
Getting started with InterBase Express
InterBase Express (IBX) is a set of data access components that provide a means of accessing data
from InterBase databases. The following components are located on the InterBase tab of Delphi 5:

TIBDatabase
TIBTransaction
TIBTable
TIBQuery
TIBDataSet
TIBStoredProc
TIBSQL
TIBUpdateSQL
TIBSQLMonitor
TIBDatabaseInfo
TIBEvents

This document assumes that you are familiar with the Delphi development environment and know how
to use the Standard, Data Access, and Data Control components.
Though they are similar to BDE components in name, the IBX components are somewhat different. For
each component with a BDE counterpart, the sections below give a discussion of these differences.
There is no simple migration from BDE to IBX applications. Generally, you must replace BDE
components with the comparable IBX components, and then recompile your applications. However, the
speed you gain, along with the access you get to the powerful InterBase features make migration well
worth your time.

IBDatabase
Use an IBDatabase component to establish connections to databases, which can involve one or more
concurrent transactions. Unlike BDE, IBX has a separate transaction component, which allows you to
separate transactions and database connections.
To set up a database connection:
1. Drop an IBDatabase component onto a form or data module.
2. Fill out the DatabaseName property. For a local connection, this is the drive, path, and filename of

the database file. Set the Connected property to True.
3. Enter a valid username and password and click OK to establish the database connection.
Tip: You can store the username and password in the IBDatabase component's Params property by

setting the LoginPrompt property to False after logging in. For example, after logging in as the
system administrator and setting the LoginPrompt property to False, you may see the following
when editing the Params property:
user_name=sysdba
password=masterkey

IBTransaction
Unlike the Borland Database Engine, IBX controls transactions with a separate component,
IBTransaction. This powerful feature allows you to separate transactions and database connections, so
you can take advantage of the InterBase two-phase commit functionality (transactions that span multiple
connections) and multiple concurrent transactions using the same connection.
Use an IBTransaction component to handle transaction contexts, which might involve one or more
database connections. In most cases, a simple one database/one transaction model will do.

To set up a transaction:

1. Set up an IBDatabase connection as described above.
2. Drop an IBTransaction component onto the form or data module
3. Set the DefaultDatabase property to the name of your IBDatabase component.
4. Set the Active property to True to start the transaction.

IBX dataset components
There are a variety of dataset components from which to choose with IBX, each having their own
characteristics and task suitability:

IBTable
Use an IBTable component to set up a live dataset on a table or view without having to enter any SQL
statements.
IBTable components are easy to configure:
1. Add an IBTable component to your form or data module.
2. Specify the associated database and transaction components.
3. Specify the name of the relation from the TableName drop-down list.
4. Set the Active property to True.

IBQuery
Use an IBQuery component to execute any InterBase DSQL statement, restrict your result set to only
particular columns and rows, use aggregate functions, and join multiple tables.
IBQuery components provide a read-only dataset, and adapt well to the InterBase client/server
environment. To set up an IBQuery component:
1. Set up an IBDatabase connection as described above.
2. Set up an IBTransaction connection as described above.
3. Add an IBQuery component to your form or data module.
4. Specify the associated database and transaction components.
5. Enter a valid SQL statement for the IBQuery’s SQL property in the String list editor.
6. Set the Active property to True

IBDataSet
Use an IBDataSet component to execute any InterBase DSQL statement, restrict your result set to only
particular columns and rows, use aggregate functions, and join multiple tables. IBDataSet components
are similar to IBQuery components, except that they support live datasets without the need of an
IBUpdateSQL component.
The following example that provides a live dataset for the COUNTRY table in employee.gdb:
1. Set up an IBDatabase connection as described above.
2. Specify the associated database and transaction components.
3. Add an IBDataSet component to your form or data module.
4. Enter SQL statements for the following properties:

SelectSQL SELECT Country, Currency FROM Country
RefreshSQL SELECT Country, Currency FROM Country WHERE

Country = :Country
ModifySQL UPDATE Country SET Country = :Country, Currency

= :Currency WHERE Country = :Old_Country
DeleteSQL DELETE FROM Country WHERE Country = :Old_Country
InsertSQL INSERT INTO Country (Country, Currency) VALUES

(:Country, :Currency)
5. Set the Active property to True.

IBStoredProc
Use IBStoredProc for InterBase executable procedures: procedures that return, at most, one row of
information. For stored procedures that return more than one row of data, or "Select" procedures, use
either IBQuery or IBDataSet components.

IBSQL
Use an IBSQL component for data operations that need to be fast and lightweight. Operations such as
data definition and pumping data from one database to another are suitable for IBSQL components.
In the following example, an IBSQL component is used to return the next value from a generator:
1. Set up an IBDatabase connection as described above.
2. Put an IBSQL component on the form or data module and set its Database property to the name of

the database.
3. Add an SQL statement to the SQL property string list editor, for example:

SELECT GEN_ID(MyGenerator, 1) FROM RDB$DATABASE
IBUpdateSQL
Use an IBUpdateSQL component to update read-only datasets. You can update IBQuery output with an
IBUpdateSQL component:
1. Set up an IBQuery component as described above.
2. Add an IBUpdateSQL component to your form or data module.
3. Enter SQL statements for the following properties: DeleteSQL, InsertSQL, ModifySQL, and

RefreshSQL.
4. Set the IBQuery component’s UpdateObject property to the name of the IBUpdateSQL component.
5. Set the IBQuery component’s Active property to True.

IBSQLMonitor
Use an IBSQLMonitor component to develop diagnostic tools to monitor the communications between
your application and the InterBase server. When the TraceFlags properties of an IBDatabase
component are turned on, active IBSQLMonitor components can keep track of the connection's activity
and send the output to a file or control.
A good example would be to create a separate application that has an IBSQLMonitor component and a
Memo control. Run this secondary application, and on the primary application, activate the TraceFlags
of the IBDatabase component. Interact with the primary application, and watch the second's memo
control fill with data.

IBDatabaseInfo
Use an IBDatabaseInfo component to retrieve information about a particular database, such as the
sweep interval, ODS version, and the user names of those currently attached to this database.
For example, to set up an IBDatabaseInfo component that displays the users currently connected to the
database:
1. Set up an IBDatabase connection as described above.
2. Put an IBDatabaseInfo component on the form or data module and set its Database property to the

name of the database.
3. Put a Memo component on the form.
4. Put a Timer component on the form and set its interval.
5. Double click on the Timer’s OnTimer event field and enter code similar to the following:
Memo1.Text := IBDatabaseInfo.UserNames.Text;

IBEvents
Use an IBEvents component to register interest in, and asynchronously handle, events posted by an
InterBase server.

To set up an IBEvents component:
1. Set up an IBDatabase connection as described above.
2. Put an IBEvents component on the form or data module and set its Database property to the name of

the database.
3. Enter events in the Events property string list editor, for example:

IBEvents.Events.Add(‘EVENT_NAME’)
4. Set the Registered property to True.

TIBBase
Hierarchy Properties Methods Events See also
TIBBase is the ancestor object from which TIBDatabase and TIBTransaction descend.

Unit
IBDatabase

Description
TIBBase is the ancestor object from which TIBDatabase and TIBTransaction descend.

TIBBase properties
TIBBase Alphabetically Legend

In TIBBase
Database
DBHandle

Owner
Transaction
TRHandle

TIBBase properties
TIBBase By object Legend

Database
DBHandle

Owner
Transaction
TRHandle

TIBBase.Database
TIBBase See also
Sets or returns the associated database.
property Database: TIBDatabase;
Description
Use Database to set or return the associated database.

TIBBase.DBHandle
TIBBase See also
Indicates the database handle.
property DBHandle: PISC_DB_HANDLE;
Description
Use DBHandle to return the database handle.

TIBBase.Owner
TIBBase See also
Indicates which component owns the component.
property Owner: TObject;
Description
Owner refers to the SQL object (DataSet, TIBSQL, or Blob) that created the TIBBase component.

TIBBase.Transaction
TIBBase See also
Sets or returns the associated transaction.
property Transaction: TIBTransaction;
Description
Use Transaction to set or return the associated transaction.

TIBBase.TRHandle
TIBBase See also
Returns the transaction handle.
property TRHandle: PISC_TR_HANDLE;
Description
Use TRHandle to return the transaction handle.

TIBBase events
TIBBase Alphabetically Legend

In TIBBase
OnAfterDatabaseDisconnect
OnBeforeDatabaseDisconnect
OnDatabaseFree
OnAfterTransactionEnd
OnBeforeTransactionEnd
OnTransactionFree

TIBBase events
TIBBase By object Legend

OnAfterDatabaseDisconnect
OnBeforeDatabaseDisconnect
OnDatabaseFree
OnAfterTransactionEnd
OnBeforeTransactionEnd
OnTransactionFree

TIBBase.OnAfterDatabaseDisconnect
TIBBase See also
Occurs after a database is disconnected.
property OnAfterDatabaseDisconnect: TNotifyEvent;
Description
Write an OnAfterDatabaseDisconnect event handler to take specific actions after a database is
disconnected.

TIBBase.OnBeforeDatabaseDisconnect
TIBBase See also
Occurs before a database disconnects.
property OnBeforeDatabaseDisconnect: TNotifyEvent;
Description
Write an OnBeforeDatabaseDisconnect event handler to take specific actions before a database
disconnects.

TIBBase.DatabaseFree
TIBBase See also
Occurs after a database is freed from memory.
property OnDatabaseFree: TNotifyEvent;
Description
Write an OnDatabaseFree event handler to take specific actions after a database is freed from memory.

TIBBase.OnAfterTransactionEnd
TIBBase See also
Occurs after a transaction has ended.
property OnAfterTransactionEnd: TNotifyEvent;
Description
Write an OnAfterTransactionEnd event handler to take specific actions after a transaction has ended.

TIBBase.OnBeforeTransactionEnd
TIBBase See also
Occurs before a transaction ends.
property OnBeforeTransactionEnd: TNotifyEvent;
Description
Write an OnBeforeTransactionEnd event handler to take specific actions before a transaction ends.

TIBBase.OnTransactionFree
TIBBase See also
Occurs after a transaction has been freed from memory.
property OnTransactionFree: TNotifyEvent;
Description
Write an OnTransactionFree event handler to take specific actions after a transaction has been freed
from memory.

TIBBase methods
TIBBase Alphabetically

In TIBBase
CheckDatabase
CheckTransaction
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBBase methods
TIBBase By object

AfterConstruction
BeforeDestruction
CheckDatabase
CheckTransaction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBBase.CheckDatabase
TIBBase See also
Checks if the database is active.
procedure CheckDatabase;
Description
Call CheckDatabase to check if the database is assigned and active.

TIBBase.CheckTransaction
TIBBase See also
Checks if the transaction is active.
procedure CheckTransaction;
Description
Call CheckTransaction to check if the transaction is assigned and active.

TIBBase.Create
TIBBase See also
Creates an instance of an IBBase object.
constructor Create(AOwner: TObject);
Description
Call Create to create an instance of an IBBase object.

TIBBase.Destroy
TIBBase See also
Destroys an IBBase object.
destructor Destroy;
Description
Call Destroy to destroy an IBBase object and to free up any resources associated with it.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

 TIBBatch
Hierarchy Properties MethodsSee also
TIBBatch is the abstract base class for the TIBBatchInput and TIBBatchOutput components.

Unit
IBSQL

Description
Use a TIBBatch object to provide properties and methods for use with the TIBBatchInput and
TIBBatchOutput components, which make it possible to input and output data in virtually any format.
Descendents of this class can specify a file name (for input or output), and a TIBXSQLDA component
representing a record or parameters. The ReadyFile method is called right before performing the batch
input or output.

TIBBatch properties
TIBBatch Alphabetically Legend

In TIBBatch
Columns

FileName
Params

TIBBatch properties
TIBBatch By object Legend

Columns
FileName
Params

TIBBatch.Columns
TIBBatch See also
Returns the XSQLDA columns.
property Columns: TIBXSQLDA;
Description
Use the Columns property to retrieve the XSQLDA columns.

TIBBatch.FileName
TIBBatch See also
Sets or displays the name of the external file.
property FileName: String;
Description
Use the FileName property to set or display the external file name.

TIBBatch.Params
TIBBatch See also
Returns the XSQLDA parameters.
property Params: TIBXSQLDA;
Description
Use the Params property to retrieve the XSQLDA parameters.

TIBBatch methods
TIBBatch Alphabetically

In TIBBatch
Move
ReadyFile

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBBatch methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadyFile
SafeCallException

TIBBatch.Move
TIBBatch See also
Indicates whether the can be moved.
function Move: Boolean;
Description
Call Move to allow a file to be moved.

TIBBatch.ReadyFile
TIBBatch See also
Prepares the file.
procedure ReadyFile;
Description
Call ReadyFile to prepare the file for input or output.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

 TIBBatchInput
Hierarchy Properties MethodsSee also
TIBBatchInput is the abstract class for performing all batch input.

Unit
IBSQL

Description
Use a TIBBatchInput object to provide properties and methods for performing all batch input.

TIBBatchInput properties
TIBBatchInput Alphabetically Legend

Derived from TIBBatch
Columns

FileName
Params

TIBBatchInput properties
TIBBatchInput By object Legend

Columns
FileName
Params

TIBBatchInput methods
TIBBatchOutput Alphabetically

In TIBBatchInput
ReadParameters

Derived from TIBBatch
Move
ReadyFile

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBBatchInput methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadParameters
ReadyFile
SafeCallException

TIBBatchInput.ReadParameters
TIBBatchInput See also
Reads the XSQLDA input parameters.
function ReadParameters: Boolean;
Description
Call ReadParameters to read the input parameters of the extended SQL descriptor area (XSQLDA) from
the specified file.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

 TIBBatchOutput
Hierarchy Properties MethodsSee also
TIBBatchOutput is the abstract class for performing all batch output.

Unit
IBSQL

Description
Use a TIBBatchOutput object to provide properties and methods for performing all batch output.

TIBBatchOutput properties
TIBBatchOutput Alphabetically Legend

Derived from TIBBatch
Columns

FileName
Params

TIBBatchOutput properties
TIBBatchOutput By object Legend

Columns
FileName
Params

TIBBatchOutput methods
TIBBatchOutput Alphabetically

In TIBBatchOutput
WriteColumns

Derived from TIBBatch
Move
ReadyFile

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBBatchOutput methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadyFile
SafeCallException
WriteColumns

TIBBatchOutput.WriteColumns
TIBBatchOutput See also
Outputs the data in columns in the XSQLDA to the specified file.
function WriteColumns: Boolean
Description
Call WriteColumns to output data in columns in the extended SQL descriptor area (XSQLDA) to the
specified file.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

TIBBCDField
Hierarchy Properties Methods Events See also
TIBBCDField encapsulates the Windows Currency type.

Unit
IBCustomDataSet

Description
TIBBCDField encapsulates the Windows Currency type.

TIBBCDField properties
TIBBCDField Alphabetically Legend

In TIBBCDField
Size

Derived from TBCDField
AsCurrency
AsFloat
AsInteger
AsString
AsVariant

Currency
DataSize
MaxValue
MinValue
Precision
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsDateTime
AttributeSet
AutoGenerateValue
Calculated
CanModify
ConstraintErrorMessage

CurValue
CustomConstraint
DataSet
DataType
DefaultExpression
DisplayLabel
DisplayName

DisplayText
DisplayWidth
EditMask
EditMaskPtr
FieldKind
FieldName
FieldNo
FullName

HasConstraints
ImportedConstraint
Index
IsIndexField
IsNull
KeyFields
Lookup
LookupCache

LookupDataSet
LookupKeyFields
LookupList
LookupResultField
NewValue
Offset
OldValue
Origin
ParentField
ProviderFlags
ReadOnly
Required
Text
ValidChars
Visible

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBBCDField properties
TIBBCDField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet
AutoGenerateValue
Calculated
CanModify
ComObject
ComponentCount
ComponentIndex
Components

ComponentState
ComponentStyle
ConstraintErrorMessage
Currency
CurValue
CustomConstraint
DataSet

DataSize
DataType
DefaultExpression
DesignInfo
DisplayFormat
DisplayLabel
DisplayName

DisplayText
DisplayWidth
EditFormat
EditMask
EditMaskPtr
FieldKind
FieldName
FieldNo

FullName
HasConstraints
ImportedConstraint
Index
IsIndexField
IsNull
KeyFields

Lookup
LookupCache
LookupDataSet
LookupKeyFields
LookupList
LookupResultField

MaxValue
MinValue
Name
NewValue
Offset
OldValue
Origin
Owner
ParentField
Precision
ProviderFlags
ReadOnly
Required
Size
Tag
Text
ValidChars
Value

VCLComObject
Visible

TIBBCDField.Size
TIBBCDField See also
Indicates the length of the datatype.
property Size;
Description
Indicates the length of the datatype. The default length is 8.

TIBBCDField events
TIBBCDField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TIBBCDField events
TIBBCDField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TIBBCDField methods
TIBBCDField Alphabetically

In TIBBCDField
Create

Derived from TField
Assign
AssignValue
Clear
Destroy
FocusControl
GetData
IsBlob
IsValidChar
RefreshLookupList
SetData
SetFieldType
Validate

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress

Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBBCDField methods
TIBBCDField By object

AfterConstruction
Assign
AssignValue
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Clear
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
FocusControl
Free
FreeInstance
FreeNotification
FreeOnRelease
GetData
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsBlob
IsValidChar
MethodAddress
MethodName
NewInstance
RefreshLookupList
RemoveComponent

SafeCallException
SetData
SetFieldType
UpdateAction
Validate

TIBBCDField.Create
TIBBCDField See also
Creates an instance of a TIBBCDField object.
constructor Create(AOwner: TComponent);
Description
Create sets the datatype to ftBCD and the size to 8.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TField

TStringField

TIBBlobStream
Hierarchy Properties Methods See also
TIBBlobStream is a stream object that lets applications read from or write to field objects that represent
Blob fields.

Unit
IBBlob

Description
Use TIBBlobStream to access or modify the value of a Blob field object. Blob field objects are
TBlobField objects and descendants of TBlobField such as TGraphicField and TMemoField. Blob fields
use Blob streams to implement many of their data access properties and methods.
TIBBlobStream allows objects that have no specialized knowledge of how data is stored in a Blob field
to read or write such data by employing the uniform stream interface.
To use a Blob stream, create an instance of TIBBlobStream, use the methods of the stream to read or
write the data, and then free the Blob stream. Do not use the same instance of TBlobStream to access
data from more than one record. Instead, create a new TIBBlobStream object every time you need to
read or write Blob data on a new record.

TIBBlobStream properties
TIBBlobStreamAlphabetically Legend

In TIBBlobStream
BlobID
BlobMaxSegmentSize

BlobNumSegments
BlobSize
BlobType
Database
DBHandle
Handle
Mode
Modified
Transaction
TRHandle

Derived from TStream
Position
Size

TIBBlobStream properties
TIBBlobStreamBy object Legend

BlobID
BlobMaxSegmentSize

BlobNumSegments
BlobSize
BlobType
Database
DBHandle
Handle
Mode
Modified
Position
Size
Transaction
TRHandle

TIBBlobStream.BlobID
TIBBlobStreamSee also
Sets or returns the Blob ID.
property BlobID: TISC_QUAD;
Description
Use BlobID to set or return the 64-bit system-defined Blob ID, which is stored in a field in the table and
points to the first segment of the Blob or to a page of pointers to Blob fragments

TIBBlobStream.BlobMaxSegmentSize
TIBBlobStreamSee also
Returns the maximum segment size.
property BlobMaxSegmentSize: Long;
Description
Use BlobMaxSegmentSize to return the length of the longest Blob segment.

TIBBlobStream.BlobNumSegments
TIBBlobStreamSee also
Returns the total number of segments in the Blob.
property BlobNumSegments: Long;
Description
Use BlobNumSegments to return the total number of segments in the Blob.

TIBBlobStream.BlobSize
TIBBlobStreamSee also
Returns the total size of the Blob.
property BlobSize: Long;
Description
Use BlobSize to return the total size of the Blob in bytes.

TIBBlobStream.BlobType
TIBBlobStreamSee also
Returns the Blob type.
property BlobType: Short;
Description
Use BlobType to return the Blob type; either 0 for segmented, or 1 for stream.

TIBBlobStream.Database
TIBBlobStreamSee also
Sets or returns the associated database.
property Database: TIBDatabase;
Description
Use Database to set or return the associated database.

TIBBlobStream.DBHandle
TIBBlobStreamSee also
Indicates the database handle.
property DBHandle: PISC_DB_HANDLE;
Description
Use DBHandle to return the database handle.

TIBBlobStream.Handle
TIBBlobStreamSee also
Indicates the Blob handle.
property Handle: TISC_BLOB_HANDLE;
Description
Use Handle to return the Blob handle.

TIBBlobStream.Mode
TIBBlobStreamSee also
Sets or returns the Blob stream mode type.
type TBlobStreamMode = set of (bmRead, bmWrite, bmReadWrite);
property Mode: TBlobStreamMode;
Description
Use Mode to set or return the Blob stream mode type. BlobStreamMode can be one of the following
values.

Value Meaning
bmRead The stream is used to read from a Blob field
bmWrite The stream is used to write to a Blob field
bwReadWrite The stream is used to read from or write to a Blob field

TIBBlobStream.Modified
TIBBlobStreamSee also
Indicates whether or not the Blob field has been modified.
property Modified: Boolean;
Description
Modified returns True when the value to a Blob field has been changed. If the value of the Blob field is
set by using the properties of TBlobField, or by using a TIBBlobStream object, Modified is automatically
set to True.

TIBBlobStream.Transaction
TIBBlobStreamSee also
Sets or returns the associated transaction.
property Transaction: TIBTransaction;
Description
Use Transaction to set or return the associated transaction.

TIBBlobStream.TRHandle
TIBBlobStreamSee also
Returns the transaction handle.
property TRHandle: PISC_TR_HANDLE;
Description
Use TRHandle to return the transaction handle.

TIBBlobStream methods
TIBBlobStreamAlphabetically

In TIBBlobStream
Call
CheckReadable
CheckWritable
Create
Destroy
Finalize
LoadFromFile
LoadFromStream
Read
SaveToFile
SaveToStream
Seek
SetSize
Truncate
Write

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface

GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBBlobStream methods
TIBBlobStreamBy object

AfterConstruction
BeforeDestruction
Call
CheckReadable
CheckWritable
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
CopyFrom
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Finalize
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
Read
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
SaveToFile
SaveToStream
Seek
SetSize
Truncate
Write

WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

TIBBlobStream.Call
TIBBlobStreamSee also
Returns an error message based on the error code.
function Call(ISC_STATUS; RaiseError: Boolean): ISC_STATUS;
Description
Call is an internal method used to make calls to the InterBase API, and gives you the option of raising an
exception or returning an error based on the value of RaiseError.

TIBBlobStream.CheckReadable
TIBBlobStreamSee also
Indicates whether or not a Blob is readable.
procedure CheckReadable;
Description
Call CheckReadable to determine whether or not a Blob is readable. This method raises an exception
if the Blob is not readable.

TIBBlobStream.CheckWritable
TIBBlobStreamSee also
Indicates whether or not a Blob is write-able.
procedure CheckWritable;
Description
Call CheckWritable to determine whether or not a Blob is write-able. This method raises an exception if
the Blob is not write-able.

TIBBlobStream.Create
TIBBlobStreamSee also Example
Creates an instance of TIBBlobStream.
constructor Create;
Description
Call Create to obtain an instance of TIBBlobStream for reading from or writing to a specific TBlobField
object.

TIBBlobStream.Destroy
TIBBlobStreamSee also
Destroys an instance of TIBBlobStream.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead call Free. Free verifies that the TIBBlobStream
object is not already freed and only then calls Destroy.
Destroy the TIBBlobStream object by calling Free when it is no longer needed for reading from or writing
to the BLOB field.
Destroy triggers an OnDataChange event if the Blob stream was used to overwrite or modify the data in
the field. Destroy then frees any buffers that were allocated to handle the data.

TIBBlobStream.Finalize
TIBBlobStream
Creates a Blob on the InterBase server and writes the data from the BlobStream to it.
procedure Finalize;
Description
Finalize creates a Blob on the InterBase server and writes the data from the BlobStream to the Blob and
then closes the Blob.

TIBBlobStream.LoadFromFile
TIBBlobStreamSee also
Loads a Blob from a file to the field.
procedure LoadFromFile(Filename: String);
Description
Use LoadFromFile to load the contents of a file into a Blob field. Specify the name of the file to load into
the field as the value of the FileName parameter.

TIBBlobStream.LoadFromStream
TIBBlobStreamSee also
Loads a Blob from a stream into the field.
procedure LoadFromStream(Stream: TStream);
Description
Use LoadFromStream to copy the contents of a stream into the Blob field. Specify the stream from
which the field’s value is copied as the value of the Stream parameter.

TIBBlobStream.Read
TIBBlobStreamSee also
Reads up to Count bytes from the current position in the field’s data into Buffer.
function Read(var Buffer; Count: Longint): Longint;
Description
Call Read to read data from the Blob field when the number of bytes in the field’s data is not known.
Buffer must have at least Count bytes allocated to hold the data that was read from the field.
Read transfers up to Count bytes from the Blob data into Buffer, starting in the current position, and then
advances the current position by the number of bytes actually transferred. Read returns the number of
bytes actually transferred (which may be less than the number requested in Count.)
Read checks the Transliterate property of the field, and converts the data into ANSI from the character
set specified by the dataset if Transliterate is True.
All the other data-reading methods of a Blob stream (ReadBuffer, ReadComponent) call Read to do their
actual reading.
Note: Do not call Read when the TIBBlobStream was created in bmWrite mode.

TIBBlobStream.SaveToFile
TIBBlobStreamSee also
Saves the contents of the Blob field to a file.
procedure SaveToFile(FileName: string);
Description
Use SaveToFile to save the contents of the Blob field to a file. Specify the name of the file as the value
of the FileName parameter.

TIBBlobStream.SaveToStream
TIBBlobStreamSee also
Saves the contents of the BLOB field to a stream.
procedure SaveToStream(Stream: TStream);
Description
Use SaveToStream to copy the contents of a Blob field to a stream. Specify the name of the stream to
which the field’s value is saved as the value of the Stream parameter.

TIBBlobStream.Seek
TIBBlobStreamSee also
Resets the current position of the TIBBlobStream object.
function Seek(Offset: Longint; Origin: Word): Longint;
Description
Use Seek to move the current position within the Blob data by the indicated offset. Seek allows an
application to read from or write to a particular location within the Blob data.
The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Value Meaning
soFromBeginning · Offset is from the beginning of the Blob data

· Seek moves to the position Offset
· Offset must be >= 0

soFromCurrent · Offset is from the current position in the Blob data
· Seek moves to Position + Offset

soFromEnd · Offset is from the end of the Blob data
· Offset must be <= 0 to indicate a number of bytes before the end

of the Blob
Seek returns the new value of the Position property, the new current position in the Blob data.

TIBBlobStream.SetSize
TIBBlobStreamSee also
Set the new total size of the Blob.
procedure SetSize(NewSize: Long);
Description
Call SetSize to set the new total size of the Blob.

TIBBlobStream.Truncate
TIBBlobStreamSee also
Discards all data in the Blob field from the current position on.
procedure Truncate;
Description
Use Truncate to limit the size of the Blob data. Calling Truncate when the current position is 0 will clear
the contents of the Blob field.
Note: Do not call Truncate when the TIBBlobStream was created in bmRead mode.

TIBBlobStream.Write
TIBBlobStreamSee also
Writes Count bytes from Buffer to the current position in the field and updates the current position by
Count bytes.
function Write(const Buffer; Count: Longint): Longint;
Description
Use Write to write Count bytes to the Blob field, starting at the current position. The Write method for
TIBBlobStream always writes the entire Count bytes, as Blob data does not necessarily include a
termination character. Thus, Write is equivalent to the WriteBuffer method.
Write checks the Transliterate property of the field, and converts the data from ANSI into the character
set of the dataset if Transliterate is True.
All the other data-writing methods of a Blob stream (WriteBuffer, WriteComponent) call Write to do their
actual writing.
Note: Do not call Write when the TIBBlobStream was created in bmRead mode.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TStream

TIBCustomDataSet
Hierarchy Properties Methods Events See also
Encapsulates InterBase Express functionality for descendent dataset objects.

Unit
IBCustomDataSet

Description
TIBCustomDataSet is a dataset object that defines InterBase Express (IBX) functionality for a dataset.
Applications never use TIBCustomDataSet objects directly. Instead they use the descendants of
TIBCustomDataSet, such as TIBDataSet, TIBQuery, TIBStoredProc, and TIBTable, which inherit its
dataset-related properties and methods.

TIBCustomDataSet properties
TIBCustomDataSet Alphabetically Legend

In TIBCustomDataSet
CachedUpdates
Database
DBHandle
Transaction
TRHandle
UpdateObject
UpdateRecordTypes
UpdatesPending

Derived fromTDataSet
Active
AggFields
AutoCalcFields
Bof
Bookmark
DatasetField
DataSource
DefaultFields

Designer
Eof
FieldCount
FieldDefList
FieldDefs
FieldList
Fields
FieldValues

Found
Modified
Name
ObjectView
SparseArrays
State

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo

Owner
Tag
VCLComObject

TIBCustomDataSet properties
TIBCustomDataSet By object Legend

Active
AggFields
AutoCalcFields
Bof
Bookmark
CachedUpdates
ComObject
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle
Database
DataSource
DBHandle
DefaultFields

Designer
DesignInfo

Eof
FieldCount
FieldDefList
FieldDefs
FieldList
Fields

FieldValues
Found

Modified
Name
ObjectView
Owner
SparseArrays
State
Tag
TRHandle
Transaction
UpdateObject
UpdateRecordTypes
UpdatesPending
VCLComObject

TIBCustomDataSet.CachedUpdates
TIBCustomDataSet See also
Specifies whether cached updates are enabled for a dataset.
property CachedUpdates: Boolean;
Description
CachedUpdates enables or disables the use of cached updates for a dataset. If CachedUpdates is True,
cached updates are enabled. If CachedUpdates is False, cached updates are disabled.
When cached updates are enabled, updates to a dataset (such as posting changes, inserting new
records, or deleting records), are stored in an internal cache on the client machine instead of being
written directly to the dataset’s underlying database tables. When changes are complete, an application
writes all cached changes to the database in the context of a single transaction.
Cached updates are most useful to client applications in two-tiered applications. The main benefits of
enabling cached updates are:
• Fewer transactions and shorter transaction times.
• Minimization of network traffic.
The potential drawbacks of enabling cached updates are:
• Other applications can access and change the actual data on the server while users are editing local

copies of the data, resulting in an update conflict when cached updates are applied to the database.
• Other applications cannot access data changes made by an application until its cached updates are

applied to the database.
Note: Instead of using cached updates, applications can obtain the same benefits with greater control

by using a client dataset.

TIBCustomDataSet.Database
TIBCustomDataSet See also
Identifies the database component for which this dataset represents one or more tables.
property Database: TIBDatabase;
Description
Use Database to access the properties, events, and methods of the database component associated
with this dataset.

TIBCustomDataSet.DBHandle
TIBCustomDataSet See also
Specifies the database handle for the dataset.
property DBHandle: PISC_DB_HANDLE;
Description
Check DBHandle to determine the database handle for the dataset.

TIBCustomDataSet.Transaction
TIBCustomDataSet See also
Identifies the transaction under which the query executes.
property Transaction: TIBTransaction;
Description
Use Transaction to determine under which transaction the query executes.

TIBCustomDataSet.TRHandle
TIBCustomDataSet See also
Specifies the transaction handle for the dataset.
property TRHandle: PISC_TR_HANDLE;
Description
Check TRHandle to determine the transaction handle for the dataset.

TIBCustomDataSet.UpdateObject
TIBCustomDataSet See also
Specifies the update object component used to update a read-only result set when cached updates are
enabled.
property UpdateObject: TIBDataSetUpdateObject;
Description
Use UpdateObject to specify the TIBDataSetUpdateObject component to use in an application that must
be able to update a read-only result set.
In some cases, such as a query made against multiple tables, a live result set cannot be returned. In
these cases, UpdateObject can be used to specify a TIBUpdateSQL component that performs updates
as a separate transaction that is transparent to the application.

TIBCustomDataSet.UpdateRecordTypes
TIBCustomDataSet See also Example
Specifies the type of records visible in a dataset when cached updates are enabled.
type TIBUpdateRecordTypes = set of (cusModified, cusInserted, cusDeleted,
cusUnmodified, cusUninserted);

property UpdateRecordTypes: TIBUpdateRecordTypes;
Description
Use UpdateRecordTypes to specify the records that are visible in a dataset when cached updates are
enabled. UpdateRecordTypes is a set that can have the following values:

Value Meaning
cusModified Modified records are visible.
cusInserted Inserted records are visible.
cusDeleted Deleted records are visible.
cusUnmodified Unmodified records are visible.
cusUninserted Uninserted records are visible.
By default, a dataset is created with an UpdateRecordTypes set of cusModified, cusInserted, or
cusUnmodified, meaning that all existing, edited, or inserted records are visible to the user.
An application that must cycle through a dataset to undelete records may change UpdateRecordTypes
as part of an undelete method, so that deleted records are “visible” long enough to restore them to their
previously undeleted conditions.
Similarly, an application that must cycle through a dataset to uninsert records may change
UpdateRecordTypes as part of an uninsert method, so that uninserted records are “visible” long enough
to restore them to their previously inserted conditions.
An application might also use UpdateRecordTypes like a filter to temporarily limit visible records to those
added or inserted by the user during the current session.

TIBCustomDataSet.UpdatesPending
TIBCustomDataSet See also
Indicates whether the cached updates buffer contains records that are not yet applied.
property UpdatesPending: Boolean;
Description
Examine UpdatesPending to check the status of the cached updates buffer. If UpdatesPending is True,
then there are edited, deleted, or inserted records to apply to the database. If UpdatesPending is False,
there are no records in the cache.

TIBCustomDataSet events
TIBCustomDataSet Alphabetically Legend

In TIBCustomDataSet
OnUpdateError
OnUpdateRecord

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError

TIBCustomDataSet events
TIBCustomDataSet By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError
OnUpdateError
OnUpdateRecord

TIBCustomDataSet.OnUpdateError
TIBCustomDataSet See also
Occurs if an exception is generated when cached updates are applied to a database.
type
 TIBUpdateAction = (uaFail, uaAbort, uaSkip, uaRetry, uaApplied, uaApply);
 TIBUpdateErrorEvent = procedure(DataSet: TDataSet; E: EDatabaseError;
UpdateKind: TUpdateKind; var UpdateAction: TIBUpdateAction)of object;

property OnUpdateError: TIBUpdateErrorEvent;
Description
Write an OnUpdateError event handler to respond to exceptions generated when cached updates are
applied to a database.
Because there is a delay between the time a record is first cached and the time cached updates are
applied, there is a possibility that another application may change one or more of the same records in
the database before the cached changes can be applied. DataSet is the name of the dataset to which
updates are applied.
E is a pointer to a EDBEngineError object from which an application can extract an error message and
the actual cause of the error condition. An OnUpdateError handler can use this information to determine
how to respond to the error condition.
UpdateKind indicates whether the error occurred while inserting, deleting, or modifying a record.
UpdateAction indicates the action to take when the OnUpdateError handler exits. On entry into the
handler, UpdateAction is always set to uaFail. If OnUpdateError can handle or correct the error, set
UpdateAction to uaRetry before exiting the error handler. The following table lists the possible values for
UpdateAction and what they indicate:

Value Meaning
uaAbort Aborts the update operation without Returning an error message
uaApply For internal use only
uaApplied Not used in error handling routines
uaFail Aborts the update operation and returns an error message
uaRetry Repeats the update operation that originally raised the error condition
uaSkip Skips updating the record that raised the error condition, and leaves the

unapplied changes in the cache
The error handler can use the TField.OldValue and TField.NewValue properties to evaluate error
conditions and set TField.NewValue to a new value to reapply. In this case, set UpdateAction to uaRetry
before exiting.
Note: If a call to ApplyUpdates raises an exception and ApplyUpdates is not called within the context of

a try..except block, an error message is Returned. If an OnUpdateError handler cannot correct the
error condition and leaves UpdateAction set to uaFail, the error message is Returned twice. To
prevent reReturn, set UpdateAction to uaAbort in the error handler.

Important:The code in an OnUpdateError handler must not call any methods that make a different
record the current one.

TIBCustomDataSet.OnUpdateRecord
TIBCustomDataSet See also
Occurs when cached updates are applied to a record.
type
 TIBUpdateAction = (uaFail, uaAbort, uaSkip, uaRetry, uaApply, uaApplied);
 TIBUpdateRecordEvent = procedure(DataSet: TIBDataSet; UpdateKind:
TUpdateKind; var UpdateAction: TIBUpdateAction) of object;

property OnUpdateRecord: TIBUpdateRecordEvent;
Description
Write an OnUpdateRecord event handler to process updates that cannot be handled by a single update
component, such as implementation of cascading updates, insertions, or deletions. This handler is also
useful for applications that require additional control over parameter substitution in update components.
DataSet is the name of the dataset to which updates are applied.
UpdateKind whether the current update is the insertion of a record, the deletion of a record, or the
modification of a record.
UpdateAction indicates the action taken by the OnUpdateRecord handler before it exits. On entry into
the handler, UpdateAction is always set to uaFail. If OnUpdateRecord is successful, it should set
UpdateAction to uaApplied before exiting. The following table lists the possible values for UpdateAction
and what they indicate:

Value Meaning
uaAbort Abort the update operation without Returning an error message.
uaApply For internal use.
uaApplied Update is applied. Free update record from cache.
uaFail Aborts the update operation and Returns an error message.
uaRetry Not used for record updates.
uaSkip Update is skipped. Leave update record in the cache.
Note: The code in an OnUpdateRecord handler must not call any methods that make a different record

the current one.

TIBCustomDataSet methods
TIBCustomDataSet Alphabetically

In TIBCustomDataSet
ApplyUpdates
BatchInput
BatchOutput
CachedUpdateStatus
CancelUpdates
Create
CreateBlobStream
Destroy
FetchAll
GetCurrentRecord
GetFieldData
Locate
LocateNext
Lookup
RecordModified
RevertRecord
Undelete
UpdateStatus

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
CompareBookmarks
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark

GetDetailDataSets
GetDetailLinkFields
GetFieldList
GetFieldNames
GetProviderAttributes
GotoBookmark
Insert
InsertRecord
IsEmpty
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
Translate
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs

ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBCustomDataSet methods
TIBCustomDataSet By object

ActiveBuffer
AfterConstruction
Append
AppendRecord
ApplyUpdates
Assign
BatchInput
BatchOutput
BeforeDestruction
CachedUpdateStatus
CancelUpdates
CheckBrowseMode
CheckNotUniDirectional
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CompareBookmarks
ControlsDisabled
Create
CreateBlobStream
CursorPosChanged
DefaultHandler
Delete
Destroy
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecuteAction
FetchAll
FieldAddress
FieldByName
FindComponent
FindField
FindFirst

FindLast
FindNext
FindPrior
First
Free
FreeBookmark
FreeInstance
FreeNotification
FreeOnRelease
GetBookmark
GetCurrentRecord
GetDetailDataSets
GetDetailLinkFields
GetFieldData
GetFieldList
GetFieldNames
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetProviderAttributes
GotoBookmark
HasParent
InheritsFrom
InitInstance
Insert
InsertComponent
InsertRecord
InstanceSize
IsEmpty
IsLinkedTo
Last
Locate
LocateNext
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
Post
Prior
RecordModified

Refresh
RemoveComponent
Resync
RevertRecord
SafeCallException
SetFields
Translate
Undelete
UpdateAction
UpdateCursorPos
UpdateRecord
UpdateStatus

TIBCustomDataSet.ApplyUpdates
TIBCustomDataSet See also
Writes a dataset’s pending cached updates to the database.
procedure ApplyUpdates;
Description
Call ApplyUpdates to write a dataset’s pending cached updates to a database. This method passes
cached data to the database for storage, but the changes are not committed to the database. An
application must explicitly call the TIBTransaction component’s Commit method to commit the changes
to the database if the write is successful, or call the TIBTransaction component’s Rollback method to
undo the changes if there is an error.
Note: The preferred method for updating datasets is to call a database component’s ApplyUpdates

method rather than to call each individual dataset’s ApplyUpdates method. The application is
responsible for committing or rolling back the transaction.

TIBCustomDataSet.BatchInput
TIBCustomDataSet See also
Executes the parameterized query in SQL for input in the referenced input object.
procedure BatchInput(InputObject: TIBBatchInput);
Description
Call BatchInput to execute the parameterized query in SQL for input in the referenced input object.

TIBCustomDataSet.BatchOutput
TIBCustomDataSet See also
Outputs the selected query in SQL to the referenced OutputObject.
procedure BatchOutput(OutputObject: TIBBatchOutput);
Description
Call BatchOutput to output the selected query in SQL to the referenced OutputObject.

TIBCustomDataSet.CachedUpdateStatus
TIBCustomDataSet See also
Returns the status of the cached updates.
type TCachedUpdateStatus = (cusUnmodified, cusModified, cusInserted,
cusDeleted, cusUninserted);

function CachedUpdateStatus: TCachedUpdateStatus;
Description
Call CachedUpdateStatus to return the cached update status of the current record in the dataset.
TCachedUpdateStatus can be one of the following:
cusDeleted Record will be deleted
cusInserted Record will be inserted
cusModified Record will be modified
cusUninserted Record was inserted and then deleted
cusUnmodified Record was not modified

TIBCustomDataSet.CancelUpdates
TIBCustomDataSet See also
Clears all pending cached updates from the cache.
procedure CancelUpdates;
Description
Call CancelUpdates to clear all pending cached updates from the cache.
When a dataset is closed, or the CachedUpdates property is set to False, CancelUpdates is called
automatically.
Note: To undo changes to a single record, call RevertRecord.

TIBCustomDataSet.Create
TIBCustomDataSet See also
Creates an instance of a TDataSet component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a dataset component at runtime. Ordinarily applications instantiate dataset
descendants, such as TIBTable, TIBQuery, TIBDataSet, or TIBStoredProc, rather than
TIBCustomDataSet. These instantiated objects are handled automatically.
On the other hand, applications that create specialized dataset components, such as custom
components, may need to instantiate a TIBCustomDataSet component by calling Create. Create:
· Calls the inherited Create for TDataSet.
· Creates the five query objects.
· Creates the base object to hold the reference to the database and transaction.
· Associates database and transaction related events to the base object component.

TIBCustomDataSet.CreateBlobStream
TIBCustomDataSet See also Example
Returns a TBlobStream object for reading or writing the data in a specified blob field.
type TBlobStreamMode = (bmRead, bmWrite, bmReadWrite);
function CreateBlobStream(Field: TField; Mode: TBlobStreamMode): TStream;
Description
Call CreateBlobStream to obtain a stream for reading data from or writing data to a binary large object
(BLOB) field. The Field parameter must specify a TBlobField component from the Fields property array.
The Mode parameter specifies whether the stream will be used for reading, writing, or updating the
contents of the field.

TIBCustomDataSet.Destroy
TIBCustomDataSet See also
Destroys the instance of a dataset component.
destructor Destroy;
Description
Do not call Destroy directly in an application. Usually destruction of datasets is handled automatically by
Delphi. If an application creates its own instances of a dataset, however, the application should call
Free, which verifies that the dataset component is not already freed before calling Destroy.

Destroy performs the following tasks:
· Frees the associated query objects.
· Frees the base object.
· Frees the associated internal resources.

TIBCustomDataSet.FetchAll
TIBCustomDataSet See also
Retrieves all records from the current cursor position to the end of the file and stores them locally.
procedure FetchAll;
Description
Call FetchAll to reduce network traffic when using cached updates. FetchAll calls CheckBrowseMode to
post any pending changes, and then retrieves all records from the current cursor position to the end of
the file, and stores them locally. Ordinarily when cached updates are enabled, a transaction retrieves
only as much data as it needs for return purposes.
Note: Using FetchAll is not always appropriate. For example, when an application accesses a database

used by many simultaneous clients and there is a high degree of contention for updating the
same records, fetching all records at once may not be advantageous because some fetched
records may be changed by other applications. Always weigh the advantages of reduced network
traffic against the need for reduced record contention.

TIBCustomDataSet.GetCurrentRecord
TIBCustomDataSet See also
Retrieves the current record into a buffer.
function GetCurrentRecord(Buffer: PChar): Boolean;
Description
Most applications should not need to call GetCurrentRecord. TDataSet automatically allocates a buffer
for the active record.
Call GetCurrentRecord to copy the current record into a buffer allocated by the application. Buffer must
be at least as big as the record size indicated by the RecordSize property.

TIBCustomDataSet.GetFieldData
TIBCustomDataSet See also
Reads the field data into a buffer.
function GetFieldData(FieldNo: Integer; Buffer: Pointer): Boolean;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean;
Description
GetFieldData reads field data from a field of a dataset specified by Field or FieldNo into a Buffer.
Returns the size of the Buffer.

TIBCustomDataSet.Locate
TIBCustomDataSet See also
Searches the dataset for a specified record and makes that record the current record.
function Locate(const KeyFields: string; const KeyValues: Variant; Options:
TLocateOptions): Boolean;

Description
Call Locate to search a dataset for a specific record and position the cursor on it.
KeyFields is a string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant that specifies the values to match in the key fields. If KeyFields lists a single field,
KeyValues specifies the value for that field on the desired record. To specify multiple search values,
pass a variant array as KeyValues, or construct a variant array on the fly using the VarArrayOf routine.
For example:
with CustTable do
Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver', 'P', '408-431-
1000']), [loPartialKey]);

Options is a set that optionally specifies additional search latitude when searching on string fields. If
Options contains the loCaseInsensitive setting, then Locate ignores case when matching fields. If
Options contains the loPartialKey setting, then Locate allows partial-string matching on strings in
KeyValues. If Options is an empty set, or if KeyFields does not include any string fields, Options is
ignored.
Locate returns True if it finds a matching record, and makes that record the current one. Otherwise
Locate returns False.
Locate uses the fastest possible method to locate matching records. If the search fields in KeyFields are
indexed and the index is compatible with the specified search options, Locate uses the index. Otherwise
Locate creates a filter for the search.

TIBCustomDataSet.LocateNext
TIBCustomDataSet See also
Searches the dataset for the record after a specified record and makes that record the current record.
function LocateNext(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean

Description
Call LocateNext to search a dataset for a record after the current cursor position
KeyFields is a string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant that specifies the values to match in the key fields. If KeyFields lists a single field,
KeyValues specifies the value for that field on the desired record. To specify multiple search values,
pass a variant array as KeyValues, or construct a variant array on the fly using the VarArrayOf routine.
Options is a set that optionally specifies additional search latitude when searching on string fields. If
Options contains the loCaseInsensitive setting, then LocateNext ignores case when matching fields. If
Options contains the loPartialKey setting, then LocateNext allows partial-string matching on strings in
KeyValues. If Options is an empty set, or if KeyFields does not include any string fields, Options is
ignored.
LocateNext returns True if it finds a matching record, and makes that record the current one. Otherwise
LocateNext returns False.
LocateNext uses the fastest possible method to locate matching records. If the search fields in
KeyFields are indexed and the index is compatible with the specified search options, LocateNext uses
the index. Otherwise LocateNext creates a filter for the search.

TIBCustomDataSet.Lookup
TIBCustomDataSet See also
Retrieves field values from a record that matches specified search values.
function Lookup(const KeyFields: string; const KeyValues: Variant; const
ResultFields: string): Variant;

Description
Call Lookup to retrieve values for specified fields from a record that matches search criteria. KeyFields
is a string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant array containing the values to match in the key fields. To specify multiple search
values, pass KeyValues as a variant array as an argument, or construct a variant array on the fly using
the VarArrayOf routine.
ResultFields is a string containing a semicolon-delimited list of field names whose values should be
returned from the matching record.
Lookup returns a variant array containing the values from the fields specified in ResultFields.
Lookup uses the fastest possible method to locate matching records. If the search fields in KeyFields
are indexed, Lookup uses the index. Otherwise Lookup creates a filter for the search.

TIBCustomDataSet.RecordModified
TIBCustomDataSet See also
Sets the record to modified or unmodified.
procedure RecordModified(Value: Boolean);
Description
Call RecordModified to mark a record as modified or unmodified.
Note: This method is for internal use.

TIBCustomDataSet.RevertRecord
TIBCustomDataSet See also Example
Restores the current record in the dataset to an unmodified state when cached updates are enabled.
procedure RevertRecord;
Description
Call RevertRecord to undo changes made to the current record when cached updates are enabled.
Note: To undo all changes to all pending updates in the cache, call CancelUpdates.

TIBCustomDataSet.Undelete
TIBCustomDataSet See also
Restores a record deleted from the dataset.
procedure Undelete;
Description
Call Undelete to restore a record deleted or uninserted from the dataset.

TIBCustomDataSet.UpdateStatus
TIBCustomDataSet See also
Reports the update status for the current record.
type TUpdateStatus = (usUnmodified, usModified, usInserted, usDeleted);
function UpdateStatus: TUpdateStatus;
Description
Call UpdateStatus to determine the update status for the current record when cached updates are
enabled. Update status can change frequently as records are edited, inserted, or deleted. UpdateStatus
offers a convenient method for applications to assess the current status before undertaking or
completing operations that depend on the update status of records.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TDataSet

 TIBDatabase
Hierarchy Properties Methods Events See also
TIBDatabase encapsulates an InterBase database connection.

Unit
IBDatabase

Description
Use TIBDatabase to encapsulate an InterBase database connection. All TIBCustomDataSet
descendants and TIBSQL use the TIBDatabase component to gain access to databases.

TIBDatabase properties
TIBDatabase Alphabetically Legend

In TIBDatabase
DatabaseName
DBParamByDPB
DBSQLDialect
DefaultTransaction
Handle
HandleIsShared
IdleTimer
IsReadOnly
Params
SQLDialect
SQLObjectCount
SQLObjects
TraceFlags

TransactionCount
Transactions

Derived from TCustomConnection
Connected
DataSetCount

DataSets
LoginPrompt

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBDatabase properties
TIBDatabase By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
Connected
DatabaseName
DataSetCount
DataSets
DBParamByDPB
DBSQLDialect
DefaultTransaction
DesignInfo
Handle
HandleIsShared
IdleTimer

IsReadOnly
LoginPrompt
Name
Owner
Params
SQLDialect
SQLObjectCount
SQLObjects
Tag
TraceFlags
TransactionCount

Transactions
VCLComObject

TIBDatabase.DatabaseName
TIBDatabase See also
Specifies the name of the database to associate with this database component.
property DatabaseName: String;
Description
Use DatabaseName to specify the name of the database to use with a database component. For local
InterBase databases, this can be a filename.
To connect to an InterBase database on a remote server using TCP/IP the syntax is
<server_name>:<filename>.
To connect to an InterBase database on a remote server using NetBEUI, the syntax is: \\
<server_name>\<filename>.
To connect to an InterBase database on a remote server using SPX, the syntax is:
<server_name>@<filename>.

TIBDatabase.DBParamByDPB
TIBDatabase See also
Specifies the name of the database to associate with this database component.
property DBParamByDPB: [const Idx: Integer]: String;
Description
Use DBParamByDPB to inspect and set DPB parameters without looking at the Params string list.
For example,
DBParamByDPB[isc_dpb_user_name]
can be used to set and inspect the user name.

TIBDatabase.DBSQLDialect
TIBDatabase See also
Returns the database SQL dialect.
property DBSQLDialect: Integer;
Description
Use DBSQLDialect to get the database SQL dialect.

TIBDatabase.DefaultTransaction
TIBDatabase See also
Sets or returns the default database transaction.
property DefaultTransaction: TIBTransaction;
Description
Use DefaultTransaction to set or return the default database transaction.
A single database connection can manage one or more transactions. DefaultTransaction is a
convenient way to specify a default transaction to a database connection.

TIBDatabase.Handle
TIBDatabase See also
Specifies the InterBase API database handle.
property Handle: TISC_DB_Handle;
Description
Use Handle to make calls directly to the InterBase API. Many of the InterBase API functions require a
database handle as one of their arguments. Handle is assigned an initial value when a database is
opened.

TIBDatabase.HandleIsShared
TIBDatabase See also
Indicates whether or not a the handle is shared.
property HandleIsShared: Boolean;
Description
Read HandleIsShared to determine if the handle to the database is shared.

TIBDatabase.IdleTimer
TIBDatabase See also
Specifies how long the database should wait before disconnecting an idle connection.
property IdleTimer: Integer;
Description
Use IdleTimer to indicate how long the database should wait before automatically terminating the
connection.

TIBDatabase.IsReadOnly
TIBDatabase See also
Indicates whether or not the database is set to read-only.
property IsReadOnly: Boolean;
Description
Read IsReadOnly to determine if the database is read-only.
Note: Read-only databases are an InterBase 6 feature.

TIBDatabase.Params
TIBDatabase See also
Specifies the database parameters to pass to the InterBase server.
property Params: TStrings;
Description
Use Params to specify the database parameters to pass to the InterBase server.
Database parameters are passed to the server as text in order to establish the connection. For
example:
user_name=sysdba
password=masterkey
sql_role_name=finance
lc_ctype=WIN1252
For more information on character sets, refer to “Character Sets and Collation Orders” in the InterBase
Language Reference.
For other information, refer to the InterBase API Guide.

TIBDatabase.SQLDialect
TIBDatabase See also
Sets or returns the SQL dialect used by the client.
property SQLDialect: Integer;
Description
Use the SQLDialect property to set or return the SQL dialect used by the client. If the connection is
active, the SQLDialect property cannot be set to a value greater than the database SQL dialect. If the
connection is inactive, then on connect an OnDialectDownGradeWarning event may be fired if the
SQLDialect is greater than the database SQL dialect. In such a case, the SQLDialect property will be
downgraded to match the database SQL dialect.

TIBDatabase.SQLObjectCount
TIBDatabase See also
Returns the number of SQL objects.
property SQLObjectCount: Integer;
Description
Use the SQLObjectCount property to return the number of SQL objects in the database.
SQL objects are usually defined as InterBase datasets, IBSQL, and Blobs.

TIBDatabase.SQLObjects
TIBDatabase See also
Returns an SQL object.
property SQLObjects[Index: Integer]: TIBBase;
Description
Use the SQLObjects property to return an SQL object based on its numeric index.
SQL objects are usually defined as InterBase datasets, IBSQL, and Blobs.

TIBDatabase.TraceFlags
TIBDatabase See also
Specifies the database operations to track with the SQL Monitor at runtime.
type
TTraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt, tfConnect,
tfTransact, tfBlob, tfService, tfMisc);

TTraceFlags = set of TTraceFlag;
property TraceFlags: TTraceFlags;
Description
Use TraceFlags to specify which database operations the SQL Monitor should track in an application at
runtime. TraceFlags is only meaningful for the SQL Monitor, which is provided to enable performance
tuning and SQL debugging when working with remote SQL database servers.
Note: Normally trace options are set from the SQL Monitor rather than setting TraceFlags in application
code.
The value of a session component’s TraceFlags property determines the initial settings of the
TraceFlags property for database components associated with the session.
The TTraceFlags type defines the individual values that can be included in the TraceFlags property. The
following table summarizes those values:
tfQPrepare Monitor Prepare statements.
tfQExecute Monitor ExecSQL statements.
tfQFetch Monitor Fetch statements.
tfError Monitor server error messages. Such messages may include an error code.
tfStmt Monitor all SQL statements.
tfConnect Monitor database connect and disconnect operations, including allocation

of connection handles, and freeing connection handles.
tfTransact Monitor transaction statements, such as StartTransaction, Commit, and

Rollback.
tfBlob Monitor operations on blob data types.
tfService Monitor services.
tfMisc Monitor any statements not covered by other flag options.

Because TraceFlags is a set property, an application can specify different combinations of flags to
monitor different combinations of statements. For example, the following statement limits monitoring to
database connections and SQL statement preparation:TraceFlags := [tfConnect,
tfQPrepare];

TIBDatabase.TransactionCount
TIBDatabase See also
Returns the number of transactions associated with the TIBDatabase component.
property TransactionCount: Integer;
Description
Use TransactionCount to return how many transactions are currently associated with the InterBase
database component.

TIBDatabase.Transactions
TIBDatabase See also
Specifies a transaction for the given index.
property Transactions [Index: Integer]: TIBTransaction;
Description
Given an integer index, Transactions returns the transaction at the given index. This is used internally
for broadcasting important messages to attached components.

TIBDatabase events
TIBDatabase Alphabetically Legend

In TIBDatabase
OnDialectDowngradeWarning
OnIdleTimer
OnLogin

Derived from TCustomConnection
AfterConnect
AfterDisconnect
BeforeConnect
BeforeDisconnect

TIBDatabase events
TIBDatabase By object Legend

AfterConnect
AfterDisconnect
BeforeConnect
BeforeDisconnect
OnDialectDowngradeWarning
OnIdleTimer
OnLogin

TIBDatabase.OnDialectDowngradeWarning
TIBDatabase See also
Occurs after the SQL dialect of the client connection is downgraded.
property OnDialectDowngradeWarning: TNotifyEvent;
Description
Write an OnDialectDowngradeWarning event handler to take specific actions when the SQL dialect is
downgraded.
For example, if the SQL dialect for your application is set to 3 and then a connection is made to a dialect
1 database, then the SQL dialect is downgraded to 1 and a OnDialectDowngradeWarning event is fired.

TIBDatabase.OnIdleTimer
TIBDatabase See also
Occurs after a database connection times out.
property OnIdleTimer: TNotifyEvent;
Description
Write an OnIdleTimer event handler to take specific actions when the connection times out in the time
specified by IdleTimer.

TIBDatabase.OnLogin
TIBDatabase See also
Occurs when an application connects to a database.
TDatabaseLoginEvent = procedure(Database: TIBDatabase; LoginParams:
TStrings) of object;

property OnLogin: TDatabaseLoginEvent;
Description
Write an OnLogin event handler to take specific actions when an application attempts to connect to a
database. By default, a database login is required. The current USER_NAME is read from the Params
property, and a standard Login dialog box opens. The dialog prompts for a user name and password
combination, and then uses the values entered by the user to set the USER_NAME and PASSWORD
values in the Params property. These values are then passed to the remote server.
Applications that provide alternative OnLogin event handlers must set the USER_NAME and
PASSWORD values in LoginParams. LoginParams is a temporary string list and is freed automatically
when no longer needed.

TIBDatabase methods
TIBDatabase Alphabetically

In TIBDatabase
AddTransaction
ApplyUpdates
Call
CheckActive
CheckDatabaseName
CheckInactive
CloseDataSets
Create
CreateDatabase
Destroy
DropDatabase
FindTransaction
ForceClose
GetFieldNames
GetTableNames
IndexOfDBConst
RemoveTransaction
RemoveTransactions
SetHandle
TestConnected

Derived from TCustomConnection
AddDataSet
Close
DoConnect
DoDisconnect
GetConnectedt
GetDataSet
GetDataSetCount
Loaded
Open
RemoveDataSet
SendConnectEvent
SetConnected

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath

GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBDatabase methods
TIBDatabase By object

AddDataSet
AddTransaction
AfterConstruction
ApplyUpdates
Assign
BeforeDestruction
Call
CheckActive
CheckDatabaseName
CheckInactive
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Close
CloseDataSets
Create
CreateDatabase
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
DoConnect
DoDisconnect
DropDatabase
ExecuteAction
FieldAddress
FindComponent
FindTransaction
ForceClose
Free
FreeInstance
FreeNotification
FreeOnRelease
GetConnectedt
GetDataSet
GetDataSetCount
GetFieldNames
GetInterface

GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetTableNames
HasParent
IndexOfDBConst
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Loaded
Open
RemoveDataSet
SendConnectEvent
SetConnected
MethodAddress
MethodName
NewInstance
Open
RemoveComponent
RemoveDataSet
RemoveTransaction
RemoveTransactions
SafeCallException
SendConnectEvent
SetConnected
SetHandle
TestConnected
UpdateAction

TIBDatabase.AddTransaction
TIBDatabase See also
Adds an association between the transaction component and the database component.
function AddTransaction(TR: TIBTransaction): Integer;
Description
Call AddTransaction to add an association between the transaction component and the database
component.

TIBDatabase.ApplyUpdates
TIBDatabase See also
Posts pending cached updates for specified datasets to the database server.
procedure ApplyUpdates(const DataSets: array of TIBCustomDataSet);
Description
Call ApplyUpdates to post pending cached updates for a specific set of open datasets to the database
server. ApplyUpdates is only meaningful if the CachedUpdates property of a specified dataset is True.
DataSets is a list of dataset names specifying the datasets for which to post pending updates. DataSets
need not list every currently open dataset. For each listed dataset ApplyUpdates calls the dataset’s
ApplyUpdates and CommitUpdates methods to post that dataset’s pending cached updates.

TIBDatabase.Call
TIBDatabase See also
Returns an error message based on the error code.
function Call (ErrCode: ISC_STATUS; RaiseError: Boolean): ISC_STATUS;
Description
Call is an internal method used to make calls to the InterBase API, and gives you the option of raising an
exception or returning an error based on the value of RaiseError.

TIBDatabase.CheckActive
TIBDatabase See also
Checks to see if the database connection is active.
procedure CheckActive;
Description
Call CheckActive to return an error if the connection to a database server is inactive.

TIBDatabase.CheckDatabaseName
TIBDatabase See also
Checks to see if the DatabaseName property is not empty.
procedure CheckDatabaseName;
Description
Call CheckDatabaseName to check if the DatabaseName property is empty, and to return an error if it
is.

TIBDatabase.CheckInactive
TIBDatabase See also
Checks to see if the database connection is inactive.
procedure CheckInactive;
Description
Call CheckInactive to return an error if the connection to a database server is active.

TIBDatabase.CloseDataSets
TIBDatabase See also
Closes all datasets associated with the database component without disconnecting from the database
server.
procedure CloseDataSets;
Description
Call CloseDataSets to close all active datasets without disconnecting from the database server.
Ordinarily, when an application calls Close, all datasets are closed, and the connection to the database
server is dropped. Calling CloseDataSets instead of Close ensures that an application can close all
active datasets without having to reconnect to the database server at a later time.

TIBDatabase.Create
TIBDatabase See also
Creates an instance of a TIBDatabase component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a database component at runtime. An application can create a database
component in order to control the component’s existence and set its properties and events.
Create instantiates a database component and creates an empty list of dataset components for the
DataSets property and an empty string list for the Params property.

TIBDatabase.CreateDatabase
TIBDatabase See also
Creates a database using Params.
procedure CreateDatabase;
Description
Call CreateDatabase to create a database using Params as the rest of the CREATE DATABASE
command.
For example, if you wanted to create a local InterBase database, you could do the following:
1. Set the database name to the drive, path, and filename of the database file.
1. Set Params to the parameter for the CREATE DATABASE statement:
USER “SYSDBA”
0 PASSWORD “MASTERKEY”
1 PAGE_SIZE 4096

1. Set the SQLDialect value.
1. Call the CreateDatabase method.

TIBDatabase.Destroy
TIBDatabase See also
Destroys the instance of the database component.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free, which verifies that the database
component is not already freed before calling Destroy.
Destroy disconnects from the database server, if necessary. It then frees the string resources allocated
for the Params and DataSets properties before calling its inherited destructor.

TIBDatabase.DropDatabase
TIBDatabase See also
Drops a database.
procedure DropDatabase;
Description
Call DropDatabase to drop a database, which removes the database file from the server.

TIBDatabase.FindTransaction
TIBDatabase See also
Finds the index of a transaction.
function FindTransaction (TR: TIBTransaction): Integer;
Description
Call FindTransaction to find the index of a specified transaction.

TIBDatabase.ForceClose
TIBDatabase See also
Forces the database connection to close.
procedure ForceClose;
Description
Use ForceClose to force the database connection to close.
Note: Forcing a database to close attempts to close the connection to the server. Even if the call
fails, the database handle is reset to nil.

TIBDatabase.GetFieldNames
TIBDatabase See also
Populates a list with the names of the fields in the table.
procedure GetFieldNames(const TableName: string; List: TStrings);
Description
Call GetFieldNames to retrieve a list of fields in the associated table.

TIBDatabase.GetTableNames
TIBDatabase See also
Populates a string list with the names of tables in the database.
procedure GetTableNames(List: TStrings; SystemTables: Boolean = False);
Description
Call GetTableNames to retrieve a list of tables in the associated database.
List is the already-existing string list object into which the tables names are put.
Set SystemTables to indicate whether the list of table names should include the database’s system
tables.
IBDatabase1.GetTableNames(ListBox2.Items, False);
Note: Any contents already in the target string list object are eliminated and overwritten by the data
produced by GetTableNames.

TIBDatabase.IndexOfDBConst
TIBDatabase See also
Searches for the named parameter in the database parameters list.
function IndexOfDBConst(st: String): Integer;
Description
Use IndexOfDBConst to locate a parameter in the database parameters list. IndexOfDBConst returns –
1 if the parameter is not found.

TIBDatabase.RemoveTransaction
TIBDatabase See also
Disassociates a transaction from the database.
procedure RemoveTransaction(Idx: Integer);
Description
Call RemoveTransaction to disassociate a specified transaction from the database.

TIBDatabase.RemoveTransactions
TIBDatabase See also
Disassociates all transactions from the database.
procedure RemoveTransactions;
Description
Call RemoveTransactions to disassociate all transactions from the database.

TIBDatabase.SetHandle
TIBDatabase See also
Sets the handle for the database.
procedure SetHandle;
Description
Call SetHandle to set the handle for the database.

TIBDatabase.TestConnected
TIBDatabase See also
Tests whether a database is connected.
procedure TestConnected: Boolean;
Description
Use TestConnected to determine whether a database is connected to the server. TestConnected
returns True if the connection is good, and False if it is not.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent

TComponent

TCustomConnection

TIBDataLink
Hierarchy Properties Methods See also
TIBDataLink is a helper class used by data-aware objects to coordinate the actions of TIBDataSet and
to respond to data events.

Unit
IBCustomDataSet

Description
Use TIBDataLink or one of its descendants in any data-aware object that implements a DataSource
property to represent its link to a dataset or that needs to respond to data events.
The constructor of the data-aware object should call the constructor of TIBDataLink, and initialize any
relevant properties. The data-aware object can then link to a TDataSource by using the DataSource
property of the TIBDataLink.
Data-aware objects that link to a single field in a dataset should use a TFieldDataLink instead.

TIBDataLink properties
TIBDataLink Alphabetically Legend

Derived from TDetailDataLink
DetailDataSet

Derived from TDataLink
Active

ActiveRecord
BufferCount
DataSet
DataSource
DataSourceFixed
Editing
ReadOnly

RecordCount

TIBDataLink properties
TIBDataLink By object Legend

Active
ActiveRecord
BufferCount
DataSet
DataSource
DataSourceFixed
DetailDataSet
Editing

ReadOnly
RecordCount

TIBDataLink methods
TIBDataLink Alphabetically Legend

In TIBDataLink
ActiveChanged
CheckBrowseMode
Create
Destroy
GetDetailDataSet
RecordChanged

Derived from TDataLink
Edit
ExecuteAction
UpdateAction
UpdateRecord

Derived from TPersistent
Assign
GetNamePath

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBDataLink methods
TIBDataLink By object Legend

ActiveChanged
AfterConstruction
Assign
BeforeDestruction
CheckBrowseMode
ClassInfo
ClassName
ClassNamels
ClassParent

ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
Edit
ExecuteAction
FieldAddress
Free
FreeInstance

GetDetailDataSet
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
InheritsFrom
InitInstance

InstanceSize
MethodAddress
MethodName
NewInstance

RecordChanged
SafeCallException
UpdateAction
UpdateRecord

TIBDataLink.ActiveChanged
TIBDataLink See also
Responds to changes in the Active property.
procedure ActiveChanged;
Description
The ActiveChanged method defined by TIBDataLink merely provides an interface for a method that can
respond to changes in the Active property. Derived objects that do not need to respond to such changes
can allow the inherited method to ignore them.

TIBDataLink.CheckBrowseMode
TIBDataLink See also
Indicates the dataset browse mode.
procedure CheckBrowseMode;
Description
Call CheckBrowseMode to indicate the dataset browse mode.

TIBDataLink.Create
TIBDataLink See also
Creates an instance of TIBDataLink.
constructor Create(ADataSet: TIBCustomDataSet);
Description
Create is called from the constructor of any data-aware object that uses a TIBDataLink to implement its
DataSource property.
After calling the inherited constructor, Create initializes the BufferCount property to 1. Data-aware
objects that use a TIBDataLink object to manage their link to a DataSource should change the
BufferCount property to the number or records they represent, after calling the inherited constructor.

TIBDataLink.Destroy
TIBDataLink See also
Destroys an instance of TIBDataLink.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call the Free method. Free verifies that the
TIBDataLink object is not already freed and only then calls Destroy.
Before calling the inherited destructor, Destroy removes any reference to the TIBDataLink from the data
source object.
The TIBDataLink object should be destroyed in the destructor of its Owner, where that Owner calls
Create from its constructor.

TIBDataLink.GetDetailDataSet
TIBDataLink See also
Returns dataset details.
function GetDetailDataSet: TDataSet;
Description
Call GetDetailDataSet to return details of the dataset.

TIBDataLink.RecordChanged
TIBDataLink See also
Indicates whether a record has changed.
procedure RecordChanged(Field: TField);
Description
The RecordChanged method defined by TIBDataLink merely provides an interface for a method that can
respond to changes to the contents of the current record. RecordChanged is called after changes have
been posted to the current record in the dataset.
The Field parameter indicates which field of the current record has changed in value. If Field is nil, any
number of fields within the current record may have changed.
Derived objects that do not need to respond to such changes can allow the inherited method to ignore
them.

Scope
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent

TDataLink

TDetailDataLink

 TIBDataSet
Hierarchy Properties Methods Events See also
TIBDataSet executes InterBase SQL statements.

Unit
IBCustomDataSet

Description
Use TIBDataSet to execute InterBase SQL statements. TIBDataSet is primarily intended for use with
SQL SELECT statements. TIBDataSet buffers the result set, making it completely scrollable. Since
TIBDataSet is a descendant of TDataSet, it works well with all data-aware components.

TIBDataSet properties
TIBDataSet Alphabetically Legend

In TIBDataSet
BufferChunks
DeleteSQL
InsertSQL
ModifySQL
Params
Prepared
QDelete
QInsert
QModify
QRefresh
QSelect
RefreshSQL
SelectSQL
StatementType

Derived from TIBCustomDataSet
Database
DBHandle
Transaction
TRHandle
UpdateObject
UpdateRecordTypes
UpdatesPending

Derived fromTDataSet
Active
AggFields
AutoCalcFields
Bof
Bookmark
CachedUpdates
DatasetField
DataSource

DefaultFields
Designer
Eof
FieldCount
FieldDefList
FieldDefs
FieldList

Fields
FieldValues
Found
Modified
ObjectView
RecordCount
SparseArrays
State

Derived from TComponent
ComObject

ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBDataSet properties
TIBDataSet By object Legend

Active
AggFields
AutoCalcFields
Bof
Bookmark
BufferChunks
CachedUpdates
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
Database
DatasetField
DataSource
DBHandle
DefaultFields
DeleteSQL
Designer
DesignInfo
Eof
FieldCount
FieldDefList

FieldDefs
FieldList
Fields
FieldValues
Found
InsertSQL
Modified
ModifySQL
Name
ObjectView
Owner
Params
Prepared
QDelete
QInsert
QModify
QRefresh
QSelect
RecordCount
RefreshSQL
SelectSQL
SparseArrays
Statet
StatementType
Tag
Transaction
TRHandle

UpdateObject
UpdateRecordTypes
UpdatesPending
VCLComObject

TIBDataSet.BufferChunks
TIBDataSet
Sets or returns the dataset buffer chunk size.
property BufferChunks: Integer;
Description
Use BufferChunks to set or return the dataset buffer chunk size as the number of records in the chunk.

TIBDataSet.DeleteSQL
TIBDataSet See also
Holds the SQL statement used to delete rows from the dataset.
property DeleteSQL: TStrings;
Description
Use DeleteSQL to delete rows in the dataset.

TIBDataSet.InsertSQL
TIBDataSet See also
Holds the SQL statement used to insert rows into the dataset.
property InsertSQL: TStrings;
Description
Use InsertSQL to insert rows into the dataset.

TIBDataSet.ModifySQL
TIBDataSet See also
Provides the ability to access the SQL object encapsulating the ModifySQL statement.
property ModifySQL: TStrings;
Description
Use ModifySQL to access the SQL object that encapsulates the ModifySQL statement.

TIBDataSet.Params
TIBDataSet See also
Provides the ability to specify values for a parameterized query.
property Params: TIBXSQLDA;
Description
Use Params to specify values for a parameterized query.
For example:
DataSet1.Params[0].AsInteger = 24
DataSet1.Params.ByName[‘Field2’].AsString = ‘foo’

TIBDataSet.Prepared
TIBDataSet See also Example
Determines whether or not a set of dataset queries is prepared for execution.
property Prepared: Boolean;
Description
Examine Prepared to determine if a set of queries is already prepared for execution. If Prepared is True,
the set of queries is prepared, and if Prepared is False, the set of queries is not prepared. While a set of
queries need not be prepared before execution, execution performance is enhanced if the set of queries
is prepared beforehand, particularly if it is a parameterized set of queries that is executed more than
once using the same parameter values.

TIBDataSet.QDelete
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the DeleteSQL statement.
property QDelete: TIBSQL;
Description
Use QDelete to access the SQL object which encapsulates the Delete SQL statement.

TIBDataSet.QInsert
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the InsertSQL statement.
property QInsert: TIBSQL;
Description
Use QInsert to access the SQL object that encapsulates the InsertSQL statement.

TIBDataSet.QModify
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the ModifySQL statement.
property QModify: TIBSQL;
Description
Use QModify to access the SQL object that encapsulates the ModifySQL statement.

TIBDataSet.QRefresh
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the RefreshSQL statement.
property QRefresh: TIBSQL;
Description
Use QRefresh to access the SQL object that encapsulates the RefreshSQL statement.

TIBDataSet.QSelect
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the SelectSQL statement.
property QSelect: TIBSQL;
Description
Use QSelect to access the SQL object that encapsulates the SelectSQL statement.

TIBDataSet.RefreshSQL
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the RefreshSQL statement.
property RefreshSQL: TStrings;
Description
Use RefreshSQL to access the SQL object that encapsulates the RefreshSQL statement.

TIBDataSet.SelectSQL
TIBDataSet See also
Provides the ability to directly access the SQL object encapsulating the SelectSQL statement.
property SelectSQL: TStrings;
Description
Use SelectSQL to access the SQL object that encapsulates the SelectSQL statement.

TIBDataSet.StatementType
TIBDataSet See also
Returns the statement type of the QSelect query.
type TIBSQLTypes = set of (SQLUnknown, SQLSelect, SQLInsert, SQLUpdate,
SQLDelete, SQLDDL, SQLGetSegment, SQLPutSegment, SQLExecProcedure,
SQLStartTransaction, SQLCommit, SQLRollback, SQLSelectForUpdate,
SQLSetGenerator);
property StatementType: TIBSQLTypes;
Description
Use StatementType to determine the statement type of a QSelect query. TIBSQLTypes are:
SQLCommit Commits an active transaction
SQLDDL Executes a DDL statement
SQLDelete Removes rows in a table or in the active set of a cursor
SQLExecProcedure Calls a stored procedure
SQLGetSegment Reads a segment from an open Blob
SQLInsert Adds one or more new rows to a specified table
SQLPutSegment Writes a Blob segment
SQLRollback Restores the database to its state prior to the start of the current

transaction
SQLSetForUpdate Stored procedure is set for updating
SQLSetGenerator Sets a new value for an existing generator
SQLSelect Retrieves data from one or more tables
SQLStartTransaction Starts a new transaction against one or more databases
SQLUnknown Unknown SQL type
SQLUpdate Changes data in all or part of an existing row in a table, view, or

active set of a cursor

TIBDataSet events
TIBDataSet Alphabetically Legend

In TIBDataSet
DatabaseDisconnected
DatabaseDisconnecting
DatabaseFree

Derived from TIBCustomDataSet
OnUpdateError
OnUpdateRecord

Derived from TIBDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh

AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnEditError
OnFilterRecord
OnPostError

TIBDataSet events
TIBDataSet By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
DatabaseDisconnected
DatabaseDisconnecting
DatabaseFree
OnCalcFields
OnDeleteError
OnEditError
OnEditError
OnFilterRecord
OnPostError
OnUpdateError
OnUpdateRecord
TransactionEnded
TransactionEnding
TransactionFree

TIBDataSet.DatabaseDisconnected
TIBDataSet See also
Occurs after a database has been disconnected.
property DatabaseDisconnected: TNotifyEvent;
Description
Occurs after a database has been disconnected.

TIBDataSet.DatabaseDisconnecting
TIBDataSet See also
Occurs while a database is being disconnected.
property DatabaseDisconnecting: TNotifyEvent;
Description
Occurs while a database is being disconnected.

TIBDataSet.DatabaseFree
TIBDataSet See also
Occurs after a database component is freed from memory.
property DatabaseFree: TNotifyEvent;
Description
Occurs after a database component is freed from memory.

TIBDataSet.TransactionEnded
TIBDataSet See also
Occurs after a transaction has ended.
property TransactionEnded: TNotifyEvent;
Description
Occurs after a transaction has ended.

TIBDataSet.TransactionEnding
TIBDataSet See also
Occurs before a transaction ends.
property TransactionEnding: TNotifyEvent;
Description
Occurs before a transaction ends.

TIBDataSet.TransactionFree
TIBDataSet See also
Occurs after a transaction is freed from memory.
property TransactionFree: TNotifyEvent;
Description
Occurs after a transaction is freed from memory.

TIBDataSet methods
TIBDataSet Alphabetically

In TIBDataSet
Prepare
UnPrepare

Derived from TIBCustomDataSet
ApplyUpdates
CachedUpdateStatus
CancelUpdates
Create
CreateBlobStream
Destroy
FetchAll
GetCurrentRecord
GetFieldData
Locate
LocateNext
Lookup
RecordModified
RevertRecord
Undelete
UpdateStatus

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
CompareBookmarks
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark

GetBookmark
GetDetailDataSets
GetDetailLinkFields
GetFieldList
GetFieldNames
GetProviderAttributes
GotoBookmark
Insert
InsertRecord
IsEmpty
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
Translate
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName

ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBDataSet methods
TIBDataSet By object

ActiveBuffer
AfterConstruction
Append
AppendRecord
ApplyUpdates
Assign
BeforeDestruction
CachedUpdateStatus
CancelUpdates
CheckBrowseMode
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CompareBookmarks
ControlsDisabled
Create
CreateBlobStream
CursorPosChanged
DefaultHandler
Delete
Destroy
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecuteAction
FetchAll
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior

First
Free
FreeBookmark
FreeInstance
FreeNotification
FreeOnRelease
GetBookmark
GetCurrentRecord
GetDetailDataSets
GetDetailLinkFields
GetFieldData
GetFieldList
GetFieldNames
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetProviderAttributes
GotoBookmark
HasParent
InheritsFrom
InitInstance
Insert
InsertComponent
InsertRecord
InstanceSize
IsEmpty
IsLinkedTo
Last
Locate
LocateNext
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
Post
Prepare
Prior
RecordModified
Refresh
RemoveComponent

Resync
RevertRecord
SafeCallException
SetFields
Translate
UpdateCursorPos
UpdateRecord
Undelete
UnPrepare
UpdateAction
UpdateStatus

TIBDataSet.Prepare
TIBDataSet See also Example
Prepares all queries in the dataset to be executed.
procedure Prepare;
Description
Call Prepare to prepare all queries in the dataset to be executed.

TIBDataSet.UnPrepare
TIBDataSet See also
Resets the state of a dataset’s internal queries.
procedure UnPrepare;
Description
Call UnPrepare to reset the state of a dataset’s internal queries.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent

TComponent

TDataSet

TIBCustomDataSet

TIBDataSetUpdateObject
Hierarchy Properties Methods See also
TIBDataSetUpdateObject is the abstract base class for update objects used to update otherwise un-
updateable queries when cached updates are enabled.

Unit
IBCustomDataSet

Description
Use TIBDataSetUpdateObject as a base class when creating customized update objects that can be
used to update datasets. TIBDataSetUpdateObject declares a single property and some abstract
methods, but provides no implementation details: these must be provided by descendant objects.

TIBDataSetUpdateObject properties
TIBDataSetUpdateObject Alphabetically Legend

In TIBDataSetUpdateObject
DataSet
RefreshSQL

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBDataSetUpdateObject properties
TIBDataSetUpdateObject By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DataSet

DesignInfo
Name
Owner
Tag
VCLComObject

TIBDataSetUpdateObject.DataSet
TIBDataSetUpdateObject See also
Identifies the dataset to which a TIBDataSetUpdateObject component belongs.
property DataSet: TIBCustomDataSet;
Description
Descendants of TIBDataSetUpdateObject must implement the abstract GetDataSet and SetDataSet
methods to implement the DataSet property.

TIBDataSetUpdateObject.RefreshSQL
TIBDataSetUpdateObject See also
Provides the ability to directly access the SQL object encapsulating the RefreshSQL statement.
property RefreshSQL: TIBSQL;
Description
Use RefreshSQL to access the SQL object that encapsulates the RefreshSQL statement.

TIBDataSetUpdateObject methods
TIBDataSetUpdateObject Alphabetically Legend

In TIBDataSetUpdateObject
Apply
GetDataSet
SetDataSet

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign
GetNamePath

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName

NewInstance

TIBDataSetUpdateObject methods
TIBDataSetUpdateObject By object Legend

Apply
AfterConstruction
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType

CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease

GetDataSet
GetInterface
GetInterfaceEntry
GetInterfaceTable

GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SafeCallException

SetDataSet
UpdateAction

TIBDataSetUpdateObject.Apply
TIBDataSetUpdateObject See also
Apply applies changes to the dataset specified by the DataSet property.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
procedure Apply(UpdateKind: TUpdateKind);
Description
Descendants of TIBDataSetUpdateObject must implement the abstract Apply method. This method is
intended to perform the updates specified by the update object. Descendants must introduce properties
to describe the details of the updates that should be performed. The UpdateKind parameter indicates
whether the update object should modify existing records, insert new records, or delete existing records.

TIBDataSetUpdateObject.GetDataSet
TIBDataSetUpdateObject See also
GetDataSet returns the value of the DataSet property.
function GetDataSet: TIBCustomDataSet;
Description
Override GetDataSet, along with the SetDataSet method, to provide an implementation of the DataSet
property. The DataSet property should represent the dataset whose records are updated using the
update object.

TIBDataSetUpdateObject.SetDataSet
TIBDataSetUpdateObject See also
SetDataSet sets the value of the DataSet property.
procedure SetDataSet(ADataSet: TIBCustomDataSet);
Description
Override SetDataSet, along with the GetDataSet method, to provide an implementation of the DataSet
property. The DataSet property should represent the dataset whose records are updated using the
update object.

Scope
Protected
Published
Read-only

Scope
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent

TComponent

 TIBDatabaseInfo
Hierarchy Properties Methods
TIBDatabaseInfo returns information about the attached database.

Unit
IBDatabaseInfo

Description
Use a TIBDatabaseInfo to return information about the attached database, such as the version of the
online disk structure (ODS) used by the attachment, the number of database cache buffers allocated,
the number of database pages read from or written to, or write-ahead log information.

TIBDatabaseInfo properties
TIBDatabaseInfo Alphabetically Legend

In TIBDatabaseInfo
Allocation

BackoutCount
BaseLevel
CurrentMemory
Database
DBFileName
DBImplementationClass
DBImplementationNo
DBSiteName
DBSQLDialect
DeleteCount
ExpungeCount

Fetches
ForcedWrites
InsertCount
Marks
MaxMemory
NoReserve
NumBuffers
ODSMajorVersion
ODSMinorVersion
PageSize
PurgeCount
ReadIdxCount
ReadOnly

Reads
ReadSeqCount
SweepInterval
UpdateCount
UserNames
Version
Writes

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBDatabaseInfo properties
TIBDatabaseInfo By object Legend

Allocation
BackoutCount
BaseLevel
ComObject
ComponentCount
ComponentIndex
Components
ComponentState

ComponentStyle
CurrentMemory
Database
DBFileName
DBImplementationClass
DBImplementationNo
DBSiteName
DBSQLDialect
DeleteCount
DesignInfo
ExpungeCount

Fetches
ForcedWrites
InsertCount
Marks
MaxMemory
Name
NoReserve
NumBuffers
ODSMajorVersion
ODSMinorVersion
Owner
PageSize

PurgeCount
ReadIdxCount
ReadOnly
Reads
ReadSeqCount
SweepInterval
Tag
UpdateCount
UserNames
VCLComObject
Version
Writes

TIBDatabaseInfo.Allocation
TIBDatabaseInfo See also
Returns the number of database pages allocated.
property Allocation: Long;
Description
Use Allocation to return the number of database pages allocated.

TIBDatabaseInfo.BackoutCount
TIBDatabaseInfo See also
Returns the number of removals of a version of a record.
property BackoutCount: TStringList;
Description
Use BackoutCount to determine the number of times a version of a database record has been removed.

TIBDatabaseInfo.BaseLevel
TIBDatabaseInfo See also
Returns the database version number.
property BaseLevel: Long;
Description
Use BaseLevel to return the database version number, which consists of 1 byte containing the number
1, and 1 byte containing the version number.

TIBDatabaseInfo.CurrentMemory
TIBDatabaseInfo See also
Returns the amount of server memory currently in use.
property CurrentMemory: Long;
Description
Use CurrentMemory to return the amount of server memory (in bytes) currently in use.

TIBDatabaseInfo.Database
TIBDatabaseInfo See also
Sets or returns the database.
property Database: TIBDatabase;
Description
Use Database to set or return the database on which information is being returned.

TIBDatabaseInfo.DBFileName
TIBDatabaseInfo See also
Returns the database filename.
property DBFileName: String;
Description
Use DBFileName to return the database filename.

TIBDatabaseInfo.DBImplementationClass
TIBDatabaseInfo See also
Returns the database implementation class number.
property DBImplementationClass: Long;
Description
Use DBImplementationClass to return the database implementation class number, either 1 or 12.

TIBDatabaseInfo.DBImplementationNo
TIBDatabaseInfo See also
Returns the database implementation number.
property DBImplementationNo: Long;
Description
Use DBImplementationNo to return the database implementation number.

TIBDatabaseInfo.DBSiteName
TIBDatabaseInfo See also
Returns the database site name.
property DBSiteName: String;
Description
Use DBSiteName to return the database site name.

TIBDatabaseInfo.DBSQLDialect
TIBDatabaseInfo See also
Returns the SQL dialect.
property DBSQLDialect: Long;
Description
Use DBSQLDialect to return the SQL dialect.

TIBDatabaseInfo.DeleteCount
TIBDatabaseInfo See also
Returns the number of database deletes since the database was last attached.
property DeleteCount: TStringList;
Description
Use DeleteCount to return the number of database deletes since the database was last attached.

TIBDatabaseInfo.ExpungeCount
TIBDatabaseInfo See also
Returns the number of removals of a record and all of its ancestors.
property ExpungeCount: TStringList;
Description
Use ExpungeCount to return the number of removals of a record and all of its ancestors for records
whose deletions have been committed.

TIBDatabaseInfo.Fetches
TIBDatabaseInfo See also
Returns the number of reads from the memory buffer cache.
property Fetches: Long;
Description
Use Fetches to return the number of reads from the memory buffer cache.

TIBDatabaseInfo.ForcedWrites
TIBDatabaseInfo See also
Returns the mode in which database writes are performed.
property ForcedWrites: Long;
Description
Use ForcedWrites to return the number specifying the mode in which database writes are performed.
ForcedWrites returns 0 for asynchronous mode, or returns 1 for synchronous mode

TIBDatabaseInfo.InsertCount
TIBDatabaseInfo See also
Returns number of inserts into the database since the database was last attached.
property InsertCount: TStringList;
Description
Use InsertCount to return the number of inserts into the database since the database was last attached.

TIBDatabaseInfo.Marks
TIBDatabaseInfo See also
Returns the number of writes to the memory buffer cache.
property Marks: Long;
Description
Use Marks to return the number of writes to the memory buffer cache.

TIBDatabaseInfo.MaxMemory
TIBDatabaseInfo See also
Returns the maximum amount of memory used at one time since the first process attached to the
database.
property MaxMemory: Long;
Description
Use MaxMemory to return in bytes the maximum amount of memory used at one time since the first
process attached to the database.

TIBDatabaseInfo.NoReserve
TIBDatabaseInfo See also
Returns whether or not space is reserved on each database page for holding backup versions of
modified records.
property NoReserve: Long;
Description
Use NoReserve to return whether or not space is reserved on each database page for holding backup
versions of modified records. NoReserve will return 0 to indicate that space is reserved (the default) or
1 to indicate that no space is reserved.

TIBDatabaseInfo.NumBuffers
TIBDatabaseInfo See also
Returns the number of memory buffers currently allocated.
property NumBuffers: Long;
Description
Use NumBuffers to return the number of memory buffers currently allocated.

TIBDatabaseInfo.ODSMajorVersion
TIBDatabaseInfo See also
Returns the on disk structure (ODS) major version number.
property ODSMajorVersion: Long;
Description
Use ODSMajorVersion to return the ODS major version number for the database. Databases with
different major version numbers have different physical layouts.
A database engine can access only databases with a particular ODS major version number; trying to
attach to a database with a different ODS number results in an error.

TIBDatabaseInfo.ODSMinorVersion
TIBDatabaseInfo See also
Returns the on disk structure (ODS) minor version number.
property ODSMinorVersion: Long;
Description
Use ODSMinorVersion to return the (ODS) minor version number. An increase in a minor version
number indicates a non-structural change, one that still allows the database to be accessed by
databases with the same major version number but possibly different minor version numbers.

TIBDatabaseInfo.PageSize
TIBDatabaseInfo See also
Returns the number of bytes per page of the attached database.
property PageSize: Long;
Description
Use PageSize to return the number of bytes per page of the attached database. Use with Allocation to
determine the size of the database.

TIBDatabaseInfo.PurgeCount
TIBDatabaseInfo See also
Returns the number of removals of fully mature records from the database.
property PurgeCount: TStringList;
Description
Use PurgeCount to return the number of removals of fully mature records (that is, records committed,
resulting in older versions no longer being needed) from the database.

TIBDatabaseInfo.ReadIdxCount
TIBDatabaseInfo See also
Returns the number of reads done via an index since the database was last attached.
property ReadIdxCount: TStringList;
Description
Use ReadIdxCount to return the number of reads done via an index since the database was last
attached.

TIBDatabaseInfo.ReadOnly
TIBDatabaseInfo See also
Indicates whether or not the database is read only.
property ReadOnly: Long;
Description
Use ReadOnly to determine whether the database is read only or not. ReadOnly returns 1 if the
database is read-write and 0 if it is read only.
Note: Read-only databases are an InterBase 6 feature.

TIBDatabaseInfo.Reads
TIBDatabaseInfo See also
Returns the number of page reads from the database.
property Reads: Long;
Description
Use Reads to return the number of page reads from the database since the current database was first
attached, that is, an aggregate of all reads done by all attached processes, rather than the number of
reads done for the calling program since it attached to the database.

TIBDatabaseInfo.ReadSeqCount
TIBDatabaseInfo See also
Returns the number of sequential database reads done on each table since the database was last
attached.
property ReadSeqCount: TStringList;
Description
Use ReadSeqCount to return the number of sequential database reads (that is, the number of
sequential table scans) done on each table since the database was last attached

TIBDatabaseInfo.SweepInterval
TIBDatabaseInfo See also
Returns the number of transactions that are committed between “sweeps.”
property SweepInterval: Long;
Description
Use SweepInterval to return the number of transactions that are committed between “sweeps” to
remove database record versions that are no longer needed.

TIBDatabaseInfo.UpdateCount
TIBDatabaseInfo See also
Returns the number of database updates since the database was last attached.
property UpdateCount: TStringList;
Description
Use UpdateCount to return the number of database updates since the database was last attached.

TIBDatabaseInfo.UserNames
TIBDatabaseInfo See also
Returns the names of all users currently attached to the database.
property UserNames: TStringList;
Description
Use UserNames to return the names of all users currently attached to the database.

TIBDatabaseInfo.Version
TIBDatabaseInfo See also
Returns the version of the database implementation.
property Version: String;
Description
Use Version to return the version identification string of the database implementation.

TIBDatabaseInfo.Writes
TIBDatabaseInfo See also
Returns the number of page writes to the database.
property Writes: Long;
Description
Use Writes to return the number of page writes to the current database since it was first attached by any
process; that is, an aggregate of all write done by all attached processes, rather than the number of
writes done for the calling program since it attached to the database.

TIBDatabaseInfo methods
TIBDatabaseInfo Alphabetically

In TIBDatabaseInfo
Call
Create
Destroy

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName

NewInstance

TIBDatabaseInfo methods
TIBDatabaseInfo By object

AfterConstruction
Assign
BeforeDestruction
Call
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SafeCallException
UpdateAction

TIBDatabaseInfo.Call
TIBDatabaseInfo See also
Returns an error message based on the error code.
function Call(ErrCode: ISC_STATUS; RaiseError: Boolean): ISC_STATUS;
Description
Call is an internal method used to make calls to the InterBase API, and gives you the option of raising an
exception or returning an error based on the value of RaiseError.

TIBDatabaseInfo.Create
TIBDatabaseInfo See also
Creates an instance of a DatabaseInfo component.
constructor Create (AOwner: TComponent);
Description
Call Create to instantiate a DatabaseInfo component declared in an application.

TIBDatabaseInfo.Destroy
TIBDatabaseInfo See also
Destroys an instance of a DatabaseInfo component.
Destructor Destroy;
Description
Do not call Destroy directly. Instead call Free to verify that the DatabaseInfo component is not already
freed before calling Destroy. Destroy disconnects from the server, frees the parameter list, and calls its
inherited Destroy destructor.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TComponent

TIBDSBlobStream
Hierarchy Properties Methods See also
TIBDSBlobStream is an internal object used by the DataSet in the process of creating a Blob stream.

Unit
IBCustomDataSet

Description
TIBDSBlobStream is an internal object used by the DataSet in the process of creating a Blob stream.

TIBDSBlobStream properties
TIBDSBlobStream Alphabetically Legend

Derived from TStream
Position
Size

TIBDSBlobStream properties
TIBDSBlobStream By object Legend

Position
Size

TIBDSBlobStream methods
TIBDSBlobStream Alphabetically

In TIBDSBlobStream
Create
Read
Seek
SetSize
Write

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBDSBlobStream methods
TIBDSBlobStream By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
CopyFrom
Create
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
Read
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
Seek
SetSize
Write
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

TIBDSBlobStream.Create
TIBDSBlobStream See also
Resets the stream to the beginning of the Blob.
type TBlobStreamMode = (bmRead, bmWrite, bmReadWrite);
constructor Create(AField: TField ABlobStream: TIBBlobStream Mode:
TBlobStreamMode);

Description
Call Create to reset the stream to the beginning of the Blob. Depending on the mode, it also truncates
the Blob stream.

TIBDSBlobStream.Read
TIBDSBlobStream See also
Reads the requested number of bytes from the Blob.
function Read(var Buffer; Count: Longint): Longint;
Description
Call Read to read data from the Blob field when the number of bytes in the field’s data is not known.
Buffer must have at least Count bytes allocated to hold the data that was read from the field.
Read transfers up to Count bytes from the Blob data into Buffer, starting in the current position, and then
advances the current position by the number of bytes actually transferred. Read returns the number of
bytes actually transferred (which may be less than the number requested in Count.)
Read checks the Transliterate property of the field, and converts the data into ANSI from the character
set specified by the dataset if Transliterate is True.
All the other data-reading methods of a Blob stream (ReadBuffer, ReadComponent) call Read to do their
actual reading.
Note: Do not call Read when the TIBDSBlobStream was created in bmWrite mode.

TIBDSBlobStream.Seek
TIBDSBlobStream See also
Resets the current position of the TIBDSBlobStream object.
function Seek(Offset: Longint; Origin: Word): Longint;
Description
Use Seek to move the current position within the Blob data by the indicated offset. Seek allows an
application to read from or write to a particular location within the Blob data.
The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the
following values:

Value Meaning
soFromBeginning · Offset is from the beginning of the Blob data

· Seek moves to the position Offset
· Offset must be >= 0

soFromCurrent · Offset is from the current position in the Blob data
· Seek moves to Position + Offset

soFromEnd · Offset is from the end of the Blob data
· Offset must be <= 0 to indicate a number of bytes before the end

of the Blob
Seek returns the new value of the Position property, the new current position in the Blob data.

TIBDSBlobStream.SetSize
TIBDSBlobStream See also
Set the size of the Blob to the requested size.
procedure SetSize(NewSize: Long);
Description
Call SetSize to set the size of the Blob to the requested size.

TIBDSBlobStream.Write
TIBDSBlobStream See also
Sets the field to be modified.
function Write(const Buffer; Count: Longint): Longint;
Description
Use Write to set the field to be modified, write the requested number of bytes to the Blob stream, and
fire a OnFieldChange event.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TStream

EIBError
Hierarchy Properties Methods See also
The exception class for InterBase errors.

Unit
IB

Description
Use EIBError to raise an exception when a component detects an error in the database or in the
component implemenation.

EIBError properties
EIBError Alphabetically Legend

In EIBError
IBErrorCode

SQLCode

Derived from Exception
HelpContext
Message

EIBError properties
EIBError By object Legend

HelpContext
IBErrorCode

Message
SQLCode

EIBError.IBErrorCode
EIBError See also
Returns the InterBase error code.
property IBErrorCode: Long;
Description
Use IBErrorCode to get the InterBase error code.

EIBError.SQLCode
EIBError See also
Translates an InterBase error code in the error status vector to an SQL error number code.
property SQLCode: Long;
Description
Use SQLCode to translate an InterBase error code in the error status vector to an SQL error number
code. Typically, this call is used to populate a program variable with an SQL error number for use in an
SQL error-handling routine.

EIBError methods
EIBError Alphabetically

In EIBError
Create

Derived from Exception
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

EIBError methods
EIBError By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

EIBError.Create
EIBError See also
Calls the inherited Create and sets the SQLCSode and IBErrorCode
constructor Create(ASQLCode: Long; Msg: string);
constructor Create(ASQLCode: Long; AIBErrorCode: Long; Msg: string);
Description
Use Create to call to the inherited Create and sets the SQL code and IBErrorCode.

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

Exception

EDatabaseError

EIBClientError
Hierarchy Properties Methods See also
Used to raise client-specific errors.

Unit
IB

Description
Use EIBClientError to raise an exception for client-specific errors.

EIBClientError properties
EIBClientError Alphabetically Legend

Derived from EIBError
IBErrorCode

SQLCode

Derived from Exception
HelpContext
Message

EIBClientError properties
EIBClientError By object Legend

HelpContext
IBErrorCode

Message
SQLCode

EIBClientError methods
EIBClientError Alphabetically

Derived from EIBError
Create

Derived from Exception
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

EIBError methods
EIBClientError By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

Exception

EDatabaseErrror

EIBErrror

EIBInterBaseError
Hierarchy Properties Methods See also
Used to raise server-specific errors.

Unit
IB

Description
Use EIBInterBaseError to raise an exception for server-specific errors.

EIBInterBaseError properties
EIBInterBaseError Alphabetically Legend

Derived from EIBError
IBErrorCode

SQLCode

Derived from Exception
HelpContext
Message

EIBInterBaseError properties
EIBInterBaseError By object Legend

HelpContext
IBErrorCode

Message
SQLCode

EIBInterBaseError methods
EIBInterBaseError Alphabetically

Derived from EIBError
Create

Derived from Exception
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

EIBError methods
EIBInterBaseError By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Create
CreateFmt
CreateFmtHelp
CreateHelp
CreateRes
CreateResFmt
CreateResFmtHelp
CreateResHelp
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

Exception

EDatabaseErrror

EIBErrror

 TIBInputDelimitedFile
Hierarchy Properties MethodsSee also
TIBInputDelimitedFile performs batch input of data from delimited files.

Unit
IBBatch

Description
Use a TIBInputDelimitedFile object to perform batch input of data from delimited files.

TIBInputDelimitedFile properties
TIBInputDelimitedFile Alphabetically Legend

In TIBInputDelimitedFile
ColDelimiter
ReadBlanksAsNull
RowDelimiter
SkipTitles

Derived from TIBBatch
Columns

FileName
Params

TIBInputDelimitedFile properties
TIBInputDelimitedFile By object Legend

ColDelimiter
Columns

FileName
Params
ReadBlanksAsNull
RowDelimiter
SkipTitles

TIBInputDelimitedFile.ColDelimiter
TIBInputDelimitedFile See also
Sets the column delimiter for the input file.
property ColDelimiter: String;
Description
Use ColDelimiter to set the column delimiter (either Tab-Ctrl-F or |~)for the input file.

TIBInputDelimitedFile.ReadBlanksAsNull
TIBInputDelimitedFile See also
Reads blank spaces in the input file as null characters.
property ReadBlanksAsNull: Boolean;
Description
Set ReadBlanksAsNull to True read blank spaces as null characters in the input file.

TIBInputDelimitedFile.RowDelimiter
TIBInputDelimitedFile See also
Sets the row delimiter for the input file.
property RowDelimiter: String;
Description
Use RowDelimiter to set the column delimiter (either Tab-Ctrl-F or |~) for the input file.

TIBInputDelimitedFile.SkipTitles
TIBInputDelimitedFile See also
Skips the first record of a delimited file.
property SkipTitles: Boolean;
Description
Set SkipTitles to True to treat the first record of a delimited file as titles and skip it. Field titles are not
useful in batch inputs, and this property allows you to skip them.

TIBInputDelimitedFile methods
TIBBatchInput Alphabetically

In TIBInputDelimitedFile
Destroy
GetColumn
ReadParameters
ReadyFile

Derived from TIBBatch
Move

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBInputDelimitedFile methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetColumn
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadParameters
ReadyFile
SafeCallException

TIBInputDelimitedFile.Destroy
TIBInputDelimitedFile See also
Destroys the instance of TIBInputDelimitedFile.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the
TIBInputDelimitedFile object is not already freed and only then calls Destroy.

TIBInputDelimitedFile.GetColumn
TIBInputDelimitedFile See also
Returns the contents of a column.
function GetColumn: var Col: String): Integer;
Description
Call GetColumn to return the contents of a column in the extended SQL descriptor area (XSQLDA).

TIBInputDelimitedFile.ReadParameters
TIBInputDelimitedFile See also
Reads the input parameters of the XSQLDA.
function ReadParameters: Boolean;
Description
Call ReadParameters to read the input parameters of the extended SQL descriptor area (XSQLDA).

TIBInputDelimitedFile.ReadyFile
TIBInputDelimitedFile See also
Prepares the output for the XSQLDA.
procedure ReadyFile;
Description
Call ReadyFile to prepare the output for the extended SQL descriptor area (XSQLDA).

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

TIBBatchInput

 TIBInputRawFile
Hierarchy Properties MethodsSee also
TIBInputRawFile inputs data from a raw file.

Unit
IBBatch

Description
Use a TIBInputRawFile object input data from a raw file. A raw file is the equivalent to InterBase
external file output. Raw files are not limited to a straight character format.

TIBInputRawFile properties
TIBInputRawFile Alphabetically Legend

Derived from TIBBatch
Columns

FileName
Params

TIBInputRawFile properties
TIBInputRawFile By object Legend

Columns
FileName
Params

TIBInputRawFile methods
TIBInputRawFile Alphabetically

In TIBInputRawFile
Destroy
ReadParameters
ReadyFile

Derived from TIBBatch
Move

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBInputRawFile methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadParameters
ReadyFile
SafeCallException

TIBInputRawFile.Destroy
TIBInputRawFile See also
Destroys the instance of TIBInputRawFile.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the TIBInputRawFile
object is not already freed and only then calls Destroy.

TIBInputRawFile.ReadParameters
TIBInputRawFile See also
Reads the XSQLDA input parameters.
function ReadParameters: Boolean;
Description
Call ReadParameters to read the input parameters of the extended SQL descriptor area (XSQLDA).

TIBInputRawFile.ReadyFile
TIBInputRawFile See also
Prepares the output for the XSQLDA.
procedure ReadyFile;
Description
Call ReadyFile to prepare the output for the extended SQL descriptor area (XSQLDA).

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

TIBBatchInput

 TIBOutputDelimitedFile
Hierarchy Properties MethodsSee also
TIBOutputDelimitedFile performs batch output of data to delimited files.

Unit
IBBatch

Description
Use a TIBOutputDelimitedFile object to perform batch output of data to delimited files.

TIBOutputDelimitedFile properties
TIBOutputDelimitedFile Alphabetically Legend

In TIBOutputDelimitedFile
ColDelimiter
OutputTitles
RowDelimiter

Derived from TIBBatch
Columns

FileName
Params

TIBOutputDelimitedFile properties
TIBOutputDelimitedFile By object Legend

ColDelimiter
Columns

FileName
OutputTitles
Params
RowDelimiter

TIBOutputDelimitedFile.ColDelimiter
TIBOutputDelimitedFile See also
Sets the column delimiter for the output file.
property ColDelimiter: String;
Description
Use ColDelimiter to set the column delimiter (either Tab-Ctrl-F or |~)for the output file.

TIBOutputDelimitedFile.OutputTitles
TIBOutputDelimitedFile See also
Outputs the titles at the top of the file.
property OutputTitles: Boolean;
Description
Set OutputTitles to True to output the titles at the top of the file.

TIBOutputDelimitedFile.RowDelimiter
TIBOutputDelimitedFile See also
Sets the row delimiter for the output file.
property RowDelimiter: String;
Description
Use RowDelimiter to set the column delimiter (either Tab-Ctrl-F or |~) for the output file.

TIBOutputDelimitedFile methods
TIBBatchOutput Alphabetically

In TIBOutputDelimitedFile
Destroy
ReadyFile
WriteColumns

Derived from TIBBatch
Move

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBOutputDelimitedFile methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadyFile
SafeCallException
WriteColumns

TIBOutputDelimitedFile.Destroy
TIBOutputDelimitedFile See also
Destroys the instance of TIBOutputDelimitedFile.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the
TIBOutputDelimitedFile object is not already freed and only then calls Destroy.

TIBOutputDelimitedFile.ReadyFile
TIBOutputDelimitedFile See also
Prepares the output for the XSQLDA.
procedure ReadyFile;
Description
Call Ready file to prepare the output for the extended SQL descriptor area (XSQLDA).

TIBOutputDelimitedFile.WriteColumns
TIBOutputDelimitedFile See also
Outputs the data in columns in the XSQLDA.
function WriteColumns: Boolean;
Description
Set WriteColumns to True to output data in columns in the extended SQL descriptor area (XSQLDA).

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

TIBBatchOutput

 TIBOutputRawFile
Hierarchy Properties MethodsSee also
TIBOutputRawFile outputs data to a raw file format.

Unit
IBBatch

Description
Use a TIBOutputRawFile object to output data from a raw file. A raw file is the equivalent to InterBase
external file output. Raw files are not limited to a straight character format.

TIBOutputRawFile properties
TIBOutputRawFile Alphabetically Legend

Derived from TIBBatch
Columns

FileName
Params

TIBOutputRawFile properties
TIBOutputRawFile By object Legend

Columns
FileName
Params

TIBOutputRawFile methods
TIBBatchOuputAlphabetically

In TIBOutputRawFile
Destroy
ReadyFile
WriteColumns

Derived from TIBBatch
Move

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBOutputRawFile methods
TIBBatch By object

AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
Move
NewInstance
ReadyFile
SafeCallException
WriteColumns

TIBOutputRawFile.Destroy
TIBOutputRawFile See also
Destroys the instance of TIBOutputRawFile.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the TIBOutputRawFile
object is not already freed and only then calls Destroy.

TIBOutputRawFile.ReadyFile
TIBOutputRawFile See also
Prepares the output for the XSQLDA.
procedure ReadyFile;
Description
Call Ready file to prepare the output for the extended SQL descriptor area (XSQLDA).

TIBOutputRawFile.WriteColumns
TIBOutputRawFile See also
Outputs the data in columns in the XSQLDA.
function WriteColumns: Boolean;
Description
Call WriteColumns to output data in columns in the extended SQL descriptor area (XSQLDA).

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TIBBatch

TIBBatchOutput

 TIBQuery
Hierarchy Properties Methods Events See also
TIBQuery executes an InterBase SQL statement.

Unit
IBQuery

Description
Use TIBQuery to access one or more tables in a database using SQL statements. Use query
components with remote InterBase database servers and with ODBC-compliant databases.
Query components are useful because they can
• Access more than one table at a time (called a “join” in SQL).
• Automatically access a subset of rows and columns in its underlying table(s), rather than always

returning all rows and columns.
Note: TIBQuery is of particular importance to the development of scalable database applications. If

there is any chance that an application built to run against local databases will be scaled to a
remote SQL database server in the future, use TIBQuery components from the start to ensure
easier scaling later.

TIBQuery properties
TIBQuery Alphabetically Legend

In TIBQuery
GenerateParamNames

ParamCheck
ParamCount
Params
Prepared
RowsAffected
SQL
StmtHandle
Text
UniDirectional
UpdateObject

Derived from TIBCustomDataSet
CachedUpdates
Database
DBHandle
Transaction
TRHandle
UpdateRecordTypes
UpdatesPending

Derived fromTDataSet
Active
AggFields
AutoCalcFields
Bof
Bookmark
Constraints
DatasetField
DataSource

DefaultFields
Designer
Eof
FieldCount
FieldDefList
FieldDefs
FieldList
Fields

FieldValues
Found

Modified
Name
ObjectView
SparseArrays
State

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState

ComponentStyle
DesignInfo

Owner
Tag
VCLComObject

TIBQuery properties
TIBQuery By object Legend

Active
AggFields
AutoCalcFields
Bof
Bookmark
CachedUpdates
ComObject
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle
Constraints
Database
DatasetField
DataSource
DBHandle
DefaultFields
Designer

DesignInfo
Eof
FieldCount
FieldDefList
FieldDefs

FieldList
Fields
FieldValues
Found
GenerateParamNames
Modified
Name
ObjectView

Owner
ParamCheck
ParamCount
Params
Prepared
RowsAffected
SparseArrays
SQL
State
StmtHandle
Tag

Text
TRHandle
Transaction
UniDirectional
UpdateObject
UpdateRecordTypes
UpdatesPending
VCLComObject

TIBQuery.GenerateParamNames
TIBQuery See also
Generates a list of parameter names for the query.
property GenerateParamNames: Boolean;
Description
Set GenerateParamNames to True to have the query generate a list of parameter names.

TIBQuery.ParamCheck
TIBQuery See also
Specifies whether the parameter list for a query is regenerated if the SQL property changes at runtime.
property ParamCheck: Boolean;
Description
Set ParamCheck to specify whether or not the Params property is cleared and regenerated if an
application modifies the query’s SQL property at runtime. By default ParamCheck is True, meaning that
the Params property is automatically regenerated at runtime. When ParamCheck is True, the proper
number of parameters is guaranteed to be generated for the current SQL statement.
This property is useful for data definition language (DDL) statements that contain parameters as part of
the DDL statement and that are not parameters for the TIBQuery. For example, the DDL statement to
create a stored procedure may contain parameter statements that are part of the stored procedure. Set
ParamCheck to False to prevent these parameters from being mistaken for parameters of the TIBQuery
executing the DDL statement.

TIBQuery.ParamCount
TIBQuery See also Example
Indicates the current number of parameters for the query.
property ParamCount: Word;
Description
Inspect ParamCount to determine how many parameters are in the Params property. If the ParamCheck
property is True, ParamCount always corresponds to the number of actual parameters in the SQL
statement for the query.

TIBQuery.Params
TIBQuery See also Example
Contains the parameters for a query’s SQL statement.
property Params: TParams;
Description
Access Params at runtime to view and set parameter names, values, and data types dynamically (at
design time use the collection editor for the Params property to set parameter information). Params is a
zero-based array of TParams parameter records. Index specifies the array element to access.
Note: An easier way to set and retrieve parameter values when the name of each parameter is known is

to call ParamByName. ParamByName cannot, however, be used to change a parameter’s data
type or name.

TIBQuery.Prepared
TIBQuery See also Example
Determines whether or not a query is prepared for execution.
property Prepared: Boolean;
Description
Examine Prepared to determine if a query is already prepared for execution. If Prepared is True, the
query is prepared, and if Prepared is False, the query is not prepared. While a query need not be
prepared before execution, execution performance is enhanced if the query is prepared beforehand,
particularly if it is a parameterized query that is executed more than once using the same parameter
values.
Note: An application can change the current setting of Prepared to prepare or unprepare a query. If

Prepared is True, setting it to False calls the Unprepare method to unprepare the query. If
Prepared is False, setting it to True calls the Prepare method to prepare the query. Generally,
however, it is better programming practice to call Prepare and Unprepare directly. These methods
automatically update the Prepared property.

TIBQuery.RowsAffected
TIBQuery See also
Returns the number of rows operated upon by the latest query execution.
property RowsAffected: Integer;
Description
Check RowsAffected to determine how many rows were updated or deleted by the last query operation.
If RowsAffected is -1, the query did not update or delete any rows.

TIBQuery.SQL
TIBQuery See also Example
Contains the text of the SQL statement to execute for the query.
property SQL: TStrings;
Description
Use SQL to provide the SQL statement that a query component executes when its ExecSQL or Open
method is called. At design time the SQL property can be edited by invoking the String List editor in the
Object Inspector.
The SQL property may contain only one complete SQL statement at a time.

TIBQuery.StmtHandle
TIBQuery
Identifies the statement handle for the query.
property StmtHandle: TISC_STMT_HANDLE;
Description
Retrieve StmtHandle if an application makes a direct call to the InterBase server, bypassing the
methods of TIBQuery. Some API calls require a statement handle as a parameter. Under all other
circumstances an application does not need to access this property.

TIBQuery.Text
TIBQuery See also
Points to the actual text of the SQL query.
property Text: String;
Description
Text is a read-only property that can be examined to determine the actual contents of SQL statement.
For parameterized queries, Text contains the SQL statement with parameters replaced by the parameter
substitution symbol (?) in place of actual parameter values.
In general there should be no need to examine the Text property. To access or change the SQL
statement for the query, use the SQL property. To examine or modify parameters, use the Params
property.

TIBQuery.UniDirectional
TIBQuery
Determines whether or not bidirectional cursors are enabled for a query’s result set.
property UniDirectional: Boolean;
Description
Set UniDirectional to control whether or not a cursor can move forward and backward through a result
set. By default UniDirectional is False, enabling forward and backward navigation.
Note: If an application does not need bidirectional access to records in a result set, set UniDirectional to

True. When UniDirectional is True, an application requires less memory and performance is
improved.

TIBQuery.UpdateObject
TIBQuery
Specifies the update object component used to update a read-only result set when cached updates are
enabled.
property UpdateObject: TIBDataSetUpdateObject;
Description
Set UpdateObject to specify the update object component used to update a read-only result set when
cached updates are enabled.

TIBQuery events
TIBQuery Alphabetically Legend

Derived from TIBCustomDataSet
OnUpdateError
OnUpdateRecord

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TIBQuery events
TIBQuery By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError
OnUpdateError
OnUpdateRecord

TIBQuery methods
TIBQuery Alphabetically

In TIBQuery
Create
Destroy
ExecSQL
GetDetailLinkFields
ParamByName
Prepare
UnPrepare

Derived from TIBCustomDataSet
ApplyUpdates
CachedUpdateStatus
CancelUpdates
CreateBlobStream
BatchInput
BatchOutput
FetchAll
GetCurrentRecord
GetFieldData
Locate
LocateNext
Lookup
RecordModified
RevertRecord
Undelete
UpdateStatus

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
CompareBookmarks
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst

FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetDetailDataSets
GetDetailLinkFields
GetFieldList
GetFieldNames
GetProviderAttributes
GotoBookmark
Insert
InsertRecord
IsEmpty
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
Translate
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBQuery methods
TIBQuery By object

ActiveBuffer
AfterConstruction
Append
AppendRecord
ApplyUpdates
Assign
BeforeDestruction
CachedUpdateStatus
CancelUpdates
CheckBrowseMode
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CompareBookmarks
ControlsDisabled
Create
CreateBlobStream
CursorPosChanged
DefaultHandler
Delete
Destroy
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecSQL
ExecuteAction
BatchInput
BatchOutput
FetchAll
FieldAddress
FieldByName
FindComponent
FindField
FindFirst

FindLast
FindNext
FindPrior
First
Free
FreeBookmark
FreeInstance
FreeNotification
FreeOnRelease
GetBookmark
GetCurrentRecord
GetDetailDataSets
GetDetailLinkFields
GetFieldData
GetFieldList
GetFieldNames
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetProviderAttributes
GotoBookmark
HasParent
InheritsFrom
InitInstance
Insert
InsertComponent
InsertRecord
InstanceSize
IsEmpty
IsLinkedTo
Last
Locate
LocateNext
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
ParamByName
Post
Prepare

Prior
RecordModified
Refresh
RemoveComponent
Resync
RevertRecord
SafeCallException
SetFields
Translate
Undelete
UnPrepare
UpdateAction
UpdateCursorPos
UpdateRecord
UpdateStatus

TIBQuery.Create
TIBQuery See also
Creates an instance of a query component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a query at runtime. Query components placed in forms or data modules at
design time are created automatically.
Create calls its inherited Create constructor, creates an empty SQL statement list, creates an empty
parameter list, sets the OnChange event handler for the SQL statement list, sets the ParamCheck
property to True, and sets the RowsAffected property to -1.

TIBQuery.Destroy
TIBQuery See also
Destroys the instance of a query.
destructor Destroy;
Description
Do not call Destroy directly. Instead call Free to verify that the query is not already freed before calling
Destroy. Destroy disconnects from the server, frees the SQL statement list and the parameter list, and
then calls its inherited destructor.

TIBQuery.ExecSQL
TIBQuery See also Example
Executes the SQL statement for the query.
procedure ExecSQL;
Description
Call ExecSQL to execute the SQL statement currently assigned to the SQL property. Use ExecSQL to
execute queries that do not return a cursor to data (such as INSERT, UPDATE, DELETE, and CREATE
TABLE).
Note: For SELECT statements, call Open instead of ExecSQL.
ExecSQL prepares the statement in SQL property for execution if it has not already been prepared. To
speed performance, an application should ordinarily call Prepare before calling ExecSQL for the first
time.

TIBQuery.GetDetailLinkFields
TIBCustomDataSet See also
Fills lists with the master and detail fields of the link.
procedure GetDetailLinkFields(MasterFields, DetailFields: TList);
Description
Creates two lists of TFields from the master-detail relationship between two tables; one containing the
master fields, and the other containing the detail fields.

TIBQuery.ParamByName
TIBQuery See also Example
Accesses parameter information based on a specified parameter name.
function ParamByName(const Value: string): TParam;
Description
Call ParamByName to set or use parameter information for a specific parameter based on its name.
Value is the name of the parameter for which to retrieve information.
ParamByName is primarily used to set an parameter’s value at runtime. For example, the following
statement retrieves the current value of a parameter called “Contact” into an edit box:
Edit1.Text := Query1.ParamByName('Contact').AsString;

TIBQuery.Prepare
TIBQuery See also Example
Sends a query to the server for optimization prior to execution.
procedure Prepare;
Description
Call Prepare to have the remote database server allocate resources for the query and to perform
additional optimizations. Calling Prepare before executing a query improves application performance.
Delphi automatically prepares a query if it is executed without first being prepared. After execution,
Delphi unprepares the query. When a query will be executed a number of times, an application should
always explicitly prepare the query to avoid multiple and unnecessary prepares and unprepares.
Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

TIBQuery.UnPrepare
TIBQuery See also
Frees the resources allocated for a previously prepared query.
procedure UnPrepare;
Description
Call UnPrepare to free the resources allocated for a previously prepared query on the server and client
sides.
Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent

TComponent

TDataSet

TIBCustomDataSet

TIBSQL
Hierarchy Properties Methods Events See also
TIBSQL provides an object for executing an InterBase SQL statement with minimal overhead.

Unit
IBSQL

Description
Use a TIBSQL object to execute an InterBase SQL statement with minimal overhead. TIBSQL has no
standard interface to data-aware controls and is unidirectional.

TIBSQL properties
TIBSQL Alphabetically Legend

In TIBSQL
Bof

Database
DBHandle
Eof
FieldIndex
Fields
GenerateParamNames
GoToFirstRecordOnExecute
Handle
Open
ParamCheck
Params
Plan
Prepared

RecordCount
RowsAffected
SQL
SQLType
Transaction
TRHandle
UniqueRelationName

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBSQL properties
TIBSQL By object Legend

Bof
ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Database
DBHandle
Eof
FieldIndex
Fields
GenerateParamNames
GoToFirstRecordOnExecute
Handle
Name
Open
Owner
ParamCheck
Params
Plan
Prepared
RecordCount
RowsAffected
SQL
SQLType
Tag
Transaction
TRHandle
UniqueRelationName
VCLComObject

TIBSQL.Bof
TIBSQL See also
Indicates whether or not a query is at the beginning of the dataset.
property Bof: Boolean;
Use the Bof property to determine whether or not a query is at the beginning of the dataset.

TIBSQL.Database
TIBSQL See also
Sets or returns the database associated with the query.
property Database: TIBDatabase;
Description
Use the Database property to set or return the database associated with the query.

TIBSQL.DBHandle
TIBSQL See also
Specifies the database handle for the query.
property DBHandle: PISC_DB_HANDLE;
Description
Use the DBHandle property to return the database handle for the query.

TIBSQL.Eof
TIBSQL See also
Indicates whether or not a query is at the end of the dataset.
property Eof: Boolean;
Description
Use the Eof property to determine whether or not a query is at the end of the dataset and whether or not
the query returned any result rows.
In addition, if this property is True immediately after the query is opened, then it means that the dataset
is empty.

TIBSQL.FieldIndex
TIBSQL See also
Returns the index of the named field.
property FieldIndex: [FieldName: String]: Integer;
Description
Use the FieldIndex property to return the index of the name field.

TIBSQL.Fields
TIBSQL See also
Returns the XSQLVAR fields.
property Fields[const Idx: Integer]: TIBXSQLVAR;
Description
Use the Fields property to return the XSQLVAR fields.

TIBSQL.GenerateParamNames
TIBSQL See also
Generates a list of parameter names for the query.
property GenerateParamNames: Boolean;
Description
Set GenerateParamNames to True to have the query generate a list of parameter names.

TIBSQL.GoToFirstRecordOnExecute
TIBSQL See also
Goes to the first record in the result set upon opening it.
property GoToFirstRecordOnExecute: Boolean;
Description
Use the GoToFirstRecordOnExecute property to go to the first record in a result set upon opening it. By
default, this property is set to True. GoToFirstRecordOnExecute exists primarily for use in TIBDataSet,
which sets this value to False for its internal TIBSQLs.

TIBSQL.Handle
TIBSQL See also
Specifies the handle for the query.
property Handle: TISC_STMT_HANDLE;
Description
Use the Handle property to get the query handle.

TIBSQL.Open
TIBSQL See also
Determines if the dataset is open.
property Open: Boolean;
Description
Use the Open property to determine if the dataset is open.

TIBSQL.ParamCheck
TIBSQL See also
Specifies whether the parameter list for an SQL query is regenerated if the SQL property changes at
runtime.
property ParamCheck: Boolean;
Description
This property is useful for data definition language (DDL) statements that contain parameters as part of
the DDL statement and that are not parameters for the TIBSQL query. For example, the DDL statement
to create a stored procedure may contain parameter statements that are part of the stored procedure.
Set ParamCheck to False to prevent these parameters from being mistaken for parameters of the
TIBSQL query executing the DDL statement.
An application that does not use parameterized queries may choose to set ParamCheck to False, but
otherwise ParamCheck should be True.

TIBSQL.Params
TIBSQL See also
Returns the XSQLDA parameters.
property Params: TIBXSQLDA;
Description
Use the Params property to return the XSQLDA parameters.

TIBSQL.Plan
TIBSQL See also
Returns the plan for the query.
property Plan: String;
Description
Use the Plan property to view the query plan once the query has been prepared.

TIBSQL.Prepared
TIBSQL See also Example
Indicates whether or not the query has been prepared.
property Prepared: Boolean;
Description
Use the Prepared property to determine whether or not a query has yet been prepared.

TIBSQL.RecordCount
TIBSQL See also
Returns the current count of records from the query.
property RecordCount: Integer;
Description
Use the RecordCount property to see how many records are returned by a query. If the result set is to
return 100 rows, RecordCount will only be 100 after all the records have been visited. That is, after
looking at the first record, RecordCount is 1, and so forth.

TIBSQL.RowsAffected
TIBSQL See also
Returns the number of rows affected.
property RowsAffected: Integer;
Description
Use the RowsAffected property to return the number of rows affected by the query. This property is
useful for INSERT, DELETE, and UPDATE statements.

TIBSQL.SQL
TIBSQL See also
Sets the SQL query to be executed.
property SQL: TStrings;
Description
Use the SQL property to write or view the SQL query to be executed.

TIBSQL.SQLType
TIBSQL See also
Returns the type of query to be executed.
type TIBSQLTypes = set of (SQLUnknown, SQLSelect, SQLInsert, SQLUpdate,
SQLDelete, SQLDDL, SQLGetSegment, SQLPutSegment, SQLExecProcedure,
SQLStartTransaction, SQLCommit, SQLRollback, SQLSelectForUpdate,
SQLSetGenerator);

property SQLType: TIBSQLTypes read FSQLType;
Description
Use the SQLType to determine the type of query to be executed. Query types include:

SQLCommit Commits an active transaction
SQLDDL Modifies the database metadata
SQLDelete Removes rows in a table or in the active set of a cursor
SQLExecProcedure Calls a stored procedure
SQLGetSegment Reads a segment from an open Blob
SQLInsert Adds one or more new rows to a specified table
SQLPutSegment Writes a Blob segment
SQLRollback Restores the database to its state prior to the start of the current

transaction
SQLSelectForUpdate Used for positioned updates.
SQLSetGenerator Sets a new value for an existing generator
SQLSelect Retrieves data from one or more tables
SQLStartTransaction Starts a new transaction against one or more databases
SQLUnknown Unknown SQL type
SQLUpdate Changes data in all or part of an existing row in a table, view, or

active set of a cursor

TIBSQL.Transaction
TIBSQL See also
Sets or returns the transaction to be used by the query.
property Transaction: TIBTransaction;
Description
Use the Transaction property to set or return the transaction to be used by the query.

TIBSQL.TRHandle
TIBSQL See also
Specifies the transaction handle for the query.
property TRHandle: PISC_TR_HANDLE;
Description
Use the TRHandle property to return the transaction handle for the query.

TIBSQL.UniqueRelationName
TIBSQL See also
Indicates the unique relation name.
property UniqueRelationName: String;
Description
Use the UniqueRelationName property to indicate the unique relation name for a query that involves
only one base table.

TIBDynSQL events
TIBSQL Alphabetically Legend

In TIBSQL
OnSQLChanging

TIBDynSQL events
TIBSQL By object Legend

OnSQLChanging

TIBSQL.OnSQLChanging
TIBSQL See also
Occurs when the SQL query is being modified.
property OnSQLChanging: TNotifyEvent;
Description
Write an OnSQLChanging event handler to take specific actions when a query is being modified. If an
exception is raised in this event, the query is not changed.

TIBSQL methods
TIBSQL Alphabetically

In TIBSQL
BatchInput
BatchOutput
Call
CheckClosed
CheckOpen
CheckValidStatement
Close
Create
Current
Destroy
ExecQuery
FieldByName
FreeHandle
Next
Prepare

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler

Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBSQL methods
TIBSQL By object

AfterConstruction
Assign
BatchInput
BatchOutput
BeforeDestruction
Call
CheckClosed
CheckOpen
CheckValidStatement
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Close
Create
Current
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecQuery
ExecuteAction
FieldAddress
FieldByName
FindComponent
Free
FreeInstance
FreeHandle
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent

InstanceSize
MethodAddress
MethodName
NewInstance
Next
Prepare
RemoveComponent
SafeCallException
UpdateAction

TIBSQL.BatchInput
TIBSQL See also
Executes the parameterized query in SQL for input in the referenced input object.
procedure BatchInput(InputObject: TIBBatchInput);
Description
Call BatchInput to execute the parameterized query in SQL for input in the referenced input object.

TIBSQL.BatchOutput
TIBSQL See also
Outputs the selected query in SQL to the referenced OutputObject.
procedure BatchOutput(OutputObject: TIBBatchOutput);
Description
Call BatchOutput to output the selected query in SQL to the referenced OutputObject.

TIBSQL.Call
TIBSQL See also
Returns an error message based on the error code.
function Call(ErrCode: ISC_STATUS; RaiseError: Boolean): ISC_STATUS;
Description
Call is an internal method used to make calls to the InterBase API, and gives you the option of raising an
exception or returning an error based on the value of RaiseError.

TIBSQL.CheckClosed
TIBSQL See also
Raises an exception if the query is not closed.
procedure CheckClosed;
Description
Call CheckClosed to raise an exception if the query is not closed.

TIBSQL.CheckOpen
TIBSQL See also
Raises an exception if the query is not open.
procedure CheckOpen;
Description
Call CheckOpen to raise an exception if the query is closed.

TIBSQL.CheckValidStatement
TIBSQL See also
Raises an exception if the query does not have a valid statement.
procedure CheckValidStatement;
Description
Call CheckValidStatement to raise an exception if the query does not have a valid statement.

TIBSQL.Close
TIBSQL See also
Closes the query.
procedure Close;
Description
Call Close to close the query.

TIBSQL.Create
TIBSQL See also
Creates an instance of a TIBSQL component.
constructor Create(AOwner:TComponent);
Description
Call Create to create an instance of a TIBSQL component.

TIBSQL.Current
TIBSQL See also
Returns an extended SQL descriptor for the current record.
function Current: TIBXSQLDA;
Description
Call Current to get an extended SQL descriptor for the current record.

TIBSQL.Destroy
TIBSQL See also
Frees all resources associated with this instance.
destructor Destroy;
Description
Do not call Destroy directly in an application. Usually destruction of objects is handled automatically by
Delphi. If an application creates its own instance of an update object, however, the application should
call Free, which verifies that the update object is not already freed before calling Destroy.

TIBSQL.ExecQuery
TIBSQL See also
Executes an SQL query.
procedure ExecQuery;
Description
Call ExecQuery to execute the SQL query.

TIBSQL.FieldByName
TIBSQL See also
Returns the XSQLVAR fields by name.
function FieldByName[FieldName: String]: TIBXSQLVAR;
Description
Use the FieldByName method to return the XSQLVAR fields by name.

TIBSQL.FreeHandle
TIBSQL See also
Frees InterBase resources associated with the query.
procedure FreeHandle;
Description
Call FreeHandle to free the InterBase resources associated with the query.

TIBSQL.Next
TIBSQL See also
Returns an extended SQL descriptor for the next record.
function Next: TIBXSQLDA;
Description
Call Next to get an extended SQL descriptor for the next record.

TIBSQL.Prepare
TIBSQL See also Example
Prepares a query for execution.
procedure Prepare;
Description
Call Prepare to prepare a query for execution.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent

TComponent

TIBCustomSQLMonitor
Hierarchy Properties Methods See also
TIBCustomSQLMonitor is the ancestor object from which TIBSQLMonitor and TIBSQLMonitorHook are
derived.

Unit
IBSQLMonitor

Description
TIBCustomSQLMonitor is the ancestor object from which TIBSQLMonitor and TIBSQLMonitorHook are
derived.

TIBCustomSQLMonitor properties
TIBCustomSQLMonitor Alphabetically Legend

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBCustomSQLMonitor properties
TIBCustomSQLMonitor By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBCustomSQLMonitor methods
TIBCustomSQLMonitor Alphabetically

In TIBCustomSQLMonitor
Create
Destroy

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBCustomSQLMonitor methods
TIBCustomSQLMonitor By object

AfterConstruction
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SafeCallException
UpdateAction

TIBCustomSQLMonitor.Create
TIBCustomSQLMonitor See also
Creates an instance of TIBCustomSQLMonitor.
constructor Create (AOwner: TComponent);
Description
Call Create to create an instance of TIBCustomSQLMonitor. Create also:
· Creates the window
· Registers the event
· Fires the Monitor thread

TIBCustomSQLMonitor.Destroy
TIBCustomSQLMonitor See also
Destroys the instance of TIBCustomSQLMonitor.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, an application should call Free. Free verifies that
the service object has not already been freed before it calls Destroy.
Destroy unregisters the event, destroys the window, and kills the Monitor thread.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

 TIBSQLMonitor
Hierarchy Properties Methods Events See also
TIBSQLMonitor monitors dynamic SQL passed to the InterBase server.

Unit
IBSQLMonitor

Description
Use TIBSQLMonitor to monitor dynamic SQL taking place in InterBase applications. Enable
TraceFlags in each TIBDatabase component in order for the SQL monitor to receive status information
from each database connection.

TIBSQLMonitor properties
TIBSQLMonitor Alphabetically Legend

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBSQLMonitor properties
TIBSQLMonitor By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBSQLMonitor events
TIBSQLMonitor Alphabetically Legend

In TIBSQLMonitor
OnSQL

TIBSQLMonitor events
TIBSQLMonitor By object Legend

OnSQL

TIBSQLMonitor.OnSQL
TIBSQLMonitor See also
Reports dynamic SQL activity on InterBase applications.
property OnSQL: TSQLEvent;
Description
Write an OnSQL event handler to report dynamic SQL activity on InterBase applications. OnSQL is an
event of type TSQLEvent, and reports SQL activity through the EventText:
TSQLEvent = procedure(EventText: String) of object;
You must enable the TraceFlags in each TIBDatabase component in order for the SQL monitor to
receive status information from each database connection.

TIBSQLMonitor methods
TIBSQLMonitor Alphabetically

Derived from TIBCustomSQLMonitor
Create
Destroy

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBSQLMonitor methods
TIBSQLMonitor By object

AfterConstruction
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SafeCallException
UpdateAction

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TIBCustomSQLMonitor

TIBSQLMonitorHook
Hierarchy Properties Methods Events See also
TIBSQLMonitorHook is an internal object used by the components to output messages for use by
TIBSQLMonitor.

Unit
IBSQLMonitor

Description
TIBSQLMonitorHook is an internal object used by the components to output messages for use by
TIBSQLMonitor.

TIBSQLMonitorHook properties
TIBSQLMonitorHook Alphabetically Legend

In TIBSQLMonitorHook
TraceFlags

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBSQLMonitorHook properties
TIBSQLMonitorHook By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
TraceFlags
VCLComObject

TIBSQLMonitorHook.TraceFlags
TIBSQLMonitorHook See also
This is an internal property used by the TIBDatabase component.
property TraceFlags: TTraceFlags;
Description
Use TraceFlags to specify which database operations the SQL Monitor should track in an application at
runtime. TraceFlags is only meaningful for the SQL Monitor, which is provided to enable performance
tuning and SQL debugging when working with remote SQL database servers.
Note: Normally trace options are set from the SQL Monitor rather than setting TraceFlags in application

code.

TIBSQLMonitorHook events
TIBSQLMonitorHook Alphabetically Legend

Derived from TIBSQLMonitor
OnSQL

TIBSQLMonitorHook events
TIBSQLMonitorHook By object Legend

OnSQL

TIBSQLMonitorHook methods
TIBSQLMonitorHook Alphabetically

In TIBSQLMonitorHook
Create
DBConnect
DBDisconnect
Destroy
MonitorCount
ReadSQLData
RegisterMonitor
ServiceAttach
ServiceDetach
ServiceQuery
ServiceStart
SQLExecute
SQLFetch
SQLPrepare
TRCommit
TRCommitRetaining
TRRollback
TRRollbackRetaining
TRStart
UnregisterMonitor

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName

ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBSQLMonitorHook methods
TIBSQLMonitorHook By object

AfterConstruction
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DBConnect
DBDisconnect
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
MonitorCount
NewInstance
ReadSQLData
RegisterMonitor
RemoveComponent
SafeCallException

ServiceAttach
ServiceDetach
ServiceQuery
ServiceStart
SQLExecute
SQLFetch
SQLPrepare
TRCommit
TRCommitRetaining
TRRollback
TRRollbackRetaining
TRStart
UnregisterMonitor
UpdateAction

TIBSQLMonitorHook.Create
TIBSQLMonitorHook See also
Creates an instance of TIBSQLMonitorHook.
constructor Create;
Description
Call Create to create an instance of TIBSQLMonitorHook. Create also:
· Creates a mapped memory file
· Creates the event
· Sets the initial state

TIBSQLMonitorHook.DBConnect
TIBSQLMonitorHook See also
Outputs database connect notifications.
procedure DBConnect(db: TIBDatabase);
Description
Call the DBConnect method to output database connect notifications.

TIBSQLMonitorHook.DBDisconnect
TIBSQLMonitorHook See also
Outputs database disconnect notifications.
procedure DBDisconnect(db: TIBDatabase);
Description
Call the DBdisconnect method to output database disconnect notifications.

TIBSQLMonitorHook.Destroy
TIBSQLMonitorHook See also
Destroys the instance of TIBSQLMonitorHook.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, an application should call Free. Free verifies that
the service object has not already been freed before it calls Destroy. Destroy unmaps the memory-
mapped file and closes the event handles.

TIBSQLMonitorHook.MonitorCount
TIBSQLMonitorHook See also
Returns the number of monitors.
function MonitorCount: Integer;
Description
Call MonitorCount to get the number of active monitors.

TIBSQLMonitorHook.ReadSQLData
TIBSQLMonitorHook See also
Returns the contents of the notification buffer for the enabled trace flags.
function ReadSQLData: String;
Description
Call ReadSQLData to return the contents of the notification buffer for appropriately enabled trace flags.

TIBSQLMonitorHook.RegisterMonitor
TIBSQLMonitorHook See also
Registers monitors.
procedure RegisterMonitor;
Description
Call RegisterMonitor to register monitors.

TIBSQLMonitorHook.ServiceAttach
TIBSQLMonitorHook See also
Outputs a service attach notification.
procedure ServiceAttach(qry: TIBCustomService);
Description
Call ServiceAttach to output a service attach notification.

TIBSQLMonitorHook.ServiceDetach
TIBSQLMonitorHook See also
Outputs a service detach notification.
procedure ServiceDetach(qry: TIBCustomService);
Description
Call ServiceDetach to output a service detach notification.

TIBSQLMonitorHook.ServiceQuery
TIBSQLMonitorHook See also
Outputs a service query notification.
procedure ServiceQuery(qry: TIBCustomService);
Description
Call ServiceQuery to output a service query notification.

TIBSQLMonitorHook.ServiceStart
TIBSQLMonitorHook See also
Outputs a service start notification.
procedure ServiceStart(qry: TIBCustomService);
Description
Call ServiceStart to output a service start notification.

TIBSQLMonitorHook.SQLExecute
TIBSQLMonitorHook See also
Outputs the SQL execute notification.
procedure SQLExecute(qry: TIBSQL);
Description
Call SQLExecute to output the SQL execute notification, along with the query text and parameters.

TIBSQLMonitorHook.SQLFetch
TIBSQLMonitorHook See also
Outputs the SQL fetch notification.
procedure SQLFetch(qry: TIBSQL);
Description
Call SQLFetch to output the SQL fetch notification, along with the SQL statement and the status of the
fetch (for example, whether EOF has been reached, etc).

TIBSQLMonitorHook.SQLPrepare
TIBSQLMonitorHook See also
Outputs the SQL prepare notification.
procedure SQLPrepare(qry: TIBSQL);
Description
Call SQLPrepare to output the SQL prepare notification, along with the query, text, and plan.

TIBSQLMonitorHook.TRCommit
TIBSQLMonitorHook See also
Outputs the commit notification.
procedure TRCommit(tr: TIBTransaction);
Description
Call TRCommit to output the commit notification.

TIBSQLMonitorHook.TRCommitRetaining
TIBSQLMonitorHook See also
Outputs the commit retaining notification.
procedure TRCommitRetaining(tr: TIBTransaction);
Description
Call TRCommitRetaining to output the commit retaining notification.

TIBSQLMonitorHook.TRRollback
TIBSQLMonitorHook See also
Outputs the rollback notification.
procedure TRRollback(tr: TIBTransaction);
Description
Call TRRollback to output the rollback notification.

TIBSQLMonitorHook.TRRollbackRetaining
TIBSQLMonitorHook See also
Outputs the rollback retaining notification.
procedure TRRollbackRetaining(tr: TIBTransaction);
Description
Call TRRollbackRetaining to output the rollback retaining notification.

TIBSQLMonitorHook.TRStart
TIBSQLMonitorHook See also
Outputs the start transaction notification.
procedure TRStart(tr: TIBTransaction);
Description
Call TRStart to output the transaction start notification.

TIBSQLMonitorHook.UnregisterMonitor
TIBSQLMonitorHook See also
Unregisters the monitor.
procedure UnregisterMonitor;
Description
Call UnregisterMonitor to unregister the monitor.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TIBCustomSQLMonitor

TIBSQLMonitor

 TIBStoredProc
Hierarchy Properties Methods Events See also
TIBStoredProc encapsulates a stored procedure on a database server.

Unit
IBStoredProc

Description
Use a TIBStoredProc object when a client application must use a stored procedure on a database
server. A stored procedure is a grouped set of statements, stored as part of a database server’s
metadata (just like tables, indexes, and domains), that performs a frequently repeated, database-related
task on the server and passes results to the client.
Many stored procedures require a series of input arguments, or parameters, that are used during
processing. TIBStoredProc provides a Params property that enables an application to set these
parameters before executing the stored procedure.
TIBStoredProc reuses the Params property to hold the results returned by a stored procedure. Params
is an array of values. A stored procedure will return a single set of values, or none at all.
Note: TIBStoredProc components should be used with InterBase Execute stored procedures only. To

use InterBase Select procedures, use TIBQuery or TIBDataSet. Since Execute stored
procedures do not return result sets, never use Open or Active on the TIBStoredProc component.
Use ExecProc instead.

TIBStoredProc properties
TIBStoredProc Alphabetically Legend

In TIBStoredProc
NameList

ParamCount
Params
Prepared
StmtHandle
StoredProcName

Derived from TCustomDataSet
CachedUpdates
Database
DBHandle
Transaction
TRHandle
UpdateObject
UpdateRecordTypes
UpdatesPending

Derived fromTDataSet
Active
AggFields
AutoCalcFields
Bof
Bookmark
DatasetField
DataSource
DefaultFields

Designer
Eof
FieldCount
FieldDefList
FieldDefs
FieldList
Fields
FieldValues

Found
Modified
Name
ObjectView
SparseArrays
State

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo

Owner
Tag
VCLComObject

TIBStoredProc properties
TIBStoredProc By object Legend

Active
AggFields
AutoCalcFields
Bof
Bookmark
CachedUpdates
ComObject
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle
Database
DataSource
DBHandle
DefaultFields

Designer
DesignInfo

Eof
FieldCount
FieldDefList
FieldDefs
FieldList
Fields

FieldValues
Found

Modified
Name
NameList
ObjectView
Owner
ParamCount
Params

Prepared
SparseArrays

State
StmtHandle
StoredProcName
Tag
TRHandle
Transaction
UpdateObject
UpdateRecordTypes
UpdatesPending

VCLComObject

TIBStoredProc.NameList
TIBStoredProc See also
Returns a list of stored procedures in the database.
property NameList: TStrings;
Description
NameList is an internal property used to list the stored procedures available in the database.

TIBStoredProc.ParamCount
TIBStoredProc See also Example
Indicates the number of parameters for the stored procedure component.
property ParamCount: Word;
Description
Examine ParamCount to determine the number of parameters currently stored in the Params property.

TIBStoredProc.Params
TIBStoredProc See also Example
Stores the input and output parameters for a stored procedure.
property Params: TParams;
Description
Access Params at runtime to set input parameter names, values, and data types dynamically (at design
time use the Parameters editor to set parameter information). Params is an array of parameter values.
An application can also access Params after executing a stored procedure to retrieve the output
parameters returned to the procedure by the server.

TIBStoredProc.Prepared
TIBStoredProc See also
Determines whether or not a stored procedure is prepared for execution.
property Prepared: Boolean;
Description
Examine Prepared to determine if a stored procedure is already prepared for execution. If Prepared is
True, the stored procedure is prepared, and if Prepared is False, the procedure is not prepared. A stored
procedure must be prepared before it can be executed.
Note: Delphi automatically prepares a stored procedure if it is unprepared when the application calls

ExecProc. After execution, Delphi automatically unprepares the stored procedure. If a procedure
will be executed a number of times, it is more efficient for the application to prepare the stored
procedure once, and unprepare it when it is no longer needed.

An application can change the current setting of Prepared to prepare or unprepare a stored procedure. If
Prepared is True, setting it to False calls the Unprepare method to unprepare the stored procedure. If
Prepared is False, setting it to True calls the Prepare method to prepare the procedure. Generally,
however, it is better programming practice to call Prepare and Unprepare directly. These methods
automatically update the Prepared property.

TIBStoredProc.StmtHandle
TIBStoredProc
Identifies the statement handle for the stored procedure.
property StmtHandle: TISC_STMT_HANDLE;
Description
Retrieve StmtHandle if an application makes a direct call to the InterBase server, bypassing the
methods of TIBStoredProc. Some API calls require a statement handle as a parameter. Under all other
circumstances an application does not need to access this property.

TIBStoredProc.StoredProcName
TIBStoredProc See also
Identifies the name of the stored procedure on the server for which this object is an encapsulation.
property StoredProcName: String;
Description
Set StoredProcName to specify the name of the stored procedure to call on the server. If
StoredProcName does not match the name of an existing stored procedure on the server, then when the
application attempts to prepare the procedure prior to execution, an exception is raised.

TIBStoredProc events
TIBStoredProc Alphabetically Legend

Derived from TIBCustomDataSet
OnUpdateError
OnUpdateRecord

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError

TIBStoredProc events
TIBStoredProc By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError
OnUpdateError
OnUpdateRecord

TIBStoredProc methods
TIBStoredProc Alphabetically

In TIBStoredProc
CopyParams
Create
Destroy
ExecProc
ParamByName
Prepare
UnPrepare

Derived from TIBCustomDataSet
ApplyUpdates
BatchInput
BatchOutput
CachedUpdateStatus
CancelUpdates
CreateBlobStream
FetchAll
GetCurrentRecord
GetFieldData
Locate
LocateNext
Lookup
RecordModified
RevertRecord
Undelete
UpdateStatus

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
CompareBookmarks
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst

FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetDetailDataSets
GetDetailLinkFields
GetFieldList
GetFieldNames
GetProviderAttributes
GotoBookmark
Insert
InsertRecord
IsEmpty
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
Translate
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBStoredProc methods
TIBStoredProc By object

ActiveBuffer
AfterConstruction
Append
AppendRecord
ApplyUpdates
Assign
BatchInput
BatchOutput
BeforeDestruction
CachedUpdateStatus
CancelUpdates
CheckBrowseMode
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CompareBookmarks
ControlsDisabled
CopyParams
Create
CreateBlobStream
CursorPosChanged
DefaultHandler
Delete
Destroy
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecProc
ExecuteAction
FetchAll
FieldAddress
FieldByName
FindComponent
FindField

FindFirst
FindLast
FindNext
FindPrior
First
Free
FreeBookmark
FreeInstance
FreeNotification
FreeOnRelease
GetBookmark
GetCurrentRecord
GetDetailDataSets
GetDetailLinkFields
GetFieldData
GetFieldList
GetFieldNames
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetProviderAttributes
GotoBookmark
HasParent
InheritsFrom
InitInstance
Insert
InsertComponent
InsertRecord
InstanceSize
IsEmpty
IsLinkedTo
Last
Locate
LocateNext
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
ParamByName
Post

Prepare
Prior
RecordModified
Refresh
RemoveComponent
Resync
RevertRecord
SafeCallException
SetFields
Translate
UpdateCursorPos
UpdateRecord
Undelete
UnPrepare
UpdateAction
UpdateStatus

TIBStoredProc.CopyParams
TIBStoredProc See also
Copies a stored procedure’s parameters into another parameter list.
procedure CopyParams(Value: TParams);
Description
Call CopyParams to copy this stored procedure’s parameters into a separate parameter list object.
Value is the parameter list into which to assign this stored procedure’s parameters. Value can be the
parameter list of another stored procedure. For example:
TIBStoredProc1.CopyParams(TIBStoredProc2.Params);
If the stored procedure is not prepared when an application calls CopyParams, CopyParams calls
Prepare before assigning the parameters to the target parameters list, and then calls UnPrepare to
return the stored procedure to its previous state.

TIBStoredProc.Create
TIBStoredProc See also
Creates an instance of a stored procedure component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a stored procedure declared in an application. Create calls its inherited Create
constructor, creates an empty parameter list for the newly instantiated stored procedure, and initializes
its parameter, server, and record buffers to nil.

TIBStoredProc.Destroy
TIBStoredProc See also
Destroys the instance of a stored procedure.
destructor Destroy;
Description
Do not call Destroy directly. Instead call Free to verify that the stored procedure is not already freed
before calling Destroy. Destroy disconnects from the server, frees the parameter list, and calls its
inherited Destroy destructor.

TIBStoredProc.ExecProc
TIBStoredProc See also Example
Executes the stored procedure on the server.
procedure ExecProc;
Description
Call ExecProc to execute a stored procedure on the server. Before calling ExecProc:
1 Provide any input parameters in the Params property. At design time, a developer can provide

parameters using the Parameters editor. At runtime an application must access Params directly.
2 Call Prepare to bind the parameters.
If a stored procedure returns output parameters, they are stored in the Params property when ExecProc
returns control to the application. An application can access the output parameters by indexing into the
Params list, or by using the ParamByName method.

TIBStoredProc.ParamByName
TIBStoredProc See also Example
Accesses parameter information based on a specified parameter name.
function ParamByName(const Value: string): TParam;
Description
Call ParamByName to return parameter information for a specific parameter based on its name. Value is
the name of the parameter for which to retrieve information. Typically ParamByName is used to set an
input parameter’s value at runtime, or to retrieve the value of an output parameter. The following
command line assigns the value "Jane Smith" as the value for the parameter named Contact:
StoredProc1.ParamByName('Contact').AsString := 'Jane Smith';

TIBStoredProc.Prepare
TIBStoredProc See also Example
Prepares a stored procedure for execution.
procedure Prepare;
Description
Call Prepare to bind a stored procedure’s parameters before calling ExecProc to execute the procedure.
Prepare readies a stored procedure’s parameters and informs the server of the stored procedure’s
readiness. These steps allocate system resources and optimize the query for server performance.
Note: If an application attempts to execute a stored procedure that has not been prepared, Delphi

automatically prepares the procedure before executing it, and then unprepares it when execution
is complete. If a stored procedure will be executed more than once, it is more efficient for an
application to call Prepare explicitly once to avoid repeated and unnecessary preparing and
unpreparing of the stored procedure, and then call UnPrepare when the stored procedure is no
longer needed.

TIBStoredProc.UnPrepare
TIBStoredProc See also
Frees the resources allocated for a previously prepared stored procedure.
procedure UnPrepare;
Description
Call UnPrepare to free the resources allocated for a previously prepared stored procedure on the server
and client sides.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TDataSet

TIBCustomDataSet

TIBStringField
Hierarchy Properties Methods Events See also
TIBStringField allows for strings in excess of 8196 bytes of data.

Unit
IBCustomDataSet

Description
A value of a string field is physically stored as a sequence of characters. Common uses for string fields
are to store text, such as names and addresses.
TIBStringField introduces properties to translate between string values and other data types, and to
manage language driver conversions. As a descendent of TStringField, TIBStringField inherits many
properties, methods, and events that are useful for managing the value and properties of a field in a
database. TIBStringField allows for strings in excess of 8196 bytes of data.

TIBStringField properties
TIBStringField Alphabetically Legend

In TIBStringField
BlanksToNULL

Derived from TStringField
AsBoolean
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
DataSize

FixedChar
Transliterate
Value

Derived from TField
Alignment
AsBoolean
AsDateTime
AttributeSet
AutoGenerateValue
Calculated
CanModify
ConstraintErrorMessage

CurValue
CustomConstraint
DataSet
DataType
DefaultExpression
DisplayLabel
DisplayName

DisplayText
DisplayWidth
EditMask
EditMaskPtr
FieldKind
FieldName
FieldNo
FullName

HasConstraints
ImportedConstraint
Index
IsIndexField
IsNull
KeyFields
Lookup
LookupCache
LookupDataSet
LookupKeyFields
LookupList
LookupResultField

NewValue
Offset
OldValue
Origin
ParentField
ProviderFlags
ReadOnly
Required
Text
ValidChars
Visible

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBStringField properties
TIBStringField By object Legend

Alignment
AsBoolean
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet
AutoGenerateValue
BlanksToNULL
Calculated
CanModify
ComObject
ComponentCount
ComponentIndex
Components

ComponentState
ComponentStyle
ConstraintErrorMessage
CurValue
CustomConstraint
DataSet
DataSize

DataType
DefaultExpression
DesignInfo
DisplayLabel
DisplayName
DisplayText
DisplayWidth

EditMask
EditMaskPtr

FieldKind
FieldName
FieldNo
FixedChar
FullName
HasConstraints
ImportedConstraint
Index
IsIndexField
IsNull
KeyFields
Lookup
LookupCache
LookupDataSet
LookupKeyFields
LookupList
LookupResultField
Name
NewValue

Offset
OldValue
Origin

Owner
ParentField
ProviderFlags
ReadOnly
Required
Tag
Text
Transliterate

ValidChars
Value
VCLComObject

Visible

TIBStringField.BlanksToNULL
TIBStringField See also
Converts blank spaces to null.
property BlanksToNull: Boolean;
Description
Use BlanksToNULL to convert blank spaces to null within a dataset.

TIBStringField methods
TIBStringField Alphabetically

In TIBStringField
CheckTypeSize
Create
GetAsString
GetAsVariant
GetValue
SetAsString

Derived from TField
Assign
AssignValue
Clear
Destroy
FocusControl
GetData
IsBlob
IsValidChar
RefreshLookupList
SetData
SetFieldType
Validate

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent

ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBStringField methods
TIBStringField By object

AfterConstruction
Assign
AssignValue
BeforeDestruction
CheckTypeSize
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Clear
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
FocusControl
Free
FreeInstance
FreeNotification
FreeOnRelease
GetAsString
GetAsVariant
GetData
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetParentComponent
GetValue
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsBlob
IsValidChar
MethodAddress

MethodName
NewInstance
RefreshLookupList
RemoveComponent
SafeCallException
SetAsString
SetData
SetFieldType
UpdateAction
Validate

TIBStringField.CheckTypeSize
TIBStringField See also
Indicates the type size of the string field.
class procedure CheckTypeSize(Value: Integer);
Description
Call CheckTypeSize to determine the type size of the string field.
All sizes are valid for a TIBString field.

TIBStringField.Create
TIBStringField See also
Creates an instance of a TIBStringField object.
constructor Create(AOwner: TComponent);
Description
It is seldom necessary to call Create directly, because a string field component is instantiated
automatically for all string fields in a dataset.
After calling the inherited constructor, Create sets
· DataType to ftString.
· Size to 20.
· Transliterate to True.
· BlanksToNull to true

TIBStringField.GetAsString
TIBStringField See also
Returns the value of a field as a string.
function GetAsString: string;
Description
Call GetAsString to return the value of a field as a string.

TIBStringField.GetAsVariant
TIBStringField See also
Returns the value of a field as a variant.
function GetAsVariant: Variant;
Description
Call GetAsVariant return the value of a field as type Variant.

TIBStringField.GetValue
TIBStringField See also
Returns the value of a field.
function GetValue(var Value: string): Boolean;
Description
Call GetValue to return the value of a field.

TIBStringField.SetAsString
TIBStringField See also
Sets the value of a field as a string type.
procedure SetAsString(const Value: string);
Description
Call SetAsString to set the value of a field as a string type.

TIBStringField events
TIBStringField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TIBStringField events
TIBStringField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TField

TStringField

 TIBTable
Hierarchy Properties Methods Events See also
TIBTable is a dataset component that encapsulates a database table.

Unit
IBTable

Description
Use TIBTable to access data in a single table or view. TIBTable provides direct access to every record
and field in an underlying InterBase database table. A table component can also work with a subset of
records within a database table using filters.

TIBTable properties
TIBTable Alphabetically Legend

In TIBTable
BufferChunks
CurrentDBKey
DefaultIndex
Exists
Filter
Filtered
IndexDefs
IndexFieldCount
IndexFieldNames
IndexFields
IndexName
MasterFields
MasterSource
ReadOnly
StoreDefs
TableName
TableNames
TableTypes
UniDirectional
UpdateObject

Derived from TIBCustomDataSet
CachedUpdates
Database
DBHandle
Transaction
TRHandle
UpdateRecordTypes
UpdatesPending

Derived from TDataSet
Active
AggFields
AutoCalcFields
BlockReadSize
Bof
Bookmark
Constraints
DataSetField

DefaultFields
Designer
Eof
FieldCount
FieldDefList
FieldDefs
FieldList

Fields
FieldValues
FilterOptions
Found
Modified
Name

ObjectView
RecNo

RecordCount
RecordSize
SparseArrays
State

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo

Owner
Tag
VCLComObject

TIBTable properties
TIBTable By object Legend

Active
AggFields
AutoCalcFields
BlockReadSize
Bof
Bookmark
BufferChunks
CachedUpdates
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
Constraints
CurrentDBKey
Database
DataSetField
DBHandle
DefaultFields
DefaultIndex
Designer
DesignInfo
Eof
Exists
FieldCount

FieldDefList
FieldDefs
FieldList
Fields
FieldValues
Filter
Filtered
Filter
FilterOptions

Found
IndexDefs
IndexFieldCount
IndexFieldNames
IndexFields
IndexName
MasterFields
MasterSource
Modified
Name
ObjectView

Owner
ReadOnly
RecNo
RecordCount
RecordSize

SparseArrays
State
StoreDefs
TableName

TableNames
TableTypes
Tag
Transaction
TRHandle
UniDirectional
UpdateObject
UpdateRecordTypes
UpdatesPending
VCLComObject

TIBTable.BufferChunks
TIBTable See also
Indicates the buffer incrementation size.
property BufferChunks: Integer;
Description
Use the BufferChunks property to indicate the chunk size (in records) used to increment the buffer.

TIBTable.CurrentDBKey
TIBTable See also
Returns the DBKey for the current row in the table.
property CurrentDBKey: TIBDBKey;
Description
Use CurrentDBKey to return the DBKey for the current row in the table. A DBKey is a unique row
identifier for the duration of the current transaction. This property is primarily for internal use.

TIBTable.DefaultIndex
TIBTable See also
Specifies if the data in the table should be ordered on a default index when opened.
property DefaultIndex: Boolean;
Description
When this property is set to False, an ORDER BY clause is not used when opening a table on the
server. When DefaultIndex is True, the data is ordered based on the primary key or a unique index when
opening the table. DefaultIndex defaults to True.

TIBTable.Exists
TIBTable See also Example
Indicates whether the underlying database table exists.
property Exists: Boolean;
Description
Read Exists at runtime to determine whether a database table exists. If the table does not exist, you can
create a table from the field definitions and index definitions using the CreateTable method. This
property is read-only.

TIBTable.Filter
TIBTable See also
Specifies rows in a dataset that meet the filter conditions.
property Filter;
Description
Use the Filter property to restrict the rows in the dataset to those that meet the filter conditions. The
syntax for Filter is the same as the search condition that appears after a WHERE clause in a Select
statment. For example, to view only those records where the value in the Country field contains
'France' or 'Fiji':
Country = 'France' or Country = 'Fiji'
You can use standard SQL wildcards such as percent (%) and underscore (_) in the condition when you
use the LIKE operator. The following filter condition retrieves all Countries begining with 'F':
Country LIKE 'F%'
To view rows that have a NULL value in the Country column and Contact_Name is not NULL, use the IS
operator:
Country is NULL and Contact_Name is not NULL
You can also use complex expression in filter clauses this one thatretrieves rows with Country values
that use Francs as currency. Thisstatement gets countries with currencies as 'BFranc', 'SFranc',
and'FFranc'
Country IN (SELECT Country from Country where Currency = '_Franc')

TIBTable.Filtered
TIBTable See also
Specifies whether or not filtering is active for a table.
property Filtered: Boolean;
Description
Check Filtered to determine whether or not dataset filtering is in effect. If Filtered is True, then filtering is
active. To apply filter conditions specified in the Filter property or the OnFilterRecord event handler, set
Filtered to True.

TIBTable.IndexDefs
TIBTable See also Example
Contains information about the indexes for a table.
property IndexDefs: TIndexDefs;
Description
IndexDefs is an array of index items, each of which describes an available index for the table. Ordinarily
an application accesses or specifies indexes through the IndexFieldNames or IndexFields properties. If
IndexDefs is updated or manually edited, the StoreDefs property becomes True.
Note: The index items in IndexDefs may not always reflect the current indexes available for a table.

Before examining IndexDefs, call its Update method to refresh the item list.

TIBTable.IndexFieldCount
TIBTable See also Example
Indicates the number of fields that comprise the current key.
property IndexFieldCount: Integer;
Description
Examine IndexFieldCount to determine the number of fields that comprise the current key. For indexes
based on a single column, IndexFieldCount returns 1. For multi-column indexes, IndexFieldCount
indicates the number of fields upon which the index is based.

TIBTable.IndexFieldNames
TIBTable See also
Lists the columns to use as an index for a table.
property IndexFieldNames: String;
Description
Use IndexFieldNames as an alternative method of specifying the index to use for a table. In
IndexFieldNames specify the name of each column to use as an index for a table. Ordering of column
names is significant. Separate names with semicolon.
Note: The IndexFieldNames and IndexName properties are mutually exclusive. Setting one clears the

other.

TIBTable.IndexFields
TIBTable See also Example
Retrieves or sets a field for an index.
property IndexFields [Index: Integer]: TField;
Description
IndexFields provides a zero-based array of field objects, each of which corresponds to a field in the
current index. Index is an ordinal value indicating the position of a field in the index. The first field in the
index is IndexFields[0], the second is IndexFields[1], and so on.
Note: Do not set IndexField directly. Instead use the IndexFieldNames property to order datasets on the

fly at runtime.

TIBTable.IndexName
TIBTable See also Example
Identifies an index for the table.
property IndexName: String;
Description
Use IndexName to specify an index for a table. If IndexName is empty, a table’s sort order is based on
its primary index.
If IndexName contains a valid index name, then that index is used to determine the order of records.
Note: IndexFieldNames and IndexName are mutually exclusive. Setting one clears the other.

TIBTable.MasterFields
TIBTable See also
Specifies one or more fields in a master table to link with corresponding fields in this table in order to
establish a master-detail relationship between the tables.
property MasterFields: String;
Description
Use MasterFields after setting the MasterSource property to specify the names of one or more fields to
use in establishing a detail-master relationship between this table and the one specified in
MasterSource.
MasterFields is a string containing one or more field names in the master table. Separate field names
with semicolons.
Each time the current record in the master table changes, the new values in those fields are used to
select corresponding records in this table for display.

TIBTable.MasterSource
TIBTable See also
Specifies the name of the data source for a dataset to use as a master table in establishing a detail-
master relationship between this table and another one.
property MasterSource: TDataSource;
Description
Use MasterSource to specify the name of the data source component whose DataSet property identifies
a dataset to use as a master table in establishing a detail-master relationship between this table and
another one.
After setting the MasterSource property, specify which fields to use in the master table by setting the
MasterFields property. At runtime each time the current record in the master table changes, the new
values in those fields are used to select corresponding records in this table for display.

TIBTable.ReadOnly
TIBTable See also
Specifies whether a table is read-only for this application.
property ReadOnly: Boolean;
Description
Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the table. By
default, ReadOnly is False, meaning users can potentially alter a table’s data.
Note: Even if ReadOnly is False, users may not be able to modify or add data to a table. Other factors,

such as insufficient SQL privileges for the application or its current user may prevent successful
alterations.

To guarantee that users cannot modify or add data to a table,
1 Set the Active property to False.
2 Set ReadOnly to True.

TIBTable.StoreDefs
TIBTable See also
Indicates whether the table's field and index definitions persist with the data module or form.
property StoreDefs: Boolean;
Description
If StoreDefs is True, the table's index and field definitions are stored with the data module or form.
Setting StoreDefs to True makes the CreateTable method into a one-step procedure that creates fields,
indexes, and validity checks at runtime.
StoreDefs is False by default. It becomes True whenever FieldDefs or IndexDefs is updated or edited
manually; to prevent edited (or imported) definitions from being stored, reset StoreDefs to False.

TIBTable.TableTypes
TIBTable See also
Sets the types of relations displayed in the TableName drop-down list.
type TIBTableType = (ttSystem, ttView);
 TIBTableTypes = set of TIBTableType
property TableTypes: TIBTableTypes;
Description
Use TableTypes to change which types of relations are displayed in the TableName drop-down list, in
addition to user tables. TableTypes are:

ttSystem System tables and views
ttView User views

TIBTable.TableName
TIBTable See also
Indicates the name of the database table or view that this component encapsulates.
property TableName: String;
Description
Use TableName to specify the name of the database relation this component encapsulates. To set
TableName to a meaningful value, the Database property should already be set. If Database is set at
design time, then select a valid table name from the TableName drop-down list in the Object Inspector.
Note: To set TableName, the Active property must be False.

TIBTable.TableNames
TIBTable See also
Returns a list of table names.
property TableNames: TStrings;
Description
The TableNames property is an internal property used to display a list of the table and view names in the
database.

TIBTable.UniDirectional
TIBTable See also
Determines whether or not bidirectional cursors are enabled for a table.
property UniDirectional: Boolean;
Description
Use UniDirectional to determine whether or not bidirectional cursors are enabled for a table.

TIBTable.UpdateObject
TIBTable See also
Specifies the update object component used to update a read-only result set when cached updates are
enabled.
property UpdateObject;
Description
Use UpdateObject to specify the TUpdateObject component to use in an application that must be able to
update a read-only result set.
In a query made against multiple tables, a live result set cannot be returned. In these cases,
UpdateObject can be used to specify a TIBUpdateSQL component that performs updates as a separate
transaction that is transparent to the application.

TIBTable events
TIBTable Alphabetically Legend

Derived from TIBCustomDataSet
OnUpdateError
OnUpdateRecord

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError

TIBTable events
TIBTable By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
AfterRefresh
AfterScroll
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
BeforeRefresh
BeforeScroll
OnCalcFields
OnDeleteError
OnEditError
OnNewRecord
OnPostError
OnUpdateError
OnUpdateRecord

TIBTable methods
TIBTable Alphabetically

In TIBTable
AddIndex
Create
CreateTable
DeleteIndex
DeleteTable
Destroy
EmptyTable
GetDetailLinkFields
GetIndexNames
GotoCurrent

Derived from TIBCustomDataSet
ApplyUpdates
CancelUpdates
CreateBlobStream
FetchAll
GetCurrentRecord
GetFieldData
Locate
Lookup
RevertRecord
Translate
UpdateStatus

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
BookmarkValid
Cancel
CheckBrowseMode
ClearFields
Close
CompareBookmarks
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst

FindLast
FindNext
FindPrior
First
GetBlobFieldData
FreeBookmark
GetBookmark
GetDetailDataSets
GetFieldList
GetFieldNames
GetProviderAttributes
GotoBookmark
Insert
InsertRecord
IsEmpty
IsLinkedTo
IsSequenced
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBTable methods
TIBTable By object

ActiveBuffer
AddIndex
AfterConstruction
Append
AppendRecord
ApplyUpdates
Assign
BeforeDestruction
BookmarkValid
Cancel
CancelUpdates
CheckBrowseMode
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CompareBookmarks
ControlsDisabled
Create
CreateBlobStream
CreateTable
CursorPosChanged
DefaultHandler
Delete
DeleteIndex
DeleteTable
Destroy
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EmptyTable
EnableControls
ExecuteAction
FreeNotification
FreeOnRelease
FetchAll

FieldByName
FieldAddress
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior
First
Free
FreeBookmark
FreeInstance
GetBlobFieldData
GetBookmark
GetCurrentRecord
GetDetailDataSets
GetDetailLinkFields
GetFieldData
GetFieldList
GetFieldNames
GetIndexNames
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
GetProviderAttributes
GotoBookmark
GotoCurrent
HasParent
InheritsFrom
InitInstance
Insert
InsertComponent
InsertRecord
InstanceSize
IsEmpty
IsLinkedTo
IsSequenced
Last
Locate
Lookup
MethodAddress
MethodName
MoveBy

Next
NewInstance
Open
Post
Prior
Refresh
RemoveComponent
Resync
RevertRecord
SafeCallException
SetFields
Translate
UpdateAction
UpdateCursorPos
UpdateRecord
UpdateStatus

TIBTable.AddIndex
TIBTable See also Example
Creates a new index for the table.
procedure AddIndex(const Name, Fields: string; Options: TIndexOptions const
DescFields: string = ' ');

Description
Call AddIndex to create a new index for the table associated with a dataset. The index created with this
procedure is added to the database table underlying the dataset. Name is the name of the new index.
Fields is a semicolon-delimited list of the fields to include in the index. Options is a potentially restricted
set attributes for the index. It can specify that an index

· Represents the primary index for a dataset. (ixPrimary)
· Contains no duplicate values (ixUnique).
· Sorts records in descending order (isDescending).
Warning: Attempting to create an index using options that are not applicable to the table raises an

exception.

TIBTable.Create
TIBTable See also
Creates an instance of a table component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a table declared in an application if it was not placed on a form at design time.
Create calls its inherited Create constructor, creates an empty index definitions list, creates an empty
data link, and creates an empty list of index files.

TIBTable.CreateTable
TIBTable See also Example
Builds a new table using new structure information.
procedure CreateTable;
Description
Call CreateTable at runtime to create a table using this dataset’s current definition. CreateTable
overwrites an existing table’s structure and data; to avoid overwriting an existing table, check Exists
before calling CreateTable.
If the FieldDefs property contains values, these values are used to create field definitions. Otherwise the
Fields property is used. One or both of these properties must contain values in order to recreate a
dataset.
If the IndexDefs property contain values, these values are used to create index definitions for the
dataset.

TIBTable.DeleteIndex
TIBTable See also
Deletes an index for the table.
procedure DeleteIndex(const Name: string);
Description
Call DeleteIndex to remove an index for a table. Name is the name of the index to delete. DeleteIndex
cannot remove an index used by a constraint.

TIBTable.DeleteTable
TIBTable See also
Deletes an existing database table.
procedure DeleteTable;
Description
Call DeleteTable to delete an existing database table associated with the table component through its
Database and TableName properties. A table must be closed before it can be deleted.
Warning: Deleting a table erases any data the table contains and destroys the table’s structure

information.

TIBTable.Destroy
TIBTable See also
Destroys the instance of a table.
destructor Destroy;
Description
Do not call Destroy directly. Instead call Free to verify that the table is not already freed before calling
Destroy. Destroy frees the index files list for the table, frees its data link, frees its index definitions, and
then calls its inherited Destroy destructor.

TIBTable.EmptyTable
TIBTable See also
Deletes all records from the table.
procedure EmptyTable;
Description
The EmptyTable method deletes all records from the database table specified by the Database and
TableName properties.
Note: Deletion of records can fail if the user lacks sufficient privileges to perform the delete operation.

TIBTable.GetDetailLinkFields
TIBTable See also
Lists the field components that link this dataset as a detail of a master dataset.
procedure GetDetailLinkFields(MasterFields, DetailFields: TList);
Description
GetDetailLinkFields fills two lists of TFields that define a master-detail relationship between this table
and another (master) dataset. The MasterFields list is filled with fields from the master table whose
values must equal the values of the fields in the DetailFields list. The DetailFields list is filled with fields
from the calling dataset.

TIBTable.GetIndexNames
TIBTable See also
Retrieves a list of available indexes for a table.
procedure GetIndexNames(List: TStrings);
Description
Call GetIndexNames to retrieve a list of all available indexes for a table. List is a string list object,
created and maintained by the application, into which to retrieve the index names.

TIBTable.GotoCurrent
TIBTable See also
Synchronizes the current record for this table with the current record of a specified table component.
procedure GotoCurrent(Table: TIBTable);
Description
Call GotoCurrent to synchronize the cursor position for this table based on the cursor position in another
dataset that uses a different data source component, but which is connected to the same underlying
database table. Table is the name of the table component whose cursor position to use for
synchronizing.
Note: This procedure works only for table components that have the same Database and TableName

properties. Otherwise an exception is raised.
GotoCurrent is mainly for use in applications that have two table components that are linked to the same
underlying database table through different data source components. It enables an application to ensure
that separate views of the data appear to be linked.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

TDataSet

TIBCustomDataSet

 TIBTransaction
Hierarchy Properties Methods Events See also
TIBTransaction provides discrete transaction control over a one or more database connections in a
database application.

Unit
IBDatabase

Description
All TIBCustomDataSet descendants and TIBSQL need to use a transaction along with a database
component to gain access to data in a database.
Note: In Midas applications, every query must be in its own transaction. You must use one
transaction component for each query component.

TIBTransaction properties
TIBTransactionAlphabetically Legend

In TIBTransaction
Active
DatabaseCount
Databases
DefaultAction
DefaultDatabase
Handle
HandleIsShared
IdleTimer
InTransaction
Params
SQLObjectCount
SQLObjects
TPB

TPBLength

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBTransaction properties
TIBTransactionBy object Legend

Active
ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle

DatabaseCount
Databases
DefaultAction
DefaultDatabase
DesignInfo
Handle
HandleIsShared
IdleTimer
InTransaction
Name
Owner
Params
SQLObjectCount
SQLObjects
Tag
DefaultAction
TPB
TPBLength
VCLComObject

TIBTransaction.Active
TIBTransactionSee also
Specifies whether or not a transaction is active.
property Active: Boolean;
Description
Use Active to determine or set a transaction’s active state.

TIBTransaction.DatabaseCount
TIBTransactionSee also
Indicates the number of databases that are part of the transaction.
property DatabaseCount: Integer;
Description
Use DatabaseCount to determine the number of databases involved in a transaction.

TIBTransaction.Databases
TIBTransactionSee also
Returns the database at the given integer index.
property Databases[Index: Integer]: TIBDatabase;
Description
Use Databases to return the database at the given integer index.

TIBTransaction.DefaultAction
TIBTransactionSee also
Specifies what action a transaction should take upon timing out.
type TTransactionAction = (taRollback, taCommit, taRollbackRetaining,
taCommitRetaining);

property DefaultAction: TTransactionAction;
Description
Use DefaultAction to what action the transaction should take when the IdleTimer limit is met. The
transaction action can be one of the following:
taRollback Rolls back the transaction
taCommit Commits the transaction
taRollbackRetaining Rolls back the transaction, but retains the current transaction context

Note: You must install InterBase 6 to use this feature.
taCommitRetaining Commits the transaction, but retains the current transaction context

TIBTransaction.DefaultDatabase
TIBTransactionSee also
Sets or returns the default database for the transaction.
property DefaultDatabase: TIBDatabase;
Description
Use DefaultDatabase to set or return the default database for the transaction.

TIBTransaction.Handle
TIBTransactionSee also
Returns the transaction handle.
property Handle: TISC_TR_HANDLE;
Description
Use Handle to retrieve a handle to the transaction. Handle is assigned an initial value when a
transaction is started.

TIBTransaction.HandleIsShared
TIBTransactionSee also
Indicates whether or not a the handle is shared.
property HandleIsShared: Boolean;
Description
HandleIsShared returns True when the transaction handle is shared by more than one transaction
component.

TIBTransaction.IdleTimer
TIBTransactionSee also
Specifies how long the transaction should wait before automatically committing or rolling back.
property IdleTimer: Integer;
Description
Use IdleTimer to indicate how long a transaction should be allowed to remain idle before automatically
committing or rolling back the data. Use DefaultAction to determine which action the transaction should
take.

TIBTransaction.InTransaction
TIBTransactionSee also
Indicates whether a database transaction is in progress or not.
property InTransaction: Boolean;
Description
Examine InTransaction at run-time to determine if a database transaction is currently in progress.
InTransaction is True if a transaction is in progress, False otherwise.
The value of InTransaction cannot be changed directly. Calling StartTransaction sets InTransaction to
True. Calling Commit or Rollback sets InTransaction to False.

TIBTransaction.Params
TIBTransactionSee also
Returns the transaction parameter buffer associated with the transaction component.
property Params: TStrings;
Description
Use Params to examine and set parameters in the transaction parameter buffer. Refer to the Interbase
API Guide for the names of the parameters to provide.

TIBTransaction.SQLObjectCount
TIBTransactionSee also
Returns the number of active datasets associated with the database component.
property SQLObjectCount: Integer;
Description
Use the SQLObjectCount property to return the number currently active InterBase datasets, TIBSQL
objects, and Blobs associated with the database component. As SQL objects are opened and closed,
this value changes appropriately.

TIBTransaction.SQLObjects
TIBTransactionSee also
Provides an indexed array of all active datasets for a database component.
property SQLObjects[Index: Integer]: TIBBase;
Description
Use the SQLObjects to access active InterBase datasets, TIBSQL objects, and Blobs associated with
the database component.

TIBTransaction.TPB
TIBTransactionSee also
Provides a read-only view of the transaction parameter buffer.
property TPB: PChar;
Description
Use TPB view the transaction parameter buffer. To write to the transaction parameter buffer, use the
Params property.

TIBTransaction.TPBLength
TIBTransactionSee also
Returns the length of the transaction parameter buffer.
property TPBLength: Short;
Description
Use TPBLength to retrieve the length of the transaction parameter buffer

TIBTransaction events
TIBTransactionAlphabetically Legend

In TIBTransaction
OnIdleTimer

TIBTransaction events
TIBTransactionBy object Legend

OnIdleTimer

TIBTransaction.OnIdleTimer
TIBTransactionSee also
Occurs after a transaction has timed out.
property OnIdleTimer: TNotifyEvent;
Description
Write an OnIdleTimer event handler to take specific actions after a transaction is allowed to remain idle
for the number of seconds specified by IdleTimer.

TIBTransaction methods
TIBTransactionAlphabetically

In TIBTransaction
AddDatabase
Call
CheckDatabasesInList
CheckInTransaction
CheckNotInTransaction
Commit
CommitRetaining
Create
Destroy
FindDatabase
RemoveDatabase
RemoveDatabases
Rollback
RollbackRetaining
StartTransaction

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler

Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIBTransaction methods
TIBTransactionBy object

AddDatabase
AfterConstruction
Assign
BeforeDestruction
Call
CheckDatabasesInList
CheckInTransaction
CheckNotInTransaction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Commit
CommitRetaining
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
FindDatabase
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName

NewInstance
RemoveComponent
RemoveDatabase
RemoveDatabases
Rollback
RollbackRetaining
SafeCallException
UpdateAction
StartTransaction

TIBTransaction.AddDatabase
TIBTransactionSee also
Associates a database to the transaction.
function AddDatabase(db: TIBDatabase): Integer;
Description
Call AddDatabase to associate a database to the transaction.

TIBTransaction.Call
TIBTransactionSee also
Returns an error message based on the error code.
procedure Call(ErrCode: ISC_STATUS; RaiseError: Boolean): ISC_STATUS;
Description
Call is an internal method used to make calls to the InterBase API, and gives you the option of raising an
exception or returning an error based on the value of RaiseError.

TIBTransaction.CheckDatabasesInList
TIBTransactionSee also
Checks for databases in the list.
procedure CheckDatabasesInList;
Description
Call CheckDatabasesInList to check if there are any databases in the list. If there are no databases in
the list, an exception is raised.

TIBTransaction.CheckInTransaction
TIBTransactionSee also
Checks whether the transaction is active and whether there are any databases in the transaction’s
database list.
procedure CheckInTransaction;
Description
Call CheckInTransaction to determine whether the transaction is active and whether there are any
databases in the transaction’s database list. If either condition is False, an exception is raised.

TIBTransaction.CheckNotInTransaction
TIBTransactionSee also
Checks that the transaction is not active and that there are no databases in the transaction’s database
list.
procedure CheckNotInTransaction;
Description
Call CheckInTransaction to determine that the transaction is not active and that there are no databases
in the transaction’s database list. If either condition is False, an exception is raised.

TIBTransaction.Commit
TIBTransactionSee also Example
Permanently stores updates, insertions, and deletions of data associated with the current transaction,
and ends the current transactions.
procedure Commit;
Description
Call Commit to permanently store to the database server all updates, insertions, and deletions of data
associated with the current transaction and then end the transaction. The current transaction is the last
transaction started by calling StartTransaction.
Note: Before calling Commit, an application may check the status of the InTransaction property. If an

application calls Commit and there is no current transaction, an exception is raised.

TIBTransaction.CommitRetaining
TIBTransactionSee also
Commits the active transaction and retains the transaction context after a commit.
procedure CommitRetaining;
Description
Call CommitRetaining to permanently store to the database server all updates, insertions, and deletions
of data associated with the current transaction and then retain the transaction context. The current
transaction is the last transaction started by calling StartTransaction.
Note: Before calling CommitRetaining, an application may check the status of the InTransaction

property. If an application calls CommitRetaining and there is no current transaction, an exception
is raised.

TIBTransaction.Create
TIBTransactionSee also
Creates an instance of a transaction component.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate a transaction component at runtime. An application creates a transaction
component in order to control the component’s existence and set its properties and events.
Create instantiates a transaction component and creates an empty string list for the Params property.

TIBTransaction.Destroy
TIBTransactionSee also
Destroys the instance of the transaction component.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free, which verifies that the transaction
component is not already freed before calling Destroy.
Destroy disconnects from the database server, if necessary. It then frees the string resources allocated
for the Params and SQLObjects properties before calling its inherited destructor.

TIBTransaction.FindDatabase
TIBTransactionSee also
Finds the index of the associated database.
function FindDatabase (db: TIBDatabase): Integer;
Description
Call FindDatabase to find the index of the associated database.

TIBTransaction.RemoveDatabase
TIBTransactionSee also
Disassociates a database from the transaction.
procedure RemoveDatabase(Idx: Integer);
Description
Call RemoveDatabase to disassociate a specified database from the transaction.

TIBTransaction.RemoveDatabases
TIBTransactionSee also
Disassociates all databases from the transaction.
procedure RemoveDatabases;
Description
Call RemoveDatabases to disassociate all databases from the transaction.

TIBTransaction.Rollback
TIBTransactionSee also Example
Cancels all updates, insertions, and deletions for the current transaction and ends the transaction.
procedure Rollback;
Description
Call Rollback to cancel all updates, insertions, and deletions for the current transaction and to end the
transaction. The current transaction is the last transaction started by calling StartTransaction.
Note: Before calling Rollback, an application may check the status of the InTransaction property. If an

application calls Rollback and there is no current transaction, an exception is raised.

TIBTransaction.RollbackRetaining
TIBTransactionSee also
Cancels all updates, insertions, and deletions for the current transaction and retains the transaction
context.
procedure RollbackRetaining;
Description
Call RollbackRetaining to roll back to the database server all updates, insertions, and deletions of data
associated with the current transaction and then retain the transaction context. The current transaction
is the last transaction started by calling StartTransaction.
Note: Before calling RollbackRetaining, an application may check the status of the InTransaction
property. If an application calls RollbackRetaining and there is no current transaction, an exception is
raised.
Note: You must install InterBase 6 to use this feature.

TIBTransaction.StartTransaction
TIBTransactionSee also Example
Begins a new transaction against the database server.
procedure StartTransaction;
Description
Call StartTransaction to begin a new transaction against the database server. Before calling
StartTransaction, an application should check the status of the InTransaction property. If InTransaction is
True, indicating that a transaction is already in progress, a subsequent call to StartTransaction without
first calling Commit or Rollback to end the current transaction raises an exception.
Updates, insertions, and deletions that take place after a call to StartTransaction are held by the server
until an application calls Commit to save the changes or Rollback is to cancel them.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy
TObject

TPersistent

TComponent

IBAlloc procedure
See also
Allocates or de-allocates memory for a given size, and initializes the new memory to zero.

Unit
IB
procedure IBAlloc(var P; OldSize, NewSize: Integer);
Use IBAlloc to allocate or de-allocate memory for a given size, and initialize the new memory to zero.

CheckStatusVector function
See also
Sets or unsets status vector checking.

Unit
IB
function CheckStatusVector(ErrorCodes: array of ISC_STATUS): Boolean;
Set CheckStatusVector to True to enable status vector checking.

FreeIBTLGlobals procedure
See also
Frees the allocated thread-local storage.

Unit
IB
procedure FreeIBTLGlobals;
Description
Use the FreeIBTLGlobals procedure to free the allocated thread-local storage.

InitializeIBTLGlobals procedure
See also
Initializes the thread-local storage.

Unit
IB
procedure InitializeIBTLGlobals;
Description
Use the InitializeIBTLGlobals procedure to initialize thead-local storage.
Thread-local storage is used to store global variables pertaining to a thread. The global variables are
defined in TIBTLGlobals. Currently, it contains the status vector.

IBError procedure
See also
Returns the error message for the specified error code.

Unit
IB
procedure IBError(ErrMess: TIBClientError; const Args: array of const);
Description
Use the IBError procedure to look up the appropriate error message for a specified error code and raise
an EIBClientError exception.

IBDataBaseError procedure
See also
Interprets the SQLCode and IBErrorCode status and passes it to the EIBInterBaseError exception.

Unit
IB
procedure IBDataBaseError;
Description
Use the IBDatabaseError procedure to look at the status vector, interpret the SQLCode and
IBErrorCode status, construct the status string, and pass it to the EIBInterBaseError exception.

SetIBDataBaseErrorMessages procedure
See also
Enables you to choose the error messages you want to see.

Unit
IB
procedure SetIBDataBaseErrorMessages(Value: TIBDataBaseErrorMessages);
Description
Use the SetIBDataBaseErrorMessages procedure to choose the error messages that you want to use.
The available options are defined inTIBDataBaseErrorMessages.

GetIBDataBaseErrorMessages function
See also
Returns the current error message setting.

Unit
IB
function GetIBDataBaseErrorMessages: TIBDataBaseErrorMessages;
Description
Use the GetIBDataBaseErrorMessages function to return the current error message setting.

StatusVector function
See also
Retrieves the thread-specific status vector from thread-local storage.

Unit
IB
function StatusVector: PISC_STATUS;
Description
Use the StatusVector function to retrieve the thread-specific status from the thread-local storage.

StatusVectorArray function
See also
Returns a pointer to the status vector array.

Unit
IB
function StatusVectorArray: PStatusVector;
Description
Use the StatusVectorArray function to return a pointer to the status vector array from the thread-local
storage.

StatusVectorAsText function
See also
Gets the status vector and returns it as a formatted string.

Unit
IB
function StatusVectorAsText: string;
Description
Use the StatusVector function to retrieve the status vector and return it as a formatted string.

LoadIBInstallLibrary procedure
See also
Loads IBInstall.DLL into memory.

Unit
IBIntf
procedure LoadIBInstallLibrary;
Description
Use the LoadIBInstallLibrary procedure to load the IBInstall.DLL into memory and resolve the respective
entry points into to the respective procedure pointer in the unit.

LoadIBLibrary procedure
See also
Loads GDS32.DLL into memory.

Unit
IBIntf
procedure LoadIBLibrary;
Description
Use the LoadIBLibrary procedure to load the GDS32.DLL into memory and resolve the respective entry
points into to the respective procedure pointer in the unit. In addition, it loads the InterBase 6.0 entry
points, if they are available.

FreeIBInstallLibrary procedure
See also
Frees the IBInstall.DLL from memory.

Unit
IBIntf
procedure FreeIBInstallLibrary;
Description
Use the FreeIBInstallLibrary procedure to free the previously loaded the IBInstall.DLL from memory.

FreeIBLibrary procedure
See also
Frees the GDS32.DLL from memory.

Unit
IBIntf
procedure FreeIBLibrary;
Description
Use the FreeIBInstallLibrary procedure to free the previously loaded the GDS32.DLL from memory.

CheckIBInstallLoaded procedure
See also
Attempts to load IBInstall.DLL into memory if it is not already loaded.

Unit
IBIntf
procedure CheckIBInstallLoaded;
Description
Use the CheckIBInstallLibrary procedure to load IBInstall.DLL into memory if it is not already loaded. If
unsuccessful, this procedure raises an exception.

CheckIBLoaded procedure
See also
Attempts to load GDS32.DLL into memory if it is not already loaded.

Unit
IBIntf
procedure CheckIBLoaded;
Description
Use the CheckIBInstallLibrary procedure to load GDS32.DLL into memory if it is not already loaded. If
unsuccessful, this procedure raises an exception.

GetIBClientVersion function
See also
Returns the major version number of the InterBase client.

Unit
IBIntf
function GetIBClientVersion: Integer;
Description
Use the GetIBClientVersion function to retrieve the major version number of the InterBase client.

DisableMonitoring procedure
See also
Disables SQL monitoring.

Unit
IBSQLMonitor
procedure DisableMonitoring;
Description
Use the DisableMonitoring procedure to disable SQL monitoring.

EnableMonitoring procedure
See also
Enables SQL monitoring.

Unit
IBSQLMonitor
procedure EnableMonitoring;
Description
Use the EnableMonitoring procedure to enable SQL monitoring.

MonitoringEnabled function
See also
Indicates whether or not monitoring in enabled.

Unit
IBSQLMonitor
function MonitoringEnabled: Boolean;
Description
Use the MonitoringEnabled function to indicate whether or not monitoring in enabled.

MonitorHook function
See also
Returns the reference to the global monitor hook.

Unit
IBSQLMonitor
function MonitorHook: TIBSQLMonitorHook;
Description
Use the MonitorHook function to return the reference to the global monitor hook. If the monitor hook
does not exist, it is created.

GenerateDPB procedure
See also
Populates a database parameter block with the values supplied by a TStrings object.

Unit
IBDatabase
procedure GenerateDPB(sl: TStrings; var DPB: string; var DPBLength: Short);
Description
Use the GenerateDPB procedure to populate a database parameter block (DPB) with the values
supplied by a TStrings object. For more information on the DPB format, refer to the InterBase API
Guide.

GenerateTPB procedure
See also
Populates a transaction parameter block with the values supplied by a TStrings object.

Unit
IBDatabase
procedure p GenerateTPB(sl: TStrings; var TPB: string; var TPBLength:
Short);

Description
Use the GenerateTPB procedure to populate a transaction parameter block (TPB) with the values
supplied by a TStrings object. For more information on the TPB format, refer to the InterBase API
Guide.

 TIBUpdateSQL
Hierarchy Properties Methods See also
TIBUpdateSQL provides an object for updating read-only datasets when cached updates are enabled.

Unit
IBUpdateSQL

Description
Use a TIBUpdateSQL object to provide SQL statements used to update read-only datasets represented
by TIBQuery components when cached updates are enabled. A dataset is read-only either by design or
circumstance. If a dataset is read-only by design, the application itself does not provide a user interface
for updating data, but may institute a programmatic scheme behind the scenes.
TIBUpdateSQL provides a mechanism for circumventing what some developers consider an SQL-92
limitation. It enables a developer to provide INSERT, UPDATE, DELETE, and REFRESH statements for
performing separate update queries on otherwise read-only result sets in such a manner that the
separate update queries are transparent to the end user.
In practical application, a TIBUpdateSQL object is placed on a data module or form, and linked to a
TIBQuery component through that component’s UpdateObject property. If the UpdateObject property
points to a valid TIBUpdateSQL object, the SQL statements belonging to the update object are
automatically applied when cached updates are applied.

TIBUpdateSQL properties
TIBUpdateSQLAlphabetically Legend

In TIBUpdateSQL
DataSet

DeleteSQL
InsertSQL
ModifySQL
Query
RefreshSQL
SQL

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBUpdateSQL properties
TIBUpdateSQLBy object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DataSet
DeleteSQL
DesignInfo
InsertSQL
ModifySQL
Name
Owner
Query
RefreshSQL
SQL
Tag
VCLComObject

TIBUpdateSQL.DataSet
TIBUpdateSQLSee also
Identifies the dataset to which a TIBUpdateSQL component belongs.
property DataSet;
Description
At design time, setting the dataset object’s UpdateObject property automatically sets the DataSet
property of the specified TIBUpdateSQL object. An application should only need to set this property if it
creates a new update component at run time.

TIBUpdateSQL.DeleteSQL
TIBUpdateSQLSee also
Specifies the SQL DELETE statement to use when applying a cached deletion of a record.
property DeleteSQL: TStrings;
Description
Set DeleteSQL to the SQL DELETE statement to use when applying a deletion to a record. Statements
can be parameterized queries. To create a DELETE statement at design time, use the UpdateSQL editor
to create statements, such as”
delete from Employee
where
 Emp_No = :OLD_Emp_No
At run time, an application can write a statement directly to this property to set or change the DELETE
statement.
Note: As the example illustrates, DeleteSQL supports an extension to normal parameter binding. To

retrieve the value of a field as it exists prior to application of cached updates, use the field name
with the prefix ‘OLD_’. This is especially useful when doing field comparisons in the WHERE
clause of the statement.

TIBUpdateSQL.InsertSQL
TIBUpdateSQLSee also
Specifies the SQL INSERT statement to use when applying a cached insertion of a record.
property InsertSQL: TStrings;
Description
Set InsertSQL to the SQL INSERT statement to use when applying an insertion to a dataset. Statements
can be parameterized queries. To create a INSERT statement at design time, use the UpdateSQL editor
to create statements, such as”
insert into Country
(Country, Currency)
values (:Country, :Currency)
At run time, an application can write a statement directly to this property to set or change the INSERT
statement.

TIBUpdateSQL.ModifySQL
TIBUpdateSQLSee also
Specifies the SQL UPDATE statement to use when applying an update to a record and cached updates
is enabled.
property ModifySQL: TStrings;
Description
Set ModifySQL to the SQL UPDATE statement to use when applying an updated record to a dataset.
Statements can be parameterized queries. To create a UPDATE statement at design time, use the
UpdateSQL editor to create statements, such as:
update Employee
set Last_Name = :Last_Name
where Emp_No = :OLD_Emp_No
At run time, an application can write a statement directly to this property to set or change the UPDATE
statement.
Note: As the example illustrates, ModifySQL supports an extension to normal parameter binding. To

retrieve the value of a field as it exists prior to application of cached updates, the field name with
‘OLD_’. This is especially useful when doing field comparisons in the WHERE clause of the
statement.

TIBUpdateSQL.Query
TIBUpdateSQLSee also
Returns the query object used to perform a specified kind of update.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
property Query[UpdateKind: TUpdateKind!ALink(TUpdateKind_Type,1)]: TIBQuery!
ALink(TIBQuery_Object,1);

Description
Query returns the TIBQuery object used to perform a particular form of SQL update. UpdateKind
specifies which query object to retrieve. UpdateKind can be one of the following:

Value Meaning
ukModify Return the query object used to execute UPDATE statements
ukInsert Return the query object used to execute INSERT statements
ukDelete Return the query object used to execute DELETE statements
Each query object executes a particular kind of SQL statement. The contents of the SQL statements
executed by these objects can be accessed directly using the ModifySQL, InsertSQL, and DeleteSQL
properties.
The main purpose of Query is to provide a way for an application to set the properties for an update
query object or to call the query object’s methods.
Note: If a particular kind of update statement is not provided, then its corresponding query object is nil.

For example, if an application does not provide an SQL statement for the DeleteSQL property,
then Query[ukDelete] returns nil.

TIBUpdateSQL.RefreshSQL
TIBUpdateSQLSee also
Specifies the SQL SELECT statement to use when refreshing a dataset.
property RefreshSQL: TStrings;
Description
Set RefreshSQL to the SQL SELECT statement to use when refreshing a dataset. Statements can be
parameterized queries. To create a SELECT statement at design time, use the UpdateSQL editor to
create statements, such as”
SELECT Country, Currency FROM Country WHERE
Country = :Country
At run time, an application can write a statement directly to this property to set or change the SELECT
statement.

TIBUpdateSQL.SQL
TIBUpdateSQLSee also
Returns a specified SQL statement used when applying cached updates.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
property SQL[UpdateKind: TUpdateKind!ALink(TUpdateKind_Type,1)]: TStrings!
ALink(TStrings_Object,1);

Description
Returns the SQL statement in the ModifySQL, InsertSQL, or DeleteSQL property, depending on the
setting of UpdateKind. UpdateKind can be any of the following:

Value Meaning
ukModify Return the SQL statement used to update records in the dataset
ukInsert Return the SQL statement used to insert new records into the dataset
ukDelete Return the SQL statement used to delete records in the dataset

TIBUpdateSQL methods
TIBUpdateSQLAlphabetically

In TIBUpdateSQL
Apply
Create
Destroy
ExecSQL
SetParams

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from TPersistent
Assign
GetNamePath

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TIBUpdateSQL methods
TIBUpdateSQLBy object

AfterConstruction
Apply
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecSQL
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SafeCallException
SetParams
UpdateAction

TIBUpdateSQL.Apply
TIBUpdateSQLSee also
Sets the parameters for a specified SQL statement type, and executes the resulting statement.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
procedure Apply(UpdateKind: TUpdateKind);
Description
Call Apply to set parameters for an SQL statement and execute it to update a record. UpdateKind
indicates which SQL statement to bind and execute, and can be one of the following values:

Value Meaning
ukModify Bind and execute the SQL statement in the ModifySQL property
ukInsert Bind and execute the SQL statement in the InsertSQL property
ukDelete Bind and execute the SQL statement in the DeleteSQL property
Apply is primarily intended for manually executing update statements from an OnUpdateRecord event
handler.
Note: If an SQL statement does not contain parameters, it is more efficient to call ExecSQL instead of

Apply.

TIBUpdateSQL.Create
TIBUpdateSQLSee also
Creates an instance of an update object.
constructor Create(AOwner: TComponent);
Description
Call Create to instantiate an update object at run time. You do not need to call Create for update objects
placed in a data module or form at design time. Delphi automatically handles these objects.

TIBUpdateSQL.Destroy
TIBUpdateSQLSee also
Frees an instance of an update object.
constructor Destroy;
Description
Do not call Destroy directly in an application. Usually destruction of update objects is handled
automatically by Delphi. If an application creates its own instance of an update object, however, the
application should call Free, which verifies that the update object is not already freed before calling
Destroy.

TIBUpdateSQL.ExecSQL
TIBUpdateSQLSee also
Executes a specified type of SQL statement to perform an update for an otherwise read-only results set
when cached updates is enabled.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
procedure ExecSQL(UpdateKind: TUpdateKind);
Description
Call ExecSQL to execute the SQL statement necessary for updating the records belonging to a read-
only result set when cached updates is enabled. UpdateKind specifies the statement to execute, and
can be one of the following values:

Value Meaning
ukModify Execute the SQL statement used to update records in the dataset
ukInsert Execute the SQL statement used to insert new records into the dataset
ukDelete Execute the SQL statement used to delete records in the dataset.
If the statement to execute contains any parameters, an application must call SetParams to bind the
parameters before calling ExecSQL. To determine if a statement contains parameters, examine the
appropriate ModifySQL, InsertSQL, or DeleteSQL property, depending on the statement type intended
for execution.
Note: To both bind parameters and execute a statement, call Apply.

TIBUpdateSQL.SetParams
TIBUpdateSQLSee also
Binds parameters in an SQL statement prior to statement execution.
type TUpdateKind = (ukModify, ukInsert, ukDelete)
procedure SetParams(UpdateKind: TUpdateKind);
Description
Call SetParams to bind parameters in an SQL statement associated with the update object prior to
executing the statement. UpdateKind indicates the type of statement for which to bind parameters, and
can be one of the following values:

Value Meaning
ukModify Bind parameters for the SQL statement used to update records
ukInsert Bind parameters for the SQL statement used to insert new records
ukDelete Bind parameters for the SQL statement used to delete records
Parameters are indicated in an SQL statement by a colon. Except for the leading colon in the parameter
name, the parameter name must exactly match the name of an existing field name for the dataset.
Note: Parameter names can be prefaced by the ‘OLD_’ indicator. If so, the old value of the field is used

to perform the update instead of any updates in the cache.

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

TPersistent

TComponent

TDataSetUpdateObject

 TIBXSQLDA
Hierarchy Properties MethodsSee also
TIBXSQLDA provides properties and methods for use with the IBSQL component.

Unit
IBSQL

Description
Use a TIBXSQLDA object to provide properties and methods for use with the IBSQL component.
All Dynamic SQL (DSQL) applications must declare one or more extended descriptor areas (XSQLDAs).
The XSQLDA is a host language data structure that DSQL uses to transport data to or from a database
when processing an SQL statement string. There are two types of XSQLDAs: input descriptors and
output descriptors. Both input and output descriptors are implemented using the XSQLDA structure.

TIBXSQLDA properties
TIBXSQLDA Alphabetically Legend

In TIBXSQLDA
AsXSQLDA

Count
Modified
Names
RecordSize
UniqueRelationName
Vars

TIBXSQLDA properties
TIBXSQLDA By object Legend

AsXSQLDA
Count
Modified
Names
RecordSize
UniqueRelationName
Vars

TIBXSQLDA.AsXSQLDA
TIBXSQLDA See also
Represents the XSQLDA field’s value as an XSQLDA value.
property AsXSQLDA: PXSQLDA;
Description
Use the AsXSQLDA property to read the value of the field’s data into an object or variable of type
XSQLDA, or to assign an XSQLDA value to the contents of the field.

TIBXSQLDA.Count
TIBXSQLDA See also
Returns the number of XSQLDA fields.
property Count: Integer;
Description
Use the Count property to return the number of XSQLDA fields.

TIBXSQLDA.Modified
TIBXSQLDA See also
Indicates whether a field has been modified.
property Modified: Boolean;
Description
Use the Modified property to determine whether a field has been modified.

TIBXSQLDA.Names
TIBXSQLDA See also
Returns the XSQLDA field names.
property Names: String;
Description
Use the Names property to return the XSQLDA field names.

TIBXSQLDA.RecordSize
TIBXSQLDA See also
Returns the size of the XSQLDA record.
property RecordSize: Integer;
Description
Use the RecordSize property to return the XSQLDA record size.

TIBXSQLDA.UniqueRelationName
TIBXSQLDA See also
Returns the name of the unique relation.
property UniqueRelationName: String;
Description
Use the UniqueRelationName property to return the name of the relation if only one relation is involved
in the query. Otherwise, it returns nil. This property is primarily used for internal purposes.

TIBXSQLDA.Vars
TIBXSQLDA See also
Returns the XSQLVAR defined for the XSQLDA parameter.
property Vars: [Idx: Integer]: TIBXSQLVAR;
Description
Use XSQLVAR to return the XSQLVAR defined for the XSQLDA parameter.

TIBXSQLDA methods
TIBXSQLDA Alphabetically

In TIBXSQLDA
AddName
ByName
Create
Destroy

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBXSQLDA methods
TIBXSQLDA By object

AddName
AfterConstruction
BeforeDestruction
ByName
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBXSQLDA.AddName
TIBXSQLDA See also
Adds a name to the XSQLDA structure.
procedure AddName(FieldName: String; Idx: Integer);
Description
Call AddName to add a name to the XSQLDA structure.

TIBXSQLDA.ByName
TIBXSQLDA See also
Returns the XSQLVAR fields by name.
function ByName: [Idx: String]: TIBXSQLVAR;
Description
Use the ByName function to return the XSQLVAR fields by name.

TIBXSQLDA.Create
TIBXSQLDA See also
Creates an instance of an XSQLDA structure.
constructor Create(Query: TIBSQL);
Description
Call Create to create an instance of an XSQLDA structure. Create queries the DynamicSQL
component for the structure members.

TIBXSQLDA.Destroy
TIBXSQLDA See also
Destroys the XSQLDA structure.
destructor Destroy;
Description
Do not call Destroy directly. Call Free instead. Free checks to ensure that the object instance is not nil
before calling Destroy.

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

 TIBXSQLVAR
Hierarchy Properties MethodsSee also
TIBXSQLVAR provides properties and methods for use with the IBSQL component.

Unit
IBSQL

Description
Use a TIBXSQLVAR object to provide properties and methods for use with the IBSQL component.
The XSQLVAR structure is a field, sqlvar, in the XSQLDA. The sqlvar is especially important, because
one XSQLVAR must be defined for each input parameter or column returned.
Applications do not declare instances of the XSQLVAR ahead of time, but must, instead, dynamically
allocate storage for the proper number of XSQLVAR structures required for each DSQL statement
before it is executed, then deallocate it, as appropriate, after statement execution.

TIBXSQLVAR properties
TIBXSQLVAR Alphabetically Legend

In TIBXSQLVAR
AsCurrency
AsDate
AsDateTime
AsDouble
AsFloat
AsInt64
AsInteger
AsLong
AsPointer
AsQuad
AsShort
AsString
AsVariant
AsXSQLVAR
Data
Index

IsNull
IsNullable
Modified

Name
Size

SQLType
AsTime
Value

TIBXSQLVAR properties
TIBXSQLVAR By object Legend

AsCurrency
AsDate
AsDateTime
AsDouble
AsFloat
AsInt64
AsInteger
AsLong
AsPointer
AsQuad
AsShort
AsString
AsVariant
AsXSQLVAR
Data
Index

IsNull
IsNullable
Modified

Name
Size

SQLType
AsTime
Value

TIBXSQLVAR.AsCurrency
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Currency value.
property AsCurrency: Currency;
Use the AsCurrency property to read the value of the XSQLVAR field’s data into an object or variable of
type Currency, or to assign a Currency value to the contents of the field.

TIBXSQLVAR.AsDate
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a TDateTime value.
property AsDate: TDateTime;
Description
Use the AsDate property to read the value of the field’s data into an object or variable of type
TDateTime, or to assign a TDateTime value to the contents of the field. The Time portion of the
TDateTime value is set to zero.

TIBXSQLVAR.AsDateTime
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a TDateTime value.
property AsDateTime: TDateTime;
Description
Use the AsDateTime property to read the value of the field’s data into an object or variable of type
TDateTime, or to assign a TDateTime value to the contents of the field.

TIBXSQLVAR.AsDouble
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Double value.
property AsDouble: Double;
Description
Use the AsDouble property to read the value of the field’s data into an object or variable of type Double,
or to assign a Double value to the contents of the field.

TIBXSQLVAR.AsFloat
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Float value.
property AsFloat: Float;
Description
Use the AsDouble property to read the value of the field’s data into an object or variable of type Float, or
to assign a Float value to the contents of the field.

TIBXSQLVAR.AsInt64
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a 64-bit integer.
property AsInt64: Int64;
Description
Use the AsInt64 property to read the value of the field’s data into a 64-bit integer, or to assign an 64-bit
integer value to the contents of the field.

TIBXSQLVAR.AsInteger
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a 32-bit integer value.
property AsInteger: AsInteger;
Description
Use the AsInteger property to read the value of the field’s data into an integer, or to assign an integer
value to the contents of the field.

TIBXSQLVAR.AsLong
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Long integer value.
property AsLong: Long;
Description
Use the AsLong property to read the value of the field’s data into a Long integer, or to assign a Long
integer value to the contents of the field.

TIBXSQLVAR.AsPointer
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Pointer value.
property AsPointer: Pointer;
Description
Use the AsPointer property to read the value of the field’s data into an object or variable of type Pointer,
or to assign a Pointer value to the contents of the field.

TIBXSQLVAR.AsQuad
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Quad value.
property AsQuad: TISC_QUAD;
Description
Use the AsQuad property to read the value of the field’s data into an object or variable of type Quad, or
to assign a Quad value to the contents of the field.

TIBXSQLVAR.AsShort
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a Short integer value.
property AsShort: Short;
Description
Use the AsShort property to to read the value of the field’s data into a Short integer, or to assign a Short
integer value to the contents of the field.

TIBXSQLVAR.AsString
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a string.
property AsString: String;
Description
Use the AsString property to read the value of the fields data into a String, or to assign a String value to
the contents of the field.

TIBXSQLVAR.AsTime
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as a TDateTime value.
property AsTime: TDateTime;
Description
Use the AsTime property to read the value of the field’s data into an object or variable of type
TDateTime, or to assign a TDateTime value to the contents of the field. The Date portion of the field is
set to zero.

TIBXSQLVAR.AsVariant
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as type Variant.
property AsVariant: Variant;
Description
Use the AsVariant property to read the value of the field’s data into a Variant, or to assign a Variant value
to the contents of the field.

TIBXSQLVAR.AsXSQLVAR
TIBXSQLVAR See also
Represents the XSQLVAR field’s value as an XSQLVAR value.
property AsXSQLVAR: PXSQLVAR;
Description
Use the AsXSQLVAR property to read the value of the field’s data into an object or variable of type
XSQLVAR, or to assign an XSQLVAR value to the contents of the field.

TIBXSQLVAR.Data
TIBXSQLVAR See also
Accesses the underlying InterBase XSQLVAR structure.
property Data: PXSQLVAR;
Description
Use the Data property to access the underlying InterBase XSQLVAR structure.

TIBXSQLVAR.Index
TIBXSQLVAR See also
Indicates the position of the XSQLVAR in the XSQLDA.
property Index: Integer;
Description
Use the Index property to obtain the position of the XSQLVAR in the XSQLDA.

TIBXSQLVAR.IsNull
TIBXSQLVAR See also
Indicates whether the field has a value assigned to it.
property IsNull: Boolean;
Description
Use the IsNull property to determine if the field contains a value. If IsNull is True, the field is blank. If
IsNull is False, the field has a value.

TIBXSQLVAR.IsNullable
TIBXSQLVAR See also
Indicates whether the field can have a value assigned to it.
property IsNullable: Boolean;
Description
Use the IsNullable property to determine if the field can contain a value. If IsNullable is True, the field
can contain a value. If IsNullable is False, the field cannot contain a value.

TIBXSQLVAR.Modified
TIBXSQLVAR See also
Indicates whether a field has been modified.
property Modified: Boolean;
Description
Use the Modified property to determine whether a field has been modified.

TIBXSQLVAR.Name
TIBXSQLVAR See also
Returns the name of the XSQLVAR.
property Name: String;
Description
Use the Name property to return the name of the XSQLVAR.

TIBXSQLVAR.Size
TIBXSQLVAR See also
Indicates the maximum size, in bytes, of data in the sqldata field of the XSQLVAR.
property Size: Integer;
Description
Use the Size property to return the maximum size, in bytes, of data in the sqldata field of the XSQLVAR.

TIBXSQLVAR.SQLType
TIBXSQLVAR See also
Indicates the SQL datatype of parameters or select-list items.
property SQLType: Integer;
Description
Read the SQLType property to indicate the SQL datatype of parameters or select-list items.

TIBXSQLVAR.Value
TIBXSQLVAR See also
Returns the value of the XSQLVAR field component.
property Value: Variant;
Description
Use Value to return the value of the XSQLVAR field component as a Variant.

TIBXSQLVAR methods
TIBXSQLVAR Alphabetically

In TIBXSQLVAR
Assign
Create
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream

Derived from TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SafeCallException

TIBXSQLVAR methods
TIBXSQLVAR By object

AfterConstruction
Assign
BeforeDestruction
ClassInfo
ClassName
ClassNamels
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance
InstanceSize
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
SafeCallException
SaveToFile
SaveToStream

TIBXSQLVAR.Assign
TIBXSQLVAR See also
Assigns another XSQLVAR to the XSQLVAR component.
procedure Assign(Source: TIBXSQLVAR);
Description
Use Assign to assign another XSQLVAR to the XSQLVAR component. The fields must have compatible
data types.

TIBXSQLVAR.Create
TIBXSQLVAR See also
Creates an instance of an XSQLVAR structure.
constructor Create(Query: TIBSQL);
Description
Call Create to create an instance of an XSQLVAR structure based on a query to the TIBSQL component.

TIBXSQLVAR.LoadFromFile
TIBXSQLVAR See also
Loads the contents of a file to a Blob field.
procedure LoadFromFile(const FileName: String);
Description
Call LoadFromFile to load the contents of a file to a Blob field.

TIBXSQLVAR.LoadFromStream
TIBXSQLVAR See also
Loads a stream into a Blob field.
procedure LoadFromStream(Stream: TStream);
Description
Call LoadFromStream to load a stream into a Blob field.

TIBXSQLVAR.SaveToFile
TIBXSQLVAR See also
Saves the contents of a Blob field to a file.
procedure SaveToFile(const FileName: String);
Description
Call SaveToFile to save the contents of a Blob field to a file.

TIBXSQLVAR.SaveToStream
TIBXSQLVAR See also
Saves the contents of a Blob field to a stream.
procedure SaveToStream(Stream: TStream);
Description
Call SaveToStream to save the contents of a Blob field to a stream.

Scope
Published

Accessibility
Read-only

Hierarchy
TObject

 TIBEvents
Hierarchy Properties Methods Events See also
TIBEvents provides a method for applications to respond to posted events.

Unit
IBEvents

Description
Use a TIBEvents component to allow your application to register interest in, and asynchronously handle,
events posted by an InterBase server. The InterBase event allows applications to respond to actions
and database changes made by other, concurrently running applications, without having to resort to
polling the database on a regular basis, or communicating directly with the other applications.
In essence, the TIBEvents component allows an application to say 'I want to be informed when events
X, Y and Z occur.” When any of the requested events does occur, the InterBase server notifies the
application and OnEventAlert is called.

TIBEvents properties
TIBEvents Alphabetically Legend

In TIBEvents
Database
Events
Queued
Registered

Derived from TComponent
ComObject

ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
DesignInfo
Name
Owner
Tag
VCLComObject

TIBEvents properties
TIBEvents By object Legend

ComObject
ComponentCount
ComponentIndex
Components
ComponentState
ComponentStyle
Database

DesignInfo
Events
Name
Owner
Queued
Registered
Tag
VCLComObject

TIBEvents.Database
TIBEvents See also
Specifies the database on which to perform event alerter tasks.
property Database: TIBDatabase;
Description
Use Database to specify the database on which to perform event alerter tasks.

TIBEvents.Events
TIBEvents See also
Specifies the events to which TIBEvents responds.
property Events: TStrings;
Description
Use the Events property to list events for which the IBEvents component will respond. A single
IBEvents component can handle up to 15 events.
To add an event use the following code:
IBEvents.Events.Add('EVENT_NAME')
Note: Event names are case-sensitive.

TIBEvents.Queued
TIBEvents See also
Indicates that events are queued.
property Queued: Boolean;
Description
Use Queued to determine if events are queued.

TIBEvents.Registered
TIBEvents See also
Indicates whether or not the event is registered.
property Registered: Boolean;
Description
Use Registered to indicate whether events are registered. Set Registered to True to call
RegisterEvents, which registers the events listed by the Events property.

TIBEvents events
TIBEvents Alphabetically Legend

In TIBEvents
OnEventAlert

TIBEvents events
TIBEvents By object Legend

OnEventAlert

TIBEvents.OnEventAlert
TIBEvents See also
Occurs when an InterBase event is received.
property OnEventAlert: TEventAlert;
TEventAlert = procedure(Sender: TObject; EventName: String; EventCount:
longint; var CancelAlerts: Boolean)

Description
Write an OnEventAlert event handler to take specific actions when an InterBase event is received.
EventName contains the name of the most recently received event. EventCount contains the number of
EventName events received since OnEventAlert was last called.
Set CancelAlerts to True to cancel interest in any further events. To start receiving events again, call
the QueueEvents method. You cannot call RegisterEvents, UnRegisterEvents, QueueEvents or
CancelEvents from within an OnEventAlert event handler.
OnEventAlert runs as a separate thread to allow for true asynchronous event processing, however, the
IBEvents component provides synchronization code to ensure that only one OnEventAlert event handler
executes at any one time.

TIBEvents methods
TIBEvents Alphabetically

In TIBEvents
CancelEvents
Create
Destroy
QueueEvents
RegisterEvents
UnRegisterEvents

Derived from TComponent
DestroyComponents
Destroying
ExecuteAction
FindComponent
FreeNotification
FreeOnRelease
GetNamePath
GetParentComponent
HasParent
InsertComponent
RemoveComponent
SafeCallException
UpdateAction

Derived from (TPersistent
Assign

Derived from (TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
GetInterface
GetInterfaceEntry
GetInterfaceTable
InheritsFrom
InitInstance

InstanceSize
MethodAddress
MethodName
NewInstance

TIBEvents methods
TIBEvents By object

AfterConstruction
Assign
BeforeDestruction
CancelEvents
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Create
DefaultHandler
Destroy
DestroyComponents
Destroying
Dispatch
ExecuteAction
FieldAddress
FindComponent
Free
FreeInstance
FreeNotification
FreeOnRelease
GetInterface
GetInterfaceEntry
GetInterfaceTable
GetNamePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
QueueEvents
RegisterEvents
RemoveComponent
SafeCallException
UnRegisterEvents
UpdateAction

TIBEvents.CancelEvents
TIBEvents See also
Cancels interest in pending events.
procedure CancelEvents;
Description
Call CancelEvents to cancel interest in any pending InterBase events. CancelEvents does not
unregister the events; call QueueEvents to restore interest in the events again.

TIBEvents.Create
TIBEvents See also
Creates an instance of TIBEvents.
constructor Create(AOwner: TComponent);
Description
Call Create to create an instance of TIBEvents.

TIBEvents.Destroy
TIBEvents See also
Destroys an instance of TIBEvents.
destructor Destroy;
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the TIBEvents object is
not already freed and only then calls Destroy. Destroy unregisters the events and then frees them.

TIBEvents.QueueEvents
TIBEvents See also
Starts event notification for the application.
procedure QueueEvents;
Description
Call QueueEvents to allow your application to start receiving event notifications.
You must call RegisterEvents to specify which events you wish to receive before calling QueueEvents.
If RegisterEvents has not been called an exception will be raised.

TIBEvents.RegisterEvents
TIBEvents See also
Registers interest in the events listed by the Events property.
procedure RegisterEvents;
Description
Call RegisterEvents to register interest in the events listed in the Events property with the InterBase
Event Manager. RegisterEvents calls the QueueEvents method to start receiving event notifications.

TIBEvents.UnRegisterEvents
TIBEvents See also
Unregisters interest in the events listed by the Events property.
procedure UnRegisterEvents;
Description
Call UnRegisterEvents to unregister interest in the events in the Events list. UnregisterEvents calls
CancelEvents to cancel any pending event notifications. When the IBEvents component is destroyed,
UnRegisterEvents is called automatically.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent

TComponent

IBDatabase Editor dialog box
The Database Editor dialog box sets up the properties of a database that specify the connection that
should be made to a database. This dialog box allows you to specify the type of database, the
connection parameters, the user name, SQL role, and password, and whether or not a login prompt is
required.
These properties of the database component, as well as others, can also be specified using the Object
inspector.
To display the Database Editor dialog box, double click on an IBDatabase component.

Dialog box options

Connection
Option Meaning
Local Indicates that the database is on the local server. Enables the Browse button,

allowing you to search for the database with a Open File dialog.
Remote Indicates that the database is on a remote server. Activates the Protocol and

Server fields
Protocol Sets the protocol for attaching to the remote server. The protocol can be

TCP/IP, Named Pipe, or SPX.
Server The name of the remote server.
Database The name of the database.

Database Parameters
Option Meaning
User Name The name of the database user.
Password The password for the database user.
SQLRole The SQLRole name used to connect to the database.
Character Set The character set used to connect to the database.
Login Prompt Indicates whether a login prompt is required to access the database.
Settings Displays the current parameters and allows you to add other parameters.

For example:
user_name=sysdba
password=masterkey
sql_role_name=finance
lc_ctype=WIN1252

For more information on database parameters, see the InterBase 6 API
Guide.

IBTransaction Editor dialog box
The Transaction Editor dialog box allows you to set up transaction parameters. This dialog box gives
you four default transaction settings, which you can then customize if you wish. Once you modify the
default transaction, the radio button is unset.
For a complete list of all the InterBase transaction parameters, refer to “Working with Transactions” in
the InterBase 6 API Guide.
These properties of the transaction component, as well as others, can also be specified using the Object
inspector.
To display the Transaction Editor dialog box, double click on an IBTransaction component. The
following four choices are displayed:

Snapshot
By default, Snapshot is set to concurrency and nowait, which means that the transaction is aware of
other transactions, and does not wait for locks to be released, returning an error instead.

Read Committed
By default, Read Committed is set to read_committed, rec_version, and nowait, which means that the
transaction reads changes made by concurrent transactions, can read the most recently committed
version of a transaction, and does not wait for locks to be released, returning an error instead.

Read-Only Table Stability
By default, Read-Only Table Stability is set to read and consistency, which means that the transaction
can read a specified table and locks out other transactions.

Read-Write Table Stability
By default, Read-Write Table Stability is set to write and consistency, which means that the transaction
can read and write to a specified table and locks out other transactions.
For a complete list of all the InterBase transaction parameters, refer to “Working with Transactions” in
the InterBase 6 API Guide.

IBUpdateSQL Editor dialog box
Use the Update SQL editor to create SQL statements for updating a dataset.
The TIBUpdateSQL object must be associated with a TIBQuery object by setting the TIBQuery property
UpdateObject to the name of the TIBUpdateSQL object used to contain the SQL statements. A
datasource, and database name must be selected for the TIBQuery object. In addition, the SQL property
must include an SQL statement defining a table.
To open the SQL editor:
1. Select the TIBUpdateSQL object in the form.
2. Right-click and choose Update SQL editor.
The Update SQL editor has two pages, the Options page and the SQL page.

The Options page
The Options page is visible when you first invoke the editor.

Table Name Use the Table Name combo box to select the table to update. When
you specify a table name, the Key Fields and Update Fields list boxes
are populated with available columns.

Key Fields The Key Fields list box is used to specify the columns to use as keys
during the update. Generally the columns you specify here should
correspond to an existing index.

Update Fields The Update Fields list box indicates which columns should be updated.
When you first specify a table, all columns in the Update Fields list box
are selected for inclusion. You can multi-select fields as desired.

Get Table Fields Read the table fields for the table name entered and list the fields.
Dataset Defaults Use this button to restore the default values of the associated dataset.

This will cause all fields in the Key Fields list and the Update Fields list
to be selected and the table name to be restored.

Select Primary Keys Click the Primary Key button to select key fields based on the primary
index for a table.

Generate SQL After you specify a table, select key columns, and select update
columns, click the Generate SQL button to generate the preliminary
SQL statements to associate with the update component’s ModifySQL,
InsertSQL, DeleteSQL, and RefreshSQL properties.

Quote Identifiers Check the box labeled Quote Field Names to specify that all field
names in generated SQL be enclosed by quotation marks. This option
is disabled in pre-InterBase 6 databases.

The SQL page
To view, modify, and refresh the generated SQL statements, select the SQL page. If you have generated
SQL statements, then when you select this page, the statement for the ModifySQL property is already
displayed in the SQL Text memo box. You can edit the statement in the box as desired.
Note: Keep in mind that generated SQL statements are intended to be starting points for creating
update statements. You may need to modify these statements to make them execute correctly. Test
each of the statements directly yourself before accepting them.
Use the Statement Type radio buttons (Modify, Insert, Delete, or Refresh) to switch among generated
SQL statements and edit them as desired.
To accept the statements and associate them with the update component’s SQL properties, click OK.

AddIndex Example
In the example below, the AddIndex method is used to create an index named NewIndex. This index is
based on two fields from the associated table, CustNo and CustName. The index NewIndex
incorporates two index options through the TIndexOptions constants ixUnique and ixCaseInsensitive.
IBTable1.AddIndex('NewIndex', 'CustNo;CustName', [ixUnique,
ixCaseInsensitive]);

BeforeInsert, Insert, AsInteger, FieldByName Example
This example uses the BeforeInsert event to do data validation; if the StrToInt function raises an
exception, the edit control’s contents are set to a valid value so the assignment to the INTEGER field in
the table will succeed.
procedure TForm1.Table1BeforeInsert(DataSet: TDataSet);
begin
 try
 {Make sure edit field can be converted to integer --
 this will raise an exception if it can’t }
 StrToInt(Edit1.Text);
 except
 Edit1.Text := '0';
 end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 Table1.Insert;
 Table1.FieldByName('QUANTITY').AsInteger := StrToInt(Edit1.Text);
 Table1.Post;
end;

GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value, OnDataChange,
BOF Example
This example uses a button to copy the value of a field in the previous record into the corresponding
field in the current record.
procedure TForm1.CopyDataClick(Sender: TObject);
var
 SavePlace: TBookmark;
 PrevValue: Variant;
begin
 with Table1 do
 begin
 { get a bookmark so that we can return to the same record }
 SavePlace := GetBookmark;
 { move to prior record}
 FindPrior;
 { get the value }
 PrevValue := Fields[0].Value;
 {Move back to the bookmark
 this may not be the next record anymore
 if something else is changing the dataset asynchronously }
 GotoBookmark(SavePlace);
 { Set the value }
 Fields[0].Value := PrevValue;
 { Free the bookmark }
 FreeBookmark(SavePlace);
 end;
end;
To ensure that the button is disabled when there is no previous record, the OnDataChange event of the
DataSource detects when the user moves to the beginning of file (BOF property becomes True), and
disables the button.
procedure TForm1.Table1DataChange(Sender: TObject; Field: TField);
begin
 if Table1.BOF then
 CopyData.Enabled := False
 else
 CopyData.Enabled := True;
end;

StartTransaction, Commit, Rollback, RollbackRetaining example
The following procedure illustrates how to apply a dataset’s cached updates to a database in response
to a button click:
procedure TForm1.ApplyButtonClick(Sender: TObject);
begin
 with CustomerQuery do
 begin
 IBDatabase1.Open;
 IBTransaction1.StartTransaction;
 Table1.Insert;
 Table1.FieldByName('QUANTITY').AsInteger := StrToIn(Edit1.Text);
 Table1.Post;
 IBTransaction1.Commit;
 end;
end;
In the above example, you could substitute Rollback or RollbackRetaining (an InterBase 6 feature) for
Commit.

Create,CreateBlobStream Example
The following example copies the data in the Notes field of IBTable1 to the Remarks field of IBTable2.
procedure TForm1.Button1Click(Sender: TObject);
var
 Stream1, Stream2 : TIBBlobStream;
begin
 Stream1 := TIBBlobStream.Create(IBTable1Notes, bmRead);
 try
 IBTable2.Edit;
 { here’s a different way to create a blob stream }
 Stream2 := IBTable2.CreateBlobStream(IBTable2.FieldByName('Remarks'),
bmReadWrite);

 try
 Stream2.CopyFrom(Stream1, Stream1.Size);
 IBTable2.Post;
 finally
 Stream2.Free;
 end;
 finally
 Stream1.Free;
 end;
end;

Table Creation Example
The following example shows how to create a table.
{ Don't overwrite an existing table }
if not IBTable1.Exists then begin
 with IBTable1 do begin
 { The Table component must not be active }
 Active := False;
 { First, describe the type of table and give }
 { it a name }
 DatabaseName := 'IBDataBase1';
 TableName := 'CustInfo';
 { Next, describe the fields in the table }
 with FieldDefs do begin
 Clear;
 with AddFieldDef do begin
 Name := 'Field1';
 DataType := ftInteger;
 Required := True;
 end;
 with AddFieldDef do begin
 Name := 'Field2';
 DataType := ftString;
 Size := 30;
 end;
 end;
 { Next, describe any indexes }
 with IndexDefs do begin
 Clear;
 with AddIndexDef do begin
 Name := '';
 Fields := 'Field1';
 Options := [ixPrimary];
 end;
 with AddIndexDef do begin
 Name := 'Fld2Indx';
end;
 end;
 { Call the CreateTable method to create the table }
 CreateTable;
 end;
end;

Database Example
{ Do a transaction }
with Table1.Database do
begin
 StartTransAction;
{ Post some records with Table1 }
 Commit;
end;

Prepare, ExecProc Example
The following code executes the stored procedure:
IBStoredProc1.Params[0].AsString := Edit1.Text;
IBStoredProc1.Prepare;
IBStoredProc1.ExecProc;

Prepare, Prepared Example
if not IBDataSet1.Prepared then
begin
 IBDataSet1.Close;
 IBDataSet1.Prepare;
 IBDataSet1.Open
end;

Prepare, Prepared Example
if not IBSQL1.Prepared then
begin
 IBSQL1.Close;
 IBSQL1.Prepare;
 IBSQL1.Open
end;

SQL, ExecSQL Example
IBQuery1.Close;
IBQuery1.SQL.Clear;
IBQuery1.SQL.Add('Delete from Country where Name = ''Argentina''');
IBQuery1.ExecSQL;

ParamByName, GetData, GetDataSize Example
var Buffer: Pointer;
begin
 { Allocate enough space to hold the CustNo data }
 GetMem(Buffer, IBQuery1.ParamByName('CustNo').GetDataSize);
 try
 { Retrieve the data }
 IBQuery1.ParamByName('CustNo').GetData(Buffer);
 { now do something with the data }
 finally
 FreeMem(MyBuffer);
 end;
end;

ParamByName Example
StoredProc1.ParamByName('DNO').AsString := Edit1.Text;
StoredProc1.Prepare;
StoredProc1.ExecProc;
Edit2.Text := FloatToStr(StoredProc1.ParamByName('TOT').AsFloat;

GetStoredProcNames Example
MyStringList := TStringList.Create;
try
 Session.GetStoredProcNames('IB_EMPLOYEE', MyStringList);
 { fill a list box with stored procedure names
 for the user to select from }
 ListBox1.Items := MyStringList;
finally
 MyStringList.Free;
end;

IndexDefs, IndexName
This example uses the IndexName property to sort the records in a table on the CustNo and OrderNo
fields.
IBTable1.Active := False;
{ Get the current available indicies }
IBTable1.IndexDefs.Update;
{ Find one which combines Customer Number ('CustNo') and Order Number
('OrderNo') }

for I := 0 to IBTable1.IndexDefs.Count - 1 do
 if Table1.IndexDefs.Items[I].Fields = 'CustNo;OrderNo' then
 { set that index as the current index for the table }
 IBTable1.IndexName := IBTable1.IndexDefs.Items[I].Name;
IBTable1.Active := True;

IndexFields, IndexFieldCount Example
The following code calculates the total length of the index and assigns it to the variable TotalLen.
TotalLen := 0;
with IBTable1 do
 for I := 0 to IndexFieldCount - 1 do
 Inc(TotalLen, IndexFields[I].DataSize);

Mode, AbortOnKeyViol, Execute, MovedCount, KeyViolCount Example
The following code uses the BatchMove component to add records to a table. After the records have
been added, the number of new records is reported on the status line.
with BatchMove1 do
begin
 Mode := batAppend;
 AbortOnKeyViol := False;
 Execute;
 StatusBar1.SimpleText := IntToStr(MovedCount - KeyViolCount) + ' records
added';

end;

ParamCount, DataType, StrToIntDef, AsXXX Example
This example fills in the parameters of a query from the entries of a list box.
var
 I: Integer;
 ListItem: string;
begin
 for I := 0 to IBQuery1.ParamCount - 1 do
 begin
 ListItem := ListBox1.Items[I];
 case IBQuery1.Params[I].DataType of
 ftString:
 IBQuery1.Params[I].AsString := ListItem;
 ftSmallInt:
 IBQuery1.Params[I].AsSmallInt := StrToIntDef(ListItem, 0);
 ftInteger:
 IBQuery1.Params[I].AsInteger := StrToIntDef(ListItem, 0);
 ftWord:
 IBQuery1.Params[I].AsWord := StrToIntDef(ListItem, 0);
 ftBoolean:
 begin
 if ListItem = 'True' then
 IBQuery1.Params[I].AsBoolean := True
 else
 IBQuery1.Params[I].AsBoolean := False;
 end;
 ftFloat:
 IBQuery1.Params[I].AsFloat := StrToFloat(ListItem);
 ftCurrency:
 IBQuery1.Params[I].AsCurrency := StrToFloat(ListItem);
 ftBCD:
 IBQuery1.Params[I].AsBCD := StrToCurr(ListItem);
 ftDate:
 IBQuery1.Params[I].AsDate := StrToDate(ListItem);
 ftTime:
 IBQuery1.Params[I].AsTime := StrToTime(ListItem);
 ftDateTime:
 IBQuery1.Params[I].AsDateTime := StrToDateTime(ListItem);
 end;
 end;
end;

ParamCount, Params, ParamType Example
{ Set all input parameters to an empty string }
with IBStoredProc1 do
 for I := 0 to ParamCount - 1 do
 if (Params[I].ParamType = ptInput) or
 (Params[I].ParamType = ptInputOutput) then
 Params[I].AsString := '';

Params Example
The following code runs an insert query to add a record for Lichtenstein into the country table.
IBQuery2.SQL.Clear;
IBQuery2.SQL.Add('INSERT INTO COUNTRY (NAME, CAPITAL, POPULATION)');
IBQuery2.SQL.Add('VALUES (:Name, :Capital, :Population)');

IBQuery2.Params[0].AsString := 'Lichtenstein';
IBQuery2.Params[1].AsString := 'Vaduz';
IBQuery2.Params[2].AsInteger := 420000;
IBQuery2.ExecSQL;

Prepared, Prepare Example
if not IBQuery1.Prepared then
begin
 IBQuery1.Close;
 IBQuery1.Prepare;
 IBQuery1.Open
end;

SetData Example
var I: Longint;
begin
 I := Table1.FieldByName('CustID').AsInteger;
{ Set the data }
 Query1.ParamByName('CustNo').SetData(@I);
end;

UpdateRecordTypes, RevertRecord example
With minor coding, UpdateRecordTypes and RevertRecord can be used to undelete records when
cached updates are enabled, as the following procedure demonstrates:
procedure UndeleteAll(DataSet: TIBCustomDataSet);
begin
 with DataSet do
 begin
 UpdateRecordTypes := [cusDeleted]; {make only deleted records visible}
 try
 First; {move to beginning of dataset}
 while not EOF do
 begin
 RevertRecord; {undelete the current record}
 Next; {move to the next record}
 end;
 UpdateRecordTypes := [cusUnInserted];
 try
 First; {move to beginning of dataset}
 while not EOF do
 begin
 UnDeleteRecord; {undelete the current record}
 Next; {move to the next record}
 end;
 finally
 UpdateRecordTypes := [cusDeleted, cusModified, cusInserted,
cusUninserted, cusUnmodified];

 end;
 end;
end;

