L d
C
E CGlI ActiveX Control Overview

The CGI ActiveX Control implements the Common Gateway Interface. CGl is a standard used for client
applications to access information servers such as HTTP or Web servers. CGI programs are executed in real-time
to output dynamic information. This differs from accessing normal HTML documents, which are static text files that
don’t change. Client applications, for example Web Browsers, can call CGI programs to retrieve dynamic data. For
security reasons, CGI programs reside in a special directory,such as /cgi-bin, as specified by the server. This limits
the number of programs and scripts that have access to the CGI.

When a client application is ready to call a CGl program, the application sets a series of environment variables
which the CGI program can use. The CGI program may also get an additional input string based on the method
set by the environment variable REQUEST_METHOD. If the request method is POST, then the input string is
retrieved from standard input (file descriptor 0). If the request method is GET, then the input string is already
placed in the environment variable QUERY_STRING. The input string is composed of zero or more input items
separated by the ‘&’ character (this is the standard CGI usage). Once the CGI program is finished processing the
request, it sends the response to standard out (file descriptor 1), which will be transferred from the information
server to the client application.

The main features of the CGI ActiveX Control are:

a The CGl variables supported by a Web Server can be accessed via the EnvironmentStrings collection.

a Other environment variables on the Server are also available in EnvironmentStrings.

a The input string (if URL-encoded) is parsed and stored in the Queryltems collection. If not URL-encoded,
Queryltem is empty. The unparsed data is always stored in the QueryltemString property.

a Optional methods for decoding (Decode) and splitting strings (SplitString). Output is stored in DecodedString
and SplitResults, respectively.

a The RequestMethod property indicates the kind of value set in the CGl variable REQUEST_METHOD.

a A response can be sent back to the client using either the SendDoc method or the SendReplyMessage()

method.

CGIl Properties, Methods, and Events

The following table lists the properties, methods, and events supported by the CGI ActiveX control. For an
example illustrating the use of the control in a real life situation, see Handling Subscription Requests Sample.

Property Method Event

DecodedString AboutBox Doclnput
Doclnput Decode Error

EnvironmentStrings

IsRawData SendDoc
Queryltem SendReplyMessage
QueryltemString SplitString
RequestMethod

SplitResults

EnvironmentStrings Collection

g
3

Count

EnvironmentString ltem

Name
Value

Queryltems Collection

g
3

Count

Queryltem Item

Name

Value

SplitResults Collection

Count Ite

3

SplitResult Item
Value

Using the CGI Control

To use the CGl ActiveX Control you must choose the CGI toolbox icon. You must also use the correct syntax.

DecodedString CGI Property

Description
The results of the method Decode will be placed in this property.
Syntax
object.DecodedString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
N/A.

Doclnput CGI Property

Description
Object describing input information for the document being transferred.
Syntax
object.Doclnput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Doclnput
Default Value
N/A.
Range
N/A.

Comments

The Doclnput object provides a more powerful interface beyond the basic capabilities of the SendDoc method.
For basic use of the control, knowledge or use of the Doclnput object is not required.

Properties of the Doclnput object may be set before calling the SendDoc method of the control, or they may be
passed as arguments to this method. The Doclnput object is also used for conveying information about the
progress of the document transfer, for data linking and data streaming. For more information, see Doclnput and

DocOutput Obijects.

EnvironmentStrings CGI Property

Description

A collection of EnvironmentString objects that contain environment settings, including CGI environment
variables. This property may be indexed directly to retrieve an EnvironmentString object.

Syntax
object.EnvironmentStrings
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
EnvironmentStrings.
Default Value
None.
Range
N/A.
Comments
A partial list of CGI environment variables are shown below:

Note: Not all environment variables are supported by all Web Servers (e.g. NetManage Personal Web Server,
WebSite, NetSite, NCSA, CERN). Common to many Web Servers (Many but not all are supported by the
Personal Web Server):

PATH_INFO
PATH_TRANSLATED

CONTENT_TYPE

CONTENT_LENGTH
GATEWAY_INTERFACE

HTTP_ACCEPT
HTTP_USER_AGENT
QUERY_STRING

REMOTE_HOST
REMOTE_ADDR
REQUEST_METHOD
SCRIPT_NAME
SERVER_ADMIN
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL

SERVER_SOFTWARE

Path information that came along with the request.

Physical mappping that is derived from the virtual path given in
PATH_INFO.

For queries with attached information, such as those using the PUT
method, the type of data attached.

Number of bytes of content being sent by the client.

Revision of the CGI specification this server complies. Format: CGl/revision
(ex: CGI/M1.1).

MIME types that the client will accept. Format: type/type,type/type,...
Browser that the client is using.

When a query URL or a form was sent using the GET method, the query
information is stored here.

Hostname of machine making the request. Either the DNS name or alias.
IP address of the REMOTE_HOST.

The method that the request was made, either POST or GET.

Virtual path to the script being executed.

E-mail address of Web Administrator.

Server’s hostname, alias, or IP address.

Port number server is accepting requests through (usually port 80).

Name and revision of the information protocol this request came with.
Format: protocol/revision (ex: HTTP/3.0).
Name and version number of the information server software answering the

request and running the gateway. Format: name/version (ex:
Chameleon/6.0).

Other variables supported by one or more Web Servers (all supported by Personal Web Server):

DATE_GMT Greenwich Mean Time date and time. Format: DAY, DD MM YYYY
-- HH:MM:SS GMT ex: “ WED, 02 10 1995 -- 14:35:15 GMT".

DATE_LOCAL Local date and time with offset from GMT (for Pacific Standard
Time, it is -0700) ex: “WED, 02 10 1995 -- 7:35:15 -0700".

DOCUMENT_ROOT Physical path to the root of the Web Server.

GMT_OFFSET The offset from GMT in seconds. ex: 25200 (for Pacific Standard
Time).

HTTP_FROM E-mail address of requester.

LOG_HTTP Location of the HTTP log file for use in reporting statistics.

LOG_FTP Location of the FTP log file for use in reporting statistics.

QUERY_STRING_UNESCAPED QUERY_STRING with escaped characters translated to their
ASCI!I values.

SERVER_ROOT Logical path to the root of the Web Server.

Currently not supported by Personal Web Server but available on other servers:

AUTH_TYPE Authentication method used to validate users
for protected scripts.

REMOTE_USER User name making the request Set only if user
authentication has been used.

REMOTE_IDENT User ID for a remote user in some

authentication schemes.

IsRawData CGI Property

Description
This value is True if QueryltemString is not URL-encoded.
Syntax
object.IsRawData.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
N/A
Comments

This property will be set to False if QueryltemString is URL-encoded (standard for form-based requests), and
True if not. When IsRawData is True, Queryltems Collection will be empty. To get the raw data, you may use
QueryltemString. URL_encoded input data should have the environment variable CONTENT_TYPE set to
“application/x-www-form-urlencoded.”

Queryltems CGI Property

Description
A collection of Queryltem objects sent from the client.
Syntax
object.Queryltems
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Queryltems.
Default Value
None.
Range
N/A.
Comments

If the InputString is URL-encoded (e.g., the CONTENT_TYPE is “application/x-www-form-urlencoded”) then
this string is parsed into items in the Queryltems collection. Otherwise, there are no items in the collection and
the raw input data (unparsed) can be accessed via the QueryltemString property.

QueryltemString CGI Property

Description
Unparsed input string as received from the client.
Syntax
object.QueryltemString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
N/A.
Comment

This input string is sent from the client to the Web server and contains query information for the CGI application
to process and respond to. If the CONTENT_TYPE indicates that the data is URL-encoded, this input string will
also be parsed and placed in the Queryltems collection.

RequestMethod CGI Property

Description
Type of request.
Syntax
object.RequestMethod
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
RequestMethodConstants.
Default Value

None.
Range
Name Value Description
icNameRequest 0 The environment variable
REQUEST_METHOD is not defined.
IcGetRequest 1 The environment variable
REQUEST_METHOD = GET.
IcPostRequest 2 The environment variable
REQUEST_METHOD = POST.
IcOtherRequest 3 The environment variable
REQUEST_METHOD is defined but is
neither GET nor POST.
Comments

The actual REQUEST_METHOD can also be found by accessing the EnvironmentStrings collection item,
indexed with the name of “REQUEST_METHOD.”

SplitResults CGI Property

Description

A collection of SplitResult Items. The results of the method SplitString will be placed in this property.
Syntax

object.SplitResults
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

SplitResults collection.
Default Value

None.
Range

N/A.
Comments

Please refer to the SplitResults collection for details on accessing individual items in the SplitResults collection.

EnvironmentStrings Collection

A collection of EnvironmentString objects that contain environment settings, including CGI environment variables.

Count EnvironmentStrings Collection Property

Description
The number of attributes in the collection.
Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range
N/A.

EnvironmentString Iltem

The EnvironmentString object is an item in a EnvironmentStrings collection. EnvironmentString items are used to
specify the attribute names and values of the environment setting.

Name EnvironmentString Iltem Property

Description

The attribute name. This string is never empty. The Name associated with the item in the collection. (ex: for
environment setting “REQUEST_METHOD=POST”, the Name would be “REQUEST_METHOD”).

Syntax

object.Name
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

String.
Default Value

None.
Range

N/A.

Value EnvironmentString Item Property

Description

The Value associated with the environment variable. (ex: for environment setting
“REQUEST_METHOD=POST"”, the Value would be “POST”).

Syntax

object.Value
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

String.
Default Value

None.
Range

N/A.

Queryltems Collection

The Queryltems object is a collection containing Queryltem items.

Count Queryltems Collection Property

Description

The number of attributes in the collection. If the input data is a URL-encoded string, each element is input data
sent by the client application (i.e. the Web browser). If input data is not URL-encoded, then Queryltems should
be empty.

Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range
N/A.

Queryltem Item

The Queryltem object is an item in a Queryltems collection.

Name Queryltem Item Property

Description

The element attribute name. (ex: for URL-encoded data, if a element is “FROMNAME=Bob”, then the Name
would be “FROMNAME”).

Syntax

object.Name
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

String.
Default Value

None.
Range

N/A.

Value Queryltem Item Property

Description

The element attribute value. (ex: for URL-encoded data, if a element is “FROMNAME=Bob”, then the Value
would be “Bob”). The items in the list have had their escape characters removed and replaced with their ASCII
equivalents.

Syntax

object.Value
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

String.
Default Value

None.
Range

N/A.

SplitResults Collection

The SplitResults object is a collection containing SplitResult items.

Count SplitResults Collection Property

Description
The number of attributes in the collection.
Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range
N/A.

SplitResult Item

The SplitResult object is an item in a SplitResults collection.

Value SplitResults Item Property

Description
The attribute value.
Syntax
object.Value
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
N/A.

AboutBox CGIl Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

Decode CGI Method

Description

Optional method used to remove escape characters from input string and replace them with its ASCII
equivalent. Also replaces the ‘+’ chars with space characters. The results of the Decode method will be placed
in the property DecodedString. This method is not needed if the information provided in Queryltems and
EnvironmentStrings is sufficient.

Return Value
Boolean.
Syntax
object.Decode (InputString As String)
Parameters
InputString
String to be decoded.
Data Type: String
Param: IN
Default Value: N/A.

SendDoc CGI Method

Description
Requests sending a document either in the format of a file or InputString.
Return Value
Void.
Syntax
object.SendDoc [URL], [Headers], [InputData), [InputFile], [OutputFile]
Parameters
URL
Optional. The URL identifying the remote document to be sent. Not used for the CGlI version of SendDoc.
Data Type: String
Param: IN
Default Value: N/A.
Headers

Optional. Headers used for sending the document. This argument only applies to protocols where
document headers can be sent (for example, SMTP and HTTP).

Data Type: DocHeaders

Param: IN

Default Value: Doclnput.Headers
InputData

Optional. A data buffer containing the document to be sent. If input file is not empty, InputData will be
ignored.

Data Type: VARIANT
Param: IN
Default Value: Doclnput.GetData
InputFile
Optional. A local file containing the document to be sent.
Data Type: String
Param: IN
Default Value: Doclnput.Filename
OutputFile

Optional. A local file to which a reply document is written. This argument only applies for protocols that
return a reply document (for example, HTTP).

Data Type: String
Param: IN
Default Value: DocOutput.Filename

Comments

The SendDoc method allows sending (posting or putting) a document. For each control, sending a document
means something slightly different, for example in FTP it means putting a file onto the server, whereas in SMTP
it means sending a message to the server.

The URL and (for some controls) Headers are used as inputs describing the document to be sent. For all
controls, the InputData and InputFile arguments may contain the document to be sent (at most one of these

may be specified). For controls like HTTP that return a reply document, the OutputFile argument may be used
to indicate where the reply document should be written locally.

For basic use of this control, arguments should be passed to SendDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The arguments of SendDoc correspond to properties in the Doclnput and
DocOutput objects, which are properties of this control. The properties of the Doclnput and DocOutput objects
can be set before calling SendDoc to avoid passing arguments. The Doclnput and DocOutput events can also
be used for transfering data using streaming rather than local files. See the Doclnput and DocOutput
properties, the Doclnput and DocOutput events, and the separate Doclnput and DocOutput object
documentation for more information.

Note: URL and Headers parameters will be ignored for the CGl version of SendDoc.

SendReplyMessage CGIl Method

Description

Sends a message back to the client. This message will be written to standard out, which is handled by the Web
server calling the CGI program. You can either use this method or the SendDoc method to send out a
response.

Return Value
Boolean.
Syntax
object.SendReplyMessage (ReplyMessage)
Parameters
ReplyMessage
The message to be sent.
Data Type: String
Param: IN

Default Value: None

SplitString CGI Method

Description

Optional method used to split up a string value StringToSplit which has zero or more a_separator characters
inside of it. The result will be placed in the collection SplitResults. Each time this method is called, the data
created from the previous SplitString request will be removed from the collection and the used memory will be
freed. This method is not needed if the information provided in Queryltems and EnvironmentStrings is
sufficient.

Return Value
Boolean.
Syntax
object.SplitString (StringToSplit As VARIANT, a_separator As VARIANT)
Parameters
String ToSplit
String value that needs to be split.
Data Type: VARIANT
Param: IN
Default Value: None
a_separator
The separator character
Data Type: VARIANT
Param: IN

Default Value: None

Item SplitResults Collection Method

Description
Returns an item from the collection based on the index.
Return Value
SplitResult.
Syntax
object.SplitResults.ltem (Index As VARIANT)
Parameters
index
Index must be an integer. Integer indices identify an item by its 1-based index.
The Item method is the default method for a collection
Data Type: VARIANT
Param: IN
Default Value: None
Comment

The user should first check the Count property to see if there are any items available.

Item Queryltems Collection Method

Description
Returns an item from the collection based on the index.
Return Value
Queryltem.
Syntax
object.Queryltems.ltem (Index As VARIANT)
Parameters
index
Index must be an integer. Integer indices identify an item by its 1-based index.
The Item method is the default method for a collection
Data Type: VARIANT
Param: IN
Default Value: None
Comment

First check the Count property of the collection to see if there are any Items available.

Item EnvironmentStrings Collection Method

Description
Returns an item from the collection based on the index.
Return Value

EnvironmentString. The index could also be a string value for the name. For example, to find the environment
variable REQUEST_METHOD, use object.EnvironmentStrings.ltem (“REQUEST_METHOD”)

Syntax
object.EnvironmentStrings.ltem (Index As VARIANT)
Parameters
index
Index must be an integer. Integer indices identify an item by its 1-based index.
The ltem method is the default method for a collection
Data Type: VARIANT
Param: IN
Default Value: None
Comment
The user should first check the Count property to see if there are any items available.

Doclinput CGI Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Docinput As Doclnput)
Parameters
Doclinput
Object describing document input data for the current transfer.
Data Type: Doclnput
Param: IN
Default Value: N/A

Comments
For basic use of this control, the Doclnput event can be used for notification of transfer progress, e.g., for
updating a progress bar. The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties
can be examined in order to determine the current status of the transfer. For basic use, this event may be
ignored if no progress information is needed.

For more powerful use of this control, the Doclnput event can also be used for data streaming. See Doclnput
Object Overview.

Error CGI Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode
The short error code. For a list of possible CGI error codes see CGI Error Codes.
Description
String containing error information.
sCode
The long Scode.
Source
Error source.
HelpFile
Help file name.
HelpContext
Help file context.
CancelDisplay

Indicates whether to cancel the display. The default value for CancelDisplay is False meaning you do want
to use the default message box. If you does not want to display the default error message box, set
CancelDisplay to True.

Comments

If an error occurs, do NOT use a MessageBox to notify the user. Some information servers do not allow the
MessageBox to appear. Also, this prevents the program from completing and returning a reply to the client,
effectively causing the request to “hang.”

Handling Subscription Requests Sample

This sample shows how you can handle subscription requests from a Web Browser client. The user of the browser
fills in information about themselves and submit that information by selecting a Submit button. This action causes
an executable to be launched on the Web Server which can handle the request and can either accept, reject, or
ask for more information by sending an HTML-formatted response back to the user.

The relevant portion of the HTML-formatted submission form is shown below (the Web Browser user will see
prompts for Actual Name, User Name Requested, and Password Requested, as well as a Submit button):

<form method=POST action="/cgi-bin/wcgireqg.exe">

<p>Actual Name:........ <input name="ACTUALNAME" value="YourRealName"
size="30">
<p>User Name Requested:.......... <input name="USERNAME" value="YourUserName"

<p>Password Requested:.......... <input name="PASSWD" wvalue="YourPasswd"
size="30">
<INPUT TYPE="Submit" VALUE="Submit">
This means that wcgireq.exe is executed by the Web Server once the Submit button is clicked. The entered
information is sent to wcgireqg.exe, an executable created in Visual Basic (or another ActiveX-enabled
development environment) using the CGlI NEWT Intranet ActiveX.

The CGI NEWT Intranet ActiveX gets the information and stores the user-entered data in the Queryltems
collection. The CGI environment variables are stored in the EnvironmentStrings collection.

To access the data, the developer can either use a for loop or ask for the specific data based on the index
(numeric or BSTR) to a variable:

‘example of using a for loop
Dim QueryItem As Object
For Each QueryItem In Wcgil.QueryItems
If QueryItems.Name = “USERNAME " Then
<check to see if the username is already used>

Elseif QueryItems.Name = “PASSWD” Then
<check to see if the password is already used>
End If

Next
Here is an example of using an index to access information in Queryltems:

‘the user created function ValidateUserName () expects
‘as input the UserName to be validated
ValidateUserName (Wcgil.QueryItems (“USERNAME”) .Value)

Similarly, the EnvironmentStrings can be accessed in the same way. For example:

‘retrieves the Greenwich Mean Time
Dim DateTime as String
DateTime = Wcgil.EnvironmentStrings (“DATE GMT”)

Since the Request Method of sending data is POST, the property RequestMethod is icPostRequest
The sample code below should be entered in a function called ProcessRequest in this example.

Inside of the ProcessRequest unction, the USERNAME and PASSWD are validated and a reply is formatted to be
sent back.

Dim NL As String

Dim Title As String

Dim ReplyMsg As String
Dim gReplyMsg As String

NL = Chr(13) + Chr(10) ¢ these are the /r/n characters
(validate the password and user name)

Title = "Response to Request"

If PasswordInvalid = TRUE Then
gReplyMsg = “Sorry, the password you requested is not valid or in use.
Please enter another one.” & NL
ElseIf NameInvalid = TRUE Then
gReplyMsg = “Sorry, the Username you requested is not valid or in use.
Please enter another one.” & NL

Else

gReplyMsg = (format a fancy reply welcoming the new user)
End If

ReplyMsg = "Content-type: text/html" & NL & NL

ReplyMsg = ReplyMsg & "<TITLE>" & Title & "</TITLE>" & NL

ReplyMsg = ReplyMsg & "<H2>" & Title & "</H2>" & NL & "<pre>" & NL & NL
ReplyMsg = ReplyMsg & NL & gReplyMsg

ReplyMsg = ReplyMsg & NL & "</pre>" & NL

To send the reply back, the developer can send it using the SendReplyMessage. method or SendDoc.
To use the SendReplyMessage() function, add the following code to ProcessRequest():

Wcgil.SendReplyMessage ReplyMsg

To use the SendDoc() function, add the following code to ProcessRequest():

Wcgil.SendDoc ,,ReplyMsg

Non-URL-Encoded Sample

But what if the information sent back is not-URL-encoded (i.e. the CGI variable CONTENT_TYPE is not
"application/x-www-form-urlencoded")? Then Wcgi1.IsRawData=TRUE and there is no data in Queryltems. To
clean up the data, the developer can use:

Wcgil.Decode (Wcgil.QueryItemString)
to replace escape characters in the QueryltemString with their ASCII equivalent, and also replace any ‘+’ symbols
with a space. The result of the decoding is placed in Wcgi1.DecodedString. Or the developer may also use:

Wcgil.SplitString (Wecgil.QueryItemString, “&”)
‘ the “&” is an example of a separator character

to parse the information so that every piece of data in the string separated by the separator character is stored as
an item in the SplitResults collection and can be processed individually.

=
FTP Client ActiveX Control Overview

The FTP (File Transfer Protocol) Client ActiveX Control allows files and data to be transferred between a remote
and local machine. The next series of Help topics explain:

a The requirements for running the control

a A description of the properties, methods, and events

a An example illustrating the use of the control in a real life situation.
The FTP Client Control, invisible at run time to the user, provides easy access for Internet FTP services. It can be
used by both Visual Basic, Delphi, and C++ programmers. To write applications that use FTP, you do not need to
understand the details of FTP or how to call low-level WinSock APIs. By setting properties and calling methods on
the control, you can easily send data to a remote machine and retrieve data from the network. Events are used to
notify you of network activities.

The FTP Client Control also provides file and directory parsing of the List and NameList commands, making it
possible for you to access the file size, attributes, name, or other fields without querying the server to determine
the type of operating system (and hence file system) running on the remote server. For more details, see

FTPDirltem Object.
Use of the FTP Control in Visual Basic gives you the ability to integrate file transfers into your program without

learning a completely different computer language or transfer protocol. If you are a Visual Basic developer, you
already have the knowledge to perform what would otherwise have been a complex task.

The following table summarizes the properties, methods, and events supported by the FTP Client Control. For an
example illustrating the use of the control in a real life situation, see ETP Sample Session.

Property Method Event
AppendToFile Abort Abort
Blocking AboutBox Account
BlockResult Account Busy
Busy Authenticate Cancel
Doclnput Cancel ChangeDir
DocOutput ChangeDir CreateDir
EnableTimer Connect DeleteDir
Errors CreateDir DelFile
Firewall DeleteDir Doclnput
LocalPort DeleteFile DocOutput
Loggin Execute Error
ListltemNotify GetDoc Execute
NotificationMode GetFile FirewallStateChanged
Operation Help Help
PassiveMode List Listltem
ProtocolState Mode Log
ProtocolStateString NamelList Mode
RemoteFile NOOP NOOP
RemoteHost ParentDir ParentDir
RemotePort PrintDir PrintDir
ReplyCode PutFile ProtocolStateChanged
ReplyString Quit Quit
SleepTime Relnitialize Relnitialize
SocketHandle SendDoc Site
State Site StateChanged
StateString System System

Timeout Type TimeOut

c
2y
~

Type

c
n
]
=
o

FTPDirltem Object
Attributes

Date

et
FileName
Size

o
o

Using the FTP Control

To use the FTP ActiveX Control you must choose the FTP toolbox icon and drag it into a Delphi/Visual Basic Form
or a MSVC dialog resource.

FTP Property Pages

Property pages provide a standard interface for setting or accessing the properties exposed by a control. The
following table lists the FTP properties that are listed on the property page.

Property Pages Properties Exposed

Client Property Pages NotificationMode FTP
Property
RemoteHost
RemotePort

Authenticate Property Pages Password
Userld

General Property Pages AppendToFile
ListltemNotify

FTP Properties
Properties set the attributes for FTP Client behavior, although some of them may not have any affect until the
client is connected to a server (for example, setting the AppendToFile property).

The following series of Help topics describe the properties supported by the FTP ActiveX Control. For an
explanation of the description categories, see Object Descriptions.

AppendToFile FTP Property

Description

This property applies to PutFile and SendDoc to indicate whether the data should be appended to the file
(True) or whether the file should be replaced (False).

Syntax

object. AppendToFile [= Boolean]
Permission

W (Read/Write).
Availability

D (Design)/Runtime.
Data Type

Boolean.
Default Value

False.
Range

True or False

Blocking FTP Property

Description

Indicates whether methods should block until complete or not.
Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult FTP Property

Description

Returns the result value of the last blocking method called.

Syntax
object.BlockResult
Permission
R (Read only).
Availability
R (Runtime).
Data Type

BlockingResultConstants.

Default Value
icBlockOK.
Range

Name Value
icBlockOK 0
IcTimedOut
IcErrorExit
IcBlockCancel
IcUserQuit

A WDN -

Busy FTP Property

Description

Description

Blocking method was successful.
Blocking method returned due to timeout.
Blocking method returned due to an error.
Blocking method returned due to cancel.

Blocking method returned due application
end.

Indicates that an operation/command is in progress.

Syntax
object.Busy
Permission
R (Read only).
Availability
R (Runtime).
Data Type
Boolean.
Default Value
N/A.
Range

True or False

Docinput FTP Property

Description

Object describing input information for the document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput.
Default Value

N/A.
Range

N/A.

Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the SendDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the Doclnput object may be set before calling the SendDoc method or they may be passed as
arguments to this method. The Doclnput object is also used for conveying information about the progress of the
document transfer and for data linking and streaming.

For more information, see Common Control Objects.

DocOutput FTP Property

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.

Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

For more information, see DocOutput Object Overview.

EnableTimer FTP Property

Description
Enable timer for the specified event. The event is specified by entering:

EnableTimer (short event)
Syntax

object.EnableTimer (event) [= Boolean]
Permission

W (Write Only).
Note: This is the only control property that is Write only.
Availability

R (Runtime)
Default Value

False. (The timer for this event will not be enabled.)
Range

True or False

Comments

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning

prcConnectTimeout = 1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout = 2 Timeout for receiving data. If no data
arrives within the timeout period, the
Timeout event will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for
custom timeout events.

Errors FTP Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient.

Syntax
object.Errors
Permission
R (Read only).
Availability
R (Runtime).
Data Type
icErrors.
Default Value

N/A.
Range
N/A.

Firewall FTP Property

Description
Object describing proxy access to firewall FTP servers.
Syntax
object.Firewall.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Firewall
Default Value
N/A.
Range
N/A.
Comments

When the Firewall object is used within the FTP client control, the FTP control is able to provide transparent
access to hosts external to firewall-protected domains. You can set mode and host information used to connect
to the external host through the Firewall object’s properties.

LocalPort FTP Property

Description

Designates the local port to use.
Syntax

object.LocalPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

0.
Range

0 - 65535

Logging FTP Property

Description

Indicates whether log events should be fired when log data is available.
Syntax

object.Logging [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R(Runtime).
Data Type

Boolean.
Default Value

False.
Range

True or False

ListitemNotify FTP Property

Description

Causes the container to receive events for every directory element received during a List or NameList
command.

Syntax

object.ListltemNotify [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Boolean.
Default Value

False. (FTPDirltem objects are not parsed in the Listltem event.)
Range

True or False

Comments

If this property is TRUE, the directory listing is parsed and events activated for every directory element. If this
property is FALSE, the list data is sent in blocks to the data target during ProcessData notifications.

For more information on directory parsing, see Listltem FTP Event. For more information on data streaming,
see DocStream.

NotificationMode FTP Property

Description

Determines when notification is issued for incoming data. Notification can also be suspended.
Syntax

object.NotificationMode [= Integer]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

NotificationModeConstants.
Default Value

icCompleteMode.

Range
0-maximum unsigned long. At present, the values are:
Name Value Description
icCompleteMode 0 COMPLETE: notification is provided

when there is a complete response.

IcContinuousMode 1 CONTINUOUS: an event is
repeatedly activated when new data
arrives from the connection.

Operation FTP Property

Description

Allows you to determine which method caused data to be received. This property is normally used when
processing the DocOutput event.

Syntax
object.Operation
Permission
R (Read only).
Availability
R (Runtime).
Data Type
FTPOperationConstants.
Default Value
ftpList.
Range

ftpFile= 0
ftpList = 1
ftpNamelList = 2

Comments

The GetFile, GetDoc, List, and NameList methods all transfer data via the DocOutput event. Using this property
allows you to determine which method activated the DocOutput event, making it possible to distinguish
between the various types of data.

PassiveMode FTP Property

Description

Determines whether data correction will attempt to use server passive mode.
Syntax

object.PassiveMode [= Boolean]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Boolean.
Default Value

FALSE.
Range

TRUE or FALSE.

Password FTP Property

Description

Password of current user on the FTP Server.
Syntax

object.Password [= String]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

String.
Default Value

Empty.
Range

N/A.

ProtocolState FTP Property

Description
This property specifies the current state of the protocol.
Syntax
object.ProtocolState
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
FTPProtocolStateConstants.
Default Value

ftpBase.
Range
0-2. Constants defined for enum types of ProtocolState property are:
Value Meaning
ftpBase =0 Default. The state before connection
server is established.
ftpAuthorization = 1 Authorization is performed.
ftpTransaction = 2 Authorization successful. The client

has successfully identified itself to
the FTP server.

ProtocolStateString FTP Property

Description
String representation of ProtocolState.
Syntax
object.ProtocolStateString
Permission
R (Read-only).
Availability
R (Runtime) and D (Design).
Data Type
String.
Default Value
“BASE”.
Range
N/A.

RemoteFile FTP Property

Description

The remote file name used during GetFile and PutFile operations.
Syntax

object.RemoteFile [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

Empty.
Range

N/A.

RemoteHost FTP Property

Description

The remote machine to connect to if the RemoteHost parameter in the Connect method is missing. You can
either provide a host name or an IP address string in dotted format. For example, “127.0.0.1”.

Syntax

object.RemoteHost [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

“127.0.0.1”
Range

N/A.

RemotePort FTP Property

Description

The remote port number to which to connect.
Syntax

object.RemotePort [= Long]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Long.
Default Value

21.
Range

1-65535.

ReplyCode FTP Property

Description

The value of the reply code is a protocol specific number that determines the result of the last request, as
returned in the ReplyString property.

Syntax
object.ReplyCode
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
0
Range
See RFC 959 for valid reply codes.

ReplyString FTP Property

Description

Lists the last reply string sent by the FTP Server to the client as a result of a request. This string contains both
a number code and a status string that the server creates for the last command.

Syntax
object.ReplyString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

SleepTime FTP Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SocketHandle FTP Property

Description
Socket handle for the primary connection (Request/Reply connection).
Syntax
object.SocketHandle
Permission
R (Read only)
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
>=0
Comments

Some protocols require more than one connection. SocketHandle is the handle for the request/reply
connection. If the value is less than zero, the SocketHandle is valid.

State FTP Property

Description

This property specifies the connection state of the control.
Syntax

object.State
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

StateConstants.
Default Value

prcDisconnected.

Range

1-6. Constants defined for enum types of State property are:
Value Meaning
prcConnecting = 1 Connecting. Connect has been requested,

waiting for connect acknowledge.

prcResolvingHost =2 Resolving Host. Occurs when RemoteHost is
in name format rather than dot-delimited IP
format.

prcHostResolved =3 Resolved the host. Occurs only if
ResolvingHost state has been entered
previously.

prcConnected = 4 Connection established.

prcDisconnecting =5 Connection closed. Disconnect has been
initiated.

prcDisconnected = 6 Initial state when protocol object is instantiated,
before Connect has been initiated, after a
Connect attempt failed or after Disconnect
performed.

StateString FTP Property

Description
A string representation of State.
Syntax
object.StateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type

String.
Default Value
"Disconnected".
Range
N/A.

Timeout FTP Property

Description
Timeout value for the specified event. The event is specified by entering:

Timeout (short event)
Syntax

object.Timeout (event) [= Long]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
Long.
Default Value
0.
Range
0-maximum unsigned long. Constants defined for enum types for events are:

Value Meaning

prcConnectTimeout =1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout =2 Timeout for receiving data. If no data
arrives within the timeout period, the
Timeout event will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for
custom timeout events.

URL FTP Property

Description

URL (Universal Resource Locator) string identifying the current document being transferred. The URL format
when using the FTP Control is:

FTP://username:password@host :port/documentnameandpath;type=type
where type is specified as ‘A’, ‘I’, or ‘D’. “A” is for ASCII, “I” is for Binary, and “D” is for Directory listing.

Syntax

object.URL [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

Empty string.
Range
Valid URL.

Comments

URL may be set before calling the GetDoc or SendDoc method of the control, or it may be passed as an
argument to these methods. If it is passed as an argument, the URL property will be set to the argument value.

In the FTP control, the URL property identifies a remote file transferred via FTP. The URL type (first part up to
the colon) may be omitted. In this case, it will default to the correct type for this control. For example, the ftp
string may be omitted when using the FTP control.

Userld FTP Property

Description

User identification name for the client on the server.
Syntax

object.Userld [= String]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

String.
Default Value

Empty.
Range

N/A.

FTP Methods

Methods are called to perform a particular operation on an object. After the method is successfully processed, you
will receive an event with a name similar to the method called. You can then check the ReplyCode for the server
response or check error codes if an error message is generated.

For a list of FTP methods, see ETP Client ActiveX Control Overview. For an explanation of the description
categories, see Object Descriptions.

Abort FTP Method

Description
Requests a FTP Server to abort the last data transfer request. Similar to the FTP RFC-959 ABORT command.
Return Value
Void.
Syntax
object.Abort
Parameters

None.

Comments
This event usually terminates any data connection while leaving the control connection intact.

AboutBox FTP Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

Account FTP Method

Description
Sends account information to remote host. Similar to the FTP RFC-959 ACCT command.
Return Value
Void.
Syntax
object.Account Account
Parameters
Account
String containing new account information.
Data Type: String
Param: Out

Default Value: Empty

Comments

Use the ReplyString property to determine the result of this call. The Account event is fired if successful.

Authenticate FTP Method

Description

Authenticates the user based on the parameters passed. If no parameters are passed, the Userld and
Password properties are used. If neither the Userld or Password is entered, the control uses the URL.

Return Value
Void.
Syntax
object. Authenticate [User/D], [Password]
Parameters
Userld
Optional. User identification string to use for authentication.

Data Type: String

Param: IN
Default Value: N/A
Password

Optional. Password to use for authentication.
Data Type: String

Param: IN

Default Value: N/A

Comments

If the Userld and/or Password are set before invoking this method, the optional parameters do not need to be
specified. Optional arguments to this method override the values from corresponding Userld and Password
properties. If you omit one or both of the arguments, the value from a corresponding property will be used to
provide the authentication. The state will then be an FTP transaction. The ProtocolStateChanged event is fired
if successful. The event will be an FTP transaction.

Cancel FTP Method

Description
Cancels a pending request and disconnects the current session.
Return Value
Void.
Syntax
object.Cancel
Parameters

None.

ChangeDir FTP Method

Description

Requests FTP Server to change the remote host current directory to the specified directory. Similar to the FTP
RFC-959 CWD command.

Return Value
Void.
Syntax
object.ChangeDir directory
Parameters
Directory
String containing new directory name.
Data Type: String
Param: IN
Default Value: Empty
Comments
Use the ReplyString property to determine the result of this call. If successful, the ChangeDir event will fire.

Connect FTP Method

Description

Initiates a Connect request. The control calls the StateChanged event and Protocol StateChanged event if a
connection is established.

Return Value

Void.
Syntax

object.Connect [RemoteHost], [RemotePort]
Parameters

RemoteHost

Optional. Remote host to which to connect. If this parameter is missing, the control connects to the host
defined in the RemoteHost property.

Data Type: String

Param: IN

Default Value: N/A
RemotePort

Optional. Remote port to which to connect. If this parameter is missing, the control connects to the port
defined in the RemotePort property.

Data Type: Long

Param: IN

Default Value: N/A
Comments

Optional arguments to this method override the values from corresponding RemoteHost and RemotePort
properties. If no argument is given, the values from the properties will be used to establish the connection.

CreateDir FTP Method

Description
Creates the specified directory on the remote host. Similar to the FTP RFC-959 MKD command.
Return Value
Void.
Syntax
object.CreateDir Directory
Parameters
Directory
String containing the directory name.
Data Type: String
Default Value: Empty

Comments
Use the ReplyString property to determine the result of this call. If successful, the CreateDir event will fire.

DeleteDir FTP Method

Description
Deletes the specified directory file from the remote host. Similar to the FTP RFC-959 RMD command.
Return Value
Void.
Syntax
object.DeleteDir Directory
Parameters
Directory
String containing directory to delete.
Data Type: String
Param: IN
Default Value: Empty

Comments
Use the ReplyString property to determine the result of this call. If successful, the DeleteDir event will fire.

DeleteFile FTP Method

Description
Deletes the specified file from the remote host. Similar to the FTP RFC-959 DELE command.
Return Value
Void.
Syntax
object.DeleteFile [FileName]
Parameters
FileName

Optional. String containing file to delete. This argument overrides the values from the corresponding
RemoteFile property. The value of the property will not change. If the argument is omitted, the value from
the corresponding property will be used to provide a filename for the delete operation.

Data Type: String
Param: IN

Default Value: Empty

Comments

Use the ReplyString property to determine the result of this call. If successful, the DeleteFile event will fire.

Execute FTP Method

Description
Issues the RFC 959 Quote command to the server.
Return Value
Void.
Syntax
object.Execute cmd
Parameters
Cmd

String containing the command to be invoked on the remote FTP server. This forces the FTP server to
process a specific command(s) without actually issuing the command from the client.

Data Type: String
Param: IN

Default Value: Empty

Comments

Use the ReplyString property to check the return value during the Execute event notification. If successful, the
Execute event will fire.

GetDoc FTP Method

Description

A DocOutput related method that requests retrieval of a document identified by a URL.
Return Value

Void.
Syntax

object.GetDoc [URL], [OutputFile]
Parameters

URL

Optional. The URL identifying the remote document to be retrieved.

Data Type: String

Param: IN
Default Value: Doclnput.URL
OutputFile

Optional. A local file to which the retrieved document will be written.
Data Type: String
Param: IN

Default Value: DocOutput.FileName

Comments
The GetDoc method in FTP means retrieving a file or directory listing from the server.

The URL and (for some controls) Headers are used as inputs specifying which document is to be retrieved. The
OutputFile argument indicates where the retrieved document should be written locally.

The URL type (first part up to the colon) may be omitted and will default to the correct type for this control. For
example, when using the FTP control, the "ftp:" string may be omitted.

For basic use of this control, arguments should be passed to GetDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The arguments of GetDoc correspond to properties in the Doclnput and
DocOutput objects of this control. Doclnput and DocOutput properties can be set before calling GetDoc to avoid
passing arguments. The Doclnput and DocOutput events can also be used for transferring data using
streaming rather than local files.

{button ,KL('Doclnput and DocOutput Objects',0,”',”")} See Also

GetFile FTP Method

Description
Gets the specified file from the remote host and places it in the current directory.
Return Value
Void.
Syntax
object.GetFile [RemoteFile], [LocalFile]
Parameters
RemoteFile
Optional. String containing the remote file to retrieve.
Data Type: String
Param: IN
Default Value: Empty
LocalFile
Optional. String containing the local filename to use when saving the remote file.
Data Type: String
Param: IN

Default Value: Empty

Comments

The arguments override the values from the corresponding FTP.RemoteFile and DocOutput.FileName
properties. The value of the properties will not change. If the arguments are omitted, the value from the
corresponding property will be used to provide a filenames for the get file operation.

Both local and remote names should be specified, even if they are the same.

Use the ReplyString to determine the result of this call. The data from this method is sent to the DocStream

interface via the DocOutput event. During processing of the DocOutput event, the Operation property is set to
FTPFile.

Help FTP Method

Description
Gets FTP help from the remote host. Similar to the FTP RFC-959 HELP command.
Return Value
Void.
Syntax
object.Help Help
Parameters
Help
String containing Help Commands supported
Data Type: String
Param: IN

Default Value: Empty

Comments

Use the ReplyString property to determine the result of this call. If successful, the Help event will fire.

List FTP Method

Description

Requests a detailed directory listing of the specified directory from the remote host. Similar to the FTP RFC-959
LST command.

Return Value
Void.
Syntax
object.List [Directory]
Parameters
Directory
Optional. String containing path of remote host from which to list directories.
Data Type: String
Default Value: Empty

Comments

The data from this method is sent to the DocStream interface via the DocOutput event. During processing of
the DocOutput event, the Operation property is set to ftpList. If the ListlitemNotify property is set to True, the
Listltem event is also generated for every item in the directory listing.

Mode FTP Method

Description
Sets data transfer mode of remote host. Similar to the FTP RFC-959 MODE command.
Return Value
Void.
Syntax
object.Mode Mode
Parameters

Mode

Enumerated type containing new transfer mode information The FTPModeConstants may have one of the
following values.

a ftpStream = 0
a ftpBlock = 1
a ftpCompressed = 2
Data Type: FTPModeConstants
Param: IN
Default Value: Empty
Comments

If successful, the Mode event will fire.

NamelList FTP Method

Description

Requests a directory listing of the specified directory from the remote host. Similar to the FTP RFC 959 NLST
command.

Return Value
Void.
Syntax
object.NamelList [Directory]
Parameters
Directory
Optional. String containing remote host path from which to list directories.
Data Type: String
Param: IN

Default Value: Empty

Comments

The data from this method is sent to the DocStream interface via the DocOutput event. During processing of
the DocOutput event, the Operation property is set to ftpNameList. If the ListltemNotify property is set to True,
the Listltem event is also generated for every item in the directory listing.

NOOP FTP Method

Description
Issues the NOOP command to the server.
Return Value
Void.
Syntax
object NOOP
Parameters

None.

Comments
Use the ReplyString property to determine the result of this call. If successful, the NOOP event will fire.

ParentDir FTP Method

Description
Requests the FTP Server change to the parent of the current directory, if one exists.
Return Value
Void.
Syntax
object.ParentDir
Parameters

None.

Comments

Use the ReplyString property to determine the result of this call. If successful, the ParentDir event will fire.

PrintDir FTP Method

Description

Requests the FTP Server query the current directory of the remote host. Similar to the FTP RFC-959 PWD
command.

Return Value
Void.

Syntax
object.PrintDir

Parameters

None.

Comments

Use the ReplyString property to determine the result of this call. You will need to parse the ReplyString to
determine the directory name. You can also obtain this information from the RemoteDir property. If successful,
the PrintDir event will fire.

PutFile FTP Method

Description
Puts specified file on the Server's current directory.
Return Value
Void.
Syntax
object.PutFile [LocalFile], [RemoteFile]
Parameters
LocalFile
Optional. String containing the name of the local file to be transferred to the remote machine.
Data Type: String
Param: IN
Default Value: Empty
RemoteFile
Optional. String containing name of file to be placed on the remote machine.
Data Type: String
Param: IN
Default Value: Empty
Comments

The arguments override the values from the corresponding FTP.RemoteFile and Doclnput.FileName properties.
The value of the properties will not change. If the arguments are omitted, the value from the corresponding
property will be used to provide a filenames for the put file operation.

Both local and remote names should be specified, even if they are the same.

Use the ReplyString property to determine the result of this call during Doclnput event processing. The
DocStream Doclnput event is activated when file data is streamed out of the FTP Control.

Quit FTP Method

Description
Quits a session with remote host and terminates any data connection.
Return Value
Void.
Syntax
object.Quit
Parameters

None.

Relnitialize FTP Method

Description
Issues the Relnit command to the server.
Return Value
Void.
Syntax
object.Relnitialize
Parameters
None.

Comments
Use the ReplyString property to determine the result of this call. If successful, the Relnitialize event will fire.

SendDoc FTP Method

Description
A Doclnput related method that requests sending a document identified by a URL, InputFile, or InputData.
Return Value
Void.
Syntax
object.SendDoc [URL], [Headers], [InputData), [InputFile], [OutputFile]
Parameters
URL

Optional. The URL identifying the remote document to be sent. If specified, the URL property will be set to
this value.

Data Type: String

Param: IN

Default Value: Doclnput.URL
Headers

Optional. Headers used for sending the document. This argument only applies to protocols where
document headers can be sent (for example, SMTP and HTTP).

Data Type: DocHeaders
Param: IN
Default Value: Doclnput.Headers
InputData
Optional. A data buffer containing the document to be sent.
Data Type: VARIANT
Param: IN
Default Value: Doclnput.GetData
InputFile
Optional. A local file containing the document to be sent.
Data Type: String
Param: IN
Default Value: Doclnput.FileName
OutputFile

Optional. A local file to which a reply document is written. This argument only applies for protocols that
return a reply document (for example, HTTP).

Data Type: String
Param: IN

Default Value: DocOutput.FileName

Comments
The SendDoc method in FTP means putting a file on the server.

The URL and (for some controls) Headers are used as inputs describing the document to be sent. The

InputData and InputFile arguments (only one can be specified) contain the document to be sent. For controls
that return a reply document, the OutputFile argument indicates where the reply document should be written

locally.

The URL type (first part up to the colon) may be omitted and will default to the correct type for this control. For
example, when using the FTP control, the "ftp:" string may be omitted .

For basic use of this control, arguments should be passed to SendDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The arguments of SendDoc correspond to properties in the Doclnput and
DocOutput objects of this control. Doclnput and DocOutput properties can be set before calling SendDoc to
avoid passing arguments. The Doclnput and DocOutput events can also be used for transferring data using
streaming rather than local files.

{button ,KL('Doclnput and DocOutput Objects',0,",")} See Also

Site FTP Method

Description

Issues a Site command to the remote server. This command is used during logon to determine the file system
supported on the server.

Return Value

Void.
Syntax

object.Site [Sitecmd]
Parameters

Sitecmd

Optional. String containing Site command line options to be processed by the server (for example,
“DIRSTYLE”)

Data Type: String
Param: IN

Default Value: Empty

Comments

Use the ReplyString property to determine the result of this call. If successful, the Site event will fire.

Status FTP Method

Description
Requests status from the remote host. Similar to the FTP RFC-959 STAT command.
Return Value
Void.
Syntax
object.Status [Status]
Parameters
Status
Optional. String containing status string.
Data Type: String
Param: OUT
Default Value: Empty

Comments

Use the ReplyString property to determine the result of this call during the Status event notification.

System FTP Method

Description
Issues a system command to the remote server. It is similar to the FTP RFC-959 SYST command.
Return Value
Void.
Syntax
object.System
Parameters

None.

Comments
Use the ReplyString property to determine the result of this call. If successful, the System event will fire.

Type FTP Method

Description

Issues a Type command to the remote server. This command is entered prior to a data transfer to set the
transfer type.

Return Value

Void.
Syntax

object.Type ftpType
Parameters

ftoType

Enumerated type containing type of data. The server attempts to use this value for data representation if it
is supported. Possible values are:

ftpAscii =0

ftpEBCDIC = 1

ftplmage = 2

ftpBinary = 3

Data Type: FTPTypeConstants

Param: IN
Default Value: ftpAscii
Comments

If successful, the Type event will fire.

FTP Events

Events are used for FTP client notification. They indicate that an action has been requested and processed. Any
errors which occur during command processing result in the Error event being called with appropriate error codes.
Error codes, state changes, and protocol return values are usually checked during event processing. (See icErrors
Collection Overview.)

Almost all FTP Control methods have an associated event that is activated after the server processes the
command (either successfully or unsuccessfully). During the event notification of any given command, you need to
check the ReplyString property to determine the outcome of the command. For example, you may call the Site
method, and receive a Site event. During notification of the Site event, you would check the ReplyString property
to see the result of the Site command.

The FTP methods GetFile, GetDoc, List, and NamelList all retrieve data and share the same DocOutput event
notification. As a developer you need to know which of the operations caused the event and redirect the data to
the appropriate place (i.e., send List data to a list box control, and send file data to an edit control for display.) To
do this, check the Operation property to determine the activating event.

The following Help topics describe the events supported by the FTP Client Control. Each description includes the
syntax, related parameters, their data type, default value, and whether the parameter is used for input or output
(IN or OUT). For a complete list of FTP events, see ETP Client ActiveX Control Overview.

Abort FTP Event

Description

This event is activated after the Abort method is called. It aborts any active data connection process, if
supported by the server.

Syntax
object_Abort
Parameters

None.

Account FTP Event

Description

This event is activated after the Account method is called. It requests the remote host set the account to the
one specified.

Syntax
object_Account
Parameters

None.

Comments
Use the ReplyString property to determine the server reply after event processing.

Busy FTP Event

Description
This event is activated when a command is in progress or when a command has completed.
Syntax
object_Busy (Busy As Boolean)
Parameters
Busy
Indicates whether or not a command is in progress.

Data Type: Boolean. If the argument is True, a command is in progress.

Cancel FTP Event

Description

This event is activated after a cancellation request has been completed and satisfied. After this event the
object's state changes to Base.

Syntax
object_Cancel
Parameters

None.

ChangeDir FTP Event

Description

This event is activated after the ChangeDir method is called. It changes the current working directory.
Syntax

object_ChangeDir
Parameters

None.

Comments
Use the ReplyString property to determine the server reply after event processing.

CreateDir FTP Event

Description

This event is activated after the CreateDir method is called. It creates a new directory.
Syntax

object_CreateDir
Parameters

None.

DeleteDir FTP Event

Description

This event is activated after the DeleteDir method is called. It deletes the specified directory on the remote host.
Syntax

object_DeleteDir
Parameters

None.

Comments
Use the ReplyString property to determine the server reply after event processing.

DelFile FTP Event

Description

This event is activated after the DeleteFile method is called. It deletes the specified file located in the path
specified on the remote host.

Syntax
object_DelFile
Parameters

None.

Doclnput FTP Event

Description
A Doclnput related event that indicates the input data has been transferred, or the Doclnput state has changed.
Syntax
object_Doclnput (Docinput As Doclnput)
Parameters
Doclinput
Object describing document input data for the current transfer.
Data Type: Doclnput
Param: IN
Default Value: N/A

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming. See Doclnput
Obiject Events.

DocOutput FTP Event

Description

A DocOutput related event indicating that output data has been transferred or the DocOutput state has
changed.

Syntax
object_DocOutput (DocOutput As DocOutput)
Parameters
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput
Param: IN
Default Value: N/A

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming. For more
information, see Doclnput Object Events.

Error FTP Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode
The short error code. For a list of possible FTP error codes see FTP Error Codes.
Description
String containing error information.
sCode
The long Scode.
Source
Error source.
HelpFile
Help file name.
HelpContext
Help file context.
CancelDisplay

Indicates whether to cancel the display. The default is TRUE (no display of the default error message box).
If you do want to use the default message box, set CancelDisplay to FALSE.

Execute FTP Event

Description

This event is activated after the Execute method is called. It issues a command to the server for processing.
Syntax

object_Execute
Parameters

None.

Comments
Use the ReplyString property to determine the results of the Execute command during event notification.

FirewallStateChanged FTP Event

Description

This event is activated whenever the state of the firewall connection state changes.
Syntax

object.FirewallStateChanged (FirewallState As Integer)
Parameters

Refer to the Firewall object FirewallState property and FirewallStateString for possible values of the
FirewallState parameter.

Help FTP Event

Description

This event is activated after the HELP method is called. It requests the remote host send help information with
the specified HELP parameters.

Syntax
object_Help
Parameters

None.

Comments

Use the ReplyString property to determine the server reply after event processing.

Listltem FTP Event

Description

This event is activated for every element in a directory listing when the ListltemNotify property is set to TRUE.
This lets you parse the directory elements after issuing a List or NameList command.

See FTPDirltem Object.

Syntax

object_Listltem (/tem As ftpDirltem)
Parameters

Item

Object describing a directory listing element. The object contains the filename, size, date, and attributes of
the current listing item.

Data Type: ftpDirltem
Param: OUT
Default Value: N/A

Log FTP Event

Description

This event is fired when logging data is available.
Syntax

object_Log
Parameters

None.

Mode FTP Event

Description

This event is activated after the Mode method is called. It sets the remote host data transfer mode to the mode
specified.

Syntax
object_Mode
Parameters

None.

Comments

Use the ReplyString property to determine the response from the server.

NOOP FTP Event

Description

This event is activated after a NOOP command is issued or the NOOP method is called. It requests an OK
reply from the server.

Syntax
object NOOP
Parameters

None.

Comments

Use the ReplyString property to determine the response from the server.

ParentDir FTP Event

Description

This event is activated after the ParentDir method is called. It changes the current directory on the remote host
to the parent directory, if one exists.

Syntax
object_ParentDir
Parameters

None.

Comments

Use the ReplyString property to determine the server reply after event processing.

PrintDir FTP Event

Description

This event is activated after the PrintDir method is called. It requests the remote host include the current
working path as a string in the reply.

Syntax
object_PrintDir
Parameters

None.

ProtocolStateChanged FTP Event

Description

This event is activated whenever the protocol state changes.
Syntax

object_ProtocolStateChanged (ProtocolState As Integer)
Parameters

Refer to the ProtocolState property and ProtocolStateString for possible values of the ProtocolState parameter.

Relnitialize FTP Event

Description

This event is activated after the Relnitialize method is called. It causes the server to log off the current user
while maintaining an open connection.

Syntax
object_Relnitialize.
Parameters
None.
Comments

Use the ReplyString property to determine the result of the Reinitialize method during event notification.

Site FTP Event

Description

This event is activated after the Site method is called. It requests directory and file formatting information from
the remote host.

Syntax
object_Site
Parameters

None.

Comments
Use the ReplyString property to determine the server reply.

StateChanged FTP Event

Description

This event is activated whenever the state of the transport state changes.
Syntax

object_StateChanged (State As Integer)
Parameters

Refer to the State property and StateString for possible values of the state parameter.

System FTP Event

Description

This event is activated after the System method is called. It requests the type of operating system on the
server.

Syntax
object_System
Parameters

None.

Comments
Use the ReplyString property to determine the server reply.

TimeOut FTP Event

Description
This event is activated when the timer for the specified event has expired.
Syntax
object_TimeOut (ByVal Event As Integer, Continue As Boolean)
Parameters
Event
Defines the event to which the time interval applies.
Data Type: Short
Continue
Determines if the timer is active or not. Set Continue to TRUE to keep the timer active.
Data Type: Boolean

Default Value: False

Comments

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning

prcConnectTimeout = 1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout = 2 Timeout for receiving data. If no data arrives
within the timeout period, the Timeout event
will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for custom
timeout events.

See Also
Timeout FTP Property._

Type FTP Event

Description

This event is activated after the Type method is called. Specifies how the remote host should handle the
transferred data.

Syntax
object_Type
Parameters

None.

Comments
Use the ReplyString property to determine the server reply after event processing.

Firewall FTP Object

The Firewall object provides an interface to get and set information used to access hosts external to a firewall-
protected domain. Through this interface, you can set a few parameters and then access external hosts as you
would if the firewall did not exist.

Properties

Host Firewall FTP Property

Description

The address or name of the remote machine that is the firewall server. You can either provide a host name or
an IP address string in dotted format. For example, “127.0.0.1”.

Syntax

object.Firewall.Host [= String]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

String.
Default Value

“127.0.0.1”
Range

N/A.

Mode Firewall FTP Property

Description

Determines what method is to be used by the FTP control to connect to external hosts through a firewall server.
Syntax

object.Firewall.Mode [= Integer]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

FTPFirewall Mode constants.
Default Value

ftpFirewall Off.

Range
At present, the values are:
Name Constant Meaning
ftpFirewallOff 0 Firewall service is not used.
ftpFirewallSite 1 After the connection and login is

made to the firewall server, the
external connection to the
FTP.RemoteHost is made using the
SITE command.

FtpFirewallOpen 2 After the connection and login is
made to the firewall server, the
external connection to the
FTP.RemoteHost is made using the
OPEN command.

FtpFirewallUserLogin 3 After the connection and login is
made to the firewall server, the
external connection to the
FTP.RemoteHost is made using the
USER <user@hostname>
command.

FtpFirewallUserNoLogin 4 After the connection is made to the
firewall server, the external
connection to the FTP.RemoteHost
is made using the USER
<user@hostname> command.

Password Firewall FTP Property

Description

Password of Firewall.Userld on the FTP Firewall Server. This value is only used if the mode of the Firewall
requires password verification.

Syntax
object.Firewall.Password [= String]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

Port Firewall FTP Property

Description
The port number of the Firewall server host to connect to.
Syntax
object.Firewall.Port [= Long]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
Long.
Default Value
21.
Range
1-65535.
Comment

Although the data type is long, Winsock conventions limit the maximum correct port number to be the maximum
signed short value.

State Firewall FTP Property

Description

This property specifies the connection state of the firewall session.
Syntax

object.Firewall.State
Permission

R (Read-only).
Availability
R (Runtime).
Data Type

FTPFirewall Mode constants
Default Value

ftpFirewallBase.

Range
1300-1306. Constants defined for enum types of FTP Firewall State property are:
Name Value Meaning
ftpFirewallBase 1300 There is no current

connection in progress

FtpFirewallConnected 1301 The control is connected to
the firewall server.

ftpFirewallConnected_Msg 1302 The control is connected to
the firewall server and the
server hello message has
been received.

ftpFirewallUser_OK 1303 The control is connected to
the firewall server and the
Userld is valid.

ftpFirewallAuthorized 1304 The control is connected to
the firewall server and the
user has been authenticated
to the firewall server.

FtpFirewallRemotedConnec 1305 The control is connected to

ted the firewall server and the
connection to the
FTP.RemoteHost has been
made.

ftpFirewallDisconnecting 1306 The control is in the process
of disconnecting from the
external host.

StateString Firewall FTP Property

Description

A string representation of the Firewall State.
Syntax

object.Firewall.StateString

Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
"Firewall base state: Disconnected".
Range
N/A.

Userld Firewall FTP Property

Description

User identification name for the client on the Firewall server. This value is only used if the mode of the Firewall
requires user authentication.

Syntax
object.Firewall.Userld [= String]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

FTPDirltem Object

The FTPDirltem object is used for directory and file parsing. Generally when a List command is processed, the
server returns a byte stream whose format is dependent on the operating system running on the remote server.

Directory parsing is turned on by setting the ListltemNotify property to TRUE. Whenever a List command is
processed, the FTP Control generates Listltem events for every directory or file element in the listing. The
parameter list of the Listltem event includes an FTPDirltem object which contains the filename, size, date, and
attributes for the current listing element.

If the ListltemNotify property is set to FALSE; the directory listing is sent to the Document Output object which in
turn sends event notifications as streams of data are received. This is useful when you want to put directory listing
data into a static control or an edit field in an ‘as-is’ state.

FTPDirltem Object Example

The following example demonstrates how to use the FTPDirltem object with directory parsing.

1. Set the ListltemNotify property to TRUE.
ftpctl.ListItemNotify = TRUE

2. Invoke a List or NameList command
ftpctl.List

3. Asyou receive the Listltem events, the item parameter contains the current directory element :

Private Sub Ftpctl OnListItem(ByVal FTPDirItem As Object)
Form2.textl.Text = Form2.textl.Text & Chr$(13) & Chr$(10) &
FTPDirItem.FileName & Chr$(9) & FTPDirItem.Size & Chr$(9)
Chr$(9) & FTPDirItem.Attributes & Chr$(9) & Chr$(9)

End Sub

& FTPDirItem.Date &
& FTPDirItem.Detail

FTPDirltem Object Properties

FTPDirltem object properties let you access the filename, date, file size, and file attributes of a directory listing. For
more information on each of these properties, click on an item below.

Property
Attributes
Date
etai
FileName
Size

)

Attributes FTPDirltem Property

Description

File or directory attributes of the current directory listing item.
Syntax

object.Attributes
Permission

R (Read only).
Availability

R (Runtime).
Data Type

Integer.
Default Value

0.
Range
This value is an integer value that may be any of the following
Attribute Value
FtpUnknown 0x0000
FtpDir 0x0001
FtpFile 0x0002
FtpLink 0x0010
FtpDisk 0x0004

Date FTPDirltem Property

Description

Last modified date of the current directory listing item.
Syntax

object.Date
Permission

R (Read only).

Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

Detail FTPDirltem Property

Description
Contains the raw unparsed data that the FTP server sends back for this directory item.
Syntax
object.Detail
Permission
R (Read only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

FileName FTPDirltem Property

Description
File or directory name of the current directory listing item.
Syntax
object.FileName
Permission
R (Read only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

Size FTPDirltem Property

Description

File or directory name of the current directory listing item.
Syntax

object.Size
Permission

R (Read only).
Availability

R (Runtime).
Data Type

Long.
Default Value

0.
Range

>=0.

FTP Localization

The resources for the control’s about box, property page, and strings are in resource DLL nmorenu.dll. The
resource DLL is localized for each language.

FTP Sample Session

This simple application demonstrates the use of the FTP Client Control in an every day work situation.

Every Monday, Mr. B must submit a report of all his employees weekly goals and accomplishments. Before FTP
Control, he would manually request these documents. With Microsoft Visual Basics, he is able to create a form
that takes blocks of formatted data and puts it into an easy to read summary. For each employee, Mr. B embeds
an FTP Control into the form causing the control to download the employee's documents from a predefined
directory on the employee's local system. Mr. B's Visual Basic code would look like this:

Ftpctll.RemoteHost=“Dilbert”

Ftpctll.UserID=“MrBig”

Ftpctll.Password=“0123"

FtpCtll.RemoteFile=“c:\\docs\\Goals.doc”;
OR

FtpCtll.URL=“FTP://MrBig:0123@Dilbert/c|/docs/Goals.doc”;

FtpCtll. DocOutput.FileName=“Dilbert.doc”
FtpCtll.GetFile ()

Ftpctl2.RemoteHost=“Dogbert”
Ftpctl2.UserID="MrBig”
Ftpctl2.Password=“0123"

Rem This time the remote filename is specified in the parameter Rem list of the
method

FtpCtl2.DocOutput.FileName =“Dogbert.doc”
FtpCtl2.GetFile Goals.doc

Instead of embedding an FTP Control into each individual file, Mr. B could have used a single FTP Control and
iterated through a list of engineers and individually requested the files from each user.

K
HTML ActiveX Control Overview

The HTML control lets you implement an HTML viewer, with or without automatic network retrieval of HTML
documents. It provides parsing and layout of HTML data, as well as a scrollable view of the selected HTML page.
It can also be used as a non-visual HTML parser to analyze or process HTML documents.

See Also

HTML Properties, Methods, and Events
HTML ActiveX Features

Retrieving HTML Data

DocStreams

Non-Visual HTML Parser

Using the HTML Control
HTML Limitations

HTML ActiveX Features

The HTML control supports the following features:

Scrollable view of selected page

Inline graphics: GIF, JPEG, BMP, XBM

HTML version 2.X plus most NetScape 2.0 and Explorer 2.0 extensions
Built-in document retrieval for HTTP and File URLs

Built-in HTTP form execution

Properties controlling the style sheet (such as fonts and colors)
DocStream interfaces for flexible data transfer

Events for overriding default processing

Printing

See Also

HTML Properties, Methods, and Events

Retrieving HTML Data
DocStreams

Non-Visual HTML Parser

Using the HTML Control
HTML Limitations

Retrieving HTML Data

HTML source text or graphics data can be retrieved in the following ways:

a Explicitly. You can call the RequestDoc and RequestSubmit methods to explicitly specify a new main
document by URL or request submission of a form. These methods cause the DoRequestDoc and DoRequestSubmit
events to be activated.

a By selecting an active link. When you click on an active link, a request retrieval is made of a new main
document, identified by the URL of the link. The default for this request is to retrieve the document using HTTP or a
local file. If the request is successful, the DoRequestDoc event will be activated.

a By selecting embedded documents that are to be displayed inline. If successful, the DoRequestEmbedded
event will be activated. The default for this request is to retrieve the document using HTTP or from a local file.
a By requesting via form submission. When you click on a form submission button, the DoRequestSubmit
event is activated after a successful form submission. The response is used as the next main document.

See Also

HTML Properties, Methods, and Events

DocStreams

Non-Visual HTML Parser

Using the HTML Control
HTML Limitations

oy

[o

= DocStreams

DocStream (Doclnput and DocOutput) objects are the mechanism used for data retrieval and submission. You can
use the DoRequestDoc, DoRequestEmbedded and DoRequestSubmit events to view or modify a DocStream for
document retrieval or submission. By default, DocStream objects are created internally by the HTML control for
documents with HTTP and File URLs. To provide for other URL types, or specify a DocStream object for any URL
type, you can set DocStream properties during event handling.

See Also

HTML Properties, Methods, and Events
HTML ActiveX Features

Retrieving HTML Data

Non-Visual HTML Parser

Using the HTML Control
HTML Limitations

Non-Visual HTML Parser

The HTML Control can also be used as a non-visual HTML parser. If the control is set to be invisible at run-time,
no view window is created. When HTML input data is processed and the ElemNotification property is set to True,
the DoNewElement event is activated as each element is parsed. You can query the attributes and values of the
parsed element when DoNewElement is activated. If this event is canceled, parsing will continue but the HTML
Control will not store the element.

See Also
HTML Properties, Methods, and Events
HTML ActiveX Features

Retrieving HTML Data
DocStreams

Using the HTML Control
HTML Limitations

Using the HTML Control

To use the HTML ActiveX Control you must choose the HTML toolbox icon.

When using the HTML control with built-in network document retrieval, or when linking it to other network controls
for document retrieval, there should be no added overhead for transfer of data between objects, i.e., there should
be no copying of data and notifications should perform as well as ordinary C++ function calls.

No event handling should be necessary to implement a simple Web viewer with browsing and form submission
capabilities when using the basic features of the HTML control. For more powerful use of the control, you can
override all built-in document retrieval, browser and form submission behavior.

When using the control as a non-visual parser, there should be no overhead for visual (dormant) aspects of the
control.

The HTML control requires dual (direct call) OLE interfaces. It also uses and is dependent on the Doclnput,
DocOutput and DocHeader[s] objects.

See Also

HTML Properties, Methods, and Events
HTML ActiveX Features

Retrieving HTML Data
DocStreams

Non-Visual HTML Parser
HTML Limitations

HTML Limitations

The following features are not supported by the HTML control:

Text selection and clipboard copy
Automatic external viewer launching

Proxy server determination and usage
Built-in FTP retrieval and inline FTP listings
Basic Authorization and SSL/PCT

Multipart document submission (file upload)

See Also

HTML Properties, Methods, and Events
HTML ActiveX Features

Retrieving HTML Data
DocStreams

Non-Visual HTML Parser
Using the HTML Control

HTML Properties, Methods and Events

The following table lists the properties, methods and events supported by the HTML control. For an example
illustrating the use of the control in a real life situation, see HTML Sample Sessions.

Property Method Event
BackColor AboutBox BeginRetrieval
Backimage AutoPrint Click

BaseURL BeginPrinting DblClick
Blocking Cancel Doclnput
BlockResult EndPrinting DocOutput
DeferRetrieval GetPlainText DoNewElement
DocBackColor IsprintingDone DoRequestDoc
DocForeColor PrintPage DoRequestEmbedded
Doclnput RequestAllEmbedded DoRequestSubmit
DocLinkColor RequestDoc EndRetrieval
DocOutput SelectAll Error
DocVisitedColor GotFocus
Errors KeyDown
ElemNotification KeyPress
FixedFont KeyUp

Font LayoutComplete
ForeColor LostFocus
Forms MouseDown
HasSelection MouseMove
Heading1Font MouseUp
Heading2Font ParseComplete
Heading3Font TimeOut
Heading4Font UpdateRetrieval

HeadingSFont
Heading6Font
hWnd

IsPrintingDone

LayoutDone
LinkColor

ParseDone
Redraw
RequestURL
RetainSource
RetrieveBytesDone
RetrieveBytesTotal

SleepTime
SourceText

Timeout
TotalHeight
TotalWidth
UnderlineLinks
URL
UseDocColors

ViewSource
VisitedColor

HTMLALttrs
Collection

T
3

Count
HTMLALttr Item

I
|
=
-
m
" O
=
3
(7]
3

Count

HTMLForm Item RequestSubmit
Method

URL

URLEncodedBody

BackColor HTML Property

Description

Defines the default background color.
Syntax

object.BackColor [= color]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long (OLE_COLOR).
Default Value

ActiveX container’s BackColor
Range

RGB color values: 0 to 16777215 (OxFFFFFF).
Comments

May be overridden by the DocBackColor property, if such a document color is present and the UseDocColors
property is True.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

Backimage HTML Property

Description

URL of an image to be used as the background image of the document.
Syntax

object.Backimage [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

Empty string.
Range

Valid URL.
Comments

May be overridden by the background image of the document (<BODY BACKGROUND-=...>) if this attribute is
present and the UseDocColors property is True. The background image is tiled to fill the view area of the
control window.

BaseURL HTML Property

Description

URL of the <BASE> element of the current document, used for relative URL resolution. If no <BASE> element
exists in the document, this property is the same as the URL property.

Syntax

object.BaseURL
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

String.
Default Value

Empty string.
Range

Valid URL.
Comments

If no <BASE> element exists in the document, this property is the same as the URL property.

Blocking HTML Property

Description

Indicates whether methods should block until complete or not.
Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult HTML Property

Description

Returns the result value of the last blocking method called.
Syntax

object.BlockResult
Permission

R (Read only).
Availability

R (Runtime).
Data Type

BlockingResultConstants.
Default Value

icBlockOK.
Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut 1 Blocking method returned due to timeout.
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

DeferRetrieval HTML Property

Description
Indicates whether retrieval of embedded objects should be deferred until explicitly requested.
Syntax
object.DeferRetrieval [= Boolean]
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
Boolean.
Default Value
False.
Range
True or False.
Comments

The user can set this property to turn inline retrieval of embedded documents off or on. If you are implementing
caching, you will normally leave this property set to False so that cached documents are always displayed
inline.

DocBackColor HTML Property

Description

Document background color.
Syntax

object.DocBackColor [= color]
Permission

R (Read Only).
Availability

R (Runtime).
Data Type

Long (OLE_COLOR).
Default Value

object.BackColor.
Range

RGB color values: 0 to 16777215 (OXFFFFFF).
Comments

This property corresponds to the BGCOLOR attribute of the BODY tag. If this attribute is not present, HTML
defaults to the value of the BackColor property.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

DocForeColor HTML Property

Description

Document foreground (text) color.
Syntax

object.DocForeColor [=color]
Permission

R (Read Only).
Availability

R (Runtime).
Data Type

Long (OLE_COLOR)..
Default Value

object.ForeColor.
Range

RGB color values: 0 to 16777215 (OXFFFFFF).
Comments

This property corresponds to the TEXT attribute of the BODY tag. If this attribute is not present, HTML defaults
to the value of the ForeColor property.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

Docinput HTML Property

Description

Object describing input information for the main document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput.
Default Value

N/A.
Range

N/A.
Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the RequestDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

DocLinkColor HTML Property

Description

Document link color.
Syntax

object.DocLinkColor [= color]
Permission

R (Read-only)
Availability

R (Runtime).
Data Type

Long (OLE_COLOR)..
Default Value

object.LinkColor.
Range

RGB color values: 0 to 16777215 (OXFFFFFF).
Comments

This property corresponds to the LINK attribute of the BODY tag. If this attribute is not present, HTML defaults
to the value of the LinkColor property.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

DocOutput HTML Property

Description
Object describing output information when submitting form data.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.
Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the RequestSubmit
method. However, you can use the basic functions of the control without knowledge or use of the Doclnput
object.

See Also

See the Form.RequestSubmit method, the DoRequestSubmit event, the DocOutput event and the DocOutput
Object section of the Common Control Objects chapter for more information

DocVisitedColor HTML Property

Description

Document visited link color.
Syntax

object.DocVisitedColor [= color]
Permission

R (Read-only)
Availability

R (Runtime).
Data Type

Long (OLE_COLOR)..
Default Value

object.VisitedColor.
Range

RGB color values: 0 to 16777215 (OXFFFFFF).
Comments

This property corresponds to the VLINK attribute of the BODY tag. If this attribute is not present, HTML defaults
to the value of the VisitedColor property.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

ElemNotification HTML Property

Description
Indicates whether the DoNewElement event should be activated during HTML parsing.
Syntax
object.ElemNotification [= Boolean]
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
Boolean.
Default Value
False.
Range
True or False.
Comments
You can set this property to True when using the HTML control as a (visual or nonvisual) parser.
See Also

DoNewElement event

Errors HTML Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient.

Syntax
object.Errors
Permission
R (Read only).
Availability
R (Runtime).
Data Type
icErrors.
Default Value
N/A.
Range
N/A.

FixedFont HTML Property

Description

The Font object for fixed-width text.
Syntax

object.FixedFont
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Courier New, size 10.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Font HTML Property

Description

The Font object for fixed-width text.
Syntax

object.Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 12.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

ForeColor HTML Property

Description

Default foreground (text) color.
Syntax

object.ForeColor [= color]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long (OLE_COLOR)..
Default Value

ActiveX container’s ForeColor.
Range

RGB color values: 0 to 16777215 (OxFFFFFF).
Comments

This property may be overridden by the DocForeColor property if such a document color is present and the
UseDocColors property is True.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

Forms HTML Property

Description

A collection of the forms contained in the HTML page.
Syntax

object.Forms
Permission

R (Read-only)
Availability

R (Runtime).
Data Type

HTMLForms.
Default Value

None.
Range

None.
Comments

This property may be indexed directly to call the default tem method. See section HTML Forms Collection later
in this chapter for more information.

HasSelection HTML Property

Description
Returns whether a text selection exists.
Syntax
object.HasSelection [=Boolean]
Permission
R (Read Only).
Availability
R (Runtime).
Data Type
Boolean.
Default Value
N/A.
Range

True/False.

Heading1Font HTML Property

Description

The Font object for heading level 1 text (<H1> elements).
Syntax

object.Heading1Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 24, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Heading2Font HTML Property

Description

The Font object for heading level 2 text (<H2> elements).
Syntax

object.Heading2Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 18, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Heading3Font HTML Property

Description

The Font object for heading level 3 text (<H3> elements).
Syntax

object.Heading3Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 14, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Heading4Font HTML Property

Description

The Font object for heading level 4 text (<H4> elements).
Syntax

object.Heading4Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 12, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Heading5Font HTML Property

Description

The Font object for heading level 5 text (<H5> elements).
Syntax

object.Heading5Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 10, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

Heading6Font HTML Property

Description

The Font object for heading level 6 text (<H6> elements).
Syntax

object.Heading6Font
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Font.
Default Value

Times New Roman, size 8, Bold.
Range

Valid font.
Comments

There are several properties of the Font object, such as Name, Size, and Bold, which modify the type of font
being used. Please refer to the Visual Basic Help documentation on the Font object for more information.

hWnd HTML Property

Description

The handle of the HTML view window. This is an advanced property. It could be used to post messages like
WM_COPY, etc..

Syntax

object. hWnd
Permission

R (Read Only).
Availability

R (Runtime).
Data Type

HANDLE.
Default Value

N/A.
Range

N/A.

IsPrintingDone HTML Property

Description
Used to determine the end of the document.
Return Value
Boolean.
Syntax
object.IsPrintingDone page
Permission
R (Read-only)
Availability
R (Runtime).
Parameters
Page
This value should be 1 greater than the last page printed.
Data Type: Long
Param: IN
Default Value: None
Comments

IsPrintingDone checks whether the document is finished printing or whether additional pages needs to be
printed.

LayoutDone HTML Property

Description

Indicates whether the layout phase is complete.
Syntax

object.LayoutDone
Permission

R (Read-only)
Availability

R (Runtime).
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

This property is set to False when document retrieval starts, and set to True when layout (placement of items
on the page) of the main document is complete.

LinkColor HTML Property

Description

Default link color.
Syntax

object.LinkColor [= color]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long (OLE_COLOR)..
Default Value

Blue (0,0,255)
Range

RGB color values: 0 to 16777215 (OXFFFFFF).
Comments

This property may be overridden by the DocLinkColor property if such a document color is present and the
UseDocColors property is True.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

ParseDone HTML Property

Description
Indicates whether the parsing phase is complete.
Syntax
object.ParseDone
Permission
R (Read-only)
Availability
R (Runtime).
Data Type
Boolean.
Default Value
False.
Range
True or False.
Comments

This property is set to False when document retrieval starts, and set to True when parsing of the main
document is complete.

Redraw HTML Property

Description

Indicates whether drawing should occur as data changes or the window is scrolled.
Syntax

object.Redraw [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Boolean.
Default Value

True.
Range

True or False.
Comments

To make changes and avoid flickering (redrawing when each change is made), set the Redraw property to
False, make the changes, and then set it back to True. When Redraw is set to True, the window will be
redrawn.

RequestURL HTML Property

Description

URL string identifying the new document requested.
Syntax

object.RequestURL
Permission

R (Read Only).
Availability

R (Runtime).
Data Type

String.
Default Value

Empty String.
Range

Valid URL.
Comments

You can specify this property by calling RequestDoc. The property is set by the control during default
processing for the DoRequestDoc event.

RetainSource HTML Property

Description

Indicates whether source text should be retained and available via the SourceText property.
Syntax

object.RetainSource [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Boolean.
Default Value

True.
Range

True or False.
Comments

This property may be set to False to save memory when you do not need the source text of the main
document.

RetrieveBytesDone HTML Property

Description
Completed byte size of the objects being retrieved. This property is zero if no retrieval is in progress.
Syntax
object.RetrieveBytesDone
Permission
R (Read-only)
Availability
R (Runtime).
Data Type
Long.
Default Value
Zero.
Range

>=zero.

RetrieveBytesTotal HTML Property

Description
Total byte size of the objects to be retrieved, including embedded objects and the document itself.
Syntax
object.RetrieveBytesTotal
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
Zero.
Range
>=zero.
Comments

If DeferRetrieval is set to True, RetrieveBytesTotal does not include embedded objects. This value can change
during retrieval as object sizes are determined. This property is zero if no retrieval is in progress.

SleepTime HTML Property

Description

Specifies the sleep time between checking messages while Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SourceText HTML Property

Description
Contains the source text of the main document.
Syntax
object.SourceText
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
None.
Comments

This property will be empty if the RetainSource property is False or if no main document has been retrieved.

TimeOut HTML Property

Description

Time-out interval (in seconds) for initiating the request for documents. The Timeout event is activated if no data
is received within timeout.

Syntax

object.Timeout [= Long]
Permission

W (Read/Write).
Availability

D (design) and R (Runtime).
Data Type

Long.
Default Value

30 seconds.
Range

N/A.
Comments

Although the Timeout value applies to all document retrieval, the Timeout event is activated only for the main
document, not for embedded documents.

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning
prcConnectTimeout = 1 Timeout for connect. If connection is not

established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout = 2 Timeout for receiving data. If no data
arrives within the timeout period, the
Timeout event will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for
custom timeout events.

TotalHeight HTML Property

Description

Total height of the document in pixels.
Syntax

object.TotalHeight
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Long.
Default Value

Zero.
Range

>=zero.
Comments

This property reflects the total height of the document, including the area that may not be visible because the
view is smaller than the document. This property is updated as parsing and layout of the HTML document
occurs. lts value is final when the EndRetrieval event is activated.

TotalWidth HTML Property

Description

Total width of the document in pixels.
Syntax

object.TotalWidth
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Long.
Default Value

Zero.
Range

>=zero.
Comments

This property reflects the total width of the document, including the area that may not be visible because the
view is smaller than the document. This property is updated as parsing and layout of the HTML document
occurs. lts value is final when the EndRetrieval event is activated.

UnderlineLinks HTML Property

Description
Indicates whether links should be underlined.
Syntax
object.UnderlineLinks [= Boolean]
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
Boolean.
Default Value
True.
Range

True or False.

URL HTML Property

Description

URL string identifying the current main document.
Syntax

object.URL
Permission

R (Read Only).
Availability

R (Runtime).
Data Type

String.
Default Value

Empty String.
Range

Valid URL.
Comments

This property is set by the control from the RequestURL property when document retrieval has successfully
started and the BeginRetrieval event is activated.

UseDocColors HTML Property

Description
Indicates whether document colors should be used when present.
Syntax
object.UseDocColors [= Boolean]
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
Boolean.
Default Value
True.
Range
True or False.
Comments

If this property value is True, the document colors (if present) override the default colors. For example, if the
<BODY LINK=...> attribute is present and UseDocColors is True, then the color specified for the LINK attribute
will be used to display active links; otherwise, the LinkColor property value will be used.

ViewSource HTML Property

Description

Indicates whether the control should display HTML source as plain text.
Syntax

object.ViewSource [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

This property is set to True to view the source text of the main document. If this property is True and
RetainSource is False, document retrieval will be initiated to obtain the source text for viewing.

VisibleColor HTML Property

Description

Determines whether a view window is visible at runtime.
Syntax

object.Visible [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Boolean.
Default Value

True.
Range

True or False.
Comments

This property may be overridden by the DocVisitedColor property if such a document color is present and the
UseDocColors property is True.

VisitedColor HTML Property

Description

Default visited link color.
Syntax

object.VisitedColor [= color]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long (OLE_COLOR).
Default Value

Purple (255,0,255)
Range

Valid color.
Comments

This property may be overridden by the DocVisitedColor property if such a document color is present and the
UseDocColors property is True.

An RGB color is a mixture of the percentages of red, green, and blue, each component having a value between
0 and 255 (e.g., 0x00 and OxFF). An RGB value of (0,0,0) (e.g., 0x000000 hex, or 0 decimal) produces black,
while an RGB value of (255,255,255) (e.g., OXFFFFFF hex or 16777215 decimal) produces white. For more
details, please refer to the Visual Basic Help documentation on BackColor and ForeColor properties.

AboutBox HTML Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

AutoPrint HTML Method

Description
AutoPrint prints the entire HTML document including inserting page breaks.
Return Value
Void.
Syntax
object.AutoPrint hDC
Parameters
hDC
The HDC of the printer to be printed to.
Data Type: HDC
Param: IN
Default Value: None
Comments

This method simplifies the work of the developer needs to do to print a document. Sample Visual Basic code for
printing an HTML document is as follows:

Printer.Print
htmll.AutoPrint Printer.hDC
Printer.EndDoc

BeginPrinting HTML Method

Description
Sets up the printing of the displayed document.

Return Value

Void.
Syntax
object.BeginPrinting hDC [X] [Y] [Width] [Height] [DefaultHeader]
[DefaultTitle]
Parameters
hDC

The HDC of the printer to be printed to.
Data Type: HDC
Param: IN

Default Value: None

X
Optional. Used with the other optional parameters to define the rest of the area of the page to print to.
Data Type: Long
Param: IN
Default Value: None
Y

Optional. Used with the other optional parameters to define the rest of the area of the page to print to.
Data Type: Long
Param: IN
Default Value: None
Width
Optional. Used with the other optional parameters to define the rest of the area of the page to print to.
Data Type: Long
Param: IN
Default Value: None
Height
Optional. Used with the other optional parameters to define the rest of the area of the page to print to.
Data Type: Variant
Param: IN
Default Value: None
DefaultHeader
Optional. Placeholder. Not currently used.
Data Type: Variant
Param: IN
Default Value: None
DefaultTitle

Optional. Placeholder. Not currently used.
Data Type: BSTR
Param: IN
Default Value: None
Comments

This method sets up the HTML document for printing. The following is some sample Visual Basic code for
printing an HTML document.

Dim page as Long
Dim DonePrinting as Boolean

Printer.Print

htmll.BeginPrinting Printer.hDC

page=1

do
htmll.PrintPage Printer.hDC, page
page=page+1l
DonePrinting=htmll.IsPrintingDone (page)
Printer.NewPage

Loop While (DonePrinting = False)

htmll.EndPrinting

Printer.EndDoc

Cancel HTML Method

Description

Used to terminate document retrieval (including embedded documents), and optionally output a message at the
end of the partially retrieved HTML page.

Return Value
Void.
Syntax
object.Cancel [Message]
Parameters
Message
Optional. Message to be appended to the HTML page.
Data Type: String
Param: IN
Default Value: None
Comments

If a message is specified, it will be enclosed in HTML tags, as shown here, and appended to the end of the
page:
<HR><H2>Message</H2>

HTML tags are also allowed in the Message.

EndPrinting HTML Method

Description
Used to end the document print job.
Return Value
Void.
Syntax
object.EndPrinting
Comments

This method cleans up the changes made by BeginPrinting. The following is some sample Visual Basic code
for printing an HTML document.

Dim page as Long
Dim DonePrinting as Boolean

Printer.Print

htmll.BeginPrinting Printer.hDC

page=1

do
htmll.PrintPage Printer.hDC,page
page=page+l
DonePrinting=htmll.IsPrintingDone (page)
Printer.NewPage

Loop While (DonePrinting = False)

htmll.EndPrinting

Printer.EndDoc

GetPlainText HTML Method

Description
Return the current text selection.
Return Value
BSTR.
Syntax
object.GetPlainText selected fancy
Parameters
selected
If selected is true, GetPlainText returns only the selected text; otherwise it returns all the text.
Data Type: Boolean
Param: IN
Default Value: N/A.
fancy
If fancy is true, the returned text uses a fancy format, i.e., horizontal lines are converted to dashed lines.
Data Type: Boolean
Param: IN
Default Value: N/A.

PrintPage HTML Method

Description
Used to print each page of the HTML document.
Return Value
void.
Syntax
object.PrintPage hDC pageNumber
Parameters
hDC
The printer HDC of the printer to print to.
Data Type: Long
Param: IN
Default Value: None.
pageNumber
The number of the page to be printed.
Data Type: Long
Param: IN
Default Value: None.
Comments
The following is some sample Visual Basic code for printing an HTML document.
Dim page as Long

Dim DonePrinting as Boolean

Printer.Print

htmll.BeginPrinting Printer.hDC

page=1

do
htmll.PrintPage Printer.hDC, page
page=page+l
DonePrinting=htmll.IsPrintingDone (page)
Printer.NewPage

Loop While (DonePrinting = False)

htmll.EndPrinting

Printer.EndDoc

RequestAllEmbedded HTML Method

Description
Requests retrieval of all embedded documents. If successful, the DoRequestEmbedded event will be activated.
Return Value
Void.
Syntax
object.RequestAlIEmbedded
Parameters
None.
Comments

This method is used in conjunction with the DeferRetrieval property to control inline display of embedded
documents.

RequestDoc HTML Method

Description
Requests retrieval of a new main document identified by the URL.
Return Value
Void.
Syntax
object.RequestDoc URL
Parameters
URL
Identifies the new main document to be retrieved.
Data Type: String
Param: IN
Default Value: http:
Comments

When RequestDoc is called, the DoRequestDoc event is activated and may be used to modify the DocStream
to be used for retrieval, if desired. The RequestURL property will then be set to the URL parameter specified.
The URL property will not be updated until retrieval is successfully underway and the BeginRetrieval event is
activated.

SelectAll HTML Method

Description

Selects all the text in the current HTML view window.
Return Value

Void.
Syntax

object.SelectAll

HTML Events

The next series of Help topics describe the events activated by the HTML control. Each description includes the
syntax, related parameters, their data type, default value, and whether the parameter is used for input or output
(IN or OUT).

BeginRetrieval HTML Event

Description

This event is activated when document retrieval begins.
Syntax

object_BeginRetrieval
Parameters

None.

Comments

If the application uses a progress bar, it can be initialized at this time. The URL property will be copied from the
RequestURL property immediately before the event is activated.

Click HTML Event

Description

This event is activated when the user presses and then releases the mouse button over an object.
Syntax

object_Click
Parameters

None.

DbIClick HTML Event

Description

This event is activated when the user presses and releases the mouse button twice over an object.
Syntax

object_DblIClick
Parameters

None.

Doclnput HTML Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Docinput As Doclnput)
Parameters
Doclinput
Object describing document input data for the current transfer.
Data Type: Doclnput
Param: IN
Default Value: N/A

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming. For more
information, see Doclnput Object Overview.

DocOutput HTML Event

Description

A DocOutput related event indicating that output data has been transferred or the DocOutput state has
changed.

Syntax
object_DocOutput (DocOutput As DocOutput)
Parameters
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput
Param: IN
Default Value: N/A

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming. For more
information, see Doclnput Object Overview.

DoNewElement HTML Event

Description
The event is activated during HTML parsing when a new element is added.
Syntax

object_ DoNewElement (ElemType As String, EndTag As Boolean, Attrs As HTMLAttrs, Text as String,
EnableDefault As Boolean)

Parameters
Elemtype
Element type for tags; empty string for character data.
Data Type: String
Param: IN
Default Value: None.
EndTag
True if an end tag; otherwise False.
Data Type: Boolean
Param: IN
Default Value: None.
Attrs
Collection of tag attributes, described in section HTMLAttrs Collection Properties of this chapter.
Data Type: HTMLAttrs
Param: IN
Default Value: None.
Text
Character data; empty for tags.
Data Type: String
Param: IN
Default Value: None.
EnableDefault

Overrides default processing. True indicates default processing, False means override defaults. If
EnableDefault is set to false, the HTML control does not store data for this element, but continues parsing.

Data Type: Boolean

Param: INJOUT

Default Value: True.
Comments

For character data, ElemType will be an empty string, and Text will contain the character data. For tags, the
ElemType will contain the tag type, and the new element’s attribute information can be retrieved using the
HTMLALttrs collection argument.

DoRequestDoc HTML Event

Description

The event is activated when the user chooses a link to a different URL or when the RequestDoc method is
called.

Syntax

object_DoRequestDoc (URL As String, Element As HTMLElement, Docinput As Doclnput, EnableDefault
As Boolean)

Parameters

URL
Identifies the requested document
Data Type: String
Param: IN
Default Value: None.

Element
Currently unused, but in the future it will identify the anchor element of the link selected by the user.
Data Type: HTMLElement
Param: IN
Default Value: None.

Doclnput
May be modified to cause the control to accept input from another source.
Data Type: Doclnput
Param: IN
Default Value: None.

EnableDefault
Overrides default processing. True indicates default processing, False means cancel default processing.
Data Type: Boolean
Param: INJOUT
Default Value: True.

Default Action
The default action of DoRequestDoc depends on the URL type.

URL Type Default Action
HTTP and File URL DoRequestDoc creates a default
Doclnput object for retrieving the
document
Other URL types or from a different The Doclnput property is set during
source for any URL type event handling
Comments

If the event is not canceled, the RequestURL property will be set by the control. The URL property will not be
updated until retrieval is successfully underway and the BeginRetrieval event is activated.

DoRequestEmbedded HTML Event

Description
The event is activated when an embedded document, such as an image is to be retrieved for inline display
Syntax

object_DoRequestEmbedded (URL As String, Element As HTMLElement, Docinput As Doclnput,
EnableDefault As Boolean)

Parameters

URL
Identifies the requested document
Data Type: String
Param: IN
Default Value: None.

Element
Currently unused, but in the future it will identify the HTML element of the embedded document.
Data Type: HTMLElement
Param: IN
Default Value: None.

Doclnput
May be modified to cause the control to accept input from another source.
Data Type: Doclnput
Param: IN
Default Value: None.

EnableDefault
Overrides default processing. True indicates default processing, False means cancel the request.
Data Type: Boolean
Param: INJOUT
Default Value: True.

Default Action
The default action of DoRequestEmbedded depends on the URL type.

URL Type Default Action
HTTP and File URL DoRequestEmbedded creates a

default Doclnput object for retrieving
the document.

Other URL types or from a different The Doclnput property is set during
source for any URL type event handling.

{button ,JI(NIA.HLP',"IDH_Doclnput_Object_Properties')} See Also

DoRequestSubmit HTML Event

Description

The event is activated when the user selects form submission, or when the RequestSubmit method of the Form
is called.

Syntax

object_DoRequestSubmit (URL As String, Form As HTMLForm, DocOutput As DocOutput, EnableDefault
As Boolean)

Parameters
URL

Identifies the action URL for that form, and includes the search string for GET form methods as described
in Comments.

Data Type: String
Param: IN
Default Value: None.
Form
Identifies the form being submitted, and is an item in the Forms collection
Data Type: HTMLForm
Param: IN
Default Value: None.
DocOutput
May be modified to cause output to another target.
Data Type: DocOutput
Param: IN
EnableDefault

Overrides default processing. True indicates default processing, False means override defaults. To cancel
the submission request, set the EnableDefault parameter to False. If the event is not canceled, the
RequestURL property will be set by the control. The URL property will not be updated until retrieval is
successfully underway and the BeginRetrieval event is activated.

Data Type: Boolean

Param: INJOUT

Default Value: True.
Default Action

The default action of DoRequestSubmit is to output the form's contents using HTTP, and input the reply as the
next main document. To submit using a different source and/or target during event handling, you may modify
the DocOutput property to specify some other target and link the Doclnput property to receive the reply. To
submit form data to another target without receiving the reply in the HTML control, modify the DocOutput
property to some other target and unlink the Doclnput property so that the reply document is discarded.

Comments

Currently, the form contents for submission always consist of URL-encoded field values contained in the
Form.URLEncodedBody property. In the future, multipart content data may also be submitted for file uploading.
If the form's submission method is GET (rather than POST), the string passed in the URL parameter of this
event will have the URL-encoded body appended after the search character (question mark).

EndRetrieval HTML Event

Description

The event is activated when document retrieval, including embedded documents to be displayed inline, is
complete.

Syntax
object_EndRetrieval
Parameters
None.
Comments

A progress bar could be terminated at this time.

Error HTML Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode
The short error code. For a list of possible HTML error codes see HTML Error Codes.
Description
String containing error information.
sCode
The long Scode.
Source
Error source.
HelpFile
Help file name.
HelpContext
Help file context.
CancelDisplay

Indicates whether to cancel the display. The default is TRUE (no display of the default error message box).
If you do want to use the default message box, set CancelDisplay to FALSE.

GotFocus HTML Event

Description

The event is activated when an object receives the focus, either by user action, such as tabbing to or clicking
the object, or by changing the focus in the code using the SetFocus method.

Syntax
object_GotFocus
Parameters

None.

KeyDown HTML Event

Description

The event is activated when the user presses a key while an object has the focus. All arguments of this event
are standard.

Syntax
object_KeyDown (KeyCode As Integer, Shift As Integer)
Parameters
KeyCode
Indicates the key being pressed.
Data Type: Integer
Param: IN
Default Value: None.
Shift
Indicates whether a Shift, Ctrl, and/or Alt key was also pressed.
Data Type: Integer
Param: IN

Default Value: None.

KeyPress HTML Event

Description

The event is activated when the user presses and releases an ANSI key. All arguments of this event are
standard.

Syntax
object_KeyPress (KeyAsii As Integer)
Parameters
KeyAsii
Indicates the ANSI key being pressed.
Data Type: Integer
Param: IN

Default Value: None.

KeyUp HTML Event

Description

The event is activated when the user releases a key while an object has the focus. All arguments of this event
are standard.

Syntax
object_KeyUp (KeyCode As Integer, Shift As Integer)
Parameters
KeyCode
Indicates the key being released.
Data Type: Integer
Param: IN
Default Value: None.
Shift
Indicates whether a Shift, Ctrl, and/or Alt key was also pressed.
Data Type: Integer
Param: IN

Default Value: None.

LayoutComplete HTML Event

Description
The event is activated when layout of the HTML document is complete.
Syntax
object_LayoutComplete
Parameters
None.
Comments

Embedded document retrieval may not be complete, however, at least the size of each embedded document
and the position of all elements has been determined.

LostFocus HTML Event

Description

The event is activated when an object loses the focus, either by user action, such as tabbing to or clicking the
object, or by changing the focus in the code using the SetFocus method.

Syntax
object_LostFocus
Parameters

None.

MouseDown HTML Event

Description
The event is activated when the user presses a mouse button. All arguments of this event are standard.
Syntax
object_MouseDown (Button As Integer, Shift As Integer, X As Float, Y As Float)
Parameters
Button
Indicates which mouse button was pressed.
Data Type: Integer
Param: IN
Default Value: None.
Shift
Indicates whether a Shift, Ctrl, and/or Alt key was also pressed.
Data Type: Integer
Param: IN

Default Value: None.

X
Indicates the X axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN
Default Value: None.
Y

Indicates the Y axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN

Default Value: None.

MouseMove HTML Event

Description
The event is activated the user moves the mouse. All arguments of this event are standard.
Syntax
object_MouseMove (Button As Integer, Shift As Integer, X As Float, Y As Float)
Parameters
Button
Indicates the mouse button being moved.
Data Type: Integer
Param: IN
Default Value: None.
Shift
Indicates whether a Shift, Ctrl, and/or Alt key was also pressed.
Data Type: Integer
Param: IN

Default Value: None.

X
Indicates the X axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN
Default Value: None.
Y

Indicates the Y axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN

Default Value: None.

MouseUp HTML Event

Description
The event is activated when the user releases a mouse button. All arguments of this event are standard.
Syntax
object_MouseUp (Button As Integer, Shift As Integer, X As Float, Y As Float)
Parameters
Button
Indicates the mouse button being released.
Data Type: Integer
Param: IN
Default Value: None.
Shift
Indicates whether a Shift, Ctrl, and/or Alt key was also released.
Data Type: Integer
Param: IN

Default Value: None.

X
Indicates the X axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN
Default Value: None.
Y

Indicates the Y axis of the pointer when the mouse button was pressed.
Data Type: Integer
Param: IN

Default Value: None.

ParseComplete HTML Event

Description
The event is activated when parsing of the HTML document is complete.
Syntax
object_ParseComplete
Parameters
None.
Comments

Layout and embedded document retrieval may not be complete.

TimeOut HTML Event

Description
The event is activated after no data has been received within the time specified in the Timeout property.
Syntax
object_TimeOut
Parameters
None.
Comments

Although the Timeout value applies to all document retrieval, the Timeout event is activated only for the main
document, not for embedded documents.

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning
prcConnectTimeout = 1 Timeout for connect. If connection is not

established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout = 2 Timeout for receiving data. If no data arrives
within the timeout period, the Timeout event will
be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for custom
timeout events.

UpdateRetrieval HTML Event

Description
The event is activated periodically as the document and embedded objects are retrieved.
Syntax
object_UpdateRetrieval
Parameters
None.
Comments

The RetrieveBytesTotal and RetrieveBytesDone properties can be queried at the time this event is activated to
update a progress bar.

HTMLALttrs Collection

An HTMLAUtrs object is a collection containing HTMLAttr items. An HTMLAttrs collection is passed as an argument
when the DoNewElement event is activated.

Count HTMLAttrs Collection Property

Description
The number of attributes in the collection.
Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range

>=zero.

Item HTMLAttrs Collection Method

Description

Returns an item from the collection. The ltem method is the default method for a collection.
Syntax

object.ltem (Index)
Parameters

Index

Identifies the item in the collection. May be either an integer or a string. Integer indices identify an item by
its one-based index. String indices identify an item by its Name property.

Data Type: Variant
Param: IN

Default Value: None.

HTMLALttr Item

An HTMLALtr object is an item in an HTMLAttrs collection. HTMLAtr items are used for specifying the attribute
names and values of an HTML element.

HTMLALttr Item Properties

The HTMLALtr ltems support the Name and Value properties.

Name HTMLALttr item Property

Description
The attribute name. This string is never empty, and may be uppercase, lowercase or mixed case.
Syntax
HTMLALttrs.ltem(/ndex).Name
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
See RFC 1866 for attribute name syntax.

Value HTMLALttr Item Property

Description
The attribute value. This string may be empty. If not empty, the string is unescaped (decoded).
Syntax
HTMLALttrs.Item(/ndex).Value
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
Any string.

HTMLForms Collection

An HTMLForms object is a collection containing HTMLForm items. The Forms property of the HTML control is an
HTMLForms collection.

HTMLForms Collection Properties

The HTMLForms collection supports the Count property.

Count HTMLForms Collection Property

Description
The number of forms in the collection.
Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range

>=zero.

HTMLForms Collection Methods

The HTMLForms collection supports the ltem method.

Item HTMLForms Collection Method

Description
Returns an item from the collection. The ltem method is the default method for a collection.
Syntax
object.ltem (Index)
Parameters
Index
Identifies the item by its one-based index. Must be an integer.
Data Type: Variant
Param: IN

Default Value: None.

HTMLForm Item

An HTMLForm object is an item in an HTMLForms collection. HTMLForm items are used for submitting
documents using HTTP.

Method HTMLForm Item Property

Description

The HTTP submission method for the form.
Syntax

object.HTMLForms(/ndex).Method
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range

“Get” or “Post”.

URL HTMLForm Item Property

Description
The action URL for the form.
Syntax
object. H-TMLForms(/ndex).URL
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
Valid URL.

URLEncodedBody HTMLForms Item Property

Description
The URL-encoded body text, representing the values of all form fields used for HTTP submission.
Syntax
object. HTMLForms(index).URLEncodedBody
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
None.
Range
URL-encoded string.

RequestSubmit HTMLForm Iltem Method

Description
Requests submission of a form.
Return Value
Void.
Syntax
object.H-TMLForms(/ndex).RequestSubmit
Parameters
None.
Comments

When RequestSubmit is called, the DoRequestSubmit event is activated to determine the document target to
be used for submission. The RequestURL property is then set to the action URL of the form. The URL property
will not be updated until retrieval is successfully underway and the BeginRetrieval event is activated.

HTML Sample Sessions
Click on the buttons below to see examples of how the HTML control might be used in a real application.

{button ,JICNIA.HLP','IDH_HTML_Session_1')} Sample Session 1
{button ,JICNIA.HLP','IDH_HTML_Session_2')} Sample Session 2
{button ,JICNIA.HLP',"IDH_HTML_Session_3')} Sample Session 3

HTML Session 1

To point the HTML control to a particular URL, you can call the RequestDoc method, as shown here. This allows
viewing (and then browsing from) a specific network document or local file.

HTML1.RequestDoc (“http://www.somecompany.com”)

{button ,JICNIA.HLP';'IDH_HTML_Session_2')} Sample Session 2
{button ,JICNIA.HLP','IDH_HTML_Session_3')} Sample Session 3

HTML Session 2

To change document retrieval behavior, you can override the DoRequestDoc event by setting the EnableDefault
parameter to False during event handling. This will prevent automatic document retrieval when an HTML link is
selected by the user, as shown here, and allow substituting different (or no) behavior. (The same technique can be
used in handling the DoRequestEmbedded event to override retrieval of embedded documents such as inline
images.)

Private Sub HTML1 DoRequestDoc (ByVal URL As String,
ByVal Element As Variant,
ByVal DocInput As DocInput,
EnableDefault As Boolean)
EnableDefault = False
‘now do something else with the URL parameter, such as:
MsgBox (“URL requested: “ & URL)
End Sub

{button ,JICNIA.HLP',"IDH_HTML_Session_1')} Sample Session 1
{button ,JICNIA.HLP','IDH_HTML_Session_3')} Sample Session 3

HTML Session 3

To use the HTML control as a nonvisual parser, set the Visible property to False at design time, and the
EnableDefault parameter of the DoNewElement event to False during event handling. Setting the EnableDefault
parameter to False will prevent storage and further processing of the element, eliminating overhead other than for
parsing. This allows analyzing or processing the parsed HTML element information without the penalty of
processing and storage overhead that would be needed for viewing and browsing.

Private Sub HTML1 DoNewElement (ByVal ElemType As String,
ByVal EndTag As Boolean,
ByVal Attrs As HTMLAttrs,
ByVal Text As String,
EnableDefault As Boolean)
EnableDefault = False
‘now do something else with the parameters, such as:
If ElemType = 7
MsgBox (“Text: “ & Text)
ElseIf EndTag Then

MsgBox (“Element: </“ & ElemType &7>°)

Then ‘is plain text data

Else
MsgBox (“Element: <“ & ElemType & “> with “ & Attrs.Count & “ attributes”)
End If

End Sub

{button ,JICNIA.HLP'," IDH_HTML_Session_1')} Sample Session 1
{button ,JICNIA.HLP',"IDH_HTML_Session_2')} Sample Session 2

o=—T

HTTP Client ActiveX Control Overview

The HTTP (Hypertext Transport Protocol) Control implements the HTTP Protocol Client based on the HTTP
specification. This control lets you directly retrieve HTTP documents if no browsing or image processing is
necessary.

It can be used by developers who implement HTML browsers or other services that need access to HTTP. For
example, the HTML Control internally instantiates this object and uses it for HTTP transactions.

The HTTP Control uses a number of methods to retrieve or send (post) a document. It can retrieve MIME
information about the document from the Headers collection property.

Properties, methods and events supported by the HTTP Client Control are summarized alphabetically in the
following table.

Property Method Event
Blocking AboutBox Busy
BlockResult Cancel Cancel
Busy GetDoc Doclnput
Doclnput SendDoc DocOutput
DocOutput Error
Document Log
EnableTimer ProtocolStateChanged
Errors StateChanged
LocalPort TimeOut
Loggin

Method

NotificationMode

ProtocolState

ProtocolStateString

RemoteHost

RemotePort

ReplyCode

ReplyString

SleepTime

SocketHandle

Timeout

URL

HTTP Proxy Obiject

Using the HTTP Control

To use the HTTP ActiveX Control you must choose the HTTP toolbox icon.

There should be no speed overhead and response delay other than the one given by the network. This control
uses and is dependent on the DocStream objects (Doclnput and DocOutput). For more information, see
DocStream.

Blocking HTTP Client Property

Description

Indicates whether methods should block until complete or not.
Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult HTTP Client Property

Description

Returns the result value of the last blocking method called.
Syntax

object.BlockResult
Permission

R (Read only).
Availability

R (Runtime).
Data Type

BlockingResultConstants.
Default Value

icBlockOK..
Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut 1 Blocking method returned due to timeout.
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.

Busy HTTP Client Property

Description

Indicates if a command is in progress.
Syntax

object.Busy [= Boolean]
Permission

R (Read only).
Availability

R (Runtime).
Data Type

Boolean.
Default Value

N/A.
Range

True or False

Doclnput HTTP Client Property

Description
Object describing input information for the document being transferred.
Syntax
object.Doclnput
Permission
R (Read-only).
Availability
R (Runtime)
Data Type
Doclnput.
Default Value
N/A.
Range
N/A.
Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the SendDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the Doclnput object may be set before calling the SendDoc method or they may be passed as
arguments to this method. The Doclnput object is also used for conveying information about the progress of the
document transfer and for data linking and streaming.

For more information, see Doclnput event and Common Control Objects.

DocOutput HTTP Client Property

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.
Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

For more information, see DocOutput event and Common Control Objects.

Document HTTP Client Property

Description

Identifies the target document. The Document property can be used with RemoteHost to identify the URL. It
can also be used instead of the URL.

Syntax

object.Document [= String]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

String.
Default Value

Empty String.
Range

N/A.

EnableTimer HTTP Client Property

Description

Enable timer for the specified event.
Syntax

object.EnableTimer (event) [= Boolean]
Permission

W (Write Only).
Note: This is the only control property that is Write only.
Availability

R (Runtime)
Data Type

Boolean.
Default Value

False. (The timer for this event will not be enabled.)
Range

True or False
Comments

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning

prcConnectTimeout =1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout =2 Timeout for receiving data. If no data arrives
within the timeout period, the Timeout event
will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for custom
timeout events.

Errors HTTP Client Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient. For more details,
see icError Item Overview.

Syntax

object.Errors
Permission

R (Read only).
Availability

R (Runtime).
Data Type

icErrors.
Default Value

N/A.
Range

N/A.

LocalPort HTTP Client Property

Description

Designates the local port to use.
Syntax

object.LocalPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

0.
Range

0 - 65535

Logging HTTP Client Property

Description

Indicates whether log events should be fired when log data is available.
Syntax

object.Logging [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R(Runtime).
Data Type

Boolean.
Default Value

False.
Range

True or False

Method HTTP Client Property

Description

Method used to retrieve or post (send) the document.
Syntax

object.Method [= Integer]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Integer.
Default Value

1 (prcGet)
Range
1-4. The possible values are:
Value Meaning
prcGet = 1 Get method requests the whole document.

prcHead =2 Head method requests only the headers of a document.

prcPost =3 Post method posts the whole document to the server as
a sub-ordinate of the document specified by the URL.

prcPut = 4 Put method puts the whole document to the server. The
document replaces an existing document specified by the
URL.

NotificationMode HTTP Client Property

Description
Determines when notification is issued for incoming data. Notification can also be suspended.
Syntax
object.NotificationMode [= Integer]
Permission
W (Read/Write).
Availability
R (Runtime) and D (Design).
Data Type
NotificationModeConstants.
Default Value
icContinuousMode.
Range
0-maximum unsigned long. At present, the values are:

Name Value Description

icCompleteMode 0 icCompleteMode: notification is provided
when there is a complete response.

icContinuousMode 1 icContinuousMode: an event is
repeatedly activated when new data
arrives from the connection.

ProtocolState HTTP Client Property

Description
This property specifies the current state of the protocol.
Syntax
object.ProtocolState
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Integer.
Default Value

prcBase.
Range

0-1. Constants defined for the enum types of ProtocolState property are:
Value Meaning
httpBase = 0 Base state before connection to

server is established.

httpTranferring =1 Data is being transferred.

ProtocolStateString HTTP Client Property

Description
String representation of ProtocolState.
Syntax
object.ProtocolStateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
“Base”.
Range
N/A.

RemoteHost HTTP Client Property

Description

The remote machine to connect to if the RemoteHost parameter in the Connect method is missing. You can
either provide a host name or an IP address string in dotted format. For example, “127.0.0.1”.

Note: This is the default property of the control.
Syntax

object.RemoteHost [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

“127.0.0.1”.
Range

N/A.

RemotePort HTTP Client Property

Description

The remote port number to which to connect.
Syntax

object.RemotePort [= Long]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Long.
Default Value

80.
Range

1-65535.

ReplyCode HTTP Client Property

Description

The value of the reply code is a protocol specific number that determines the result of the last request, as
returned in the ReplyString property.

Syntax
object.ReplyCode
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
0.
Range
0-(undefined)

ReplyString HTTP Client Property

Description
Lists the last reply string sent by the HTTP Server to the client as a result of a request.
Syntax
object.ReplyString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

SleepTime HTTP Client Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SocketHandle HTTP Client Property

Description
Socket handle for the primary connection (Request/Reply connection).
Syntax
object.SocketHandle
Permission
R (Read only)
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
>=0
Comments

Some protocols require more than one connection. SocketHandle is the handle for the request/reply
connection.

State HTTP Client Property

Description

This property specifies the connection state of the control.
Syntax

object.State
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Integer.
Default Value

prcDisconnected.

Range
1-6. Constants defined for enum types of State property are:
Value Meaning
prcConnecting = 1 Connecting. Connect has been requested,

waiting for connect acknowledge.

prcResolvingHost = 2 Resolving Host. Occurs only when
RemoteHost is in name format rather than
dot-delimited IP format.

prcHostResolved = 3 Resolved the host. Occurs only if
ResolvingHost state has been entered
previously.

prcConnected = 4 Connection established.

prcDisconnecting = 5 Connection closed. Disconnect has been
initiated.

prcDisconnected = 6 Initial state when protocol object is

instantiated, before Connect has been
initiated, after a Connect attempt failed or
after Disconnect performed.

StateString HTTP Client Property

Description
A string representation of State.
Syntax
object.StateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type

String.
Default Value
"Disconnected".
Range
N/A.

Timeout HTTP Client Property

Description
Timeout value for the specified event. The event is specified by entering:

Timeout (short event)
Syntax

object.Timeout (event) [= Long]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
Long.
Default Value
0.
Range
0-maximum unsigned long. Constants defined for enum types for events are:

Value Meaning

prcConnectTimeout=1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout =2 Timeout for receiving data. If no data arrives
within the timeout period, the Timeout event
will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for custom
timeout events.

URL HTTP Client Property

Description
URL string identifying the current document being transferred. URL format is:

HTTP://host:port/documentnameandpath
Syntax

object.URL [= String]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

String.
Default Value

Empty string.
Range

Valid URL.
Comments

URL may be set before calling the GetDoc or SendDoc method of the control, or it may be passed as an
argument to these methods. If it is passed as an argument, the URL property will be set to the argument value.

In the HTTP control, the URL property identifies an HTTP request of any kind. The URL type (first part up to the
colon) may be omitted. In this case, it will default to the correct type for this control. For example, the http:

string may be omitted when using the HTTP control.

AboutBox HTTP Client Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

Cancel HTTP Client Method

Description
Cancels a pending request.
Return Value
Void.
Syntax
object.Cancel
Parameters

None.

GetDoc HTTP Client Method

Description
A DocOutput related method that requests retrieval of a document identified by a URL.
Return Value
Void.
Syntax
object.GetDoc [URL], [Headers], [OutputFile]
Parameters
URL
Optional. The URL identifying the remote document to be retrieved.
Data Type: String
Param: IN
Default Value: Doclnput.URL
Headers

Optional. Headers used for requesting the document. This argument only applies to protocols where
request headers can be specified (for example, HTTP).

Data Type: DocHeaders
Param: IN
Default Value: Doclnput.Headers

OutputFile
Optional. A local file to which the retrieved document will be written.
Data Type: String
Param: IN
Default Value: DocOutput.Filename

Comments
The GetDoc method permits retrieving a document from the server.

The URL and (for some controls) Headers are used as inputs specifying which document is to be retrieved. The
OutputFile argument indicates where the retrieved document should be written locally.

The URL type (first part up to the colon) may be omitted and will default to the correct type for this control. For
example, when using the HTTP control, the "http:" string may be omitted.

For basic use of this control, arguments should be passed to GetDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The arguments of GetDoc correspond to properties in the Doclnput and
DocOutput objects of this control. Doclnput and DocOutput properties can be set before calling GetDoc to avoid
passing arguments. The Doclnput and DocOutput events can also be used for transferring data using
streaming rather than local files.

For more information, see Doclnput and DocOutput Objects and Common Control Objects.

SendDoc HTTP Client Method

Description

A Doclnput related method that requests sending a document identified by a URL.
Return Value

Void.
Syntax

object.SendDoc [URL], [Headers], [InputData), [InputFile], [OutputFile]
Parameters

URL

Optional. The URL identifying the remote document to be sent. If specified, the URL property will be set to
this value.

Data Type: String

Param: IN
Default Value: Doclnput.URL
Headers

Optional. Headers used for sending the document. This argument only applies to protocols where
document headers can be sent (for example, SMTP and HTTP).

Data Type: DocHeaders
Param: IN
Default Value: Doclnput.Headers
InputData
Optional. A data buffer containing the document to be sent.
Data Type: VARIANT
Param: IN
Default Value: Doclnput.SetData
InputFile
Optional. A local file containing the document to be sent.
Data Type: String
Param: IN
Default Value: Doclnput.Filename
OutputFile

Optional. A local file to which a reply document is written. This argument only applies for protocols that
return a reply document (for example, HTTP).

Data Type: String
Param: IN
Default Value: DocOutput.Filename
Comments
The SendDoc method permits sending (posting or putting) a file to the server.

The URL and (for some controls) Headers are used as inputs describing the document to be sent. The

InputData and InputFile arguments (only one can be specified) contain the document to be sent. For controls
such as HTTP that return a reply document, the OutputFile argument indicates where the reply document

should be written locally.

The URL type (first part up to the colon) may be omitted and will default to the correct type for this control. For
example, when using the HTTP control, the "http:" string may be omitted .

For basic use of this control, arguments should be passed to SendDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The arguments of SendDoc correspond to properties in the Doclnput and
DocOutput objects of this control. Doclnput and DocOutput properties can be set before calling SendDoc to
avoid passing arguments. The Doclnput and DocOutput events can also be used for transferring data using
streaming rather than local files.

For more information see Doclnput Object Overview and DocOutput Object Overview.

HTTP Client Events

Events are used for HTTP client notification. They indicate that an action has been requested and processed. Any
errors which occur during command processing result in the Error event being called with appropriate error codes.
Error codes, state changes, and protocol return values are usually checked during event processing.

The following sections describe the events supported by the HTTP Client Control. Each event description includes
the syntax, related parameters, their data type, default value, and whether the parameter is used for input or
output (IN or OUT).

Busy HTTP Client Event

Description
This event is activated when a command is in progress or when a command has completed.
Syntax
object_Busy (Busy As Boolean)
Parameters
Busy
Indicates whether or not a command is in progress.

Data Type: Boolean. If the argument is True, a command is in progress.

Cancel HTTP Client Event

Description

This event is activated after a cancellation request has been completed and satisfied. After this event the
object's state changes to prcDisconnected.

Syntax
object_Cancel
Parameters

None.

Docinput HTTP Client Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Docinput As Doclnput)
Parameters
Doclinput
Object describing document input data for the current transfer.
Data Type: Doclnput

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming. For more
information, see For more information see Doclnput Object Overview.

DocOutput HTTP Client Event

Description
A DocOutput related event indicating that output data has been transferred.
Syntax
object_DocOutput (DocOutput As DocOutput)
Parameters
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming. For more
information, see For more information see Doclnput Object Overview.

Error HTTP Client Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters

ErrCode

The short error code.
Description

String containing error information.
sCode

The long Scode.
Source

Error source.
HelpFile

Help file name.
HelpContext

Help file context.
CancelDisplay

Indicates whether to cancel the display. The default is TRUE (no display of the default error message box).
If you do want to use the default message box, set CancelDisplay to FALSE.

Log HTTP Client Event

Description

This event is fired when logging data is available.
Syntax

object_Log
Parameters

None.

ProtocolStateChanged HTTP Client Event

Description

This event is activated whenever the protocol state changes.
Syntax

object_ProtocolStateChanged (State As Integer)
Parameters

Refer to the ProtocolState property and ProtocolStateString for possible values of the state parameter.

StateChanged HTTP Client Event

Description

This event is activated whenever the state of the transport state changes.
Syntax

object_StateChanged (State As Integer)
Parameters

Refer to the State property and StateString for possible values of the state parameter.

TimeOut HTTP Client Event

Description
This event is activated when the timer for the specified event expires.
Syntax
object_TimeOut (ByVal Event As Integer, Continue As Boolean)
Parameters
Event
Defines the event to which the time interval applies.
Data Type: Short
Continue
Determines if the timer is active or not. Set Continue to TRUE to keep the timer active.
Data Type: Boolean
Default Value: False
Comments

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning
prcConnectTimeout = 1 Timeout for connect. If connection is not

established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout = 2 Timeout for receiving data. If no data
arrives within the timeout period, the
Timeout event will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for
custom timeout events.

{button ,JICNIA.HLP',"IDH_Timeout')} See Also

HTTP Localization

Error strings for this control are localized.

HTTP Sample Sessions

Click on one of the items below to see an example of how to use HTTP Control to receive an HTTP document,
parse it, and process the contents of the document.

Receiving a Reply
Sending a Request Using DocStream
Processing Errors

Receiving a Reply

To receive a reply and process the contents of the document, you might code:

Private Sub HTTPCT1 DocOutput (ByVal docOutput As docOutput)

If (docOutput.State = 3) Then 'DATA
contentType = docOutput.DocHeaders.Item("content-type") .Value
Dim data As Variant

if InStr$(l, contentType, “text/”, 1) then
retrieve text data
docOutput.GetData data
txtOutput.Text = txtOutput.Text & data
txtLog = txtLog & “received html data of length = “ & str$(Len(data)) &
NL
else
¢ Image or other non-html data
docOutput.GetData (data, vbArray + vbByte)
txtLog = txtLog & “received binary data of length = “ & Str$ (UBound(data)) & NL
end if
End If
End Sub

See Also

Sending a Request Using DocStream
Processing Errors

Sending a Request Using DocStream

The following code shows how to send a request using DocStream objects.

Private Sub Commandl Click()
¢ Send request
‘ use the following line if you want to write the data into a file, in which case

‘ no processing of DocOutput event will be necessary

¢ HTTTCT1.DocOutput.FileName = “file.tmp”
HTTPCT1.GetDoc "http://www.netmanage.com/"
End Sub

See Also

Receiving a Repl
Processing Errors

Processing Errors

The following code can be used to process any errors that might occur.

Private Sub Httpctl Error (Number As Integer, Description As String, Scode As
Long, Source As String, HelpFile As String, HelpContext As Long, CancelDisplay
As Boolean)

CancelDisplay = True

errlLog = errlog & "Error " & Str$ (Number) & ": " & Description & NL

End Sub

See Also

Receiving a Reply
Sending a Request Using DocStream

HTTP Proxy Object

The Proxy object provides an interface to get and set information used to access hosts external to a firewall
protected domain. Through this interface, you can set a few parameters and then access external hosts as you

would do if the firewall did not exist.
A HTTP Proxy server will process URLs and pass back the obtained information.

The HTTP Proxy properties are as follows:

.
o
7]
-

=
=
o
‘o
o

o
]
3

Host HTTP Proxy Property

Description

The address or name of the remote machine that is the proxy server. You can either provide a host name or an
IP address string in dotted format. For example, 127.0.0.1.

Syntax

object.Proxy.Host [= String]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

“127.0.0.1”
Range

N/A.

Mode HTTP Proxy Property

Description
Determines whether the connection is to be made to the proxy server or to the HTTP.RemoteHost server.
Syntax
object.Proxy.Mode [= Boolean]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
Boolean.

Default Value

FALSE.
Range
True or False.
Constant Meaning
False Proxy service is not used.
True Connections are made to the proxy

server and the URL is passed to that
server for processing

Port HTTP Proxy Property

Description

The port number of the proxy server host to connect to.
Syntax

object.Proxy.Port [= Long]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

Long.
Default Value

80.
Range

1-65535.
Comment

Although the data type is long, WinSock conventions limit the maximum port number to be the maximum
signed short value.

CIHTTF
- HTTP Server ActiveX Control Overview

The HTTP (Hypertext Transport Protocol) Server Control implements the HTTP Server based on the HTTP
specification. This control enables users to write HTTP servers, add security checking/filtering, gather statistics,
and other functions.

The HTTP Server keeps a collection of connected sessions. For each session, when there is a request coming in,
the Request event is fired. The Method property on the session shows what kind of request it is and the Document
property is the requested document. You can decide what to do with the request.

The following is a list of possible request methods.

GET

HEAD

PUT

POST

Properties, methods and events supported by the HTTP Client Control are summarized alphabetically in the
following table.

Property Method Event

Server

Blocking CloseAll Accept

BlockResult AboutBox CloseAll

DefaultDocument Start Doclnput

Errors Stop DocOutput

ListenPort Error

LocalPort RemoteHostName

MaxConnections Request

RootDirectory StateChanged
TimeOut

SleepTime
SocketHandle

Sessions
Collection

T
3

Count

Session Item

Doclnput los
DocOutput ReplyDoc
NotificationMode SendData
RemoteHostIP

RemoteHostName

RemotePort

ReplyString

RequestString

State

StateString

Tag

ThreadID

Timeout

@)
o]

Blocking HTTP Server Property

Description

Indicates whether methods should block until complete or not.
Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult HTTP Server Property

Description

Returns the result value of the last blocking method called.
Syntax

object.BlockResult
Permission

R (Read only).
Availability

R (Runtime).
Data Type

BlockingResultConstants.
Default Value

icBlockOK..
Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut Blocking method returned due to timeout.

1
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.

DefaultDocument HTTP Server Property

Description
Name of the default document for default hanlding of request.
Syntax
object.DefaultDocument = index.htm
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
BSTR.
Default Value
“index.htm”.
Range
N/A.

Errors HTTP Server Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient. For more details,
see icErrors Item Overview.

Syntax
object.Errors
Permission
R (Read only).
Availability
R (Runtime).
Data Type
icErrors.
Default Value
N/A.
Range
N/A.

LocalPort HTTP Server Property

Description

Designates the local port to use.
Syntax

object.LocalPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

0.
Range

0 - 65535

ListenPort HTTP Server Property

Description

The port number to listen on.
Syntax

object.ListenPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default

0.
Range

0-65535.

MaxConnections HTTP Server Property

Description

The maximum number of clients allowed to connect to the server. If connecting clients exceeds
MaxConnections, the Error event is fired and new connections are rejected until the maximum number of
connections drops below the MaxConnection limit.

Syntax

object.MaxConnections [=/Long]
Permission

W (Read/Write).
Availability

D (Design).
Data Type

Long.
Default Value

100.
Range

0-65535

RootDirectory HTTP Server Property

Description
Root directory for default handling of requests.
Syntax
object.RootDirectory = [string]
Permission
W (Read/Write).
Availability
D (Design).
Data Type
BSTR.
Default Value
c:\netmanag.32\webdocs.
Range
N/A.

Sessions HTTP Server Property

Description

The server session collection object. Session object provides access to a connection accepted from a client.
Sessions can be enumerated and actions can be performed on them. Normally a session object is passed as
an argument to an event and the action can be performed on the object.

Syntax
object.Session [= Object]
Permission
R (Read only).
Availability
R (Runtime).
Data Type
Object.
Default Value
N/A.
Range
N/A.

SleepTime HTTP Server Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SocketHandle HTTP Server Property

Description
Socket handle for the primary connection (Request/Reply connection).
Syntax
object.SocketHandle
Permission
R (Read only)
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
>=0
Comments

Some protocols require more than one connection. SocketHandle is the handle for the request/reply
connection.

Count Sessions Collection Property

Description

The number of items in the collection.
Syntax

object.Count [= Integer]
Permission

R (Read-only).
Availability

R(Runtime).
Data Type

Long.
Default Value

N/A.
Range

0-65535

Doclnput Session Item Property (HTTP)

Description

Object describing input information for the document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput.
Default Value

N/A.
Range

N/A.
Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the SendDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the Doclnput object may be set before calling the SendDoc method or they may be passed as
arguments to this method. The Doclnput object is also used for conveying information about the progress of the
document transfer and for data linking and streaming.

For more information, see Doclnput event and Common Control Objects.

DocOutput Session Item Property (HTTP)

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.
Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

For more information, see DocOutput Event and Common Control Objects.

Document Session Item Property

Description

Identifies the target document in the client request.
Syntax

object.Document = [string]
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A.
Range

N/A.

Method Session Item Property

Description
HTTP request type.
Syntax
object.Method = [Integer]
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
MethodConstants.
Default Value

N/A.
Range
1-4. The possible values are:
Value Meaning
prcGet = 1 Get method request the whole document.
prcHead = 2 Head method requests only the headers of a
document.
prcPost =3 Post method posts the whole document to the server.
prcPut = 4 Put method puts the whole document to the server.

NotificationMode Session Item Property

Description

Determines when notification is issued for incoming data. Notification can also be suspended.
Syntax

object.NotificationMode [= Integer]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

NotificationModeConstants.
Default Value

1.

Range
0-maximum unsigned long. At present, the values are:
Name Value Description
icCompleteMode 0 COMPLETE: notification is

provided when there is a

complete response.

icContinueousMode 1 CONTINUOUS: an event is
repeatedly activated when
new data arrives from the
connection.

RemoteHostIP Session Item Property

Description

Remote host IP address string for the connected session. Can be used by the server to display information
about all sessions.

Syntax
object.RemoteHostIP [= String]
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
BSTR.
Default Value
N/A
Range
N/A.

RemoteHostName Session Item Property

Description

Remote host’s official name for the connected session. Can be used by the server to display information about
all sessions. This property can be examined after the RemoteHostName event is successfully fired. See
RemoteHostName event for additional information.

Syntax

object.RemoteHostName [= String]
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A

Range

N/A.

RemotePort Session Item Property (HTTP)

Description

The remote port number to which to connect.
Syntax

object.RemotePort [= Long]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Long.
Default Value

8889
Range

1-65535.

ReplyString Session Item Property (HTTP)

Description
Buffer contains an ASCII reply string for the session.
Syntax
object.ReplyString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

State Session Item Property

Description

This property specifies the connection state of the control.
Syntax

object.State
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Integer.
Default Value

prcDisconnected.

Range
1-6. Constants defined for enum types of State property are:
Value Meaning
prcConnecting = 1 Connecting. Connect has been requested,

waiting for connect acknowledge.

prcResolvingHost =2 Resolving Host. Occurs when RemoteHost is in
name format rather than dot-delimited IP format.

prcHostResolved =3 Resolved the host. Occurs only if
ResolvingHost state has been entered
previously.

prcConnected = 4 Connection established.

prcDisconnecting =5 Connection closed. Disconnect has been
initiated.

prcDisconnected = 6 Initial state when protocol object is instantiated,
before Connect has been initiated, after a
Connect attempt failed or after Disconnect
performed.

StateString Session Item Property (HTTP)

Description
A string representation of State.
Syntax
object.StateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.

Default Value
"Disconnected".
Range
N/A.

Tag Session Item Property

Description
A placeholder for user data.
Syntax
object.Tag
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Variant.
Default Value
Empty.
Range
N/A.

ThreadID Session Item Property (HTTP)

Description
Sessions thread identifier
Syntax
object.ThreadlD
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
N/A.

Timeout Session Item Property (HTTP)

Description

The time in seconds. Timeout event is fired when a connected session has no activity (no request from a
client). Normally, the client is prevented from timing out when a data transfer is taking place. When the Timeout
event is fired, user may choose to log the client out by calling the Close method on the session. If the user did
not choose to log the client out, the Timeout event will be fired again when there is still no activity within the
Timeout period.

Syntax

object.Timeout (event) [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

300 seconds (5 minutes).
Range

0-65535

HTTP Server Methods

Methods are called to perform a particular operation. The next series of Help topics describe the methods
performed by the HTTP Server Control.

AboutBox HTTP Server Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

CloseAll HTTP Server Method

Description
Close all connected sessions. The CloseAll event is fired.
Return Value
Void.
Syntax
object.CloseAll
Parameters

None

Start HTTP Server Method

Description
Opens the server up for listening on the port specified by the ListenPort property.
Return Value
Void.
Syntax
object.Start
Parameters

None

Stop HTTP Server Method

Description
Server stops listening for incoming connections.
Return Value
Void.
Syntax
object.Stop [DisconnectSession]
Parameters
DisconnectSession

Optional. If DisConnectSession is true, all connected sessions are disconnected. If DisconnectSessions is
false, connected sessions will not be closed.

Data Type: Boolean
Param: IN

Default Value: True

Item Sessions Collection Method

Description
Returns the session object from the collection. This method is the default method for a collection.
Return Value
Session object.
Syntax
object.Iltem index
Parameters
index
Index is an integer number.
Data Type: Variant
Param: IN

Default Value: None

Close Session Item Method

Description

Close the session by disconnecting. Error event is fired in case of failure. StateChanged event is fired after the
connection is closed.

Return Value
Void.

Syntax
object.Close

Parameters

None

ReplyDoc Session Iltem Method (HTTP)

Description
Initiates sending of a document
Return Value
Void.
Syntax
object.ReplyDoc [Header] [InputData) [InputFiler]
Parameters
Header

Optional. Header used for sending the document. This argument only applies for protocols where
document headers can be sent.

Data Type: Docheaders.
Param: IN
Default Value: Doclnput, Headers

Inputdata
Optional. A data buffer containing the document to be sent
Data Type: VARIANT.
Param: IN
Default Value: Doclnput, SetData

InputFile
Optional. A local file containing the document to be sent.
Data Type: BSTR.
Param: IN
Default Value: Doclnput, FileName

Comments
The ReplyDoc method allows sending (posting or putting) a document.

For basic use of this method, arguments should be passed to SendDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The properties of the Doclnput and DocOutput objects can be set before
calling ReplyDoc. The Doclnput and DocOutput events can also be used for transfering data using streaming
rather than local files. See the Doclnput and DocOutput properties, the Doclnput and DocOutput events, and
the separate Doclnput and DocOutput object documentation for more information.

SendData Session Item Method (HTTP)

Description

Send small amount of data to client. Large amount of data should be sent using DocStream. (See Doclnput and
ReplyDoc in this Chapter.)

Return Value
Void.
Syntax
object.SendData data
Parameters
Data
Data to be sent
Data Type: VARIANT.
Param: IN
Default Value: N/A

HTTP Server Events

Events are used for protocol server notification. They indicate that an action has been requested and processed.
Any errors which occur during command processing result in the Error event being called with appropriate error
codes. Error codes, state changes, and protocol return values are usually checked during event processing.

The Help topics that follow describe the events supported by the HTTP Server Control. Each description includes
the syntax, related parameters, their data type, default value, and whether the parameter is used for input or
output (IN or OUT). For a complete listing of HTTP Server Events, see HTTP Server ActiveX Control Overview.

Accept HTTP Server Event

Description

This event is fired when there is an incoming connection request.
Syntax

object_Accept (Session As Object, AcceptConnection As Boolean)
Parameters

Session

Session’s property RemoteHostIP and RemotePort can be examined and used to decide whether to
accept the session or not.

AcceptConnection

To reject the connection, AcceptConnection needs to be set to FALSE. The default value for
AcceptConnection is TRUE

CloseAll HTTP Server Event

Description

This event is fired after all sessions have been closed.
Syntax

object_CloseAll
Parameters

None

Docinput HTTP Server Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Session As Object, Docinput As Doclnput)
Parameters
Session
The session object on which transfer of input data happens.
Data Type: Object
Default Value: N/A
Doclnput
Object describing document input data for the current transfer.
Data Type: Doclnput
Default Value: N/A

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming.

Doctinput and DocOutput events are also fired when the Doclnput/DocOutput states have changed.

DocOutput HTTP Server Event

Description
A DocOutput related event indicating that output data has been transferred or the DocOutput state has changed
Syntax
object_DocOutput (Session As Object, DocOutput As DocOutput)
Parameters
Session
The object on which output data transfer happens.
Data Type: Object
Default Value: N/A
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput
Default Value: N/A

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming.

Doctinput and DocOutput events are also fired when the Doclnput/DocOutput states have changed.

Error HTTP Server Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode

The short error code. For a list of possible NNTP error codes see the NNTP Error Code section of the Error
Codes and Messages Appendix.

Description

String containing error information.
sCode

The long Scode.
Source

Error source.
HelpFile

Help file name.
HelpContext

Help file context.
CancelDisplay

Indicates whether to cancel the display. The default value for CancelDisplay is False meaning you do want
to use the default message box. If you does not want to display the default error message box, set
CancelDisplay to True.

RemoteHostName HTTP Server Event

Description

After a session has been accepted, the Internet protocol Server starts to asynchronously resolve the remote
host IP address to its official name. When the resolution is complete, the RemoteHostName event is fired.

Syntax
object RemoteHostName (Session As Object, Success As Boolean)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Default Value: N/A
Success
If Success is TRUE, then session’s RemoteHostName property holds remote host’s official name.
Data Type: Boolean
Default Value: N/A

Request HTTP Server Event

Description

This event is fired after a request from client has been received. Request value can be determined from
session’s RequestString property.

Syntax
object_Request (Session As Object, EnableDefault As Boolean)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A
EnableDefault

EnableDefault enables/disables default handling of the request which is protocol dependent. The default
value for EnableDefault is TRUE.

Data Type: Boolean
Param: IN
Default Value: TRUE

StateChanged HTTP Server Event

Description

This event is fired after the state of the transport state for the Session has changed. The state is given in
Session’s State and StateString properties.

Syntax
object_StateChanged (Session As Object)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Default Value: N/A

TimeOut HTTP Server Event

Description

This event is fired when the timer for the Session has expired (no incoming data from the client without the
timeout period). See Session object’s Timeout property for mode details.

Syntax
object_TimeOut (Session As Object)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Default Value: N/A

HTTP Server Sample Session

The following is all the code necessary to write a proxy HTTP server. It uses one HTTP server control
(HTTPSRProxy) and one HTTP client control (HTTPCT1).

Private Sub btnProxyStart Click()
HTTPSRProxy.MaxConnections = max
HTTPSRProxy.ListenPort = port
HTTPSRProxy.Start

End Sub

Private Sub btnProxyStart Click()
HTTPSRProxy.Stop False
End Sub

Private Sub HTTPSRProxy StateChanged(ByVal Session As Object,
ByVal State As Integer)

If State = prcConnected Then
Session.Timeout = 1 ' in seconds
End If
End Sub

Private Sub HTTPSRProxy Timeout (ByVal Session As Object)
Session.Close
End Sub

Private Sub HTTPSRProxy Request (ByVal Session As Object,
EnableDefault As Boolean)

EnableDefault = False

Session.ReplyString = ""

If Session.Method = prsPut Or Session.Method = prsPost
Then ' POST and PUT
httpctl.Method = Session.Method
Session.DocInput.DocLink = httpctl.DocOutput.DocLink
httpctl.DocInput.DocLink = Session.DocOutput.DocLink
Session.ReplyDoc
httpctl.SendDoc txtProxy & Session.Document

Else ' GET and HEAD
httpctl.Method = Session.Method
Session.DocInput.DocLink = httpctl.DocOutput.DocLink
Session.ReplyDoc
httpctl.GetDoc txtProxy & Session.Document

End If

End Sub

Private Sub HTTPSRProxy DocInput (ByVal Session As Object,
ByVal DocInput As DocInput)

If DocInput.State = icDocHeaders Then

If Len(Session.ReplyString) = 0 Then ' replystring hasn't been set
Session.ReplyString = httpctl.ReplyString
End If

ElseIf DocInput.State = icDocData Then
If Session.Method = prsHead Then ' for HEAD

DocInput.SetData "" ' do not send data for HEAD request
End If
ElseIf DocInput.State = icDocEnd Then
Session.DocInput.DocLink = Nothing ' for doclink
httpctl.DocInput.DocLink = Nothing
If Len(Session.ReplyString) = 0 Then ' didn't get

headers notification.
Session.ReplyString = "HTTP/1.0 404 Error in processing"

Session.ReplyDoc , "<BODY> Error in processing request,
please return to home page</BODY>"

Else
Session.Close
End If
End If
End Sub

ED Internet Client ActiveX Control Overview

The Internet Client ActiveX control implements the essential Internet client protocol entities and can be used to
implement a new protocol at the application level.

Generally, a client application initiates connection to a server. After the connection has been established, the client
may send or receive a small amount of data to or from the server. Either the client or the server can close the
connection.

There are three types of transactions:

a Requests — A small amount of data that the client sends to the server. Requests are sent from the client to
the server, who sends back a reply.

a Replies — A small amount of data that the server sends to the client

a Data — A large amount of data

Both a request and a reply are normally text based, whereas data can be either text or binary. In some cases,
there is an application-specific string terminator for a reply. When incoming data contains the string terminator (for
example “\r\n”), a data transaction is considered to be completed. Internet Client control is based on the this
scenario. It has most of the common client properties, methods and events.

The following table describes the new properties, methods, and events that are specific to Internet Client control.
For a complete list of properties, methods, and events, see Internet Client Properties, Method, and Events.

ReplyTerminator The string terminator for replies. When the
string is empty, closing the connection is
considered to be the terminator.

DataTerminator The string terminator for data. When the
string is empty, closing the connection is
considered to be the terminator.

ParsingMode If ParsingMode is set to parsing reply
(pmParsingReply), and the incoming data
matches the ReplyTerminator, the Reply
event is fired and the ReplyString property
holds the full reply string from the server.

If ParsingMode is set to parsing data
(pmParsingData), all incoming data is
streamed via the DocOutput event.

SendData This method is used to send requests to the
server.

PutDoc This method is used to send large amount of
data or a file to the server. Data is streamed
via Doclnput.

Reply event The event is fired when parsing mode is set
to parsing reply and there is a full reply
available.

Internet Client Properties, Methods, and Events

The Internet Client ActiveX Control supports the following properties, methods and events. For an example
illustrating the use of the control in a real life situation, see Internet Client Sample Session.

Property Method Event
Blocking Cancel Cancel
BlockResult Connect Doclnput

DataTerminator Disconnect DocOutput

Doclnput PutDoc
DocOutput SendData
EnableTimer

Errors

LocalPort

Loggin

NotificationMode

ParsingMode
ProtocolState

ProtocolStateString
RemoteHost
RemotePort
ReplyString
ReplyTerminator

SleepTime
SocketHandle

State

StateStrin
Timeout

=
=
o
=

B

ProtocolStateChanged
Reply

StateChanged
TimeOut

Blocking Internet Client Property

Description

Indicates whether methods should block until complete or not.

Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.

Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are

fired, if applicable.

BlockResult Internet Client Property

Description
Returns the result value of the last blocking method called.
Syntax
object.BlockResult
Permission
R (Read only).
Availability
R (Runtime).
Data Type
BlockingResultConstants.

Default Value

icBlockOK..
Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut 1 Blocking method returned due to timeout.
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

DataTerminator Internet Client Property

Description

The string terminator for data.
Syntax

object.DataTerminator [= string]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime).
Data Type

BSTR.
Default Value

“Ir/n”.
Range

N/A

Doclnput Internet Client Property

Description

Object describing input information for the document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput.
Default Value

N/A.
Range

N/A.
Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the SendDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the Doclnput object may be set before calling the SendDoc method or they may be passed as
arguments to this method. The Doclnput object is also used for conveying information about the progress of the
document transfer and for data linking and streaming.

For more information, see Doclnput Object Overview and Common Control Objects.

DocOutput Internet Client Property

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.
Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

For more information, see DocOutput Object Events and Common Control Objects.

EnableTimer Internet Client Property

Description
Enable timer for the specified event. The event is specified by entering:

EnableTimer (short event)
Syntax

object.EnableTimer (event) [= Boolean]
Permission

W (Write Only).

Note: This is the only control property that is Write only.

Availability

R (Runtime)
Data Type

Boolean.
Default Value

False. (The timer for this event will not be enabled.)
Range

True or False
Comments

Event is an integer value that determines the type of Timeout event that will be enabled. Constants defined for
enum types for events are:

Value Meaning

prcConnectTimeout =1 Timeout for connect. If connection is not
established within the timeout period, the
Timeout event will be activated.

prcReceiveTimeout =2 Timeout for receiving data. If no data
arrives within the timeout period, the
Timeout event will be activated.

prcUserTimeout= 65 Timeout for user defined event. Use
prcUserTimeout + [Integer] range for
custom timeout events.

Errors Internet Client Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient. For more details,
see_icErrors.

Syntax

object.Errors
Permission

R (Read only).
Availability

R (Runtime).

Data Type
icErrors.
Default Value

N/A.
Range
N/A.

LocalPort Internet Client Property

Description

Designates the local port to use.
Syntax

object.LocalPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

0.
Range

0 - 65535

Logging Internet Client Property

Description

Indicates whether log events should be fired when log data is available.
Syntax

object.Logging [= Boolean]
Permission

W (Read/Write).
Availability

D (Design) and R(Runtime).
Data Type

Boolean.
Default Value

False.
Range

True or False

NotificationMode Internet Client Property

Description

Determines when notification is issued for incoming data. Notification can also be suspended.
Syntax

object.NotificationMode [= Integer]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

NotificationModeConstants.
Default Value

1.

Range
0-maximum unsigned long. At present, the values are:
Name Value Description
icCompleteMode 0 COMPLETE: notification is provided
when there is a complete response.
icContinueousMode 1 CONTINUOUS: an event is

repeatedly activated when new data
arrives from the connection.

ParsingMode Internet Client Property

Description

Describes the current parsing mode.
Syntax

object.ParsingMode [=integer]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime).
Data Type

ParsingModeConstants.

Default Value

PMParsingReply.
Range
Name Value Description
PMParsingReply 0 ParsingReply. Incoming
data will be treated as
replies.
PMParsingData 1 ParsingData. Incoming

data will be treated as

data.

ProtocolState Internet Client Property

Description
This property specifies the current state of the protocol.
Syntax
object.ProtocolState
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Integer.
Default Value

“BASE”.
Range
0-1. Constants defined for the enum types of ProtocolState property are:
Value Meaning
BASE =0 Base state before connection to server is
established.

TRANSACTION =1 Connection to server is established. This is the
valid state for calling methods on this control.

ProtocolStateString Internet Client Property

Description
String representation of ProtocolState.
Syntax
object.ProtocolStateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
BASE.
Range
N/A.

RemoteHost Internet Client Property

Description

The remote machine to connect to if the remoteHost parameter in the Connect method is missing. You can
either provide a host name or an IP address string in dotted format. For example, “127.0.0.1.”

Note: This is the default property of the control.
Syntax
object.RemoteHost [= String]
Permission
W (Read/Write).
Availability
D (Design).
Data Type
String.
Default Value
Empty.
Range
N/A.

RemotePort Internet Client Property

Description

The remote port number to which to connect.
Syntax

object.RemotePort [= Long]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Long.
Default Value

8889
Range

1-65535.

ReplyString Internet Client Property

Description
Lists the last reply string sent by the server to the client as a result of a request.
Syntax
object.ReplyString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

ReplyTerminator Internet Client Property

Description

The string terminator for parsing replies
Syntax

object.ReplyTerminator [=string]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime).
Data Type

BSTR.
Default Value

“An\n”.
Range

N/A.

SleepTime Internet Client Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SocketHandle Internet Client Property

Description
Socket handle for the primary connection (Request/Reply connection).
Syntax
object.SocketHandle
Permission
R (Read only)
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
>=0
Comments

Some protocols require more than one connection. SocketHandle is the handle for the request/reply
connection.

State Internet Client Property

Description

This property specifies the connection state of the control.
Syntax

object.State
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

StateConstants.
Default Value

prcDisconnected.

Range
1-6. Constants defined for enum types of State property are:
Value Meaning
prcConnecting = 1 Connecting. Connect has been requested,

waiting for connect acknowledge.

prcResolvingHost = 2 Resolving Host. Occurs only when
RemoteHost is in name format rather than
dot-delimited IP format.

prcHostResolved = 3 Resolved the host. Occurs only if
ResolvingHost state has been entered
previously.

prcConnected = 4 Connection established.

prcDisconnecting = 5 Connection closed. Disconnect has been
initiated.

prcDisconnected = 6 Initial state when protocol object is

instantiated, before Connect has been
initiated, after a Connect attempt failed or
after Disconnect performed.

StateString Internet Client Property

Description
A string representation of State.
Syntax
object.StateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type

String.
Default Value
"Disconnected".
Range
N/A.

Timeout Internet Client Property

Description
Timeout value for the specified event. The event is specified by entering:

Timeout (short event)
Syntax

object.Timeout (event) [= Long]
Permission

W (Read/Write).
Availability

R (Runtime) and D (Design).
Data Type

Long.
Default Value

0.
Range

0-maximum unsigned long.
Comments

See Event values for EnableTimer .

Cancel Internet Client Method

Description
Cancels a pending request and disconnects the session.
Return Value
Void.
Syntax
object.Cancel
Parameters

None.

Connect Internet Client Method

Description
Initiates a Connect request. The control calls the StateChanged event if a connection is established.
Return Value
Void.
Syntax
object.Connect [RemoteHost], [RemotePorft]
Parameters
RemoteHost

Optional. Remote host to which to connect. This arguments overrides the values from the corresponding
RemoteHost property. The value of the RemoteHost property is not changed. If this parameter is missing,
the control connects to the host defined in the RemoteHost property.

Data Type: BSTR

Param: IN

Default Value: N/A
RemotePort

Optional. Remote port to which to connect. This arguments overrides the values from the corresponding
RemotePort property. The values of the RemotePort property is not changed. If this parameter is missing,
the control connects to the port defined in the RemotePort property.

Data Type: Long
Param: IN
Default Value: N/A

Disconnect Internet Client Method

Description

Disconnects the connection.
Return Value

Void.
Syntax

object.Disconnect
Parameters

None.

PutDoc Internet Client Method

Description

Initiates sending of a document or a large amount of data.
Return Value

Void.
Syntax

object.PutDoc [Headers], [InputDatal, [InputFile]
Parameters

Header

Optional. Header used for sending the document. This argument only applies to protocols where document
headers can be sent.

Data Type: Docheaders.
Param: IN
Default Value: Doclnput. Headers

Inputdata
Optional. A data buffer containing the document to be sent
Data Type: VARIANT.
Param: IN
Default Value: Doclnput. GetData

InputFile
Optional. A local file containing the file to be sent.
Data Type: BSTR.
Param: IN
Default Value: Doclnput. FileName

Comments

The PutDoc method allows sending (posting or putting) a document. For basic use of this method, arguments
should be passed to PutDoc to describe the document transfer. For more powerful use of this control, the
Doclnput and DocOutput objects can be used in conjunction with the Doclnput and DocOutput events. The
properties of the Doclnput and DocOutput objects can be set before calling PutDoc. The Doclnput and
DocOutput events can also be used for transfering data using streaming rather than local files.

See Doclnput Object Overview and DocOutput Object Overview for additional information.

SendData Internet Client Method

Description

Sends small amounts of data to client. Large amounts of data should be sent using DocStream. (See Doclnput
and PutDoc for more information.)

Return Value
Void.
Syntax
object.SendData data
Parameters
Data
Data to be sent
Data Type: VARIANT.
Param: IN
Default Value: N/A

Internet Client Events

Events indicate that an action has been requested and processed. Any errors which occur during command
processing result in the Error event being called with appropriate error codes. Error codes, state changes, and
protocol return values can be checked during event processing.

The following sections describe the events supported by the Internet Client Control. Each description includes the
syntax, related parameters, their data type, default value, and whether the parameter is used for input or output
(IN or OUT). For a complete listing of events, see Internet Client Properties, Methods, and Events.

Cancel Internet Client Event

Description

This event is activated after a cancellation request has been completed and satisfied. After this event the
object's state changes to Base.

Syntax
object_Cancel
Parameters

None.

Docinput Internet Client Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Docinput As Doclnput)
Parameters
Doclinput
Object describing document input data for the current transfer.
Data Type: Doclnput
Param: IN
Default Value: N/A

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming. For more
information, see Doclnput Object Overview.

DocOutput Internet Client Event

Description

A DocOutput related event indicating that output data has been transferred or the DocOutput state has
changed.

Syntax
object_DocOutput (DocOutput As DocOutput)
Parameters
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput
Param: IN
Default Value: N/A

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming. For more
information, see Doclnput Object Overview.

Error Internet Client Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode
The short error code. For a list of possible error codes, see Error Codes and Messages.
Description
String containing error information.
sCode
The long Scode.
Source
Error source.
HelpFile
Help file name.
HelpContext
Help file context.
CancelDisplay

Indicates whether to cancel the display. The default is TRUE (no display of the default error message box).
If you do want to use the default message box, set CancelDisplay to FALSE.

Log Internet Client Event

Description

This event is fired when logging data is available.
Syntax

object_Log
Parameters

None.

ProtocolStateChanged Internet Client Event

Description

This event is activated whenever the protocol state changes.
Syntax

object_ProtocolStateChanged (Protocol State As Integer)
Parameters

Refer to the ProtocolState property and ProtocolStateString for possible values of the Protocol state parameter.

StateChanged Internet Client Event

Description

This event is fired after the state of the transport state has changed.
Syntax

object_StateChanged (State As Integer)
Parameters

Refer to State Internet Client Property for possible values of the State parameter.

TimeOut Internet Client Event

Description
This event is fired when the timer for the specific events has expired .
Syntax
object_TimeOut (Event As Integer)
Parameters
Event.
Refer to the EnableTimer event for possible values of the event parameter.
Continue:
Determines if the timer is active or not for the given event. Set Continue to TRUE to keep the timer active.
Data Type
Boolean.
Default Value

False.

Reply Internet Client Event

Description

This event is activated when a full reply is available. ReplyString property contains the full reply.
Syntax

object_Reply
Parameters

None.

Internet Client Sample Session

The following code shows how to use Internet Client control to implement a Finger protocol.

Private Sub btnFinger Click()
txtReply = "" B
Finger.Connect txtHost, 79

End Sub

3

connect to finger port

Private Sub Finger StateChanged(ByVal State As Integer)
If State = prcConnected Then
Finger.ReplyTerminator = ""

3

closing of the connection
‘ is terminator
Finger.ParsingMode = pmParsingReply
Finger.SendData txtUser.Text & vbCrLf
End If
End Sub

3

sends out username

Private Sub Finger Reply ()
txtReply = Finger.ReplyString ‘ gets reply back, display it.
End Sub

]
f Internet Server ActiveX Control Overview

The Internet Server ActiveX control is based on generic protocol server specifications and implements all property,
methods, and events using the semantics defined in the generic protocol server control.

The following table lists the properties, methods, and events supported by the Internet Server Control. For an
example illustrating the use of the control in a real life situation, see Internet Server Sample Session.

Property Method Event

Server

Blocking CloseAll Accept

BlockResult AboutBox CloseAll

Errors Start Doclnput

LocalPort Stop DocOutput

ListenPort Error

MaxConnections RemoteHostName
Request

SleepTime StateChanged

SocketHandle TimeOut

Sessions

Collection

Count ltem

Session Item

DataTerminator Close
Doclnput ReplyDoc
DocOutput SendData

NotificationMode

ParsingMode
RemoteHostIP

RemoteHostName
RemotePort

ReplyString

RequestTerminator
State

StateString
ThreadlD

Timeout

Blocking Internet Server Property

Description
Indicates whether methods should block until complete or not.
Syntax
object.Blocking [=Boolean]
Permission
W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type
Boolean.
Default Value
False.
Range
True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult Internet Server Property

Description

Returns the result value of the last blocking method called.
Syntax

object.BlockResult
Permission

R (Read only).
Availability

R (Runtime).
Data Type

BlockingResultConstants.
Default Value

icBlockOK..

Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut 1 Blocking method returned due to timeout.
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.

Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

Errors Internet Server Property

Description

A collection of errors that can be accessed for details about the last error that occurred. This collection should
be used within an Error event if information passed through the Error event is not sufficient. For more details,
see icErrors.

Syntax
object.Errors
Permission
R (Read only).
Availability
R (Runtime).
Data Type
icErrors.
Default Value
N/A.
Range
N/A.

ListenPort Internet Server Property

Description

The port number to listen on.
Syntax

object.ListenPort [= Integer]
Permission

W (Read/Write).
Availability

D (Design).
Data Type

Long.
Default

0.
Range

0-65535.

LocalPort Internet Server Property

Description

Designates the local port to use.
Syntax

object.LocalPort [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

0.
Range

0 - 65535

MaxConnections Internet Server Property

Description

The maximum number of clients allowed to connect to the server. If connecting clients exceeds
MaxConnections, the Error event is fired and new connections are rejected until the maximum number of
connections drops below the MaxConnection limit.

Syntax

object.MaxConnections [= Integer]
Permission

W (Read/Write).
Availability

D (Design).
Data Type

Long.
Default Value

100.
Range

0-65535

Sessions Internet Server Property

Description

The server session collection object. Session object provides access to a connection accepted from a client.
Sessions can be enumerated and actions can be performed on them. Normally a session object is passed as
an argument to an event and the action can be performed on the object.

Syntax
object.Sessions [= Object]
Permission
R (Read only).
Availability
R (Runtime).
Data Type
Object.
Default Value
N/A.
Range
N/A.

SleepTime Internet Server Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

SocketHandle Internet Server Property

Description
Socket handle for the primary connection (Request/Reply connection).
Syntax
object.SocketHandle
Permission
R (Read only)
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
>=0
Comments

Some protocols require more than one connection. SocketHandle is the handle for the request/reply
connection.

Count Sessions Collection Property (Internet Server)

Description

The number of items in the Sessions collection.
Syntax

object.Count [= Integer]
Permission

R (Read-only).
Availability

R(Runtime).
Data Type

Long.
Default Value

N/A.
Range

0-65535

DataTerminator Session Item Property

Description
Data terminator of the session
Syntax
object.DataTerminator [= string]
Permission
W (Read/Write).
Availability
R(Runtime).
Data Type
BSTR
Default Value
“An\n”.
Range
N/A

Doclnput Session Item Property (Internet Server)

Description

Object describing input information for the document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput.
Default Value

N/A.
Range

N/A.
Comments

The Doclnput object provides a more powerful interface than the basic capabilities of the SendDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the Doclnput object may be set before calling the SendDoc method or they may be passed as
arguments to this method. The Doclnput object is also used for conveying information about the progress of the
document transfer and for data linking and streaming.

For more information, see Doclnput Object Overview.

DocOutput Session Item Property (Internet Server)

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.
Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

For more information, see DocOutput DocOutput Object Event and Common Control Objects.

NotificationMode Session Item Property (Internet Server)

Description

Determines when notification is issued for incoming data. Notification can also be suspended.
Syntax

object.NotificationMode [= NotificationMode Constant]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

NotificationConstants.
Default Value

icContinuousMode.

Range
Name Value Description
icCompleteMode 0 Notification is provided when there is a
complete response.
icContinuousMode 1 Notification event is repeatedly

activated when new data arrives.

ParsingMode Session Iltem Property

Description
Parsing mode of the session.
Syntax
object.ParsingMode [= Integer]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
ParsingModeConstants.
Default Value

pmParsingRequest.
Range
Constants defined for enum types for ParsingMode property:
Name Value Description
pmParsingRequest 0 Parsing Request. The incoming data
will be treated as requests.
pmParsingData 1 Parsing Data. The incoming data will be

treated as data.

RemoteHostIP Session Item Property (Internet Server)

Description

Remote host IP address string for the connected session. Can be used by the server to display information
about all sessions.

Syntax

object.RemoteHostIP [= String]
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A

Range

N/A.

RemoteHostName Session Item Property (Internet Server)

Description

Remote host’s official name for the connected session. Can be used by the server to display information about
all sessions. This property can be examined after the RemoteHostName event is successfully fired. See
RemoteHostName event for additional information.

Syntax

object.RemoteHostIP [= String]
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A

Range

N/A.

RemotePort Session Item Property (Internet Server)

Description

The remote port number to which to connect. Can be used by the server to display information about all
sessions.

Syntax
object.RemotePort [= Long]
Permission
R (Read-only).
Availability
R (Runtime)
Data Type
Long.
Default Value
N/A.
Range
0-65535.

ReplyString Session Iltem Property (Internet Server)

Description
Buffer contains an ASCII reply string for the session.
Syntax
object.ReplyString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A.

RequestTerminator Session Iltem Property

Description
Request terminator of the session
Syntax
object.RequestTerminator [= string]
Permission
W (Read/Write).
Availability
R(Runtime).
Data Type
BSTR
Default Value
“Af\n”
Range
N/A

State Session Item Property (Internet Server)

Description

This property specifies the connection state of the control.
Syntax

object.State
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Integer.
Default Value

prcDisconnected.

Range
1-6. Constants defined for enum types of State property are:
Value Meaning
prcConnecting = 1 Connecting. Connect has been requested,

waiting for connect acknowledge.

prcResolvingHost =2 Resolving Host. Occurs when RemoteHost
is in name format rather than dot-delimited
IP format.

prcHostResolved = 3 Resolved the host. Occurs only if
ResolvingHost state has been entered

previously.
prcConnected = 4 Connection established.
prcDisconnecting = 5 Connection closed. Disconnect has been
initiated.
prcDisconnected = 6 Initial state when protocol object is

instantiated, before Connect has been
initiated, after a Connect attempt failed or
after Disconnect performed.

StateString Session Item Property (Internet Server)

Description
A string representation of State.
Syntax
object.StateString
Permission
R (Read-only).
Availability
R (Runtime).
Data Type

String.
Default Value
"Disconnected".
Range
N/A.

ThreadID Session Item Property (Internet Server)

Description
Sessions thread identifier
Syntax
object.ThreadlD
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
N/A.
Range
N/A.

Timeout Session Item Property (Internet Server)

Description

The length of time that a connected session has no activity before a Timeout event is fired. Timeout event is
fired when a connected session has no activity (no request from a client). Normally, the client is prevented from
timing out when a data transfer is taking place. When the Timeout event is fired, user may choose to log the
client out by calling the Close method on the session. If the user did not choose to log the client out, the
Timeout event will be fired again when there is still no activity within the Timeout period.

Syntax

object.Timeout[= Long]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

Long.
Default Value

300 seconds (5 minutes).
Range

>=0

AboutBox Internet Server Method

Description
Shows information about this control.
Return Value
Void.
Syntax
object.AboutBox
Parameters

None.

CloseAll Internet Server Method

Description
Close all connected sessions. The CloseAll event is fired.
Return Value
Void.
Syntax
object.CloseAll
Parameters

None

Start Internet Server Method

Description
Opens the server up for listening on the port specified by the ListenPort property.
Return Value
Void.
Syntax
object.Start
Parameters

None

Stop Internet Server Method

Description
Server stops listening for incoming connections.
Return Value
Void.
Syntax
object.Stop [DisconnectSession]
Parameters
DisconnectSession

Optional. If DisconnectSession is true, all connected sessions are disconnected. If DisconnectSessions is
false, connected sessions will not be closed.

Data Type: Boolean
Param: IN

Default Value: True

Item Sessions Collection Method (Internet Server)

Description
Returns the session object from the collection. This method is the default method for a collection.
Return Value
Object.
Syntax
object.Iltem index
Parameters
index
Index is an integer number.
Data Type: Variant
Param: IN

Default Value: None

Close Session Item Method (Internet Server)

Description

Close the session by disconnecting. Error event is fired in case of failure. StateChanged event is fired after the
connection is closed.

Return Value
Void.

Syntax
object.Close

Parameters

None

ReplyDoc Session Item Method (Internet Server)

Description
Initiates sending of a document
Return Value
Void.
Syntax
object.ReplyDoc [Header] [InputData) [InputFiler]
Parameters
Header

Optional. Header used for sending the document. This argument only applies for protocols where
document headers can be sent.

Data Type: Docheaders.
Param: IN
Default Value: Doclnput. Headers

Inputdata
Optional. A data buffer containing the document to be sent
Data Type: VARIANT.
Param: IN
Default Value: Doclnput. GetData

InputFile
Optional. A local file containing the document to be sent.
Data Type: BSTR.
Param: IN
Default Value: Doclnput. FileName

Comments
The ReplyDoc method allows sending (posting or putting) a document.

For basic use of this method, arguments should be passed to SendDoc to describe the document transfer. For
more powerful use of this control, the Doclnput and DocOutput objects can be used in conjunction with the
Doclnput and DocOutput events. The properties of the Doclnput and DocOutput objects can be set before
calling ReplyDoc. The Doclnput and DocOutput events can also be used for transfering data using streaming
rather than local files. See the Doclnput and DocOutput properties, the Doclnput and DocOutput events, and
the separate Doclnput and DocOutput object documentation for more information.

SendData Session Item Method (Internet Server)

Description

Send small amount of data to client. Large amount of data should be sent using DocStream. (See Doclnput and
ReplyDoc for additional information.)

Return Value
Void.
Syntax
object.SendData data
Parameters
Data
Data to be sent
Data Type: VARIANT.
Param: IN
Default Value: N/A

Internet Server Events

Events indicate that an action has been requested and processed. Any errors that occur during command
processing result in the Error event being called with appropriate error codes. Error codes, state changes, and
protocol return values can be checked during event processing.

The following topics describe the events supported by the Internet Server Control. Each description includes the
syntax, related parameters, their data type, default value, and whether the parameter is used for input or output
(IN or OUT). For a complete list of events, see Internet Server ActiveX Control Overview.

Accept Internet Server Event

Description

This event is fired when there is an incoming connection request.
Syntax

object_Accept (Session As Object, AcceptConnection As Boolean)
Parameters

Session

Session’s property RemoteHostIP and RemotePort can be examined and used to decide whether to
accept the session or not.

AcceptConnection

To reject the connection, AcceptConnection needs to be set to FALSE. The default value for
AcceptConnection is TRUE

CloseAll Internet Server Event

Description

This event is fired after all sessions have been closed.
Syntax

object_CloseAll
Parameters

None

Docinput Internet Server Event

Description
A Doclnput related event that indicates the input data has been transferred or the Doclnput state has changed.
Syntax
object_Doclnput (Session As Object, Docinput As Doclnput)
Parameters
Session
The session object on which transfer of input data happens.

Data Type: Object

Param: IN
Default Value: N/A
Doclnput

Object describing document input data for the current transfer.
Data Type: Doclnput

Param: IN

Default Value: N/A

Comments

The Doclnput event can be used in its basic form for notification of transfer progress, (for example, for updating
a progress bar). The Doclnput.BytesTotal, Doclnput.BytesTransferred and Doclnput.State properties can be
examined to determine the current status of the transfer. This event can be ignored if no progress information is
needed.

To gain more power from this control, you can also use the Doclnput event for data streaming. For more
information, see Doclnput Object Overview.

DocOutput Internet Server Event

Description

A DocOutput related event indicating that output data has been transferred or the DocOutput state has
changed.

Syntax
object_DocOutput (Session As Object, DocOutput As DocOutput)
Parameters
Session
The object on which output data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A
DocOutput
Object describing document output data for the current transfer.
Data Type: DocOutput
Param: IN
Default Value: N/A

Comments

The DocOutput event can be used in its basic form to notify the user of transfer progress, (for example, for
updating a progress bar). The DocOutput.BytesTotal, DocOutput.BytesTransferred and DocOutput.State
properties can be examined to determine the current status of the transfer. This event can be ignored if no
progress information is needed.

To gain more power from this control, you can also use the DocOutput event for data streaming. For more
information, see Doclnput Object Overview.

Error Internet Server Event

Description

This event is activated when an error occurs in background processing (for example, failed to connect or failed
to send or receive in the background).

Syntax

object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean)

Parameters
ErrCode
The short error code. For a list of possible error codes see Error Codes and Messages.
Description
String containing error information.
sCode
The long Scode.
Source
Error source.
HelpFile
Help file name.
HelpContext
Help file context.
CancelDisplay

Indicates whether to cancel the display. The default value for CancelDisplay is False meaning you do want
to use the default message box. If you does not want to display the default error message box, set
CancelDisplay to True.

RemoteHostName Internet Server Event

Description

After a session has been accepted, the Internet protocol Server starts to asynchronously resolve the remote
host IP address to its official name. When the resolution is complete, the RemoteHostName event is fired.

Syntax
object RemoteHostName (Session As Object, Success As Boolean)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A
Success
If Success is TRUE, then session’s RemoteHostName property holds remote host’s official name.
Data Type: Boolean
Param: IN
Default Value: N/A

Request Internet Server Event

Description

This event is fired after a request from client has been received. Request value can be determined from
session’s RequestString property.

Syntax
object_Request (Session As Object, EnableDefault As Boolean)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A
EnableDefault

EnableDefault enables/disables default handling of the request which is protocol dependent. The default
value for EnableDefault is TRUE.

Data Type: Boolean
Param: IN
Default Value: TRUE

StateChanged Internet Server Event

Description

This event is fired after the state of the transport state for the Session has changed. The state is given in
Session’s State and StateString properties.

Syntax
object_StateChanged (Session As Object, State as short).
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A
State
The current transport state.
Data Type
Short.
Parameters
IN.
Default Value
N/A.

TimeOut Internet Server Event

Description

This event is fired when the timer for the Session has expired (no incoming data from the client within the
timeout period). See Session object’s Timeout Session Item property for mode details.

Syntax
object_TimeOut (Session As Object)
Parameters
Session
The object on which data transfer happens.
Data Type: Object
Param: IN
Default Value: N/A

Internet Server Sample Session

Click on the buttons below to view sample sessions showing a Finger Server and an FTP Server.

{button ,JI(NIA.HLP',"IDH_Finger_Server_Sample')} Finger Server Sample
{button ,JICNIA.HLP','IDH_FTP_Server_Sample')} FTP Server Sample

Finger Server Sample

The following is the code for a FINGER server. It uses one Internet Server control (INETSR). Note that INETSR
has been renamed to FINGERSR in this sample.

Private Sub btnStart Click()
FINGERSR.ListenPort = 79
FINGERSR.Start
If Err.Number <> 0 Then

Log "Start finger server error:
Else

Log "Finger server started"
End If
End Sub

& Err.Description

Private Sub FINGERSR StateChanged(ByVal Session As Object,
ByVal State As Integer)
Log "StateChanged: Session.ThreadID = " & Session.ThreadID & "
State = " & State

If State = prcConnected Then
'Set the parsing mode and request terminator
Session.ParsingMode = pmParsingRequest
Session.RequestTerminator = vbCrLf
End If
End Sub

Private Sub FINGERSR Request (ByVal Session As Object,
EnableDefault As Boolean)

Dim RequstString As String

Dim username As String

Dim pos As Integer

RequestString = Session.RequestString

Log "Request = " & RequestString

pos = InStr (RequestString, "/W")
'Extract the username
username = Mid(RequestString, pos + Len("/W") + 1,
Len (RequestString) - 1 - Len("/W") - Len(Session.RequestTerminator))

'To be done

'For now, we just return some hard coded messages. We will return the 'appropriate
information.
If username = "" Then

If (pos > 0) Then
Session.SendData "You are requesting all users'
information with /W option" & vbCrLf
Else
Session.SendData "You are requesting all users'
information" & vbCrLf
End If
Else
If (pos > 0) Then
Session.SendData "You are requesting " & username & "'s_
information with /W option" & vbCrLf

Else
Session.SendData "You are requesting " & username & "'s_
information" & vbCrLf
End If
End If
Session.Close
End Sub
See Also

{button ,JICNIA.HLP', IDH_FTP_Server_Sample')} FTP Server Sample

FTP Server Sample

The following is a part of the code for a proxy FTP server. It uses one Internet Protocol Server control (INETSR),
one TCP control (TCP), and one FTP client control (FTPCT). The TCP control is used to implement the FTP server
data connection.

Private Sub btnStart Click()
INETSR.MaxConnections = max
INETSR.ListenPort = txtPort
INETSR.Start

End Sub

Private Sub INETSR_StateChanged(ByVal Session As Object, |
ByVal State As Integer)

If (State = prcConnected) Then
Load TCP

' Send greetings
Session.SendData "220 FTP OCX server ready" & vbCrLf

Session.ParsingMode = pmParsingRequest
Session.RequestTerminator = vbCrLf

ElseIf (State = prcDisconnected) Then
Unload TCP
End If
End Sub

See Also
{button ,JICNIA.HLP',"IDH_Finger_Server_Sample')} Finger Server Sample

‘% MIME (with UUEncode) ActiveX Control Overview

The MIME (Multipurpose Internet Mail Extensions) ActiveX control allows users to set the necessary headers
(“From”, “To”, etc.), add the desired attachments, and enter some body text. This object is useful for developing
applications that send and receive mail messages having MIME and/or UUEncoded attachments. It can be used in
conjunction with the SMTP, NNTP, and POP ActiveX controls.

The MIME ActiveX control enables you to compose multi-part messages without having to write the necessary
code to format and encode these messages. References for mail message formats and MIME extensions can be
found in RFC822 and RFC1521, respectively. For NNTP-specific header information, please refer to RFC1036.

The following table lists the properties, methods, and events supported by the MIME Control. For an example
illustrating the use of the control in a real life situation, see Using DoclLink, Using PushStream, and Example of
MIME Multipart Message.

Note: The Compose method can be used to create an output file or stream the output string through a mail
messaging client, such as the SMTPCT ActiveX. Attachments, in the form of referenced physical files, are on an
accessible hard disk.

Property Method Event
Attachments Compose Doclnput
Blocking Decode DocOutput
BlockResult Encode Error
Body Load
Doclnput UUDecode
DocOutput UUEncode
FileName
Erom
Headers
SleepTime
Subject
SubType
To
Type
Attachments Collection
Count Append
Clear
ltem
Remove

Attachment Item
AttachmentSize Save
Body

Description

EncodingFormat

FileName

MIMEType

MIMETypeString

SubType

Type

MIME Object Model Details

When Compose() method is called, the following headers will automatically be overwritten/added to the existing
headers in creating the message. If the user modified these headers prior to Compose(), the values will be
overwritten.

Date

Mime-Version

Content-Type

Message-Id

The following headers should always be filled out by the user. For details on optional headers, please refer to
RFC822 documentation.

a From or Sender (actual address of submitter)
a To or Cc or Bcc or Newsgroups (only one is required to send a message, although any combination of the
three are allowed. One or more addresses can be entered into these headers, each address being separated by a
comma from another address.)
Each attachment object will be stored in its decoded form if the method Save is used. Prior to the Compose(), the
contents of the attachment is not encoded in any form. For performance reasons, no memory is allocated for
actual file contents until Compose(), so the file to be attached must not be moved/deleted until after Compose() is
completed.

The methods Encode() and Decode() are lower-level utility methods and are not needed when the higher level
methods Compose() or Load() are used. These lower-level methods are useful as pure encoding/decoding utilities
for a given file.

For multiple address headers (To Cc, Bcc, Newsgroups), when Headers.Add() is used, the new address will be
appended to and not overwrite the existing header (if any). To make a fresh start, the user can use Remove prior
to Add (ex: Headers.Remove(‘To”), and then do Headers.Add(“To”, “joe@xyz.com”))

If any of the MIMETypeConstants other than icOtherMIMEType are used, then the MIMETypeString and
EncodingFormat properties of the attachment are automatically filled in. The user must provide the
MIMETypeString (e.g. the content-type string for the attachment) and EncodingFormat if icOtherMIMEType is
used.

There is an option to have a UUEncoded document directly in the body of the text, or as an attachment. By
default, when the user selects icUUEncodeMIMEType, the encoding will be added as an attachment. To have the
document as part of the body, use the EncodingFormat of icUUEncodelnBody when doing an Append to the
Attachments collection.

Attachments MIME Property

Description
Collection of attachments. You can add, remove, or modify any attachment in this collection.
Syntax
object.Attachments
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
Collection.
Default Value
N/A.
Range
N/A.

Blocking MIME Property

Description

Indicates whether methods should block until complete or not.
Syntax

object.Blocking [=Boolean]
Permission

W (Read/Write)
Availability

D (Design) and R (Runtime)
Data Type

Boolean.
Default Value

False.
Range

True or False.
Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

BlockResult MIME Property

Description

Returns the result value of the last blocking method called.
Syntax

object.BlockResult
Permission

R (Read only).
Availability

R (Runtime).
Data Type

BlockingResultConstants.
Default Value

icBlockOK..
Range
Name Value Description
icBlockOK 0 Blocking method was successful.
IcTimedOut Blocking method returned due to timeout.

1
IcErrorExit 2 Blocking method returned due to an error.
IcBlockCancel 3 Blocking method returned due to cancel.
IcUserQuit 4 Blocking method returned due application end.

Comments

If Blocking is set to True, then a method will not be completed until the proper event(s) for a given request are
fired, if applicable.

Body MIME Property

Description

The text part of the message that is neither a header nor an attachment. The body can be empty.
Syntax

object.Body [=string]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

BSTR.
Default Value

Empty.
Range

N/A.

Docinput MIME Property

Description

Object describing input information for the document being transferred.
Syntax

object.Doclnput
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

Doclnput
Default Value

N/A.
Range

N/A.

Comments

The Doclnput object provides a more powerful interface beyond the basic capabilities of the SendDoc method.
For basic use of the control, knowledge or use of the Doclnput object is not required.

Properties of the Doclnput object may be set before calling the SendDoc method of the control, or they may be
passed as arguments to this method. The Doclnput object is also used for conveying information about the
progress of the document transfer, for data linking and data streaming. For more information, Doclnput and

DocOutput Obijects.

DocOutput MIME Property

Description
Object describing output information for the document being transferred.
Syntax
object.DocOutput
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
DocOutput.
Default Value
N/A.
Range
N/A.

Comments

The DocOutput object provides a more powerful interface than the basic capabilities of the GetDoc method.
However, you can use the basic functions of the control without knowledge or use of the Doclnput object.

Properties of the DocOutput object may be set before calling the GetDoc method or they may be passed as
arguments to this method. The DocOutput object is also used for conveying information about the progress of
the document transfer, and for data linking and streaming.

Filename MIME Property

Description

Name of the file parsed using Load(), or the output file (optional) for the Compose() method.
Syntax

object.Filename [=string]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

BSTR.
Default Value

Empty.
Range

N/A.

From MIME Property

Description

Specifies who the mail message is from (from the mail message “From” header field). This value is actually
stored in the DocOutput.Headers collection, but is exposed here as a convenience.

Syntax

object.From [=string]
Permission

W (Read/Write).
Availability

D (Design) and R(Runtime).
Data Type

BSTR.
Default Value

Emtpy.
Range

N/A.

Headers MIME Property

Description

A collection of headers that can be associated with a message. In order for a valid message to be comosed, the
“From” or “Sender” header (one or both) must be set, as well as one or more of the following headers: “To,”
“Cc,” “Bcc,” or “Newsgroups.” Newsgroups is used to send mail to newsgroups via the NNTP control..

Syntax
object.Headers
Permission
W (Read/Write).
Availability
D (Design) and R (Runtime).
Data Type
Collection.
Default Value
Empty.
Range
N/A.
Comments

This Headers collection property maps directly with object DocOutput.Headers and could be used
interchangeably. For more details about headers, see DocHeaders Collection Overview .

SleepTime MIME Property

Description

Specifies the sleep time between checking messages, if Blocking is True.
Syntax

object.SleepTime [= Long]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

Long.
Default Value

10 ms.
Range

>=zero.
Comments

Only applies when in Blocking mode.

Subject MIME Property

Description

Subject of the mail message (from the mail message “Subject” header field). This value is actually stored in the
DocOutput.Headers collection, but is exposed here as a convenience.

Syntax

object.Subject [=string]
Permission

W (Read/Write).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A.
Range

N/A.

SubType MIME Property

Description

The message body’s MIME SubType. Value is set after a Compose() or Load(). SubType is Read only.
Syntax

object.SubType
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A.
Range

N/A.

To MIME Property

Description

Specifies who the mail message is to (from the mail message “To” header field). This value is actually stored in
the DocOutput.Headers collection, but is exposed here as a convenience.

Syntax

object.To = [=string]
Permission

W (Read/Write).
Availability

D (Design) and R (Runtime).
Data Type

BSTR.
Default Value

Empty.
Range

N/A.

Type MIME Property

Description

The message body’s MIME type. Value is set after a Compose() or Load(). Type is read-only.
Syntax

object. Type
Permission

R (Read-only).
Availability

R (Runtime).
Data Type

BSTR.
Default Value

N/A.
Range

N/A.

Attachments Collection Property

The attachment object is a collection containing the attachments to a given message.

Count Attachments Collection Property

Description
The number of items in the collection.
Syntax
object.Count
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range
N/A.

Attachment Iltem Properties

The attachment object is an item in the attachments collection. Attachment items specify the filename, descriptive
text, and MIME type of the given attachment.

AttachmentSize Attachment Iltem Property

Description
Size in bytes of the attachment.
Syntax
object.AttachmentSize
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
None.
Range
N/A.
Comments

If the file is currently encoded, AttachmentSize is the encoded size.

Body Attachment Item Property

Description
Contents of the Attachment.
Syntax
object.Body
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
BSTR.
Default Value
None.
Range
N/A.

Description Attachment Iltem Property

Description
Descriptive text specifying what the file contains. Optional, can be empty.

When attached by the Load() method, the description as given by the header Content-Description, if any (ex:
Content-Description: 52-week chart). May be empty

Syntax
object.Description [=string]
Permission
W (Read/Write).
Availability
R (Runtime).
Data Type
BSTR.
Default Value
None.
Range
N/A.

EncodingFormat Attachment Item Property

Description

Encoding forma