
What’s new
Delphi 5 introduces the following new features and enhancements.
Note Some of the features are not available in all versions of Delphi.

ADO Dataset (Enterprise and add-on to Professional edition)
The ADO dataset provides an alternative technology to the Borland Database Engine (BDE) to gain
access to data in a variety of formats using Microsoft’s Active Data Objects (ADO) technology.

Data Module Designer (All editions)
The Data Module Designer is a new visual design tool that makes it easy to create and maintain data
modules.

InterBase Express (Professional and Enterprise editions)
InterBase Express (IBX) components integrate InterBase with Delphi better than any other database
access components and do not require the Borland Database Engine (BDE).

MIDAS enhancements (Enterprise edition)
The architecture to support multi-tier database (MIDAS) applications now supports stateless remote
data modules and the new InternetExpress components let you create Web applications where
browsers interact with data from a MIDAS application server.

CORBA changes (Enterprise edition)
CORBA has been upgraded to work with the VisiBroker for C++ ORB version 3.32. In addition,
message traffic is reduced because the CORBA client no longer pings messages to the server to
maintain the client connection. Connections time out automatically if they are inactive for too long.

New debugging features (All editions)
The Integrated debugger has new features, including the ability to set debugging options for specific
processes, new Run menu items, and additional debugging options.

VCL enhancements (All editions)
The VCL has many new objects, properties, and events incorporating new technology and responding
to developer’s requests.

Frames (All editions)
Frames are a special kind of form that can be nested within a form or another frame. You create
frames by choosing File|New Frame, or by choosing File|New and double-clicking Frame on the New
tab of the New Items dialog box.

Customizable desktop settings (All editions)
You can customize various desktop layouts, then name and save them globally. Select the desktop
layout you want from the Desktop toolbar or using View|Desktops. You can also specify a debugging
desktop to load during runtime.

To-Do Lists (Professional and Enterprise editions)
A to-do list maintains a list of tasks to be completed for the project. You can add items in the source
code or directly to the list.

Property categories in the Object Inspector (All editions)
The Object Inspector allows you to display and filter properties and events by category.

Images in drop down lists in the Object Inspector (All editions)
Owner draw support has been added to the Object Inspector so you can view images such as
cursors, image lists, and colors in drop down lists.

New Project Manager features (All editions)
The Project Manager simplifies project management by allowing you to drag and drop files from
Windows folders or other projects into your current project. You can also copy project items from one
project to another and add any type of file to a project. Resource files that you add to your project are
compiled into RES files and linked to the project.

TeamSource (Enterprise edition)
TeamSource is a new integrated workflow management tool. For more information, see TeamSrc.hlp
in the Help directory. Note: TeamSource is a separate product and a separate installation, and is not
provided with all versions of Delphi. It can be purchased separately.

ActiveX Enhancements (Professional and Enterprise editions)
Imported COM servers can be implemented as components to for visual development. Other features
have been added to simplify ActiveX development.

New application wizards (Professional and Enterprise editions)
Two new wizards help with creating control panel applets (File|New then select Control Panel
Application or Control Panel Module) and console applications (File|New then select Console
Wizard).

Editor enhancements (All editions)
Editing preferences are now centralized under a separate command (Tools|Editor Options). It is now
easier to customize editor key binding with the Key Bindings tab on the Editor Options and Open
Tools API enhancements.

New project browser (All editions)
A new project browser can browse symbols in your project (project-wide) or it can browse all symbols
(VCL-wide).

Forms now saved as text (All editions)
Form files (DFMs) are now saved as text rather than binary, by default. Right-click on a form and
uncheck Text DFM to save that form as binary. Uncheck the New forms as text on the Preferences
page of the Tools|Environment Options to save forms in binary.

Option to auto create forms (All editions)
An option on Tools|Environment Options Preferences page lets you choose whether or not to
automatically create forms. You must have at least one auto-created form to use this option. When
unchecked, forms added to the project are put into the Available Forms list rather than the Auto
Create list. You can change where forms are listed using the Forms tab of the Project|Options dialog
box.

IDE command line options (All editions)
You can start the IDE from the command line using several new options particularly useful for
debugging.

International tools (Enterprise edition)
A new suite of tools called the Integrated Translation Environment (ITE) is now provided to simplify
software localization and simultaneous development for different locales.

NetMasters components (Professional and Enterprise editions)
The NetMasters components now appear on a separate page (called FastNet) in the Component
Palette. Note that the TWebBrowser component on the Internet page, which imports the Internet
Explorer ActiveX component, replaces the THTML component.

Help menu changes (All editions)

ADO Dataset (Enterprise & add-on to Professional edition)

Delphi 5 includes new components that you can use to access data through Microsoft’s ActiveX Data
Objects (ADO). ADO is Microsoft's high-level interface to all kinds of data. This application-level
interface to Microsoft's data access technology is called OLE DB. OLE DB provides fast access to any
data source, including relational and non-relational databases, email and file systems, text and graphics,
and custom business objects.
Delphi’s new components provide data access using ADO technology through existing data aware
controls (such as DBGrid and DBEdit) without requiring the Borland Database Engine (BDE). The
ADO/OLE-DB runtime must be installed to use these components.
The following components support ADO technology:

Component Description
TADODataSet A TDataSet descendant that uses the ADO RecordSet object to access data. It

can be used as a replacement for any of the existing TTable, TQuery, or
TStoredProc components.

TADOTable Specialized TADODataSet which is used for accessing data in a table. It can be
used in place of the existing TTable component.

TADOQuery Specialized TADODataSet for replacement of the BDE TQuery component.
TADOStoredProc Specialized TADODataSet for replacement of the BDE TStoredProc component.
TADOConnection Provides a connection to an ADO database.
TADOCommand Allows for specialized execution of SQL statements.
In addition, the following new field types have been added to provide access to the new data types
supported in ADO:

WideString
GUID
Variant
Interface
IDispatch

InterBase Express (Professional and Enterprise editions)

Delphi 5 includes new components that you can use to access data through InterBase Express (IBX).
IBX applications work better, perform faster, and give you access to advanced features of InterBase
never before available in standard components. IBX is designed to serve the needs of InterBase
developers, and to provide the highest performance component interface for InterBase 5.5 and later.
IBX is based on the custom data access Delphi component architecture, and is integrated with the
Delphi 5 Data Module Designer, so developers who are familiar with traditional data access components
will feel right at home.
IBX is compatible with Delphi’s rich library of data-aware components, and does not require the Borland
Database Engine (BDE).
The following components support IBX technology:

Component Description
TIBTable Custom dataset which is used for accessing data in a table or a view. It can be

used in place of the BDE TTable component.
TIBQuery Custom dataset for replacement of the BDE TQuery component.
TIBStoredProc Custom dataset used for executing stored procedures.
TIBDatabase Provides a connection to an InterBase database.
TIBTransaction Allows you to access all the powerful options of InterBase transactions. Your

applications benefit in performance and concurrency by using the most
appropriate transaction options for a given situation. You can maintain multiple
concurrent transactions on one or more databases, to interleave data operations
that need to remain logically atomic. TIBTransaction supports distributed
transactions involving multiple databases, allowing you to implement integrity
enforcement and data consistency across multiple databases.

TIBUpdateSQL Defines custom actions for updating normally read-only tables and for caching
updates on the client. Enables you to design normalized databases without
restricting your ability to design applications to update complex datasets. Enables
you to implement code by design, and not by working around your database
implementation.

TIBSQL Executes SQL statements and retrieves data at high speed without the overhead
of buffering data and interfacing with Delphi data-aware controls. This is the most
direct way to access InterBase data.

TIBDataSet A custom dataset, similar to TIBQuery, that provides live access to InterBase
data.

TIBDatabaseInfo Enables applications to request information about a database or an InterBase
server. This includes database properties, system performance data, users
currently connected to the database, and other information. Developers can use
this component interface to write performance-monitoring applications and
database automation tools.

TIBSQLMonitor Allows for advanced debugging of data communications, resulting in faster
engineering for client/server and multi-tier InterBase projects.

TIBEvents Provides a means for your application to register interest in, and asynchronously
handle, events posted by an InterBase server.

MIDAS enhancements (Enterprise edition)

This section describes enhancements to Multi-tier Distributed Application Services Suite (MIDAS) as of
Delphi 5 (MIDAS). See Understanding MIDAS technology for an overview of this technology and the
architecture of a three-tiered application built using MIDAS. Refer also to Changes to MIDAS support for
detailed information about architectural changes.

Stateless data broker
The architecture to support MIDAS applications has changed to support stateless remote data modules.
This has important advantages over the previous architecture. You can now write MTS servers and
shared remote data module instances without creating your own custom interfaces. The new
architecture improves performance by reducing message traffic: Each call from the client application to
the application server carries more information, so fewer calls are needed. New interfaces make it easy
to transmit application-specific information whenever the client application calls the application server.
The architectural changes do, however, require some changes to existing applications if they are to work
with the new MIDAS support. See Converting MIDAS applications for details.

InternetExpress applications
A new InternetExpress page has been added to the Component Palette that contains components for
building internet applications. InternetExpress applications provide a way to distribute Midas-based
multi-tiered applications to clients over the Internet.
To create InternetExpress applications, you need to replace the client tier with a special Web application
that acts simultaneously as a client to the application server and as a Web server application that is
installed with a Web server on the same machine. See Building HTML-based Web applications using
InternetExpress for information on building applications that allow javascript-enabled browsers to
interact with data from your application server through HTML pages. You may also want to see Writing
MIDAS Web applications for a comparison of this approach with the ActiveX-based approach supported
by previous versions of Delphi.

Constraints and defaults
Constraints and default values now work when placed on a TClientDataSet using either the TField
properties or a TCheckConstraint.

Web connection component
A new connection component, TWebConnection, uses HTTP to establish a connection between the
client and the application server. Because this component uses HTTP protocol, you can use it for
connecting through a firewall or taking advantage of the SSL security provided by HTTPS.

Pooling
Delphi now allows for pooling of remote data modules.

Socket Server
The ScktSrvc.exe and ScktSrvr.exe have been combined into ScktSrvr.exe for this release, and it can be
used as a service or not. The syntax is as follows:

Format Description
scktsrvr –install To install it as a service

scktsrvr –uninstall To uninstall it
scktsrvr To run the Socket Server as a normal application

If the service manager starts it, then it will start as a service.

TDataSetProvider
TDataSetProvider can now apply updates directly to the database server as well as to a dataset.
Dataset components implement an interface that enables them to work with a dataset provider. This

allows TDataSetProvider to work with any kind of dataset (including BDE-enabled, InterBase Express,
or ADO-based as well as client datasets or custom datasets). TDataSetProvider does not require the
Borland Database Engine (BDE) or DBOLE. New applications should use TDataSetProvider instead of a
TProvider component, which is retained for backward compatibility only.

New debugging features (All editions)

Delphi 5 has many new and improved debugging features, including:

New debugging view
FPU window is a new IDE debugger window that lets you view the contents of the Floating-Point

Unit in the CPU. The FPU window displays register values, status, control, and tag words. You can
display floating-point or MMX information in the FPU window. (Not available in the Standard version of
Delphi.)

Breakpoint features
Breakpoint actions provide various things that breakpoints can do when they are encountered.
Breakpoint groups let you organize breakpoints into groups that you can enable or disable all at

once.
Breakpoint properties, associated actions, and group names are displayed in a tooltip. Point the

cursor at a breakpoint glyph in the gutter of the Code editor. A tooltip is displayed that shows the
breakpoint’s pass and condition.

Breakpoint List includes additional columns to show the actions associated with each breakpoint
and its group name (if any).

New debugging commands and options
Run|Attach to Process command allows you to debug a process that's already running outside

the IDE. Choosing this command displays a list of active processes. Select the one you want to attach to
your debugging session.

Run|Run Until Return command executes your program until the current routine returns to its
caller. This is useful when you've accidentally single-stepped into a routine that you don't need to debug,
or when you've determined that the current routine works to your satisfaction and you don't need to
single-step through the rest of it.

Allow function calls option for Watches when you select Run|Add Watch.
Watch button on the Run|Evaluate/Modify dialog box so you can create a watch for the current

expression.
Inspect button on the Run|Evaluate/Modify dialog box so you can create a new inspector for the

current expression.

Debugging usability enhancements
Debugging now includes drag and drop support.

While debugging, you can drag any expression from the editor to the Watch List (creates a watch for
that expression), Debug Inspector window (inspects the contents of the expression), or the stack and
dump panes in the CPU window (positions the pane to the address of the expression).    When not
debugging you must hold down the Alt key to drag and drop into the debugger views.

Within the Watch list, you can right-click to display a Debug Inspector for the currently highlighted
expression.

In the Thread Status view, you can right-click on a process and select Process Properties to set
temporary debugging options for that process.

Within the Modules window, you can sort by entry point or address in the Entry Point pane.
In the CPU window, a green arrow appears in the margin to note the direction of a call or jump.
Many of the debugging windows now include multiselection of items and provide clipboard

support.
A new debugger event log option “Display process info with event” lets you choose whether or not

to display the process name and OS process ID for the process that generated the event. It is on by
default.

Debugging info is now included with DCUs in the Debug directory.

VCL enhancements
The Delphi object hierarchy includes common control updates, ADO components, web enhancements,
and many other new features. The following topics describe pertinent VCL changes.

Common control updates
Web enhancements
Custom draw events
Control panel applet wizard components
Miscellaneous VCL enhancements
VCL Documentation enhancements

Refer to Compatibility issues for VCL changes that could potentially impact applications being upgraded
to Delphi 5.
Refer to MIDAS enhancements and Changes to MIDAS support for VCL changes that were
implemented to support multi-tier database application development.

Common control updates (All editions)

Common control updates to the VCL include
Custom draw support for TToolBar
List view support for workareas (TListView)
Subitem images in report-style list views (TListView)
New HoverTime property lets users select list view items without clicking (TListView)
InfoTip (also called Help Hint) support on all items in a list (TListView)
A new OnColumnRightClick event (TListView).
DragReorder for drag-drop reordering of header sections (THeaderControl)
New OnSectionDrag event (THeaderControl).
New ItemEnabled property that lets you programmatically enable or disable individual items in the

list (TCheckListBox).
New "advanced" custom draw events were added for TTreeView, TListView, and TToolBar.

Web enhancements (Professional and Enterprise editions)

TWebBrowser, a new component, lets you embed a browser page in your application (using Internet
Explorer 4.0 or later). At design-time, the Response Editor and the Web page editor of the
TDataSetTableProducer and TQuerySetTableProducer components use TWebBrowser to let you
preview your page in a browser.
Web server applications are easier to create with the new Producer property on TWebActionItem. This
new property allows you to associate an HTML content producer with a Web action item so that it
automatically updates the content of response messages when the action item is executed.
Page producers now have a StripParamQuotes property. This compensates for HTML editors that
automatically insert quotation marks around the options added to a tag.
You can use packages when building an ISAPI/NSAPI DLL.
Note On the Enterprise edition, this change impacts existing WebBroker applications. See Upgrading

WebBroker applications.

Control panel applet wizard components (Professional and Enterprise editions)

New objects, TAppletApplication and TAppletModule, support the Control Panel Applet wizard that
makes it easy to design applets for the Windows control panel. EAppletException , a new exception
class is also provided.

Custom draw events (All editions)

New "advanced" custom draw events were added for TTreeView, TListView, and TToolBar. These
events have the same name as existing events except that the word Advanced is prepended. Thus: In
addition to OnCustomDraw, there is also OnAdvancedCustomDraw; in addition to OnCustomDrawItem,
there is also OnAdvancedCustomDrawItem; and so on.
The Advanced custom draw events differ from the existing events in that they occur more often (not just
in the prepaint stage). The event handlers include an additional parameter that indicates the current
state of the paint process (prepaint, postpaint, preerase, or posterase).

Miscellaneous VCL enhancements

InterBase Express (IBX) (Professional and Enterprise editions)
This new set of data access components provides a means of accessing data from InterBase
databases.

ActiveX Data Objects (ADO) (Enterprise & add-on to Professional edition)
New components were added to support access to data through Microsoft’s ActiveX Data Objects
(ADO). Refer to ADO Dataset for more information.

Custom Constraints (Enterprise edition)
TClientDataSet now enforces custom constraints and defaults (using either the TField properties or a
TCheckConstraint). The Constraints property is now published so you can save record-level constraints.

Database changes (Professional and Enterprise editions)
TDatabase now lets you execute an SQL statement without the overhead of using a TQuery object. You
can use the public TDatabase.Execute method.
BDE-enabled datasets now support an AutoRefresh property. When you set AutoRefresh to True,
default values and autoincrement values are fetched automatically when you post a record (without
having to call Refresh).

New connection component (Enterprise edition)
TWebConnection, a new connection component, has been added. See MIDAS enhancements.

Keyboard layout properties (All editions)
TApplication has two new properties: BiDiKeyboard and NonBiDiKeyboard. These allow you to specify
the keyboard layout.

Setting event handlers from the IDE (All editions)
TApplicationEvents is a new component that intercepts application-level events. Use this component as
a way to set event handlers for application events using the IDE.

New property for splitters (All editions)
TSplitter has a new AutoSnap property that determines what happens when a user drags the splitter so
as to resize a neighboring object smaller than the minimum size. When AutoSnap is True, such an
attempt causes the neighboring object to be resized to zero height (or width). When AutoSnap is False,
the resize stops at the minimum size.

New Help hint and menu features (All editions)
TScreen has two new properties: HintFont and MenuFont, which determine the font used for help hints
and menu items, respectively.
TMenuItem.OnAdvancedDrawItem allows you to render owner-drawn menu items including state
information (for example, checked, default, grayed). (OnDrawItem only gives you selected/not selected).
Component writers now have more control over context menus with the new PrepareItem method on
TComponentEditor.
Menus and menu items now have an AutoHotKeys property. Setting AutoHotKeys to True causes the
menu to maintain hot keys (also called accelerator keys), remove duplicate hot keys, and add unique
hot keys to menu items that don't have them.
AutoLineReduction removes superfluous separator bars from menus. TMenuItem also includes several
new features:

Find a specific menu item (Find)
Insert separator bars into a submenu (InsertNewLineAfter, InsertNewLineBefore,

NewBottomLine, NewTopLine)

Lets you store images with a submenu (SubMenuImages)

Invoking pop-up menus (All editions)
OnContextPopup is a new TControl property called in response to a WM_CONTEXTMENU message
which, in turn, is called in response to a right-click (or keystroke invocation of the context menu). In this
event, you can create and pop up your own menu or display a pop-up dialog instead of a menu.
TPopupMenu.MenuAnimation lets you configure the way the menu appears on Windows 2000. It can
pop up or "slide" in like a window shade.

Page Control feature (All editions)
The Highlighted property of TTabSheet is a new property that lets you highlight pages in a page control.
Multiple pages can be highlighted at the same time.

New container classes (All editions)
The new Contnrs unit introduces a number of utility classes for managing stacks and queues.

Decision cube source files (Enterprise edition)
The Delphi 5 product now includes the source files for the decision cube components in the \Source\
Decision Cube directory.

InternetExpress components (Professional and Enterprise editions)
An InternetExpress page has been added to the Component Palette. It provides components for building
internet applications. See MIDAS enhancements for more information.

VCL documentation enhancements
The VCL documentation now includes topics describing the classes for each unit. In an object entry,
click on the unit name for a list of all the objects in that unit.
Global routines also have separate topics both for units and categories.

Property categories in the Object Inspector (All editions)

You can now display and filter properties and events by category in the Object Inspector. By filtering the
properties, you can reduce the number of properties visible in the Object Inspector and focus on those
which are primarily of interest at the time. You can also more easily locate related properties by viewing
them by category. For example, when localizing your application for other countries, you can display
only properties that need to be localized by unchecking all categories except Localizable.
Component writers can create categories and assign properties to categories using the
RegisterPropertyInCategory procedure. See Property categories: functions and classes and Property
categories for details.

Filtering properties
To change the filter, right-click, choose View, and check or uncheck categories. Properties associated
with checked categories are visible in the Object Inspector.

Displaying properties by category
To display properties by category, right-click and choose Arrange|by Category. The categories are listed
alphabetically. You can collapse or expand the categories by clicking the + or – collapse icon and the
state is persistent until you change it.
Note: Some properties occur in multiple categories. If you change the value under one category, the

value changes consistently in all places.

Displaying properties alphabetically
To redisplay properties alphabetically, right-click and choose Arrange|by Name. The categories are no
longer visible in the Object Inspector.

Jumping to the value of a component property
When the value of a property is another component, you can shift the Object Inspector's focus to that
component by holding down the Ctrl key while double-clicking. For example, if the DataSet property of a
data source is set to Table1, Ctrl-double-clicking on Table1 in the value column displays Table1's
properties in the Object Inspector.

Property categories: functions and classes (All editions)

The following functions and classes have been added to support property categories in DesgnIntf.pas:
function RegisterPropertyInCategory(CategoryClass, PropertyName):
TPropertyFilter;

function RegisterPropertyInCategory(CategoryClass, PropertyName,
ComponentClass): TPropertyFilter;

function RegisterPropertyInCategory(CategoryClass, PropertyName,
PropertyType): TPropertyFilter;

function RegisterPropertyInCategory(CategoryClass, PropertyType):
TPropertyFilter;
This function has four formats. You can specify a category filter by property name; by class type and
property name; by property type and property name; or by property type. Additionally, the property
name can include wild card symbols. For example, you can add all properties that match ‘Data*’ to a
particular category. For a full list of available wild card characters, see TMask.

function RegisterPropertiesInCategory(CategoryClass, array of consts):
TPropertyCategory;
This function allows you to register a series of property names and/or property types filters in a single
statement.

function IsPropertyInCategory(CategoryClass, ComponentClass, PropertyName):
Boolean;

function IsPropertyInCategory(CategoryClass, ComponentClassName,
PropertyName): Boolean;
This function has two formats. In either case, you can ask if a property of a certain class falls within
the specified category. The class can be specified by name or class type.

function PropertyCategoryList: TPropertyCategoryList;
This function returns and creates, if necessary, the global property category list. See the next
section.

Property categories: classes
The following components make up the category management system. While these components are
publicly available, you should only access them through the above support functions.

TPropertyCategoryList
Contains and maintains the list of TPropertyCategories. There are numerous 'As a whole' access and
manipulation methods for categories as well as simplified access functions.

TPropertyCategory
Contains and maintains the list of TPropertyFilters. There are numerous 'As a whole' access and
manipulation methods for filters as well as data about the category itself.

TPropertyFilter
Maintains the information about a single filter associated with a particular category. Along with its
filter-specific data, it also encapsulates the matching algorithm.

Images in drop down lists in the Object Inspector (All editions)

The Object Inspector now includes owner draw support to support customized rendering of properties.
As a result, you can now see images in the drop down lists for properties that include images such as
cursors, brush types, colors, and image lists. Many of these images appear in the Object Inspector by
default without any change on your part. But note that to view images referenced by the ImageIndex
property, you need to set the property that holds the image list to the image list containing the images.
Component writers can also use the owner draw support within components. For example, when writing
property editors, you can now create owner draw lists of images to render images within the Object
Inspector. See Owner draw support in the Object Inspector for details.

Owner draw support in the Object Inspector (All editions)

The following owner draw support is provided in a new property editor system:
ListMeasureWidth
ListMeasureHeight
ListDrawValue
PropDrawName
PropDrawValue
GetVisualValue

New overloadable methods on TPropertyEditor in DsgnIntf.pas
Procedure TPropertyEditor.ListMeasureWidth(Value, Canvas, AWidth)

This procedure is called during the width calculation phase of the drop down list preparation.

Procedure TPropertyEditor.ListMeasureHeight(Value, Canvas, AHeight)
This procedure is called during the item/value height calculation phase of the drop down list's render.
This is similar to TListBox's OnMeasureItem, with slightly different parameters.

Procedure TPropertyEditor.ListDrawValue(Value, Canvas, Rect, Selected)
This procedure is called during the item/value render phase of the drop down list's render. This is
similar to TListBox's OnDrawItem, but it has slightly different parameters.

Procedure TPropertyEditor.PropDrawName(Canvas, Rect, Selected)
This procedure is called during the render of the name column of the property list. Its functionality is
similar to TListBox's OnDrawItem, but it has slightly different parameters.

Procedure TPropertyEditor.PropDrawValue(Canvas, Rect, Selected)
This procedure is called during the render of the value column of the property list. Its functionality is
similar to PropDrawName. To determine what to render, this procedure should use the following
function.

Function TPropertyEditor.GetVisualValue: String;
This function returns the displayable value of the property. If only one item is selected or all the multi-
selected items have the same property value, this function returns the actual property value.
Otherwise, this function returns an empty string.

New Project Manager features (All editions)

The Project Manager includes several new features to simplify managing the files particularly in large
applications that contain many files and multiple projects within a project group:

Project activation
Project selector
Drag and drop copying
Copy and paste
Remove button

You can also add additional types of files to your project (using drag and drop or Project|Add to Project)
and view them in the editor as text files. You can also add resource files, and they are compiled into
RES files and linked when you compile the project.

Project activation
Certain operations, such as commands available on context menus, operate on the active project. The
active project is the one that is highlighted in bold in the Project Manager and is the project you are
currently working on. The active project is also shown in the project selector.
When you view a project item, such as a form or a code file, the Project Manager automatically makes
the project it belongs to the active project.

Project selector
You can easily select a project from the project group using the project selector at the top of the Project
Manager. A drop-down list shows all projects in the current project group. The project you select
becomes the active project.

Drag and drop copying
You can drag one or more selected items from any other Windows folder and drop them into a project in
the Project Manager:
1. Activate the project where you want the copy to be placed.
2. In any Windows folder (such as the Windows Explorer or My Computer), select one or more items to

copy.
3. Drag the item or items onto the name of a project in the Project Manager. (The project name is

highlighted.)
4. Drop the items.

You are asked to verify that you want to copy the item or items, and if you click Yes, the items are
copied into the active project.

5. Save the project where you placed the copy.

Copy and paste
You can copy project items from one project to another:
1. Select the project item you want to copy.
2. Choose Edit|Copy (or type Ctrl+C).
3. Select the project where you want to place the copy (or move the cursor where you want to place the

copy).
4. Paste the copy using Edit|Paste (or Ctrl+V).
5. Save the project where you placed the copy.

Remove button
The Remove button on the Project Manager toolbar removes the item which is selected. If a project is
selected and you click on Remove, the whole project including all it contains is deleted from the current
project group. If one file is selected, only that file is deleted when you click Remove. Realize that the
files are not deleted from disk, only from the current project or group. The Project Manager verifies that
you want to remove the project or item before doing so.

Note If you copy a project item into another then remove the first project without saving the second
one, the copied item is removed from the second project as well. The Project Manager prompts
you save the project before removing the item. If you save the project when prompted to do so,
the copied item is retained.

TeamSource (Enterprise or separate product)

Note: TeamSource is a separate product and a separate installation, and is not provided with all
versions of Delphi.

TeamSource is a new integrated workflow management tool for helping application development teams
manage their daily tasks in a shared development environment. TeamSource uses a version control
system for storing and retrieving shared files, but goes beyond simple version control to manage and
coordinate the process of using a parallel model of source control.
For more information, see TeamSrc.hlp in the Help directory if TeamSource is available.

ActiveX enhancements (Professional and Enterprise editions)

The following enhancements were made to ActiveX:
COM servers can be installed as components on the Component Palette for visual development.

The Import Type Library option in the IDE allows you to install COM servers (such as Microsoft Word or
Excel) as components. The component will expose the default events of the Server CoClasses as VCL
events (accessible from the Events tab of the IDE's Property Inspector). Note that events with reference
parameters are not hooked up for this release; the event will show up in the Property Inspector; however,
the code to fire the Event is commented out.

Numerous COM server components are provided on the new Servers tab of the Component Palette.
You can use these components as if they were VCL components. For example, if you drag the
Microsoft word document components onto a form, the following code brings up an instance of
Microsoft Word.
WordApplication1.Connect;
Wordapplication1.Visible:=True;

HResult was changed from an unsigned int to a signed int.
An ActiveServerPage wizard was developed.You can now create Automation Objects that, when

invoked from an .ASP page on an IIS server, have access to the various interfaces representing a user
request, response, etc. A sample .ASP illustrating the syntax to create the server can also be generated
for you.

An Apply Updates dialog was added for COM servers. The dialog displays the changes made to
your CoClass implementation file by the IDE as you modify your CoClass interfaces in the Type Library
Editor. You may veto some or all of the proposed changes.

Free-threading support was added for COM factories.
The COM Object wizard has a new checkbox that allows you to mark the object's default interface

as OLEAUTOMATION. This flag allows your interface to be marshaled by the Type Library Marshaler,
obviating the need for a proxy-stub DLL for custom interfaces.
Note: You'll need to ensure that your interface utilizes OLE Automation compatible types.

Delphi supports sparse vtables created in Visual Basic. When importing an Active Server or
Active Control created in Visual Basic, Delphi will detect any gaps in the interfaces of the server and
automatically insert dummy entries in the interface definition generated in the xxxx_TLB file.

Editor enhancements (All editions)

The following enhancements were made to the editor:
Customizable editor properties are now centralized under Tools|Editor Options.
A new editor keymapping was added for Visual Studio emulation.
A new Key Mappings tab was added where you can enable customized key mapping modules

and enhancement modules.
Using the Open Tools API enhancements, you can customize key bindings by adding a completely
new key mapping module plus all the hot keys in the IDE or you can create an enhancement module
to replace a few keys.
Examples for both full and partial key bindings are provided in Demos\ToolsAPI\Editor Keybinding.
The full example is called New IDE Classic where new keys are bound to existing functionality. The
partial example is called Buffer List, which adds a utility that displays the buffer list, to a hot key
(Ctrl+B). You can load them using the Key Mappings tab of the Tools|Editor Options.

International tools (Enterprise edition)

The Integrated Translation Environment (ITE), available in some versions of Delphi, is a suite of tools for
software localization and simultaneous development for different locales. It is integrated with the IDE to
let you manage multiple localized versions of an application as part of a single project. The ITE includes
three tools:

ITE tool Description
Translation Manager Displays a grid for viewing and editing translated resources
Translation Repository Provides a database for translations that can be shared across projects and by

different developers
Resource DLL wizard An improved DLL wizard that generates and manage resource DLLs
The ITE provides an Active Language setting to let you run localized versions of an application in debug
mode.
You can now compile RC files from the Delphi IDE. There is no need to invoke the Resource Compiler
from the command line.
Refer to the ITE overview for details about this localization technology.

Help menu changes (All editions)

The Delphi Help menu now divides the Help system into three major areas:

Help command Contents
Delphi Help Opens DELPHI5.HLP and accesses all the main Delphi Help files including

help for the VCL and the IDE.
Delphi Tools Opens DEL5XTRA.HLP and accesses detailed help for tools such as SQL

Builder, SQL Monitor, Database Explorer, Winsight, Image Editor, and
TeamSource.

Windows API/SDK Help Opens WIN32SDK.HLP and accesses Microsoft’s Help for objects that you
can use in Delphi. Note that Installation of the Microsoft Help files is optional.
This option only appears if they are installed.

Upgrading to Delphi 5
When you load a Delphi 4 project into Delphi 5, it is automatically updated. The following topics describe
changes that could potentially impact existing Delphi projects:

Summary of compatibility issues
Converting MIDAS applications
Changes to MIDAS support

Refer also to the What’s new for information on additional features that you may want to incorporate into
your applications.

Summary of compatibility issues
Following are general compatibility issues that may affect your Delphi applications:

Forms are now saved as text. See Forms in Delphi 5.
Any property that represents an index into an image list has changed from type Integer to type

TImageIndex.
The type of the TDatabase OnLogin event has been renamed TDatabaseLoginEvent from

TLoginEvent.
COM changes to CoInitFlags have occurred to support initialization and multi-threading. See

CoInitFlags changes.
The HRESULT type is declared in System.pas as a signed 32-bit integer (Longint), which

matches the Windows SDK. In Delphi 4, but not in previous versions, HRESULT had been declared in
Ole2.pas as an unsigned 32-bit integer (Longword).

If you are responsible for upgrading multi-tier client/server applications, MIDAS has changed. See
Converting MIDAS applications, Changes to MIDAS support, and Changes to MIDAS security for
information on how to update your MIDAS applications from previous releases.

The default alignment has changed for this release. See Default alignment for an example of how
this might affect your application.

TCustomTreeview.CustomDrawItem has a new parameter. If an existing application overrides this
method, it will not compile until a new parameter is added.

The TWebBrowser component on the Internet page replaces the THTML component from
Netmasters. See Upgrading applications that use THTML.

Delphi 4 symbol files are not compatible with Delphi 5. If you see the message “Error reading
symbol file” when opening a Delphi 4 application, close the message box and rebuild the application.

When you create an application, Delphi creates a <project>.RES file which contains version info
resources plus the application’s main icon. As of Delphi 5, .RES files are required to open a project. If
a .RES file is not found, you will receive an error message (File not found <project>.RES). If you are
opening an older project that does not have an associated .RES file, you can copy a .RES file from
another project (such as those supplied in your \Help\Examples folders) to your project location, change
the base file name of the "dummy" .RES to match your project name, then reopen your project. Your
project will update the acquired .RES file as necessary.

Existing controls that invoke pop-up menus in response to WM_RBUTTONUP or OnMouseUp
events may exhibit "double" pop-up menus or no pop-up menus at all when compiled with Delphi 5. See
Changes with invoking pop-up menus.

You can use packages when building an ISAPI/NSAPI DLL. This change impacts existing
WebBroker applications. See Upgrading WebBroker applications.

DLL startup code no longer sets the FPU control word. See Changes to DLL initialization code.
When you export an overloaded function or procedure from a DLL, you must specify the routine's

parameter list in the exports clause. As a result, some code written for early releases of Delphi 4 will
cause compilation errors in Delphi 5. For more information, see The exports clause.

Code generation when importing type libraries has been modified and enhanced to allow you to
map symbol names. See Mapping symbol names in the type library.

The global FMTBCDToCurr and CurrToFMTBCD routines have been replaced by the new
BCDToCurr and CurrToBCD routines (and the corresponding protected methods on TDataSet have been
replaced by the protected and undocumented DataConvert method).

The TFieldType enumerated variable has additional values.
For QuickReports printing, the format of the method BeforePrint changed from

BeforePrint(Sender: TQuickRep; var PrintReport: Boolean);
to
BeforePrint(Sender: TCustomQuickRep; var PrintReport: Boolean);

The TwoDigitYearCenturyWindow variable now has the default value of 50 (instead of 0). This
affects the way 2-digit string dates are converted to numeric dates with StrToDate or StrToDateTime. For
example, 00 converts to 2000 instead of 1900, but 50 or later will still be 1950.

The new Resource DLL wizard does not fully process output from the old Resource DLL wizard. If
you run the wizard to update an old translation project, existing translations from form files are placed in

the Translation Manager's "Previous ..." column. Existing translations from other resource files are not
preserved, but you can copy them from the old PRJSTRS.RC file.

Under Web Deployment options, Delphi no longer supports code signing. Developers who want
to code sign their files must now use the command-line utilities provided by Microsoft.

Forms in Delphi 5
Form files (DFMs) are now saved as text rather than binary, by default. Therefore, if you plan to use
forms created in Delphi 5 in earlier versions of Delphi, you need to save the forms as binary. Right-click
on a form and uncheck Text DFM to save a particular form as binary. Uncheck the New forms as text on
the Preferences page of the Tools|Environment Options to save forms in binary as your default modus
operandi.
In addition, if you plan to use Delphi 5 forms in earlier versions of Delphi, using new or changed
properties may cause errors when opening the forms particularly if you set properties to other than the
default value. (For example, if using the new published properties THeaderSection.ImageIndex and
THeaderControl.DragReorder. In short, be careful not to use new features in your forms if you need
them to be backward compatible.

CoInitFlags changes
The class factories in Delphi 5 better support COM initialization and multi-threaded memory
management. In Delphi 4, the only way to make a free threaded EXE COM server was to initialize
CoInitFlags in your program's main source file (.dpr in Delphi) before the call to Application.Initialize.
Delphi 5 makes that step unnecessary: if your exe contains a free threaded server, Delphi will initialize
COM for freethreading.
This change should not adversely affect apartment-threaded objects in EXE servers that contain a mix
of free threaded and apartment threaded objects. Even though COM is initialized at the project level for
free threading, your apartment threaded objects will still be treated as apartment model by COM, and if
you create new threads for apartment model objects, you're responsible for calling CoInitialize anyway.
If you have an application with multiple COM objects, registration occurs using the highest threading
model support. For example, if you have one tmFree object and one tmSingle object, the CoInitFlags is
set to COINIT_MULTITHREADED and IsMultiThread is set to True.
CoInitFlags only affects COM EXE servers. Therefore, if in Delphi 4 you developed a COM EXE server
with an object marked with the tmFree ThreadingModel and didn't change the CoInitFlags:

In Delphi 4, you would not have a free threaded server
In Delphi 5, you would have a free threaded server

The only problem this might cause is for objects marked for free threading that never actually executed
as free threaded in Delphi 4 if you neglected to initialize CoInitFlags yourself. In Delphi 5, those objects
will now execute as free threaded. If the objects are not fully prepared for free threading resource
protection, the objects could exhibit "new" errors in code that previously appeared to work (because it
wasn't actually free threaded). If you are uncertain about how this change affects your objects, change
the threading model of your objects to Apartment to preserve their Delphi 4 behavior.

CoInitFlags
If you have a COM object with a ThreadingModel of tmFree or tmBoth, CoInitFlags are set to
COINIT_MULTITHREADED. For a COM object with a ThreadingModel of tmApartment, CoInitFlags are
set to COINIT_APARTMENTTHREADED.
Use of the ThreadedClassFactory is no longer needed. It may interfere with COM reference counting.

IsMultiThreaded
If you have a COM object with a ThreadingModel of tmApartment, tmFree, or tmBoth, IsMultiThreaded is
set to True.

Summary
ThreadingModel IsMultiThread CoInitFlags
tmFree Yes COINIT_MULTITHREADED
tmBoth Yes COINIT_MULTITHREADED
tmApartment Yes COINIT_APARTMENTTHREADED
tmSingle No CoInitialize(nil) is called (like COINIT_APARTMENTTHREADED)

Default alignment
The compiler's default data alignment has changed from packed to unpacked for Microsoft compatibility.
Because the compiler's default data alignment has changed, this section provides details on data
alignment and potential impacts on your Delphi applications.

What is data alignment?
Setting data alignment affects the size and placement of the data members of structures and classes.
Thus, if a pointer to a structure is passed to a DLL or another OBJ that has been compiled with a
different data alignment, the destination code could be referencing incorrect locations in the struct or
class for data. This can lead to strange behavior when the program is executed or potentially cause it to
crash.
The problems caused by having mismatched data alignment are commonly hard to track down. For
example:
var
 T: record
 ld1: extended;
 ld2: extended;
 end;
Compiled as unaligned or packed (using $a-):T.ld1 resides in bytes 0 through 9 of T, T.ld2 resides in
bytes 10 through 19. No padding is necessary for packed alignment. The record is 20 bytes in size.
Compiled aligned or unpacked (using $a+): T.ld1 resides in bytes 0 through 9 of T, T.ld2 resides in
bytes 16 through 25. Because the structure needs to be padded with empty bytes for unpacked
alignment, the record is 32 bytes in size.

Converting MIDAS applications
The architecture to support multi-tier database (MIDAS) servers in stateless environments (such as
MTS) has changed in Delphi 5. This has advantages over the previous architecture and offers a
significant increase in performance and scalability by reducing message traffic. You will need to update
your MIDAS 1 and MIDAS 2 applications to work with MIDAS 3.
Follow these steps to convert your MIDAS 1 or MIDAS 2 applications to MIDAS 3:
1. Open your MIDAS server.
2. View the Type Library.
3. Add the Borland Midas type library to the Uses page of the server library properties.
4. Remove the BdeProv unit from the uses clause.
5. Change the Parent Interface of your server to IAppServer.
6. Write down the name of any property that returns an IProvider and note any other methods that use

IProvider. IProvider is no longer supported, so delete all properties that return an IProvider.
Note:You need to rewrite methods that use IProvider. These properties are added when you export a

provider and may include custom methods that use IProvider as well.
7. Save the type library.
8. Open your RemoteDataModule.
9. From the list that you created of old IProvider properties, make sure you have a TProvider for each of

those properties. If any are missing, drop a TProvider and set its Name property to the old property
name and connect it to the appropriate dataset.
Note: If porting a MIDAS 1 application, you may want to take this opportunity to convert your master

detail relations into nested datasets.
10. For any TProvider that you don't want visible from the client, set TProvider’s Exported property to

False.
11. Delete the same IProvider properties from the data module that you deleted from the type library.
12. If your data module is derived from TDataModule, change it to derive from TRemoteDataModule.
13. Run the Socket Server and choose Connections|Registered Objects Only to disable added socket

and web connection security. See Changes to MIDAS security for information on how to update your
application to include this security.

14. Recompile the server.
15. Recompile the client.
Refer also to Changes to MIDAS support for detailed information about the architectural changes.

Changes to MIDAS support
The following changes were made to support MIDAS enhancements. See Converting MIDAS
applications for information on how to how to update your MIDAS applications.

TDataSet
Provider property was removed. You now need to use an explicit provider component for any dataset.

Socket and web connection registration
The Socket Server used to make all objects available. Now only those objects that have been properly
registered will be made available in the socket connection or web connection dropdown boxes. See
Changes to MIDAS security for information on how to update your application to override this security or
to determine how to register application servers.

IProvider
IProvider was removed. You can now use the AppServer property on TClientDataSet or the GetServer
method of the TCustomRemoteServer (Connection) components. Here is the list of replacements
showing the old IProvider functions with a code sample, then the new function with a new code sample.

Constraints
Constraints cannot be turned on or off from the client. These methods no longer work.
function IProvider.Get_Constraints: WordBool; safecall;
procedure IProvider.Set_Constraints(Value: WordBool); safecall;
property IProvider.Constraints: WordBool read Get_Constraints write
Set_Constraints;

Getting and setting properties
The process of getting data and setting properties such as Params and Metadata have changed.
Typically, you won't have to do anything different. If you used to call any of these methods directly from
the IProvider, then you will now need to call them on IAppServer.
function IProvider.Get_Data: OleVariant; safecall;
function IProvider.GetMetaData: OleVariant; safecall;
function IProvider.GetRecords(Count: Integer; out RecsOut: Integer):
OleVariant; safecall;
procedure IProvider.SetParams(Values: OleVariant); safecall;
procedure IProvider.Reset(MetaData: WordBool); safecall;
property IProvider.Data: OleVariant read Get_Data;

function GetDataTheOldWay(Connection: TDCOMConnection; ProviderName:
string; Params: OleVariant;
 Metadata: Boolean);
var
 Provider: IProvider;
 RecsOut: Integer;
begin
 Provider := Connection.GetProvider(ProviderName);
 Provider.Reset(Metadata);
 Provider.SetParams(Params);
 Result := Provider.GetRecords(-1, RecsOut);
 { 5 network roundtrips, 1 additional interface }
end;

function AS_GetRecords(const ProviderName: WideString; Count: Integer;
out RecsOut: Integer;
 Options: Integer; var Params: OleVariant; var OwnerData: OleVariant):

OleVariant; safecall;

function GetDataTheNewWay(Connection: TDCOMConnection; ProviderName:
string; Params: OleVariant;
 Metadata: Boolean);
var
 Options, RecsOut: Integer;
begin
 if Metadata then Options := INCLUDE_METADATA else Options := 0;
 Result := Connection.GetServer.AS_GetRecords(ProviderName, -1,
RecsOut, Options, Params, NULL);
 { 1 network roundtrip, 0 additional interfaces }
end;

ApplyUpdates
You can still use the ApplyUpdates from the TClientDataSet. If you were calling ApplyUpdates directly
from the IProvider, you need to use the IAppServer instead.
function IProvider.ApplyUpdates(Delta: OleVariant; MaxErrors: Integer;
out ErrorCount: Integer): OleVariant; safecall;

procedure ApplyUpdatesTheOldWay(CDS: TClientDataSet);
var
 ErrorPacket: OleVariant;
 Errors: Integer;
begin
 ErrorPacket := CDS.Provider.ApplyUpdates(CDS.Delta, -1, Errors);
 if Errors > 0 then
 CDS.Reconcile(ErrorPacket);
end;

function AS_ApplyUpdates(const ProviderName: WideString; Delta:
OleVariant; MaxErrors: Integer;
 out ErrorCount: Integer; var OwnerData: OleVariant): OleVariant;
safecall;

procedure ApplyUpdatesTheNewWay(CDS: TClientDataSet);
var
 ErrorPacket: OleVariant;
 Errors: Integer;
begin
 ErrorPacket := CDS.AppServer.AS_ApplyUpdates(CDS.ProviderName,
CDS.Delta, -1, Errors, NULL);
 if Errors > 0 then
 CDS.Reconcile(ErrorPacket);
end;

DataRequest
You can now use a DataRequest helper function on TClientDataSet or call it directly from the
IAppServer interface.
function IProvider.DataRequest(Input: OleVariant): OleVariant; safecall;

procedure DataRequestTheOldWay(CDS: TClientDataset);
begin
 CDS.Provider.DataRequest('MyCustomData');

end;

function IAppServer.AS_DataRequest(const ProviderName: WideString; Data:
OleVariant): OleVariant;

procedure DataRequestTheNewWay(CDS: TClientDataset);
begin
 CDS.DataRequest('MyCustomData');
{ or }
 CDS.AppServer.AS_DataRequest(CDS.ProviderName, 'MyCustomData');
end;

TClientDataSet
FetchParams still works as it did, except, you no longer have to call it after executing a stored procedure
with output parameters. The output parameters are automatically updated on the TClientDataSet.
Many BeforeXXX and AfterXXX events have been added to allow custom data to be sent with calls to
the server. This allows stateless servers to maintain state information on the client.
HasProvider is now HasAppServer.
The Provider property is now the AppServer property.
An Execute method has been added to allow StoredProcedure and Queries that do not return a result
set to be executed.
SendParams has been removed.

TDataSetProvider
TDataSetProvider can now apply updates directly to the database server as well as to a dataset. The
dataset components implement an interface that enables them to work with a dataset provider. This
allows TDataSetProvider to work with any sort of dataset (BDE-enabled, InterBase Express, or ADO-
based as well as client datasets or custom datasets) while not requiring the BDE or DBOLE (the
requirement for a specific data access engine rests with the dataset, not the provider).
Because of these changes, the distinction between TProvider and TDataSetProvider is no longer
relevant. TDataSetProvider can do everything previously handled by TProvider and more. As a result,
TProvider has been removed from the component palette. The class declaration still exists (although it
has moved from Bdeprov to Provider), but only for backward compatibility.

TCustomRemoteServer or TXXXConnection components
GetProvider has been removed.
GetServer now returns an IAppServer interface that can be used to call methods on the server.

TCustomProvider
Many BeforeXXX and AfterXXX events have been added to allow custom data to be sent with calls to
the server. This allows stateless servers to maintain state information on the client.
TCustomProvider.Reset no longer exists. It now is an option in GetRecords. (The interface of
GetRecords has changed.) TCustomProvider.FetchData also no longer exists.

Changes to MIDAS security
Security has been added to the socket and web connection. The server will only show objects that have
been exported for that connection type. You may want to upgrade your application server to include a
call to enable socket transport. You can also use the Socket Server menu item (Connections|Registered
Objects Only) to disable security checking (for backward compatibility). This option is ON by default.
If upgrading your application: objects are exported by setting registry entries. Under CLSID\{xxx}, values
for Sockets and Web must be set to 1 for exported. You can also use the following registry helper
functions to register these values:

EnableSocketTransport
DisableSocketTransport
EnableWebTransport
DisableWebTransport

By default, TRemoteDataModule includes an overriden UpdateRegistry method that looks like this:
class procedure TMyRDM.UpdateRegistry(Register: Boolean; const ClassID,
ProgID: string);
begin
 if Register then
 begin
 inherited UpdateRegistry(Register, ClassID, ProgID);
 EnableSocketTransport(ClassID);
 EnableWebTransport(ClassID);
 end else
 begin
 DisableSocketTransport(ClassID);
 DisableWebTransport(ClassID);
 inherited UpdateRegistry(Register, ClassID, ProgID);
 end;
end;
This means that by default both transports are enabled. You can remove these lines from this method to
disable an object for a particular transport.

Upgrading applications that use THTML
To upgrade applications from prior releases of Delphi and which use THTML, you have two choices:

Use the new TWebBrowser component on the Internet page of the Component Palette.
Import the Delphi 4 NetMasters HTML.OCX (located on the Delphi 5 CD-ROM in \Info\Extras\

NetManage).
To install NetManage OCX components:

1. Copy the files Html.ocx, *.dll to the Windows\System directory.
2. Register the Html.Ocx control.
3. From within Delphi, install the package \Bin\DCLIsp50.bpl.

Mapping symbol names in the type library
When importing type libraries in Delphi 5, custom mapping for some type libraries is specified in
tlibimp.sym and may differ from code generation in previous releases. For example, when doing
Microsoft Word automation, the symbol which used to be CoApplication_ is now CoWordApplication.
In previous releases, when new type libraries were added using an existing identifier, an underscore
was added to distinguish the identifier. So, the identifier called Application became Application_. Multiple
underscores might be added if another imported type library used the same identifier.
Delphi 5 provides the ability to map symbol names in the type library within the tlibimp.sym file located in
the BIN directory. The tlibimp.sym file contains mapping for some common applications including
Microsoft Word, Microsoft Excel, Microsoft PowerPoint, and Microsoft Access. If you have applications
that use these servers, you may have conflicts when compiling them in Delphi 5.
The following example shows how symbol names are remapped in Microsoft Word. The first line (after
the comment) specifies the GUID (globally unique identifier) of the server in the registry. For example,
[{00020905-0000-0000-C000-000000000046}:TypeNames]
The rest of the lines remap keys to new values (instead of just adding an underscore to conflicting
identifiers). For example,
Application=WordApplication
Example remapping for Microsoft Word
;;==;;
;; Map WinWord CoClasses to better names ;;
;;==;;
[{00020905-0000-0000-C000-000000000046}:TypeNames]
Application=WordApplication
Document=WordDocument
Font=WordFont
ParagraphFormat=WordParagraphFormat
OLEControl=WordOLEControl
LetterContent=WordLetterContent
You can map conflicting symbols for other servers whose type libraries you want to import by using the
same format as shown for the example above.
Note Be careful when editing tlibimp.sym. Don’t change remapping that occurs for C++ or Pascal

member or type names in the beginning of the file.

Changes with invoking pop-up menus
Delphi 5.0 now relies on the WM_CONTEXTMENU message to invoke pop-up menus. Windows sends
controls WM_CONTEXTMENU in response to WM_RBUTTONUP messages, Shift+F10 keystroke
messages, and "Windows Key" keystroke messages on special keyboards. Accessibility options can
enable other keystrokes or devices to invoke context sensitive help on a control.
Existing controls that invoke pop-up menus in response to WM_RBUTTONUP or OnMouseUp events
may exhibit "double" pop-up menus or no pop-up menus at all when compiled with Delphi 5. Controls
should now invoke pop-up menus in response to WM_CONTEXTMENU messages, or in the new
OnContextPopup event.
Existing controls that process WM_RBUTTONUP messages MUST pass the message to the inherited
message handler (or DefWndProc) to enable the default handlers to issue a WM_CONTEXTMENU
message.
The move to WM_CONTEXTMENU may inconvenience some existing controls, but we feel this change
is necessary to support the increasing number of ways that the Win32 UI provides to invoke context
menus by mouse, keyboard, and accessibility devices.

Upgrading WebBroker applications
WebBroker now supports the use of packages when building an ISAPI/NSAPI DLL. To do this, several
items were moved from the HTTPApp unit into a new unit called WebBroker.
The existing units ISAPIApp and CGIApp, along with the new WebBroker unit, include the compiler
directive {$DENYPACKAGEUNIT}. This ensures that these units will never be allowed to be contained
within a package. These units will always be linked directly into the WebBroker application (EXE, DLL).
If you want to use the WebBroker architecture and rely on the WebBroker’s Application variable, you
must include WebBroker in the uses clause. Otherwise, you will get an undeclared identifier error.
To upgrade existing Delphi WebBroker applications (ISAPI/NSAPI, CGI, and WinCGI):
 Replace the reference to HTTPApp in the uses clause in the main program .DPR file with WebBroker.

Changes to DLL initialization code
Changes in DLL initialization code make Delphi DLLs more compatible with host applications that do not
support floating-point exceptions or full floating-point precision. The DLL initialization code now
preserves the FPU control word established by the host application.
In previous versions of Delphi, DLLs set the FPU control word to enable floating-point exceptions for
operations (such as division by zero) and to enable full 80-bit precision in calculations. Some DLL hosts,
including scripting languages in web browsers, can crash or fail when floating-point exceptions are
turned on when they load a DLL or instantiate an in-process COM server.
In Delphi 5, DLLs no longer assert the Delphi-preferred FPU control word ($1332). This means that
when your code resides in a DLL, the precision of FPU calculations and exception handling behavior will
depend on the host application's preferences. This may adversely affect your existing Delphi code that
relies on full precision calculations or FPU exceptions.
If you require a particular FPU configuration in DLL routines, you should set the FPU control word
yourself (call Set8087CW), preferrably immediately before the code that needs the particular FPU
configuration. To avoid disrupting the host application, you should restore the FPU control word to its
original value as your routine returns to its caller.

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

The topic you requested is now loading. If it does not appear within a few seconds, the topic is either not
available or not linked to this Help system. This can occur if you launched this Help file from a system on
which Delphi has not yet been installed, or if the subject matter you are requesting is not available in
your edition of Delphi.

