
noyesyesyesyesyesWinBatch Help FileTRUEWinBatchyesyes20/10/98



Contacting Wilson WindowWare
How to get Technical Support
Registering your software
Ordering Information
WILSON WINDOWWARE ORDER FORM
Copyright © 1988-1996 by Morrie Wilson. 

Getting Started
About WinBatch
What is WinBatch?
What WinBatch Can Do
Ways to run WinBatch Scripts
Installing WinBatch
System Requirements

Using WinBatch
Writing a Script
Running a Script
Parameters

Displaying Passed Parameters in a Message Box
Passing Parameters Between WinBatch Script Files

Menu Files

WinBatch Functions
BoxOpen
BoxShut
BoxText
BoxTitle

Coordinate Parameters
Color Parameters

BoxButtonDraw
BoxButtonKill
BoxButtonStat
BoxButtonWait
BoxCaption
BoxColor
BoxDestroy
BoxDrawCircle
BoxDrawLine
BoxDrawRect
BoxDrawText
BoxesUp
BoxMapMode
BoxNew
BoxPen
BoxTextColor
BoxTextFont
BoxUpdates

Drawing Stack Management
BoxDataClear
BoxDataTag

WIL Extenders
NetWare Extenders
AddExtender(filename)
Win32 Network Extenders
Basic Network Extender
Multinet Network Extender

WIL Dialog Editor
Getting Started

Run the Dialog Editor
Menu Commands

File
Edit
Help



Using the Dialog Editor
Dialog Box Caption
Size the Dialog Box
Control Attributes

Push Button
Radio Button
Check Box
Edit Box
Fixed Text
Varying Text
File Listbox
ItemSelect Listbox

Save
View the Script
ShowScript
Decipher the Script
Setting Variables
Running the Script

WinInfo

FileMenu
System Requirements / Installation / Operation
Menu Files
Using the "all filetypes" FileMenu
Creating/Modifying File-Specific Menus
FileMenu.ini
Usage Tips, Known Problems and Limitations, etc.

PopMenu
System Requirements / Installation / Operation
Menu Files
INI Settings
Usage Tips, Known Problems and Limitations, etc.

Filename Appendix
File Name Summary
File Naming Conventions 
WinBatch DLLs
Names for the WinBatch DLLs 

Error Messages

WinBatch+Compiler
How the Compiler Works
Compiler Installation
Compiler Usage
Interactive Mode

SOURCE
OPTIONS

Large EXE for Standalone PC's
Small EXE    for Networked PC's
Encode for Call's from EXE files
Encrypted with Password

TARGET
EXTENDERS
OTHER FILES
ICON
SETTINGS
VERSION INFO

Network Considerations
Restrictions
#Include
Breakpoint



Getting Started
Installing WinBatch 
Step by step guide to learning WIL

Using WinBatch
Writing a Script
Running a Script
Parameters

WinBatch+Compiler

WIL Network Extenders

UTILITIES
WIL Dialog Editor
WinInfo
WinBatch FileMenu
WinBatch PopMenu

REFERENCE
WinBatch Functions
WIL Functions
WIL Tutorial
System Requirements
Error Messages
Filename Appendix
#include

WinBatch is an application which uses Wilson WindowWare's 
Windows Interface Language (WIL) to automate Windows and 
Windows applications. WinBatch controls Windows, Windows 
applications, and network connections. 

There are over 500 functions available to help you get the job 
done -- what would take pages of code in other languages is 
often taken care of by a single WIL function.

Your WinBatch scripts can be run in many different ways, 
including clicking on an icon or choosing from a popup menu.

There are several utilities included with WinBatch to help 
automate your system, including a Dialog Editor that lets you 
design custom user interfaces for your scripts without tedious 
coding.

The optional "WinBatch+Compiler" lets you compile your 
applications into .EXE files and distribute them to anyone you 
want, royalty-free -- great for network system administrators.

WinBatch is available for every version of Windows, including 
Windows 3.1, Windows 95/98, and Windows NT, running on 
Intel, DEC Alpha, PowerPC and other platforms.

 We've included a Step by step guide to learning WIL so you 
can get started right away. See the WIL Tutorial in the 
Windows Interface Language Help file.

Copyright ©1998 Wilson WindowWare, Inc.



Copyright © 1988-1998 by Morrie Wilson. 
All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, including photocopying and recording,
for any purpose without the express written permission of Wilson 
WindowWare, Inc.    Information in this document is subject to change 
without notice and does not represent a commitment by Wilson 
WindowWare, Inc.

The software described herein is furnished under a license agreement.    It 
is against the law to copy this software under any circumstances except as 
provided by the license agreement.

U.S. Government Restricted Rights
Use, duplication, or disclosure by the Government is subject to restrictions 
as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and 
Computer Software clause at 252.227-7013.    Contractor/manufacturer is 
Wilson WindowWare, Inc. / 5421 California Ave. SW / Seattle, WA 98136 /    
Orders: 800-762-8383 /    Support: 206-937-9335 /    Fax: 206-935-7129.

Trademarks
Microsoft and MS-DOS are registered trademarks of Microsoft 
Corporation.
Windows, Word for Windows, and Excel are trademarks of Microsoft 
Corporation.

WinEdit is a trademark of Wilson WindowWare, Inc.

Acknowledgments

This software designed by Morrie
Wilson and Richard Merit.

Documentation written by Tina 
Browning and Deana Dahley.



Getting Started

             About WinBatch  

             What is WinBatch?  

             What can WinBatch do?  

             Ways to run WinBatch   
scripts

             Contacting Wilson   
WindowWare

             Installing WinBatch  

             Installing   
WinBatch+Compiler

WinBatch is the system automation utility for Windows.    
WinBatch lets you take nearly anything your computer can 
do, and assign it to a simple menu selection, command or 
icon. 

WinBatch controls Windows, Windows applications, and 
network connections.



About WinBatch

WinBatch is the system automation utility for Windows. Using the 
power of our Windows Interface Language (WIL), WinBatch lets 
you take nearly anything your computer can do, and assign it to a
simple menu selection, command or icon. 

WinBatch controls Windows, Windows applications, and network 
connections. WinBatch includes the power of over 500 functions 
to help you get the job done.

             What is WinBatch?  

             What can WinBatch do?  

             Ways to run WinBatch   
scripts

             Installing WinBatch  

             System Requirements  

             Using WinBatch  



What is WinBatch?

WinBatch is the Windows desktop automation solution that lets 
you take nearly anything your computer can do, and assign it to a
simple menu selection, command or icon. You've got the power of
a complete programming language at your fingertips, so you can 
create simple, useful applications, like a utility that prints files 
overnight. 

The "WinBatch+Compiler" lets you compile your applications 
into .EXE files and distribute them to anyone you want, royalty-
free -- great for network system administrators.

WinBatch controls Windows, Windows applications, and network 
connections.

WinBatch is available for every version of Windows, including 
Windows 3.1, Windows 95/98, and Windows NT, running on Intel,
DEC Alpha, PowerPC and other platforms.

WinBatch is one of several Wilson WindowWare products that 
use our Windows Interface Language (WIL), a full-featured 
programming language with over 500 functions for controlling 
nearly every aspect of your computer. Many WIL functions can 
accomplish more in a single line statement, than what could take 
pages of forms design, property setting and coding in other 
programming languages.

             What can WinBatch do?  

             Ways to run WinBatch   
scripts



What WinBatch can do

WinBatch utilities manipulate:

    The operating system

    The Windows interface

    Any and all Windows applications

    Most MS DOS applications

    Most networks 

WinBatch is often used to assemble reports, install software, 
automate testing, control processes, acquire data, and add 
efficiency to the Windows workstation.

WinBatch is optimized for making quick work of custom system 
management utilities.

Activate one WinBatch icon or file and you can run from one to 
thousands of operations.    One WinBatch script can squeeze any 
number of operations into a single batch file that runs just like a 
Windows program. It can run from a Windows shell or any 
application that can run another application.

With over 500 functions, WinBatch can:

                      Solve numerous system management problems

                      Run Windows and DOS programs

                      Send keystrokes directly to applications

                      Send menu items directly to Windows applications

                      Rearrange, resize, hide, and close windows

                      Run programs either concurrently or sequentially

                      Display information to the user in various formats

                      Prompt the user for any needed input

                      Present scrollable file and directory lists

                      Copy, move, delete, and rename files

                      Read and write files directly

                      Copy text to and from the Clipboard

                      Perform string and arithmetic operations

             What is WinBatch?  

             Ways to run WinBatch   
scripts

             Using WinBatch  



                      Make branching decisions based upon numerous factors

                      Call Dynamic Link Libraries

                      Act as an OLE 2.0 automation client

                      And much, much more



Ways to Run WinBatch Scripts

WinBatch scripts are simple text files, but they can be launched 
in many different ways:

    run from icons in the Windows Explorer, Desktop, or Task Bar.

    as automatic execution macros for Windows via the Startup 
directory.

    from macros in word processors and spreadsheets

    from the Task Bar "Start ..Run..." command line entry in Windows

    by double clicking or dragging and dropping file names in the 
Windows Explorer.

    from other WinBatch scripts to serve as single or multiple "agents",
event handlers or schedulers

    from any Windows application or application macro language that 
can execute another Windows program such as Visual Basic and 
PowerBuilder 

             What is WinBatch?  

             What can WinBatch do?  

             Writing a Script  

             Running a Script  

             Menu Files  



Installing WinBatch

WinBatch is easy to install. You will find the necessary diskettes in 
your WinBatch package. If you have purchased 
"WinBatch+Compiler", see the instructions for "installing 
WinBatch+Compiler".
Windows must be running to install WinBatch.
Insert your WinBatch disk into your disk drive. From the File Run 
File Manager, or from the Task Bar select "Start…Run" type 
[CD_Drive]:\SETUP.EXE (ie., M:\SETUP.EXE), depending on which
drive contains the WinBatch disk. Follow the prompts; the program 
will install the necessary files in a directory of your choice. You will 
be asked for license numbers.
Note:    WinBatch cannot be installed from a drive shared over a 
network.

             What is WinBatch?  

             Using WinBatch  

             Registering your copy  

             System Requirements  



System Requirements

WinBatch requires an IBM PC or compatible running Microsoft 
Windows version 3.1 or higher. WinBatch 32 requires a 32 bit 
version of Microsoft Windows or Windows NT. 

WinBatch scripts use about 150 kilobytes of system memory and 
2% of system resources. This memory is returned to the system 
when the WinBatch utility ends. 
A WinBatch script file cannot exceed 64K in filesize.

             Installing WinBatch  

             What is WinBatch?  

             Using WinBatch  



Using WinBatch

             Writing a Script  
             Running a Script  
             Parameters  
             Menu Files  
             Installing WinBatch  
             System Requirements  

WinBatch is an application which uses Wilson WindowWare's
Windows Interface Language (WIL). There are over 500 
functions available to help you get the job done. (What would
take pages of code in other languages is often taken care of 
by a single WIL function.)

Network manipulation functions provided by extenders to 
WIL. The extenders are included in dynamic link libraries 
accessed with the WIL AddExtender ( ) function. Each 
extender has its own help file.

Note: WinBatch is based on "batch files". A WinBatch batch 
file is a text file containing one or more lines of WIL functions 
and commands. PopMenu and FileMenu, two WinBatch 
utilities, are implementations based on menu files. 



Writing a Script

WinBatch is a script file interpreter. Before you can do anything 
useful with the WinBatch interpreter, you must have at least one 
WinBatch script file to interpret.

Your WinBatch installation puts several sample scripts into your 
WinBatch\Sample directory.

WinBatch script files must be formatted as plain text files. You 
can create them with WinEdit (Wilson WindowWare's optional 
text editor for programmers), the Windows Notepad or another 
text editor.

Word processors like WordPerfect, AmiPro, and Word can also 
save scripts in plain text formatted files.

The .WBT extension is used throughout these instructions for 
batch file extensions, but you can use others just as well. If you 
want to click on a batch file and have Windows run it, be sure that
you associate it in Windows with your WinBatch executable 
program file. When you installed WinBatch, an association is 
automatically established between WinBatch and .WBT files.

Each line in a WinBatch script file contains a statement written in 
WIL, Wilson WindowWare's Windows Interface Language.

A statement can be a maximum of 255 characters long (refer to 
the WIL Reference Manual for information on the commands you 
can use in WinBatch). Indentation does not matter. A statement 
can contain functions, commands, and comments.

A single WinBatch script file cannot exceed 64K in file size.

You can give each WinBatch script file a name which has an 
extension of WBT (e.g.    TEST.WBT). We'll use the terms 
WinBatch script files and WBT files interchangeably. 

             Running a Script  

             Parameters  

             Menu Files  

 



Running a Script

WinBatch utilities run like any other Windows programs. They can
run from a command line, or from a file listing such as the 
Windows 95/98 and Windows NT Explorer.

WinBatch utilities are usually run as files with the 
extension .WBT. When some WinBatch utilities are used, they 
need information passed to them when they run. This is easily 
done by passing command line parameters to them.

This capability can be used from the command line "Start..Run" 
menu items in Windows 95/98 and NT 4.0.    An example dialog is
shown below.

Parameters can be also be passed through the command line 
entry included in the item properties of any icon in Program 
Manager. Finally, an application can send parameters to a 
WinBatch utility it launches from a command line or from a 
function in a macro language.

A command like this runs a WinBatch system utility from a 
command line or an icon:

WinBatchfilename filename.wbt param1 param2.. 
param9 

This command line can be entered into a Command Line text 
entry box like this one from the Windows 95/98 and NT "Start… 
Run…" menu option. 

WINBATCHFILENAME is the generic name of your WinBatch 
executable. The specific, or actual, name for the WinBatch application 
will change to reflect the operating system in use: 
Windows 3.1, Windows 95, Windows 98 and the different Windows NT
versions.

"filename.wbt" is any valid WBT file, and is a required parameter.

"p1 p2 ... p9" are optional parameters (there are a maximum of nine of 
these) to be passed to the WBT file on startup. Each is delimited from 
the next by one space character.

             Writing a Script  

             Parameters  

             Menu Files  

             Ways to run WinBatch   
Scripts





Parameters

A command like this runs a WinBatch system utility from a command 
line or an icon:

WinBatchfilename filename.wbt param1 param2.. param9

This command line can be entered into a Command Line text entry 
box like this one from the Windows 95/98/NT "START…Run.." menu 
option. 

This command line can be entered into a Command Line text entry 
box like this one:

The command line is longer than the dialog can show, but it can be 
easily edited with the arrow keys.

WINBATCHFILENAME is the generic name of your WinBatch 
executable. The specific, or actual, name for the WinBatch application 
will change to reflect the operating system in use:
Windows 3.1, Windows 95, Windows 98, and the different Windows 
NT versions.

"filename.wbt" is any valid WBT file, and is a required parameter.

"p1 p2 ... p9" are optional parameters (there are a maximum of nine of 
these) to be passed to the WBT file on startup. Each is delimited from 
the next by one space character.

In order to pass parameters to a WinBatch script file, you must run the 
WinBatch executable, itself, and it must be followed by the name of the
WinBatch script file and any other desired parameters. WBT files run 
from the Desktop as shortcuts must have their complete path in the 
Properties dialog box in order for command line parameters to be 
received.

For example, the command line for "MAIL.WBT", an imaginary 
WinBatch utility that runs mail with a password passed as a parameter 
might be:

C:\WINBATCH\SYSTEM\WINBATCH.EXE C\WINBATCH\MAIL.WBT 
PASSWORD

             Displaying Passed   
Parameters in a Message Box

             Passing Parameters   
between Script Files

             Writing a Script  

             Parameters  

             Menu Files  

             Ways to run WinBatch   
Scripts



To edit the shortcut icon properties, highlight the icon, hold down ALT, 
and press ENTER. The shortcuts properties box should look like the 
following:

Parameters passed to a WBT file will be automatically inserted into 
variables named param1, param2, etc. The WinBatch utility will be 
able to use these. An additional variable, param0, gives you the total 
number of command-line parameters.



Displaying Passed Parameters in a Message Box

To display the total number of command line parameters, use param0 
as a variable in a message box. WinBatch works like the DOS Batch 
language to put parameters into text. Enclosing them in percent (%) 
signs works in WinBatch, too.

This example is a simple one line WinBatch function that:

          1. Designs a dialog box with an OK button.

          2. Specifies a title.

          3. Specifies a message.

          4. Puts varying information into the title or the message.

          5. Formats the message in more than one line.

          6. Returns a value that can indicate whether the operation has 
succeeded or not.

The Message function has this form:

Message("title in quotes","message in quotes") 

The actual statement used to produce this dialog box was:

Message("%param0% Parameter(s)", "The first was==>
%param1%") 

It produced:

          

The command line which produced the statement above was:

       

             Parameters  

             Passing Parameters   
between Script Files

             Writing a Script  

             Menu Files  

             Ways to run WinBatch   
Scripts



Note: Full path names were used for both the WinBatch executable 
file and for the WinBatch utility. Spaces separate the three parts of the 
command line.



Passing Parameters Between WinBatch Script Files

You can pass command line parameters from one WinBatch script file 
to another WinBatch script file. To do this, place percent characters 
(%) around the variables as in: %variable%.

Example:

The first WBT calls a second WBT then passes three parameters.

Call("test.wbt", "Fred Becky June") 

TEST.WBT contains the following line:

Message("Names are", "%param3% %param2% %param1%")

which produces:

             Parameters  

             Displaying Passed   
Parameters in a Message Box

             Writing a Script  

             Menu Files  

             Ways to run WinBatch   
Scripts



Menu Files

Windows Interface Language (WIL) scripts are written in a plain text 
file, which can be created by Notepad or most word processors. (Of 
course, we recommend our own WinEdit, which has many features 
designed expressly for programmers, including a full-featured 
implementation of WIL itself.)

These text files can take one of two forms, depending on your 
particular implementation of WIL: batch files or menu files.

WinBatch executes batch files. A batch file is simply a list of WIL 
commands and function calls, executed in order (just like the old DOS 
batch language).

A menu file is similar to a batch file, except that multiple chunks of WIL 
code are organized into menu and sub-menus, and each routine is 
launched by pressing the appropriate keystroke or selecting an item 
from the menu. (The name and location of the menus vary depending 
on the particular implementation of WIL menu files.)

WinBatch comes with two utilities that use menu files: FileMenu and 
PopMenu.

The menu file format is explained in the Windows Interface Language 
Reference manual and in the on-line WIL help file.

                FileMenu  

             PopMenu  



Contacting Wilson WindowWare

            Wilson WindowWare, Inc.
            5421 California Ave. SW
            Seattle, WA 98136 USA

            Orders: (800) 762-8383
            Voice: (206) 938-1740
            Fax: (206) 935-7129

            Email: info@windowware.com

Registered users of our software get manuals, technical support, 
use of Wilson WindowWare on-line information services, and 
special offers on new versions of Wilson WindowWare products. 

             Registering your copy  

             Ordering Information  

             Order form  

             Technical Support  



How to get Technical Support

The Wilson WindowWare website is an excellent technical resource. 
Access to the entire Technical Support Database is at your 
fingertips. In the Technical Support area use the keyword search to 
find answers to common problems, alternate scripting methods, and 
sample code.    Or join the Wilson WindowWare Web BBS, a new 
Web forum.    The BBS provides an outlet for registered users to 
share their experiences with other users. 

See the information on registering your copy if you haven't done 
so yet.

The latest versions of our software are available on-line. The places 
here may change at any time -- check your installation sheet for the 
most recent addresses.

Internet Web page: http://www.windowware.com 

Internet Technical Support Articles & Web BBS: 
http://techsupt.windowware.com

Internet FTP: ftp.windowware.com in /wwwftp/wilson

             Registering your copy  

             Ordering Information  

             Order form  



Registering your copy

Registered users of our software get manuals, technical support, 
use of Wilson WindowWare on-line information services, and 
special offers on new versions of WinBatch and other Wilson 
WindowWare products. 

You can register your software by mailing your registration card, 
faxing your registration card, or calling Wilson WindowWare. 

Entering your license numbers while installing WinBatch

The WinBatch installation program will request entry of both a 
control number and an ID number. Either upper or lower case will 
do. These numbers are located inside the back cover of your 
WinBatch User's guide.

WinBatch will run without license numbers, but a screen will be 
appear to remind users to register the software. 

Keep your license numbers in a safe place. They will be needed 
whenever WinBatch is reinstalled. If you have been issued a 
temporary license number, it will expire and the evaluation 
screens will appear. To prevent this, obtain a permanent license 
number in place of a temporary one. Once you register your copy 
of WinBatch, you can enter your registration information. 

Entering your license numbers after installation

To make the registration screen appear, hold the shift key down 
while starting a WinBatch utility. Select Enter License Info and 
enter the license numbers into the resulting dialog box.

             Ordering Information  

             Order form  



Ordering Information

Licensing our products brings you wonderful benefits. Some of these 
are: 

Gets rid of that pesky reminder window that comes up when 
you start up the software. 

Entitles you to one hour free phone support for 90 days (Your 
dime). 

Ensures that you have the latest version of the product. 
Encourages the authors of these programs to continue 

bringing you updated/better versions and new products. 
Gets you on our mailing list so you are occasionally notified of

spectacular updates and our other Windows products. 
And, of course, our 90-day money back guarantee. 

International Customers
Although we do prefer payment by Credit Card we can accept non-
US-bank checks under certain conditions. The check MUST be in 
your currency -- NOT IN US$ -- Just look in your newspaper for the 
current exchange rates, make out your check and send mail it to us. 
We will take care of the rest. No Eurocheques please. 

                  Send to:    Wilson WindowWare, Inc.
                                        5421 California Ave. SW 
                                        Seattle, WA 98136 
                                        USA 

              or call:    (800) 762-8383    (USA orders only )
                                        (206) 938-1740    (customer service)
                                        (206) 937-9335    (tech support)
                                        (206) 935-7129    (fax) 

(Please allow 2 to 3 weeks for delivery)

             Order form  

             Contacting Wilson   
WindowWare



WILSON WINDOWWARE ORDER FORM

WILSON WINDOWWARE
5421 California Ave. SW Seattle  WA 98136
Ph - (206)938-1740    Fax - (206)935-7129

             Ordering Information  

             Contacting Wilson   
WindowWare

 Name: ________________________________________________

 Company:_______________________________________________

 Address:________________________________________________

________________________________________________________

City:      ________________________    St:______    Zip:___________

Phone: (______)_________________        
Country:________________

Products
____ WinBatch      @    $99.95 : _______.____    

____ WinBatch    Compiler @$495.00 : _______.____    

____ WinEdit @$99.95 : _______.____    

Shipping
____ US and Canada shipping @        $5.00 : _______.____    

____ Foreign air shipping
(except Canada) @    $14.50 : _______.____

                Total:    _______.____

Please enclose a check payable to Wilson WindowWare or you may use Access, AMEX, Visa, 
MasterCharge, or EuroCard.      For credit cards,    please enter the information below:

 Card #:__ __ __ __ - __ __ __ __ - __ __ __ __ - __ __ __ __          Expiration date: ____/____

 Signature:    _________________________________________
 
 Where did you hear about or get a copy of our products?

________________________________________________________

International customers please see note on Ordering information.





This section includes only those additional WinBatch functions which do not appear in 
the WIL Reference Manual. The WIL Reference Manual is your primary reference to 
the functions available in WinBatch.    
Note: The functions listed under the See Also headings may be documented either in 
this Help file or in the WIL Reference help file.

Function List
BoxOpen(title, text)

Opens a WinBatch message box.

BoxShut( )
Closes the WinBatch message box.

BoxText(text)
Changes the text in the WinBatch message box.

BoxTitle(title)
Changes the title of the WinBatch message box.

BreakPoint
Causes a breakpoint on the next statement when used with a script 
debugger.    Otherwise the command does nothing.

Graphical Box Functions

These WinBatch box functions generate attractive boxes with graphical interface 
elements.    With a small number of primitive functions, very complex screens may 
be generated. The Box functions can draw lines, rectangles, circles, ellipses, text, 
and even additional windows on the screen.    Plus they provide control over the 
size, placement, and color of the images. 

Note: Another way to create graghical dialogs, is to use the HTML Extender. For 
further information see the HTML extender help file.

The WinBatch setup program uses WinBatch box functions to display the GUI part 
of the user interface.    Additional "box" wbt files can be found in the Winbatch\ 
Samples directory.

First, before we get into detailed descriptions of the box functions, we must define 
two very important data types.    These are the "coordinate" and the "color" data 
type parameters.

Coordinate Parameters
Color Parameters

Additional Box functions are:
BoxButtonDraw(box ID, button ID, text, coordinates)
BoxButtonKill(box ID, button ID)
BoxButtonStat(box ID, button ID)
BoxButtonWait( )

              
Writing a Script

             Ways   
to run 
WinBatch 
Scripts



BoxCaption(box ID, caption)
BoxColor(box ID, color, wash color)
BoxDestroy(box ID)
BoxDrawCircle(box ID, coordinates, style)
BoxDrawLine(box ID, coordinates)
BoxDrawRect(box ID, coordinates, style)
BoxDrawText(box ID,coordinates,text,erase flag,alignment)
BoxesUp(coordinates, show mode)
BoxMapMode(box ID, map mode)
BoxNew(box ID, coordinates, style)
BoxPen(box ID, color, width)
BoxTextColor(box ID, color)
BoxTextFont(box ID, name, size, style, pitch & family)
BoxUpdates(box ID, update flag)

Drawing Stack Management
BoxDataClear(box ID, tag)
BoxDataTag(box ID, tag)



BoxOpen
Opens a WinBatch message box.

Syntax:
BoxOpen (title, text)

Parameters:
(s) title title of the message box.
(s) text text to display in the message box.

Returns:
(i) always 1.

Note: In our shorthand method for indicating syntax the (s) in front of a parameter indicates that it is a string. An (i) 
indicates that it is an integer and a (f) indicates a floating point number parameter.

This function opens a message box with the specified title and text. The message box stays in the foreground while 
the WIL program continues to process. 

The title of an existing message box can be changed with the BoxTitle function, and the text inside the box can be 
changed with the BoxText function. 

Use BoxShut to close the message box.

Example:
BoxOpen("Processing", "Be patient")
Delay(2)
BoxTitle("Still processing")
Delay(2)
BoxText ("Almost done")
Delay(2)
BoxShut()

See Also:
BoxShut, BoxText, BoxTitle, Display, Message (both found in main WIL documentation)



BoxShut
Closes the WinBatch message box.

Syntax:
BoxShut ( )

Parameters:
(none)

Returns:
(i) always 1.

This function closes the message box that was opened with BoxOpen.

Example:
BoxOpen("Processing", "Be patient")
Delay(2)
BoxTitle("Still processing")
Delay(2)
BoxText ("Almost done")
Delay(2)
BoxShut()

See Also:
BoxOpen, BoxText, BoxTitle



BoxText
Changes the text in the WinBatch message box.

Syntax:
BoxText (text)

Parameters:
(s) text text to display in the message box.

Returns:
(i) always 1.

Example:
BoxOpen("Processing", "Be patient")
Delay(2)
BoxTitle("Still processing")
Delay(2)
BoxText("Almost done")
Delay(2)
BoxShut()

See Also:
BoxOpen, BoxShut, BoxTitle



BoxTitle
Changes the title of the WinBatch message box.

Syntax:
BoxTitle (title)

Parameters:
(s) title title of the message box.

Returns:
(i) always 1.

Example:
BoxOpen("Processing", "Be patient")
Delay(2)
BoxTitle("Still processing")
Delay(2)
BoxText ("Almost done")
Delay(2)
BoxShut()

See Also:
BoxOpen, BoxShut, BoxText, WinTitle (found in main WIL documentation)



Breakpoint
Causes a breakpoint on the next statement when used with a script debugger.    Otherwise the command does 
nothing.

Syntax:
Breakpoint

Parameters:
(none)

Returns:
(not applicable)

Use this command with WinBatch Studio to cause execution to stop in the debugger.    If this command is 
encountered outside of a debugger it is ignored.

Debuggers usually have a method of setting a breakpoint on particular lines of a script or even stepping through the 
lines one at a time, sometimes problems occur after extensive script execution where it would be tedious to step 
through.    For example if you wish to investigate what happens on the 782'd pass of a FOR loop you could do 
something similar to the example code below:

Example:
a=1
   b=1000
   For xx = 1 to b
      If xx == 782 then BreakPoint
      c=a+xx+1
   next
   Message("Loop","Complete")

See Also:
Debug, DebugTrace… (see Windows Interface Language help)



Coordinate Parameters
A coordinate is a WinBatch string variable (actually a list) containing four numbers separated by commas.    These 
four numbers define two points on the screen.    The first number is the "X" coordinate of the first point, the second 
number is the "Y" coordinate of the first point, the third number is the "X" coordinate of the second point, and finally 
the fourth number is the "Y" coordinate of the second point.

The "0,0" point is in the upper left of the screen, and the "1000,1000" point is at the lower right.

With just these two points, WinBatch can size and place a number of items.

Rectangles:    
The first point defines the upper left corner of a rectangle, and the second point defines the lower right.

Circles and Ellipses:
The first point defines the upper left corner of a bounding box for the Ellipse, and the second point defines 
the lower right corner of the bounding box.    The ellipse will touch the bounding box at the center of each 
side of the bounding box.

Lines:
The two points represent the beginning and end of a line

Windows:
The first point defines the upper left corner of a window, and the second point defines the lower right.



Color Parameters
A "color" data type is a WinBatch string variable (actually a list) containing three numbers separated by commas.    
These three numbers define the amount of red, green, and blue that the color has in it.    Each number may vary from 
0 (none) to 255 (max.).    White has the maximum amount of all colors, while blacks lacks them all. A sample list of 
colors follow:

WHITE="255,255,255"
BLACK="0,0,0"
LTGRAY="192,192,192"
GRAY="128,128,128"
DKGRAY="64,64,64"
LTPURPLE="255,128,255"

RED="255,0,0"
GREEN="0,255,0"
BLUE="0,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"
PURPLE="255,0,255"

DKRED="128,0,0"
DKGREEN="0,128,0"
DKBLUE="0,0,128"
DKYELLOW="128,128,0"
DKCYAN="0,128,128"
DKPURPLE="128,0,128"



BoxButtonDraw
Creates a push-button in a WinBatch box.

Syntax:
BoxButtonDraw(box ID, button ID, text, coordinates)

Parameters:
(i) box ID An ID number from 1 - 16 specifying the desired WinBatch

box.    Maximum boxes allowed, 16.
(i) button ID the ID number of the desired push-button.
(s) text text to appear in the button
(s) coordinates dimensions of button, in virtual units

(upper-x    upper-y    lower-x    lower-y).

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a button using standard Windows colors and fonts by specifying a unique "ID", text and coordinates.    If an 
existing button "ID" is reused, the text will be changed and then the button will be moved.    

Note: If a button is moved, it is best to do so before the background is painted in order to color over the buttons 
original position.    Moving buttons does cause some "flashing" on the screen.

Example:
;;  sample code for BoxButtonDraw
bDraw1=1
bDraw2=2
bDraw3=3

BoxesUp("100,100,900,900", @normal)
BoxDrawText(1, "0,210,1000,1000", "WinBatch Box Example - BoxButtonDraw %@CRLF% 
Drawing Buttons", @FALSE, 1)
TimeDelay(2)
BoxButtonDraw(1, bDraw1, "Button 1", "100,450,300,550")
TimeDelay(2)
BoxButtonDraw(1, bDraw2, "Button 2", "400,450,600,550")
TimeDelay(2)
BoxButtonDraw(1, bDraw3, "Button 3", "700,450,900,550")

bWho=0
while bWho == 0
        for x =1 to 3
                if BoxButtonStat(1,x) then bWho=x
        next
endwhile        
Message("Excuse Me", "Please, don't push my buttons")
BoxDestroy(1)

See Also:
BoxButtonKill, BoxButtonStat, BoxButtonWait, BoxesUp, BoxNew



BoxButtonKill
Removes a push-button from a WinBatch box.

Syntax:
BoxButtonKill(box ID, button ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) button ID the ID number of the desired push-button.

Returns:
(i) @TRUE on success; @FALSE on failure.

Example:
;;  sample code for BoxButtonKill
bDraw1=1
bDraw2=2
bDraw3=3

BoxesUp("100,100,900,900", @normal)
BoxDrawText(1, "0,210,1000,1000", "WinBatch Box Example - BoxButtonKill
%@CRLF% Select a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "100,450,300,550")
BoxButtonDraw(1, bDraw2, "Button 2", "400,450,600,550")
BoxButtonDraw(1, bDraw3, "Button 3", "700,450,900,550")

bWho=0
while bWho == 0
  for x =1 to 3
          if BoxButtonStat(1,x) then bWho=x
  next
endwhile 

Switch bWho
   ;Message("Excuse Me", "Please, don't push my buttons")
  Case 1
     BoxDrawText(1, "0,310,1000,1000", "Killing Button %Bwho%", @TRUE, 1)
     TimeDelay(2)
     BoxButtonKill(1, bDraw1)
     Break
  Case 2
     BoxDrawText(1, "0,310,1000,1000", "Killing Button %Bwho%", @TRUE, 1)
     BoxButtonKill(1, bDraw2)
     TimeDelay(2)
     Break
  Case 3
     BoxDrawText(1, "0,310,1000,1000", "Killing Button %Bwho%", @TRUE, 1)
     BoxButtonKill(1, bDraw3)
     TimeDelay(2)
     Break
endswitch

See Also:
BoxButtonDraw, BoxButtonStat, BoxButtonWait, BoxesUp, BoxNew



BoxButtonStat
Determines whether a push-button in a WinBatch box has been pressed.

Syntax:
BoxButtonStat(box ID, button ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) button ID the ID number of the desired push-button.

Returns:
(i) @TRUE if the button has been pressed;

@FALSE if it hasn't.

This function will also toggle the button back to "unpressed".

Example:
;;  sample script for BoxButtonStat
bDraw1=1
bDraw2=2

BoxesUp("200,200,700,700", @normal)
BoxDrawText(1, "0,310,1000,1000", "WinBatch Box Example - BoxButtonStat
%@crlf% Pick a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "200,464,450,558")
BoxButtonDraw(1, bDraw2, "Button 2", "550,464,800,558")

bWho=0
while bWho == 0
        for x =1 to 2
                if BoxButtonStat(1,x) then bWho=x
        next
endwhile       

Switch bWho
case 1
        Display(3,"Button Example", "You pushed Button 1")
        break
case 2
        Display(3,"Button Example", "You pushed Button 2")
        Break
endswitch

See Also:
BoxButtonDraw, BoxButtonKill, BoxButtonWait, BoxesUp, BoxNew



BoxButtonWait
Waits for any button in any box to be pressed.

Syntax:
BoxButtonWait( )

Returns:
(i) always 1.

This function will stay in a loop while all buttons are false.    If any of the buttons are true when this command is 
issued, the command will not wait.

Example:
;;  sample script for BoxButtonWait
bDraw1=1
bDraw2=2
bWho=0

BoxesUp("200,200,700,700", @normal)
BoxDrawText(1, "0,310,1000,1000", "WinBatch Box Example - BoxButtonWait
%@crlf% Pick a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "200,464,450,558")
BoxButtonDraw(1, bDraw2, "Button 2", "550,464,800,558")

BoxButtonWait()       
for x =1 to 2
        if BoxButtonStat(1,x) then bWho=x
next

Switch bWho
case 1
        Display(3,"Button Example", "You pushed Button 1")
        break
case 2
        Display(3,"Button Example", "You pushed Button 2")
        Break
endswitch

See Also:
BoxButtonDraw, BoxButtonKill, BoxButtonStat, BoxesUp, BoxNew



BoxCaption
Changes the title of a WinBatch box.

Syntax:
BoxCaption(box ID, caption)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) caption title for the box.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function sets the title of the Window.    The main window always has a title (caption) bar.    Windows created with 
the BoxNew function, using a "2" for the style parameter also have a caption bar.    If the box does not have a caption
bar, the function is effectively ignored.

Example:
;;  sample script for BoxCaption

BoxesUp("200,200,700,700", @normal)
BoxDrawText(1, "0,310,1000,1000", "WinBatch Box Example - BoxCaption
%@crlf%%@crlf% Keep your eye on the Title Bar", @FALSE, 1)
BoxCaption(1, "WinBatch BoxCaption Example")
TimeDelay(5)
BoxCaption(1, "Change the title to whatever you like")
TimeDelay(3)
BoxCaption(1, "You have the power")
TimeDelay(3)

See Also:
BoxesUp, BoxNew



BoxColor
Sets the background color for use with a WinBatch object.

Syntax:
BoxColor(box ID, color, wash color)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) normal color the background color, a string in the form: "red, green, blue".
(i) wash color color used to create a background gradient effect.

Returns:
(i) @TRUE on success; @FALSE on failure.

Sets the background color for use with a WinBatch object, either a rectangle, a circle, or a line.

If a gradient effect is not desired, specify "0" for "wash color".    If "wash color" is "0", or if a 16-color video driver is 
installed, then " normal color" will be used.    Default is white, no wash. 

Normal Color    
BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"
GREEN="0,255,0"

DKGRAY="128,128,128"
GRAY="192,192,192"
DKRED="128,0,0"
DKGREEN="0,128,0"

BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"
DKCYAN="0,128,128"

Wash color
0 No Wash 
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White

Example:
; sample code for various wash colors        
BoxesUp("0,0,1000,1000", @zoomed)
for i=1 to 7
        BoxColor(1,"255,0,0",i)   ;sets the background color
        BoxDrawRect(1,"0,0,1000,1000",2)   ;object which will use the color
        Message("Wash Code",i)
next

See Also:
BoxesUp, BoxNew, BoxPen, BoxTextColor



BoxDestroy
Removes a WinBatch box.

Syntax:
BoxDestroy(box ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.

Returns:
(i) @TRUE on success; @FALSE on failure.

Removes a WinBatch box and any buttons in the box from the screen.    If you specify a box ID of 1, all boxes vanish.

Example:
;; sample script for BoxDestroy
BoxesUp("0,0,1000,1000", @normal) 
BoxDrawText(1, "0,700,1000,1000", "WinBatch Box Example - BoxDestroy %@crlf%%@crlf% 
", @FALSE, 1)
BoxCaption(1, "WinBatch BoxDestroy Example  Box 1")

BoxNew(2,"30,41,310,365",  1)
BoxDrawText(2, "0,500,1000,1000", "Box 2", @TRUE, 1)

BoxNew(3,"330,41,610,365", 1)
BoxDrawText(3, "0,500,1000,1000", "Box 3", @TRUE, 1)

BoxNew(4,"639,41,919,365",  2)
BoxDrawText(4, "0,500,1000,1000", "Box 4", @TRUE, 1)

for i=2 to 4
        Message("BoxDestroy", "Destroying Box Number %i%")
        BoxDestroy(i)
next

See Also:
BoxesUp, BoxNew



BoxDrawCircle
Draws an ellipse in a WinBatch box.

Syntax:
BoxDrawCircle(box ID, coordinates, style)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of circle, in virtual units

(upper-x    upper-y    lower-x    lower-y).
(i) style style of circle to be drawn.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws an ellipse on the screen using the current BoxPen for the outline, and the current BoxColor for the inside of 
the box.

Style:
0 empty circle with border
1 filled circle with border
2 filled circle with no border

Example:
;; sample script for BoxDrawCircle
BoxesUp("0,0,1000,1000", @normal) 
BoxColor(1,"0,0,255",4)
BoxDrawText(1, "0,500,1000,1000", "WinBatch Box Example - BoxDrawCircle ",
@FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawCircle Example")

BoxDrawCircle(1, "30,41,310,365", 0)
BoxDrawText(1, "30,381,310,400", "Style 0 - empty with border ", @FALSE, 1)

BoxDrawCircle(1, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,400", "Style 1 - filled with border ", @FALSE, 1)

BoxColor(1,"255,0,0",4)
BoxDrawCircle(1, "639,41,919,365", 2)
BoxDrawText(1, "639,381,919,400", "Style 2 - filled with no border ", @FALSE, 1)
Delay(5)

See Also:
BoxDrawLine, BoxDrawRect, BoxDrawText, BoxesUp, BoxNew



BoxDrawLine
Draws a line in a WinBatch box.

Syntax:
BoxDrawLine(box ID, coordinates)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates starting and ending points for a line, in virtual units

(start-x, start-y, end-x, end-y).

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a line from first point to the second using the current BoxPen.

Example:
;; sample script for BoxDrawLine
BoxesUp("100,100,800,800", @normal) 
BoxDrawText(1, "0,600,1000,1000", "WinBatch Box Example - BoxDrawLine ", @FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawLine Example")

co1=200
co2=200
co3=500
co4=500

For i=1 to 5
        TimeDelay(1)
        BoxDrawLine(1,"%co1%,%co2%,%co3%,%co4%")
        co1=co1+10
        co2=co2+-20
        co3=co3+-5
        co4=co4+15
next
TimeDelay(2)

See Also:
BoxDrawCircle, BoxDrawRect, BoxDrawText, BoxesUp, BoxNew



BoxDrawRect
Draws a rectangle in a WinBatch box.

Syntax:
BoxDrawRect(box ID, coordinates, style)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of rectangle, in virtual units

(upper-x    upper-y    lower-x    lower-y).
(i) style style of rectangle to be drawn.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a rectangle on the screen using the current BoxPen for the outline, and the current BoxColor for the inside of 
the box.

Style:
0 empty rectangle with border
1 filled rectangle with border
2 filled rectangle with no border

Example:
;; sample script for BoxDrawRect
BoxesUp("0,0,1000,1000", @normal) 
BoxColor(1,"255,0,0",0)
BoxDrawText(1, "0,900,1000,1000", "WinBatch Box Example - BoxDrawRect ",
            @FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawRect Example")

BoxDrawRect(1, "30,41,310,465", 0)
BoxDrawText(1, "30,500,310,665", "Style 0 - empty with border ",
            @FALSE, 1)

BoxDrawRect(1, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,365", "Style 1 - filled with border ",
            @FALSE, 1)
BoxColor(1,"0,0,255",0)
BoxDrawRect(1, "696,114,839,841", 2)
BoxDrawText(1, "696,881,839,841", "Style 2 - filled with no border ",
            @FALSE, 1)
Delay(5)

See Also:
BoxDrawCircle, BoxDrawLine, BoxDrawText, BoxesUp, BoxNew



BoxDrawText
Displays text in a WinBatch box.

Syntax:
BoxDrawText(box ID, coordinates, text, erase flag, alignment)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of bounding rectangle for text, in virtual units in virtual units (upper-x    upper-y    

lower-x    lower-y).
(s) text text to be displayed.
(i) erase flag @TRUE if background should be cleared; @FALSE if it shouldn't.
(i) alignment alignment mode for text.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws text on the screen using the current BoxTextColor and BoxTextFont.    Text may extend beyond the boxes 
boundaries if the allotted space is exceeded or size of the text is too large.

Alignment is a bitmask, consisting of one or more of the following optional flags (OR'ed together):
0 left justified
1 centered horizontally
2 right-justified
4 centered vertically
8 bottom-justified (single line only)
16 wrap long lines
32 adjust font so that text fills width of bounding rectangle (single line only)
64 right-justify text by adding space between words
128 clip (truncate) text if it doesn't fit within specified rectangle

Example:
;; sample code for BoxDrawText

BoxesUp("200,200,800,800", @normal) 
BoxDrawText(1, "300,300,500,500", "WinBatch Box Example - BoxDrawText ",
            @TRUE, 1)
BoxCaption(1, "WinBatch BoxDrawText Example")
BoxDrawText(1, "575,575,500,500", "Use BoxDrawText to display information to
            your user's. ", @TRUE, 1)
TimeDelay(5)

See Also:
BoxDrawCircle, BoxDrawLine, BoxDrawRect, BoxesUp, BoxNew



BoxesUp
Displays WinBatch boxes.

Syntax:
BoxesUp(coordinates, show mode)

Parameters:
(s) coordinates window coordinates for placement of top-level WinBatch

box, in virtual units (upper-x    upper-y    lower-x    lower-y).
(i) show mode @NORMAL, @ICON, @ZOOMED, or @HIDDEN.

Returns:
(i) @TRUE on success; @FALSE on failure.

Places a WinBatch box on the screen for which drawing tools can be defined.    "Coordinates" specify the placement 
on the screen when the window is not zoomed (maximized).    The "box ID" of this main box (window) is 1.    Up to 7 
more boxes (windows) may be defined with the BoxNew function.

Note:    Drawing tool definitions and drawing commands refer to a particular "box ID".    Different drawing tools can be 
defined for separate boxes.

Example:
;; sample script for BoxesUp
Message("WinBatch BoxesUp Example",
         "BoxesUp can display a box in Normal Mode. ")
BoxesUp("200,200,800,800", @normal) 
BoxDrawText(1, "500,200,500,200", "WinBatch Box Example - BoxesUp %@crlf%
Normal Mode", @FALSE, 1)
BoxCaption(1, "WinBatch BoxesUp Example - Normal Mode")

Message("WinBatch BoxesUp Example", "BoxesUp can display the box as an Icon.")
BoxDestroy(1)
BoxesUp("200,200,800,800", @icon) 
BoxDrawText(1, "500,200,500,200", "WinBatch Box Example - BoxesUp %@crlf% Icon
            Mode", @FALSE, 1)
BoxCaption(1, "WinBatch BoxesUp Example - Icon Mode")

Message("WinBatch BoxesUp Example", "BoxesUp can display in a Zoomed mode.")
BoxDestroy(1)
BoxesUp("200,200,800,800", @zoomed) 
BoxDrawText(1, "500,200,500,200", "WinBatch Box Example - BoxesUp %@crlf%
             Zoomed Mode", @FALSE, 1)
BoxCaption(1, "WinBatch BoxesUp Example - Zoomed Mode")

Message("WinBatch BoxesUp Example", "In addition, WinBatch can set a hidden
         mode to the box.")

See Also:
BoxNew



BoxMapMode
Sets the mapping mode for a WinBatch box.

Syntax:
BoxMapMode(box ID, map mode)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) map mode @ON to map coordinates to client scale (default).

One Unit is 1/1000 (or 0.1%) of the size of the current box.
@OFF for screen scale.    One unit is 1/1000 (or 0.1%) of
the size of the screen.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxMapMode defines how a functions "coordinate" parameters will be interpreted.    The default setting, @ON, 
allows WinBatch boxes to automatically resize themselves per the user's monitor adjustments. In the default 
"mapping" mode each window is assumed to be 1000x1000.    This makes it easy to write a WinBatch program that 
will run on anybody's screen.    

Note:    The Default setting is highly recommended.

Example:



;; sample script for BoxMapMode
IntControl(12,5,0,0,0)
title="BoxMapMode Example"
BoxesUp("100,100,900,900",@ZOOMED)

BoxMapMode(1,1)   ; Default map mode
BoxColor(1,"255,255,0",0)
BoxPen(1,"0,0,255",10)
BoxTextFont(1, "", 30, 0, 0)
BoxTextColor(1,"0,0,0")

BoxDrawRect(1,"50,50,150,150",1)
BoxDrawCircle(1,"200,50,350,150",1)
BoxDrawLine(1,"400,100,500,100")
BoxDrawLine(1,"450,50,450,150")
BoxDrawText(1, "50,160,500,190", "Map Mode = 1 Using sizes based on window",
            0, 0)

BoxMapMode(1,0)
BoxColor(1,"255,255,0",0)
BoxPen(1,"0,0,255",10)
BoxTextFont(1, "", 30, 0, 0)

BoxDrawRect(1,"50,200,150,300",1)
BoxDrawCircle(1,"200,200,350,300",1)
BoxDrawLine(1,"400,250,500,250")
BoxDrawLine(1,"450,200,450,300")
BoxDrawText(1, "50,310,500,340", "Map Mode = 0 Using sizes based on screen",
0, 0)

Message(title,"Note that both sets of objects look pretty much the same.")

WinPlace(0,0,750,750,"")
Message(title,"Note that when we changed the size of the window the MapMode=1
object were resized proportionally, whileas the MapMode=0 objects stayed the
same.")
WinPlace(0,0,500,500,"")
Message(title,"MapMode=1 objects resized again.")
WinPlace(0,0,200,1000,"")
Message(title,"Note that while most objects scale reasonably well, fonts are
based on Window height.")
WinPlace(0,0,1000,200,"")
Message(title,"Giving us teeny tiny fonts in this sort of Window.")

WinPlace(50,50,950,950,"")
BoxMapMode(1,1)   ; Default map mode
BoxTextFont(1, "", 30, 0, 0)
BoxTextColor(1,"255,0,0")
BoxDrawText(1,"50,500,500,700","Resize the window with the mouse and watch
what happens.  Hit ESC when you are done. (This message drawn with
MapMode=1)",0,16)

WaitForKey("{ESC}","","","","")

See Also:
BoxesUp, BoxNew





BoxNew
Creates a WinBatch box.

Syntax:
BoxNew(box ID, coordinates, style)

Parameters:
(i) box ID An ID number from 1 - 8 specifying the desired

WinBatch box.    Maximum boxes allowed, 8.
(s) coordinates dimensions of box, in virtual units

(upper-x    upper-y    lower-x    lower-y).
(i) style style of box to create.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function makes a new box inside the top level (box ID 1) box.    If an existing box ID is used, the newly specified 
coordinates and style will be adopted.    

Style allows a selection from three different kinds of boxes.
0 No border
1 Border
2 Border and caption

Example:

;; sample script for BoxNew
BoxesUp("0,0,1000,1000", @normal) 
BoxDrawText(1, "500,500,500,500", "WinBatch Box Example - BoxNew ", @FALSE, 1)
BoxCaption(1, "WinBatch BoxNew Example")
BoxColor(1,"255,255,0",0)
BoxDrawRect( 1, "0,0,1000,1000", 2) 

BoxNew(2, "30,41,310,465", 0)
BoxDrawText(1, "30,681,310,665", "Style 0 - No border ", @FALSE, 1)

BoxNew(3, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,365", "Style 1 - Border ", @FALSE, 1)

BoxNew(4, "696,114,839,841", 2)
BoxDrawText(1, "696,881,839,841", "Style 2 - Border with caption ", @FALSE, 1)
BoxCaption(4, "Style 2 BoxNew")
Delay(7)

See Also:
BoxesUp



BoxPen
Sets the pen for a WinBatch box.

Syntax:
BoxPen(box ID, color, width)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) color color of pen to use.
(i) width width of pen to use, in virtual units.

Returns:
(i) @TRUE on success; @FALSE on failure.

Defines the color and width of a "pen".    Pens are used to draw lines and borders of rectangles and ellipses.    The 
default is black, 1 pixel wide. 

Width is defined according to the current mapping mode, (see BoxMapMode).    In    the default mapping mode, a 
width of 10 is 1% of whichever is smaller, the width or the height of the box.

"Color" is a string in the form: "red, green, blue".    

BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"
GREEN="0,255,0"

DKGRAY="128,128,128"
GRAY="192,192,192"
DKRED="128,0,0"
DKGREEN="0,128,0"

BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"
DKCYAN='0,128,128"

Example:
;; sample script for BoxPen
BoxesUp("100,100,900,900", @normal) 
BoxColor(1,"255,255,0",0)
BoxDrawRect( 1, "0,0,1000,1000", 2) 
BoxDrawText(1, "0,200,1000,1000", "WinBatch Box Example - BoxPen ",
            @FALSE, 1)
BoxCaption(1, "WinBatch BoxPen Example")

BoxColor(1,"0,0,255", 0)
BoxPen(1,"255,0,0",25)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")

delay(5)
See Also:

BoxesUp, BoxNew, BoxColor, BoxTextColor



BoxTextColor
Sets the text color for a WinBatch box.

Syntax:
BoxTextColor(box ID, color)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) color text color.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxTextColor defines the color of text for a particular box.    The default is black.

"Color" is a string in the form: "red, green, blue".    

BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"
GREEN="0,255,0"

DKGRAY="128,128,128"
GRAY="192,192,192"
DKRED="128,0,0"
DKGREEN="0,128,0"

BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"
DKCYAN="0,128,128"

Example:
;; sample script for BoxTextColor
BoxesUp("200,200,800,800", @normal) 
BoxCaption(1, "WinBatch BoxTextColor Example")
x1="0,0,0"          ;BLACK
x2="0,0,128"    ;DKBLUE
x3="255,0,0"        ;RED  
x4="0,255,0"        ;GREEN
x5="255,0,255"     ;PURPLE
x6="255,255,0"     ;YELLOW
x7="0,255,255"     ;CYAN 

for i=1 to 7
      BoxTextColor(1,x%i%)
      BoxDrawText(1, "0,350,1000,1000", "WinBatch Box Example-BoxTextColor", @True, 
1)
      delay(2)
next

See Also:
BoxesUp, BoxNew, BoxColor, BoxTextFont, BoxPen



BoxTextFont
Sets the font for a WinBatch box.

Syntax:
BoxTextFont(box ID, name, size, style, pitch & family)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) name name of font typeface, or "".
(i) size size of font, in virtual units.
(i) style style flags for font.
(i) font pitch, family and character set.  See below.

Returns:
(i) @TRUE on success; @FALSE on failure.

When defining the font using BoxTextFont, size is based on mapping mode.    In the default, a height of 100 is 10% 
of the height of the box.    

If a blank string is specified for "name", the system will select the best available font based upon the other parameters
supplied.

Style      (the following numbers may be added together):
0 Default.
1-99 Weight (40 = Normal, 70 = Bold)
100 Italics
1000 Underlined

A style of 1170 give you a bold, underlined, italic font.

Pitch & Family parameters do not override the typeface supplied in the Font parameter.    If a match cannot be made, 
(font name mis-spelled, font not on system) they supply a general description for selecting a default font.    To 
combine one pitch flag with one family flag, use the binary OR ("|") operator.

Pitch:
0 Default
1 Fixed pitch
2 Variable pitch

Family:
0 Default
16 Roman (Times Roman, Century Schoolbook, etc.)
32 Swiss (Helvetica, Swiss, etc.)
48 Modern (Pica, Elite, Courier, etc.)
64 Script 
80 Decorative    (Old English, etc.)

In addition to the existing flags for pitch and family, you can now specify one of the following flags specifying a 
character set (combined with the pitch and/or family flags using the binary "OR" ("|") operator):

Character Set:
ANSI_CHARSET 0 (default)
DEFAULT_CHARSET 256
SYMBOL_CHARSET 512



SHIFTJIS_CHARSET 32768 (Kanji)
HANGEUL_CHARSET 33024
GB2312_CHARSET 34304
CHINESEBIG5_CHARSET 34816
OEM_CHARSET 65280

The following flags are for Windows 95/98 and NT 4.0 only:
JOHAB_CHARSET 33280
HEBREW_CHARSET 45312
ARABIC_CHARSET 45568
GREEK_CHARSET 41216
TURKISH_CHARSET 41472
THAI_CHARSET 56832
EASTEUROPE_CHARSET 60928
RUSSIAN_CHARSET 52224
MAC_CHARSET 19712
BALTIC_CHARSET 47616

The character set flags will not override the typeface specified by the font "name" parameter.    If you would rather 
specify a character set than a specific typeface, specify a blank string ("") for font "name".

Note: If you wish to use a Kanji (Japanese) font, you must specify the SHIFTJIS_CHARSET flag (32768).

Example:
;; sample script for BoxTextFont
BoxesUp("100,100,900,900", @normal) 
BoxCaption(1, "WinBatch BoxTextFont Example")
x1="0,0,0"          ;BLACK
x2="0,0,128"        ;DKBLUE
x3="255,0,0"        ;RED  
x4="255,0,255"     ;PURPLE
x5="0,0,255"        ;BLUE
f1="Times Roman"
f2="Helvetica"
f3="Courier New"
f4="Brush Script MT"
f5="Book Antiqua"
fam=16
size=20

for i=1 to 5
     BoxTextColor(1,x%i%)
     BoxTextFont(1, f%i%, size, 0, fam)
     BoxDrawText(1, "1%size%,2%size%,1000,1000", "WinBatch Box Example-
                  BoxTextFont", @False, 0)
     Fam=fam+16
     size=size+16
     TimeDelay(2)
next

See Also:
BoxesUp, BoxNew, BoxTextColor



BoxUpdates
Sets the update mode for, and/or updates, a WinBatch box.

Syntax:
BoxUpdates(box ID, update flag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) update flag see below.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxUpdates controls how particular boxes are updated.    Screen updates can be suppressed so that images seem 
to suddenly appear on the screen, rather than slowly form as they are drawn.    This function is rarely required.

Update flag:
0 Suppress screen updates
1 Enable updates (this is the default setting)
2 Catch up on updates
3 Redraw the entire box

Example:



title="BoxUpdates Example"
BoxesUp("100,100,900,900",@ZOOMED)
BoxColor(1,"255,255,0",0)
BoxDrawRect(1,"0,0,1000,1000",2)
BoxCaption(1,title)
BoxDataTag(1,"NEARTOP")
Message(title,"First we show drawing objects with the default (code=1) mode of
BoxUpdates")

gosub drawalot
Message(title,"You could see the objects being drawn.  No bad, but users could
see objects being built.  Next we are clearing the screen with a BoxDataClear
and redrawing it with a BoxUpdates code=3")
BoxDataClear(1,"NEARTOP")
BoxUpdates(1,3)

BoxUpdates(1,0)
gosub drawalot
Message(title,"Next we show update off processing followed by a catch-up (code
= 2) request.  Note that it draws faster once it gets started")
BoxUpdates(1,2)
Message(title,'Faster.  It can make complicated objects just "appear" on the
screen.')
Message(title,"Now, we are going to redraw the screen with a BoxUpdates
code=3.  Should be quick.  Don't blink.")
BoxUpdates(1,3)
Message(title,"That should have been pretty quick.  Next is some quick,
repetitive drawing using the code=3 technique.")
BoxUpdates(1,1)
BoxColor(1,"255,255,255",0)
BoxDrawRect(1,"0,0,1000,1000",2)
BoxDataClear(1,"TOP")

BoxUpdates(1,0)
BoxColor(1,"255,0,0",0)
BoxDrawRect(1,"100,100,200,200",1)
BoxDrawCircle(1,"300,100,500,200",1)

BoxDrawRect(1,"100,300,200,400",1)
BoxDrawCircle(1,"300,300,500,400",1)
BoxDrawRect(1,"100,500,200,600",1)
BoxDrawCircle(1,"300,500,500,600",1)
BoxDrawRect(1,"100,700,200,800",1)
BoxDrawCircle(1,"300,700,500,800",1)

BoxColor(1,"0,0,255",0)
BoxDrawRect(1,"100,100,200,200",1)
BoxDrawCircle(1,"300,100,500,200",1)
BoxDrawRect(1,"100,300,200,400",1)
BoxDrawCircle(1,"300,300,500,400",1)
BoxDrawRect(1,"100,500,200,600",1)
BoxDrawCircle(1,"300,500,500,600",1)
BoxDrawRect(1,"100,700,200,800",1)
BoxDrawCircle(1,"300,700,500,800",1)

BoxColor(1,"0,255,0",0)
BoxDrawRect(1,"100,100,200,200",1)
BoxDrawCircle(1,"300,100,500,200",1)
BoxDrawRect(1,"100,300,200,400",1)
BoxDrawCircle(1,"300,300,500,400",1)
BoxDrawRect(1,"100,500,200,600",1)



BoxDrawCircle(1,"300,500,500,600",1)
BoxDrawRect(1,"100,700,200,800",1)
BoxDrawCircle(1,"300,700,500,800",1)

BoxColor(1,"255,255,0",0)
BoxDrawRect(1,"100,100,200,200",1)
BoxDrawCircle(1,"300,100,500,200",1)
BoxDrawRect(1,"100,300,200,400",1)
BoxDrawCircle(1,"300,300,500,400",1)
BoxDrawRect(1,"100,500,200,600",1)
BoxDrawCircle(1,"300,500,500,600",1)
BoxDrawRect(1,"100,700,200,800",1)
BoxDrawCircle(1,"300,700,500,800",1)

BoxUpdates(1,2)
for x=1 to 100
   BoxUpdates(1,3)
next
Message(title,"That's all folks")
exit

:DRAWALOT
BoxColor(1,"0,0,255",0)
BoxPen(1,"255,0,0",10)
for i=0 to 8
  p1=50+i*100
  p2=p1+75 
  BoxDrawRect(1,"%p1%,50,%p2%,125",1)
  BoxDrawRect(1,"%p1%,150,%p2%,225",1)
  BoxDrawRect(1,"%p1%,250,%p2%,325",1)
  BoxDrawRect(1,"%p1%,350,%p2%,425",1)
  BoxDrawRect(1,"%p1%,450,%p2%,525",1)
  BoxDrawRect(1,"%p1%,550,%p2%,625",1)
  BoxDrawRect(1,"%p1%,650,%p2%,725",1)
  BoxDrawRect(1,"%p1%,750,%p2%,825",1)
  BoxDrawRect(1,"%p1%,850,%p2%,925",1)
next
return  

See Also:
BoxesUp, BoxNew



Drawing Stack Management
In general, WinBatch lets you draw objects in various boxes using simple linear programming as with true message-
based Windows programming.    However, there is a fundamental discrepancy between the message-based Windows
programming methods, and the traditional linear method used by WinBatch.    

In a normal Windows application, the application must be ready to redraw all or any portion of its window at any time. 
This adds considerable complexity to a true Windows program.    In WinBatch, the programmer is shielded from the 
gory details of the dynamic redrawing required by Windows, and maintains the simple, traditional linear programming 
style.

In order to do this, WinBatch maintains a small database of the Box commands requested by the programmer, and 
refers to this database when Windows requests a redraw. In general, and for simpler applications, the existence of 
this database is completely transparent to the programmer.    There are cases, however, in which the database must 
be managed by the programmer to avoid reaching the maximum limits of the database.    If the maximum limits are 
reached, the program will die with a Box Stack exceeded error.

If there are some objects that constantly change, such that the limit of about 150 Box commands in the stack will be 
exceeded, then you must manage the Box Data.    The idea is to draw all the fixed, non-changing objects first, and 
then place a "TAG" into the Data stack.    Then draw the first version of the constantlt changing object(s).    When it 
comes time to update those objects, a BoxDataClear will erase all items added since the (BoxDataTag) "TAG", and 
all remaining data space will again be available for reuse.    

The thermometer bar and the text for the note in the setup program use this feature.    All of the examples that do 
continuous screen draws also use these functions    



BoxDataClear
Removes commands from a WinBatch box command stack.

Syntax:
BoxDataClear(box ID, tag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) tag tag to be removed.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function removes all commands added since the (BoxDataTag) "tag" from the command stack. "Tag" is not 
removed. All buttons and Box commands after the tag are forever erased.

Example:
;; sample script for BoxDataClear
BoxesUp("100,100,900,900", @normal) 
BoxColor(1,"255,255,0",0)
BoxDrawRect( 1, "0,0,1000,1000", 2) 
BoxDrawText(1, "0,200,1000,1000", "WinBatch Box Example - BoxDataClear ",
            @FALSE, 1)
BoxCaption(1, "WinBatch BoxDataClear Example")
BoxDataTag(1, "tag1")

BoxColor(1,"0,0,255", 0)
BoxPen(1,"255,0,0",25)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")
TimeDelay(2)

BoxDataClear(1, "tag1")
BoxDrawText(1, "0,240,1000,1000", "BoxDataClear - Clearing Tags to redraw
            contents", @FALSE, 1)
TimeDelay(3)

BoxColor(1,"255,0,0", 0)
BoxPen(1,"0,0,255",50)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")
TimeDelay(4)

See Also:
BoxesUp, BoxNew, BoxDataTag



BoxDataTag
Creates a tag entry in a WinBatch box command stack.
Syntax:

BoxDataTag(box ID, tag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) tag tag to be created.

Returns:
(i) @TRUE on success; @FALSE on failure.

Places a tag into the data stack for the specified box.    Usually one tag per box is all that is needed.    Multiple tags 
are allowed, but not advised.    The tag "TOP" is automatically placed at the top of the data stack .

Example:
;; sample script for BoxDataTag
BoxesUp("100,100,900,900", @normal) 
BoxColor(1,"255,255,0",0)
BoxDrawRect( 1, "0,0,1000,1000", 2) 
BoxDrawText(1, "0,200,1000,1000", "WinBatch Box Example - BoxDataTag ",
            @FALSE, 1)
BoxCaption(1, "WinBatch BoxDataTag Example")
BoxDataTag(1, "tag1")

BoxColor(1,"0,0,255", 0)
BoxPen(1,"255,0,0",25)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")
TimeDelay(2)

BoxDataClear(1, "tag1")
BoxDrawText(1, "0,240,1000,1000", "BoxDataTag - Clearing Tags to redraw
            contents", @FALSE, 1)
TimeDelay(3)

BoxColor(1,"255,0,0", 0)
BoxPen(1,"0,0,255",50)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")
TimeDelay(4)

See Also:
BoxesUp, BoxNew, BoxDataClear



WIL Extenders

Network and Other extenders are documented fully in the on-
line help files.    For more extensive information look there, for a 
brief overview, see below.

WIL extender Dlls are special Dlls designed to extend the built-in function 
set of the WIL processor.    These Dlls typically add functions not provided in 
the basic WIL set, such as network commands for particular networks 
(Novell, Windows for WorkGroups, LAN Manager and others), MAPI, TAPI, 
and other important Application Program Interface functions as may be 
defined by the various players in the computer industry from time to time.    
These Dlls may also include custom built function libraries either by the 
original authors, or by independent third party developers.    (An Extender 
SDK is available).    Custom extender Dlls may add nearly any sort of 
function to the WIL language, from the mundane network math or database 
extensions, to items that can control fancy peripherals, including laboratory 
or manufacturing equipment.

WIL extenders must be installed separately.    Up to 10 extender Dlls may be
added.    The total number of added items may not exceed 100 functions and
constants.    The AddExtender function must be executed before attempting
to use any functions in the extender library.    The AddExtender function 
should be only executed once per exender in each WIL script that requires 
it.

To use a WIL extender, at the top of each script in which you use network 
commands add the appropriate extender with the AddExtender command.

AddExtender(extender filename)

Remember you can add up to 10 extender Dlls or a combined total of 100 
functions.

Some of the WIL extender DLL's, that are not included on the distribution 
disks, can be downloaded from our website at http://www.winbatch.com

             NetWare Extender  

             Win32 Network   
Extender

             Basic Win 3.1   
Network Extender

             Multinet /   
WinForWrkGrp Network 
Extender



NetWare Extenders

These Windows Interface Language network extenders provide 
standard support for Novell networks.    They may be used in addition 
with other extenders, such as the Win32 Network extender or with 
each other.    

The NetWare functions can be used within WIL scripts or can be 
compiled into WIL executables. NetWare 3x and NetWare 4x extenders
are available for both Windows 3.1 and Windows 95/98.    Windows NT 
requires the 32 bit NetWare 3x or 4x extenders be used in conjunction 
with the NetWare Client 32.

Selecting the appropriate extender for use with your system can be a 
little tricky.    Both NetWare 3 and NetWare 4 have their own extenders 
and own set of functions.    In addition, the extender must match the 
Windows operating system.

These WIL extenders provide standard support for Novell 3.x 
networks.    

Windows 3.1 and Windows for WorkGroups 

AddExtender("wwn3x16i.dll")
Other required DLL's: nwcalls.dll

Windows 95/98 and Windows NT require separate extenders.    
For Windows 95/98 with a Windows 3.1 NetWare Client (not 
Windows NT).

AddExtender("wwn3z32i.dll")
Other required DLL's: nwcalls.dll, wwn3z16i.dll

Windows 95/98 and INTEL versions of Windows NT running 
NetWare Client 32 

AddExtender("wwn3x32i.dll")
Other required DLL's: nwcalls.dll

This    dll is designed to work with NetWare Client 32.    NetWare 
Client 32 can be downloaded from:    
http://netwire.novell.com/home/client/client32

             WIL Extenders  

             Win32 Network   
Extender

             Basic Win 3.1   
Network Extender

             Multinet /   
WinForWrkGrp Network 
Extender

These WIL extenders provide standard support for Novell 
4.x networks.

Windows 3.1 and Windows for WorkGroups 

AddExtender("wwn4x16i.dll")
Other required DLL's:    nwcalls.dll, nwnet.dll, nwlocale.dll.

Windows 95/98 and INTEL versions of Windows NT running 



NetWare Client 32 

AddExtender("wwn4x32i.dll")
Other required DLL's: nwcalls.dll

This    dll is designed to work with NetWare Client 32.    NetWare 
Client 32 can be downloaded from:    
http://netwire.novell.com/home/client/client32. 

For more information and a list of functions see the 
NetWare Extender Help File.



Win32 Network Extenders

These Windows Interface Language Network extenders provide 
standard support for computers running 32 bit versions of Windows, 
such as Windows NT and Windows 95/98.    

There are 3 separate extenders for Windows 95-98 client /95-98 server 
(WWW9532i.DLL), Windows 95-98 client /NT server (WWW9X32i.DLL) 
and Windows NT (WWWNT32i.DLL). 

For Windows 95-98 client /95-98 server use…
(same extender for both 95 and Windows 98) 

AddExtender("WWW9532i.DLL")
Other required DLL's:    none

For Windows 95-98 client /NT server use…

AddExtender("WWW9X32i.DLL")
Other required DLL's: RADMIN32.DLL, RLOCAL.DLL

For Windows NT client / NT server use…

AddExtender("WWWNT32i.DLL")
Other required DLL's:    none

For more information and a list of functions see the Win32 
Extender Help file. 

             WIL Extenders  

             NetWare Extender  

             Basic Win 3.1   
Network Extender

             Multinet /   
WinForWrkGrp Network 
Extender



Basic Network Extender

This particular Dll, wwn3a16i.dll, is for use on 16-bit versions of 
Windows on Intel 386, 486, and 586 type processors.    It provides 
basic links to networks (like Novell) for the Windows 3.1 environment. 

It is not designed for Windows for WorkGroups, Windows 95, or for 
other versions of Windows.    Your system may require the use of one 
of the alternate extender Dlls available for those products.    In 
addition, some networks, like Novell, have better, more fully featured 
extenders available.

For Windows 3.1 use…

AddExtender("WWW3A16i.dll")
Other required DLL's:    none

For more information and a list of functions see the Basic 
Net Extender Help file. 

             WIL Extenders  

             NetWare Extender  

             Win32 Network   
Extender

             Multinet /   
WinForWrkGrp Network 
Extender



Multinet Network Extender

This particular Dll, wwwn16i.dll, is for use on 16-bit versions of 
Windows on Intel 386, 486, and 586 type processors.    It is designed 
for versions of Windows containing the Microsoft MultiNet network 
driver support.    This includes Windows for WorkGroups and newer 
versions of Windows.    

The commands in this package handle the Windows and Microsoft 
networks and are designed to work in conjunction with other 
extenders for other networks, such as the extenders for Novell 
networks.    Your system may require the use of one the alternate Dlls. 

For Windows for WorkGroups use…

AddExtender("WWWN16i.dll")
Other required DLL's:    none

For more information and a list of functions see the Multinet
Extender Help file. 

             WIL Extenders  

             NetWare Extender  

             Win32 Network   
Extender

             Basic Win 3.1   
Network Extender



AddExtender(filename)
Installs a WIL extender Dll.

Syntax:
AddExtender(filename)

Parameters:
(s) filename WIL extender Dll filename.

Returns:
(i) @TRUE if function succeeded.

@FALSE if function failed.

WIL extender Dlls are special Dlls designed to extend the built-in function set of the WIL processor.    These Dlls 
typically add functions not provided in the basic WIL set, such as network commands for particular networks (Novell, 
Windows for WorkGroups, LAN Manager and others), MAPI, TAPI, and other important Application Program Interface
functions as may be defined by the various players in the computer industry from time to time.    These Dlls may also 
include custom built function libraries either by the original authors, or by independent third party developers.    (An 
Extender SDK is available).    Custom extender Dlls may add nearly any sort of function to the WIL language, from the
mundane network, math or database extensions, to items that can control fancy peripherals, including laboratory or 
manufacturing equipment.

Use this function to install extender Dlls as required.    Up to 10 extender Dlls may be added.    The total number of 
added items may not exceed 200 functions and constants.    The AddExtender function must be executed before 
attempting to use any functions in the extender library.    The AddExtender function should be only executed once in 
each WIL script that requires it.

The documentation for the functions added are supplied either in a separate manual or disk file that accompanies the 
extender Dll.

Example:
; Add vehicle radar processing dll controlling billboard visible to
; motorists, and link to enforcement computers.
; The WIL Extender SPEED.DLL adds functions to read a radar speed
; detector(GetRadarSpeed) , put a message on a billboard visible to 
; the motorist (BillBoard), take a video of the vehicle (Camera), and
; send a message to alert enforcement personnel (Alert) that a 
; motorist in  violation along with a picture id number to help 
; identify the offending vehicle and the speed which it was going.
;
AddExtender("SPEED.DLL")
BillBoard("Drive Safely")
While @TRUE

; Wait for next vehicle
while GetRadarSpeed()<5 ; if low, then just radar noise

Yield ; wait a bit, then look again
endwhile
speed=GetRadarSpeed() ; Something is moving out there
if speed < 58

BillBoard("Drive Safely") ; Not too fast.  
else



if speed < 63
BillBoard("Watch your Speed") ; Hmmm a hot one

else
if speed < 66
BillBoard("Slow Down") ; Tooooo fast

else
BillBoard("Violation  Pull Over")
pictnum = Camera() ; Take Video Snapshot
Alert(pictnum, speed); Pull this one over

endif
endif

endif
endwhile

See Also:
DllCall  (found    in main WIL documentation)



WIL Dialog Editor

Visual 
programming of 
dialog boxes is 
quick and 
accurate. Use 
generic variable 
names so you can 
reuse your favorite 
dialogs.
You can have as 
many as 100 
controls in a 
WinBatch dialog. 
However, too many
controls can be 
confusing. Aim for 
simple dialogs with
a consistent 
appearance 
between different 
ones.

The WIL Dialog Editor offers quick 
production of custom dialog boxes for your
WinBatch programs.
It provides a convenient method of creating
dialog box templates for use with the 
Dialog function. 

[Note: Another way to create graghical
dialogs, is to use the HTML Extender. 
For further information see the HTML 
extender help file.]

It displays a graphical representation of a 
dialog box, and allows you to create, 
modify, and move individual controls 
which appear in the dialog box. 
After you have defined your dialog box, 
the Dialog Editor will generate the 
appropriate WIL code, which you can save 
to a file or copy to the Clipboard for 
pasting into your WIL program.
You can include the dialog template code 
directly in your batch code, or you can use 
the batch language "Call" command to 
execute the dialog template. For example:

Call("Sample.WDL", "")

             Getting Started  
             Using the Dialog Editor  
             Dialog Box Caption  
             Control Attributes  

Getting Started

Using the Dialog Editor is easy. These steps offer a general 
overview for using the Dialog Editor as well as a quick way to 
become comfortable with dialog box construction.

1. Run the Dialog Editor.    
2. Familiarize yourself with three standard menus in this 

program; FILE, EDIT, and HELP.
3. Give your dialog box a name.
4. Decide the size of your dialog box.
5. Add a control, i.e. an OK button.
6. Save your dialog box.
7. Use your dialog box within another script

             Using the Dialog Editor  
             Dialog Box Caption  
             Control Attributes  





Run the Dialog Editor

Launch the dialog editor executable.    There is both a 16 bit and a 
32 bit version of the Dialog Editor. 

For 16 bit Windows use:    wwdlg16i.exe

For 32 bit Windows use:    WIL Dialog Editor.exe

The editor will look like the following:

             Getting Started  
             Using the Dialog Editor  
             Dialog Box Caption  
             Control Attributes  
             Menu Commands  



Menu Commands

There are three standard menus in this program; FILE, EDIT, and 
HELP.

             Getting Started  
             Using the Dialog Editor  
             Dialog Box Caption  
             Control Attributes  



File

New
When you select New, any currently loaded template will be 
discarded and the slate will be clean for a new dialog.    You will be
prompted to enter the caption (title) for your dialog box, and a WIL
variable    name used to refer to the dialog box in the WIL scripts.

Load
Loads a dialog template from a file.

Save
Saves a dialog template to the current file.

Save As
Saves the dialog template to a file using a different filename.

Load from Clipboard
Loads a dialog template from the Windows Clipboard.

Save to Clipboard
Saves the dialog template to the Windows Clipboard.

             Getting Started  
             Using the Dialog Editor  
             Edit  
             Help  



Edit

Change Caption/Name
Allows you to change the Dialog caption (title) and/or the variable 
name used to refer to the dialog.

Note:    Left Mouse double-clicking the dialog box background will
also execute this menu item.

Add Control
Adds a new control to your dialog template.

Note:    Right Mouse double-clicking has the same effect.

Delete Control
Surprisingly enough, Delete Control does not actually delete a 
control.    It just reminds you how to do it.    To delete a control, 
position the mouse cursor over the control and press the delete 
key.

Show Script
Displays the WIL script generated during the dialog edit session.    
Once you learn how the dialog scripts operate, viewing the script 
is a quick way to scan for errors.    You will notice that some script 
lines cannot be viewed in their entirety, in which case simply 
double click it to view the entire line.

GUI Font
Uses the new style font in the dialog for Windows 95/98 and NT 
4.0. If running Windows 95/98 or NT 4.0 the GUI font is used as 
default.

note: Intcontrol(52,0,1,0,0) can change font to be displayed as 
system font.

System Font
Uses the System font in the dialog for Windows 3.x and NT 3.5. If 
running Windows 3.x or NT 3.5    the Sytem font is used as default.

             Getting Started  
             Using the Dialog Editor  
             File  
             Help  



Help

Dialog Editor Help
Displays the Index of the On-line help information.

How to use Help
Activates the Microsoft Windows Index to Using Help.

About
Displays the WIL Dialog Editor About dialog which includes the 
version number of the program.

             Getting Started  
             Using the Dialog Editor  
             File  
             Edit  



Size the Dialog Box

To control the size of your dialog box, resize the WIL Dialog 
Editor. Your dialog will be the same size as the editor's window.

             Getting Started  
             Using the Dialog Editor  
             Dialog Box Caption  
             Control Attributes  



Using the Dialog Editor

You can visually design your dialog box on the screen and then save 
the template either to a .WDL file or the Windows Clipboard.

The WIL Dialog Editor allows you to create dialog box templates for 
WIL using the WDL* format. As you visually design your dialog box on 
the screen, the Dialog Editor writes the WIL script statements 
necessary to create and display the dialog. Save the template as 
either a .WDL files or to the Windows Clipboard.

Take a peek at the resulting script with the File ShowScript command 
to begin to get used to what WIL dialog scripts look like.    For more 
information on what the code means see Decipher the Script. 

Finally, incorporate the code created with the Dialog Editor into a WIL
script.    

* WDL is the extension automatically given to WIL scripts created with 
the Dialog Editor.

             Getting Started  
             Running WDL Scripts  
             Saving WDL Scripts  
             Decipher the Script  
             Dialog Box Caption  
             Control Attributes  
             Menu Commands  



Running WDL Scripts

The Dialog Editor saves dialog boxes with an extension of .WDL which
is pre-associated with the WIL interpreter.    There are several ways to 
utilize finished dialog boxes.

Manually, .WDL files can be launched from the Windows 95/98/NT 
Explorer by double-clicking on the filename or by entering the filename
into the Windows 95/98 "Start…Run.." menu option.    

Within WIL scripts, .WDL files can be initiated using either the Run or 
the Call command.    Remember to set your variables either in the 
WIL script or at the top of the .WDL code.

Run("example.wdl", "")
;or
Call("example.wdl", "")

With a little copying and pasting, a dialog box can be completely 
integrated into a WIL script.    The Dialog Editor File/Save to 
Clipboard feature allows an easy way to put the code into the 
clipboard.    Use the keyboard command 'Control v' to paste the code 
into the script.    The entire code can be placed at the point in the script
at which it will be executed.    

However, if the dialog box needs to be accessed multiple times, it is 
more efficiently utilized as a sub-routine.    A GoSub command will 
send the WIL processing to the dialog sub-routine and return to the 
point of origin. (See the WIL manual or on-line help for more 
information on GoSub)    Alternatively, execution of a dialog box will 
occur whenever the dialogs final statement is encountered in the 
script.    

ButtonPushed=Dialog("mydialog")

             Getting Started  
             Saving WDL Scripts  
             Decipher the Script  
             Dialog Box Caption  
             Control Attributes  

Example:
miniFormat=`WWWDLGED,5.0`

miniCaption=`Mini Example`
miniX=100
miniY=42
miniWidth=132
miniHeight=73
miniNumControls=4

mini01=`40,56,51,DEFAULT,PUSHBUTTON,DEFAULT,"GO",1`
mini02=`6,22,51,DEFAULT,RADIOBUTTON,station,"am",1`
mini03=`6,38,51,DEFAULT,RADIOBUTTON,station,"fm",2`
mini04=`28,4,75,DEFAULT,STATICTEXT,DEFAULT,"Just a quickie example"`

ButtonPushed=Dialog("mini")
Message("Times Run", "1")



ButtonPushed=Dialog("mini")
Message("Times Run", "2")

ButtonPushed=Dialog("mini")
Message("Times Run", "3")



Saving WDL Scripts

Once you are happy with your work, choose "Save" or "SaveAs" from
the File menu to save your work to a file.    Choose "Save to 
Clipboard" to put the work into the clipboard so that it can be easily 
pasted into one of your WIL scripts.

             Getting Started  
             Running WDL Scripts  
             Decipher the Script  



ShowScript

Here is an example of what a WIL Dialog Editor script looks like.    
For information on what it all means, see    Decipher the Script

             Using the Dialog Editor  
             Running WDL Scripts  

ExampleFormat=`WWWDLGED,5.0`

ExampleCaption=`Dialog Editor Example`
ExampleX=120
ExampleY=50
ExampleWidth=179
ExampleHeight=160
ExampleNumControls=12

Example01=`16,136,72,DEFAULT,PUSHBUTTON,DEFAULT,"OK",1`
Example02=`97,136,72,DEFAULT,PUSHBUTTON,DEFAULT,"Cancel",0`
Example03=`120,40,48,DEFAULT,RADIOBUTTON,music,"Blues",1`
Example04=`120,56,56,DEFAULT,RADIOBUTTON,music,"Jazz",2`
Example05=`120,72,56,DEFAULT,RADIOBUTTON,music,"Rock",3`
Example06=`24,104,112,DEFAULT,CHECKBOX,volume,"LOUD!",1`
Example07=`24,120,104,DEFAULT,CHECKBOX,volume2,"Quiet",2`
Example08=`8,88,64,DEFAULT,STATICTEXT,DEFAULT,"VOLUME"`
Example09=`9,6,164,DEFAULT,STATICTEXT,DEFAULT,"Music Selection - What is your 
listening pleasure?"`
Example10=`16,40,48,40,ITEMBOX,tunes,DEFAULT`
Example11=`112,24,56,DEFAULT,STATICTEXT,DEFAULT,"Type Preferred?"`
Example12=`16,24,49,DEFAULT,VARYTEXT,song,"Choose a title"`

ButtonPushed=Dialog("Example")



Decipher the Script

The Dialog Editor follows a specific format when creating your script.    
For example, here is a dialog box script we created.

The first line sets the format and specifies the version of the Dialog 
Editor being used.

ExampleFormat=`WWWDLGED,5.0`

The next section establishes the caption which will appear in the title 
bar of the dialog box along with the coordinates, size and number of 
controls in the dialog box.

ExampleCaption=`Dialog Editor Example`
ExampleX=120
ExampleY=50
ExampleWidth=179
ExampleHeight=160
ExampleNumControls=12

The third section contains the code for the actual controls.    Each line 
has specific information.

             Using the Dialog Editor  
             Control Attributes  
             Running WDL Scripts  
             Saving WDL Scripts  
             ShowScript  

Example01=`16,136,72,DEFAULT,PUSHBUTTON,DEFAULT,"OK",1`
Example02=`97,136,72,DEFAULT,PUSHBUTTON,DEFAULT,"Cancel",0`
Example03=`120,40,48,DEFAULT,RADIOBUTTON,music,"Blues",1`
Example04=`120,56,56,DEFAULT,RADIOBUTTON,music,"Jazz",2`
Example05=`84,41,38,DEFAULT,RADIOBUTTON,music,"Rock",3`

    

When the first line in the example above is broken down, the parts are 
as follows.

Code Definition
Example Dialog Variable Name
01 Control Number 
27,113,76,DEFAULT Coordinates of the control
PUSHBUTTON Control Type
"DEFAULT" Variable name 
OK Text 
1 Value

Each Dialog script will end with the following line, making it easy to test
the PushButton return values. 

ButtonPushed=Dialog("Example")

Assembled with the variables, the completed script looks like the 



following.

;set variables
;the list for the item box.
tunes="My Shirona%@tab%In the Mood%@tab%StayingAlive%@tab%RockLobster%@tab%Tequila"
;the contents of the varytext.
song="Yellow Submarine"
music=2  ;sets this radiobutton as default
volume=1 ;pre-selects checkbox.

ExampleFormat=`WWWDLGED,5.0`

ExampleCaption=`Music Selection`
ExampleX=120
ExampleY=50
ExampleWidth=129
ExampleHeight=138
ExampleNumControls=13

Example01=`8,116,52,DEFAULT,PUSHBUTTON,DEFAULT,"OK",1`
Example02=`68,116,52,DEFAULT,PUSHBUTTON,DEFAULT,"Cancel",0`
Example03=`84,75,38,DEFAULT,RADIOBUTTON,music,"Blues",1`
Example04=`84,59,38,DEFAULT,RADIOBUTTON,music,"Jazz",2`
Example05=`84,41,38,DEFAULT,RADIOBUTTON,music,"Rock",3`
Example06=`46,94,38,DEFAULT,CHECKBOX,volume,"LOUD!",1`
Example07=`84,94,38,DEFAULT,CHECKBOX,volume2,"Quiet",2`
Example08=`8,94,38,DEFAULT,STATICTEXT,DEFAULT,"VOLUME"`
Example09=`6,4,112,DEFAULT,STATICTEXT,DEFAULT,"What is your listening pleasure?"`
Example10=`6,51,65,40,ITEMBOX,tunes,DEFAULT`
Example11=`70,24,56,DEFAULT,STATICTEXT,DEFAULT,"Type Preferred?"`
Example12=`6,20,60,DEFAULT,VARYTEXT,song,"Choose a title"`
Example13=`6,36,64,DEFAULT,EDITBOX,song," "`

ButtonPushed=Dialog("Example")

Here is the completed dialog box.





Setting Variables

Any information which is needed by the Dialog Box Controls should 
defined in the script prior to the dialog code.    By setting the 
variables, you can pass lists, files, and set which options are chosen
by default.

In the script example, the variables are set at the top.    

             Using the Dialog Editor  
             Control Attributes  
             Running WDL Scripts  

;;set variables

;;the list for the item box.
tunes="My Shirona%@tab%In the Mood%@tab%StayingAlive%@tab%RockLobster"

;;the contents of the varytext.
song="Yellow Submarine"
music=2  ;sets the radiobutton as default
volume=1 ;pre-selects checkbox.



Dialog Box Caption

Dialog boxes have both an internal and external name.    The Dialog 
Caption is the title of the dialog box as it appears in the title bar.    The 
variable name is the name of the dialog as seen in the script.    

This information can be entered or changed at any time.    However, 
we suggest filling it whenever you start a new dialog box.    

To display the caption box, double click with the left mouse button on 
the workspace background, (not on a control), or from the Edit menu 
select Change Caption/Name.

             Getting Started  
             Using the Dialog Editor  
             Control Attributes  
             Running WDL Scripts  
             Saving WDL Scripts  
             Decipher the Script  



Control Attributes

The Dialog Editor has a variety of controls which can be selected to 
create a customizable user interface.    

To add a control, double click with the right mouse button where you 
want the control or from the Edit menu, select Add Control.    Fill in 
the information in resulting dialog box about the control. 

Choose the control on the left and fill in the appropriate attributes on 
the right.    The control may need a Variable name, a Value or Text.    
Not all information will be needed for each control.    Fill in only the 
items which are not grayed out and select the OK button.
After a control has been created in your dialog box you can move it, 
size it or delete it.

To MOVE the control, click on it and drag it to a new position with 
the left mouse button.

To SIZE a control, click on the edge and drag with the left mouse 
button.

To DELETE a control, position the mouse over the control and 
press the delete key.

Some of the Controls require extra knowledge or special handling.

             Using the Dialog Editor  
             Push Button  
             Radio Button  
             Check Box  
             Edit Box  
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  



Push Button

When creating Push Buttons, each button must have a separate 
value.    To keep your programming consistent, we recommend 
assigning the value of 1 to your "OK" button equivalent and the value 
of 0 to your "Cancel" button equivalent.    

The Dialog Editor adds a line to the end of your script which helps to 
test return values.

Buttonpushed=Dialog"MyDialog"

To test the return value do the following:

If Buttonpushed == 1 then goto label

"Cancel" or the value 0 will generally look for a label :cancel.    If no 
such label is found, the script will exit.    For more information on 
"Cancel", see the Windows Interface Language manual or on-line WIL
help file.

             Control Attributes  
Push Button

             Radio Button  
             Check Box  
             Edit Box  
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  



Radio Button 

Radio Buttons are used to select one item over another.    

The variable assigned to the Radio Button is the same for each of the 
choices but the values are different.    The Dialog Editor can have a 
maximum of 9 choices per variable.    

For example, the script in a Dialog may look like:

Example03=`120,40,48,DEFAULT,RADIOBUTTON,music,"Blue
s",1`
Example04=`120,56,56,DEFAULT,RADIOBUTTON,music,"Jazz
",2`

The variable "music" is the same on both lines but the text and the 
values are different.    

Note:    Radio Button cannot have a value of 0.

To test the return value, the variable can be placed in an If structure.

If music == 1 
     Message("Music", "Let's play the blues.")
else 
     Message("Music", "Let's play the Jazz.")
endif

Don't limit yourself to using if/endif statements.    The Switch structure 
provides a more efficient way to test multiple values.    For more 
information on Switch, see the Windows Interface Language manual 
or on-line WIL help file.

             Control Attributes  
             Push Button  

Radio Button
             Check Box  
             Edit Box  
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  



Check Box

The Check Box offers a way to present a variety of options. Each 
Check Box has its own specific information.    Variable, Value and Text 
are all different, allowing the user to select more than one.    Any 
number may be marked or left unmarked.    

Example:

             Control Attributes  
             Push Button  
             Radio Button  

Check Box
             Edit Box  
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  

Here's the script which created this dialog box.

MonsterFormat=`WWWDLGED,5.0`

MonsterCaption=`Monster Masher`
MonsterX=63
MonsterY=79
MonsterWidth=128
MonsterHeight=141
MonsterNumControls=14

Monster01=`3,38,51,DEFAULT,CHECKBOX,tail,"Spiked Tail",1`
Monster02=`59,38,51,DEFAULT,CHECKBOX,horn,"Horns",1`
Monster03=`3,54,51,DEFAULT,CHECKBOX,claw,"Claws",1`
Monster04=`3,70,51,DEFAULT,CHECKBOX,teeth,"Fangs",1`
Monster05=`3,22,51,DEFAULT,CHECKBOX,eye,"Beady Eyes",1`



Monster06=`3,6,104,DEFAULT,STATICTEXT,DEFAULT,"Select your monsters features."`
Monster07=`6,121,112,DEFAULT,PUSHBUTTON,DEFAULT,"Build my Monster",1`
Monster08=`59,54,51,DEFAULT,CHECKBOX,mole,"Hairy Mole",1`
Monster09=`3,86,51,DEFAULT,CHECKBOX,flesh,"Green Skin",1`
Monster10=`3,102,51,DEFAULT,CHECKBOX,nose,"Grecian Nose",1`
Monster11=`59,86,62,DEFAULT,CHECKBOX,hands,"Webbed Fingers",1`
Monster12=`59,102,60,DEFAULT,CHECKBOX,foot,"Cloven Hooves",1`
Monster13=`59,22,51,DEFAULT,CHECKBOX,wings,"Feathers",1`
Monster14=`59,70,67,DEFAULT,CHECKBOX,thumb,"Opposable Thumb",1`

ButtonPushed=Dialog("Monster")

To test the return value, the variables can be placed in If structures.

If mole && claw == 1 
     Message("Monster", "If you scratch my back, I'll bleed to death.")
endif
If eye || thumb 
     Message("Not a monster", 'Jack is a psychopath, "Here's Johnny!"')
endif

Logical operators can be used when checking for the return of several variables; && is logical and, || is logical or.    
For more information on operators, see the Windows Interface Language manual or on-line WIL help file.



Edit Box

Edit Box creates a dialog in which a choice can be entered by 
default and then altered by the user.    

Variable names that begin with "PW_", will be treated as password 
fields causing asterisks to be echoed for the actual characters that 
the user types.

Note:    The AskPassword function is a simple way of asking for a 
password.    When a dialog must include additional information, the 
Dialog Editor can be used to create a custom box. 

Here's an example of how to incorporate a password field into a 
dialog box.    

Example:

             Control Attributes  
             Push Button  
             Radio Button  
             Check Box  

Edit Box
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  

This box was created by the following script.    

:top
;set the password variables 
PW_pass1=""
PW_pass2=""
passwordFormat=`WWWDLGED,5.0`

passwordCaption=`PASSWORD`
passwordX=54
passwordY=70
passwordWidth=118



passwordHeight=82
passwordNumControls=4

password01=`3,59,51,DEFAULT,PUSHBUTTON,DEFAULT,"OK",1`
password02=`62,59,51,DEFAULT,PUSHBUTTON,DEFAULT,"Cancel",0`
password03=`3,25,110,DEFAULT,EDITBOX,PW_pass1,""`
password04=`3,8,110,DEFAULT,STATICTEXT,DEFAULT,"Please enter your new password."`
;this statement initializes the box.
ButtonPushed=Dialog("password")

Minor changes can be made to the dialog box without having to include the entire dialog box code.

;;initialize the box again with a couple of minor changes. 
password03=`3,25,110,DEFAULT,EDITBOX,PW_pass2,""`
password04=`3,8,110,DEFAULT,STATICTEXT,DEFAULT,"Please verify your new password."`
ButtonPushed=Dialog("password")

To test the return value, the variables can be placed in If structures.

;test the return values
If PW_pass1 == PW_pass2
        Message("Password", "Thanks, your new password is in effect")
        Fail=0
else
        Message("Password Failed", "They didn't match, please try again.")
        Fail=1
endif
If Fail == 1 then goto top



Fixed Text

Use Fixed Text    to display labels, descriptions, explanations, or 
instructions.    The Control Attribute box will let you type an endless 
amount of information into the text box.    However, its display 
capability is limited to 60 characters.

Example:

             Control Attributes  
             Push Button  
             Radio Button  
             Check Box  
             Edit Box  
             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  

This box was created by the following script.    

fixedtextFormat=`WWWDLGED,5.0`

fixedtextCaption=`Fixed Text Example`
fixedtextX=119
fixedtextY=68
fixedtextWidth=130
fixedtextHeight=155
fixedtextNumControls=10

fixedtext01=`3,4,107,DEFAULT,STATICTEXT,DEFAULT,"You can type whatever you'd like "`
fixedtext02=`3,33,121,DEFAULT,STATICTEXT,DEFAULT,"no matter what you type, the field
has"`



fixedtext03=`3,62,120,DEFAULT,STATICTEXT,DEFAULT,"characters.  If you need to 
display"`
fixedtext04=`3,76,115,DEFAULT,STATICTEXT,DEFAULT,"more information, simply create "`
fixedtext05=`3,91,120,DEFAULT,STATICTEXT,DEFAULT,"several Fixed Text fields and 
arrange "`
fixedtext06=`3,19,112,DEFAULT,STATICTEXT,DEFAULT,"into the Fixed Text field.  
However,"`
fixedtext07=`3,48,115,DEFAULT,STATICTEXT,DEFAULT,"a visual limit of approximately 60
"`
fixedtext08=`3,105,67,DEFAULT,STATICTEXT,DEFAULT,"them accordingly."`
fixedtext09=`8,131,51,DEFAULT,PUSHBUTTON,DEFAULT,"comprendé",1`
fixedtext10=`68,131,51,DEFAULT,PUSHBUTTON,DEFAULT,"no comprendé",0`

ButtonPushed=Dialog("fixedtext")



Varying Text

Varying Text is used to display data which may change, like a date or 
a password. 

Example:

             Control Attributes  
             Push Button  
             Radio Button  
             Check Box  
             Edit Box  
             Fixed Text  

Varying Text
             File Listbox  
             ItemSelect Listbox  

This box was created by the following script.    

;Grab the date for display in the dialog box.
dadate=Timedate()
wkday=ItemExtract(1, dadate, " ")
date=ItemExtract(3, dadate, " ")
day=StrCat(wkday, " ", date)

; Grab the users name for display in the dialog box.
user= Environment("USER")

varytextFormat=`WWWDLGED,5.0`

varytextCaption=`Varying Text Example`
varytextX=110
varytextY=78
varytextWidth=119
varytextHeight=64
varytextNumControls=6

varytext01=`38,16,48,DEFAULT,VARYTEXT,user,"xxx"`
varytext02=`4,46,48,DEFAULT,PUSHBUTTON,DEFAULT,"YES",1`
varytext03=`0,16,36,DEFAULT,STATICTEXT,DEFAULT,"                Hi "`
varytext04=`8,30,100,DEFAULT,STATICTEXT,DEFAULT,"Do you wish to run setup now?"`
varytext05=`60,46,48,DEFAULT,PUSHBUTTON,DEFAULT,"NO",0`
varytext06=`59,1,56,DEFAULT,VARYTEXT,date,"day"`

ButtonPushed=Dialog("varytext")



File Listbox

Use File Listbox to allow the user to choose a file from a list box.    Set 
your variable to display a directory path and filemask. i.e.

wbtfiles="C:\WINBATCH\*.WBT"

This box can be tied with the variable to an Edit Box or to Varying Text. 
When the user chooses a file, it will be displayed in the Edit Box. 
Varying Text will display the actual variable.    

For multiple selections or to display pre-defined lists, use the Dialog 
Editor's Item Listbox option.

Note:    When File Listbox is used, the dialog editor assumes that a file
must be chosen before it proceeds.    Add the following WIL command 
to the top of your script if you wish to allow the dialog to proceed 
without a file selection.

IntControl(4, 0,0,0,0)

When no file is selected, the return value of the filename variable is:

  "NOFILESELECTED"

For more information on IntControl, see the Windows Interface 
Language manual or on-line WIL help file.

             Control Attributes  
             Push Button  
             Radio Button  
             Check Box  
             Edit Box  
             Fixed Text  
             Varying Text  

File Listbox
             ItemSelect Listbox  

Example:



In the example code below, notice that the variable 'wbtfiles' is used for the control attributes Varying Text, Edit Box 
and File Listbox.

wbtfiles="C:\WINBATCH\*.WBT"

filelistFormat=`WWWDLGED,5.0`

filelistCaption=`File Listbox Example`
filelistX=184
filelistY=50
filelistWidth=105
filelistHeight=120
filelistNumControls=6

filelist01=`8,24,84,DEFAULT,VARYTEXT,wbtfiles,"xxx"`
filelist02=`4,102,44,DEFAULT,PUSHBUTTON,DEFAULT,"YES",1`
filelist03=`8,54,65,43,FILELISTBOX,wbtfiles,DEFAULT`
filelist04=`8,8,84,DEFAULT,STATICTEXT,DEFAULT,"Select a file from the list."`
filelist05=`54,102,44,DEFAULT,PUSHBUTTON,DEFAULT,"NO",0`
filelist06=`8,38,51,DEFAULT,EDITBOX,wbtfiles,"ooo"`

ButtonPushed=Dialog("filelist")

Message("File Selected", wbtfiles)



ItemSelect Listbox

The ItemSelect Listbox allows the user to choose an item from a list 
box.    This option is similar to the WIL commands AskItemList, and 
ItemSelect.    

Set a variable to display a list of items.    Use @tab, a predefined 
constant, as the delimiter.    I

             Control Attributes  
             Push Button  
             Radio Button  
             Check Box  
             Edit Box  

tunes="My Shirona%@tab%In the Mood%@tab%Staying 
Alive%@tab% RockLobster%@tab%Tequila"

By default, the ItemSelect Listbox allows multiple selections.    To 
disable this feature use IntControl 33.

IntControl(33, 0, 0, 0, 0)

For more information on IntControl, see the Windows Interface 
Language manual or on-line WIL help file.

             Fixed Text  
             Varying Text  
             File Listbox  
             ItemSelect Listbox  



WinInfo

WinInfo is a handy 
window name and 
position grabber

WinInfo can grab a window position settings 
from windows displayed on your monitor.

The WinInfo utility (see the Filename 
Appendix for filename) lets you take an open
window that is sized and positioned the way 
you like it, and automatically create the 
proper WinPlace statement for you. It puts 
the text into the Clipboard, from which you 
can paste it into your WIL program.

WinInfo captures 
coordinates in a 1000 
by 1000 format that is
relative to the current 
screen size.    Since 
WinBatch considers 
every screen to have a 
1000 by 1000 size, 
your sizing will 
always take up the 
same percentage of 
the users screen. One 
eighth of a screen at 
1024 by 768 screen 
resolution is actually 
much larger than the 
same eighth is at 640 
by 480 pixels 
resolution.

Design your dialog 
boxes to be about 250 
by 250 in size or 
larger. Then they will 
be prominent at all 
resolutions.

WinInfo captures relative screen coordinates.
You'll need a mouse to use WinInfo. While 
WinInfo is the active window, place the 
mouse over the window you wish to create 
the WinPlace statement for, and press the 
spacebar.    The new statement will be placed
into the Clipboard. Then press the Esc key 
to close WinInfo.





FileMenu is a menu utility DLL for the Windows Explorer.    It allows 
you to add custom menu items to the context menus (that appear 
when you right-click on a file in the Windows Explorer).    Two types of 
menus are supported:    

1.    A global menu, which is added to the context menu of every 
file.    

2.    A file-specific "local" menu, whose entries depend on the 
type of file that is clicked on.

FileMenu is a menu-based WIL (Windows Interface Language) 
application.

Note: Please refer to the Windows Interface Language Reference 
Manual, Menu Files section, for information on menu file structure.

             FileMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             Usage Tips, Known   

Problems and Limitations, etc.



 

System Requirements
FileMenu requires a version of Windows supporting the Windows 
Explorer, such as Windows 95/98, NT 4.0.    

Installation
FileMenu is installed during the normal setup of WinBatch 95.

Operation
FileMenu can add menu items to the following types of context 
menus:

1.    The context menus that appear when you right-click on a file 
(but not a folder) in the Windows Explorer.

2.    The context menus that appear when you right-click on a file 
(but not a folder) in a browse window (for example, if you select 
"Run" from the "Start" menu, and then press "Browse".

3.    The Explorer "File" pull-down menu, when a file (but not a folder)
is highlighted in the Explorer window.

4.    Files (or Shortcuts to files) on the Windows desktop.

             FileMenu  
             Menu Files  
             Usage Tips, Known   

Problems and Limitations, etc.



Menu Files

FileMenu can add two menu files onto a file's context menu: the "all 
filetypes" menu, which is added to the context menu of every file, 
and a file-specific menu, whose entries depend on the type of file 
selected.

A menu file can be created or edited by selecting Edit File Menus.    
This option opens the Windows Notepad and loads either a file-
specific menu or the "all filetypes" menu.    Modifications to menu 
files are made once the file is saved.    

Menu files are discussed further in the Windows Interface Language 
reference manual and in the WIL on-line help file under the topic 
Menu Files.

             FileMenu  
             Using the "all filetypes"   

FileMenu
             Creating/Modifying File-  

Specific Menus
             FileMenu.ini  



Using the "all filetypes" FileMenu

The "all filetypes" menu adds additional menu choices to the context 
menu which appears when you right click on any file in an Explorer 
window, or on the desktop.

The following is a sample context menu. The menu options displayed 
are samples of the file operations which can be performed.

With FileMenu, the sample "all filetypes" menu starts with Two 
Explorers, side by side and continues down to Edit File Menus.    
When an option is highlighted, an additional explanation will be 
displayed on the status bar of the Windows Explorer.

The "all filetypes" menu can be modified with the context menu option 
Edit File Menus / Edit menu for all filetypes.    This option opens 
Notepad with the    "all filetypes" menu loaded.    Changes are effective 
when the file is saved.

Note:    The contents of the "all filetypes" menu file may vary from 
release to release as we continue to improve the sample menus.    

             FileMenu  
             Menu Files  
             Creating/Modifying File-  

Specific Menus
             FileMenu.ini  



Creating/Modifying File-Specific Menus

A file-specific menu allows you to create custom menus for any file 
type. These menus are shown only when the file type is clicked on with
the right mouse button. 

File-specific menu files can be created or modified using the context 
menu item Edit File Menus / Edit menu for this filetype.    When this 
option is selected, FileMenu looks for an existing file type menu in the 
file: FileMenu.ini.    If the type menu is found, it is opened in Notepad.    
If no file is found, FileMenu creates a new menu file for that file type. 
Filemenu.ini is automatically updated and the new menu file is opened 
in Windows Notepad.    The new file-specific menu will have a sample 
menu to help you get started.    

             FileMenu  
             Menu Files  
             Using the "all filetypes"   

FileMenu
             FileMenu.ini  



FileMenu.ini

The menu file names used by FileMenu are defined in the file 
Filemenu.ini, which is located in your WINBATCH\SYSTEM directory.    
A sample Filemenu.ini is provided.    The menu files can be located 
anywhere on your path or in your FileMenu directory.    Or, you can 
specify a full path in Filemenu.ini.

By default, the "all filetypes" menu is named "FileMenu for all filetypes"
(the short filename will be something like; FILEME~1.MNW).    This 
default can be changed by editing the "*CommonMenu=" line in the 
[FileMenu] section to point to a different menu file.    If you do not wish 
to use the "all filetypes" menu file, specify a blank value to the right of 
the equals sign; i.e., "*CommonMenu=          ".

To use a file-specific menu, add a line of the form "ext=menuname" to 
the    [Menus] section, where "ext" is the extension of the file type, and 
"menuname" is the name of the menu file you wish to associate with 
that file type.    For example, if you wish to add the contents of the 
menu file TXT.MNW to the context menus of .TXT files, add the line 
"txt=txt.mnw".    To specify a menu file to associate with files that do not
have an extension, use an extension of "."; for example ".=menufile".

Note:    Extensions can be longer than three characters.

There is a limit on the number of menu items that can be added to a 
context menu.    This limit seems to be 163 menu items, but it may vary
from system to system and in different releases of Windows.    
FileMenu shares these resources with other menu extender programs 
you may have on a first-come, first-served basis.    If the maximum 
available menu items is 163, and you have other menu extender 
programs installed that use a 10 menu items, your FileMenu menus 
(global + local) could contain no more than 153 menu items.    Of 
course, FileMenu only loads one local menu at a time.    If your global 
menu contained 100 items, each of your local menus could contain up 
to 53 items.

If you exceed the limit of available menu items, a menu extender 
program will not be able to add additional items.    If FileMenu is 
unable to load one of its menus completely, it will display an error 
message.

Please refer to the Windows Interface Language Reference Manual, 
Menu Files section, for information on menu file structure.

             FileMenu  
             Menu Files  
             Using the "all filetypes"   

FileMenu
             Creating/Modifying File-  

Specific Menus



Usage Tips, Known Problems and Limitations, etc.
Functions

In addition to the standard WIL functions, FileMenu supports the 
following functions (which are documented in the WIL Reference 
Manual):

    CurrentFile
    CurrentPath
    CurrFilePath

The following functions are NOT supported:
    IsMenuChecked
    IsMenuEnabled
    MenuChange
    Reload

Status Bar Comments
You can specify a comment for display in the Windows Explorer 
status bar.    This works only for top level menu items.    The 
comment must be on the same line as the top level item.    For 
example, the menu item below is a main menu for running the 
program Solitaire.

 &Solitaire              ; A fun game
    Run("sol.exe", "")

The following dialog shows how comment appears on the Explorer's 
status bar.

             FileMenu  
             Menu Files  



Misc....
FileMenu processes the "Autoexec" (initialization) section of a menu
file every time an item from that file is executed.    

Hotkeys are not supported.

Shell extensions can be loaded and unloaded rather frequently by 
the operating system, so there is little benefit in using the "Drop" 
function.



PopMenu is a WinBatch 95/98/NT desktop interface to Windows 
batch files written in WIL, the Windows Interface Language.    
PopMenu batch files are used to automate PC operations and 
application specific procedures.    (FileMenu, the other WinBatch 
menu utility, is used in manipulating files in the Windows Explorer.)

PopMenu appears as an icon on the Windows 95/98/NT Task Bar.   
This bar extends along one edge of the Windows 95/98/NT desktop
and includes the "START" Button.    A click on the PopMenu icon 
brings up a menu of WIL batch files.    Samples are included, but 
you can completely modify these to meet your needs.

PopMenu is a menu-based WIL (Windows Interface Language) 
application.

System Requirements / Installation
Operation
Menu Files
Ini Settings
Usage Tips, Known Problems and Limitations, etc.

NOTE:    Please refer to the Windows Interface Language 
Reference Manual, Menu Files section, for information on menu file
structure.

             PopMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             INI Settings  
             Usage Tips, Known   

Problems and Limitations, etc.



System Requirements
PopMenu requires Windows 95/98 or Windows NT.

Installation
To install PopMenu:

1.    Copy PopMenu.exe to any directory on your hard drive.    We 
will refer to the directory where PopMenu.exe is located as your 
"PopMenu directory".

2.    Copy the sample PopMenu.ini either to your Windows 95 
directory, or to your PopMenu directory.

3.    Copy WBD??32I.DLL either to your PopMenu directory, or to a 
directory on your path (this includes your Windows 95 and 
Windows 95 System directories).    We recommend placing it on 
your path, since it can then be accessed by other WIL programs.

4.    Set up your menu files (see "Menu Files", below), and place 
them in a directory on your path, or in your PopMenu directory.    
A sample menu file is included with the program.    You can use 
it or adapt it to your requirements.

Then, run PopMenu.exe.    You should see the PopMenu icon 
appear in the task bar.

Operation
Start PopMenu by running PopMenu.exe.

Activate PopMenu by clicking on its icon (you may have to click 
twice).

Close PopMenu by selecting "Close" from its menu.

             PopMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             INI Settings  
             Usage Tips, Known   

Problems and Limitations, etc.





Menu Files
PopMenu allows you to specify two menu files: (1) a global menu 
file, and (2) a window-specific local menu file.

The default global menu file is named PopMenu.MNW.    You can 
change this by editing the INI file (see "INI Settings", below).

The name of the window-specific local menu file is based on the 
class name (a specific Windows program identifier) of the most-
recently-active parent window, with an extension of .MNW added.    
So, for example, the local menu file for Explorer (whose class name
is "Progman") would be "Progman.MNW".    PopMenu will add a 
menu item at the top of each menu, allowing you to create or edit 
the appropriate menu file for that window, so in general you do not 
need to know the actual class names.

Each menu file can contain a maximum of 1000 menu items.

PopMenu searches for menu files using the following sequence:

    1. If the menu name contains a path, use it as-is and don't 
search

    2. Menu directory ("MenuDir=" INI setting), if set
    3. Home directory ("HOMEPATH" environment variable), if 

set
    4. Windows directory
    5. PopMenu directory
    6. Other directories on your path

By default, new menu files created by PopMenu will be placed in 
your PopMenu directory (the directory where PopMenu.exe is 
located), unless you are running PopMenu from a network drive.    
On a network, menu files will be created in your home directory (the
directory pointed to by the "HOMEPATH" environment variable) if it 
is set, or your Windows directory otherwise.    You can change this 
by editing the INI file (see "INI Settings", below).

Please refer to the Windows Interface Language Reference 
Manual, Menu Files section, for information on menu file structure 
and how to create the appropriate menu files.

             PopMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             INI Settings  
             Usage Tips, Known   

Problems and Limitations, etc.



INI Settings
The following settings can be added to the [PopMenu] section of 
PopMenu.ini:

MenuDir=d:\path
where "d:\path" is the directory where you want PopMenu to place 
menu files that it creates.    This will also be the first place 
PopMenu looks for menus.    The default is the PopMenu directory, 
unless you are running PopMenu from a network drive (see "Menu 
Files", above, for further information).

Editor=editor
where "editor" is the editor you wish to use to edit your menu files.    
The default is "Notepad.exe".

GlobalMenu=menufile.mnw
where "menufile.mnw" is the name of the global menu file you wish 
to use.    The default is "PopMenu.MNW".

SkipGlobalMenu=1
Causes PopMenu not to load the global menu file.    By default, the 
global menu file will be loaded.

SkipLocalMenu=1
Causes PopMenu not to load the window-specific local menu file.    
By default, the local menu file will be loaded.

SkipGlobalEdit=1
Causes PopMenu not to add a "Create/Edit menu" item at the top 
of the global menu.    By default, the menu item will be added.

SkipLocalEdit=1
Causes PopMenu not to add a "Create/Edit menu" item at the top 
of the local menu.    By default, the menu item will be added.

             PopMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             INI Settings  
             Usage Tips, Known   

Problems and Limitations, etc.



Usage Tips, Known Problems and Limitations, etc.
Functions

In addition to the standard WIL functions, PopMenu supports the 
following functions (which are documented in the WinBatch User's 
Guide):

    BoxOpen
    BoxShut
    BoxText
    BoxTitle

The following optional WIL menu functions are NOT supported by 
PopMenu:

    CurrentFile
    CurrentPath
    CurrFilePath
    IsMenuChecked
    IsMenuEnabled
    MenuChange
    Reload

Misc...
You can only run one copy of PopMenu at a time.
You can only run one PopMenu menu item at a time (if you click on
the PopMenu icon while a menu item is currently executing, it will 
beep).
Sometimes you may have to click on the PopMenu icon twice for 
the menu to pop up.
PopMenu reloads the menu files every time you bring up its menu. 
You can dynamically change the current global menu file while 
PopMenu is running by updating the "GlobalMenu=" setting in the 
[PopMenu] section of PopMenu.INI (you can even do this from 
within a menu script using the IniWritePvt function).
PopMenu processes the "Autoexec" (initialization) section of a 
menu file every time an item from that file is executed.
Hotkeys are not supported.
Horizontal menu separators ('_') are not added for top-level menu 
items.
Status bar comments are not supported.

             PopMenu  
             System Requirements /   

Installation / Operation
             Menu Files  
             INI Settings  
             Usage Tips, Known   

Problems and Limitations, etc.





Filename Appendix 

There are several different platforms which WinBatch and its 
utilities may be run on. When a file name is generated, it is made 
up of four or five characters which specify WHAT the file is, three 
characters which specify which platform the PC is running under 
and an .EXE or .DLL file extension.

File names are important in these areas:

1. Running WinBatch scripts. 
WinBatch scripts are text files the WinBatch interpreter translates 
into action. To do this from a program launcher such as the Run 
commandline, the file names of WinBatch has to be entered first 
followed by a space and the name of a script.

Example: 

"Run" from theTask Bar produces this dialog:

2. Compiling WinBatch files with WinBatch Compiler.
If you have the WinBatch Compiler, you have the option of 
including in the executable batch file all, or just the minimum, 
number of files WinBatch needs to run a particular script. The 
Compiler includes selection dialogs for choosing options. The file 
name tables are here for general information.

3. Using Accessories.
WinBatch comes with a window position and name grabber called 
WinInfo. Finally, WinBatch comes with a Dialog Editor. File names 
are used to run these.

             File Name Summary  
             File Naming Conventions  
             WinBatch DLLs  
             Names for the WinBatch   

DLLs 



File Name Summary

             Filename Appendix  
             File Naming Conventions   
             WinBatch DLLs  



Note:    Some of the above extender filenames may not exist for the
specified platform.





File Naming Conventions 

The following tables show how the filename, minus the extension, 
is broken down and defined. 

WinBatch running on a PC with an Intel, or compatible, 
microprocessor (the majority of installed PCs)will have the file 
name, WINBATCH.EXE. WinInfo is WINDOW INFORMATION.EXE.
The Dialog Editor is WIL DIALOG EDITOR.EXE. The WinBatch 
Compiler is WBCOMPILER.EXE.

             Filename Appendix  
             File Name Summary  
             Names for the WinBatch   

DLLs 



If you are using the single-user version of WinBatch, the executable
files are WINBATCH.EXE, WIL DIALOG EDITOR.EXE, and 
WINDOW INFORMATION.EXE.

Note: Not all of the possible combinations above will exist. 



WinBatch DLLs

A WinBatch utility needs two DLLs to function: a WBO DLL and a 
WBD DLL. 
For WinBatch to find and use them, they must be either in the 
directory holding the WinBatch utility, or on a DOS or network 
search path.    They can be copied there manually, or automatically 
with the Large EXEstandalone option of the Compiler.
When a script is compiled with the Large EXE option, all the 
necessary    DLLs will be added to the executable utility.    When it 
runs, these DLLs are extracted and saved in the directory where 
the WinBatch utility is run. 
To decrease file sizes, the Compiler also has a Small EXE option.
Small WinBatch executables will need to find the WinBatch DLLs.    
They can be in the current directory, or on the DOS path or search 
path.    The easiest way to get them there is to create a simple 
WinBatch utility that uses all the DLLs, extenders, and so forth.    
Run this once in any directory on the DOS or network search path. 
Once the DLLs are extracted, they can be copied anywhere they 
will be needed.    A convenient place for them is often in the 
Windows directory since it is always on the search path. 

             Filename Appendix  
             File Name Summary  
             Names for the WinBatch   

DLLs 



Names for the WinBatch DLLs

The WinBatch DLL names are made up of 3 parts. 
The first three characters identify the DLL type.    

WBD - WIL Language Interpreter DLL
WBO - WIL OLE Interpreter DLL

The second two characters are used for version identification 
purposes.    The letters are chosen at random, will match for both 
the WBO and the WBD DLL and will change for each new version 
of the DLL.

XX = BQ, or AK, (some combination of letters)

The final three characters reference the operating environment of 
the DLL.

16I - 16-bit Windows (Windows 3.1/WFW 3.11)
32I - 32-bit Windows (Windows 95/NT)

Here is are examples of a pair of DLLs for use on 32-bit versions of 
Windows on Intel 386, 486, and 586 class processors.

WBDBQ32I.DLL
WBOBQ32II.DLL

             Filename Appendix  
             File Name Summary  
             WinBatch DLLs  



Error Messages

        10102, "10102: WinBatch - Unrecognized ParentProcess request 
code"

        10104, "10104: WinBatch: EnvironSet Var and/or Value too long"
        10105, "10105: WinBatch: EnvironSet - Failed.    No space?"
        10106, "10106: WinBatch: EnvironGet - Failed.    Name too long?"
        10107, "10107: WinBatch: EnvironGet - Failed.    Value too long?"
        10108, "10108: Box functions: Box command stack full"
        10109, "10109: Box functions: Invalid box ID"
        10110, "10110: BoxButtonDraw: Invalid button ID"
        10111, "10111: BoxButtonDraw: Invalid 'rect' string"
        10112, "10112: BoxButtonStat: Invalid button ID"
        10113, "10113: BoxColor: Invalid color string"
        10114, "10114: BoxColor: Invalid 'wash' color"
        10115, "10115: BoxDrawRect: Invalid 'rect' string"
        10116, "10116: BoxDrawLine: Invalid 'rect' string"
        10117, "10117: BoxNew: Invalid 'rect' string"
        10118, "10118: BoxNew: Invalid 'style' flag"
        10119, "10119: BoxNew: Unable to create box"
        10120, "10120: BoxPen: Invalid color string"
        10121, "10121: BoxPen: Invalid pen width"
        10122, "10122: BoxTextColor: Invalid color string"
        10123, "10123: BoxTextFont: Invalid font size"
        10124, "10124: BoxTextFont: Invalid font style"
        10125, "10125: BoxTextFont: Invalid font family"
        10126, "10126: BoxDrawText: Invalid 'erase' flag"
        10127, "10127: BoxDrawText: Invalid 'alignment' flag"
        10128, "10128: BoxDrawText: Invalid 'rect' string"
        10129, "10129: BoxUpdates: Invalid 'update' flag"
        10130, "10130: BoxesUp: Invalid 'rect' string"
        10131, "10131: BoxesUp: Invalid 'show' mode"
        10132, "10132: BoxMapMode: Invalid map mode"
        10133, "10133: BoxDrawRect: Invalid style"
        10134, "10134: BoxDrawCircle: Invalid 'rect' string"
        10135, "10135: BoxDrawCircle: Invalid style"
        10136, "10136: BoxButtonDraw: Unable to create button"
        10137, "10137: BoxButtonKill: Invalid button ID"
        10138, "10138: BoxDataClear: Specified tag not found"
        10139, "10139: IntControl: Unrecognized Request"



WinBatch+Compiler

This section is applicable only if you purchased WinBatch+Compiler. This
is NOT a "shareware" software product.    The Compiler is a separate 
product and is NOT included in the purchase of WinBatch, the single-user
version. If you would like additional information on the Compiler and its 
capabilities, please call Customer Service.

Because WinBatch+Compiler includes both WinBatch and the WinBatch 
Compiler, registered users of WinBatch can always upgrade to 
WinBatch+Compiler at a special price.

The WinBatch Compiler can change a WinBatch .WBT file into any 
one of the following:

A small Windows EXE file.
A standalone Windows EXE file.
An encoded and encrypted WinBatch script file.
A password protected WinBatch script file.

No royalties of any kind are required for distribution of any file 
created by this compiler. 

             How the Compiler Works  
             Compiler Installation  
             Compiler Usage  
             Network Considerations  
             Restrictions  
             #include  



How the Compiler Works

Compiler users frequently call and say, "I don't understand!    What is
it doing?"    We've done our best to explain the Compiler in detail, in 
both the WinBatch help file and in the WinBatch User's Guide.    Not 
surprisingly, comprehension seems to expand like waistbands after 
Thanksgiving dinner when the Compiler is explained in plain, simple 
English.

English version minus technical verbiage:

The Compiler gives you the ability to compile your scripts into 
executables which can be launched on PC's without 
WinBatch.    The two standard executable options are Large 
for Standalone and Small for networked PC's.    

When you place a Large EXE on a PC and run it, the EXE 
looks for the DLL's it needs to run.    It looks in the current 
directory and on the path.    If the DLL's are not found in either
of these places, it writes the DLL's to the current directory.    If 
the directory is write protected, an error will occur.

A Small EXE doesn't have the ability to write DLL's.    The 
DLL's must be on the machine either in the path or in the 
current directory before it can execute.    A Small EXE can use
DLL's placed on the machine by a Large EXE.    

Any extender DLL's you are using, plus the interpreter dll, 
Wbxxxyyy.dll, will be installed.    See Filename Appendix for 
information on filenames.

             WinBatch+Compiler  
             Compiler Installation  
             Compiler Usage  

#include



Compiler Installation

WinBatch and the Compiler install from one set of diskettes in your 
WinBatch+Compiler package. The installation program is itself a 
Windows application, so make sure Windows is running. 
Insert your disk into your A: or B: disk drive. From the Start…Run 
menu or your favorite shell, type A:\SETUP or B:\SETUP, 
depending on which floppy drive contains the Compiler diskette. 
Follow whatever instructions SETUP gives you. SETUP will create 
the necessary files in a directory of your choice.
The first time you run the Compiler you will be asked to enter your 
license number. The license numbers can be found in the back of 
your WinBatch User's Guide.

             WinBatch+Compiler  
             How the Compiler Works  
             Compiler Usage  



Compiler Usage

The compiler may be run in Interactive mode. The user is prompted
to provide all necessary information via a popup dialog box. 
Before you can do anything useful with the Compiler, you must use 
the batch file interpreter to create and test a WinBatch script file. 
The WinBatch script file cannot exceed 64K in filesize. The 
Compiler will not test WinBatch macro scripts. Each WinBatch 
macro script file should have a file extension of .WBT or .WIL.

Running the Compiler:

             Interactive Mode  

Notes about the compiler:
The compiler allows you to specify version information strings to be 
embedded in the EXE (under "Version Info").
The compiler also creates a configuration file for each source file 
you compile.    It will be placed in the same directory as the source 
file, and will have the same base name with an extension of ".CMP". 
For example, if you compile "C:\UTIL\TEST.WBT", it will create a 
configuration file named "C:\UTIL\TEST.CMP".

             WinBatch+Compiler  
             How the Compiler Works  
             Compiler Installation  



Interactive Mode

Start the compiler by double-clicking the compiler icon or the 
Compiler.EXE file name. (or by choosing the appropriate item in 
any menu system you may be using).    A dialog box will be 
displayed asking for input. 
The compiler also supports "Drag and Drop" compiling. Select the 
Winbatch source file (WBT or WIL File) and drag it over the 
Compiler icon and drop the source file.    A dialog box will be 
displayed asking for input. The source file you specified will be 
automatically displayed as the source file for the compile.

             WinBatch+Compiler  



Click on a button above to learn more….
Select the type of compile desired (large EXE, small EXE, encoded 
or encrypted) from the OPTIONS button.    Choose the 
source .WBT file, and supply an output file name. If you wish, 
choose an icon along with any necessary extenders. Press the OK 
button.
The compiler will process for 5 to 10 seconds, and then report that 
the file has been compiled. The compiler does not perform error 
checking. It is assumed the WBT file has been properly debugged 
with the standard WinBatch product prior to the compile step.



SOURCE

The SOURCE button displays a File Selection Box. Select your file 
or key in the filename and path into the File Name box and press 
OK. The path and filename will be displayed in the WinBatch 
Compiler dialog box next to the SOURCE button. 

Note 1: Keeping source and target names: 
After you select a SOURCE file, a default TARGET name will be 
generated and displayed next to the TARGET button. To change 
the default name, click on the TARGET button. 

Note 2: A WinBatch executable cannot have the same 
name as an executable application it runs: 

Your compiled file with have an extension of EXE. If your WinBatch 
utility has the same name as the program you want to run from the 
WinBatch utility, you have a problem you must resolve. The result 
of this situation is that your    utility will    run itself.    This cannot be 
resolved by using full path names for the program you want to run.
The solution is to make certain that the WinBatch utility and the 
other application have different names. Either choose a different 
name for your utility, or rename the other application and run it with 
that name.

Note 3: Running an application ONLY from a WinBatch 
utility:

You can prevent users from running an application from outside of a
WinBatch utility. A WIL Run() function can run an executable    file 
name like this:
Run(excel*lib,)
The application can be renamed to excel.lib, an action that will 
prevent it from being run under Windows. Setting excel.lib to be 
read only, especially if it is located on a network server with full 
security capabilities, will make this operation more secure. 

SOURCE
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



OPTIONS

The OPTIONS button allows you to select which type of executable file
you would like to create from your WBT file.

             SOURCE  
OPTIONS

             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



Large EXE for Standalone PC's
(includes accessory DLLs, Extenders, OLE 2.0, etc.)

This option creates an EXE designed for Standalone PC's and does
not require any extra DLLs. When a Standalone EXE is launched 
on a PC, the necessary DLLs are automatically written into the 
current directory. If for some reason, they cannot be written to that 
directory (perhaps the directory is set to be Read Only), the large 
compiled file will not run.
The DLLs can also be copied into a directory on a computers PATH
and the compiled EXE will find them there and run. The Compiler 
has a small EXE option that takes advantage of this. 
The DLLs need to be placed on the PATH only once. Subsequent 
EXE files installed on this same machine can be compiled under 
the Small EXE option.
If Network commands have been used, you will need to compile the
Network Extender DLLs into the EXE. This is explained more 
specifically in the section, EXTENDERS

Notes about the compiler:

The compiler allows you to specify version information strings to be 
embedded in the EXE (under "Version Info").
The compiler also creates a configuration file for each source file 
you compile.    It will be placed in the same directory as the source 
file, and will have the same base name with an extension of 
".CMP".    For example, if you compile "C:\UTIL\TEST.WBT", it will 
create a configuration file named "C:\UTIL\TEST.CMP".

Large EXE for 
Standalone PC's

             Small EXE    for   
Networked PC's

             Encode for Call's from   
EXE files

             Encrypted with Password  

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



Small EXE    for Networked PC's
(without accessory files)

This option is suitable for network file server installation, or for 
distribution with separate DLL files. DLLs external to the WinBatch 
utility that uses them must be available in order to run small utilities.
When a small WinBatch utility is run, it will look in the Windows 
directory and the directories in the environment PATH variable for 
the DLLs.    The WinBatch DLLs and network extender DLLs must 
be on the path or search drive. If you launch this utility on a PC in 
which a large standalone utility has been run previously, the small 
utility can use the same DLLs the standalone utility installed.
Hint: You can automatically install the DLLs on the PATH in a 
computer. 

1.    Create a large executable containing only a single 
statement:
Display(1,WinBatch,WinBatch installed.)

You can change this statement as you like. 
2.    Compile this as a large EXE with all the DLLs your scripts 

are ever likely to need. 
3.    Copy it into a directory on the path, for example the 

Windows System directory, and run it from there. 
The DLLs will be installed once and for all.    Any subsequent batch 
files run on that computer can be compiled as Small Exes.    They will 
use the DLLs already installed on the computer.

Notes about the compiler:

The compiler allows you to specify version information strings to be 
embedded in the EXE (under "Version Info").

The compiler also creates a configuration file for each source file 
you compile.    It will be placed in the same directory as the source 
file, and will have the same base name with an extension of 
".CMP".    For example, if you compile "C:\UTIL\TEST.WBT", it will 
create a configuration file named "C:\UTIL\TEST.CMP".

             Large EXE for   
Standalone PC's

Small EXE    for 
Networked PC's

             Encode for Call's from   
EXE files

             Encrypted with Password  

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



Encode for Call's from EXE files

This option creates an encoded WBT file. The standard WinBatch 
product or a compiled EXE file is needed to access and run the 
encoded file. Encoded WBT files provide the following:
      Source code is protected from unauthorized or accidental 

modification.
      Encoded WBT files may be CALL'ed from compiled files.
If your code has a Call to another WBT file, the called WBT must be
compiled with this option. Otherwise, when you run your EXE, you 
will get an "Encrypted/Encoded Verification Failed" Error. 

Note: When you compile your file, your Target filename will have 
a .WBC extension. It is necessary to have a different filename from 
the original filename. You cannot compile a file to its own name 
without corrupting the file. To protect the innocent, the default 
Target extension is .WBC. After compiling, go into your EXE and 
change the Call statement to reflect the new filename .WBC. 
Recompile the EXE.

             Large EXE for   
Standalone PC's

             Small EXE    for   
Networked PC's

Encode for Call's from 
EXE files

             Encrypted with Password  

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



Encrypted with Password

This option encrypts a WBT file and uses a default Target extension
of .WBE. The WinBatch interpreter (WBAT16I.EXE, or version 
specific WinBatch file) is needed to access the encrypted file. 
During the compilation, a password is provided to the compiler. The
same password must be supplied when the WBT file is run. The 
purpose of an encrypted WBT file is to prevent unauthorized 
personnel from executing it.
Since encryption is easily added to WinBatch utilities, this option is 
rarely used. In fact, no one has ever been    known to use it. Like 
the human appendix, it reminds one of evolutionary events while 
avoiding the performance of any useful function.

             Large EXE for   
Standalone PC's

             Small EXE    for   
Networked PC's

             Encode for Call's from   
EXE files

Encrypted with Password

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



TARGET

The TARGET button displays a File Selection Box. Select your file 
or type the filename and path into the File Name box and press OK.
The path and filename will be displayed in the WinBatch Compiler 
dialog box next to the TARGET button.

Note:    A default filename and path will generally be generated from
the SOURCE filename and path.    

Note:    Your Target exe should not be the same name as the EXE 
file launched from within the compiled WBT.    If you use the same 
name, Windows will ignore the path in the run command and run 
what it recognizes as the current exe, the compiled WinBatch 
executable, again.

             SOURCE  
             OPTIONS  

TARGET
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



EXTENDERS

The EXTENDERS button displays a list of extenders which can be 
chosen and compiled into a Standalone EXE option. More than one
extender may be chosen. If any of the Network extender functions 
are used, the corresponding extender must be compiled into the 
Standalone, or placed in the Windows directory or on the network 
path for a Small EXE to access. The selected extenders will be 
displayed in the WinBatch Compiler Dialog box next to the 
EXTENDERS button.

             SOURCE  
             OPTIONS  
             TARGET  

EXTENDERS
             OTHER FILES  
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



OTHER FILES

The OTHER FILES button displays a File Selection Box of files 
which can be chosen and compiled into a Standalone EXE option. 
More than one file may be chosen. The selected files will be 
displayed in the WinBatch Compiler Dialog box next to the 
OTHERFILES button.

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  

OTHER FILES
             ICON  
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



ICON

The ICON button displays a File Selection Box which allows you to 
choose an icon. Select your .ICO file and press OK. The path and 
icon filename will be displayed in the WinBatch Compiler dialog box
next to the ICON button. 
WinBatch+Compiler comes with icons you can use. These are in an
ICONS subdirectory of your WinBatch directory.

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  

ICON
             SETTINGS  
             VERSION INFO  

             WinBatch+Compiler  



SETTINGS

The SETTINGS button displays dialog for configuration settings. 
The "Modify Configuration Settings" dialog accepts a URL (i.e., 
http://www.example.com) for technical support, which will be 
displayed in WinBatch error messages. You also have the option to 
select a check box to "run the script hidden". If this option is 
selected the WinBatch icon will not appear on the desktop or in the 
Taskbar, when the EXE is executed. The selected modifications are
not displayed in the WinBatch Compiler Dialog box next to the 
SETTINGS button.

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  

SETTINGS
             VERSION INFO  

             WinBatch+Compiler  



VERSION INFO

The VERSION INFO button displays dialog that allows    you to 
input Version string information. These are the version strings that 
will be displayed in the Properties dialog of the compiled EXE. The 
selected modifications are not displayed in the WinBatch Compiler 
Dialog box next to the SETTINGS button.

             SOURCE  
             OPTIONS  
             TARGET  
             EXTENDERS  
             OTHER FILES  
             ICON  
             SETTINGS  

VERSION INFO

             WinBatch+Compiler  



#Include
This command gives you the ability to embed external files when 
running or compiling a WinBatch script, by using the "#include" pre-
processor directive.
The syntax is:
#include "filename"
The keyword "#include" must begin in column 1, and must be all 
lower-case.
The file name must be delimited by double quotes.    The file name 
may contain path information, and does not need to have an 
extension of WBT.    Nothing else should appear on the line.
Each line containing a #include directive will be replaced by the 
contents of the specified file.    If the file cannot be found, an error 
will occur.
When using the WinBatch compiler, the "included" file(s) must be 
present at compile time; they will be embedded in the compiled 
EXE, and therefore do not need to be distributed as separate files.
When using the interpreted version of WinBatch, the "included" 
file(s) must be present at the point in time when the script is 
launched (they cannot be created "on-the-fly" from within the 
script).
You can have as many #include directives as you wish, and they 
may be nested (ie, "included" files may themselves conatin 
#include directives). However, the WinBatch script and all files 
being included, when merged together, cannot exceed 64K in size 
(after comments and whitespace are optimized by the WinBatch 
compiler).

For Standalone (Large) 
EXE compiles

For Compiles of Small 
EXES

For Compiles of Called 
Wbt's (Encode)

For Encrypted WinBatch 
Wbt's

             Interactive Mode  
WinBatch+Compiler



Network Considerations

If you plan to put the compiled files on a network, the following 
information will be helpful:
1) Set the compiled EXE files to read-only so that multiple users 
may access the same file.
2) Copy the DLL's from the Compiler directory to a file server 
directory in the search path and set the DLL's as read-only. 
3) Whenever the compiler, or any compiled WBTs with the 
Standalone option selected, are run, they will search the entire 
PATH for the required DLLs. If the DLLs are not found, they will be 
created in the user's WINDOWS directory. If you skipped item 2 
immediately above, you will want to hunt these files down and 
remove them when you get around to actually doing item 2.
See the Filename Appendix for information on file and dll 
names.

WinBatch+Compiler
             How the Compiler Works  
             Compiler Usage  



Restrictions

The compiler itself is licensed for a single user. A special license is 
required to operate the compiler on a network drive or from a 
diskless workstation. If you need capability of this sort, please call 
Customer Service.

             WinBatch+Compiler  
             Compiler Usage  
             Network Considerations  




