
4-1

Beginning Visual Basic

4. Project Design, Forms, Command Buttons

Review and Preview

You have now learned the parts of a Visual Basic project and the three

steps involved in building a project:

1. Place controls on the form.

2. Set control properties.

3. Write desired event procedures.

Do you have some ideas of projects you would like to build using Visual Basic? If

so, great. Beginning with this class, you will start to develop your own

programming skills. In each class to come, you will learn some new features of

the Visual Basic environment, some new controls, and elements of the BASIC

language. In this class, you will learn about project design, the form and

command button controls, and build a complete project.

© KIDware (206) 721-2556

Beginning Visual Basic

Project Design

You are about to start developing projects using Visual Basic. We will give

you projects to build and maybe you will have ideas for your own projects. Either

way, it’s fun and exciting to see ideas end up as computer programs. But before

starting a project, it’s a good idea to spend a little time thinking about what you are

trying to do. This idea of proper project design will save you lots of time and

result in a far better project.

Proper project design is not really difficult. The main idea is to create a

project that is easy to use, easy to understand, and free of errors. That makes

sense, doesn’t it? Spend some time thinking about everything you want your

project to do. What information does the program need? What information does

the computer determine? Decide what controls you need to use to provide these

sets of information. Design a nice user interface (interface concerns placement of

controls on the form). Consider appearance and ease of use. Make the interface

consistent with other Windows applications, if possible. Familiarity is good in

Windows based projects, like those developed using Visual Basic.

Make the BASIC code in your event procedures readable and easy to

understand. This will make the job of making later changes (and you will make

changes) much easier. Follow accepted programming rules - you will learn these

rules as you learn more about BASIC. Make sure there are no errors in your

project. This may seem like an obvious statement, but many programs are not

error-free. Windows 95 has several hundred errors floating around!

The importance of these few statements about project design might not

make a lot of sense right now, but they will. The simple idea is to make a useful,

clearly written, error-free project that is easy to use and easy to change. Planning

carefully and planning ahead helps you achieve this goal. For each project built in

this course, we will attempt to give you some insight into the project design

© KIDware (206) 721-2556

4-2

Project Design, Forms, Command Buttons

process. We will always try to explain why we do what we do in building a project.

And, we will always try to list all the considerations we make.

© KIDware (206) 721-2556

4-3

Beginning Visual Basic

Saving a Visual Basic Project

In Class 1, you learned how to open, run, and close a previously-saved

Visual Basic project, but we never talked about how a project is saved for future

use. Now that you are starting to build your own projects, you need to see how to

save them. It’s really quite easy. We will use the Visual Basic main window

toolbar. Look for a button that looks like a small floppy disk. (With writeable CD

ROM’s coming out, how much longer do you think people will know what a floppy

disk looks like? - the new Apple iMac doesn’t even have a floppy disk drive!) This

is the Save Project button:

Clicking this button will have different results, depending on when you click it.

If you are working on a new project that has never been saved, the

following window will appear:

© KIDware (206) 721-2556

4-4

Project Design, Forms, Command Buttons

This window asks you where you want to save your form and what you want to

name it (recall this is a file with a frm extension). Move to the desired folder,

assign a name to your form file (something that is meaningful) and click Save.

After saving your form, another window will appear:

This window asks where you want to save your project file and what you want to

name it (a vbp extension). Again, pick a folder (usually the same folder your form

file is saved in) and project name (again, make it meaningful) and click Save. At

this point, your project is saved in two files: the form file and the project file.

If you are working on a project that has been saved previously and you

click on the Save Project button, Visual Basic automatically saves both the form

file and project file, using the same names, without asking you any questions. It is

suggested you occasionally save your project as your work on it. And, always

save your project before running it or before leaving Visual Basic. When you want

to open a saved project, just click on the Open Project button on the Windows

toolbar and select the project file, then click Open. The project file will open and

the associated form will appear.

© KIDware (206) 721-2556

4-5

Beginning Visual Basic

On-Line Help

Many times, while working in the Visual Basic environment, you will have a

question about something. You may wonder what a particular control does, what

a particular property is for, what events a control has, or what a particular term in

BASIC means. A great way to get help when you’re stuck is to ask someone who

knows the answer. Others are usually happy to help you - they like the idea of

helping you learn. You could also try to find the answer in a book and there are

lots of Visual Basic books out there! Or, another great way to get help is to use

the Visual Basic On-Line Help system.

Most Windows applications, including Visual Basic, have help files available

for your use. To access the Visual Basic help system, click the Help item in the

main menu, then Contents. At that point, you can search for the topic you need

help on or scroll through all the topics. The Visual Basic help system is just like all

other Windows help systems. If you’ve ever used any on-line help system, using

the system in Visual Basic should be easy. If you’ve never used an on-line help

system, ask someone for help. They’re pretty easy to use. Or, click on Start on

your Windows task bar, then choose Help. You can use that on-line help system

to learn about how to use an on-line help system!

A really great feature about the Visual Basic on-line help system is that it is

‘context sensitive.’ What does this mean? Well, let’s try it. Start Visual Basic and

start a new project. Go to the properties window. Scroll down the window

displaying the form properties and click on the word BackColor. The word is

highlighted. Press the <F1> key. A screen of information about the BackColor

property appears. The help system has intelligence. It knows that since you

highlighted the word BackColor, then pressed <F1> (<F1> has always been the

key to press when you need help), you are asking for help about BackColor.

Anytime you press <F1> while working in Visual Basic, the program will look at

where you are working and try to determine, based on context, what you are

© KIDware (206) 721-2556

4-6

Project Design, Forms, Command Buttons

asking for help about. It looks at things like highlighted words in the properties

window or position of the cursor in the code window. As you work with Visual

Basic, you will find you will use ‘context-sensitive’ help a lot. Many times, you can

get quick answers to questions you might have. Get used to relying on the Visual

Basic on-line help system for assistance.

That’s enough new material about the Visual Basic environment. Now, let’s

look, in detail, at two important controls: the form itself and the command button.

Then we’ll start our study of the BASIC language and build a complete project.

© KIDware (206) 721-2556

4-7

Beginning Visual Basic

The Form Control

We have seen that the form is the central control in the development of a

Visual Basic project. Without a form, there can be no project! Let’s look at some

important properties and events for the form control. The form appears when you

begin a new project.

Properties

Like all controls, the form has many (over 40) properties. Fortunately, we

only have to know about some of them. The properties we will be concerned with

are:

Property Description

Name Name used to identify form. Three letter prefix for

form names is frm.

Caption Text that appears in the title bar of form.

Icon Reference to icon that appears in title bar of form

(we’ll look at creating icons in Class 7).

Left Distance from left side of computer screen to left

side of form.

Top Distance from top side of computer screen to top

side of form.

Width Width of the form in twips.

© KIDware (206) 721-2556

4-8

Caption
Icon

Project Design, Forms, Command Buttons

Height Height of form in twips.

BackColor Background color of form.

BorderStyle Form can either be sizable (can resize using the

mouse) or fixed size.

Example

To gain familiarity with these properties, start Visual Basic and start a new

project with just a form. Set the Top, Left, Height and Width property values and

see their effect on form position and size. Resize and move the form and notice

how those values are changed in the properties window. Set the Caption

property. Pick a new background color using the selection techniques discussed

in Class 3. To see the effect of the BorderStyle property, set a value (either 1-

Fixed Single or 2-Sizable; these are the only values we’ll use in this course) and

run the project. Yes, you can run a project with just a form as a control! Try

resizing the form in each case. Note the difference. Stop this example project.

Events

The form primarily acts as a ‘container’ for other controls, but it does

support events. That is, it can respond to some user interactions. We will only be

concerned with two form events in this course:

Event Description

Click Event executed when user clicks on the form with

the mouse.

Load Event executed when the form first loads into the

computer’s memory. This is a good place to set

initial values for various properties and other project

values.

© KIDware (206) 721-2556

4-9

Beginning Visual Basic

One word about form naming. Recall we saw in a past class that control

names are used in event procedures. This is not true for forms. All form event

procedures have the format:

Form_EventName

That is, no matter what Name property you assign to the form, event procedures

are listed under the word Form. So, when looking for form event procedures in

the code window, scroll down the Object List until you find Form. Try this with

the example just used to play with properties. Note if we assign the name

frmFirstCode to the form, the code window will be::

VB4:

VB5, VB6:

 Note that the word Form appears in the object list, not frmFirstCode. We

always need to be aware of this peculiarity when working with form event

© KIDware (206) 721-2556

4-10

Project Design, Forms, Command Buttons

procedures. All other controls will appear in the object list by their assigned Name

property.

© KIDware (206) 721-2556

4-11

Beginning Visual Basic

Command Button Control

The command button is one of the more widely used Visual Basic

controls. Command buttons are used to start, pause, or end particular processes.

The command button is selected from the toolbox. It appears as:

In Toolbox: On Form (default properties):

Properties

A few useful properties for the command button are:

Property Description

Name Name used to identify command button. Three

letter prefix for command button names is cmd.

Caption Text that appears on the command button.

Font Sets style, size, and type of caption text.

Left Distance from left side of form to left side of

command button.

Top Distance from top side of form to top side of

command button.

Width Width of the command button in twips.

Height Height of command button in twips.

Enabled Determines whether command button can respond

to user events (in run mode).

Visible Determines whether the command button appears

on the form (in run mode).

© KIDware (206) 721-2556

4-12

Project Design, Forms, Command Buttons

Example

Start Visual Basic and start a new project. Put a command button on the

form. Move the button around and notice the changes in Top and Left properties.

Resize the button and notice how Width and Height change. Set the Caption

property.

Many controls, in addition to the command button, have a Font property, so

let’s take a little time to look at how to change it. Font establishes what the

Caption looks like. When you click on Font in the properties window, a button with

something called an ellipsis will appear on the right side of the window:

Click this button and a Font Window will appear:

© KIDware (206) 721-2556

4-13

Beginning Visual Basic

With this window, you can choose three primary pieces of information: Font,

Font Style, and Size. You can also have an underlined font. This window lists

information about all fonts stored on your computer. To set the Font property,

make your choices in this window and click OK. Try different fonts, font styles,

and font size for the command button Caption property.

Two other properties listed for the command button are Enabled and

Visible. Each of these properties can either be True (On) or False (Off). Most

other controls also have these properties. Why do you need these?

If a control’s Enabled property is False, the user is unable to access that

control. Say you had a stopwatch project with a Start and Stop button:

You want the user to click Start, then Stop, to find the elapsed time. You wouldn’t

want the user to be able to click the Stop button before clicking the Start button.

So, initially, you would have the Start button’s Enabled property set to True and

the Stop button’s Enabled property set to False. This way, the user can only click

Start. Once the user clicked Start, you would swap property values. That is,

make the Start button’s Enabled property False and the Stop button’s Enabled

property True. That way, the user could now only click Stop.

© KIDware (206) 721-2556

4-14

Project Design, Forms, Command Buttons

The effects of a False Enabled property are only evident when Visual Basic

is in run mode. When a command button is not Enabled (Enabled is False), it will

appear ‘hazy’ and the user won’t be able to click it. When Stop is not Enabled on

the stopwatch, it looks like this:

So, use the Enabled property when you want a control on the form to be

temporarily disabled. This is a decision made in the project design process we

discussed earlier.

The Visible property is a bit more drastic. When a control’s Visible property

is set to False (its default value is True), the control won’t even be on the form!

Now, why would we want a control we just placed on the form, set properties for,

and wrote event procedures for, to be invisible? The answer is similar to that for

the Enabled property. Many times in a project, you will find times when you want

a control to temporarily go away. Remember the Sample project in Class 1 where

check boxes controlled whether toys were displayed or not. The display of the

toys was controlled via the image control’s Visible property. Or, in the little

stopwatch example, instead of setting a button’s Enabled property to False to

make it ‘unclickable,’ we could just set the Visible property to False so it doesn’t

appear on the form at all. Either way, you would obtain the desired result. This is

another project design decision. One more thing - like the Enabled property, the

effects of Visible being False are only evident in run mode. This makes sense. It

would be hard to design a project with invisible controls!

© KIDware (206) 721-2556

4-15

Beginning Visual Basic

Now, play with the Enabled and Visible properties of the command button

in the example you have been working with. Once you set either property, run the

project to see the results. Note with Enabled set to False, you can’t click the

button. Note with Visible set to False, the button isn’t there. When done, stop the

example project.

Events

There is only one command button event of interest, but it is a very

important one:

Event Description

Click Event executed when user clicks on the command

button with the mouse.

Every command button will have an event procedure corresponding to the Click

event.

© KIDware (206) 721-2556

4-16

Project Design, Forms, Command Buttons

BASIC - The First Lesson

At long last, we are ready to get into the heart of a Visual Basic project - the

BASIC language. You have seen that, in a Visual Basic project, event procedures

are used to connect control events to actual actions taken by the computer.

These event procedures are written using BASIC. So, you need to know BASIC

to know Visual Basic. In each subsequent class in this course, you will learn

something new about the BASIC language.

Event Procedure Structure

You know, by now, that event procedures are viewed in the Visual Basic

code window. Each event procedure has the same general structure. First, there

is a header line of the form:

Private Sub ControlName_EventName()

This tells us we are working with a Private (only accessible from our form),

Subroutine (another name for a event procedure) that is executed when the event

EventName occurs for the control ControlName. Makes sense, doesn’t it?

The event procedure code begins following the header line. The event

procedure code is simply a set of line-by-line instructions to the computer, telling it

what to do. The computer will process the first line, then the second, then all

subsequent lines. It will process lines until it reaches the event procedures footer

line:

End Sub

© KIDware (206) 721-2556

4-17

Beginning Visual Basic

The event procedure code is written in the BASIC language. BASIC is a

set of keywords and symbols that are used to make the computer do things.

There is a lot of content in BASIC and we’ll try to look at much of it in this course.

Just one warning at this point. We’ve said it before, but it’s worth saying again.

Computer programming requires exactness - it does not allow errors! You must

especially be exact when typing in event procedures. Good typing skills are a

necessity in the computer age. As you learn Visual Basic programming, you

might like also to improve your typing skills using some of the software that’s

available for that purpose. The better your typing skills, the fewer mistakes you

will make in building your Visual Basic applications.

Assignment Statement

The simplest, and most used, statement in BASIC is the assignment

statement. It has this form:

LeftSide = RightSide

The symbol = is called the assignment operator. You may recognize this

symbol as the equal sign you use in arithmetic, but it’s not called an equal sign in

computer programming. Why is that?

In an assignment statement, we say whatever is on the left side of the

assignment statement is replaced by whatever is on the right side. The left side of

the assignment statement can only be a single term, like a control property. The

right side can be just about any legal BASIC expression. It might have some math

that needs to be done or something else that needs to be evaluated. If there are

such evaluations, they are completed before the assignment. We are talking in

very general terms right now and we have to. The idea of an assignment

statement will become very obvious as you learn just a little more BASIC.

© KIDware (206) 721-2556

4-18

Project Design, Forms, Command Buttons

Property Types

Recall a property describes something about a control: size, color,

appearance. Each property has a specific type depending on the kind of

information it represents. When we use the properties window to set a value in

design mode, Visual Basic automatically supplies the proper type. If we want to

change a property in an event procedure using the BASIC assignment statement,

we must know the property type so we can assign a properly typed value to it.

Remember we use something called ‘dot notation’ to change properties in run

mode:

ControlName.PropertyName = PropertyValue

ControlName is the Name property assigned to the control, PropertyName is the

property name, and PropertyValue is the new value we are assigning to

PropertyName. We will be concerned with four property types.

The first property type is the integer type. These are properties that are

represented by whole, non-decimal, numbers. Properties like the Top, Left,

Height, and Width properties are integer type. So, if we assign a value to an

integer type property, we will use integer numbers. As an example, to change the

width property of a form named frmExample to 4,000 twips, we would write in

BASIC:

frmExample.Width = 4000

This says we replace the current Width of the form with the new value of 4000.

Notice you write 4,000 as 4000 in BASIC - we can’t use commas in large

numbers.

© KIDware (206) 721-2556

4-19

Beginning Visual Basic

A second property type is the long integer type. And, a long integer is just

like its name says. An integer type property can have values up to 32,767.

Sometimes, we need bigger numbers than this, hence the long integer type. A

long integer can have a value up to 2,147,483,647. That’s pretty big, but do you

realize Bill Gates couldn’t even write down his net worth using a long integer?

Maybe he needs someone at Microsoft to invent a very long integer type! The

most common properties that uses long integers are colors, like the BackColor

and ForeColor properties you will see for some controls. Remember, in a past

class, we saw that the property value for gray is written as &H8000000F& - that’s

a shorthand notation (called a hexadecimal number) for a long integer. When

assigning color properties, we must use long integers.

Fortunately, Visual Basic gives us lots of easy ways to refer to long integer

numbers for colors, so it makes working with long integers easy. One way to use

colors is with symbolic constants. Symbolic constants are used many places in

Visual Basic - you’ll see lots of them as you work through the course. All symbolic

constants start with the two letters vb (Visual Basic). Some symbolic constants

for colors are:

vbBlack - Black vbRed - Red

vbGreen - Green vbYellow - Yellow

vbBlue - Blue vbMagenta - Magenta (purple)

vbCyan - Cyan (sky blue) vbWhite - White

Each of these constants ‘stores’ the corresponding long integer value for the color

it represents. To change our example form’s BackColor property to blue, you

would use this assignment statement:

frmExample.BackColor = vbBlue

© KIDware (206) 721-2556

4-20

Project Design, Forms, Command Buttons

This says the BackColor of the form is replaced by long integer value represented

by the symbolic constant named vbBlue.

Another property type is the Boolean type. It takes its name from a

famous mathematician (Boole). It can have two values: True or False. We saw

that the Enabled and Visible properties for the command button have Boolean

values. So, when working with Boolean type properties, we must insure we only

assign a value of True or a value of False. To make our example form disappear

(not a very good thing to do!), we would use the assignment statement:

frmExample.Visible = False

This says the current Visible property of the form is replaced by the Boolean value

False. We could make it come back with:

frmExample.Visible = True

The last property type we need to look at is the string type. Properties of

this type are simply what the definition says - strings of characters. A string can

be a name, a string of numbers, a sentence, a paragraph, any characters at all.

And, many times, a string will contain no characters at all (an empty string). The

Caption property is a string type property. We will do lots of work with strings in

Visual Basic, so it’s something you should become familiar with. When assigning

string type properties, the only trick is to make sure the string is enclosed in

quotes (“). You may tend to forget this since string type property values are not

enclosed in quotes in the properties window. To give our example form a caption,

we would use:

frmExample.Caption = “This is a caption in quotes”

© KIDware (206) 721-2556

4-21

Beginning Visual Basic

This assignment statement says the Caption property of the form is replaced by

(or changed to) the string value on the right side of the statement. You should

now have some idea of how assignment statements work.

Comments

When we talked about project design, it was mentioned that you should

follow proper programming rules when writing your BASIC code. One such rule is

to properly comment your code. You can place non-executable statements

(ignored by the computer) in your code that explain what you are doing. These

comments can be an aid in understanding your code. They also make future

changes to your code much easier.

To place a comment in your code, use the comment symbol, an

apostrophe (‘). This symbol is to the left of the <Enter> key on most keyboards,

not the key next to the 1 key. Anything written after the comment symbol will be

ignored by the computer. You can have a comment take up a complete line of

BASIC code, like this:

‘Change form to blue
frmExample.BackColor = vbBlue

Or, you can place the comment on the same line as the assignment statement:

frmExample.BackColor = vbBlue ‘Makes form blue

You, as the programmer, should decide how much you want to comment your

code. We will try in the projects provided in this course to provide adequate

comments. Now, on to the first such project.

© KIDware (206) 721-2556

4-22

Project Design, Forms, Command Buttons

Project - Form Fun

Project Design

In this project, we will have a little fun with form properties using command

buttons. We will have a button that makes the form grow, one that makes the

form shrink, and two buttons that change the form color. We’ll even have a

couple of buttons that make the other buttons disappear and reappear.

Place Controls on Form

Start a new project in Visual Basic. Size the form so six command buttons

will fit on the form. Place six command buttons on the form. Move the buttons

around until the form looks something like this:

One warning. If you’ve used Windows applications for a while, you have

probably used the edit feature known as Copy and Paste. That is, you can copy

something you want to duplicate, move to the place you want your copy and then

paste it. This is something done all the time in word processing. You may have

discovered, in playing around with Visual Basic, that you can copy and paste

controls. You might be tempted to do that here - why create six command buttons

when you could just create one command button, then copy and paste it five

© KIDware (206) 721-2556

4-23

Beginning Visual Basic

times? Yes, you could do that, but don’t! If you do, it will look like you have

command buttons on the form and you do, kind of. Copying controls gives you a

different type of control - one you study in more advanced Visual Basic classes.

So, in this class, we will always create single copies of every control we need.

Later, as you become a better programmer, you might want to look into what is

happening when you copy and paste controls.

Set Control Properties

Set the control properties using the properties window. Remember that to

change the selected control in the properties window, you can either use the

controls list at the top of the window or just click on the desired control. For

project control properties, we will always list controls by their default names (those

assigned by Visual Basic when the control is placed on the form).

Form1 Form:

Property Name Property Value

Name frmFormFun
Caption Form Fun

Command1 Command Button:

Property Name Property Value

Name cmdShrink
Caption Shrink Form

Command2 Command Button:

Property Name Property Value

Name cmdGrow
Caption Grow Form

© KIDware (206) 721-2556

4-24

Project Design, Forms, Command Buttons

Command3 Command Button:

Property Name Property Value

Name cmdHide
Caption Hide Buttons

Command4 Command Button:

Property Name Property Value

Name cmdRed
Caption Red Form

Command5 Command Button:

Property Name Property Value

Name cmdBlue
Caption Blue Form

Command6 Command Button:

Property Name Property Value

Name cmdShow
Caption Show Buttons
Visible False

You can change other properties if you want - maybe change the Font property of

the command buttons. When you’re done setting properties, your form should

resemble thi s:

© KIDware (206) 721-2556

4-25

cmdShrink

cmdGrow

cmdHide

frmFormFun

cmdRed

cmdBlue

cmdShow

Beginning Visual Basic

What we have are six command buttons, two to change the size of the

form, two to change form color, one to make buttons go away, and one to make

buttons reappear. Notice the Show Buttons command button has a Visible

property of False. We don’t want it on the form at first, since the buttons will

already be there. When we make the buttons go away (by changing their Visible

property) by clicking the Hide Buttons control, we will make the Show Buttons

button appear. Makes sense, doesn’t it? But, why is the Show Buttons button

there if its Visible property is False? Remember a False Visible property will only

be seen in run mode.

Write Event Procedures

We have six command buttons on our form. We need to write code for the

Click event procedure for each of these buttons. We’ll also want to write a Click

event procedure for the form - we’ll explain why. We have a button on the form

that makes the form shrink. What if we shrink it so much, we can’t click on the

button to make it grow again. We can avoid that by allowing a click on the form to

also grow the form. This ‘thinking ahead’ is one of the project design concepts we

talked about.

For each event procedure, you use the code window. Select the control in

the object list and the event in the procedures list. Then click in the region

between the header line and footer line and start typing code. It’s that easy. But,

again, make sure you type in everything just as written in these notes. You must

be exact!

First, let’s type the cmdShrink_Click event procedure. In this procedure,

we decrease the form height by 100 twips and decrease the form width by 100

twips:

© KIDware (206) 721-2556

4-26

Project Design, Forms, Command Buttons

Private Sub cmdShrink_Click()
'Shrink the form
'Decrease the form height by 100 twips
frmFormFun.Height = frmFormFun.Height - 100
'Decrease the form width by 100 twips
frmFormFun.Width = frmFormFun.Width - 100
End Sub

Before looking at the other event procedures, let’s look a bit closer at this one

since it uses a few ideas we haven’t clearly discussed. This is the event

procedure executed when you click on the button marked Shrink Form. You

should easily recognize the comment statements. The non-comment statements

change the form height and width. Look at the statement to change the height:

frmFormFun.Height = frmFormFun.Height - 100

Recall how the assignment operator (=) works. The right side is evaluated first.

So, 100 is subtracted (using the - sign) from the current form height. That value is

assigned to the left side of the expression, frmFormFun.Height. The result is the

form Height property is replaced by the Height property minus 100 twips. After

this line of code, the Height property has decreased by 100 and the form will

appear smaller on the screen.

This expression also shows why we call the assignment operator (=) just

that and not an equal sign. Anyone can see the left side of this expression cannot

possibly be equal to the right side of this expression. No matter what

frmFormFun.Height is, the right side will always be 100 smaller than the left side.

But, even though this is not an equality, you will often hear programmers read this

statement as “frmFormFun.Height equals frmFormFun.Height minus 100,”

knowing it’s not true! Remember how assignment statements work as you begin

writing your own programs.

© KIDware (206) 721-2556

4-27

Beginning Visual Basic

Now, let’s look at the other event procedures. The cmdGrow_Click

procedure increases form height by 100 twips and increases form width by 100

twips:

Private Sub cmdGrow_Click()
'Grow the form
'Increase the form height by 100 twips
frmFormFun.Height = frmFormFun.Height + 100
'Increase the form width by 100 twips
frmFormFun.Width = frmFormFun.Width + 100
End Sub

The cmdRed_Click event procedure changes the form background

color to red:

Private Sub cmdRed_Click()
'Make form red
frmFormFun.BackColor = vbRed
End Sub

while the cmdBlue_Click event procedure changes the form background

color to blue:

Private Sub cmdBlue_Click()
'Make form blue
frmFormFun.BackColor = vbBlue
End Sub

© KIDware (206) 721-2556

4-28

Project Design, Forms, Command Buttons

The cmdHide_Click event procedure is used to hide (set the Visible

property to False) all command buttons except cmdShow, which is made

Visible:

Private Sub cmdHide_Click()
'Hide all buttons but cmdShow
cmdGrow.Visible = False
cmdShrink.Visible = False
cmdHide.Visible = False
cmdRed.Visible = False
cmdBlue.Visible = False
'Show cmdShow button
cmdShow.Visible = True
End Sub

and the cmdShow_Click event procedure reverses these effects:

Private Sub cmdShow_Click()
'Show all buttons but cmdShow
cmdGrow.Visible = True
cmdShrink.Visible = True
cmdHide.Visible = True
cmdRed.Visible = True
cmdBlue.Visible = True
'Hide cmdShow button
cmdShow.Visible = False
End Sub

Lastly, the Form_Click event procedure is also used to ‘grow’ the

form, so it has the same code as cmdGrow_Click:

Private Sub Form_Click()
'Grow the form
'Increase the form height by 100 twips
frmFormFun.Height = frmFormFun.Height + 100
'Increase the form width by 100 twips
frmFormFun.Width = frmFormFun.Width + 100
End Sub

© KIDware (206) 721-2556

4-29

Beginning Visual Basic

(Make sure you have the correct procedure here. When you choose the Form

control, the procedure displayed will be Load. Choose the Click event using the

procedures list.) Review the earlier-discussed techniques for saving a new

project. Save your project.

You should easily be able to see what’s going on in each of these

procedures. Pay special attention to how the Visible property was used in the

cmdHide and cmdShow button click events. Notice too that many event

procedures are very similar in their coding. For example, the Form_Click event is

identical to the cmdGrow_Click event. This is often the case in Visual Basic

projects. Unlike control placement, we encourage the use of editor features like

Copy and Paste when writing code. To copy something, highlight the desired text

using the mouse - the same way you do in a word processor. Then, select Edit in

the Visual Basic main menu, then Copy. Move the cursor to where you want to

paste. You can even move to other event procedures. Select Edit, then Paste.

Voila! The copy appears. The pasted text might need a little editing, but you will

find that copy and paste will save you lots of time when writing code. And, this is

something you’ll want to do since you probably have noticed there’s quite a bit of

typing in programming, even for simple project such as this. Also useful are Find

and Replace editor features. Use them when you can.

VB5 and VB6 offer another way to reduce your typing load and the number

of mistakes you might make. If you click Tools, then Options on the Visual Basic

main menu, then select the Editor tab, there is an option called Auto List

Members. If this option is selected, while you are writing BASIC in the code

window, at certain points little boxes will pop up that display information that would

logically complete the statement you are working on. Then, you can select the

desired completion, rather than type it. If you use VB5 or VB6, you might want to

try the Auto List Members option. Use on-line help to find out more about its use.

© KIDware (206) 721-2556

4-30

Project Design, Forms, Command Buttons

Run the Project

Go ahead! Run your project - click the Start button on the Visual Basic

toolbar. If it doesn’t run properly, the only suggestion at this point is to stop the

project, recheck your typing, and try again. We’ll learn ‘debugging’ techniques in

the next class.

Try all the command buttons. Grow the form, shrink the form, change form

color, hide the buttons, make the buttons reappear. Make sure you try every

button and make sure each works the way you want. Make sure clicking the form

yields the desired result. This might seem like an obvious thing to do but, for

large projects, sometimes certain events you have coded are never executed and

you have no way of knowing if that particular event procedure works properly.

This is another step in proper project design - thoroughly testing your project.

Make sure every event works as intended. Stop your project (click the Visual

Basic toolbar Stop button). Save your project if you changed anything.

Other Things to Try

For each project in this course, we will offer suggestions for changes you

can make and try. Modify the Shrink Form and Grow Form buttons to make

them also move the form around the screen (use the Left and Top properties).

Add more possible colors to the form using the other symbolic constants we

defined. Change the Hide Buttons button so that it just sets the command

buttons’ Enabled property to False, not the Visible property. Similarly, modify the

Show Buttons button.

© KIDware (206) 721-2556

4-31

Beginning Visual Basic

Summary

Congratulations! You have now completed a fairly detailed (at least there’s

more than one control) Visual Basic project. You learned about project design,

saving projects, details of the form and command button controls, and how to

build a complete project. You should now be comfortable with the three steps of

building a project: placing controls, setting properties, and writing event

procedures. We will continue to use these steps in future classes to build other

projects using new controls and more of the BASIC language.

© KIDware (206) 721-2556

4-32

