
Overview
See also

What is local SQL?
Local SQL is the subset of the SQL-92 specification used to access dBASE, Paradox, and FoxPro
tables. On receving local SQL statements from front-end applications, the Borland Database Engine
(BDE) translates the statements into BDE API functions.

The local SQL language set
The SQL statements fall into two categories: Data Manipulation Language (DML) and Data Definition
Language (DDL).
DML consists of SQL statements used for retrieving, inserting, updating, and deleting table data.
SELECT is a DML statement.
DDL consists of SQL statements used for creating, altering, and deleting tables, and for creating and
deleting indexes. CREATE TABLE and DROP INDEX are DDL statements.
For a complete introduction to ANSI-standard SQL, see one of the many available third-party books.

Typographical conventions
See the Legend for definitions of the typographical conventions used in this help file for SQL syntax
examples.
Note The information covered in this help file pertains to the 32-bit version of the BDE. Certain features

discussed are not available in the 16-bit BDE, like nested SELECT queries.

{button ,AL(`bdedocs')} Other BDE online documentation

Legend

Typographical conventions
To ensure clarity in the SQL syntax examples and pseudo-code, the typographical conventions that
follow are used throughout the local SQL help.

SQL statements
Each topic contains a pseudo-code prototype of an SQL statement or part of a statement that
demonstrates the language element discussed. These prototype examples appear at the beginning of
topics. Actual SQL statements appear within topics that demonstrate actual use of the language element
discussed. Both the prototype and example statements appear in Courier New font.

While the local SQL language itself is case-insensitive (language elements and metadata object names),
examples in this help file use the following convention to differentiate between language and metadata
objects. All language elements appear in uppercase. Metadata names appear in lowercase. Correlation
names appear in mixed case.

Optional elements
Language elements that are available, but that do not have to be used with an SQL statement for the
statement to be valid appear in prototype syntax examples in brakets ([and]). For example, in the line
below, the DISTINCT keyword is optional.
SELECT [DISTINCT] *
Syntax choices
When there is a choice between one of a number of possible syntax elements, such choices will be
listed in prototype syntax examples separated by the vertical bar character (|). Unless also enclosed in
brackets to make the group of choices optional, one of the group of choices must be used in the
statement. In the prototype syntax example below, the SQL statement may include either the ASC or the
DESC keyword, but not both. Because the list of choices (ASC and DESC) is enclosed in brackets, use
of either keyword is optional.
ORDER BY column_reference [ASC | DESC]
Note Do not mistake the choice typographical symbol for the concatenation function, defined as two

vertical bar characters together (||).

Conventions
See also
Certain rules apply during use of local SQL. These rules govern the naming of columns and tables, the
format for DATE values, the use of boolean values, and other aspects of the local SQL language. Failure
to abide by these rules when composing SQL statements will result in the SQL statements not working
and errors incurred.
Table names
Column names
Date formats
Time formats
Boolean literals
Table correlation names
Column correlation names
Embedded comments

Table names
See also
ANSI-standard SQL confines each table name to a single word comprised of alphanumeric characters
and the underscore symbol, "_". Local SQL, however, is enhanced to support multi-word table names.
SELECT *
FROM customer
Local SQL supports full file and path specifications in table references. Table references with path or
filename extensions must be enclosed in single or double quotation marks. For example:
SELECT *
FROM 'parts.dbf'
SELECT *
FROM "c:\sample\parts.dbf"
Local SQL also supports BDE aliases in table references. For example:
SELECT *
FROM ":pdox:table1"
If you omit the file extension for a local table name, the table is assumed to be the table type specified in
the BDE configuration. The default table type is specified either in the default driver setting or in the
default driver type for the standard alias associated with the query.
Finally, local SQL permits table names to duplicate SQL keywords as long as those table names are
enclosed in single or double quotation marks. For example:
SELECT passid
FROM "password"

Column names
See also
ANSI-standard SQL confines each column name to a single word comprised of alphanumeric characters
and the underscore symbol, "_". Local SQL, however, is enhanced to support multi-word column names.
Local SQL supports Paradox multi-word column names and column names that duplicate SQL keywords
as long as those column names are

Enclosed in single or double quotation marks
Prefaced with an SQL table name or table correlation name

For example, the following column name consists of two words:
SELECT E."Emp Id"
FROM employee E
In the next example, the column name is the same as the SQL keyword DATE:
SELECT datelog."date"
FROM datelog

Date formats
See also
Local SQL expects date literals to be in a U.S. date format, MM/DD/YY or MM/DD/YYYY. International
date formats are not supported. To prevent date literals from being mistaken by the SQL parser for
arithmetic calculations, enclose them in quotation marks. This keeps 1/23/1998 from being mistaken for
1 divided by 23 divided by 1998.
SELECT *
FROM orders
WHERE (saledate <= "1/23/1998")
Leading zeros for the month and day fields are optional.
If the century is not specified for the year, the BDE setting FOURDIGITYEAR controls the century. If
FOURDIGITYEAR is set to FALSE and the year is specified with only two digits, years 49 and less will
be prefiex with 20 and years 50 and higher with 19. If
For example, with FOURDIGITYEAR set to FALSE, the SQL statement below returns rows where the
SaleDate column contains dates of “5/5/1980” or “5/5/2030”.
SELECT *
FROM orders
WHERE (saledate = "5/5/30") OR
 (saledate = "5/5/80")
To query using years outside these bounds, specify the century in the date literal.
SELECT *
FROM orders
WHERE (saledate = "5/5/1930") OR
 (saledate = "5/5/2080")

Time formats
See also
Local SQL expects time literals to be in the format hh:mm:ss AM/PM; where hh are the hours, mm the
minutes, and ss the seconds. When inserting new data with a time value, the AM/PM designator is
optional and is case-insensitive ("AM" is the same as "am"). The time literal must be enclosed in
quotation marks.
INSERT INTO WorkOrder
(ID, StartTime)
VALUES ("B00120","10:30:00 PM")
Indicate which half of the day (morning or after noon) a time literal falls under in one of two ways. If an
AM or PM marker is specified, that determines the half of the day. If no AM/PM designator is specified,
the hour field is compared to 12. If the hour is less than twelve, the time is in the AM; if greater than 12,
after noon. The hour field overrides an AM/PM designator. For example, the time literal "15:03:22 AM" is
translated as "3:03:22 PM".

Boolean literals
The boolean literal values TRUE and FALSE may be represented with or without quotation marks.
SELECT *
FROM transfers
WHERE (paid = TRUE) AND NOT (incomplete = "FALSE")

Table correlation names
See also
Table correlation names are used to explicitly associate a column with the table from which it comes.
This is especially useful when multiple columns of the same name appear in the same query, typically in
multi-table queries. A table correlation name is defined by following the table reference in the FROM
clause of a SELECT query with a unique identifier. This identifier, or table correlation name, can then be
used to prefix a column name.
If the table name is not a quoted string, the table name is the default implicit correlation name. An
explicit correlation name the same as the table name need not be specified in the FROM clause and the
table name can prefix column names in other parts of the statement.
SELECT *
FROM customer
 LEFT OUTER JOIN orders
 ON (customer.custno = orders.custno)
If the table name is a quoted string, you need to do one of the following:
Prefix column names with the exact quoted string used for the table in the FROM clause.
SELECT *
FROM "customer.db"
 LEFT OUTER JOIN "orders.db"
 ON ("customer.db".custno = "orders.db".custno)
Use the full table name as a correlation name in the FROM clause (and prefix all column references
with the same correlation name).
SELECT *
FROM "customer.db" CUSTOMER
 LEFT OUTER JOIN "orders.db" ORDERS
 ON (CUSTOMER.custno = ORDERS.custno)
Use a distinctive token as a correlation name in the FROM clause (and prefix all column references with
the same correlation name).
SELECT *
FROM "customer.db" C
 LEFT OUTER JOIN "orders.db" O
 ON (C.custno = O.custno)

Column correlation names
See also
Use the AS keyword to assign a correlation name to a column, aggregated value, or literal. Column
correlation names cannot be enclosed in quotation marks and so cannot contain embedded spaces. In
the statement below, the tokens Sub and Word are column correlation names.
SELECT SUBSTRING(company FROM 1 FOR 1) AS sub, "Text" AS word
FROM customer

Embedded comments
Comments, or remarks, can be embedded in SQL statements to add clarity or explanation. Text is
designated as a comment and not treated as SQL by enclosing it within the beginning /* and ending */
comment symbols. The symbols and comments need not be on the same line.
/*
 This is a comment
*/
SELECT SUBSTRING(company FROM 1 FOR 1) AS sub, "Text" AS word
FROM customer
Comments can also be embedded within an SQL statement. This is useful when debugging an SQL
statement, such as removing one clause for testing.
SELECT company
FROM customer
/* WHERE (state = "TX") */
ORDER BY company

Reserved words
See also
Below is an alphabetical list of words reserved by local SQL. Avoid using these reserved words for the
names of metadata objects (tables, columns, and indexes). An "Invalid use of keyword error" occurs
when reserved words are used as names for metadata objects. If a metadata object must have a
reserved word as it name, prevent the error by enclosing the name in quotation marks and prefixing the
reference with the table name.

ACTIVE
ADD
ALL
AFTER
ALTER
AND
ANY
AS
ASC
ASCENDING
AT
AUTO
AUTOINC
AVG
BASE_NAME
BEFORE
BEGIN
BETWEEN
BLOB
BOOLEAN
BOTH
BY
BYTES
CACHE
CAST
CHAR
CHARACTER
CHECK
CHECK_POINT_LENGTH
COLLATE
COLUMN
COMMIT
COMMITTED
COMPUTED
CONDITIONAL
CONSTRAINT
CONTAINING
COUNT
CREATE
CSTRING
CURRENT
CURSOR
DATABASE
DATE
DAY
DEBUG
DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DESC
DESCENDING
DISTINCT

DO
DOMAIN
DOUBLE
DROP
ELSE
END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS
EXIT
EXTERNAL
EXTRACT
FILE
FILTER
FLOAT
FOR
FOREIGN
FROM
FULL
FUNCTION
GDSCODE
GENERATOR
GEN_ID
GRANT
GROUP
GROUP_COMMIT_WAIT_T

IME
HAVING
HOUR
IF
IN
INT
INACTIVE
INDEX
INNER
INPUT_TYPE
INSERT
INTEGER
INTO
IS
ISOLATION
JOIN
KEY
LONG
LENGTH
LOGFILE
LOWER
LEADING
LEFT
LEVEL
LIKE
LOG_BUFFER_SIZE

MANUAL
MAX
MAXIMUM_SEGMENT
MERGE
MESSAGE
MIN
MINUTE
MODULE_NAME
MONEY
MONTH
NAMES
NATIONAL
NATURAL
NCHAR
NO
NOT
NULL
NUM_LOG_BUFFERS
NUMERIC
OF
ON
ONLY
OPTION
OR
ORDER
OUTER
OUTPUT_TYPE
OVERFLOW
PAGE_SIZE
PAGE
PAGES
PARAMETER
PASSWORD
PLAN
POSITION
POST_EVENT
PRECISION
PROCEDURE
PROTECTED
PRIMARY
PRIVILEGES
RAW_PARTITIONS
RDB$DB_KEY
READ
REAL
RECORD_VERSION
REFERENCES
RESERV
RESERVING
RETAIN
RETURNING_VALUES
RETURNS
REVOKE
RIGHT

ROLLBACK
SECOND
SEGMENT
SELECT
SET
SHARED
SHADOW
SCHEMA
SINGULAR
SIZE
SMALLINT
SNAPSHOT
SOME
SORT
SQLCODE
STABILITY
STARTING
STARTS
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE
THEN
TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TRAILING
TRANSACTION
TRIGGER
TRIM
UNCOMMITTED
UNION
UNIQUE
UPDATE
UPPER
USER
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WAIT
WHEN
WHERE
WHILE
WITH
WORK
WRITE
YEAR

The following are operators used in local SQL. Avoid using these characters in the names of metadata

objects.
||, -, *, /, <>, <, >, ,(comma), =, <=, >=, ~=, !=, ^=, (,)

Unsupported language
See also
The following SQL-92 language elements are not used in local SQL.

ALLOCATE CURSOR (Command)
ALLOCATE DESCRIPTOR (Command)
ALTER DOMAIN (Command)
CASE (Expression)
CHECK (Constraint)
CLOSE (Command)
COALESCE (Expression)
COMMIT (Command)
CONNECT (Command)
CONVERT (Function)
CORRESPONDING BY (Expression)
CREATE ASSERTION (Command)
CREATE CHARACTER SET (Command)
CREATE COLLATION (Command)
CREATE DOMAIN (Command)
CREATE SCHEMA (Command)
CREATE TRANSLATION (Command)
CREATE VIEW (Command)
CROSS JOIN (Relational operator)
CURRENT_DATE (Function)
CURRENT_TIME (Function)
CURRENT_TIMESTAMP (Function)
DEALLOCATE DESCRIPTOR (Command)
DEALLOCATE PREPARE (Command)
DECLARE CURSOR (Command)
DECLARE LOCAL TEMPORARY TABLE (Command)
DESCRIBE (Command)
DISCONNECT (Command)
DROP ASSERTION (Command)
DROP CHARACTER SET (Command)
DROP COLLATION (Command)
DROP DOMAIN (Command)
DROP SCHEMA (Command)

DROP TRANSLATION (Command)
DROP VIEW (Command)
EXCEPT (Relational operator)
EXECUTE (Command)
EXECUTE IMMEDIATE (Command)
FETCH (Command)
FOREIGN KEY (Constraint)
GET DESCRIPTOR (Command)
GET DIAGNOSTICS (Command)
GRANT (Command)
INTERSECT (Relational operator)
MATCH (Predicate)
NATURAL (Relational operator)
NULLIF (Expression)
OPEN (Command)
OVERLAPS (Predicate)
PREPARE (Command)
REFERENCES (Constraint)
REVOKE (Command)
ROLLBACK (Command)
Row value constructors
SET CATALOG (Command)
SET CONNECTION (Command)
SET CONSTRAINTS MODE (Command)
SET DESCRIPTOR (Command)
SET NAMES (Command)
SET SCHEMA (Command)
SET SESSION AUTHORIZATION (Command)
SET TIME ZONE (Command)
SET TRANSACTION (Command)
TRANSLATE (Function)
UNIQUE (Predicate)
USING (Relational operator)

Data manipulation overview
Category Description
Statement list Statements, or commands, that retrieve, modify, and delete data.
Clause list Clauses of statements that affect how a statement operates.
Function list Functions like UPPER that alter data and SUM that aggregate data.
Operator list Arithmetic, comparison, logical, and string concatenation operators.
Predicate list Keywords used in WHERE clauses to qualify rows returned by a

statement.
Relational operators Operators that allow joining multiple tables.
Updatable queries Conditions under which queries are updateable or read-only.
Parameters in queries Using parameters to make queries dynamic.

DML statement list
Local SQL supports the following data manipulation language (DML) statements:

DML Statements Description
SELECT Retrieves existing data from a table.
DELETE Deletes existing data from a table.
INSERT Adds new data to a table.
UPDATE Modifies existing data in a table.

SELECT statement
See also
Retrieves data from tables.
SELECT [DISTINCT] * | column_list
FROM table_reference
[WHERE predicates]
[ORDER BY order_list]
[GROUP BY group_list]
[HAVING having_condition]
Description
Use the SELECT statement to

Retrieve a single row, or part of a row, from a table, referred to as a singleton select.
Retrieve multiple rows, or parts of rows, from a table.
Retrieve related rows, or parts of rows, from a join of two or more tables.

The SELECT clause defines the list of items returned by the SELECT statement. The SELECT clause
uses a comma-separated list composed of: table columns, literal values, and column or literal values
modified by functions. Literal values in the columns list may be passed to the SELECT statement via
parameters. You cannot use parameters to represent column names. Use an asterisk to retrieve values
from all columns.
Columns in the column list for the SELECT clause may come from more than one table, but can only
come from those tables listed in the FROM clause. See Relational Operators for more information on
using the SELECT statement to retrieve data from multiple tables.
The FROM clause identifies the table(s) from which data is retrieved.
The following statement retrieves data for two columns in all rows of a table.
SELECT custno, company
FROM orders

Use DISTINCT to limit the retrieved data to only distinct rows. The distinctness of rows is based on the
combination of the columns in the SELECT clause columns list. DISTINCT can only be used with simple
column types like CHAR and INTEGER; it cannot be used with complex column types like BLOB and
memo.
In lieu of a table, a SELECT statement may retrieve rows from a Paradox-style .QBE file. This is an
approximation of an SQL view.
SELECT *
FROM "customers.qbe"

DELETE statement
See also
Deletes one or more rows from a table.
DELETE FROM table_reference
[WHERE predicates]

Description
Use DELETE to delete one or more rows from an existing table.
DELETE FROM "employee.db"
The optional WHERE clause restricts row deletions to a subset of rows in the table. If no WHERE
clause is specified, all rows in the table are deleted.
DELETE FROM "employee.db"
WHERE (empno IN (SELECT empno FROM "old_employee.db"))
The table reference cannot be passed to the DELETE statement via a parameter.

INSERT statement
See also
Adds one or more new rows of data in a table
INSERT INTO table_reference
[(columns_list)]
VALUES (update_atoms)
Description
Use the INSERT statement to add new rows of data to a table.
Use a table reference in the INTO clause to specify the table to receive the incoming data.
The columns list is a comma-separated list, enclosed in parentheses, of columns in the table and is
optional. The VALUES clause is a comma-separated list of update atoms, enclosed in parentheses. If no
columns list is specified, incoming update values (update atoms) are stored in fields as they are defined
sequentially in the table structure. Update atoms are applied to columns in the order the update atoms
are listed in the VALUES clause. There must also be as many update atoms as there are columns in the
table.
INSERT INTO "holdings.dbf"
VALUES (4094095, "BORL", 5000, 10.500, "1/2/1998")
If an explicit columns list is stated, incoming update atoms (in the order they appear in the VALUES
clause) are stored in the listed columns (in the order they appear in the columns list). NULL values are
stored in any columns that are not in a columns list.
INSERT INTO "customer.db"
(custno, company)
VALUES (9842, "Borland International, Inc.")
To add rows to one table from another, omit the VALUES keyword and use a subquery as the source for
the new rows.
INSERT INTO "customer.db"
(custno, company)
SELECT custno, company
FROM "oldcustomer.db"
Update atom values may be passed to the INSERT statement via parameters. You cannot use
parameters for the table reference and columns list.
Note Insertion of one or multiple rows from one table to another through a subquery is not supported.

UPDATE statement
Modifies one or more existing rows in a table.
UPDATE table_reference
SET column_ref = update_atom [, column_ref = update_atom...]
[WHERE predicates]
Description
Use the UPDATE statement to modify one or more column values in one or more existing rows in a
table.
Use a table reference in the UPDATE clause to specify the table to receive the data changes.
The SET clause is a comma-separated list of update expressions. Each expression is composed of the
name of a column, the assignment operator (=), and the update value (update atom) for that column.
The update atoms in any one update expression may be literal values, singleton return values from a
subquery, or update atoms modified by functions. Subqueries supplying an update atom for an update
expression must return a singleton result set (one row) and return only a single column.
UPDATE salesinfo
SET taxrate = 0.0825
WHERE (state = "CA")
Update atom values may be passed to the UPDATE statement via parameters. You cannot use
parameters for the table reference and columns list.
The optional WHERE clause restricts updates to a subset of rows in the table. If no WHERE clause is
specified, all rows in the table are updated using the SET clause update expressions.

Clause list
Local SQL supports the following SQL statement clauses:

Clause Description
FROM Specifies the tables used for the statement.
WHERE Specifies filter criteria to limit rows retrieved.
ORDER BY Specifies the columns on which to sort the result set.
GROUP BY Specifies the columns used to group rows.
HAVING Specifies filter criteria using aggregated data.

FROM clause
See also
Specifies the tables from which a SELECT statement retrieves data.
FROM table_reference [, table_reference...]
Description
Use a FROM clause to specify the table or tables from which a SELECT statement retrieves data. The
value for a FROM clause is a comma-separated list of table names. Specified table names must follow
local SQL naming conventions for tables. For example, the SELECT statement below retrieves data
from a single Paradox table.
SELECT *
FROM "customer.db"
See the section Relational Operators for more information on retrieving data from multiple tables in a
single SELECT query.
The table reference cannot be passed to a FROM clause via a parameter.

Applicability
SELECT

WHERE clause
See also
Specifies filtering conditions for a SELECT or UPDATE statement.
WHERE predicates
Description
Use a WHERE clause to limit the effect of a SELECT or UPDATE statement to a subset of rows in the
table. Use of a WHERE clause is optional.
The value for a WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE
or FALSE for each row in the table. Only those rows where the predicates evaluate to TRUE are
retrieved by a SELECT statement or modified by an UPDATE statement. For example, the SELECT
statement below retrieves all rows where the STATE column contains a value of "CA".
SELECT company, state
FROM customer
WHERE state = "CA"
Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can
be negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups
of comparisons to produce different row evaluation criteria. For example, the SELECT statement below
retrieves all rows where the STATE column contains a value of "CA" and those with a value of "HI".
SELECT company, state
FROM customer
WHERE (state = "CA") OR (state = "HI")
The SELECT statement below retrieves all rows where the SHAPE column is "round" or "square", but
only if the the COLOR column also contains "red". It would not retrieve rows where, for example, the
SHAPE is "round" and the COLOR "blue".
SELECT shape, color, cost
FROM objects
WHERE ((shape = "round") OR (shape = "square")) AND
 (color = "red")
But without the parentheses to override the order of precedence of the logical operators, as in the
statement that follows, the results are very different. This statement retrieves the rows where the
SHAPE is "round", regardless of the value in the COLOR column. It also retrieves rows where the
SHAPE column is "square", but only when the COLOR column contains "red". Unlike the preceding
variation of this statement, this one would retrieve rows where the SHAPE is "round" and the COLOR
"blue".
SELECT shape, color, cost
FROM objects
WHERE shape = "round" OR shape = "square" AND
 color = "red"
Subqueries are supported in the WHERE clause. A subquery works like a search condition to restrict the
number of rows returned by the outer, or "parent" query.
Column references cannot be passed to a WHERE clause via parameters. Comparison values may be
passed as parameters.
Note A WHERE clause filters data prior to the aggregation of a GROUP BY clause. For filtering based

on aggregated values, use a HAVING clause.

Applicability
SELECT (with non-aggregated columns), UPDATE

ORDER BY clause
See also
Sorts the rows retrieved by a SELECT statement.
ORDER BY column_reference [, column_reference...] [ASC|DESC]
Description
Use an ORDER BY clause to sort the rows retrieved by a SELECT statement based on the values from
one or more columns.
The value for the ORDER BY clause is a comma-separated list of column names. The columns in this
list must also be in the SELECT clause of the query statement. Columns in the ORDER BY list can be
from one or multiple tables. A number representing the relative position of a column in the SELECT
clause may be used in place of a column name. Column correlation names can also be used in an
ORDER BY clause columns list.
Use ASC (or ASCENDING) to force the sort to be in ascending order (smallest to largest), or DESC (or
DESCENDING) for a descending sort order (largest to smallest). When not specified, ASC is the implied
default.
The statement below sorts the result set ascending by the year extracted from the LASTINVOICEDATE
column, then descending by the STATE column, and then ascending by the uppercase conversion of the
COMPANY column.
SELECT EXTRACT(YEAR FROM lastinvoicedate) AS YY, state, UPPER(company)
FROM customer
ORDER BY YY DESC, state ASC, 3
See the section Relational Operators for more information on retrieving data from multiple tables in a
single SELECT query.
Column references cannot be passed to an ORDER BY clause via parameters.

Applicability
SELECT

GROUP BY clause
See also
Combines rows with column values in common into single rows.
GROUP BY column_reference [, column reference...]
Description
Use a GROUP BY clause to combine rows with the same column values into a single row. The criteria
for combining rows is based on the values in the columns specified in the GROUP BY clause. The
purpose for using a GROUP BY clause is to combine one or more column values (aggregate) into a
single value and provide one or more columns to uniquely identify the aggregated values. A GROUP BY
clause can only be used when one or more columns have an aggregate function applied to them.
The value for the GROUP BY clause is a comma-separated list of columns. Each column in this list must
meet the following criteria:

Be in one of the tables specified in the FROM clause of the query.
Be in the SELECT clause of the query.
Cannot have an aggregate function applied to it.

When a GROUP BY clause is used, all table columns in the SELECT clause of the query must meet at
least one of the following criteria, or it cannot be included in the SELECT clause:

Be in the GROUP BY clause of the query.
Be in the subject of an aggregate function.

Literal values in the SELECT clause are not subject to the preceding criteria.
The distinctness of rows is based on the columns in the column list specified. All rows with the same
values in these columns are combined into a single row (or logical group). Columns that are the subject
of an aggregate function have their values across all rows in the group combined. All columns not the
subject of an aggregate function retain their value and serve to distinctly identify the group. For example,
in the SELECT statement below, the values in the SALES column are aggregated (totaled) into groups
based on distinct values in the COMPANY column. This produces total sales for each company.
SELECT company, SUM(sales) AS TOTALSALES
FROM sales1998
GROUP BY company
ORDER BY company
A column may be referenced in a GROUP BY clause by a column correlation name, instead of actual
column names. The statement below forms groups using the first column, COMPANY, represented by
the column correlation name Co.
SELECT company AS Co, SUM(sales) AS TOTALSALES
FROM sales1998
GROUP BY Co
ORDER BY 1
Note Derived values (calculated fields) cannot be used as the basis for a GROUP BY clause.
Column references cannot be passed to an GROUP BY clause via parameters.

Applicability
SELECT when aggregate functions used

HAVING clause
See also
Specifies filtering conditions for a SELECT statement.
HAVING predicates
Description
Use a HAVING clause to limit the rows retrieved by a SELECT statement to a subset of rows where
aggregated column values meet the specified criteria. A HAVING clause can only be used in a SELECT
statement when:

The statement also has a GROUP BY clause.
One or more columns are the subjects of aggregate functions.

The value for a HAVING clause is one or more logical expressions, or predicates, that evaluate to true
or false for each aggregate row retrieved from the table. Only those rows where the predicates evaluate
to true are retrieved by a SELECT statement. For example, the SELECT statement below retrieves all
rows where the total sales for individual total sales exceed $1,000.
SELECT company, SUM(sales) AS TOTALSALES
FROM sales1998
GROUP BY company
HAVING (SUM(sales) >= 1000)
ORDER BY company
Multiple predicates must be separated by one of the logical operators OR or AND. Each predicate can
be negated with the NOT operator. Parentheses can be used to isolate logical comparisons and groups
of comparisons to produce different row evaluation criteria.
A SELECT statement can include both a WHERE clause and a HAVING clause. The WHERE clause
filters the data to be aggregated, using columns not the subject of aggregate functions. The HAVING
clause then further filters the data after the aggregation, using columns that are the subject of aggregate
functions. The SELECT query below performs the same operation as that above, but data limited to
those rows where the STATE column is "CA".
SELECT company, SUM(sales) AS TOTALSALES
FROM sales1998
WHERE (state = "CA")
GROUP BY company
HAVING (SUM(sales) >= 1000)
ORDER BY company
Subqueries are supported in the HAVING clause. A subquery works like a search condition to restrict the
number of rows returned by the outer, or "parent" query.
Note A HAVING clause filters data after the aggregation of a GROUP BY clause. For filtering based on

row values prior to aggregation, use a WHERE clause.

Applicability
SELECT with GROUP BY

Function list
Local SQL supports the following data manipulation language functions:

String function Description
Concatenation Concatenates two string values.
LOWER Forces a string to lowercase.
UPPER Forces a string to uppercase.
SUBSTRING Extracts a portion of a string value.
TRIM Removes repetitions of a specified character from the left, right, or

both sides of a string.

Aggregate function Description
AVG Averages all non-NULL numeric values in a column.
COUNT Counts the number of rows in a result set.
MAX Determines the maximum value in a column.
MIN Determines the minimum value in a column.
SUM Totals all numeric values in a column.

Data function Description
CAST Converts values from one data type to another.
EXTRACT Extracts the year, month, or day field of a date.

Concatenation function
See also
Concatenates two character values.
value1 || value2
Description
Use the concatenation function to concatenate two character values. For example, the expression below
returns the string "ABCdef".
"ABC" || "def"
The statement below uses the concatenation function to combine column values with character literals.
SELECT lastname || ", " || firstname
FROM names

Applicability
The concatenation function can only be used with character columns or literals. To use on values of
other data types, the values must first be converted to CHAR using the CAST function.
Note: the concatenation function cannot be used with memo or BLOB columns.

LOWER function
See also
Converts all characters to lowercase.
LOWER(column_reference)
Description
Use LOWER to convert all of the characters in a table column or character literal to lowercase. For
example, in the SELECT statement below the values in the NAME column appear all in lowercase.
SELECT LOWER(name)
FROM country
When applied to retrieved data of a SELECT statement, the effect is transient and does not affect stored
data. When applied to the update atoms of an UPDATE statement, the effect is persistent and
permanently converts the case of the stored values.
The LOWER function can be used in WHERE clause string comparisons to effect a case-insensitive
comparison. Apply LOWER to the values on both sides of the comparison operator (if one of the
comparison values is a literal, simply enter it all in lower case).
SELECT *
FROM names
WHERE LOWER(lastname) = "smith"

Applicability
LOWER can only be used with character columns or literals. To use on values of other data types, the
values must first be converted to CHAR using the CAST function.
Note: the LOWER function cannot be used with memo or BLOB columns.

UPPER function
See also
Converts all characters to uppercase.
UPPER(column_reference)
Description
Use UPPER to convert all of the characters in a table column or character literal to uppercase. For
example, in the SELECT statement below the values in the NAME column are treated as all in
uppercase. Because the same conversion is applied to both the filter column and comparison value in
the WHERE clause, the filtering is effectively case-insensitive.
SELECT name, capital, continent
FROM country
WHERE UPPER(name) LIKE UPPER("Pe%")
When applied to retrieved data of a SELECT statement, the effect is transient and does not affect stored
data. When applied to the update atoms of an UPDATE statement, the effect is persistent and
permanently converts the case of the stored values.

Applicability
UPPER can only be used with character columns or literals. To use on values of other data types, the
values must first be converted to CHAR using the CAST function.
Note: the UPPER function cannot be used with memo or BLOB columns.

SUBSTRING function
See also
Extracts a substring from a string.
SUBSTRING(column_reference FROM start_index [FOR length])
Description
Use SUBSTRING to extract a substring from a table column or character literal, specified in the column
reference.
FROM is the character position at which the extracted substring starts within the original string. The
index for FROM is based on the first character in the source value being 1.
FOR is optional, and specifies the length of the extracted substring. If FOR is omitted, the substring
goes from the position specified by FROM to the end of the string.
The example below, applied to the literal string "ABCDE" returns the value "BCD".
SELECT SUBSTRING("ABCDE" FROM 2 FOR 3) AS Sub
FROM country
In the SELECT statement below only the second and subsequent characters of the NAME column are
retrieved.
SELECT SUBSTRING(name FROM 2)
FROM country
When applied to retrieved data of a SELECT statement, the effect is transient and does not affect stored
data. When applied to the update atoms of an UPDATE statement, the effect is persistent and
permanently converts the case of the stored values.

Applicability
SUBSTRING can only be used with character columns or literals. To use on values of other data types,
the values must first be converted to CHAR using the CAST function.
Note: the SUBSTRING function cannot be used with memo or BLOB columns.

TRIM function
See also
Removes the trailing or leading character, or both, from a string.
TRIM([LEADING|TRAILING|BOTH] [trimmed_char] FROM column_reference)
Description
Use TRIM to delete the leading or trailing character, or both, from a table column or character literal. The
TRIM function only deletes characters located in the specified position.
The first parameter indicates the position of the character to be deleted, and has one of the following
values:

Value Description
LEADING Deletes the character at the left end of the string.
TRAILING Deletes the character at the right end of the string.
BOTH Deletes the character at both ends of the string.

The trimmed character parameter specifies the character to be deleted, if present. Case-sensitivity is
applied for this parameter. To make TRIM case-insensitive, use the UPPER function.
FROM specifies the column or character literal from which to delete the character. The column reference
for FROM can be a table column or a character literal.
Example variations:

TRIM syntax Result
TRIM(LEADING "_" FROM "_ABC_") "ABC_"
TRIM(TRAILING "_" FROM "_ABC_") "_ABC"
TRIM(BOTH "_" FROM "_ABC_") "ABC"
TRIM(BOTH "A" FROM "ABC") "BC"

When applied to retrieved data of a SELECT statement, the effect is transient and does not affect stored
data. When applied to the update atoms of an UPDATE statement, the effect is persistent and
permanently converts the case of the stored values.

Applicability
TRIM can only be used with character columns or literals. To use on values of other data types, the
values must first be converted to CHAR using the CAST function.
Note: the TRIM function cannot be used with memo or BLOB columns.

AVG function
See also
Returns the average of the values in a specified column or an expression.
AVG([ALL] column_reference | DISTINCT column_reference)
Description
Use AVG to calculate the average value for a numeric column. As an aggregate function, AVG performs
its calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may
be the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column
values of zero are included in the averaging, so values of 1, 2, 3, 0, 0, and 0 result in an average of 1.
NULL column values are not counted in the calculation.
SELECT AVG(itemstotal)
FROM orders
ALL returns the average for all rows. When DISTINCT is not specified, ALL is the implied default.
DISTINCT ignores duplicate values when averaging values in the specified column.
AVG returns the average of values in a column or the average of a calculation using a column
performed for each row (a calculated field).
SELECT AVG(itemstotal), AVG(itemstotal * 0.0825) AS AverageTax
FROM orders
When used with a GROUP BY clause, AVG calculates one value for each group. This value is the
aggregation of the specified column for all rows in each group. The statement below aggregates the
average value for the order totals column in the ORDERS table, producing a subtotal for each company
in the COMPANY table.
SELECT C."company", AVG(O."itemstotal") AS Average,
 MAX(O."itemstotal") AS Biggest,
 MIN(O."itemstotal") AS Smallest
FROM "customer.db" C, "orders.db" O
WHERE (C."custno" = O."custno")
GROUP BY C."company"
ORDER BY C."company"

Applicability
AVG operates only on numeric values. To use AVG on non-numeric values, first use the CAST function
to convert the column to a numeric type.
Note: the MAX function cannot be used with memo or BLOB columns.

COUNT function
See also
Returns the number of rows that satisfy a query’s search condition.
COUNT(* | [ALL] column_reference | DISTINCT column_reference)
Description
Use COUNT to count the number of rows retrieved by a SELECT statement. The SELECT statement
may be a single- or multi-table query. The value returned by COUNT reflects a reduced row count
produced by a filtered dataset.
SELECT COUNT(amount)
FROM averaging
ALL returns the count for all rows. When DISTINCT is not specified, ALL is the implied default.
DISTINCT ignores duplicate values in the specified column when counting rows.

MAX function
See also
Returns the largest value in the specified column.
MAX([ALL] column_reference | DISTINCT column_reference)
Description
Use MAX to calculate the largest value for a numeric column. As an aggregate function, MAX performs
its calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may
be the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column
values of zero are included in the aggregation. NULL column values are not counted in the calculation. If
the number of qualifying rows is zero, MAX returns a NULL value.
SELECT MAX(itemstotal)
FROM orders
ALL returns the largest value for all rows. When DISTINCT is not specified, ALL is the implied default.
DISTINCT ignores duplicate values when calculating the largest value in the specified column.
MAX returns the largest value in a column or a calculation using a column performed for each row (a
calculated field).
SELECT MAX(itemstotal), MAX(itemstotal * 0.0825) AS HighestTax
FROM orders
When used with a GROUP BY clause, MAX returns one calculation value for each group. This value is
the aggregation of the specified column for all rows in each group. The statement below aggregates the
largest value for the order totals column in the ORDERS table, producing a subtotal for each company in
the COMPANY table.
SELECT C."company", AVG(O."itemstotal") AS Average,
 MAX(O."itemstotal") AS Biggest,
 MIN(O."itemstotal") AS Smallest
FROM "customer.db" C, "orders.db" O
WHERE (C."custno" = O."custno")
GROUP BY C."company"
ORDER BY C."company"

Applicability
MAX can be used with all non-BLOB columns. When used with numeric columns, the return value is of
the same type as the column (such as INTEGER or FLOAT). When used with a CHAR column, the
largest value returned will depend on the Borland Database Engine (BDE) language driver used.
Note: the MAX function cannot be used with memo or BLOB columns.

MIN function
See also
Returns the smallest value in the specified column.
MIN([ALL] column_reference | DISTINCT column_reference)
Description
Use MIN to calculate the smallest value for a numeric column. As an aggregate function, MIN performs
its calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may
be the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column
values of zero are included in the aggregation. NULL column values are not counted in the calculation. If
the number of qualifying rows is zero, MIN returns a NULL value.
SELECT MIN(itemstotal)
FROM orders
ALL returns the smallest value for all rows. When DISTINCT is not specified, ALL is the implied default.
DISTINCT ignores duplicate values when calculating the smallest value in the specified column.
MIN returns the smallest value in a column or a calculation using a column performed for each row (a
calculated field).
SELECT MIN(itemstotal), MIN(itemstotal * 0.0825) AS LowestTax
FROM orders
When used with a GROUP BY clause, MIN returns one calculation value for each group. This value is
the aggregation of the specified column for all rows in each group. The statement below aggregates the
smallest value for the order totals column in the ORDERS table, producing a subtotal for each company
in the COMPANY table.
SELECT C."company", AVG(O."itemstotal") AS Average,
 MAX(O."itemstotal") AS Biggest,
 MIN(O."itemstotal") AS Smallest
FROM "customer.db" C, "orders.db" O
WHERE (C."custno" = O."custno")
GROUP BY C."company"
ORDER BY C."company"

Applicability
MIN can be used with all non-BLOB columns. When used with numeric columns, the return value is of
the same type as the column (such as INTEGER or FLOAT). When used with a CHAR column, the
smallest value returned will depend on the Borland Database Engine (BDE) language driver used.
Note: the MIN function cannot be used with memo or BLOB columns.

SUM function
See also
Calculates the sum of values for a column.
SUM([ALL] column_reference | DISTINCT column_reference)
Description
Use SUM to sum all the values in the specified column. As an aggregate function, SUM performs its
calculation aggregating values in the same column(s) across all rows in a dataset. The dataset may be
the entire table, a filtered dataset, or a logical group produced by a GROUP BY clause. Column values
of zero are included in the aggregation. NULL column values are not counted in the calculation. If the
number of qualifying rows is zero, SUM returns a NULL value.
SELECT SUM(itemstotal)
FROM orders
ALL returns the smallest value for all rows. When DISTINCT is not specified, ALL is the implied default.
DISTINCT ignores duplicate values when calculating the smallest value in the specified column.
MIN returns the smallest value in a column or a calculation using a column performed for each row (a
calculated field).
SELECT SUM(itemstotal), SUM(itemstotal * 0.0825) AS TotalTax
FROM orders
When used with a GROUP BY clause, SUM returns one calculation value for each group. This value is
the aggregation of the specified column for all rows in each group. The statement below aggregates the
total value for the order totals column in the ORDERS table, producing a subtotal for each company in
the COMPANY table.
SELECT C."company", SUM(O."itemstotal") AS SubTotal
FROM "customer.db" C, "orders.db" O
WHERE (C."custno" = O."custno")
GROUP BY C."company"
ORDER BY C."company"

Applicability
SUM operates only on numeric values. To use SUM on non-numeric values, first use the CAST function
to convert the column to a numeric type.

CAST function
See also
Converts specified value to the specified data type.
CAST(column_reference AS data_type)
Description
Use CAST to convert the value in the specified column to the data type specified. CAST can also be
applied to literal and calculated values. CAST can be used in the columns list of a SELECT statement, in
the predicate for a WHERE clause, or to modify the update atom of an UPDATE statement.
The Data_Type parameter may be one of most column data type applicable to the table type used:
CHAR, INTEGER, NUMERIC, and so on. Certain column types cannot be used as the source or target
data types: BLOB, MEMO, and BYTES.
The statement below converts a Paradox DATETIME column value to DATE.
SELECT CAST(saledate AS DATE)
FROM ORDERS
Converting a column value with CAST allows use of other functions or predicates on an otherwise
incompatible data type, such as using the SUBSTRING function on a DATE column.
SELECT saledate,
 SUBSTRING(CAST(CAST(saledate AS DATE) AS CHAR(10)) FROM 1 FOR 1)
FROM orders
When applied to retrieved data of a SELECT statement, the effect is transient and does not affect stored
data. When applied to the update atoms of an UPDATE statement, the effect is persistent and
permanently converts the case of the stored values.
Note: the CAST function cannot be used with memo or BLOB columns.

EXTRACT function
See also
Returns one field from a date value.
EXTRACT(extract_field FROM column_reference)
Description
Use EXTRACT to return the year, month, or day field from a DATE or TIMESTAMP column. If the
column used with the EXTRACT function contains a NULL value, the return value of EXTRACT will be
NULL. If the value is not NULL, EXTRACT returns the value for the specified element in the date,
expressed as a SMALLINT.
The Extract_Field parameter may contain any one of the specifiers: YEAR, MONTH, DAY, HOUR,
MINUTE, or SECOND. The specifiers YEAR, MONTH, and DAY can only be used with DATE and
TIMESTAMP columns. The specifiers HOUR, MINUTE, and SECOND can only be used with
TIMESTAMP and TIME columns.
SELECT saledate,
 EXTRACT(YEAR FROM saledate) AS YY,
 EXTRACT(MONTH FROM saledate) AS MM,
 EXTRACT(DAY FROM saledate) AS DD
FROM orders
The statement below uses a DOB column (containing birthdates) to filter to those rows where the date is
in the month of May. The month field from the DOB column is retrieved using the EXTRACT function
and compared to 5, May being the fifth month.
SELECT DOB, LastName, FirstName
FROM People
WHERE (EXTRACT(MONTH FROM DOB) = 5)

Applicability
EXTRACT operates only on DATE, TIME, and TIMESTAMP values. To use EXTRACT on non-date
values, first use the CAST function to convert the column to a date type.
Note: while SQL-92 provides the EXTRACT function specifiers TIMEZONE_HOUR and

TIMEZONE_MINUTE, these specifiers are not supported in local SQL.

Operators list
Local SQL supports the following operators:

Type Operators
Arithmetic + - * /
Logical AND OR NOT

Arithmetic operators
See also
Perform arithmetic operations.
numeric_value1 + numeric_value2
numeric_value1 - numeric_value2
numeric_value1 * numeric_value2
numeric_value1 / numeric_value2
Description
Use arithmetic operators to perform arithmetic calculations on data in SELECT queries. Calculations can
be performed wherever non-aggregated data values are allowed, such as in a SELECT or WHERE
clause. In the statement below, a column value is multiplied by a numeric literal.
SELECT (itemstotal * 0.0825) AS Tax
FROM orders
Arithmetic calculations are performed in the normal order of precedence: multiplication, division,
addition, and then subtraction. To cause a calculation to be performed out of the normal order of
precedence, use parentheses around the operation to be performed first. In the statement below the
addition is performed before the multiplication.
SELECT (n.numbers * (n.multiple + 1)) AS Result
FROM numbertable n

Applicability
Arithmetic operators operate only on numeric values. To use arithmetic operators on non-numeric
values, first use the CAST function to convert the column to a numeric type.

Logical operators
See also
Connect multiple predicates.
[NOT] predicate OR [NOT] predicate
[NOT] predicate AND [NOT] predicate
Description
Use the logical operators OR and AND to connect two predicates in a single WHERE clause. This
allows the table to be filtered based on multiple conditions. Logical operators compare the boolean
result of two predicate comparisons, each producing a boolean result. If OR is used, either of the two
predicate comparisons can result on a TRUE value for the whole expression to evaluate to TRUE. If
AND is used, both predicate comparisons must evaluate to TRUE for the whole expression to be TRUE;
if either is FALSE, the whole is FALSE. In the statement below, if only one of the two predicate
comparisons is TRUE (reservdate < "1/31/1998" or paid = TRUE), the row will be included in
the query result set.
SELECT *
FROM reservations
WHERE ((reservdate < "1/31/1998") OR (paid = TRUE))
Logical operator comparisons are performed in the order of precedence: OR and then AND. To perform
a comparison out of the normal order of precedence, use parentheses around the comparison to be
performed first. The SELECT statement below retrieves all rows where the SHAPE column is "round"
and the COLOR "blue". It also returns those rows where the COLOR column is "red", regardless of the
value in the SHAPE column (such as "triangle"). It would not return rows where the SHAPE is "round"
and the COLOR anything but "blue" or where the COLOR is "blue" and the SHAPE anything but "round".
SELECT shape, color, cost
FROM objects
WHERE ((shape = "round") AND (color = "blue")) OR
 (color = "red")
Without the parentheses, the default order of precedence is used and the logic changes. The statement
below, a variation on the above statement, would return rows where the SHAPE is "square" and the
COLOR is "blue". It would also return rows where the SHAPE is "square" and the COLOR is "red". But
unlike the preceding statement, it would not return rows where the COLOR is "red" and the SHAPE
"triangle".
SELECT shape, color, cost
FROM objects
WHERE shape = "round" AND color = "blue" OR
 color = "red"
Use the NOT operator to negate the boolean result of a comparison. In the statement below, only those
rows where the PAID column contains a FALSE value are retrieved.
SELECT *
FROM reservations
WHERE (NOT (paid = "TRUE"))

Predicate list
Local SQL supports the following predicates:

Predicate Description
Comparison Compares two values.
BETWEEN Compares a value to a range formed by two values.
EXISTS Determines whether a value exists in a look-up table.
IN Determines whether a value exists in a list of values or a table.
LIKE Compares, in part or in whole, one value with another.
IS NULL Compares a value with an empty, or NULL, value.
SOME/ANY/ALL Performs quantified comparisons.

Comparison predicates
See also
Compare two values.
value1 < value2 less than
value1 > value2 greater than
value1 = value2 equal to
value1 <> value2 not equal to
value1 != value2 not equal to (alternate syntax)
value1 >= value2 greater than or equal to
value1 <= value2 less than or equal to
Description
Use comparison predicates to compare two like values. Values compared can be: column values,
literals, or calculations. The result of the comparison is a boolean value that is used in contexts like a
WHERE clause to determine on a row-by-row basis whether a row meets the filtering criteria.
SELECT *
FROM orders
WHERE (itemstotal >= 1000)
Comparisons must be between two values of the same or a compatible data type. If one value is of an
incompatible data type, convert that value with the CAST function to a compatible data type.
The result of a comparison predicate can be modified by a logical operator, such as NOT.
SELECT *
FROM orders
WHERE NOT (itemstotal >= 1000)
Note: comparison predicates can only be used in a WHERE or HAVING clause, or in the ON clause of a

join; they cannot be used in the SELECT clause.

BETWEEN predicate
See also
Determines whether a value falls inside a range.
value1 [NOT] BETWEEN value2 AND value3
Description
Use the BETWEEN comparison predicate to compare a value to a value range. If the value is greater
than or equal to the low end of the range and less than or equal to the high end of the range, BETWEEN
returns a TRUE value. If the value is less than the low end value or greater than the high end value,
BETWEEN returns a FALSE value. For example, the expression below returns a FALSE value because
10 is not between 1 and 5.
10 BETWEEN 1 AND 5
Use NOT to return the converse of a BETWEEN comparison. For example, the expression below
returns a TRUE value.
10 NOT BETWEEN 1 AND 5
BETWEEN can be used with all non-BLOB data types, but all values compared must be of the same or
a compatible data type. If one value is of an incompatible data type, convert that value with the CAST
function to a compatible data type. Values used in a BETWEEN comparison may be column, literal, or
calculated values.
SELECT saledate
FROM orders
WHERE (saledate BETWEEN "1/1/1988" AND "12/31/1988")
Hint BETWEEN is useful when filtering to retrieve rows with contiguous values that fall within the

specified range. For filtering to retrieve rows with noncontiguous values, use the IN predicate.

EXISTS predicate
See also
Indicates whether values exist in a subquery.
EXISTS subquery
Description
Use the EXISTS comparison predicate to filter a table based on the existence of column values from the
table in a subquery. The subquery is filtered using a WHERE clause comparing one or more columns in
the filtered table to corresponding columns in the subquery. EXISTS returns a true value if the subquery
has at least one row in its result set, false if zero rows are retrieved. The subquery is executed once for
each row in the filtered table and the existence of rows in the subquery is used to include or exclude the
rows in the filtered table.
SELECT O.orderno, O.custno
FROM orders O
WHERE EXISTS
 (SELECT C.custno
 FROM customer C
 WHERE (C.custno = O.custno))
The subquery may be further filtered with other conditions. For example, the statement below returns
the rows pertaining to all customers who have placed orders the totals for which exceed $1000.
SELECT C.company, C.custno
FROM customer C
WHERE EXISTS
 (SELECT O.custno
 FROM orders O
 WHERE (O.custno = C.custno) AND
 (O.itemstotal > 1000))
Use NOT to return the converse of an EXISTS comparison.

IN predicate
See also
Indicates whether a value exists in a set of values.
value [NOT] IN (value_set)
Description
Use the IN comparison predicate to filter a table based on the existence of a column value in a specified
set of comparison values. The set of comparison values may be either static using a comma-separated
list of literals or dynamic using the result set from a subquery.
The value to compare with the values set can be any or a combination of: a column value, a literal value,
or a calculated value.
The comparison set can be a static comma-separated list of literal values.
SELECT C.company, C.state
FROM customer C
WHERE (C.state IN ("CA", "HI"))
The comparison set can also be the result set from a subquery. The subquery may return multiple rows,
but must only return a single column for comparison.
SELECT C.company, C.state
FROM customer C
WHERE (C.state IN
 (SELECT R.state
 FROM regions R
 WHERE (R.region = "Pacific")))
Use NOT to return the converse of an IN comparison.
IN can be used with all non-BLOB data types, but all values compared must be of the same or a
compatible data type. If one value is of an incompatible data type, convert that value with the CAST
function to a compatible data type.
Hint IN is useful when filtering to retrieve rows with noncontiguous values. For filtering to retrieve rows

with contiguous values that fall within a specified range, use the BETWEEN predicate.

LIKE predicate
See also
Indicates the similarity of one value as compared to another.
value [NOT] LIKE [substitution_char] comparison_value [substitution_char]
[ESCAPE escape_char]

Description
Use the LIKE comparison predicate to filter a table based on the similarity of a column value to a
comparison value. Use of substitution characters allows the comparison to be based on the whole
column value or just a portion.
SELECT *
FROM customer
WHERE (company LIKE "Adventure Undersea")
The wildcard substitution character ("%") may be used in the comparison to represent an unknown
number of characters. LIKE returns a TRUE when the portion of the column value matches that portion
of the comparison value not corresponding to the position of the wildcard character. The wildcard
character can appear at the beginning, middle, or end of the comparison value (or multiple combinations
of these positions). For example, the statement below retrieves rows where the column value begins
with "A" and is followed by any number of any characters. Matching values could include "Action Club"
and "Adventure Undersea", but not "Blue Sports".
SELECT *
FROM customer
WHERE (company LIKE "A%")
The single-character substitution character ("_") may be used in the comparison to represent a single
character. LIKE returns a TRUE when the portion of the column value matches that portion of the
comparison value not corresponding to the position of the single-character substitution character. The
single-character substitution character can appear at the beginning, middle, or end of the comparison
value (or multiple combinations of these positions). Use one single-character substitution character for
each character to be wild in the filter pattern For example, the statement below retrieves rows where the
column value begins with "b" ends with "n", with one character of any value between. Matching values
could include "bin" and "ban", but not "barn".
SELECT words
FROM dictionary
WHERE (words LIKE "b_n")
Use NOT to return the converse of a LIKE comparison.
Use ESCAPE when the wildcard character "%" or "_" appear as data in the column. The ESCAPE
keyword designates an escape character. In the comparison value for the LIKE predicate, the character
that follows the escape character is treated as a data character and not a wildcard character. Other
wildcard characters in the comparison value are unaffected.
In the example below, the "^" character is designated as the escape character. In the comparison value
for the LIKE predicate ("%10^%%"), the "%" that immediately follows the escape character is treated as
data in the PercentValue. This allows filtering based on the string "10%".
SELECT *
FROM Sales
WHERE (PercentValue LIKE "%10^%%" ESCAPE "^")
LIKE can be used only with CHAR or compatible data types. If one value is of an incompatible data type,
convert that value with the CAST function to a compatible data type. The comparison performed by the
LIKE predicate is case-sensitive.

IS NULL predicate
See also
Indicates whether a column contains a NULL value.
column_reference IS [NOT] NULL
Description
Use the IS NULL comparison predicate to filter a table based on the specified column containing a NULL
(empty) value.
SELECT *
FROM customer
WHERE (invoicedate IS NULL)
Use NOT to return the converse of a IS NULL comparison.
Note For a numeric column, a zero value is not the same as a NULL value.

SOME/ANY/ALL predicates
See also
Compares a column value to a column value in multiple rows in a subquery.
column_reference comparison_predicate SOME | ANY | ALL (subquery)
Description
Use the quantified comparison predicates SOME, ANY, and ALL to filter a table by comparing a column
value with multiple comparison values. The quantified comparison predicates are used with comparison
predicates to compare a column value to the multiple values in a column of a subquery.
The ANY predicate evaluates TRUE when the accompanying comparison predicate evaluates TRUE for
any value from the subquery. The SOME predicate operates functionally the same as ANY. For
example, using the statement below, for any row to be retrieved from the HOLDINGS table, the value in
the PUR_PRICE column need only be greater than any one value returned in the subquery’s PRICE
column.
SELECT *
FROM "holdings.dbf" H
WHERE (H."pur_price" > ANY
 (SELECT O."price"
 FROM "old_sales.dbf"))
The ALL predicate evaluates TRUE when the accompanying comparison predicate evaluates TRUE for
all values from the subquery. For example, using the statement below, for any row to be retrieved from
the HOLDINGS table, the value in the PUR_PRICE column needs to be greater than every value
returned in the subquery’s PRICE column.
SELECT *
FROM "holdings.dbf" H
WHERE (H."pur_price" > ALL
 (SELECT O."price"
 FROM "old_sales.dbf"))
Note The subquery providing the comparison values for the quantified comparison predicates may

retrieve multiple rows, but can only have one column.

Relational operators list
Local SQL supports the following join types:

Join operator Description
Equi-join Joins two tables, filtering out non-matching rows.
INNER Joins two tables, filtering out non-matching rows.
OUTER Joins two tables, retaining non-matching rows.
Cartesian Joins two tables, matching each row of one table with each row from the

other.
UNION Concatenates the result set of one query with the result set of another

query.
Heterogeneous Joins two tables in different databases, including differing database types.

Equi-join
See also
Joins two tables based on column values common between the two, excluding non-matches.
SELECT column_list
FROM table_reference, table_reference [, table_reference...]
WHERE predicate [AND predicate...]

Description
Use equi-join to join two tables, a source and joining table, that have values from one or more columns
in common. One or more columns from each table are compared in the WHERE clause for equal
values. For rows in the source table that have a match in the joining table, the data for the source table
rows and matching joining table rows are included in the result set. Rows in the source table without
matches in the joining table are excluded from the joined result set. In the statement below, the
CUSTOMER and ORDERS tables are joined based on values in the CUSTNO column, which each table
contains.
SELECT *
FROM customer C, orders O
WHERE (C.custno = O.custno)
More that one table may be joined with an equi-join. One column comparison predicate in the WHERE
clause is required for each column compared to join each two tables. The statement below joins the
CUSTOMER table to ORDERS, and then ORDERS to ITEMS. In this case, the joining table ORDERS
acts as a source table for the joining table ITEMS.
SELECT *
FROM customer C, orders O, items I
WHERE (C.custno = O.custno) AND
 (O.orderno = I.orderno)
Tables may also be joined using a concatenation of multiple column values to produce a single value for
the join comparison predicate. Here, the ID1 and ID2 columns in JOINING are concatenated and
compared with the values in the single column ID in SOURCE.
SELECT *
FROM source S, joining J
WHERE (S.ID = J.ID1 || J.ID2)
An ORDER BY clause in equi-join statements can use columns from any table specified in the FROM
clause to sort the result set.

INNER join
See also
Joins two tables based on column values common between the two, excluding non-matches.
SELECT column_list
FROM table_reference
 [INNER] JOIN table_reference
 ON predicate
 [[INNER] JOIN table_reference
 ON predicate...]

Description
Use an INNER JOIN to join two tables, a source and joining table, that have values from one or more
columns in common. One or more columns from each table are compared in the ON clause for equal
values. For rows in the source table that have a match in the joining table, the data for the source table
rows and matching joining table rows are included in the result set. Rows in the source table without
matches in the joining table are excluded from the joined result set. In the statement below, the
CUSTOMER and ORDERS tables are joined based on values in the CUSTNO column, which each table
contains.
SELECT *
FROM customer C
 INNER JOIN orders O
 ON (C.custno = O.custno)
More than one table may be joined with an INNER JOIN. One use of the INNER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One columns comparison
predicate in an ON clause is required for each column compared to join each two tables. The statement
below joins the CUSTOMER table to ORDERS, and then ORDERS to ITEMS. In this case, the joining
table ORDERS acts as a source table for the joining table ITEMS. (The statement below appears
without the optional INNER keyword.)
SELECT *
FROM customer C
 JOIN orders O
 ON (C.custno = O.custno)
 JOIN items I
 ON (O.orderno = I.orderno)
Tables may also be joined using a concatenation of multiple column values to produce a single value for
the join comparison predicate. Here, the ID1 and ID2 columns in JOINING are concatenated and
compared with the values in the single column ID in SOURCE.
SELECT *
FROM source S
 INNER JOIN joining J
 ON (S.ID = J.ID1 || J.ID2)
An ORDER BY clause in INNER JOIN statements can use columns from any table specified in the
FROM clause to sort the result set.

OUTER join
See also
Joins two tables based on column values common between the two, including non-matches.
SELECT column_list
FROM table_reference
 LEFT | RIGHT | FULL [OUTER] JOIN table_reference
 ON predicate
 [LEFT | RIGHT | FULL [OUTER] JOIN table_reference
 ON predicate...]

Description
Use an OUTER JOIN to join two tables, a source and joining table, that have one or more columns in
common. One or more columns from each table are compared in the ON clause for equal values. The
primary difference between inner and outer joins is that, in outer joins rows from the source table that do
not have a match in the joining table are not excluded from the result set. Columns from the joining
table for rows in the source table without matches have NULL values.
In the statement below, the CUSTOMER and ORDERS tables are joined based on values in the
CUSTNO column, which each table contains. For rows from CUSTOMER that do not have a matching
value between CUSTOMER.CUSTNO and ORDERS.CUSTNO, the columns from ORDERS contain
NULL values.
SELECT *
FROM customer C
 LEFT OUTER JOIN orders O
 ON (C.custno = O.custno)
The LEFT modifier causes all rows from the table on the left of the OUTER JOIN operator to be included
in the result set, with or without matches in the table to the right. If there is no matching row from the
table on the right, its columns contain NULL values. The RIGHT modifier causes all rows from the table
on the right of the OUTER JOIN operator to be included in the result set, with or without matches. If
there is no matching row from the table on the left, its columns contain NULL values. The FULL modifier
causes all rows from the all tables specified in the FROM clause to be included in the result set, with or
without matches. If there is no matching row from one of the tables, its columns contain NULL values.
More than one table may be joined with an INNER JOIN. One use of the INNER JOIN operator and
corresponding ON clause is required for each each set of two tables joined. One column comparison
predicate in an ON clause is required for each column compared to join each two tables. The statement
below joins the CUSTOMER table to ORDERS, and then ORDERS to ITEMS. In this case, the joining
table ORDERS acts as a source table for the joining table ITEMS.
SELECT *
FROM customer C
 FULL OUTER JOIN orders O
 ON (C.custno = O.custno)
 FULL OUTER JOIN items I
 ON (O.orderno = I.orderno)
Tables may also be joined using expressions to produce a single value for the join comparison
predicate. Here, the ID1 and ID2 columns in JOINING are separately compared with two values
produced by the SUBSTRING function using the single column ID in SOURCE.
SELECT *
FROM source S
 RIGHT OUTER JOIN joining J
 ON (SUBSTRING(S.ID FROM 1 FOR 2) = J.ID1) AND
 (SUBSTRING(S.ID FROM 3 FOR 1) = J.ID2)
An ORDER BY clause in OUTER JOIN statements can use columns from any table specified in the
FROM clause to sort the result set.

Cartesian join
See also
Joins two tables in a non-relational manner.
SELECT *
FROM table_reference, table_reference [,table_reference...]

Description
Use the Cartesian join to join the column of two tables into one result set, but without correlation
between the rows from the tables. Cartesian joins match each row of the source table with each row of
the joining table. No column comparisons are used, just simple association. If the source table has 10
rows and the joining table has 10, the result set will contain 100 rows as each row from the source table
is joined with each row from the joined table.
SELECT *
FROM "employee.dbf", "items.db"

UNION join
See also
Concatenates the rows of one table to the end of another table.
SELECT col_1 [, col_2, ... col_n]
FROM table_reference
UNION [ALL]
SELECT col_1 [, col_2, ... col_n]
FROM table_reference

Description
Use the UNION join to add the rows of one table to the end of another similarly structured SELECT
query result sets. The SELECT statement for the source and joining tables must include the same
number of columns for them to be UNION compatible. The table structures themselve need not be the
same as long as those column included in the SELECT statements are.
SELECT custno, company
FROM customers
UNION
SELECT custno, company
FROM old_customers
Matching data types for a column is not always mandatory for data retrieved by the UNION across the
multiple tables. If there is a data type difference between two tables for a given column, an error occurs
if the same column from the second (or subsequent) table would lose data. For example, if the first
table’s column is of type DATE and the second table’s of type TIMESTAMP, part of the TIMESTAMP
value would be lost when put into a lesser DATE type column. A “Type mismatch in expression” error is
generated for these situations. In general, when there are column differences between the tables, use
the CAST function to convert the columns to a compatible type.
SELECT s.id, CAST(s.date_field AS TIMESTAMP)
FROM source s
UNION ALL
SELECT j.id, j.timestamp_field
FROM joiner j
Matching names is not mandatory for result set columns retrieved by the UNION across the multiple
tables. Column name differences between the multiple source tables are automatically handled. If the
first column of two tables has a different name, the first column in the UNION result set will use that from
the first SELECT statement.
By default, non-distinct rows are aggregated into single rows in a UNION join. Use ALL to retain non-
distinct rows.
To join two tables with UNION where one table does not have a column included by another, a
compatible literal or expression may be used instead in the SELECT statement missing the column. For
example, if there is no column in the JOINING table corresponding to the NAME column in SOURCE an
expression is used to provide a value for a pseudo JOINING.NAME column. Assuming SOURCE.NAME
is of type CHAR(10), the CAST function is used to convert an empty character string to CHAR(10).
SELECT s.id, s.name
FROM source s
UNION ALL
SELECT j.id, CAST("" AS CHAR(10))
FROM joiner j

Heterogeneous joins
See also
Joins two tables from different databases.
SELECT column_list
FROM ":database_reference:table_reference",
":database_reference:table_reference"
[,":database_reference:table_reference"...]

WHERE predicate [AND predicate...]

Description
Use a heterogeneous join to join two tables that reside in different databases. The joined tables may be
of different types (like dBASE to Paradox or Paradox to InterBase), but you can only join tables whose
database types are accessible through the BDE (local, ODBC, or SQL Links). A hetergeneous join may
be any of the joins supported by local SQL. The difference is in the syntax for the table reference: the
database containing each table is specified in the table reference, surrounded by colons and the whole
reference enclosed in quotation marks. The database specified as part of the table reference may be a
drive and directory reference (for local tables) or a BDE alias.
SELECT *
FROM ":DBDEMOS:customer.db" C, ":BCDEMOS:orders.db" O
WHERE (C.custno = O.custno)

Updatable queries
See also
Definition...

Single-table queries
Queries that retrieve data from a single table are updatable provided that:

There is no DISTINCT key word in the SELECT.
Everything in the SELECT clause is a simple column reference or a calculated column, no

aggregation is allowed. Calculated columns remain read-only.
The table referenced in the FROM clause is an updatable base table.
There is no GROUP BY or HAVING clause.
There are no subqueries in the statement.
There is no ORDER BY clause.

The read-only effect of an ORDER BY clause is negated and the query updatable if the ORDER BY
clause uses a single column and there is a dBASE single-column primary or secondary index based on
that same field. dBASE compound (expression) indexes will not negate the read-only effect of an
ORDER BY clause. A Paradox single- or multi-field primary index will make the query updatable if the
ORDER BY uses exactly the same columns (in the same order) as the index. Paradox secondary
indexes will not negate the read-only effect of an ORDER BY clause.

Multi-table queries
All queries that join two or more tables will produce a read-only result set.

Calculated fields
For updateable queries with calculated fields, an additional field property identifies a result field as both
read-only and calculated. Every call to the BDE function DbiPutField causes recalculation of any
dependent fields.

Parameter substitutions in DML statements
Parameter markers can be used in DML statements in place of data values. Parameters are identified by
a preceding colon (:). For example:
SELECT last_name, first_name
FROM "customer.db"
WHERE (last_name > :lname) AND (first_name < :fname)
Parameters allow the same SQL statement to be used with different data values to be used for
comparisons. Parameters are placeholders for data values. At runtime, the front-end application fills the
parameter with a value, before the query is executed. When the query is executed, the data values
passed into the parameters are substituted for the parameter placeholder and the SQL statement is
applied.
Parameters are used to pass data values to be used in WHERE clause comparison and as update
atoms in updating statements. Parameters cannot be used to pass values for metadata object names
(table and column names).
UPDATE orders
SET itemstotal = :TotalParam
WHERE (orderno = 1014)
Data values passed to SQL statements as parameters are enclosed in quotation marks (where
applicable). Thus, when a front-end application supplies CHAR and DATE values for parameters,
quotation marks need not be included when the parameter is populated with the values.

Data definition overview
Local SQL supports data definition language (DDL) for creating, altering, and deleting tables and
indexes.
Local SQL does not permit the metadata object names to be represented by parameters in DDL
statements.
Local SQL supports the following DDL statements:

DDL Statement Description
CREATE TABLE Creates a new table.
ALTER TABLE Adds columns to and deletes columns from an existing table.
DROP TABLE Deletes an existing table.
CREATE INDEX Creates a new secondary index for an existing table.
DROP INDEX Deletes an existing primary or secondary index.

CREATE TABLE statement
See also
Creates a table.
CREATE TABLE table_reference (column_definition [, column_definition,...] [,
primary_key_constraint])

Description
Use the CREATE TABLE statement to create a dBASE or Paradox table, define its columns, and define
a primary key constraint.
The table name reference for CREATE TABLE must comply with the rules described in the section on
naming conventions. Table names with embedded spaces must be enclosed in quotation marks.
Column definitions consist of a comma-separated list of combinations of column name, data type, and (if
applicable) dimensions. The list of column definitions must be enclosed in parentheses. The number and
type of dimensions that must be specified varies with column type. See the section on defining column
types for specific syntax of all supported column types.
Use the PRIMARY KEY (or CONSTRAINT) keyword to create a primary index for the new table.The
following statement creates a Paradox table with a PRIMARY KEY constraint on the LAST_NAME and
FIRST_NAME columns:
CREATE TABLE "employee.db"
(
 last_name CHAR(20),
 first_name CHAR(15),
 salary NUMERIC(10,2),
 dept_no SMALLINT,
 PRIMARY KEY (last_name, first_name)
)
An alternate syntax for creating a primary key constraint is using the CONSTRAINT keyword. While
Paradox primary indexes do not have names, an arbitrary name needs to be provided to satisfy the
CONSTRAINT keyword need for a token name.
CREATE TABLE "employee.db"
(
 last_name CHAR(20),
 first_name CHAR(15),
 salary NUMERIC(10,2),
 dept_no SMALLINT,
 CONSTRAINT z PRIMARY KEY (last_name, first_name)
)
Indicate whether the table is a Paradox or dBASE table by specifying the file extension when naming the
table:

".DB" for Paradox tables
".DBF" for dBASE tables

If you omit the file extension for a local table name, the table created is the table type specified in the
Default Driver setting in the System INIT page of the BDE Administrator utility. When specifying a file
extension, the table name reference for CREATE TABLE must be enclosed in quotation marks.
Column definitions based on domains are not supported. Primary keys are the only form of constraint
that can be defined with CREATE TABLE.
Note To create a table with columns that have non-alphanumeric characters or spaces in the column

name, you must enclose the column name in quotation marks and prefix the quoted column name
with the table name in quotes.

CREATE TABLE "abc.db" A
(

 ID CHAR(3),
 "abc.db"."funny name" CHAR(10)
)

Table column types
The following table lists SQL data types and how each is translated by the BDE to native Paradox and
dBASE types.
The native column type names (and storage dimensions) in the table below are based on level 7
Paradox and dBASE tables. Column type names and availability vary across the various versions of
Paradox and dBASE. For instance, the Binary column type was not available for dBASE IV (level 4)
tables.

SQL Syntax BDE Logical Paradox dBASE

SMALLINT fldINT16 Short Numeric(6,0)
INTEGER fldINT32 Long Long
DECIMAL fldBCD BCD(32,0) Numeric(20,0)
DECIMAL(7) fldBCD BCD(32,0) Numeric(7,0)
DECIMAL(7,2) fldBCD BCD(32,2) Numeric(7,2)
NUMERIC fldFLOAT Number Double
NUMERIC(7) fldFLOAT Number Double
NUMERIC(7,2) fldFLOAT Number Double
FLOAT fldFLOAT Number Double
FLOAT(7) fldFLOAT Number Double
FLOAT(7,2) fldFLOAT Number Double
CHARACTER(10) fldZSTRING Alpha(10) Character(10)
VARCHAR(10) fldZSTRING Alpha(10) Character(10)
DATE fldDATE Date Date
BOOLEAN fldBOOL Logical Logical
BLOB(1,1) fldstMEMO Memo Memo
BLOB(1,2) fldstBINARY Binary Binary
BLOB(1,3) fldstFMTMEMO Formatted memo Memo
BLOB(1,4) fldstOLEOBJ OLE OLE
BLOB(1,5) fldstGRAPHIC Graphic Binary
TIME fldTIME Time Character(11)
TIMESTAMP fldTIMESTAMP Timestamp Datetime
MONEY fldFLOAT,

fldstMONEY
Money Double

AUTOINC fldINT32,
fldstAUTOINC

Autoincrement Autoinc

BYTES fldBYTES Bytes(1) N/A
BYTES(10) fldBYTES Bytes(10) N/A

SQL data types
See also
The table below lists the SQL data types available in local SQL. Table columns, literals, parameter
values, and calculation results will all be of one of these types. When defining columns in CREATE
TABLE and ALTER TABLE statements, the SQL data types below are translated by the BDE into specific
Paradox, dBASE, and FoxPro column types. These data types are also used with the CAST function
when converting a value from one data type to another (except BLOB and memo types, on which CAST
cannot operate).
While there are three SQL data types available that apply to floating point numbers (DECIMAL,
NUMERIC, and FLOAT), each translates to a different native column type in local tables. Further, the
native column type used varies depending on the particular local table type used (Paradox, dBASE, or
FoxPro).

Column type Definition syntax
SMALLINT Small integer values. No scale or precision are specified.
INTEGER Integer values. No scale or precision are specified.
DECIMAL[(s[, p])] Floating point numbers. Scale and precision are each optional. If

precision is specified, scale must also be.
NUMERIC[(s[, p])] Floating point numbers. Scale and precision are each optional. If

precision is specified, scale must also be.
FLOAT(s, p) Floating point numbers. Scale and precision are each optional. If

precision is specified, scale must also be.
CHARACTER(length) Alpha-numeric type values. Specify length of column capacity, in

bytes. Length must be between 1 and 254.
VARCHAR(length) Alpha-numeric type values. Specify length of column capacity, in

bytes. Length must be between 1 and 254. In local SQL,
VARCHAR is functionally the same as CHAR.

DATE Date values with no time portion. No scale or precision are
specified.

BOOLEAN Logical (TRUE/FALSE) values. No scale or precision are specified.
BLOB(length, type) Streaming text or raw binary data. Specify length (column

capacity), in bytes. Specify the type of BLOB column: Memo (1),
Binary (2), Formatted Memo (3), OLE (4), Graphic/Binary (5). For
Paradox BLOB columns, length must be between 0 and 240
(amount of data stored in .DB file); for dBASE tables between 0
and 32,767 (valid length has no practical effect on column created).
Not all BLOB column types apply to all local table types or
correspond to the same native column types in all table types.

TIME Time values, with no date portion. No scale or precision specified.
TIMESTAMP Date and time portions in same column. No scale or precision

specified.
MONEY Floating point number values. Scale and precision is automatic.
AUTOINC Automatically incrementing column values. No scale or precision

specified.
BYTES(length) User-defined data types. Specify length (column capacity), in bytes.

ALTER TABLE statement
See also
Adds or deletes a column from a table.
ALTER TABLE table_reference DROP [COLUMN] column_reference | ADD [COLUMN]
column_reference [,reference DROP [COLUMN] column_reference | ADD [COLUMN]
column_reference...]

Description
Use the ALTER TABLE statement to add a column to or delete a column from an existing table. It is
possible to delete one column and add another in the same ALTER TABLE statement.
The DROP keyword requires only the name of the column to be deleted. The ADD keyword requires the
same combination of column name, type, and possibly dimension definition as CREATE TABLE when
defining new columns. See the section on defining column types for the specific syntax of all supported
column types.
The statement below deletes the column FULLNAME and adds the column LASTNAME.
ALTER TABLE "names.db"
DROP fullname, ADD lastname CHAR(25)
It is possible to delete and add a column of the same name in the same ALTER TABLE statement,
however any data in the column is lost in the process. This allows quick redefinition of columns while still
in the database design stages.
ALTER TABLE "names.db"
DROP lastname, ADD lastname CHAR(30)
If a column to be deleted is part of a primary key, the primary index is deleted. ALTER TABLE fails on an
attempt to delete a column that is the target of a foreign key constraint (referential integrity).
To reference columns with non-alphanumeric characters or spaces embedded in the column name, you
must enclose the column name in quotation marks and prefix the quoted column name with the table
name in quotes.
ALTER TABLE "customer.db"
ADD "customer.db"."#ID" CHAR(3)

DROP TABLE statement
See also
Deletes a table.
DROP TABLE table_reference
Description
Use the DROP TABLE statement to delete an existing table. The statement below drops a Paradox
table:
DROP TABLE "employee.db"

CREATE INDEX statement
See also
Creates a secondary index.
CREATE [UNIQUE] [ASC | DESC] INDEX index_reference ON table_reference
(column_reference [,column_reference...])

Description
Use the CREATE INDEX statement to create a secondary index for an existing table. Index names may
not have embedded spaces. Paradox indexes may be based on multiple columns. Due to the distinctive
nature of dBASE expression indexes, only single-column indexes can be created with CREATE INDEX.
Use UNIQUE to create an index that raises an error if rows with duplicate column values are inserted.
By default, indexes are not unique.
Use ASC (or ASCENDING) to create an index that orders data in an ascending direction (smallest to
largest). DESC (or DESCENDING) creates a descending ordering (largest to smallest). When a
direction imperative is not specified, ASC is the implied default.
The following statement creates a multi-column (compound) Paradox secondary index.
CREATE INDEX custdate ON "orders.db" (custno, saledate)
The following statement creates a unique dBASE secondary index.
CREATE UNIQUE INDEX namex ON "employee.dbf" (last_name)
The existence of indexes may affect the updatability of queries. See the section on updatable queries for
more information.

DROP INDEX
See also
Deletes an index.
DROP INDEX table_reference.index_reference | PRIMARY
Description
Use the DROP INDEX statement to delete a primary or secondary index.
To delete a dBASE primary or secondary index or a Paradox secondary index, identify the index using
the table name and index name separated by an identifier connector symbol (.).
DROP INDEX "employee.dbf".namex
To delete a Paradox primary index, identify the index with the keyword PRIMARY.
DROP INDEX orders.PRIMARY
The existence of indexes may affect the updatability of queries. See the section on updatable queries for
more information.

Jan Kraski
Dedicated to the memory of

Jan Kraski
The monster got ‘im -- June 3, 1998

RIP

