
Using Components

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite,
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo and
Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with
Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!, Roundtrip, Roundtrip
HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, and Xtra are either
registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions
including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this publication may
be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc.

Acknowledgments

Director: Erick Vera

Project Management: Stephanie Gowin, Barbara Nelson

Writing: Jody Bleyle, Mary Burger, Kim Diezel, Stephanie Gowin, Dan Harris, Barbara Herbert, Barbara Nelson, Shirley Ong,
Tim Statler

Managing Editor: Rosana Francescato

Editing: Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano, Anne Szabla

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis, Jeff Harmon

First Edition: August 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
INTRODUCTION: Getting Started with Components . 7

Intended audience . 7
System requirements . 8
Installing components . 8
About the documentation . 9
Typographical conventions . 9
Terms used in this manual . 10
Additional resources . 10

CHAPTER 1: About Components. 11

Benefits of v2 components . 11
Categories of components . 12
Component architecture . 12
What’s new in v2 components. 13
About compiled clips and SWC files . 14
Accessibility and components . 14

CHAPTER 2: Working with Components . 15

The Components panel . 15
Components in the Library panel . 16
Components in the Component Inspector panel and Property inspector 16
Components in Live Preview. 17
Working with SWC files and compiled clips . 18
Adding components to Flash documents . 18
Setting component parameters . 21
Deleting components from Flash documents . 21
Using code hints . 21
About component events. 21
Creating custom focus navigation . 24
Managing component depth in a document . 25
About using a preloader with components. 25
Upgrading v1 components to v2 architecture . 25
3

CHAPTER 3: Customizing Components . 27

Using styles to customize component color and text . 28
About themes . 35
About skinning components . 37

CHAPTER 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional
2004 Components . 45

User interface (UI) controls . 46
Containers . 47
Data . 47
Managers . 47
Screens . 48
Accordion component . 48
Alert component . 48
Button component . 48
CellRenderer interface . 59
CheckBox component . 60
ComboBox component . 67
DataBinding package . 95
DataGrid component . 95
DataHolder component . 96
DataProvider component . 96
DataSet component . 96
DateChooser component . 96
DateField component . 96
DepthManager . 96
FocusManager . 102
Form class . 109
Label component. 109
List component . 114
Loader component . 142
MediaController component . 153
MediaDisplay component . 153
MediaPlayback component . 153
Menu component . 153
NumericStepper component . 153
PopUpManager . 162
ProgressBar component . 164
RadioButton component. 178
RDBMSResolver component . 188
RemoteProcedureCall interface . 188
Screen class . 188
ScrollBar component . 188
ScrollPane component . 199
StyleManager . 214
Slide class . 216
TextArea component . 216
TextInput component . 229
Tree component . 240
4 Contents

UIComponent . 240
UIEventDispatcher . 248
UIObject. 250
WebServices package . 267
WebServiceConnector component . 267
Window component . 267
XMLConnector component . 277
XUpdateResolver component . 277

INDEX . 279
Contents 5

6 Contents

INTRODUCTION
Getting Started with Components
Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 are the professional
standard authoring tools for producing high-impact web experiences. Components are the
building blocks for the Rich Internet Applications that provide those experiences. A component is
a movie clip with parameters that are set while authoring in Macromedia Flash, and ActionScript
APIs that allow you to customize the component at runtime. Components are designed to allow
developers to reuse and share code, and to encapsulate complex functionality that designers can
use and customize without using ActionScript.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. This book describes how to build applications with v2 components and describes each
component’s application programming interface (API). It includes usage scenarios and procedural
samples for using the Flash MX 2004 or Flash MX Professional 2004 v2 components, as well as
descriptions of the component APIs, in alphabetical order.

You can use components created by Macromedia, download components created by other
developers, or create your own components.

Intended audience

This book is for developers who are building Flash MX 2004 or Flash MX Professional 2004
applications and want to use components to speed development. You should already be
familiar with developing applications in Macromedia Flash, writing ActionScript, and
Macromedia Flash Player.

This book assumes that you already have Flash MX 2004 or Flash MX Professional 2004 installed
and know how to use it. Before using components, you should complete the lesson “Create a user
interface with components” (select Help > How Do I > Quick Tasks > Create a user interface with
components).

If you want to write as little ActionScript as possible, you can drag components into a document,
set their parameters in the Property inspector or in the Components Inspector panel, and attach
an on() handler directly to a component in the Actions panel to handle component events.

If you are a programmer who wants to create more robust applications, you can create
components dynamically, use their APIs to set properties and call methods at runtime, and use
the listener event model to handle events.

For more information, see Chapter 2, “Working with Components,” on page 15.
7

System requirements

Macromedia components do not have any system requirements in addition to Flash MX 2004 or
Flash MX Professional 2004.

Installing components

A set of Macromedia components is already installed when you launch Flash MX 2004 or Flash
MX Professional 2004 for the first time. You can view them in the Components panel.

Flash MX 2004 includes the following components:

• Button component
• CheckBox component
• ComboBox component
• Label component
• List component
• Loader component
• NumericStepper component
• PopUpManager
• ProgressBar component
• RadioButton component
• ScrollPane component
• TextArea component
• TextInput component
• Window component

Flash MX Professional 2004 includes the Flash MX 2004 components and the following
additional components and classes:

• Accordion component
• Alert component
• DataBinding package
• DateField component
• DataGrid component
• DataHolder component
• DataSet component
• DateChooser component
• Form class
• MediaController component
• MediaDisplay component
• MediaPlayback component
• Menu component
• RDBMSResolver component
• Screen class
8 Introduction: Getting Started with Components

• Tree component
• WebServiceConnector component
• XMLConnector component
• XUpdateResolver component

To verify installation of the Flash MX 2004 or Flash MX Professional 2004 components:

1 Start Flash.
2 Select Window > Development Panels > Components to open the Components panel if it isn’t

already open.
3 Select UI Components to expand the tree and view the installed components.
You can also download components from the Macromedia Exchange. To install components
downloaded from the Exchange, download and install the Macromedia Extension Manager.

Any component, whether it’s a SWC file or a FLA file (see “About compiled clips and SWC files”
on page 14), can appear in the Components panel in Flash. Follow these steps to install
components on either a Windows or Macintosh computer.

To install components on a Windows-based or a Macintosh computer:

1 Quit Flash.
2 Place the SWC or FLA file containing the component in the following folder on your hard disk:

■ HD/Applications/Macromedia Flash MX 2004/First Run/Components (Macintosh)
■ \Program Files\Macromedia\Flash MX 2004\<language>\First Run\Components

(Windows)
3 Open Flash.
4 Select Window > Development Panels > Components to view the component in the

Components panel if it isn’t already open.

About the documentation

This document explains the details of using components to develop Flash applications. It assumes
the reader has general knowledge of Macromedia Flash and ActionScript. Specific documentation
is available separately about Flash and related products.

• For information about Macromedia Flash, see Using Flash, the ActionScript Reference Guide,
and ActionScript Dictionary Help.

• For information about accessing web services with Flash applications, see Using Flash Remoting.

Typographical conventions

The following typographical conventions are used in this book:

• Italic font indicates a value that should be replaced (for example, in a folder path).
• Code font indicates ActionScript code.
• Code font italic indicates an ActionScript parameter.
• Bold font indicates a verbatim entry.

Note: Bold font is not the same as the font used for run-in headings. Run-in heading font is used
as an alternative to a bullet.
Typographical conventions 9

http://www.macromedia.com/exchange
http://www.macromedia.com/exchange/em_download/

Terms used in this manual

The following terms are used in this book:

at runtime When the code is running in the Flash Player.

while authoring While working in the Flash authoring environment.

Additional resources

For the latest information on Flash, plus advice from expert users, advanced topics, examples,
tips, and other updates, see the Macromedia DevNet website, which is updated regularly. Check
the website often for the latest news on Flash and how to get the most out of the program.

For TechNotes, documentation updates, and links to additional resources in the Flash
Community, see the Macromedia Flash Support Center at www.macromedia.com/support/flash.

For detailed information on ActionScript terms, syntax, and usage, see the ActionScript Reference
Guide and ActionScript Dictionary Help.
10 Introduction: Getting Started with Components

http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash

CHAPTER 1
About Components
Components are movie clips with parameters that allow you to modify their appearance and
behavior. A component can provide any functionality that its creator can imagine. A component
can be a simple user interface control, such as a radio button or a check box, or it can contain
content, such as a scroll pane; a component can also be non-visual, like the FocusManager that
allows you to control which object receives focus in an application.

Components enable anyone to build complex Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 applications, even if they don’t have an advanced understanding of
ActionScript. Rather than creating custom buttons, combo boxes, and lists, you can drag these
components from the Components panel to add functionality to your applications. You can also
easily customize the look and feel of components to suit your design needs.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. The v2 architecture includes classes on which all components are based, styles and skins
mechanisms that allow you to customize component appearance, a broadcaster/listener event
model, depth and focus management, accessibility implementation, and more.

Each component has predefined parameters that you can set while authoring in Flash. Each
component also has a unique set of ActionScript methods, properties, and events, also called an
API (application programming interface), that allows you to set parameters and additional
options at runtime.

Flash MX 2004 and Flash MX Professional 2004 include many new Flash components and
several new versions of components that were included in Flash MX. For a complete list of
components included with Flash MX 2004 and Flash MX Professional 2004, see “Installing
components” on page 8. You can also download components built by members of the Flash
community at the Macromedia Exchange.

Benefits of v2 components

Components enable the separation of coding and design. They also allow you to reuse code,
either in components you create, or by downloading and installing components created by
other developers.
11

http://www.macromedia.com/cfusion/exchange/index.cfm

Components allow coders to create functionality that designers can use in applications.
Developers can encapsulate frequently used functionality into components and designers can
customize the look and behavior of components by changing parameters in the Property inspector
or the Component Inspector panel.

Members of the Flash community can use the Macromedia Exchange to exchange components.
By using components, you no longer need to build each element in a complex web application
from scratch. You can find the components you need and put them together in a Flash document
to create a new application.

Components that are based on the v2 component architecture share core functionality such as
styles, event handling, skinning, focus management, and depth management. When you add the
first v2 component to an application, there is approximately 25K added to the document that
provides this core functionality. When you add additional components, that same 25K is reused
for them as well, resulting in a smaller increase in size to your document than you may expect. For
information about upgrading v1 components to v2 components, see “Upgrading v1 components
to v2 architecture” on page 25.

Categories of components

Components included with Flash MX 2004 and Flash MX Professional 2004 fall into four
categories: user interface (UI) controls, containers, data, and managers. UI controls allow a user to
interact with an application; for example, the RadioButton, CheckBox, and TextInput
components are UI controls. Containers are shells for different types of content, such as loaded
SWF files and JPEG files; the ScrollPane and Window components are containers. Data
components allow you to load and manipulate information from data sources; the
WebServiceConnector and XMLConnector components are data components. Managers are
non-visual components that allow you to manage a feature, such as focus or depth, in an
application; the FocusManager, DepthManager, PopUpManager, and StyleManager are the
manager components included with Flash MX 2004 and Flash MX Professional 2004. For a
complete list of each category, see Chapter 4, “Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 Components,” on page 45.

Component architecture

You can use the Property inspector or the Component Inspector panel to change component
parameters to make use of the basic functionality of components. However, if you want greater
control over components, you need to use their APIs and understand a little bit about the way
they were built.

Flash MX 2004 and Flash MX Professional 2004 components are built using version 2 (v2) of the
Macromedia Component Architecture. Version 2 components are supported by Flash Player 6
and Flash Player 7. These components are not always compatible with components built using
version 1 (v1) architecture (all components released before Flash MX 2004). Also, v1 components
are not supported by Flash Player 7. For more information, see “Upgrading v1 components to v2
architecture” on page 25.

V2 components are included in the Components panel as compiled clip (SWC) symbols. A
compiled clip is a component movie clip whose code has been compiled. Compiled clips have
built-in live previews and cannot be edited, but you can change their parameters in the Property
inspector and Component Inspector panel, just as you would with any component. For more
information, see “About compiled clips and SWC files” on page 14.
12 Chapter 1: About Components

http://www.macromedia.com/go/exchange

V2 components are written in ActionScript 2. Each component is a class and each class is in an
ActionScript package. For example, a radio button component is an instance of the RadioButton
class whose package name is mx.controls. For more information about packages, see “Using
packages” in ActionScript Reference Guide Help.

All components built with version 2 of the Macromedia Component Architecture are
subclasses of the UIObject and UIComponent classes and inherit all properties, methods,
and events from those classes. Many components are also subclasses of other components.
The inheritance path of each component is indicated in its entry in Chapter 4, “Macromedia
Flash MX 2004 and Macromedia Flash MX Professional 2004 Components,” on page 45.

All components also use the same event model, CSS-based styles, and built-in skinning
mechanism. For more information on styles and skinning, see Chapter 3, “Customizing
Components,” on page 27. For more information on event handling, see Chapter 2, “Working
with Components,” on page 15.

What’s new in v2 components

Component Inspector panel allows you to change component parameters while authoring in
both Macromedia Flash and Macromedia Dreamweaver. (See “Components in the Component
Inspector panel and Property inspector” on page 16.)

Listener event model allows listener objects of functions to handle events. (See “About
component events” on page 21.)

Skin properties allow you to load states only when needed. (See “About skinning components”
on page 37.)

CSS-based styles allow you to create a consistent look and feel across applications. (See “Using
styles to customize component color and text” on page 28.)

Themes allow you to drag a new look onto a set of components. (See “About themes”
on page 35.)

Halo theme provides a ready-made, responsive, and flexible user interface for applications.

Manager classes provide an easy way to handle focus and depth in a application. (See “Creating
custom focus navigation” on page 24 and “Managing component depth in a document”
on page 25.)

Base classes UIObject and UIComponent provide core functionality to all components.
(See “UIComponent” on page 240 and “UIObject” on page 250.)

Packaging as a SWC file allows easy distribution and concealable code. See “Creating
Components”. You may need to download the latest PDF from the Flash Support Center to see
this information.

Built-in data binding is available through the Component Inspector panel. For more information
about this feature, press the Help Update button.

Easily extendable class hierarchy using ActionScript 2 allows you to create unique namespaces,
import classes as needed, and subclass easily to extend components. See “Creating Components”
and the ActionScript Reference Guide. You may need to download the latest PDF from the Flash
Support Center to see this information.
What’s new in v2 components 13

About compiled clips and SWC files

A compiled clip is used to pre-compile complex symbols in a Flash document. For example, a
movie clip with a lot of ActionScript code that doesn't change often could be turned into a
compiled clip. As a result, both Test Movie and Publish would require less time to execute.

A SWC file is the file type for saving and distributing components. When you place a SWC file in
the First Run\Components folder, the component appears in the Components panel. When
you add a component to the Stage from the Components panel, a compiled clip symbol is added
to the library.

For more information about SWC files, see “Creating Components”. You may need to download
the latest PDF from the Flash Support Center to see this information.

Accessibility and components

A growing requirement for web content is that it should be accessible; that is, usable for people
with a variety of disabilities. Visual content in Flash applications can be made accessible to the
visually impaired with the use of screen reader software, which provides a spoken audio
description of the contents of the screen.

When a component is created, the author can write ActionScript that enables communication
between the component and a screen reader. Then, when a developer uses components to
build an application in Flash, the developer uses the Accessibility panel to configure each
component instance.

Most components built by Macromedia are designed for accessibility. To find out whether a
component is accessible, check its entry in Chapter 4, “Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004 Components,” on page 45. When you’re building an
application in Flash, you’ll need to add one line of code for each component
(mx.accessibility.ComponentNameAccImpl.enableAccessibility();), and set the
accessibility parameters in the Accessibility panel. Accessibility for components works the same
way as it works for all Flash movie clips. For more information, see “Creating Accessible Content”
in Using Flash Help. You may need to update your Help system to see this information.

Most components built by Macromedia are also navigable by the keyboard. Each component’s
entry in Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004
Components,” on page 45 indicates whether or not you can control the component with
the keyboard.
14 Chapter 1: About Components

CHAPTER 2
Working with Components
There are various ways to work with components in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004. You use the Components panel to view components
and add them to a document during authoring. Once a component has been added to a
document, you can view its properties in the Property inspector or in the Component Inspector
panel. Components can communicate with other components by listening to their events and
handling them with ActionScript. You can also manage the component depth in a document and
control when a component receives focus.

The Components panel

All components are stored in the Components panel. When you install Flash MX 2004 or Flash
MX Professional 2004 and launch it for the first time, the components in the Macromedia Flash
2004/First Run/Components (Macintosh) or Macromedia\Flash 2004\<language>\First
Run\Components (Windows) folder are displayed in the Components panel.

To display the Components panel:

• Select Window > Development Panels > Components.
15

Components in the Library panel

When you add a component to a document, it is displayed as a compiled clip symbol (SWC) in
the Library panel.

A ComboBox component in the Library panel.

You can add more instances of a component by dragging the component icon from the library
to the Stage.

For more information about compiled clips, see “Working with SWC files and compiled clips”
on page 18.

Components in the Component Inspector panel and
Property inspector

After you add an instance of a component to a Flash document, you use the Property inspector to
set and view information for the instance. You create an instance of a component by dragging it
from the Components panel onto the Stage; then you name the instance in the Property inspector
and specify the parameters for the instance using the fields on the Parameters tab. You can also set
parameters for a component instance using the Component Inspector panel. It doesn’t matter
which panel you use to set parameters; it’s simply a matter of personal preference. For more
information about setting parameters, see “Setting component parameters” on page 21.

To view information for a component instance in the Property inspector:

1 Select Window > Properties.
2 Select an instance of a component on the Stage.
3 To view parameters, click the Parameters tab.
16 Chapter 2: Working with Components

To view parameters for a component instance in the Component Inspector panel:

1 Select Window > Component Inspector.
2 Select an instance of a component on the Stage.
3 To view parameters, click the Parameters tab.

Components in Live Preview

The Live Preview feature, enabled by default, lets you view components on the Stage as they will
appear in the published Flash content, including their approximate size. The live preview reflects
different parameters for different components. For information about which component
parameters are reflected in the Live Preview, see each component entry in Chapter 4,
“Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components,”
on page 45. Components in Live Preview are not functional. To test component functionality,
you can use the Control > Test Movie command.

A Button component with Live Preview enabled.

A Button component with Live Preview disabled.

To turn Live Preview on or off:

• Select Control > Enable Live Preview. A check mark next to the option indicates that it
is enabled.

For more information, see “Creating Components”. You may need to download the latest PDF
from the Flash Support Center to see this information.
Components in Live Preview 17

Working with SWC files and compiled clips

Components included with Flash MX 2004 or Flash MX Professional 2004 are not FLA files—
they are SWC files. SWC is the Macromedia file format for components. When you add a
component to the Stage from the Components panel, a compiled clip symbol is added to the
library. A SWC is a compiled clip that has been exported for distribution.

A movie clip can also be “compiled” in Flash and converted into a compiled clip symbol. The
compiled clip symbol behaves just like the movie clip symbol from which it was compiled, but
compiled clips display and publish much faster than regular movie clip symbols. Compiled clips
can’t be edited, but they do have properties that appear in the Property inspector and in the
Component Inspector panel and they include a live preview.

The components included with Flash MX 2004 or Flash MX Professional 2004 have already been
turned into compiled clips. If you create a component, you may choose to export it as a SWC for
distribution. For more information, see “Creating Components”. You may need to download the
latest PDF from the Flash Support Center to see this information.

To compile a movie clip symbol:

• Select the movie clip in the library and right-click (Windows) or Control-click (Macintosh),
and then select Convert to Compiled Clip.

To export a SWC:

• Select the movie clip in the library and right-click (Windows) or control-click (Macintosh),
and then select Export SWC File.

Note: Flash MX 2004 and Flash MX Professional 2004 continue to support FLA components.

Adding components to Flash documents

When you drag a component from the Components panel to the Stage, a compiled clip symbol is
added to the Library panel. Once a compiled clip symbol is in the library, you can also add that
component to a document/ at runtime by using the UIObject.createClassObject()
ActionScript method.

• Beginning Flash users can use the Components panel to add components to Flash documents,
specify basic parameters using the Property inspector or the Component Parameters panel, and
use the on() event handler to control components.

• Intermediate Flash users can use the Components panel to add components to Flash
documents and then use the Property inspector, ActionScript methods, or a combination of
the two to specify parameters. They can use the on() event handler, or event listeners to handle
component events.

• Advanced Flash programmers can use a combination of the Components panel and
ActionScript to add components and specify properties, or choose to implement component
instances at runtime using only ActionScript. They can use event listeners to control
components.

If you edit the skins of a component and then add another version of the component, or a
component that shares the same skins, you can choose to use the edited skins or replace the edited
skins with a new set of default skins. If you replace the edited skins, all components using those
skins are updated with default versions of the skins. For more information on how to edit skins,
see Chapter 3, “Customizing Components,” on page 27.
18 Chapter 2: Working with Components

Adding components using the Components panel

After you add a component to a document using the Components panel, you can add additional
instances of the component to the document by dragging the component from the Library panel
to the Stage. You can set properties for additional instances in the Parameters tab of the Property
inspector or in the Component Parameters panel.

To add a component to a Flash document using the Components panel:

1 Select Window > Components.
2 Do one of the following:

■ Drag a component from the Components panel to the Stage.
■ Double-click a component in the Components panel.

3 If the component is a FLA (all installed v2 components are SWCs) and if you have edited skins
for another instance of the same component, or for a component that shares skins with the
component you are adding, do one of the following:
■ Select Don't Replace Existing Items to preserve the edited skins and apply the edited skins

to the new component.
■ Select Replace Existing Items to replace all the skins with default skins. The new component

and all previous versions of the component, or of components that share its skins, will use
the default skins.

4 Select the component on the Stage.
5 Select Window > Properties.
6 In the Property inspector, enter an instance name for the component instance.
7 Click the Parameters tab and specify parameters for the instance.

For more information, see “Setting component parameters” on page 21.
8 Change the size of the component as desired.

For more information on sizing specific component types, see the individual component
entries in Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX Professional
2004 Components,” on page 45.

9 Change the color and text formatting of a component as desired, by doing one or more of
the following:
■ Set or change a specific style property value for a component instance using the

setStyle() method available to all components. For more information, see
UIObject.setStyle().

■ Edit multiple properties in the _global style declaration assigned to all v2 components.
■ If desired, create a custom style declaration for specific component instances.

For more information, see “Using styles to customize component color and text”
on page 28.

10 Customize the appearance of the component if desired, by doing one of the following:
■ Apply a theme (see “About themes” on page 35).
■ Edit a component’s skins (see “About skinning components” on page 37).
Adding components to Flash documents 19

Adding components using ActionScript

To add a component to a document using ActionScript, you must first add it to the library.

You can use ActionScript methods to set additional parameters for dynamically added
components. For more information, see Chapter 4, “Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004 Components,” on page 45.
Note: The instructions in this section assume an intermediate or advanced knowledge of
ActionScript.

To add a component to your Flash document using ActionScript:

1 Drag a component from the Components panel to the Stage and delete it.
This adds the component to the library.

2 Select the frame in the Timeline where you want to place the component.
3 Open the Actions panel if it isn’t already open.
4 Call the createClassObject() method to create the component instance at runtime.

This method can be called on its own, or from any component instance. It takes a component
class name, an instance name for the new instance, a depth, and an optional initialization
object as its parameters. You can specify the class package in the className parameter, as in
the following:
createClassObject(mx.controls.CheckBox, "cb", 5, {label:"Check Me"});

Or you can import the class package, as in the following:
import mx.controls.CheckBox;
createClassObject(CheckBox, "cb", 5, {label:"Check Me"});

For more information, see UIObject.createClassObject().
5 Use the ActionScript methods and properties of the component to specify additional options or

override parameters set during authoring.
For detailed information on the ActionScript methods and properties available to each
component, see their entries in Chapter 4, “Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 Components,” on page 45.

About component label size and component width and height

If a component instance that has been added to a document is not large enough to display its
label, the label text is clipped. If a component instance is larger than the text, the hit area extends
beyond the label.

Use the Free Transform tool or the setSize() method to resize component instances. You can
call the setSize() method from any component instance (see UIObject.setSize()). If you use
the ActionScript _width and _height properties to adjust the width and height of a component,
the component is resized but the layout of the content remains the same. This may cause the
component to be distorted in movie playback. For more information about sizing components,
see their individual entries in Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash
MX Professional 2004 Components,” on page 45.
20 Chapter 2: Working with Components

Setting component parameters

Each component has parameters that you can set to change its appearance and behavior. A
parameter is a property or method that appears in the Property inspector and Component
Inspector panel. The most commonly used properties and methods appear as authoring
parameters; others must be set using ActionScript. All parameters that can be set while authoring
can also be set with ActionScript. Setting a parameter with ActionScript overrides any value set
while authoring.

All v2 components inherit properties and methods from the UIObject class and the
UIComponent class; these are the properties and methods that all components use, such as
UIObject.setSize(), UIObject.setStyle(), UIObject.x, and UIObject.y. Each
component also has unique properties and methods, some of which are available as authoring
parameters. For example, the ProgressBar component has a percentComplete property
(ProgressBar.percentComplete), while the NumericStepper component has nextValue and
previousValue properties (NumericStepper.nextValue, NumericStepper.previousValue).

Deleting components from Flash documents

To delete a component's instances from a Flash document, you delete the component from the
library by deleting the compiled clip icon.

To delete a component from a document:

1 In the Library panel, select the compiled clip (SWC) symbol.
2 Click the Delete button at the bottom of the Library panel, or select Delete from the Library

panel options menu.
3 In the Delete dialog box, click Delete to confirm the deletion.

Using code hints

When you are using ActionScript 2, you can strictly type a variable that is based on a built-in
class, including component classes. If you do so, the ActionScript editor displays code hints for
the variable. For example, suppose you type the following:
var myCheckBox:CheckBox
myCheckBox.

As soon as you type the period, Flash displays a list of methods and properties available for
CheckBox components, because you have typed the variable as a CheckBox. For more
information on data typing, see “Strict data typing” in ActionScript Reference Guide Help. For
information on using code hints when they appear, see “Using code hints” in ActionScript
Reference Guide Help.

About component events

All components have events that are broadcast when the user interacts with a component or when
something significant happens to the component. To handle an event, you write ActionScript
code that executes when the event is triggered.

You can handle component events in the following ways:

• Use the on() component event handler.
• Use event listeners.
About component events 21

Using component event handlers

The easiest way to handle a component event is to use the on() component event handler. You
can assign the on() handler to a component instance, just as you would assign a handler to a
button or movie clip.

The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Button component
instance myButtonComponent, sends “_level0.myButtonComponent” to the Output panel:
on(click){

trace(this);
}

To use the on() handler:

1 Drag a CheckBox component to the Stage from the Components panel.
2 Select the component and select Window > Actions.
3 In the Actions panel, enter the following code:

on(click){
trace("CheckBox was clicked");

}

You can enter any code you wish between the curly braces({}).
4 Select Control > Test Movie and click the check box to see the trace in the Output panel.

For more information, see each event entry in Chapter 4, “Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004 Components,” on page 45.

Using component event listeners

The most powerful way to handle component events is to use listeners. Events are broadcast by
components and any object that is registered to the event broadcaster (component instance) as a
listener can be notified of the event. The listener is assigned a function that handles the event. You
can register multiple listeners to one component instance. You can also register one listener to
multiple component instances.

To use the event listener model, you create a listener object with a property that is the name of the
event. The property is assigned to a callback function. Then you call the
UIEventDispatcher.addEventListener() method on the component instance that’s
broadcasting the event and pass it the name of the event and the name of the listener object.
Calling the UIEventDispatcher.addEventListener() method is called “registering” or
“subscribing” a listener, as in the following:
listenerObject.eventName = function(evtObj){

// your code here
};
componentInstance.addEventListener("eventName", listenerObject);

In the above code, the keyword this, if used in the callback function, is scoped to the
listenerObject.

The evtObj parameter is an event object that is automatically generated when an event is
triggered and passed to the listener object callback function. The event object has properties that
contain information about the event. For more information, see “UIEventDispatcher”
on page 248.
22 Chapter 2: Working with Components

For information about the events a component broadcasts, see each component’s entry in
Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004
Components,” on page 45.

To register an event listener, do the following:

1 Drag a Button component to the Stage from the Components panel.
2 In the Property inspector, enter the instance name button.
3 Drag a TextInput component to the Stage from the Components panel.
4 In the Property inspector, enter the instance name myText.
5 Select Frame 1 in the Timeline.
6 Select Window > Actions.
7 In the Actions panel, enter the following code:

form = new Object();
form.click = function(evt){

myText.text = evt.target;
}
button.addEventListener("click", form);

The target property of the event object is a reference to the instance broadcasting the event.
This code displays the value of the target property in the text input field.

Additional event syntax

In addition to using a listener object, you can use a function as a listener. A listener is a function if
it does not belong to an object. For example, the following code creates the listener function
myHandler and registers it to buttonInstance:
function myHandler(eventObj){

if (eventObj.type == "click"){
// your code here

}
}
buttonInstance.addEventListener("click", myHandler);

Note: In a function listener, the this keyword is buttonInstance, not the Timeline on which the
function is defined.

You can also use listener objects that support a handleEvent method. Regardless of the name of
the event, the listener object's handleEvent method is called. You must use an if else or a
switch statement to handle multiple events, which makes this syntax clumsy. For example, the
following code uses an if else statement to handle the click and enter events:
myObj.handleEvent = function(o){

if (o.type == "click"){
// your code here

} else if (o.type == "enter"){
// your code here

}
}
target.addEventListener("click", myObj);
target2.addEventListener("enter", myObj);
About component events 23

There is one additional event syntax style, which should only be used when you are authoring a
component and know that a particular object is the only listener for an event. In such a situation,
you can take advantage of the fact that the v2 event model always calls a method on the
component instance that is the event name plus “Handler”. For example, if you want to handle
the click event, you would write the following code:
componentInstance.clickHandler = function(o){

// insert your code here
}

In the above code, the keyword this, if used in the callback function, is scoped to
componentInstance.

For more information, see “Creating Components”. You may need to download the latest PDF
from the Flash Support Center to see this information.

Creating custom focus navigation

When a user presses the Tab key to navigate in a Flash application or clicks in an application, the
FocusManager determines which component receives focus. You don’t need to add a
FocusManager instance to an application or write any code to activate the FocusManager.

If a RadioButton object receives focus, the FocusManager examines that object and all
objects with the same groupName value and sets focus on the object with the selected
property set to true.

Each modal Window component contains an instance of the FocusManager so the controls on
that window become their own tab set, which prevents a user from inadvertently getting into
components in other windows by pressing the Tab key.

To create focus navigation in an application, set the tabIndex property on any components
(including buttons) that should receive focus. When a user presses the Tab key, the FocusManager
looks for an enabled object with a tabIndex property that is higher than the current value of
tabIndex. Once the FocusManager reaches the highest tabIndex property, it returns to zero. For
example, in the following, the comment object (probably a TextArea component) receives focus
first, and then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:
FocusManager.defaultPushButton = okButton;

The FocusManager overrides the default Flash Player focus rectangle and draws a custom focus
rectangle with rounded corners.
24 Chapter 2: Working with Components

Managing component depth in a document

If you want to position a component above or below another object in an application, you must
use the DepthManager. The DepthManager application programming interface (API) allows you
to place user interface (UI) components in an appropriate z-order (for example, a combo box
drops down in front of other components, insertion points appear in front of everything, dialog
windows float over content, and so on).

The DepthManager has two main purposes: to manage the relative depth assignments within any
document, and to manage reserved depths on the root Timeline for system-level services such as
the cursor and tooltips.

To use the DepthManager, call its methods (see “DepthManager” on page 96).

The following code places the component instance loader below the button component:
loader.setDepthBelow(button);

About using a preloader with components

Components are set to Export in first frame by default. This causes the components to load
before the first frame of an application is rendered. If you want to create a preloader for an
application, you should deselect Export in first frame for any compiled clip symbols in
your library.
Note: If you’re using the ProgressBar component to display loading progress, leave Export in first
frame selected for the ProgressBar.

Upgrading v1 components to v2 architecture

The v2 components were written to comply with several web standards (regarding events, styles,
getter/setter policies, and so on) and are very different from their v1 counterparts that were
released with Macromedia Flash MX and in the DRKs that were released before Macromedia
Flash MX 2004. V2 components have different APIs and were written in ActionScript 2.
Therefore, using v1 and v2 components together in an application can cause unpredictable
behavior. For information about upgrading v1 components to use version 2 event handling,
styles, and getter/setter access to the properties instead of methods, see “Creating Components”.
You may need to download the latest PDF from the Flash Support Center to see this information.

Flash applications that contain v1 components work properly in Flash Player 6 and Flash Player
7, when published for Flash Player 6 or Flash Player 6 release 65. If you would like to update your
applications to work when published for Flash Player 7, you must convert your code to use strict
data-typing. For more information, see “Creating Classes with ActionScript 2” in ActionScript
Dictionary Help.
Upgrading v1 components to v2 architecture 25

http://www.w3.org/TR/DOM-Level-3-Events/events.html

26 Chapter 2: Working with Components

CHAPTER 3
Customizing Components
You might want to change the appearance of components as you use them in different
applications. There are three ways to accomplish this in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004:

• Use the Styles API.
• Apply a theme.
• Modify or replace a component’s skins.

The Styles API (application programming interface) has methods and properties that allow you to
change the color and text formatting of a component.

A theme is a collection of styles and skins that make up a component’s appearance.

Skins are symbols used to display components. Skinning is the process of changing the appearance
of a component by modifying or replacing its source graphics. A skin can be a small piece, like a
border’s edge or corner, or a composite piece like the entire picture of a button in its up state (the
state in which it hasn’t been pressed). A skin can also be a symbol without a graphic, which
contains code that draws a piece of the component.
27

Using styles to customize component color and text

Every component instance has style properties and setStyle() and getStyle() (see
UIObject.setStyle() and UIObject.getStyle()) methods that you can use to modify and
access style properties. You can use styles to customize a component in the following ways:

• Set styles on a component instance.
You can change color and text properties of a single component instance. This is effective in
some situations, but it can be time consuming if you need to set individual properties on all
the components in a document.

• Use the _global style declaration that sets styles for all components in a document.
If you want to apply a consistent look to an entire document, you can create styles on the
_global style declaration.

• Create custom style declarations and apply them to specific component instances.
You may also want to have groups of components in a document share a style. To do this, you
can create custom style declarations to apply to specific components.

• Create default class style declarations.
You can also define a default class style declaration so that every instance of a class shares a
default appearance.

Changes made to style properties are not displayed when viewing components on the Stage using
the Live Preview feature. For more information, see “Components in Live Preview” on page 17.

Setting styles on a component instance

You can write ActionScript code to set and get style properties on any component instance.
The UIObject.setStyle() and UIObject.getStyle() methods can be called directly from
any component. For example, the following code sets the text color on a Button instance
called myButton:
myButton.setStyle("color", 0xFF00FF");

Even though you can access the styles directly as properties (for example, myButton.color =
0xFF00FF), it’s best to use the setStyle() and getStyle() methods so that the styles work
correctly. For more information, see “Setting style property values” on page 33.
Note: You should not call the UIObject.setStyle() method multiple times to set more than one
property. If you want to change multiple properties, or change properties for multiple component
instances, you should create a custom style format. For more information, see “Setting styles for
specific components” on page 30.
28 Chapter 3: Customizing Components

To set or change a property for a single component instance:

1 Select the component instance on the Stage.
2 In the Property inspector, give it the instance name myComp.
3 Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.
4 Enter the following code to change the instance to blue:

myComp.setStyle("themeColor", "haloBlue");

The following syntax specifies a property and value for a component instance:
instanceName.setStyle("property", value);

5 Select Control > Test Movie to view the changes.
For a list of supported styles, see “Supported styles” on page 33.

Setting global styles

The _global style declaration is assigned to all Flash components built with version 2 of the
Macromedia Component Architecture (v2 components). The _global object has a property called
style (_global.style) that is an instance of CSSStyleDeclaration. This style property acts as
the _global style declaration. If you change a property’s value on the _global style declaration, the
change is applied to all components in your Flash document.

Some styles are set on a component class’s CSSStyleDeclaration (for example, the
backgroundColor style of the TextArea and TextInput components). Because the class style
declaration takes precedence over the _global style declaration when determining style values,
setting backgroundColor on the _global style declaration would have no effect on TextArea and
TextInput. For more information, see “Using global, custom, and class styles in the same
document” on page 31.

To change one or more properties in the global style declaration:

1 Make sure the document contains at least one component instance.
For more information, see “Adding components to Flash documents” on page 18.

2 Create a new layer in the Timeline and give it a name.
3 Select a frame in the new layer on which (or before) the component appears.
4 Open the Actions panel.
5 Use the following syntax to change any properties on the _global style declaration. You only

need to list the properties whose values you want to change, as in the following:
_global.style.setStyle("color", 0xCC6699);
_global.style.setStyle("themeColor", "haloBlue")
_global.style.setStyle("fontSize",16);
_global.style.setStyle("fontFamily" , "_serif");

For a list of styles, see “Supported styles” on page 33.
6 Select Control > Test Movie to see the changes.
Using styles to customize component color and text 29

Setting styles for specific components

You can create custom style declarations to specify a unique set of properties for specific
components in your Flash document. You create a new instance of the CSSStyleDeclaration
object, create a custom style name and place it on the _global.styles list
(_global.styles.newStyle), specify the properties and values for the style, and assign the style
to an instance. The CSSStyleDeclaration object is accessible if you have placed at least one
component instance on the Stage.

You make changes to a custom style format in the same way that you edit the properties in the
_global style declaration. Instead of the _global style declaration name, use the
CSSStyleDeclaration instance. For more information on the _global style declaration, see “Setting
global styles” on page 29.

For information about the properties of the CSSStyleDeclaration object, see “Supported styles”
on page 33. For a list of which styles each component supports, see their individual entries in
Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004
Components,” on page 45.

To create a custom style declaration for specific components:

1 Make sure the document contains at least one component instance.
For more information, see “Adding components to Flash documents” on page 18.
This example uses three button components with the instance names a, b, and c. If you use
different components, give them instance names in the Property inspector and use those
instance names in step 9.

2 Create a new layer in the Timeline and give it a name.
3 Select a frame in the new layer on which (or before) the component appears.
4 Open the Actions panel in expert mode.
5 Use the following syntax to create an instance of the CSSStyleDeclaration object to define the

new custom style format:
var styleObj = new mx.styles.CSSStyleDeclaration;

6 Set the styleName property of the style declaration to name the style:
styleObj.styleName = "newStyle";

7 Place the style on the global style list:
_global.styles.newStyle = styleObj;

Note: You can also create a CSSStyleDeclaration object and assign it to a new style declaration
by using the following syntax:

var styleObj = _global.styles.newStyle = new
mx.styles.CSSStyleDeclaration();

8 Use the following syntax to specify the properties you want to define for the myStyle style
declaration:
styleObj.fontFamily = "_sans";
styleObj.fontSize = 14;
styleObj.fontWeight = "bold";
styleObj.textDecoration = "underline";
styleObj.color = 0x336699;
styleObj.setStyle("themeColor", "haloBlue");
30 Chapter 3: Customizing Components

9 In the same Script pane, use the following syntax to set the styleName property of two specific
components to the custom style declaration:
a.setStyle("styleName", "newStyle");
b.setStyle("styleName", "newStyle");

You can also access styles on a custom style declaration using the setStyle() and getStyle()
methods. The following code sets the backgroundColor style on the newStyle style declaration:
_global.styles.newStyle.setStyle("backgroundColor", "0xFFCCFF");

Setting styles for a component class

You can define a class style declaration for any class of component (Button, CheckBox, and so on)
that sets default styles for each instance of that class. You must create the style declaration before
you create the instances. Some components, like TextArea and TextInput, have class style
declarations predefined by default because their borderStyle and backgroundColor properties
must be customized.

The following code creates a class style declaration for CheckBox and sets the check box color
to blue:
var o = _global.styles.CheckBox = new mx.styles.CSSStyleDeclaration();
o.color = 0x0000FF;

You can also access styles on a class style declaration using the setStyle() and getStyle()
methods. The following code sets the color style on the RadioButton style declaration:
_global.styles.RadioButton.setStyle("color", "blue");

For more information on supported styles, see “Supported styles” on page 33.

Using global, custom, and class styles in the same document

If you define a style in only one place in a document, Flash uses that definition when it needs to
know a property’s value. However, one Flash document can have a _global style declaration,
custom style declarations, style properties set directly on component instances, and default class
style declarations. In such a situation, Flash determines the value of a property by looking for its
definition in all these places in a specific order.

First, Flash looks for a style property on the component instance. If the style isn’t set directly on
the instance, Flash looks at the styleName property of the instance to see if a style declaration is
assigned to it.

If the styleName property hasn’t been assigned to a style declaration, Flash looks for the property
on a default class style declaration. If there isn’t a class style declaration, and the property doesn’t
inherit its value, the _global style declaration is checked. If the property is not defined on the
_global style declaration, the property is undefined.

If there isn’t a class style declaration, and the property does inherit its value, Flash looks for the
property on the instance’s parent. If the property isn’t defined on the parent, Flash checks the
parent’s styleName property; if that isn’t defined, Flash continues to look at parent instances until
it reaches the _global level. If the property is not defined on the _global style declaration, the
property is undefined.

The StyleManager tells Flash if a style inherits its value or not. For more information, see
“StyleManager” on page 214.
Note: The CSS "inherit" value is not supported.
Using styles to customize component color and text 31

About color style properties

Color style properties behave differently than non-color properties. All color properties have a
name that ends in “Color”, for example, backgroundColor, disabledColor, and color. When
color style properties are changed, the color is immediately changed on the instance and in all of
the appropriate child instances. All other style property changes simply mark the object as
needing to be redrawn and changes don’t occur until the next frame.

The value of a color style property can be a number, a string, or an object. If it is a number, it
represents the RGB value of the color as a hexadecimal number (0xRRGGBB). If the value is a
string, it must be a color name.

Color names are strings that map to commonly used colors. New color names can be added by
using the StyleManager (see “StyleManager” on page 214). The following table lists the default
color names:

Note: If the color name is not defined, the component may not draw correctly.

You can use any legal ActionScript identifier to create your own color names (for example,
"WindowText" or "ButtonText"). Use the StyleManager to define new colors, as in
the following:
mx.styles.StyleManager.registerColorName("special_blue", 0x0066ff);

Most components cannot handle an object as a color style property value. However, certain
components can handle color objects that represent gradients or other color combinations. For
more information see the “Using styles” section of each component’s entry in Chapter 4,
“Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components,”
on page 45.

You can use class style declarations and color names to easily control the colors of text and
symbols on the screen. For example, if you want to provide a display configuration screen that
looks like Microsoft Windows, you would define color names like ButtonText and WindowText
and class style declarations like Button, CheckBox, and Window. By setting the color style
properties in the style declarations to ButtonText and WindowText and providing a user interface
so the user can change the values of ButtonText and WindowText you can provide the same color
schemes as Micosoft Windows, the Mac OS, or any operating system.

Color name Value

black 0x000000

white 0xFFFFFF

red 0xFF0000

green 0x00FF00

blue 0x0000FF

magenta 0xFF00FF

yellow 0xFFFF00

cyan 0x00FFFF
32 Chapter 3: Customizing Components

Setting style property values

You use the UIObject.setStyle() method to set a style property on a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
sets the color style of a radio button instance to red:
myRadioButton.setStyle("color", "red");

The following code sets the color style of the custom style declaration CheckBox:
_global.styles.CheckBox.setStyle("color", "white");

The UIObject.setStyle() method knows if a style is inheriting and notifies children of that
instance if their style changes. It also notifies the component instance that it must redraw itself to
reflect the new style. Therefore, you should use setStyle() to set or change styles. However, as
an optimization when creating style declarations, you can directly set the properties on an object.
For more information, see “Setting global styles” on page 29, “Setting styles for specific
components” on page 30, and “Setting styles for a component class” on page 31.

You use the UIObject.getStyle() method to retrieve a style from a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
gets the value of the color property and assigns it to the variable o:
var o = myRadioButton.getStyle("color");

The following code gets the value of a style property defined on the _global style declaration:
var r = _global.style.getValue("marginRight");

If the style isn’t defined, getStyle() may return the value undefined. However, getStyle()
understands how style properties inherit. So, even though styles are properties, you should use
UIObject.getStyle() to access them so you don't need to know whether the style is inheriting.

For more information, see UIObject.getStyle() and UIObject.setStyle().

Supported styles

Flash MX 2004 and Flash MX Professional 2004 come with two themes: Halo (HaloTheme.fla)
and Sample (SampleTheme.fla). Each theme supports a different set of styles. The Sample theme
uses all the styles of the v2 styles mechanism and is provided so that you can see a sample of those
styles in a document. The Halo theme supports a subset of the Sample theme styles.

The following style properties are supported by most v2 components in the Sample style. For
information about which Halo styles are supported by individual components, see Chapter 4,
“Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components,”
on page 45.

If any values other than allowed values are entered, the default value is used. This is important if
you are re-using CSS style declarations that use values outside the Macromedia subset of values.
Using styles to customize component color and text 33

Components can support the following styles:

Style Description

backgroundColor The background of a component. This is the only color style that
doesn’t inherit its value. The default value is transparent.

borderColor The black section of a three-dimensional border or the color
section of a two-dimensional border. The default value is
0x000000 (black).

borderStyle The component border: either “none”, “inset”, “outset”, or
“solid”. This style does not inherit its value. The default value is
"solid".

buttonColor The face of a button and a section of the three-dimensional
border. The default value is 0xEFEEEF (light gray).

color The text of a component label. The default value is 0x000000
(black).

disabledColor The disabled color for text. The default color is 0x848384 (dark
gray).

fontFamily The font name for text. The default value is _sans.

fontSize The point size for the font. The default value is 10.

fontStyle The font style: either “normal” or “italic”. The default value is
"normal".

fontWeight The font weight: either “normal” or “bold”. The default value is
"normal".

highlightColor A section of the three-dimensional border. The default value is
0xFFFFFF (white).

marginLeft A number indicating the left margin for text. The default value is 0.

marginRight A number indicating the right margin for text. The default value is 0.

scrollTrackColor The scroll track for a scroll bar. The default value is 0xEFEEEF
(light gray).

shadowColor A section of the three-dimensional border. The default value is
0x848384 (dark gray).

symbolBackgroundColor The background color of check boxes and radio buttons. The
default value is 0xFFFFFF (white).

symbolBackgroundDisabledColor The background color of check boxes and radio buttons when
disabled. The default value is 0xEFEEEF (light gray).

symbolBackgroundPressedColor The background color of check boxes and radio buttons when
pressed. The default value is 0xFFFFFF (white).

symbolColor The check mark of a check box or the dot of a radio button. The
default value is 0x000000 (black).

symbolDisabledColor The disabled check mark or radio button dot color. The default
value is 0x848384 (dark gray).
34 Chapter 3: Customizing Components

About themes

Themes are collections of styles and skins. The default theme for Flash MX 2004 and Flash MX
Professional 2004 is called Halo (HaloTheme.fla). The Halo theme was developed to let you
provide a responsive, expressive experience for your users. Flash MX 2004 and Flash MX
Professional 2004 include one additional theme called Sample (SampleTheme.fla). The Sample
theme allows you to experiment with the full set of styles available to v2 components. (The
Halo theme uses only a subset of the available styles.) The theme files are located in the
following folders:

• Windows—First Run\ComponentFLA
• Macintosh—First Run/ComponentFLA

You can create new themes and apply them to an application to change the look and feel of all the
components. For example, you could create a two-dimensional theme and a three-dimensional
theme.

The v2 components use skins (graphic or movie clip symbols) to display their visual appearances.
The .as file that defines each component contains code that loads specific skins for the
component. The ScrollBar, for instance, is programmed to load the symbol with the linkage
identifier ScrollDownArrowDown as the skin for the pressed (down) state of its down arrow. You
can easily create a new theme by making a copy of the Halo or Sample theme and altering the
graphics in the skins.

A theme can also contain a new set of styles. You must write ActionScript code to create a global
style declaration and any additional style declarations. For more information, see “Using styles to
customize component color and text” on page 28.

Applying a theme to a document

To apply a new theme to a document, open a theme FLA as an external library, and drag the
theme folder from the external library to the document library. The following steps explain the
process in detail.

textAlign The text alignment: either “left”, “right”, or “center”. The default
value is "left".

textDecoration The text decoration: either “none” or “underline”. The default
value is "none".

textIndent A number indicating the text indent. The default value is 0.

Style Description
About themes 35

To apply a theme to a document:

1 Select File > Open and open the document that uses v2 components in Flash, or select
File > New and create a new document that uses v2 components.

2 Select File > Save and choose a unique name such as ThemeApply.fla.
3 Select File > Import > Open External Library and select the FLA file of the theme you want to

apply to your document.
If you haven’t created a new theme, you can use the Sample theme, located in the Flash 2004/
en/Configuration/SampleFLA folder.

4 In the theme’s Library panel, select Flash UI Components 2 > Themes > MMDefault and drag
the Assets folder of any component(s) in your document to the ThemeApply.fla library.
If you’re unsure about which components are in the documents, you can drag the entire
Themes folder to the Stage. The skins inside the Themes folder in the library are automatically
assigned to components in the document.
Note: The Live Preview of the components on the Stage will not reflect the new theme.

5 Select Control > Test Movie to see the document with the new theme applied.

Creating a new theme

If you don’t want to use the Halo theme or the Sample theme you can modify one of them to
create a new theme.

Some skins in the themes have a fixed size. You can make them larger or smaller and the
components will automatically resize to match them. Other skins are composed of multiple
pieces, some static and some that stretch.

Some skins (for example, RectBorder and ButtonSkin) use the ActionScript Drawing API to draw
their graphics because it is more efficient in terms of size and performance. You can use the
ActionScript code in those skins as a template to adjust the skins to your needs.

To create a new theme:

1 Select the theme FLA file that you want to use as a template and make a copy.
Give the copy a unique name like MyTheme.fla.

2 Select File > Open MyTheme.fla in Flash.
3 Select Window > Library to open the library if it isn’t open already.
4 Double-click any skin symbol you want to modify to open it in edit symbol mode.

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets).

5 Modify the symbol or delete the graphics and create new graphics.
You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

6 When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to edit document mode.

7 Repeat steps 4 - 6 until you’ve edited all the skins you want to change.
8 Apply MyTheme.fla to a document by following the steps in the previous section, “Applying a

theme to a document” on page 35.
36 Chapter 3: Customizing Components

About skinning components

Skins are symbols a component uses to display its appearance. Skins can either be graphic symbols
or movie clip symbols. Most skins contain shapes that represent the component’s appearance.
Some skins contain only ActionScript code that draws the component in the document.

Macromedia v2 components are compiled clips—you cannot see their assets in the library.
However, FLA files are installed with Flash that contain all the component skins. These FLA files
are called themes. Each theme has a different appearance and behavior, but contains skins with the
same symbol names and linkage identifiers. This allows you to drag a theme onto the Stage in a
document to change its appearance. For more information about themes, see “About themes”
on page 35. You also use the theme FLA files to edit component skins. The skins are located in
the Themes folder in the Library panel of each theme FLA.

Each component is composed of many skins. For example, the down arrow of the ScrollBar
component is made up of three skins: ScrollDownArrowDisabled, ScrollDownArrowUp, and
ScrollDownArrowDown. Some components share skins. Components that use scroll bars—
including ComboBox, List, ScrollBar, and ScrollPane—share the skins in the ScrollBar Skins
folder. You can edit existing skins and create new skins to change the appearance of a component.

The .as file that defines each component class contains code that loads specific skins for the
component. Each component skin has a skin property that is assigned to a skin symbol’s Linkage
Identifier. For example, the pressed (down) state of the down arrow of the ScrollBar has the skin
property name downArrowDownName. The default value of the downArrowDownName property is
"ScrollDownArrowDown", which is the Linkage Identifier of the skin symbol. You can edit skins
and apply them to a component by using these skin properties. You do not need to edit the
component’s .as file to change its skin properties, you can pass skin property values to the
component’s constructor function when the component is created in your document.

Choose one of the following ways to skin a component based on what you want to do:

• To replace all the skins in a document with a new set (with each kind of component sharing
the same appearance), apply a theme (see “About themes” on page 35).
Note: This method of skinning is recommended for beginners because it doesn’t require any
scripting.

• To use different skins for multiple instances of the same component, edit the existing skins and
set skin properties (see “Editing component skins” on page 38, and “Applying an edited skin to
a component” on page 38).

• To change skins in a subcomponent (such as a scroll bar in a List component), subclass the
component (see “Applying an edited skin to a subcomponent” on page 39).

• To change skins of a subcomponent that aren’t directly accessible from the main component
(such as a List component in a ComboBox component), replace skin properties in the
prototype (see “Changing skin properties in the prototype” on page 42).

Note: The above methods are listed from top to bottom according to ease of use.
About skinning components 37

Editing component skins

If you want to use a particular skin for one instance of a component, but another skin for another
instance of the component, you must open a Theme FLA file and create a new skin symbol.
Components are designed to make it easy to use different skins for different instances.

To edit a skin, do the following:

1 Select File > Open and open the Theme FLA file that you want to use as a template.
2 Select File > Save As and select a unique name such as MyTheme.fla.
3 Select the skin or skins that you want to edit (in this example, RadioTrueUp).

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets > States).

4 Select Duplicate from the Library Options menu (or by right-clicking on the symbol), and give
the symbol a unique name like MyRadioTrueUp.

5 Select the Advanced button in the Symbol Properties dialog and select Export for ActionScript.
A Linkage Identifier that matches the symbol name is entered automatically.

6 Double-click the new skin in the library to open it in edit symbol mode.
7 Modify the movie clip or delete it and create a new one.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

8 When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to edit document mode.

9 Select File > Save but don’t close MyTheme.fla. Now you must create a new document in which
to apply the edited skin to a component.
For more information, see “Applying an edited skin to a component” on page 38, “Applying an
edited skin to a subcomponent” on page 39, or “Changing skin properties in the prototype”
on page 42. For information about how to apply a new skin, see “About skinning components”
on page 37.

Note: Changes made to component skins are not displayed when viewing components on the Stage
using Live Preview.

Applying an edited skin to a component

Once you have edited a skin, you must apply it to a component in a document. You can either use
the createClassObject() method to dynamically create the component instances, or you can
manually place the component instances on the Stage. There are two different ways to apply skins
to component instances, depending on how you add the components to a document.
38 Chapter 3: Customizing Components

To dynamically create a component and apply an edited skin, do the following:

1 Select File > New to create a new Flash document.
2 Select File > Save and give it a unique name such as DynamicSkinning.fla.
3 Drag any components from the Components panel to the Stage, including the component

whose skin you edited (in this example, RadioButton), and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in the
document.

4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of DynamicSkinning.fla and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in the
document.

5 Open the Actions panel and enter the following on Frame 1:
import mx.controls.RadioButton
createClassObject(RadioButton, "myRadio", 0, {trueUpIcon:"MyRadioTrueUp",

label: "My Radio Button"});

6 Select Control > Test Movie.

To manually add a component to the Stage and apply an edited skin, do the following:

1 Select File > New to create a new Flash document.
2 Select File > Save and give it a unique name such as ManualSkinning.fla.
3 Drag components from the Components panel to the Stage, including the component whose

skin you edited (in this example, RadioButton).
4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage

of ManualSkinning.fla and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in the
document.

5 Select the RadioButton component on the Stage and open the Actions panel.
6 Attach the following code to the RadioButton instance:

onClipEvent(initialize){
trueUpIcon = "MyRadioTrueUp";

}

7 Select Control > Test Movie.

Applying an edited skin to a subcomponent

In certain situations you may want to modify the skins of a subcomponent in a component, but
the skin properties are not directly available (for example, there is no direct way to alter the skins
of the scroll bar in a List component). The following code allows you to access the scroll bar skins.
All the scroll bars that are created after this code runs will also have the new skins.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX
Professional 2004 Components,” on page 45.
About skinning components 39

To apply a new skin to a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 38, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New to create a new Flash document.
3 Select File > Save and give it a unique name such as SubcomponentProject.fla.
4 Double-click the List component in the Components panel to add it to the Stage and press

Backspace to delete it from the Stage.
This adds the component to the Library panel, but doesn’t make the component visible in
the document.

5 Drag MyScrollDownArrowDown and any other symbols you edited from MyTheme.fla to the
Stage of SubcomponentProject.fla and delete them.
This adds the component to the Library panel, but doesn’t make the component visible in
the document.

6 Do one of the following:
■ If you want to change all scroll bars in a document, enter the following code in the Actions

panel on Frame 1 of the Timeline:
import mx.controls.List
import mx.controls.scrollClasses.ScrollBar
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

You can then either enter the following code on Frame 1 to create a list dynamically:
createClassObject(List, "myListBox", 0, {dataProvider: ["AL","AR","AZ",

"CA","HI","ID", "KA","LA","MA"]});

Or, you can drag a List component from the library to the Stage.
■ If you want to change a specific scroll bar in a document, enter the following code in the

Actions panel on Frame 1 of the Timeline:
import mx.controls.List
import mx.controls.scrollClasses.ScrollBar
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
createClassObject(List, "myList1", 0, {dataProvider: ["AL","AR","AZ",

"CA","HI","ID", "KA","LA","MA"]});
myList1.redraw(true);
ScrollBar.prototype.downArrowDownName = oldName;

Note: You must set enough data to have the scroll bars show up, or set the vScrollPolicy
property to true.

7 Select Control > Test Movie.
You can also set subcomponent skins for all components in a document by setting the skin
property on the subcomponent’s prototype object in the #initclip section of a skin symbol.
For more information about the prototype object, see Function.prototype in ActionScript
Dictionary Help.
40 Chapter 3: Customizing Components

To use #initclip to apply an edited skin to all components in a document, do the following:

1 Follow the steps in “Editing component skins” on page 38, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a new Flash document. Save it with a unique name such as
SkinsInitExample.fla.

3 Select the MyScrollDownArrowDown symbol from the library of the edited theme library
example, drag it to the Stage of SkinsInitExample.fla, and delete it.
This adds the symbol to the library without making it visible on the Stage.

4 Select MyScrollDownArrowDown in the SkinsInitExample.fla library and select Linkage from
the Options menu.

5 Select the Export for ActionScript check box. Click OK.
Export in First Frame is automatically selected.

6 Double-click MyScrollDownArrowDown in the library to open it in edit symbol mode.
7 Enter the following code on Frame 1 of the MyScrollDownArrowDown symbol:

#initclip 10
import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

#endinitclip

8 Do one of the following to add a List component to the document:
■ Drag a List component from the Components panel to the Stage. Enter enough label

parameters so that the vertical scroll bar will appear.
■ Drag a List component from the Components panel to the Stage and delete it. Enter the

following code on Frame 1 of the main Timeline of SkinsInitExample.fla:
createClassObject(mx.controls.List, "myListBox1", 0, {dataProvider:

["AL","AR","AZ", "CA","HI","ID", "KA","LA","MA"]});

Note: Add enough data so that the vertical scroll bar appears, or set vScrollPolicy to true.

The following example explains how to skin something that’s already on the stage. This example
skins only Lists; any TextArea or ScrollPane scroll bars would not be skinned.
About skinning components 41

To use #initclip to apply an edited skin to specific components in a document, do
the following:

1 Follow the steps in “Editing component skins” on page 38, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a Flash document.
3 Select File > Save and give the file a unique name, such as MyVScrollTest.fla.
4 Drag MyScrollDownArrowDown from the theme library to the MyVScrollTest.fla library.
5 Select Insert > New Symbol and give it a unique name like MyVScrollBar.
6 Select the Export for ActionScript check box. Click OK.

Export in First Frame is automatically selected.
7 Enter the following code on Frame 1 of the MyVScrollBar symbol:

#initclip 10
import MyVScrollBar
Object.registerClass("VScrollBar", MyVScrollBar);

#endinitclip

8 Drag a List component from the Components panel to the Stage.
9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar

to appear.
10 Select File > Save.
11 Select File > New and create a new ActionScript file.
12 Enter the following code:

import mx.controls.VScrollBar
import mx.controls.List
class MyVScrollBar extends VScrollBar{

function init():Void{
if (_parent instanceof List){

downArrowDownName = "MyScrollDownArrowDown";
}
super.init();

}
}

13 Select File > Save and save this file as MyVScrollBar.as.
14 Click a blank area on the Stage and, in the Property inspector, select the Publish Settings

button.
15 Select the ActionScript version Settings button.
16 Click the Plus button to add a new classpath, and select the Target button to browse to the

location of the MyComboBox.as file on your hard drive.
17 Select Control > Test Movie.

Changing skin properties in the prototype

If a component does not directly support skin variables, you can subclass the component and
replace its skins. For example, the ComboBox component doesn’t directly support skinning its
drop-down list because the ComboBox uses a List component as its drop-down list.
42 Chapter 3: Customizing Components

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Macromedia Flash MX 2004 and Macromedia Flash MX
Professional 2004 Components,” on page 45.

To skin a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 38, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a Flash document.
3 Select File > Save and give the file a unique name, such as MyComboTest.fla.
4 Drag MyScrollDownArrowDown from the theme library above to the Stage of

MyComboTest.fla and delete it.
This adds the symbol to the library, but doesn’t make it visible on the Stage.

5 Select Insert > New Symbol and give it a unique name, such as MyComboBox.
6 Select the Export for ActionScript checkbox and click OK.

Export in First Frame is automatically selected.
7 Enter the following code in the Actions panel on Frame 1 actions of MyComboBox:

#initclip 10
import MyComboBox
Object.registerClass("ComboBox", MyComboBox);

#endinitclip

8 Drag a ComboBox component to the Stage.
9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar

to appear.
10 Select File > Save.
11 Select File > New and create a new ActionScript file (Flash Professional only).
12 Enter the following code:

import mx.controls.ComboBox
import mx.controls.scrollClasses.ScrollBar
class MyComboBox extends ComboBox{

function getDropdown():Object{
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
var r = super.getDropdown();
ScrollBar.prototype.downArrowDownName = oldName;
return r;

}
}

13 Select File > Save and save this file as MyComboBox.as.
14 Click a blank area on the Stage and, in the Property inspector, select the Publish

Settings button.
15 Select the ActionScript version Settings button.
16 Click the Plus button to add a new classpath, and select the Target button to browse to the

location of the MyComboBox.as file on your hard drive.
17 Select Control > Test Movie.
About skinning components 43

44 Chapter 3: Customizing Components

CHAPTER 4
Macromedia Flash MX 2004 and Macromedia

Flash MX Professional 2004 Components
This reference chapter describes each component and each component’s application
programming interface (API).

Each component description contains information about the following:

• Keyboard interaction
• Live preview
• Accessibility
• Setting the component parameters
• Using the component in an application
• Customizing the component with styles and skins
• ActionScript methods, properties, and events

Components are presented alphabetically. You can also find components arranged by category in
the following tables:
45

User interface (UI) controls

Component Description

Accordion component A set of vertical overlapping views with buttons along the top that allow
users to switch views.

Alert component A window that presents the user with a question and buttons to capture their
response.

Button component A resizable button that can be customized with a custom icon.

CheckBox component Allows users to make a Boolean (true or false) choice.

ComboBox
component

Allows users to select one option from a scrolling list of choices. This
component can have an editable text field at the top of the list that allows
users to search the list.

DateChooser
component

Allows users to choose a date or dates from a calendar.

DateField component A uneditable text field with a calendar icon. When a user clicks anywhere
inside the bounding box of the component, a DateChooser component is
displayed.

DataGrid component Allows users to display and manipulate multiple columns of data.

Label component A non-editable, single-line text field.

List component Allows users to select one or more options from a scrolling list.

MediaController
component

Controls streaming media playback in an application.

MediaDisplay
component

Displays streaming media in an application

MediaPlayback
component

A combination of the MediaDisplay and MediaController components.

Menu component Allows users to select one command from a list; a standard desktop
application menu.

NumericStepper
component

Clickable arrows that raise and lower the value of an number.

ProgressBar
component

Displays the progress of a process, usually loading.

RadioButton
component

Allows users to choose between mutually exclusive options.

ScrollBar component Allows users to control the portion of data that is displayed when there is too
much information to fit in the display area.

TextArea component An optionally editable, multiline text field.

TextInput component An optionally editable, single-line text input field.

Tree component Allows a user to manipulate hierarchical information.
46 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Containers

Data

Managers

Component Description

Accordion component Displays content in vertical overlapping panes with buttons along the top
that allow you to switch views.

Loader component A container that holds a loaded SWF or JPEG file.

ScrollPane
component

Displays movies, bitmaps, and SWF files in a limited area using automatic
scroll bars.

Window component A draggable window with a title bar, caption, border, and close button that
display content to the user.

Component Description

DataBinding package Theses classes implement the Flash runtime data binding functionality.

DataHolder
component

Holds data and can be used as a connector between components.

DataProvider
component

This component is the model for linear-access lists of data. This model
provides simple array-manipulation capabilities that broadcast their
changes.

DataSet component A building block for creating data-driven applications.

RDBMSResolver
component

Allows you to save data back to any supported data source. This resolver
component translates the XML that can be received and parsed by a web
service, JavaBean, servlet, or ASP page.

WebServiceConnector
component

Provides scriptless access to web service method calls.

XMLConnector
component

Reads and writes XML documents using the HTTP GET and POST
methods.

XUpdateResolver
component

Allows you to save data back to any supported data source. This resolver
component translates the DeltaPacket into XUpdate.

Component Description

DepthManager Manages the stacking depths of objects.

FocusManager Handles Tab key navigation between components on the screen. Also
handles focus changes as users click in the application.

PopUpManager Allows you to create and delete pop-up windows.

StyleManager Allows you to register styles and manages inherited styles.
Managers 47

Screens

Accordion component

For the latest information about this feature, click the Update button at the top of the Help tab.

Alert component

For the latest information about this feature, click the Update button at the top of the Help tab.

Button component

The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. However, in the live preview a custom
icon is represented on the Stage by a gray square.

When you add the Button component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility for the Button component:
mx.accessibility.ButtonAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Component Description

Slide class Allows you to manipulate slide presentation screens at runtime.

Form class Allows you to manipulate form application screens at runtime.

Key Description

Shift + Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the click event.

Tab Moves focus to the next object.
48 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using the Button component

A button is a fundamental part of any form or web application. You can use buttons wherever you
want a user to initiate an event. For example, most forms have a “Submit” button. You could also
add “Previous” and “Next” buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use as
the icon. The symbol should be registered at 0, 0 for appropriate layout on the button. Select
the icon symbol in the Library panel, open the Linkage dialog from the Options menu, and
enter a linkage identifier. This is the value to enter for the icon parameter in the Property
inspector or Component Inspector panel. You can also enter this value for the Button.icon
ActionScript property.
Note: If an icon is larger than the button it will extend beyond the button’s borders.

Button parameters

The following are authoring parameters that you can set for each Button component instance in
the Property inspector or in the Component Inspector panel:

label sets the value of the text on the button; the default value is Button.

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value. For more information, see “Using the
Button component” on page 49.

toggle turns the button into a toggle switch. If true, the button remains in the down state when
pressed and returns to the up state when pressed again. If false, the button behaves like a normal
push button; the default value is false.

selected if the toggle parameter is true, this parameter specifies whether the button is pressed
(true) or released (false). The default value is false.

labelPlacement orients the label text on the button in relation to the icon. This parameter can be
one of four values: left, right, top, or bottom; the default value is right. For more information, see
Button.labelPlacement.

You can write ActionScript to control these and additional options for Button components using
its properties, methods, and events. For more information, see Button class.

Creating an application with the Button component

The following procedure explains how to add a Button component to an application while
authoring. In this example, the button is a Help button with a custom icon that will open a Help
system when a user presses it.
Button component 49

To create an application with the Button component, do the following:

1 Drag a Button component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name helpBtn.
3 In the Property inspector, do the following:

■ Enter Help for the label parameter.
■ Enter HelpIcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a linkage
identifier to use as the icon parameter. In this example, the linkage identifier is HelpIcon.

■ Set the toggle property to true.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

clippyListener = new Object();
clippyListener.click = function (evt){

clippyHelper.enabled = evt.target.selected;
}
helpBtn.addEventListener("click", clippyListener);

The last line of code adds a click event handler to the helpBtn instance. The handler enables
and disables the clippyHelper instance, which could be a Help panel of some sort.

Customizing the Button component

You can transform a Button component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see Button
class). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

If an icon is larger than the button it will extend beyond the button’s borders.

Using styles with the Button component

You can set style properties to change the appearance of a button instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 28.
50 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A Button component supports the following Halo styles:

Using skins with the Button component

The Button component uses the ActionScript drawing API to draw the button states. To skin the
Button component while authoring, modify the ActionScript code within the ButtonSkin.as file
located in the First Run\Classes\mx\skins\halo folder.

If you use the UIObject.createClassObject() method to create a Button component instance
dynamically (at runtime), you can skin it dynamically. To skin a component at runtime, set the
skin properties of the initObject parameter that is passed to the createClassObject()
method. These skin properties set the names of the symbols to use as the button’s states, both with
and without an icon.

If you set the icon parameter while authoring or the icon ActionScript property at runtime, the
same linkage identifier is assigned to three icon states: falseUpIcon, falseDownIcon, and
trueUpIcon. If you want to designate a unique icon for any of the eight icon states (if, for
example, you want a different icon to appear when a user presses a button) you must set
properties of the initObject parameter that is passed to the createClassObject() method.

The following code creates an object called initObject to use as the initObject parameter and
sets skin properties to new symbol linkage identifiers. The last line of code calls the
createClassObject() method to create a new instance of the Button class with the properties
passed in the initObject parameter, as follows:
var initObject = new Object();
initObject.falseUpIcon = "MyFalseUpIcon";
initObject.falseDownIcon = "MyFalseDownIcon";
initObject.trueUpIcon = "MyTrueUpIcon";
createClassObject(mx.controls.Button, "ButtonInstance", 0, initObject);

For more information, see “About skinning components” on page 37, and
UIObject.createClassObject().

If a button is enabled, it displays its over state when the pointer moves over it. The button receives
input focus and displays its down state when it’s clicked. The button returns to its over state when
the mouse is released. If the pointer moves off the button while the mouse is pressed, the button
returns to its original state and it retains input focus. If the toggle parameter is set to true, the state
of the button does not change until the mouse is released over it.

If a button is disabled it displays its disabled state, regardless of user interaction.

Style Description

themeColor The background of a component. This is the only color style that doesn’t inherit its
value. Possible values are "haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".
Button component 51

A Button component uses the following skin properties:

Button class

Inheritance UIObject > UIComponent > SimpleButton > Button

ActionScript Class Namespace mx.controls.Button

The properties of the Button class allow you to add an icon to a button, create a text label, or
indicate whether the button acts as a push button, or a toggle switch at runtime.

Setting a property of the Button class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

The Button component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Button.version);

Note: The following code returns undefined: trace(myButtonInstance.version);.

The Button component class is different from the ActionScript built-in Button object.

Property Description

falseUpSkin The up state. The default value is RectBorder.

falseDownSkin The pressed state. The default value is RectBorder.

falseOverSkin The over state. The default value is RectBorder.

falseDisabledSkin The disabled state. The default value is RectBorder.

trueUpSkin The toggled state. The default value is RectBorder.

trueDownSkin The pressed-toggled state. The default value is RectBorder.

trueOverSkin The over-toggled state. The default value is RectBorder.

trueDisabledSkin The disabled-toggled state. The default value is RectBorder.

falseUpIcon The icon up state. The default value is undefined.

falseDownIcon The icon pressed state. The default value is undefined.

falseOverIcon The icon over state. The default value is undefined.

falseDisabledIcon The icon disabled state. The default value is undefined.

trueUpIcon The icon toggled state. The default value is undefined.

trueOverIcon The icon over-toggled state. The default value is undefined.

trueDownIcon The icon pressed-toggled state. The default value is undefined.

trueDisabledIcon The icon disabled-toggled state. The default value is undefined.
52 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Method summary for the Button class

Inherits all methods from UIObject and UIComponent.

Property summary for the Button class

Inherits all properties from UIObject and UIComponent.

Event summary for the Button class

Inherits all events from UIObject and UIComponent.

Method Description

SimpleButton.emphasized Indicates whether a button has the look of a default
push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property
is set to true.

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears within a button.

Button.labelPlacement Specifies the orientation of the label text in relation to
an icon.

Button.selected When the toggle property is true, specifies whether
the button is pressed (true) or not (false).

Button.toggle Indicates whether the button behaves as a toggle
switch.

Method Description

Button.click Broadcast when the mouse is pressed over a button
instance or when the Spacebar is pressed.
Button component 53

Button.click

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
buttonInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the button or
if the button has focus and the Spacebar is pressed.

The first usage example uses an on() handler and must be attached directly to a Button
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Button
component instance myButtonComponent, sends “_level0.myButtonComponent” to the
Output panel:
on(click){

trace(this);
}

Please note that this differs from the behavior of this when used inside an on() handler attached
to a regular Flash button symbol. When this is used inside an on() handler attached to a button
symbol, it refers to the Timeline that contains the button. For example, the following code,
attached to the button symbol instance myButton, sends “_level0” to the Output panel:
on(release){

trace(this);
}

Note: The built-in ActionScript Button object doesn’t have a click event; the closest event is
release.
54 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

The second usage example uses a dispatcher/listener event model. A component instance
(buttonInstance) dispatches an event (in this case, click) and the event is handled by a listener
object (listenerObject) that you create. You define a method with the same name as the event
on the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object method.
The event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the addEventListener()
method (See UIEventDispatcher.addEventListener()) on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called buttonInstance is clicked. The first line of code labels the button. The second line
specifies that the button act like a toggle switch. The third line creates a listener object called
form. The fourth line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function (in
this example, eventObj), to generate a message. The target property of an event object is the
component that generated the event (in this example, buttonInstance). The Button.selected
property is accessed from the event object’s target property. The last line calls the
addEventListener() method from buttonInstance and passes it the click event and the
form listener object as parameters, as in the following:
buttonInstance.label = "Click Test"
buttonInstance.toggle = true;
form = new Object();
form.click = function(eventObj){

trace("The selected property has changed to " + eventObj.target.selected);
}
buttonInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when buttonInstance is clicked.
The on() handler must be attached directly to buttonInstance, as in the following:
on(click){

trace("button component was clicked");
}

See also

UIEventDispatcher.addEventListener()

SimpleButton.emphasized

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.emphasized
Button component 55

Description

Property; indicates whether the button is in an emphasized state (true) or not (false). The
emphasized state is equivalent to the looks if a default push button. In general, use the
FocusManager.defaultPushButton property instead of setting the emphasized property
directly. The default value is false.

The emphasized property is a static property of the SimpleButton class. Therefore, you must
access it directly from SimpleButton, as in the following:
SimpleButton.emphasizedStyleDeclaration = "foo";

If you aren’t using FocusManager.defaultPushButton, you might just want to set a button to
the emphasized state, or use the emphasized state to change text from one color to another. The
following example, sets the emphasized property for the button instance, myButton:
_global.styles.foo = new CSSStyleDeclaration();
_global.styles.foo.color = 0xFF0000;
SimpleButton.emphasizedStyleDeclaration = "foo";
myButton.emphasized = true;

See also

SimpleButton.emphasizedStyleDeclaration

SimpleButton.emphasizedStyleDeclaration

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.emphasizedStyleDeclataion

Description

Property; a string indicating the style declaration that formats a button when the emphasized
property is set to true.

See also

Window.titleStyleDeclaration, SimpleButton.emphasized

Button.icon

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.icon
56 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; A string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither the
button nor the icon will resize automatically. If an icon is larger than a button, the icon will
extend over the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage in
edit symbols mode and enter 0 in both the X and Y boxes in the Property inspector. In the Library
panel, select the movie clip and select Linkage from the Options menu. Select Export for
ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.

Use the labelPlacement property to set the position of the icon in relation to the button.

Example

The following code assigns the movie clip from the Library panel with the linkage identifier
happiness to the Button instance as an icon:
myButton.icon = "happiness"

See also

Button.labelPlacement

Button.label

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.label

Description

Property; specifies the text label for a button instance. By default, the label appears centered on
the button. Calling this method overrides the label authoring parameter specified in the Property
inspector or the Component Inspector panel. The default value is "Button".

Example

The following code sets the label to “Remove from list”:
buttonInstance.label = "Remove from list";

See also

Button.labelPlacement
Button component 57

Button.labelPlacement

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.labelPlacement

Description

Property; sets the position of the label in relation to the icon. The default value is "right". The
following are the four possible values, the icon and label are always centered vertically and
horizontally within the bounding area of the button:

• "right" The label is set to the right of the icon.
• "left" The label is set to the left of the icon.
• "bottom" The label is set below the icon.
• "top" The label is placed below the icon.

Example

The following code sets the label to the left of the icon. The second line of the code sends the
value of the labelPlacement property to the Output panel:
iconInstance.labelPlacement = "left";
trace(iconInstance.labelPlacement);

Button.selected

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.selected

Description

Property; a Boolean value specifying whether a button is pressed (true) or not (false). The value
of the toggle property must be true to set the selected property to true. If the toggle
property is false, assigning a value of true to the selected property has no effect. The default
value is false.

The click event is not triggered when the value of the selected property changes with
ActionScript. It is triggered when a user interacts with the button.
58 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

In the following example, the toggle property is set to true and the selected property is set to
true which puts the button in a pressed state. The trace action sends the value true to the
Output panel:
ButtonInstance.toggle = true; // toggle needs to be true in order to set the

selected property
ButtonInstance.selected = true; //displays the toggled state of the button
trace(ButtonInstance.selected); //traces- true

See also

Button.toggle

Button.toggle

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

buttonInstance.toggle

Description

Property; a Boolean value specifying whether a button acts like a toggle switch (true) or a push
button (false); the default value is false. When a toggle switch is pressed, it stays in a pressed
state until it’s clicked again.

Example

The following code sets the toggle property to true, which makes the myButton instance behave
like a toggle switch:
myButton.toggle = true;

CellRenderer interface

For the latest information about this feature, click the Update button at the top of the Help tab.
CellRenderer interface 59

CheckBox component

A check box is a square box that can be either selected or deselected. When it is selected, a
check appears in the box. You can add a text label to a check box and place it to the left, right,
top, or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input focus.
The state of a check box does not change until the mouse is released over the component.
Additionally, the checkbox has two disabled states, selected and deselected, which do not allow
mouse or keyboard interaction.

If a check box is disabled it displays its disabled appearance, regardless of user interaction. In the
disabled state, a button doesn’t receive mouse or keyboard input.

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.CheckBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the CheckBox component

A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies for
the customer to select; each hobby would have a check box beside it.

Key Description

Shift + Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the click event.

Tab Moves focus to the next element.
60 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

CheckBox parameters

The following are authoring parameters that you can set for each CheckBox component instance
in the Property inspector or in the Component Inspector panel:

label sets the value of the text on the check box; the default value is defaultValue.

selected sets the initial value of the check box to checked (true) or unchecked (false).

labelPlacement orients the label text on the check box. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

You can write ActionScript to control these and additional options for CheckBox components
using its properties, methods, and events. For more information, see CheckBox class.

Creating an application with the CheckBox component

The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a query
that searches for possible dating matches for the customer. The query form must have a check box
labeled "Restrict Age" permitting the customer to restrict his or her search to a specified age
group. When the "Restrict Age" check box is selected, the customer can then enter the minimum
and maximum ages into two text fields that are enabled only when "Restrict Age" is selected.

To create an application with the CheckBox component, do the following:

1 Drag two TextInput components from the Components panel to the Stage.
2 In the Property inspector, enter the instance names minimumAge and maximumAge.
3 Drag a CheckBox component from the Components panel to the Stage.
4 In the Property inspector, do the following:

■ Enter restrictAge for the instance name.
■ Enter Restrict Age for the label parameter.

5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
restrictAgeListener = new Object();
restrictAgeListener.click = function (evt){

minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

}
restrictAge.addEventListener("click", restrictAgeListener);

This code creates a click event handler that enables and disables the minimumAge and
maximumAge text field components, that have already been placed on Stage. For more
information about the click event, see CheckBox.click. For more information about the
TextInput component, see “TextInput component” on page 229.
CheckBox component 61

Customizing the CheckBox component

You can transform a CheckBox component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class (see
CheckBox class). Resizing the check box does not change the size of the label or the check box
icon; it only changes the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

Using styles with the CheckBox component

You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 28.

A CheckBox component supports the following Halo styles:

Using skins with the CheckBox component

The CheckBox component uses symbols in the Library panel to represent the button states. To
skin the CheckBox component while authoring, modify symbols in the Library panel. The
CheckBox component skins are located in the Flash UI Components 2/Themes/MMDefault/
CheckBox Assets/states folder in the library of either the HaloTheme.fla file or the
SampleTheme.fla file. For more information, see “About skinning components” on page 37.

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".
62 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A CheckBox component uses the following skin properties:

CheckBox class

Inheritance UIObject > UIComponent > SimpleButton > Button > CheckBox

ActionScript Class Namespace mx.controls.CheckBox

The properties of the CheckBox class allow you to create a text label and position it to the left,
right, top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The CheckBox component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.CheckBox.version);

Note: The following code returns undefined: trace(myCheckBoxInstance.version);.

Property summary for the CheckBox class

Inherits all properties from UIObject and UIComponent.

Method summary for the CheckBox class

Inherits all methods from UIObject and UIComponent.

Property Description

falseUpSkin The up state. Default is RectBorder.

falseDownSkin The pressed state. Default is RectBorder.

falseOverSkin The over state. Default is RectBorder.

falseDisabledSkin The disabled state. Default is RectBorder.

trueUpSkin The toggled state. Default is RectBorder.

trueDownSkin The pressed-toggled state. Default is RectBorder.

trueOverSkin The over-toggled state. Default is RectBorder.

trueDisabledSkin The disabled-toggled state. Default is RectBorder.

Property Description

CheckBox.label Specifies the text that appears next to a check box.

CheckBox.labelPlacement Specifies the orientation of the label text in relation to a check box.

CheckBox.selected Specifies whether the check box is selected (true) or deselected
(false).
CheckBox component 63

Event summary for the CheckBox class

Inherits all events from UIObject and UIComponent.

CheckBox.click

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
checkBoxInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check box
or if the check box has focus and the Spacebar is pressed.

The first usage example uses an on() handler and must be attached directly to a CheckBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the check box
myCheckBox, sends “_level0.myCheckBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, click) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
The event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the addEventListener()
method (see UIEventDispatcher.addEventListener()) on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 249.

Event Description

CheckBox.click Triggered when the mouse is pressed over a button instance.
64 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called checkBoxInstance is clicked. The first line of code creates a listener object called
form. The second line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function
(in this example, eventObj) to generate a message. The target property of an event object is the
component that generated the event (in this example, checkBoxInstance). The
CheckBox.selected property is accessed from the event object’s target property. The last line
calls the addEventListener() method from checkBoxInstance and passes it the click event
and the form listener object as parameters, as in the following:
form = new Object();
form.click = function(eventObj){

trace("The selected property has changed to " + eventObj.target.selected);
}
checkBoxInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when checkBoxInstance is
clicked. The on() handler must be attached directly to checkBoxInstance, as in the following:
on(click){

trace("check box component was clicked");
}

See also

UIEventDispatcher.addEventListener()

CheckBox.label

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

checkBoxInstance.label

Description

Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the clip
parameters panel.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:
checkBox.label = "Remove from list";
trace(checkBox.label)

See also

CheckBox.labelPlacement
CheckBox component 65

CheckBox.labelPlacement

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

checkBoxInstance.labelReplacement

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

• "right" The check box is pinned to the upper left corner of the bounding area. The label is
set to the right of the check box. This is the default value.

• "left" The check box is pinned to the top right corner of the bounding area. The label is set
to the left of the check box.

• "bottom" The label is set below the check box. The check box and label grouping are
centered horizontally and vertically.

• "top" The label is placed below the check box. The check box and label grouping are
centered horizontally and vertically.

You can change the bounding area of component while authoring by using the Transform
command or at runtime using the UIObject.setSize() property. For more information, see
“Customizing the CheckBox component” on page 62.

Example

The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

See also

CheckBox.label
66 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

CheckBox.selected

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

checkBoxInstance.selected

Description

Property; a Boolean value that selects (true) or deselects (false) the check box.

Example

The following example selects the instance checkbox1:
checkbox1.selected = true;

ComboBox component

A combo box can be static or editable. A static combo box allows a user to make a single selection
from a drop-down list. An editable combo box allows a user to enter text directly into a text field
at the top of the list, as well as selecting an item from a drop-down list. If the drop-down list hits
the bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the top
of the combo box. It doesn’t matter if the selection is made with the mouse or the keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are handled
according to the rules of the TextInput component (see “TextInput component” on page 229),
with the exception of the following keys:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.
ComboBox component 67

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a static combo box:

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the selection
up and down the drop-down list to the next item with the same first character. You can also use
the following keys to control a drop-down list:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Control+Up Closes the drop-down list, if open.

Down Selection moves down one item.

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box.

Enter Closes the drop-down list and returns focus to the combo box.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Up If the drop-down list is open, focus returns to the text box and the drop-
down list closes.

Down Selection moves down one item.

End The insertion point moves to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the
drop-down list closes.

Escape If the drop-down list is open, focus returns to the text box and the
drop-down list closes.

Home The insertion point moves to the beginning of the text box.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Tab Moves focus to the next object.

Shift-End Selects the text from the insertion point to the End position.

Shift-Home Selects the text from the insertion point to the Home position.

Shift-Tab Moves focus to the previous object.

Up Selection moves up one item.
68 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component Inspector panel while authoring.
However, the drop-down list does not open in the live preview and the first item displays as
the selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ComboBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the ComboBox component

You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address form.
You can use an editable combo box for more complex scenarios. For example, in a driving
directions application you could use an editable combo box for a user to enter her origin and
destination addresses. The drop-down list would contain her previously entered addresses.

ComboBox parameters

The following are authoring parameters that you can set for each ComboBox component instance
in the Property inspector or in the Component Inspector panel:

editable determines if the ComboBox component is editable (true) or only selectable (false). The
default value is false.

labels populates the ComboBox component with an array of text values.

data associates a data value with each item in the ComboBox component. The data parameter
is an array.

rowCount sets the maximum number of items that can be displayed at one time without using a
scroll bar. The default value is 5.

You can write ActionScript to set additional options for ComboBox instances using the methods,
properties, and events of the ComboBox class. For more information, see ComboBox class.
ComboBox component 69

Creating an application with the ComboBox component

The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to choose from in its
drop-down list.

To create an application with the ComboBox component, do the following:

1 Drag a ComboBox component from the Components panel to the Stage.
2 Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage while authoring. Typically, you would only
change the width of a combo box to fit its entries.

3 Select the combo box and, in the Property inspector, enter the instance name comboBox.
4 In the Component Inspector panel or the Property inspector, do the following:

■ Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the label
parameter field to open the Values dialog. Then click the plus sign to add items.

■ Enter MN.swf, OR.swf, and NH.swf for the data parameter.
These are imaginary SWF files that, for example, you could load when a user selects a city
from the combo box.

5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
form = new Object();
form.change = function (evt){

trace(evt.target.selectedItem.label);
}
comboBox.addEventListener("change", form);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.

Customizing the ComboBox component

You can transform a ComboBox component horizontally and vertically while authoring. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands.

If text is too long to fit in the combo box, the text clips to fit. You must resize the combo box
while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area.

Using styles with the ComboBox component

You can set style properties to change the appearance of a ComboBox component. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 28.
70 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

The combo box has two unique styles. Other styles are passed to the button, text box, and
drop-down list of the combo box through those individual components, as follows:

• The button is a Button instance and uses its styles. (See “Using styles with the Button
component” on page 50.)

• The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput
component” on page 232.)

• The drop-down list is an List instance and uses its styles. (See “Using styles with the List
component” on page 117.)

A ComboBox component uses the following Halo styles:

Using skins with the ComboBox component

The ComboBox component uses symbols in the Library panel to represent the button states. The
ComboBox has skin variables for the down arrow. Other than that, it uses scroll bar and list skins.
To skin the ComboBox component while authoring, modify symbols in the Library panel and re-
export the component as a SWC. The CheckBox component skins are located in the Flash UI
Components 2/Themes/MMDefault/ComboBox Assets/states folder in the library of either the
HaloTheme.fla file or the SampleTheme.fla file. For more information, see “About skinning
components” on page 37.

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen", "haloBlue",
and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".

openDuration The number of milliseconds to open the drop-down list. The default
value is 250.

openEasing A reference to a tweening function that controls the drop-down list
animation. Defaults to sine in/out. For more equations, download a
list from Robert Penner’s website.
ComboBox component 71

http://www.robertpenner.com/scripts/easing_equations.txt

A ComboBox component uses the following skin properties:

ComboBox class

Inheritance UIObject > UIComponent > ComboBase > ComboBox

ActionScript Class Namespace mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the APIs of each subcomponent are available directly from ComboBox component
and are listed in the Method, Property, and Event tables for the ComboBox class.

The drop-down list in a combo box is provided either as an Array or as a DataProvider object. If
you use a DataProvider object, the list changes at runtime. The source of the ComboBox data can
be changed dynamically by switching to a new Array or DataProvider object.

Items in a combo box list are indexed by position, starting with the number 0. An item can be one
of the following:

• A primitive data type.
• An object that contains a label property and a data property.

Note: An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the label property.

If the item is a primitive data type other than string, it is converted to a string. If an item is an
object, the label property must be a string and the data property can be any ActionScript value.

ComboBox component methods to which you supply items have two parameters, label and data,
that refer to the properties above. Methods that return an item return it as an Object.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.ComboBox.version);

Note: The following code returns undefined: trace(myComboBoxInstance.version);.

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. Default is RectBorder.

ComboDownArrowDownName The down arrow’s down state. Default is RectBorder.

ComboDownArrowUpName The down arrow’s up state. Default is RectBorder.

ComboDownArrowOverName The down arrow’s over state. Default is RectBorder.
72 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Method summary for the ComboBox class

Inherits all methods from UIObject and UIComponent.

Property summary for the ComboBox class

Inherits all properties from UIObject and UIComponent.

Property Description

ComboBox.addItem() Adds an item to the end of the list.

ComboBox.addItemAt() Adds an item to the end of the list at the specified index.

ComboBox.close() Closes the drop-down list.

ComboBox.getItemAt() Returns the item at the specified index.

ComboBox.open() Opens the drop-down list.

ComboBox.removeAll() Removes all items in the list.

ComboBox.removeItemAt() Removes an item from the list at the specified location.

ComboBox.replaceItemAt() Replaces an item in the list with another specified item.

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the combo
box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether or not a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-down list.

ComboBox.length Read-only. The length of the drop-down list.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of the text in the text box.

ComboBox.textField A reference to the TextInput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).
ComboBox component 73

Event summary for the ComboBox class

Inherits all events from UIObject and UIComponent.

ComboBox.addItem()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
comboBoxInstance.addItem(label[, data])

Usage 2:
comboBoxInstance.addItem({label:label[, data:data]})

Usage 3:
comboBoxInstance.addItem(obj);

Parameters

label A string that indicates the label for the new item.

data The data for the item; can be of any data type. This parameter is optional.

obj An object with a label property and an optional data property.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

Example

The following code adds an item to the myComboBox instance:
myComboBox.addItem("this is an Item");

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a result of
user interaction.

ComboBox.close Broadcast when the drop-down list begins to close.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRollOut Broadcast when the pointer rolls off a drop-down list item.

ComboBox.itemRollOver Broadcast when a drop-down list item is rolled over.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.
74 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ComboBox.addItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

comboBoxInstance.addItemAt(index, label[, data])

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item; can be any data type. This parameter is optional.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list at the index specified by the index parameter.
Indices greater than ComboBox.length are ignored.

Example

The following code inserts an item at index 3, which is the fourth position in the combo box list
(0 is the first position):
myBox.addItemAt(3, "this is the fourth Item");

ComboBox.change

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("change", listenerObject)
ComboBox component 75

Description

Event; broadcast to all registered listeners when the value of the combo box changes as a result of
user interaction.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, change) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the addEventListener()
method (see UIEventDispatcher.addEventListener()) on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myCombo.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.close()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.close()

Parameters

None.
76 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Returns

Nothing.

Description

Method; closes the drop-down list.

Example

The following example closes the drop-down list of the myBox combo box:
myBox.close();

See also

ComboBox.open()

ComboBox.close

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(close){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.close = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("close", listenerObject)
ComboBox component 77

Description

Event; broadcast to all registered listeners when the list of the combo box begins to retract.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, close) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example sends a message to the Output panel when the drop-down list begins to
close:
form.close = function(){

trace("The combo box has closed");
}
myCombo.addEventListener("close", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.dataProvider

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

comboBoxInstance.dataProvider
78 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; the data model for items viewed in a list. The value of this property can be an array or
any object that implements the DataProvider interface. The default value is []. This is a property
of the List component but can be accessed directly from an instance of the ComboBox
component.

The List component, and other data-aware components, add methods to the Array object’s
prototype so that they conform to the DataProvider interface (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used to
broadcast model changes to multiple components.

If the array contains objects, the labelField or labelFunction properties are accessed to
determine what parts of the item to display. The default value is "label", so if such a field exists,
it is chosen for display; if not, a comma separated list of all fields is displayed.
Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will lose the selection.

Any instance that implements the DataProvider interface is eligible as a data provider for a List.
This includes Flash Remoting RecordSets, Firefly DataSets, and so on.

Example

This example uses an array of strings to populate the drop-down list:
comboBox.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property, as in the
following:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the DataProvider will be broadcast to the list
 myDP.addItem({ label: accounts[i].name,
 data: accounts[i].accountID });
}

ComboBox.dropdown

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.dropdown
ComboBox component 79

Description

Property (read-only); returns a reference to the List component contained by the combo box. The
List subcomponent isn’t instantiated in the combo box until it needs to be displayed. However,
when you access the dropdown property, the list is created.

See also

ComboBox.dropdownWidth

ComboBox.dropdownWidth

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.change

Description

Property; the width limit in pixels of the drop-down list. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).

Example

The following code sets the dropdownWidth to 150 pixels:
myComboBox.dropdownWidth = 150;

See also

ComboBox.dropdown

ComboBox.editable

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.editable
80 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; indicates whether the combo box is editable (true) or not (false). An editable combo
box can have values entered into the text box that do not show up in the drop-down list. If a
combo box is not editable, only values listed in the drop-down list can be entered into the text
box. The default value is false.

Setting a combo box to editable clears the combo box text field. It also sets the selected index (and
item) to undefined. To make a combo box editable and still retain the selected item, use the
following code:
var ix = myComboBox.selectedIndex;
myComboBox.editable = true; // clears the text field.
myComboBox.selectedIndex = ix; // copies the label back into the text field.

Example

The following code makes myComboBox editable:
myComboBox.editable = true;

ComboBox.enter

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(enter){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("enter", listenerObject)
ComboBox component 81

Description

Event; broadcast to all registered listeners when the Enter key has been pressed in the text box.
This event is only broadcast from editable combo boxes. This is a TextInput event that is
broadcast from a combo box. For more information, see TextInput.enter.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, enter) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example sends a message to the Output panel when the drop-down list begins to
close:
form.enter = function(){

trace("The combo box enter event was triggered");
}
myCombo.addEventListener("enter", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.getItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

comboBoxInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than ComboBox.length. The index of the
item to retrieve.
82 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Returns

The indexed item object or value. The value is undefined if the index is out of range.

Description

Method; retrieves the item at a specified index.

Example

The following code displays the item at index position 4:
trace(myBox.getItemAt(4).label);

ComboBox.itemRollOut

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOut){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOut", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOut event has an
additional property: index. The index is the number of the item that was rolled out.
ComboBox component 83

Description

Event; broadcast to all registered listeners when the pointer rolls out of drop-down list items. This
is a List event that is broadcast from a combo box. For more information, see
List.itemRollOut.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOut) and the event is handled by
a listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 249.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled off of:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out of.");
}
myCombo.addEventListener("itemRollOut", form);

See also

ComboBox.itemRollOver, UIEventDispatcher.addEventListener()

ComboBox.itemRollOver

Availability

Flash Player 6.

Edition

Flash MX 2004.
84 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Usage

Usage 1:
on(itemRollOver){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOver", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOver event has an
additional property: index. The index is the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the drop-down list items are rolled over. This is a
List event that is broadcast from a combo box. For more information, see List.itemRollOver.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOver){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOver) and the event is handled
by a listener object (listenerObject) that you create. You define a method with the same name
as the event on the listener object; the method is called when the event is triggered. When the
event is triggered, it automatically passes an event object (eventObject) to the listener object
method. Each event object has a set of properties that contains information about the event. You
can use these properties to write code that handles the event. For more information about event
objects, see “Event Objects” on page 249.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myCombo.addEventListener("itemRollOver", form);

See also

ComboBox.itemRollOut, UIEventDispatcher.addEventListener()
ComboBox component 85

ComboBox.labelField

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.labelField

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is a
property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.

Example

The following example sets the dataProvider property to an array of strings and sets the
labelField property to indicate that the name field should be used as the label for the drop-
down list:
myComboBox.dataProvider = [
 {name:"Gary", gender:"male"},
 {name:"Susan", gender:"female"}];

myComboBox.labelField = "name";

See also

List.labelFunction

ComboBox.labelFunction

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.labelFunction

Description

Property; a function that computes the label of a dataProvider item. You must define the
function. The default value is undefined.
86 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example creates a data provider and then defines a function to specify what to use
as the label in the drop-down list:
myComboBox.dataProvider = [
 {firstName:"Nigel", lastName:"Pegg", age:"really young"},
 {firstName:"Gary", lastName:"Grossman", age:"young"},
 {firstName:"Chris", lastName:"Walcott", age:"old"},
 {firstName:"Greg", lastName:"Yachuk", age:"really old"}];

myComboBox.labelFunction = function(itemObj){
return (itemObj.lastName + ", " + itemObj.firstName);

}

See also

List.labelField

ComboBox.length

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List component
that is available from an instance of ComboBox. For more information, see List.length. The
default value is 0.

Example

The following example stores the value of length to a variable:
dropdownItemCount = myBox.length;

ComboBox.open()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.open()

Parameters

None.
ComboBox component 87

Returns

Nothing.

Description

Property; opens the drop-down list.

Example

The following code opens the drop-down list for the combo1 instance:
combo1.open();

See also

ComboBox.close()

ComboBox.open

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(open){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.open = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("open", listenerObject)
88 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Event; broadcast to all registered listeners when the drop-down list begins to appear.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, open) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 249.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled out:
form.open = function () {
 trace("The combo box has opened with text " + myBox.text);
}
myBox.addEventListener("open", form);

See also

ComboBox.close, UIEventDispatcher.addEventListener()

ComboBox.removeAll()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

comboBoxInstance.removeAll()

Parameters

None.

Returns

Nothing.
ComboBox component 89

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example

The following code clears the list:
myCombo.removeAll();

See also

ComboBox.removeItemAt(), ComboBox.replaceItemAt()

ComboBox.removeItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.removeItemAt(index)

Parameters

index A number that indicates the position of the item to remove. This value is zero-based.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one. This is a method of the List component that is
available from an instance of the ComboBox component.

Example

The following code removes the item at index position 3:
myCombo.removeItemAt(3);

See also

ComboBox.removeAll(), ComboBox.replaceItemAt()

ComboBox.replaceItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.
90 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Usage

comboBoxInstance.replaceItemAt(index, label[, data])

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional.

Returns

Nothing.

Description

Method; replaces the content of the item at the index specified by the index parameter. This is a
method of the List component that is available from the ComboBox component.

Example

The following example changes the third index position:
myCombo.replaceItemAt(3, "new label");

See also

ComboBox.removeAll(), ComboBox.removeItemAt()

ComboBox.rowCount

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.rowCount

Description

Property; the maximum number of rows visible in the drop-down list. The default value is 5.

If the number of items in the drop-down list is greater than or equal to the rowCount property, it
resizes and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than the
rowCount property, it resizes to the number of items in the list.

This behavior differs from the List component, which always shows the number of rows specified
by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.

Example

The following example specifies that the combo box should have 20 or fewer rows visible:
myComboBox.rowCount = 20;
ComboBox component 91

ComboBox.scroll

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("scroll", listenerObject)

Event Object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, scroll) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 249.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.
92 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example sends a message to the Output panel that indicates which item index
number has been scrolled to:
form.scroll = function (eventObj) {
 trace("The list had been scrolled to item # " + eventObj.target.vPosition);
}
myCombo.addEventListener("scroll", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.selectedIndex

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.selectedIndex

Description

Property; the index (number) of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays that
label of the indicated item in the combo box's text box.

Assigning a selectedIndex that is out of range is ignored. Entering text into the text field of an
editable combo box sets selectedIndex to undefined.

Example

The following selects the last item in the list:
myComboBox.selectedIndex = myComboBox.length-1;

See also

ComboBox.selectedItem

ComboBox.selectedItem

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.selectedItem
ComboBox component 93

Description

Property; the value of the selected item in the drop-down list.

If the combo box is editable selectedItem returns undefined if you enter any text in the text
box. It will only have a value if you select an item from the drop-down list, or the value is set via
ActionScript. If the combo box is static, the value of selectedItem is always valid.

Example

The following example shows selectedItem if the data provider contains primitive types:
var item = myComboBox.selectedItem;
trace("You selected the item " + item);

The following example shows selectedItem if the data provider contains objects with label and
data properties:
var obj = myComboBox.selectedItem;
trace("You have selected the color named: " + obj.label);
trace("The hex value of this color is: " + obj.data);

See also

ComboBox.dataProvider, ComboBox.selectedIndex

ComboBox.text

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example

The following example sets the current text value of an editable combo box:
myComboBox.text = "California";

ComboBox.textField

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.textField
94 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property (read-only); a reference to the TextInput component contained by the ComboBox.

This property allows you to access the underlying TextInput component so that you can to
manipulate it. For example, you might want to change the selection of the text box or restrict the
characters that can be entered into it.

Example

The following code restricts the text box of myComboBox to only accept numbers:
myComboBox.textField.restrict = "0-9";

ComboBox.value

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

myComboBox.value

Description

Property (read-only); if the combo box is editable, value returns the value of the text box. If the
combo box is static, value returns the value of the drop-down list. The value of the drop-down
list is the data field, or, if the data field doesn’t exist, the label field.

Example

The following example puts the data into the combo box by setting the dataProvider property.
It then displays the value in the Output panel. Finally, it selects "California" and displays it in
the text box, as follows:
cb.dataProvider = [
 {label:"Alaska", data:"AZ"},
 {label:"California", data:"CA"},
 {label:"Washington", data:"WA"}];

cb.editable = true;
cb.selectedIndex = 1;
trace('Editable value is "California": '+ cb.value);

cb.editable = false;
cb.selectedIndex = 1;
trace('Non-editable value is "CA": '+ cb.value);

DataBinding package

For the latest information about this feature, click the Update button at the top of the Help tab.

DataGrid component

For the latest information about this feature, click the Update button at the top of the Help tab.
DataGrid component 95

DataHolder component

For the latest information about this feature, click the Update button at the top of the Help tab.

DataProvider component

For the latest information about this feature, click the Update button at the top of the Help tab.

DataSet component

For the latest information about this feature, click the Update button at the top of the Help tab.

DateChooser component

For the latest information about this feature, click the Update button at the top of the Help tab.

DateField component

For the latest information about this feature, click the Update button at the top of the Help tab.

DepthManager

ActionScript class namespace mx.managers.DepthManager

The DepthManager class adds functionality to the ActionScript MovieClip class that allows you
to manage the relative depth assignments of any component or movie clip, including _root. It
also allows you to manage reserved depths in a special highest-depth clip on the _root for system-
level services like the cursor or tooltips.

The following methods compose the relative depth-ordering API:

• DepthManager.createChildAtDepth()

• DepthManager.createClassChildAtDepth()

• DepthManager.setDepthAbove()

• DepthManager.setDepthBelow()

• DepthManager.setDepthTo()

The following methods compose the reserved depth space API:

• DepthManager.createClassObjectAtDepth()

• DepthManager.createObjectAtDepth()
96 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Method summary for the DepthManager class

DepthManager.createChildAtDepth()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

movieClipInstance.createChildAtDepth(linkageName, depthFlag[, initObj])

Parameters

linkageName A linkage identifier. This parameter is a string.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the
DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the object created.

Description

Method; creates a child instance of the symbol specified by the linkageName parameter at the
depth specified by the depthFlag parameter.

Method Description

DepthManager.createChildAtDepth() Creates a child of the specified symbol at the
specified depth.

DepthManager.createClassChildAtDepth() Creates an object of the specified class at that
specified depth.

DepthManager.createClassObjectAtDepth() Creates an instance of the specified class at a
specified depth in the special highest-depth clip.

DepthManager.createObjectAtDepth() Creates an object at a specified depth in the highest-
depth clip.

DepthManager.setDepthAbove() Sets the depth above the specified instance.

DepthManager.setDepthBelow() Sets the depth below the specified instance.

DepthManager.setDepthTo() Sets the depth to the specified instance in the
highest-depth clip.
DepthManager 97

Example

The following example creates a minuteHand instance of the MinuteSymbol movie clip and
places it on top of the clock:
import mx.managers.DepthManager;
minuteHand = clock.createChildAtDepth("MinuteSymbol", DepthManager.kTop);

DepthManager.createClassChildAtDepth()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.createClassChildAtDepth(className, depthFlag[, initObj])

Parameters

className A class name.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the
DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created child.

Description

Method; creates a child of the class specified by the className parameter at the depth specified
by the depthFlag parameter.

Example

The following code draws a focus rectangle on top of all NoTopmost objects:
import mx.managers.DepthManager
this.ring = createClassChildAtDepth(mx.skins.RectBorder, DepthManager.kTop);

The following code creates an instance of the Button class and passes it a value for its label
property as an initObj parameter:
import mx.managers.DepthManager
button1 = createClassChildAtDepth(mx.controls.Button, DepthManager.kTop,

{label: "Top Button"});
98 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

DepthManager.createClassObjectAtDepth()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

DepthManager.createClassObjectAtDepth(className, depthSpace[, initObj])

Parameters

className A class name.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created object.

Description

Method; creates an object of the class specified by the className parameter at the depth specified
by the depthSpace parameter. This method is used for accessing the reserved depth spaces in the
special highest-depth clip.

Example

The following example creates an object from the Button class:
import mx.managers.DepthManager
myCursorButton = createClassObjectAtDepth(mx.controls.Button,

DepthManager.kCursor, {label: "Cursor"});

DepthManager.createObjectAtDepth()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

DepthManager.createObjectAtDepth(linkageName, depthSpace[, initObj])
DepthManager 99

Parameters

linkageName A linkage identifier.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

initObj An initialization object.

Returns

A reference to the created object.

Description

Method; creates an object at the specified depth. This method is used for accessing the reserved
depth spaces in the special highest-depth clip.

Example

The following example creates an instance of the TooltipSymbol symbol and places it at the
reserved depth for tooltips:
import mx.managers.DepthManager
myCursorTooltip = createObjectAtDepth("TooltipSymbol", DepthManager.kTooltip);

DepthManager.setDepthAbove()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthAbove(instance)

Parameters

instance An instance name.

Returns

Nothing.

Description

Method; sets the depth of a movie clip or component instance above the depth of the instance
specified by the instance parameter.
100 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

DepthManager.setDepthBelow()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthBelow(instance)

Parameters

instance An instance name.

Returns

Nothing.

Description

Method; sets the depth of a movie clip or component instance below the depth of the instance
specified by the instance parameter.

Example

The following code sets the depth of the textInput instance below the depth of the button:
textInput.setDepthBelow(button);

DepthManager.setDepthTo()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthTo(depth)

Parameters

depth A depth level.

Returns

Nothing.
DepthManager 101

Description

Method; sets the depth of movieClipInstance to the value specified by depth. This method
moves an instance to another depth to make room for another object.

Example

The following example sets the depth of the mc1 instance to a depth of 10:
mc1.setDepthTo(10);

For more information about depth and stacking order, see “Determining the next highest
available depth” in ActionScript Dictionary Help.

FocusManager

You can use the FocusManager to specify the order in which components receive focus when a
user presses the Tab key to navigate in an application. You can use the FocusManager API to set a
button in your document that receives keyboard input when a user presses Enter (Windows) or
Return (Macintosh). For example, when a user fills out a form, they should be able to tab between
fields and press Enter (Windows) or Return (Macintosh) to submit the form.

All components implement FocusManager support; you don’t need to write code to invoke it.
The FocusManager also interacts with the System Manager, which activates and deactivates
FocusManager instances as pop-up windows are activated or deactivated. Each modal window has
an instance of a FocusManager so the components in that window become their own tab set,
preventing the user from tabbing into components in other windows.

The FocusManager recognizes groups of radio buttons (those with a defined
RadioButton.groupName property) and sets focus to the instance in the group that has a
selected property that is set to true. When the Tab key is pressed, the Focus Manager checks to
see if the next object has the same groupName as the current object. If it does, it automatically
moves focus to the next object with a different groupName. Other sets of components that
support a groupName property can also use this feature.

The FocusManager handles focus changes due to mouse clicks. If the user clicks on a component,
that component is given focus.

The Focus Manager does not automatically assign focus to a component in an application. The
main window and any pop-up windows will not have focus set on any component by default
unless you call focusManager.setFocus on a component.

Using the FocusManager

To create focus navigation in an application, set the tabIndex property on any objects (including
buttons) that should receive focus. When a user presses the Tab key, the FocusManager looks for
an enabled object with a tabIndex property that is higher than the current value of tabIndex.
Once the FocusManager reaches the highest tabIndex property, it returns to zero. So, in the
following example, the comment object (probably a TextArea component) receives focus first, and
then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;
102 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:
focusManager.defaultPushButton = okButton;

Note: The FocusManager is sensitive to when objects are placed on the Stage (the depth order of
objects) and not their relative positions on the stage. This is different from the way Flash Player
handles tabbing.

FocusManager parameters

There are no authoring parameters for the FocusManager. You must use the ActionScript
methods and properties of the FocusManager class in the Actions panel. For more information,
see FocusManager class.

Creating an application with the FocusManager

The following procedure creates a focus scheme in a Flash application.

1 Drag the TextInput component from the Components panel to the Stage.
2 In the Property inspector, assign it the instance name comment.
3 Drag the Button component from the Components panel to the Stage.
4 In the Property inspector, assign it the instance name okButton and set the label parameter to

OK.
5 In Frame 1 of the Actions panel, enter the following:

comment.tabIndex = 1;
okButton.tabIndex = 2;
focusManager.setFocus(comment);
focusManager.defaultPushButton = okButton;
lo = new Object();
lo.click = function(){

trace("button was clicked");
}
okButton.addEventListener("click", lo);

This code sets the tab ordering and specifies a default button to receive a click event when a
user presses Enter (Windows) or Return (Macintosh).

Customizing the FocusManager

You can change the color of the focus ring in the Halo theme by changing the value of the
themeColor style.

The FocusManager uses a FocusRect skin for drawing focus. This skin can be replaced or
modified and subclasses can override UIComponent.drawFocus to draw custom focus indicators.
FocusManager 103

FocusManager class

Inheritance UIObject > UIComponent > FocusManager

ActionScript class namespace mx.managers.FocusManager

Method summary for the FocusManager class

Property summary for the FocusManager class

FocusManager.defaultPushButton

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.defaultPushButton

Method Description

FocusManager.getFocus() Returns a reference to the object that has focus.

FocusManager.sendDefaultPushButtonEvent() Sends a click event to listener objects registered to
the default push button.

FocusManager.setFocus() Sets focus to the specified object.

Method Description

FocusManager.defaultPushButton The object that receives a click event when a user
presses the Return or Enter key.

FocusManager.defaultPushButtonEnabled Indicates whether keyboard handling for the default
push button is turned on (true) or off (false). The
default value is true.

FocusManager.enabled Indicates whether tab handling is turned on (true) or
off (false). The default value is true.

FocusManager.nextTabIndex The next value of the tabIndex property.
104 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; specifies the default push button for an application. When the user presses the Enter
key (Windows) or Return key (Macintosh), the listeners of the default push button receive a
click event. The default value is undefined and the data type of this property is object.

The FocusManager uses the emphasized style declaration of the SimpleButton class to visually
indicate the current default push button.

The value of the defaultPushButton property is always the button that has focus. Setting the
defaultPushButton property does not give initial focus to the default push button. If there are
several buttons in an application, the button that is currently focused receives the click event
when Enter or Return is pressed. If some other component has focus when Enter or Return is
pressed, the defaultPushButton property is reset to its original value.

Example

The following code sets the default push button to the OKButton instance:
FocusManager.defaultPushButton = OKButton;

See also

FocusManager.defaultPushButtonEnabled,
FocusManager.sendDefaultPushButtonEvent()

FocusManager.defaultPushButtonEnabled

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

focusManager.defaultPushButtonEnabled

Description

Property; a Boolean value that determines if keyboard handling of the default push button is
turned on (true), or not (false). Setting defaultPushButtonEnabled to false allows a
component to receive the Return or Enter key and handle it internally. You must re-enable default
push button handling by watching the component’s onKillFocus() method (see
MovieClip.onKillFocus in ActionScript Dictionary Help) or focusOut event. The default
value is true.

Example

The following code disables default push button handling:
focusManager.defaultPushButtonEnabled = false;
FocusManager 105

FocusManager.enabled

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

focusManager.enabled

Description

Property; a Boolean value that determines if tab handling is turned on (true), or not (false) for
a particular group of focus objects. (For example, another pop-up window could have its own
FocusManager.) Setting enabled to false allows a component to receive the tab handling keys
and handle them internally. You must re-enable the FocusManager handling by watching the
component’s onKillFocus() method (see MovieClip.onKillFocus in ActionScript Dictionary
Help) or focusOut event. The default value is true.

Example

The following code disables tabbing:
focusManager.enabled = false;

FocusManager.getFocus()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.getFocus()

Parameters

None.

Returns

A reference to the object that has focus.

Description

Method; returns a reference to the object that currently has focus.
106 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following code sets the focus to myOKButton if the currently focused object is myInputText:
if (focusManager.getFocus() == myInputText)
{

focusManager.setFocus(myOKButton);
}

See also

FocusManager.setFocus()

FocusManager.nextTabIndex

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

FocusManager.nextTabIndex

Description

Property; the next available tab index number. Use this property to dynamically set an object’s
tabIndex property.

Example

The following code gives the mycheckbox instance the next highest tabIndex value:
mycheckbox.tabIndex = focusManager.nextTabIndex;

See also

UIComponent.tabIndex

FocusManager.sendDefaultPushButtonEvent()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.sendDefaultPushButtonEvent()

Parameters

None.

Returns

Nothing.
FocusManager 107

Description

Method; sends a click event to listener objects registered to the default push button. Use this
method to programmatically send a click event.

Example

The following code triggers the default push button click event and fills in the user name and
password fields when a user selects the CheckBox instance chb (the check box would be labeled
“Automatic Login”):
name_txt.tabIndex = 1;
password_txt.tabIndex = 2;
chb.tabIndex = 3;
submit_ib.tabIndex = 4;

focusManager.defaultPushButton = submit_ib;

chbObj = new Object();
chbObj.click = function(o){

if (chb.selected == true){
name_txt.text = "Jody";
password_txt.text = "foobar";
focusManager.sendDefaultPushButtonEvent();

} else {
name_txt.text = "";
password_txt.text = "";

}
}
chb.addEventListener("click", chbObj);

submitObj = new Object();
submitObj.click = function(o){

if (password_txt.text != "foobar"){
trace("error on submit");

} else {
trace("Yeah! sendDefaultPushButtonEvent worked!");

}
}
submit_ib.addEventListener("click", submitObj);

See also

FocusManager.defaultPushButton, FocusManager.sendDefaultPushButtonEvent()

FocusManager.setFocus()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.setFocus(object)

Parameters

object A reference to the object to receive focus.
108 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Returns

Nothing.

Description

Method; sets focus to the specified object.

Example

The following code sets focus to myOKButton:
focusManager.setFocus(myOKButton);

See also

FocusManager.getFocus()

Form class

For the latest information about this feature, click the Update button at the top of the Help tab.

Label component

A label component is a single line of text. You can specify that a label be formatted with HTML.
You can also control alignment and sizing of a label. Label components don’t have borders, cannot
be focused, and don’t broadcast any events.

A live preview of each Label instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. The Label doesn't have a border, so the
only way to see its live preview is to set its text parameter. If the text is too long, and you choose
to set the autoSize parameter, the autoSize parameter is not supported by the live preview and
the label’s bounding box is not resized. You must click within the boundary box to select the label
on the Stage.

When you add the Label component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility:
mx.accessibility.LabelAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the label component

Use a Label component to create a text label for another component in a form, such as a “Name:”
label to the left of a TextInput field that accepts a user's name. If you’re building an application
using components based on version 2 (v2) of the Macromedia Component Architecture, it’s a
good idea to use a Label component instead of a plain text field because you can use styles to
maintain a consistent look and feel.
Label component 109

Label parameters

The following are authoring parameters that you can set for each Label component instance in
the Property inspector or in the Component Inspector panel:

text indicates the text of the label; the default value is Label.

html indicates whether the label is formatted with HTML (true) or not (false). If the html
parameter is set to true, a Label cannot be formatted with styles. The default value is false.

autoSize indicates how the label sizes and aligns to fit the text. The default value is none. The
parameter can be any of the following four values:

• none—the label doesn’t resize or align to fit the text.
• left—the right and bottom sides of the label resize to fit the text. The left and top sides

don’t resize.
• center—the bottom side of the label resizes to fit the text. The horizontal center of the label

stays anchored at the its original horizontal center position.
• right—the left and bottom sides of the label resize to fit the text. The top and right side

don’t resize.
Note: The Label component autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

You can write ActionScript to set additional options for Label instances using its methods,
properties, and events. For more information, see Label class.

Creating an application with the Label component

The following procedure explains how to add a Label component to an application while
authoring. In this example, the label is beside a combo box with dates in a shopping cart
application.

To create an application with the Label component, do the following:

1 Drag a Label component from the Components panel to the Stage.
2 In the Component Inspector panel, do the following:

■ Enter Expiration Date for the label parameter.

Customizing the label component

You can transform a Label component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. You can also set the autoSize authoring parameter;
setting this parameter doesn’t change the bounding box in the Live Preview, but the label does
resize. For more information, see “Label parameters” on page 110. At runtime, use the
setSize() method (see UIObject.setSize()) or Label.autoSize.
110 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using styles with the Label component

You can set style properties to change the appearance of a label instance. All text in a Label
component instance must share the same style. For example, you can’t set the color style to
"blue" for one word in a label and to "red" for the second word in the same label.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties.

For more information about styles, see “Using styles to customize component color and text”
on page 28.

A Label component supports the following styles:

Using skins with the Label component

The Label component is not skinnable.

For more information about skinning a component, see “About skinning components”
on page 37.

Label class

Inheritance UIObject > Label

ActionScript Class Namespace mx.controls.Label

The properties of the Label class allow you at runtime to specify text for the label, indicate
whether the text can be formatted with HTML, and indicate whether the label auto-sizes to
fit the text.

Setting a property of the Label class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Label.version);

Note: The following code returns undefined: trace(myLabelInstance.version);.

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".
Label component 111

Method summary for the Label class

Inherits all methods from UIObject.

Property summary for the Label class

Inherits all properties from UIObject.

Event summary for the Label class

Inherits all events from UIObject.

Label.autoSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

labelInstance.autoSize

Description

Property; a string that indicates how a label sizes and aligns to fit the value of its text property.
There are four possible values: "none", "left", "center", and "right". The default value
is "none".

• none—the label doesn’t resize or align to fit the text.
• left—the right and bottom sides of the label resize to fit the text. The left and top sides

don’t resize.
• center—the bottom side of the label resizes to fit the text. The horizontal center of the label

stays anchored at the its original horizontal center position.
• right—the left and bottom sides of the label resize to fit the text. The top and right side

don’t resize.
Note: The Label component autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

Property Description

Label.autoSize A string that indicates how a label sizes and aligns to fit the value of its text
property. There are four possible values: "none", "left", "center", and
"right". The default value is "none".

Label.html A Boolean value that indicates whether a label can be formatted with HTML
(true) or not (false).

Label.text The text on the label.
112 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Label.html

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

labelInstance.html

Description

Property; a Boolean value that indicates whether the label can be formatted with HTML (true)
or not (false). The default value is false. Label components with the html property set to true
cannot be formatted with styles.

You cannot use the HTML tag with the Label component even when Label.html
is set to true. For example, in the following example, the text “Hello” displays black, not red as it
would if were supported:
lbl.html = true;
lbl.text = "Hello World";

In order to retrieve plain text from HTML formatted text, set the HTML property to false and
then access the text property. This will remove the HTML formatting, so you may want to copy
the label text to an off-screen Label or TextArea component before you retrieve the plain text.

Example

The following example sets the html property to true so the label can be formatted with HTML.
The text property is then set to a string that includes HTML formatting, as follows:
labelControl.html = true;
labelControl.text = "The Royal Nonesuch";

The word “Royal” displays in bold.

Label.text

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

labelInstance.text

Description

Property; the text of a label. The default value is "Label".
Label component 113

Example

The following code sets the text property of the Label instance labelControl and sends the
value to the Output panel:
labelControl.text = "The Royal Nonesuch";
trace(labelControl.text);

List component

The List component is a scrollable single- or multiple-selection list box. A list can also display
graphics, including other components. You add the items displayed in the List using the Values
dialog box that appears when you click in the labels or data parameter fields. You can also use the
List.addItem() and List.addItemAt() methods to add items to the list.

The List component uses a zero-based index, where the item with index 0 is the top item
displayed. When adding, removing, or replacing list items using the List class methods and
properties, you may need to specify the index of the list item.

The List receives focus when you click it or tab to it, and you can then use the following keys to
control it:

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each List instance on the Stage reflects changes made to parameters in the
Property inspector or Component Inspector panel while authoring.

When you add the List component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility:
mx.accessibility.ListAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Key Description

Alphanumerical keys Jump to the next item with Key.getAscii() as the first character in its label.

Control Toggle key. Allows multiple non-contiguous selects and deselects.

Down Selection moves down one item.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift Contiguous selection key. Allows for contiguous selection.

Up Selection moves up one item.
114 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using the List component

You can set up a list so that users can make either single or multiple selections. For example, a user
visiting an e-commerce website needs to choose which item to buy. There are 30 items, and the
user scrolls through a list and selects one by clicking it.

You can also design a list that uses custom movie clips as rows so you can display more
information to the user. For example, in an e-mail application, each mailbox could be a List
component and each row could have icons to indicate priority and status.

List component parameters

The following are authoring parameters that you can set for each List component instance in the
Property inspector or in the Component Inspector panel:

data An array of values that populate the data of the list. The default value is [] (an empty
array). There is no equivalent runtime property.

labels An array of text values that populate the label values of list. The default value is [] (an
empty array). There is no equivalent runtime property.

multipleSelection A Boolean value that indicates whether you can select multiple values (true)
or not (false). The default value is false.

rowHeight indicates the height, in pixels, of each row. The default value is 20. Setting a font does
not change the height of a row.

You can write ActionScript to set additional options for List instances using its methods,
properties, and events. For more information, see List class.

Creating an application with the List component

The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.

To add a simple List component to an application, do the following:

1 Drag a List component from the Components panel to the Stage.
2 Select the list and select Modify > Transform to resize it to fit your application.
3 In the Property inspector, do the following:

■ Enter the instance name myList.
■ Enter Item1, Item2, and Item3 for the labels parameter.
■ Enter item1.html, item2.html, item3.html for the data parameter.

4 Select Control > Test Movie to see the list with its items.
You could use the data property values in your application to open HTML files.

The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.
List component 115

To add a List component to an application, do the following:

1 Drag a List component from the Components panel to the Stage.
2 Select the list and select Modify > Transform to resize it to fit your application.
3 In the Actions panel, enter the instance name myList
4 Select Frame 1 of the Timeline and, in the Actions panel, enter the following:

myList.dataProvider = myDP;

If you have defined a data provider named myDP, the list will fill with data. For more
information about data providers, see List.dataProvider.

5 Select Control > Test Movie to see the list with its items.

Customizing the List component

You can transform a List component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the List.setSize() method (see
UIObject.setSize()).

When a list is resized, the rows of the list shrink horizontally, clipping any text within them.
Vertically, the list adds or removes rows as needed. Scroll bars position themselves automatically.
For more information about scroll bars, see “ScrollPane component” on page 199.
116 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using styles with the List component

You can set style properties to change the appearance of a List component.

A List component uses the following Halo styles:

A List component also uses the style properties of the Label component (see “Using styles with
the Label component” on page 111), the ScrollBar component (see “ScrollBar component”
on page 188), and RectBorder.

Style Description

alternatingRowColors Specifies colors for rows in an alternating pattern. The value can be
an array of two or more colors, for example, 0xFF00FF, 0xCC6699,
and 0x996699.

backgroundColor The background color of the list. This style is defined on a class style
declaration, ScrollSelectList.

borderColor The black section of a three-dimensional border or the color section
of a two-dimensional border.

borderStyle The bounding box style. The possible values are: "none", "solid",
"inset" and "outset". This style is defined on a class style declaration,
ScrollSelectList.

defaultIcon Name of the default icon to use for list rows. The default value is
undefined.

rollOverColor The color of a rolled over row.

selectionColor The color of a selected row.

selectionEasing A reference to an easing equation (function) used for controlling
programmatic tweening.

disabledColor The disabled color for text.

textRollOverColor The color of text when the pointer rolls over it.

textSelectedColor The color of text when selected.

selectionDisabledColor The color of a row if it has been selected and disabled.

selectionDuration The length of any transitions when selecting items.

useRollOver Determines whether rolling over a row activates highlighting.
List component 117

Using skins with the List component

All the skins in the List component are included in the subcomponents from which the list is
composed (ScrollBar component and RectBorder). For more information, see “ScrollBar
component” on page 188. You can use the setStyle() method (see UIObject.setStyle()) to
change the following RectBorder style properties:

The style properties set the following positions on the border:

List class

Inheritance UIObject > UIComponent > View > ScrollView > ScrollSelectList > List

ActionScript Class Namespace mx.controls.List

The List component is composed of three parts:

• Items
• Rows
• A data provider

An item is an ActionScript object used for storing the units of information in the list. A list can be
thought of as an array; each indexed space of the array is an item. An item is an object that
typically has a label property that is displayed and a data property that is used for storing data.

A row is a component that is used to display an item. Rows are either supplied by default by the
list (the SelectableRow class is used), or you can supply them, usually as a subclass of the
SelectableRow class. The SelectableRow class implements the CellRenderer interface, which is the
set of properties and methods that allow the list to manipulate each row and send data and state
information (for example, highlighted, selected, and so on) to the row for display.

RectBorder styles Border position

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h
118 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A data provider is a data model of the list of items in a list. Any array in the same frame as a list is
automatically given methods that allow you to manipulate data and broadcast changes to multiple
views. You can build an Array instance or get one from a server and use it as a data model for
multiple Lists, ComboBoxes, DataGrids, and so on. The List component has a set of methods
that proxy to its data provider (for example, addItem() and removeItem()). If no external data
provider is provided to the list, these methods create a data provider instance automatically, which
is exposed through List.dataProvider.

To add a List component to the tab order of an application, set its tabIndex property (see
UIComponent.tabIndex). The List component uses the FocusManager to override the default
Flash Player focus rectangle and draw a custom focus rectangle with rounded corners. For more
information, see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.List.version);

Note: The following code returns undefined: trace(myListInstance.version);.

Method summary for the List class

Inherits all methods from UIObject and UIComponent.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare function.

List.sortItemsBy() Sorts the items in the list according to a specified property.
List component 119

Property summary for the List class

Inherits all properties from UIObject and UIComponent.

Property Description

List.cellRenderer Assigns the cellRenderer to use for each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or not
("off").

List.iconField A field within each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for the label
text.

List.length The length of the list in items. This property is read-only.

List.maxHPosition Specifies the number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or not
(false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is read-only.

List.selectedItems The selected item objects in a multiple-selection list. This property is
read-only.

List.vPosition Scrolls the list so the topmost visible item is the number assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not
displayed("off"), or displayed when needed ("auto").
120 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Event summary for the List class

Inherits all events from UIObject and UIComponent.

List.addItem()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.addItem(label[, data])

listInstance.addItem(itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

Both of the following lines of code add an item to the myList instance. To try this code, drag a
List to the Stage and give it the instance name myList. Add the following code to Frame 1 in
the Timeline:
myList.addItem("this is an Item");
myList.addItem({label:"Gordon",age:"very old",data:123});

Event Description

List.change Broadcast whenever the selection changes due to user interaction.

List.itemRollOut Broadcast when list items are rolled over and then off by the pointer.

List.itemRollOver Broadcast when list items are rolled over by the pointer.

List.scroll Broadcast when a list is scrolled.
List component 121

List.addItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.addItemAt(index, label[, data])

listInstance.addItemAt(index, itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be any data type.

index A number greater than or equal to zero that indicates the position of the item.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the position specified by the index parameter.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following line of code adds an item to the third index position, which is the fourth item
in the list:
myList.addItemAt(3,{label:'Red',data:0xFF0000});

List.cellRenderer

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.cellRenderer
122 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; assigns the cell renderer to use for each row of the list. This property must be a class
object reference, or a symbol linkage identifier for the cell renderer to use. Any class used for this
property must implement the “CellRenderer interface” on page 59.

Example

The following example uses a linkage identifier to set a new cell renderer:
myList.cellRenderer = "ComboBoxCell";

List.change

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
listInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the selected index of the list changes as a result of
user interaction.

The first usage example uses an on() handler and must be attached directly to a list component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the list component instance
myBox, sends “_level0.myBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, change) and the event is handled by a listener
object (listenerObject) that you create. You define a method with the same name as the event
on the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 249.
List component 123

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myList.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

List.dataProvider

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listnstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array or
any object that implements the DataProvider interface. The default value is []. For more
information about the DataProvider interface, see “DataProvider component” on page 96.

The List component, and other data-aware components, add methods to the Array object’s
prototype so that they conform to the DataProvider interface. Therefore, any array that exists at
the same time as a list automatically has all the methods (addItem(), getItemAt(), and so on)
it needs to be the data model for the list, and can be used to broadcast model changes to
multiple components.

If the array contains objects, the List.labelField or List.labelFunction properties are
accessed to determine what parts of the item to display. The default value is "label", so if a
label field exists, it is chosen for display, if is doesn’t exist, a comma-separated list of all fields
is displayed.
Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will lose the selection.

Any instance that implements the DataProvider interface can be a data provider for a List
component. This includes Flash Remoting RecordSets, Firefly DataSets, and so on.
124 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

This example uses an array of strings to populate the list:
list.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property, as in
the following:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the DataProvider will be broadcast to the list
 myDP.addItem({ label: accounts[i].name,
 data: accounts[i].accountID });
}

List.getItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than List.length. The index of the item
to retrieve.

Returns

The indexed item object. Undefined if index is out of range.

Description

Method; retrieves the item at a specified index.

Example

The following code displays the label of the item at index position 4:
trace(myList.getItemAt(4).label);

List.hPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.hPosition
List component 125

Description

Property; scrolls the list horizontally to the number of pixels specified. You can’t set hPosition
unless the value of hScrollPolicy is "on" and the list has a maxHPosition that is greater than 0.

Example

The following example gets the horizontal scroll position of myList:
var scrollPos = myList.hPosition;

The following example sets the horizontal scroll position all the way to the left:
myList.hPosition = 0;

List.hScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.hScrollPolicy

Description

Property; a string that determines whether or not the horizontal scroll bar is displayed; the value
can be "on" or "off". The default value is "off". The horizontal scroll bar does not measure
text, you must set a maximum horizontal scroll position, see List.maxHPosition.
Note: The value "auto" is not supported for List.hScrollPolicy.

Example

The following code enables the list to scroll horizontally up to 200 pixels:
myList.hScrollPolicy = "on";
myList.Box.maxHPosition = 200;

See also

List.hPosition, List.maxHPosition

List.iconField

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.iconField
126 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; specifies the name of a field to be used as an icon identifier. If the field has a value of
undefined, the default icon specified by the defaultIcon style is used. If the defaultIcon style
is undefined, no icon is used.

Example

The following example sets the iconField property to the icon property of each item:
list.iconField = "icon"

See also

List.iconFunction

List.iconFunction

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.iconFunction

Description

Property; specifies a function to be used to determine which icon each row will use to display its
item. This function receives a parameter, item, which is the item being rendered, and must return
a string representing the icon’s symbol identifier.

Example

The following example adds icons that indicate whether a file is an image or a text document. If
the data.fileExtension field contains a value of "jpg" or "gif", the icon used will be
"pictureIcon", and so on:
list.iconFunction = function(item){

var type = item.data.fileExtension;
if (type=="jpg" || type=="gif") {

return "pictureIcon";
} else if (type=="doc" || type=="txt") {

return "docIcon";
}

}

List.itemRollOut

Availability

Flash Player 6.

Edition

Flash MX 2004.
List component 127

Usage

Usage 1:
on(itemRollOut){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOut", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOut event has an
additional property: index. The index is the number of the item that was rolled out.

Description

Event; broadcast to all registered listeners when the list items are rolled out.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOut) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out.");
}
myList.addEventListener("itemRollOut", form);

See also

List.itemRollOver
128 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

List.itemRollOver

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOver){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOver", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOver event has an
additional property: index. The index is the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the list items are rolled over.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOver){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOver) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.
List component 129

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myList.addEventListener("itemRollOver", form);

See also

List.itemRollOut

List.labelField

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.labelField

Description

Property; specifies a field within each item to be used as display text. This property takes the value
of the field and uses it as the label. The default value is "label".

Example

The following example sets the labelField property to be the "name" field of each item. “Nina”
would display as the label for the item added in the second line of code:
list.labelField = "name";
list.addItem({name: "Nina", age: 25});

See also

List.labelFunction

List.labelFunction

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.labelFunction
130 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; specifies a function to be used to decide which field (or field combination) to display of
each item. This function receives one parameter, item, which is the item being rendered, and
must return a string representing the text to display.

Example

The following example makes the label display some formatted details of the items:
list.labelFunction = function(item){

return "The price of product " + item.productID + ", " + item.productName +
" is $"
+ item.price;

}

See also

List.labelField

List.length

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.length

Description

Property (read-only); the number of items in the list.

Example

The following example places the value of length in a variable:
var len = myList.length;

List.maxHPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.maxHPosition
List component 131

Description

Property; specifies the number of pixels the list can scroll when List.hScrollPolicy is set to
"on". The list doesn’t precisely measure the width of text that it contains. You must set
maxHPosition to indicate the amount of scrolling that the list requires. The list will not scroll
horizontally if this property is not set.

Example

The following example creates a list with 400 pixels of horizontal scrolling:
myList.hScrollPolicy = "on";
myList.maxHPosition = 400;

See also

List.hScrollPolicy

List.multipleSelection

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.multipleSelection

Description

Property; indicates whether multiple selections are allowed (true) or only single selections are
allowed (false). The default value is false.

Example

The following example tests to determine whether multiple items may be selected:
if (myList.multipleSelection){

// your code here
}

The following example allows the list to take multiple selections:
myList.selectMultiple = true;

List.removeAll()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.removeAll()
132 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following code clears the list:
myList.removeAll();

List.removeItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.removeItemAt(index)

Parameters

index A string that indicates the label for the new item. A value greater than zero and less than
List.length.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following code removes the item at index position 3:
myList.removeItemAt(3);
List component 133

List.replaceItemAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.replaceItemAt(index, label[, data])

listInstance.replaceItemAt(index, itemObject)

Parameters

index A number greater than zero and less than List.length that indicates the position at
which to insert the item (the index of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any type.

itemObject. An object to use as the item, usually containing label and data properties.

Returns

Nothing.

Description

Method; replaces the content of the item at the index specified by the index parameter.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following example changes the fourth index position:
myList.replaceItemAt(3, "new label");

List.rowCount

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.rowCount
134 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; the number of rows that are at least partially visible in the list. This is useful if you've
scaled a list by pixel and need to count its rows. Conversely, setting the number of rows
guarantees an exact number of rows will be displayed, without a partial row at the bottom.

The code myList.rowCount = num is equivalent to the code myList.setSize(myList.width,
h) (where h is the height required to display num items).

The default value is based on the height of the list as set while authoring, or set by the
list.setSize() method (see UIObject.setSize()).

Example

The following example discovers the number of visible items in a list:
var rowCount = myList.rowCount;

The following example makes the list display four items:
myList.rowCount = 4;

This example removes a partial row at the bottom of a list, if there is one:
myList.rowCount = myList.rowCount;

This example sets a list to the smallest number of rows it can fully display:
myList.rowCount = 1;
trace("myList has "+myList.rowCount+" rows");

List.rowHeight

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.rowHeight

Description

Property; the height, in pixels, of every row in the list. The font settings do not make the rows
grow to fit, so setting the rowHeight property is the best way to make sure items are fully
displayed. The default value is 20.

Example

The following example sets each row to 30 pixels:
myList.rowHeight = 30;
List component 135

List.scroll

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
listInstance.addEventListener("scroll", listenerObject)

Event Object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when a list scrolls.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, scroll) and the event is handled by a listener
object (listenerObject) that you create. You define a method with the same name as the event
on the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.
136 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.scroll = function(eventObj){

trace("list scrolled");
}
myList.addEventListener("scroll", form);

List.selectable

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.selectable

Description

Property; a Boolean value that indicates whether the list is selectable (true) or not (false). The
default value is true.

List.selectedIndex

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.selectedIndex

Description

Property; the selected index of a single-selection list. The value is undefined if nothing is selected;
the value is equal to the last item selected if there are multiple selections. If you assign a value to
selectedIndex, any current selection is cleared and the indicated item is selected.

Example

This example selects the item after the currently selected item. If nothing is selected, item 0 is
selected, as follows:
var selIndex = myList.selectedIndex;
myList.selectedIndex = (selIndex==undefined ? 0 : selIndex+1);

See also

List.selectedIndices, List.selectedItem, List.selectedItems
List component 137

List.selectedIndices

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.selectedIndices

Description

Property; an array of indices of the selected items. Assigning this property replaces the current
selection. Setting selectedIndices to a 0-length array (or undefined) clears the current
selection. The value is undefined if nothing is selected.

The selectedIndices property is listed in the order that items were selected. If you click the
second item, then the third item, and then the first item, selectedIndices returns [1,2,0].

Example

The following example gets the selected indices:
var selIndices = myList.selectedIndices;

The following example selects four items:
var myArray = new Array (1,4,5,7);
myList.selectedIndices = myArray;

See also

List.selectedIndex, List.selectedItem, List.selectedItems

List.selectedItem

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.selectedItem

Description

Property (read-only); an item object in a single-selection list. (In a multiple-selection list with
multiple items selected, selectedItem returns the item that was most recently selected.) If there
is no selection, the value is undefined.
138 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

This example displays the selected label:
trace(myList.selectedItem.label);

See also

List.selectedIndex, List.selectedIndices, List.selectedItems

List.selectedItems

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.selectedItems

Description

Property (read-only); an array of the selected item objects. In a multiple-selection list,
selectedItems allows you to access the set of items selected as item objects.

Example

The following example gets an array of selected item objects:
var myObjArray = myList.selectedItems;

See also

List.selectedIndex, List.selectedItem, List.selectedIndices

List.setPropertiesAt()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.setPropertiesAt(index, styleObj)

Parameters

index A number greater than zero or less than List.length indicating the index of the item to
change.

styleObj An object that enumerates the properties and values to set.

Returns

Nothing.
List component 139

Description

Method; applies the properties specified by the styleObj parameter to the item specified by the
index parameter. The supported properties are icon and backgroundColor.

Example

The following example changes the fourth item to black and gives it an icon:
myList.setPropertiesAt(3, {backgroundColor:0x000000, icon: "file"});

List.sortItems()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.sortItems(compareFunc)

Parameters

compareFunc A reference to a function. This function is used to compare two items to
determine their sort order.

For more information, see Array.sort() in ActionScript Dictionary Help.

Returns

The index at which the item was added.

Description

Method; sorts the items in the list according to the compareFunc parameter.

Example

The following example sorts the items based on uppercase labels. Note that the a and b
parameters that are passed to the function are items that have label and data properties:
myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

See also

List.sortItemsBy()

List.sortItemsBy()

Availability

Flash Player 6.

Edition

Flash MX 2004.
140 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Usage

listInstance.sortItemsBy(fieldName, order)

Parameters

fieldName A string that specifies the name of the property to be used for sorting. Typically, this
value is "label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

Returns

Nothing.

Description

Method; sorts the items in the list alphabetically or numerically, in the specified order, using the
fieldName specified. If the fieldName items are a combination of text strings and integers, the
integer items are listed first. The fieldName parameter is usually "label" or "data", but you can
specify any primitive data value.

Example

The following code sorts the items in the list surnameMenu in ascending order using the labels of
the list items:
surnameMenu.sortItemsBy("label", "ASC");

See also

List.sortItems()

List.vPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.vPosition

Description

Property; scrolls the list so that index is the topmost visible item. If index is out of bounds, goes to
the nearest in-bounds index. The default value is 0.

Example

The following example sets the position of the list to the first index item:
myList.vPosition = 0;
List component 141

List.vScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

listInstance.vScrollPolicy

Description

Property; a string that determines whether or not the list supports vertical scrolling. This property
can be one of the following values: "on", "off" or "auto". The value "auto" causes a scroll bar
to appear when its needed.

Example

The following example disables the scroll bar:
myList.vScrollPolicy = "off";

You can still create scrolling by using List.vPosition.

See also

List.vPosition

Loader component

The Loader component is a container that can display a SWF or a JPEG. You can scale the
contents of the loader, or resize the loader itself to accommodate the size of the contents. By
default, the contents are scaled to fit the Loader. You can also load content at runtime, and
monitor loading progress.

A Loader component can’t receive focus. However, content loaded into the Loader component
can accept focus and have its own focus interactions. For more information about controlling
focus, see “Creating custom focus navigation” on page 24 or “FocusManager” on page 102.

A live preview of each Loader instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

Content that is loaded into a Loader component may be enabled for accessibility. If so, you can
use the Accessibility panel to make it accessible to screen readers. For more information, see
“Creating Accessible Content” in Using Flash Help. You may need to update your Help system to
see this information.
142 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using the Loader component

You can use a loader whenever you need to grab content from a remote location and pull it into a
Flash application. For example, you could use a loader to add a company logo (JPEG file) to a
form. You could also use a loader to leverage Flash work that has already been completed. For
example, if you had already built a Flash application and wanted to expand it, you could use the
loader to pull the old application into a new application, perhaps as a section of a tab interface. In
another example, you could use the loader component in an application that displays photos. Use
Loader.load(), Loader.percentLoaded, and Loader.complete to control the timing of the
image loads and display progress bars to the user during loading.

Loader component parameters

The following are authoring parameters that you can set for each Loader component instance in
the Property inspector or in the Component Inspector panel:

autoload indicates whether the content should load automatically (true), or wait to load until the
Loader.load() method is called (false). The default value is true.

content an absolute or relative URL indicating the file to load into the loader. A relative path
must be relative to the SWF loading the content. The URL must be in the same subdomain as the
URL where the Flash content currently resides. For use in the stand-alone Flash Player or for
testing in test-movie mode, all SWF files must be stored in the same folder, and the filenames
cannot include folder or disk drive specifications. The default value is undefined until the load
had started.

scaleContent indicates whether the content scales to fit the Loader (true), or the Loader scales to
fit the content (false). The default value is true.

You can write ActionScript to set additional options for Loader instances using its methods,
properties, and events. For more information, see Loader class.

Creating an application with the Loader component

The following procedure explains how to add a Loader component to an application while
authoring. In this example, the loader loads a logo JPEG from an imaginary URL.

To create an application with the Loader component, do the following:

1 Drag a Loader component from the Components panel to the Stage.
2 Select the loader on the Stage and use the Free Transform tool to size it to the dimensions of

the corporate logo.
3 In the Property inspector, enter the instance name logo.
4 Select the loader on the Stage and in the Component Inspector panel do the following:

■ Enter http://corp.com/websites/logo/corplogo.jpg for the contentPath parameter.
Loader component 143

Customizing the Loader component

You can transform a Loader component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The sizing behavior of the Loader component is controlled by the scaleContent property. When
scaleContent = true, the content is scaled to fit within the bounds of the loader (and is
rescaled when UIObject.setSize() is called). When the property is scaleContent = false,
the size of the component is fixed to the size of the content and the UIObject.setSize()
method has no effect.

Using styles with the Loader component

The Loader component doesn’t use styles.

Using skins with the Loader component

The Loader component uses RectBorder which uses the ActionScript Drawing API. You can
use the setStyle() method (see UIObject.setStyle()) to change the following RectBorder
style properties:

The style properties set the following positions on the border:

Loader class

Inheritance UIObject > UIComponent > View > Loader

ActionScript Class Namespace mx.controls.Loader

RectBorder styles

borderColor

highlightColor

borderColor

shadowColor

borderCapColor

shadowCapColor

shadowCapColor

borderCapColor
144 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

The properties of the Loader class allow you to set content to load and monitor its loading
progress at runtime.

Setting a property of the Loader class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

For more information, see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Loader.version);

Note: The following code returns undefined: trace(myLoaderInstance.version);.

Method summary for the Loader class

Inherits all methods from UIObject and UIComponent.

Property summary for the Loader class

Inherits all properties from UIObject and UIComponent.

Event summary for the Loader class

Inherits all properties from UIObject and UIComponent

Method Description

Loader.load() Loads the content specified by the contentPath property.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads automatically
(true) or if you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that have been
loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes in the
content.

Loader.content A reference to the content specified by the Loader.contentPath property.
This property is read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content. This property
is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to fit the
Loader (true), or the Loader scales to fit the content (false).

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.
Loader component 145

Loader.autoLoad

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.autoLoad

Description

Property; a Boolean value that indicates whether to automatically load the content (true), or wait
until Loader.load() is called (false). The default value is true.

Example

The following code sets up the loader component to wait for a Loader.load() call:
loader.autoload = false;

Loader.bytesLoaded

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.bytesLoaded

Description

Property (read-only); the number of bytes of content that have been loaded. The default value is 0
until content begins loading.

Example

The following code creates a ProgressBar and a Loader component. It then creates a listener object
with a progress event handler that shows the progress of the load. The listener is registered with
the loader instance, as follows:
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Loader.
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";
146 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

When you create an instance with the createClassObject() method, you have to position it on
Stage with the move() and setSize() methods. See UIObject.move() and
UIObject.setSize().

See also

Loader.bytesTotal, UIObject.createClassObject()

Loader.bytesTotal

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.bytesTotal

Description

Property (read-only); the size of the content in bytes. The default value is 0 until content
begins loading.

Example

The following code creates a ProgressBar and a Loader component. It then creates a load listener
object with a progress event handler that shows the progress of the load. The listener is registered
with the loader instance, as follows:
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Loader.
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";

See also

Loader.bytesLoaded

Loader.complete

Availability

Flash Player 6.

Edition

Flash MX 2004.
Loader component 147

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
loaderInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a Loader
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Loader
component instance myLoaderComponent, sends “_level0.myLoaderComponent” to the
Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, complete) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example creates a Loader component and then defines a listener object with a
complete event handler that sets the loader’s visible property to true:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.complete = function(eventObj){

loader.visible = true;
}
loader.addEventListener("complete", loadListener);S
loader.contentPath = "logo.swf";
148 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Loader.content

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.content

Description

Property (read-only); a reference to the content of the loader. The value is undefined until
the load begins.

See also

Loader.contentPath

Loader.contentPath

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the file to load into the loader. A
relative path must be relative to the SWF that loads the content. The URL must be in the same
subdomain as the URL as the loading SWF.

If you are using the stand-alone Flash Player or test-movie mode in Flash, all SWF files must be
stored in the same folder, and the filenames cannot include folder or disk drive information.

Example

The following example tells the loader instance to display the contents of the “logo.swf” file:
loader.contentPath = "logo.swf";

Loader.load()

Availability

Flash Player 6.

Edition

Flash MX 2004.
Loader component 149

Usage

loaderInstance.load(path)

Parameters

path An optional parameter that specifies the value for the contentPath property before the
load begins. If a value is not specified, the current value of contentPath is used as is.

Returns

Nothing.

Description

Method; tells the loader to begin loading its content.

Example

The following code creates a Loader instance and sets the autoload property to false so that the
loader must wait for a call for the load() method to begin loading content. It then calls load()
and indicates the content to load:
createClassObject(mx.controls.Loader, "loader", 0);
loader.autoload = false;
loader.load("logo.swf");

Loader.percentLoaded

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.percentLoaded

Description

Property (read-only); a number indicating what percent of the content has loaded. Typically, this
property is used to present the progress to the user in a easily readable form. Use the following
code to round the figure to the nearest integer:
Math.round(bytesLoaded/bytesTotal*100))
150 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example creates a Loader instance and then creates a listener object with a progress
handler that traces the percent loaded and sends it to the Output panel:
createClassObject(Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Loader.
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("complete", loadListener);
loader.content = "logo.swf";

Loader.progress

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
loaderInstance.addEventListener("progress", listenerObject)

Description

Event; broadcast to all registered listeners while content is loading. This event is triggered when
the load is triggered by the autoload parameter or by a call to Loader.load(). The progress event
is not always broadcast. The complete event may be broadcast without any progress events
being dispatched. This can happen especially if the loaded content is a local file.

The first usage example uses an on() handler and must be attached directly to a Loader
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Loader
component instance myLoaderComponent, sends “_level0.myLoaderComponent” to the
Output panel:
on(progress){

trace(this);
}

Loader component 151

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, progress) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code creates a Loader instance and then creates a listener object with an event
handler for the progress event that sends a message to the Output panel about what percent of the
content has loaded:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Loader.
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("progress", loadListener);
loader.contentPath = "logo.swf";

Loader.scaleContent

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

loaderInstance.scaleContent

Description

Property; indicates whether the content scales to fit the Loader (true), or the Loader scales to fit
the content (false). The default value is true.

Example

The following code tells the Loader to resize itself to match the size of its content:
loader.strechContent = false;
152 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

MediaController component

For the latest information about this feature, click the Update button at the top of the Help tab.

MediaDisplay component

For the latest information about this feature, click the Update button at the top of the Help tab.

MediaPlayback component

For the latest information about this feature, click the Update button at the top of the Help tab.

Menu component

For the latest information about this feature, click the Update button at the top of the Help tab.

NumericStepper component

The NumericStepper component allows a user to step through an ordered set of numbers. The
component consists of a number displayed beside small up and down arrow buttons. When a user
pushes the buttons, the number is raised or lowered incrementally. If the user clicks either of the
arrow buttons, the number increases or decreases, based on the value of the stepSize parameter,
until the user releases the mouse or until the maximum or minimum value is reached.

The NumericStepper only handles numeric data. Also, you must resize the stepper while
authoring to display more than two numeric places (for example, the numbers 5246 or 1.34).

A stepper can be enabled or disabled in an application. In the disabled state, a stepper doesn’t
receive mouse or keyboard input. An enabled stepper receives focus if you click it or tab to it and
its internal focus is set to the text box. When a NumericStepper instance has focus, you can use
the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each stepper instance reflects the value of the value parameter indicated by the
Property inspector or Component Inspector panel while authoring. However, there is no mouse
or keyboard interaction with the stepper buttons in the live preview.

Key Description

Down Value changes by one unit.

Left Moves the insertion point to the left within the text box.

Right Moves the insertion point to the right within the text box.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Up Value changes by one unit.
NumericStepper component 153

When you add the NumericStepper component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.NumericStepperAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the NumericStepper component

The NumericStepper can be used anywhere you want a user to select a numeric value. For
example, you could use a NumericStepper component in a form to allow a user to set their credit
card expiration date. In another example, you could use a NumericStepper to allow a user to
increase or decrease a font size.

NumericStepper parameters

The following are authoring parameters that you can set for each NumericStepper component
instance in the Property inspector or in the Component Inspector panel:

value sets the value of the current step. The default value is 0.

minimum sets the minimum value of the step. The default value is 0.

maximum sets the maximum value of the step. The default value is 10.

stepSize sets the unit of change for the step. The default value is 1.

You can write ActionScript to control these and additional options for NumericStepper
components using its properties, methods, and events. For more information, see
NumericStepper class.

Creating an application with the NumericStepper component

The following procedure explains how to add a NumericStepper component to an application
while authoring. In this example, the stepper allows a user to pick a movie rating from 0 to 5 stars
with half-star increments.
154 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

To create an application with the Button component, do the following:

1 Drag a NumericStepper component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name starStepper.
3 In the Property inspector, do the following:

■ Enter 0 for the minimum parameter.
■ Enter 5 for the maximum parameter.
■ Enter .5 for the stepSize parameter.
■ Enter 0 for the value parameter.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
movieRate = new Object();
movieRate.change = function (eventObject){

starChart.value = eventObject.target.value;
}
starStepper.addEventListener("change", movieRate);

The last line of code adds a change event handler to the starStepper instance. The handler
sets the starChart movie clip to display the amount of stars indicated by the starStepper
instance. (To see this code work, you must create a starChart movie clip with a value
property that displays the stars.)

Customizing the NumericStepper component

You can transform a NumericStepper component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the NumericStepper class.
See NumericStepper class.

Resizing the NumericStepper component does not change the size of the down and up arrow
buttons. If the stepper is resized greater than the default height, the stepper buttons are pinned
to the top and the bottom of the component. The stepper buttons always appear to the right of
the text box.

Using styles with the NumericStepper component

You can set style properties to change the appearance of a stepper instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 28.
NumericStepper component 155

A NumericStepper component supports the following Halo styles:

Using skins with the NumericStepper component

The NumericStepper component skins to represent its visual states. To skin the NumericStepper
component while authoring, modify skin symbols in the library and re-export the component as a
SWC. The skin symbols are located in the Flash UI Components 2/Themes/MMDefault/Stepper
Elements/states folder in the library. For more information, see “About skinning components”
on page 37.

If a stepper is enabled, the down and up buttons display their over states when the pointer moves
over them. The buttons display their down state when clicked. The buttons return to their over
state when the mouse is released. If the pointer moves off the buttons while the mouse is pressed,
the buttons return to their original state.

If a stepper is disabled it displays its disabled state, regardless of user interaction.

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen",
"haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration; either "none", or "underline".

textAlign The text alignment; either "left", "right", or "center".
156 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A NumericStepper component uses the following skin properties:

NumericStepper class

Inheritance UIObject > UIComponent > NumericStepper

ActionScript Class Name mx.controls.NumericStepper

The properties of the NumericStepper class allow you to add indicate the minimum and
maximum step values, the unit amount for each step, and the current value of the step at runtime.

Setting a property of the NumericStepper class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component Inspector panel.

The NumericStepper component uses the FocusManager to override the default Flash Player
focus rectangle and draw a custom focus rectangle with rounded corners. For more information,
see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.NumericStepper.version);

Note: The following code returns undefined: trace(myNumericStepperInstance.version);.

Method summary for the NumericStepper class

Inherits all properties from UIObject and UIComponent.

Property Description

upArrowUp The up arrow’s up state. The default value is StepUpArrowUp.

upArrowDown The up arrow’s pressed state. The default value is StepUpArrowDown.

upArrowOver The up arrow’s over state. The default value is StepUpArrowOver.

upArrowDisabled The up arrow’s disabled state. The default value is
StepUpArrowDisabled.

downArrowUp The down arrow’s up state. The default value is StepDownArrowUp.

downArrowDown The down arrow’s down state. The default value is
StepDownArrowDown.

downArrowOver The down arrow’s over state. The default value is
StepDownArrowOver.

downArrowDisabled The down arrow’s disabled state. The default value is
StepDownArrowDisabled.
NumericStepper component 157

Property summary for the NumericStepper class

Inherits all properties from UIObject and UIComponent.

Event summary for the NumericStepper class

Inherits all properties from UIObject and UIComponent.

NumericStepper.change

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
stepperInstance.addEventListener("change", listenerObject)

Property Description

NumericStepper.maximum A number indicating the maximum range value.

NumericStepper.minimum A number indicating the minimum range value.

NumericStepper.nextValue A number indicating the next sequential value. This property is
read-only.

NumericStepper.previousValue A number indicating the previous sequential value. This property is
read-only.

NumericStepper.stepSize A number indicating the unit of change for each step.

NumericStepper.value A number indicating the current value of the stepper.

Event Description

NumericStepper.change Triggered when the value of the step changes.
158 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Event; broadcast to all registered listeners when the value of the stepper is changed.

The first usage example uses an on() handler and must be attached directly to a NumericStepper
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the stepper
myStepper, sends “_level0.myStepper” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(stepperInstance) dispatches an event (in this case, change) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
stepper called myNumericStepper is changed. The first line of code creates a listener object called
form. The second line defines a function for the change event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function,
in this example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myNumericStepper. The
NumericStepper.value property is accessed from the event object’s target property. The last
line calls the UIEventDispatcher.addEventListener() method from myNumericStepper and
passes it the change event and the form listener object as parameters, as in the following:
form = new Object();
form.change = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Numeric Stepper.
trace("Value changed to " + eventObj.target.value);

}
myNumericStepper.addEventListener("change", form);

NumericStepper.maximum

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.maximum
NumericStepper component 159

Description

Property; the maximum range value of the stepper. This property can contain a number with up
to three decimal places. The default value is 10.

Example

The following example sets the maximum value of the stepper range to 20:
myStepper.maximum = 20;

See also

NumericStepper.minimum

NumericStepper.minimum

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.minimum

Description

Property; the minimum range value of the stepper. This property can contain a number with up
to three decimal places. The default value is 0.

Example

The following example sets the minimum value of the stepper range to 100:
myStepper.minimum = 100;

See also

NumericStepper.maximum

NumericStepper.nextValue

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.nextValue

Description

Property (read-only); the next sequential value. This property can contain a number with up to
three decimal places.
160 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 5:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.nextValue);

See also

NumericStepper.previousValue

NumericStepper.previousValue

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.previousValue

Description

Property (read-only); the previous sequential value. This property can contain a number with up
to three decimal places.

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 3:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.previousValue);

See also

NumericStepper.nextValue

NumericStepper.stepSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.stepSize

Description

Property; the unit amount to change from the current value. The default value is 1. This value
cannot be 0. This property can contain a number with up to three decimal places.
NumericStepper component 161

Example

The following example sets the current value to 2 and the stepSize unit to 2. The value of
nextValue is 4:
myStepper.value = 2;
myStepper.stepSize = 2;
trace(myStepper.nextValue);

NumericStepper.value

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

stepperInstance.value

Description

Property; the current value displayed in the text area of the stepper. The value will not be assigned
if it does not correspond to the stepper's range and step increment as defined in the stepSize
property. This property can contain a number with up to three decimal places

Example

The following example sets the current value of the stepper to 10 and sends the value to the
Output panel:
myStepper.value = 10;
trace(myStepper.value);

PopUpManager

ActionScript class namespace mx.managers.PopUpManager

The PopUpManager class allows you to create overlapping windows that can be modal or non-
modal. (A modal window doesn’t allow interaction with other windows while it’s active.) You can
call PopUpManager.createPopUp() to create an overlapping window, and call
PopUpManager.deletePopUp() on the window instance to destroy a pop-up window.

Method summary for the PopUpManager class

Event Description

PopUpManager.createPopUp() Creates a pop-up window.

PopUpManager.deletePopUp() Deletes a pop-up window created by a call to
PopUpManager.createPopUp().
162 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

PopUpManager.createPopUp()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

PopUpManager.createPopUp(parent, class, modal [, initobj, outsideEvents])

Parameters

parent A reference to a window to pop-up over.

class A reference to the class of object you want to create.

modal A Boolean value indicating whether the window is modal (true) or not (false).

initobj An object containing initialization properties. This parameter is optional.

outsideEvents A Boolean value indicating whether an event is triggered if the user clicks outside
the window (true) or not (false). This parameter is optional.

Returns

A reference to the window that was created.

Description

Method; if modal, a call to createPopUp() finds the topmost parent window starting with parent
and creates an instance of class. If non-modal, a call to createPopUp() creates an instance of the
class as a child of the parent window.

Example

The following code creates a modal window when the button is clicked:
lo = new Object();
lo.click = function(){

mx.managers.PopUpManager.createPopUp(_root, mx.containers.Window, true);
}
button.addEventListener("click", lo);

PopUpManager.deletePopUp()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

windowInstance.deletePopUp();

Parameters

None.
PopUpManager 163

Returns

Nothing.

Description

Method; deletes a pop-up window and removes the modal state. It is the responsibility of the
overlapped window to call PopUpManager.deletePopUp() when the window is being destroyed.

Example

The following code creates and a modal window named win with a close button, and deletes the
window when the close button is clicked:
import mx.managers.PopUpManager
import mx.containers.Window
win = PopUpManager.createPopUp(_root, Window, true, {closeButton:true});
lo = new Object();
lo.click = function(){

win.deletePopUp();
}
win.addEventListener("click", lo);

ProgressBar component

The ProgressBar component displays the loading progress while a user waits for the content to
load. The loading process can be determinate or indeterminate. A determinate progress bar is a
linear representation of the progress of a task over time and is used when the amount of content
to load is known. An indeterminate progress bar is used when the amount of content to load is
unknown. You can add a label to display the progress of the loading content.

Components are set to export in first frame by default. This means that components are loaded
into an application before the first frame is rendered. If you want to create a preloader for an
application, you will need to deselect Export in first frame in each component’s Linkage
Properties dialog (Library panel options > Linkage). The ProgressBar, however, should be set to
Export in first frame, because it must display first while other content streams into Flash Player.

A live preview of each ProgressBar instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. The following parameters are reflected
in the live preview: conversion, direction, label, labelPlacement, mode, and source.

Using the ProgressBar component

A progress bar allows you to display the progress of content as it loads. This is essential feedback
for users as they interact with an application.

There are several modes in which to use the ProgressBar component; you set the mode with the
mode parameter. The most commonly used modes are “event” and “polled”. These modes use the
source parameter to specify a loading process that either emits progress and complete events
(event mode), or exposes getBytesLoaded and getsBytesTotal methods (polled mode). You
can also use the ProgressBar component in manual mode by manually setting the maximum,
minimum, and indeterminate properties along with calls to the ProgressBar.setProgress()
method.
164 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ProgressBar parameters

The following are authoring parameters that you can set for each ProgressBar component instance
in the Property inspector or in the Component Inspector panel:

mode The mode in which the progress bar operates. This value can be one of the following:
event, polled, or manual. The default value is event.

source A string to be converted into an object representing the instance name of the source.

direction The direction toward which the progress bar fills. This value can be right or left; the
default value is right.

label The text indicating the loading progress. This parameter is a string in the format "%1 out
of %2 loaded (%3%%)"; %1 is a placeholder for the current bytes loaded, %2 is a placeholder for
the total bytes loaded, and %3 is a placeholder for the percent of content loaded. The characters
“%%” are a placeholder for the “%” character. If a value for %2 is unknown, it is replaced by “??”.
If a value is undefined, the label doesn’t display.

labelPlacement The position of the label in relation to the progress bar. This parameter can be
one of the following values: top, bottom, left, right, center. The default value is bottom.

conversion A number to divide the %1 and %2 values in the label string before they are
displayed. The default value is 1.

You can write ActionScript to control these and additional options for ProgressBar components
using its properties, methods, and events. For more information, see ProgressBar class.

Creating an application with the ProgressBar component

The following procedure explains how to add a ProgressBar component to an application while
authoring. In this example, progress bar is used in event mode. In event mode, the loading
content must emit progress and complete events that the progress bar uses to display progress.
The Loader component emits these events. For more information, see “Loader component”
on page 142.

To create an application with the ProgressBar component in event mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select event for the mode parameter.

3 Drag a Loader component from the Components Panel to the Stage.
4 In the Property inspector, enter the instance name loader.
5 Select the progress bar on the Stage and, in the Property inspector, enter loader for the source

parameter.
6 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that loads

a JPEG file into the Loader component:
loader.autoLoad = false;
loader.content = "http://imagecache2.allposters.com/images/86/

017_PP0240.jpg";
pBar.source = loader;
// loading does not start until the load method is invoked
loader.load();
ProgressBar component 165

In the following example, the progress bar is used in polled mode. In polled mode, the
ProgressBar uses the getBytesLoaded and getBytesTotal methods of the source object to
display its progress.

To create an application with the ProgressBar component in polled mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select polled for the mode parameter.
■ Enter loader for the source parameter.

3 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that
creates a Sound object called loader and calls the loadSound() method to load a sound into
the Sound object:
var loader:Object = new Sound();
loader.loadSound("http://soundamerica.com/sounds/sound_fx/A-E/air.wav",

true);

In the following example, the progress bar is used in manual mode. In manual mode, you must set
the maximum, minimum, and indeterminate properties in conjunction with the setProgress()
method to display progress. You do not set the source property in manual mode.

To create an application with the ProgressBar component in manual mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select manual for the mode parameter.

3 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that
updates the progress bar manually on every file download using calls to the setProgress()
method:
for(var:Number i=1; i <= total; i++){

// insert code to load file
// insert code to load file

pBar.setProgress(i, total);
}

Customizing the ProgressBar component

You can transform a ProgressBar component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize().

The left cap and right cap of the progress bar and track graphic are a fixed size. When you resize a
progress bar, the middle part of the progress bar resized to fit between them. If a progress bar is
too small, it may not render correctly.
166 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Using styles with the ProgressBar component

You can set style properties to change the appearance of a progress bar instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 28.

A ProgressBar component supports the following Halo styles:

Using skins with the ProgressBar component

The ProgressBar component uses the following movie clip symbols to display its states:
TrackMiddle, TrackLeftCap, TrackRightCap and BarMiddle, BarLeftCap, BarRightCap and
IndBar. The IndBar symbol is used for an indeterminate progress bar. To skin the ProgressBar
component while authoring, modify symbols in the library and re-export the component as a
SWC. The symbols are located in the Flash UI Components 2/Themes/MMDefault/ProgressBar
Elements folder in the library of the HaloTheme.fla file or the SampleTheme.fla file. For more
information, see “About skinning components” on page 37.

If you use the UIObject.createClassObject() method to create a ProgressBar component
instance dynamically (at runtime), you can also skin it dynamically. To skin a component at
runtime, set the skin properties of the initObject parameter that is passed to the
createClassObject() method. The skin properties set the names of the symbols to use as the
states of the progress bar.

Style Description

themeColor The background of a component. This is the only color style that doesn’t inherit its
value. Possible values are "haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either “normal” or “italic”.

fontWeight The font weight; either “normal” or “bold”.

textDecoration The text decoration; either “none” or “underline”.
ProgressBar component 167

A ProgressBar component uses the following skin properties:

ProgressBar class

Inheritance UIObject > ProgressBar

ActionScript Class Namespace mx.controls.ProgressBar

Setting a property of the ProgressBar class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.ProgressBar.version);

Note: The following code returns undefined: trace(myProgressBarInstance.version);.

Method summary for the ProgressBar class

Inherits all methods from UIObject.

Property Description

progTrackMiddleName The expandable middle of the track. The default value is
ProgTrackMiddle.

progTrackLeftName The fixed-size left cap. The default value is ProgTrackLeft.

progTrackRightName The fixed-size right cap. The default value is ProgTrackRight.

progBarMiddleName The expandable middle bar graphic. The default value is
ProgBarMiddle.

progBarLeftName The fixed-size left bar cap. The default value is ProgBarLeft.

progBarRightName The fixed-size right bar cap. The default value is ProgBarRight.

progIndBarName The indeterminate bar graphic. The default value is ProgIndBar.

Method Description

ProgressBar.setProgress() Sets the progress of the bar in manual mode.
168 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Property summary for the ProgressBar class

Inherits all properties from UIObject.

Event summary for the ProgressBar class

Inherits all events from UIObject.

ProgressBar.complete

Availability

Flash Player 6.

Edition

Flash MX 2004.

Property Description

ProgressBar.conversion A number used to convert the current bytes loaded value and the
total bytes loaded values.

ProgressBar.direction The direction that the progress bar fills.

ProgressBar.indeterminate Indicates that the total bytes of the source is unknown.

ProgressBar.label The text the accompanies the progress bar.

ProgressBar.labelPlacement The location of the label in relation to the progress bar.

ProgressBar.maximum The maximum value of the progress bar in manual mode.

ProgressBar.minimum The minimum value of the progress bar in manual mode.

ProgressBar.mode The mode in which the progress bar loads content.

ProgressBar.percentComplete A number indicating the percent loaded.

ProgressBar.source The content to load whose progress is monitored by the progress
bar.

ProgressBar.value Indicates the amount of progress that has been made. This property
is read-only.

Event Description

ProgressBar.complete Triggered when loading is complete.

ProgressBar.progress Triggered as content loads in event or polled mode.
ProgressBar component 169

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
pBar.addEventListener("complete", listenerObject)

Event Object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.complete event: current (the loaded value equals total), and total
(the total value).

Description

Event; broadcast to all registered listeners when the loading progress has completed.

The first usage example uses an on() handler and must be attached directly to a ProgressBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance pBar,
sends “_level0.pBar” to the Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (pBar)
dispatches an event (in this case, complete) and the event is handled by a listener object
(listenerObject) that you create. You define a method with the same name as the event on the
listener object; the method is called when the event is triggered. When the event is triggered, it
automatically passes an event object (eventObject) to the listener object method. Each event
object has a set of properties that contains information about the event. You can use these
properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example creates a form listener object with a complete callback function that sends a
message to the Output panel with the value of the pBar instance, as in the following:
form.complete = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Progress Bar.
 trace("Value changed to " + eventObj.target.value);
}
pBar.addEventListener("complete", form);
170 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

See also

UIEventDispatcher.addEventListener()

ProgressBar.conversion

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.conversion

Description

Property; a number that sets a conversion value for the incoming values. It divides the current
and total values, floors them, and displays the converted value in the label property. The
default value is 1.

Example

The following code displays the value of the loading progress in kilobytes:
pBar.conversion = 1024;

ProgressBar.direction

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.direction

Description

Property; indicates the fill direction for the progress bar. The default value is "right".

Example

The following code sets makes the progress bar fill from right to left:
pBar.direction = "left";

ProgressBar.indeterminate

Availability

Flash Player 6.

Edition

Flash MX 2004.
ProgressBar component 171

Usage

pBarInstance.indeterminate

Description

Property; a Boolean value that indicates whether the progress bar has a candy-cane striped fill
and a loading source of unknown size (true), or a solid fill and a loading source of a known
size (false).

Example

The following code creates a determinate progress bar with a solid fill that moves from left
to right:
pBar.direction = "right";
pBar.indeterminate = false;

ProgressBar.label

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.label

Description

Property; text that indicates the loading progress. This property is a string in the format "%1 out
of %2 loaded (%3%%)"; %1 is a placeholder for the current bytes loaded, %2 is a placeholder for
the total bytes loaded, and %3 is a placeholder for the percent of content loaded. The characters
“%%” are a placeholder for the “%” character. If a value for %2 is unknown, it is replaced by “??”.
If a value is undefined, the label doesn’t display. The default value is "LOADING %3%%"

Example

The following code sets the text that appears beside the progress bar to the format "4 files loaded":
pBar.label = "%1 files loaded";

See also

ProgressBar.labelPlacement

ProgressBar.labelPlacement

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.labelPlacement
172 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; sets the placement of the label in relation to the progress bar. The possible values are
"left", "right", "top", "bottom", and "center".

Example

The following code sets label to display above the progress bar:
pBar.label = "%1 out of %2 loaded (%3%%)";
pBar.labelPlacement = "top";

See also

ProgressBar.label

ProgressBar.maximum

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.maximum

Description

Property; the largest value for the progress bar when the ProgressBar.mode property is set
to "manual".

Example

The following code sets the maximum property to the total frames of a Flash application
that’s loading:
pBar.maximum = _totalframes;

See also

ProgressBar.minimum, ProgressBar.mode

ProgressBar.minimum

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.minimum
ProgressBar component 173

Description

Property; the smallest progress value for the progress bar when the ProgressBar.mode property is
set to "manual".

Example

The following code sets the minimum value for the progress bar:
pBar.minimum = 0;

See also

ProgressBar.maximum, ProgressBar.mode

ProgressBar.mode

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.mode

Description

Property; the mode in which the progress bar loads content. This value can be one of the
following: "event", "polled", or "manual". The most commonly used modes are "event"
and "polled". These modes use the source parameter to specify a loading process that either
emits progress and complete events, like a Loader component (event mode), or exposes
getBytesLoaded and getsBytesTotal methods, like a MovieClip object (polled mode). You
can also use the ProgressBar component in manual mode by manually setting the maximum,
minimum, and indeterminate properties along with calls to the ProgressBar.setProgress()
method.

A Loader object should be used as the source in event mode. Any object that exposes
getBytesLoaded() and getBytesTotal() methods can be used as a source in polled mode.
(Including a custom object or the _root object)

Example

The following code sets the progress bar to event mode:
pBar.mode = "event";

ProgressBar.percentComplete

Availability

Flash Player 6.

Edition

Flash MX 2004.
174 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Usage

pBarInstance.percentComplete

Description

Property (read-only); returns the percentage of completion of the process. This value is floored.
The following is the formula used to calculate the percentage:
100*(value-minimum)/(maximum-minimum)

Example

The following code sends the value of the percentComplete property to the Output panel:
trace("percent complete = " + pBar.percentComplete);

ProgressBar.progress

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
pBarInstance.addEventListener("progress", listenerObject)

Event Object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total (the
total value).
ProgressBar component 175

Description

Event; broadcast to all registered listeners whenever the value of a progress bar changes. This event
is only broadcast when ProgressBar.mode is set to "manual" or "polled".

The first usage example uses an on() handler and must be attached directly to a ProgressBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myPBar, sends “_level0.myPBar” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(pBarInstance) dispatches an event (in this case, progress) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example creates a listener object, form, and defines a progress event handler on it. The
form listener is registered to the pBar instance in the last line of code. When the progress event
is triggered, pBar broadcasts the event to the form listener which calls the progress callback
function, as follows:
var form:Object = new Object();
form.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Progress Bar.
 trace("Value changed to " + eventObj.target.value);
}
pBar.addEventListener("progress", form);

See also

UIEventDispatcher.addEventListener()

ProgressBar.setProgress()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.setProgress(completed, total)
176 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Parameters

completed a number indicating the amount of progress that has been made. You can use the
ProgressBar.label and ProgressBar.conversion properties to display the number in
percentage form or any units you choose, depending on the source of the progress bar.

total a number indicating the total progress that must be made to reach 100 percent.

Returns

A number indicating the amount of progress that has been made.

Description

Method; sets the state of the bar to reflect the amount of progress made when the
ProgressBar.mode property is set to "manual". You can call this method to make the bar reflect
the state of a process other than loading. The argument completed is assigned to value property
and argument total is assigned to the maximum property. The minimum property is not altered.

Example

The following code calls the setProgress() method based on the progress of a Flash
application’s Timeline:
pBar.setProgress(_currentFrame, _totalFrames);

ProgressBar.source

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.source

Description

Property; a reference to the instance to be loaded whose loading process will be displayed. The
loading content should emit a progress event from which the current and total values are
retrieved. This property is used only when ProgressBar.mode is set to "event" or "polled".
The default value is undefined.

The ProgressBar can be used with contents within an application, including _root.

Example

This example sets the pBar instance to display the loading progress of a loader component with
the instance name loader:
pBar.source = loader;

See also

ProgressBar.mode
ProgressBar component 177

ProgressBar.value

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

pBarInstance.value

Description

Property (read-only); indicates the amount of progress that has been made. This property is a
number between the value of ProgressBar.minimum and ProgressBar.maximum. The default
value is 0.

RadioButton component

The RadioButton component allows you to force a user to make a single choice within a set of
choices. The RadioButton component must be used in a group of at least two RadioButton
instances. Only one member of the group can be selected at any given time. Selecting one radio
button in a group deselects the currently selected radio button in the group. You can set the
groupName parameter to indicate which group a radio button belongs to.

A radio button can be enabled or disabled. When a user tabs into a radio button group, only the
selected radio button receives focus. A user can press the arrow keys to change focus within the
group. In the disabled state, a radio button doesn’t receive mouse or keyboard input.

A RadioButton component group receives focus if you click it or tab to it. When a RadioButton
group has focus, you can use the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each RadioButton instance on the Stage reflects changes made to parameters in
the Property inspector or Component Inspector panel while authoring. However, the mutual
exclusion of selection does not display in the live preview. If you set the selected parameter to true
for two radio buttons in the same group, they both appear selected even though only the last
instance created will appear selected at runtime. For more information, see “RadioButton
parameters” on page 179.

When you add the RadioButton component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.RadioButtonAccImpl.enableAccessibility();

Key Description

Up/Right The selection moves to the previous radio button within the radio button group.

Down/Left The selection moves to the next radio button within the radio button group.

Tab Moves focus from the radio button group to the next component.
178 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the RadioButton component

A radio button is a fundamental part of any form or web application. You can use radio buttons
wherever you want a user to make one choice from a group of options. For example, you would
use radio buttons in a form to ask which credit card a customer is using to pay.

RadioButton parameters

The following are authoring parameters that you can set for each RadioButton component
instance in the Property inspector or in the Component Inspector panel:

label sets the value of the text on the button; the default value is Radio Button.

data is the value associated with the radio button. There is no default value.

groupName is the group name of the radio button. The default value is radioGroup.

selected sets the initial value of the radio button to selected (true) or unselected (false). A selected
radio button displays a dot inside it. Only one radio button within a group can have a selected
value of true. If more than one radio button within a group is set to true, the radio button that is
instantiated last is selected. The default value is false.

labelPlacement orients the label text on the button. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
RadioButton.labelPlacement.

You can write ActionScript to set additional options for RadioButton instances using the
methods, properties, and events of the RadioButton class. For more information, see
RadioButton class.

Creating an application with the RadioButton component

The following procedure explains how to add RadioButton components to an application while
authoring. In this example, the radio buttons are used to present a yes or no question, “Are you a
Flashist?”. The data from the radio group is displayed in a TextArea component with the instance
name theVerdict.
RadioButton component 179

To create an application with the RadioButton component, do the following:

1 Drag two RadioButton components from the Components panel to the Stage.
2 Select one of the radio buttons and in the Component Inspector panel do the following:

■ Enter Yes for the label parameter.
■ Enter Flashist for the data parameter.

3 Select the other radio button and in the Component Inspector panel do the following:
■ Enter No for the label parameter.
■ Enter Anti-Flashist for the data parameter.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
flashistListener = new Object();
flashistListener.click = function (evt){

theVerdict.text = evt.target.selection.data
}
radioGroup.addEventListener("click", flashistListener);

The last line of code adds a click event handler to the radioGroup radio button group. The
handler sets the text property of the TextArea component instance theVerdict to the value
of the data property of the selected radio button in the radioGroup radio button group. For
more information, see RadioButton.click.

Customizing the RadioButton component

You can transform a RadioButton component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
“UIObject.setSize()” on page 262).

The bounding box of a RadioButton component is invisible and also designates the hit area
for the component. If you increase the size of the component, you also increase the size of the
hit area.

If the component’s bounding box is too small to fit the component label, the label clips to fit.

Using styles with the RadioButton component

You can set style properties to change the appearance of a RadioButton. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 28.
180 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A RadioButton component uses the following Halo styles:l

Using skins with the RadioButton component

The RadioButton component can be skinned while authoring by modifying the component’s
symbols in the library. The skins for the RadioButton component are located in the following
folder in the library of HaloTheme.fla or SampleTheme.fla: Flash UI Components 2/Themes/
MMDefault/RadioButton Assets/States. See “About skinning components” on page 37.

If a radio button is enabled and unselected, it displays its roll-over state when a user moves the
pointer over it. When a user clicks an unselected radio button, the radio button receives input
focus and displays its false pressed state. When a user releases the mouse, the radio button displays
its true state and the previously selected radio button within the group returns to its false state. If
a user moves the pointer off a radio button while pressing the mouse, the radio button’s
appearance returns to its false state and it retains input focus.

If a radio button or radio button group is disabled it displays its disabled state, regardless of
user interaction.

If you use the UIObject.createClassObject() method to create a RadioButton component
instance dynamically, you can also skin the component dynamically. To skin a RadioButton
component dynamically, pass skin properties to the UIObject.createClassObject() method.
For more information, see “About skinning components” on page 37. The skin properties
indicate which symbol to use to display a component.

A RadioButton component uses the following skin properties:

Style Description

themeColor The background of a component. This is the only color style that doesn’t inherit its
value. Possible values are "haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

Name Description

falseUpIcon The unchecked state. The default value is radioButtonFalseUp.

falseDownIcon The pressed-unchecked state. The default value is radioButtonFalseDown.

falseOverIcon The over-unchecked state. The default value is radioButtonFalseOver.

falseDisabledIcon The disabled-unchecked state. The default value is radioButtonFalseDisabled.

trueUpIcon The checked state. The default value is radioButtonTrueUp.

trueDisabledIcon The disabled-checked state. The default value is radioButtonTrueDisabled.
RadioButton component 181

RadioButton class

Inheritance UIObject > UIComponent > SimpleButton > Button > RadioButton

ActionScript Package Name mx.controls.RadioButton

The properties of the RadioButton class allow you at runtime to create a text label and position it
in relation to the radio button. You can also assign data values to radio buttons, assign them to
groups, and select them based on data value or instance name.

Setting a property of the RadioButton class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The RadioButton component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For information about
creating focus navigation, see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.RadioButton.version);

Note: The following code returns undefined: trace(myRadioButtonInstance.version);.

Method summary for the RadioButton class

Inherits all methods from UIObject, UIComponent, SimpleButton, and Button class.

Property summary for the RadioButton class

Inherits all properties from UIObject, UIComponent, SimpleButton, and the Button class

Event summary for the RadioButton class

Inherits all events from UIObject, UIComponent, SimpleButton, and Button class

Property Description

RadioButton.data The value associated with a radio button instance.

RadioButton.groupName The group name for a radio button group or radio button instance.

RadioButton.label The text that appears next to a radio button.

RadioButton.labelPlacement The orientation of the label text in relation to a radio button.

RadioButton.selected Sets the state of the radio button instance to selected and deselects
the previously selected radio button.

RadioButton.selectedData Selects the radio button in a radio button group with the specified
data value.

RadioButton.selection A reference to the currently selected radio button in a radio button
group.

Event Description

RadioButton.click Triggered when the mouse is pressed over a button instance.
182 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

RadioButton.click

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
radioButtonGroup.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (pressed and released) over
the radio button or if the radio button is selected by using the arrow keys. The event is also
broadcast if the Spacebar or arrow keys are pressed when a radio button group has focus, but none
of the radio buttons in the group are selected.

The first usage example uses an on() handler and must be attached directly to a RadioButton
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the radio button
myRadioButton, sends “_level0.myRadioButton” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(radioButtonInstance) dispatches an event (in this case, click) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
The event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.
RadioButton component 183

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
radio button in the radioGroup is clicked. The first line of code creates a listener object called
form. The second line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function,
in this example eventObj, to generate a message. The target property of an event object is the
component that generated the event. You can access instance properties from the target property
(in this example, the RadioButton.selection property is accessed) The last line calls the
UIEventDispatcher.addEventListener() method from radioGroup and passes it the click
event and the form listener object as parameters, as in the following:
form = new Object();
form.click = function(eventObj){

trace("The selected radio instance is " + eventObj.target.selection);
}
radioGroup.addEventListener("click", form);

The following code also sends a message to the Output panel when radioButtonInstance
is clicked. The on() handler must be attached directly to radioButtonInstance, as in
the following:
on(click){

trace("radio button component was clicked");
}

RadioButton.data

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.data

Description

Property; specifies the data to associate with a radio button instance. Setting this property
overrides the data parameter value set while authoring in the Property inspector or in the
Component Inspector panel. The data property can be any data type.

Example

The following example assigns the data value "#FF00FF" to the radioOne radio button instance:
radioOne.data = "#FF00FF";
184 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

RadioButton.groupName

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.groupName
radioButtonGroup.groupName

Description

Property; sets the group name for a radio button instance or group. You can use this property to
get or set a group name for a radio button instance or a group name for a radio button group.
Calling this method overrides the groupName parameter value set while authoring. The default
value is "radioGroup".

Example

The following example sets the group name of a radio button instance to “colorChoice” and
then changes the group name to “sizeChoice”. To test this example, place a radio button on the
Stage with the instance name myRadioButton and enter the following code on Frame 1:
myRadioButton.groupName = "colorChoice";
trace(myRadioButton.groupName);
colorChoice.groupName = "sizeChoice";
trace(colorChoice.groupName);

RadioButton.label

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.label

Description

Property; specifies the text label for the radio button. By default, the label appears to the right of
the radio button. Calling this method overrides the label parameter specified while authoring. If
the label text is too long to fit within the bounding box of the component, the text clips.

Example

The following example sets the label property of the instance radioButton:
radioButton.label = "Remove from list";
RadioButton component 185

RadioButton.labelPlacement

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.labelPlacement
radioButtonGroup.labelPlacement

Description

Property; a string that indicates the position of the label in relation to a radio button. You can set
this property for an individual instance, or for a radio button group. If you set the property for a
group, the label is placed in the appropriate position for each radio button in the group.

The following are the four possible values:

• "right" The radio button is pinned to the upper left corner of the bounding area. The label
is set to the right of the radio button.

• "left" The radio button is pinned to the upper right corner of the bounding area. The label
is set to the left of the radio button.

• "bottom" The label is placed below the radio button. The radio button and label grouping
are centered horizontally and vertically. If the bounding box of the radio button isn’t large
enough, the label will clip.

• "top" The label is placed above the radio button. The radio button and label grouping are
centered horizontally and vertically. If the bounding box of the radio button isn’t large enough,
the label will clip.

Example

The following code places the label to the left of each radio button in the radioGroup:
radioGroup.labelPlacement = "left";

RadioButton.selected

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.selected
radioButtonGroup.selected

Description

Property; a Boolean value that sets the state of the radio button to selected (true) and deselects
the previously selected radio button, or sets the radio button to deselected (false).
186 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The first line of code sets the mcButton instance to true. The second line of code returns the
value of the selected property, as follows:
mcButton.selected = true;
trace(mcButton.selected);

RadioButton.selectedData

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonGroup.selectedData

Description

Property; selects the radio button with the specified data value and deselects the previously
selected radio button. If the data property is not specified for a selected instance, the label
value of the selected instance is selected and returned. The selectedData property can be of
any data type.

Example

The following example selects the radio button with the value "#FF00FF" from the radio group
colorGroup and sends the value to the Output panel:
colorGroup.selectedData = "#FF00FF";
trace(colorGroup.selectedData);

RadioButton.selection

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

radioButtonInstance.selection
radioButtonGroup.selection

Description

Property; behaves differently if you get or set the property. If you get the property, it returns the
object reference of the currently selected radio button in a radio button group. If you set the
property, it selects the specified radio button (passed as an object reference) in a radio button
group and deselects the previously selected radio button.
RadioButton component 187

Example

The following example selects the radio button with the instance name color1 and sends its
instance name to the Output panel:
colorGroup.selection = color1;
trace(colorGroup.selection._name)

RDBMSResolver component

For the latest information about this feature, click the Update button at the top of the Help tab.

RemoteProcedureCall interface

For the latest information about this feature, click the Update button at the top of the Help tab.

Screen class

For the latest information about this feature, click the Update button at the top of the Help tab.

ScrollBar component

The ScrollBar component is a standard user interface element that provides scrolling functionality
to other components. The scroll bar consists of four parts: two arrow buttons, a track, and a
thumb (the button that slides up and down the track). The position of the thumb and the display
of the buttons depends on the current state of the scroll bar. The scroll bar uses four parameters to
calculate its display state: a minimum range value (ScrollBar.minPos), a maximum range value
(ScrollBar.maxPos), a current position that must be within the minPos and maxPoss values,
and a viewport size (ScrollBar. which must be equal to or less than the range and represents the
number of items in the range that can be displayed at once.

The user uses the mouse to click the various portions of the scrollbar which dispatches events
to listeners. The object listening to the component is responsible for updating the portion of
data displayed. The ScrollBar will update itself to represent the new state after the action has
taken place.
188 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

There are five places a user can press a scroll bar, and each broadcasts its own notification. The
following table describes the results of user interaction with the scroll bar:

The ScrollBar does not display correctly if it is smaller than the height of the up arrow and down
arrow buttons; you can prevent this by hiding the scroll bar. If there is not enough room for the
thumb, the thumb is hidden.

Using the ScrollBar component

The ScrollBar component is used primarily for adding scrolling capability to other components.
You can use this component if you are creating a new component that requires a scroll bar. There
are two scroll bar components, VScrollBar (vertical) and HScrollBar (horizontal).

ScrollBar parameters

The ScrollBar doesn’t have its own authoring parameters. It is always a part of another
component.

Creating an application with the ScrollBar component

The following procedure explains how to add a ScrollBar component to a component while
authoring. The component will display a row of images and needs a scroll bar to allow users to
move images right and left along the row.

Position Event

Up arrow/Left arrow Broadcasts a scroll event with the detail property set to "LineUp"
(vertical placement) or "LineLeft" (horizontal placement).

Right arrow/Down arrow Broadcasts a scroll event with the detail property set to "LineDown"
(vertical placement) or "LineRight" (horizontal placement).

Track above or to the left
of the thumb.

Broadcasts a scroll event with the detail property set to "PageUp"
(vertical placement) or "PageLeft" (horizontal placement).

Track above or to the left
of the thumb.

Broadcasts a scroll event with the detail property set to "PageDown"
(vertical placement) or "PageRight" (horizontal placement).

Thumb Broadcasts a scroll event with the detail property set to "ThumbTrack"
when the mouse is pressed on the thumb, and broadcasts a scroll
event with the detail property set to "ThumbPosition" when the mouse is
released. If the thumb is positioned at the very top or left of the track,
another scroll event is generated with the detail property set to "AtTop"
(vertical placement) or "AtLeft" (horizontal placement). If the thumb is
positioned at the very bottom or right of the track, another scroll event is
generated with the detail property set to "AtBottom" (vertical placement)
or "AtRight" (horizontal placement).
ScrollBar component 189

To add a ScrollBar component to another component, do the following:

1 Open the new component symbol in edit symbol mode.
2 Drag an HScrollBar component from the Components panel to the Stage.
3 In the Property inspector, enter the instance name hSB.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that

creates a listener object for the scroll bar that moves the images along the row:
scrollListener = new Object();
scrollListener.scroll = function (evt){

// image_mc is an instance of the Loader component
image_mc.contentPath = arrayOfPicture[hSB.scrollPosition];

}
hSB.addEventListener("scroll", scrollListener);

Customizing the ScrollBar component

You can transform a ScrollBar component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize().

When you resize a scroll bar, the track and the thumb change size but the arrow buttons don’t.
Also, the track and thumb hit areas are resized but the button hit areas do not change. If there isn’t
enough room for the thumb, it is hidden. If the scroll bar is too small, it may not display correctly.
To check the minimum size, use the minHeight property for VScrollBar and the minWidth
property for HScrollBar.

Using styles with the ScrollBar component

You can set style properties to change the appearance of a scroll bar instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 28.

A ScrollBar component supports the following Halo styles:

Using skins with the ScrollBar component

The ScrollBar component uses the movie clip symbols to display its states. To skin the ScrollBar
component while authoring, modify symbols in the library and re-export the component as a
SWC. The symbols are located in the Flash UI Components 2/Themes/MMDefault/ScrollBar
Elements folder in the library of HaloTheme.fla or SampleTheme.fla. For more information, see
“About skinning components” on page 37.

If you use the UIObject.createClassObject() method to create a ScrollBar component
instance dynamically (at runtime), you can also skin it dynamically. To skin a component at
runtime, set the skin properties of the initObject parameter that is passed to the
UIObject.createClassObject() method. These skin properties set the names of the symbols to
use as the states of the buttons, track, and thumb of the scroll bar.

Style Description

themeColor The background color for the scroll bar. Possible values are
"haloGreen", "haloBlue", and "haloOrange".
190 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A ScrollBar component uses the following skin properties:

Property Description

scrollTrackName The expandable middle of the track. The default value is
ScrollTrack.

scrollTrackOverName The track when the pointer is over it (this skin is optional). The
default value is ScrollTrack.

scrollTrackDownName The track when the mouse is pressed (this skin is optional). The
default value is ScrollTrack.

upArrowName The up arrow button that contains its disabled state. The
default value is BtnUpArrow.

upArrowUpName The up arrow button in its neutral state. The default value is
ScrollUpArrowUp.

upArrowDownName The up arrow button when pressed. The default value is
ScrollUpArrowDown.

upArrowOverName The up arrow button when the pointer is over it. The default
value is ScrollUpArrowOver.

downArrowName The down arrow button that contains the disabled state.

downArrowUpName The down arrow button in its neutral state.

downArrowDownName The down arrow button in its pressed state.

downArrowOverName The down arrow button in its over state. (optional)

thumbTopName The fixed-size top edge of the thumb.

thumbBottomName The fixed-size bottom edge of the thumb.

thumbTopDownName The fixed-size top edge of the thumb when pressed (optional).

thumbBottomDownName The fixed-size bottom edge of the thumb when pressed
(optional).

thumbTopOverName The fixed-size top edge of the thumb when the pointer is over it
(optional).

thumbBottomOverName The fixed-size bottom edge of the thumb when the pointer is
over it (optional).

thumbMiddleName The expandable middle of the thumb.

thumbMiddleDownName The expandable middle of the thumb when pressed (optional).

thumbMiddleOverName The expandable middle of the thumb when the pointer is over it
(optional).

thumbGripName The grip portion of the thumb.

thumbGribDownName The grip portion of the thumb when pressed (optional).

thumbGripOverName The grip portion of the thumb when the pointer is over it
(optional).
ScrollBar component 191

ScrollBar class

Inheritance UIObject > UIComponent > ScrollBar > VScrollBar; UIObject > UIComponent >
ScrollBar > HScrollBar

ActionScript Class Namespace mx.controls.VScrollBar; mx.controls.HScrollBar

The properties of the ScrollBar class allow you to set a scrolling range and indicate the amount
that the view content should scroll at runtime.

Setting a property of the ScrollBar class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Method summary for the ScrollBar class

Inherits all methods from UIObject and UIComponent.

Property summary for the ScrollBar class

Inherits all methods from UIObject and UIComponent.

Event summary for the ScrollBar class

Inherits all methods from UIObject and UIComponent.

Method Description

ScrollBar.setScrollProperties() Sets the scroll range and the display area size.

Property Description

ScrollBar.lineScrollSize The amount to scroll when the arrow button is pressed.

ScrollBar.minPos The lower range for the scroll bar.

ScrollBar.minHeight The minimum height for the scroll bar. This property is read-
only.

ScrollBar.minWidth The minimum width of the scroll bar. This property is read-only.

ScrollBar.maxPos The upper range of the scroll bar.

ScrollBar.pageScrollSize The amount to scroll when the track is pressed.

ScrollBar.pageSize The size of the display area.

ScrollBar.scrollPosition The current scroll position.

Event Description

ScrollBar.scroll Broadcast when any part of the scroll bar is pressed.
192 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ScrollBar.lineScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.lineScrollSize

Description

Property; a number indicating the increment to move the content when an arrow button is
pressed. The default value is 1.

Example

The following code moves the content in increments of 5:
hSB.lineScrollSize = 5;

ScrollBar.maxPos

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.maxPos

Description

Property; sets the upper range of the scroll bar. This property can be set in the initObject
parameter of the UIObject.createClassObject() method. The default value is 0.

Example

The following code passes the value of maxPos as a parameter of the createClassObject()
method:
createClassObject(HScrollBar, "hSB", 0, {minPos:0, maxPos:100, pageSize:10});

See also

ScrollBar.minPos, UIObject.createClassObject()
ScrollBar component 193

ScrollBar.minPos

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.minPos

Description

Property; sets the lower range for the scroll bar. This property can be set in the initObject
parameter of the UIObject.createClassObject() method. The default value is 0.

Example

The following code passes the value of minPos as a parameter of the createClassObject()
method:
createClassObject(HScrollBar, "hSB", 0, {minPos:0, maxPos:100, pageSize:10});

See also

ScrollBar.maxPos, UIObject.createClassObject()

ScrollBar.minHeight

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.minHeight

Description

Property (read-only); returns the minimum height of the scroll bar in pixels. The size is
determined by the skins used to display the scroll bar.

Example

The following code explains how to size a horizontal scroll bar:
hSB.setSize(100, hSB.minHeight);

See also

UIObject.setSize()
194 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ScrollBar.minWidth

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.minWidth

Description

Property (read-only); returns the minimum width of the scroll bar in pixels. The size is
determined by the skins used to display the scroll bar.

Example

The following code explains how to size a horizontal scroll bar:
hSB.setSize(minWidth, 100);

See also

UIObject.setSize()

ScrollBar.pageScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.pageScrollSize

Description

Property; the increment to move the display area when the track is pressed. This value is reset to
the pageSize parameter of ScrollBar.setScrollProperties() whenever that method is
called. The default value is 0.

Example

This example moves the display area by sets of 50 units when the scroll track is pressed. The
second line of code checks to see if the property is defined, as in the following:
hSB.pageScrollSize = 50;
if (hSB.pageScrollSize != undefined){

trace("defined");
}

ScrollBar component 195

ScrollBar.pageSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.pageSize

Description

Property; the page size (the size of the display area) for the scroll bar. This property can be set
in the initObject parameter of the UIObject.createClassObject() method. The default
value is 0.

Example

The following code passes the value of minPos as a parameter of the createClassObject()
method:
createClassObject(HScrollBar, "hSB", 0, {minPos:0, maxPos:100, pageSize:10});

See also

UIObject.createClassObject()

ScrollBar.scroll

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
scrollBarInstance.addEventListener("scroll", listenerObject)

Event Object

In addition to the standard event object properties, there is a detail property defined for the
scroll event. For a list of possible values, see “ScrollBar component” on page 188.
196 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Event; broadcast to all registered listeners when a user presses the scroll bar buttons, thumb, or
track. Unlike other events, the scroll event is broadcast when a user presses on the scroll bar and
continues broadcasting until the scroll bar is released.

The first usage example uses an on() handler and must be attached directly to a ScrollBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance sb,
sends “_level0.sb” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollBarInstance) dispatches an event (in this case, scroll) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example creates a form listener object with a scroll callback function that sends a message
to the Output panel with the value of the scroll position:
form.scroll = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the ScrollBar.
trace("now viewing picture #:" + eventObj.target.scrollPosition);

}
hSB.addEventListener("scroll", form);

See also

UIEventDispatcher.addEventListener()

ScrollBar.scrollPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.scrollPosition
ScrollBar component 197

Description

Property; the current scroll position. Setting this property updates the position of the thumb. The
default value is 0.

Example

The following code moves to the first item in the list and then tests to see if the location is the first
thing in the list:
hSB.scrollPosition = 0;
if (hSB.scrollPosition == 0){

trace("position is 0");
}

ScrollBar.setScrollProperties()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollBarInstance.setScrollProperties(pageSize, minPos, maxPos)

Parameters

pageSize A number of items viewable in the display area.

minPos A number indicating the lowest numbered item in the scroll range.

maxPos A number indicating the highest numbered item in the scroll range.

Returns

A number indicating the amount of progress that had been made.

Description

Method; sets the scroll range and the display area size for the scroll bar. The scroll bar updates the
state of the buttons and the size of the thumb according to the values of the parameters.

Example

This example sets the display area to show 10 items at a time out of a range of 0 to 99:
hSB.setScrollProperties(10, 0, 99);
198 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ScrollPane component

The Scroll Pane component displays movie clips, JPEG files, and SWF files in a scrollable area.
You can enable scroll bars to display images in a limited area. You can display content that is
loaded from a local location, or from over the internet. You can set the content for the scroll pane
both while authoring and at runtime using ActionScript.

Once the scroll pane has focus, if the content of the scroll pane has valid tab stops, those markers
will receive focus. After the last tab stop in the content, focus shifts to the next component. The
vertical and horizontal scroll bars in the scroll pane never receive focus.

A ScrollPane instance receives focus if a user clicks it or tabs to it. When a ScrollPane instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each ScrollPane instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

Using the ScrollPane component

You can use a scroll pane to display any content that is too large for the area into which it is
loaded. For example, if you have a large image and only a small space for it in an application, you
could load it into a scroll pane.

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag parameter to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must
set scrollDrag to false otherwise each mouse interaction with the contents will invoke
scroll dragging.

Key Description

Down Content moves up one vertical line scroll.

End Content moves to the bottom of the scroll pane.

Left Content moves right one horizontal line scroll

Home Content moves to the top of the scroll pane.

Page Down Content moves up one vertical page scroll.

Page Up Content moves down one vertical page scroll.

Right Content moves left one horizontal line scroll

Up Content moves down one vertical line scroll.
ScrollPane component 199

ScrollPane parameters

The following are authoring parameters that you can set for each ScrollPane component instance
in the Property inspector or in the Component Inspector panel:

contentPath indicates the content to load into the scroll pane. This value can be a relative path to
a local SWF or JPEG file, or a relative or absolute path to a file on the internet. It can also be the
linkage identifier of a movie clip symbol in the library that is set to Export for ActionScript.

hLineScrollSize indicates the number of units a horizontal scroll bar moves each time an arrow
button is pressed. The default value is 5.

hPageScrollSize indicates the number of units a horizontal scroll bar moves each time the track
is pressed. The default value is 20.

hScrollPolicy displays the horizontal scroll bars. The value can be "on", "off", or "auto". The
default value is "auto".

scrollDrag is a Boolean value that allows a user to scroll the content within the scroll pane (true)
or not (false). The default value is false.

vLineScrollSize indicates the number of units a vertical scroll bar moves each time an arrow
button is pressed. The default value is 5.

vPageScrollSize indicates the number of units a vertical scroll bar moves each time the track is
pressed. The default value is 20.

vScrollPolicy displays the vertical scroll bars. The value can be "on", "off", or "auto". The
default value is "auto".

You can write ActionScript to control these and additional options for ScrollPane components
using its properties, methods, and events. For more information, see ScrollPane class.

Creating an application with the ScrollPane component

The following procedure explains how to add a ScrollPane component to an application while
authoring. In this example, the scroll pane loads a SWF file that contains a logo.
200 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

To create an application with the ScrollPane component, do the following:

1 Drag a ScrollPane component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name myScrollPane.
3 In the Property inspector, enter logo.swf for the contentPath parameter.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

scrollListener = new Object();
scrollListener.scroll = function (evt){

txtPosition.text = myScrollPane.vPosition;
}
myScrollPane.addEventListener("scroll", scrollListener);

completeListener = new Object;
completeListener.complete = function() {

trace("logo.swf has completed loading.");
}
myScrollPane.addEventListener("complete", completeListener);

The first block of code is a scroll event handler on the myScrollPane instance that displays
the value of the vPosition property in a TextField instance called txtPosition, that has
already been placed on Stage. The second block of code creates an event handler for the
complete event that sends a message to the Output panel.

Customizing the ScrollPane component

You can transform a ScrollPane component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the ScrollPane class. See
ScrollPane class. If the ScrollPane is too small, the content may not display correctly.

The ScrollPane places the registration point of its content in the upper left corner of the pane.

When the horizontal scrollbar is turned off, the vertical scrollbar is displayed from top to bottom
along the right side of the scroll pane. When the vertical scrollbar is turned off, the horizontal
scrollbar is displayed from left to right along the bottom of the scroll pane. You can also turn off
both scroll bars.

When the scroll pane is resized, the buttons remain the same size and the scroll track and thumb
expand or contract, and their hit areas are resized.

Using styles with the ScrollPane component

The ScrollPane doesn’t support styles, but the scroll bars that it uses do. For more information, see
“Using styles with the ScrollBar component” on page 190.

Using skins with the ScrollPane component

The ScrollPane component doesn’t have any of its own skins, but the scroll bars that it uses do
have skins. For more information, see “Using skins with the ScrollBar component” on page 190.
ScrollPane component 201

ScrollPane class

Inheritance UIObject > UIComponent > View > ScrollView > ScrollPane

ActionScript Class Namespace mx.containers.ScrollPane

The properties of the ScrollPane class allow you to set the content, monitor the loading progress,
and adjust the scroll amount at runtime.

Setting a property of the ScrollPane class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag property to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must
set scrollDrag to false otherwise each mouse interaction with the contents will invoke
scroll dragging.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.containers.ScrollPane.version);

Note: The following code returns undefined: trace(myScrollPaneInstance.version);.

Method summary for the ScrollPane class

Inherits all methods from UIObject and UIComponent.

Method Description

ScrollPane.getBytesLoaded() Returns the number of bytes of content loaded.

ScrollPane.getBytesTotal() Returns the total number of content bytes to be loaded.

ScrollPane.refreshPane() Reloads the contents of the scroll pane.
202 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Property summary for the ScrollPane class

Inherits all properties from UIObject and UIComponent.

Event summary for the ScrollPane class

Inherits all events from UIObject and UIComponent.

ScrollPane.complete

Availability

Flash Player 6.

Edition

Flash MX 2004.

Method Description

ScrollPane.content A reference to the content loaded into the scroll pane.

ScrollPane.contentPath An absolute or relative URL of the SWF or JPEG file to load into
the scroll pane

ScrollPane.hLineScrollSize The amount of content to scroll horizontally when an arrow button is
pressed.

ScrollPane.hPageScrollSize The amount of content to scroll horizontally when the track is
pressed.

ScrollPane.hPosition The horizontal pixel position of the scroll pane.

ScrollPane.hScrollPolicy The status of the horizontal scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value is
"auto".

ScrollPane.scrollDrag Indicates whether there is scrolling when a user presses and drags
within the ScrollPane (true) or not (false). The default value is
false.

ScrollPane.vLineScrollSize The amount of content to scroll vertically when an arrow button is
pressed.

ScrollPane.vPageScrollSize The amount of content to scroll vertically when the track is pressed.

ScrollPane.vPosition The vertical pixel position of the scroll pane.

ScrollPane.vScrollPolicy The status of the vertical scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value is
"auto".

Method Description

ScrollPane.complete Broadcast when the scroll pane content is loaded.

ScrollPane.progress Broadcast while the scroll bar content is loading.

ScrollPane.scroll Broadcast when the scroll bar is pressed.
ScrollPane component 203

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
scrollPaneInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ScrollPane
component instance myScrollPaneComponent, sends “_level0.myScrollPaneComponent” to the
Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, complete) and the event is handled by
a listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example creates a listener object with a complete event handler for the
scrollPane instance:
form.complete = function(eventObj){

// insert code to handle the event
}
scrollPane.addEventListener("complete",form);
204 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

ScrollPane.content

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.content

Description

Property (read-only); a reference to the content of the scroll pane. The value is undefined until
the load begins.

Example

This example sets the mcLoaded variable to the value of the content property:
var mcLoaded = scrollPane.content;

See also

ScrollPane.contentPath

ScrollPane.contentPath

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the SWF or JPEG file to load into
the scroll pane. A relative path must be relative to the SWF that loads the content.

If you load content using a relative URL, the loaded content must be relative to the location of
the SWF that contains the scroll pane. For example, an application using a ScrollPane component
that resides in the directory /scrollpane/nav/example.swf could load contents from the directory /
scrollpane/content/flash/logo.swf with the following contentPath property: "../content/
flash/logo.swf"
ScrollPane component 205

Example

The following example tells the scroll pane to display the contents of an image from the internet:
scrollPane.contentPath ="http://imagecache2.allposters.com/images/43/

033_302.jpg";

The following example tells the scroll pane to display the contents of a symbol from the library:
scrollPane.contentPath ="movieClip_Name";

The following example tells the scroll pane to display the contents of the local file “logo.swf”:
scrollPane.contentPath ="logo.swf";

See also

ScrollPane.content

ScrollPane.getBytesLoaded()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesLoaded()

Parameters

None.

Returns

The number of bytes loaded in the scroll pane.

Description

Method; returns the number of bytes loaded in the ScrollPane instance. You can call this method
at regular intervals while loading content to check its progress.
206 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

This example creates an instance of the ScrollPane class called scrollPane. It then defines a
listener object called loadListener with a progress event handler that calls the
getBytesLoaded() method to help determine the progress of the load:
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the change event
var bytesLoaded = scrollPane.getBytesLoaded();
var bytesTotal = scrollPane.getBytesTotal();
var percentComplete = Math.floor(bytesLoaded/bytesTotal);

if (percentComplete < 5) // loading just commences
{

trace(" Starting loading contents from internet");
}
else if(percentComplete = 50) //50% complete
{

trace(" 50% contents downloaded ");
}

}
scrollPane.addEventListener("progress", loadListener);
scrollPane.contentPath = "http://www.geocities.com/hcls_matrix/Images/

homeview5.jpg";

ScrollPane.getBytesTotal()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesTotal()

Parameters

None.

Returns

A number.

Description

Method; returns the total number of bytes to be loaded into the ScrollPane instance.

See also

ScrollPane.getBytesLoaded()
ScrollPane component 207

ScrollPane.hLineScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hLineScrollSize

Description

Property; the number of pixels to move the content when the left or right arrow in the horizontal
scroll bar is pressed. The default value is 5.

Example

This example increases the horizontal scroll unit to 10:
scrollPane.hLineScrollSize = 10;

ScrollPane.hPageScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPageScrollSize

Description

Property; the number of pixels to move the content when the track in the horizontal scroll bar is
pressed. The default value is 20.

Example

This example increases the horizontal page scroll unit to 30:
scrollPane.hPageScrollSize = 30;

ScrollPane.hPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPosition
208 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; the pixel position of the horizontal scroll bar. The 0 position is to the left of the bar.

Example

This example sets the scroll bar to 20:
scrollPane.hPosition = 20;

ScrollPane.hScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the image ("auto"). The default
value is "auto".

Example

The following code turns scroll bars on all the time:
scrollPane.hScrollPolicy = "on";

ScrollPane.progress

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
scrollPaneInstance.addEventListener("progress", listenerObject)
ScrollPane component 209

Description

Event; broadcast to all registered listeners while content is loading. The progress event is not
always broadcast; the complete event may be broadcast without any progress events being
dispatched. This can happen especially if the loaded content is a local file. This event is triggered
when the content starts loading by setting the value of contentPath property.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ScrollPane
component instance mySPComponent, sends “_level0.mySPComponent” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, progress) and the event is handled by
a listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code creates a ScrollPane instance called scrollPane and then creates a listener
object with an event handler for the progress event that sends a message to the Output panel
about what number of bytes of the content has loaded:
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event
// in this case, scrollPane
trace("logo.swf has loaded " + scrollPane.getBytesLoaded() + " Bytes.");
// track loading progress

}
scrollPane.addEventListener("complete", loadListener);
scrollPane.contentPath = "logo.swf";

ScrollPane.refreshPane()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.refreshPane()
210 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Parameters

None.

Returns

Nothing.

Description

Method; refreshes the scroll pane after content is loaded. This method reloads the contents. You
could use this method if, for example, you’ve loaded a form into a ScrollPane and an input
property (for example, in a text field) has been changed using ActionScript. Call refreshPane()
to reload the same form with the new values for the input properties.

Example

The following example refreshes the scroll pane instance sp:
sp.refreshPane();

ScrollPane.scroll

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:‘
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
scrollPaneInstance.addEventListener("scroll", listenerObject)

Event Object

In addition to the standard event object properties, there is a type property defined for the
scroll event, the value is "scroll". There is also a direction property with the possible values
"vertical" and "horizontal".
ScrollPane component 211

Description

Event; broadcast to all registered listeners when a user presses the scroll bar buttons, thumb, or
track. Unlike other events, the scroll event is broadcast when a user presses on the scroll bar and
continues broadcasting until the scroll bar is released.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance sp,
sends “_level0.sp” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, scroll) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example creates a form listener object with a scroll callback function that’s registered to the
spInstance instance. You must fill spInstance with content, as in the following:
spInstance.contentPath = "mouse3.jpg";
form = new Object();
form.scroll = function(eventObj){

trace("ScrollPane scrolled");
}
spInstance.addEventListener("scroll", form);

See also

UIEventDispatcher.addEventListener()

ScrollPane.scrollDrag

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.scrollDrag
212 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; a Boolean value that indicates whether there is scrolling when a user presses and drags
within the ScrollPane (true) or not (false). The default value is false.

Example

This example enables mouse scrolling within the scroll pane:
scrollPane.scrollDrag = true;

ScrollPane.vLineScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vLineScrollSize

Description

Property; the number of pixels to move the display area when the up or down arrow button in a
vertical scroll bar is pressed. The default value is 5.

Example

This code increases the amount that the display area moves when the vertical scroll bar arrow
buttons are pressed to 10:
scrollPane.vLineScrollSize = 10;

ScrollPane.vPageScrollSize

Availability

Flash Player 6.

Edition

Flash MX 2004.
scrollPaneInstance.vPageScrollSize

Description

Property; the number of pixels to move the display area when the track in a vertical scroll bar is
pressed. The default value is 20.

Example

This code increases the amount that the display area moves when the vertical scroll bar arrow
buttons are pressed to 30:
scrollPane.vPageScrollSize = 30;
ScrollPane component 213

ScrollPane.vPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vPosition

Description

Property; the pixel position of the vertical scroll bar. The default value is 0.

ScrollPane.vScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the image ("auto"). The default
value is "auto".

Example

The following code turns vertical scroll bars on all the time:
scrollPane.vScrollPolicy = "on";

StyleManager

ActionScript class namespace mx.styles.StyleManager

The StyleManager class keeps track of known inheriting styles and colors. You only need to use
this class if you are creating components and want to add a new inheriting style or color.

To determine which styles are inheriting, please refer to the W3C web site.

Method summary for the StyleManager class

Method Description

StyleManager.registerColorName() Registers a new color name with the StyleManager.

StyleManager.registerColorStyle() Registers a new color style with the StyleManager.

StyleManager.registerInheritingSyle() Registers a new inheriting style with the StyleManager.
214 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

http://www.w3.org/Style/CSS/

StyleManager.registerColorName()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

StyleManager.registerColorName(colorName, value)

Parameters

colorName A string indicating the name of the color (for example, "gray", "darkGrey", and
so on).

value A hexadecimal number indicating the color (for example, 0x808080, 0x404040, and
so on).

Returns

Nothing.

Description

Method; associates a color name with a hexadecimal value and registers it with the StyleManager.

Example

The following example registers "gray" as the color name for the color represented by the
hexadecimal value 0x808080:
StyleManager.registerColorName("gray", 0x808080);

StyleManager.registerColorStyle()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

StyleManager.registerColorStyle(colorStyle)

Parameters

colorStyle A string indicating the name of the color (for example, "highlightColor",
"shadowColor", "disabledColor", and so on).

Returns

Nothing.

Description

Method; adds a new color style to the StyleManager.
StyleManager 215

Example

The following example registers "highlightColor" as a color style:
StyleManager.registerColorStyle("highlightColor");

StyleManager.registerInheritingSyle()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

StyleManager.registerInheritingStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example, "newProp1",
"newProp2", and so on).

Returns

Nothing.

Description

Method; marks this style property as inheriting. Use this method to register style properties that
aren’t listed in the CSS specification. Do not use this method to change non-inheriting styles
properties to inheriting.

Example

The following example registers newProp1 as an inheriting style:
StyleManager.registerInheritingStyle("newProp1");

Slide class

For the latest information about this feature, click the Update button at the top of the Help tab.

TextArea component

The TextArea component wraps the native ActionScript TextField object. You can use styles to
customize the TextArea component; when an instance is disabled its contents display in a color
represented by the “disabledColor” style. A TextArea component can also be formatted with
HTML, or as a password field that disguises the text.
216 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A TextArea component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextArea instance has focus, you can
use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

A live preview of each TextArea instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. If a scroll bar is needed, it appears in
the live preview, but it does not function. Text is not selectable in the live preview and you cannot
enter text into the component instance on the Stage.

When you add the TextArea component to an application, you can use the Accessibility panel to
make it accessible to screen readers. Using the TextArea component

You can use a TextArea component wherever you need a multiline text field. If you need a single-
line text field, use the “TextInput component” on page 229. For example, you could use a
TextArea component as a comment field in a form. You could set up a listener that checks if field
is empty when a user tabs out of the field. That listener could display an error message indicating
that a comment must be entered in the field.

TextArea component parameters

The following are authoring parameters that you can set for each TextArea component instance in
the Property inspector or in the Component Inspector panel:

text indicates the contents of the TextArea. You cannot enter carriage returns in the Property
inspector or Component Inspector panel. The default value is "" (empty string).

html indicates whether the text is formatted with HTML (true) or not (false). The default
value is false.

editable indicates whether the TextArea component is editable (true) or not (false). The default
value is true.

wordWrap indicates whether the text wraps (true) or not (false). The default value is true.

You can write ActionScript to control these and additional options for TextArea components
using its properties, methods, and events. For more information, see TextArea class.

Creating an application with the TextArea component

The following procedure explains how to add a TextArea component to an application while
authoring. In this example, the component is a Comment field with an event listener that
determines if a user has entered text.

Key Description

Arrow keys Moves the insertion point one line up, down, left, or right.

Page Down Moves one screen down.

Page Up Moves one screen up.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.
TextArea component 217

To create an application with the TextArea component, do the following:

1 Drag a TextArea component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name comment.
3 In the Property inspector, set parameters as you wish. However, leave the text parameter blank,

the editable parameter set to true, and the password parameter set to false.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

textListener = new Object();
textListener.handleEvent = function (evt){

if (comment.length < 1) {
Alert(_root, "Error", "You must enter at least a comment in this field",
mxModal | mxOK);
}

}
comment.addEventListener("focusOut", textListener);

This code sets up a focusOut event handler on the TextArea comment instance that verifies
that the user typed in something in the text field.

5 Once text is entered in the comment instance, you can get its value as follows:
var login = comment.text;

Customizing the TextArea component

You can transform a TextArea component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize() or any
applicable properties and methods of the TextArea class.

When a TextArea component is resized, the border is resized to the new bounding box. The scroll
bars are placed on the bottom and right edges if they are required. The text field is then resized
within the remaining area; there are no fixed-size elements in a TextArea component. If the
TextArea component is too small to display the text, the text is clipped.

Using styles with the TextArea component

The TextArea component supports one set of component styles for all text in the field. However,
you can also display HTML compatible with the Flash Player HTML rendering. To display
HTML text, set TextArea.html to true.

The TextArea component has its backgroundColor and borderStyle style properties defined on
a class style declaration. Class styles override _global styles; therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration on the instance.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties. For more information, see “Using styles to customize component
color and text” on page 28.
218 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

A TextArea component supports the following styles:

Using skins with the TextArea component

The TextArea component uses the RectBorder class to draw its border. You can use the
setStyle() method (see UIObject.setStyle()) to change the following RectBorder style
properties:

The style properties set the following positions on the border:

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".

RectBorder styles

borderColor

highlightColor

borderColor

shadowColor

borderCapColor

shadowCapColor

shadowCapColor

borderCapColor
TextArea component 219

TextArea class

Inheritance UIObject > UIComponent > View > ScrollView > TextArea

ActionScript Class Namespace mx.controls.TextArea

The properties of the TextArea class allow you to set the text content, formatting, and horizontal
and vertical position at runtime. You can also indicate whether the field is editable, and whether it
is a “password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextArea class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The TextArea component overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

The TextArea component supports CSS styles and any additional HTML styles supported by
Flash Player.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.TextArea.version);

Note: The following code returns undefined: trace(myTextAreaInstance.version);.
220 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Property summary for the TextArea class

Event summary for the TextArea class

Property Description

TextArea.editable A Boolean value indicating whether the field is editable (true) or not
(false).

TextArea.hPosition Defines the horizontal position of the text within the scroll pane.

TextArea.hScrollPolicy Indicates whether the horizontal scroll bar is always on ("on"), never on
("off"), or turns on when needed ("auto").S

TextArea.html A flag that indicates whether the text field can be formatted with
HTML.

TextArea.length The number of characters in the text field. This property is read-only.

TextArea.maxChars The maximum number of characters that the text field can contain.

TextArea.maxHPosition The maximum value of TextArea.hPosition.

TextArea.maxVPosition The maximum value of TextArea.vPosition.

TextArea.password A Boolean value indicating whether the field is a password field (true)
or not (false).

TextArea.restrict The set of characters that a user can enter into the text field.

TextArea.text The text contents of a TextArea component.

TextArea.vPosition A number indicating the vertical scrolling position

TextArea.vScrollPolicy Indicates whether the vertical scroll bar is always on ("on"), never on
("off"), or turns on when needed ("auto").S

TextArea.wordWrap A Boolean value indicating whether the text wraps (true) or not
(false).

Event Description

TextArea.change Notifies listeners that text has changed.
TextArea component 221

TextArea.change

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textAreaInstance.addEventListener("change", listenerObject)

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used prevent certain characters from being added to the component's text
field; instead, use TextArea.restrict.

The first usage example uses an on() handler and must be attached directly to a TextArea
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextArea, sends “_level0.myTextArea” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textAreaInstance) dispatches an event (in this case, change) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.
222 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

This example traces the total of number of times the text field has changed:
myTextArea.changeHandler = function(obj) {

this.changeCount++;
trace(obj.target);
trace("text has changed " + this.changeCount + " times now! it now contains
" +

this.text);
}

See also

UIEventDispatcher.addEventListener()

TextArea.editable

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextArea.hPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.hPosition

Description

Property; defines the horizontal position of the text within the field. The default value is 0.

Example

The following code displays the left-most characters in the field:
myTextArea.hPosition = 0;
TextArea component 223

TextArea.hScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns horizontal scroll bars on all the time:
text.hScrollPolicy = "on";

TextArea.html

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.html

Description

Property; a Boolean value that indicates whether the text field is formatted with HTML (true) or
not (false). If the html property is true, the text field is an HTML text field. If html is false,
the text field is a non-HTML text field. The default value is false.

Example

The following example makes the myTextArea field an HTML text field and then formats the
text with HTML tags:
myTextArea.html = true;
myTextArea.text = "The Royal Nonesuch"; // displays "The Royal

Nonesuch"
224 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

TextArea.length

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.length

Description

Property (read-only); indicates the number of characters in a text field. This property returns the
same value as the ActionScript text.length property, but is faster. A character such as tab ("\t")
counts as one character. The default value is 0.

Example

The following example gets the length of the text field and copies it to the length variable:
var length = myTextArea.length; // find out how long the text string is

TextArea.maxChars

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; the maxChars property only indicates how much
text a user can enter. If the value of this property is null, there is no limit to the amount of text a
user can enter. The default value is null.

Example

The following example limits the number of characters a user can enter to 255:
myTextArea.maxChars = 255;

TextArea.maxHPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.
TextArea component 225

Usage

textAreaInstance.maxHPosition

Description

Property (read-only); the maximum value of TextArea.hPosition. The default value is 0.

Example

The following code scrolls the text to the far right:
myTextArea.hPosition = myTextArea.maxHPosition;

See also

TextArea.vPosition

TextArea.maxVPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.maxVPosition

Description

Property (read-only); indicates the maximum value of TextArea.vPosition. The default
value is 0.

Example

The following code scrolls the text to the bottom of the component:
myTextArea.vPosition = myTextArea.maxVPosition;

See also

TextArea.hPosition

TextArea.password

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.password
226 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If the value of password is true, the text field is a password text field and hides the
input characters. If false, the text field is not a password text field. The default value is false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextArea.password = true;

TextArea.restrict

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.restrict

Description

Property; indicates the set of characters that a user may enter into the text field. The default value
is undefined. If the value of the restrict property is null, a user can enter any character. If the value
of the restrict property is an empty string, no characters may be entered. If the value of the
restrict property is a string of characters, you can enter only characters in the string into the
text field; the string is scanned from left to right. A range may be specified using the dash (-).

The restrict property only restricts user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

If the string begins with “^”, all characters are initially accepted and succeeding characters in the
string are excluded from the set of accepted characters. If the string does not begin with “^”, no
characters are initially accepted and succeeding characters in the string are included in the set of
accepted characters.

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9"; // limit control to uppercase letters, numbers,

and spaces
my_txt.restrict = "^a-z"; // allow all characters, except lowercase letters
TextArea component 227

TextArea.text

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.text

Description

Property; the text contents of a TextArea component. The default value is "" (empty string).

Example

The following code places a string in the myTextArea instance then traces that string to the
Output panel:
myTextArea.text = "The Royal Nonesuch";
trace(myTextArea.text); // traces "The Royal Nonesuch"

TextArea.vPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.vPosition

Description

Property; defines the vertical position of text in a text field. The scroll property is useful for
directing users to a specific paragraph in a long passage, or creating scrolling text fields. You can
get and set this property. The default value is 0.

Example

The following code makes the topmost characters in a field display:
myTextArea.vPosition = 0;

TextArea.vScrollPolicy

Availability

Flash Player 6.

Edition

Flash MX 2004.
228 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Usage

textAreaInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns vertical scroll bars off all the time:
text.vScrollPolicy = "off";

TextArea.wordWrap

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textAreaInstance.wordWrap

Description

Property; a Boolean value that indicates whether the text wraps (true) or not (false). The
default value is true.

TextInput component

The TextInput is a single-line component that wraps the native ActionScript TextField object.
You can use styles to customize the TextInput component; when an instance is disabled its
contents display in a color represented by the “disabledColor” style. A TextInput component can
also be formatted with HTML, or as a password field that disguises the text.

A TextInput component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextInput instance has focus, you
can also use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager” on page 102.

Key Description

Arrow keys Moves character one character left and right.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.
TextInput component 229

A live preview of each TextInput instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. Text is not selectable in the live
preview and you cannot enter text into the component instance on the Stage.

When you add the TextInput component to an application, you can use the Accessibility panel to
make it accessible to screen readers.

Using the TextInput component

You can use a TextInput component wherever you need a single-line text field. If you need a
multiline text field, use the “TextArea component” on page 216. For example, you could use a
TextInput component as a password field in a form. You could set up a listener that checks if field
has enough characters when a user tabs out of the field. That listener could display an error
message indicating that the proper number of characters must be entered.

TextInput component parameters

The following are authoring parameters that you can set for each TextInput component instance
in the Property inspector or in the Component Inspector panel:

text specified the contents of the TextInput. You cannot enter carriage returns in the Property
inspector or Component Inspector panel. The default value is "" (empty string).

editable indicates whether the TextInput component is editable (true) or not (false). The default
value is true.

password indicates whether the field is a password field (true) or not (false). The default
value is false.

You can write ActionScript to control these and additional options for TextInput components
using its properties, methods, and events. For more information, see TextInput class.

Creating an application with the TextInput component

The following procedure explains how to add a TextInput component to an application while
authoring. In this example, the component is a password field with an event listener that
determines if the proper number of characters have been entered.
230 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

To create an application with the TextInput component, do the following:

1 Drag a TextInput component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name passwordField.
3 In the Property inspector, do the following:

■ Leave the text parameter blank.
■ Set the editable parameter to true.
■ Set the password parameter to true.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
textListener = new Object();
textListener.handleEvent = function (evt){

if (evt.type == "enter"){
trace("You must enter at least 8 characters");

}
}
passwordField.addEventListener("enter", textListener);

This code sets up an enter event handler on the TextInput passwordField instance that
verifies that the user entered the proper number of characters.

5 Once text is entered in the passwordField instance, you can get its value as follows:
var login = passwordField.text;

Customizing the TextInput component

You can transform a TextInput component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize() or any applicable
properties and methods of the TextInput class.

When a TextInput component is resized, the border is resized to the new bounding box. The
TextInput component doesn’t use scroll bars, but the insertion point scrolls automatically as the
user interacts with the text. The text field is then resized within the remaining area; there are no
fixed-size elements in a TextInput component. If the TextInput component is too small to display
the text, the text is clipped.
TextInput component 231

Using styles with the TextInput component

The TextInput component has its backgroundColor and borderStyle style properties defined
on a class style declaration. Class styles override _global styles, therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration or on the instance.

A TextInput component supports the following styles:

Using skins with the TextInput component

The TextArea component uses the RectBorder class to draw its border. You can use the
setStyle() method (see UIObject.setStyle()) to change the following RectBorder style
properties:

The style properties set the following positions on the border:

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".

RectBorder styles

borderColor

highlightColor

borderColor

shadowColor

borderCapColor

shadowCapColor

shadowCapColor

borderCapColor
232 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

TextInput class

Inheritance UIObject > UIComponent > TextInput

ActionScript Class Namespace mx.controls.TextInput

The properties of the TextInput class allow you to set the text content, formatting, and horizontal
position at runtime. You can also indicate whether the field is editable, and whether it is a
“password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextInput class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The TextInput component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“FocusManager” on page 102.

The TextInput component supports CSS styles and any additional HTML styles supported by
Flash Player. For information about CSS support, see the W3C specification.

You can manipulate the text string by using the string returned by the text object.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.TextInput.version);

Note: The following code returns undefined: trace(myTextInputInstance.version);.

Method summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

Property summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

Property Description

TextInput.editable A Boolean value indicating whether the field is editable (true) or not
(false).

TextInput.hPosition The horizontal scrolling position of the text field.

TextInput.length The number of characters in a TextInput text field. This property is read-
only.

TextInput.maxChars The maximum number of characters that a user can enter in a TextInput
text field.

TextInput.maxHPosition The maximum possible value for TextField.hPosition. This property is
read-only.

TextInput.password A Boolean value that indicates whether or not the input text field is a
password field that hides the entered characters.

TextInput.restrict Indicates which characters a user can enter in a text field.

TextInput.text Sets the text content of a TextInput text field.
TextInput component 233

http://www.w3.org/TR/REC-CSS2/

Event summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

TextInput.change

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textInputInstance.addEventListener("change", listenerObject)

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used prevent certain characters from being added to the component's text
field; instead, use TextInput.restrict. This event is only triggered by user input, not by
programmatic change.

The first usage example uses an on() handler and must be attached directly to a TextInput
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on(change){

trace(this);
}

Event Description

TextInput.change Triggered when the Input field changes.

TextInput.enter Triggered when the enter key is pressed.
234 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, change) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example sets a flag in the application that indicates if contents in the TextInput field
have changed:
form.change = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Input component.
 myFormChanged.visible = true; // set a change indicator if the contents

changed;
}
myInput.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

TextInput.editable

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextInput.enter

Availability

Flash Player 6.

Edition

Flash MX 2004.
TextInput component 235

Usage

Usage 1:
on(enter){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

...
}
textInputInstance.addEventListener("enter", listenerObject)

Description

Event; notifies listeners that the enter key has been pressed.

The first usage example uses an on() handler and must be attached directly to a TextInput
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on(enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, enter) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

This example sets a flag in the application that indicates if contents in the TextInput field
have changed:
form.enter = function(eventObj){
 // eventObj.target is the component which generated the enter event,
 // i.e., the Input component.
 myFormChanged.visible = true;
// set a change indicator if the user presses enter;
}
myInput.addEventListener("enter", form);

See also

UIEventDispatcher.addEventListener()
236 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

TextInput.hPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.hPosition

Description

Property; defines the horizontal position of the text within the field. The default value is 0.

Example

The following code displays the leftmost characters in the field:
myTextInput.hPosition = 0;

TextInput.length

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

inputInstance.length

Description

Property (read-only); a number that indicates the number of characters in a TextInput
component. A character such as tab ("\t") counts as one character. The default value is 0.

Example

The following code determines the number of characters in the myTextInput string and copies it
to the length variable:
var length = myTextInput.length;

TextInput.maxChars

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.maxChars
TextInput component 237

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; the maxChars property only indicates how much
text a user can enter. If the value of this property is null, there is no limit to the amount of text a
user can enter. The default value is null.

Example

The following example limits the number of characters a user can enter to 255:
myTextInput.maxChars = 255;

TextInput.maxHPosition

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.maxHPosition

Description

Property (read-only); indicates the maximum value of TextInput.hPosition. The default
value is 0.

Example

The following code scrolls to the far right:
myTextInput.hPosition = myTextInput.maxHPosition;

TextInput.password

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If the value of password is true, the text field is a password text field and hides the
input characters. If false, the text field is not a password text field. The default value is false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextInput.password = true;
238 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

TextInput.restrict

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.restrict

Description

Property; indicates the set of characters that a user may enter into the text field. The default value
is undefined. If the value of the restrict property is null or empty string (""), a user can enter any
character. If the value of the restrict property is a string of characters, you can enter only
characters in the string into the text field; the string is scanned from left to right. A range may be
specified using the dash (-).

The restrict property only restricts user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

If the string begins with “^”, all characters are initially accepted and succeeding characters in the
string are excluded from the set of accepted characters. If the string does not begin with “^”, no
characters are initially accepted and succeeding characters in the string are included in the set of
accepted characters.

The backslash character may be used to enter the characters “-”, “^”, and “\”, as in the following:
\^
\-
\\

When you enter the \ character in the Actions panel within "" (double quotes), it has a special
meaning for the Actions panel's double quotes interpreter. It signifies that the character
following the \ should be treated as is. For example, the following code is used to enter a single
quotation mark:
var leftQuote = "\"";

The Actions panel’s .restrict interpreter also uses \ as an escape character. Therefore, you may
think that the following should work:
myText.restrict = "0-9\-\^\\";

However, since this expression is contained within double quotes, the following value is sent to
the .restrict interpreter: 0-9-^\, and the .restrict interpreter doesn't understand this value.

Because you must enter this expression within double quotes, you must not only provide the
expression for the .restrict interpreter, but you must also escape the Actions panel's built-in
interpreter for double quotes. To send the value 0-9\-\^\\ to the .restrict interpreter, you must
enter the following code:
myText.restrict = "0-9\\-\\^\\\\";
TextInput component 239

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9";
my_txt.restrict = "^a-z";

The following code allows a user to enter the characters “0 1 2 3 4 5 6 7 8 9 - ^ \” in the instance
myText. You must use a double backslash to escape the characters “-, ^, and \”. The first “\”
escapes the “ ”, the second “\” tells the interpreter that the next character should not be treated as
a special character, as in the following:
myText.restrict = "0-9\\-\\^\\\\";

TextInput.text

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

textInputInstance.text

Description

Property; the text contents of a TextInput component. The default value is "" (empty string).

Example

The following code places a string in the myTextInput instance then traces that string to the
Output panel:
myTextInput.text = "The Royal Nonesuch";
trace(myTextInput.text); // traces "The Royal Nonesuch"

Tree component

For the latest information about this feature, click the Update button at the top of the Help tab.

UIComponent

Inheritance UIObject > UIComponent

ActionScript class namespace mx.core.UIComponent

All v2 components extend UIComponent; it is not a visual component. The UIComponent class
contains functions and properties that allow Macromedia components to share some common
behavior. The UIComponent class allows you to do the following:

• Receive focus and keyboard input
• Enable and disable components
• Resize by layout
240 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

To use the methods and properties of the UIComponent, you call them directly from whichever
component you are using. For example, to call the UIComponent.setFocus() method from the
RadioButton component, you would write the following code:
myRadioButton.setFocus();

You only need to create an instance of UIComponent if you are using the Macromedia
Component V2 Architecture to create a new component. Even in that case, UIComponent is
often created implicitly by other subclasses like Button. If you do need to create an instance of
UIComponent, use the following code:
class MyComponent extends UIComponent;

Method summary for the UIComponent class

Inherits all methods from the UIObject class.

Property summary for the UIComponent class

Inherits all properties from the UIObject class.

Event summary for the UIComponent class

Inherits all events from the UIObject class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
UIComponent 241

UIComponent.focusIn

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

on(focusIn){
...

}
listenerObject = new Object();
listenerObject.focusIn = function(eventObject){

...
}
componentInstance.addEventListener("focusIn", listenerObject)

Description

Event; notifies listeners that the object has received keyboard focus.

The first usage example uses an on() handler and must be attached directly to a component
instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusIn) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code disables a button while a user types in the text field txt:
txtListener.handleEvent = function(eventObj) {

form.button.enabled = false;
}
txt.addEventListener("focusIn", txtListener);

See also

UIEventDispatcher.addEventListener()
242 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIComponent.focusOut

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

on(focusOut){
...

}
listenerObject = new Object();
listenerObject.focusOut = function(eventObject){

...
}
componentInstance.addEventListener("focusOut", listenerObject)

Description

Event; notifies listeners that the object has lost keyboard focus.

The first usage example uses an on() handler and must be attached directly to a component
instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusOut) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code enables a button when a user leaves the text field txt:
txtListener.handleEvent = function(eventObj){

if (eventObj.type == focusOut){
 form.button.enabled = true;

}
}
txt.addEventListener("focusOut", txtListener);

See also

UIEventDispatcher.addEventListener()
UIComponent 243

UIComponent.enabled

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.enabled

Description

Property; indicates whether the component can accept focus and mouse input. If the value is
true, it can receive focus and input; if the value is false, it can’t. The default value is true.

Example

The following example sets the enabled property of a CheckBox component to false:
checkBoxInstance.enabled = false;

UIComponent.getFocus()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.getFocus();

Parameters

None.

Returns

A reference to the object that currently has focus.

Description

Method; returns a reference to the object that has keyboard focus.

Example

The following code returns a reference to the object that has focus and assigns it to the
tmp variable:
var tmp = checkbox.getFocus();
244 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIComponent.keyDown

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

on(keyDown){
...

}
listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

...
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; notifies listeners when a key is pressed. This is a very low-level event that should not be
used unless necessary because it can impact system performance.

The first usage example uses an on() handler and must be attached directly to a component
instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyDown) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code makes an icon blink when a key is pressed:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyDown", formListener);
UIComponent 245

UIComponent.keyUp

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

on(keyUp){
...

}
listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

...
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; notifies listeners when a key is released. This is a very low-level event that should not be
used unless necessary because it can impact system performance.

The first usage example uses an on() handler and must be attached directly to a component
instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyUp) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code makes an icon blink when a key is released:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyUp", formListener);
246 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIComponent.setFocus()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.setFocus();

Parameters

None.

Returns

Nothing.

Description

Method; sets the focus to this component instance. The instance with focus receives all
keyboard input.

Example

The following code sets focus to the checkbox instance:
checkbox.setFocus();

UIComponent.tabIndex

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

instance.tabIndex

Description

Property; a number indicating the tabbing order for a component in a document.

Example

The following code sets the value of tmp to the tabIndex property of the checkbox instance:
var tmp = checkbox.tabIndex;
UIComponent 247

UIEventDispatcher

ActionScript class namespace mx.events.EventDispatcher; mx.events.UIEventDispatcher

Events allow you to know when the user has interacted with a component, and also to know when
important changes have happened in the appearance or life cycle of a component, such as the
creation or destruction of a component or if its size changes.

Each component broadcasts different events and those events are listed in each component entry.
There are several ways to use component events in ActionScript code. For more information, see
“About component events” on page 21.

Use the UIEventDispatcher.addEventListener() to register a listener with a component
instance. The listener is invoked when a component’s event is triggered.

UIEventDispatcher.addEventListener()

Availability

Flash Player 6.

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

componentInstance.addEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.

Description

Method; registers a listener object with a component instance that is broadcasting an event. When
the event is triggered, the listener object or function is notified. You can call this method from any
component instance. For example, the following code registers a listener to the component
instance myButton:
myButton.addEventListener("click", myListener);

You must define the listener as either an object or a function before you call
addEventListener() to register the listener with the component instance. If the listener is an
object, it must have a callback function defined that is invoked when the event is triggered.
Usually, that callback function has the same name as the event with which the listener is
registered. If the listener is a function, the function is invoked when the event is triggered. For
more information, see “Using component event listeners” on page 22.
248 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

You can register multiple listeners to a single component instance, but you must use a separate call
to addEventListener() for each listener. Also, you can register one listener to multiple
component instances, but you must use a separate call to addEventListener() for each instance.
For example, the following code defines one listener object and assigns it to two Button
component instances:
lo = new Object();
lo.click = function(evt){

if (evt.target == button1){
trace("button 1 clicked");

} else if (evt.target == button2){
trace("button 2 clicked");

}
}
button1.addEventListener("click", lo);
button2.addEventListener("click", lo);

An event object is passed to the listener as a parameter. The event object has properties that
contain information about the event that occurred. You can use the event object inside the
listener callback function to access information about the type of event that occurred and which
instance broadcast the event. In the example above, the event object is evt (you can use any
identifier as the event object name) and it is used within the if statements to determine which
button instance was clicked. For more information, see “Event Objects” on page 249.

Example

The following example defines a listener object, myListener, and defines the callback function
click. It then calls addEventListener() to register the myListener listener object with the
component instance myButton. To test this code, place a button component on the Stage with the
instance name myButton, and place the following code in Frame 1:
myListener = new Object();
myListener.click = function(evt){

trace(evt.type + " triggered");
}
myButton.addEventListener("click", myListener);

Event Objects

An event object is passed to a listener as a parameter. The event object is an ActionScript object
that has properties that contain information about the event that occurred. You can use the event
object inside the listener callback function to access the name of the event that was broadcast, or
the instance name of the component that broadcast the event. For example, the following code
uses the target property of the evtObj event object to access the label property of the
myButton instance and send the value to the Output panel:
listener = new Object();
listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);

Some event object properties are defined in the W3C specification but aren’t implemented in
version 2 (v2) of the Macromedia Component Architecture. Every v2 event object has the
properties listed in the table below. Some events have additional properties defined, and if so, the
properties are listed in the event’s entry.
UIEventDispatcher 249

http://www.w3.org/TR/DOM-Level-3-Events/events.html

Properties of the event object

UIObject

Inheritance MovieClip > UIObject

ActionScript class namespace mx.core.UIObject

UIObject is the base class for all v2 components; it is not a visual component. The UIObject class
wraps the ActionScript MovieClip object and contains functions and properties that allow
Macromedia v2 components to share some common behavior. The UIObject class implements
the following:

• Styles
• Events
• Resize by scaling

To use the methods and properties of the UIObject, you call them directly from whichever
component you are using. For example, to call the UIObject.setSize() method from the
RadioButton component, you would write the following code:
myRadioButton.setSize(30, 30);

You only need to create an instance of UIObject if you are using the Macromedia Component V2
Architecture to create a new component. Even in that case, UIObject is often created implicitly
by other subclasses like Button. If you do need to create an instance of UIObject, use the
following code:
class MyComponent extends UIObject;

Method summary for the UIObject class

Property Description

type A String indicating the name of the event.

target A reference to the component instance broadcasting the event.

Method Description

UIObject.createObject() Creates a subobject on an object.

UIObject.createClassObject() Creates an object on the specified class.

UIObject.destroyObject() Destroys a component instance.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it draws in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.
250 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Property summary for the UIObject class

Event summary for the UIObject class

UIObject.bottom

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.bottom

Property Description

UIObject.bottom Returns the position of the bottom edge of the object relative to
the bottom edge of its parent.

UIObject.height The height of the object in pixels.

UIObject.left The left position of the object in pixels.

UIObject.right The position of the right edge of the object relative to the right
edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object relative to its parent.

UIObject.top The position of the top edge of the object relative to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object in pixels.

UIObject.x The left position of the object in pixels.

UIObject.y Returns the position of the top edge of the object relative to its
parent.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when the subobjects are being unloaded.

UIObject.unload Broadcast when the subobjects are being unloaded.
UIObject 251

Description

Property (read-only); a number indicating the bottom position of the object in pixels relative to
its parent’s bottom.

Example

Sets the value of tmp to the bottom position of the check box:
var tmp = checkbox.bottom;

UIObject.createObject()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.createObject(linkageName, instanceName, depth, initObject)

Parameters

linkageName A string indicating the linkage identifier of a symbol in the Library panel.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject that is an instance of the symbol.

Description

Method; creates a subobject on an object. Generally only used by component or advanced
developers.

Example

The following example creates a CheckBox instance on the form object:
form.createObject("CheckBox", "sym1", 0);

UIObject.createClassObject()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.createClassObject(className, instanceName, depth,
initObject)
252 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Parameters

className An object indicating the class of the new instance.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject that is an instance of the specified class.

Description

Method; creates a subobject of an object. Generally only used by component or advanced
developers. This method allows you to create components at runtime.

You need to specify the class package name. Do one of the following:
import mx.controls.Button;
createClassObject(Button,"button2",5,{label:"Test Button"});

or
createClassObject(mx.controls.Button,"button2",5,{label:"Test Button"});

Example

The following example creates a CheckBox object:
form.createClassObject(CheckBox, "cb", 0, {label:"Check this"});

UIObject.destroyObject()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.destroyObject(instanceName)

Parameters

instanceName A string indicating the instance name of the object to be destroyed.

Returns

Nothing.

Description

Method; destroys a component instance.
UIObject 253

UIObject.draw

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

on(draw){
...

}
listenerObject = new Object();
listenerObject.draw = function(eventObject){

...
}
componentInstance.addEventListener("draw", listenerObject)

Description

Event; notifies listeners that the object is about to draw its graphics. This is a very low-level event
that should not be used unless necessary because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, draw) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following code redraws the object form2 when the form object is drawn:
formListener.draw = function(eventObj){

form2.redraw(true);
}
form.addEventListener("draw", formListener);

See also

UIEventDispatcher.addEventListener()
254 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIObject.height

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.height

Description

Property (read-only); a number indicating the height of the object in pixels.

Example

The following example sets the value of tmp to the height of the checkbox instance:
var tmp = checkbox.height;

UIObject.getStyle()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.getStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

Returns

The value of the style property. The value can be of any data type.

Description

Method; gets the style property from the styleDeclaration or object. If the style property is an
inheriting style, the parents of the object may be the source of the style value.

For a list of the styles supported by each component, see their individual entries.

Example

The following code sets the ib instance’s fontWeight style property to bold if the cb instance’s
fontWeight style property is bold:
if (cb.getStyle("fontWeight") == "bold")
{
 ib.setStyle("fontWeight", "bold");
};
UIObject 255

UIObject.invalidate()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.invalidate()

Parameters

None.

Returns

Nothing.

Description

Method; marks the object so it will be redrawn on the next frame interval.

Example

The following example marks the ProgressBar instance pBar for redraw:
pBar.invalidate();

UIObject.left

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.left

Description

Property (read-only); a number indicating the left edge of the object in pixels.

Example

The following example sets the value of tmp to the left position of the checkbox instance:
var tmp = checkbox.left; // sets value of tmp to left position of checkbox;
256 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIObject.load

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(load){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.load = function(eventObject){

...
}
componentInstance.addEventListener("load", listenerObject)

Description

Event; notifies listeners that the subobject for this object is being created.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, load) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example creates an instance of MySymbol once the form instance is loaded:
formListener.handleEvent = function(eventObj)
{

form.createObject("MySymbol", "sym1", 0);
}
form.addEventListener("load", formListener);
UIObject 257

UIObject.move

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(move){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.move = function(eventObject){

...
}
componentInstance.addEventListener("move", listenerObject)

Description

Event; notifies listeners that the object has moved.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, move) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example calls the move() method to keep form2 100 pixels down and to the
right of form1:
formListener.handleEvent = function(eventObj)
{
 // eventObj.target is the component that generated the change event

form2.move(form1.x + 100, form1.y + 100);
}
form1.addEventListener("move", formListener);
258 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIObject.move()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.move(x, y)

Parameters

x A number that indicates the position of the object’s upper left corner relative to its parent.

y A number that indicates the position of the object’s upper left corner relative to its parent.

Returns

Nothing.

Description

Method; moves the object to the requested position. You should only pass integral values to the
UIObject.move() or the component may appear fuzzy.

Failure to follow these rules may result in fuzzier-looking controls.

Example

This example moves the ProgressBar instance pBar to the upper left corner at 100, 100:
pBar.move(100, 100);

UIObject.redraw()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.redraw()

Parameters

always A Boolean; true if redraw always, false if redraw only if invalidated.

Returns

Nothing.

Description

Method; forces validation of the object so it draws in the current frame
UIObject 259

Example

This example forces the pBar instance to redraw immediately:
pBar.validate(true);

UIObject.resize

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(resize){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.resize = function(eventObject){

...
}
componentInstance.addEventListener("resize", listenerObject)

Description

Event; notifies listeners that the subobjects of this object are being unloaded.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, resize) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example calls the setSize() method to make sym1 half the width and a fourth of
the height when form is moved:
formListener.handleEvent = function(eventObj){

form.sym1.setSize(sym1.width / 2, sym1.height / 4);
}
form.addEventListener("resize", formListener);
260 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

UIObject.right

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.right

Description

Property (read-only); a number indicating the right position of the object in pixels relative to its
parent’s right side.

Example

The following example sets the value of tmp to the right position of the checkbox instance:
var tmp = checkbox.right;

UIObject.scaleX

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.scaleX

Description

Property; a number indicating the scaling factor in the x direction of the object relative to
its parent.

Example

The following example makes the check box twice as wide and sets the tmp variable to the
horizontal scale factor:
checkbox.scaleX = 200;
var tmp = checkbox.scaleX;

UIObject.scaleY

Availability

Flash Player 6.

Edition

Flash MX 2004.
UIObject 261

Usage

componentInstance.scaleY

Description

Property; a number indicating the scaling factor in the y direction of the object relative to
its parent.

Example

The following example makes the check box twice as high and sets the tmp variable to the vertical
scale factor:
checkbox.scaleY = 200;
var tmp = checkbox.scaleY;

UIObject.setSize()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.setSize(width, height)

Parameters

width A number that indicates the width of the object in pixels.

height A number that indicates the height of the object in pixels.

Returns

Nothing.

Description

Method; resizes the object to the requested size. You should only pass integral values to the
UIObject.setSize() or the component may appear fuzzy. This method (and all methods and
properties of UIObject) is available from any component instance.

When you call this method on an instance of the ComboBox, the combo box is resized and the
rowHeight property of the contained list is also changed.

Example

This example resizes the pBar component instance to 100 pixels wide and 100 pixels high:
pBar.setSize(100, 100);

UIObject.setSkin()

Availability

Flash Player 6.
262 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Edition

Flash MX 2004.

Usage

componentInstance.setSkin(id, linkageName)

Parameters

id A number indicating the variable. This value is usually a constant defined in the class
definition.

linkageName A string indicating an asset in the library.

Returns

Nothing.

Description

Method; sets a skin in the component instance. Use this method when you are developing
components. You cannot use this method to set a component’s skins at runtime.

Example

This example sets a skin in the checkbox instance:
checkbox.setSkin(CheckBox.skinIDCheckMark, "MyCustomCheckMark");

UIObject.setStyle()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.setStyle(propertyName, value)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

value The value of the property.

Returns

A UIObject that is an instance of the specified class.

Description

Method; sets the style property on the style declaration or object. If the style property is an
inheriting style, the children of the object are notified of the new value.

For a list of the styles supported by each component, see their individual entries.
UIObject 263

Example

The following code sets the fontWeight style property of the check box instance cb to bold:
cb.setStyle("fontWeight", "bold");

UIObject.top

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.top

Description

Property (read-only); a number indicating the top edge of the object in pixels.

Example

The following example sets the tmp variable to the top position of the checkbox instance:
var tmp = checkbox.top; // sets value of tmp to top position of checkbox;

UIObject.unload

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(unload){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.unload = function(eventObject){

...
}
componentInstance.addEventListener("unload", listenerObject)
264 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Event; notifies listeners that the subobjects of this object are being unloaded.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, unload) and the event is handled by a
listener object (listenerObject) that you create. You define a method with the same name as
the event on the listener object; the method is called when the event is triggered. When the event
is triggered, it automatically passes an event object (eventObject) to the listener object method.
Each event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example deletes sym1 when the unload event is triggered:
formListener.handleEvent = function(eventObj){
 // eventObj.target is the component which generated the change event,
 form.destroyObject(sym1);
}
form.addEventListener("unload", formListener);

UIObject.visible

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.visible

Description

Property; a Boolean value indicating whether the object is visible (true) or not (false).

Example

The following example makes the myLoader loader instance visible:
myLoader.visible = true;
UIObject 265

UIObject.width

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.width

Description

Property (read-only); a number indicating the width of the object in pixels.

Example

The following example sets the width of the TextArea component to 450 pixels:
mytextarea.width = 450;

UIObject.x

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.x

Description

Property (read-only); a number indicating the left edge of the object in pixels.

Example

The following example sets the left edge of the check box to 150:
checkbox.x = 150;

UIObject.y

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

componentInstance.y

Description

Property (read-only); a number indicating the top edge of the object in pixels
266 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example sets the top edge of the check box to 200:
checkbox.y = 200;

WebServices package

For the latest information about this feature, click the Update button at the top of the Help tab.

WebServiceConnector component

For the latest information about this feature, click the Update button at the top of the Help tab.

Window component

A Window component displays the contents of a movie clip inside a window with a title bar, a
border, and an optional close button.

A Window component can be modal or non-modal. A modal window prevents mouse and
keyboard input from going to other components outside the window. The Window component
also supports dragging; a user can click the title bar and drag the window and its contents to
another location. Dragging the borders doesn’t resize the window.

If you use the PopUpManager to add a Window component to a document, the Window
instance will have its own FocusManager, distinct from the rest of the document. If you don’t use
the PopUpManager, the window’s contents participate in focus ordering. For more information
about controlling focus, see “Creating custom focus navigation” on page 24 or “FocusManager”
on page 102.

A live preview of each Window instance reflects changes made to all parameters except
contentPath in the Property inspector or Component Inspector panel while authoring.

When you add the Window component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility:
mx.accessibility.WindowAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
You may need to update your Help system to see this information.

Using the Window component

You can use a window in an application whenever you need to present a user with information or
a choice that takes precedence over anything else in the application. For example, you might need
a user to fill out a login window, or a window that changes and confirms a new password.

There are several ways to add a window to an application. You can drag a window from the
Components panel to the Stage. You can also use call createClassObject() (see
UIObject.createClassObject()) to add a window to an application. The third way of adding
a window to an application is to use the PopUpManager. Use the PopUpManager to create modal
windows that overlap other objects on the Stage. For more information, see Window class.
Window component 267

Window component parameters

The following are authoring parameters that you can set for each Window component instance in
the Property inspector or in the Component Inspector panel:

contentPath specifies the contents of the window. This can be the linkage identifier of the movie
clip or the symbol name of a screen, form, or slide that contains the contents of the window. This
can also be an absolute or relative URL for a SWF or JPG file to load into the window. The
default value is "". Loaded content clips to fit the Window.

title indicates the title of the window.

closeButton indicates whether a close button is displayed (true) or not (false). Clicking the close
button broadcasts a click event, but doesn’t close the window. You must write a handler that calls
Window.deletePopUp() to explicitly close the window. For more information about the click
event, see Window.click.

You can write ActionScript to control these and additional options for Window components
using its properties, methods, and events. For more information, see Window class.

Creating an application with the Window component

The following procedure explains how to add a Window component to an application. In this
example, the window asks a user to change her password and confirm the new password.

To create an application with the Button component, do the following:

1 Create a new movie clip that contains password and password confirmation fields, and OK and
Cancel buttons. Name the movie clip PasswordForm.

2 In the library, select the PasswordForm movie clip and select Linkage from the Options menu.
3 Check Export for ActionScript and enter PasswordForm in the Identifier box.
4 Enter mx.core.View in the class field.
5 Drag a Window component from the Components panel to the Stage and delete the

component from the Stage. This adds the component to the library.
6 In the library, select the Window SWC and select Linkage from the Options menu.
7 Check Export for ActionScript.
8 Open the Actions panel, and enter the following click handler on Frame 1:

buttonListener = new Object();
buttonListener.click = function(){

mx.managers.PopUpManager.createPopUp(_root, mx.containers.Window, true, {
title:"Change Password", contentPath:"PasswordForm" })

}
button.addEventListener("click", buttonListener);

This handler calls PopUpManager.createPopUp() to instantiate a Window component with
the title bar “Change Password” that displays the contents of the PasswordForm movie clip.
268 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Customizing the Window component

You can transform a Window component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize() or any
applicable properties and methods of the Window class. For more information, see Window class.

Resizing the window does not change the size of the close button or title caption. The title
caption is aligned to the left and the close bar to the right.

Using styles with the Window component

The style declaration of the title bar of a Window component is indicated by the
Window.titleStyleDeclaration property.

A Window component supports the following Halo styles:

Using skins with the Window component

The Window component uses the RectBorder class which uses the ActionScript drawing API to
draw its borders. You can use the setStyle() method (see UIObject.setStyle()) to change the
following RectBorder style properties:

The style properties set the following positions on the border:

Style Description

borderStyle The component border; either "none", "inset", "outset", or "solid".
This style does not inherit its value.

RectBorder styles

borderColor

highlightColor

borderColor

shadowColor

borderCapColor

shadowCapColor

shadowCapColor

borderCapColor
Window component 269

If you use UIObject.createClassObject() or PopUpManager.createPopUp() to create a
Window instance dynamically (at runtime), you can also skin it dynamically. To skin a
component at runtime, set the skin properties of the initObject parameter that is passed to the
createClassObject() method. These skin properties set the names of the symbols to use as the
button’s states, both with and without an icon. For more information, see
UIObject.createClassObject(), and PopUpManager.createPopUp().

A Window component uses the following skin properties:

Window class

Inheritance UIObject > UIComponent > View > ScrollView > Window

ActionScript Class Namespace mx.containers.Window

The properties of the Window class allow you to set the title caption, add a close button, and
set the display content at runtime. Setting a property of the Window class with ActionScript
overrides the parameter of the same name set in the Property inspector or Component
Inspector panel.

The best way to instantiate a window is to call PopUpManager.createPopUp(). This method
creates a window that can be modal (overlapping and disabling existing objects in an application)
or non-modal. For example, the following code creates a modal Window instance (the last
parameter indicates modality):
var newWindow = PopUpManager.createPopUp(this, Window, true);

Modality is simulated by creating a large transparent window underneath the Window
component. Due to the way transparent windows are rendered, you may notice a slight dimming
of the objects under the transparent window. The effective transparency can be set by changing
the _global.style.modalTransparency value from 0 (fully transparent) to 100 (opaque). If
you make the window partially transparent, you can also set the color of the window by changing
the Modal skin in the default theme.

If you use PopUpManager.createPopUp() to create a modal Window, you must call
Window.deletePopUp() to remove it to so that the transparent window is also removed. For
example, if you use the closeButton on the window you would write the following code:
obj.click = function(evt){
 this.deletePopUp();
}
window.addEventListener("click", obj);

Property Description

skinTitleBackgroud The title bar. The default value is TitleBackground.

skinCloseUp The close button. The default value is CloseButtonUp.

skinCloseDown The close button it its down state. The default value is CloseButtonDown.

skinCloseDisabled The close button in its disabled state. The default value is
CloseButtonDisabled.

skinCloseOver The close button in its over state. The default value is CloseButtonOver.
270 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Note: Code does not stop executing when a modal window is created. In other environments (for
example Microsoft Windows), if you create a modal window, the lines of code that follow the creation
of the window do not run until the window is closed. In Flash, the lines of code are run after the
window is created and before it is closed.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.containers.Window.version);

Note: The following code returns undefined: trace(myWindowInstance.version);.

Method summary for the Window class

Inherits all methods from UIObject, UIComponent, and View.

Property summary for the Window class

Inherits all properties from UIObject, UIComponent, and ScrollView.

Event summary for the Window class

Inherits all events from UIObject, UIComponent, View, and ScrollView.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().

Property Description

Window.closeButton Indicates whether a close button is included on the title bar (true)
or not (false).

Window.content A reference to the content specified in the contentPath property.

Window.contentPath A path to the content that is displayed in the window.

Window.title The text that displays in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Event Description

Window.click Triggered when the close button is released.

Window.mouseDownOutside Triggered when the mouse is pressed outside the modal window.
Window component 271

Window.click

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
windowInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the close
button.

The first usage example uses an on() handler and must be attached directly to a Window
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Window
component instance myWindow, sends “_level0.myWindow” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, click) and the event is handled by a listener
object (listenerObject) that you create. You define a method with the same name as the event
on the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object method.
The event object has a set of properties that contains information about the event. You can use
these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.
272 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Example

The following example creates a modal window and then defines a click handler that deletes the
window. You must add a Window component to the Stage and then delete it to add the
component to the document library, then add the following code to Frame 1:
import mx.managers.PopUpManager
import mx.containers.Window
var myTW = PopUpManager.createPopUp(_root, Window, true, {closeButton: true,

title:"My Window"});
windowListener = new Object();
windowListener.click = function(evt){

_root.myTW.deletePopUp();
}
myTW.addEventListener("click", windowListener);

See also

UIEventDispatcher.addEventListener(), Window.closeButton

Window.closeButton

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.closeButton

Description

Property; a Boolean value that indicates whether the title bar should have a close button (true) or
not (false). This property must be set in the initObject parameter of the
PopUpManager.createPopUp() method. The default value is false.

Example

The following code creates a window that displays the content in the movie clip “LoginForm” and
has a close button on the title bar:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm", closeButton:true});

See also

Window.click, PopUpManager.createPopUp()
Window component 273

Window.content

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.content

Description

Property; a reference to the content (root movie clip) of the window. This property returns a
MovieClip object. When you attach a symbol from the library, the default value is an instance of
the attached symbol. When you load content from a URL, the default value is undefined until the
load operation has started.

Example

Set the value of the text property within the content inside the window component:
loginForm.content.password.text = "secret";

Window.contentPath

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.contentPath

Description

Property; sets the name of the content to display in the window. This value can be the linkage
identifier of a movie clip in the library or the absolute or relative URL of a SWF or JPG file to
load. The default value is "" (empty string).

Example

The following code creates a Window instance that displays the movie clip with the linkage
identifier “LoginForm”:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm"});
274 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Window.deletePopUp()

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.deletePopUp();

Parameters

None.

Returns

Nothing.

Description

Method; deletes the window instance and removes the modal state. This method can only be
called on window instances that were created by PopUpManager.createPopUp().

Example

The following code creates a modal window, then creates a listener that deletes the window with
the close button is clicked:
var myTW = PopUpManager.createPopUp(_root, Window, true);
twListener = new Object();
twListener.click = function(){

myTW.deletePopUp();
}
myTW.addEventListener("click", twListener);

Window.mouseDownOutside

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

Usage 1:
on(mouseDownOutside){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.mouseDownOutside = function(eventObject){

...
}
windowInstance.addEventListener("mouseDownOutside", listenerObject)
Window component 275

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) outside the modal
window. This event is rarely used, but you can use it to dismiss a window if the user tries to
interact with something outside of it.

The first usage example uses an on() handler and must be attached directly to a Window
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Window
component instance myWindowComponent, sends “_level0.myWindowComponent” to the
Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, mouseDownOutside) and the event is
handled by a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. The event object has a set of properties that contains information about the event.
You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 249.

Example

The following example creates a window instance and defines a mouseDownOutside handler that
calls a beep() method if the user clicks outside the window:
var myTW = PopUpManager.createPopUp(_root, Window, true, undefined, true);
// create a listener
twListener = new Object();
twListener.mouseDownOutside = function()
{
 beep(); // make a noise if user clicks outside
}
myTW.addEventListener("mouseDownOutside", twListener);

See also

UIEventDispatcher.addEventListener()

Window.title

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.title
276 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

Description

Property; a string indicating the caption of the title bar. The default value is "" (empty string).

Example

The following code sets the title of the window to “Hello World”:
myTW.title = "Hello World";

Window.titleStyleDeclaration

Availability

Flash Player 6.

Edition

Flash MX 2004.

Usage

windowInstance.titleStyleDeclaration

Description

Property; a string indicating the style declaration that formats the title bar of a window. The
default value is undefined which indicates bold, white text.

Example

The following code creates a window that displays the content of the movie clip with the linkage
identifier “ChangePassword” and uses the CSSStyleDeclaration “MyTWStyles”:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm",
 titleStyleDeclaration:"MyTWStyles"});

For more information about styles, see “Using styles to customize component color and text”
on page 28.

XMLConnector component

For the latest information about this feature, click the Update button at the top of the Help tab.

XUpdateResolver component

For the latest information about this feature, click the Update button at the top of the Help tab.
XUpdateResolver component 277

278 Chapter 4: Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components

INDEX
A
accessibility

and components 14
authoring for 14

accordion component 48
adding components using ActionScript 20
alert component 48

B
button component 48

button class 52
creating an application with 49
customizing 50
events 53
methods 53
parameters 49
properties 53
using 49
using skins with 51
using styles with 50

C
categories

containers 47
data 47
managers 47
screens 48
UI controls 46

cell renderer component 59
check box component 60

check box class 63
creating an application with 61
events 64
methods 63
parameters 61
properties 63
using 60

using skins with 62
using styles with 62

class style sheets 28
classes

and component inheritance 13
button class 52
check box 63
combo box 72
focus manager 104
form class 109
label class 111
list class 118
loader 144
numeric stepper 157
progress bar component 168
radio button 182
screen 188
scroll bar 192
scroll pane component 202
slide 216
text area 220
text input 233

clickHandler 24
code hints, triggering 21
colors

inheritance, tracking 214
setting style properties for 32

combo box component 67
combo box class 72
creating an application with 70
methods 73
parameters 69
properties 73
using 69
using skins with 71
using styles with 70

combo box events 74
279

compiled clips 14
in Library panel 16
working with 18

Component Inspector panel 16
component types

accordion 48
alert component 48
button component 48
cell renderer 59
check box 60
combo box 67
containers 47
data 47
data grid 95
data holder 96
data provider 96
data set 96
databinding package 95
date chooser 96
label 109
list 114
loader 142
managers 47
media controller 153
media display 153
media playback 153
menu 153
numeric stepper 153
pop-up manager 162
progress bar 164
radio button 178
RDBMSResolver 188
remote procedure call 188
screen class 188
screens 48
scroll bar 188
scroll pane 199
slide class 216
style manager 214
text area 216
text input 229
UI controls 46

components
adding dynamically 20
adding to Flash documents 18
architecture 12
available in Flash MX 2004 8
available in Flash MX Professional 2004 8
categories 46
categories, described 12

deleting 21
depth manager 96
Flash Player support 12
focus manager 102
form class 109
inheritance 13
installing 15
resizing 20

Components panel 15
container components 47
CSSStyleDeclaration 29, 30
customizing color 28
customizing text 28
cutsom style sheets 28

D
data components 47
data grid component 95
data holder component 96
data provider component 96
data set component 96
databinding components 95
date choose component 96
date field component 96
default class style sheet 31
defaultPushButton 24
depth

managing 25
depth manager

class 96
methods 97

DepthManager 25
documentation

guide to terminology 10
overview 9

E
event listeners 22
event objects 22
events 21

broadcasting 22

F
Flash MX 2004, components available 8
Flash MX Professional 2004, components available 8
Flash Player

and components 12
support 25

focus 24
280 Index

focus manager 102
class 104
creating an application with 103
customizing 103
parameters 103
using 102

focus navigation
creating 24

FocusManager 24
form class 109
form component class 48

G
global style declaration 28

H
Halo theme 35
handle event 23
handleEvent method 23

I
inheritance

in V2 components 13
tracking, for styles and colors 214

installation
instructions 9
verifying 9

installing components 8
instance styles 28
instances

setting style on 28
setting styles on 28

L
label class 111
label component 109

creating an application with 110
customizing 110
events 112
label class 111
methods 112
parameters 110
properties 112
using 109
using styles with 111

labels 20
Library panel 16
linkage identifiers

for skins 37

list class 118
list component 114

creating an application with 115
customizing 116
events 121
methods 119
parameters 115
properties 120
using 115
using styles with 117

listener functions 23
listener objects 22
listeners 22

registering 22
Live Preview 17
loader component 142

creating an application with 143
customizing 144
events 145
loader class 144
methods 145
parameters 143
properties 145
using 143

M
Macromedia DevNet 10
Macromedia Flash Support Center 10
manager components 47
media controller component 153
media playback component 153
menu component 153

N
numeric stepper class

methods 157
properties 158

numeric stepper component 153
creating an application with 154
customizing 155
events 158
numeric stepper class 157
parameters 154
using 154
using skins with 156
using styles with 155
Index 281

O
on() 22

P
packages 13
parameters

setting 16, 21
viewing 16

pop-up manager class, methods 162
pop-up manager component 162
previewing components 17
progress bar component 164

creating an application with 165
customizing 166
events 169
methods 168
parameters 165
progress bar class 168
properties 169
using 164
using skins with 167
using styles with 167

properties, for styles 28
Property inspector 16
prototype 42

R
radio button component 178

creating an application with 179
customizing 180
events 182
methods 182
parameters 179
properties 182
radio button class 182
using 179
using skins with 181
using styles with 180

RDBMSResolver component 188
remote procedure call component 188
resizing components 20
resources, additional 10

S
Sample theme 35
screen API 48
screen class 188
screen component classes 48
screen readers

accessbility 14
scroll bar component 188

creating an application with 189
customizing 190
events 192
methods 192
parameters 189
properties 192
scroll bar class 192
using 189
using skins with 190
using styles with 190

scroll pane component 199
creating an application with 200
customizing 201
events 203
methods 202
parameters 200
properties 203
scroll pane class 202
using 199
using skins with 201
using styles with 201

setSize() 20
skin properties

changing in the prototype 42
setting 37

skinning 37
skins 37

applying 38
applying to subcomponents 39
editing 38

slide class 216
slide component class 48
style declarations

creating custom 30
default class 31
global 29
setting class 31

style manager, methods 214
style properties

color 32
getting 33
setting 33
282 Index

styles 28
determing precedence 31
inheritance, tracking 214
setting 28, 33
setting custom 30
setting global 29
setting on instance 28
supported 33

subclasses, using to replace skins 42
subcomponents, applying skins 39
SWC files 14

and compiled clips 14
working with 18

system requirements 8

T
tab order, for components 102
tabIndex 24
terminology in documentation 10
text area component 216

creating an application with 217
customizing 218
events 221
parameters 217
properties 221
text area class 220
using skins with 219
using styles with 218

text input component 229
creating an application with 230
customizing 231
events 234
methods 233
parameters 230
properties 233
text input class 233
using 230
using styles with 232

themes 35
applying 35
creating 36

typographical conventions, in components
documentation 9

U
UIComponent class, and component inheritance 13
user interface (UI) controls 46

V
V2 components

and the Flash Player 12
version 1 (v1) components 25
version 1 (v1) components, upgrading 25
version 1 components

upgrading 25
version 2 (v2) components

and the Flash Player 12
benefits and description 11
Index 283

284 Index

	Contents
	Getting Started with Components
	Intended audience
	System requirements
	Installing components
	About the documentation
	Typographical conventions
	Terms used in this manual
	Additional resources

	About Components
	Benefits of v2 components
	Categories of components
	Component architecture
	What’s new in v2 components
	About compiled clips and SWC files
	Accessibility and components

	Working with Components
	The Components panel
	Components in the Library panel
	Components in the Component Inspector panel and Property inspector
	Components in Live Preview
	Working with SWC files and compiled clips
	Adding components to Flash documents
	Adding components using the Components panel
	Adding components using ActionScript
	About component label size and component width and height

	Setting component parameters
	Deleting components from Flash documents
	Using code hints
	About component events
	Using component event handlers
	Using component event listeners
	Additional event syntax

	Creating custom focus navigation
	Managing component depth in a document
	About using a preloader with components
	Upgrading v1 components to v2 architecture

	Customizing Components
	Using styles to customize component color and text
	Setting styles on a component instance
	Setting global styles
	Setting styles for specific components
	Setting styles for a component class
	Using global, custom, and class styles in the same document
	About color style properties
	Setting style property values
	Supported styles

	About themes
	Applying a theme to a document
	Creating a new theme

	About skinning components
	Editing component skins
	Applying an edited skin to a component
	Applying an edited skin to a subcomponent
	Changing skin properties in the prototype

	Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 Components
	User interface (UI) controls
	Containers
	Data
	Managers
	Screens
	Accordion component
	Alert component
	Button component
	Using the Button component
	Button parameters
	Creating an application with the Button component

	Customizing the Button component
	Using styles with the Button component
	Using skins with the Button component

	Button class
	Method summary for the Button class
	Property summary for the Button class
	Event summary for the Button class

	Button.click
	SimpleButton.emphasized
	SimpleButton.emphasizedStyleDeclaration
	Button.icon
	Button.label
	Button.labelPlacement
	Button.selected
	Button.toggle

	CellRenderer interface
	CheckBox component
	Using the CheckBox component
	CheckBox parameters
	Creating an application with the CheckBox component

	Customizing the CheckBox component
	Using styles with the CheckBox component
	Using skins with the CheckBox component

	CheckBox class
	Property summary for the CheckBox class
	Method summary for the CheckBox class
	Event summary for the CheckBox class

	CheckBox.click
	CheckBox.label
	CheckBox.labelPlacement
	CheckBox.selected

	ComboBox component
	Using the ComboBox component
	ComboBox parameters
	Creating an application with the ComboBox component

	Customizing the ComboBox component
	Using styles with the ComboBox component
	Using skins with the ComboBox component

	ComboBox class
	Method summary for the ComboBox class
	Property summary for the ComboBox class
	Event summary for the ComboBox class

	ComboBox.addItem()
	ComboBox.addItemAt()
	ComboBox.change
	ComboBox.close()
	ComboBox.close
	ComboBox.dataProvider
	ComboBox.dropdown
	ComboBox.dropdownWidth
	ComboBox.editable
	ComboBox.enter
	ComboBox.getItemAt()
	ComboBox.itemRollOut
	ComboBox.itemRollOver
	ComboBox.labelField
	ComboBox.labelFunction
	ComboBox.length
	ComboBox.open()
	ComboBox.open
	ComboBox.removeAll()
	ComboBox.removeItemAt()
	ComboBox.replaceItemAt()
	ComboBox.rowCount
	ComboBox.scroll
	ComboBox.selectedIndex
	ComboBox.selectedItem
	ComboBox.text
	ComboBox.textField
	ComboBox.value

	DataBinding package
	DataGrid component
	DataHolder component
	DataProvider component
	DataSet component
	DateChooser component
	DateField component
	DepthManager
	Method summary for the DepthManager class
	DepthManager.createChildAtDepth()
	DepthManager.createClassChildAtDepth()
	DepthManager.createClassObjectAtDepth()
	DepthManager.createObjectAtDepth()
	DepthManager.setDepthAbove()
	DepthManager.setDepthBelow()
	DepthManager.setDepthTo()

	FocusManager
	Using the FocusManager
	FocusManager parameters
	Creating an application with the FocusManager

	Customizing the FocusManager
	FocusManager class
	Method summary for the FocusManager class
	Property summary for the FocusManager class

	FocusManager.defaultPushButton
	FocusManager.defaultPushButtonEnabled
	FocusManager.enabled
	FocusManager.getFocus()
	FocusManager.nextTabIndex
	FocusManager.sendDefaultPushButtonEvent()
	FocusManager.setFocus()

	Form class
	Label component
	Using the label component
	Label parameters
	Creating an application with the Label component

	Customizing the label component
	Using styles with the Label component
	Using skins with the Label component

	Label class
	Method summary for the Label class
	Property summary for the Label class
	Event summary for the Label class

	Label.autoSize
	Label.html
	Label.text

	List component
	Using the List component
	List component parameters
	Creating an application with the List component

	Customizing the List component
	Using styles with the List component
	Using skins with the List component

	List class
	Method summary for the List class
	Property summary for the List class
	Event summary for the List class

	List.addItem()
	List.addItemAt()
	List.cellRenderer
	List.change
	List.dataProvider
	List.getItemAt()
	List.hPosition
	List.hScrollPolicy
	List.iconField
	List.iconFunction
	List.itemRollOut
	List.itemRollOver
	List.labelField
	List.labelFunction
	List.length
	List.maxHPosition
	List.multipleSelection
	List.removeAll()
	List.removeItemAt()
	List.replaceItemAt()
	List.rowCount
	List.rowHeight
	List.scroll
	List.selectable
	List.selectedIndex
	List.selectedIndices
	List.selectedItem
	List.selectedItems
	List.setPropertiesAt()
	List.sortItems()
	List.sortItemsBy()
	List.vPosition
	List.vScrollPolicy

	Loader component
	Using the Loader component
	Loader component parameters
	Creating an application with the Loader component

	Customizing the Loader component
	Using styles with the Loader component
	Using skins with the Loader component

	Loader class
	Method summary for the Loader class
	Property summary for the Loader class
	Event summary for the Loader class

	Loader.autoLoad
	Loader.bytesLoaded
	Loader.bytesTotal
	Loader.complete
	Loader.content
	Loader.contentPath
	Loader.load()
	Loader.percentLoaded
	Loader.progress
	Loader.scaleContent

	MediaController component
	MediaDisplay component
	MediaPlayback component
	Menu component
	NumericStepper component
	Using the NumericStepper component
	NumericStepper parameters
	Creating an application with the NumericStepper component

	Customizing the NumericStepper component
	Using styles with the NumericStepper component
	Using skins with the NumericStepper component

	NumericStepper class
	Method summary for the NumericStepper class
	Property summary for the NumericStepper class
	Event summary for the NumericStepper class

	NumericStepper.change
	NumericStepper.maximum
	NumericStepper.minimum
	NumericStepper.nextValue
	NumericStepper.previousValue
	NumericStepper.stepSize
	NumericStepper.value

	PopUpManager
	Method summary for the PopUpManager class
	PopUpManager.createPopUp()
	PopUpManager.deletePopUp()

	ProgressBar component
	Using the ProgressBar component
	ProgressBar parameters
	Creating an application with the ProgressBar component

	Customizing the ProgressBar component
	Using styles with the ProgressBar component
	Using skins with the ProgressBar component

	ProgressBar class
	Method summary for the ProgressBar class
	Property summary for the ProgressBar class
	Event summary for the ProgressBar class

	ProgressBar.complete
	ProgressBar.conversion
	ProgressBar.direction
	ProgressBar.indeterminate
	ProgressBar.label
	ProgressBar.labelPlacement
	ProgressBar.maximum
	ProgressBar.minimum
	ProgressBar.mode
	ProgressBar.percentComplete
	ProgressBar.progress
	ProgressBar.setProgress()
	ProgressBar.source
	ProgressBar.value

	RadioButton component
	Using the RadioButton component
	RadioButton parameters
	Creating an application with the RadioButton component

	Customizing the RadioButton component
	Using styles with the RadioButton component
	Using skins with the RadioButton component

	RadioButton class
	Method summary for the RadioButton class
	Property summary for the RadioButton class
	Event summary for the RadioButton class

	RadioButton.click
	RadioButton.data
	RadioButton.groupName
	RadioButton.label
	RadioButton.labelPlacement
	RadioButton.selected
	RadioButton.selectedData
	RadioButton.selection

	RDBMSResolver component
	RemoteProcedureCall interface
	Screen class
	ScrollBar component
	Using the ScrollBar component
	ScrollBar parameters
	Creating an application with the ScrollBar component

	Customizing the ScrollBar component
	Using styles with the ScrollBar component
	Using skins with the ScrollBar component

	ScrollBar class
	Method summary for the ScrollBar class
	Property summary for the ScrollBar class
	Event summary for the ScrollBar class

	ScrollBar.lineScrollSize
	ScrollBar.maxPos
	ScrollBar.minPos
	ScrollBar.minHeight
	ScrollBar.minWidth
	ScrollBar.pageScrollSize
	ScrollBar.pageSize
	ScrollBar.scroll
	ScrollBar.scrollPosition
	ScrollBar.setScrollProperties()

	ScrollPane component
	Using the ScrollPane component
	ScrollPane parameters
	Creating an application with the ScrollPane component

	Customizing the ScrollPane component
	Using styles with the ScrollPane component
	Using skins with the ScrollPane component

	ScrollPane class
	Method summary for the ScrollPane class
	Property summary for the ScrollPane class
	Event summary for the ScrollPane class

	ScrollPane.complete
	ScrollPane.content
	ScrollPane.contentPath
	ScrollPane.getBytesLoaded()
	ScrollPane.getBytesTotal()
	ScrollPane.hLineScrollSize
	ScrollPane.hPageScrollSize
	ScrollPane.hPosition
	ScrollPane.hScrollPolicy
	ScrollPane.progress
	ScrollPane.refreshPane()
	ScrollPane.scroll
	ScrollPane.scrollDrag
	ScrollPane.vLineScrollSize
	ScrollPane.vPageScrollSize
	ScrollPane.vPosition
	ScrollPane.vScrollPolicy

	StyleManager
	Method summary for the StyleManager class
	StyleManager.registerColorName()
	StyleManager.registerColorStyle()
	StyleManager.registerInheritingSyle()

	Slide class
	TextArea component
	TextArea component parameters
	Creating an application with the TextArea component
	Customizing the TextArea component
	Using styles with the TextArea component
	Using skins with the TextArea component

	TextArea class
	Property summary for the TextArea class
	Event summary for the TextArea class

	TextArea.change
	TextArea.editable
	TextArea.hPosition
	TextArea.hScrollPolicy
	TextArea.html
	TextArea.length
	TextArea.maxChars
	TextArea.maxHPosition
	TextArea.maxVPosition
	TextArea.password
	TextArea.restrict
	TextArea.text
	TextArea.vPosition
	TextArea.vScrollPolicy
	TextArea.wordWrap

	TextInput component
	Using the TextInput component
	TextInput component parameters
	Creating an application with the TextInput component

	Customizing the TextInput component
	Using styles with the TextInput component
	Using skins with the TextInput component

	TextInput class
	Method summary for the TextInput class
	Property summary for the TextInput class
	Event summary for the TextInput class

	TextInput.change
	TextInput.editable
	TextInput.enter
	TextInput.hPosition
	TextInput.length
	TextInput.maxChars
	TextInput.maxHPosition
	TextInput.password
	TextInput.restrict
	TextInput.text

	Tree component
	UIComponent
	Method summary for the UIComponent class
	Property summary for the UIComponent class
	Event summary for the UIComponent class
	UIComponent.focusIn
	UIComponent.focusOut
	UIComponent.enabled
	UIComponent.getFocus()
	UIComponent.keyDown
	UIComponent.keyUp
	UIComponent.setFocus()
	UIComponent.tabIndex

	UIEventDispatcher
	UIEventDispatcher.addEventListener()
	Event Objects
	Properties of the event object

	UIObject
	Method summary for the UIObject class
	Property summary for the UIObject class
	Event summary for the UIObject class
	UIObject.bottom
	UIObject.createObject()
	UIObject.createClassObject()
	UIObject.destroyObject()
	UIObject.draw
	UIObject.height
	UIObject.getStyle()
	UIObject.invalidate()
	UIObject.left
	UIObject.load
	UIObject.move
	UIObject.move()
	UIObject.redraw()
	UIObject.resize
	UIObject.right
	UIObject.scaleX
	UIObject.scaleY
	UIObject.setSize()
	UIObject.setSkin()
	UIObject.setStyle()
	UIObject.top
	UIObject.unload
	UIObject.visible
	UIObject.width
	UIObject.x
	UIObject.y

	WebServices package
	WebServiceConnector component
	Window component
	Using the Window component
	Window component parameters
	Creating an application with the Window component

	Customizing the Window component
	Using styles with the Window component
	Using skins with the Window component

	Window class
	Method summary for the Window class
	Property summary for the Window class
	Event summary for the Window class

	Window.click
	Window.closeButton
	Window.content
	Window.contentPath
	Window.deletePopUp()
	Window.mouseDownOutside
	Window.title
	Window.titleStyleDeclaration

	XMLConnector component
	XUpdateResolver component

	Index

