Arachnophilia

Definition of Arachnophilia

-- P. Lutus, Port Hadlock, WA --

For a general overview of the Arachnophilia documentation,
press the “Contents” button at the upper right of this window.

To find information about a specific topic, it is most efficient to use the
"Find” feature. Click ”Contents” above, choose the Find tab, and type in
one or more words describing your interest.

Arachnophilia is the descendant of WebThing, which is the descendant of Apple Writer, but I
digress. I learned a lot writing and distributing WebThing, the most important being “Don’t write
programs in Visual Basic.” WebThing had a number of shortcomings, all of which are addressed
in Arachnophilia.

Arachnophilia’s purpose is to create Web pages. It does this in one of two general ways. The
easy way is to drop a Rich Text Format (RTF) document onto the Arachnophilia program
window and watch Arachnophilia turn it into a web page for you. The not so easy way is to
write the HTML code yourself, which, although more work, produces the most professional-
looking results.

Arachnophilia will help you create Web pages, no matter what method you choose. And, by just
typing, you can create new Arachnophilia commands, even entire toolbars, for HTML tags |
haven t thought of -- Arachnophilia’s suite of commands is entirely under your control. You can
load hundreds of documents at once (memory permitting) and search through them at once for
particular words. You can preview your work on up to six browsers, thus assuring your pages
will look good no matter what browser your visitors own.

I hope you like Arachnophilia. I also hope you will read about CareWare, which is how you
“pay” for Arachnophilia.

Web Resource Sites

Frequently Asked Questions This web site contains answers to
the most often asked questions
about Arachnophilia.

www.arachnoid.com/ Use this link to get the most recent

arachnophilia version of Arachnophilia.
www.microsoft.com, Click these links to get the most
www.netscape.com recent versions of popular Web

browsers.

Be sure to visit www.arachnoid.com, the home of Arachnophilia.

Arachnophilia © Copyright 1996-1998 P. Lutus. All Rights Reserved.

Note: Function key F1 provides context-sensitive help throughout Arachnophilia.

Introduction
Arachnophilia is a full-featured HTML editor and workshop. With Arachnophilia, you can:

» Create Web pages and preview them on all available browsers.

» Interactively edit Web page resources and appearance.

« Import full-featured text, tables and outlines into your Web page, with table structure,

» indentation, font color, size and face preserved.

» Create interactive forms that launch programs to do things not possible in HTML alone.
» Organize a set of Web pages and associated graphics, sound files, and other resources.

« Maintain Web pages by examining their mutual references.

Arachnophilia will help you get started if you are a beginner, and it will help you organize larger
projects as you acquire more experience. Arachnophilia will automatically copy resource files to
your working directory as you select them, and will alert you if there are resources that are no
longer being used.

Arachnophilia supports many of the HTML tags currently in use, and can be customized to
include any specialized tags that the user desires, and any new tags that come into use in the
future.

These help pages cannot teach you all you need to know about HTML to be a successful Web
page writer, but there are many sources of detailed information that you should access. One very
effective way to learn about HTML and Web pages in general is to browse the Web. There you
will see any number of well-designed Web pages.

Another way to get more information is to search the Web itself for information about HTML.
Example: Get online and access the Yahoo search engine at www.yahoo.com. Type HTML as
your search string. Another good search engine is www.lycos.com. Also, bookstores and libraries
have many excellent references on HTML.

These pages will help you with the particulars of Arachnophilia and its special features, and
contain instructions on the use of the most common HTML tags.

The Internet and the Web

Computer networking has had a short and spectacular history. From the first effort to connect
two computers together in the 1950s (rumor has it they deadlocked each other with "syntax error
in line 12" messages) to the present, the value of sharing computer resources has become
obvious. Regional networks became connected to each other, and eventually the Internet came
into being.

There was always some way to navigate from place to place on networks. Earlier systems
required you to type something cryptic at a keyboard, and to know something about UNIX. As
time passed and more people tried to use the Internet for more kinds of things, the old ways were
replaced with more intuitive graphic interfaces.

The most popular present method to interact with the Internet is by way of a Web Browser, a
program that can read Web Pages that have been posted on the Internet. A modern Web page is a
multimedia resource, containing text, images, sounds, and animations. Soon Web pages will
contain links to objects that will offer you access to resources such as programs and information
in ways not presently possible.

The "Web" in "Web page" refers to The World Wide Web, which is not so much a network as a
way to interact with a computer network. The Web is in fact a combination of communication
protocols that include a language called HTML, several kinds of programs called Browsers, and
the Internet to connect it all together.

"Web pages" are written in HTML using a program like this one, generically known as a "Web
Page Editor." After being written, Web pages are usually posted on a computer that is attached to
the Internet. Then people who have network access to that computer can "read" the web page
using their browser program.

Some Web pages contain graphics, sounds, and other things to increase their information content
(translate: fun). But the most important single thing about a Web page is that it can contain links

to other pages, resources, and locations. The behavior of these links is referred to as Hypertext, a
method by which one can jump from place to place by activating the links.

In the original embodiment of Hypertext, one would move from paragraph to paragraph in a
document using links, as in this help page. Now, using HTML, one may move from country to
country by clicking a pointer device.

Individuals and institutions are therefore very interested in creating Web pages in the easiest
possible way, and that is why Arachnophilia was written -- to make it easy to create your own
Web page, add to it, and maintain it.

A good way to start is to browse the Web and see some of the pages that have been written by
others, to get ideas about how you would like your page to look. Most browsers allow you to
examine the original HTML code to see how a particular effect was created. This is a good way
to learn advanced techniques.

The Basics of Web Pages

In the simplest terms, the World Wide Web is a collection of web pages and other resources
located on Internet server computers connected to web page browsers located on individual
machines also connected to the Internet. What makes it a Web is that the Web pages
communicate the information desired by their authors, and also they connect readers to other
resources by way of links. The links in Web pages can refer to another Web page, a program, or
some other kind of file, or another way of interacting with the Web such as Telnet.

Web pages have two aspects. One aspect is how the page looks to a web browser, colorful and
interactive. The other aspect is the actual HTML code that tells the browser what to do. The fun
part of browsing is seeing the result aspect, but the other part, the code, has to come first.

Fortunately, HTML was designed to be as obvious as possible, consistent with its purpose. You
will be writing HTML in a very short time from starting out. Writing great HTML code will take
longer.

The overall process for creating a Web page is to get the resources together -- a web editor
(you've already taken care of that) and a browser. If you don't already have a Web browser, I
recommend Microsoft Internet Explorer. It is available on the Internet (possibly a catch-22 if you
don't have any browser right now) and, like Arachnophilia, it is free (but see the CareWare
section for a better explanation of "free").

Once you have these basic tools, you can follow this strategy:

» Make a plan. Perhaps you want to have just one page that says "Hi, world, this is me!", or
perhaps you want to create something more ambitious, several pages, lots of graphics. A
broad outline of your intentions is a good starting point.

» Select a data directory to store your work as it proceeds. Arachnophilia will prompt you to do
this the first time you create a link between two file resources.

» Create the first page (if you are planning more than one). This page is usually the first thing a
visitor sees, and is often no more than a table of contents. Usually this page is named
"index.htm" to be consistent with how Internet servers locate and activate pages.

« Create the child pages, and link them to the index page. As you work, launch your Web
browser (Arachnophilia allows you to do this while you work) to see the result of your
efforts.

« Finally, after testing all the pages and jumping between them and to any outside resources
you reference, you can upload your page(s) to the Internet. This is in some ways the most
specialized part of the process, and you may have to ask your Internet Service Provider for
help.

Arachnophilia has many features to simplify this process. Arachnophilia will remind you to set

up a working directory, then it will ask whether you want to automatically copy resource files to
this directory as you work. Using this feature, you will automatically assemble all the resources
for your Web page in one place, and you will also use what are called "relative links" to them,
meaning the entire package will work as expected after being moved onto the Internet server.
And, using a cross-reference feature, Arachnophilia will find and list resources files that are no
longer being used by your pages, for easy removal.

With Arachnophilia and a browser installed on your system, you can develop web pages without
actually being connected to the Internet. You can write, test, debug, and modify your pages
before posting them on the Internet. And, perhaps best of all, you can add your favorite tags to
Arachnophilia, tags you use a lot, or tags that don't exist as this is being written.

The Basics of HTML

The most important thing to realize about HTML is that it is changing with time, and that
different browsers support different features. Therefore, if you want to be a serious Web page
developer, you should collect enough browsers to be sure your page looks acceptable on all of
them. Arachnophilia supports up to six browsers simultaneously, allowing you to verify changes
as you work.

The next most important thing to know about HTML is that it was designed to be as easy and
transparent as possible. After a short time, you will be able to look at an HTML script and predict
more or less how it will look when viewed with a browser. Naturally, Arachnophilia does not
require you to guess -- you can just press a button to move between the HTML code display and
the browser display.

The most basic element of HTML is called a "Tag." HTML tags usually, but not always, come in
pairs, an opening tag and a closing tag.

Tags are enclosed in the greater than - less than symbols "<" ">."
The opening tag of a pair of tags appears this way: <TAG>.
The closing tag of a pair appears this way: </ TAG>. Notice the slash.

Tags can contain modifiers within the "<" ">" symbols. Example: <TMG SRC="myimage.gif">
The information inside the tags tell the browser to do something. Example: <BGsounD
SRC="music.mid"> tells the browser to play some music (if the browser in question is Microsoft
Internet Explorer).

The information outside the tags is printed as text. Example: the HTML code "This should be
emphasized more than usual." will be shown by the browser as "This should be
emphasized more than usual.

In this example, the browser understood the tag to mean "start printing in boldface." The
browser then took the tag to mean "go back to the previous state." Most HTML tags are
nested, which means they add to the formatting of any prior tags, even if the prior tags specify
the same thing. This example of HTML.:

"This is an important point to make."

Would most likely be rendered as:

"This is an important point to make."

because each pair of tags independently affect the text, and when the closing tag appears, the

browser simply returns to whatever formatting had existed previously. This is important to
understand and can save you from mysterious behavior in your Web pages.

NOTE: These structural issues are important to understand, but Arachnophilia will automatically
convert text with many different styles, fonts, and colors for you, either by dragging text from
another application using the Arachnophilia File Import methods, or by saving files in Rich Text
Format, then simply loading them into Arachnophilia. Arachnophilia will automatically convert
formatted text, tables, and outlines (indented structures) into the appropriate HTML code, as
much as possible preserving the original appearance of your text (within the constraints imposed
by HTML).

The most basic HTML document looks like this:

<HTML>

<Head>
<Title></Title>
</Head>

<Body>

|
</Body>

</HTML>

These pairs of tags are regarded as the basic structure of an HTML page, and all existing
browsers support it. Arachnophilia will automatically create this structure for you when you open
an HTML document from the File menu, or use the Structure/Lists toolbar.

The <HTML></HTML> tags simply identify this as an HTML document. The
<Head><Title></Title></Head> tags basically allow you to place a title inside your
document. This title is normally not displayed by the browser as part of the page, but appears at
the top of the browser display on its title bar, and is also accessed by Internet search engines for
descriptive information about your page.

Most Web Page development takes place within the <Body></Body> tag pair. For example, if
you typed "This is my page" between the <Body> and </Body> tags, your browser would
display that phrase.

There are many structural elements in HTML, such as tables, lists, and provisions for graphic
images and other resources, but by far the most important to understand is the_Hyperlink or link.

The most common HTML link looks like this:

An interesting place

The browser will show this link as An interesting place and if you click on it (in a browser), the
browser will locate and load the thing described by "destination". In creating a link, the text you
type between the <A> and tags tells the reader what the link is, and the

href="destination" part of the link tells the browser where to look for the resource.

Links are the way you navigate around the World Wide Web. A link might contain another of
your own pages:

Click here to read my story

A link might refer to another location in the same Web page

Click here to move to the bookmark

Elsewhere in the Web page would be the name to which this bookmark refers, and to which the
browser would move:

Thanks for coming around!

A link can refer to a file you want to allow access to:

Click here to run my program

Or:

Click here to download my data file

And (actually a very common example) you can refer to something else on the World Wide Web:

Click here to visit Microsoft

You can also place a graphic image on your page:

You can even use a graphic image as the clickable area for a hypertext link:

In this example, the visible part of the tag is a picture instead of text. When the user clicks on the
picture "sandybeach.gif", the browser jumps to the Web location identified by
"http://www.beachstuff.com".

Hypertext links can refer to many kinds of things, including files, Web sites, locations in the
same document, other pages you have written, they can even launch applications and send E-
mail.

This is just the barest outline of what HTML can do. Once again, there are many resources
available that can provide a full description and use of HTML, including resources on the Web
itself.

How to make your own page (the easy way)

You always have the option of creating a page from scratch, by entering the HTML tags on your
own. But, even with a lot of predefined tags, this takes a long time, and you have to learn a lot
about HTML as you go along.

But there is an easier way -- Arachnophilia will allow you to import a word processing document
that has been saved in Rich Text Format (RTF) and will then convert it automatically into a Web

page.

Some word processing programs will export their documents in the RTF format, others won’t,
but you can still export them using one of the methods described here. Here are the ways to get
your document from your word processor/spreadsheet/database to Arachnophilia:

« Simply save the document in the Rich Text Format (RTF) document type. Then open it in
Arachnophilia (File ... Open File ... RTF File). When you do this, Arachnophilia will ask
whether it should convert it into HTML format. Choose “Yes” and you are done.

« Open Windows Explorer and drag an RTF document icon onto the Arachnophilia program
window (not onto an open document, but onto the background). In the same way as method
(1), Arachnophilia will ask whether it should convert it into HTML format.

» For programs that do not support the RTF file format, open your source program and
Arachnophilia at the same time. Open a new, blank RTF document in Arachnophilia (File ...
New File ... RTF File). Move to your source program and select the block of text you are
interested in. Drag this block over to the open RTF document window in Arachnophilia, and
drop it. Then select the menu option Tools ... Convert RTF to HTML.

» Use the Windows clipboard and proceed as in method (3) above.

These methods apply to data sources such as spreadsheets and databases -- just use method 3 or 4
above if the program does not export RTF files.

Here are some suggestions to help Arachnophilia convert your document:

Always use real bulleted lists and real numbered lists, available in most word processing
programs, instead of manually numbering a list of items. If you use the real versions of these
features, Arachnophilia will create the HTML equivalent of these structures, which look great. If
you simply manually number a list, it will not look nearly as good when viewed on a browser.

Avoid “outdenting” paragraphs in your document formatting -- Arachnophilia will interpret this
as an outline. Instead, if you create a real outline, even one with multiple levels, Arachnophilia
will translate it into HTML for you.

Here are some restrictions for this automatic conversion method:
Arachnophilia will automatically import tables and outlines, but cannot import any pictures that

are included in your original document. These parts of your document have to be imported
separately, using the HTML tags that are designed for that purpose.

Sometimes Arachnophilia will misinterpret a line with tab characters in it as a table row. If this is
not what you intended and you want to prevent this behavior, choose Tools ... Options and select
“Convert Tabs into Spaces.” Remember later that you made this choice, because Arachnophilia
won’t create tables until the “Convert Tabbed Lines into Tables” option is enabled again.

In general, avoid the use of tabs, because this character is used in the RTF document format to
identify table rows, and Arachnophilia relies on them for this purpose.

Be sure to review the Arachnophilia File Import methods for more information on these
techniques.

How to make your own page (the ambitious, heroic way :))

Remember: you can just import many types of documents directly into Arachnophilia. The
methods described here are for finer control over the outcome than the HTML translator can
provide. See the Arachnophilia File Import methods for more information.

Now we will create a small Web Page, just to get your feet wet. At this point you should have
installed Arachnophilia on your computer, have an icon available to run Arachnophilia, and be in
a somewhat adventurous frame of mind.

(If this is hard to follow the first time, you might want to print this help screen so you don't have
to keep referring to it on the computer screen.)

Start Arachnophilia (be sure to close any open browsers before you do), choose the internal
browser if it is not already selected (Preview .. Select & Launch Browser ... Internal Browser),
then select File ... New HTML Document (or press the leftmost toolbar button). A new
document will appear on the screen, and a dialog box will appear with some choices. Just to keep
this simple, for now just press "OK" in the dialog to move on.

If you have chosen the internal browser, you may want to arrange the windows in the program. I
recommend horizontal tiling. Use the menu command Window ... Tile Horizontally. See how
you like it.

This document outline will appear on your screen:

<HTML>

<Head>
<Title></Title>
</Head>

<Body Background="" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

|

</Body>

</HTML>

The vertical bar '|' above represents the location of the cursor in the Arachnophilia editor screen.

Now type "This is my first Web Page!" and then press the preview button, the toolbar button that
looks like this:

22

If you are using the internal browser and your system is relatively fast, you may want to try
Instant View on the Preview menu. This allows you to see a preview on every keystroke. If this
feature makes your system slow down too much, you may want to disable it. And it can only be

used on relatively small, simple files — on large files, especially those with graphics, the browser
just can’t keep up with the keyboard

(Those using the internal browser may skip the next three paragraphs)

If you don't see your Web Page displayed, then a word of explanation is in order. When
Arachnophilia runs for the first time, it looks around in your system for useful information, like
whether Windows knows the whereabouts of a browser. If there is such a browser, Arachnophilia
will use it to show your page.

If Windows doesn't know the location of a browser, Arachnophilia will ask you to locate one for
it. If you actually don't have a browser on your system, you should stop this exercise, acquire
one, and continue (or you may have skipped the step where you enabled the internal browser —
please go back up this page). There are several good web browsers posted on the web (a possible
catch-22 situation if you don't already have a browser with which to look for it) and some are
free.

If you do have a browser that Windows doesn't know about, simply tell Arachnophilia its
location, and our exercise can continue.

When you are done admiring your handiwork as displayed by your browser, just move the
browser out of the way and Arachnophilia will reappear. Again, if you are using the internal
browser, you may want to choose Window ... Tile Horizontally so you can see your document
and the preview display at once.

Now let's experiment. I can't know what your background is or how much you know about
computers, so you may choose to take each of these steps, or skip ahead if you wish.

Drag the mouse across the word "first" to select it, so the display looks like this:
This is my first Web Page!

(note: the text shown in color here will look white-on-black on the Arachnophilia editor screen,
i.e. selected)

Now press the toolbar button that looks like this:
=]

This button will make the selection bold, just like in a normal word processor. The
Arachnophilia display will look like this:

This is my first Web Page!

Remember: all formatting in the HTML language is by way of tags. You won't see the bold effect
until you click the preview button on the toolbar and let the Browser display the result of your

changes.

Now let's choose some more interesting colors for the display. Use your mouse to position the
cursor as shown below:

<Body Background="" BGColor=#FFF|FFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

Notice the vertical bar in the middle of " Bccolor=#rrr|rrem. This time, don't select anything,
just position the cursor as shown. Now press the right-hand mouse button. A dialog box will
appear asking you to select a color. Choose a color you like for a background. Now position the
cursor in the middle of " Text=#0001000" and make a selection in the same way.

Now press the preview button again and look at the colors you have chosen. You can experiment
until you are satisfied with your colors. You will notice that, if you have selected any of the text
in the document and then click the right mouse button, a menu appears with some of the
formatting tags that also appear on the toolbar, but if you just position the cursor in a color
definition without selecting anything, the color selection dialog appears.

Now let's add an interesting graphic image for your page. Web Browsers use the background
graphic as sort of wallpaper, i.e. they make repeated copies of the graphic to fill up the screen.
Position the cursor as shown below:

<Body Background="|" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

Now look at the bottom of the screen. You will see a row of tabs that looks like this:

Fonts | Forrms | meas|Graphi|::5| Limks | Struct | Styles | lahles |

Each of these tabs launches a separate toolbar that can be placed in any convenient location. For
this example, click “Graphics” and then select Editlmg from the toolbar that will appear.

Arachnophilia will now ask you whether you want to save your file. This is a very good idea for
several reasons. One reason is that you might otherwise lose your work in the event of a system
crash or power failure. Another is that, if you locate your Web page in a particular directory,
Arachnophilia can automatically move all your resource choices to that directory also. This
makes it very easy to move your completed Web page (or pages) to the Internet later on.

After you have responded to the Save-File dialog box, hopefully by saving your file,
Arachnophilia will ask you whether you want to automatically copy any files you select to this
same directory. This is a good idea also, because (1) all your work will be located in one place,
and (2) you are then allowed to use "relative links" to identify your resources, links that will
work the same way no matter where you move your Web page.

These two dialog boxes are intended to guide you to a method that will seem desirable and
obvious when you have had more experience.

Now navigate to a directory that contains some graphic files and select one. The two most-often
used Web page file types are Graphic Image Format with the suffix .GIF, and Joint Photographic
Experts Group (wow -- what a title!) files with the suffix .JPG. There are some others, but these
are the best choices. If you don't have any graphic images with these formats, perhaps you have a
paint program (Corel Photo-Paint is one example) that can convert some of your existing images
to one of these two formats.

Having selected a graphic image, you may once again see the result of your work by previewing.

By the way, if you make a change you don't like, you can undo it by pressing this toolbar button:

El

Now let's do some rudimentary formatting to improve the appearance of our page. Let's make
two horizontal bars, one above and one below our typing. Position the cursor as shown below:

<Body Background="" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

This is my first web page!

</Body>

Now press the right-hand mouse button and select "Horizontal Rule" from the menu that will
appear. Now the display should look like this:

<Body Background="" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

<Hr Width=95% Align=Center>

This is my first web page!

</Body>

Make another horizontal rule below your typing, so things look like this:

<Body Background="" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

<Hr Width=95% Align=Center>

This is my first web page!

<Hr Width=95% Align=Center>
</Body>
Now select the entire phrase "This is my first web page!", press the right mouse

button, and select "Center" (there is also a toolbar button for this). Now look at your work in the
browser.

Add paragraph breaks at the end of each line (some browsers will require this, some won't, but it
is good HTML style). These are available from the right-click menu, or you can just type Ctrl-
Enter:

<Body Background="" BGColor=#FFFFFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

<Hr Width=95% Align=Center><P>
<Center>This is my first web page!</Center><P>
<Hr Width=95% Align=Center><P>

</Body>

This is important to understand: Normal line breaks don't mean anything to HTML -- there has to
be an explicit tag that specifies a line break, such as <P>. There are two varieties of line break --
<P> (Ctrl-Enter), which separates paragraphs with a blank line(two line feeds), and
 (Shift-
Enter), which provides a single break between lines (one line feed). Experiment with these and
don't expect normal blank lines (with no tags) to appear in the Browser view.

Advanced Topic: Right-Clicking

When you press the right mouse button, what happens depends on where the text editing cursor
‘| 1s positioned. If the cursor is pointing at a color definition (example: “Text=#000000"), you
will see a color selection dialog. If your cursor is positioned over a file name, you will see the
appropriate file dialog box.

If you have selected some text and press the right mouse button, a menu will appear with editing
choices. If you simply position the cursor without selecting any text, the Right-Click Wizard will
decide what action to take.

Once again, let’s change the color of the page’s background. This is quite easy — just position the
editing cursor as shown below:

<Body Background="" BGColor=#FFF|FFF Text=#000000 Link=#0000FF VLink=#800080
ALink=#FF0000>

The vertical bar ‘|” shows the cursor location. Now press the right mouse button — you will see a
color selection dialog. Choose a different color and press OK. In order to see your color change,
you will need to press the Preview button.

You can change the text color just as easily. Place the editing cursor here “Text=#0001000", press
the right mouse button, choose a color, and press OK.

For more on selecting colors and other right-click functions, read The Right-Click Functions and

Menu.

Using Arachnophilia

This section describes the general use of Arachnophilia, and some of the ways you can make
Web page creation easier.

Before you run Arachnophilia, always be sure to close any open browsers. This allows
Arachnophilia to control the behavior of your browsers during Preview.

To create a blank document, not necessarily an HTML document, press File ... New Blank
Document or press the corresponding toolbar button.

To create an HTML document that includes the basic structure of HTML, press File ... New
HTML Document, or use the leftmost toolbar button, or use the right-click menu in an
unoccupied part of the Arachnophilia program window. You will see the "Create HTML
Document" dialog, which allows you to choose text and background colors and an optional
background graphic as well as some other less-often-used options. You may also change these
options after you have created the document by placing the cursor on the item of interest and
pressing the right mouse button. You may then change the name of the background graphic or
your color choices, as well as several other things.

To open an existing HTML document, select File ... Open, press the corresponding toolbar
button, or use the right-click menu.

To save a document, choose either File ... Save or File ... Save as, or press the corresponding
toolbar button, or use the right-click menu within the document display.

You may find and/or replace any text string you wish using either Edit ... Find or Edit ...
Replace if you want to replace one text string with another, or the corresponding toolbar buttons.
You can specify two non-printing characters using special symbols. The special symbols are \p
for line ending (the division between lines in a text editing document), and \t for tab character.

You can Cut, Copy and Paste within or between Arachnophilia documents and between
Arachnophilia and other Windows applications, although advanced features such as drag-and-
drop are often easier to use.

You can test the result of your work at any time with up to six user-identified Web browser
programs.

Beyond these normal behaviors, be sure to see Advanced Features of Arachnophilia for some
spectacular capabilities that will really make your Web Pages stand out from the crowd!

Advanced features of Arachnophilia

Arachnophilia has many ways to make your work easier. You may drag a selection from a
Arachnophilia document into another Arachnophilia document and drop it at a chosen location,
or you may drag a Arachnophilia selection into another Windows application, or the reverse. But
that is just the beginning.

Toolbar Customization
You can use the toolbar selections at the bottom of the main display to launch many independent
toolbars that can be positioned in any convenient way. The default toolbar selector bar looks like

this:

Fonts | Forms | meas|[:‘nrq1hi|::5| Limks | Struct | Styles | Tables |

Each toolbar contains a group of related functions. You should explore these toolbars to gain an
understanding of their functions.

After you have examined the toolbars, you can change them if you wish! Simply select Tools
... Toolbars/Macros ... Edit Toolbars to enter the Toolbar Editor. You can change any
command’s contents, you can add and remove commands, you can even create complete new
toolbars! For more on this subject, read The Toolbar Editor .

For those who want to create entire sets of toolbar definitions, all the commands on these
toolbars come from special Toolbar Definition Files (with the suffix TBD), located in the
“toolbars” subdirectory of your Arachnophilia program directory. You can change the commands
on the toolbars, or create entirely new toolbars, by editing the contents of these files.

Also, there is an Excel 7.0 spreadsheet named “arachnophilia command sets.xls” located in the
“toolbars” subdirectory that will create the entire set of TBD files for you. The most secure and
efficient way to use this sheet is to make a backup copy of the original, and edit the contents of a

copy.

NOTE: if you use the Excel spreadsheet to change commands, any changes made with the
Toolbar Editor will be lost — these two methods try to control the file contents independently.
You should choose one or the other of these methods, but not both.

If you make a copy of one of the worksheets within the Excel spreadsheet and give it a different
name, the spreadsheet will create a new TBD file for you with the name you have chosen. If you
just add new commands and edit existing commands, these changes will appear the next time
you run Arachnophilia.

If you don’t have a copy of Excel, you may want to try loading the spreadsheet into another
spreadsheet or database program, or you may edit the TBD file directly in a text editor, although
this is more difficult.

IMPORTANT NOTE: If you have created your own custom commands, be sure to back up
the .TBD files to a safe, second location. This way, if you update Arachnophilia, you will not
lose your changes.

Power Undo

Most of the commands related to the actions of Arachnophilia are reversible. If you don't like the
outcome of your action, you may always undo it with the menu Power Undo command or toolbar
button:

5]

If you use this button, and you don’t like the outcome, you can press the Redo button to go back
to the original version. Arachnophilia will save 32 versions (32 Undo and 32 Redo) of each of
your pages in this way, so you can recover from experiments.

Smart Right-click

Some of the toolbar buttons allow you to edit a file, link, or color. To use these buttons, position
the cursor in the area on interest and press the appropriate button. Another, faster way to
accomplish this is to position the cursor on the link or color of interest and press the right mouse
button. In most cases Arachnophilia will identify the target and launch the correct selection
dialog. If the link contains the name of a graphic image, the most recent graphic directory is
displayed and you can choose a replacement for the current graphic. If the link contains the name
of Uniform Resource Link, you will see the directory that contains this file type, and so forth.

In general, if you prefer to right-click the mouse, first position the cursor without selecting

anything to let Arachnophilia decide which action is appropriate, or select one or more characters
to launch a menu of choices, or just use a toolbar function.

Keyboard Macros

You can define and use 26 keyboard macros, using Arachnophilia’s built-in macro editor. For
more on this subject, read the Keyboard Macros section.

See also:

The Right-Click Functions and Menu

Arachnophilia File Import Methods

Arachnophilia File Import Methods

There are three principal ways to import a fully-formatted text document from another
application:

« Drag a Rich text Format (RTF) file icon from Windows Explorer to the Arachnophilia main
window and “drop” it. Arachnophilia will then ask whether it should convert the document
into HTML code.

« Use the File ... Open File ... RTF File function to import Rich-Text formatted files which
contain the formatted text of interest.

« Drag a section of a document between the source program and a new, blank RTF document in
Arachnophilia.

Arachnophilia will automatically convert your text into HTML code, keeping fonts and font
colors, sizes, styles such as bold, italic and other formatting, centered titles, and many other
characteristics. It will create HTML tables from your tables, preserving styles as above. It will
create multilevel indented outline-format lists, both numbered and bulleted, also preserving the
formatting of the original document.

This means you can work in a full-featured word processing program of your choice, and, when
you are satisfied with the appearance of your text, tables and outlines, just move them into
Arachnophilia using one of the methods above.

A special note about table formatting: In the RTF file format, the positioning of text within table
cells is not preserved. Therefore, if you want to control the position of text within the table's
cells, you must either:

« Convert the table into a tabbed list in the word processing program and then select left,
center, or right positioning on a line-by-line basis before importing the table, or if this is not
possible,

« Set the positioning within Arachnophilia manually, after the table has been imported.

In this example you want only the text in the middle cell of the row to be centered (you add the
text in red):

<Tr><Td>data</Td><Td align=center>data</Td><Td>data</Td></Tr>

In this example you want the text of the entire row to be centered within the cells (you add the
text in red):

<Tr align=center><Td>data</Td><Td>data</Td><Td>data</Td></Tr>

This is a feature that is supported in most modern browsers.

Custom Definitions

You have complete control over the content of the toolbar structure in Arachnophilia. When you
run Arachnophilia, the toolbars are created from simple text files located in the “toolbars”
subdirectory of the Arachnophilia program directory. These files have the suffix .TBD, which
stands for Tool Bar Definition.

NOTE: In recent versions of Arachnophilia, you may edit the contents of the toolbars while
running the program. For more on this new feature, see The Toolbar Editor .

I have provided a spreadsheet program compatible with Excel 7.0, also located in the “toolbars”
subdirectory, that contains the content of these files and is an easy way to add new toolbars or
edit the contents of those already defined.

The file is named “arachnophilia command sets.xls,” and, if you own Excel 7.0, you may simply
click on the program icon to run the program. You may add any tags you wish, or change those
that exist to suit your personal preferences. If you copy one of the worksheets within the
workbook and give it a new name, this will become a new toolbar in Arachnophilia.

The user-command entries may contain some special tokens -- the token “\p”” which results in a
line ending when the command is carried out, the token “\t” which results in a tab (you cannot
use literal tabs because tabs are used in the .TBD file format to separate fields), and the vertical
bar “|” which identifies the user's selection before the command is issued. There are more special
characters described in the Keyboard Macros section.

For example, let us say that a new HTML tag is invented called the SHOUT and it has this
syntax: <SHOUT>this phrase</SHOUT>. To define a command to handle this new tag, you
would enter:

Button name: “Shout” (this should be relatively short).
Command: <SHOUT>|</SHOUT>

Tool Tip Text: “Shout Tag”

Status Bar: "This is the new SHOUT Tag"

After you have entered this definition, a new command button will appear on the specified
toolbar, and if you select a phrase and press the button, the tags <SHOUT> and </SHOUT> will
enclose you selection.

Beyond these formatting procedures, there are some special commands, enclosed in braces, that
execute Arachnophilia program commands. Here is an example:

One of the standard tags (from the “Graphics-Misc” toolbar) creates a new graphic image tag,
and (by launching the graphic selection dialog) fills it with something you have chosen. Here is
the tag:

This tag creates an editing entry just like the others, but, because of the special entry
[FullTagGraphic], causes a file selection dialog to appear as the tag is being constructed. If you
choose a graphic named “mygraphic.jpg,” the resultant tag would look like this:

After you have defined this tag, you may simply right-click the graphic name and Arachnophilia
will know what to do, but the first time -- when there is no filename to offer guidance — the
[FullTagGraphic] command is a way to automatically launch a file selection dialog.

The special string “[FullTagGraphic]” is called a “system command.” There is more on the
subject of system commands in the Keyboard Macros section, and you can see a list of all the
system commands by selecting Tools ... List System Commands.

One of the worksheets in the Excel workbook doesn’t become a toolbar, instead it becomes the
right-click menu. This sheet has the internal name “RightClickMenu,” which is how
Arachnophilia identifies it. The commands you see when you press the right-click menu are
located in this sheet.

If you do not own Excel 7.0, you can still add to the toolbars and edit their contents using a word
processor or even a simple text editor -- this is just less convenient. In this case, if you want to
add a new toolbar, simply copy one of the TBD files in the “toolbars” subdirectory, change its
file name and its internal name, and create the commands that meet your requirements.

The Right-Click Functions and Menu

When you are editing text, you may press the right mouse button to gain access to some special
functions and a shortcut menu. Here is how:

To let Arachnophilia choose the appropriate action, simply place the editing cursor at the desired
location, without selecting anything, and press the right mouse button. At this point, the Rick-
Click Wizard will choose the appropriate action. If Arachnophilia finds itself pointing at a color
definition, the color dialog will appear. If Arachnophilia detects a file name, a link, a resource, or
one of many other things, the appropriate dialog box will appear, allowing you to make a new
choice.

Example: if you position the cursor this way (the cursor is marked with the vertical bar character
!|V):

This is a Color Block to emphasize it.

Arachnophilia will detect the color definition and display the color dialog box. If you point at
this:

Arachnophilia will open a "Change Graphic Image" dialog box, directed to the most recently
accessed graphic file directory. In general, if you place the cursor on a color or a resource
specifier string, Arachnophilia will automatically sort out your intentions.

If Arachnophilia cannot detect any of these things, or if you select some characters before
pressing the right mouse button, a shortcut menu will appear which allows you easy access to
many of the most-used HTML tags. And this shortcut menu is user-definable — see Custom
Definitions.

The File Menu

The File menu has the normal commands for opening, saving, and closing documents, plus some
special commands uniquely related to Arachnophilia's purpose.

The File ... New File command opens one of many kinds of document. Some document types
are treated in special ways, so be sure that you choose the correct document type.

The File ... Open File command allows you to choose which kind of document you are opening.
Arachnophilia remembers which directory contains which file type, so this makes it easy to keep
track of file locations.

On the subject of opening files, I have received a number of requests for information about how
to open more than one file at a time. Here are some of the ways:

1. Select as many files as you need in the File ... Open dialog.

2. Using File Explorer, select as many files as you need and drag them onto the open, empty
Arachnophilia program window.

3. Using File Explorer, select as many files as you need and drag them onto the Arachnophilia
program icon.

4. After enabling Arachnophilia’s “Open With ...” feature (Tools ... Open With Arachnophilia),
in File Explorer select as many files as you wish, then open the File Explorer right-click context
menu.

5. Create a shortcut to Arachnophilia with a file list included.

The Close All command closes, and if necessary saves, all your documents at once. This is an
easy way to close part of a project and clear your workspace for another task.

The Save All Changed Files command simultaneously saves all open documents that have been
changed in any way, with just one mouse press.

The Print and Print Preview commands allow you to print your document, but not like a word
processing program would, with page numbers and margin control. This command is primarily
used to acquire a scratch-pad style hard copy for programming purposes. For more control of the
printed output, I recommend that you transfer your document to a word processing program for
printing.

The Send Mail command allows you to e-mail a copy of your work.

The Edit Menu

The edit menu contains two commands to Undo or Repeat an action as well as the usual Cut,
Copy, and Paste commands.

Undo works in an obvious way -- it simply copies the entire document into temporary storage at
each issued command (not during keyboard text entries), and, if you decide you don't like the
outcome of a command, you can simply undo it. If you don't like the undo, you can repeat the
action. This method works because most Web pages are relatively short and therefore occupy a
small amount of memory.

That's the good news. The bad news is, if you are working on large documents, you will run out
of memory by using Undo. So you have the option of turning off this feature (see Tools Menu). if
you find yourself running out of memory in seemingly normal circumstances, try turning off
Power Undo.

The Find and Replace commands will search the entire document, or from the cursor to the
end of the document, or all open documents, depending on your choices. These dialogs accept
two special characters that represent non-printing characters in your document: \p represent a
line ending, and \t represents a tab character. This means if you type ‘\p’ (without the ' characters)
as part of your entry, Arachnophilia will search for line endings (the character pairs that separate
lines in your document). The replace entry also accepts these special characters.

NOTE: To enter a string that contains a literal reverse slash, simple enter the reverse slash twice,
like this:

\\p

This entry searches for the literal string “\p’, it does not convert it to a control character or
sequence.

The Selection Menu

Each of the functions in this menu operates on a block of text that you have selected with the
mouse or keyboard. To operate on the entire document, press Ctrl+A or choose Edit ... Select
AllL Also remember: in most cases, if you don’t like the outcome, you can recover the original
selection with Power Undo (use the left-pointing arrow on the toolbar).

NOTE: Each of these commands can be made into a keyboard macro using Tools ...
Toolbars/macros ... Edit Keyboard Macros. This makes it easier to access your favorite
commands.

Convert Chars - Convert Extended to HTML Characters

This command scans the current HTML document for characters that have ASCII codes above
127. These characters may not display correctly in some server environments, so there is a
convention in HTML coding that represents them in a form readable by most server systems.
Each such character is converted into a “character entity,” meaning a special string that can
represent that character in many environments that don’t support character codes above 127
directly. For example: the character A is converted to the string “Ã”. If there is no
character entity for a particular character, this form is used instead: “&#NNN; “, where NNN is
the character code expressed as a number. You can type in such codes by hand, but if you use a
large number of such characters, you may choose to convert the entire document at once using
this tool.

Convert Chars - Convert HTML to Extended Characters

This function performs the opposite task of the above-described function — it converts HTML
symbolic characters into their extended equivalents.

Assemble Lines

This function takes the current selection of text, normally individual lines, and assembles them
into a paragraph. Use this function to create normal paragraphs out of broken lines, a computing
problem for which there is no general solution and which therefore must be done by hand.
There are two options — keep tabs and remove tabs. The remove tabs option removes all tabs
from the selected block as it assembles it. This is usually necessary when assembling e-mail
messages and indented text.

Remove Tabs Only

This function removes the tabs from a selected block. This can be used to undo part of the effect
of Beautify HTML, if you wish to return to an earlier document state.

Text Case -- To Uppercase, To Lowercase

These functions shift the case of the selected block.
Tag Case — To Uppercase, to Lowercase

These functions convert the tags in the selected block to uppercase or lowercase without
changing the text case. Example:

Uppercase tags: Bold Text
Lowercase tags: Bold Text

NOTE: If you want Arachnophilia to consistently use uppercase or lowercase tags, set or reset
this option at Tools ... Options ... Miscellaneous ... Use lowercase system-generated tags. If
this option is selected, all toolbar, system button, HTML file template and other tags will be
lowercase. If this option is cleared, all tags will be uppercase.

Tag Delimiters - All "<,>" to "&It;,>"

This interesting function converts the real HTML tag delimiters “<,>” into their symbolic
equivalents “>,<”. This makes HTML code show up in your page in its original form,
instead of being interpreted by the HTML engine. This is used to show actual code in your page,
perhaps for a tutorial on the writing of HTML code.

Tag Delimiters - All " &It;,>" to "<,>"

This function reverses the effect of the above function — it converts symbolic HTML delimiters
into real ones.

Escape Selection

This programmer’s function converts a selection of text from plain text into a type of text
suitable for placing in a C-style program string. Common control characters are “escaped,” that
is, they are preceded by “\”. This is also done for any quotes in the selection.

Unescape Selection

This function performs the opposite of the above function — it takes text intended for a program
string and converts it into plain text.

Compare Delimiters [({})]

This programmer’s function counts and compares the specified delimiters. If they are not
balanced, an error message is printed specifying which delimiters are out of balance and their
number. This is a simple version of Beautify Code, intended to assist in debugging short
sequences of code and, in particular, solving that perennial programmer’s task of balancing
parentheses in complex code expressions.

Strip All HTML Tags

This rather drastic function simply strips out all the HTML tags from your selection. You will
want to be careful with this function — apart from Power Undo, there is no way to reverse its
effect. This function can be used to extract text from an HTML document for use in another
application. This function, along with “remove tabs” and/or “assemble lines,” can be used
together to convert an HTML page into a normal, paragraph-oriented text document.

The Tools Menu

The Tools menu contains some explicit commands that are normally carried out automatically,
also some program modules for specialized tasks.

Tag Context Coloring

The first three functions in the Tools menu control various aspects of tag context coloring. Tag
context coloring is a system that makes reading and editing an HTML document much easier —
the tags are colored differently than the text, and the definitions within the tags have yet another
color. Also, if the number of tag delimiter characters (“<” and “’>”") is unbalanced, special colors
appear to alert you to this fact, and to localize the error.

You may choose tag context colors according to your preferences using functions in the Tools ...
Options menu.

On some system, the default choice of automatic tag coloring will slow things down too much,
so there are some alternatives. Here are the details:

Refresh View Tag Colors

This function (also Ctrl+T) refreshes the tag colors in the viewed window. This is normally done
automatically, unless you have chosen to turn off automatic tag coloring (see below). There is
also a toolbar button for this purpose.

Refresh Document Tag Colors

This function (also Ctrl+Shift+A) recolors all the tags in your document. This is for cases where
the automatic tag coloring feature is turned off and you don’t want to press Ctrl+T repeatedly as
you move through the document.

Auto Tag Coloring ON/Off

This function (also Ctrl+Shift+T) switches the automatic tag context coloring on and off. Some
systems do not perform well when automatic tag coloring is enabled, because of limited speed or
resources or some other reason. For speedier performance on such a system, use this option.
Then you can use manual tag coloring as required to context-color specific parts of your page.

Table Wizard

This command launches the Arachnophilia Table Wizard, which interactively creates a table for
you. There are many choices including number of rows and columns and choice of background
color. Table Wizard will even create a table out of block of data you select in you document.
Read more about this feature in Table Wizard.

NOTE: If you select some data in your document, launch Table Wizard and choose a table size

of one row, one column, your document selection will be placed in the data cell. This is a very
easy way to enclose a text block or graphic.

List Wizard

This command launches the List Wizard, the tool for automating list creation. Read more about
this tool at List Wizard.

Convert RTF to HTML

This command, enabled only for RTF documents, converts them into HTML pages using the
Arachnophilia RTF Translator Module. Options for this translation are located in the Tools ...
Options menu (see below).

Analyze Site

This command will analyze your site for internal consistency. See Arachnophilia Site Analyzer
for more information.

Update Web Site

This command uses the Internet FTP protocol to upload new or changed pages to your Web site.
See The Site Update Tool for more information.

... In the Beautify submenu
Beautify HTML / Analyze HTML

This command will reformat your HTML document, indenting it as though HTML is an actual
computer language (it is not), and will then list any syntax errors it finds. This function is a very
valuable way to discover and correct errors. You may use the Beautify HTML / Analyze HTML
dialog to interactively locate errors — just use the dialog to select those tags you are having
problems with and run Analyze again. In most cases, the missing tag’s location will show up
clearly.

For more on the feature, see Beautify HTML / Analyze HTML.

Beautify Code

This command will find and correctly indent program code listings, such as Perl/CGI scripts and
C/C++ programs, and code segments within you HTML pages. While indenting the code listing,
it finds any unmatched pairs of the structural characters “{,},(,)”, thus performing a simple
syntax check on your program. If it finds any unmatched structural characters, it will alert you to
this fact with an error message. For more on this function, see Beautify Code.

...In the Toolbars/Macros submenu

Edit Toolbars

This command launches the Toolbar Editor, which allows you to create new toolbars and edit
existing toolbars, creating any number of custom commands. Read about this subject at The
Toolbar Editor.

Edit Keyboard Macros

This function allows you to create keyboard macros that carry out either system commands, or
commands that you write. Read more about this in Keyboard Macros.

...In the Lists submenu

List System Commands

This list shows system commands to assist you in creating keyboard macros. The system
commands are also available as dropdown lists in both the keyboard macro and toolbar editors.

List User Macro Definitions
This display offers an easy way to see what commands you have created.
List Keyboard Shortcuts

This is a list of the keyboard shortcuts that are available in Arachnophilia. Some of them are
standard Windows shortcuts, others are unique to Arachnophilia.

List ASCII Character Codes

A comprehensive list of ASCII characters, their numerical equivalents in Hex, Decimal and Octal
bases, and their HTML entities if defined.

...In the Set Tab Size submenu

Set Tab Size

This function sets the default tab size for your document display. This function is mostly used to
make program listings easier to edit, and is used in conjunction with the Beautify Code and
Beautity HTML functions described below.

You may also use Ctri+Q and Ctrl+W to set the tabs size conveniently.

...In the Insert HTML Tag submenu

This submenu is a backup for other ways to insert tags that rely on the launching of a file dialog

box or a color dialog box.
... Back on the main Tools menu
Calculate Graphic Size

This function creates WIDTH and HEIGHT values for an IMG tag. This function is automatic if
you select a graphic in the course of creating an IMG tag. This menu option is provided to update
old tags that may have been created in an older environment. Simply place the editing cursor
anywhere in the name of the graphic, like this:

and select this function from the menu (the ‘|’ character indicates the location of the editing
cursor).

You may also use Ctri+N to access this function.
Fix line endings

This function converts the line endings in your file from the UNIX style (a single line feed) to
the Windows style (a carriage return plus a ling feed). Use this function if you see unexplainable
errors while using the Beautifier, or if you have imported the file from a UNIX server directly.
There are any number of strange consequences related to using a UNIX formatted file in
Windows.

Your FTP client program can solve this problem for you, if you allow it to, and Arachnophilia’s
FTP client intelligently converts on upload.

Toggle Word Wrap

This feature conveniently keeps all the text in view, but sometimes you want to allow the lines to
extend off the screen to the right. For example, when you analyze your site using the
Arachnophilia Site Anlyzer , you will want to use a fixed pitch font and turn off word wrap for
best results. Also, when you use Analyze HTML, you will need to turn off Word Wrap in order to
locate errors.

Base Calculator

This cute little calculator is used to convert number bases. If you type a number in any of the
supported bases, the calculator will perform its conversion on each entered digit. It will tell you
if you have exceeded its 32-bit number-size limit, and it will tell you if you use a digit not

appropriate to the current base.

Open with Arachnophilia

This command launches a dialog that allows you to associate Arachnophilia with many Windows
file types for the purposes of editing. It won’t prevent these files from being opened and run by
the default applications, it just places an additional option on the File Explorer right-click
“context” menu with the label “Open with Arachnophilia.”

The Tools ... Options menu takes care of several Arachnophilia setup functions. This menu has
sections for Conversions,Display., Tag Coloring and Miscellaneous.

The Conversion Options
These options control how Arachnophilia converts documents into HTML pages.
Automatically convert/Ask to Convert/Do not convert
This option chooses a level of automation for the process. If “Automatically convert” is chosen,

RTF documents are converted as they are loaded. See Arachnophilia File Import methods for
more on this subject.

Convert tabbed lines into Tables/Tabs into Spaces

This function controls how Arachnophilia interprets tabs while importing Rich Text Format
(RTF) documents and converting them into HTML. If your document contains tabs that are not
part of tables, Arachnophilia may get confused and turn them into tables you didn’t intend. To
control this behavior, simply select “Convert tabs into spaces,” but remember that you did this,
because later you may want to create tables. In order to do this, you must re-enable the default
option “Convert tabbed lines into Tables.”

Convert Extended Chars into HTML

This function converts extended characters (characters with numerical codes greater than 127)
while importing an RTF document. These characters may not display correctly in some server
environments, so there is a convention in HTML coding that represents them in a form readable
by most server systems. Each such character is converted into a “character entity,” meaning a
special string that can represent that character in many environments that don’t support character
codes above 127 directly. For example: the character A is converted to the string “Ã”. If
there is no character entity for a particular character, this form is used instead: “&#NNN; “,
where NNN is the character code expressed as a number. If your server accepts extended
characters and you want to reduce the size of your page, or if you want to be able to see and edit
the original characters in the Arachnophilia HTML file, disable this function.

Convert “<” and “>” into Visible Chars

This function controls how Arachnophilia interprets these two special characters. Normally these
characters enclose HTML tags, so if they appear in normal text, they must be treated in a special
way. If this function is enabled (the default), these characters will be made visible in the HTML
page, so a line reading “5 is > 3” will be displayed correctly. Conversely, if you have an import
document that contains HTML tags, and you want to preserve these tags in their literal form,
disable this function.

Choose output Background Color

This option chooses a default background color for the converted HTML documents.

The Display Options

Choose Default Font

The default font option allows you to choose a different font and size for the editing display. I
recommend a fixed-pitch font such as Courier New, because HTML code looks much better
when such a font is used.

Choose Background Color

This option allows you to select a background color that is different than the Windows default
color. This function permits you to see (to some extent) what your HTML page will look like
when viewed on a browser. Just choose the same color for your HTML editing screen that you
have chosen for your browser display.

Use Default Windows Background Color

This option makes the program use whatever background color your system uses by default. It
overrides any background color choice you may have made.

Use Word Wrap

This feature conveniently keeps all the text in view, but sometimes you want to allow the lines to
extend off the screen to the right. For example, when you analyze your site using the
Arachnophilia Site Anlyzer , you will want to use a fixed pitch font and turn off word wrap for
best results. Also, when you use Analyze HTML, you will need to turn off Word Wrap in order to
locate errors. This function is duplicated at Tools ... Word Wrap.

The Tag Coloring Options

Arachnophilia will automatically color the tags in an HTML document, making it easy to
distinguish among normal text, HTML tags and the definitions within tags. These buttons allow
you to customize the color choices. Your choices are preserved between Arachnophilia work
sessions.

There are some default colors that are not on this list. These colors only appear when the number
of “<” and “>” symbols is unbalanced. This is an efficient way to detect a common HTML
coding error — an orphan tag delimiter (either “<” or “>" alone).

If you have an extra “<” symbol, a purple color appears below it on the page. Conversely, if you
have an extra “>” symbol, the error color is red. You will quickly learn how to read the colors
and locate coding errors that are very hard to spot on an ordinary HTML editor.

On slower computers, you may notice that automatic tag coloring slows the display. In this
case, try disabling the feature and using the manual options instead.

Miscellaneous Options

This grab bag of options covers a lot of ground, but don’t fit very well into a particular category.

Small toolbar icons — if you have a small display size, you may wish to use the small icon
toolbar.

Full pathnames — this option displays the full path for a file on the application’s title bar. This is
useful while working on a large project with many files with the same name, such as
“index.html.”

Maximize Documents — This option defaults to maximized for newly opened documents.

Enable Power Undo — This option allows up to 32 “undos” and “redos” of actions taken in the
editor, and the 32 recoveries are unique to each document. This allows you to recover completely
from mistakes but, in exchange, this option requires a lot of memory. If you receive memory
error messages or the program runs too slowly when editing large files, turn this option off.

Use Character Entity Strings

This option chooses whether to use “character entity” strings to represent extended characters, or
to use the default notation that simply represents each extended character as a number. If this
option is selected, the character “A” will be represented as “Ã”, if this option is not
selected, this character will be represented as “Ã”. This option affects the RTF import
feature and the Tools ... Convert Extended Characters function.

Create Windows Line Endings on Save

This option deals with one of the more vexing problems with DOS/Windows based systems —
each line ends with two characters (a carriage return and a line feed), unlike civilized, rational
operating systems like UNIX. There is an FTP client program (WS_FTP) that, if it detects even
one line feed without an accompanying carriage return, will strangle and die. So, even though
this is not an Arachnophilia problem, I have decided to respond to the many complaints I receive
about this problem. Select “Filter Line Ending on Save” to automatically prevent a failure of
WS_FTP. This option takes some time while saving large files, so you may want to turn it off
under those circumstances.

Create Unix Line Endings on Save

While saving, this option creates Unix line endings in your file, the opposite of the above option.
Only use this feature if you are experienced and know the consequences of having mixed-format
files in a Windows file system.

NOTE: Only one of the two preceding options can meaningfully be chosen at a time, even
though both can be enabled at once. And, to prevent either option from being exercised, disable
both of them.

Allow HTML Features in non-HTML Files

This option solves the problem that no finite number of file suffixes will ever be enough —
someone always has a new file suffix that is supposed to represent an HTML file. This option
simply enables the HTML features of Arachnophilia, no matter what the file type. This option
should be used with care.

Calculate and Update Graphic Size Tags

This feature automatically creates “WIDTH” and “HEIGHT” tags when you insert or change a
graphic file tag. In some cases this will not be desirable — for example, you may wish to stretch a
graphic to use it as a line. In this case, you should disable this feature.

This feature automatically calculates the size of graphic when the tag is created, or you may
simply place the editing cursor in the tag and select Tools ... Calculate Graphic Size.

Use Lowercase System-Generated Tags

Many people prefer the appearance of lower-case tags. An equal number of people prefer
uppercase tags. If selected, this option makes all system-generated tags lowercase, including
newly opened HTML documents, toolbars, and converted RTF documents. If not selected, all the
described tags are made uppercase.

NOTE: If you have already-created documents whose tag case you want to shift, you may do
this with the functions on the Selection Menu.

Keyboard Macros

This powerful feature allows you to define 26 keyboard macros (expansions of a keystroke), one
for each letter of the alphabet. While using the editor, just press Alt-(letter) to activate your
macro. If you want, you can embed Arachnophilia menu commands in your macros. You can also
make one macro call another, and you may specify a number of repetitions.

IMPORTANT: If you are accustomed to pressing Alt+F to access the File menu, AIt+E to access
the edit menu and so forth, don’t use these particular macro letters. Any Alt+Key that is not
defined simply reverts to its ordinary Windows role — accessing menu items.

Where are my Macros?

The actual macro table is saved in the Arachnophilia program directory at toolbars\
keymacros.txt. You may edit this file directly if you must, but the macro editor is easier to use.
To enable the macro editor, choose Tools ... Edit Keyboard Macros or press the macro toolbar
button. To list the current definitions of your macros, select Tools ... List User macro
Definitions.

System Commands

You can embed Arachnophilia commands into your macro -- this allows a high level of
automation and customization. You may list all the permitted commands by choosing Tools ...
List System Commands. Here are some examples if their use:

The macro “<CENTER>\p[tablewizard] \p</CENTER>" will center a place for a table and launch
the table wizard to allow you to customize the table. The special string “\p” is converted into a
line ending by the macro generator — this is a convenient way to add a line ending without
necessarily typing it (although you can type it if you want — the macro editor will accept either
form). Also see “Special Character Sequences” below.

You can even execute one macro from another. The special System command “[macro:?]” causes
the macro with the letter “?” to be executed.

What value does this have? Well, think about it. You can create one macro with a style for a table
cell:

Macro A:<TD align=center>my data</TD>
(remember: you don’t type “Macro A:”, just the characters that follow).

Then you can specify a row of such cells with another macro:

Macro B:<TR>[macro:a] [macro:a] [macro:a] [macro:a]l</TR>\p

Then you can assemble the entire sequence into a table:

Macro C:<TABLE>\p[macro:b] [macro:b] [macro:b] [macro:b]</TABLE>\p

Then, having written your individual macros, you can go back to the top macro and change the
cell formatting for the entire table by typing just one entry.

For example, if you change Macro A to this --

Macro A:<TD align=center> [fulltaggraphic]</TD>

-- and run Macro C, the program will ask you for 16 graphic file names (one at a time) and create
a 4 x 4 table of the results.

What happens is macro C sets up the overall structure for the table, then calls Macro B four
times to create the rows. Macro B creates the rows and calls Macro A four times per row to
create the table data cells.

Repetition

Instead of typing “[macro:b] [macro:b] [macro:b] [macro:b]” as in the example above, you
may simply type “[macro:b4]” This means “execute the B macro 4 times.” This works if you
don’t need to insert any characters between successive repetitions of the macro. And remember:
if you do want special characters to surround the macro result, you can always put them in the
called macro, as in the examples above.

You can even call a macro from within a macro (this is an option for malcontents and deeply
disturbed persons). What happens if you enter this:

Macro X:{[macro:x]}

The answer: the macro calls itself recursively 16 times, then a counter detects this condition and
prints an advisory (you also see a big collection of curly braces). This is mostly to catch an
otherwise fatal condition, usually caused by a typographical error.

Special Character Sequences

You can make multi-line entries for each macro, and you can add special characters to
accomplish formatting not ordinarily possible. Here is a list of special “escape” sequences to
permit special characters to be entered:

String Meaning

\a Bell

\b Backspace

\f Formfeed

\n Linefeed

\r Carriage Return

\p Line Ending (\r\n)

\t Horizontal Tab

\v Vertical Tab

\nnn Character number in octal notation

\xnn Character number in Hexadecimal notation

The "nnn" in the list above are to be replaced with the appropriate numerical digits.

Because the reverse slash is used to identify these special entries, it is not available with a single
keystroke, but if you want the reverse-slash character to appear in your macro’s output, simply
type it twice - "\\".

Finally, you may want to position the cursor in a particular way after the macro is finished.
Here’s an example:

Macro A:|

In this tag, the character “|” indicates the position of the cursor, so when the tag has been created,
the program places the cursor where you will be typing the user-visible part of the tag.

“l”

The Toolbar Editor

You may edit the contents of the custom toolbars from within Arachnophilia. Simply select Tools
... Edit Toolbars. When you do this, Arachnophilia will temporarily hide the existing toolbars (in
preparation for changes) and launch the toolbar editor.

All the capabilities that apply to Keyboard Macros and Custom Definitions also apply to the
toolbar editor — you may include system commands, references to keyboard macros, and special
characters.

The toolbar editor is broken into two sections — “Select/Edit Toolbar” and “Edit Toolbar
Commands.” You use “Select/Edit Toolbar” to choose which toolbar you want to edit, then you
use “Edit Toolbar Commands” to make any changes you want.

You can add, copy and delete toolbar commands, and you can copy commands between toolbars.
You can even create new toolbars using the “Select/Edit Toolbars™ section.

Please remember: The toolbar editor gives you a lot of power. If you delete a command from a
toolbar, it is gone and the disk file containing the toolbar will reflect this change. If you delete a
toolbar, the disk file is also deleted. So use these features with caution, and you may also want
to back up the default toolbar files to a safe location. The toolbar files are located in the
Arachnophilia program directory, in a subdirectory named “toolbars.”

Also remember: If you use the Excel Spreadsheet that was used to edit commands in earlier
versions of Arachnophilia, the spreadsheet will overwrite any changes you have made from
within the program.

Once you have made your changes, press “Close,” Arachnophilia will rebuild the toolbars and
command menus, and your new toolbars and commands will be in effect. And, when you exit
Arachnophilia, your changes will be saved.

The Arachnophilia Site Analyzer

This function, available at Tools .. Analyze Site, create a cross-reference list of your site’s files,
organized as a tree structure.

The basic structure of a Web site is similar to a tree, with a file (usually named “index.html”) as
its root. A visitor to your site first sees index.html, then branches out from there through other
pages you offer and to other places on the Web by way of hypertext links, which form the
branches of the tree.

As development progresses, some things may happen that you might prefer did not. Here is a
short list:

* You may decide against using a particular resource in your pages, and you may then change
the identifying tag to point at another resource instead. But, being human, you forget that the
resource is still stored in your site directory.

* You may make a typographical error in identifying a resource, and then not test that tag to
verify that it is working.

« Someone on the Internet may change their identifying Uniform Resource Locator address
without visiting your house, telling you personally, and delivering a box of candy to take you
over the disappointment. Thus, that tag in your pages will no longer point to anything
desirable.

The Arachnophilia Site Analyzer will list your site’s resources in three sublists, organized as tree
structures:

1. Referenced on-site resources, meaning resources that both exist and are connected to the tree.

2. Unreferenced on-site resources, meaning resources that exist but do not appear to be
connected to any part of the tree.

3. Calls to unresolved or off-site resources, which are references to Internet Uniform Resource
Location specifications, and also any calls that cannot be connected to a known resource.

List (1) is a reassurance that there are resources that both exist on your site and that are
referenced in your pages.

List (2) show any resources that do not appear to have references. The Site Analyzer cannot
detect all uses of a resource, so don’t just delete all the items on this list without first trying to
determine if they are in use.

Site Analyzer won’t detect references to resources inside CGI scripts.

Site Analyzer also cannot detect the content of any subdirectories that follow the Web naming

convention that only requires the name of the directory. In this case, the browser detects a file
named “index.html” on its own and launches it. To solve this problem, just add the page name to
the end of your calling tag -- instead of calling for “mysubprogram,” call instead for
“mysubprogram/index.html.” The browser will treat these two calls the same way, but Site
Analyzer is then able to add that “branch” to its tree.

List (3) generated by Site Analyzer contains all off-site references in your pages (mostly Internet
sites), sorted alphabetically, so you can easily test their validity using your browser.

When the analysis is complete, a resizable dialog box opens. You may click on one of the
categories in the same way you open a directory in Explorer. The first tier (or level) consists of
the categories mentioned above. The second tier consists of actual resources or resource names.
The third tier, by far the most interesting, lists the HTML pages that called the resource.

The third tier is by far the most useful aspect of the Site Analyzer. If you want to see the original
resource reference, just click on the page’s name in the third tier, and that page will be opened
and the cursor will be placed next to the original call. This arrangement is particularly useful in
list (3) (calls to unresolved or off-site resources), because this is where typographical errors tend
to wind up. This feature makes it easy to correct such errors interactively, by opening each page
and correcting links that have no destination.

In the “Unreferenced Resource” list there obviously is no third tier, so if you click on a resource
in this list, you are offered the option of deleting the resource. Be careful, for the reasons
outlined above -- there are many reasons why Site Analyzer might not find a reference call.

After you have made a number of editorial corrections, you will want to regenerate the list -- just
close the Site Analyzer dialog and re-select Tools ... Analyze Site.

Beautify HTML / Analyze HTML

The Beautify HTML / Analyze HTML system consists of a group of functions and dialogs that
can:

» Clean up the appearance of your HTML pages, making them easier to maintain and extend,
and
» Locate and help you correct HTML syntax errors.

The second function may turn out to be very important on complex pages with syntax errors —
such pages may never display the way you expect, and (if Netscape is the target browser) may
not display at all until the errors are corrected.

You may launch Beautify HTML / Analyze HTML by choosing Tools ... Beautify ... Analyze
HTML or by pressing Ctrl+L.

If you simply want to beautify your page and do not expect errors (who does?), simply press

Ctrl+E (beautify HTML). If it turns out there are errors in your page, the Analyze HTML dialog
will launch automatically.

If any errors are found, a second dialog with an error list will be launched to assist you in
locating errors.

NOTE: If you see unexplainable errors, be sure to use the Fix line endings function on the Tools
menu, then try again. Improperly terminated lines will create apparent syntax errors.

Analyze HTML detects three classes of errors:
Error Class 1 -- Unpaired Tags
Unpaired tags are HTML tags that should have a “parner” but do not. In this example:
<HEAD>
<TITLE>

My Page!
</HEAD>

there is a <TITLE> tag, but no “partner” </TITLE> tag.
Unfortunately, because of the nature of this error, and because of the potential complexity of
your page, it is not possible to determine which line contains the error. You must establish the

location of the missing tag using other methods.

One way is to use the Class 2 error list (below) to locate a line that should have the missing tag
but does not.

NOTE: Be sure to correct all Class 1 errors before trying to locate and correct Class 2 and 3
errors — these other error lists are not entirely valid until Class 1 errors have been corrected.

Error Class 2 — Mismatched Tags

In this error class, a tag is not matched to its partner at the same indentation level. Here is an
example:

I want both

<I>
bold and italic

</I>
for my phrase.

This HTML code is generally accepted by browsers, but it is not syntactically correct, because
there are “crossed tags,” tags that are out of sequence. Here is the correct version:

I want both

<I>
bold and italic
</I>

for my phrase.

Note the order of the opening and closing and <I> tags.

This may seem like a trivial error, but Class 2 error detection has a much more important purpose
— it can locate tags that must not be placed as they are, that will result in incorrect display or no
display. Here is an example:

<TABLE>
<TR>
<TD>
This is my table data.
</TR>
</TD>
</TABLE>

In this seemingly acceptable HTML table, the </TR> and </TD> tags are reversed. This will
result in unpredictable display behavior and should be corrected. This tag error will appear on
both the Class 2 and Class 3 lists.

NOTE: When using Arachnophilia’s RTF File Import feature, there will be crossed-tag errors
that cannot be avoided, because of the internal formatting methods used in word processing

documents. These errors should be disregarded.
Error Class 3 — Misused Tags

This error class displays tags that cannot be used as they are, as in the table example above.
Some tags must be “nested” within other tags to function properly, and will result in display
errors or a nonfunctioning page if they are not placed correctly.

Locating Errors

The easy way to locate Class 2 and Class 3 errors is simply to click the error messages in the
error list dialog. This will take you to the line containing the error in your document.

Another useful technique is to use the editing cursor to identify a particular indentation level, and
then scroll up or down through your document to locate its “partner,” if there is one.

Use Selected Tags

This powerful feature allows you to select a “problem” tag or tags from a dropdown list and then
press “Analyze” to indent the document based only on the tags you have chosen, instead of all
tags. This helps identify lines that lack a particular tag by indenting only those lines having the
tag or its partner.

To assist in this process, you may change the amount of indentation for each level by pressing
“Bigger Tab Stops” and “Smaller Tab Stops.”

Beautify Display Problems

Sometimes, after using Beautify HTML, your page will not display as it did. This is because
there are some page formatting choices that can result in small display differences. To solve this
problem, simply retain the un-beautified version of the page and discard the beautified version
after you have located and corrected any syntax errors.

Always test the beautified version of your page on a browser before overwriting the original
version.

Beautify Code

Nothing looks worse than a computer program with ragged indentation. Have you ever wondered
how programmers get their program listings to look so orderly? Most use a program available on
UNIX called “cb,” meaning “C Beautifier.”

But this program isn’t generally available outside the UNIX world, so I decided to add one to
Arachnophilia. If you have one of several file types on display, you can clean up the code with a
click. Here are the valid file types:

« HTML and ASP pages with JavaScript and JScript in them.
« Perl programs.

e CGI programs.

o Cand C++ programs.

The beautifier behaves differently for each of these, but it will produce a nice-looking result for
all. Just put your program on display and select Tools ... Beautify ... Code, or press Ctrl+H. And,
if you don’t like the result, just Undo it.

There is one error message that can be generated by the Beautifier -- “Indentation Error.” This
error arises when there are unmatched braces or parentheses. There must be an equal number of
“{ and “}” symbols, and “(* and *“)” symbols in the script to avoid this error. Therefore this
consistency check is a simple check of the script’s overall syntactical correctness. Any errors
detected by the Beautifier would also be caught by the language compiler or interpreter later, so
this saves time and effort.

Locating the syntax error is quite simple -- just follow the script until the text seems to be too far
from, or too close to, the right margin. Directly above will be the site of the error.

The Code Beautifier works with Active Server Pages than contain code blocks marked off with <
% and %>. To assure correct formatting, please place these special tokens on separate lines.

If you enter this:
<% if(x) { %>

the ASP interpreter will be quite happy, but Arachnophilia will become confused and report an
error, because it will not see the code. Instead, enter this example as:

<%

if(x) {

%>

This will allow Arachnophilia to format the page correctly and keep an accurate count of the
delimiters.

This rule does not apply to another common ASP notation:
You are visitor number <%=VisitorCount%>

This example is OK because it does not contain any delimiters that need to be counted.

The Commands Menu

Most of this menu is a duplicate of the functions offered by the user-defined and default toolbars.
It is mostly included for compatibility with keyboard-only operations (which I confess I haven't
tried), and for those who prefer to browse a menu tree.

In each submenu you have the option of launching the associated toolbar, so it is an easy way to
review the contents of those toolbars, as well as gaining access to commands you don’t use very
often.

The Preview Menu

The preview menu allows you to activate the selected browser, or quickly switch browsers. The
Launch Selected Browser function is duplicated on the tooolbar.

You may identify any browsers to the program, or you may use the internal browser. The internal
browser shows up in the program window just like a document, and allows you to see changes
you have made very quickly, even on each keystroke if you wish (see Instant View Mode below).

If you don’t have Microsoft Internet Explorer 4.0 installed on your system, you may not be able
to use the internal browser, depending on which other programs and accessories you have
installed on your system.

At the bottom of this menu is an option to identify browsers. This is how you add browsers to
your Arachnophilia installation. You may identify up to six browsers. Using multiple browsers is
good practice, because no two browsers act exactly the same. You may want to change the
coding of your pages to accommodate these differences.

Arachnophilia uses a feature of Windows called DDE (Dynamic Data Exchange) to switch from
the main Arachnophilia display to the browser display without requiring the user to relaunch the
browser each time. Basically, after launching your browser the first time, you may simply press
the main toolbar preview button and the browser’s display is updated with the new information.
This system works on nearly all browsers -- on one older version of Microsoft Internet Explorer
(2.0), because of a coding error, you have to touch the browser’s title bar to refresh the display.
For owners of this browser, I recommend an upgrade, free at the time of writing.

NOTE: If your browser fails to launch during preview, Arachnophilia will ask you to disable
automatic launch. If you choose this option, you may later unto this choice by returning to the
Identify Browser menu and re-enabling DDE, which is the communication mechanism that
allows automatic launching.

Instant View Mode

The internal browser permits very fast preview updates on the internal browser, in fact if your
document is not too large, on each keystroke if you choose. Choose “Instant View Mode” to
enable updating on each keystroke (this feature is only available on the internal browser). Set up
your display so your active document and the internal browser are displayed at once (use
Windows ... Tile Horizontally, as just one approach), then type in the document and watch the
changes in the preview window. If you are editing a large document, Instant View may be too
slow, so remember to disable this feature for large files.

This is a very powerful way to change your page’s contents dynamically. If you change a color or
a font size, you see the result instantly. If you change the formatting of a table, you see how
things turned out right away. And you can easily find errors, because the effect of every typed
character is previewed instantly.

This feature will not work on large, complex files, because on such files the browser’s update
time is slower than an average person can type. Be sure to disable Instant View to work on large
files.

Internal Browser Settings

This submenu allows you to control the behavior of the internal browser. It includes font size and
window size options. The second of these options is a very useful way to preview your page as
an average visitor might see it, perhaps with a window size smaller than that used in
development.

The Window Menu

The Windows menu allows you to arrange opened documents in several ways. It also lists open
documents and allows you to switch between them.

Creating Frames

A complete explanation of frames is far beyond the scope of these help pages, but you can get
started with a simple example, and then you may complete your education using the resources
available in bookstores and the Web itself.

The use of frames makes it possible to break the browser window into several smaller windows,
thus allowing you to present complex information in a flexible, accessible way. You may wish to
display an index of resources while showing each selected resource in a separate window --
frames let you do this.

The Frames toolbar (of the default tollbars) has the most important tags for frame creation. At the
time of writing, there are still many browsers that do not support frames, so it is a good idea to
include a no-frames page along with your frames-capable page (see example below).

The first tag to understand is called <Frameset>. This tag defines either rows or columns,
depending on which option is chosen. If you write <Frameset rows="20%,20%,*">, you will
define three rows, the first two each occupying 20% of the browser's height, and the third row
(marked with *) occupying the remainder of the space.

A command of <Frameset cols="20%,20%, *"> does exactly the same thing, except in this
example, columns are defined instead of rows.

You may create multiple columns and rows by nesting the <Frameset> tags. Here is an example:

<HTML>

<Head>
<Title>Frames Example</Title>
</Head>

<Frameset rows="20%,*">

<Frame src="toprow.htm" name="title area">
<Frameset cols="20%,*">

<Frame src="leftcol.htm" name="index area">
<Frame src="display.htm" name="display area">
</Frameset>

</Frameset>

<Noframes>
(Put a no-frames version of your page here)
</Noframes>

</HTML>

On a frames-capable browser, this example would produce a display with a title row at the top,
an index column at the left, and a large display area at the lower right. By the way, most frames-
capable browsers will refuse to display anything until the subsidiary pages have been written.

A typical use for this frame setup is to change the contents of the display area by clicking links
in the index area, while keeping both in view. Each link would look more or less like this:

Make this choice!

Remember when we set up the frames in the above example? We remembered to use the "name"
option to give each window a name. Now we can refer to the windows by name from any other
pages we create. This greatly increases the control you have over the frame system and also
reminds you, with a well-chosen name, which window is the target for each page.

Obviously, using frames means that you have many more pages to write, but each will probably
be smaller. The first page sets up the frame system and usually provides for a non-frame version
of'its contents. All subsidiary pages use the frame system that is set up in the first page.

This has been only a brief introduction to the subject of frames -- there are more frame tutorials
and resources at www.netscape.com and www.microsoft.com as well as elsewhere on the Web.

An Introduction to JavaScript

Java is a programming language that can be used to deliver platform-independent applications
across the Web. At present, the language has two forms: Java, which is a compiled, highly
structured language for large projects, and JavaScript, which is a scripting language that requires
much less effort than full Java. In exchange for this convenience, JavaScript has some limitations
that exist mostly for security.

With JavaScript, you can create interactive programs that provide immediate results without
requiring separate CGI scripts or multiple pages -- the results appear right on the page that
carries the program! Or, if you prefer, you can launch separate pages and applications for more
involved tasks.

The JavaScript program source is delivered along with the Web page that carries it, so JavaScript
is presently regarded as public domain -- you cannot protect the source code for your JavaScript
program. JavaScript also cannot open, read or write files or make system calls -- this is why it is
relatively secure.

Once again, there is much more to the JavaScript language than can be covered in these help
pages, but I will provide a few examples to get you started, then you can complete your training
using textbooks and web resources.

The Frames toolbar (of the default toolbars) has several shortcuts to aid JavaScript program
development. The first is "script," which, when activated, looks like a combination of HTML
tags:

<Script LANGUAGE="JavaScript">
<!-- Hide this from older browsers

(the JavaScript program goes here)
// end hide -->

</Script>

The <Script></Script> tags set the JavaScript program apart from the rest of the HTML code.
But, since there are many browsers that do not support JavaScript, you may want to hide the
JavaScript code from them. The comment tags accomplish this, so the JavaScript program listing
won't spoil the appearance of your page.

Now let's just do something silly to get started. Position the cursor in the middle of the Script
block and press the "Alert" button on the Frames/Java toolbar. This will be the result:

<Script LANGUAGE="JavaScript">
<!-- Hide this from older browsers

alert ("|");

// end hide -->
</Script>

As in previous examples, the vertical bar "|" shows the position of the cursor. Now Type "Hello
World!" and press the Arachnophilia preview button. You will see a dialog box with the message
"Hello World!"

l||"

Now let's write a more complex program. Move the cursor above the "alert" line and press the
"prompt" button on the Frames/Java toolbar. You will see this:

<Script LANGUAGE="JavaScript">
<!-- Hide this from older browsers

var response = prompt ("|","y/n");
alert ("Hello World!"™);

// end hide -->
</Script>

Now type "Enter a phrase:" where the cursor is located and then change the "alert" line to read:
alert ("You Typed: " + response);

Then press the Arachnophilia preview button. You will see a prompt box that asks you to type
something, then, after you have, you will see an alert dialog that will show what you typed.

There is nothing sacred about what the "prompt" button places in your program -- it is just a
typical entry. For example, you could use any variable name instead of "response," and you
might want to say "Type your response here" instead of "y/n" in the default area. But as you learn
more about JavaScript, you will understand this -- and you will find many more things that
JavaScript can do!

JavaScript has been designed to resemble the C++ programming language as much as possible,
to accommodate the many people who have learned that language. Thus, if you are familiar with
C++ you should feel right at home with JavaScript.

JavaScript can do many things not covered in this brief tutorial, so I recommend that you browse
your local bookstore and the web for references to JavaScript. Also, because the source code of
JavaScript-equipped Web pages is located right in the page, you can search for well-designed
JavaScript applications and simply download them to see how they were written.

A sample of JavaScript applications can be found at http://www.arachnoid.com (the author's site)
and tutorials and resources are available (or should become available shortly) at
www.netscape.com and www.microsoft.com. Or you can simply use your favorite web search
tool with the search string "JavaScript."

Working with Front Page

Microsoft Front Page® does some things very nicely. There are also some things it won’t do at
all, and finally (in version 1.1) there are some syntactically correct HTML tags that Front Page
will simply destroy.

When one imports existing HTML code into Front Page, one must change many parts of
otherwise acceptable HTML code to prevent Front Page from arbitrarily changing or losing parts
of the original code.

Arachnophilia can work with Front Page and minimize some of the latter’s undesirable
behaviors. The first step is to make Arachnophilia one of the editors that Front Page uses for
special tasks. To do this, run Front Page Explorer, select Tools ... Configure Editors, click Add,
enter a file type of “*.*”, Type “Arachnophilia” for “Editor Name,” then locate Arachnophilia
using the provided browser function.

The second part of the process is to import your existing HTML pages into the Front Page
environment, a complex process beyond the scope of this document. Refer to the Front Page help
screens for more on this process.

Once having imported your pages, you will need to find some types of HTML code that Front
Page will object to and then change in ways you probably won’t like. Here is an example:

I use an image tag to produce a horizontal line. It looks like this:

This tag uses a small image (that can be as small as 1 by 1 pixel) to make a color horizontal line.
My horizontal line automatically adjusts to the width of the screen, just like the default HTML
horizontal line tag, but it can be any color you desire. This tag is completely acceptable HTML
code, it works in all recent browsers, but Front Page will find and eat this tag, forcing the image
to have the width and height of the original graphic file, thus destroying its usefulness as a line.

To solve this problem, I have included a special tag called a “bot” (Microsoft’s term) that
essentially hides selected HTML code from Front Page. The Bot tag is located on
Arachnophilia’s “Struct” default toolbar. When the Bot tag is used, the result looks like this:

<!--VERMEER BOT=HTMLMarkup StartSpan -->

<!--VERMEER BOT=HTMLMarkup EndSpan -->

This tag can be applied to any HTML code that Front Page objects to, but that you want to
keep. And believe me when I tell you, there are plenty of tags that Front Page will have for
lunch. At the time of writing I have used Front Page for only a few hours, but most of that time
has been spent trying to keep Front Page from disabling some of the best parts of my Web pages.

Editorial comment: Front Page is a very ambitious project that will make HTML page creation

available to many people otherwise daunted by the complexity of HTML page development. But,
like so many applications, it overemphasizes the designer’s wishes and almost completely
ignores the user’s wishes. In many cases, Front Page will take syntactically correct HTML code
and render it nonfunctional in attempting to fit the code into Front Page’s narrow conception of
what is acceptable HTML code.

Arachnophilia emphasizes the opposite -- it takes into account the needs of the user by providing
field-customizable toolbars, as just one example.

Basically, with Front Page, Microsoft’s software designers are in charge. With Arachnophilia,
you are in charge (if you want to be). But Arachnophilia can’t do some of the things Front Page

can do.

The methods on this page provide a way for Arachnophilia to work with Front Page and (to some
extent) keep Front Page under control.

The terms “Microsoft” and “Microsoft Front Page” are registered trademarks of Microsoft Corporation.

Autocopy Mode

Arachnophilia takes care of a difficult issue in Web page development automatically. This
feature, called Autocopy, allows Arachnophilia to automatically copy your resource selections to
your working directory. This has two effects:

« All the selected resources for your page end up in one directory. This is a reliable way to
maintain control over those resources.

« Because all the resources are in the same directory as your Web pages, you may use relative
links instead of absolute links. This is a way to make your pages more reliable and more
portable, because you can move the entire package to any site and it will work as intended.

Instead of a link that, because it is located in another directory, looks like this:

, using Autocopy, yours will look like this

because the resource is located in the same directory as the page that refers to it.
The Autocopy mode requires that two conditions be met:

* You must choose a working directory for your HTML pages, and
* You must enable Autoocopy when Arachnophilia asks you to.

The first time you try to attach a resource file to your page, if you haven't yet saved your Web
page, Arachnophilia will ask you if you want to save it. If you respond with Yes, (highly
recommended) then Arachnophilia will ask whether it can enable Autocopy.

After Autocopy has been enabled, no matter where you find your resources, they are copied into
your working directory and their names are converted to the relative form.

The best part of Autocopy is that, when you have created and tested your Web page(s) at your
personal computer, you can upload the entire package to your Internet Service Provider and it
may work perfectly the first time. This is not an everyday occurrence.

The single exception to the Autocopy method is a link to a local HTML page. This type of
resource will not be copied, because the page you have linked to may have its own links, and if
the page 1s moved its links will stop working. For this reason, you should create all your HTML
pages within the directory structure that you intend to maintain when you have uploaded your
site onto the Internet.

HTML Page Setup

This dialog box appears when you create a new HTML page. You can use it to choose the color
of text and all the HTML tags. You can choose a title for your page, the title that appears on the
title bar of the browser that visits your site.

Your choices are preserved between uses of Arachnophilia, so you only really have to state your
preferences once.

All the choices in this dialog can be edited later, so it won’t hurt to pass this up by pressing “OK”
if you aren’t interested in sorting out the meanings of these options.

File Types and Suffixes

Web server programs use the suffix of a file to determine what kind of file it is. For example, an
HTML page might have the suffix .html. An example of a file using this suffix would be
“mypage.html”. A graphic file might have the suffix .jpeg or .gif. Arachnophilia uses these
standard suffixes also.

Some environments use non-standard file suffixes, therefore Arachnophilia may recognize more
than one file suffix for the same file type. Here is a chart of the file suffixes recognized by
Arachnophilia:

File Type Recognized Suffixes

HTML html, htm, .shtml, .asp, .stm, .idc, .htx, .ssi, .cfm
Text txt, .text, .doc, .bat, .log, .tbd
CGI Script .cgi

Perl Script .pl, .perl, .pm

Sound File .mid, .rmi, .wav, .ra, .ram
Graphic File .gif, .jpg, .jpeg, .png

URL File .url

RTF Text File atf

C, C++ Source File .cpp, -, .cc, .h

Java Source File Jjava

In Arachnophilia 3.0+, you may also disable HTML detection, so that any file is assumed to be a
valid HTML source file. See Tools ... Options ... Miscellaneous.

The Arachnophilia Template System

When you open a new file in Arachnophilia, the program uses a file template appropriate for that
file type. The templates are located in the “templates” subdirectory of the Arachnophilia program
directory. You can customize the templates to meet your personal requirements.

Some of the templates contain special labels that allow Arachnophilia to customize the file’s
content when it is opened. For example, here 1s the default HTML file template (before opening):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>

<HEAD>

<TITLE>[arachititle]</TITLE>

<META NAME="GENERATOR" CONTENT="[arach version]">
<META NAME="FORMATTER" CONTENT="[arach version]">
</HEAD>

<BODY BACKGROUND="" BGCOLOR="[arach bg]" TEXT="[arach text]"
LINK="[arach link]" VLINK="[arach vlink]" ALINK="[arach alink]">

|
</BODY>

</HTML>

In this template, the vertical bar ‘|” indicates the position that will be given to the editing cursor
when the file is first opened. The labels enclosed in [brackets] are special, reserved names that
Arachnophilia uses to customize the file when it is opened. These labels are unique to the HTML
file type. All of the file types that use templates also accept the label [arach filename], so that the
default filename provided on opening can appear in the file. For example, here is the default C++
file template:

// larach filename]

void main (void)
{

|
}

If you don t want the default filename to appear within the file, sim