide for more information about using TQRChart.

Properties
Run-time only
Key Properties
Chart

TeePrintMethod

TSeriesClick Type

Unit
TeEngine

Declaration
TSeriesClick = procedure(Sender:TChartSeries; ValueIndex: LongInt; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);
Description
The TSeriesClick type points to a method that notifies a TChartSeries component that an event has
occurred. It is used by the OnClick Event.

TSeriesClickPointerEvent Type

Unit
Series

Declaration
TSeriesClickPointerEvent = procedure(Sender: TCustomSeries; ValueIndex:
LongInt; X, Y: Integer) of object;
Description
The TSeriesClickPointerEvent type points to a method that notifies a TChartSeries component that an
event has occurred. It is used by the OnClickPointer Event.

TSeriesMarkPosition Component
Properties Methods

Unit
TeEngine

Description
Component defines position for the Mark referenced by the position index.

Methods
Run-time only
Key Properties
Bounds

Properties
Run-time only
Key Properties
ArrowTo
ArrowFrom
Custom
LeftTop
Height
Width

TSeriesMarksPositions Component
Properties Methods

Unit
TeEngine

Description
Each Series Mark position can be reached and modified via this component.

Methods
Run-time only
Key Properties
Automatic

Properties
Run-time only
Key Properties
Position

TSeriesMarks Component
Properties Methods

Unit
TeEngine

Description
Each Series have a Marks property. The Marks are like Delphi hints for each Series point. Marks can be
Visible or not and have many custom formatting properties.

Methods
Run-time only
Key Properties
Clicked

Properties
Run-time only
Key Properties
Arrow Frame

ArrowLength ParentSeries

BackColor Style
Clip Transparent
Font Visible
Positions

TSeriesMarksStyle Type

Unit
TeEngine

Declaration
TSeriesMarksStyle = (smsValue, smsPercent, smsLabel, smsLabelPercent,
smsLabelValue, smsLegend, smsPercentTotal, smsLabelPercentTotal, smsXValue);
Description
TSeriesMarksStyle defines the possible values of the TSeriesMarks.Style property. Series Marks will
draw a textual representation of each point values.

smsValue 1234

smsPercent 12 %

smsLabel Cars

smsLabelPercent Cars 12 %

smsLabelValue Cars 1234

smsLegend (Depends on LegendTextStyle)

smsPercentTotal 12 % of 1234

smsLabelPercentTotal Cars 12 % of 1234

smsXValue { 21/6/1996 }
You can choose both at design and runtime how this text will be constructed: LineSeries1.Marks.Style :=
smsPercent ;

TSeriesOnAfterAdd Type

Unit
TeEngine

Declaration
TSeriesOnAfterAdd = Procedure(Sender:TChartSeries; ValueIndex:Longint) of
object;
Description
The TSeriesOnAfterAdd type points to a method that notifies a TChartSeries component that an event
has occurred. It is used by the OnAfterAdd Event.

TSeriesOnBeforeAdd Type

Unit
TeEngine

Declaration
TSeriesOnBeforeAdd = Function(Sender: TChartSeries): Boolean of object;
Description
The TSeriesOnBeforeAdd type points to a method that notifies a TChartSeries component that an event
has occurred. It is used by the OnBeforeAdd event.

TSeriesOnClear Type

Unit
TeEngine

Declaration
TSeriesOnClear = Procedure(Sender: TChartSeries) of object;
Description
The TSeriesOnClear type points to a method that notifies a TChartSeries component that an event has
occurred. It is used by the OnClearValues Event.

TSeriesOnGetMarkText Type

Unit
TeEngine

Declaration
TSeriesOnGetMarkText = procedure (Sender : TChartSeries ; ValueIndex :
Longint ; Var MarkText : String)
Description
The TSeriesOnGetMarkText type points to a method that notifies a TChartSeries component that an
event has occurred. It is used by the OnGetMarkText Event.

TSeriesPointer Component
Properties Methods

Unit
Series

Description
Some Series have a Pointer property. Pointers are shape figures drawn on each Y point coordinates.
You can set several properties to change the pointers appearance.

Methods
Key Methods
ChangeHorizSize
ChangeStyle
ChangeVertSize
Draw
DrawPointer
PrepareCanvas

Properties
Run-time only
Key Properties
Brush
Draw3d
HorizSize
InflateMargins

ParentSeries
Pen
Style
VertSize
Visible

TSeriesPointerStyle Type

Unit
Series

Declaration
TSeriesPointerStyle = (psRectangle, psCircle, psTriangle, psDownTriangle,
psCross, psDiagCross, psStar, psDiamond, psSmallDot);
Description
TSeriesPointerStyle defines the possible values of the TSeriesPointer.Style property. This is the shape a
Pointer has.

psRectangle

psCircle

psTriangle

psDownTriangle

psCross

psDiagCross

psStar
You can change the pointer Style both at design and runtime: PointSeries1.Pointer.Style := psTriangle ;

TSeriesRecalcOptions Type

Unit
TeEngine

Declaration
TSeriesRecalcOptions = set of (rOnDelete, rOnModify, rOnInsert, rOnClear);
Description
TSeriesRecalcOptions defines the possible values of the RecalcOptions property.

TSubtractTeeFunction component Example
To set the period for TSubtractTeeFunction you should use the FunctionType property of TChartSeries
To define a function series by code you should first create a new series for the function. The series may
be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

TSubtractTeeFunction Component
See also Example

Unit
TeeFunci

Ancestor
TTeeFunction

Description
TSubtractTeeFunction may be added to your project by Chart Editor at design time or at runtime using
code. Default period for TSubtractTeeFunction is 1 (By default, subtract will show the subtraction of one
series from another at each axis point). Period is applicable only to the number of axis points, Period 1 =
1 axis point; period 2 = 2 axis points, etc..
Subtract will only work with 2 input series. The first series in the Chart Editor list will subtract the 2nd
series.
To see a visual representation of TeeChart Standard Functions, go to the TeeChart User Guide.

See Also
TAddTeeFunction
TMultiplyTeeFunction
TDivideTeeFunction
TAverageTeeFunction
THighTeeFunction
TLowTeeFunction
FunctionType_property

TTeeBackImageMode Type
See also

Unit
Chart

Declaration
TTeeBackImageMode = (pbmStretch, pbmTile, pbmCenter);
Description
TTeeBackImageMode defines the possible values of the BackImageMode property.

pbmStretch : The BackImage will be resized to fit Chart dimensions.

pbmTile : The BackImage will be tiled.

pbmCenter : The BackImage will not be resized.

See Also
TChart.BackImage
TChart.BackImageInside
TChart.BackImageMode

TTeeFunction Component
Properties

Unit
StatChar

Ancestor
TComponent

Description
TTeeFunction is an abstract Series type.
While DataSource points are being inserted, TTeeFunction will trigger a calculation request when the
last inserted point has overflowed the specified period.
TAverageTeeFunction is a TTeeFunction descendant.

Properties
Run-time only
Key Properties
Period

TTeeQuickMethod Type

Unit
TeEngine

Declaration
TTeeQuickMethod = (qtmBitmap, qtmMetafile);
Description
TTeeQuickMethod defines the possible values of the TeePrintMethod property.

TValueEvent Type

Unit
TeEngine

Declaration
TValueEvent = (veClear, veAdd, veDelete, veRefresh, veModify);
Description
Series notify the following events to their dependent Series:

veClear The Series have been emptied.

veAdd A new point has been appended.

veDelete A point has beed deleted.

veRefresh Series need to be refreshed (reconstructed).
This events are intended for Series developers.

TVertAxis Type

Unit
TeEngine

Declaration
TVertAxis = (aLeftAxis,aRightAxis);
Description
TVertAxis defines the possible values of the TChartSeries.VertAxis property. Most Series components
have Horizontal and Vertical dependent axis. You can choose a given Series to have the Vertical Axis at
Left or Right.
Default value: aLeftAxis
You can set the VertAxis property both at design and runtime:
LineSeries1.VertAxis := aRightAxis ;

TeEngine Unit
The TeEngin unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TChartAxis
TChartAxisTitle
TChartLegend
TChartPen
TChartSeries
TChartSeriesList
TChartTitle
TChartValueList
TSeriesMarks

Types
TAxisLabelStyle
TAxisOnGetLabel
TDateTimeStep
TeeDefaultCapacity
THorizAxis
TLegendStyle
TLegendTextStyle
TOnGetLegendText
TSeriesClick
TSeriesMarksStyle
TSeriesOnGetMarkText
TSeriesRecalcOptions
TValueEvent
TVertAxis

Routines
DaysInMonth
To see a listing of items declared in this unit including their declarations, use the Project Browser.

Component Reference
Quick Start About.. Contact us..
The main TeeChart component is: TChart.
TChart is a placeholder for TChartSeries components. TChart is derived from TPanel component, and
inherits all its functionality.
When you place a TChart component in a Delphi Form, you will see a standard TPanel with an upper
title and a lower foot text.
Right click on the Chart to see the opening TeeChart menu where you can select the Chart editor
alternatively double-click to directly call the Chart editor.
The Chart editor presents Chart configuration options and the TeeChart Gallery which contains access
to all data series types. Data series types are subcomponents that can be accessed and manipulated
independently of the Chart and are accessible across Charts.
For Database charts, you need to use: TDBChart
Place one or more series in the Chart and either connect to a DataSource or write your own code to
populate the series.
Key palette components

 TChart

 TDBChart

 TQRChart

TeeAxisClickGap Global Variable

Unit

TeeProcs

Applies to
Global

Declaration
property TeeAxisClickGap : Longint;
Description
Maximum number of pixels from the Axis to the mouse cursor to consider the Axis clicked.

TeeChart Wizard
To create a Chart using TeeChart Wizard select the File menu in Delphi and New. Choose Business
from the tab selector in the New Items window. You will see the TeeChart Wizard icon.
Simply double-click the icon to start creating charts! The Wizard will lead you through the steps
necessary to create your own non-database or database aware chart.

TeeChart Gallery
See also

Description
The TeeChart Gallery contains a visual catalogue of all available Series types. You may access the
Gallery via the Chart Editor.

See Also
Series Unit

TeeChart Global Constants and Methods

Global Procedures
Procedure SwapLongInt(Var a, b : LongInt);
Procedure SwapDouble(Var a, b : Double);
These procedures interchange the "a" and "b" parameter values. You can use it in your applications.
Procedure TeeSplitInLines(Var St : String; Separator : String);
This procedure can be used to split Labels to Multiline replacing the Separator string with a carriage
return..

Gradient Fill
procedure GradientFill(Canvas: TCanvas; Const Rect: TRect; top, bottom:
TColor; Horizontal: Boolean);
The GradientFill method is used to fill a Screen area with multi-colored lines to obtain a nice shadow
effect and coloured backgrounds. The Chart.Gradient component uses this method internally.

Global Functions

DaysInMonth
Function DaysInMonth(Year,Month);
This function returns the number of days that a given pair of Year and Month has. It is declared in
TeEngine

ApplyDark
Function ApplyDark(Color: TColor; HowMuch: Byte) : TColor;
This function returns a darker color than the Color parameter. The RGB values of Color parameter are
increased "HowMuch" units.
Function GetDefaultColor(t: Longint): TColor;
Returns the t th color in the default array palette.
Function MaxLong(a,b:Longint):Longint; returns max (> a , b)
Function MinLong(a,b:Longint):Longint; returns min (< a , b)
TeeChart Global Constants:
DateTimeStep
A global array of constants useful to define DateTime periods.
ChartMarkColor : Longint = $80FFFF
This is the default color for Series Marks rectangles. (Yellow)
PercentOf : String[10] = ' of '
Used to show " 35 % of 1234 " in Series Marks.

TeeChart Pro
TeeChart Pro order information License and disclaimer
TeeChart Pro is a comprehensive charting tool aimed at those developers wishing to program with or
make use of extended TeeChart functionality. TeeChart Pro includes the option to purchase 100%
source code.
For an overview of TeeChart functionality available with Delphi version 5 see TeeChart version 4
Select this link to see What's new in TeeChart 4 Pro and Standard versions.
Features of TeeChart Pro:

100 % Source code
16-bit version for Delphi 1
32-bit version for Delphi 2, 3, 4 and 5 and Borland C++ Builder 1, 3 and 4
11 standard Series types
9 Extended Series types
6 Custom Sample Series types
16 Statistical functions
Data aware
Series Gallery
2D, 3D plus OpenGL 3D
QuickReport Integration
Zoom, scroll and real time
Royalty free
Custom drawing
Custom printing
Extensive demos
Design time integrated Chart and Series editor
Online help
Electronic reference manual (Word format)
Custom Series build
Developer Custom Series guide
Sample Custom Series and Functions
Extended Statistical functions
Extensive demo code
Runtime Chart Editor
Extended Online help
Printed reference guide and electronic developer guide

Programming environments
TeeChart Pro order information TeeChart Pro
TeeChart is written as a 100% Delphi native VCL. It supports Borland’s 16 bit (Delphi 1) and 32 bit
(Delphi 2, 3, 4 and 5 and C++ Builder v1, 3 and 4) programming environments.

TeeChart version 4
License and disclaimer TeeChart Pro
TeeChart 4 runtime version is packaged with Delphi version 5. It is a fully functional charting library
containing a subset of the powerful charting capabilities of TeeChart Pro.
Features of TeeChart 4 runtime version:

32-bit version for Delphi 3, 4 and 5
11 standard Series types
Statistical functions
Data aware
Series Gallery
2D and 3D
QuickReport Integration
Zoom, scroll and real time
Royalty free
Custom drawing
Custom printing
Extensive demos
Design time integrated Chart and Series editor
Online help including user guide

TeeChart Pro
See TeeChart Pro for information about extended features and availability of 100% TeeChart source
code.

We hope you'll enjoy using TeeChart !!!

Thanks to All of You !

Ordering TeeChart Pro
If you would like to order TeeChart Pro you can find an automated order form in the opening menu when
right mouse clicking on a TChart in Delphi. It will create a custom order form for you. Alternatively use
the form included below. Please contact us if you have any questions.
TeeMach SL
Rocafort 35-37 5o3a
08015 Barcelona, Catalonia
Spain
**
TeeChart - Pro v4.0 ORDER FORM
**
 WWW: http://www.teechart.com
Please fill in the address information below. If you require TeeChart Pro to be mailed to you this address
will be used for mailing purposes:
Customer Information:

 Name..…………… :
 Company………… :
 Address.…………. :
 City..……………… :
 State.…………….. :
 ZIP...…………….. :
 Country………….. :
 Phone.…………… :
 FAX...……………. :
 EMail.……………. :
 (European Community only)
 VAT or company reference number ..:
Credit Card Information:

 Credit Card Type…....……… :
 Credit CardHolder Name…... :
 Credit Card Number...……… :
 Credit Card Exp. Date……… : /
Order Product:

TeeChart Pro v4 is available with or without source code. Please mark your choice in the tables
below:
Prices WITHOUT source code:

Product
Code

Description Price/license Quantity Total (US$)

401 Upgrade from TeeChart
v1.03/v3

US$39

40 Single License US$139
421 Site license Please consult teeMach for details

Prices WITH 100% TeeChart Pro source code:
Product
Code

Description Price/license Quantity Total (US$)

402 Upgrade from TeeChart
v1.03/v3 with source code

US$70

41 Single License with source code US$279
422 Site license with source code Please consult teeMach for details

Shipping & Handling:
(For those not requiring a printed introductory guide we are able to make TeeChart Pro
available electronically to avoid shipping charges). The introductory guide includes information about
help and information sources for TeeChart Pro and is included in Word format with the electronic only
product.
I Would like printed introductory guide (Check box to receive)�

(Single license software pack includes 1 disk and 1 introductory guide)

Region Post (add per additional license)

Europe US$15 (US$10)

USA US$25 (US$10)

Other US$30 (US$10)

(Any questions about non-standard or courier shipment - please contact us)
Shipping :US$
--
 T O T A L :US$
--
We accept cheques (eurocheques in pesetas please) or cash on delivery. For purchases by bank
transfer please contact us for information.
FAX this Order Form to us at FAX NUMBER: +34 972 59 71 75
 Or...
Send by Internet EMail to: sales@teemach.com
 Or...
Send by postal mail to:
 teeMach SL.
 Rocafort 35-37 5o3a
 08015 Barcelona, Catalonia
 Spain

If you have ordered TeeChart-Pro to be sent to you it will be mailed to you by urgent post.
You should expect to receive it in few days.
Your email address is important for confirmation information should you wish to download TeeChart-Pro
from the website.

TeeChart Quick Start
Please read the topics below they will guide you through basic steps of chart creation.
After you have installed the TeeChart components, open the TEEDEMO.DPR Demo project or start a
new Form and place a Chart on it.
Create a new Data-Aware Chart and get values from a Table or Query
Create a new Chart and insert values MANUALLY
Learn more about TeeChart components

TeeChart license and disclaimer
TeeChart Pro About
License
TeeChart 4 runtime version is included with Delphi version 4 and 5. No additional license is required to
use this software. Please check with Borland documentation for details of your license agreement.

Disclaimer
The Author cannot and does not guarantee that any functions contained in the Software will meet your
requirements, or that its operations will be error free. The entire risk as to the Software performance or
quality, or both, is solely with the user and not the Author. You assume responsibility for the selection of
the component to achieve your intended results, and for the installation, use, and results obtained from
the Software.
The Author makes no warranty, either implied or expressed, including without limitation any warranty
with respect to this Software documented here, its quality, performance, or fitness for a particular
purpose. In no event shall the Author be liable to you for damages, whether direct or indirect, incidental,
special, or consequential arising out the use of or any defect in the Software, even if the Author has
been advised of the possibility of such damages, or for any claim by any other party.
All other warranties of any kind, either express or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose, are expressly excluded.

TeeChart Series Types
TeeChart Gallery
TeeChart Library includes the most typical Chart Series types.
Each type has its own specific properties and events to customize your Charts.
Most importantly you can derive new subcomponents from any Series type, thus creating any NEW
Chart types.
TeeChart includes the following Chart Series types (To see a visual representation of these Series go to
the TeeChart User Guide):
Standard:

 Line

 Area

 Point (scatter)

 Bar,Pyramid,Cilinder...

 Horizontal Bar,Pyramid,Cilinder...

 Pie

 Shapes

 Fast Line

 Arrows

Gantt

Bubble
All Series are derived from the "pseudo-abstract" TChartSeries class.
TChartSeries hides all the logic complexity leaving the developer to code the "drawing" and "aesthetic"
parts of a given Series type.
See TTeeFunction for an outline description of available statistical functions.
Some advanced Series features include custom scaling and margining. Other "pseudo-abstract"
components are available for component developers:
Period

TeeClipWhenMetafiling Global Variable
See also

Unit

TeeProcs

Applies to
Global

Declaration
property TeeClipWhenMetafiling : Boolean;
Description
This property forces clipping when creating metafile charts.

See Also
TeeClipWhenPrinting

TeeClipWhenPrinting Global Variable
See also

Unit

TeeProcs

Applies to
Global

Declaration
property TeeClipWhenPrinting : Boolean;
Description
This property forces clipping when printing charts.

See Also
TeeClipWhenMetafiling

TeeDefaultCapacity Global Variable
See also

Applies to
Global

Declaration
property TeeDefaultCapacity : Longint;
Description
Default 0
This global variable is the default capacity of all internal TList objects. See the Delphi help file regarding
TList.Capacity property.
Setting it to a bigger number can increase speed when adding many points to Series components.
TeeChart always uses this variable to initialize the TList.Capacity of all internal Lists.

See Also
TChartValueList

TeeEraseBack Global Variable
See also

Applies to
Global

Declaration
property TeeEraseBack : Boolean;
Description
Default True
The TeeEraseBack global variable determines if TeeChart will handle the Windows WM_ERASEBACK
message. This messages forces TChart to fill the panel background before repainting.
Setting it to False prevents TeeChart to erase the panel background thus avoiding flickering when
resizing Charts in Windows when full-window-drag is selected.
It affects all Chart components as it's a global variable.

See Also
TChart.BufferedDisplay

TeePrintMethod Property
See also

Applies to
TQRChart component

Declaration
property TeePrintMethod : TTeeQuickMethod;
Description
Default qtmMetafile
The TeePrintMethod property indicates the method used to display an embedded TChart or TDBChart
component into a QuickReport Band component. When using the qtmMetafile mode, all drawing
instructions are generated directly over the QuickReport Band. When using qtmBitmap, the whole Chart
is outputted to an internal Bitmap and then copied to the QuickReport band. The qtmMetafile method
guaranties better Printing and Screen resolution and it's faster in most situations.

See Also
TChart.BufferedDisplay
TChart.TeeCreateMetafile
TChart.SaveToBitmapFile

TeeScrollKeyShift Global Variable
See also

Unit

Chart

Applies to
All TeeChart components

Declaration
property TeeScrollKeyShift : TShiftState;
Description
Default Value: []

Keys that should be pressed to start scroll.

Warning: This is not a TChart property. It's a global variable.
For Windows users with swapped mouse buttons, this variable points to the opposite mouse button.

See also
TeeZoomMouseButton
TeeZoomKeyShift
TChart.OnScroll

TeeScrollMouseButton Global Variable
See also

Unit

Chart

Applies to
All TeeChart components

Declaration
property TeeScrollMouseButton : TMouseButton;
Description
Default Value: mbRight
The TeeScrollMouseButton global variable determines which of the mouse buttons will be used by
TChart users at run-time to scroll chart contents.
By default it is assigned to the Right mouse button. You can change this behavior setting it to a different
mouse button.
The other TeeZoomMouseButton global variable determines the mouse button used to zoom chart
contents.
Never set the same mouse button for these two variables.

Warning: This is not a TChart property. It's a global variable.
For Windows users with swapped mouse buttons, this variable points to the opposite mouse button.

See also
TeeZoomMouseButton
TChart.OnScroll

TeeZoomKeyShift Global Variable
See also

Unit

Chart

Applies to
All TeeChart components

Declaration
property TeeZoomMouseButton : TShiftState;
Description
Default Value: []

Key that should be pressed to start zoom. This variable allows control of which mousebutton and
keyboard combination should be applied to start zoom.

Warning: This is not a TChart property. It's a global variable.
For Windows users with swapped mouse buttons, this variable points to the opposite mouse button.

See Also
TChart.OnZoom
TChart.UndoZoom
TeeScrollMouseButton
TeeScrollKeyShift

TeeZoomMouseButton Global Variable
See also

Unit

Chart

Applies to
All TeeChart components

Declaration
property TeeZoomMouseButton : TMouseButton;
Description
Default Value: mbLeft
The TeeZoomMouseButton global variable determines which of the mouse buttons will be used by
TChart users at run-time to apply zoom.
By default it is assigned to the Left mouse button. You can change this behavior setting it to a different
mouse button.
The other TeeScrollMouseButton global variable determines the mouse button used to scroll chart
contents.
Never set the same mouse button for these two variables.

Warning: This is not a TChart property. It's a global variable.
For Windows users with swapped mouse buttons, this variable points to the opposite mouse button.

See Also
TChart.OnZoom
TChart.UndoZoom
TeeScrollMouseButton

TempValue Property

Applies to
TChartValueList component

Declaration
property TempValue : Double;
Description
Run-time only.
The TempValue property is a special internal property used when adding values from one Series to
another or when adding values to a Series with more than "X" and "Y" values, such as TBubbleSeries
which has "Radius" values as well.

Text Property
See also Example

Applies to
TChartTitle component

Declaration
property Text : TStrings;
Description
The Text property determines the text that appears at a Chart Title or Foot. You can add or change text
using the standard Delphi TStrings object methods:

Text property Example
You can add or change text using the standard Delphi TStrings object methods:
Chart1.Title.Clear;
Chart1.Title.Add('Hello');
Chart1.Title.Add('World');

See Also
TChart.Title

TextStyle Property
See also Example

Applies to
TChartLegend component

Declaration
property TextStyle : TLegendTextStyle;
Description
Default Value: ltsLeftValue
The TextStyle property indicates how Legend text items will be formatted.
ltsPlain shows the point Label only.
ltsLeftValue shows the point Value and the point Label.
ltsRightValue shows the point Label and the point Value.
ltsLeftPercent shows the percent the point represents and the point Label.
ltsRightPercent shows the point Label and the percent the points represent.
ltsXValue shows the point's X value. It applies only to Series with X (horizontal) values.
Values are pre-formatted using the Series ValueFormat property. Percents are pre-formatted using the
Series PercentFormat property.
You can also use the TChart.OnGetLegendText event to supply customized Legend texts.

TextStyle property Example
These are examples of different Legend's TextStyle values:
ltsPlain Summer
ltsLeftValue 1234 Summer
ltsRightValue Summer 1234
ltsLeftPercent 5.1 % Summer
ltsRightPercent Summer 5.1 %
**ltsXValue 4321
**Applies only to Series with X values. See TChartSeries.AddXY method.

See Also
TChartLegend.LegendStyle
TChartSeries.ValueFormat
TChartSeries.PercentFormat
TChart.OnGetLegendText

TickInnerLength Property
See also

Applies to
TChartAxis component

Declaration
property TickInnerLength : Integer;
Description
Default Value: 0
The TickInnerLength property defines the length in pixels of Axis ticks drawn inside Chart boundaries.
Inner ticks are hidden by default. Set it to a value greater than zero to show the inner Axis Ticks.
Use the TickInner property to determine the Pen used to draw them.
You can combine TChartAxis.Ticks, TChartAxis.MinorTicks and TChartAxis.TicksInner at same time.

See Also
TChartAxis.TicksInner
TChartAxis.Ticks
TChartAxis.MinorTicks

TickLength Property
See also

Applies to
TChartAxis component component

Declaration
property TickLength : Integer;
Description
Default Value: 4
The TickLength property defines the length of Axis Ticks in logical pixels.
Use the Ticks Pen property to change pen attributes.
Set it to zero to hide Axis Ticks.
You can combine TChartAxis.Ticks, TChartAxis.MinorTicks and TChartAxis.TicksInner at same time.

See Also
TChartAxis.TicksInner
TChartAxis.Ticks
TChartAxis.MinorTicks
TChartAxis.TickOnLabelsOnly

TickOnLabelsOnly Property
See also

Applies to
TChartAxis component component

Declaration
property TickOnLabelsOnly : Boolean;
Description
Default True
This property sets the Axis Ticks and Axis Grid to be drawn only to coincide at Labels. Otherwise they
will be drawn at all axis increment positions. When the Axis LabelsSeparation property is greater than 0
(default 10), Axis increases the increment property to avoid Axis Label overlap.

See Also
TChartAxis.TicksInner
TChartAxis.Ticks
TChartAxis.MinorTicks
TChartAxis.LabelsSeparation

Ticks Property
See also

Applies to
TChartAxis component

Declaration
property Ticks : TChartPen;
Description
The Ticks property determines the kind of Pen used to draw Axis marks along the Axis line.
Ticks position is calculated based on Axis.Increment, Axis.LabelsSeparation and Axis.LabelStyle
properties.
There are three kind of ticks available: Ticks, MinorTicks and TicksInner.
You can show or hide any of them of have all of them Visible.
The TickLength property defines the length of Axis Ticks in logical pixels.

See Also
TChartAxis.Increment
TChartAxis.MinorTicks
TChartAxis.TickLength
TChartAxis.TicksInner

TicksInner Property
See also

Applies to
TChartAxis component

Declaration
property TicksInner : TChartPen;
Description
The TicksInner property determines the kind of Pen used to draw Axis marks along the Axis line. This is
the same Ticks property does but lines are drawn inside Chart boundaries instead.
TicksInner position is calculated based on Axis.Increment, Axis.LabelsSeparation and Axis.LabelStyle
properties.
There are three kind of ticks available: Ticks, MinorTicks and TicksInner.
You can show or hide any of them of have all of them Visible.
The TickInnerLength property defines the length of Axis TicksInner in logical pixels.

See Also
TChartAxis.Increment
TChartAxis.MinorTicks
TChartAxis.TickLength
TChartAxis.Ticks

Title Example
LineSeries1.Title:='Total Population';

Title Property (TChart)
See also

Applies to
TChart component

Declaration
property Title : TChartTitle;
Description
The Title property defines the Text and formatting properties to be drawn at Top Chart side. Use the Text
property to enter the desired Title lines, set Visible to True and change the Font, Frame and Brush
properties. Use the Alignment property to control text output position.

Title Property (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
property Title : TChartAxisTitle;
Description
The Title property is a TChartAxis sub-component. It contains all properties for Axis Titles.
Axis Titles are a string of text drawed near Axis.
Use the Caption property to specify Axis Title text. Set the Font and Angle properties to desired format.

Title Property
Example

Applies to
TChartSeries component

Declaration
property Title : String;
Description
By default, Title is empty.
Every TChartSeries has a Title property of type String. The Title property is used in TChart.Legend to
draw the series descriptions. If Title is empty, then the Series component Name will be used to draw the
legend. Setting Title both at design time and runtime will force the Chart to repaint.

See Also
TChartAxis.Labels
TChart.Title
TChart.Foot
TChart.Legend

See Also
TChart.Foot
TChartTitle.Text

TitleRect Property
See also

Applies to
TChartTitle component

Declaration
property TitleRect : TRect;
Description
The TitleRect property returns the bounding rectangle coordinates for Chart.Title and Chart.Foot
subcomponents. Title dimensions depend on TChartTitle.Frame and AdjustFrame properties.
You can use TitleRect to custom draw on Chart Title or Foot, or to custom handle mouse clicks over Title
or Foot boundaries.

See Also
TChartTitle.Frame
TChartTitle.AdjustFrame

TitleSize Example
{50 pixels separation}
Chart1.TopAxis.TitleSize := 50 ;

TitleSize Property
Example

Applies to
TChartAxis component

Declaration
property TitleSize : Integer;
Description
The TitleSize property is 0 by default.
Therefore the space between the Axis Title and the Chart will be automatically calculated based on the
Axis Title Width and Height. You can set this property both at design or runtime.

TopAxis Property
See also

Applies to
TChart component

Declaration
property TopAxis : TChartAxis;
Description
The TopAxis property determines the Labels and formatting attributes of Top Chart side. It also controls
where Series points will be placed.
Every TChart component has five TChartAxis: Left, Top, Right, Bottom and Depth (Z).
The Top is pre-defined to be:
Horizontal := True ;
OtherSide := True ;
Refer to TChartAxis help topic for a complete description.

See Also
TChart
TChartAxis
TChart.BottomAxis
TChart.DepthAxis
TChart.LeftAxis
TChart.RightAxis

TopPos Property
See also

Applies to
TChartLegend component

Declaration
property TopPos : Integer;
Description
Default Value: 10
The TopPos property specifies the Legend's top position in percent of total chart height.
It's used when TChartLegend.Alignment is laLeft or laRight only. For laTop or laBottom Legend
alignments, you can use the Chart's MarginTop and MarginBottom properties.
The TChart.OnGetLegendRect event can be used to supply specific Legend position and dimensions.

See Also
TChart.OnGetLegendRect
TChartLegend.HorizMargin
TChartLegend.VertMargin

TotalABS Property

Applies to
TChartValueList component

Declaration
property TotalABS : Double;
Description
Run-time and read only.
The TotalABS property returns the sum of all values in the list. The values are first converted to their
absolute value.
TPieSeries, for example, uses this property to calculate the percent each Pie slice represents.
See TChartValueList.MaxValue property for more information.

Clicked Method (TSeriesMarks)

Applies to
TSeriesMarks component

Declaration
property Clicked(X,Y:Integer):Integer ;
Description
Returns the Marks index of the clicked Mark.

Bounds Method (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
property Bounds:TRect ;
Description
Read-only
Returns the bounding rectangle of the indexed Mark..
Example
With Series1.Marks.Positions do
Begin
 ShowMessage(IntToStr(Position4.Bounds.Left));
end;

Custom Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
property Custom:Boolean ;
Description
Enables/disables custom positioning of the indexed Mark.
Example
 With Series1.Marks.Positions.Position4 do
 Begin
 Custom:=True;
 LeftTop.x:=45;
 LeftTop.y:=45;
 end;

Width Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
property Width:Integer ;
Description
Width of the indexed Mark.

Height Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
property Height:Integer ;
Description
Height of the indexed Mark.

LeftTop Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
var LeftTop:TPoint ;
Description
Position of the Left,Top point of the indexed Mark.
Example
Series1.Marks.Positions.Position4.Custom:=True;
 With Series1.Marks.Positions.Position4.LeftTop do
 Begin
 x:=45;
 y:=37;
 end;

ArrowFrom Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
var ArrowFrom:TPoint ;
Description
Position of the start point of the Mark connecting Arrow.
Example
 Series1.Marks.Positions.Position4.Custom:=True;
 With Series1.Marks.Positions.Position4.ArrowFrom do
 Begin
 x:=45;
 y:=37;
 end;

ArrowTo Property (TSeriesMarkPosition)

Applies to
TSeriesMarkPosition component

Declaration
var ArrowTo:TPoint ;
Description
Position of the end point of the Mark connecting Arrow.
Example
 Series1.Marks.Positions.Position4.Custom:=True;
 With Series1.Marks.Positions.Position4.ArrowTo do
 Begin
 x:=45;
 y:=37;
 end;

Positions Property (TSeriesMarks)

Applies to
TSeriesMarks component

Declaration
property Positions: TSeriesMarksPositions;
Description
Use this property to access Custom position characteristics for Series Marks.

Automatic method (TSeriesMarksPositions)

Applies to
TSeriesMarks component

Declaration
procedure Automatic(Index : Integer);
Description
Enable automatic positioning for the indexth Mark.
Example
Series1.Marks.Positions.Automatic(3);
Chart1.Repaint;

Position Property (TSeriesMarksPositions)

Applies to
TSeriesMarks component

Declaration
property Position Index : Integer : TSeriesMarksPosition;
Description
Set the position for the indexth Mark.

Transparent Property (TChartWall)

Applies to
TChartWall component

Declaration
property Transparent : Boolean;
Description
Default Value: False
The Transparent property controls if Walls will be filled or not.

Transparent Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property Transparent : Boolean;
Description
Default Value: False
The Transparent property controls if Series Marks background will be filled or not.

See Also
TSeriesMarks.BackColor

UnClipRectangle Method
See also

Applies to
TChart component

Declaration
Procedure UnClipRectangle;
Description
(Advanced)
The UnClipRectangle method removes any clipping region applied to Chart Canvas. Clipping regions
are used to prevent drawing to escape from desired rectangle coordinates. It is used internally to keep
Marks and Series points to display outside ChartRect rectangle.
Note: Metafiles do not accept clipping regions. Metafile format is used when printing, so clipping can not
be performed.

See Also
TChart.ClipRectangle

UndoZoom Method
See also

Applies to
TChart, TDBChart components

Declaration
procedure UndoZoom ;
Description
The Chart.UndoZoom method will rescale the Chart Axis to their Maximum and Minimum values.Each
Axis "depends" on one or more Series components, so Axis values will depend on their associated
Series Maximum and Minimum values. UndoZoom also restores any runtime Scrolling.

See Also
Chart Zoom
Chart Scrolling and Panning

UsePatterns Property
See also

Applies to
TPieSeries component

Declaration
property UsePatterns : Boolean
Description
Default False
The UsePatterns property indicates, when True, that Pie Sectors will be filled using different Brush
pattern styles. There are 6 different pattern styles.

See Also
TChart.SetBrushCanvas
TChartSeries.ValueColor
PatternPalette global constant
GetDefaultPattern global function

UseYOrigin Property
See also

Applies to
TCustomBarSeries component

Declaration
property UseYOrigin : Boolean;
Description
Default Value: True
The UseYOrigin property defines if Bars will be bottom aligned to the YOrigin property value.
When False, the minimum of all Bar values is used as the Bar origins value.
When True, the YOrigin property is used as the start point for Bars.

See Also
TCustomBarSeries.YOrigin

Value Property
See also Example

Applies to
TChartValueList component

Declaration
property Value[Index:Longint] : Double;
Description
Run-time only.
The Value array property holds all values in the list. The Series component repaints whenever values
are changed. You can use the Value property to retrieve or change values:

Value property Example
This code changes the 6th series point value to 25:
LineSeries1.YValues.Value[5] := 25 ;
LineSeries1.Repaint;
This code is equivalent:
LineSeries1.YValues[5] := 25 ;
LineSeries1.Repaint;
This code too (repaints automatically):
LineSeries1.YValue[5] := 25 ;

See Also
TChartSeries.AddY
TChartSeries.Delete

ValueColor Example
You can change by coding the point's color. The following code will change the (25+1)th point color to
clGreen.
LineSeries1.ValueColor[25] := clGreen ;
Or...
The following code will change all negative values to be red and the positive ones to be blue.
LineSeries1.ColorEachPoint := True;
for t := 0 to LineSeries1.Count - 1 do
if LineSeries1.YValue[t] < 0 then

LineSeries1.ValueColor[t] := clRed
else
LineSeries1.ValueColor[t] := clBlue;

That can be also done in most Series types.

ValueColor Property
Example

Applies to
TChartSeries component

Declaration
property ValueColor[Index:Longint]:TColor
Description
The TChartSeries ValueColor property is an array of TColor values. Each color value corresponds to a
different point in the Series.

ValueFormat Example
Chart1.LeftAxis.AxisValuesFormat := '###0.0###';
See Delphi help under FormatFloat Function for complete details.

ValueFormat Property
Example

Applies to
TChartAxis, TChartSeries components

Declaration
property ValueFormat : String;
Description
ValueFormat is a standard Delphi formatting string specifier.
Chart Axis uses it to draw the axis labels.
Chart Series uses it to draw the Marks.

ValueList Example
TBubbleSeries component has a 3rd ValueList: RadiusValues
This "extra" ValueList is the same as:
BubbleSeries.ValueList[2]

ValueList Property
Example

Applies to
TChartSeries component

Declaration
property ValueList[Index:Longint] : TChartValueList
Description
All Series have at least 2 (two) ValueList's:

XValues (the 0 index ValueList)

YValues (the 1 index ValueList)
You dont need normally to use ValueList directly. Series that have more than 2 ValueList's normally
"publish" the new ValueLists for you to access them as properties.

ValueMarkText Property

Applies to
TChartSeries component

Declaration
property ValueMarkText[Index:Longint]:String
Desciption
Returns the String representation of a Index point used to draw the Mark.

ValueSource Example
Being Quantity, a former numeric Field Name in Table1.
LineSeries1.DataSource := Table1 ;
LineSeries1.YValues.ValueSource := 'Quantity' ;
Case 2. A Chart Series is connected to another Chart Series:
If the Series which owns this ValueList is attached to a TChart (or a TDBChart), and if the
Series.DataSource property is any TChartSeries component, then the ValueSource property must refer
to an existing TChartValueList Name in the underlying TChartSeries.
Example:
LineSeries1.DataSource:=BubbleSerie2;
LineSeries1.YValues.ValueSource:='Y';
Being Y, the BubbleSeries2.YValues.Name.

ASSUMPTIONS:
Changing the ValueSource property both at design or runtime, will force the Series to fill again its values
from the specified DataSource.
This must be specially considered when the DataSource Series property is a database TTable or
TQuery or TClientDataset, because maybe it takes a long time to retrieve all records.
If the dataset is closed, the automatic record retrieving will be performed later on, when the dataset is
opened again.

ValueSource Property
Example

Applies to
TChartValueList component

Declaration
property ValueSource : String;
Description
Each Chart Value List has a ValueSource property. You can set this string property to different kind of
values:
Case 1. A Chart Series is connected to a database source:
If the Series that owns this ValueList is attached to a TDBChart, and the Series.DataSource property is
a TTable, TQuery, TClientDataset or any TDataSet component which provides database records, then
the ValueSource property must refer to an existing numeric, date, time or datetime Field Name in the
underlying dataset.

Example:
LineSeries1.DataSource := Table1 ;
LineSeries1.YValues.ValueSource := 'Quantity' ;
Being Quantity, a former numeric Field Name in Table1.
Case 2. A Chart Series is connected to another Chart Series:
If the Series which owns this ValueList is attached to a TChart (or a TDBChart), and if the
Series.DataSource property is any TChartSeries component, then the ValueSource property must refer
to an existing TChartValueList Name in the underlying TChartSeries.

Example:
LineSeries1.DataSource:=BubbleSerie2;
LineSeries1.YValues.ValueSource:='Y';
Being Y, the BubbleSeries2.YValues.Name.

ASSUMPTIONS:
Changing the ValueSource property both at design or runtime, will force the Series to fill again its values
from the specified DataSource.
This must be specially considered when the DataSource Series property is a database TTable or
TQuery or TClientDataset, because maybe it takes a long time to retrieve all records.
If the dataset is closed, the automatic record retrieving will be performed later on, when the dataset is
opened again.

ValuesListCount Method

Applies to
TChartSeries component

Declaration
function ValuesListCount:Longint;
Description
This Function returns the number of ValueLists for the Series. Normally, ValuesListCount is 2 (XValues
and YValues) but there are some Series that have more ValuesList:

BubbleSeries has 3 ValuesLists (X, Y and Radius).

GanttSeries has 3 ValuesList (Y, Start and End).

Variables list
See also

Description
This table lists the different input variables permitted by each Series type. Some variables, such as
Label fields, are optional.

SERIES TYPE DATASOURCE PROPERTIES

Basic
Line XValues, YValues, XLabel
Fast Line XValues, YValues, XLabel
Bar XValues, YValues (called Bar), XLabel
Area XValues, YValues, XLabel
Point Xvalues, YValues, XLabel
Pie PieValues, XLabel
Arrow StartXValues, StartYValues, XLabel, EndXValues, EndYValues
Bubble Xvalues, YValues, XLabel, RadiusValues
Gantt StartValues, EndValues, AY (Y axis level), AXLabel (Label optionally shown on

Y-axis or as mark)
Shape X0 (Top), Y0 (Bottom), X1 (Left), Y1 (Right)

See Also
Series unit

VertAxis Example
BubbleSeries1.VertAxis := aRightAxis ;

VertAxis Property
See also Example

Applies to
TChartSeries component

Declaration
property VertAxis : TVertAxis
Description
The VertAxis property is of type: TVertAxis. It means by which Vertical Axis (Left or Right axis) will be
the Series vertically scaled. You can change the desired Vertical Axis both at design and runtime:

See Also
TChartSeries.HorizAxis

VertMargin Property
See also

Applies to
TChartLegend component

Declaration
property VertMargin : Integer
Description
Default 0
The VertMargin property determines the amount of pixels that Legend will reduce Chart rectangle. The
Legend.ResizeChart property must be True and Legend.Alignment property must be laTop or laBottom.
When 0, the corresponding Chart margin property is used to determine the amount of pixels for margins
(Chart.MarginTop for laTop Legend.alignment and Chart.MarginBottom for laBottom Legend.Alignment).

See Also
TChart.MarginBottom
TChart.MarginTop
TChartLegend.Alignment
TChartLegend.HorizMargin
TChartLegend.ResizeChart

VertSize Property
See also

Applies to
TSeriesPointer component

Declaration
property VertSize : Integer;
Description
Default Value: 4
The VertSize property specifies the Series Pointer height in logical pixels.
Series that derive from TPointSeries usually override the HorizSize and VertSize properties.
For example, TBubbleSeries uses the Radius property to determine the correct HorizSize and VertSize,
so these properties have no effect in that Series.

See Also
TSeriesPointer
TSeriesPointer.HorizSize

View3D Property

Applies to
TChart, TDBChart components

Declaration
property View3d : Boolean
Description
Default value: True
View3D will draw each Series simulating a 3D effect.You can control the 3D proportion by using
Chart.Chart3DPercent property. Chart.View3DWalls depends on View3D property.

View3DWalls Property

Applies to
TChart, TDBChart components

Declaration
property View3dWalls : Boolean
Description
Default value: True
View3DWalls will draw Left and Bottom "walls" to simulate 3D effect. You can control the 3D Wall
proportion by using Chart.Chart3DPercent property. Chart.View3D controls (on/off) View3DWalls
property.

View3DOptions Property

Applies to
TChart, TDBChart components

Declaration
property View3dOptions : TView3dOptions
Description
View3DOptions control access for Rotation, Zoom and scrolling.

Visible Property
See also Example

Applies to
TChartAxis component

Declaration
property Visible : Boolean
Description
This boolean property Shows / Hides the Axis lines, ticks, grids, labels and title. You can change it both
at design and runtime:

Visible Property (TChartGradient)
See also Example

Applies to
TChartGradient component

Declaration
property Visible : Boolean;
Description
Default False
The Visible determines whether the gradient fill appears on screen.

Visible Property (TChartLegend)

Applies to
TChartLegend component

Declaration
property Visible : Boolean;
Description
Default Value: True
The Visible property determines if Chart Legend will be displayed or not.

Visible Property (TChartPen)

Applies to
TChartPen component

Declaration
property Visible : Boolean;
Description
The Visible property determines if the pen will draw lines or not.
For example, TChart.Frame can be hidden by setting it's Visible property to False:
Chart1.Frame.Visible:=False;

Visible Property (TChartTitle)

Applies to
TChartTitle component

Declaration
property Visible : Boolean;
Description
The Visible property controls if Chart Title or Foot will be displayed or not. When False, Chart
dimensions grow to fit all available space.

Visible Property (TSeriesMarks)
See also

Applies to
TSeriesMarks component

Declaration
property Visible : Boolean;
Description
The Visible property controls if Series Marks will be displayed or not.

Visible Property
See also

Applies to
TSeriesPointer component

Declaration
property Visible : Boolean;
Description
The Visible property controls if Series pointers will be displayed or not.
When using a TPointSeries (or any Series component derived from TPointSeries), setting Visible to
False will not display anything.
Pointers can be useful with TLineSeries or TAreaSeries.
When points are Visible, an extra margins are applied to the four chart axis (Left, Right, Top and
Bottom).
This is to make points just at axis limits to be shown.
You can deactivate this extra margins by setting the TSeriesPointer.InflateMargins property to False.
Points are filled using TSeriesPointer.Brush property.

Visible Example
Chart1.BottomAxis.Visible := False ;

See Also
Chart.AxisVisible

Visible property (TChartGradient) Example
This code creates a gradient fill:
Chart1.Gradient.Visible := True ;
Chart1.Gradient.StartColor := clYellow ;
Chart1.Gradient.EndColor := clBlue ;
Chart1.Gradient.Direction := gdLeftRight ;

See Also
TChartGradient.Direction
TChartGradient.EndColor
TChartGradient.StartColor

See Also
TSeriesMarks.Transparent
TSeriesMarks.BackColor

See Also
TSeriesPointer.InflateMargins
TSeriesPointer.Brush

VisibleCount Method

Applies to
TChartSeries component

Declaration
function VisibleCount : Longint;
Description
This function returns the number of Visible points in the Series. These are the points which X coordinate
is between the Minimum and Maximum horizontal Axis range. To iterate, you need to know the
FirstValueIndex and LastValueIndex points.

WarningHighColor Method
See also

Applies to
TChart component

Declaration
procedure WarningHighColor;
Description
This method is used internally at design-time to inform the developer that some property values will look
much better on Screen if the video card mode is set to 16k colors or True Color 24bit / 32bit. It calls the
Chart.IsScreenHighColor function and, when False, pops up a message dialog notifying the developer.
You can use this method at run-time in your own applications if you need the same video checking.

See Also
TChart.IsScreenHighColor

Welcome to TeeChart !
The 100% Native Data-Aware Charting Component Library for Delphi and C++ Builder.

TeeChart Pro version 4
What's new !
Component reference
User guide
License & disclaimer
More about TeeChart...
teeMach SL
Programming environments

TeeChart Copyright © 1995-1999 David Berneda. All rights reserved.
Helpfile revision 35th May 1999.

Width Property (TChartPen)

Applies to
TChartPen component

Declaration
property Width : Integer;
Description
The Width property determines the width of lines the pen draws.

Warning:
When drawing to Screen, the Width is expressed in pixels. When drawing to Printer or to Metafile
canvases, the Pen Width will be converted based on TChart.PrintResolution property.
Windows GDI has a special Width value of "0", that corresponds to the minimum pen width the drawing
device supports.

Width3D Example
This code draws an horizontal "frame":
With Chart1,Canvas do
begin
MoveTo(ChartRect.Left , ChartRect.Bottom - 10) ;
LineTo(ChartRect.Right , ChartRect.Bottom - 10) ;
LineTo(ChartRect.Right + Width3D , ChartRect.Bottom - 10 - Height3D) ;

end;

Width3D Property
See also Example

Applies to
TChart component

Declaration
property Width3D : Longint;
Description
Run-time and read only. The Width3D property determines the width in pixels of the Chart 3D effect. The
Chart.View3D property should be True. It equals zero if Chart.View3D is False. It changes when
changing the Chart.Chart3DPercent property.

See Also
TChart.Height3D
TChart.SeriesHeight3D
TChart.SeriesWidth3D

XLabel Property

Applies to
TChartSeries component

Declaration
property XLabel[Index:Longint] : String;
Description
This array property contains the horizontal Series Labels. You can access the individual Label strings by
using the Index parameter. Index must be between 0 and Count - 1 If you modify an XLabel, the Series
will be repainted to reflect any changes.

XLabelText Method

Applies to
TChart, TDBChart components

Declaration
function XLabelText (ASeries : TChartSeries ; ValueIndex : Longint) :
String ;
Description
This function returns the Series.XLabel text of the ValueIndexth Series point.

XLabels Example
If a LineSeries is made of pairs of points, each with X and Y values, you can choose to have or to not
have a corresponding horizontal label for each point X values.
This will add a new point to LineSeries1 with 3.5 (X) and 5.2 (Y) values, no associated horizontal label
and red color.
This point will be inserted in its horizontal position.
LineSeries1.AddXY(3.5 , 5.2, '', clRed);
You can also have the opposite case:
This will append a new point to LineSeries1, with an YValue of 5.2 and a 'Manhattan' horizontal label in
yellow color.
LineSeries1.AddY(5.2 , 'Manhattan', clYellow);
Last case is applicable to Bar Series and Pie Series.

XLabels Property
See also Example

Applies to
TChartSeries component

Declaration
property XLabels : TList;
Description
The XLabels property is a string list used to store the corresponding horizontal labels for a specific chart
Series at runtime. Its use is optional. You can have both XValues and XLabels or a single one only. How
axis labels and Series Marks will be displayed depends on its own respective style properties.

See Also
Series XLabelsSource property

XLabelsSource Property
See also

Applies to
TChartSeries component

Declaration
property XLabelsSource : String;
Description
The XLabelsSource is the name of a DataSet field. DataSet can be a TTable, TQuery, TClientDataset or
any other TDataSet derived component. This is the database field that contains the point Labels. Valid
Field types are all that have a valid AsString method. This property is optional. If no LabelsSource
specified, Series XLabels will be empty.

See Also
Series XLabels

XRadius Property
See also

Applies to
TCircledSeries component

Declaration
property XRadius : Longint
Description
Run-time and read only. The XRadius property returns the exact ellipse's radius horizontal size in pixels.
The ellipse XRadius and YRadius can be set to a fixed number of pixels by using the
CircledSeries.CustomXRadius and CustomYRadius. The CircledSeries.Circled property controls if both
radius must be proportional to the Screen X/Y ratio.

See Also
TCircledSeries.YRadius
TCircledSeries.CustomXRadius
TCircledSeries.CustomYRadius

XScreenToValue Example
You can, for example, use this function to know the Value where the user mouse-clicked:
Procedure TForm1.Chart1OnClick(... x,y ...) ;
Begin
ShowMessage('You clicked at:
'+FloatToStr(LineSeries1.XScreenToValue(x)));

end ;

XScreenToValue Method
See also Example

Applies to
TChartSeries component

Declaration
function XScreenToValue(ScreenPos:Longint):Double;
Description
This function returns the numeric Value that corresponds to the specified Horizontal Screen coordinate.
The resulting Value is based on the Series.GetHorizAxis

See Also
YScreenToValue

XValue Property

Applies to
TChartSeries component

Declaration
property XValue[Index:Longint] : Double;
Description
XValue array property returns the Index value in the XValues List

XValueToText Method
See also

Applies to
TChartSeries component

Declaration
function XValueToText(Const AValue : Double) : String;
Description
The XValueToText function returns the formatted text representation of the specified AValue parameter.
The AValue parameter is considered to be an horizontal X coordinate.
It returns the text string corresponding to an hypothetic horizontal Axis Label for that value.
It calls the corresponding horizontal axis LabelValue function.

See Also
TChartAxis.LabelValue
TChartSeries.YValueToText

XValues Example
Many things can be done with the XValues property.
For example, you can modify its values (thus forcing the Chart to repaint):
This will change the 35th point horizontal value to 10.
LineSeries1.XValues.Value[35] := 10 ;
You do not need to use 'Value' :
eg.
For index := 0 to Series1.Count - 1 do
 Series1.XValues[Index] := Series1.XValues[Index] /10;

Or, if contains DateTime XValues...
LineSeries1.YValues.Value[35] := EncodeDate(1995 , 4 , 13);
Or...
With LineSeries1.XValues do Value[35] := Value[35] + 1 ;

XValues Property
See also Example

Applies to
TChartSeries component

Declaration
property XValues:TChartValueList
Description
By default, any TChartSeries has an XValues property. This is the TChartValueList where the point
values will be stored at runtime. Also by default, XValues is a Public property. Some derived Series
publish it: TLineSeries, TBarSeries, TPointSeries, etc. Some others publish it with another, more friendly
name: TGanttSeries.StartValues, etc.

WARNING:
You CAN NOT Delete, Clear or Add values DIRECTLY. You need to call the TChartSeries equivalent
methods to do this.

See Also
TChartValueList
YValues

Y Percents Explanation

For each Series point, its corresponding value is calculated with the following formula:
percent:=100.0*value/TotalABS;
Being TotalABS the sum of all point's values.

Example:
Having the following point values (either vertical, horizontal):
5, 8, -3, 6, -1, 0
The first point percentual value is:
100.0 * 5 / 23 --> 21.739 %
Where 23 equals: 5 + 8 + abs(-3) + 6 + abs(-1) + 0

YOrigin Property
See also

Applies to
TCustomBarSeries component

Declaration
property YOrigin : Double;
Description
Default Value: 0
The YOrigin property determines the axis value used as a common bottom for all Bar points.
The UseYOrigin property must be True (the default) to use the YOrigin property.
Bars with a value bigger than YOrigin are drawn in one direction and Bars with a lower value are drawn
in the opposite direction.
This applies both to TBarSeries and THorizBarSeries components.

See Also
TCustomBarSeries.UseYOrigin

YRadius Property
See also

Applies to
TCircledSeries component

Declaration
property YRadius : Longint
Description
Run-time and read only. The YRadius property returns the exact ellipse's radius vertical size in pixels.
The ellipse XRadius and YRadius can be set to a fixed number of pixels by using the
CircledSeries.CustomXRadius and CustomYRadius. The CircledSeries.Circled property controls if both
radius must be proportional to the Screen X/Y ratio.

See Also
TCircledSeries.XRadius
TCircledSeries.CustomXRadius
TCircledSeries.CustomYRadius

YScreenToValue Example
You can, for example, use this function to set the Axis Minimum Value to a specific current Y Screen
coordinate.
LineSeries1.GetVertAxis.Minimum := LineSeries1.YScreenToValue (123);

YScreenToValue Method
See also Example

Applies to
TChartSeries component

Declaration
function YScreenToValue(ScreenPos:Longint) : Double;
Description
This function returns the numeric Value that corresponds to the specified Vertical Screen coordinate.
The resulting Value is based on the Series.GetVertAxis

See Also
XScreenToValue

YValue Property

Applies to
TChartSeries component

Declaration
property YValue[Index:Longint]:Double
Description
YValue array property returns the Index value in the YValues List

YValueToText Method
See also

Applies to
TChartSeries component

Declaration
function YValueToText(Const AValue : Double) : String;
Description
The YValueToText function returns the formatted text representation of the specified AValue parameter.
The AValue parameter is considered to be a vertical Y coordinate.
It returns the text string corresponding to an hypothetic vertical Axis Label for that value.
It calls the corresponding vertical axis LabelValue function.

See Also
TChartSeries.XValueToText
TChartAxis.LabelValue

YValues Property (TChartSeries)
See also Example

Applies to
TChartSeries component

Declaration
property YValues : TChartValueList;
Description
By default, any TChartSeries has an YValues property. This is the TChartValueList where the point
values will be stored at runtime. Also by default, YValues is a Public property.
Some derived Series publish it: TLineSeries, TBarSeries, TPointSeries, and some others publish it with
another, more friendly name: TPieSeries.PieValues, etc.

WARNING:
You CAN'T Delete, Clear or Add values DIRECTLY. You need to call the TChartSeries equivalent
methods to do it.

YValues property (TChartSeries) Example
Many things can be done with the YValues property.
For example, you can modify its values (thus forcing the Chart to repaint):
LineSeries1.YValues.Value[35]:=10;
That will change the 35th point vertical value to 10
Or...
With LineSeries1.YValues
Value[35] := Value[35]+1;

Or, if contains DateTime YValues...
LineSeries1.YValues.Value[35] := EncodeDate(1995,4,13);

See Also
Assigning a DataSource to YValues.
XValues

ZOrder Property
See also

Applies to
TChartSeries component

Declaration
property ZOrder : LongInt;
Description
Read-only and run time.
The ZOrder property returns at which position along the depth axis the Series is drawn.
It's valid only when TChart.View3D property is True and when there's more than one Series in same
chart.
You can't alter the ZOrder property directly. If you want a different order you need to use the
TChart.SeriesList property instead.
The ZOrder property is calculated for each Series just before the Chart is drawn.
The TChart.ApplyZOrder property controls if Series will be assigned a different Z position or not. When
False, all Series are drawn at same Z plane.
The TChart.MaxZOrder property returns the highest of all Series ZOrder values.
See the "LastValu.PAS" example unit for a demo of ZOrder.

See Also
TChart.ApplyZOrder
TChart.SeriesUp
TChart.MaxZOrder

ZoomPercent Example
This sets AnimatedZoom to True, performs a Zoom In and a Zoom Out:
Chart1.AnimatedZoom:=True;
Chart1.ZoomPercent(125); { Zoom IN 125% }
Chart1.ZoomPercent(75); { Zoom OUT 75% }

ZoomPercent Method
See also Example

Applies to
TChart component

Declaration
procedure ZoomPercent(Const PercentZoom : Double);
Description
The Chart.ZoomPercent method applies the specified PercentZoom Zoom In/Out to the current Axis
scales. When PercentZoom is greater than 100%, Zoom Out is performed. When PercentZoom is lower
than 100%, Zoom In is performed. The AnimatedZoom property controls if Zoom is done directly in only
one step or by multiple zooms thus giving an animation effect.

See Also
TChart.AllowZoom
TChart.AnimatedZoom
TChart.AnimatedZoomSteps
TChart.OnUndoZoom
TChart.OnZoom
TChart.ZoomRect
TChart.Zoomed
TChartAxis.SetMinMax

ZoomRect Method
See also

Applies to
TChart component

Declaration
procedure ZoomRect(Const Rect : TRect);
Description
The ZoomRect method does zoom on Chart contents. The Rect parameter defines the pixel rectangle
coordinates of the chart area to be zoomed. Calling this method is similar to manually drawing a zoom
box at run-time by dragging the left mouse button.
You can perform a zoom in by specifying a Rect parameter enclosed on Chart dimensions, and zoom
out by specifying a bigger rectangle parameter.

Zoom in example:
Chart1.ZoomRect(Rect(5,5,Chart1.Width-5,Chart1.Height-5));
Zoom out example:
Chart1.ZoomRect(Rect(-5,-5,Chart1.Width+5,Chart1.Height+5));

See Also
TChart.AllowZoom
TChart.AnimatedZoom
TChart.AnimatedZoomSteps
TChart.OnUndoZoom
TChart.OnZoom
TChart.UndoZoom
TChart.Zoomed
TChart.ZoomPercent
TeeZoomMouseButton global variable
AnimatedZoomFactor global variable

Zoomed Property
See also

Applies to
TChart component

Declaration
property Zoomed : Boolean;
Description
Run-time only.
The Zoomed property determines if Chart axis scales do not fit all Chart points.
It is set to True when users's apply zoom or scroll to the Chart using the mouse at run-time.
The UndoZoom method sets the Zoomed property to False and resets the axis scales to fit all Series
points.
The default value is True, meaning no zoom or scroll has been applied to the chart after it has been
displayed for first time.

See Also
TChart.OnScroll
TChart.OnZoom
TChart.UndoZoom
TChart.ZoomPercent
TChart.ZoomRect

TeeLineSeparator Global Constant

Applies to
Global Constant

Declaration
Const TeeLineSeparator = ascii character #13;
Description
Use this character constant for multiple line Labels when adding Points to a data Series.
eg.
Series1.Add(1234, 'My two' + TeeLineSeparator + 'line

label',clRed);
See also the Axis LabelsMultiLine property.

clTeeColor Color Value Property

Applies to
TChart, TDBChart components

Declaration
Const clTeeColor = clScrollBar;
Description
Most Color properties in TeeChart component, accept the clTeeColor constant value. That is equal to
Delphi clScrollBar (or -1, in numeric).
It is a very important feature to have clTeeColor:
When adding new points to a Chart Series, specifying clTeeColor as the point color, it will make
TeeChart assigns a different color to each point. (See TChartSeries.ColorEachPoint property for more
information).
When attaching new series to any Chart, having the TChartSeries.SerieColor property to clTeeColor it
will make TeeChart assigns a different color to each Series.
Some Series types allow clTeeColor in their Pen and Brushes properties, thus forcing to use the actual
point color instead of the Pen or Brush assigned color.

Alignment Property (TChartShape)

Applies to
TChartShape component

Declaration
property Alignment : TAlignment;
Description
The Alignment property decides the alignment of the text of a TChartShape.

Bounds property (TChartShape) Example
The following code uses TChartShape.Bounds to draw a diagonal cross over a TChartShape series:
{ Drop a TChart and a Shape Series. Rename Series1 to Shape1 }
procedure TForm1.Chart1AfterDraw(Sender: TObject);
begin
 With Chart1.Canvas do
 begin
 Pen.Color:=clRed;
 Pen.Width:=2;
 Pen.Style:=psSolid;
 With Shape1.Bounds do
 begin
 MoveTo(Left, Bottom);
 LineTo(Right, Top);
 MoveTo(Left, Top);
 LineTo(Right, Bottom);
 end;
 end;
end;

Bounds Property (TChartShape)
See also Example

Unit
TeeShape

Applies to
TChartShape component

Declaration
property Bounds;
Description
The Bounds property returns the biggest rectangle enclosing TChartShape, in logical pixels. It accesses
TChartShape.GetShapeRect method.

See Also
TChartShape.GetShapeRect

Brush Property (TChartShape)
See also

Applies to
TChartShape component

Declaration
property Brush : TBrush;
Description
The Brush property defines the kind of brush used to fill shape background.

See Also
TChartShape.Pen

Font property TChartShape Example
This code sets Shape text and font:
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
 { Drop a TChart and a TChartShape components and rename the Shape
 to "MyShape" }
 With MyShape do
 begin
 Style:=chasDiamond ;
 Font.Size:=12;
 Font.Color:=clBlue;
 Font.Style:=[fsBold];
 Text.Clear;
 Text.Add('Hello');
 Text.Add('World');
 end;
end;

Font Property (TChartShape)
See also Example

Applies to
TChartTitle component

Declaration
property Font : TFont;
Description
The Font property determines the font attributes used to output TChartShape.Text strings. No auto font
sizing is performed, so you must specify the desired font size to avoid shape text to go over Shape
boundaries.

See Also
TChartShape.Text

GetShapeRect Method
See also

Applies to
TChartShape component

Declaration
function GetShapeRect : TRect;
Description
The GetShapeRect method calculates and returns the TChartShape bounding rectangle coordinates.
You can use TChartShape.Bounds property instead, as Bounds uses GetShapeRect as the property get
method.

See Also
TChartShape.Bounds

Pen Property (TChartShape)
See also

Applies to
TChartShape component

Declaration
property Pen : TPen;
Description
The Pen property speficies the pen used to draw the shape.

See Also
TChartShape.Brush

RoundRectangle Property
See also

Applies to
TChartShape component

Declaration
property RoundRectangle : Boolean;
Description
Default : False
The RoundRectangle property determines if TChartShape draws rounded rectangle corners. It has
effect only when shape Style is chasRectangle.

See Also
TChartShape.Style

Style Property (TChartShape)
Example

Applies to
TChartShape component

Declaration
property Style : TChartShapeStyle
Description
Default Value: chasHorizLine
The Style property defines how a TChartShape component appears on a Chart.
These are the possible values and their meanings:

chasRectangle The shape is a rectangle

chasCircle The shape is a circle

chasVertLine The shape is a vertical line

chasHorizLine The shape is an horizontal line

chasTriangle The shape is a triangle

chasInvertTriangle The shape is an inverted triangle

chasLine The shape is a line

chasDiamond The shape is a diamond

Style property (TChartShape) Example
You can change the Shape style both at design and run-time.
MyShape.Style := chasTriangle ;

TChartShape Component
Properties Methods

Unit
TeeShape

Ancestor
TChartSeries

Description
The TChartShape component is a special Series component. It allows the developer to place shapes
inside Chart bounds. It works very similar to Delphi standard TShape component. To see a visual
representation of this Series type, go to the TeeChart User Guide.
Set the ParentChart property to the desired Chart component.
Then, set the X0, Y0 and X1, Y1 properties to the desired point coordinates. The X0, Y0, X1 and Y1
properties must be expressed in axis scales.
The default Shape style is an horizontal line. Choose the desired style (Rectangle, Ellipse, etc) by using
the Style property.
The Brush and Pen properties determine the shape color and frame attributes.
The Clicked method can be used to check if mouse cursor is over shape boundaries.
Shapes can be zoomed and scrolled as with any other Series type.
Please refer to TChartSeries ancestor description for all common Series properties like Marks, Axis
dependence, methods and events.

Methods
Key Methods

GetShapeRect

Properties
Run-time only
Key Properties
Alignment
Brush
Font
Pen
RoundRectangle

Style
Text
Transparent
X0
X1
XYStyle
Y0
Y1

TChartShapeStyle Type

Unit
TeeShape

Declaration
TChartShapeStyle = (chasRectangle, chasCircle, chasVertLine, chasHorizLine,
chasTriangle, chasInvertTriangle, chasLine, chasDiamond);
Description
TChartShapeStyle defines the list of possible values for the TChartShape.Style property.

chasRectangle The shape is a rectangle

chasCircle The shape is a circle

chasVertLine The shape is a vertical line

chasHorizLine The shape is an horizontal line

chasTriangle The shape is a triangle

chasInvertTriangle The shape is an inverted triangle

chasLine The shape is a line

chasDiamond The shape is a diamond

TeCanvas Unit
The TeCanvas unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TCanvas3D

TeeShape Unit
The TeeShape unit contains the declarations for the following components and for the enumerated type
associated with them. When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit. The following items are declared in the this
unit:

Components
TChartShape

Types
TChartShapeStyle

Routines
To see a listing of items declared in this unit including their declarations, use the Project Brower.

Text property (TChartShape) Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
 { Drop a TChart and a TChartShape components and rename the Shape
 to "MyShape" }
 With MyShape do
 begin
 Style:=chasDiamond ;
 Font.Size:=12;
 Font.Color:=clBlue;
 Font.Style:=[fsBold];
 Text.Clear;
 Text.Add('Hello');
 Text.Add('World');
 end;
end;

Text Property (TChartShape)
See also Example

Applies to
TChartShape component

Declaration
property Text : TStrings;
Description
The Text property is used by TChartShape component to display customized strings inside Shapes.
You can use the Font and Aligment properties to control Text display.
Note: You would maybe need to change Shape Font size to a different value when creating metafiles or
when zooming Charts.

See Also
TChartShape.Font
TChartShape.Alignment

Transparent Property (TChartShape)

Applies to
TChartShape component

Declaration
property Transparent : Boolean;
Description
Default : False
The Transparent property controls if TChartShape components will use the Shape Brush attributes to fill
the interior of the Shape.
When False, Shapes do not redraw their background so charting contents behind Shape Series is seen
inside the Shape.

X0, Y0, X1, Y1 Properties
See also

Applies to
TChartShape component

Declaration
property X0 : Double;
property Y0 : Double;
property X1 : Double;
property Y1 : Double;
Description
These properties define the Top - Left and Bottom - Right coordinates of the englobing TChartShape
rectangle.
The values should be expressed in Axis coordinates.
You can convert from Screen pixel coordinates to values and vice-versa using several TChart and
TChartSeries methods like XScreenToValue and YScreenToValue.

See Also
TChartShape.Style
TChartSeries.XScreenToValue
TChartSeries.YScreenToValue

XYStyle Property

Applies to
TChartShape component

Declaration
property XYStyle : TChartShapeXYStyle;
Description
Default : xysAxis
Can be xysAxis, xysPixels or xysAxisOrigin.
Example
With Series1 do
begin
 XYStyle:=xysAxisOrigin
 X0 := EncodeDate(1998,1,1); // <-- in BottomAxis scales
 Y0 := 1234.45; //<-- in LeftAxis scales
 X1 := 100; //<-- 100 pixels width
 Y1 := 30; //<-- 30 pixels height
end;

FunctionType property Example
To set the period for Function you should use the FunctionType property
To define a functioned series by code you should first create a new series for the function. The series
may be of any type.
{ Set the function using the SetFunction method}.
Series1.SetFunction(TAddTeeFunction.Create(Self));
{You may then define the period for the function - here setting it to to 5}
Series1.FunctionType.Period:=5;
To undefine (delete) a function defined for the series use
Series1.SetFunction(nil);

Weighted Property
See also

Applies to
TAverageTeeFunction component

Declaration
property Weighted : Boolean;
Description
Default Value: False
The Weighted property determines the kind of formula used to calculate the Average points values.
Given this three points:
Point 0 : x 1 y 4
Point 1 : x 2 y 5
point 2 : x 3 y 9
When Weighted property is False, the arithmetic average is used:
4 + 5 + 9 = 18
18 div 3 = 6 <------- 6 is the mean
When True, each value is multiplied by it's X coordinate:
(1 * 4) + (2 * 5) + (3 * 9) = 41
Then the sum is divided by the sumatory of all X values:
41 div (1 + 2 + 3) = 6.833333333....

See Also
TTeeFunction.Period

FunctionType Property
Example

Applies to
TChartSeries component

Declaration
property FunctionType : TTeeFunction read FTeeFunction;
Description
The FunctionType property is used with TeeFunction components to define Period.

ChangeSeriesType Method
See also

Applies to
TChart class

Declaration
procedure ChangeSeriesType(Var
ASeries:TChartSeries;NewType:TChartSeriesClass);
Description
The ChangeSeriesType method changes the Series type for the Series of the given index.

 See Also
TChart.AddSeries

 The Chart Editor

Introduction
The Chart Editor is designed to help you quickly create and modify Charts. The Editor may be called at
runtime using (TeeChart Pro only) using the EditChart method.
To get help on any Topic in the Chart Editor, select the button at the top righthand side of the Editor
window and drag it onto the Topic in question. TeeChart Pro help will show you the runtime property or
method associated with the feature.

Editor design
There are 2 principal sections to the Chart editor, Chart parameters and the Series parameters,
which are separated as 2 tabs of the Chart Editor.

Chart pages
You may define overall Chart display parameters at any time before, during or after adding Series to the
Chart. Chart parameters are divided into the following sections:

Series page
You may add a mixture of different Series types to the Chart to define the specific Chart of your choice.
Note here that you are not limited to predefined Chart types. Most Series types are compatible with
other Series types on the same Chart, those Series types not available are greyed out. To add a new
Series to a Chart select the Add button on this page which will display the Chart Gallery. Select the Series
type of choice from the gallery and it will display on the Series page of the Chart Editor.
General Page
3D, Chart rectangle dimensions, margins, Zoom and Scroll, Print Preview and Export.
Axis Page
All Axes definition. Some parameters depend upon the Series associated with the axis, for example,
Datetime depends on whether the Series data has datetime definition, this can be configured on the
Series 'General' page of the Series concerned.
Titles Page
Teechart Title and Footer
Legend Page
Legend display. Formatted displays work in conjunction with the Chart Series. See also the 'General'
page of the Series.
Panel Page
Chart Panel display properties. Colours, Bevels, Backimages, Colour Gradient and Border.
Paging Page
Definition of number of points per chart page. May be used to browse at design time, too, if your data is
sourced from an ODBC datasource.
Walls Page
Left, Bottom and Backwall size and Colour definitions.

Series Pages
Series pages will contain parameters dependant on the series type concerned. The Combobox at the
top of the Series tab page shows which series you are editing.

Format Page
Contains Series type specific parameters.
General Page
Series value format, Axis association
Marks Page
Series Mark format, text, frame and back colour and positioning.
Data Source Page
Access to Function definition and data sourcing for TTable, TQuery and TClientDataset

What's new !
Here is a list of some of the features new to version 4 of TeeChart.

3D improvements
Improved 3D with rotation, elevation, scroll and zoom.
3D OpenGL rendering. (TeeChart Pro only)
Create your own 3D rendering mechanism (for example VRML rendering,
or DXF exporting).(TeeChart Pro only)
New visual component TDraw3D for 3D generic drawing (non-chart
related).(TeeChart Pro only)
Faster drawing speed in most cases as now all drawings are performed
directly to Windows GDI, bypassing the Delphi TCanvas when necessary.

New Series types (TeeChart Pro only)
TRadarSeries (“spider” charts)
TContourSeries (3D contouring)
TPoint3DSeries (3D scatter with optional 3D lines)
TBezierSeries (point smoothing)

All Chart components (TChart, TDBChart, TQRChart, TDecisionGraph...)
A new Chart.DepthAxis to display labels (or Series titles) and ticks for the
"Z" dimension in 3D mode.
Retrieve Chart binary files from Internet URL addresses
(LoadChartFromURL procedure). (TeeChart Pro only)
New BackWall sub-component, with 3D depth.
New Gradient filling styles (From / To Center, From / To Corner)
New “OnBeforeDrawAxes” event. (TeeChart Pro only)
Title and Foot accept now the Brush.Bitmap property to fill the
background. (TeeChart Pro only)

Axes
Multi-Line Axis Labels with and without rotation, at design-time and
runtime.
Unlimited multiple axis, connected to a single or to many Series.
(TeeChart Pro only)
All Axis (default and custom) can now be moved and stretched to any
position (TeeChart Pro only)
Centered Axis Grid lines

All Series
Added "AddNullXY" method for all Series. (TeeChart Pro only)
Shadow color 3D effect in Line, Area, Point, etc Series.
Series HorizAxis and VertAxis properties can now show both axes at the
same time. (TeeChart Pro only)

All Series Marks
Custom positioning of Series Marks.
Multi-line Marks text.

Fast-Line Series
Fast-Line option to draw new added points (15000 points per second on a
P166)

Pie Series
Exploded Pie slices in both 2D and 3D, supporting rotation.
Pie "Other" slice, grouping small slices into a single one.
Brush.Bitmap for customized pattern filling.

Chart Legend
Legend has now a Clicked function to return the Legend item index under
the mouse.

Multi-row Legends. (TeeChart Pro only)
TDBChart

Series1.DataSource := DataSource1 for single-row (single-record)
database charting.
DBChart now uses the Delphi's TField "OnGetText" event. (TeeChart Pro
only)

TQRChart (QuickReport Chart)
New “OnPrint” event, to allow customizing the chart resolution.
The “Frame” property now displays and prints. (TeeChart Pro only)

Line Series
Line Series Height property, for 3D strip lines. (TeeChart Pro only)

Bar Series
Bar and Horiz Bar Series can now be resized when zoomed (AutoBarSize
property).
BarBrush.Bitmap now can be used to fill the Bars.

Gantt Series
Gantt points can be now customized using the OnGetPointerStyle event.

Shape Series
New Shape styles (3D Cube, Pyramid, Invert.Pyramid, 2D Cross,
Diag.Cross)
Now Shapes origin can be expressed in axis values, while size expressed
in pixels. (TeeChart Pro only)
Brush.Bitmap for customized pattern filling.

Surface Series (TeeChart Pro only)
Surface series easier to use with auto XZ grid. Allow specific non-sorted
XYZ points
Legend now shows the Surface Palette
Surface series not obligued to add all points (missing points are
considered nulls).
Surface holes using the AddNull method.
Multiple-surfaces in the same chart.

Editor Dialogs

Chart Editor now uses the TOpenPictureDialog Delphi's dialog.
"Edit..." button for TeeFunctions at Editor dialog to modify the
Function.Period. (TeeChart Pro only)
New components: TChartEditor, TChartPreviewer to configure and show
the Editor and Preview dialogs. (TeeChart Pro only)
Several new options at editors to allow to use the new features.

Functions
TTrendFunction is now much faster. (TeeChart Pro only)
New TStdDeviationFunction. (TeeChart Pro only)

Other
TChartScrollBar now installed by default. (It was an option in 3.0 version)
(TeeChart Pro only)
TeeComander component: A toolbar panel with buttons for 3D rotation,
scroll, OpenGL, etc. (TeeChart Pro only)
New global boolean constant: TeeDrawAxesBeforeSeries (by default
True). (TeeChart Pro only)
TVolumeSeries has now it’s own editor dialog. (TeeChart Pro only)
Big, big, big code re-organization and stream-lining (in major part because
the new 3D features)

Introduction
TeeChart version 4 contains many exciting new features including a new 3D Canvas both for the Chart
and Custom drawing.
The 3D Canvas is available as the native TeeChart orthogonal view, by Native Windows graphics or with
OpenGL. The 3D Canvas offers up many new possibilities for the display of impressive presentation
Charts. The 3D Custom draw methods support the drawing of 3D objects anywhere on the Chart
canvas.
There are many new enhancements and extensions to both Chart and data Series types. TeeChart
remains 100% VCL code. Many Series types have been enhanced for the Standard and Pro versions
and the Pro version has several brand new Series types including Bezier, Contour, Radar and Point3D .
Included in the Standard version is the new 'explodable' Pie Series which also has new 'Slice grouping'
functionality.
Still inherent is the flexibility to mix and match different Series across different Charts. New Function
definitions can be applied to any group of your data Series across Charts.
Support for JPEG file export has been built into the new version, a new Backwall has been added to the
Chart as have multiline Axis labels and innumerable low level functionality enhancements.
Series can be connected to Tables, Queries and RemoteDatasets residing on different Forms or
DataModules. You can create ActiveX Forms containing Chart components and deploy them on the
WWW using Delphi's connectivity functionality.
TChart is seamlessly integrated with QuickReport with a custom built TChart component on the
QuickReport palette.
TeeChart online help has now grown to take in the user manual, hopefully making it easier for you to get
to the information you need. The help Contents file lists the information classifications included in this
helpfile.
See What's New for a list of all new features in TeeChart version 4

We hope you enjoy working with TeeChart 4 !

About TeeChart
TeeChart Pro order information License and disclaimer
TeeChart Charting components have been written in Delphi by David Berneda. They are 100% Delphi
Native Visual Component Library compliant.
For those of you familiar with TeeChart you may wish to look at What's new for a listing of many of the
new features of version 4.

TeeChart Standard version 4
Runtime TeeChart libraries are included as part of Delphi versions 3, 4 and 5. They include many
compiled units of the Chart components and all compiled standard Series types. TeeChart v4 has a
design time Chart Editor, extensive coded examples and demos, online help with user guide.
Features of TeeChart 4 Standard version

TeeChart Pro version 4
TeeChart Pro is a comprehensive Charting tool aimed at those developers wishing to program with or
make use of extended TeeChart functionality. TeeChart Pro includes the option to purchase 100%
source code.
Extended features of TeeChart Pro
With TeeChart Pro you define the limits. Use the developer guide to help you create hot-spots for
drilldown on your Charts or customise the TeeChart code to create your own Series types and functions
and permanently add them to the TeeChart Gallery.

TeeChart User Guide
The TeeChart User Guide provides a backgrounder and an indepth look at most commonly used and
some advanced Chart design techniques.
1. Introduction
1.1. Introduction
1.2. Licensing issues
1.3. About TeeChart Standard version
2. Getting started
2.1. Getting Started
2.2. Using TeeChart online help
2.3. Using the TeeChart Wizard
2.4. Which TeeChart Component should I use ?
2.5. Creating a new Chart with the TChart or TDBChart component
2.6. The Chart Editor
2.7. Configuring data Series in a TChart
2.8. Configuring data Series in a TDBChart
2.9. Modifying Chart data
3. TeeChart demos
3.1. TeeChart demos
4. Component reference
4.1. TChart component
4.2. TDBChart component
4.3. TeeChart Series
4.3.1. TeeChart Series
4.3.2. Line and Fast Line
4.3.3. Bar
4.3.4. Horizontal Bar
4.3.5. Area
4.3.6. Point
4.3.7. Pie
4.3.8. Arrow
4.3.9. Bubble
4.3.10. Gantt
4.3.11. Shape
4.3.12. Combining Series
4.4. Adding a Chart to QuickReport
4.5. Standard Functions
5. Working with Chart and Series
5.1. Overview
5.2. Click events

5.3. Custom drawing on the Chart
5.4. Working with Axes
5.5. Series manipulation
5.6. Printing Charts
5.7. Chart Zoom and Scroll
5.8. Real-time Charting and speed
5.9. Functions

Getting Started
This section should bring you up to speed if you are trying out TeeChart version 4 for the first time.
Building a Chart from scratch is very quick with TeeChart so we recommend it worth your while to run
through the included examples in your Delphi IDE.
Topics in this section:
2.1. Getting started
2.2. Using TeeChart online help.
2.3. Using the TeeChart Wizard.
2.4. Which TeeChart Component should I use ?.
2.5. Creating a new Chart with the TChart or TDBChart component.
2.6. The Chart Editor.
2.7. Configuring data Series in a TChart.
2.8. Configuring data Series in a TDBChart.
2.9. Modifying Chart data.

Using TeeChart on-line help

Selecting a TeeChart component
Whilst designing your project using a TeeChart component you may select the component from the
component palette or on the form where you have placed it and key F1. Context sensitive help relating
to that component will appear.

Selecting a TeeChart property, method or event
Highlight a property or event in Object Inspector and key F1 to obtain help for that item. Alternatively
write the word for which you would like some help in your code. Select the word by placing and clicking
the cursor on that word and key F1. If help is available, TeeChart context sensitive help will access
directly a description relating to that functionality.
Help Contents page
The Delphi help Contents page includes a branch dedicated to TeeChart. You can follow the headings
there to take you to particular reference section.

Using the TeeChart Wizard
The TeeChart Wizard is only available for use with 32bit Delphi.
To create a Chart using TeeChart Wizard select the File menu in Delphi and New. Choose Business
from the tab selector in the New Items window. You will see the TeeChart Wizard icon.
Simply double-click the icon to start creating Charts! The Wizard will lead you through the steps
necessary to create your own non-database or database aware Chart.

Which TeeChart component should I use?
There are three TeeChart icons in the component palette.

TChart TDBChart TQRChart

TQRChart, is a component especially tailored for use with QuSoft’s QuickReport - See the chapter
Adding a Chart to QuickReport.TQRChart is descendant of TDBChart.
The 2 components, TChart and TDBChart are the basic building blocks of all TeeChart Charts.
If you wish to create the data Series for your Chart manually, or via a coded procedure then use the
TChart component. If you wish to source your graph data from a table or SQL query then use the
TDBChart component. You may, of course, use TDBChart in all cases but it will result in a larger
compiled size of your code which would be inefficient if you are not using a datasource (explanation
follows).
Once an initial data Series is defined, both Chart components, TChart and TDBChart support the use of
another data Series as a data source.
- So why two kinds of Chart components?
- couldn’t we achieve this functionality via just one component?
Answer:
Projects compiled with using only TChart components, don't need the Borland Database Engine DLL's
(BDE).
Internally, both derive from the TCustomChart component, which is responsible for most Charting
capabilities.
In Delphi 4 and 5 TClientDataset can be accessed without the need for BDE.

Creating a new Chart with TChart or TDBChart component
Many of the steps necessary for defining a TChart or TDBChart are the same. This section describes
the common steps needed to start defining either of the two types of Chart.

Create a new Form.
Create a new form and place a TChart or TDBChart component on it (drag it across from the component
palette).
Drag the corners of the new TChart or TDBChart component out to a size that helps you visualise the
contents of the new Chart as you define it. Later you can adjust the size of the Chart to suit your needs.

Edit the new Chart
Position the mousepointer over the new Chart and press the right mousebutton. A menu appears that
includes the ‘Edit Chart’ option.

Fig. 1. Using
the right
mouse
button on
the Chart
will call the
Chart
options
menu.

Select the Edit Chart… option to edit the Chart and define and populate its data Series.
Go to the next step.

The Chart editor

Fig. 2.
The Chart
Editor
screen

The Chart page (1st page) of the Chart editor contains definition information for the Chart. It includes
sections to define general and other more specific, Chart parameters. Some parameters won’t apply
until you have some data Series defined in the Chart. Try modifying a parameter, the Title for example,
and you will see it update in real time on the Chart.
To see some data Charted we need to create a data Series...

Add a data Series
Press the Add button in the Series tab section of the Chart page. TeeChart will show you a gallery of
Series types. Select one to add to your Chart, you can change its type later if you decide that you would
prefer to visualise your data in a different way.

Fig. 3.
The Chart
Gallery

Select a Series type by mouse or with arrow keys and press ‘OK’. Double-clicking on the Series type will
achieve the same result. The Extended Series page is only available in the Gallery with TeeChart Pro.
The Series type is automatically added to your Chart. In the Chart editor you will see a new
configuration tab added for the new Series.
Suppose we had selected a line Series. The editor will appear as follows:

Fig. 4.
New Series
added to
Chart

TeeChart has added the Series to the Chart. It has also added some random values so that you can

visualise, in the Chart, the Series appearance at design-time to easily follow any changes you are
making.
Press the F9 key to compile your project. The project should compile to show you an empty Chart. The
random values don’t work at runtime so the next step is to go back to the Chart Editor and add a data
source or write your own code to add data values.

Edit the Series
Selecting the Series tab allows you to edit your Series. The next step is to add data to the Series. The
steps necessary to include the data for the Series vary slightly between a TChart component and a
TDBChart component. See the following 2 sections:
Configuring data Series in a TChart.
and
Configuring data Series in a TDBChart.

Configuring data Series in a TChart
We have a TChart on the form and have added a Series to it. We are ready to populate the Series.
Let’s type some Pascal code to add points values programmatically.
We'll see later how to create a database-aware Chart with automatic record retrieval.

Example Pie-Series
Suppose the Series we added was a Pie Series. We could populate the Series in the following way. For
the following code to work we should leave the Series name as its default of Series1.
Place a TButton on your Form and go to the OnClick event .
Copy the following code at the Button1.OnClick event:
With Series1 do
Begin
 Add(40, 'Pencil' , clRed) ;
 Add(60, 'Paper', clBlue) ;
 Add(30, 'Ribbon', clGreen) ;
end;
A description of the Add method and other available methods and properties is available at design time
via the context sensitive help included with TeeChart. Place the cursor on the word Add in your code
and press F1 for a full description of the method.
Return to your code and press F9 again to run the project.
Press Button1 to see the Pie Chart appear - the code works!

Editing the Series
Close the program to go back to Delphi’s IDE.
In design mode, all Chart and Series properties are accessible through the Delphi Object Inspector or by
right-clicking the Chart and selecting the ‘Edit Chart’ option or double-clicking on the part of the Chart
that you wish to edit. Here we’ll use the Chart editor to edit our new Chart and Series. Fig.5. Shows the
first editor screen.
To edit features of the Series we can double-click on the Series in the list or highlight the Series and
select Edit or directly select the tab for the Series - each technique will take us to the editor for the
Series.

Fig. 5.
The Chart
Editor
screen
showing the
new Pie
Series

Try changing some properties of the Pie Series; you will see the results update automatically on the
Chart. There is no cancel to undo changes but most parameters are easily toggled. Remember, in
design time the TChart component hasn’t yet run your code so it shows the randomly generated set of
data. You will need to start your project to see how the new parameters show up with your own data.

Fig. 6.
The Chart
Editor Series
page
showing
editor tab for
our Pie
Series

Many changes can be made visually in the editor, or try modifying some parameters in Object Inspector,
or modifying a property with your own code. For more advanced projects, you’ll most likely find yourself
typing some Object Pascal code.
For a recap and further look at adding data to a TChart via another example, see How To Create Charts

with manually inserted values
Now we’ll take a closer look at adding data to the TDBChart component.
Configuring data Series in a TDBChart.

Configuring data Series in a TDBChart
Prior to using any database facilities, you should have correctly installed the Borland Database Engine
(or equivalent) and the Database Delphi VCL components.
A Step by step guide to creating a database aware Chart....

- Place a TTable component and point it to the "DBDEMOS" database and the "ANIMALS.DBF" dBase
table.
- Place a TDatasource component and set its DataSet property to Table1.
- Place a TDBGrid and set the DataSource property to DataSource1.
- Set the Table1.Active property to TRUE to see the Grid filled with table data.
- Place a TDBChart component onto a Form.
- Select and install a Pie Series as described in section The Chart Editor.
- Go to the Series page of the Chart editor by either double-clicking on the Series name, highlighting
the Series and selecting Edit, or by selecting the Series tab.
- Select your Series from the Series listbox and go to the datasource tab.
From the listbox select your data source type.
There are 4 types of data source available. The DataSource style is a component property that may be
one of the following:
‘No data’ if points are being added programmatically (at source code).
or...
‘Random values’ draw your Chart Series with random values.
or…
‘A function’ which may be:
One or more other Series (like LineSeries1, BarSeries2, etc.) which could come from this Chart or from
another Chart in your project. A function may work with a combination of one or more other Series and
an algorithmic function (min, max, average, etc.).
or..
A ‘Dataset’ which may be a:
TTable, TQuery, TClientDataset or any other TDataset component. (like Table1, TQuery1, etc.)
Adding a dataset
For our example, let's choose the 4th option from the previous section, ‘Dataset’ style. In our TDBChart
we’ll include data from the table that we’ve already added to the form.
You need to select the listbox option A dataset to map this Series to the table that you have included in
the project. As you make the selection you will notice new page options appear to define the dataset for
the pie Series. Your editor should look like Fig. 7.

Fig. 7.
The Chart
Editor
screen
showing the
Data source
tab for our
pie Series

All you need to define a simple dataset for the Series lies here. You have already included a table and
datasource in your form, and set the table to active. But the options here offer you the flexibility to define
the dataSeries in varying ways:
Click on the down-arrow for the ‘Dataset:’ combobox.
If you have an activated table in the form it will be
highlighted here.
Select your table.
Define the values that will be plotted in the Chart:
As we have defined a Pie Series we are presented with pie specific configuration options. Each Series
has parameters that vary, but only slightly, in definition from the example below.
The Pie field is mandatory, and must contain a valid numeric field or a string field with values that can
be converted to numbers.
In our example, choose the Weight field.
(The ANIMALS table is a collection of animal names with weight and size information.)
You can optionally select an Labels field to draw the corresponding string for each point on the pie.
In our example, choose the Name field.
This label will be used to draw the Pie Legend.
Note
Some Chart Series types have more than one figure to represent a point. Values that are plotted by date
or time are an example of X Values Series. Not all date-time values should be equally spaced. The X
Value is the specific horizontal position for each Y value. Later try deleting the pie Series and adding
a Series of a different type, - ie. LineSeries -, you will see the option to apply X and Y values appear.
(We don't have X Values in a Pie Series.)
Now click the "OK" button.
The TDBChart component will show a Pie Chart and a Legend.

You are seeing exactly the same Chart you saw when you pressed F9 to run the project.
For a recap and further look at adding data to a TDBChart via another example, see How To Create
Data Aware Charts

Modifying Chart data
Chart data may be accessed via the the Point Valueindex of each Series' points.

Deleting points:
Use the Series Delete method:
{This will delete the 5# point from LineSeries1}
LineSeries1.Delete(5);
Modifying points:
Use the Series XValue, YValue properties:
LineSeries1.YValue[3] := 27.1 ;
{In Bubble Series}
BubbleSeries1.RadiusValues.Value[8] := 8.1 ;
{In Pie Series}
PieSeries1.PieValues.Value[3] := 111 ;
Please refer to each specific Series type to see its specific data related methods.

DateTime point coordinates:
TeeChart Series accept DateTime values.
{First, you need to set the DateTime property to True in the desired X
and/or Y values list.}

LineSeries1.XValues.DateTime := True ;
{Second, use the same above described methods, but give the values as Date,
Time or DateTime values}

LineSeries1.AddXY(EncodeDate(1996 , 1 , 23) , 25.4 , 'Barcelona' ,
clGreen);

TeeChart demos
The Getting Started section of the TeeChart User Guide explains the most basic TeeChart procedures.
Another useful place to look for help are the examples in the demo files.
Location of TeeChart demos
Open in DEMOS\TEECHART folder the TEEDEMO.DPR Delphi Project. The DEMOS Folder is located
below your Borland installation Folder.
There are many included forms in this demo.
Each form shows a specific TeeChart feature or Series type.
Many Forms contain Pascal source code to show event handling or interactive Charting.
Let's see the ScrollForm demo form. Click on Project Manager and search for USCROLL unit or
ScrollForm form. This form shows a basic TChart component with one TLineSeries component.
Note:
In this example we’ve named the Series ‘LinesSeries1’ to clearly identify it in the code. It’s not necessary
though to name the Series according to Series type as the flexibility of TeeChart’s components offers the
ability to change type at any time - thus Series names by default are generic, Series1, Series2, etc..
Click on Form.OnCreate or switch to source code to see the following:
procedure TScrollForm.FormCreate(Sender: TObject);
begin
 FillDemoPoints;
end;
procedure TScrollForm.FillDemoPoints;
var t:Longint;
begin
 { fill the LineSeries with some random data }
 LineSeries1.Clear; { <-- this removes all points from LineSeries1 }
 { let's add 60 minutes from 12:00 to 12:59 }
 for t:= 0 to 59 do
 AddXY(EncodeTime(12, t, 0,0),Random(100),’’,clRed);
 { let's add 60 more minutes from 13:00 to 13:59 }
 for t:= 0 to 59 do
 AddXY(EncodeTime(13, t, 0,0),Random(100),’’,clRed);
end;
This code will Clear LineSeries and plot two hours of random values from 0 to 100.
Because it is placed on the Form.OnCreate event, each time the form is shown, this code is executed.
Double click the Button1 component to see its associated OnClick code:
procedure TScrollForm.Button1Click(Sender: TObject);
var h,m,s,msec:word;
begin
 if CheckBox1.Checked then { If VERTICAL SCROLL }
 DecodeTime(LineSeries1.YValues.Last , h, m, s, msec)
 else
 DecodeTime(LineSeries1.XValues.Last , h, m, s, msec);
 { add a new random point to the Series (one more minute) }
 inc(m);
 if m=60 then
 begin
 m:=0;
 inc(h);
 end;
 AddXY(EncodeTime(h, m, s, msec), Random(100),’’, clYellow);

end;
This code increments the last added point Time by one more minute.
The incremented Time value is added to the LineSeries, thus giving a new point.
The next source code is the demo purpose:
How to scroll the Horizontal Axis as new Points are added to the end ?
The easy way is to type the following code at the Series.OnAfterAdd event. This event is called each
time a new point is added to the Series.
In this example, we scale the bottom horizontal Chart axis to show 55 minutes prior to the last point
and 5 minutes after the last point.
{ This is the event we need to arrange Axis scale as new points are added. }
procedure TScrollForm.LineSeries1AfterAdd(Sender: TChartSeries;
 ValueIndex: Longint);
begin
 { If VERTICAL SCROLL }
 if CheckBox1.Checked then
 begin
 With Sender.GetVertAxis do { <-- with the

Vertical Axis... }
 Begin
 Automatic := False; { <-- we don’t want

automatic scaling }
{ In this example, we will set the Axis Minimum and Maximum values to
show One Hour of data ending at last point Time plus 5 minutes }
 Minimum := 0;
 Maximum := Sender.YValues.MaxValue +
 DateTimeStep[dtFiveMinutes];
 Minimum := Maximum - DateTimeStep[dtOneHour];
 end;
 end
Many goals can be achieved by manually setting the Axis properties.
Each Chart component has four axis: LeftAxis, TopAxis, RightAxis and BottomAxis. Each Axis has a
boolean "Automatic" property that defaults to True, meaning TeeChart will always calculate the
Minimum and Maximum values for each Axis.
The Minimum and Maximum properties are of type double, allowing float numbers or DateTime
representations like "Date", "Time", "Now" or any other valid datetime value.
We have seen a specific TeeChart feature in detail.
Now, compile and execute this project and look at each sample form.
They should give you ideas that you can apply to your projects while you learn about TeeChart features.
The TEECHART.HLP file describes each component property in detail, with some source code
examples mostly taken from the TEEDEMO project.
We suggest that you to experiment with each different sample form and create new small projects to test
TeeChart with your real data.

TChart component
The TChart component is the basic building block for ‘non-database-aware’ Charts. Select the TChart
component from the Delphi palette and simply drag it onto your form to include a Chart in your
application.
See TChart Component for Class definition.
You can use the Chart Editor to define display characteritics for the Chart and to add new Data Series.
Alternatively all properties can be set and changed at runtime using Chart properties and methods.
Data Series for the TChart component must be populated by code. See Configuring data Series in a
TChart for an introduction.
For an indepth look at how to create Charts with TeeChart see the TeeChart User Guide.

TDBChart component
TDBChart derives from TChart and inherits all its functionality. When a Chart Series is connected to a
TDBChart component, TDBChart looks in the Series DataSource property.
The datasource for the Series is defined by the Series definition - not by the Chart - Thus multiple Series
in a TDBChart could access different data sources. However, if those Series are not associated, via
ParentChart, with a TDBChart then the option to define a Series database-datasource won’t be
available.

Creating the Dataset
TeeChart Charts will connect with 3 different types of Dataset.
TTable
TQuery
TClientDataset
The minimum that requires to be set in each case is:
The name of the database,
For the table the TableName of a table
or
in the case of the query a valid SQL string.
or
in the case of a ClientDataset Define source (right button on TClientDataset object in form).
 Remember to activate the Dataset by setting the Active property to True.

Connecting your Series to a database Dataset
In ‘Getting Started’ you saw how to connect a data Series to a database dataset. Let’s recap here on the
key components.
When you select your new Series in the Chart Editor Series page you will see the tab option for Data
Source. If you want your data Series to be connected to a new dataset then you should select Dataset
from the drop down combo listbox. A new selector box will appear with the options for definition of the
new dataset.
The exact contents of the page will change depending on the Series type you have chosen. The
parameters you set here modify the properties in the Series definition which vary between Series type.
The following table shows the possible options for normal Series types (function Series are different).

SERIES TYPE DATASOURCE PROPERTIES

Basic
Line XValues, YValues, XLabel
Fast Line XValues, YValues, XLabel
Bar XValues, YValues (called Bar), XLabel
Area XValues, YValues, XLabel
Point Xvalues, YValues, XLabel
Pie PieValues, XLabel
Arrow StartXValues, StartYValues, XLabel,

EndXValues, EndYValues
Bubble Xvalues, YValues, XLabel, RadiusValues

Gantt StartValues, EndValues, AY (Y axis level),
AXLabel (Label optionally shown on Y-axis or
as mark)

Shape X0 (Top), Y0 (Bottom), X1 (Left), Y1 (Right)

Extended
Bezier XValues, YValues, XLabels
Candle OpenValues, CloseValues, HighValues,

LowValues, DateValues
Contour XValues, YValues, ZValues, Labels
Error Bar XValues, YValues, XLabel, ErrorValues
Polar XValues, YValues
3D Surface XValues, YValues, ZValues
Volume XValues, YValues (VolumeValues), XLabel

Coding your datasource
You may populate your Chart at runtime by coding which Series to add to the Chart and defining the
fields of those Series.
It assumes you have a table on your form, Table1 with fields Name and Amount.
Var
MySeries,Ave:TLineSeries;
MySeries:=TLineSeries.Create(Self);
With MySeries do
begin
 ParentChart:=DBChart1;
 DataSource:=Table1;
 XLabelsSource:='Name';
 YValues.ValueSource:= 'Amount';
 CheckDatasource;
end;

TChartSeries
The TChartSeries component is the ancestor of all Series types. When referencing the properties of the
Series type with which you are working check, in addition to the properties listed with that Series, the
properties of the TChartSeries to get a full list of properties common to all Series.
Topics included in this section:
Line and Fast Line
Bar
Horizontal Bar
Area
Point
Pie
Arrow
Bubble
Gantt
Shape
Combining Series

Line Series
There are 2 line Series types available, Line and Fast Line. Which one should be used ? Fast line is just
what its name describes - it is fast. It is distinct from Line because to achieve speed - speed to add new
points to the Series - the price paid is that it foregoes some properties that the Line Series has. See the
section on Fast Line for a description of those differences.

Line
See TLineSeries for a full list of properties and methods

Fig. 1.
A 3D Line
Series
showing one
Series with
the stairs
property set
to true. The
stairs can be
inverted.

Fast line
See TFastLineSeries for a full list of properties and methods
This line Series draws only at 2 Dimensions but draws very quickly - performance will depend on your
hardware - The Series type was originally conceived to tackle high volume requirements of technical
and financial applications but serves well for any dataset of very high point volumes.
If, when using Fast Line you know approximately how many data points will be added to your Series you
could use the global variable TeeDefaultCapacity to prepare memory. For example, assuming a data
Series of 10,000 you should set TeeDefaultCapacity to 10,000. This will, in one pass, allocate memory to
populate the whole Series replacing the need to incrementally allocate memory which costs more time.

Bar
See TBarSeries for a full list of properties and methods
The bar Series in 2 or 3 dimensions doesn’t have to be represented by a rectangular bar -

Fig. 2.
Choose a
barstyle for
your Chart
Series or
‘mix and
match’ to
suit your
needs.

Example bar Series configuration
Mixing bar Series styles may be useful for some applications. Below is an example stacked bar Chart.

Fig. 3.
Mixed
bartypes

Steps taken to build this demo Chart and populate it with data are as follows:
1. Drag a Chart component onto your form and drag it out to the size you want.
2. Click the right mouse button over the Chart and select editor from the menu.
Add 3 bar Series and give them individual titles using Title on the first editor screen (titles in our
example ‘East’ ‘West’ and ‘Other’).
Select Multi Bar and set as stacked in the Format page of any one of the 3 Series (The change will
apply to all 3 Series).
Add a title using the entry tab for ‘Titles’ in the Chart page of the editor.
Go to the axis tab. Select Left axis and add the title. We allowed the axis to automatically size itself but
took minor ticks off on the bottom axis.
Each Series has a different shape defined for its bars. We define the shape individually in the
configuration page of each barSeries. The first tab, Format, has the option for Style.

You could code the style with:
East.BarStyle:= bsPyramid ;
West.BarStyle:= bsInvPyramid ;
Other.BarStyle:= bsRectangle ;
Lookup BarStyle in the TeeChart online help to get the full list of options.
For this Chart it would be necessary to control the Series order to achieve the correct effect. This can
be done in the Chart Editor at design time by selecting the Series in the Series list of the Chart page and
using the arrows to change the order. At runtime we can achieve the same with the following code:
Drawing order is always based on the order for which the Series are assigned to ParentChart.
The order can be altered at run-time via the Serieslist property:
Chart1.SeriesList[0] := East;
Chart1.SeriesList[1] := West;
Chart1.SeriesList[2] := Other;
We added some random values to populate this demo. We could launch the code at form creation or put
a button on the form to run the code.
procedure OurForm.Button2Click(Sender: TObject);
var t:integer;
begin
Randomize;
with East do
for t:=1 to 12 do AddY(Random(70), ShortMonthNames[t],clTeeColor);
with West do
for t:=1 to 12 do AddY(Random(70), ShortMonthNames[t],clTeeColor);
with Other do
for t:=1 to 12 do AddY(Random(30), ShortMonthNames[t],clTeeColor);
end;
We populated the data for 12 months but are showing only 5 months. The Paging tab in the Chart page
of the editor has the definition of points per page.

Bar Series display
The Multi Bar parameter set in the Format tab of the Series page for one of the bar Series sets the
display alignment of the bars for each bar Series in the Chart. - It is not necessary to go to each bar
Series to change the parameter.
The following figure shows different formats to display bar Series. Each Chart has the same information
only displayed in a different way. The Stacked 100% Series display doesn’t represent the actual values
but rather the relative value of each element of the Series to a total of 100%.

Fig. 4. a
A 3D Bar
Series
showing four
methods to
display the
same
information.

Stacked
property

None

Fig. 4. b

Side

Fig. 4. c

Stacked

Fig. 4. d

Stacked
100%

Horizontal bar
See THorizBarSeries for a full list of properties and methods
The horizontal bar Series shares the same properties as the bar Series. Apart from any aesthetic
requirement, one occurrence of the need to use a horizontal bar Series may be to adequately display
long axis labels which are best read horizontally.

Fig. 1.
2D
Horizontal
bar

Area
See TAreaSeries for a full list of properties and methods
An Area Series has similar characteristics to a line Series - filled -

Fig. 5.
3D Area
Series

Point
See TPointSeries for a full list of properties and methods
A Point Series is similar in definition to a Line Series without the line.

Fig. 6.
2D
Horizontal
bar

Pie
See TPieSeries for a full list of properties and methods
A Pie Series is unique in not needing any axis. It is possible to mix a Pie Series in a Chart with another
Series that requires an axis.

Fig. 7.
3D Pie

Arrow
See TArrowSeries for a full list of properties and methods

Fig. 8.
3D Arrow
Series

The arrow Series is useful for displaying start and end points of many individual events.

Bubble
See TBubbleSeries for a full list of properties and methods
The Bubble Series has 3 configurable parameters that define the value of the data in your Series.
Xvalues, YValues, RadiusValues
The bubble Series is useful for showing importance weighting. For example, comparing high volume
selling product that, by income, doesn’t bring in a revenue of the scale of another low volume seller. We
can see at a glance, literally, that big bubbles are important !

Fig. 9.
2D Bubble
Chart

Shapes
Bubble Series can be configured in variable shapes, triangles, etc..

Gantt
See TGanttSeries for a full list of properties and methods
Use the Gantt Chart as a planner or to track progress of a project or Series of activities.
The Gantt Series draws bars that have start and end values which may be of datetime format. You may
define a Y axis value for the vertical position of the bar and you may define ‘next bar’ to draw connection
lines between the bars.

Fig. 10.
2D Chart
with a Gantt
Series.

How to add Gantt bars manually
Use the AddGantt or AddGanttColor methods.
Example:
 GanttSeries1.AddGantt(EncodeDate(1997, 1, 1),
 EncodeDate(1997, 1, 31),
 0,
 'Programming');
Or...
 GanttSeries1.AddGanttColor(EncodeDate(1997,1,1),
 EncodeDate(1997,1,31),
 0, 'Programming',
 clGreen);
Where "0" is the desired vertical position for this bar.
Choose the vertical position you prefer.
To connect gantt bars:
1) Store the "AddGantt" or "AddGanttColor" function return longint:
Var tmp1, tmp2 : Longint;
tmp1:=GanttSeries1.AddGantt(EncodeDate(1997,1,1),
 EncodeDate(1997,1,31),
 0,'Programming');
tmp2:=GanttSeries1.AddGantt(EncodeDate(1997,4,1),
 EncodeDate(1997,4,30),
 0, 'Testing');
2) Then use the NextTask property:
GanttSeries1.NextTask[tmp1] := tmp2 ;
This will draw a line from 'Programming' gantt bar to 'Testing' bar. The "ConnectingLinePen" property is

the pen used to draw lines.

Shape
See TChartShape for a full list of properties and methods
Shape Series are useful for defining or adding any additional information to your Chart, perhaps in
runtime as a result of receipt of exceptional data. You may add text to any shape you add to your Chart
and relate the shape to another Series.

Fig. 11.
Shape
Series

Each shape has two co-ordinates associated with it, top left and bottom right of the invisible rectangle
that encloses the shape. You may add text to the box. These co-ordinates and messages could be
updated at runtime by your code to dynamically put the shapes anywhere on your Chart.

Combining Series
There is no practical limit to the number of Series that you can add concurrently to your Chart.
You may mix different Series types, almost any Series type with any other Series type. For certain
combinations it is not practical as axis definition between Series may directly conflict. For those cases
the Series not available are greyed out in the Series gallery so that you cannot mistakenly select them.
See the section on functions for more about combining Series types. Functions work with other Series to
create and display algorithmic relationships.

Fig. 12.
Combining
Series

Example Series combination
Combining Seriestypes in one Chart can add a great deal of information value. The following example
shows the incomes by Division and puts the $ index in the same Chart to measure the effect of that
external influence on incomes (perhaps no influence at all in this example !!).

Fig. 13.
2D
Combining
Series types

You may combine Series in 3D Charts. The previous example is represented in 3D below. The Chart
looks attractive although a high degree of 3D perspective makes it more difficult to visualise the monthly
$ index with Division incomes.

Fig.14.
3D
combining
Series types
(60% 3D)

You could minimise the effect by reducing the extent of ‘side’ view (percentage 3D).

Fig. 15.
3D
combining
Series types
(6% 3D)

Or you could modify code so that at runtime the Chart will put all Series in the same Z-plane. 3D Charts
have a property called Z-Order (see figure) which controls the depth position of each Series.

It is possible to put all Series on the same plane although we advise caution as the effect may be
confusing depending on which Series types you are combining.
The following line of code (name of Chart here Chart1) will put all Series in the same Z plane:
Chart1.ApplyZOrder:=False;

Adding a Chart to QuickReport
TeeChart integrates seamlessly with Qusoft’s QuickReport. To add a TeeChart to a QuickReport follow
these steps:
Drop a QuickReport on a form.
Using the QRChart icon on the QuickReport palette

Put a TQRChart onto the QuickReport worksheet.
You may now double click on the TQRChart to bring up the Chart editor. From this point forward you may
work with the Chart as with any other TDBChart.
At runtime, access properties and methods for the Chart via the TQRChart.Chart property.

Fig. 1
TQRChart
on a
QReport at
design time

Notes on working with QuickReport
Metafile
TeeChart uses Windows Metafile format for superior quality when outputting to a printer and for drawing
onscreen. Also the quality of the printout is better if the Chart shape is maintained as nearly as possible
to the default Chart rectangle form.
Clipping
TQRCharts do not support Series clipping. The may result in slight overlay of the Series onto the Chart
axis if data points are adjacent to the axis.

Standard functions

Add
See TAddTeeFunction for a full list of properties and methods
The Add function adds data from one or more Series. If we create a line Series ‘Series1’, create a line
Series ‘Function Add’ and define Series ‘Function Add’ as Add of Series1 and do nothing more we will
obtain a Chart with Series1 displayed and ‘Function Add’ as one flat line which is the sum of all values of
Series1. In the figure the total of 1 + 2 + 3 + 4 + 5 + 6 = 21.

Fig. 1.
2D Add
function with
1 Series
input

We can modify the Series ‘Function Add’ to represent Add of Series1 by 2 point groupings (1+2), (3+4),
(5+6). We use the period property (Chart Editor in the Data source page). Coded it looks like this:
Series2.FunctionType.Period:=2;
{where Series2 is the functionSeries}
Alternatively:
TeeFunction1.Period:=2;
{The name of the function is automatically allocated when the function is
defined in the Chart editor - You will find it in the Object inspector}

Defining the period as 2, sets the Add function to add every 2 points. The period property adds
enormous value to function Series.

Fig. 2.
Add function
with period =
2

Subtract
See TSubtractTeeFunction for a full list of properties and methods
Subtract requires 2 input Series. With more than one Series in the function the default period sets to 1
axis point. the 2nd Series will be subtracted from the 1st Series in the list.
The following Chart is defined with ApplyZOrder:=False which forces all Series to draw in the same 3-
Dimensional plane - The resulting Series overlay (a sort of optical illusion) in the Chart depends on the
Series paint order.

Fig. 3.
Subtract
function

Multiply
See TMultiplyTeeFunction for a full list of properties and methods
The default period for the function ‘multiply’ is 1. You may add as many Series as you wish to the
multiply function.

Fig. 4.
Multiply
function

Divide
See TDivideTeeFunction for a full list of properties and methods

As divide requires at least 2 input Series the default period for the divide function is 1. The 2nd Series in
the list is the denominator.
If you add more than 2 Series then the 1st will be divided by the 2nd then that is divided by the third, etc.
…

Fig. 5.
Divide
function

High
See THighTeeFunction for a full list of properties and methods
High accepts multiple input Series and will always display the highest point between those Series at
each period point. (1 Series default period 0, 2 or more Series default period 1).

Fig. 6.
High
function

Low
See TLowTeeFunction for a full list of properties and methods
Low accepts multiple input Series. It will always display the lowest point between those Series at each
period point. (1 Series default period 0, 2 or more Series default period 1).

Fig. 7.
Low function

Average
See TAverageTeeFunction for a full list of properties and methods

Fig. 8.
Average
function

The default period for average with one Series is 0 (all) which will give you the average for that Series
across the whole Chart. If you have more than one Series the period will be 1 axis point.
You may change the period to alter the frequency of the average curve.

Overview - Working with Charts and Series
This section describes some design considerations and conventions for working with TeeChart. The
section Working with Charts and Series brings to your attention some points of interest that may help
with the design of your application.
Topics in this section include:
Click events
Custom drawing on the Chart
Series manipulation
Printing Charts
Chart Zoom and Scroll
Real-time Charting and speed
Functions
To understand the design paradigm of TeeChart we need to separate conceptually the contents of the
Chart -the data Series- from the Chart itself, e.g. its Axis format, Legend and Titles. We can define and
work with Series across Chart boundaries, referencing Series components independently of the Chart.
We may, however, copy and paste a Chart and it will copy with all its defined contents, Axis, Legends
and Series

Two Chart components
There are 2 Chart components - The distinction serves simply to help cut down memory use for Charts
that do not need to access a database.
Projects compiled with using only TChart components, don't need the Borland Database Engine DLL's
(BDE). A new TChart will not contain configuration parameters for connecting to a database.
Delphi Version 4 and 5 offers the use of the TClientDataset as a Datasource. It does not use the BDE.

Chart subcomponents
The 2 Chart components have subcomponents. If, for example, you wish to access or modify the
property of an axis of your Chart you will be modifying the property of one of the following
subcomponents:
BottomAxis
TopAxis
LeftAxis
RightAxis
See TChartAxis to get a complete list of axis properties. Legend is another example of of a TChart
subcomponent.

The Chart as backdrop to your Series
The Chart components provide the backdrop for your data Series. The overall ‘look’ of your Chart is
controlled by the Chart properties accessible via the Chart Editor, the Delphi Object Inspector or by
coding - see the online help for a complete list.
As a backdrop you have available to you the Delphi Canvas property and methods to calculate screen
co-ordinates from values and vice-versa. The UDRAW.PAS example unit is a good reference point to
see some examples of access to the canvas. In short, every TChart component has a "Canvas" property
which is a standard Delphi TCanvas object.

Associating a Series with a Chart
Series associate with a Chart via a Series property called ParentChart. The Series are moveable
between Charts by changing the Chart defined in the ParentChart property.
Via the Chart editor

After a Chart has been placed on a form, a right button click gives access to the Edit Chart menu
(alternatively double-click). The first screen of the Edit Chart menu offers a list of button options to add,
delete, clone, change type or title of a Series. Adding a data Series via this menu automatically
associates the new data Series with the Chart.
Via the Object Inspector
Whilst browsing the list of components of a form in the Object Inspector you should see all Series added
to any Chart on that form. Those Series components are not directly visible on the form but are
nevertheless components with accessible properties.
If, for example, and you could try this with a simple test, you have 2 Charts on your form and have used
the Chart editor to add a Series to one of the Charts - you could now access the property list of that
Series in the Object Inspector and change the name of ParentChart to the other Chart on the form. On
now opening the Chart editor for the new ‘ParentChart’ you will see the Series. Of course if you make
this move for a Series defined with DataSource from a TDBChart to a TChart you will lose the ability to
access the DataSource as the TChart is not database aware.
Via code
Use the ParentChart property to associate (or disassociate) a Series with a Chart.
Example:
In Form1, we'll create and show another Form (Form2), and assign Form1.LineSeries1 to
Form2.ChartInForm2 :
With TForm2.Create(Self) do
try
Self.LineSeries1.ParentChart := ChartInForm2 ;
ShowModal ;

finally
Free ;

end ;
That will show Form2 (containing a Chart component) and drawing Form1.LineSeries1.

Often used parameters
All the parameters associated with Charts are useful at the time you need them. We cover a few
frequently used properties in detail below as an introduction. For a more detailed study of these and
many other configurable parameters please refer to the remaing Topics of this section, Working with
Charts and Series.
Label increment, % separation and angle
It may be difficult to fit all your axis labels onto the axis that displays onscreen - As an example, this is
often true of date labels which are long and can have a high incidence of change on the axis.
Label Increments
TeeChart offers Label increment as a means to controlling the frequency of labelling on your Chart
axis. You can access the property via the Chart Editor under Axis (select your axis) - Scales - Desired
increment. The menu shows you a list of the standard options for time increments (e.g. One second,
one minute … one day, etc.) Selecting ‘one day’ will cut out repetitions of date on the axis, showing the
date label only once for the point range of that date.
Via code you may access the property as a property of the subcomponent for the relevant axis.
Example:
Chart1.BottomAxis.Increment := DateTimeStep[dtOneHour] ;
Chart1.RightAxis.Increment := 1000 ;
% Separation
If the labels on the axis have a look of rolling into one another you can increase the % separation which
will forcibly increase the gap between them. In some cases this may, as a result, hide some labels. It will
very much depend on your labels and whether your Chart users will have the option to ‘resize’ their

Chart.
The option is available in the Chart Editor under Axis (select your axis) - Labels - % Separation.
Setting Labels Separation to 0 % means no overlapping checking will be performed, thus all axis labels
will be displayed.
Angle
If it is neither practical or possible to place the axis labels side to side along the axis another option is
change the angle of the labels to 90º to the axis. This option is available in the Chart Editor under Axis
(select your axis) - Labels - % Angle.
BitMaps (BMP) or Metafiles
TeeChart offers both the bitmap (BMP) and the Metafile format to save Charts. Two type of metafile
formats are supported WMF (Windows Metafile Format) and EMF (Extended Metafile Format).
Bitmap format is used internally by TeeChart. It is quicker to draw onscreen than a Metafile. When
requiring a Chart to be ‘exported’ to another application or to be embedded in a container application
such as MSWord a Metafile format handles resizing better onscreen - TeeChart uses Metafile format
with QuickReport.
Zoom
TeeChart offers as default zoom on all Charts. To obtain zoom at runtime hold the left mouse button and
drag mouse toward down/right. You'll see a rectangle around the selected area. Release the left mouse
button to Zoom. You can continue zooming again and again. To RESTORE (or UNDO) the zoom, drag a
rectangle in the opposite direction (up/left).
Note
You may use mouseclicks to activate code associated with points in data Series. That OnClick
behaviour will override zoom behaviour. You can set toggle between OnClick events and zoom with the
CancelMouse property.
You may enable or disable zoom functionality in the Chart Editor - Chart page, General tab. The option,
AllowZoom accesses the Chart property, also changeable by code:
Chart1.AllowZoom := False;
‘False’ deactivates zoom.
Zoom can also be obtained via coding. It is necessary to obtain the screen pixel co-ordinates for the
area in which you wish to do the zoom.
Example 1:
Zoom an area with "pixel" co-ordinates:
Rect.Left := 123 ;
Rect.Top := 67 ;
Rect.Right := 175 ;
Rect.Bottom:= 100 ;
Chart1.ZoomRect(Rect);
Example 2:
Zoom an area with point value co-ordinates:
You need first to translate from value to pixel co-ordinates. To do so, you can use the Axis or Series
components.
Rect.Left := LineSeries1.CalcXPosValue(22.5);
Rect.Top := LineSeries1.CalcYPosValue(5000);
Rect.Right := LineSeries1.CalcXPosValue(57.6);
Rect.Bottom:= LineSeries1.CalcYPosValue(15000);
Chart1.ZoomRect(Rect);
Backimage
You can add more information to your Chart or simply enhance its appearance by adding a bitmap as a

backdrop.

Fig. 1.
Bitmap as a
Chart
backdrop

You will find the parameters to define your Chart backdrop in the General tab of the Chart page of the
Chart editor.

Click events
Topics in this section include:
OnClickSeries
OnClick
Series OnClick and OnDblClick

Chart OnClickSeries
The TChart event, OnClickSeries, permits access to any active Series in your Chart. Put the following
code into your project to get an idea of the possibilities. To access the event and add the procedure
definition to your project, select your Chart and open the Object Inspector. Select the events tab to find
OnClickSeries. Double-click on OnClickSeries.
procedure TForm1.DBChart1ClickSeries(Sender: TCustomChart;
 Series: TChartSeries; ValueIndex: Longint; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 ShowMessage(' Clicked Series: '+Series.Name+' at point: '+
inttostr(valueindex));

end;
The valueindex refers to the index of the Series data point (point, bar, etc.) within the Chart. You may
use it to access the X and Y value. For example:
begin

ShowMessage(' Clicked Series: '+Series.Name+' at point: '+
Floattostr(Series.XValue[valueindex]) + ',' +
Floattostr(Series.YValue[valueindex]));

end;
Chart OnClick
You may use the OnClick event of the Chart to get the same information.
procedure TForm1.DBChart1Click(Sender: TObject);
var t,tmp:Longint;
 x,y:Double;
begin
 Series1.GetCursorValues(x,y);
 for t:=0 to DBChart1.SeriesCount-1 do
 begin
 tmp:=DBChart1.Series[t].GetCursorValueIndex;
 if tmp<>-1 then
 ShowMessage(' Clicked Series: '+DBChart1.Series[t].Name+' at point:
'+inttostr(tmp));

 end;
end;
Series OnClick and OnDblClick
The Series OnClick event catches click events at Series level. Thus for multiple Series Charts you are
able to restrict access to the data of a specific Series. To access the OnClick event of the Series you
must select the Series in the Object Inspector and go to the events tab.
procedure TForm1.Series1Click(Sender: TChartSeries; ValueIndex: Longint;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 ShowMessage(' hello: '+Sender.Name+' at point: '+inttostr(valueindex));
end;

Custom drawing on the Chart
If you require to add textboxes or other shapes relative to Chart axis the Shape Series may be the best
choice. If the shape Series doesn’t match your specific requirement you may draw your own lines and/or
shapes on the Chart.
TeeChart offers access to the Chart area by axis or by screen pixel. The TeeChart demos, UDraw.pas
and Uhighlo.pas, are useful references for custom drawing on a Chart.
Topics in this section include:
Calculating Co-ordinates

Axis' Value to Screen co-ordinate Methods
CalcPosValue

CalcPosPoint

CalcSizeValue

CalcYPos and CalcXPos

Series' Value to Screen co-ordinate Methods
CalcPosValue

CalcXPos and CalcYPos

XScreenToValue and YScreenToValue
Chart Canvas

Writing to the Canvas

Internal bitmap

Repainting

When to draw ?

Chart Regions

Drawing
Calculating Co-ordinates
This chapter explains how to convert from Point co-ordinates to pixels and vice-versa. Also how to
determine the exact co-ordinates for each graphics element in Chart components.
Point Values are expressed in user custom scales. Chart Axis are responsible for converting point
values into suitable X and Y screen pixel co-ordinates for displaying them.
Both Axis and Series components have several functions to convert from screen co-ordinates (in pixels)
to Axis or points values (in user-defined units).
The difference between using Axis or Series conversion functions is that Axis will only interpret co-
ordinates for the topmost position in 3D mode, while Series will adjust co-ordinates to their Z order
position.
Note: Using conversion functions is only valid after a Chart component has been drawn, either to screen
or to a private hidden Canvas.

Axis' Value to Screen co-ordinate Methods
CalcPosValue
You can calculate the screen position for a given value using any Axis:
 Var MyPos : Longint ;
 MyPos := Chart1.LeftAxis.CalcPosValue(100.0);

MyPos holds now the pixel co-ordinate for “100.0” on Chart1 Left Axis (Vertical), being “100.0” a
floating value in Axis scales.
You can use this co-ordinate to custom draw or to calculate mouse clicks. See chapters below.
If you want to convert from pixel co-ordinates to Axis values, you can use the opposite function:
CalcPosPoint
 Var MyValue : Double ;
 MyValue := Chart1.LeftAxis.CalcPosPoint(100);

MyValue holds now the Axis value co-ordinate for “100” on Chart1. Left Axis (Vertical), being “100” a
screen pixel co-ordinate.
Note: Pixel co-ordinates start from 0, being 0,0 the Chart origin point. This is valid for screen, but when
drawing to metafiles, drawing to custom canvases or printing, Chart origin point can optionally be
different than 0,0.
The Chart1.ChartBounds property returns the origin and ending co-ordinates for the Chart bounding
rectangle.
CalcSizeValue
Axis have another function to calculate how much screen space represents a given Axis range:
Var Space : Longint ;
Space := Chart1.LeftAxis.CalcSizeValue(1000);

Remember Axis can be DateTime and you can for example convert a Date Range period in pixels:
Var Space : Longint ;
Space := Chart1.BottomAxis.CalcSizeValue(
EncodeDate(1997,12,31) - EncodeDate(1997,1,1));

CalcYPos and CalcXPos
You could use CalcYPos and CalcXPos. When drawing using the XPos and YPos co-ordinates
remember that the co-ordinate 0,0 is Top,Left of the Chart rectangle, ChartRect. ChartRect is the area
enclosed by the 4 axis of the Chart.
The following example draws a line from an arbitary point from the Y-axis across the Chart. Note the use
of canvas properties.
procedure TForm1.Button1Click(Sender: TObject);
var
MyHalfwayPoint, YPosition:longint;

Begin
With Series1.YValues do
 MyHalfwayPoint:=round(((MaxValue-MinValue)* 0.5) + MinValue);
{ then calculate the Screen Pixel co-ordinate of the above value }
 YPosition:=DBChart1.LeftAxis.CalcYPosValue(MyHalfwayPoint);
 With DBChart1.Canvas do
 begin

{ change pen and draw the line avoiding the
3D areas and axis of the Chart - Height3D,Width3D}

 Pen.Width:=3;
 Pen.Style:=psSolid;
 Pen.Color:=clBlack;
 with DBChart1 do
 begin
 MoveTo(ChartRect.Left,YPosition);
 LineTo(ChartRect.Left+Width3D,YPosition-Height3D);
 LineTo(ChartRect.Right+Width3D,YPosition-Height3D);
 end;
 end;
end;

Series' Value to Screen co-ordinate Methods
Series have similar methods for converting co-ordinates to point values and vice-versa. The main
difference is that by using the Series method you don’t need to know the exact Axis component for
calculations.
This is a big advantage when having Series associated to Right or Top Axis, or multiple Series
associated to each Axis.
CalcPosValue
This code calculates where in the screen the Series1 point with value 1000 is located:
Var MyPos : Longint ;
MyPos := Series1.CalcPosValue(1000);

or...
MyYPos := Series1.CalcPosValue(Series1.YValue[0]

) ; { <-- first point }
CalcXPos and CalcYPos
You can calculate both X and Y co-ordinates for a specific point or for a specific point value:
MyXPos := Series1.CalcXPos(EncodeDate(1997, 12, 31)) ;

or...
MyXPos := Series1.CalcXPos(Series1.XValues.Last);

{ <-- last point }
XScreenToValue and YScreenToValue
To convert from screen pixels to point values, use:
Var MyValue : Double ;
MyValue := Series1.YScreenToValue(Y) ;

(and XScreenToValue for horizontal co-ordinates).
You can query the point under a given pair of XY screen co-ordinates using the Series.Clicked function.
(See Mouse Clicks chapter).

Chart Canvas
Chart.Canvas is a standard Delphi Canvas. You may control the appearance of your Chart using
Canvas properties. See TCanvas help in Delphi for a full list of properties.

Writing to the Canvas
The following example divides the area of the backdrop of the Chart rectangle into 5 equal segments
and colours them according to the colour array.
procedure TDrawForm.LineSeries1BeforeDrawValues(Sender: TObject);
Const
 MyColors:array[1..5] of TColor=
 (clNavy,
 clGreen,
 clYellow,
 clRed,
 $00000080 { very red }
);
var t,partial:Longint;
 tmpRect:TRect;
With Chart1 do

 Begin
 { we will divide the total Chart width by 5 }
 tmpRect:=ChartRect;
 tmpRect.Right:=tmpRect.Left;
 partial:=ChartWidth div 5;

 { change the brush style }
 Canvas.Brush.Style:=bsDiagCross;
 Canvas.Pen.Style:=psClear;
 { for each section,fill with a specific color}
 for t:=1 to 5 do
 Begin
 { adjust the rectangle dimension }
 tmpRect.Right:=tmpRect.Right+partial+1 ;
 { set the brush color }
 Canvas.Brush.Color:=MyColors[t];
 { paint !!! }
 With tmpRect do
 Canvas.Rectangle(Left+Width3D,Top-

Height3D,Right+Width3D,Bottom-Height3D);
 { adjust rectangle }
 tmpRect.Left:=tmpRect.Right;
 end;
 end;
end;
Internal bitmap
TChart components have an internal bitmap object, which is used when drawing as a hidden “buffer”.
When drawing is finished, this “buffer” is copied to the screen video memory to display it.
TChart Canvas property returns the internal bitmap Canvas object.
Note: BufferedDisplay property controls if the internal bitmap is used. Using this bitmap no flicker occurs
when redrawing real-time Charts. Also, some Charts with many points can take advantage of faster
drawing speed on memory bitmaps instead of direct drawing to slower video card memory chips.
Drawing to a bitmap Canvas is exactly the same as drawing to another “real” Canvas in terms of source
code transparency and results.
Note: When drawing to a metafile or printing, the Chart Canvas property refers to metafile or printer
Canvas objects. No bitmap is used in these cases.
After a Chart has been drawn onto the internal bitmap, and its copied onto the screen canvas, Chart
Canvas property refers to the original “real” Chart Canvas.

Repainting
You should call Chart1.Repaint or Series1.Repaint to force a Chart component to draw again.

When to draw ?
The order in which you draw to the Canvas is important.
Best place to custom draw over a Chart component is at
If you wish Custom drawn items to appear above Chart Series you should use the Chart OnAfterDraw
event. The Chart1.OnAfterDraw event is fired each time the Chart component is redrawn, just before
copying the internal bitmap to screen.
You can place Custom drawn items above the Chart grid and below the Chart Series by placing your
code in the Series OnBeforeDrawValues event. (See UDRAW.PAS example unit).
Advanced: For more control you might want to create your own Chart class and override the several
Draw... virtual methods.

Chart Regions
The biggest rectangle around a Chart is at ChartBounds property. ChartWidth, ChartHeight,
ChartXCenter and ChartYCenter are pre-calculated co-ordinates based on ChartBounds property.
Axis are drawn inside this space. The ChartRect property returns the bounding rectangle for Axis (same
in 2D and 3D).

Chart Legend has the RectLegend public property which defines the Legend rectangle bounds.
Chart Title and Foot have TitleRect public properties.
In 3D Charts, each Series is assigned a specific section among the “Z” (depth) axis.
The Chart Width3D and Height3D are the dimensions of the
3D depth, in pixels. SeriesWidth3D and SeriesHeight3D are the dimensions for each individual Series in
a Chart.

Drawing
Lets start drawing with a basic example.
This code draws an horizontal line just at the middle of Chart1:
procedure TForm1.Chart1AfterDraw(Sender: TObject);
begin
 With Chart1 do
 begin
 Canvas.Pen.Color:=clYellow;
 Canvas.MoveTo(ChartBounds.Left,

ChartYCenter);
 Canvas.LineTo(ChartBounds.Right,

ChartYCenter);
 end;
end;
Drawing inside Axis space:
procedure TForm1.Chart1AfterDraw(Sender: TObject);
begin
 With Chart1 do
 begin

 Canvas.Pen.Color:=clYellow;
 Canvas.MoveTo(ChartRect.Left, ChartYCenter);
 Canvas.LineTo(ChartRect.Right, ChartYCenter);
 end;
end;

Drawing a line at each point in Series1 :
procedure TForm1.Series1AfterDrawValues(Sender: TObject);
var t ,x,y : Longint ;
begin
 for t := 0 to Series1.Count - 1 do

 begin
 x:=Series1.CalcXPos(t);
 y:=Series1.CalcYPos(t);
 Chart1.Canvas.MoveTo(x-8, y-8);
 Chart1.Canvas.LineTo(x+8, y+8);

 end;
end;
Note: Drawing Text
Always set Chart1.Canvas.Font.Height to a negative value
instead of using Font.Size if want same font sizes on screen
and on printer or metafiles.
See UHIGHLO.PAS and UDRAW.PAS units for example of custom drawing text.

Working with Axes

Topics in this section:
Setting Axis scales
DateTime Axis
Logarithmic Axis
Inverted Axis
Axis Styles & Increment
DateTime Increment
Grid lines
Axis Labels
CustomDraw (Axis)

Setting Axis scales
Chart components have five axes: LeftAxis, RightAxis, TopAxis, BottomAxis and DepthAxis. Each axis is
an instance of TChartAxis component class.
Axes are responsible of calculating pixel co-ordinates for Series points and to allow any valid range so
scroll and zoom can be always performed. As new Series are inserted, or new points are added to the
Series, Axes recalculate, by default, their Minimum and Maximum values.
You can turn off automatic recalculation of Axis scales by setting the Automatic property to false:
Chart1.LeftAxis.Automatic := False ;
Also, both the Axis Minimum and Axis Maximum values can optionally be independently automatic or
not.
Chart1.LeftAxis.AutomaticMaximum := False ;
Chart1.LeftAxis.AutomaticMinimum := True ;
You can change Axis scales using the Minimum and Maximum properties:
With Chart1.LeftAxis do
begin
 Automatic := False ;
 Minimum:= 0 ;
 Maximum:= 10000 ;
end;

or using the Axis SetMinMax method:
Chart1.LeftAxis.SetMinMax(0, 10000);
DateTime Axis
Note:
An Axis contains DateTime scales when the associated Series components have XValues.DateTime or
YValues.DateTime properties True. There is no DateTime property for Axis.
Changing scales in DateTime Axis is the same as for non-datetime values:
With Chart1.LeftAxis do
begin

 Automatic := False ;
 Minimum:= EncodeDate(1990, 3,16) ;
 Maximum:= EncodeDate(1996, 5, 24);
end;

Logarithmic Axis
An Axis can be set to Logarithmic only if Axis Minimum and Maximum are greater than or equal to zero.
This is the only difference between setting linear and logarithmic scales.

Note:
Axis Labels are not displayed in logarithmic increments. You can generate custom Axis Labels (see
chapter below).

Inverted Axis
An Axis can be Inverted so Axis Minimum and Maximum are swapped. We suggest you use
Inverted:=True as little as possible as it can give misleading results due to its (normally) rarity of use.

Axis Styles & Increment
Axis can be displayed in several ways, with tick lines or without,
with grids or without, with Labels or without, and you can customise all formatting properties such as
colours, fonts and pen styles. The Axis Increment property controls the number of grid lines and labels
and the distance between them.
By default it’s zero, meaning Axis will automatically calculate the Labels increment. Setting the Axis
Increment property is independent of setting Axis scales. You can have automatic Axis Maximum and
Minimum and a fixed Increment.
The Increment property grows automatically until all Axis Labels can be displayed. If you don’t want this
automatic feature, set the Axis LabelsSeparation to zero:
Chart1.LeftAxis.LabelsSeparation := 0 ;
Warning:
When LabelsSeparation is zero, no checking is performed against
labels size, so you must take care labels will not overlap each other.
The following code sets the vertical Axis Increment to 30:
Series1.Clear;
Series1.AddArray([20, 50, 120]);
Chart1.LeftAxis.Increment:= 30;
By default, the first Axis label starts at nearest Increment. Setting RoundFirstLabel to False makes
labels to start at Axis Maximum:
Chart1.LeftAxis.RoundFirstLabel := False ;
DateTime Increment
Use the predefined DateTimeStep array of constants to determine the Axis Increment on DateTime axis:
Chart1.BottomAxis.Increment := DateTimeStep[dtOneMonth] ;
And set the ExactDateTime property to True if you want Axis Labels to be at exact datetime boundaries,
for example at 1st day of month.
Chart1.BottomAxis.ExactDateTime := True;
Note:
Logarithmic axis use the Increment property as linear.

Grid lines
Axis Grid lines are displayed at each Increment position, or at each Axis Label position. The Axis
TickOnLabelsOnly property controls this feature:
Chart1.BottomAxis.TickOnLabelsOnly := False ;
Axis Labels
There are several Axis labelling styles. The Axis LabelStyle property control axis labelling modes:
Chart1.BottomAxis.LabelStyle := talValue ;
Possible values are:

talValue Labels display Axis scales
talMark Labels display Series Point Marks
talText Labels display Series XLabels
talNone No labels displayed
talAuto Style is automatically calculated

When LabelStyle is talText, TeeChart will set it automatically to talValue if Series have no XLabels.
For talMark and talText styles, axis labels are displayed exactly at Series point positions, thus not using
the axis Increment property.
You can customise labels text by using the OnGetAxisLabel event:
procedure TForm1.Chart1GetAxisLabel(Sender: TChartAxis;
 Series: TChartSeries; ValueIndex: Integer; var LabelText: String);
begin
 if Sender=Chart1.LeftAxis then
 if ValueIndex < 2 then LabelText :=’’ ;

end;
Advanced: The UAXISLAB.PAS example unit shows how to customise both Axis Labels text and
position, using the OnGetNextAxisLabel event.

CustomDraw (Axis)
CustomDraw adds more axes to your Chart - As many as you wish. CustomDraw adds an axis as a
‘copy’ of an existing axis at a new location.
The MULAXIS.PAS example unit draws two custom Axis inside a Chart. Available Axis methods for
custom drawing are: CustomDraw and CustomDrawMinMax.
The following example populates a line Series with random data. And creates 2 additional axis. There
are 3 configurable locations PosLabels, PosTitle and PosAxis to place, respectively, the labels, title and
the axis. The last parameter, GridVisible , which is boolean, defines whether to extend the axis grid to
the new axis.
procedure TForm1.FormCreate(Sender: TObject);
var
 t:integer;
begin
 Series1.XValues.DateTime := False;
 Chart1.BottomAxis.Increment:=0;
 For t:= -10 to 10 do
 Series1.addXY(t,Random(100),'', clTeeColor);
end;
procedure TForm1.Series1AfterDrawValues(Sender: TObject);
var posaxis,percent:longint;
begin
 percent:=50;
 With DBChart1 do
 begin

PosAxis:=ChartRect.Left+Trunc(ChartWidth*Percent/100.0);

 LeftAxis.CustomDraw(posaxis-10,posaxis-40,posaxis,True);
 PosAxis:=ChartRect.Top+Trunc(ChartHeight*Percent/100.0);
 BottomAxis.CustomDraw(posaxis+10,posaxis+40,posaxis,True);
 end;
end;

Series manipulation
This chapter documents how to manipulate Series and how to manipulate Series points and other
Series internal data.
Note: Advanced. Series and values code is mainly located at TEENGINE.PAS unit.
Topics in this section:
Creating Series at runtime
Series array property
SeriesCount property
Deleting Series
Changing the Series Z order at runtime
Adding Points
Null Values
Controlling Points Order
XY Points
Point Limits
Series Points

Retrieving and modifying Points

Locating Points

Point Statistics

Notifications

Point Colours

Point Labels
Changing the Series type at runtime - Advanced

Creating Series at runtime.
Series can be created at runtime just as like any other Delphi component:
First you need a Series variable:
Var MySeries : TBarSeries ;
{Then create the component:}
MySeries := TBarSeries.Create(Self);
{And then assign it to the desired Chart component:}
MySeries.ParentChart := Chart1 ;
{Now you can add points to MySeries or do whatever you can do with a design-time created Series.}
Shortcut:
{If you don’t need access to MySeries, the above code can be reduced to just one line of code:}
Chart1.AddSeries(TBarSeries.Create(Self));
{Class references:
If you don’t know the Series type, you can use a Series class reference:
First declare the Series class variable:}
Var MyClass : TChartSeriesClass;
{Then set the desired Series class type:}

MyClass := TBarSeries ;
{Now you can create the Series component:}
Chart1.AddSeries(MyClass.Create(Self));
Series array property
Chart components store all Series in SeriesList property, a Delphi TList object.
You have read-only access to this list in three ways:
A) Using the SeriesList property:
MySeries := Chart1.SeriesList [0]

B) Using the Series array property:
MySeries := Chart1.Series [0]

C) Or using the Chart1 default property:
MySeries := Chart1 [0]

Either way does the same.

SeriesCount property
The Chart1.SeriesCount property returns the number of Series in SeriesList.
You can use SeriesCount to traverse all Chart Series:
for t := 0 to Chart1.SeriesCount - 1 do
With Chart1.Series [t] do
begin
 SeriesColor := clBlue ;
end;
Deleting Series
Series can be hidden in three ways:
A) Setting the Series Active property:
Series1.Active := False ;

B) Removing the Series from their parent Chart:
Series1.ParentChart := nil;

C) Destroying the Series completely:
Series1.Free ;

Changing the Series Z order at runtime.
In 3D mode (when Chart1.View3D is True), all Series are assigned a Z order position. That is, the order
where Series will be drawn, starting with the far most Series on the Chart 3D space.
You can control the order Series will be drawn, using these methods:
Chart1.ExchangeSeries(0, 1);
or...
Chart1.SeriesUp(Series1);
Chart1.SeriesDown(Series1);
The Series.ZOrder integer property returns the corresponding Z position for the Series.
Some Series in certain modes share the same ZOrder, like Stacked BarSeries. You can check if more
than one Series has the same Z order using these functions:
if Series1.FirstInZOrder then
if Series1.MoreSameZOrder then
Adding Points
Every Series type has, at least, 2 values for each point. These values are designed as X and Y point co-
ordinates.

Note: Values are defined as “Double” floating point variables.
Extended Series types have more than 2 values, like BubbleSeries has X, Y and Radius values for each
point.
So, each Series type has its appropriate method to add points, although the most common Series types
like Line, Bar, Point and Area share the generic AddY method to add points.
The following code empties a TPieSeries and adds some sample values to it:
Series1.Clear ;
Series1.Add(1234, ‘USA’, clBlue);
Series1.Add(2001, ‘Europe’, clRed);

For extended Series types, please refer to each specific Series reference to know which method should
be used to add points.
The Series AddArray method can be used in some situations:
Series3.Clear;
Series3.AddArray([1234, 2001, 4567.12]);

AddArray does not Clear the Series before adding points.
You can express points as constants or variables:
Series3.AddArray([Table1Sales.AsFloat, 123, MyTotal]);

Null Values
In some circumstances you might have no values for specific points. You should then add these points
as “zero” or add them as “null” values.
Null values will not be displayed, while “zero” values will be displayed as usual.
The following code adds several points and a null point:
With Series1 do
begin
 Clear ;
 AddY(10, ‘John’, clGreen);
 AddY(20, ‘Anne’, clYellow);
 AddY(15, ‘Thomas’, clRed);
 AddNull(‘Peter’);
 AddY(25, ‘Tony’, clBlue);
 AddY(20, ‘Mike’, clLime);
end;
Each Series type will handle null values in different ways.
Bar, HorizBar, Line, Area and Point do not display null points.
PieSeries use null values as “zero”.

Controlling Points Order
Points can be optionally sorted either by their X values or Y values. The Series.XValues and
Series.YValues Order property controls the points Order:
Series1.XValues.Order := loAscending ;

Possible values are: loNone, loAscending or loDescending.
By default, XValues Order is set to loAscending, and YValues Order to loNone, which means new added
points are ordered by their X co-ordinate. For non XY Charts, the X co-ordinate is always the point
position, starting from zero.
The point Order is used by Series components to draw their points.
Note: Order must be set before points are added to the Series.
You can change the Order property at run-time, followed by a call to Sort method:

Example:
Drop a TChart onto a Form, add a Line Series.
Drop a TButton and assign this code to Button1Click:
Series1.AddArray([5, 2, 3, 9]);
Now drop another TButton and add this code to Button2Click:
With Series1 do
begin
 YValues.Order:=loAscending;
 YValues.Sort;
 Repaint;
end;
Now execute and press Button1 to fill Series1, and press Button2 to see Series1 points drawn on
Series1 YValues Ascending order, but having the original X co-ordinates.
Note: If you aren’t using X co-ordinates, one more line of code is required.
Drop a new TButton (Button3) and add this code to Button3Click:
Series1.XValues.FillSequence;
Series1.Repaint;
Now points will be “re-numbered”, starting from zero among Series1 XValues axis. This will re-order
points so now they will be drawn as if they were originally added to the Series in their new order.
This “two-step” point sorting allows Line Series to draw with vertical orientation.

XY Points
Adding X co-ordinates to points makes Series components calculate user specific horizontal point
positions.
Note: Bar Charts can be difficult to interpret with X co-ordinates.
Pie Series do not allow X co-ordinates.
To add X co-ordinates, simply use the AddXY method:
Drop a TChart, add a Point Series:
With Series1 do
begin
 Clear ;
 AddXY(10, 10, ‘Barcelona’, clBlue);
 AddXY(1, 10, ‘San Francisco’, clRed);
end;
Note: If you use a Bubble Series, use the TBubbleSeries AddBubble method.
Remember to set XValues.Order to loNone if don’t want points to be sorted on their X co-ordinate.

Point Limits
16bit Delphi 1.0
Maximum 16380 Series per Chart, and 16380 points per Series.
32bit Delphi
Maximum 134217727 points per Series and same for Series per Chart.

Deleting Points
Simply call the Series.Delete method, passing the point index as the argument. Point index starts at
zero.
Series1.Delete(0); { <-- removes the first point in Series1 }
Series1.Delete(Series1.Count - 1) ; { <-- removes the last point in
Series1 }

An exception “List out of bounds” will be raised when attempting to Delete a non-existing point, so
always check there are enough points in the Series prior to delete them:
if Series1.Count > MyIndex then Series1.Delete(MyIndex);
Calling Delete forces re-calculation of Functions and repainting of the Chart.

Series Points

Retrieving and modifying Points
Once points have been added, you can retrieve their co-ordinates or change them.
The XValues and YValues array properties can be used:
Var MyValue : Double ;
MyValue := Series1.YValues[0] ; { <-- retrieves

the first Y value }
You can traverse these arrays to perform calculations:
Var MyTotal : Double ;

t : Integer ;
MyTotal := 0 ;
for t:= 0 to Series1.Count - 1 do

MyTotal := MyTotal + Series1.YValues[t] ;
ShowMessage(FloatToStr(MyTotal));

Extended Series types have additional array properties, such as
BubbleSeries RadiusValues. You can access these properties in
the same way as with XValues or YValues arrays:
if BubbleSeries1.RadiusValues[Index] > 100 then
Modifying point values can be performed using the above properties:
Series1.YValues[0] := Series1.YValues[0] + 1 ;
Series1.RefreshSeries ;

Locating Points
The XValues and YValues Locate function searches a specific
value in the List and, if found, returns the value Index, starting
from zero.
Var MyIndex : Integer ;
MyIndex := Series1.YValues.Locate(123);
if MyIndex = -1 then
 ShowMessage(‘ 123 not found in Series1 !! ‘)
else

 ShowMessage(‘ 123 is the ‘+IntToStr(MyIndex+1)+’ th point in Series1 !!
‘);

Point Statistics
XValues and YValues properties maintain the following statistical figures:

Total The sum of all values in the list.
TotalABS The sum of all values as absolute (positive).
MaxValue The maximum value in the list.
MinValue The minimum value in the list.

You can call manually to RecalcMinMax method to recalculate MinValue and MaxValue. Total and
TotalABS are maintained automatically.
These values are used to speed up several Axis scaling calculations and are used as helpers for
percent calculations.

TChartValueList object has several other methods and properties to manipulate point values. Please
refer to online help documentation.

Notifications
Whenever points are added, deleted or modified, the Series generates internal notification events.
These events are used to recalculate Series that depend on other Series points.
Advanced: You can use RecalcOptions property to control when recalculations are performed.

Point Colours
All Series maintain an internal List of colours. One for each point in the Series.
You can access this list with ValueColor array property, to retrieve or change point colours:
Var MyColor : TColor ;
MyColor := Series1.ValueColor[0] ;
Series1.ValueColor[1] := clBlue ;

TeeChart defines a generic colour constant named: clTeeColor.
Points with clTeeColor colour will be drawn using the SeriesColor colour.
Delphi predefines constants for basic colours (clBlue, clRed, etc.). Colours can also be expressed in
RGB format. Using a video colour depth of 16k colours or more results in better colour matching.

Point Labels
Each point has an associated text, called XLabel, and declared as a Delphi string.
Point Labels are used in Axis Labels, Chart Legend and Point Marks.
Labels are stored at Series XLabel array property.
You can access and modify XLabel point texts:
Series1.XLabel [0] := ‘Sales’ ;

Changing the Series type at runtime - Advanced
Every Chart type corresponds to a different Delphi Component.
Changing a Series type involves changing the Series component class.
That means a new Series of the new class must be created, old Series properties should be assigned to
the new instance, and finally the old Series must be destroyed.
All this happens automatically when you manually change a Series type at design-time using the Chart
Editor Dialog and the Gallery.
You can change a Series type at run-time calling:
ChangeSeriesTypeGallery(Self, MySeries);
Warning:
You should change your private Series components.
You can change also Series components owned by the Form,
but only if not using them after.
Var MySeries : TChartSeries ;
MySeries := Series1 ;
ChangeSeriesTypeGallery(Self, MySeries);

Printing Charts
This chapter explains how Charts are printed and which properties and methods are used to control the
printing process.
Note:
Advanced. Printing methods are located in the CHART.PAS unit.
Topics in this section:

Printing

Margins

Resolution

Print, PrintLandscape....

PrintPartial

Multiple Charts per Page

Windows and printers limitations

Clipping

Rounding circles

Rotating fonts

Dotted Pen styles and Pen Width

From FAQ - Practical issues when printing TeeCharts

Introduction

Design issues

How to Print Proportionally?

Other problems

Printing Reference

More information:

Printing

Margins
When printing, you can specify which margins on the paper page should be left blank. The public
PrintMargins:TRect property stores the desired paper margins expressed as percents of total page
dimensions.
PrintMargins:=Rect(15,15,15,15); { default 15 % printing margins }
The TChart.ChartPrintRect:TRect function returns, after applying the printing margins, the space where
the Chart component will be drawn expressed as logical canvas units (pixels or dots).
With PrintMargins you can define any area of any size inside the page.
Note:
When changing paper orientation, margins are recalculated.

Resolution
Charts are printed in metafile (WMF in 16bit, EMF in 32bit) format.

Metafiles are scaleable vector formats, so a “wysiwyg” effect can be achieved if sending to the printer
how a Chart looks on screen. However, you might want to exploit the printer’s bigger resolution
capabilities versus screen displays.
The TChart.PrintResolution integer property controls how a Chart is scaled when sending it to the
printer. By default PrintResolution is zero. Setting it to a negative value in the percentage range from
zero to -100 makes the Chart proportionally bigger so there’s more space for Axis Labels. Smaller fonts
are used as they will be clearer on paper than on screen.
Setting it to a positive value makes font sizes bigger.

Print, PrintLandscape....
Several methods exist to print a Chart component:
Print;
PrintRect(Const R:TRect);
PrintOrientation(AOrientation:TPrinterOrientation);
PrintPortrait;
PrintLandscape;
All the above methods will do the same, print a Chart on a new page and eject (form feed) the page:
Chart1.Print ;
Will print a Chart1 in the current printer’s paper orientation.
With PrintRect you can specify a custom Chart size and location. The default location and size is
determined by ChartPrintRect function, which applies PrintMargins margins.
Delphi’s Printers unit contains the TPrinter object used for all Chart print methods.

PrintPartial
More advanced printing control can be obtained using the following methods:
Procedure PrintPartial(Const PrinterRect:TRect);
Procedure PrintPartialCanvas(PrintCanvas:TCanvas;
 Const PrinterRect:TRect);
Both will print a Chart component, BUT WILL NOT create a new printer page or eject it. You can print
both your own text and graphics and Chart components on the same paper page.

Multiple Charts per Page
An example of PrintPartial method is located at BASIC.PAS unit under TeeDemo project.
Four Chart components are printed on a single page, optionally with more resolution.

Windows and printer limitations
Metafiles are very good as they are small and fast and scaleable.
Some limitations occur when using metafiles, as described in Microsoft Knowledge Base
(www.mskb.com). TeeChart inherits those limitations:
Clipping
Clipping is stored in physical co-ordinates in metafiles. This means moving or scaling a clipped metafile
will not scale or move the clipping region, giving undesirable results.
TeeChart does not draw partial points, so no clipping. Drawing on zoomed Charts will probably show
partial points outside the Chart axis.
Rounding circles
As metafiles can be scaled, circles will be converted to ellipses when scaling.
Rotating fonts
Rotated fonts can not be exactly aligned on non-proportionally scaled metafiles.
Dotted Pen styles and Pen Width

Non solid pens (dots, dashes), can be drawn as solid with scaled metafiles.

From FAQ - Practical issues when printing TeeCharts
This section explains how TeeChart components are printed, and describes how to improve printing.

Introduction

Design issues

How to Print Proportionally?

Other problems

Printing Reference

More information:
Introduction
The TeeChart library is sending Charts to the printer using a Windows graphic format known as
"metafile". This format has several advantages and disadvantages over using the bitmap format:
- It's much smaller, because graphic information is stored in vector instructions, instead of pixels. This
results in a faster printing speed in most cases.
- The printer doesn't need to have more memory to print 'large' images (Charts).
- Due to be a sequence of instructions instead of a fixed array of pixels, a metafile can be resized (or
"stretched") without losing resolution, and with greater accuracy.
- New printers support metafile format natively, via software driver or via "gdi hardware".
With Windows 32-bit (Windows 95 and Windows NT), an extended metafile format is implemented. This
is known as "enhanced metafile". Metafiles have the extension: "*.wmf" and enhanced metafiles: "*.emf".
Design issues
The main goal of using metafiles in TeeChart, is to provide "wysiwyg" (what you see is what you get).
That is, printed Charts should look as close as possible to how they look at screen.
To do this, TeeChart creates a metafile of the Chart image, and then sends this metafile to the printer. At
this point, the Windows GDI module and the Windows Printer driver will take care of "painting" the Chart
image on paper. This involves "stretching" or "resizing" the metafile, from screen coordinates to printer
logical pixels.
Example:
A Chart on screen is at rectangle:
 Left : 100
 Top : 100
 Right : 300
 Bottom: 400
And it gets printed at this paper rectangle:
 Left : 400
 Top : 1000
 Right : 1200
 Bottom: 1500
In this example, the Chart should be rescaled both
in width and height:
screen Width = 300 - 100 = 200
paper Width = 1200 - 400 = 800

relation screen / paper = 800 / 200 = 4 <---
screen Height = 400 - 100 = 300
paper Height = 1500 - 1000 = 500
relation screen / paper = 500 / 300 = 1.666... <---
The problem is the relation between the horizontal and vertical increments is not the same:
 4 <> 1.666...
This means the Chart will be expanded more in the horizontal dimension than in the vertical dimension.
In this case, Windows increases font sizes and pen widths using the new dimensions.
Note: Windows 16-bit (3.1, 3.11) do not resize fonts as it does Windows 32-bit (95 and NT).
Text can overlap other Chart sections and look bad positioned. To fix this, see below "How to print
proportionally?"
Windows 32-bit does a better job using the enhanced metafile format, so text dimensions are calculated
precisely.
How to Print Proportionally?
Some printers can show problems when printing Charts *without* using proportional printer margins.
Specially in Windows 16-bit with Delphi 1.0
The attached code can be used generically in your applications to calculate the optimal printer
printer margins so the relation between Chart Width and Height on screen is the same as on paper.
Another approach is to resize the Chart onscreen to match the proportion of the printer paper:
Chart1.Height:=Round(1.0*Printer.PageHeight*Chart1.Width/Printer.PageWidth);
Chart1.Print;
Other problems
Increasing resolution:
The metafile format is not aware of the "resolution" concept. This is means resolution information is not
stored inside the metafile image. You can modify the Chart "resolution" *before* printing,
by setting this property:
Chart1.PrintResolution := -100 ;
Negative values (like -100 above), represent the porcentual increment in resolution. Zero means
"wysiwyg".
More resolution is obtained by making all Chart fonts smaller and thinner lines. The metafile size is
bigger when using more resolution. Increasing resolution can improve inaccuracy in buggy printer
drivers calculations.
Printing non-solid lines:
In some printer / windows combinations, non-solid pen lines such as "dot" or "dash" will be printed as
solid. This happens specially in some HP Laserjet printers. It seems the only workaround is to set the
Chart Pen Width properties to Zero:
Chart1.LeftAxis.Grid.Width := 0;
Increasing resolution (see above) can make the printer to show non-solid lines.
Colors:
Many printers accept only a subset of the available Colors. This means setting a Chart color to a non-
supported palette color may result in that color not being used by the printer, thus not drawing anything.
In this situations, try with "well known" solid colors like "clRed, clBlue, clYellow, clGreen".
Some printers include a "Color Mapping" configuration dialog. (At Printer Properties dialog).
Printing directly:
Drawing a Chart directly onto a Printer GDI Handle or Canvas is also possible. The following code does

it:
 Uses Printers;
 With Printer do
 begin
 BeginDoc;
 try
 Chart1.Draw(Canvas, Rect(0,0,PageWidth,PageHeight));
 finally
 EndDoc;
 end;
 end;
You will see several problems printing directly:
-- The Chart background is gray color (instead of white).
-- Font sizes are extremely small.
-- There are many axis grid lines.
-- Lines are very thin.
One way to solve the above problems is using the metafile printing mode, described in this document.
Another way (much more complicated) is to change all Font sizes and pen Width properties.
Printer driver settings:
Try to use always the latest "good" printer driver version. Try changing the Windows Printer driver
resolution settings, and the spooler method (in Windows NT) to both "EMF" and "RAW" modes. "EMF"
means all output is sent to the printer in metafile format.
Printing Reference
See the help file for extended information and examples on the following properties and methods. The
BASIC.PAS and UPRINT.PAS units in TeeDemo project contain code showing custom printing.
The attached project shows Printing Margin adjustments to avoid text overlaping in Delphi 1.0 on 16-bit
Windows systems.
Printing Properties:
Properties involved in Chart printing are:
Chart1.PrintMargins
 The percentual space at the four sides of the paper page.
Chart1.PrintResolution
 The relation between screen dimensions and paper dimensions.
Printing methods:
The TeeChart control has several methods designed for printing:
Methods that print *and* eject the printed page:
These are the default and more used TeeChart printing methods.
Chart1.Print
 Uses default paper orientation and margins.
Chart1.PrintPortrait
 Sets paper in Portrait and uses default margins.
Chart1.PrintLandscape
 Sets paper in Landscape and uses default margins.
Chart1.PrintRect
 Uses default paper orientation and the Rect parameter to position the Chart on the page.

Methods that do not eject the printed page:
These methods allow printing more than one Chart in the same paper page, or print other things and
Chart components on the same page.
With these methods you need to call Printer.BeginDoc and EndDoc yourself. See Delphi TPrinter
documentation and the UPRINT.PAS and BASIC.PAS units in TeeChart TEEDEMO project.
Chart1.PrintPartial
 Draws a Chart to the Printer Canvas at the passed rectangle.
Chart1.PrintPartialCanvas
 Draws a Chart to the passed Canvas at the passed rectangle.
Related methods and properties:
Not directly involved with printing, but useful for advanced printing:
Chart1.Draw
 Draws a Chart to the passed Canvas, in screen "mode".
 "Screen mode" means with gray background and without
 using the metafile format.
 This method draws directly to the Canvas.
Chart1.TeeCreateMetafile
 Function that returns a metafile image of the Chart,
 with the passed Rect coordinates.
Chart1.Metafiling
 Boolean property indicating the Chart is now drawing
 onto a metafile image.
Chart1.Printing
 Boolean property indicating the Chart is now drawing
 onto a Printer Canvas.
More information:
Information about printing and metafiles can be found at Microsoft Windows 32-bit SDK help file, located
at:
"..\Delphi 5.0\Help\Win32.hlp"
Use the "Help Contents" (not the index) and scroll-down up to the Metafiles chapter.
See the Delphi's TMetafile and TMetafileCanvas objects at Delphi's help file and GRAPHICS.PAS unit.

Chart Zoom and Scroll
Scrolling and Zooming a Chart is simply setting its Axis scales to the desired values. After zooming or
scrolling a Chart, all Series will repaint their points in their new positions.
Note: Pie Series can’t be scrolled or zoomed. You can control Pie dimensions using Chart margins or
Pie custom radius properties.
Topics in this section:
Zoom

Animated Zoom
Zooming by code
Undoing Zoom
Zoom Events
Scrolling

Scroll event
Controlling scroll
Keyboard Scrolling

Zoom
Charts can be zoomed programmatically or by user interaction with mouse dragging. The Chart
AllowZoom property controls if users can apply zoom:
Chart1.AllowZoom := True ;
Users can zoom drawing a rectangle around the Chart area they want to see in detail.
Note:
Dragging should be done from top / left to bottom down. Dragging in the opposite direction resets axis
scales (no zoom).
You can decide which mouse button and / or keys must be pressed to draw the zoomed area rectangle.
The following code uses global variables:
TeeZoomMouseButton := mbLeft ; { left mouse button used to zoom }
TeeZoomKeyShift := [ssShift] ; { SHIFT key should be pressed to start
zoom }

As soon as users release the mouse button, TeeChart repaints to show the zoomed area.

Animated Zoom
You can control if TeeChart will calculate zoom positions immediately or it will be calculating zoom in
short “steps” until reaching the desired zoom window.
This makes an “animated” zoom effect, which helps to identify better the zoomed area. This code
activates animated zoom:
Chart1.AnimatedZoom:= True ;
Set the AnimatedZoomSteps property to the desired number of intermediate zooms:
Chart1.AnimatedZoomSteps:= 5 ;
Advanced:
You can control how linear the animated zoom steps are, using the global variable
AnimatedZoomFactor, from 1 to n:
AnimatedZoomFactor:=2.0;
Zooming by code
You can zoom in or zoom out a Chart using any of these methods:

ZoomRect adjusts axis scales to show the TRect parameter area. The rectangle is expressed in screen
pixel co-ordinates. Rectangle areas inside Chart1.ChartRect rectangle will zoom in, while area outside
ChartRect will zoom out.
Chart1.ZoomRect(Rect(100, 100, 200, 200));
ZoomPercent sets Chart zoom to a percentual value. This example sets Zoom to 110 % percent to zoom
in :
Chart1.ZoomPercent(110);
To reset zoom:
Chart1.ZoomPercent(100);
The above methods work independently, you can use both at the same time.

Undoing Zoom
The UndoZoom method resets axis scales to their automatic Minimum and Maximum values:
Chart1.UndoZoom;
This will display all Series points, undoing any previous zoom in or zoom out operation, either by code or
using the mouse.
Note:
If you want axis scales to be at specific values after undoing zoom, you can use the Chart OnUndoZoom
event, documented below.
The Zoomed boolean property returns if all four Chart Axis are automatic or not. If not Chart1.Zoomed
then Chart1.ZoomPercent(150);

Zoom Events
The OnZoom event is triggered whenever zoom is applied to a Chart, either manually or
programmatically:
procedure TForm1.Chart1Zoom(Sender: TObject);
begin
 Button1.Visible:=True ; { make visible the

“no-zoom” button }
end;
The OnUndoZoom event is called when undoing zoom, by code or by mouse.

Scrolling
Scrolling is very similar to zoom. Axis scales are incremented or decremented and the whole Chart
component is repainted to show Series points at their new positions.
The Chart AllowPanning property controls if users can scroll Chart contents by dragging the mouse. Its
possible values are:
pmNone No scroll is allowed.
pmHorizontal,
pmVertical Allow scroll only on these directions.
pmBoth Allow complete scroll over all directions.
Example:
Chart1.AllowPanning := pmNone ; { no scroll is

allowed }
Like Zoom, the following global variables control mouse and keyboard requirements to start scrolling:
TeeScrollMouseButton := mbRight; { button used to scroll }
TeeScrollKeyShift : [ssCtrl]; { CONTROL key should be pressed to start
scroll }

You can programmatically scroll a Chart, using the Axis Scroll method:

Procedure Scroll(Const Offset:Double;
CheckLimits:Boolean);

Example:
Chart1.BottomAxis.Scroll(1000, True);
The above code increments BottomAxis scales by 1000. This is the same as doing:
With Chart1.BottomAxis do SetMinMax(Minimum+1000, Maximum+1000);
and setting BottomAxis Automatic property to False.
The Chart will repaint and the horizontal bottom axis will be “scrolled” to the left a quantity of “1000” in
axis scales.
The “CheckLimits” boolean parameter instructs the axis to scroll ONLY if there are more Series points in
the scrolling direction.

Scroll event
The Chart OnScroll event is fired every time users scroll manually the Chart.
procedure TForm1.Chart1Scroll(Sender: TObject);
begin
 Label1.Caption := ‘This Chart has scrolled ! ‘ ;
end;
Controlling scroll
The OnAllowScroll event can be used to programmatically accept or refuse a planned scroll:
procedure TForm1.Chart1AllowScroll(Sender: TChartAxis; var AMin,
 AMax: Double; var AllowScroll: Boolean);
begin
 if Sender = Chart1.BottomAxis then
 if AMax > 1000 then AllowScroll := False ;
end;
The above code refuses user scrolling if attempting to set bottom axis maximum to a value greater than
1000. The same checking can be performed over the DateTime axis:
if Sender = Chart1.BottomAxis then
 if AMax > EncodeDate(1997, 12, 31) then AllowScroll := False ;
Keyboard Scrolling
The UKEYBOA.PAS example unit shows how to use the Form OnKeyDown event and scroll when
pressing the arrow keys. First, the Form KeyPreview property should be set to True.
At the KeyDown event, and depending on the pressed arrow key, the four Chart axis are scrolled using
the Axis Scroll method.
The example also uses ZoomPercent and UndoZoom methods.

Real-Time Charting and Speed
Two big rules apply to speed performance in real-time Charting:
1. Plot as few points as possible
2. Use the fastest possible hardware.
Together, these two rules really make a big speed difference when drawing Charts many times
continuously.
Some other suggestions are:
- Use 2D. Three dimensional Charts are slower to paint than 2D.
- Make Charts small. Bigger Charts need more pixels to be filled.
- Remove Chart Legend and Titles when possible.
- Use default fonts and font sizes.
- Use FastLineSeries for fastest way to plot many points.
- Use solid pens and brushes styles.
- Avoid using circular shapes or circular bar styles.
- Don’t use background bitmaps or gradient fill effects.
- Set Chart BevelInner and BevelOuter properties to bvNone
- When possible, set Chart1.AxisVisible to False to remove axis.
- Set your video mode resolution and colour depth to the optimum values, according to your video card.
- A combination of 800x600 x 256 colours can be faster than 1024x768 x 32k colours, on average video
cards.
- Use Windows 95 or Windows NT with accelerated drivers for your video card.

BufferedDisplay
This public property controls how Charts are internally drawn. When True, the default, Charts are drawn
into an internal hidden bitmap. When drawing is finished, this internal bitmap is transferred to the screen
in one single operation. The result is non-flickering animation.
In some circumstances, setting BufferedDisplay to False can accelerate Chart redrawing. It depends on
CPU and video card speed, and on the number of points plotted.
The bad news is that drawing directly to screen produces flickering, but can be helpful for really heavy
redrawing applications.
The UFAST.PAS example unit can be used as a benchmark for testing drawing speed times. Remember
to use exactly the same data values in your tests with your real Charts. Use always the same number of
points and the same point values when comparing speed results. Run the tests many times to obtain a
fair statistical result and restart completely between tests.

Functions
A function may be defined to use one of most Series types as a ‘carrier’ Series and to act upon other
Series to create its source data. When the function is defined it behaves as any other Series. Functions
may thus be built upon other functions. Only in its definition of data source is a function different from
other Series as it contains information that relates it statistically to other data sources by formula, sum,
etc.
Topics in this Section:
Adding a function with the Chart editor
Deleting a function with the Chart editor
Changing a FunctionType with the Chart editor
Adding a function by code
Deleting a function by code
Period

Adding a function with the Chart editor
Functions may be added using the Chart editor at design time. Similarly to adding a Series you may use
the TeeChart Gallery to choose the function. In the Gallery all functions are initially displayed as
LineSeries functions - you may change Series type after initially adding the function.
When you have added the function go to the DataSource tab of the Series page. Here you may choose
which input Series (or Series) to add to the function. The first Series in the selected listbox, reading from
top to bottom, is the Series on which the operation is performed in the case of function which doesn’t
treat each member of the list homogeneously.
Eg. Subtract.

Fig. 1.
Subtract
function
defined in
the Chart
editor

In the Chart editor screen you see Series3 being defined with inputs Series1 and Series2. The Series
order in the list defines which Series is doing the subtraction.

Here: Series3:= Series1 - Series2

Deleting a function with the Chart editor
Alternatively you may delete the Series you have added as carrier for the function (delete Series from
the first page of the Chart editor) or you may redefine the Series as having a different datasource in the
DataSource tab of the Series page.

Changing a FunctionType with the Chart editor
The option to change the FunctionType is in the DataSource tab of the Series page for the function
Series. The drop down combobox contains a list of all function types - You may choose any from the list.
Copy will directly copy the input Series (duplicating the Series).

Adding a function by code
Function is a component. When you add a new function you are adding a Series, defining a new
function and setting it as FunctionType for the Series.
Series1.SetFunction(TAddTeeFunction.Create(Self));
See the online help for a description of how to add each of the different types of function. Each function
uses the same Series method, SetFunction.

Deleting a function by code
To delete a function from a Series either delete the Series or use the SetFunction method to de-allocate
the connection between the Series and the Function.
Series1.SetFunction(nil);
Period
You may find the Period property extremely useful when working with functions. It is used to define the
frequency for which the function re-calculates.
Example
We have 6 data points (eg. bars of a Bar Series) with values:

3, 8, 6, 2, 9 and 12
We define a function Series with Period 0 (default when only one Series is input to the Function) the
average drawn is:

6.667
With Period set to 2 we get 3 values of average as output from the function:

5.5, 4 and 10.5
These values will plot centrally in their period range, ie. The 1st value between bars 1 and 2 of the input
Series, 2nd value between bars 3 and 4, etc..
You may define Period by selecting the function in the Object Inspector or you may modify Period at
runtime using FunctionType.
Eg. Where Series 2 is the function Series:
Series2.FunctionType.Period:=2

TeeChart examples
The TeeChart folder below the Delphi Demos folder contains some TeeChart examples with source
code.
For a further look at coded examples please take a look at the TeeChart website, www.teechart.com,
which contains many additional technical examples and Frequently Asked Questions.

Calculate3DPosition Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
function Calculate3DPosition (x,y,z:Integer):TPoint; virtual; abstract;
Description
Calculates and returns the XY position in pixels of the XYZ 3D coordinate.
Can be used when custom drawing using 3D XYZ coordinates, either returned from the axes or not.
Example
Chart1.OnAfterDraw...
Var P:TPoint;
With Chart1.Canvas do
begin
 P:=Calculate3DPosition(ChartXCenter, ChartYCenter, 20);
 Cube(P.X-10,P.X+10,P.Y-10,P.Y+10,15,25, True);
end;
Draws a Cube centered on the middle of the Chart, at Z position of "20".

Arrow Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Arrow (Filled:Boolean; Const FromPoint,ToPoint:TPoint;
ArrowWidth,ArrowHeight,Z:Integer); virtual; abstract;
Description
Draws a line with an arrow head of ArrowWidth and ArrowHeight dimensions in pixels.

Cube Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Cube (Left,Right,Top,Bottom,Z0,Z1:Integer; DarkSides:Boolean);
virtual; abstract;
Description
Draws a Cube, with optionally shadowed top and right sides.

Cylinder Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Cylinder (Vertical:Boolean; Left,Top,Right,Bottom,Z0,Z1:Integer;
DarkCover:Boolean); virtual; abstract;
Description
Draws cylinder toggle Boolean for vertical or horizontal cylinder.

HorizLine3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure HorizLine3D (Left,Right,Y,Z:Integer); virtual; abstract;
Description
Line from (Left,Y,Z) to (Right,Y,Z)

VertLine3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure VertLine3D (X,Top,Bottom,Z:Integer); virtual; abstract;
Description
Line from (X,Top,Z) to (X,Bottom,Z)

ZLine3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure ZLine3D (X,Y,Z0,Z1:Integer); virtual; abstract;
Description
Line from (X,Y,Z0) to (X,Y,Z1)

EllipseWithZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure EllipseWithZ (X1, Y1, X2, Y2, Z: Integer); virtual; abstract;
Description
Ellipse bounding Rect (X1,Y1,X2,Y2) at Z position.

FrontPlaneBegin Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure FrontPlaneBegin ; virtual; abstract;
Description
Disables rotation, elevation, offsets and zoom.
The Legend, Title and Foot use this.

FrontPlaneEnd Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure FrontPlaneEnd ; virtual; abstract;
Description
Enables rotation, elevation, offsets and zoom again. The Legend, Title and Foot use this.

LineWithZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure LineWithZ (X0,Y0,X1,Y1,Z:Integer); virtual; abstract;
Description
Line from (X0,Y0,Z) to (X1,Y1,Z)

LineTo3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure LineTo3D (X,Y,Z:Integer); virtual; abstract;
Description
same as TCanvas , with z

MoveTo3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure MoveTo3D (X,Y,Z:Integer); virtual; abstract;
Description
same as TCanvas, with z

Pie3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Pie3D (XCenter,YCenter,XRadius,YRadius,Z0,Z1:Integer; Const
StartAngle,EndAngle:Double; DarkSides,DrawSides:Boolean); virtual;
abstract;
Description
Draws a Pie slice ...

Plane3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Plane3D (Const A,B:TPoint; Z0,Z1:Integer); virtual; abstract;
Description
Rectangle from (A.X,A.Y,Z0) to (B.X,B.Y,Z1)

PlaneWithZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure PlaneWithZ (P1,P2,P3,P4:TPoint; Z:Integer); virtual; abstract;
Description
Draws a polygon of (P1,P2,P3,P4) at Z position

PlaneFour3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure PlaneFour3D (Points:TPlaneFourPoints; Z0,Z1:Integer); virtual;
abstract;
Description
Draws a polygon of four points. The first and second point at Z0 position, the third and fourth point at Z1
position.

RectangleWithZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure RectangleWithZ (Const Rect:TRect; Z:Integer); virtual; abstract;
Description
Rectangle at Z position
Example
Chart1.Canvas.RectangleWithZ(Rect(50,20,150,80), 15);

RectangleY Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure RectangleY (Left,Top,Right,Z0,Z1:Integer); virtual; abstract;
Description
Horizontal Rectangle from Left to Right, from Z0 to Z1 position, at Top Y.

RectangleZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure RectangleZ (Left,Top,Bottom,Z0,Z1:Integer); virtual; abstract;
Description
Vertical Rectangle from Top to Bottom and from
Z0 to Z1 position, at Left X.

RotateLabel3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure RotateLabel3D (x,y,z:Integer; Const St:String; RotDegree:Integer);
virtual; abstract;
Description
Draws a 2D rotated label at XYZ position. Depends on TextAlign property.

TextOut3D Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure TextOut3D (X,Y,Z:Integer; const Text:String); virtual; abstract;
Description
Draws a 2D non-rotated label at XYZ position. Depends on TextAlign property.

TriangleWithZ Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure TriangleWithZ (Const P1,P2,P3:TPoint; Z:Integer); virtual;
abstract;
Description
Draws a triangle of P1,P2,P3 at Z position.
Example
Chart1.Canvas.TriangleWithZ(Point(40,40), Point(50,30), Point(60, 40),
10);

Pixels3D Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Pixels3D [X,Y,Z:Integer]:TColor;
Description
Sets the 3D pixel to TColor, using Pen.Width (same as TCanvas)
Example
Pixels3D[100,50,30]:= clRed ;

Supports3DText Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Supports3DText :Boolean;
Description
Returns if Canvas can rotate text in 3D mode.
Only OpenGL Canvas can rotate text.

SupportsFullRotation Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property SupportsFullRotation :Boolean;
Description
Returns if Canvas can do rotation and elevation of more than 90 degree. Only OpenGL Canvas has 360
degree rotation.
Example
if Chart1.Canvas.SupportsFullRotation then
 Chart1.View3DOptions.Rotation:= 195;

DoHorizLine Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure DoHorizLine (X0,X1,Y:Integer); virtual; abstract;
Description
Draws horizontal line at X0 to X1 at vertical position Y

DoRectangle Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure DoRectangle (Const Rect:TRect); virtual; abstract;
Description
The DoRectangle method calls the Chart.Canvas.Rectangle method passing the Rect variable
parameter. It is equivalent to:
Canvas.Rectangle(Rect.Left, Rect.Top, Rect.Right, Rect.Bottom) ;

DoVertLine Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure DoVertLine (X,Y0,Y1:Integer); virtual; abstract;
Description
Draws vertical line at Y0 to Y1 at horizontal position X.

EraseBackground Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure EraseBackground (const Rect: TRect); virtual; abstract;
Description
Clears background defined for TRect (Rectangle(Rect.Left, Rect.Top, Rect.Right, Rect.Bottom)).

GradientFill Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure GradientFill (Const Rect:TRect; StartColor,EndColor:TColor;
Direction:TGradientDirection); virtual; abstract;
Description
The GradientFill method is used to fill a Screen area with multi-colored lines to obtain a nice shadow
effect and coloured backgrounds. The Chart.Gradient component uses this method internally.
Example
procedure TForm1.Button1Click(Sender: TObject);
begin
Chart1.Canvas.GradientFill(Canvas, ClientRect, clYellow, clBlue, True);

end;

Line Method (Canvas)
See also

Applies to
TCanvas3D component

Declaration
procedure Line (X0,Y0,X1,Y1:Integer); virtual; abstract;
Description
Draws line between end co-ordinates using current Pen

RotateLabel Example
Chart1.RotateLabel (100, 100, 'Hello', 90) ;

RotateLabel Method (Canvas)
See also Example

Applies to
TCanvas3D component

Declaration
procedure RotateLabel (x,y:Integer; Const St:String; RotDegree:Integer);
virtual; abstract;
Description
This method will draw a rotated text string at the specified xy coordinates with the RotDegree rotation
angle. RotDegree values must be between 0 and 360. The string is drawn on the Chart.Canvas.

BackColor Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property BackColor :TColor;
Description
Sets / returns the color used to fill spaces when displaying text or filling with brushes with different style
than bsSolid.

BackMode Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property BackMode :TCanvasBackMode;
Description
Can be cbmOpaque or cbmTransparent.
If it is cbmTransparent, then the BackColor is used.

Canvas Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Canvas :TCanvas;
Description
Please refer to Delphi TCanvas. This property offers access to all properties and methods of Delphi's
TCanvas.

Pen Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Pen :TPen;
Description
Please refer to Delphi TPen.

Brush Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Brush :TBrush;
Description
Please refer to Delphi TBrush.

Font Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Font :TFont;
Description
Please refer to Delphi TFont.

Metafiling Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Metafiling :Boolean;
Description
Returns if the Canvas is drawing to a Metafile Handle or to a TMetafileCanvas.

Monochrome Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Monochrome :Boolean;
Description
Sets the internal Bitmap.Monochrome property.

ReferenceCanvas Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property ReferenceCanvas :TCanvas;
Description
The Delphi TCanvas associated to the Canvas3D. Can be used for low level tasks only.

Pyramid Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property Pyramid :
(Vertical:Boolean;Left,Top,Right,Bottom,z0,z1:Integer;Darksides:Boolean);
Virtual; abstract;
Description
Draws a vettical or horizontal Pyramid with optional dark shaded sides.

TextAlign Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property TextAlign :TCanvasTextAlign;
Description
Sets the alignment used when displaying text using TextOut or TextOut3D. See Delphi TAlignment.

UseBuffer Property (Canvas)
See also

Applies to
TCanvas3D component

Declaration
property UseBuffer :Boolean;
Description
Same as TChart.BufferedDisplay.

Only the normal TCanvas3D can do BufferedDisplay (UseBuffer:=True)

ExplodeBiggest Property (TPieSeries)
See also

Applies to
TPieSeries component

Declaration
property ExplodeBiggest :Integer;
Description
Use this property to explode out from the chart the largest slice.

OtherSlice Property (TPieSeries)
See also

Applies to
TPieSeries component

Declaration
property OtherSlice :TPieOtherslice;
Description
Use this property to define the grouping size for the 'Other' slice of the Pie. Grouping may be expressed
as a percentage or value (see Otherslice.Style).

GridCentered Property (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
property GridCentered :Boolean;
Description
Default False Places Axis Grid lines between label positions

Style Property (TPieOtherSlice)
See also

Applies to
TPieOtherSlice component

Declaration
property Style :TPieOtherStyle;
Description
Defines whether to use value or percentage to group the 'other' Pie slice.
TPieOtherStyle=(poNone,poBelowPercent,poBelowValue);

Text Property (TPieOtherSlice)
See also

Applies to
TPieOtherSlice component

Declaration
property Text :String;
Description
label for 'Otherslice'

Value Property (TPieOtherSlice)
See also

Applies to
TPieOtherSlice component

Declaration
property Value :Integer;
Description
Threshold value below which to include data point (or slice) in grouped 'Otherslice'.

TPieOtherSlice Component
Properties

Unit
Series

Ancestor
TPersistent

Description
The TPieOtherSlice component controls the grouping of Pie slices. Use the Style property to define how,
by percentage or value, you wish to group the smaller value slices of the Pie.
Use of TPieOtherSlice:

Before applying OtherSlice After applying OtherSlice

Properties
Run-time only
Key Properties
Style
Text
Value

See Also
TPieSeries.ExlodeBiggest
TPieOtherSlice.Style
TPieOtherSlice.Text
TPieOtherSlice.Value

See Also
TCanvas3D.Brush
TCanvas3D.Calculate3DPosition
TCanvas3D.Canvas
TCanvas3D.Font
TCanvas3D.FrontPlaneBegin
TCanvas3D.FrontPlaneEnd
TCanvas3D.Metafiling
TCanvas3D.Monochrome
TCanvas3D.Pen
TCanvas3D.ReferenceCanvas
TCanvas3D.UseBuffer
TCanvas3D.Plane3D
TCanvas3D.PlaneWithZ
TCanvas3D.PlaneFour3D

See Also
TCanvas3D.RotateLabel3D
TCanvas3D.SupportsFullRotation
TCanvas3D.TextOut3D
TCanvas3D.Supports3DText
TCanvas3D.RotateLabel
TCanvas3D.TextAlign

See Also
TCanvas3D.Arrow
TCanvas3D.HorizLine3D
TCanvas3D.VertLine3D
TCanvas3D.ZLine3D
TCanvas3D.EllipseWithZ
TCanvas3D.LineWithZ
TCanvas3D.LineTo3D
TCanvas3D.MoveTo3D
TCanvas3D.Line
TCanvas3D.DoHorizLine
TCanvas3D.DoVertLine

See Also
TCanvas3D.BackColor
TCanvas3D.BackMode
TCanvas3D.Cube
TCanvas3D.Cylinder
TCanvas3D.Pie3D
TCanvas3D.RectangleWithZ
TCanvas3D.RectangleY
TCanvas3D.RectangleZ
TCanvas3D.TriangleWithZ
TCanvas3D.Pixels3D
TCanvas3D.DoRectangle
TCanvas3D.GradientFill
TCanvas3D.EraseBackground

Clone Series

Description
(Chart Editor) Makes a new, duplicate Series of selected Series.

Class hierarchy
This listing shows the relationship between TeeChart Classes and their descended classes.

- AxisException
- BarException
- ChartException

- PieException
- DBChartException
- LegendException
- TAreaSeriesEditor
- TArrowSeriesEditor
- TAxisIncrement
- TAxisMaxMin
- TBarSeriesEditor
- TBrushDialog
- TCandleEditor
- TChartBrush
- TChartClassProperty

- TChartBrushProperty
- TChartPenProperty

- TChartCompEditor
- TDBChartCompEditor

- TChartEditForm
- TChartFontObject

- TChartAxisTitle
- TChartTitle
- TCustomChartLegend

- TChartLegend
- TChartListBox
- TChartPen

- TChartArrowPen
- TChartAxisPen
- TChartHiddenPen
- TDarkGrayPen
- TDottedGrayPen

- TChartPreview
- TChartScrollBar
- TChartSeries

- TChartShape
- TCircledSeries

- TCustomPolarSeries

- TClockSeries
- TPolarSeries
- TRadarSeries
- TWindRoseSeries

- TPieSeries
- TCursorSeries
- TCustom3DSeries

- TCustom3DGridSeries
- TContourSeries
- TSurfaceSeries

- TPoint3DSeries
- TCustomBarSeries

- TBarSeries
- TBar3DSeries
- TCustomErrorSeries

- TErrorBarSeries
- TErrorSeries

- TImageBarSeries
- THorizBarSeries

- TCustomSeries
- TAreaSeries
- TBezierSeries
- TLineSeries
- TOHLCSeries

- TCandleSeries
- TBigCandleSeries

- TPointSeries
- TArrowSeries
- TBubbleSeries
- TCustomImagePointSeries

- TDeltaPointSeries
- TImagePointSeries

- TGanttSeries
- TMyPointSeries

- TVolumeSeries
- TFastLineSeries

- TChartSeriesList
- TChartShapeEditor
- TChartValueList
- TChartValueLists

- TChartWall
- TContourSeriesEditor
- TCustomChartAxis

- TChartAxis
- TChartDepthAxis

- TCustomChartEditor
- TChartEditor
- TChartPreviewer

- TCustomSeriesEditor
- TCustomTeeCommander

- TTeeCommander
- TCustomTeeGradient

- TChartGradient
- TCustomTeePanel

- TCustomAxisPanel
- TCustomChart

- TChart
- TCustomDBChart

- TDBChart
- TQRDBChart

- TDraw3D
- TErrorSeriesEditor
- TExplodedSlices
- TFastLineSeriesEditor
- TFormPeriod
- TFormTee3D
- TFormTeeAxis
- TFormTeeGeneral
- TFormTeeLegend
- TFormTeePage
- TFormTeePanel
- TFormTeeSeries
- TFormTeeTitle
- TFormTeeWall
- TGanttSeriesEditor
- TGLLight
- TGLPosition
- TGrid3DSeriesEditor
- TImageBarSeriesEditor
- TListBoxSections

- TListOfDataSources
- TPenDialog
- TPieAngle
- TPieAngles
- TPieOtherSlice
- TPieSeriesEditor
- TPoint3DSeriesEditor
- TPolarSeriesEditor
- TQRChart
- TSeriesDataSet
- TSeriesMarkPosition
- TSeriesMarks
- TSeriesMarksPositions
- TSeriesPointer
- TSeriesPointerEditor
- TSurfaceSeriesEditor
- TTeeAboutForm
- TTeeCanvas

- TCanvas3D
- TGLCanvas
- TTeeCanvas3D

- TTeeChartWizard
- TTeeDlgWizard
- TTeeDragObject
- TTeeExportForm
- TTeeFunction

- TAddTeeFunction
- TAverageTeeFunction
- TBasicTeeFunction
- TCountTeeFunction
- TCumulative
- TCustomFittingFunction

- TCurveFittingFunction
- TDivideTeeFunction
- THighTeeFunction
- TLowTeeFunction
- TMovingTeeFunction

- TExpAverageFunction
- TMomentumFunction
- TMovingAverageFunction

- TRSIFunction
- TMultiplyTeeFunction
- TStdDeviationFunction
- TSubtractTeeFunction
- TTrendFunction

- TTeeGallery
- TTeeGalleryPanel
- TTeeOpenGL
- TTeePreviewPage
- TTeeSeriesType
- TTeeSeriesTypes
- TTeeTabControl
- TTreeCompEditor
- TUpDown
- TView3DOptions
- TVolumeSeriesEditor
- TZoomPanningRecord

SizeTickAxis Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function SizeTickAxis :Integer;
Description
Returns the amount in pixels used by the axis line.

SizeTitle Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function SizeTitle :Integer;
Description
Returns the amount in pixels used by the axis Title text.

SizeLabels Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function SizeLabels :Integer;
Description
Returns the amount in pixels used by the axis labels text.

DrawAxisLabel Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
procedure DrawAxisLabel (x,y,Angle:Integer; Const St:String);
Description
Draws Axis Label (String) at specified X,Y co-ordinate at Angle.

CalcPosValue Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function CalcPosValue (Const Value:Double):Longint;
Description
Returns the coordinate position in pixels corresponding to the
"Value" parameter in axis scales.

CalcSizeValue Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function CalcSizeValue (Const Value:Double):Longint;
Description
Returns the amount in pixels that corresponds to a portion of
the axis of size "Value" in axis scales.

CalcMinMax Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Procedure CalcMinMax (Var AMin,AMax:Double);
Description
Returns the minimum and maximum values of the associated
Series.

CalcIncrement Method (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
Function CalcIncrement :Double;
Description
When Increment property is zero, this function returns the
best "Increment" value for axis labels that will make no labels
overlap.

IStartPos Variable (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
var IStartPos : Integer;
Description
Read-only. Returns the position in pixels for the start point of the axis.
It is calculated based on the StartPosition property.

IEndPos Variable (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
var IEndPos : Integer;
Description
Read-only. Returns the position in pixels for the ending point of the axis.
It is calculated based on the EndPosition property.

IsDepthAxis Variable (TChartAxis)
See also

Applies to
TChartAxis component

Declaration
var IsDepthAxis : Boolean;
Description
Read-Only. Returns True when the axis object is the Depth
axis of a Chart. (ie: When it's equal to the Chart1.DepthAxis property).

See Also
TChartAxis.CalcPosValue
TChartAxis.CalcSizeValue
TChartAxis.CalcMinMax
TChartAxis.CalcIncrement
TChartAxis.IStartPos
TChartAxis.IEndPos
TChartAxis.IsDepthAxis
TChartAxis.CustomDraw
TChartAxis.Increment
TChartAxis.LabelsSize
TChartAxis.Maximum
TChartAxis.Minimum
TChartAxis.PosAxis
TChartAxis.PosLabels
TChartAxis.PosTitle
TChartAxis.TitleSize

BevelOuter property (TChart)

Applies to
TChart component

Declaration
property BevelOuter : Integer;
Description
Sets the size of the bevel that will form the outer side of the Chart panel.

BevelInner property (TChart)

Applies to
TChart component

Declaration
property BevelInner : Integer;
Description
Sets the size of the bevel that will form the inner side of the Chart panel.

Chart editor
See also

Description
The Chart editor presents the means to configure both chart and data series.
Design-time only in TeeChart 4 runtime version. To access the Chart editor double-click on any TChart
or TDBChart component placed on a Form. Alternatively right mouse-click on the TChart to bring up a
menu which includes Chart editor as one of the options.
To edit a TQRChart you may follow the same procedure as above whilst the TQRChart is placed on a
QuSoft QuickReport.
See the user guide for more information about the Chart Editor.

TeeChart version 4 Help and information resources

TEECHART.HLP
In addition to covering all TeeChart Classes, properties, events, and methods, TeeChart’s online Help
system provides a handy Quick Start section.
To view Help, press F1 when your cursor is on any TChart code element, property, or object. You can
also open the main Help system through the Help menu and view the TeeChart Help Contents or search
the Index for TeeChart elements, or open TEECHART.HLP directly (and independently) from Windows
Explorer.

Example code
TeeChart provides a number of code examples in the folder \Demos\TeeChart below your Delphi
installation directory.

teeMach Web pages
Additional example code, technical information and product news is always available on the Web at
and information of interest are continually added to the web, http://www.teechart.com. For technical
information, click the Technical link on the main product page.

teeMach email support
teeMach offer a paid email support service. For non-paid support we will reply to new issues that may
be of interest to all to be placed on the teeMach web and included in the TeeChart FAQ. See the the
teeMach web for details about obtaining support.

Newsgroups
Borland offer a newsgroup forum to discuss Charting and Reporting issues. Connect to the Newsgroup
server FORUMS.BORLAND.COM and point your Internet News browser to
borland.public.delphi.reporting-charting.

The TeeChart mailing list
This is an independant TeeChart mailing list maintained by Mr. Phil Scadden of the Institute of
Geological and Nuclear Sciences of New Zealand. You should subscribe by sending a mail with the
word SUBSCRIBE in the email message body (not the subject) to teechart-request@lhn.gns.cri.nz.

