
    Adding Web Links to the Start Menu {button ,AL(`Script techniques',0,`',`')}
Related Topics

A Web Link can be added to the Windows 95/Windows NT Start menu by creating a .URL file and creating a link
from the Start menu.
The following example N_Dist script adds links to the Norman web sites on the Start menu.
The technique used is to store the details of each URL file to be built in an INI-file and create the links using
the REGISTER command.    The links will appear as a group named 'Web Links' under the programs group or
optionally, on the primary Start menu.
The script would be invoked from the server login script with the command:

\\<Server_Name>\<Share>\ndist\N_Dist.exe \\<Server_Name>\<Share>\ndist\url.nxd $Profile=
%USERPROFILE% /q

This example reflects a Windows NT, Windows 95/Windows NT server/client environment.    It is assumed that
an Administrator install of Norman Virus Control has been performed, consequently the directory NVCADMIN
and its subdirectories, including NDIST, exist on the server.
The variable $Profile is set on the command line for use when a Windows NT workstation logs on.    See the
topic Using Environment variables for further details on setting/using variables.
The INI-file and the N_Dist script are located in the NVCADMIN\NDIST directory on the server.
The INI-file is in the following format:
URL.INI

[URLS]
nURL=<URL>
nText=<Text to appear on the Start menu>
nFile=<URL filename>

Where 'n' is a sequential number starting at 1 for each URL definition set.
A typical example would be:

[URLS]
1URL=http://www.norman.com.au
1Text=Norman on the Web (Australia)
1File=NRM061.URL
2URL=http://www.norman.de
2Text=Norman on the Web (Germany)
2File=NRM049.URL
3URL=http://www.norman.nl
3Text=Norman on the Web (Netherlands)
3File=NRM031.URL
4URL=http://www.norman.no
4Text=Norman on the Web (Norway)
4File=NRM047.URL
5URL=http://www.norman.com
5Text=Norman on the Web (USA)
5File=NRM001.URL

The script recursively reads the INI-file and creates as many URL files and links as the are definition sets.
URL.NXD

NXD BEGIN
; Set script variables   
    set $Source='\\<Server>\<Share>\NDIST'
    set $Target='C:\MY DOCUMENTS\URL'
    set $Folder='Web Links'
    set $Count=1
    set $Move='Yes'
; Check workstation OS
#CheckOS
    if $System='WIN16'

          goto #End
    if $System='WIN95'
          goto #Win95
    if $System='WINNT'
          goto #WinNT
; Set Win 95 variable
#Win95
    set $URL_Dir=$WinDir+'\START MENU\Web Links'
    goto #MakeDir
;Set Win NT variables
#WinNT
    set $WininiDir=$Profile
    set $URL_Dir=$Profile+'\START MENU\Web Links'
    goto #MakeDir
; Make new directories
#MakeDir
    if !exist $Target
          makedir $Target
    if $Move ! 'Yes'
          goto #Check
    if !exist $URL_Dir
          makedir $URL_Dir
    goto #Check
; Completion test then check if URL file exists.
#Check
    getini $Check $Source+'\URL.INI' [URLS] $Count+'File'
    if $Check=''
          goto #Move
    if exist $Target+'\'+$Check
          goto #Next
    goto #GetURL
; Create .URL file and link.
#GetURL
    getini $Name $Source+'\URL.INI' [URLS] $Count+'URL'
    getini $Text $Source+'\URL.INI' [URLS] $Count+'Text'
    getini $File $Source+'\URL.INI' [URLS] $Count+'File'
    setini $Target+'\'+$File 'InternetShortcut' URL $Name
    setini $Target+'\'+$File 'InternetShortcut' Title $Text
    register $Folder $Target+'\'+$File $Text
; Increment counter and check next link.
#Next
    increment $Count
    goto #Check
; Move Links to new location.
#Move
    if $Move ! 'Yes'
          goto #End
    if exist $WininiDir+'\START MENU\PROGRAMS\WEB LINKS*.LNK'
          copy $WininiDir+'\START MENU\PROGRAMS\WEB LINKS*.LNK' $URL_Dir+'*.LNK'
    if exist $WininiDir+'\START MENU\PROGRAMS\WEB LINKS*.LNK'
          delete $WininiDir+'\START MENU\PROGRAMS\WEB LINKS*.LNK'
    if exist $WininiDir+'\START MENU\PROGRAMS\WEB LINKS*.LNK'
          delete $WininiDir+'\START MENU\PROGRAMS\WEB LINKS' directory
#End
NXD END

How the script works
The workstation operating system is checked at the top of the script.    If it is not Windows 95, processing is

transferred to the #End label and the script terminates.
The #SetVars section sets the script variables which are:

$Source Points to the location of the NDIST directory on the server.
$Target Defines the location of the .URL files on the workstation.

$Folder Defines the name of the folder to be added to the Start menu.
$Count Initializes the counter.    This is incremented during each iteration of the script.
$Move Defines if the Web links are to be moved from the Programs menu to the primary Start menu.

The #CheckOS section determines the workstation operating system.    If the workstation is running
Windows 3.x, processing is transferred to the #End label and the script terminates.

If the workstation is running Windows 95, processing is transferred to the #Win95 label where the
$URL_Dir variable is set.

If the workstation is running Windows NT, processing is transferred to the #WinNT label where the variable
$WininiDir is set to the value of the $Profile variable that was set on the command line that executed the script (the
server logon script).    The $URL_Dir variable is set to point to the users 'Profiles' directory.    This ensures that each
uses gets the URL's added to their Start menu.

The $URL_Dir variable defines name of the directory to contain the links if they are to be added to the
primary Start menu.    If the $Move variable (see above) is set to No, this directory is not created.

The #MakeDir section creates new directories on the workstation if they do not exist.
The #Check section uses the GETINI command to get the name of the URL file to create from the INI-file

named URL.INI.    If the variable $Check contains a nul value, the last URL has been processed, and script processing
is transferred to the #Move label.    Otherwise, the IF command is used to check if the URL file exists.    If it does,
script processing is transferred to the #Next label.    If not, processing is transferred to the #GetURL label.

The #GetURL section uses the GETINI command to get the data required to build the URL file from the INI-
file named URL.INI.    The SETINI command is then used to build the URL file using the values stored in the variables. 
A typical URL file looks like this:

[InternetShortcut]
URL=http://www.norman.no
Title=Norman on the web

The REGISTER command is used to create a link to the URL file.    By default, N_Dist will create the new
folder defined in the $Folder variable (if it does not exist) under the Programs folder on the Start menu.

The #Next section uses the INCREMENT command to increment the integer value stored in the variable
$Count, then transfers script processing back to the #Check label where the next URL to be built is checked.

The #Move section uses the IF command to determine if the links are to be moved up to the primary Start
menu or remain under the Programs menu.    If the $Move variable is set to Yes, the links are moved.
Notes:

This example uses the Norman web sites but, any combination of web links can be created by defining
them in the INI-file.

So far, this has only been tested in the Windows NT Server, Windows 95/Windows NT workstation
environments, however it can be modified to work in other environments.    For example, in a Netware server
environment use the variable LOGIN_NAME to set the N_Dist variable $Profile. when running the N_Dist script from
the Netware login script.    A typical example might be:

#server_name/volume:\path\n_dist.exe \\server_name\volume\path\url.nxd $Profile=LOGIN_NAME /q
For more information on running a script from a Netware server, refer to the topic Running a Script from a
Server.

    BEEP {button ,AL(`Ctl',0,`',`')}    Related Topics
Purpose:

Emit a default beep, a beep number (between 1 and 5) or a .WAV file.
Syntax:

BEEP x file.wav
Where:

x : 1-5
file.wav : The name of the wave file to use. (Windows 95 and Windows NT only)

Example:

BEEP 2
Would emit the level 2 beep.

Notes:
The use of BEEP without any parameters will cause the default beep to sound.
If a .WAV file is used, the full path should be specified.

    Building a Script Dynamically {button ,AL(`Script techniques',0,`',`')}   
Related Topics

An N_Dist script can be used to build another N_Dist script either on the server or on a workstation.    This
technique is useful if the secondary script contains variables that relate to a User ID or the Workstation ID as
they can be defined using environment or other (eg. Novell script) variables.    Use the N_Dist Insert command
to build the secondary script.
There is only one line that N_Dist will have difficulty writing, that is, the last line of the script which contains
the NXD END command.    N_Dist will read it literally and quit.    To overcome this behavior write the line as two
components as follows:

...
insert $Target+'\NDIST\FILENAME.NXD' end 'NXD '+'END'
...

Note the space after the NXD and before the single quote.    This is to create the line NXD END.

    Building and Running a Batch File {button ,AL(`Script techniques',0,`',`')}
Related Topics

The following example N_Dist script will build, run, then delete a batch file.    The batch file is built in the 'Temp'
directory on the workstation, so the location of this directory needs to be passed to the script on the command
line.    The technique used is to pass the DOS environment variable TEMP.
The script would be invoked from a batch with the command:

n_dist.exe map.nxd $Temp=%%temp%%\ /q
Note the double '%' signs, DOS will strip the first pair if run from a batch file.

This script builds a batch file that maps a drive on a Windows NT server.    It will also display an error message
if the workstation operating system is not Windows 95 or, the Temp variable is not present.
MAP.NXD

NXD BEGIN
; Determine O/S
 if $System !WIN95
        goto #OSError
 goto #ChkTmp
; Check Temp variable
#ChkTmp
 if $Temp=''
        goto #VarError
 goto #SetVars
; Set script variables
#SetVars
 set $Drv='z:'
 set $Server='\\NT_Server'
 set $Share='Data$'
 set $Batch='map.bat'
 goto #BildBat
; Build Temporary batch file
#BildBat
 insert $Temp+$Batch beginning 'net use '+$Drv+' '+$Server+'\'+$Share+' /y'
 goto #RunBat
; Run then delete temporary batch file
#RunBat
 run $Temp+$Batch
 if exist $Temp+$Batch
        delete $Temp+$Batch
 goto #End
; Display error message if O/S not Win95
#OSError
 display ' '
 display 'ERROR'
 display ' '
 display 'This script must be run on a Windows 95 workstation'
 display ' '
 display 'Press any key to exit...'
 wait
 goto #End
; Display error message if Temp variable missing
#VarError
 display ' '
 display 'ERROR'
 display ' '
 display 'The Temp variable does not exist.    Either it has not'
 display 'been set on the command line or, the Temp environment'
 display 'variable does not exist on this workstation.'
 display ' '
 display 'Command Syntax:'
 display ' '

 display '              N_Dist.Exe Map.Nxd $Temp=%%temp%%\ /q'
 display ' '
 display 'Press any key to exit...'
 wait
 goto #End
#End
NXD END

How the script works:
The workstation operating system is checked at the top of the script.    If it is not Windows 95, processing is

transferred to the #OSError label and a message is displayed.
The #ChkTmp section checks that the $Temp variable has been set.    If not, processing is transferred to

the #VarError label where an error message and the syntax is displayed.
The #SetVars section sets the script variables.
The #BildBat section uses the INSERT command to create the batch file in the Temp directory.
The #RunBat section uses the RUN command to run the batch file.    The batch file is then deleted after it

has finished running.    The nowait parameter has not been used, so that the batch file will complete before an
attempt is made to delete it.

Processing is then transferred to the #End label and the script quits.

    CLEARREGISTRY {button ,AL(`Registry',0,`',`')}    Related Topics
Purpose:

To remove a parameter in the registry (Windows 95 and Windows NT only).
To remove a parameter in the OS/2 user or system profiles.

Syntax:

for Windows 95 and Windows NT
CLEARREGISTRY key variable
for OS/2
CLEARREGISTRY user/system application key

Where:

user : defines the user profile (OS2.INI).
system : defines the system profile (OS2SYS.INI).
application : is the name of the application (OS/2).
key : is the registry/profile key to clear.
variable : is the variable associated with the registry key.

Example:

CLEARREGISTRY 'HKEY_CURRENT_USER\Environment' 'TEMP'
Would remove the TEMP variable stored in the HKEY_CURRENT_USER\Environment key.

Notes:

Use with caution.    Clearing entries in the registry/profile may render the system inoperable.

    COPY
Purpose:

To copy a file from source to target,
Syntax:

COPY source target mode (deferred)
Where:

source : is the name of the source file.
target : is the name of the target file.
mode : is always or update.    See notes for further information.
deferred : is the (optional) command modifier to cause the copy operation to be performed at

the next system restart if the target file is locked.    (Win32 environments only)
Examples:

COPY c:*.exe d: always
Would copy all files that have the extension of .exe from the root of c: drive to drive d: without checking 
the file date/time if they exist on the target drive.
COPY $Source+'\data*.doc' $Target+'\data update'
Would copy all files with the extension of .doc from the the source location to the target location only if
they did not exist or were newer than the target files.    This example assumes that the variables
$Source and $Target have been set within the script.

Notes:

Wildcards are allowed.

Always will perform the copy every time N_Dist is executed.

Update checks the time and date of the source and target files.

If the target file exists the copy operation is only performed if the source file is newer than the target file.

    CUTWORD {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose

To remove a string from the line stored in $variable.
Syntax:

CUTWORD $variable 'string'
Where:

$variable : is the name of the variable used to store the string.
string : is the string to cut from the variable.

Examples:

CUTWORD $String 'nvcsys'
Remove a string containing 'nvc.sys' from the variable named $String.
CUTWORD $String '    nvcsys'
Remove a string containing '    nvc.sys' from the variable named $String. including up to 2 leading
spaces.

Notes:

Any number of spaces can be removed before or after the word or string by including spaces.    In the
second example above, up to 2 spaces before the word/sentence containing 'nvcsys' would be removed

The delimiter for the word or string is 'space'.

This command is useful for editing lines like 'LOAD=' in 'win.ini'.

The variable will store the result.

The CUTWORD script command is case insensitive.

The string can be a partial string.    For example, nvcsys would match c:\norman\dos\nvcsys.exe.    This
overcomes the problem of the path being variable across different target systems.
Application example:

The CUTWORD command is used in conjunction with other N_Dist commands to edit values in an INI file. 
The following shows how to use N_Dist to edit the LOAD line in WIN.INI and uses the DOS/Windows
implementation of NVC as an example.
A typical WINI.INI with NVC installed might be:

[windows]
spooler=yes
load=nwpopup.exe c:\norman\win16\nvcsys.exe c:\norman\win16\claw31.exe
run=
...

In order to do an update of NVC on the workstation it is necessary to remove any existing commands on
the LOAD line that invoke components of NVC.    In doing so, any other commands must be preserved.
The technique used is:    Get the existing value of the LOAD line and store it in a variable, then using
CUTWORD, remove any commands that invoke NVC.    The CUTWORD command works on a variable so,
after cutting any NVC commands, the remainder is stored in the variable and can be used to write a new
value to the LOAD line, together with any new commands required for the update.
A simple script to achieve this would be:
NXD BEGIN
 set $Target='c:\norman\win16'

 getini $Line $Windir+'\win.ini' [windows] 'load'
 cutword $Line ' nvcsys'
 cutword $Line ' claw31'
 setini $Windir+'\win.ini' 'windows' 'load' $Line+' '+$Target+'\nvcsys.exe'+' '+$Target+'\claw31.exe'
NXD END
How the script works:

The SET command defines the $Target variable, in this case, the location of the NVC files.

GETINI is used to record the value of the LOAD line in the [windows] section of WIN.INI and store it in a
variable named $Line.    At this point the variable $Line would contain:

nwpopup.exe c:\norman\win16\nvcsys.exe c:\norman\win16\claw31.exe

The first CUTWORD command is used to remove any string containing the text ' nvcsys'.    Note that a
leading space will also be removed.    The $Line variable would now contain:

nwpopup.exe c:\norman\win16\claw31.exe

The second CUTWORD command is used to remove any string containing the text ' claw31'.    A leading
space will also be removed.    The $Line variable would now contain:

nwpopup.exe
This has effectively preserved any other command(s) on the LOAD line.

The SETINI command is used to write back any preserved command(s) and add the new commands
required for the NVC update.

    Norman Distribution Tool

    Controlling an Update {button ,AL(`Script techniques',0,`',`')}    Related Topics
This topic describes how to control a workstation update by using an INI file which contains the update level as
a value.    The script compares the update level on the server with the update level on the workstation and
only proceeds if the values are different.    Using this technique, a System Administrator can control when an
update is to take place.
The following INI file (UPDATE.INI) is stored on the server and copied to the workstation during the update.
UPDATE.INI

[update]
level=001

The script is as follows:
UPDATE.NXD

NXD BEGIN
// Set Script variables.
set $Source='F:\PUBLIC\DATA'
set $Target='C:\DATA'
goto #CheckOS
// Check workstation O/S.
#CheckOS
if $System !WIN95
      goto #End
goto #CheckLevel
// Check update level.
#CheckLevel
getini $Server $Source+'\NDIST\UPDATE.INI' UPDATE LEVEL
getini $WStation $Target+'\NDIST\UPDATE.INI' UPDATE LEVEL
if $Server=$WStation
      goto #End
goto #CopyFiles
// Copy files to workstation.
#CopyFiles
copy $Source+'\NDIST\UPDATE.INI' $Target+'\NDIST\UPDATE.INI' update
copy $Source+'\MEMO.DOC' $Target+'\MEMOS\MEMO.DOC' update
copy $Source+'\STAFF.DOC' $Target+'\ADMIN\STAFF.DOC' update
copy $Source+'\PHONE.DOC' $Target+'\ADMIN\PHONE.DOC' update
goto #End
#End
NXD END

To initiate an update the System Administrator need only copy the new files to the server source directory and
increment the update level in UPDATE.INI by 1.    As each user logs on, the update will take place one time only.
The next time a user logs on, the values in UPDATE.INI will be the same so the script will transfer processing to
the #End label and quit.

    Creating an N_Dist Script {button ,AL(`Variables',0,`',`')}    Related Topics
An N_Dist script is a plain text file.    Use a text editor to create a script.
A script can be in any order that the author requires but the following rules and guidelines should be followed.

Script Rules.

Only the lines between NXD BEGIN and NXD END (must be uppercase) will be interpreted.

Comments start with any of the following three identifiers:
;                    //                  /*

Script files have the extension of .NXD

String arguments that contain spaces must be enclosed in single quotes.

When directory names are given as arguments, it is not necessary to enclose them in quotes unless they
contain spaces.

Commands, variable names etc are case insensitive unless specified otherwise.

A variable name can be up to 255 characters.

Extra spaces between arguments are not interpreted.

When a "=" is used in a command, there are no requirements on spaces before or after the "=" sign.

When a ":" is used in a command, there are no requirements on spaces before or after the ":" sign.

N_Dist will not override the original attribute setting on files or directories, and it will not reset or change
access rights.

The position of arguments following N_Dist commands is significant.
The following example will copy a group of files from a server to a workstation only if the files located on the
server are newer than those on the workstation and the workstation operating system is Windows 95.
DEMO.NXD

NXD BEGIN
// Set script variables
set $Source='F:\PUBLIC\DATA'
set $Target='C:\DATA\WINWORD'
goto #CheckOS
// Check O/S
#CheckOS
if $System !WIN95
      goto #End
goto #CopyFiles
// Copy files to workstation
#CopyFiles
copy $Source+'\MEMO.DOC' $Target+'\MEMOS\MEMO.DOC' update
copy $Source+'\STAFF.DOC' $Target+'\ADMIN\STAFF.DOC' update
copy $Source+'\PHONE.DOC' $Target+'\ADMIN\PHONE.DOC' update
goto #End
#End

NXD END
Script comments are not mandatory, but they do enhance the readability and are recommended.

    DELETE {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose:

To delete a file, a set of files, a directory, or a group of directories
Syntax:

DELETE file or path (directory) (hidden) (recurse)
Where:

file : is name of the file to delete.
path : is the name of the directory to delete.
directory : is the (optional) command modifier to cause N_Dist to delete a directory.
hidden : is the (optional) command modifier to cause N_Dist to delete hidden files if they exist.
recurse : is the (optional) command modifier to cause N_Dist to delete recursively.    This is

functionally similar to the DOS 'deltree' command.
Examples:

DELETE c:\norman\nvc.* hidden
Delete all files that conform to the filespec even if they are hidden.
DELETE c:\data*.* recurse
Delete the 'data' directory and all subdirectories.including all files regardless of attributes.

Use recursion with caution.    Erroneous use may render the system inoperable.
Notes:

A directory must be empty before it can be deleted.

Wildcards can be used when specifying both files and directories.

When specifying a directory as an argument the trailing '\' is not required.

The recurse parameter will delete files regardless of attributes.
Application example:

This example script will remove all files
and directories in the tree structure
shown in the adjacent diagram,
including hidden/read-only files.
By using the recurse parameter together
with wildcards as file specifications, only
two lines of code are necessary for the
deletion task.
This is particularly useful in building a
script to perform maintenance/cleanup
tasks on a group of network connected
workstations.

NXD BEGIN
 set $Dir='C:\DATA'
 delete $Dir+'*.*' recurse
 delete $Dir directory
NXD END

How the script works:

The SET command is used to define the variable $Dir.

The DELETE command is used to delete all files (including hidden/read-only files) starting at the path
stored in the $Dir variable and to recurse down the tree until all files and subdirectories are removed.

The DELETE command is used again, this time to delete the directory stored in the $Dir variable.

If the workstation is running the Norman Smart Behavior Blocker in a Windows 95 environment, the
deletion of directories will fail as there is a time delay between the execution of the delete command and the actual
deletion, if the files are executables.    This type of script would normally be run from the login script and
consequently the Smart Behavior Blocker would not be running.    However, during any testing, unload the Smart
Behavior Blocker or, place a WAIT 2 command between the two delete commands in the script.

    DISPLAY {button ,AL(`Ctl',0,`',`')}    Related Topics
Purpose:

To display a string and/or variables.    Several strings and variables can be displayed on one line.    See
notes below for further information.

Syntax:

DISPLAY 'string' $variable
Where:

string : is a text string to display.    If the string contains spaces enclose it in quotes.
$variable : is the name of a variable that contains a string to display.

Example:

DISPLAY 'End of program, log file is: '+$Logdrv+'\LOG.DAT'
Would display the text 'End of program, log file is: C:\LOG.DAT' assuming the variable $Logdrv was set to
C:.

Notes:

A '+' sign between sub-strings concatenates strings/variables into a continuous string.

    Distributing NVC Configuration Settings
Introduction

The default NVC scripts provided by Norman (NVCW.NXD, NVC95.NXD, NVCNT.NXD) allow administrators to
distribute and install standard scanning and scheduling configurations on each workstation, through the use of
distributed REG and INI files.

Distributing Norman Virus Control configuration settings:

When configuring Norman Virus Control, the changes are stored in the NVCW.INI file (Windows 3.1x) , or in the
Registry (Windows 95 or NT).    To standardize NVC configurations across your network, you must distribute this
information to all users using N_Dist.

For Windows 3.1x:

After configuring NVC options, including styles and scheduled scans if appropriate, you will see the changes
reflected in the files called <path>NORMAN\WIN16\NVCW.INI, containing information on options and
scheduling, and <path>NORMAN\WIN16\NVCW.DAT, containing information on styles.

Copy these files to the server in the
following location:
<path>NVCADMIN\NDIST\WIN16\NVCW.INI
<path>NVCADMIN\NDIST\WIN16\NVCW.DAT
When using the default N_Dist script,
N_Dist will look for these files in the source
directory and copy them to the workstation.
In this way, each workstation will have the
same configuration settings.

In the default script, N_Dist copies these files with the 'update' parameter, meaning that each file will be
copied to the workstation only if the source file has a newer date than than the target file on the workstation.   
However, once NVC has been installed on the workstation, users will be able to alter the NVCW.INI and NVCW.DAT
files on their workstation.    If you wish to 'reset' the configurations each time the user logs on, you should edit the
the NVCW.NXD script, changing the copy commands for these two files, found in the #NVC_Win16 section.    For
example change:

copy $Source+'\WIN16\NVCW.INI'    $Target+'\WIN16\NVCW.INI' update
to:

copy $Source+'\WIN16\NVCW.INI'    $Target+'\WIN16\NVCW.INI' always
and similarly the line copying the NVCW.DAT file.

For Windows 95 and NT:

After configuring NVC’s options, including styles and scheduled scans if appropriate, you will see the changes
reflected in the Registry, in the following key: HKEY_CURRENT_USER\Software\NORMAN\NVC

Using the Registry Editor, highlight the NVC key and export the registry settings (Registry | Export Registry
Settings) to a file called NVC95.REG (for Windows 95) or NVCNT.REG (for Windows NT).    Then copy the files to
the server in the following locations:

<path>NVCADMIN\NDIST\WIN95\NVC95.REG
<path>NVCADMIN\NDIST\WIN32\NVCNT.REG

When using the default N_Dist script, N_Dist will look for this NVC95.REG file in the source directory and copy
it to the workstation.    It will then call REGEDIT with the REG file and import the registry settings on the
workstation.

The user will see a dialogue box requiring them to acknowledge these registry settings;

Here again, if you wish to 'reset' the configurations each time the user logs on, you should change the
script so that it always copies the REG file.    For example in the NVC95.NXD script (in the #Scheduling section),
change the line from:

copy $Source+'\WIN95\NVC95.REG' $Target+'\WIN95\NVC95.REG' update
to:

copy $Source+'\WIN95\NVC95.REG' $Target+'\WIN95\NVC95.REG' always
Distributing Cat's Claw Configuration Settings:
When Cat's Claw is configured, the following files are created:
1. NVCMACRO.CRT, if you certify macros.
2. All other configuration settings in CLAW31.INI or in CLAW95.REG, for Windows 3.1x and Windows 95,

respectively.
Unlike the NVC95.REG file, the CLAW95.REG file is created automatically.

Make sure that these files are copied to the server in their respective folders:
NVCMACRO.CRT in \NVCADMIN where the definition files reside
CLAW31.INI in \NVCADMIN\WIN16
CLAW95.REG in \NVCADMIN\WIN95

If you're using default N_Dist distribution, Cat's Claw will be updated with new files whenever changes are
made to the files on the server.

In the default installation, users are not provided with the configuration program necessary to change the
INI or REG files, and therefore there is no need to 'reset' the configurations at each login as discussed above with
NVC.

    GETDRIVE {button ,AL(`URL',0,`',`')}    Related Topics
Purpose:

To extract the drive letter from a path and store the result in the specified variable.
Syntax:

GETDRIVE $variable 'path'
Where:

$variable : is the name of the variable to store the drive letter.
path : is the path to extract the drive letter from.    Enclose the path in quotes.

Examples:

GETDRIVE $Drive 'c:\dos\chkdsk.exe'
Would return c: in the variable $Drive.
GETDRIVE $Drive $Source
Would return the drive component of the variable $Source in the variable $Drive.

Notes:
The 'path' can be a string as in the first example or, a variable as in the second example.

    GETINI {button ,AL(`Ini',0,`',`')}    Related Topics
Purpose:

To extract a value from an INI-file and store it in a variable.
Syntax:

GETINI $variable ini-file [section] 'keyword'
Where:

$variable : is the name of the variable to store the value.
ini-file : is the name of the INI-file to get the value from.
[section] : is the section name in the INI-file.
keyword : is the keyword in the INI-file.

Example:

GETINI $Result win.ini [windows] 'load'
The variable $Result will contain the value associated with the 'load' keyword in WIN.INI.

Notes:
Enclose the INI-file keyword in quotes.
The section name is as it would appear in the INI-file eg. [windows].

Application example:
For an example of how GETINI is used, refer to the CUTWORD topic.

    GETPATH{button ,AL(`URL',0,`',`')}    Related Topics
Purpose:

To extract the directory name from a complete path and store the value in the specified variable.
Syntax:

GETPATH $variable 'path'
Where:

$variable : is the name of the variable that will store the result.
path : is the path to extract the directory name from.

Examples:

GETPATH $Path 'c:\dos\chkdsk.exe'
Will return the path c:\dos\ and store it in the variable $Path.
GETPATH $Path $Source+'\data*.doc'
Will return the path component of $Source+'\data*.doc' and store it in the variable $Path.    Assuming
the $Source variable was set to f:\users the $Path variable would contain f:\users\data.

Notes:
If the path specified in the argument does not end with a filename, the value of the variable will be the

same as the path, but without the trailing "\".
The path specified in the argument can be a string, variable or, a combination as in the second example.

    GETREGISTRY {button ,AL(`Registry',0,`',`')}    Related Topics
Purpose:

To extract the value of a parameter in the registry and store the result in the specified variable.
(Windows 95 and Windows NT only)
To extract the value of a parameter in the OS/2 user or system profiles and store the result in the
specified variable.

Syntax:

for Windows 95 and Windows NT
GETREGISTRY $variable 'key' 'parameter'
for OS/2
GETREGISTRY $variable 'application' 'key'

Where:

$variable : is the name of the variable to store the value.
key : is the registry/profile key to get the value from.
parameter : is the parameter name in the registry.
application : is the name of the application (OS/2).

Example:

GETREGISTRY $Result 'HKEY_CURRENT_USER\Environment' 'TEMP'
The value of the 'TEMP' registry key would be stored in the variable $Result.

Notes:
Users with read-only rights are able to access all parts of the Registry.

    GOTO
Purpose:

To transfer processing to a line in an N_Dist script starting with '#Label'.
Syntax:

GOTO #Label
Where:

#Label : is the label to go to.
Example:

GOTO #End
Would cause script processing to be transferred to the #End label.

Notes:
A label is prefixed with #.

How to contact Norman

    IF {button ,AL(`if',0,`',`')}    Related Topics
Purpose:

To (conditionally) execute the next line of an N_Dist script.
Syntax:

IF EXIST/!EXIST/ERROR/$variable =/! $variable/'value' (WRITE) (EXECUTE)
Where:

EXIST : is the parameter to test for the existence of a path or file.
!EXIST : is the parameter to test for the non-existence of a path or file.
ERROR : is the parameter to test the error condition.
$variable : is the name of a variable to test.
value : is a value to test.
WRITE : is the (optional) parameter to cause N_Dist to check for 'write' rights.
EXECUTE : is the (optional) parameter to cause N_Dist to check for 'execute' rights.

Example:

IF EXIST 'c:\norman\nvc.exe' execute
This checks if the file C:\NORMAN\NVC.EXE exists with execute rights.    If 'true' (the file does exist) the
next line of the script will be processed, otherwise, it will be skipped.

Notes:
If the result of the test is true, the next line of the script will be executed.
If the result of the test is false, the next line of the script will be skipped.
The EXIST command checks for existence of paths and files.
Paths and files may also be checked for write and execute rights.

Application example:

The following example script uses the GETINI command to get values located in two INI-files and store
them in variables named $Server and $Wstation.    The IF command is used to compare the two
variables.    If the values are the same (IF returned 'true'), processing is transferred to the #End label
and the script finishes.    If the values are not the same (IF returned 'false'), processing is transferred to
the label #CopyFiles and a file update takes place.

NXD BEGIN
// Set Script variables.
set $Source='F:\PUBLIC\DATA'
set $Target='C:\DATA'
goto #CheckOS
// Check workstation O/S.
#CheckOS
if $System !WIN95
      goto #End
goto #CheckLevel
// Check update level.
#CheckLevel
getini $Server $Source+'\NDIST\UPDATE.INI' UPDATE LEVEL
getini $WStation $Target+'\NDIST\UPDATE.INI' UPDATE LEVEL
if $Server=$WStation
      goto #End
goto #CopyFiles
// Copy files to workstation.
#CopyFiles
copy $Source+'\NDIST\UPDATE.INI' $Target+'\NDIST\UPDATE.INI' update
copy $Source+'\MEMO.DOC' $Target+'\MEMOS\MEMO.DOC' update
copy $Source+'\STAFF.DOC' $Target+'\ADMIN\STAFF.DOC' update
copy $Source+'\PHONE.DOC' $Target+'\ADMIN\PHONE.DOC' update
goto #End
#End

NXD END
This technique can be used to control workstation updates.    The System Administrator need only
increment the value stored in the server based INI-file to initiate an update.    For a full explanation of
this technique, refer to Controlling an Update.

    IF UPDATE {button ,AL(`if',0,`',`')}    Related Topics
Purpose:

To (conditionally) execute the next line of an N_Dist script.    The next line will be executed if the the
source is newer than the target.

Syntax:

IF UPDATE source target
Where:

source : is the source path
target : is the target path.

Example:

IF UPDATE f:\users\templates c:\data\templates
display 'Your wordprocessing templates are out of date.'
This checks the date/timestamps of document templates on a workstation against those stored on a
server.    If the workstation copies are older, a message is displayed.

Notes:
Both the source and target parameters may be defined as variables.

    INCREMENT
Purpose:

To Increment the integer value stored in a variable by one.
Syntax:

INCREMENT    $variable
Where:

$variable : is the name of the variable that is used to store the integer value.
Example:

INCREMENT $Count
Would increment the value of the variable $Count by 1.

Notes:
This command can be used to cause N_Dist to execute a procedure multiple times.    See the IF command

for further information on conditional processing.
Application examples:

Example 1
The first example uses the INCREMENT command to control the number of iterations the code section of
the script is executed.
It also employs the technique of setting the value of a variable on the command line by using a DOS
batch file replaceable parameter.    The batch file looks like this:
COUNT.BAT

@echo off
 n_dist.exe count.nxd $Count=%1 /q

The script is as follows:
COUNT.NXD

NXD BEGIN
; Set script variables
 set $Counter='0'
; Increment counter
#Loop
 increment $Counter
 goto #Code
; Code section of script
#Code
 display $Count+' '+$Counter
 if $Counter=$Count
        goto #End
 goto #Loop
#End
NXD END

To run the script, invoke COUNT.BAT with a command line parameter that will become the value of the
$Count variable referred to in the script.    eg.

COUNT.BAT 5
In this example, the #Code section of the script will simply display the values of the two variables.    In a
real-time application, this would be replaced by the commands required to satisfy the purpose of the
script.

Example 2

The second example uses the same basic script, except that it has been modified to prompt the user for
the number of times to run.
PROMPT.NXD

NXD BEGIN

; Set script variables
 set $Counter='0'
; Prompt user for value
 display 'How many times should this run?'
 display 'Enter a number between 1 and 9.'
 wait
 set $Count=$Key
; Increment counter
#Loop
 increment $Counter
 goto #Code
; Code section of script
#Code
 display $Count+' '+$Counter
 if $Counter=$Count
        goto #End
 goto #Loop
#End
NXD END

The DISPLAY command is used to display a user prompt.    Followed by the WAIT command used without
any parameters which causes the script to wait indefinitely for a keystroke and store the value of the
key in the special variable called $Key.    The $Count variable is then set to the value of $Key.
The WAIT command will accept a single keystroke, consequently the input range is limited to 0-9.

    INSERT {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose:

To add a string to the beginning or end of a line containing a keyword in a text-file.
Syntax:

INSERT file beginning or end [section] 'keyword' 'string' (nodup)
Where:

file : is the name of the file to insert the string.
beginning : causes N_Dist to insert the string at the beginning of the section/file/line. (see notes

below)
end : causes N_Dist to insert the string at the end of the section/file/line. (see notes below)
[section] : is the section name if the file is an INI-file.    Enclose the section name in square

brackets.
keyword : is the name of the keyword if the file is an INI-file.
string : is the string to insert.
nodup : is the (optional) parameter that causes N_Dist not to execute the insertion if the value

in string already exists.
Examples:

INSERT config.sys end [common] 'device=nvc.sys' nodup
The line device=nvc.sys is inserted at the end of the common section in config.sys.    If the line already
exists anywhere in config.sys, the nodup arguments instructs N_Dist not to insert the string.
INSERT config.sys end 'device=nvc.sys' nodup
The line device=nvc.sys is inserted at the end of config.sys.    If the line already exists anywhere in
config.sys, no insertion is done.
INSERT config.sys beginning 'nvc.sys' 'REM '
A REM entry is inserted at the beginning of all lines containing 'nvc.sys'.

Notes:
nodup skips the command if the entry already exists.
If a file and/or a section does not exist, it is created.
If a section is specified the beginning or end applies to the beginning or end of the section.
If no section is specified the beginning or end applies to the beginning or end of the file.
If a keyword is specified the beginning or end applies to the beginning or end of the line that contains the

keyword.
Whenever a file is specified, the full path should be given.    In addition, the position of the arguments is

significant, it is recommended that this be taken into consideration when distinguishing between a keyword and a
string.
Application examples:

Example 1

The following example script will add the [restrictions] section and, define the Startup group in the
[settings] section of PROGMAN.INI in a Windows 3.x environment.

NXD BEGIN
; Set script variables.
 set $Windir='C:\Win311'
; Add Restrictions section.
 insert $Windir+'\PROGMAN.INI' [restrictions] beginning 'EditLevel=4' nodup
 insert $Windir+'\PROGMAN.INI' [restrictions] beginning 'NoFilemenu=1' nodup
 insert $Windir+'\PROGMAN.INI' [restrictions] beginning 'NoSaveSettings=1' nodup
 insert $Windir+'\PROGMAN.INI' [restrictions] beginning 'NoClose=1' nodup
 insert $Windir+'\PROGMAN.INI' [restrictions] beginning 'NoRun=1' nodup
; Define Startup group.
 insert $Windir+'\PROGMAN.INI' [settings] end 'Startup=STARTUP' nodup
#End

NXD END
How the script works:

The variable $Windir is set at the top of the script.    Normally, this variable should not be set by the script,
however, in a Windows 3.x environment, Windows is not running when a user logs in.    If this script was run from
the server login script, N_Dist would set the $Windir variable to c:\windows by default.    This is not always the
location of the Windows directory, as in this example.

The INSERT command is used to write the items in the [restrictions] section.    If the [restrictions] section
does not exist, it will be created.    If all or any of the items exist, they will not be duplicated, the nodup parameter
causes N_Dist to check for existence of the string.

The INSERT command is used again to define the name of the Startup group in the [settings] section.
Example 2

The following example script will add an item to the load line of WIN.INI in a Windows 3.x environment.
A typical WINI.INI might look like this:

[windows]
spooler=yes
load=nwpopup.exe
run=
Beep=yes
NullPort=None
...

The N_Dist script to do the editing task is:
NXD BEGIN
; Set script variables
 set $Windir='C:\Win311'
; Add items to load line in WIN.INI
 insert $Windir+'\WIN.INI' end 'load' ' c:\mouse\pointer.exe'
#End
NXD END

How the script works
The variable $Windir is set at the top of the script.    See the note above on setting the $Windir variable.
The INSERT command is used to append the string ' c:\mouse\pointer.exe' to the load line.    Note the

leading space.
WIN.INI would now look like this:

[windows]
spooler=yes
load=nwpopup.exe c:\mouse\pointer.exe
run=
Beep=yes
NullPort=None
...

     

Module: Norman Distribution Tool
Filename: NDist.Hlp
Build Date: 16th April, 98
Help Author: Peter Maher

    MAKEDIR
Purpose:

To create a directory or complete directory path.
Syntax:

MAKEDIR    path
Where:

path : is the directory or complete path to create.
Examples:

MAKEDIR c:\norman\dos
The complete path c:\norman\dos would be created.
MAKEDIR $Target+'\dos'
The complete path c:\norman\dos would be created assuming that the $Target variable had been set to
c:\norman.

Notes:
All non-existent directories in the path will be created at one time.

    OPTION
Purpose:

To control the behavior of N_Dist during execution of a script.
Syntax:

OPTION: option
Where option is one of the following:

Option Description Notes

Log Log to default log file By default, the log will be written to
the current directory, and the
filename will be the name of the
script with a .log extension.    This
option can also be specified from the
command line with the parameter
/LF(filename).    Unlike Option: Log,
however, the filename can be
specified from the command line.

Append Append to the log file By default, N_Dist overwrites the log
file.    This option can also be
specified from the command line
with the parameter /LG(filename).

Verbose Verbose log file The /V command line parameter may
also be used.

Single Single-step script
interpretation

The /S command line parameter may
also be used.

Nosingl
e

Turn off single-step There is no associated command line
parameter for this function.

Nosoun
d

Turn off sound There is no associated command line
parameter for this function.

Quiet Turn off sound and
screen output (except
for the intro logo,
system messages,
syntax errors and user
messages)

The /Q command line parameter
may also be used.

Veryqui
et

No output at all The /Q! command line parameter
may also be used.

Normal Resets "Nosound"
"Quiet", "Veryquiet",
and "Verbose" options

There is no associated command line
parameter for this function.

The command line parameter
/DEBUG will generate debug
numbers used for support

Example:

Option: Verbose
Notes:

In the example above, N_Dist will give verbose screen output from the 'Option' statement down.

    Overview {button Read Me,SPC(13172735):PI(`',`Popup_Read_Me')}
The Norman Distribution Tool (N_Dist) can be used to install or update software from server to server or, from a
server to multiple workstations.    The environments supported by N_Dist are:

DOS
Windows 3.x
Windows 95
Windows NT
OS/2

The Corporate versions of Norman Virus Control products include N_Dist and support an 'Administrator' server
installation.    During the 'Administrator' installation the N_Dist script is generated.    This is then used to
install/update Norman Virus Control.
N_Dist can be used for the following on network connected workstations:

Install software.
Update software.
Rollout updated wordprocessing templates.
Update mailing lists.
Update data files.
This is only a suggested list of uses.    N_Dist can be used for any server to server or, server to workstation

distribution task.

    POPMESSAGE {button ,AL(`Ctl',0,`',`')}    Related Topics
Purpose:

To display a popup message to the user during script execution.    (Window 95 and Window NTonly)
Syntax:

POPMESSAGE text
Where:

text : is the text to be displayed in the message.
Example:

POPMESSAGE 'Error: the file does not exist'
Notes:

The user must click 'OK' for script execution to continue.
POPMESSAGE is ignored if N_Dist is running in 'very quiet' mode (Q!)

         

      This release of the on-line documentation is compatible with     
      N_Dist version 1.36 and above.    Some of the sample scripts
      that appear in 'Script Techniques' and the 'Application
      Examples' will not work with earlier versions.

         

     

    REGISTER {button ,AL(`Register',0,`',`')}    Related Topics
Purpose:

To create a folder/group and/or program icons on workstation desktop.
Syntax:

REGISTER 'folder or group name' path 'icon name' (common)
Where:

folder : is the name of the folder to create.    (Windows 95/NT)
group : is the name of the group to create.    (Windows 3.x)
path : is the path to the executable item in the new folder or group.
icon name : is the name of the new icon.
common : is the (optional) parameter that causes N_Dist to create the new link in the common

area.    (Windows 95 and Windows NT only)
Example:

REGISTER 'Norman' c:\norman\nvcnt\nvcnt.exe 'NvcNT'
This will create an icon for nvcnt.exe named NvcNT in the Norman folder.
REGISTER 'Norman' c:\norman\nvcnt\nvcnt.exe 'NvcNT' common.
This will create an icon for nvcnt.exe named NvcNT in the Norman folder in the common area.

Notes:
If the folder does not exist, it is created.
In Windows NT and Windows 95, the folder 'startup' is automatically resolved to the correct startup folder

name for the current language.
The profile 'common' can be specified on Windows 95 and Windows NT platforms to register links in the

'common' programs area.

    REMOVE {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose:

To remove a complete line from an ASCII file.
Syntax:

REMOVE file string
Where:

file : the name of the ASCII file.
string : any string within the line to be removed.

Example:

REMOVE config.sys nvc.sys
Would remove the line device=c:\norman\dos\nvc.sys /n /t from config.sys, if that was how it appeared.   
It would also have removed the complete line if, for example, the device had been loaded high, was
located in a different directory or, had different command line parameters.

Notes:
The above example will remove only the first line in config.sys which has the string nvc.sys, all remaining

lines with the string will be left untouched.
The specified string can be a partial string.    This overcomes problems associated with paths and

command line parameters as shown in the example.
The string defined in the REMOVE command is case insensitive.

    RENAME {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose:

To rename a directory or file.
Syntax:

RENAME source target
Where:

source : is souce directory/filename.
target : is the target directory/filename.

Example:

RENAME c:\config.sys c:\config.bak
This would rename config.sys to config.bak located in the root of drive c:.
RENAME c:\data\docs c:\data\sales
This would rename the data\docs directory to data\sales.

Notes:
Both the source and target parameters may be defined as variables.
Wildcards are not allowed, consequently groups of files cannot be renamed.

    REPLACE {button ,AL(`Edit',0,`',`')}    Related Topics
Purpose:

To replace one or all instances of string1 with string2 in a file.
Syntax:

REPLACE 'string1' 'string2' file (nocase) (all)
Where:

string1 : is the string to be replaced.
string2 : is the replacement string.
file : is the name of the file
nocase : is the (optional) parameter to make the search case insensitive.
all : is the (optional) parameter to cause N_Dist to replace all occurrences of string1 in the

specified file.
Example:

REPLACE 'NVC 4.20' 'NVC 4.30' c:\norman\nvc.ini all nocase
This would replace all occurrences of the string 'NVC 4.20' with the string 'NVC 4.30' in the file nvc.ini,
regardless of case.

Notes:
When specifying the file, the full path should always be given.

    RUN
Purpose:

To run an application and return to script when finished.
Syntax:

RUN application 'parameters' (nowait)
Where:

application : is the name of the application to run.
parameters : are any command-line parameters to pass to the application.
nowait : is the (optional) parameter to cause N_Dist not to wait for the spawned application to

finish before returning to the script. (32-bit environments only)
Example:

RUN $Windir+'\Notepad.exe' 'c:\norman\norman.rpt' nowait
This would run Notepad and display norman.rpt, then continue script execution without waiting for
Notepad to terminate.
RUN net 'use w: \\NT_Server\Data$'
This would run net.exe to map drive W: to the share Data$ on the server named NT_Server.

Notes:
The application return code is stored in the special variable $Returnvalue.
The 'Run' command detects 16 bit Windows applications and executes them via 'NRMWINST' even when

N_Dist is run in a DOS session prior to Windows.

    Removing a group from PROGMAN.INI {button ,AL(`Script techniques',0,`',`')}
Related Topics

This topic refers to the DOS/Windows 3.x environment.
This technique is part of a software deinstallation, the first part of which is relatively simple as all path/file
locations should be known.    An N_Dist script can be built to carry out this task.    The only part of the
deinstallation that is unknown, is the group number in PROGMAN.INI.    In a group of similar workstations this
will vary according to how many applications have been installed and in what order.    A typical PROGMAN.INI
might be:

[Settings]
Window=20 13 629 428 1
display.drv=vga.drv
Order= 1 3 2 4 5 6
[Groups]
Group1=C:\WINDOWS\MAIN.GRP
Group2=C:\WINDOWS\ACCESSOR.GRP
Group3=C:\WINDOWS\NETWORK.GRP
Group4=C:\WINDOWS\GAMES.GRP
Group5=C:\WINDOWS\STARTUP.GRP
Group6=C:\NORMAN\NVCLOCAL.GRP

The following example N_Dist script will check if the NVCLOCAL.GRP group is present in PROGMAN.INI and if
so, remove it.

NXD BEGIN
; Set script variables
 set $Count='1'
; Get group number from PROGMAN.INI
#GetGrp
 getini $Group $Windir+'\progman.ini' [groups] 'Group'+$Count
 if $Group=''
        goto #End
 if $Group='C:\NORMAN\NVCLOCAL.GRP'
        remove $Windir+'\progman.ini' NVCLOCAL.GRP
 increment $Count
 goto #GetGrp
 #End
 NXD END

How the script works
The variable $Count is set to '1' at the top of the script.    This variable is a counter that is incremented

each iteration of the script.
The GETINI command is used to determine the group name in PROGMAN.INI and store it in a variable

named $Group.    During the first iteration of the script the variable $Count would contain '1' so the GETINI
command would return the name of the first group (MAIN.GRP) in the variable $Group.

The next line checks the content of the variable $Group.    If it is a nul string, processing is transferred to
the #End label and the script quits.    This is a completion test.

The IF command compares the value of the variable $Group with the string 'C:\NORMAN\NVCLOCAL.GRP'
and if it matches, the next line is executed.

The REMOVE command removes the line containing the string 'NVCLOCAL.GRP'
The INCREMENT command increments the variable $Count by 1.
The GOTO command transfers processing to the #GetGrp label.
This process continues until all groups defined in PROGMAN.INI have been checked at which time the value

of the variable $Group will be a nul string and the script will quit.

    Running Multiple Scripts {button ,AL(`Script techniques',0,`',`')}    Related Topics
This technique stores the names of scripts to run in an INI-file.    All scripts defined in the INI-file will be run
sequentially by a master script.    This means that only one line needs to be added to a server login script.
Each iteration of the master script will get the name of the script to run and, whether or not is to run, from the
INI-file.    This allows a System Administrator to control execution of multiple scripts from within the INI-file.   
For example, a maintenance script that does a cleanup task might be run once a month.    The System
Administrator would simply change the value in the INI-file from 'No' to 'Yes' for a period of 24 hours, then
change it back to 'No'.
The INI-file is in the following format.
MAIN.INI

[scripts]
1=scriptname1.nxd
1Run=Yes
2=scriptname2.nxd
2Run=Yes
3=scriptname3.nxd $Variable=value
3Run=Yes

Each script is controlled by a pair of entries.    The keywords for these entries are a sequential number starting
at 1 and the same number with the word Run appended to it (no spaces).    The first entry defines the name of
the N_Dist script.    The second controls if the script is to be run or skipped.    The valid entries for this value are
Yes or No.
It is also possible to set the value of variables to pass to script at run-time.    See item 3 in the above example.
A practical example of this would be a site that has a mixed workstation environment and, has Norman Virus
Control implemented on them all.    The INI-file would look like this:
MAIN.INI

[scripts]
1=win31.nxd
1Run=Yes
2=win95.nxd
2Run=Yes
3=winnt.nxd
3Run=Yes

The master N_Dist script is as follows:
NXD BEGIN
; Set script variables
 set $Total='1'
; Get name of script from INI-file
#GetName
 getini $Run $Startpath+'\main.ini' [scripts] $Total
 if $Run=''
        goto #End
; Check if script is to run
 getini $Exec $Startpath+'\main.ini' [scripts] $Total+'Run'
 if $Exec='Yes'
        run $Startpath+'\n_dist.exe' $Startpath+'\'+$Run
 increment $Total
 goto #GetName
 #End
 NXD END

How the script works
The variable $Total is set to '1' at the top of the script.    This variable is a counter that is incremented each

iteration of the script.
In the #GetName section, GETINI is used to obtain the name of the script to run from the INI-file and store

it in a variable named $Run.

The next line checks the content of the variable $Run.    If it is a nul string, processing is transferred to the
#End label and the script quits.    This is a completion test.

GETINI is used again to determine if the script is to be run by obtaining the second value from the INI-file
and storing it in a variable named $Exec.    If the value of $Exec is 'Yes', the script is run, otherwise it is skipped.

The counter stored in the variable named $Total is incremented by 1 and processing loops back to the
#Getname label.

This process continues until all scripts defined in the INI-file have been run, or not run as the case may be,
at which time the value of the variable $Run will be a nul string and the script will quit.

    Running a Script from a Server {button ,AL(`Script techniques',0,`',`')}   
Related Topics

This topic details how to initiate a script from a NetWare or Windows NT server.
NetWare:

Add a line to the NetWare login script conforming to the following:
#server_name/volume:\path\n_dist.exe \\server_name\volume\path\script_name.nxd /q

The first part of the command line uses NetWare script conventions so that NetWare can find and execute
N_Dist.Exe.    The second part uses UNC path naming conventions as this is passed to N_Dist.Exe and must be
in this format for N_Dist to interpret.    An example follows:

#prod_apps/sys:\public\nvcadmin\ndist\n_dist.exe \\prod_apps\sys\public\nvcadmin\ndist\nvc95.nxd /q
Windows NT:

Add a line to the Windows NT login script conforming to the following:
\\server_name\path\n_dist.exe \\server_name\path\script_name.nxd /q

Both parts of the command line use UNC path naming conventions as both Windows NT and N_Dist expect this
format.    The path can be a share name as in the following example:

\\prod_apps\nvcadm$\ndist\n_dist.exe \\prod_apps\nvcadm$\ndist\nvc95.nxd /q
Notes:

In both of the above examples you may use drive letters, however the same drive must be mapped by all
users for this approach to work.

UNC path naming conventions are recommended as this provides greater flexibility than hard coded paths.
If UNC path names are used to initiate N_Dist, use the same convention for setting the $Source variable in

the N_Dist script.    The syntax is: (followed by an example)
NetWare:

set $Source = '\\server_name\volume\path'
set $Source = '\\prod_apps\sys\public\nvcadmin'

Windows NT:

set $Source = '\\server_name\path'
set $Source = '\\prod_apps\nvcadm$'
In this example, a share name has been used to define the path.

If UNC path naming conventions are used in both the server and N_Dist scripts, no drive mapping is
necessary to run a server based install/update using N_Dist.    The exception to this is a DOS/Windows workstation
which requires a drive to be mapped.

    SEARCH (Environment) {button ,AL(`Search',0,`',`')}    Related Topics
Purpose:

To search the environment for the specified value and return the complete path (without the "=") in the
specified variable.

Syntax:

SEARCH $variable ENVIRONMENT 'string'
Where:

$variable : is the name of the variable used to store the result.
ENVIRONMENT : is the command to cause N_Dist to search the environment for the 'string'
'string' : is the string to search for.

Example:

SEARCH $Result ENVIRONMENT 'buffers'
N_Dist would search for the value associated with the DOS environment variable 'buffers' and store the
value in the variable $Result.

Notes:
When using this command, the word ENVIRONMENT must be used.

    SEARCH (File) {button ,AL(`Search',0,`',`')}    Related Topics
Purpose:

To search for a file in a directory tree and store the complete path in the specified variable.
Syntax:

SEARCH $variable startpath filename (case)
Where:

$variable : is the name of the variable used to store the result.
startpath : is the path to start the search from.
filename : is the name of the file to search for.
case : is the (optional) parameter to make the search case sensitive.

Example:

SEARCH $Result c:*.* win.ini
This would search for the file win.ini in all of c:, and the complete path for win.ini would be returned in
the variable $Result.

Notes:
By default the search is case insensitive.

    SEARCH (Phrase) {button ,AL(`Search',0,`',`')}    Related Topics
Purpose:

To search for a line within a file that contains up to three phrases.    Returns the complete line in the
specified variable.

Syntax:

SEARCH $variable file 'phrase1' 'phrase2' 'phrase3'
Where:

$variable : is the name of the variable to store the result.
file : is the name of the file to search.
phrase1 to 3 : is the phrase(s) to search for.    Phrase2 and 3 are optional.

Example:

SEARCH $Result config.sys 'device' '=' 'nvc.sys'
Stores device=c:\norman\dos\nvc.sys in the variable named $Result.

Notes:
The search returns the complete line and stores it in the defined variable.
If a phrase to search for contains spaces, enclose the phrase in single-quotation marks (').
The phrase is case insensitive.

    SET
Purpose:

To assign a value to a specified variable.
Syntax:

SET $variable value
Where:

$variable : is the name of the variable.
value : is the value to assign to the variable.

Example:

SET $InstallPath='c:\norman'
Stores the value c:\norman in the variable named $InstallPath.

Notes:
The variable may also be one of the special variables .

    SETINI {button ,AL(`Ini',0,`',`')}    Related Topics
Purpose:

To insert or change a parameter in an INI-file.
Syntax:

SETINI ini-file section keyword value
Where:

ini-file : is the name of the INI-file.
section : is the section name in the INI-file.
keyword : is the keyword in the INI-file.
value : is the value associated with the keyword in the INI-file.

Example:

SETINI win.ini 'windows' 'load' 'c:\norman\nvcsys.exe'
This would replace everything in the 'load' line in the [windows] section of WIN.INI with c:\norman\
nvcsys.exe.

Notes:
If the section and/or file does not exist, it is created.

    SETREGISTRY {button ,AL(`Registry',0,`',`')}    Related Topics
Purpose:

To set or replace a parameter in the registry (Windows 95 and Windows NT only).
To set or replace a parameter in the OS/2 system or user profiles.

Syntax:

for Windows 95 and Windows NT
SETREGISTRY 'key' 'parameter' 'value'
for OS/2
SETREGISTRY user/system application key value

Where:

user : defines the user profile (OS2.INI).
system : defines the system profile (OS2SYS.INI).
application : is the name of the application. (OS/2)
key : is the registry/profile key to set or replace.
parameter : is the registry parameter.
value : is the value to set or replace.

Example:

SETREGISTRY 'HKEY_CURRENT_USER\Environment' 'TEMP' '%SystemDrive%\TEMP'
This would set the value of 'TEMP' to '%SystemDrive%\TEMP'.

Notes:
Only variables of type 'string' may be created or changed.
Use with caution.    Invalid entries may render the system inoperable.

    Server to Server (Multiple) Install/Update {button ,AL(`Script techniques',0,`',`')}
Related Topics

This version of Server to Server Install/Update is capable of running multiple sub-scripts to achieve the
Install/Update of many applications.
The Install/Update routine is performed from the System Administrators workstation.    This can be initiated
manually or automatically via a scheduling program.
This process assumes that the files to be installed on target servers have already been installed on the central
server from where they will be accessed.
The technique used is to store all details of the servers in an INI-file and have the N_Dist script iterate as many
times as there are servers defined.    During each iteration, the INI-file is checked for how many scripts to run.
The INI-file is in the following format:

SERVERS.INI

[server]
nName=<Server_Name>
nPath=<Path>
nUpdate=<Yes/No>
[scripts]
nName=<Scriptname.Nxd>
nSource=<Path>
nRoot=<Root>
nRun=<Yes/No>

Each server is defined in the [server] section by a set of four keywords with associated values, they are:
Keyword Value

nName The name of the target server.
nPath The path on the target server.    This may be a share name on a Windows NT server.    When

defining this entry for a NetWare server, use the volume name and path eg. Sys\Public.    The
nName and nPath entries are concatenated in the script to create a UNC path, for example, \\
Prod_Apps\Sys\Public.    For a Windows NT server, where a share has been created for the
NvcAdmin directory, it might look like this: \\Prod_Data\Nvc$

nUpdate Defines whether or not the target server is to be updated.    Valid entries are Yes or No.    This
allows the System Administrator to selectively update servers if necessary.

Where 'n' is a sequential number starting at 1 for each target server set.
The scripts to be run on each server are defined in the [scripts] section by a set of four keywords with
associated values, they are:
Keyword Value

nName The name of the sub-script to run.
nSource The path to the application files on the central server.
nRoot The root directory of the application on the target server.    This is concatenated to the path

defined in the [server] section at run-time.    This allows flexibility in defining the target location
on each server.    Each server may store applications in a different location in relation to the root
of the server drive.

nRun Defines if the script is to be run.
Where 'n' is a sequential number starting at 1 for each script set.
A typical SERVERS.INI file might look like this:

SERVERS.INI

[server]
1Name=Prod_Apps
1Path=Sys\Public
1Update=Yes
2Name=Prod_Data
2Path=NvcAdm$
2Update=Yes
3Name=Develop

3Path=Programs
3Update=Yes
[scripts]
1Name=Nvc.Nxd
1Source=\\NT_Server\NvcAdm$
1Root=NVCADMIN
1Run=Yes
2Name=Nac.Nxd
2Source=\\NT_Server\NacAdm$
2Root=NACADMIN
2Run=Yes

The following example N_Dist master and sub-scripts will install/update Norman Virus Control and Norman
Access Control on servers that are defined in SERVERS.INI and have the nUpdate and nRun values set to Yes.
It is assumed that the System Administrator has installed Norman Virus Control and Norman Access Control on
the central server and that the files SERVERS.INI, SERVERS.NXD and SERVERS.BAT are in the NRMADMIN
directory on the central server together with the N_Dist files.    The installation referred to here is an
Administrator Install (setup.exe /a)
The DOS batch file SERVERS.BAT, is used to initiate the process.

SERVERS.BAT

@echo off
    n_dist.exe servers.nxd /q

SERVERS.NXD

NXD BEGIN
; Set script variables
 set $Count='1'
 set $Total='1'
; Initilize Log file.
 if exist $Startpath+'\SERVERS.LOG'
        delete $Startpath+'\SERVERS.LOG'
 insert $Startpath+'\SERVERS.LOG' beginning 'SERVER INSTALL/UPDATE REPORT'
 insert $Startpath+'\SERVERS.LOG' end 'Started:    '+%S
 insert $Startpath+'\SERVERS.LOG' end '--'
; Check if server is to be updated.
#CheckUpd
 getini $Update $Startpath+'\servers.ini' [server] $Count+'Update'
 if $Update=''
        goto #End
 if $Update='Yes'
        goto #GetName
 increment $Count
 goto #CheckUpd
; Get name of server to update.
#GetName
 getini $Server $Startpath+'\servers.ini' [server] $Count+'Name'
 goto #GetPath
; Get path on server.
#GetPath
 getini $Path $Startpath+'\servers.ini' [server] $Count+'Path'
 goto #Paths
; Setup paths for target server.
#Paths
 set $Target='\\'+$Server+'\'+$Path+'\NVCADMIN'
 if !exist '\\'+$Server+'\'+$Path
        goto #Fail
 goto #GetScript
; Record entry in log file if server not available.
#Fail
 insert $Startpath+'\SERVERS.LOG' end %T+' Server "'+$Server+'" was not available for update.'
 increment $Count

 goto #CheckUpd
; Get name of script to run.
#GetScript
 getini $Script $Startpath+'\servers.ini' [scripts] $Total+'Name'
 if $Script=''
        goto #NextServer
 goto #ChkRun
; Check if script is to run.
#ChkRun
 getini $Run $Startpath+'\servers.ini' [scripts] $Total+'Run'
 if $Run='Yes'
        goto #RunScript
 goto #GetNext
; Run the script.
#RunScript
 run $Startpath+'\N_DIST.EXE' $Startpath+'\'+$Script+' $Target='+$Target+' $Server='+$Server+' $Total='+
$Total
 goto #GetNext
; Get the next script to run.
#GetNext
 increment $Total
 goto #GetScript
; Loop back and get next server.
#NextServer
 set $Total='1'
 increment $Count
 goto #CheckUpd
; Complete and display log file.
#End
 insert $Startpath+'\SERVERS.LOG' end '--'
 insert $Startpath+'\SERVERS.LOG' end 'Finished: '+%S
 insert $Startpath+'\SERVERS.LOG' end '                          --- End of Report ---'
 run $Windir+'\NOTEPAD.EXE' $Startpath+'\SERVERS.LOG' nowait
NXD END
NVC.NXD

NXD BEGIN
; Set script variables
 getini $Source $Startpath+'\servers.ini' [scripts] $Total+'Source'
 getini $Root $Startpath+'\servers.ini' [scripts] $Total+'Root'
 set $Target=$Target+'\'+$Root
 goto #Update
; Update install/files on server.
#Update
 display 'Updating Norman Virus Control on Server: '+$Server
 if !exist $Target+'\DOS'
        makedir $Target+'\DOS'
 if !exist $Target+'\WIN95'
        makedir $Target+'\WIN95'
 if !exist $Target+'\NDIST'
        makedir $Target+'\NDIST'
 copy $Source+'*.*'              $Target+'*.*'              update
 copy $Source+'\DOS*.*'      $Target+'\DOS*.*'      update
 copy $Source+'\WIN95*.*' $Target+'\WIN95*.*' update
 copy $Source+'\NDIST*.*' $Target+'\NDIST*.*' update
 insert $Startpath+'\SERVERS.LOG' end %T+' NVC on server "'+$Server+'" was updated.'
 goto #End
#End
NXD END
NAC.NXD

NXD BEGIN
; Set script variables
 getini $Source $Startpath+'\servers.ini' [scripts] $Total+'Source'
 getini $Root $Startpath+'\servers.ini' [scripts] $Total+'Root'
 set $Target=$Target+'\'+$Root
 goto #Update
; Update install/files on server.
#Update
 display 'Updating Norman Access Control on Server: '+$Server
 if !exist $Target+'\CONTROL'
        makedir $Target+'\CONTROL'
 if !exist $Target+'\HELP'
        makedir $Target+'\HELP'
 if !exist $Target+'\NDIST'
        makedir $Target+'\NDIST'
 if !exist $Target+'\SCRIPT'
        makedir $Target+'\SCRIPT'
 if !exist $Target+'\SETUP'
        makedir $Target+'\SETUP'
 copy $Source+'\CONTROL*.*' $Target+'\CONTROL*.*' update
 copy $Source+'\HELP*.*'        $Target+'\HELP*.*'        update
 copy $Source+'\NDIST*.*'      $Target+'\NDIST*.*'      update
 copy $Source+'\SCRIPT*.*'    $Target+'\SCRIPT*.*'    update
 copy $Source+'\SETUP*.*'      $Target+'\SETUP*.*'      update
 insert $Startpath+'\SERVERS.LOG' end %T+' NAC on server "'+$Server+'" was updated.'
 goto #End
#End
NXD END

How the scripts work

SERVERS.NXD
The variables $Count and $Total are set to '1'.    These variables are counters that are incremented each

iteration of the script.
The log file (SERVERS.LOG) is deleted if it exists, and a new version is created by inserting three line as a

header which includes the date and time the install/update started by using the special variable %S.
In the #CheckUpd section, the GETINI command is used to get the associated value of the nUpdate

keyword in SERVERS.INI and store it in a variable named $Update.    This determines whether or not the target
server is to be updated.

The next line checks the content of the variable $Update.    If it is a nul string, processing is transferred to
the #End label and the script quits.    This is a completion test.

The value of the $Update variable is tested again, this time to determine if it is set to Yes.    If it is Yes, then
processing is transferred to the #GetName label.    If it is set to No, the variable $Count is incremented by 1 and
processing loops back to the #CheckUpd label where the next server is processed.

The #GetName section uses the GETINI command to get the name of the target server and store it in a
variable named $Server.

The #GetPath section uses the GETINI command to get the path on the target server and store it in a
variable named $Path.

The last line in the #GetPath section transfers processing to the $Paths label.
The #Paths section uses the SET command to set the $Target variable to the location of the target server.
Following this is a test to determine if the target server is available.    If the test fails, processing is

transferred to the #Fail label.    If the test succeeds, processing is transferred to the $GetScript label.
The #Fail section uses the INSERT command to append a line to the log file recording the fact that the

server was not available.
The #GetScript section uses the GETINI command to get the name of the script to run from SERVERS.INI

and store it in a variable named $Script.
The next line checks the content of the variable $Script.    If it is a nul string, there are no more scripts to

run and processing is transferred to the #NextServer label.    If it contains the name of a script, processing is
transferred to the #ChkRun label.

The #ChkRun section uses the GETINI command to determine if the script is to be run.    The value returned
is stored in the variable named $Run.

The next line checks the content of the variable $Run.    If it is Yes, processing is transferred to the label
#RunScript.    If it is No, processing is transferred to the label #GetNext.

The #RunScript section uses the RUN command to run N_Dist with the sub-script stored in the variable
$Script and defines the variables $Target, $Server and $Total on the command line.    This technique passes the
variables to the sub-script.

The #GetNext section increments the counter $Total, then loops back to the label #GetScript where the
next script to process is determined.

The #NextServer section resets the counter stored in the variable $Total back to 1, increments the counter
$Count.    Processing is then transferred to the label #CheckUpd where the next server to process is determined.

The #End section appends three lines to the log file including the date and time the install/update finished
by using the special variable %S.

Finally, the RUN command is used to load Windows Notepad and display the log file.    The script will
terminate as the nowait parameter has been used with the run command.

The script will continue until all servers and scripts defined in SERVERS.INI have been processed at which
time the value of the variable $Update will be a nul string and the script will quit.

NVC.NXD and NAC.NXD
The GETINI command is used to get the name of the source directory on the central server and store it in a

variable named $Source.
The GETINI command is used again to get the name of the application root directory on the target server

and store it in a variable named $Root.
The SET command concatenates the $Target variable (passed by SERVERS.NXD) to the $Root variable.   

This creates the full path on the target server.
The #Update section displays a message showing the name of the current server, then creates the

directories on the target server using the MAKEDIR command, if they do not exist.
The COPY command is used to copy the application files from the central server to the target server only if

they do not exist or are older than those on the central server.
The INSERT command is used to append a line to the log file recording that the server was updated.

To implement the Install/Update
Perform an Administrator install (setup.exe /a) of Norman Virus Control and Norman Access Control on the

central server.
Configure the INI-file (SERVERS.INI) to reflect the target servers and the scripts to run.
Initiate the Install/Update from the System Administrators workstation by running SERVERS.BAT.

Administrator tasks required for a subsequent update
Perform an Administrator install (setup.exe /a) of Norman Virus Control or Norman Access Control (or both)

on the central server.
Initiate the Install/Update from the System Administrators workstation by running SERVERS.BAT.

Notes:
It is assumed that each target server will have the necessary line(s) present in the login script to initiate

the workstation install/update.
After a Server to Server Install/Update, the target servers will update each workstation as the user logs on.
The System Administrator must have access to all target servers that are to be updated.
As of this writing (Jan, 98) the production version of the Administrator install of Norman Access Control is

not available.    It will be supplied in a future release or service pack.

    Server to Server Install/Update {button ,AL(`Script techniques',0,`',`')}   
Related Topics

For true centralized management to be a reality, a Server to Server Install/Update routine must be
implemented.    This topic covers installing/updating software over multiple servers running Windows NT or
Novell NetWare.
The Install/Update routine is performed from the System Administrators workstation.    This can be initiated
manually or automatically via a scheduling program.
This process assumes that the files to be installed on target servers have already been installed on the central
server from where they will be accessed.
The technique used is to store all details of the servers in an INI-file and have the N_Dist script iterate as many
times as there are servers defined.
The INI-file is in the following format:

SERVERS.INI

[server]
nName=<Server_Name>
nPath=<Path>
nUpdate=<Yes/No>

Each server is defined in the [server] section by a set of four keywords with associated values, they are:
Keyword Value

nName The name of the target server.
nPath The path on the target server.    This may be a share name on a Windows NT server.    When

defining this entry for a NetWare server, use the volume name and path eg. Sys\Public.    The
nName and nPath entries are concatenated in the script to create a UNC path, for example, \\
Prod_Apps\Sys\Public\NvcAdmin.    For a Windows NT server, where a share (NvcAdm$) has been
created for the NvcAdmin directory, it might look like this: \\Prod_Data\NvcAdm$

nUpdate Defines whether or not the target server is to be updated.    Valid entries are Yes or No.    This
allows the System Administrator to selectively update servers if necessary.

Where 'n' is a sequential number starting at 1 for each target server set.
A typical SERVER.INI file might look like this:

SERVERS.INI

[server]
1Name=Prod_Apps
1Path=Sys\Public
1Update=Yes
2Name=Prod_Data
2Path=NvcAdm$
2Update=Yes
3Name=Develop
3Path=Programs
3Update=Yes

The following example N_Dist script will install/update Norman Virus Control on any servers that are defined in
SERVERS.INI and have the nUpdate value set to Yes.
It is assumed that an Administrator install (setup.exe /a) of Norman Virus Control has been performed on the
central server and that the files SERVERS.INI, SERVERS.NXD and SERVERS.BAT are in the NVCADMIN\NDIST
directory on the central server.
The DOS batch file SERVERS.BAT, is used to initiate the process.

SERVERS.BAT

@echo off
    n_dist.exe servers.nxd /q

SERVERS.NXD

NXD BEGIN
; Set script variables
 set $Quote=''''

 set $Count='1'
 set $Source='\\<Server_Name\<Path>'
; Initilize Log file.
 if exist $Startpath+'\SERVERS.LOG'
        delete $Startpath+'\SERVERS.LOG'
 insert $Startpath+'\SERVERS.LOG' beginning 'SERVER INSTALL/UPDATE REPORT'
 insert $Startpath+'\SERVERS.LOG' end 'Started:    '+%S
 insert $Startpath+'\SERVERS.LOG' end '--'
; Check if server is to be updated.
#CheckUpd
 getini $Update $Startpath+'\servers.ini' [server] $Count+'Update'
 if $Update=''
        goto #End
 if $Update='Yes'
        goto #GetName
 increment $Count
 goto #CheckUpd
; Get name of server to update.
#GetName
 getini $Server $Startpath+'\servers.ini' [server] $Count+'Name'
 goto #GetPath
; Get path on server.
#GetPath
 getini $Path $Startpath+'\servers.ini' [server] $Count+'Path'
 goto #Paths
; Setup paths for target server.
#Paths
 set $Target='\\'+$Server+'\'+$Path+'\NVCADMIN'
 if !exist '\\'+$Server+'\'+$Path
        goto #Fail
 goto #Update
; Record entry in log file if server not available.
#Fail
 insert $Startpath+'\SERVERS.LOG' end %T+' Server "'+$Server+'" was not available for update.'
 increment $Count
 goto #CheckUpd
; Update/install files on server.
#Update
 display 'Updating Server: '+$Server
 if !exist $Target+'\DOS'
        makedir $Target+'\DOS'
 if !exist $Target+'\WIN95'
        makedir $Target+'\WIN95'
 if !exist $Target+'\NDIST'
        makedir $Target+'\NDIST'
 copy $Source+'*.*' $Target+'*.*' update
 copy $Source+'\DOS*.*' $Target+'\DOS*.*' update
 copy $Source+'\WIN95*.*' $Target+'\WIN95*.*' update
 copy $Source+'\NDIST*.*' $Target+'\NDIST*.*' update
 insert $Target+'\NDIST\NVC95.NXD' beginning [N_Dist] nodup
 setini $Target+'\NDIST\NVC95.NXD' 'n_dist' 'Set $Source' $Quote+$Target+$Quote
 insert $Startpath+'\SERVERS.LOG' end %T+' NVC on server "'+$Server+'" was updated.'
 increment $Count
 goto #CheckUpd
;Complete and display log file.
#End
 insert $Startpath+'\SERVERS.LOG' end '--'
 insert $Startpath+'\SERVERS.LOG' end 'Finished: '+%S
 insert $Startpath+'\SERVERS.LOG' end '                          --- End of Report ---'
 run $Windir+'\NOTEPAD.EXE' $Startpath+'\SERVERS.LOG' nowait
NXD END
How the script works

The variable $Quote is set at the top of the script.    This variable is used to place a literal quote (') in a

command line later in the script.
The variable $Count is set to '1'      This variable is a counter that is incremented each iteration of the

script.
The variable $Source is set to point to the location of the files on the central server.
The log file (SERVERS.LOG) is deleted if it exists, and a new version is created by inserting three line as a

header which includes the date and time the install/update started by using the special variable %S.
In the #CheckUpd section, the GETINI command is used to get the associated value of the nUpdate

keyword in SERVERS.INI and store it in a variable named $Update.    This determines whether or not the target
server is to be updated.

The next line checks the content of the variable $Update.    If it is a nul string, processing is transferred to
the #End label and the script quits.    This is a completion test.

The value of the $Update variable is tested again, this time to determine if it is set to Yes.    If it is Yes, then
processing is transferred to the #GetName label.    If it is set to No, the variable $Count is incremented by 1 and
processing loops back to the #CheckUpd label where the next server is processed.

The #GetName section uses the GETINI command to get the name of the target server and store it in a
variable named $Server.

The #GetPath section uses the GETINI command to get the path on the target server and store it in a
variable named $Path.

The last line in the #GetPath section transfers processing to the $Paths label.
The #Paths section uses the SET command to set the $Target variable to the location of the target server.
Following this is a test to determine if the target server is available.    If the test fails, processing is

transferred to the #Fail label.    If the test succeeds, processing is transferred to the $Update label.
The #Fail section uses the INSERT command to append a line to the log file recording the fact that the

server was not available.
The $Count variable is incremented by 1, and processing loops back to the #CheckUpd label where the

next server is processed.
The #Update section displays a message showing the name of the current server, then creates the

directories on the target server using the MAKEDIR command, if they do not exist.
The COPY command is used to copy all of the NVC files from the central server to the target server only if

they do not exist or are older than those on the central server.
The INSERT command is used to add a section header [N_Dist] to the top of NVC95.NXD on the target

server.    This effectively creates an INI-file which allows the file to edited using the SETINI command.    N_Dist will
ignore anything prior to the NXD BEGIN line so it has no effect.

The SETINI command is used to set the $Source variable in NVC95.NXD on the target server to point to the
target server.    The original version copied would have the central server defined as the source.

The INSERT command is used to append a line to the log file recording that the server was updated.
The variable count is incremented by 1 and processing loops back to the #CheckUpd label where the next

server is processed.
The #End section appends three lines to the log file including the date and time the install/update finished

by using the special variable %S.
Finally, the RUN command is used to invoke Windows Notepad and display the log file.    The script will

terminate as the nowait parameter has been used with the run command.
The script will continue until all servers defined in SERVERS.INI have been processed at which time the

value of the variable $Update will be a nul string and the script will quit.
To implement the Install/Update

Perform an Administrator install (setup.exe /a) of Norman Virus Control on the central server.
Configure the INI-file (SERVERS.INI) to reflect the target servers.
Set the $Source variable at the top of SERVERS.NXD to point to the location of the NVC files on the central

server.
Initiate the Install/Update from the System Administrators workstation by running SERVERS.BAT.

Administrator tasks required for a subsequent update
Perform an Administrator install (setup.exe /a) of Norman Virus Control on the central server.
Initiate the Install/Update from the System Administrators workstation by running SERVERS.BAT.

Notes:
It is assumed that each target server will have the necessary line(s) present in the login script to initiate

the workstation install/update.
After a Server to Server Install/Update, the target servers will update each workstation as the user logs on.
The System Administrator must have access to all target servers that are to be updated.

    Setting Variables {button ,AL(`Variables',0,`',`')}    Related Topics
Script variables can be set from within the script or on the command line.    To set variables from within the
script define the values to be assigned at the top of the script as in the following example.

NXD BEGIN
set $Source=F:\PUBLIC\NVCADMIN
set $Target=C:\NORMAN
...

Variables can also be set/reset anywhere within the script.
To set variables on the command line add the variables as command-line parameters as in the following
example:

<Path>\N_Dist.exe <Path>\Filename.Nxd $Variable1='value' $Variable2='value'
The values assigned on the command line may include DOS batch file replaceable parameters if the script is
initiated by a batch file.    The following example shows how a batch file can pass its command line parameters
to an N_Dist script.
DEMO.BAT

@echo off
cls
N_Dist.exe Demo.Nxd $Var1=%1 $Var2=%2 $Var3=%3 $Var4=%4

DEMO.NXD
NXD BEGIN
display $Var1+' '+$Var2+' '+$Var3+' '+$Var4
NXD END

If DEMO.BAT is run with the following command line parameters:
DEMO.BAT Norman Data Defense Systems

The N_Dist script (DEMO.NXD) would display Norman Data Defense Systems.
This is a simple example, but could be extended to include environment variables or any of the Novell®
variables if the script was run from the login script of a NetWare® server.

    Special Variables {button ,AL(`Variables',0,`',`')}    Related Topics
The following variables are used by N_Dist to store various values.    They should not be reset by the script
unless indicated.
$Error Is either 'TRUE' or 'FALSE'.    The value is cleared by the next instruction executed.    The

value is set to 'FALSE' if a line in the script is executed unsuccessfully.
$Key Contains the key value after a 'Wait' command without a time-delay.
$Returnvalue Contains the return value from a routine called by the 'Run' command.
$Startpath Contains the path to the location where N_Dist was started.
$System Is either 'WIN16', 'WIN95', 'WINNT', 'OS2' or 'DOS', depending on platform/program

environment.
$Updated The initial value is 'NO'.    The $Updated variable will be set to 'YES' if a 'copy/update'

actually performs an update of a file.    The $Updated variable must be reset manually by
the 'SET' command during the execution of the script.

$Windir Contains the windows root directory.    Example: 'C:\WINDOWS\'
$Wininidir This variable is a working copy of $Windir and may be reset by the script.
$Winsysdir Contains the path to the Windows system directory.    Example: 'C:\WINDOWS\SYSTEM\'

The following must be entered in upper case:
%T Time variable that resolves to <hh:mm:ss>.    eg. 15:19.32
%D Date variable that resolves to <day month date year>.    eg. Monday July 21 1997
%S This variable resolves to <day month date year hh:mm:ss>.    eg. Monday July 21 1997

15:19.32

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems Pty Ltd - Australia

Phone: +61 3 9558 9011
Fax: +61 3 9558 9144
E-mail: support@norman.com.au

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems (UK) Ltd - England

Phone: +44 1908 847 410
Fax: +44 1908 847 552
E-mail: norman@normanuk.com

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Ibas Oy - Finland

Phone: +358 9 47746 11
Fax: +358 9 47746 120
E-mail: jyri.pohja@norman-ibas

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems GmbH - Deutschland

Phone: +49 212 267 180
Fax: +49 212 267 1815
E-mail: norman@norman.de

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems BV - The Netherlands

Phone: +31 23 563 39 60
Fax: +31 23 561 31 65
E-mail: info@norman.nl

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems AS - Norway

Phone: +47 67 58 99 30
Fax: +47 67 58 99 40
E-mail: norman@norman.no

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems AG - Sweden

Phone: +46 8 728 33 50
Fax: +46 8 728 33 52
E-mail: anders.schyllert@verisecure.se

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems AG - Switzerland

Phone: +41 61 487 2500
Fax: +41 61 487 2501
E-mail: norman@norman.ch

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    Contacting Norman Data Defense Systems
To obtain product support please contact your nearest Norman office.
Norman Data Defense Systems Inc. - USA

Phone: +1 703 573 8802
Fax: +1 703 573 3919
E-mail: norman@norman.com

{button ,AL(`Contact',0,`',`')}    Other Locations

 Web Sites

    UNREGISTER {button ,AL(`Register',0,`',`')}    Related Topics
Purpose:

To remove a folder/group and/or program icons from a workstation's desktop.
Syntax:

In a Windows 3.x environment:
UNREGISTER 'group name' path 'icon name'
In a Windows 95/NT environment:
UNREGISTER 'folder name' 'icon name' (common)

Where:

folder : is the name of the folder.    (Windows 95/NT)
group : is the name of the group.    (Windows 3.x)
path : is the path to the executable item in the new folder or group.    (Windows 3.x)
icon name : is the name icon to remove.    (Windows 3.x/95/NT)
common : is the (optional) parameter to cause N_Dist to remove the link from the common area.

(Windows 95/NT)
Examples:

In a Windows 3.x environment:
UNREGISTER 'Norman' c:\norman\win16\nvcw.exe 'Nvc'
In a Windows 95/NT environment:
UNREGISTER 'Norman' 'Nvc'
In both examples, the icon 'Nvc' will be removed from the 'Norman' group.

Notes:

If no icon name is specified, then the folder will be deleted only if no icons are present. (Windows 95/NT
only)

In a Windows 3.x environment, the UNREGISTER command will remove icons from a group, but will not
delete and empty group.

In Windows 95/NT environments, the folder 'startup' is automatically resolved to the correct startup folder
name for the current langauge.

    Using Environment variables {button ,AL(`Script techniques',0,`',`')}   
Related Topics

This topic covers using environment variables in a Windows NT Server login script as well as passing
environment variables to an N_Dist script.
Windows NT sets a range of environment variables automatically.    Some of these relate to the number of
processors, the processor type etc.    The environment variables referred to here are those that would of most
use to a System Administrator in building a script, they are:

Variable Typical value

HomeDrive H:
HomePath \User_Name
HomeShare \\Server_Name\Users
LogonServer \\Server_Name
OS Windows_NT
SystemDrive C:
SystemRoot C:\WINNT
Temp C:\TEMP
Tmp C:\TEMP
UserDomain Domain_Name
UserName User_Name
UserProfile C:\WINNT\Profiles\User_Name
windir C:\WINNT

The first example uses environment variables to control processing in a Windows NT Server login script.
LOGIN.BAT

@echo off
 cls
 if "%os%" == "Windows_NT" goto WINNT
 if not "%windir%" == "" goto WIN95
 if "%windir%" == "" goto WIN3X

:WINNT
 rem ---
 rem NVC Update for Win NT workstations
 rem ---
 \\NTHOST\NvcUpd$\NDIST\N_Dist.exe \\NTHOST\NvcUpd$\NDIST\NVCNT.NXD /q
 goto END

:WIN95
 rem ---
 rem NVC Update for Win 95 workstations
 rem ---
 \\NTHOST\NvcUpd$\NDIST\N_Dist.exe \\NTHOST\NvcUpd$\NDIST\NVC95.NXD /q
 goto END

:WIN3X
 rem ---
 rem NVC Update for Win 31 workstations
 rem ---
 net use o: \\NTHost\NT_Server
 O:\NVCADMIN\NDIST\N_Dist.exe NVCW.NXD /q
 net use o: /d
 goto END

:END
How the script works:

The first if statement tests if the variable os contains the string Windows_NT.    If true, goto the WINNT label
where any commands to be run for a Windows NT workstation are processed.

The second if statement tests if the variable windir is not empty.    If true, goto the WIN95 label where any
commands to be run for a Windows 95 workstation are processed.

The third if statement tests if the variable windir is empty.    If true, goto the WIN3X label where any
commands to be run for a Windows 3.x workstation are processed.
Notes:

The second and third if statements take advantage of the fact that the windir variable is present in both
Windows 3.x and Windows 95 but, is only available for use by other than Windows in Windows 95.

In a Windows 3.x environment this value would be empty if accessed from a batch file as in this example.
The next example passes the path to the currently logged in user's profile to the N_Dist script.    To do this, set
a variable on the N_Dist command line as follows:

\\NTHOST\NvcUpd$\NDIST\N_Dist.exe \\NTHOST\NvcUpd$\NDIST\NVCLNK.NXD $Profile=%USERPROFILE% /q
This can be used by the script to check for the existence of files in the user's profile path.    The following
example script checks if the shortcut to load the NVC scanner is present.    If not create the shortcut.
NXD BEGIN

set $Folder='Norman Virus Control'
set $Icon_Nvc='Norman Virus Control'

#CheckOS
if $System ! 'WINNT'
      goto #End
#CheckLink
if !exist $Profile+'\Start Menu\Programs\Norman Virus Control\Norman Virus Control.lnk'
      register $Folder $Target+'\WIN32\NVCNT.EXE' $Icon_Nvc
#End

NXD END
How the script works:

The set commands define two variables ($Folder and $Icon_NVC) for use by the script.

The #CheckOS section checks the operating system on the workstation.    If it is not Windows NT, goto the
#End label and quit processing.

The #CheckLink section checks for the existence of the file Norman Virus Control.lnk in the user's profile.   
The variable $Profile (set on the command line) would evaluate to:

C:\WINNT\Profiles\JSmith
if the logged on user had the User Name of JSmith.

    WAIT
Purpose:

To wait for a keypress or a defined number of seconds.
Syntax:

WAIT n
Where:

n : is the number of seconds to wait.
Example:

WAIT 3
Will cause script execution to wait for 3 seconds.

Notes:

If a number is given, N_Dist will wait for that number of seconds.

The wait time cannot be overridden.

If no number is given, N_Dist will wait for a keypress and store the value of that key in the special variable
called $Key.

    World Wide Web Sites     
Norman Data Defense Systems Pty Ltd - Australia
http://www.norman.com.au

Norman Ibas OY - Finland
http://www.norman-ibas.fi

Norman Data Defense Systems GmbH - Germany
http://www.norman.de

Norman Data Defense Systems BV - Netherlands
http://www.norman.nl

Norman Data Defense Systems AG - Sweden
http://www.verisecure.se

Norman Data Defense Systems AG - Switzerland
http://www.norman.ch

Norman Data Defense Systems AS - Norway
http://www.norman.no

Norman Data Defense Systems Inc - USA
http://www.norman.com

Click on any of the above links to open a Norman Web site.

    Whats New
[16-04-98] N_Dist version 1.36 released with version 4.50 of Norman Virus Control.

New N_Dist command in version 1.36:
POPMESSAGE

The COPY command has been enhanced to support the 'deferred' option.

The SEARCH    (Phrase) command has been enhanced to support up to three phrases on a line in an ASCII
file.

The SETREGISTRY, GETREGISTRY and CLEARREGISTRY commands are now implemented in OS/2 where
they operate on the user and system profiles (OS2.INI and OS2SYS.INI).

The contact information has been updated and expanded.

More Web sites have been added.
[08-03-98]

The topic Adding Web Links to the Start Menu has been enhanced to include adding links to a workstation
running Windows NT.

Note added to the 'Running a Script from a Server' topic relating to the use of UNC paths in setting the
$Source variable in an N_Dist script.

The topic Using Environment variables has been added to the Script Techniques section.
[30-01-98] N_Dist version 1.32 released with version 4.35 of Norman Virus Control.

New N_Dist commands in version 1.32:
IF UPDATE
RENAME

The application example, that got around case sensitivity, has been deleted from the REMOVE topic as the
command is now case insensitive.

The /DEBUG command line option has been added to the OPTION topic.

The following topics have been added to the Script Techniques section:
Adding Web Links to the Start Menu
Running a Script from a Server

The Server to Server Install/Update topic has been updated.    The script now use UNC paths for both
NetWare and Windows NT servers resulting in a simpler solution.    The copy of NVC95.NXD on the target server is
now modified to point to the target server as the source of an update for the client workstations.

The Server to Server (Multiple) Install/Update topic has been updated.    The script now use UNC paths for
both NetWare and Windows NT servers resulting in a simpler solution.
[09-12-97]

The e-mail addresses in the 'How to contact Norman' topics are now dynamic links.    Clicking on an e-mail
address loads the configured e-mail client software with the address entered in the 'To' editbox.

A new topic 'World Wide Web Sites' has been added.    Like the e-mail addresses, these are dynamic links
that invoke the default Browser and load the selected Norman web page.

The REMOVE topic has had an Application example added which overcomes case sensitivity.

The UNREGISTER command has been rewritten to reflect the differences between the Windows 3.x and
Windows 95/NT environments.

The DELETE topic has had an Application example added that explains how recursion works.
[19-11-97]

The 'Command List' button has been added to the main window.

More 'Related Topics' have been implemented.

All topics have been checked for syntactical accuracy and corrected where necessary.

Some topics have had extra examples and explanations added.

The new variable $Startpath has been added to the Special Variables topic.

The following topics have had Application examples added.    This process is ongoing, more will be added
over time.

CUTWORD
GETINI
IF
INCREMENT
INSERT

The following topics have been added to the Script Techniques section:
Running Multiple Scripts
Removing a group from PROGMAN.INI
Server to Server Install/Update
Server to Server (Multiple) Install/Update
Building and Running a Batch File

A new section Technical Information has been created with the following being added to it:
Distributing NVC Configuration Settings

