
Testing candidate 4.00.46007/21/95 10:41 AM

Remote Data Objects Overview
See Also

Remote Data Objects implement a set of objects to deal with the special requirements of
remote data access.    RDO implements a thin code layer over the ODBC API and driver
manager that establishes connections, creates result sets and cursors, and executes
complex procedures using minimal workstation resources.
With RDO and the RemoteData control , your applications can access ODBC data sources
without using a local query processor.    This can mean significantly higher performance and
more flexibility when accessing remote database engines.    Although you can access any
ODBC data source with RDO and the RemoteData control, these features are designed to
take advantage of database servers, like Microsoft SQL Server and Oracle, that use
sophisticated query engines.
By using RDO, you can create simple cursor-less result sets, or more complex cursors.    You
can also run queries that return any number of result sets, or execute stored procedures
that return result sets with or without output parameters and return values.    You can limit
the number of rows returned and monitor all of the messages and errors generated by the
remote data source without compromising the executing query.    RDO also permits either
synchronous or asynchronous operation so your application doesn't need to be blocked
while lengthy queries are executed.

Note      RDO and the RemoteData control are features of the Visual Basic, Enterprise
Edition.    You cannot develop code or use the RDO object library or RemoteData control in
the Professional or Standard Editions of Visual Basic.

Converting DAO to RDO
Basically, you can use the Remote Data Objects similarly to the way you use the Microsoft
Jet database engine Data Access Objects (DAO).    With RDO, you can submit queries, create
a result set or cursor, and process the results from the query using database-independent
object-oriented code.
The following table lists RDO objects and their equivalent DAO objects.    In some cases,
these two object models are similar in function and operation.    However, there are
significant differences that are documented in the Help topics.
DAO object or term RDO object or term Notes
DBEngine rdoEngine Base object
Workspace rdoEnvironment Object and collection
Database rdoConnection Object and collection
Recordset rdoResultset Object and collection
Dynaset-type
Recordset

Keyset-type rdoResultset Object and collection

Snapshot-type
Recordset

Static-type rdoResultset Object and collection

Not implemented Dynamic-type
rdoResultset

No DAO equivalent

Table-type Recordset Not implemented No RDO equivalent
Not implemented Forward-only type

rdoResultset
No Jet equivalent

forward-only-scrolling
snapshot-type
Recordset

Not implemented No RDO equivalent

Error rdoError Object and collection
Field rdoColumn Object and collection
QueryDef rdoPreparedStatement Object and collection
TableDef rdoTable Object and collection

Parameter rdoParameter Object and collection
record row Term
field column Term
Jet's table-type Recordset object permits direct access to an entire table using a selected
ISAM index.    Although you could simulate this with RDO, it would require the creation of a
cursor that spans the entire table, which is generally impractical.    Jet's DAO also provides
the ability to create a forward-only-scrolling snapshot-type Recordset.    This option is
similar to the forward-only result set except that the forward-only rdoResultset can be
updatable.

See Also
Choosing a Cursor Type
Using the RemoteData Control

Using the RemoteData Control
See Also

This topic provides additional details on the RemoteData control.
The RemoteData control performs a number of automatic operations, including:

Once the form containing the RemoteData control is loaded, if sufficient properties
have been set at design time, Visual Basic uses the RemoteData control to establish a
connection to the ODBC data source.    This creates an rdoConnection object by using the
DataSourceName, UserName, Password, Options, Type, and Connect properties.    See
the following table for the minimum properties required for automatic initialization and how
these properties are used.

If insufficient information is provided in the RemoteData control    properties, the
ODBC driver manager exposes a dialog to gather missing parameters.    If the connection is
established, the RemoteData control sets or resets the Environment, Connection,
DataSourceName, Transactions, and Connect properties based on the values used to
establish the connection.

Once the connection is established, the RemoteData control runs a query against
the data source using the SQL, CursorDriver, Options, LockType, ErrorThreshold, and
ResultsetType properties.    This creates an rdoResultset object and sets the Resultset,
ResultsetType, and Updatable properties.    By default, a read-only, forward-only
rdoResultset is created if the ResultsetType is not specified or is not supported by the
driver.

The StillExecuting property is set to True while the rdoResultset is being created. 
If you choose to cancel the query, and the rdAsyncEnable option is set, you can use the
Cancel method against the rdoResultset to terminate processing of the query.

Once the first row of the rdoResultset is available, the StillExecuting property is
set to False and the RemoteData control passes column data to each bound control
requesting data.    The rdoResultset.RowCount property is set to a non-zero value if any
rows resulted from the query.    If no data is returned by the rdoResultset, the
RemoteData control's behavior is determined by the EOFAction property.
RDO Support
The RemoteData control also exposes the component objects it uses or creates so that
your code can use these objects with appropriate RDO methods and properties.
RemoteData property Exposes this RDO

object
Access

Environment rdoEnvironment Read-Only
Connection rdoConnection Read-Only
Connect Connect strings Read/Write
Resultset rdoResultset Read/Write
You can also create an rdoResultset independently of the RemoteData control and set
the Resultset property to this new object.    The RemoteData control assumes the
rdoConnection and other attributes of the assigned rdoResultset object.

Validation
Use the Validate event and the DataChanged property to perform last-minute checks on
the rows about to be written to the database.    The Validate event is triggered before each
reposition of the current row pointer.    If data changes in any bound control, the Validate
event is triggered, and if not canceled by the action argument, the data source is updated. 
See the Validate event for more information.

BOF/EOF Handling
The RemoteData control can also manage what happens when you encounter an
rdoResultset with no rows.    By changing the EOFAction property, you can program the
RemoteData control to enter AddNew mode automatically.

You can program the RemoteData control to automatically snap to the top or bottom of its
parent form by using the Align property.    In either case, the RemoteData control is
resized horizontally to fill the width of its parent form whenever the parent form is resized.   
This property allows a RemoteData control to be placed on an MDI form without requiring
an enclosing Picture control.

See Also
Remote Data Objects Overview
Repositioning the Current Row Pointer
Running Asynchronous Queries
Using RemoteData Control Properties
Understanding rdoResultset Objects
Using Bound Controls with the RemoteData Control
Using ODBC Handles

Creating Parameter Queries
See Also Example

When you submit a query to a remote query processor for execution, you must often
modify the query to refocus the scope of the result set.    For example, if you need to create
a result set that contains all of the dentists in a particular town, you can use the following
code:
"SELECT Name, Specialty, Phone FROM Dentists WHERE Town = 'Detroit' "
The desired town is hard-coded in the query, so you must write code to change the town
name each time the query is executed.
You can handle this problem by:

Concatenating the SQL parameters that change into the SQL query.
Coding the query so that RDO and the ODBC driver manager can integrate the

parameters as required.
Concatenating the SQL Parameters
This technique uses a base query that is created each time it is executed.    The desired
parameter(s) are appended into the SQL string in the appropriate place(s).    For example:
Dim MySQL As String
MySQL = "SELECT Name, Specialty, Phone FROM Dentists WHERE Town = '"
MySQL = MySQL & SelectedTown$ & "' "
The resulting string is passed to the OpenResultset method for execution.    This approach
is simple to use, but does not lend itself to parameters that must be returned as well as
passed.    It also requires that the remote query processor re-compile the query each time it
is executed, which can impact performance on heavily used systems.    You must also
remember to bracket the parameter in quotes and deal with the eccentricities of embedded
quotes and formatting.

Coding the Query to Integrate the Parameters
By using the ODBC escape-code placeholders, you can specify four types of parameters:
input, output, input/output, and return values.    When working with certain types of stored
procedures, this technique is the only suitable method to pass and return parameters.    For
these situations, use ODBC SQL syntax to create your query, and a question mark "?" as a
placeholder for your return value and each parameter.    For example, to code the Dentist
example:
MySQL = "SELECT Name, Specialty, Phone FROM Dentists WHERE Town = ?"
This string is used as an argument when you create an rdoPreparedStatement object
using the rdoConnection object's CreatePreparedStatement method.    Before you
execute the query, you must set the parameter values using the rdoPreparedStatement
object's rdoParameters collection.    For example:
Dim Ps As rdoPreparedStatement
' cn is an open rdoConnection.
Set Ps = cn.CreatePreparedStatement("PSDentist", MySQL)
Ps.rdoParameters(0) = SelectedTown$
To execute the query, use the OpenResultset method against the
rdoPreparedStatement:
Dim Rs As rdoResultset
Set Rs = Ps.OpenResultset(rdOpenKeyset)
To change the parameter(s) for subsequent queries, simply change the rdoParameter for
each parameter in the query, and use the Requery method to run the query again:
Ps.rdoParameters(0) = SelectedTown$' Assuming this has changed.
Rs.Requery

Return Codes and Output Parameters

If your query returns information in the form of output parameters or a return value, you
must set the Direction property of the non-input parameters before you execute the query.
Since return values and output parameters are returned by stored procedures, you must
use a slightly different syntax to execute the query.    In this case, you must use the ODBC
call operator to help the ODBC interface parse and process the query correctly.    For
example, to execute a procedure that has a return value, an input parameter, and an
output parameter, you need to create an SQL statement that contains the name of the
stored procedure:
MySQL = "{ ? = call My_StoredProc (?, ?) }"
Once the procedure is defined, incorporate it into an rdoPreparedStatement and set the
Direction property based on the type of parameter:
Set Ps = cn.CreatePreparedStatement("PSStoredProc", MySQL
Ps(0).Direction = rdParamReturnValue
Ps(1).Direction = rdParamInput
Ps(2).Direction = rdParamOutput
At this point you are ready to execute the procedure.    Use the OpenResultset method or
the Execute method (for action queries) against the rdoPreparedStatement to execute
the query:
Ps(1) = "My Input value"
Set Rs = rdoPreparedStatement.OpenResultset(rdOpenKeyset)
To retrieve the values returned by the return value and the output parameters, reference
the rdoParameters collection:
MyRetVal = Ps(0)
MyOutputVal = Ps(2)
As with the simpler form of rdoPreparedStatement, you can use the Requery or
Execute method (for action queries) to re-execute the query after having changed one or
more parameters.

See Also
Direction Property
OpenResultset Method
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Requery Method

Creating Parameter Queries Example
The following example accepts a name and city from two TextBox controls and executes a
function that runs a query that passes these two values as arguments.    The function
returns a value from a stored procedure and creates an rdoResultset containing all
matching rows.
Option Explicit
Public ps As rdoPreparedStatement
Public cn As rdoConnection
Public rs As rdoResultset
Private Sub OpenRDOConnection()

Set cn = rdoEnvironments(0).OpenConnection("sequel", _
 , , "uid=;pwd=;database=pubs;")
Set ps = cn.CreatePreparedStatement("GetAuthor", "")
ps.LogMessages = "C:\vb.tst\sqllog.out"
ps.SQL = "Select * from authors where au_lname = ? and state = ?"

End Sub

Private Function SubmitQuery() As Integer
Dim i As Integer
ps.rdoParameters(0) = NameWanted.Text ' Set second input parameter.
ps.rdoParameters(1) = StateWanted.Text ' Set first input parameter.

' Create result set based on parameters.
Set rs = ps.OpenResultset(rdOpenKeyset)

' Return the return value from stored procedure.
SubmitQuery = ps.rdoParameters(0)

If rs.EOF Then
SubmitQuery = -1 ' If no data is returned, indicate by -1.

Else
List1.Clear
While Not rs.EOF

List1.AddItem rs(0) & " - " & rs(1) & ", " & rs(2)
rs.MoveNext

Wend
End If
End Function

Private Sub Command1_Click()
Dim Result%
Result = SubmitQuery()

End Sub

Private Sub Form_Load()
OpenRDOConnection

End Sub

Understanding Cursors
See Also

Applications have different needs in their ability to sense changes in the underlying tables
of a result set.    For example, when balancing financial data, an accountant needs data that
appears static; it is impossible to balance books when the data is continually changing.   
When selling concert tickets, a clerk needs up-to-the-minute, or dynamic, data on which
tickets are still available.    Various cursor models are designed to meet these needs, each
of which requires different sensitivities to changes in the underlying tables of the result set.

Forward-Only "Cursors"
The fastest way to access data from a remote data source is through use of the forward-
only result set this type of rdoResultset is not really a cursor.    In this case, the
rdoResultset is returned without the ability to move the current row back to previously-
fetched rows.

For forward-only result sets, use rdOpenForwardOnly as the type in the OpenResultset
method.
Static Cursors
At one extreme are static cursors, to which the data in the underlying tables appears to be
static.    The membership, order, and values in the result set used by a static cursor are
generally fixed when the cursor is opened.    Rows updated, deleted, or inserted by other
users (including other cursors in the same application) are not detected by the cursor until
it is closed and then reopened.
Static cursors are commonly implemented by taking a snapshot of the data or locking the
result set.    Note that in the former case, the cursor diverges from the underlying tables as
other users make changes; in the latter case, other users are prohibited from changing the
data.
For static cursors, use rdOpenStatic as the type in the OpenResultset method or in the
ResultsetType property of the RemoteData control.

Dynamic Cursors
At the other extreme are dynamic cursors, where the membership, order, and values in the
result set are ever-changing.    Rows updated, deleted, or inserted by all users (your cursor,
other cursors in the same application, and other applications) are detected by the cursor
when data is accessed.    Although ideal for many situations, dynamic cursors are difficult
and expensive to implement.
For dynamic cursors, use rdOpenDynamic as the type in the OpenResultset method.

Keyset Cursors
Between static and dynamic cursors are keyset-driven cursors, which have some of the
attributes of each.    Like static cursors, the membership and ordering of the result set of a
keyset-driven cursor is generally fixed when the cursor is opened.    Like dynamic cursors,
changes to the values in the underlying result set are visible to the cursor when data is
next fetched.
When a keyset-driven cursor is opened, the driver saves the keys for the entire result set,
thus fixing the membership and order of the result set.    As the cursor scrolls through the
result set, the driver uses the keys in this keyset to retrieve the current data values for
each row in the rowset.    Because data values are retrieved only when the cursor scrolls to
a given row, updates made to that row by other users (including other cursors in the same
application) are visible.
If the cursor scrolls to a row of data that has been deleted by other users (including other
cursors in the same application), the row appears as a hole in the result set, since the key
is still in the keyset but the row is no longer in the result set.    Updating the key values in a
row is treated as if the existing row is deleted and a new row is inserted; therefore, rows of
data for which the key values have been changed also appear as holes.    When the driver
encounters a hole in the result set, it returns a trappable error indicating that the row has
been deleted.
Rows of data inserted into the result set by other users (including other cursors in the same

application) after the cursor was opened are not visible to the cursor, since the keys for
those rows are not in the keyset.
In some cases, the cursor can detect rows it has deleted or inserted.    Because updating
key values in a keyset-driven cursor is treated as if the existing row is deleted and a new
row is inserted, keyset-driven cursors can always detect rows they have updated.
For keyset cursors, use rdOpenKeyset as the type in the OpenResultset method or in
the ResultsetType property of the RemoteData control.

Mixed (Keyset/Dynamic) Cursors
If a result set is large, it may be impractical for the driver to save the keys for the entire
result set.    Instead, the application can use a mixed cursor.    In a mixed cursor, the keyset
is smaller than the result set, but larger than the rowset.
Within the boundaries of the keyset, a mixed cursor is keyset-driven that is, the driver
uses keys to retrieve the current data values for each row in the rowset.    When a mixed
cursor scrolls beyond the boundaries of the keyset, it becomes dynamic
that is, the driver simply retrieves the next rowset size rows of data.    The driver then

constructs a new keyset, which contains the new rowset.
For example, assume a result set has 1000 rows and uses a mixed cursor with a keyset size
of 100 and a rowset size of 10.    When the cursor is opened, the driver (depending on the
implementation) saves keys for the first 100 rows and retrieves data for the first 10 rows.    If
another user deletes row 11 and the cursor then scrolls to row 11, the cursor will detect a
hole in the result set; the key for row 11 is in the keyset but the data is no longer in the
result set.    This is the same behavior as a keyset-driven cursor.    However, if another user
deletes row 101 and the cursor then scrolls to row 101, the cursor will not detect a hole; the
key for row 101 is not in the keyset.    Instead, the cursor will retrieve the data for the row
that was originally row 102.    This is the same behavior as a dynamic cursor.
For keyset cursors, use rdOpenKeyset as the type in the OpenResultset method and set
the keyset size smaller than the expected result set row count, but larger than the rowset
size.

See Also
Choosing a Cursor Type
CursorDriver Property
OpenResultset Method
rdoDefaultCursorDriver Property
rdoResultset Object, rdoResultsets Collection
Repositioning the Current Row Pointer
Using the RemoteData Control

Understanding rdoResultset Objects
See Also

Your application can create as many rdoResultset object variables as needed.    An
rdoResultset can refer to one or more tables based on SQL queries that join data from
base tables.    rdoResultset objects cannot refer to other rdoResultset objects or
rdoPreparedStatement objects.
You can have more than one rdoResultset object variable that refers to the same set of
rows.    Also, keep in mind that object variables created with the Dim statement in the
Declarations section of a form exist only while the form is open, and are closed when the
form is unloaded.    In the same way, object variables created in a procedure exist only until
the procedure has finished.    Explicitly complete any pending transactions or edits, and
close all rdoResultset and rdoConnection objects before exiting or completing any
procedure containing declarations for these remote data objects.
An rdoResultset may not be updatable even if you request an updatable rdoResultset.   
If the underlying database, table, or column isn't updatable, or if your user does not have
update permission, all or portions of your rdoResultset may be read-only.    Examine the
rdoConnection, rdoResultset, and rdoColumn objects' Updatable property to
determine if your code can change the rows.

Note      If you use variables to represent an rdoResultset object and the rdoConnection
object that contains the rdoResultset object, make sure the variables have the same
scope or lifetime.    For example, if you declare a global variable that represents an
rdoResultset, make sure the variable that represents the database containing the rowset
is also global or is declared in a Sub or Function procedure using the Static keyword.

See Also
rdoResultset Object, rdoResultsets Collection
Understanding Cursors

Using Bound Controls with the RemoteData Control
See Also

The RemoteData control can be used with any data-aware bound control supplied with
Visual Basic or from third parties.
Generally, bound controls expose the data values from the current row of the
rdoResultset created by the RemoteData control.    However, the DBList, DBCombo,
and DBGrid controls are all capable of managing sets of rows when they are bound to a
RemoteData control.    All of these controls permit several rows to be displayed or
manipulated as a set.   
The CheckBox, TextBox, Label, Picture, Image, ListBox, and ComboBox controls are
also data-aware.    Each of these controls can be bound to a single column of an
rdoResultset managed by the RemoteData control.    Additional data-aware controls like
the RichText, MaskedEdit, and 3DCheckBox controls are also available in the
Professional and Enterprise Editions of Visual Basic.
Make sure that each bound control's DataField property corresponds to the Name
property of an rdoColumn object returned by an rdoResultset.    If the DataField
property does not match the Name property of one of the rdoColumn objects in an
rdoResultset, a trappable error results.

Note      Help files and other documentation for bound controls might not refer to the
correct RemoteData control properties when reporting errors or when discussing their
properties or use.    For example, some bound control documentation mentions the
RecordSource property.    When using the RemoteData control, instead of the Data
control, the SQL property is used in roughly the same fashion as the RecordSource
property.

See Also
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Resultset Property
SQL Property
Using the RemoteData Control

Repositioning the Current Row Pointer
See Also

An rdoResultset object can have any number of valid rows, but only one of those rows can
be current at any one time.    Most RDO operations are made against, or in relation to the
current row.    For example, when you use the Edit method, you activate the current row for
editing.    When you use the MoveNext or MovePrevious method, the current row is
repositioned relative to the current row.
The current row might not point to a valid row, or may be indeterminate.    For example, if
you use the Delete method, the current row is no longer valid and is considered to be in an
indeterminate state.    An rdoResultset can be created that has no rows in this case there
is no current row.

Repositioning the Current Row Using RDO
You can use the following Move methods against an open rdoResultset object:

MoveNext moves the current row pointer one row toward the end of the
rdoResultset.

MovePrevious moves the current row pointer one row toward the beginning of the
rdoResultset.

MoveLast moves the current row pointer to the last row (the end) of the
rdoResultset.

MoveFirst moves the current row pointer to the first row (the beginning) of the
rdoResultset.

Move moves the current row pointer 'n' rows forward or backward relative to the
current row or a bookmark.
You can also reposition the current row by using one of the movement properties against an
open rdoResultset object:

Bookmark moves the current row pointer to a specific row in the rdoResultset
based on a saved bookmark value.

AbsolutePosition moves the current row pointer to the 'nth' row in the
rdoResultset.

PercentPosition moves the current row pointer to a specified percentage value
based on the number of rows in the rdoResultset.    For example, if you set
PercentPosition to 10 and there are 200 rows in the result set, the current row is
positioned on the 20th row.

LastModified returns the bookmark of the row which was most recently modified.    If
you set the Bookmark property to this value, the current row pointer is repositioned to that
row.
Note      If you create a forward-only result set, only the MoveNext or MoveLast methods
or Move with a positive value can be used.

Repositioning the Current Row Using the RemoteData Control
You can reposition the current row pointer using the mouse and the RemoteData control,
or by using any of the Move methods against its Resultset property.    The following details
examine what happens when the current row pointer is changed.

Before each reposition, the bound controls are queried for new data for the current
row.    The Validate event is triggered, and if not canceled by the action argument, the data
source is updated if any data in the bound control has changed.   

After the RemoteData control positions to a new row in the data source, column
data is passed to the bound controls and the Reposition event is triggered.   

Once either end of the rdoResultset is reached, the RemoteData control's behavior
is determined by the EOFAction and BOFAction properties.

You can use the MoreResults method against the rdoResultset to complete
processing of the current result set and determine if additional result sets are available.    If
MoreResults returns True, the process of handling the rdoResultset is restarted

 just as if a new query has been executed.    The previous result set is no longer available.

See Also
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Resultset Property
SQL Property
Using the RemoteData Control

Using ODBC Handles
See Also

RDO and the RemoteData control provide access to the underlying ODBC handles used by
the ODBC driver manager and the ODBC data source driver to create the data objects and
manage the environment and connection.    These handles are created and released
automatically and are accessible by using the appropriate property.    You should not save
these handles in program variables as they are subject to change without notice.
The following table shows the ODBC handles that are created by RDO.
RDO property Handle created by the ODBC API
rdoEnvironment.hEnv SQLAllocEnv
rdoConnection.hDbc SQLAllocConnect,

SQLDriverConnect
rdoResultset.hStmt SQLAllocStmt
rdoPreparedStatement.hStmt SQLAllocStmt

Warning      If you close connections or deallocate any of these handles using ODBC API
code, the RemoteData control and RDO might behave unpredictably.

See Also
hDbc Property
hEnv Property
hStmt Property

Running Asynchronous Queries
See Also

If you need to execute a query that is expected to run for an extended period of time, you
can use the rdAsyncEnable option.    In this case, RDO begins execution of the query, but
returns control to your application immediately before the query is completed or the result
set is created.    This is called asynchronous operation, and can be used with queries that
return rows, or with action queries.

RDO Asynchronous Operation
To start an asynchronous query using RDO, set the option argument in the OpenResultset
or Execute methods to rdAsyncEnable.    Once the query is started, control returns to
your application immediately.    You cannot use the rdoResultset until the query is
complete as indicated by the StillExecuting property.    Once StillExecuting changes to
False, the rdoResultset can be accessed, or you can examine the RowsAffected
property.
RDO periodically checks to see if the query is complete.    You can set the period of time
between checks by using the AsyncCheckInterval property.
If you choose to stop execution of a query, you can use the MoreResults method, which
flushes the current rdoResultset and prepares the next result set.    This is especially
useful in cases where the query returns more than one result set.    If MoreResults returns
False, there are no additional result sets to process.
To flush an entire query including all subsequent result sets, use the Cancel method
against the result set.    This stops execution of the entire query batch not just the currently
running query.

If you do not request asynchronous operation, no other Visual Basic operations or events can
occur until the first data row of the rdoResultset is fetched your application is essentially
blocked.    However, other Windows-based applications are permitted to continue executing
while the rdoResultset is being created.
RemoteData Control Asynchronous Operation
If you set the Options property to rdAsyncEnable before the RemoteData control
creates the rdoResultset, control returns to your application before the rdoResultset
contains rows.    Check the StillExecuting property of the RemoteData control's
underlying rdoResultset object to determine when the first data row is available.    To
cancel the query, use the rdoResultset.Cancel method.

See Also
AsyncCheckInterval Property
Cancel Method
Execute Method
MoreResults Method
OpenResultset Method
Options Property
rdoResultset Object, rdoResultsets Collection
RemoteData Control
StillExecuting Property

Choosing a Cursor Type
See Also

Choosing the right cursor for your application can significantly impact performance and
resource management.    In many cases, use of the forward-only type result set is the best
choice as it only exposes one row of the result set at a time, and is far easier for RDO to
create.    However, the forward-only result set is not a cursor, and does not permit access to
more than one row at a time.    Your choice of cursor depends on how many rows you intend
to access, how you need to navigate through the result set, how membership is
determined, and how you intend to update the data.

Server-Side Cursor Support
Another important aspect of keyset or dynamic cursors is where the keyset is created.    If
your server supports server-side cursors, as is the case with Microsoft SQL Server 6.0, you
can specify that the cursor keyset is created and maintained on the server.    If you use
client-side cursors, cursor keysets are downloaded to the workstation and stored in local
memory.    In many cases, using server-side cursors can significantly improve    performance.
To enable server-side cursors, set the rdoDefaultCursorDriver or CursorDriver property.

Selecting a Cursor Type
To select a specific type of rdoResultset cursor, set the RemoteData control's
ResultsetType property or the type argument of the OpenResultset method to:
Resultset type Constant
Forward-only (Default) rdOpenForwardOnly
Static rdOpenStatic
Keyset rdOpenKeyset
Dynamic rdOpenDynamic

Available Cursor Types
The following table summarizes the four types of rdoResultset cursors:
Attribute Forward-

only
Static Keyset Dynamic

Updatable Yes (SS)
No (CL)

No (SS)
Yes (CL)

Yes Yes

Membership Fixed Fixed Fixed Dynamic
Visibility One row Cursor Cursor Cursor
Move current row Forward Anywhere Anywhere Anywhere
Result of a join Yes Yes Yes Yes
Notation: CL indicates that support for this cursor is provided by the ODBC cursor library.   
SS indicates support by Microsoft SQL Server.
You can choose the type of rdoResultset object you want to create using the type
argument of the OpenResultset method or the ResultsetType property of the
RemoteData control.    If you don't specify a type, the RemoteData control creates a
keyset-type rdoResultset.    When using RDO to create rdoResultset objects, the default
type is forward-only.

Supported Cursor Types
Not all data sources support every type of cursor.    In some cases the ODBC driver cursor
library must be used in lieu of server-side cursors this limits the type of cursors supported.
The following table summarizes which type of cursor is supported on several typical data
sources and on the RemoteData control:
Data source Forward-only Static Keyset Dynamic
SQL Server 4.2 Yes Yes/CL No No
SQL Server 6.0 Yes Yes Yes Yes

Oracle 7.1 Yes Yes/CL No No
RemoteData control No Yes Yes/DD No
Notation: CL indicates that support for this cursor is provided by the ODBC cursor library.   
DD indicates support is provided subject to support by the ODBC driver.

Cursors and the RemoteData Control
If you create an rdoResultset and set the Resultset property with this new object, the
ResultsetType property of the RemoteData control is set to the Type property of the
new rdoResultset.

Note      When using forward-only, read-only result sets, the rdoConnection is held open
until the last row of data is accessed.    This type of cursor can provide performance
improvements over other cursors, but can tie up connection resources.

See Also
CursorDriver Property
OpenResultset Method
rdoDefaultCursorDriver Property
ResultsetType Property
Type Property
Understanding Cursors

Using RemoteData Control Properties
See Also

To create an rdoResultset with the RemoteData control, you must first describe the type
and characteristics of the result set using the RemoteData control properties.    Once the
properties are set at run time, use the Refresh method to build a new rdoResultset
object.    If you set the SQL property at design time, the RemoteData control attempts to
build a result set when the form containing the control is first loaded.
The following table lists the properties you can use to describe and create an
rdoResultset.
Property Description
Connect Holds the parameters needed by the ODBC driver manager to

establish a connection.    It is reset after the connection is established
to reflect the parameters used to make the connection.

Connection Set with the rdoConnection created by the RemoteData control
when the connection is established.

CursorDriver Determines if local or server-side cursors are to be used.    Default
value is set by rdoEngine.rdoDefaultCursorDriver;
rdUseIfNeeded is the default.

DataSourceName Determines the ODBC data source name used by the ODBC driver
manager to establish the connection.

EditMode Indicates if AddNew or Edit have been executed against current row.
ErrorThreshold Determines severity level of critical errors.
KeysetSize Determines the number of rows in the cursor keyset.    Used only for

mixed cursors and should be set to 0 in all other cases.
LockType Determines the type of concurrency used when rdoResultset is

updated.
LoginTimeout Determines how long the ODBC driver manager waits before

abandoning a connection attempt.
LogMessages Sets filename of ODBC log file.
MaxRows Determines maximum number of rows to be returned by the query.
Options Sets build option(s). rdAsyncEnable enables asynchronous queries.
Password Sets password used to establish a data source connection.
Prompt Sets ODBC driver manager behavior when connection arguments are

missing.
QueryTimeout Sets how long the ODBC driver manager waits for the first row of a

query to become available.
ReadOnly Sets connection to permit or prohibit changes to the data.
Resultset Sets or returns the rdoResultset object managed by the

RemoteData control.
ResultsetType Sets the type of cursor to create.
RowsetSize Sets the size of the cursor rowset.    Also referred to as the "fat cursor"

size.
SQL Determines the SQL query used to create the rdoResultset.
Transactions Indicates if the rdoResultset supports transactions.
UserName Determines the user name used to log on to the ODBC data source.

See Also
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Using Bound Controls with the RemoteData Control

action query
An SQL query that changes the underlying data or performs some administrative operation,
such as adding new tables or users.    An action query returns the number of rows affected
rather than a result set.

aggregate function
A function, such as Count, Avg, or Sum, used in a query that calculates values.    In writing
SQL expressions, you can use SQL aggregate functions to determine various statistics.

alias
In Visual Basic, an alternate name you give to an external procedure to avoid conflict with a
Visual Basic keyword, global variable, constant, or a name not allowed by the standard
naming conventions.
In SQL, an alternate name you give to a column or expression in a SELECT statement, to
make it shorter or more meaningful, or to prevent name conflicts when performing SQL
queries using expressions that don't return names, or in a query that references the same
table more than once.

base table
A table in a remote database.    You can manipulate the structure of a base table using data
definition SQL statements, and you can modify data in a base table using rdoResultset
objects or action queries.

bookmark
A system-generated value identifying the current row that is contained in an rdoResultset
object's Bookmark property.    If you assign the Bookmark property value to a variable
and then move to another row, you can make the earlier row current again by assigning the
value of the variable to the Bookmark property.

Boolean
A True/False or yes/no value.    Boolean values are usually stored in Bit columns in a
remote database; however, some data sources don't support this data type directly.

Byte data type
A fundamental data type used to hold small positive integer numbers ranging from 0 to
255.

bound control
A data-aware control that can provide access to a specific column or columns in a data
source through a RemoteData or Data control.    A data-aware control can be bound to a
RemoteData or Data control through its DataSource and DataField properties.    When a
RemoteData or Data control moves from one row to the next, all bound controls
connected to the RemoteData or Data control change to display data from columns in the
current row.    When users change data in a bound control and then move to a different row,
the changes are automatically saved in the data source.

Cartesian product
The result of joining two relational tables, producing all possible ordered combinations of
rows from the first table with all rows from the second table.
Generally, a Cartesian product results from executing an SQL SELECT statement
referencing two or more tables in the FROM clause, and not including a WHERE or JOIN
clause that indicates how the tables are to be joined.

case-sensitive
Capable of distinguishing between uppercase and lowercase letters.    A case-sensitive
search finds text that is an exact match of uppercase and lowercase letters.    Such a search
would, for instance, treat "ZeroLengthStr" and "zerolengthstr" as different.    Case
sensitivity is a feature of some database management systems.

column
Defines the data type, size, and other attributes of one column of an rdoTable or
rdoResultset.    All columns taken as a set define a row in the database.    An individual
column contains data related in type and purpose throughout the table; that is, a column's
definition doesn't change from row to row.

commit
To accept a pending transaction.    If you use transaction processing and begin a
transaction, none of the changes made in the transaction will be written to the data source
until you commit (accept) the transaction.

copy buffer
A location created by the rdoResultset object for the contents of a row that is open for
editing.    The Edit method copies the current row to the copy buffer; the AddNew method
clears the buffer for a new row; and the Update method saves the data from the copy
buffer to the data source, replacing the current row or inserting the new row.    Any
statement that resets or moves the current row pointer, or cancels the edit, will discard the
copy buffer.

connect string
A string used to specify a data source and other information, such as user name and
password.    The connect string is usually assigned to the Connect property of an
rdoConnection object or RemoteData control, or as an argument to the
OpenConnection method.

criteria
A set of limiting conditions, such as = "Denmark" (meaning equal to Denmark) or > 30000,
used in creating a query or filter to show a specific set of rows.

current transaction
All changes made to an rdoResultset object or a set of rows in a database after you use
the last BeginTrans method and before you use the RollbackTrans or CommitTrans
method.

remote data object
An object, such as rdoConnection, rdoTable, rdoResultset, or
rdoPreparedStatement, that represents an object used to organize and manipulate data
in code.

data page
A portion of the database in which row data is stored.    Depending on the size of the rows, a
data page may contain more than one row.    A data page in most remote databases is 2K
bytes.

data type (Remote Data)
The attribute of a variable or column that determines what kind of data it can hold.    For
example, an rdoColumn defined with the rdTypeCHAR data type is designed to contain
text.

database
A set of data related to a particular topic or purpose.    A database contains tables and can
also contain queries and table relationships, as well as table and column validation criteria.

database engine
The part of the database management system that retrieves data from and stores data in
user and system databases.

rdoConnection object
Represents an open connection to a remote data source.

database management system (DBMS)
Software used to organize, analyze, and modify information stored in a database.    For
example, the Microsoft SQL Server is an example of a database management system.

RemoteData control
Provides access to data stored in a remote ODBC data source.    The RemoteData control
allows you to move from row to row in a result set and to display and manipulate data from
the rows using bound controls.

data-definition query
An SQL-specific query that can create, alter, or delete a table, or create or delete an index
in a database.

data source
A named Open Database Connectivity (ODBC) resource that specifies the location, driver
type, and other parameters needed by an ODBC driver to access a database.

database administration
Activities required to preserve the integrity and security of a database, such as maintaining
user permissions and backing up and repairing the database.

default environment
The rdoEnvironment object that Visual Basic automatically establishes when your
application first references any remote data object.    This rdoEnvironment is referenced
by rdoEngine.rdoEnvironments(0) or simply rdoEnvironments(0).

expression (Remote Data)
Any combination of operators, constants, literal values, functions, and names of columns,
controls, and properties that evaluates to a single value.    You can use expressions as
settings for many properties and action arguments, to set criteria or define calculated
columns in queries.

column properties
Attributes of a column that describe the data it contains.    Size and Type are examples.

filter
A set of criteria applied to rows in order to create a subset of the rows.

forward scroll
Movement toward the end (EOF) of an rdoResultset object.

forward-only-type rdoResultset
An rdoResultset object in which rows can be searched only from beginning to end; the
current row position can't be moved back toward the first row, and only one row at a time is
accessible.    Forward-only type rdoResultset objects are useful for quickly retrieving and
processing data.

identifier
An element of an expression that refers to the value of a column or property.

index (Remote Data)
A dynamic cross-reference of one or more table data columns that permits faster retrieval
of specific rows from a table.    As rows are added, changed, or deleted, the database
management system automatically updates the index to reflect the changes.   

initialization file
An ASCII text file used to contain parameters for configuring Windows-based applications or
Microsoft Windows itself.    Generally, an initialization file uses the extension .INI and is
named after the executable program that uses it.    For example, a program named
TESTING.EXE would expect an initialization file called TESTING.INI.

Integer data type
A fundamental data type that holds integer numbers.    An Integer variable is stored as a
16-bit (2-byte) number ranging in value from -32,768 to 32,767.    The type-declaration
character is % (ANSI character 37).

locked
The condition of a data page or row that makes it read-only to all users except the one who
is currently entering data in it.

ODBC (Open Database Connectivity)
A standard protocol that permits applications to connect to a variety of external database
servers or files.    ODBC drivers used by the ODBC driver manager permit access to SQL
Server and several other data sources, including text files and Microsoft Excel
spreadsheets.   

optimistic
A type of locking in which the data page containing one or more rows, including the row
being edited, is unavailable to other users only while the row is being updated by the
Update method, but is available between the Edit and Update methods.    Optimistic
locking is used when the rdConcurRowver or rdConcurValues LockType is used when
opening an rdoResultset.

parameter
An element containing a value that you can change to affect the results of the query.    For
example, a query returning data about an employee might have a parameter for the
employee's name.    You can then use one rdoParameter of the rdoPreparedStatement
object to find data about any employee by setting the parameter to a specific name before
running the query.

pessimistic
A type of locking in which the page containing the row being edited is unavailable to other
users when you use the Edit method and remains unavailable until you use the Update
method.    Pessimistic locking is enabled when the rdConcurLock LockType is used when
opening an rdoResultset.

query
A formalized instruction to a database to either return a set of rows or perform a specified
action on a set of rows, as specified in the query.    For example, the following SQL query
statement returns rows:
SELECT CompanyName FROM Publishers WHERE State = 'NY'
You can create and run select, action, parameter, and stored procedure queries.

read-only
A type of access to data whereby information can be retrieved but not modified.    This will
provide better performance in most cases.

row
A set of related data about a person, place, event, or some other item.    Table data is stored
in rows in the database.    Each row is composed of a set of related columns each column
defining one attribute of information for the row.    Taken together, a row defines one
specific unit of retrievable information in a database.

requery
To rerun a query to reflect changes to the rows, retrieve newly added rows, and eliminate
deleted rows.

security
Used to specify or restrict the access that specified users or user groups have to data and
objects in a database.

server
The database management system designed to share data with client applications; servers
and clients are often connected over a network.    A database server usually contains and
manages a central repository of data that remote client applications can retrieve and
manipulate.

SQL statement
An expression that defines a Structured Query Language (SQL) command, such as SELECT,
UPDATE, or DELETE, and which might include clauses such as WHERE and ORDER BY.    SQL
strings and statements are typically used in queries and rdoResultset objects but can also
be used to create or modify a database structure.
The syntax for SQL statements is dependent on the data source.

table
A basic unit of data storage in a relational database.    A table stores data in rows and
columns and is usually about a particular category of things, such as employees or parts.   
Also called a base table.

rdoTable object
Represents the stored definition of a base table or an SQL view.

transaction
A series of changes made to a database's data.    Mark the beginning of a transaction with
the BeginTrans statement, commit the transaction using the CommitTrans statement, or
undo all your changes since BeginTrans using the RollbackTrans statement.
Transactions are optional, but can increase the speed of operations and allow changes to
be reversed.
Transactions can be managed at the rdoConnection level or at the rdoEnvironment
level.

update
The process that saves changes to data in a row.    Until the row is saved, changes are
stored in a temporary row called the copy buffer.
The UPDATE clause in an SQL statement changes data values in one or more rows    in a
database table.

message
A packet of information passed from one application to another.

multiuser database
A database that permits more than one user to access and modify the same set of data at
the same time.    In some cases, the additional "user" may be another instance of your
application, or another application running on your system that accesses the same data as
some other application.

normalize
To minimize the duplication of information in a relational database through effective table
design.

null
A value that indicates missing or unknown data.    Null values can be entered in columns
for which information is unknown and in expressions and queries.    In Visual Basic, the Null
keyword indicates a Null value.

null column
A column containing no characters or values.    A null column isn't the same as a zero-
length string ("") or a column with a value of 0.    A column is set to null when the content of
the column is unknown.    For example, a Date_Completed column in a task table would be
left null until a task is completed.

ODBC driver
A dynamic-link library (DLL) used to connect a specific Open Database Connectivity data
source with a client application.

parameter query
A query that requires you to provide one or more criteria values, such as Redmond for City,
before the query is run.    A parameter query isn't, strictly speaking, a separate kind of
query; rather, it extends the flexibility of other queries.

parse
To identify the parts of a statement or expression and then validate those parts against the
appropriate language rules.

permission
One or more attributes that specify what kind of access a user has to data or objects in a
database.    For example, a table or query with Read Only permission permits a user to
retrieve but not edit data in the table or query.

rowset population
The process of loading rdoResultset rows into memory.   
rdoResultset objects populate the number of rows defined by the RowsetSize attribute.   
If you are using server-side cursors, only this number of rows is present in memory at any
given time.

session
A session begins when a user connects to a data source and ends when a user disconnects. 
All operations performed during a session are subject to permissions determined by the
login user name and password.    Sessions are implemented as rdoConnection objects.

Single data type
A fundamental data type that holds single-precision floating-point numbers in IEEE format.   
A Single variable is stored as a 32-bit (4-byte) number ranging in value from -3.402823E38
to -1.401298E-45 for negative values, from 1.401298E-45 to 3.402823E38 for positive
values, and 0.    The type-declaration character is !.

Structured Query Language (SQL)
A language used in querying, updating, and managing relational databases.    SQL can be
used to retrieve, sort, and filter specific data to be extracted from the database.

SQL database
A database that can be accessed through the use of Open Database Connectivity (ODBC)
data sources or another interface native to the database.    Also known as a relational
database.

SQL-specific query
A query that can be created only by writing an SQL statement.

String data type
A fundamental data type that holds character information.    A String variable can contain
approximately 65,535 bytes (64K), is either fixed-length or variable-length, and contains
one character per byte.    Fixed-length strings are declared to be a specific length.   
Variable-length strings can be any length up to 64K, less a small amount of storage
overhead.
The type-declaration character for the String data type is $.

temporary disk
The directory identified by the TEMP operating system environment variable.    Also known
as temporary drive.    Although the TEMP environment variable may point to a RAM disk,
this isn't recommended.

TEMP
A TEMP environment variable is initialized by your system when it is started.    Generally,
TEMP points to an area on your hard disk used by Microsoft Windows and other programs to
store information that doesn't need to be saved after you shut down your system.    For
example, the following line in your AUTOEXEC.BAT file points the TEMP environment
variable to the D:\TEMPAREA directory:
SET TEMP=D:\TEMPAREA

update query
An action query that changes base table data according to criteria you specify.    An update
query doesn't return any rows, but it does return the number of rows affected.

user account
An account identified by a user name and password that is created to manage access to
objects in a remote database.

validation
The process of checking whether entered data meets certain conditions or limitations.

WHERE clause
The part of an SQL statement that specifies which rows to retrieve.    The WHERE clause
limits the scope of the query and specifies which columns are used to join multiple tables.

Yes/No data type
A column data type that contains a Boolean (True/False or yes/no) value.

zero-length string
A string containing no characters.    The Len function of a zero-length string returns 0.

DDL (Data Definition Language)
The language used to describe attributes of a database, especially the schema associated
with tables, columns, and storage strategy.

ODBC data source
A database or database server used as a source of data.    ODBC data sources are referred
to by their Data Source Name.    Data sources can be registered using either the ODBC
Administrator in the Windows Control Panel or the rdoRegisterDataSource method.

reserved word
A word that is part of the data source SQL language.    Reserved words include the names of
statements, predefined functions and data types, methods, operators, and objects.   
Examples include SELECT, UPDATE, BETWEEN, SET, and INSERT.

string expression
Any expression that evaluates to a sequence of contiguous characters.    Elements of the
expression can include a function that returns a string, a string literal, a string constant, a
string variable, a string Variant, or a function that returns a string Variant (VarType 8).

Long data type
A four-byte integer (a whole number between -2,147,483,648 and 2,147,483,647,
inclusive).

numeric expression
Any expression that can be evaluated as a number.    Elements of the expression can
include any combination of keywords, variables, constants, and operators that result in a
number.

Legend
 Applies only to object.
 Applies only to collection.
 Applies to both object and collection.

Object Browser
A dialog box that lets you examine the contents of an object library to get information
about the objects provided, their methods and properties, and possibly their constants.

object library
A file with the .OLB extension that provides information to OLE Automation clients (like
Visual Basic) about available OLE Automation objects.    You can use the Object Browser to
examine the contents of an object library to get information about the objects provided.

ASCII character set
American Standard Code for Information Interchange (ASCII) 7-bit character set widely used
to represent letters and symbols found on a standard U.S. keyboard.    The ASCII character
set is the same as the first 128 characters (0 127) in the ANSI character set.

column data types
The following table describes    the column data types.
Column data type Description
rdTypeCHAR Fixed-length character string. Length set by Size property.
rdTypeNUMERIC Signed, exact, numeric value with precision p and scale s (1    p

15; 0    s    p).
rdTypeDECIMAL Signed, exact, numeric value with precision p and scale s (1    p

15; 0    s    p).
rdTypeINTEGER Signed, exact numeric value with precision 10, scale 0 (signed:

-231    n    231-1; unsigned:    0    n    232-1).
rdTypeSMALLINT Signed, exact numeric value with precision 5, scale 0 (signed: -

32,768    n    32,767, unsigned: 0    n    65,535).
rdTypeFLOAT Signed, approximate numeric value with mantissa precision 15

(zero or absolute value 10-308    to 10308).
rdTypeREAL Signed, approximate numeric value with mantissa precision 7

(zero or absolute value 10-38    to 1038).
rdTypeDOUBLE Signed, approximate numeric value with mantissa precision 15

(zero or absolute value 10-308    to 10308).
rdTypeDATE Date data source dependent.

rdTypeTIME Time data source dependent.
rdTypeTIMESTAMP TimeStamp data source dependent.
rdTypeVARCHAR Variable-length character string. Maximum length 255.
rdTypeLONGVARCHAR Variable-length character string. Maximum length determined

by data source.
rdTypeBINARY Fixed-length binary data. Maximum length 255.
rdTypeVARBINARY Variable-length binary data. Maximum length 255.
rdTypeLONGVARBINARY Variable-length binary data. Maximum data source dependent.
rdTypeBIGINT Signed, exact numeric value with precision 19 (signed) or 20

(unsigned), scale 0 (signed: -263    n    263-1; unsigned:    0    n   
264-1).

rdTypeTINYINT Signed, exact numeric value with precision 3, scale 0 (signed: -
128    n    127, unsigned: 0    n    255).

rdTypeBIT Single binary digit.

current row
The row in an rdoResultset object that you can use to modify or examine data.    Use the
Move methods to reposition the current row in a rowset.
Only one row in an rdoResultset can be the current row; however, an rdoResultset may
have no current row.    For example, after the current rdoResultset row has been deleted,
or when an rdoResultset has no rows, the current row is undefined.    In this case,
operations that refer to the current row result in a trappable error.

data manipulation language (DML)
The SQL statement properties and methods you use to write applications or queries that
access and manipulate the data in existing databases.    This includes facilities for querying
the database, navigating through its tables, performing updates, and adding or deleting
rows.

Date/Time
Dates and times are stored internally as different parts of a real number.
The value to the left of the decimal represents a date between January 1, 100 and
December 31, 9999, inclusive.    Negative values represent dates prior to December 30,
1899.
The value to the right of the decimal represents a time between 0:00:00 and 23:59:59,
inclusive.    Midday is represented by .5.

design time
The time during which you build an application in the development environment by adding
controls, setting control or form properties, and so on.    In contrast, during run time, you
interact with the application as a user would.

environment
An rdoEnvironment    object defines a session for a specific user.    When RDO is
referenced for the first time, a default rdoEnvironment object is created with a password
of "" and user name of "".

object expression
An expression that specifies a particular object.    This expression can include any of the
object's containers.

rdoPreparedStatement object
A remote data object that contains a prepared SQL statement and collection of
rdoParameter objects for each parameter in the rdoPreparedStatement.

result set
The results of a query.    Result sets might contain rows when a query contains a SELECT
statement.    Action queries do not return rows but do return result sets that contain
information about the operation, such as rows affected.

run time
The time when an application is running.    During run time, you interact with the code as a
user would.    In contrast, design time is when the application is developed.

server-side cursor
Cursor keysets that are created on the server instead of on the client workstation.

sort order
A sequencing principle used to order data, such as dictionary, binary, ascending,
descending, and so on.

SQL view
SQL views are similar to queries: both allow you to limit the rows and columns displayed
from one or more tables, and both provide similar functionality.    SQL views are logical sets
of rows where a table represents the actual rows.

statement handle
Used by the driver to reference storage for names, parameter and binding information,
error messages, and other information related to a statement processing stream, such as
the hStmt property of the rdoResultset.

stored procedure
A pre-compiled procedure stored in a data source, available to be called from an application
as needed. Predefined queries reduce the overhead of repeatedly specifying the same
selection criteria, and are much faster than submitting an ad-hoc query.

two-phase commit
Allows an application to coordinate updates among multiple SQL servers.    This
implementation of distributed transactions treats transactions on separate SQL servers as a
single transaction. The service uses one SQL server, the commit server, as a record keeper
that helps the application determine whether to commit or to roll back transactions. Thus,
the two-phase commit guarantees that either all the databases on the participating servers
are updated or that none of them are.

Variant data type
A special data type that can contain numeric, string, or date data, as well as the special
values Empty and Null.    The VarType function defines how the data in a Variant is
treated.    All variables become variant types if not explicitly declared as some other type.

asynchronous
A type of query mode in which SQL queries return immediately, even though the results are
still pending.    This enables an application to continue with other processing while the
query is pending completion.

cursor
A logical set of rows managed by the data source or ODBC driver manager.    The cursor is
so named because it indicates the current position in the result set, just as the cursor on a
CRT screen indicates current position.

connection handle
Identifies memory storage for information about a particular connection.    RDO will request
a connection handle prior to connecting to a data source; RDO manages connection
handles automatically through the rdoConnection object.    Each connection handle is
associated with an environment handle.    An environment handle can have multiple
connection handles associated with it, and there can be multiple environments.

Data Access Objects (DAO)
Objects that are defined by the Microsoft Jet database engine.    You use data access
objects, such as the Database, TableDef, Recordset, and QueryDef objects, to
represent objects that are used to organize and manipulate data in code.

dynamic-link library (DLL)
A library of routines loaded and linked to applications at run time.

dynamic-type rdoResultset
The result of a query that can have updatable rows.    A dynamic-type rdoResultset is a
dynamic set of rows that you can use to add, change, or delete rows from an underlying
database table or tables.    A dynamic-type rdoResultset can contain columns from one or
more tables in a database.    Membership of a dynamic rdoResultset is not fixed.

environment handle
Identifies memory storage for global information, including the valid connection handles
and current active connection handle.    RDO will request this handle prior to connecting to
a data source.    The remote data objects manage environment handles automatically
through the rdoEnvironment object.

escape codes
Allow you to specify a value such as a date or time, in a data-independent way.    For
example, {d 'value'} allows you to specify the date (SELECT * FROM table WHERE DateField = {d
"2/17/94"}).    When this query is submitted to the ODBC driver, it will scan the string and
replace the escape clause with the date in the proper form for the specific ODBC driver you
are using.

keyset
The set of key values that are stored on the server or ODBC's cursor library.

keyset-type rdoResultset
The result of a query that can have updatable rows.    Movement within the keyset is
unrestricted. A keyset-type rdoResultset is a set of rows that you can use to add, change,
or delete rows from an underlying database table or tables.    A keyset-type rdoResultset
can contain columns from one or more tables in a database. Membership in a keyset
rdoResultset is fixed.

native error
An error generated and returned from the database management system of the data
source on a given connection.

ODBC driver manager
Provides the interface from the host language to the specific back-end data source driver.

Remote Data Objects (RDO)
Provide an information model for accessing remote data sources through ODBC.    RDO
offers a set of objects that make it easy to connect to a database, execute queries and
stored procedures, manipulate results, and commit changes to the server.

scope
Defines the visibility of a variable, procedure, or object.    For example, a variable declared
as Public is visible to all procedures in all modules.    Variables declared in procedures are
visible only within the procedure and lose their value between calls unless they are
declared Static.

static-type rdoResultset
The membership, order, and values in a result set used by a static cursor are generally
fixed when the cursor is opened.    Rows updated, deleted, or inserted by other users are
not detected by the cursor until it is closed and then reopened.

timestamp
Contains a unique value that is updated whenever a row is updated.

procedural query
An SQL query that executes a stored procedure.

connection
A link to an ODBC data source.

compile time
The moment at which source code is translated into executable code.

select query
A query that asks a question about the data stored in your tables, and returns an
rdoResultset object without changing the data.    Once the rdoResultset data is
retrieved, you can examine and make changes to the data in the underlying queries.

Error Event (Remote Data)
See Also Applies To

Occurs only as the result of a data access error that takes place when no Visual Basic code
is being executed.

Syntax
Private Sub object _Error([index As Integer,]Number As Long, Description As String,
Scode As Long, Source As String, HelpFile As String, HelpContext As Long,
CancelDisplay As Boolean)
The Error event syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
index Identifies the control if it's in a control array.
Number The native error number.
Description Describes the error.
Scode ODBC error return code.
Source Source of the error.
HelpFile The path to a Help file containing more information on the error.
HelpContext The Help file context number.
CancelDisplay A number corresponding to the action you want to take, as described in

Settings.
Settings
The settings for CancelDisplay are:
Constant Value Description
rdDataErrContinue 0 Continue.
rdDataErrDisplay 1 (Default) Display the error message.

Remarks
Generally, the Error event arguments correspond to the properties of the rdoError object.
You usually provide error-handling functionality for run-time errors in your code.    However,
run-time errors can occur when none of your code is running, as when:

A user clicks a RemoteData control button.
The RemoteData control automatically opens an rdoConnection and creates an

rdoResultset object after the Form_Load event.
A custom control performs an operation, such as the MoveNext method, the

AddNew method, or the Delete method.
If an error results from one of these actions, the Error event occurs.
If you don't code an event procedure for the Error event, Visual Basic displays the message
associated with the error.

Error Event (Remote Data) Applies To

RemoteData Control

See Also
AddNew Method
Delete Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoError Object, rdoErrors Collection
rdoResultset Object, rdoResultsets Collection
RemoteData Control

Reposition Event (Remote Data)
See Also Applies To

Occurs after a row becomes the current row.
Syntax
Private Sub object.Reposition ([index As Integer])
The Reposition event syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
index Identifies the control if it's in a control array.

Remarks
When a RemoteData control is loaded, the first row in the rdoResultset object becomes
the current row, causing the Reposition event.    Whenever a user clicks any button on the
RemoteData control (moving from row to row or using one of the Move methods, such as
MoveNext, or any other property or method that changes the current row), the Reposition
event occurs after each row becomes current.
In contrast, the Validate event occurs before moving to a different row.
You can use this event to perform calculations based on data in the current row or to
change the form in response to data in the current row.

Reposition Event (Remote Data) Applies To

RemoteData Control

See Also
AbsolutePosition Property
Error Event
Move Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
PercentPosition Property
rdoResultset Object, rdoResultsets Collection
Validate Event

Validate Event (Remote Data)
See Also Applies To

Occurs before a different row becomes the current row; before the Update method (except
when data is saved with the UpdateRow method); and before a Delete, Unload, or Close
operation.

Syntax
Private Sub object_Validate ([index As Integer,] action As Integer, save As Integer)
The Validate event syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
index Identifies the control if it's in a control array.
action An Integer or constant that indicates the operation causing this event to

occur, as described in Settings.
save A Boolean expression that specifies whether bound data has changed, as

described in Settings.
Settings
The settings for action are:
Constant Value Description
rdDataActionCancel 0 Cancel the operation when the Sub exits.
rdDataActionMoveFirst 1 MoveFirst method.
rdDataActionMovePrevious2 MovePrevious method.
rdDataActionMoveNext 3 MoveNext method.
rdDataActionMoveLast 4 MoveLast method.
rdDataActionAddNew 5 AddNew method.
rdDataActionUpdate 6 Update operation (not UpdateRow).
rdDataActionDelete 7 Delete method.
rdDataActionBookmark 8 The Bookmark property has been set.
rdDataActionClose 9 The Close method.
rdDataActionUnload 10 The form is being unloaded.
The settings for save are:
Setting Description
True Bound data has changed.
False Bound data has not changed.

Remarks
The save argument initially indicates whether bound data has changed.    This argument
can still be False if data in the copy buffer is changed.    If save is True when this event
exits, the Edit and UpdateRow methods are invoked.
This event occurs if no changes have been made to data in bound controls, and even if no
bound controls exist.    You can use this event to change values and update data.    You can
also choose to save data or stop whatever action is causing the event to occur and
substitute a different action.
You can change the action argument to convert one action into another.    You can change
the various Move methods and the AddNew method, which can be freely exchanged (any
Move into AddNew, any Move into any other Move, or AddNew into any Move).   
Attempting to change AddNew or one of the Moves into any of the other actions is either
ignored or produces a trappable error.    Any action can be stopped by setting action to
rdDataActionCancel.
In your code for this event, you can check the data in each bound control where

DataChanged is True.    You can then set DataChanged to False to avoid saving that
data in the database.
You can't use any methods (such as MoveNext) on the underlying rdoResultset object
during this event.

Validate Event (Remote Data) Applies To

RemoteData Control

See Also
AddNew Method
Bookmark Property
Close Method
Delete Method
Edit Method
EditMode Property
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Update Method
UpdateRow Method

QueryCompleted Event (Remote Data)
See Also Applies To

Occurs after the query of an rdoResultset returns the first result set.
Syntax
Private Sub object.QueryCompleted ([index As Integer])
The QueryCompleted event syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
index Identifies the control if it's in a control array.

Remarks
When a RemoteData control completes the asynchronous creation of an rdoResultset,
the QueryCompleted event is invoked.    This event is not triggered if you execute the
Cancel method which terminates processing of the query.

See Also
AsyncCheckInterval Property
Cancel Method
rdoResultset Object, rdoResultsets Collection
StillExecuting Property

 QueryCompleted Event (Remote Data) Applies To

RemoteData Control

Remote Data Objects and the RemoteData Control

Remote Data Objects Language Summary
An alphabetic listing of all programming language topics

Constants Objects and Collections
Events Properties
Methods Trappable Errors
Conceptual Topics Glossary

Controls
RemoteData Control

Object Models
Remote Data Object Model

Glossary (Remote Data)

Glossary (Remote Data)

See Also

A
action query
aggregate function
alias
ASCII character set
asynchronous

B
base table
bookmark
Boolean
bound control
Byte data type

C
Cartesian product
case-sensitive
column
column data types
column properties
commit
compile time
connect string
connection
connection handle
copy buffer
criteria
current row
current transaction
cursor

D
Data Access Objects (DAO)
data manipulation language (DML)
data page
data source
data type (Remote Data)
data-definition query
database
database administration
database engine
database management system (DBMS)
Date/Time
DDL (Data Definition Language)
default environment
design time
dynamic-link library (DLL)
dynamic-type rdoResultset

E
environment
environment handle
escape codes
expression (Remote Data)

F-J
filter
forward scroll
forward-only-type rdoResultset
identifier
index (Remote Data)
initialization file

Integer data type

K
keyset
keyset-type rdoResultset
locked

L
Long data type

M
message
multiuser database

N
native error
normalize
null
null column
numeric expression

O
Object Browser
object expression
object library
ODBC (Open Database Connectivity)
ODBC data source
ODBC driver
ODBC driver manager
optimistic

P
parameter
parameter query
parse
permission
pessimistic
procedural query

Q
query

R
rdoConnection object
rdoPreparedStatement object
rdoTable object
read-only
remote data object
Remote Data Objects (RDO)
RemoteData control

requery
reserved word
result set
row
rowset population
run time

S
scope
security
select query
server
server-side cursor
session
Single data type
sort order
SQL database
SQL statement
SQL view
SQL-specific query
statement handle
static-type rdoResultset
stored procedure
String data type
string expression
Structured Query Language (SQL)

T
table
TEMP
temporary disk
timestamp
transaction
two-phase commit

U
update
update query
user account

V
validation
Variant data type

W-Z
WHERE clause
Yes/No data type
zero-length string

See Also
Remote Data Objects and the RemoteData Control

Conceptual Information Summary (Remote Data)

Conceptual Information Summary (Remote Data)
See Also
Choosing a Cursor Type
Creating Parameter Queries
Remote Data Object Model
Remote Data Objects and Collections
Remote Data Objects Overview
Repositioning the Current Row Pointer
Running Asynchronous Queries
Understanding Cursors
Understanding rdoResultset Objects
Using Bound Controls with the RemoteData Control
Using ODBC Handles
Using RemoteData Control Properties
Using the RemoteData Control

See Also
Remote Data Objects and the RemoteData Control

Remote Data Objects Language Summary

See Also

A
AbsolutePosition Property
AddNew Method
AllowZeroLength Property
AppendChunk Method
AsyncCheckInterval Property
Attributes Property

B
BeginTrans Method
BindThreshold Property
BOF Property
BOFAction Property
Bookmark Property
Bookmarkable Property

C
Cancel Method
CancelUpdate Method
ChunkRequired Property
Clear Method
Close Method
ColumnSize Method
CommitTrans Method
Connect Property
Connection Property

Count Property
CreatePreparedStatement Method
CursorDriver Property

D
DataSourceName Property
Delete Method
Description Property
Direction Property

E
Edit Method
EditMode Property
Environment Property
EOF Property
EOFAction Property
Error Event
ErrorThreshold Property
Execute Method

F-G
GetChunk Method
GetRows Method

H-K
hDbc Property
HelpContext Property
HelpContextID Property
HelpFile Property
hEnv Property
hStmt Property
KeysetSize Property

L
LastModified Property
LockEdits Property
LockType Property
LoginTimeout Property
LogMessages Property

M
MaxRows Property
MoreResults Method
Move Method
MoveFirst Method
MoveLast Method
MoveNext Method
MovePrevious Method

N

Name Property
Number Property

O
OpenConnection Method
OpenResultset Method
Options Property
OrdinalPosition Property

P
Password Property
PercentPosition Property
Prompt Property

Q
QueryCompleted Event
QueryTimeout Property

R
rdoColumn Object
rdoColumns Collection
rdoConnection Object
rdoConnections Collection
rdoCreateEnvironment Method
rdoDefaultCursorDriver Property
rdoDefaultErrorThreshold Property
rdoDefaultLoginTimeout Property
rdoDefaultPassword Property
rdoDefaultUser Property
rdoEngine Object
rdoEnvironment Object
rdoEnvironments Collection
rdoError Object
rdoErrors Collection
rdoLocaleID Property
rdoParameter Object
rdoParameters Collection
rdoPreparedStatement Object
rdoPreparedStatements Collection
rdoRegisterDataSource Method
rdoResultset Object
rdoResultsets Collection
rdoTable Object
rdoTables Collection
rdoVersion Property
ReadOnly Property
Refresh Method
RemoteData Control
Reposition Event

Requery Method
Required Property
Restartable Property
Resultset Property
ResultsetType Property
RollbackTrans Method
RowCount Property
RowsAffected Property
RowsetSize Property

S
Size Property
Source Property
SourceColumn Property
SourceTable Property
SQL Property
SQLRetCode Property
SQLState Property
StillExecuting Property

T
Transactions Property
Type Property

U
Updatable Property
Update Method
UpdateControls Method
UpdateRow Method
UserName Property

V-Z
Validate Event
Value Property
Version Property

See Also
Remote Data Objects and the RemoteData Control

Remote Data Objects Method Summary

See Also

Grouped by Object or Collection
rdoColumn, rdoColumns
rdoConnection, rdoConnections
rdoEngine
rdoEnvironment , rdoEnvironments
rdoError, rdoErrors
rdoParameter, rdoParameters
rdoPreparedStatement, rdoPreparedStatements
rdoResultset, rdoResultsets
rdoTable, rdoTables

Listed Alphabetically

A
AddNew
AppendChunk

B
BeginTrans

C
Cancel
CancelUpdate
Clear
Close
ColumnSize

CommitTrans
CreatePreparedStatement

D
Delete

E-F
Edit
Execute

G-L
GetChunk
GetRows

M
MoreResults
Move
MoveFirst
MoveLast
MoveNext
MovePrevious

N-Q
OpenConnection
OpenResultset

R
rdoCreateEnvironment
rdoRegisterDataSource
Refresh
Requery
RollbackTrans

S-Z
Update
UpdateControls
UpdateRow

See Also
Remote Data Objects and the RemoteData Control

Remote Data Objects Object and Collection Summary

Remote Data Objects Object and Collection Summary
See Also
rdoColumn, rdoColumns
rdoConnection, rdoConnections
rdoEngine
rdoEnvironment, rdoEnvironments
rdoError, rdoErrors
rdoParameter, rdoParameters
rdoPreparedStatement, rdoPreparedStatements
rdoResultset, rdoResultsets
rdoTable, rdoTables

See Also
Remote Data Objects and the RemoteData Control

Remote Data Objects Property Summary

Remote Data Objects Property Summary

See Also

This reference groups all remote data properties by object or collection and lists them
alphabetically.

Grouped by Object or Collection
rdoColumn, rdoColumns
rdoConnection, rdoConnections
rdoEngine
rdoEnvironment, rdoEnvironments
rdoError, rdoErrors
rdoParameter, rdoParameters
rdoPreparedStatement, rdoPreparedStatements
rdoResultset, rdoResultsets
rdoTable, rdoTables

Listed Alphabetically

A
AbsolutePosition
AllowZeroLength
AsyncCheckInterval
Attributes

B
BindThreshold
BOF
BOFAction
Bookmark
Bookmarkable

C
ChunkRequired
Connect
Connection
Count
CursorDriver

D
DataSourceName
Description
Direction

E
EditMode
Environment
EOF
EOFAction
ErrorThreshold

F-H
hDbc
HelpContext
HelpContextID
HelpFile
hEnv
hStmt

I-K
KeysetSize

L
LastModified
LockEdits
LockType
LoginTimeout
LogMessages

M
MaxRows

N
Name
Number

O
Options
OrdinalPosition

P
Password

PercentPosition
Prompt

Q
QueryTimeout

R
rdoDefaultCursorDriver
rdoDefaultErrorThreshold
rdoDefaultLoginTimeout
rdoDefaultPassword
rdoDefaultUser
rdoLocaleID
rdoVersion
ReadOnly
Required
Restartable
Resultset
ResultsetType
RowCount
RowsAffected
RowsetSize

S
Size
Source
SourceColumn
SourceTable
SQL
SQLRetCode
SQLState
StillExecuting

T
Transactions
Type

U
Updatable
UserName

V-Z
Value
Version

See Also
Remote Data Objects and the RemoteData Control

Remote Data Objects Event Summary

Remote Data Objects Event Summary
See Also

This reference lists all RemoteData control events alphabetically.
Error
QueryCompleted
Reposition
Validate

See Also
Remote Data Objects and the RemoteData Control
Remote Data Method Summary
Remote Data Property Summary

Remote Data Object Model
See Also

The following diagram illustrates the Remote Data Object model.    Click a specific object in
the diagram to get more information.

See Also
RemoteData Control
Remote Data Objects Overview
Remote Data Objects and Collections
Using the RemoteData Control

rdoColumn Methods
Legend
AppendChunk

ColumnSize
GetChunk
Item

rdoConnection Methods
Legend
BeginTrans

Cancel
Close
CommitTrans
CreatePreparedStatement
Execute
Item
OpenResultset
RollbackTrans

rdoEnvironment Methods
Legend
BeginTrans

Close
CommitTrans
Item
OpenConnection
RollbackTrans

rdoPreparedStatement Methods
Legend
Cancel

Close
Execute
Item
OpenResultset

rdoResultset Methods
Legend
AddNew

Cancel
CancelUpdate
Close
Delete
Edit
GetRows
Item
MoreResults
Move
MoveFirst
MoveLast
MoveNext
MovePrevious

Requery
Update

rdoTable Methods
Legend
Item

OpenResultset
Refresh

rdoColumn Properties
Legend
AllowZeroLength

Attributes
ChunkRequired
Count
Name
OrdinalPosition
Required
Size
SourceColumn
SourceTable
Type
Updatable
Value

rdoConnection Properties
Legend
AsyncCheckInterval

Connect
Count
hDbc
Name
QueryTimeout
RowsAffected
StillExecuting
Transactions
Updatable
Version

rdoEngine Properties
Legend
rdoDefaultCursorDriver

rdoDefaultErrorThreshold
rdoDefaultLoginTimeout
rdoDefaultPassword
rdoDefaultUser
rdoVersion

rdoEnvironment Properties
Legend
Count

CursorDriver
hEnv
LoginTimeout
Name
Password
UserName

rdoError Properties
Legend
Count

Description
HelpContext
HelpFile
Number
Source
SQLRetCode
SQLState

rdoParameter Properties
Legend
Count

Direction
Name
Type
Value

rdoParameter Methods
Legend
Item

rdoPreparedStatement Properties
Legend
BindThreshold

Connect
Count
ErrorThreshold
hStmt
KeysetSize
LockType
LogMessages
MaxRows
Name
QueryTimeout
RowsAffected
RowsetSize
SQL
StillExecuting

Type
Updatable

rdoResultset Properties
Legend
AbsolutePosition

BOF
Bookmark
Bookmarkable
Count
EOF
hStmt
LastModified
LockEdits
Name
PercentPosition
Restartable
RowCount
StillExecuting
Transactions

Type
Updatable

rdoTable Properties
Legend
Count

Name
RowCount
Type
Updatable

rdoEngine Methods
Legend
rdoCreateEnvironment

rdoRegisterDataSource

Remote Data Trappable Errors

Remote Data Trappable Errors
See Also

Trappable errors can occur while an application is running, either within the Visual Basic
environment or as a stand-alone executable.    Some of these can also occur during design
time or compile time.    You can test and respond to trappable errors using the On Error
statement and the rdoError object's Number property.
Remote Data Control (RDC) Messages
Remote Data Object (RDO) Messages

See Also
Remote Data Objects and the RemoteData Control

RemoteData Control (RDC) Messages
See Also

Code Message
40500 An unexpected internal error has occurred
40501 An unexpected error occurred
40502 An error has occurred. Unable to retrieve error information
40503 A control canceled the operation or an unexpected internal error has occurred
40504 Could not refresh controls
40505 Invalid property value
40506 Invalid object
40507 Method cannot be called in RDC's current state
40508 One or more of the arguments is invalid
40509 Resultset is empty
40510 Out of memory
40511 Resultset not available
40512 The connection is not open
40513 Property cannot be set in RDC's current state
40514 Property not available in RDC's current state
40515 Type mismatch
40516 Cannot connect to Remote Data Object

See Also
Remote Data Object (RDO) Messages

Remote Data Object (RDO) Messages
See Also

Code Message
40000 An error occurred configuring the DSN. Please check the parameters and try

again
40001 SQL returned No Data Found
40002 An internal ODBC error was encountered
40003 An invalid value for the cursor driver was passed
40004 An invalid ODBC handle was encountered
40005 Invalid connection string
40006 An unexpected error occurred
40008 Invalid operation for forward only cursor
40009 No current row
40010 Invalid row for AddNew
40011 Object is invalid or not set
40014 Incompatible data types for compare
40016 An error occurred loading the version library (VERSION.DLL)
40017 Can't execute unprepared rdoPreparedStatement
40018 Can't execute empty rdoPreparedStatement
40019 An invalid value for the concurrency option was passed
40021 Object Collection: This collection doesn't support location by text tag
40022 The rdoResultset is empty
40023 Invalid state for Move
40024 Already beyond the end of the resultset
40025 BOF already set
40026 Invalid resultset state for update
40027 Invalid bookmark
40028 Invalid bookmark argument to move
40029 Can't move relative to current row as EOF/BOF already set
40032 An error occurred loading the ODBC installation library (ODBCCP32.DLL)
40033 An invalid value for the prompt option was passed
40034 An invalid value for the cursor type parameter was passed
40035 Column not bound correctly
40036 Unbound column - use GetChunk
40037 Can't assign value to unbound column
40038 Can't assign value to non-updatable column
40039 Can't assign value to column unless in edit mode
40040 Incorrect type for parameter
40041 Object Collection: Couldn't find item indicated by text
40042 Can't assign value to unbound parameter
40043 Can't assign value to output-only parameter
40045 You cannot execute a query when an asynchronous query is in progress
40046 The object has already been closed
40047 You must specify a valid name for the environment
40048 This environment name already exists in the collection
40049 Object collection: illegal modification -- collection is read-only
40050 GetNewEnum: Couldn't get interface for IID_IUnknown

40054 An invalid parameter was passed
40055 Invalid operation
40056 The row you attempted to move to has been deleted
40057 An attempt was made to issue a select statement using the Execute method
40058 The resultset is read only
40059 The user canceled the operation

See Also
RemoteData Control (RDC) Messages

rdoError Methods
Legend
Clear

Item

AddNew Method (Remote Data)
See Also Applies To

Creates a new row for an updatable rdoResultset object.
Syntax
object.AddNew
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
The AddNew method prepares a new row you can edit and subsequently add to the
rdoResultset object named by object using the Update method.    This method initializes
the columns to Null.
After you modify the new row, use the Update method to save the changes and add the
row to the result set.    No changes are made to the database until you use the Update
method.    The AddNew method does not return an error if the rdoResultset is not
updatable.    A trappable error is triggered when the Update method is used against an
object that is not updatable.    For an object to be updatable, the rdoColumn,
rdoResultset, and rdoConnection objects must all be updatable check the Updatable
property of each of these objects before performing an update.

Caution      If you use the AddNew method on a row and then perform any operation that
moves to another row without using Update, your changes are lost without warning.    In
addition, if you close the object or end the procedure which declares the object or its
rdoConnection object, the new row and the changes made to it are discarded without
warning.

A newly added row might be visible as a part of the rdoResultset if your data source and
type of cursor support it.    For example, newly added rows are not included in a static-type
rdoResultset.    In some cases, if you add a row to an rdoResultset using the AddNew
method on the result set, the row is visible in the rdoResultset and included in the
underlying table where it becomes visible to any new rdoResultset objects.
When newly added rows are included in the rdoResultset, the row that was current before
you used AddNew remains current.    If you want to make the new row current, you can set
the Bookmark property to the bookmark identified by the LastModified property setting.
If you need to cancel a pending AddNew operation, use the CancelUpdate method.

See Also
BeginTrans , CommitTrans , RollbackTrans Methods
Bookmark Property
CancelUpdate Method
Delete Method
Edit Method
LastModified Property
Move Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoConnection Object, rdoConnections Collection
Updatable Property
Update Method

AddNew Method (Remote Data) Applies To

rdoResultset Object

AppendChunk Method (Remote Data)
See Also Applies To

Appends data from a Variant expression to an rdoColumn object with a data type of
rdTypeLONGVARBINARY or rdTypeLONGVARCHAR.

Syntax
object ! column.AppendChunk source
The AppendChunk method syntax has these parts:
Part Description
object An object expression that evaluates to the rdoResultset object containing the

rdoColumns collection.
column An object expression that evaluates to an rdoColumn object whose

ChunkRequired property is set to True.
source A string expression or variable containing the data you want to append to the

rdoColumn object specified by column.

Remarks
Chunk data columns are designed to store binary or text values that can range in size from
a few characters to over 1.2GB and are stored in the database on successive data pages.   
In most cases, chunk data cannot be managed with a single operation, so you must use the
chunk methods to save and write data.    If the ChunkRequired property is True for a
column, you must use the AppendChunk method to manipulate column data.
Use the AppendChunk method to write successive blocks of data to the database column
and GetChunk to extract data from the database column.    Certain operations (copying,
for example) involve temporary strings.    If string space is limited, you may need to work
with smaller segments of a chunk column instead of the entire column.
Use the BindThreshold property to specify the largest column size that will be
automatically bound.
Use the ColumnSize property to determine the number of bytes in a chunk column.    Note
that for variable-sized columns, it is not necessary to write back the same number of bytes
as returned by the ColumnSize property as ColumnSize reflects the size of the column
before changes are made.
If there is no current row when you use AppendChunk, a trappable error occurs.

Note      The initial AppendChunk (after the first Edit method), even if the row already
contains data, replaces existing column data.    Subsequent AppendChunk calls within a
single Edit session appends data to existing column data.

See Also
BindThreshold Property
ChunkRequired Property
ColumnSize Method
GetChunk Method
rdoColumn Object, rdoColumns Collection
rdoResultset Object, rdoResultsets Collection
Type Property

AppendChunk Method (Remote Data) Applies To

rdoColumn Object

BeginTrans, CommitTrans, RollbackTrans Methods (Remote Data)
See Also Applies To

The transaction methods manage transaction processing during a session represented by
the object placeholder as follows:

BeginTrans begins a new transaction.
CommitTrans ends the current transaction and saves the changes.
RollbackTrans ends the current transaction and restores the databases in the

rdoEnvironment object to the state they were in when the current transaction began.
You can use the transaction methods with an rdoConnection object but in this case, the
transaction scope only includes rdoResultset and rdoPreparedStatement objects
created under the rdoConnection.

Syntax
object.BeginTrans | CommitTrans | RollbackTrans
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
You use the transaction methods with an rdoEnvironment or rdoConnection object when
you want to treat a series of changes made to the databases in a session as one unit.
Typically, you use transactions to maintain the integrity of your data when you must update
rows in two or more tables and ensure that changes made are completed (committed) in all
tables or none at all (rolled back).    For example, if you transfer money from one account to
another, you might subtract an amount from one and add the amount to another.    If either
update fails, the accounts no longer balance.    Use the BeginTrans method before
updating the first row, and then, if any subsequent update fails, you can use the
RollbackTrans method to undo all of the updates.    Use the CommitTrans method after
you successfully update the last row.

Caution      Within one rdoEnvironment object, transactions are always global to the
rdoEnvironment and aren't limited to only one database or result set.    If you perform
operations on more than one database or result set within an rdoEnvironment
transaction, the RollbackTrans method restores all operations on those databases and
result sets.

Once you use CommitTrans, you can't undo changes made during that transaction unless
the transaction is nested within another transaction that is itself rolled back.    You cannot
nest transactions unless you use an action query to directly execute SQL transaction
management statements.    If you want to have simultaneous transactions with overlapping,
non-nested scopes, you can create additional rdoEnvironment objects to contain the
concurrent transactions.

Note      You can use SQL action queries that contain transaction statements.    For example,
with Microsoft SQL Server, you can use SQL statements like BEGIN TRANSACTION, COMMIT
TRANSACTION, or ROLLBACK TRANSACTION.    This technique supports nested transactions
which may not be supported by the ODBC driver.
If you close an rdoEnvironment object without saving or rolling back any pending
transactions, the transactions are automatically rolled back.
If you use the CommitTrans or RollbackTrans method without first using the BeginTrans
method, an error occurs.
Some databases may not support transactions, in which case the Transactions property of
the rdoConnection object or rdoResultset object is False.    To make sure that the
database supports transactions, check the value of the Transactions property of the
rdoConnection object before using the BeginTrans method.    If you are using an
rdoResultset object based on more than one database, check the Transactions property
of the rdoResultset object.    If the rdoConnection or rdoResultset doesn't support

transactions, the methods are ignored and no error occurs.

See Also
Close Method
rdoCreateEnvironment Method
rdoConnection Object, rdoConnections Collection
rdoDefaultUser, rdoDefaultPassword Properties
rdoEnvironment Object, rdoEnvironments Collection
rdoResultset Object, rdoResultsets Collection
Refresh Method
Transactions Property

BeginTrans, CommitTrans, RollbackTrans Methods (Remote Data) Apply To

rdoConnection Object
rdoEnvironment Object
RemoteData Control

Cancel Method (Remote Data)
See Also Applies To

Cancels the processing of a query running in asynchronous mode, or cancels any pending
results against the specified rdoResultset object.

Syntax
object.Cancel
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
The Cancel method requests that the remote data source stop work on a pending
asynchronous query or cancels any pending results.
In situations where you need to create a result set, but do not want to wait until the query
engine completes the operation, you can use the rdAsyncEnable option with the
OpenResultset or Execute method.    This option returns control to your application as
soon as the operation is initiated, but before the first row is ready for processing.    This
gives you an opportunity to execute other code while the query is executed.    If you need to
stop this operation before it is completed, use the Cancel method against the object being
created.
You can also use the Cancel method against a synchronous rdoResultset to flush
remaining result set rows and release resources committed to the query and
rdoResultset.
If you use the Cancel method against rdoResultset objects that have multiple result sets
pending, all result sets are flushed.    To simply cancel the current set of results and begin
processing the next set, use the MoreResults method.

Note      Using the Cancel method against an executing action query might have
unpredictable results.    If the query is performing an operation that affects a number of
rows, some of the rows might be changed, while others are not.    For example, if you
execute an action query containing an SQL UPDATE statement and use the Cancel method
before the operation is complete, an indeterminate number of rows are updated leaving
others unchanged.    If you intend to use the Cancel method against this type of action
query, it is recommended that you use transaction methods to rollback or commit partially
completed operations.

See Also
CancelUpdate Method
Execute Method
MoreResults Method
OpenResultset Method

Cancel Method (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object
rdoResultset Object
RemoteData Control

CancelUpdate Method (Remote Data)
See Also Applies To

Cancels any pending updates to an rdoResultset object.
Syntax
object.CancelUpdate
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
The CancelUpdate method flushes the copy buffer and cancels any pending updates from
an Edit or AddNew operation.    For example, if a user invokes the Edit or AddNew
method and hasn't yet invoked the Update method, CancelUpdate cancels any changes
made after Edit or AddNew was invoked.    Any information in the copy buffer is lost that
is, any changes made to the row after the Edit or AddNew methods are invoked, are
flushed.

Use the EditMode property to determine if there is a pending operation that can be
canceled.
If the CancelUpdate method is used before using the Edit or AddNew methods or when
the EditMode property is set to rdEditNone, the method is ignored.
Note      Using the CancelUpdate method has the same effect as moving to another row
without using the Update method, except that the current row doesn't change, and various
properties, such as BOF and EOF, aren't updated.

CancelUpdate Method (Remote Data) Applies To

rdoResultset Object

See Also
AddNew Method
BOF , EOF Properties
Cancel Method
Edit Method
EditMode Property
rdoResultset Object, rdoResultsets Collection
Update Method

Close Method (Remote Data)
See Also Applies To

Closes an open remote data object.
Syntax
object.Close
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Closing an open object removes it from the collection of like objects.    For example, using
the Close method on an rdoResultset removes it from the rdoResultsets collection.   
Any attempt to close the default environment rdoEnvironments(0) is ignored.    Unlike
DAO, RDO collection members cannot be removed with the Delete method.
If you try to close an rdoConnection object while any rdoResultset objects are open, or if
you try to close an rdoEnvironment object while any rdoConnection objects belonging
to that specific rdoEnvironment are open, those rdoResultset objects are closed and
any pending updates or edits are rolled back.
If the rdoConnection object is defined outside the scope of the procedure, and you exit
the procedure without closing it, the rdoConnection object remains open until it is
explicitly closed or the module in which it is defined is out of scope.    Any rdoResultset or
rdoPreparedStatement objects that are opened against the rdoConnection remain
open until explicitly closed.    Once all result sets are closed on an rdoConnection that is
no longer in scope, the rdoConnection is closed.
If object is already closed when you use Close, a trappable error is triggered.

Note      Using the Close method against an executing action query might have
unpredictable results.    If the query is performing an operation that affects a number of
rows, some of the rows might be changed, while others are not.    For example, if you
execute an action query containing an SQL UPDATE statement and use the Close method
before the operation is complete, an indeterminate number of rows are updated leaving
others unchanged.    If you intend to use the Close method against this type of action
query, it is recommended that you use transaction methods to roll back or commit partially
completed operations.

See Also
Delete Method
OpenResultset Method
Update Method

Close Method (Remote Data) Applies To

rdoConnection Object
rdoEnvironment Object
rdoPreparedStatement Object
rdoResultset Object

ColumnSize Method (Remote Data)
See Also Applies To

Returns the number of bytes in an rdoColumn object with a data type of
rdTypeLONGVARBINARY or rdTypeLONGVARCHAR.

Syntax
varname = object ! column.ColumnSize()
The ColumnSize method syntax has these parts:
Part Description
varname The name of a Long or Variant variable.
object An object expression that evaluates to the rdoResultset object containing the

rdoColumns collection.
column The name of an rdoColumn object whose ChunkRequired property is set to

True.
Remarks
When working with data types that span multiple database pages, you must use the chunk
methods to manage the data.    You must also use the GetChunk and AppendChunk
methods to manage chunk data when the ChunkRequired property is True.
Use the ColumnSize method to determine the size of chunk columns.
Because the size of a chunk data column can exceed 64K, you should assign the value
returned by the GetChunk method to a variable large enough to store the data returned
based on the size returned by the ColumnSize method.

Note      To determine the size of a non-chunk rdoColumn object, use the Size property.

See Also
AppendChunk Method
BindThreshold Property
ChunkRequired Property
GetChunk Method
rdoColumn Object, rdoColumns Collection
rdoResultset Object, rdoResultsets Collection
Size Property
Type Property

ColumnSize Method (Remote Data) Applies To

rdoColumn Object

CreatePreparedStatement Method (Remote Data)
See Also Applies To

Creates a new rdoPreparedStatement object.
Syntax
Set prepstmt = connection.CreatePreparedStatement(name, sqlstring)
The CreatePreparedStatement method syntax has these parts:
Part Description
prepstmt An object expression that evaluates to the rdoPreparedStatement object

you want to create.
connection An object expression that represents the open rdoConnection object.
name A String that is the name of the new rdoPreparedStatement.    This part is

required, but may be an empty string ("").
sqlstring A Variant expression (a valid SQL statement) that defines the

rdoPreparedStatement.    This part is required, but you can provide an
empty string if you do, you must define the rdoPreparedStatement by
setting its SQL property before executing the new rdoPreparedStatement.

Remarks
The rdoPreparedStatement corresponds to the ODBC prepared statement used to define
a reusable SQL query that can contain parameters.    You can execute the
rdoPreparedStatement any number of times, and pass parameters that are substituted
into the SQL statement before it is executed.    Parameters are maintained in the
rdoParameters collection.    Generally, if you intend to execute a query more than once in
your code, it is more efficient to use rdoPreparedStatement objects than to use the
Execute or OpenResultset method on objects other than the rdoPreparedStatement.
The rdoPreparedStatement is automatically appended to the rdoPreparedStatements
collection.
If name is not provided, the rdoPreparedStatement is appended to the
rdoPreparedStatements collection, and the rdoPreparedStatement can be used by
referencing the prepstmt variable or the rdoPreparedStatement object's ordinal value.
If the object specified by name is already a member of the rdoPreparedStatements
collection (including an empty string), a trappable error occurs.    All
rdoPreparedStatement objects are temporary they are discarded when the
rdoConnection object is closed.

To remove an rdoPreparedStatement object from an rdoPreparedStatements
collection, use the Close method on the rdoPreparedStatement.
Use the Execute method to run an SQL statement in an rdoPreparedStatement object
that does not return rows (an action query).    Use the OpenResultset method to run an
rdoPreparedStatement that returns rows.
If there is an unpopulated rdoResultset pending on a data source that can only support a
single operation on an rdoConnection object, you cannot create additional
rdoPreparedStatement or rdoResultset objects, or use the Refresh method on the
rdoTable object until the rdoResultset is flushed, closed, or fully populated.    For example,
when using SQL Server 4.2 as a data source, you cannot create an additional rdoResultset
object until you move to the last row of the current rdoResultset object.    To populate the
result set, use the MoreResults method to move through all pending result sets, or use the
Cancel or Close method on the rdoResultset to flush all pending result sets.

See Also
Close Method
Creating Parameter Queries
Execute Method
Name Property
OpenResultset Method
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
SQL Property
Type Property

CreatePreparedStatement Method (Remote Data) Applies To

rdoConnection Object

Delete Method (Remote Data)
See Also Applies To

Deletes the current row in an updatable rdoResultset object.
Syntax
object.Delete
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Delete removes the current row and makes it inaccessible.    The deleted row is removed
from the rdoResultset cursor and the database.    When you delete rows from an
rdoResultset, there must be a current row in the rdoResultset before you use Delete;
otherwise, a trappable error is triggered.
Once you delete a row in an rdoResultset, you must reposition the current row pointer to
another row in the rdoResultset before performing an operation that accesses the current
row.    Although you can't edit or use the deleted row, it remains current until you reposition
to another row.    Once you move to another row, however, you can't make the deleted row
current again.
When you position to a row that has been deleted by another user, or if you delete a
common row in another rdoResultset, a trappable error occurs indicating that the row has
been deleted.    At this point, the current row is invalid and you must reposition to another
valid row.    For example, if you use a bookmark to position to a deleted row, a trappable
error occurs.
You can undo a row deletion if you use transactions and the RollbackTrans method
assuming you use BeginTrans before using the Delete method.

Using Delete produces an error under any of the following conditions:
There is no current row.
The connection or rdoResultset is read-only.
No columns in the row are updatable.
The row has already been deleted.
Another user has locked the data page containing your row.
The user does not have permission to perform the operation.

See Also
AddNew Method
BeginTrans , CommitTrans , RollbackTrans Methods
Bookmark Property
LastModified Property
Name Property
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
Refresh Method
Updatable Property

Delete Method (Remote Data) Applies To

rdoResultset Object

Edit Method (Remote Data)
See Also Applies To

Copies the current row from an updatable rdoResultset object to the copy buffer for
subsequent editing.

Syntax
object.Edit
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Once you use the Edit method, changes made to the current row's columns are copied to
the copy buffer.    After you make the desired changes to the row, use the Update method
to save your changes.    The current row remains current after you use Edit.

Caution      If you edit a row and then perform any operation that repositions the current
row pointer to another row without first using Update, your changes to the edited row are
lost without warning.    In addition, if you close object or end the procedure which declares
the result set or the parent rdoConnection object, your edited row might be discarded
without warning.

When the rdoResultset object's LockEdits property setting is True (pessimistically
locked) in a multiuser environment, the individual row or the data page containing the row
remains locked from the time Edit is used until the updating is complete.    If the LockEdits
property setting is False (optimistically locked), the individual row or the data page
containing the row is locked and the new row is compared with the pre-edited row just
before it's updated in the database.    If the row has changed since you last used the Edit
method, the Update operation fails with a trappable error.

Note      Not all data sources use page locking schemes to manage data concurrency.    In
some cases, data is locked on a row-by-row basis, therefore locks only affect the specific
row being edited.
Using Edit produces an error under any of the following conditions:

There is no current row.
The connection or rdoResultset is read-only.
No columns in the row are updatable.
The EditMode property indicates that an AddNew or Edit is already in progress.
Another user has locked the row or data page containing your row and the LockEdits

property is True.

See Also
AddNew Method
BeginTrans , CommitTrans , RollbackTrans Methods
Delete Method
LockEdits Property
rdoResultset Object, rdoResultsets Collection
Update Method

Edit Method (Remote Data) Applies To

rdoResultset Object

Execute Method (Remote Data)
See Also Applies To

Runs an action query or executes an SQL statement that does not return rows on an object
in the Applies To list.

Syntax
connection.Execute source[, options]
prepstmt.Execute [options]
The Execute method syntax has these parts:
Part Description
connection An object expression that evaluates to the rdoConnection object on which

the query will run.
prepstmt An object expression that evaluates to the rdoPreparedStatement object

whose SQL property setting specifies the SQL statement to execute.
source A string expression that contains the action query to execute or the name of

an rdoPreparedStatement.
options A Variant or constant that determines how the query is run, as specified in

Settings.
Settings
You can use the following constant for the options part:
Constant Value Description
rdAsyncEnable 32 Execute operation asynchronously.

Remarks
The Execute method is valid only for action queries.    If you use Execute with a query that
returns rows, a trappable error is generated and the result set is discarded.    Because an
action query doesn't return any rows, Execute doesn't return an rdoResultset.    You can
use the Execute method on queries that execute multiple statements, but none of these
batched statements can return rows.
Use the RowsAffected property of the rdoConnection or rdoPreparedStatement
object to determine the number of rows affected by the most recent Execute method.   
RowsAffected contains the number of rows deleted, updated, or inserted when executing
an action query.    When you use the Execute method to run an rdoPreparedStatement,
the RowsAffected property of the rdoPreparedStatement object is set to the number of
rows affected.
To execute the query asynchronously, use the rdAsyncEnable option.    If set, the data
source query processor immediately begins to process the query and returns to your
application before the query is complete.    Use the StillExecuting property to determine
when the query processor is ready to return the results from the query.    Use the Cancel
method to terminate processing of an asynchronous query.
While it is possible to execute stored procedures using the Execute method, it is not
recommended because the procedure's return value and output parameters are discarded
and the procedure cannot return rows.    Use the rdoPreparedStatement to execute
stored procedures.

See Also
BeginTrans , CommitTrans , RollbackTrans Methods
Cancel Method
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
RowsAffected Property
SQL Property
StillExecuting Property

Execute Method (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object

GetChunk Method (Remote Data)
See Also Applies To

Returns all or a portion of the contents of an rdoColumn object with a data type of
rdTypeLONGVARBINARY or rdTypeLONGVARCHAR.

Syntax
varname = object ! column.GetChunk(numbytes)
The GetChunk method syntax has these parts:
Part Description
varname The name of a Variant that receives the data from the rdoColumn object

named by column.
object An object expression that evaluates to an rdoResultset object containing the

rdoColumns collection.
column An object expression that evaluates to an rdoColumn object whose

ChunkRequired property is True.
numbytes A numeric expression that is the number of bytes you want to return.

Remarks
Chunk data columns are designed to store binary or text values that can range in size from
a few characters to over 1.2GB and are stored in the database on successive data pages.   
In most cases, chunk data cannot be managed with a single operation so you must use the
chunk methods to save and write data.    If the ChunkRequired property is True for a
column, you must use the GetChunk and AppendChunk methods to manipulate column
data.
If the ChunkRequired property is True for a column, you must use the GetChunk method
to retrieve the data.    The GetChunk method moves a portion of the data from a chunk
column to a variable.    The total number of bytes in the column is determined by executing
the ColumnSize method.
The GetChunk method is used iteratively, copying column data to a variable, one segment
or chunk at a time.    The chunk size is set by numbytes.    The starting point of the copy
operation is initially 0, which causes data to be copied from the first byte of the column
being read.    Subsequent calls to GetChunk get data from the first position after the
previously read chunk.
Assign the bytes returned by GetChunk to varname. Due to memory requirements for the
returned data and temporary storage, numbytes might be limited.    With 32-bit systems,
this limitation is over 1.2GB, or more practically, the memory and disk capacity of your
virtual memory system.
If numbytes is greater than the number of bytes in the column, the actual number of bytes
in the column is returned.    After assigning the results of GetChunk to a Variant variable,
you can use the Len function to determine the number of bytes returned.
Use the AppendChunk method to write successive blocks of data to the column and
GetChunk to extract data from the column.    Certain operations (copying, for example)
involve temporary strings.    If string space is limited, you may need to work with smaller
segments of a chunk column instead of the entire column.
Use the BindThreshold property to specify the largest column size that will be
automatically bound.
Because the size of a chunk data column can exceed 64K, you should assign the value
returned by the GetChunk method to a variable large enough to store the data returned
based on the size returned by the ColumnSize method.

See Also
AppendChunk Method
ColumnSize Method
ChunkRequired Property
rdoColumn Object, rdoColumns Collection
rdoResultset Object, rdoResultsets Collection
Type Property

GetChunk Method (Remote Data) Applies To

rdoColumn Object

GetRows Method (Remote Data)
See Also Applies To

Retrieves multiple rows of an rdoResultset into an array.
Syntax
array = object.GetRows (rows)
The GetRows method syntax has these parts:
Part Description
array The name of a Variant type variable to store the returned data.
object An object expression that evaluates to an object in the Applies To list.
rows A Long value indicating the number of rows to retrieve.

Remarks
Use the GetRows method to copy one or more entire rows from an rdoResultset into a
two-dimensional array.    The first array subscript identifies the column and the second
identifies the row number, as follows:
avarRows(intColumn)(intRow)
To get the first column value in the second row returned, use the following:
col1 = avarRows(0,1)
To get the second column value in the first row, use the following:
col2 = avarRows(1,0)
If more rows are requested than are available, only the available rows are returned.    Use
Ubound to determine how many rows are actually fetched, as the array is resized based on
the number of rows returned.    For example, if you return the results into a Variant called
varA, you could determine how many rows were actually returned by using:
numReturned = Ubound(varA,2) + 1
The "+ 1" is used because the first data returned is in the 0th element of the array.    The
number of rows that can be fetched is constrained by available memory and should be
chosen to suit your application don't expect to use GetRows to bring your entire table or
result set into an array if it is a large table.

GetRows does not return columns whose ChunkRequired property is True.
After a call to GetRows, the current row is positioned at the next unread row.    That is,
GetRows is equivalent to using the Move (rows) method.
If you are trying to fetch all the rows using multiple GetRows calls, use the EOF property to
determine if there are rows available.    GetRows returns less than the number requested
either at the end of the rdoResultset, or if it cannot fetch a row in the range requested.   
For example, if a fifth row cannot be retrieved in a group of ten rows that you're trying to
fetch, GetRows returns four rows and leaves currency on the row that caused the problem.   
It will not generate a run-time error.

See Also
ChunkRequired Property
Move Method
rdoResultset Object, rdoResultsets Collection

GetRows Method (Remote Data) Applies To

rdoResultset Object

Item Method (Remote Data)
See Also Applies To

Returns a specific member of a collection, either by position or by key.
Syntax
object.Item(index)
The Item method syntax has these parts:
Part Description
object Required.    An object expression that evaluates to an object in the Applies To

list.
index Required.    An expression that specifies the position of a member of the

collection.    If a numeric expression, index must be a number from 1 to the
value of the collection's Count property.    If a string expression, index must
correspond to the name specified when the member being referred to was
added to the collection.

Remarks
If the value provided as index does not match any existing member of the collection, an
error occurs.
The Item method is the default method for a collection.    Therefore, the following lines of
code are equivalent:
Print MyCollection(1)
Print MyCollection.Item(1)

See Also
Count Property
Value Property

Item Method (Remote Data) Applies To

rdoColumns Collection
rdoConnections Collection
rdoEnvironments Collection
rdoErrors Collection
rdoParameters Collection
rdoPreparedStatements Collection
rdoResultsets Collection

MoreResults Method (Remote Data)
See Also Applies To

Clears the current result set of any pending rows and returns a Boolean value that
indicates if one or more additional result sets are pending.

Syntax
variable = object.MoreResults
The MoreResults method syntax has these parts:
Part Description
variable A Boolean variable that indicates if additional result sets are found as

described in Return Values.
object An object expression that evaluates to an open rdoResultset object variable.

Return Values
The return values for variable are:
Value Description
True Additional result sets are ready to be processed.
False All result sets in the rdoResultset have been processed.

Remarks
When the query used to create an rdoResultset returns more than one result set, use the
MoreResults method to end processing of the current result set and test for subsequent
result sets.    If there are no additional result sets to process, the MoreResults method
returns False and both BOF and EOF are set to True.    In any case, using the
MoreResults method flushes the current rdoResultset.
You can also use the Cancel method to flush the contents of an rdoResultset. However,
Cancel also flushes any additional result sets not yet processed.

See Also
BOF , EOF Properties
Cancel Method
MoreResults Method
rdoResultset Object, rdoResultsets Collection

MoreResults Method (Remote Data) Applies To

rdoResultset Object

Move Method (Remote Data)
See Also Applies To

Repositions the current row in an rdoResultset object.
Syntax
object.Move rows[, start]
The Move method syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
rows A signed Long value that specifies the number of rows the position will move

as described in Settings.
start A Variant value that identifies a bookmark as described in Settings.

Settings
If rows is greater than 0, the position is moved forward (toward the end of the cursor).    If
rows is less than 0, the position is moved backward (toward the beginning of the cursor).   
If rows is equal to 0, any pending edits are discarded and the current row is refreshed from
the data source.
If start is specified, the move begins relative to this bookmark.    If start is not specified,
Move begins from the current row.

Remarks
If using Move repositions the current row to a position before the first row, the position is
moved to the beginning-of-file (BOF) position.    If the rdoResultset contains no rows and
its BOF property is set to True, using this method to move backward triggers a trappable
run-time error.    If either the BOF or EOF property is True and you attempt to use the
Move method without a valid bookmark, a trappable error is triggered.
If using Move repositions the current row to a position after the last row, the position is
moved to the end-of-file (EOF) position.    If the rdoResultset contains no rows and its EOF
property is set to True, then using this method to move forward produces a trappable run-
time error.
If you use Move on an rdoResultset object based on an SQL-specific query or
rdoPreparedStatement, the query is forced to completion and the rdoResultset object
is fully populated.
If you use any method that repositions the current row pointer after using the Edit or
AddNew method but before using the Update method, any changes made to the copy
buffer are lost.
When you use Move on a forward-only rdoResultset, the rows argument must be a
positive Integer and bookmarks aren't allowed, so you can only move forward toward the
end of the result set.

To make the first, last, next, or previous row in an rdoResultset the current row, use the
MoveFirst, MoveLast, MoveNext, or MovePrevious method.    To position the current row
pointer based on an absolute row number, use the AbsolutePosition property.    To position
the current row pointer based on a percentage of the accessed rows of a result set, use the
PercentPosition property.

See Also
AbsolutePosition Property
BOF , EOF Properties
Bookmark Property
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
PercentPosition Property
rdoResultset Object, rdoResultsets Collection

Move Method (Remote Data) Applies To

rdoResultset Object

MoveFirst, MoveLast, MoveNext, MovePrevious Methods (Remote
Data)

See Also Applies To

Repositions the current row pointer to the first, last, next, or previous row in a specified
rdoResultset object and makes that row the current row.

Syntax
object.{MoveFirst | MoveLast | MoveNext | MovePrevious}
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use the Move methods to reposition the current row pointer from row to row without
applying a condition.

Caution      If you edit the current row, be sure to save the changes using the Update
method before you move to another row.    If you move to another row without updating,
your changes are lost without warning.

When you open the result set named by object, the first row is current and the BOF
property is set to False.    If the result set contains no rows, the BOF property is set to
True, and there is no current row.
If the first or last row is already current when you use MoveFirst or MoveLast, the current
row doesn't change.
If you use MovePrevious when the first row is current, the BOF property is set to True,
and there is no current row.    If you use MovePrevious again, an error occurs; BOF
remains True.
If you use MoveNext when the last row is current, the EOF property is set to True, and
there is no current row.    If you use MoveNext again, an error occurs; EOF remains True.
If you use MoveLast on an rdoResultset object based on an SQL-specific query or
rdoPreparedStatement, the query is forced to completion and the rdoResultset object
is fully populated.
If you use any method that repositions the current row pointer after using the Edit or
AddNew method but before using the Update method, any changes made to the copy
buffer are lost.
You can't use the MoveFirst or MovePrevious method with a forward-only type
rdoResultset.

To move the position of the current row in an rdoResultset object a specific number of rows
forward or backward, use the Move method.
To position the current row pointer based on an absolute row number, use the
AbsolutePosition property.    To position the current row pointer based on a percentage of
the accessed rows of a result set, use the PercentPosition property.

See Also
AbsolutePosition Property
BOF , EOF Properties
Move Method
PercentPosition Property
rdoPreparedStatement Object, rdoPreparedStatements Collection
RowCount Property
rdoResultset Object, rdoResultsets Collection
Update Method

MoveFirst, MoveLast, MoveNext, MovePrevious Methods (Remote Data) Apply To

rdoResultset Object

OpenConnection Method (Remote Data)
See Also Applies To

Opens a connection to an ODBC data source and returns a reference to the
rdoConnection object that represents a specific database.

Syntax
Set connection = environment.OpenConnection(dsName[, prompt[, readonly[,
connect]]])
The OpenConnection method syntax has these parts:
Part Description
connection An object expression that evaluates to an rdoConnection object that you're

opening.
environment An object expression that evaluates to an existing rdoEnvironment object. 

You must provide an rdoEnvironment object.
dsName A string expression that is the name of a registered ODBC data source name.

If dsName doesn't refer to a valid ODBC data source name and the Data
Source Name (DSN) parameter does not appear in the connect argument, or
if it's a zero-length string (""), an error occurs if prompt is
rdDriverNoPrompt; otherwise, the user is prompted to select from a list of
registered data source names.

prompt Based on this value, the ODBC driver manager prompts the user for
connection information such as DSN, user name, and password.    Use one of
the following Integer constants that defines how the user should be
prompted:

rdDriverNoPrompt
(Default)The driver manager uses the connection string provided in dsName and connect.   

If sufficient information is not provided, the OpenConnection method returns a trappable
error.

rdDriverPrompt
The driver manager displays the ODBC Data Sources dialog box.    The connection string

used to establish the connection is constructed from the DSN selected and completed by the
user via the dialog boxes, or, if no DSN is chosen, and the DataSourceName property is
empty (in the case of the RemoteData control), the default DSN is used.

rdDriverComplete
If the connection string provided includes the DSN keyword, the driver manager uses the

string as provided in connect.    Otherwise it behaves as it does when rdDriverPrompt is
specified.

rdDriverCompleteRequired
Behaves like rdDriverComplete except the driver disables the controls for any information

not required to complete the connection.    If the controls are disabled, users cannot select or
specify missing arguments.
readonly A Boolean value that is True if the connection is to be opened for read-only

access, and False if the connection is to be opened for read/write access.    If
you omit this argument, the connection is opened for read/write access.

connect A string expression used for opening the database.    This string constitutes
the ODBC connect arguments, and the argument values of connect are
dependent on the ODBC driver.    See the Connect property for syntax.    If
the connect argument is an empty string (""), the user name and password
are taken from the rdoEnvironment object's UserName and Password
properties.

Remarks
The open rdoConnection is automatically added to the rdoConnections collection.
Establishing an rdoConnection may require that the user have permission to access the

network, the specific data source server, and the chosen database on that server.    Failure
to meet these qualifications might result in failure to connect.
If you do not specify a database either through the DATABASE parameter of the connect
argument or through the data source entry, the database opened when you establish a
connection is determined by the default database assigned to the user.    This database is
assigned by the database administrator.    In some cases, you may be able to change the
default database by executing an action query containing an SQL command such as the
Transact SQL USE database statement.   

Note      The connect part of the OpenConnection method is coded differently than the
source part of the OpenDatabase method as used with DAO. The connect part neither
requires nor supports use of the "ODBC;" keyword at the beginning of the connect string.   
In addition, the connect part does not support use of the LOGINTIMEOUT argument.
Use the Close method on the object to close a database associated with an
rdoConnection, remove the connection from the rdoConnections collection, and
disconnect from the data source.
For more information about ODBC drivers, such as SQL Server, see the Help file provided
with the driver.   

See Also
Close Method
Connect Property
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
UserName Property

OpenConnection Method (Remote Data) Applies To

rdoEnvironment Object

OpenResultset Method (Remote Data)
See Also Applies To

Creates a new rdoResultset object.
Syntax
Set variable = connection.OpenResultset(source[, type[,locktype[, options]]])
Set variable = object.OpenResultset([type[,locktype [, options]]])
The OpenResultset method syntax has these parts:
Part Description
variable An object expression that evaluates to an rdoResultset object.
connection An object expression that evaluates to an existing rdoConnection object you

want to use to create the new rdoResultset.
object An object expression that evaluates to an existing rdoPreparedStatement

or rdoTable object you want to use to create the new rdoResultset.    If
object refers to an rdoTable object, the type of the new object is an
rdoResultset.
If object is not the name of an existing rdoPreparedStatement, or
rdoTable, it is assumed to be an SQL query.

source A String that specifies the source of the rows for the new rdoResultset.   
The source can be the name of an rdoTable object, the name of an
rdoPreparedStatement, or an SQL statement that might returns rows.

type An Integer or constant that specifies the type of cursor to create.    If you
don't specify a type, OpenResultset creates a forward-only rdoResultset.   
Use one of the following constants that defines the cursor type of the new
rdoResultset object:

rdOpenForwardOnly
opens a forward-only
type rdoResultset object. (Default)

rdOpenStatic
opens a static-type rdoResultset object.

rdOpenKeyset
opens a keyset-type rdoResultset object.

rdOpenDynamic
opens a dynamic-type rdoResultset object.

locktype An Integer that specifies the type of concurrency control.    If you don't
specify a locktype, rdConcurReadOnly is assumed.    Use one of the following Integer
constants that defines the locktype of the new rdoResultset object:

rdConcurLock
Pessimistic concurrency.

rdConcurReadOnly
Read-only (Default).

rdConcurRowver
Optimistic concurrency based on row ID.

rdConcurValues
Optimistic concurrency based on row values.
options An Integer or constant that specifies characteristics of the new

rdoResultset.    Use the following constant:
rdAsyncEnable

 Execute asynchronously.
Remarks
The new rdoResultset is automatically appended to the rdoResultsets collection.
If you use the OpenResultset method against an rdoConnection, include the source
argument that specifies how the data rows are to be derived.    For example, the source

argument might contain an SQL query or the name of an rdoTable object.

Note      Before you can use the name of a base table in the source argument, you must
first use the Refresh method against the rdoTables collection to populate it.    You can also
populate the rdoTables collection by referencing one of its members by its ordinal number.
For example, referencing rdoTables(0) will populate the entire collection.
If you use the rdAsyncEnable option, control returns to your application as soon as the
query is begun, but before a result set is available.    To test for completion of the query, use
the StillExecuting property.    The rdoResultset object is not valid until StillExecuting
returns False.
If a new rdoResultset contains rows, the BOF and EOF properties are both False and the
current row pointer is positioned at the beginning of the first result set.    You can use the
Move methods, or the AbsolutePosition or PercentPosition properties to reposition the
current row pointer.    For some data source and cursor combinations, you can also
determine the number of rows available or processed by examining the RowCount
property.    However, use of this property might force the query to be run to completion
this can be a time-consuming operation for some data sources. The RowCount property
returns -1 if it is not available.
If a new rdoResultset is the result of an action query or contains no rows, the BOF and
EOF properties are both True.
To cancel the current result set and test for subsequent result sets, use the MoreResults
method.    To cancel all pending queries, use the Cancel method.
When you use the Close method against an rdoResultset, all pending queries are flushed
and the rdoResultset is automatically dropped from the rdoResultsets collection.
If there is an unpopulated rdoResultset pending on a data source that can only support a
single operation on an rdoConnection object, you cannot create additional
rdoPreparedStatement or rdoResultset objects, or use the Refresh method on the
rdoTable object until the rdoResultset is flushed, closed, or fully populated.    For
example, when using SQL Server 4.2 as a data source, you cannot create an additional
rdoResultset object until you move to the last row of the last result set of the current
rdoResultset object.    To populate the result set, use the MoreResults method to move
through all pending result sets, or use the Cancel or Close method on the rdoResultset
to flush all pending result sets.

Note      Not all types of cursors and concurrency are supported by every ODBC data source
driver.    See rdoResultset for more information.

See Also
AbsolutePosition Property
BOF , EOF Properties
Cancel Method
Close Method
Connect Property
LockType Property
MoreResults Method
PercentPosition Property
rdoResultset Object, rdoResultsets Collection
ResultsetType Property
StillExecuting Property
Type Property
Understanding Cursors

OpenResultset Method (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object
rdoTable Object

rdoCreateEnvironment Method (Remote Data)
See Also Applies To

Creates a new rdoEnvironment object.
Syntax
Set variable = rdoCreateEnvironment(name, user, password)
The rdoCreateEnvironment method syntax has these parts:
Part Description
variable An object expression that evaluates to an rdoEnvironment object.
name A String variable that uniquely names the new rdoEnvironment object.    See

the Name property for details on valid rdoEnvironment names.
user A String variable that identifies the owner of the new rdoEnvironment

object.    See the UserName property for more information.
password A String variable that contains the password for the new rdoEnvironment

object.    The password can be up to 14 characters long and can include any
characters except ASCII character 0 (null).

Remarks
The rdoEnvironment object defines a transaction, user, and password context.    When the
rdoEngine is initialized, a default rdoEnvironments(0) is created automatically with the
rdoDefaultUser and rdoDefaultPassword user name and password.    If you need to
define alternate transaction scopes that contain specific rdoConnection objects, or
specific users, use the rdoCreateEnvironment method and specify the specific users for
the environment.    You can then open connections against this new environment.
Unlike the other methods you use to create Remote Data Objects, rdoCreateEnvironment
requires that you provide all of its parts.    In addition, rdoEnvironment objects aren't
permanent and can't be saved.    Once you create an rdoEnvironment object, you can
only modify the UserName and Timeout property settings.
You don't have to append the new rdoEnvironment object to a collection before you can
use it it is automatically appended to the rdoEnvironments collection.
If name refers to an object that is already a member of the rdoEnvironments collection, a
trappable error occurs.
Once you use rdoCreateEnvironment to create a new rdoEnvironment object, an
rdoEnvironment session is started, and you can refer to the rdoEnvironment object in
your application.
To remove an rdoEnvironment object from the rdoEnvironments collection, use the
Close method on the rdoEnvironment object.    You cannot remove rdoEnvironments(0).

See Also
Close Method
Name Property
Password Property
rdoDefaultUser , rdoDefaultPassword Properties
rdoEngine Object
rdoEnvironment Object, rdoEnvironments Collection
UserName Property

rdoCreateEnvironment Method (Remote Data) Applies To

rdoEngine Object

rdoRegisterDataSource Method (Remote Data)
See Also Applies To

Enters connection information for an ODBC data source into the Windows Registry.
Syntax
rdoRegisterDataSource dsName, driver, silent, attributes
The rdoRegisterDataSource method syntax has these parts:
Part Description
dsName A string expression that is the name used in the OpenConnection method

that refers to a block of descriptive information about the data source.    For
example, if the data source is an ODBC remote database, it could be the name
of the server.

driver A string expression that is the name of the ODBC driver.    This isn't the name
of the ODBC driver dynamic link library (DLL) file.    For example, SQL Server is
a driver name, but SQLSRVR.DLL is the name of a DLL file.    You must have
ODBC and the appropriate driver already installed.

silent A Boolean value that is True if you don't want to display the ODBC driver
dialog boxes that prompt for driver-specific information, or False if you do
want to display the ODBC driver dialog boxes.    If silent is True, attributes
must contain all the necessary driver-specific information or the dialog boxes
are displayed anyway.

attributes A string expression that is a list of keywords to be added to the ODBC.INI file.   
The keywords are in a carriage-return-delimited string.

Remarks
The ODBC driver needs connection information when the database engine opens the data
source during a session.
If the data source is already registered in the    Windows Registry when you use the
rdoRegisterDataSource method, the connection information is updated.    If the
rdoRegisterDataSource method fails for any reason, no changes are made to the
Windows Registry, and an error occurs.
For more information about ODBC drivers such as SQL Server, see the Help file provided
with the driver.
You are encouraged to use the Windows Control Panel ODBC Data Sources dialog box to
add new data sources, or to make changes to existing entries.

See Also
rdoConnection Object, rdoConnections Collection
rdoEngine Object
OpenConnection Method

rdoRegisterDataSource Method (Remote Data) Applies To

rdoEngine Object

Refresh Method (Remote Data)
See Also Applies To

Closes and rebuilds the rdoResultset object created by a RemoteData control or
refreshes the members of the collections in the Applies To list.

Syntax
object.Refresh
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use the Refresh method in multiuser environments in which the database schema is
subject to change to retrieve current table definitions.    Using the Refresh method on an
rdoTables collection fetches table names from the base tables in the database.    Using
Refresh on a specific rdoTable object's rdoColumns collection fetches the table
structures including column names and data types from the base tables.
You can use the Refresh method on a RemoteData control to close and reopen the
rdoResultset if the properties that describe the result set have changed.    When you use
the Refresh method, the properties and current row position is reset to the state set when
the query was first run.

Note      Before you can use the name of a base table in the source argument of the
OpenResultset method, you must first use the Refresh method against the rdoTables
collection to populate it.    You can also populate the rdoTables collection by referencing
one of its members by its ordinal number.    For example, referencing rdoTables(0) will
populate the entire collection.
If both the BOF and EOF property settings of the rdoResultset object are True, or the
RowCount property is set to 0 after you use the Refresh method, the query didn't return
any rows and the new rdoResultset contains no data.
Once the Refresh method has been executed against the RemoteData control, all stored
rdoResultset bookmarks are invalid.

See Also
BOF , EOF Properties
Close Method
Execute Method
rdoTables Collection
RemoteData Control
Requery Method
RowCount Property

Refresh Method (Remote Data) Applies To

rdoTables Collection
rdoColumns Collection
RemoteData Control

Requery Method (Remote Data)
See Also Applies To

Updates the data in an rdoResultset object by re-executing the query on which the object
is based.

Syntax
object.Requery
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use this method to ensure that an rdoResultset contains the most recent data.    When
you use Requery, all changes made to the data in the underlying table by you and other
users is displayed in the rdoResultset, and the first row in the rdoResultset becomes the
current row.
If the rdoParameter objects have changed, their new values are used in the query used to
generate the new rdoResultset.
Once the Requery method has been executed, all previously stored rdoResultset
bookmarks are invalid.
If both the BOF and EOF property settings of the rdoResultset object are True, or the
RowCount property is set to 0 after you use the Requery method, the query didn't return
any rows and the rdoResultset contains no data.
You can't use the Requery method on rdoResultset objects whose Restartable property
is set to False.

See Also
BOF , EOF Properties
Execute Method
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Restartable Property
RowCount Property

Requery Method (Remote Data) Applies To

rdoResultset Object

Update Method (Remote Data)
See Also Applies To

Saves the contents of the copy buffer row to a specified updatable rdoResultset object.
Syntax
object.Update
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use Update to save the current row and any changes you've made to it to the underlying
database table(s).
Changes to the current row are lost if:

You use the Edit or AddNew method, and then reposition the current row pointer to
another row without first using Update.

You use Edit or AddNew, and then use Edit or AddNew again without first using
Update.

You cancel the update with the CancelUpdate method.
You set the Bookmark property to another row.
You close the result set referred to by object without first using Update.

To edit a row, use the Edit method to copy the contents of the current row to the copy
buffer.    If you don't use AddNew or Edit first, an error occurs when you use Update or
attempt to add a new row.
To add a new row, use the AddNew method to initialize the copy buffer.
When the rdoResultset object's LockEdits property setting is True (pessimistically
locked) in a multiuser environment, the data page or row remains locked from the time
Edit is used until the Update method is executed.    If the LockEdits property setting is
False (optimistically locked), the data page or row is locked and compared with the pre-
edited row just before it is updated in the database.    If the row has changed since you
used the Edit method, the Update operation fails with a trappable error.    To revert to the
row as the other user changed it, refresh the current row using the Move methods, or set
the Bookmark property to itself.    To add a new row to a result set, use the AddNew
method.
Using Update produces an error under any of the following conditions:

There is no current row.
The connection or rdoResultset is read-only.
No columns in the row are updatable.
You do not have an Edit or AddNew operation pending.
Another user has locked the row or data page containing your row.
The user does not have permission to perform the operation.

See Also
AddNew Method
BeginTrans , CommitTrans , RollbackTrans Methods
Bookmark Property
Edit Method
LockEdits Property
OpenResultset Method
rdoResultset Object, rdoResultsets Collection
UpdateControls Method
UpdateRow Method

Update Method (Remote Data) Applies To

rdoResultset Object

UpdateControls Method (Remote Data)
See Also Applies To

Gets the current row from a RemoteData control's rdoResultset object and displays the
appropriate data in controls bound to a RemoteData control.

Syntax
object.UpdateControls
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use this method to restore the contents of bound controls to their original values, as when
a user makes changes to data and then decides to cancel the changes.
This method creates the same effect as making the current row current again, except that
no events occur.    By not invoking any events, this method can be used to simplify an
update operation because no additional validation or change event procedures are
triggered.

See Also
Edit Method
Update Method
UpdateRow Method

UpdateControls Method (Remote Data) Applies To

RemoteData Control

UpdateRow Method (Remote Data)
See Also Applies To

Saves the current values of bound controls to the database.
Syntax
object.UpdateRow
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use this method to save the current contents of bound controls to the database during the
Validate event, but without triggering the Validate event again.    You can use this method
to avoid triggering the Validate event.    Using this method avoids a cascading event.
The UpdateRow method has the same effect as executing the Edit method, changing a
column, and then executing the Update method, except that no events occur.
Whenever you attempt to update a row in the database, any validation rules must be
satisfied before the row is written to the database.    In the case of Microsoft SQL Server,
these rules are established by Transact SQL defaults, rules, and triggers written to enforce
referential and data integrity.
An update may not occur because of any of the following reasons, which can also trigger a
trappable error:

The page containing the row or the row itself is locked.
The database or rdoResultset object isn't updatable.
The user doesn't have permission to perform the operation.

See Also
AddNew Method
BeginTrans , CommitTrans , RollbackTrans Methods
Bookmark Property
Edit Method
LockEdits Property
OpenResultset Method
rdoResultset Object, rdoResultsets Collection
RemoteData Control
UpdateControls Method

UpdateRow Method (Remote Data) Applies To

RemoteData Control

Clear Method (Remote Data)
See Also Applies To

Clears all members from the rdoErrors collection.
Syntax
object.Clear
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
Use this method to remove all rdoError objects from the rdoErrors collection.
Generally, it is unnecessary to clear the rdoErrors collection because it is automatically
cleared when the first error occurs after initiating a new operation.    Use the Clear method
in cases where you need to clear the rdoErrors collection manually.

See Also
rdoError Object, rdoErrors Collection

Clear Method (Remote Data) Applies To

rdoErrors Collection

Move Method (RemoteData Control)

Moves an MDIForm, Form, or control.    Doesn't support named arguments.
Syntax
object.Move left, top, width, height
The Move method syntax has these parts:
Part Description
object Optional.    An object expression that evaluates to a RemoteData control .    If

object is omitted, the form with the focus is assumed to be object.
left Required.    Single-precision value indicating the horizontal coordinate (x-axis)

for the left edge of object.
top Optional.    Single-precision value indicating the vertical coordinate (y-axis) for

the top edge of object.
width Optional.    Single-precision value indicating the new width of object.
height Optional.    Single-precision value indicating the new height of object.

Remarks
Only the left argument is required.    However, to specify any other arguments, you must
specify all arguments that appear in the syntax before the argument you want to specify.   
For example, you can't specify width without specifying left and top.    Any trailing
arguments that are unspecified remain unchanged.
For forms and controls in a Frame control, the coordinate system is always in twips.   
Moving a form on the screen or moving a control in a Frame is always relative to the origin
(0,0), which is the upper-left corner.    When moving a control on a Form object or in a
PictureBox (or an MDI child form on an MDIForm object), the coordinate system of the
container object is used.    The coordinate system or unit of measure is set with the
ScaleMode property at design time.    You can change the coordinate system at run time
with the Scale method.

rdoConnection Object, rdoConnections Collection
See Also Properties Methods Summary

An rdoConnection object represents an open connection to a remote data source
and a specific database on that data source.

An rdoConnections collection contains all open rdoConnection objects opened or
created in an rdoEnvironment object of the remote database engine.

Remarks
You can open connections to remote ODBC data sources and create rdoConnection
objects with either the RemoteData control or the OpenConnection method of an
rdoEnvironment object.
Once a connection is established, you can manipulate a database associated with the
rdoConnection using the rdoConnection object and its methods and properties.    The
database that is opened is determined by either the default database assigned to the user
name, or by a specific default database specified with the DATABASE argument used when
the rdoConnection is created.    Some SQL dialects, such as Transact SQL for SQL Server,
support SQL syntax you can use to specify a particular database for a query.
You can manipulate databases with the methods and properties of the rdoConnection
object.    For example, you can:

Use the Execute method to run an action query or pass an SQL statement to a
database for execution.

Use the OpenResultset method to create a new rdoResultset object.
Use the CreatePreparedStatement method to create a new

rdoPreparedStatement object.
Use the RowsAffected property to determine how many rows were affected by the

last operation.
Use the Close method to close an open connection, deallocate the connection

handle, and terminate the connection.    Any open rdoResultset, rdoTable, or
rdoPreparedStatement objects are closed automatically when the rdoConnection object
is closed.    However, if the rdoConnection object simply loses scope, any open
rdoResultset, rdoTable or rdoPreparedStatement objects remain open until the
rdoConnection or the objects are explicitly closed.

Use the QueryTimeout property to specify how long the ODBC driver manager
should wait before abandoning a query.   

Use the Transactions property to determine if the connection supports transactions,
which you can implement using the BeginTrans, CommitTrans, and RollbackTrans
methods.

Use the ODBC API with the hDbc property to set connection options.
The Connect property contains the connect argument used in the OpenConnection
method, or the Connect property of the RemoteData control.
The Name property setting of an rdoConnection specifies the data source name (DSN)
parameter used to open the connection.    You can refer to any rdoConnection object by
its Name property setting using this syntax:
rdoConnections("name")
You can also refer to the object by its ordinal number using this syntax (which refers to the
first member of the rdoConnections collection):
rdoConnections(0)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
Close Method
Name Property
OpenConnection Method
QueryTimeout Property
rdoEnvironment Object, rdoEnvironments Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
RemoteData Control

rdoConnection Object, rdoConnections Collection Summary

rdoConnection Object
The rdoConnection object contains these collections, methods, and properties.
Collections
rdoPreparedStatements
rdoResultsets
rdoTables
Methods
BeginTrans , CommitTrans , RollbackTrans
Cancel
Close
CreatePreparedStatement
Execute
OpenResultset
Properties
AsyncCheckInterval
Connect
hDbc
Name
QueryTimeout
RowsAffected
StillExecuting
Transactions
Updatable
Version

rdoConnections Collection
The rdoConnections collection contains one method and one property.
Method
Item
Property
Count

rdoEngine Object
See Also Properties Methods Summary

The rdoEngine object represents the remote data source.    As the top-level object, it
contains all other objects in the hierarchy of Remote Data Objects (RDO).

Remarks
The rdoEngine object can represent a remote database engine or another data source
managed by the ODBC driver manager as a database.    The rdoEngine object is a
predefined object, therefore you can't create additional rdoEngine objects and it isn't an
element of any collection.
Use the rdoEngine object to set data source parameters and the default
rdoEnvironment, control the ODBC data source and manipulate its properties, and
perform tasks on temporary objects that aren't members of collections.    For example, you
can:

Use the rdoEnvironments collection to examine open rdoEnvironment objects.
Use the rdoErrors collection to examine information about errors.
Use the rdoDefaultLoginTimeout property to obtain or set the default value used

for ODBC login timeout.
Use the rdoDefaultCursorDriver property to determine if the ODBC driver manager

creates local or server-side cursors.
Use the rdoDefaultUser and rdoDefaultPassword properties to obtain or set the

user name and password to be used when opening connections if no specific values are
supplied.

Use the rdoDefaultErrorThreshold property to obtain or set the default value used
for error numbers that constitute a fatal error
 one that terminates a query and triggers a trappable Visual Basic error.

Use the rdoRegisterDataSource method to create a new data source entry either
in the Windows System Registry (32-bit) or in the ODBC.INI file (16-bit).

Use the rdoCreateEnvironment method to create a new rdoEnvironment object.
Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
rdoConnection Object, rdoConnections Collection
rdoCreateEnvironment Method
rdoDefaultCursorDriver Property
rdoDefaultErrorThreshold Property
rdoDefaultLoginTimeout Property
rdoDefaultUser, rdoDefaultPassword Properties
rdoError Object, rdoErrors Collection
rdoRegisterDataSource Method
Remote Data Objects and Collections

rdoEngine Object Summary

rdoEngine Object
The rdoEngine object contains these collections, methods, and properties.
Collections
rdoEnvironments
rdoErrors
Methods
rdoCreateEnvironment
rdoRegisterDataSource
Properties
rdoDefaultCursorDriver
rdoDefaultErrorThreshold
rdoDefaultLoginTimeout
rdoDefaultPassword
rdoDefaultUser
rdoVersion

rdoEnvironment Object, rdoEnvironments Collection
See Also Properties Methods Summary

An rdoEnvironment object defines a logical set of connections for a particular user
name.    It contains open databases, provides mechanisms for simultaneous transactions,
and provides a security context for data manipulation language (DML) operations on the
database.

The rdoEnvironments collection contains all active rdoEnvironment objects of the
rdoEngine object.

Remarks
An rdoEnvironment object corresponds to an ODBC environment that can be referred to
by the rdoEnvironment object's hEnv property.    All rdoEnvironment objects share a
common hEnv value that is created on an application basis.
rdoEnvironment objects are created with the rdoCreateEnvironment method of the
rdoEngine object.    Newly created rdoEnvironment objects are automatically appended
to the rdoEnvironments collection.
The user name and password information from the rdoEnvironment is used to establish
the connection if these values are not supplied in the connect argument of the
OpenConnection method, or in the Connect property of the RemoteData control .
The rdoEnvironment also determines transaction scope.    Committing an
rdoEnvironment transaction commits all open rdoConnection databases and their
corresponding open rdoResultset objects.    This does not imply a two-phase commit
operation simply that individual rdoConnection objects are instructed to commit any
pending operations.
The default rdoEnvironment is created automatically when the RemoteData control is
initialized, or the first remote data object is referenced in code.    The Name property of
rdoEnvironments(0) is "Default_Environment".    The user name and password for
rdoEnvironments(0) are both "".
Use the rdoEnvironment object to manage the current ODBC environment, or to start an
additional connection.    In an rdoEnvironment, you can open multiple databases, manage
transactions, and establish security based on user names and passwords.    For example,
you can:

Create an rdoEnvironment object using the Name, Password, and UserName
properties to establish a named, password-protected environment.    The environment
creates a scope in which you can open multiple connections and conduct one instance of
nested transactions.   

Use the OpenConnection method to open one or more existing connections in that
rdoEnvironment.

Use the BeginTrans, CommitTrans, and RollbackTrans methods to manage
batched transaction processing within an rdoEnvironment across several connections.

Use several rdoEnvironment objects to conduct multiple, simultaneous,
independent, and overlapping transactions.

Use the Close method to terminate an environment and the connection.
When you use transactions, all databases in the specified rdoEnvironment are affected
even if multiple rdoConnection objects are opened in the rdoEnvironment.    For
example, if you use a BeginTrans method against one of the databases visible from the
connection, update several rows in the database, and then delete rows in another
rdoConnection database.    When you use the RollbackTrans method, both the update
and delete operations are rolled back.    You can create additional rdoEnvironment objects

to manage transactions independently across rdoConnection objects.    Note that
transactions executed by multiple rdoEnvironment objects are serialized and are not
atomic operations.    Because of this, their success or failure is not interdependent.    This is
an example of batched transactions.

You can execute nested transactions only if your data source supports them.    For example,
on a single connection, you can execute a BEGIN TRANS SQL statement, execute several
UPDATE queries, and another BEGIN TRANS statement.    Any operations executed after the
second BEGIN TRANS SQL statement can be rolled back independently of the statements
executed after the first BEGIN TRANS.    This is an example of nested transactions.    To
commit the first set of UPDATE statements, you must execute a COMMIT TRANS statement,
or a ROLLBACK TRANS statement for each BEGIN TRANS executed.
The Name property of rdoEnvironment objects is set from the name argument passed to
the rdoCreateEnvironment method.    You can refer to any other rdoEnvironment object
by specifying its Name property setting using this syntax:
rdoEnvironments("name")
or simply:
rdoEnvironments!name
You can also refer to rdoEnvironment objects by their position in the rdoEnvironments
collection using this syntax (where n is the nth member of the zero-based
rdoEnvironments collection):
rdoEngine.rdoEnvironments(n)
or simply:
rdoEnvironments(n)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
Connect Property
hEnv Property
rdoCreateEnvironment Method
rdoConnection Object, rdoConnections Collection
rdoEngine Object
RemoteData Control

rdoEnvironment Object, rdoEnvironments Collection Summary

rdoEnvironment Object
The rdoEnvironment object contains these collections, methods, and properties.
Collections
rdoConnections
Methods
BeginTrans , CommitTrans , RollbackTrans
Close
OpenConnection
Properties
CursorDriver
hEnv
LoginTimeout
Name
Password
UserName

rdoEnvironments Collection
The rdoEnvironments contains one method and one property.
Method
Item
Property
Count

rdoError Object, rdoErrors Collection
See Also Properties Methods Summary

rdoError object
contains details about remote data access errors.

rdoErrors collection
contains all stored rdoError objects, which pertain to a single operation involving Remote

Data Objects (RDO).

Remarks
Any operation involving remote data objects can generate one or more errors.    As each
error occurs, one or more rdoError objects are placed in the rdoErrors collection of the
rdoEngine object.    When another RDO operation generates an error, the rdoErrors
collection is cleared, and the new set of rdoError objects is placed in the rdoErrors
collection.    RDO operations that don't generate an error have no effect on the rdoErrors
collection.
If the severity of the error number is below the error threshold as specified in either the
rdoDefaultErrorThreshold or ErrorThreshold property, then a trappable error is
triggered when the error is detected.    Otherwise, an rdoError object is simply appended
to the rdoErrors collection.
Use the rdoError object to determine the type and severity of any errors generated by the
RemoteData control or RDO operations.    For example, you can:

Use the Description property to display a text message describing the error.
Use the Number property to determine the native data source error number.
Use the Source property to determine the source of the error and the object class

causing the error.
Use the SQLRetCode and SQLState properties to determine the ODBC return code

and SQLState flags.
Use the Clear method on the rdoErrors collection to remove all rdoError objects.   

In most cases, it is not necessary to use the Clear method because the rdoErrors collection
is cleared automatically when a new error occurs.
Members of the rdoErrors collection aren't appended as is typical with other collections.   
The most general errors are placed at the end of the collection (Count -1), and the most
detailed errors are placed at index 0.    Because of this implementation, you can determine
the root cause of the failure by examining rdoErrors(0).
The set of rdoError objects in the rdoErrors collection describes one error.    The first
rdoError object is the lowest level error, the second is the next higher level, and so forth.   
For example, if an ODBC error occurs while the RemoteData control tries to create an
rdoResultset object, the last rdoError object contains the RDO error indicating the object
couldn't be opened.    The first error object contains the lowest level ODBC error.   
Subsequent errors contain the ODBC errors returned by the various layers of ODBC.    In this
case, the driver manager, and possibly the driver itself, returns separate errors which
generate rdoError objects.

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
RemoteData Control
rdoEngine Object
rdoResultset Object, rdoResultsets Collection

rdoError Object, rdoErrors Collection Summary

rdoError Object
An rdoError object contains these properties.
Properties
Description Source
HelpContext SQLRetCode
HelpFile SQLState
Number

rdoErrors Collection
The rdoErrors collection contains these methods and properties.
Method
Clear
Item
Property
Count

rdoColumn Object, rdoColumns Collection
See Also Properties Methods Summary

An rdoColumn object represents a column of data with a common data type and a
common set of properties.

An rdoColumns collection contains all rdoColumn objects of an rdoResultset,
rdoPreparedStatement, or rdoTable object.

Remarks
The rdoTable object's rdoColumns collection contains specifications for the data columns.
You use the rdoColumn object in an rdoTable to map a base table's column structure.   
However, you cannot alter the structure of a database table using RDO properties and
methods.
The rdoTable, rdoResultset, or rdoPreparedStatement object's rdoColumns
collection represents the rdoColumn objects in a row of data.    You use the rdoColumn
object in an rdoResultset or rdoPreparedStatement to read and set values for the data
columns in the current row of the object.
An rdoColumn object's name is determined by the name used to define the column in the
data source table or by the name assigned to it in an SQL query.
You manipulate columns using an rdoColumn object and its methods and properties.    For
example, you can:

Use the SourceColumn and SourceTable property settings to locate the original
source of the data.

Use the Type and Size property settings to get the data type and size of the data.
Use the OrdinalPosition property to get presentation order of the rdoColumn

objects in an rdoColumns collection.
Use the Attributes and Required property settings to determine optional

characteristics and if Null s are permitted in the column.
Use the AllowZeroLength property setting to get the zero-length string handling

setting.
Use the Updatable property to see if the column can be changed.
Use the AppendChunk, ColumnSize, and GetChunk methods to manipulate

columns that require the use of these methods, as determined by the ChunkRequired
property.

Use the Value property of an rdoColumn to extract data from a specified column.
You can refer to the Value property of an rdoColumn object by:

Referencing the Name property setting using this syntax:
rdoColumns("name")
-Or-
rdoColumns!name

Referencing its ordinal position in the rdoColumns collection using this syntax:
rdoColumns(0)

When the rdoColumn object is accessed as part of an rdoResultset object, data from the
current row is visible in the rdoColumn object's Value property.    To manipulate data in the
rdoResultset, you don't usually reference the rdoColumns collection directly.    Instead,
use syntax that references the rdoColumns collection as the default collection of the
rdoResultset.

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

rdoColumn Object, rdoColumns Collection Summary

rdoColumn Object
An rdoColumn object contains these properties and methods.
Properties
AllowZeroLength
Attributes
ChunkRequired
Name
OrdinalPosition
Required
Size
SourceColumn
SourceTable
Type
Updatable
Value
Methods
AppendChunk
ColumnSize
GetChunk

rdoColumns Collection
The rdoColumns collection contains one method and one property.
Method
Item
Property
Count

rdoParameter Object, rdoParameters Collection
See Also Properties Summary

An rdoParameter object represents a parameter associated with an
rdoPreparedStatement object.

An rdoParameters collection contains all the rdoParameter objects of an
rdoPreparedStatement object.

Remarks
Using the properties of an rdoParameter object, you can set a query parameter that can
be changed before the query is run.    You can:
 Use the Direction property setting to determine if the parameter is an input, output,

or input/output parameter, or a return value.
 Use the Type property setting to determine the data type of the rdoParameter.   

Data types are identical to those specified by the rdoColumn.Type property.
 Use the Value property (the default property of an rdoParameter) to pass values to

the SQL queries containing parameter markers used in rdoPreparedStatement.Execute
or rdoPreparedStatement.OpenResultset methods.    For example:

MyPreparedStatement.rdoParameters(0) = 5
The rdoParameters collection provides information only about existing parameters.    You
can't append objects to or delete objects from the rdoParameters collection.
Members of the rdoParameters collection are named "Paramn" where n is the
rdoParameter object's ordinal number.    For example, if an rdoParameters collection has
two members, they are named "Param0" and "Param1".
You can refer to the Value property of an rdoParameter object by:

Referencing the Name property setting using this syntax:
rdoParameters("name")
-Or-
rdoParameters!name

Referencing its ordinal position in the rdoParameters collection using this syntax:
rdoParameters(0)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
Direction Property
Execute Method
OpenResultset Method
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Type Property

rdoParameter Object, rdoParameters Collection Summary

rdoParameter Object
An rdoParameter object represents a parameter associated with an
rdoPreparedStatement object created from a parameter query.
Properties
Direction
Name
Type
Value

rdoParameters Collection
An rdoParameters collection contains one method and one property.
Method
Item
Property
Count

rdoPreparedStatement Object, rdoPreparedStatements Collection
See Also Properties Methods Summary

An rdoPreparedStatement object is a prepared query definition.
An rdoPreparedStatements collection contains all rdoPreparedStatement

objects in an rdoConnection.

Remarks
An rdoPreparedStatement is like a compiled SQL statement.    You can use the properties
of an rdoPreparedStatement object to define a query.    For example, you can:

Set query parameters using the rdoPreparedStatement object's rdoParameters
collection.

Use the SQL property setting, set its parameters, and then run the query.
Use    the Type property to determine whether the query selects rows from an

existing table (select query), performs an action (an action query), or is a procedure.
Use the RowsetSize property setting to determine how many rows are buffered

internally when building a cursor.
Use the QueryTimeout property to indicate how long the driver manager waits

before abandoning a query.
Use the BindThreshold property to indicate the largest column to be automatically

bound.
Use the ErrorThreshold property to indicate the error level that constitutes a

trappable error.
Use the KeysetSize property to indicate the size of the keyset buffer when creating

cursors.
Use the MaxRows property to indicate the maximum number of rows to be returned

by a query.
Use the RowsAffected property to indicate how many rows are affected by an action

query.
Use the Updatable property to see if the result set generated by an

rdoPreparedStatement can be updated.
Use the Close method to terminate an rdoPreparedStatement query and release

its resources.
Use the OpenResultset method to create an rdoResultset based on the

OpenResultset arguments and properties of the rdoPreparedStatement.
Use the Execute method to run an action query using SQL and other

rdoPreparedStatement properties, including any values specified in the rdoParameters
collection.

Use the LogMessages property to activate ODBC tracing.
rdoPreparedStatement objects are the preferred way to use the native SQL dialect of an
external database engine.    For example, you can create a Transact SQL query (as used on
Microsoft SQL Server) and store it in an rdoPreparedStatement object.
You refer to an rdoPreparedStatement object by its Name property setting using this
syntax:
rdoPreparedStatements("name")
or
rdoPreparedStatements!name
You can also refer to rdoPreparedStatement objects by their position in the

rdoPreparedStatements collection using this syntax (where n is the nth member of the
zero-based rdoPreparedStatements collection):
rdoPreparedStatements(n)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
CreatePreparedStatement Method
OpenResultset Method
rdoColumn Object, rdoColumns Collection
rdoConnection Object, rdoConnections Collection
rdoParameter Object, rdoParameters Collection
Understanding Cursors

rdoPreparedStatement Object, rdoPreparedStatements Collection
Summary

rdoPreparedStatement Object
The rdoPreparedStatement object contains these collections, methods, and properties.
Collections
rdoColumns
rdoParameters (default)
Methods
Cancel
Close
Execute
OpenResultset
Properties
BindThreshold
Connect
ErrorThreshold
hStmt
KeysetSize
LockType
LogMessages
MaxRows
Name
QueryTimeout
RowsAffected
RowsetSize
SQL
StillExecuting
Type
Updatable

rdoPreparedStatements Collection
The rdoPreparedStatements collection contains one method and one property.
Method
Item
Property
Count

rdoResultset Object, rdoResultsets Collection
See Also Properties Methods Summary

An rdoResultset object represents the rows that result from running a query.
The rdoResultsets collection contains all open rdoResultset objects in an

rdoConnection.

Remarks
When you use remote data objects, you interact with data almost entirely using
rdoResultset objects.    rdoResultset objects are created using the RemoteData control ,
or the OpenResultset method of the rdoPreparedStatement, rdoTable, or
rdoConnection object.
When you execute a query that contains one or more SQL SELECT statements, the data
source returns zero or more rows in an rdoResultset object.    All rdoResultset objects
are constructed using rows and columns.
A single rdoResultset can contain zero or any number of result sets so-called "multiple"
result sets.    Once you have completed processing the first result set in an rdoResultset
object, use the MoreResults method to discard the current rdoResultset rows and
activate the next rdoResultset.    You can process individual rows of the new result set just
as you processed the first rdoResultset.    You can repeat this until the MoreResults
method returns False.
A new rdoResultset is automatically added to the rdoResultsets collection when you
open the object, and it's automatically removed when you close it.    Only one
rdoResultset object is active at any one time.
Each of the rdoResultset rows must be processed before you can process subsequent
result sets.    To process result set rows, use the Move methods to position to individual
rows, or the MoveLast method to position to the last row of the rdoResultset.    Using the
MoreResults method discards the current rdoResultset rows and activates the next
rdoResultset.
You can choose the type of rdoResultset object you want to create using the type
argument of the OpenResultset method.    If you don't specify a type, the RemoteData
control creates a keyset-type rdoResultset.    There are four types of rdoResultset
objects based on the type of cursor that is created to access the data:

Forward-only
type rdoResultset
individual rows in the result set can be accessed and can be updatable (when using server-

side cursors), but the current row pointer can only be moved toward the end of the
rdoResultset.    A forward-only
type rdoResultset can contain columns from one or more tables in a database.    Forward-

only result sets are not cursors.
Static-type rdoResultset

a static copy of a set of rows that you can use to find data or generate reports.    A static-
type rdoResultset can contain columns from one or more tables in a database.    Static
cursors might be updatable when using either the ODBC cursor library or server-side cursors,
depending on which drivers are supported and whether the source data can be updated.

Keyset-type rdoResultset
the result of a query that can have updatable rows.    Movement within the keyset is

unrestricted.    A keyset-type rdoResultset is a dynamic set of rows that you can use to add,
change, or delete rows from an underlying database table or tables.    A keyset-type
rdoResultset can contain columns from one or more tables in a database.    Membership of

a keyset rdoResultset is fixed.
Dynamic-type rdoResultset

the result of a query that can have updatable rows.    A dynamic-type rdoResultset is a
dynamic set of rows that you can use to add, change, or delete rows from an underlying
database table or tables.    A dynamic rdoResultset can contain columns from one or more
tables in a database.    Membership of a dynamic-type rdoResultset is not fixed.
You can use the methods and properties of the rdoResultset object to manipulate data
and navigate the rows of a result set.    For example, you can:

Use the Type property to indicate the type of rdoResultset created, and the
Updatable property indicates whether or not you can change the object's rows.

Use the BOF and EOF properties to see if the current row pointer is positioned
beyond either end of the rdoResultset.

Use the Bookmark and PercentPosition properties and the Move, MoveNext,
MovePrevious, MoveFirst, and MoveLast methods to reposition the current row in all but
forward-only
type rdoResultset objects.    Use the MoveNext, MoveLast or Move (>0) to reposition

the current row in forward-only type rdoResultset objects.
Use the Bookmarkable, Transactions, and Restartable properties to determine if

the rdoResultset supports bookmarks or transactions, or can be restarted.   
Use the LockEdits property to set the type of locking used to update the

rdoResultset.   
Use the RowCount property to determine how many rows in the rdoResultset are

available.
Use the AddNew, Edit, Update, and Delete methods to add new rows or otherwise

modify updatable rdoResultset objects.    Use the CancelUpdate method to cancel
pending edits.

Use the Requery method to restart the query used to create an rdoResultset
object.    This method can be used to re-execute a parameterized query.

Use the MoreResults method to complete processing of the current rdoResultset
and begin processing the next result set generated from a query.

Use the Cancel method to terminate processing of an rdoResultset object query.
When you create an rdoResultset, the current row is positioned to the first row if there are
any rows.    If there are no rows, the RowCount property setting is 0, and the BOF and EOF
property settings are both True.   
An rdoResultset may not be updatable even if you request an updatable rdoResultset.   
If the underlying database, table, or column isn't updatable, or if your user does not have
update permission, all or portions of your rdoResultset may be read-only.    Examine the
rdoConnection, rdoResultset, and rdoColumn objects' Updatable property to
determine if your code can change the rows.
The default collection of an rdoResultset is the rdoColumns collection, and the default
property of an rdoColumn object is the Value property.    You can simplify your code by
taking advantage of these defaults.    For example, the following lines of code all set the
value of the PubID column    in the current row of an rdoResultset:
MyRs.rdoColumns("PubID").Value = 99
MyRs("PubID") = 99
MyRs!PubID = 99
You refer to an rdoResultset object by its Name property setting using this syntax:
rdoResultsets("name")
or
rdoResultsets!name
You can also refer to rdoResultset objects by their position in the rdoResultsets
collection using this syntax (where n is the nth member of the zero-based rdoResultsets
collection):

rdoResultsets(n)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
BOF , EOF Properties
Move Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
OpenResultset Method
rdoColumn Object, rdoColumns Collection
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoTable Object, rdoTables Collection
RemoteData Control
Resultset Property
Type Property
Understanding Cursors

rdoResultset Object, rdoResultsets Collection Summary

rdoResultset Object
The rdoResultset object contains these collections, methods, and properties.
Collections
rdoColumns (Default)
Methods
AddNew
Cancel
CancelUpdate
Close
Delete
Edit
GetRows
MoreResults
Move
MoveFirst , MoveLast , MoveNext , MovePrevious
Requery
Update
Properties
AbsolutePosition
BOF
Bookmark
Bookmarkable
EOF
hStmt
LastModified
LockEdits
Name
PercentPosition
Restartable
RowCount
StillExecuting
Transactions
Type
Updatable

rdoResultsets Collection
The rdoResultsets collection contains one method and one property.
Method
Item
Property
Count

rdoTable Object, rdoTables Collection
See Also Properties Methods Summary

An rdoTable object represents the stored definition of a base table or an SQL view.
The rdoTables collection contains all stored rdoTable objects in a database.

Remarks
You map a table definition using an rdoTable object and determine the characteristics of
an rdoTable object using its methods and properties.    For example, you can:

Examine the column properties of any table in an ODBC database.    (Note that all
rdoTable object properties are read-only.)

Use the OpenResultset method to create an rdoResultset object based on all of
the rows of the base table.

Use the Name property to determine the name of the table or view.
Use the RowCount property to determine the number of rows in the table or view.   

For base tables, the RowCount property contains the number of rows in the specified
database table.

Use the Type property to determine the type of table.    The ODBC data source driver
determines the supported table types.

Use the Updatable property to determine if the table supports changes to its data.
You cannot reference the rdoTable objects until you have populated the rdoTables
collection because it is not automatically populated when you connect to a data source.    To
populate the rdoTables collection, use the Refresh method or reference individual
members of the collection by their ordinal number.
When you use the OpenResultset method against an rdoTable object, RDO executes a
"SELECT * FROM table" query that returns all rows of the table using the cursor type
specified.    By default, a forward-only cursor is created.
You cannot define new tables or change the structure of existing tables using RDO or the
RemoteData control .    To change the structure of a database or perform other
administrative functions, use SQL queries or the administrative tools that are provided with
the database.
The default collection of an rdoConnection object is the rdoTables collection, and the
default collection of an rdoTable object is the rdoColumns collection.    The default
property of an rdoTable is the Name property.    You can simplify your code by using these
defaults.    For example, the following statements are identical in that they both print the
number corresponding to the column data type of a column in an rdoTable using a
RemoteData control:
Print RemoteData1.Connection.rdoTables("Publishers").rdoColumns("PubID").Type
Print RemoteData1.Connection("Publishers")("PubID").Type
The Name property of an rdoTable object isn't the same as the name of an object variable
to which it's assigned it is derived from the name of the base table in the database.

You refer to an rdoTable object by its Name property setting using this syntax:
rdoTables("name")
or
rdoTables!name
You can also refer to rdoTable objects by their position in the rdoTables collection using
this syntax (where n is the nth member of the zero-based rdoTables collection):
rdoTables(n)

Note      To use the Remote Data Objects (RDO), you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.

See Also
Name Property
OpenResultset Method
rdoColumn Object, rdoColumns Collection
rdoConnection Object, rdoConnections Collection
rdoResultset Object, rdoResultsets Collection
RowCount Property
Type Property
Updatable Property

rdoTable Object, rdoTables Collection Summary

rdoTable Object
An rdoTable contains these collections, methods, and properties.
Collections
rdoColumns (default)
Methods
OpenResultset
Refresh
Properties
Name
RowCount
Type
Updatable

rdoTables Collection
An rdoTables collection contains these methods and properties.
Methods
Refresh
Item
Property
Count

Remote Data Objects and Collections
See Also

Remote Data objects and collections provide a framework for using code to create and
manipulate components of a remote ODBC database system.    Objects and collections have
properties that describe the characteristics of database components and methods that you
use to manipulate them.    Using the containment framework, you create relationships
among objects and collections, and these relationships represent the logical structure of
your database system.
Objects and collections provide different types of containment relationships:    Objects
contain zero or more collections, all of different types; and collections contain zero or more
objects, all of the same type.    Although objects and collections are similar entities, the
distinction differentiates the two types of relationships.

Note      The RDO is only supported on 32-bit operating systems such as Windows 95 and
Windows NT.    To use the Remote Data Objects, you must set a reference to the Microsoft
Remote Data Object 1.0 object library in the Visual Basic References dialog box.
In the following table, the type of collection in the first column contains the type of object in
the second column.    The third column describes what each type of object represents.
Collection Object Description
rdoConnections rdoConnection An open connection
None rdoEngine The remote database engine
rdoErrors rdoError Information about any errors associated

with this object
rdoEnvironments rdoEnvironment A logical set of rdoConnection objects

with a common user name and
password

rdoColumns rdoColumn A column that is part of an
rdoResultset

rdoParameters rdoParameter A parameter for an
rdoPreparedStatement

rdoPreparedStatements rdoPreparedStatements A
saved query definition

rdoResultsets rdoResultset The rows resulting from a query
rdoTables rdoTable A table definition

See Also
Remote Data Object Model
Remote Data Objects Event Summary
Remote Data Objects Method Summary
Remote Data Objects Property Summary

RemoteData Control
See Also Properties Methods Events

Provides access to data stored in a remote ODBC data source.    The RemoteData control
enables you to move from row to row in a result set and to display and manipulate data
from the rows in bound controls.

Syntax
RemoteData

Remarks
The RemoteData control provides an interface between Remote Data Objects (RDO) and
data-aware bound controls.    With the RemoteData control, you can:

Establish a connection to a data source based on its properties.
Create an rdoResultset.
Pass the current row's data to corresponding bound controls.
Permit the user to position the current row pointer.
Pass any changes made to the bound controls back to the data source.

Overview
Without a RemoteData control, a Data control or its equivalent, data-aware (bound)
controls on a form can't automatically access data.    You can perform most remote data
access operations using the RemoteData control without writing any code at all.    Data-
aware controls bound to a RemoteData control automatically display data from one or
more columns for the current row or, in some cases, for a set of rows on either side of the
current row.    The RemoteData control performs all operations on the current row.
If the RemoteData control is instructed to move to a different row, all bound controls
automatically pass any changes to the RemoteData control to be saved to the ODBC data
source.    The RemoteData control then moves to the requested row and passes back data
from the current row to the bound controls where it's displayed.
The RemoteData control automatically handles a number of contingencies including
empty result sets, adding new rows, editing and updating existing rows, and handling some
types of errors.    However, in more sophisticated applications, you need to trap some error
conditions that the RemoteData control can't handle.    For example, if the remote server
has a problem accessing the data source, the user doesn't have permission, or the query
can't be executed as coded, a trappable error results.    If the error occurs before your
application procedures start, or as a result of some internal errors, the Error event is
triggered.

Operation
Use the RemoteData control properties to describe the data source, establish a
connection, and specify the type of cursor to create.    If you alter these properties once the
result set is created, use the Refresh method to rebuild the underlying rdoResultset
based on the new property settings.
You can manipulate the RemoteData control with the mouse you can move from row to
row, or to the beginning or end of the rdoResultset by clicking the control.    As you
manipulate the RemoteData control buttons, the current row pointer is repositioned in the
rdoResultset.    You cannot move off either end of the rdoResultset using the mouse.   
You also can't set focus to the RemoteData control.

You can also use the objects created by the RemoteData control to create additional
rdoConnection, rdoResultset, or rdoPreparedStatement objects.
You can set the RemoteData control Resultset property to an rdoResultset created
independently of the control.    If this is done, the RemoteData control properties are reset
based on the new rdoResultset and rdoConnection.
You can set the Options property to enable asynchronous creation of the rdoResultset.
The Validate event is triggered before each reposition of the current row pointer.    You can
choose to accept the changes made to bound controls or cancel the operation using the
Validate event's action argument.

The RemoteData control can also manage what happens when you encounter an
rdoResultset with no rows.    By changing the EOFAction property, you can program the
RemoteData control to enter AddNew mode automatically.

Programmatic Operation
To create an rdoResultset programmatically with the RemoteData control:

Set the RemoteData control properties to describe the desired characteristics of the
rdoResultset.

Use the Refresh method to begin the automated process or to create the new
rdoResultset.    Any existing rdoResultset is discarded.
All of the RemoteData control properties and the new rdoResultset object may be
manipulated independently of the RemoteData control with or without bound controls.   
The rdoConnection and rdoResultset objects each have properties and methods of their
own that can be used with procedures that you write.

For example, the MoveNext method of an rdoResultset object moves the current row to
the next row in the rdoResultset.    To invoke this method with an rdoResultset created by
a RemoteData control, you could use this code:
RemoteData1.Resultset.MoveNext

See Also
Choosing a Cursor Type
Remote Data Objects Overview
Repositioning the Current Row Pointer
Running Asynchronous Queries
Using Bound Controls with the RemoteData Control
Using ODBC Handles
Using the RemoteData Control

RemoteData Control Events

DragDrop
DragOver
Error
MouseDown
MouseMove
MouseUp
QueryCompleted
Reposition
Validate

RemoteData Control Methods

BeginTrans
Cancel
CommitTrans
Drag
Move
Refresh
RollbackTrans
ShowWhatsThis
UpdateControls
UpdateRow
ZOrder

RemoteData Control Properties

AboutBox
Align
Appearance
BackColor
BOFAction
Caption
Connection
Connect
Container
CursorDriver
DataSourceName
DragIcon
DragMode
EditMode
Enabled
Environment
EOFAction
ErrorThreshold
Font
ForeColor
Height
HelpContextID
Index
KeysetSize
Left
LockType
LoginTimeout
LogMessages
MaxRows
MouseIcon
MousePointer
Name
Negotiate
Object
Options
Parent
Password
Prompt
QueryTimeout
ReadOnly
Resultset
ResultsetType
RowsetSize
SQL
StillExecuting

Tag
Top
Transactions
UserName
Version
Visible
WhatsThisHelpID
Width

AbsolutePosition Property (Remote Data)
See Also Applies To

Returns or sets the absolute row number of an rdoResultset object's current row.
Syntax
object.AbsolutePosition [= value]
The AbsolutePosition property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long value from 0 to the number of rows in the rdoResultset.   

Corresponds to the ordinal position of the current row in the rdoResultset
specified by object.

Remarks
Use the AbsolutePosition property to position the current row pointer to a specific row
based on its ordinal position in a keyset-, dynamic-, or static-type rdoResultset.    You can
also determine the current row number by checking the AbsolutePosition property
setting.
The AbsolutePosition property value is zero-based a setting of 0 refers to the first row in
the rdoResultset.    Setting a value greater than the number of populated rows causes a
trappable error.    You can determine the number of populated rows in the rdoResultset by
checking the RowCount property setting.

If there is no current row, as when there are no rows in the rdoResultset, -1 is returned.    If
the current row is deleted, the AbsolutePosition property value isn't defined and a
trappable error occurs if it is referenced.    New rows are added to the end of the sequence if
the type of cursor includes dynamic membership.
Note      This property isn't intended to be used as a surrogate row number.    Using
bookmarks is still the recommended way of retaining and returning to a given position.   
Also, there is no assurance that a given row will have the same absolute position if the
rdoResultset is re-created again because the order of individual rows within an
rdoResultset isn't guaranteed unless it's created with an SQL statement using an ORDER
BY clause.
The AbsolutePosition property isn't available on a forward-only type rdoResultset.

AbsolutePosition Property (Remote Data) Applies To

rdoResultset Object

See Also
Bookmark Property
PercentPosition Property
rdoResultset Object, rdoResultsets Collection
RowCount Property

AllowZeroLength Property (Remote Data)
See Also Applies To

Returns a value that indicates whether a zero-length string ("") is a valid setting for the
Value property of an rdoColumn object with an rdTypeCHAR, rdTypeVARCHAR, or
rdTypeLONGVARCHAR data type.   

Syntax
object.AllowZeroLength
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The AllowZeroLength property return values are:
Value Description
True A zero-length string is a valid value.
False A zero-length string isn't a valid value.

Remarks
If AllowZeroLength is False for a column, you must use Null to represent "unknown"
states you cannot use empty strings.

See Also
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Required Property
Value Property

AllowZeroLength Property (Remote Data) Applies To

rdoColumn Object

AsyncCheckInterval Property (Remote Data)
See Also Applies To

Returns or sets a value specifying the number of milliseconds that RDO waits between
checks to see if an asynchronous query is complete.

Syntax
object.AsyncCheckInterval [= value]
The AsyncCheckInterval property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long expression as described in Remarks.

Remarks
When you use the rdAsyncEnable option to execute a query asynchronously, RDO polls
the data source periodically to determine if the query has completed. You can change the
duration of time between checks by using the AsyncCheckInterval property.
The AsyncCheckInterval property defaults to 500 milliseconds (twice a second).
Polling too often can adversely affect both server and workstation performance.    Polling
less frequently can improve performance, but may affect how quickly data is made
available to the user.
As long as the asynchronous query is executing, the StillExecuting property returns True. 
You can also interrupt and end an asynchronous query by using the Cancel method.

See Also
Cancel Method
Execute Method
Options Property
QueryCompleted Event
StillExecuting Property

 AsyncCheckInterval Property (Remote Data) Applies To

rdoConnection Object

Attributes Property (Remote Data)
See Also Applies To

Returns a value that indicates one or more characteristics of an rdoColumn object.
Syntax
object.Attributes
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Attributes property return value specifies characteristics of the column represented
by the rdoColumn object and can be a sum of these constants:
Constant Value Description
rdFixedColumn 1 The column size is fixed (default for numeric columns).
rdVariableColumn 2 The column size is variable (text columns only).
rdAutoIncrColumn 16 The column value for new rows is automatically

incremented to a unique Long integer that can't be
changed.

rdUpdatableColumn 32 The column value can be changed.
Remarks
When checking the setting of this property, you can use the And operator to test for a
specific attribute.    For example, to determine whether an rdoColumn object is fixed-size,
you can use code like the following:
If MyResultset![ColumnName].Attributes And rdFixedColumn Then...

See Also
rdoColumn Object, rdoColumns Collection
rdoTable Object, rdoTables Collection

Attributes Property (Remote Data) Applies To

rdoColumn Object

BindThreshold Property
See Also Applies To

Returns or sets a value specifying the largest column that will be automatically bound
under ODBC.

Syntax
object.BindThreshold [= value]
The BindThreshold property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long expression as described in Remarks.

Remarks
Several data types support sizes that are far too large to handle using conventional string
techniques.    For these columns, you must use the GetChunk and AppendChunk
methods.    By setting the BindThreshold property, you can set the maximum size of
chunk that RDO automatically binds to strings.    Columns larger than the BindThreshold
value require use of the GetChunk method to retrieve data.    The ChunkRequired
property indicates if the column requires use of AppendChunk and GetChunk methods.
The default value for BindThreshold is 1024 bytes.

See Also
AppendChunk Method
ChunkRequired Property
ColumnSize Method
GetChunk Method

BindThreshold Property (Remote Data) Applies To

rdoPreparedStatement Object

BOF, EOF Properties (Remote Data)
See Also Applies To

BOF
returns a value that indicates whether the current row position is before the first row in an

rdoResultset.
EOF

returns a value that indicates whether the current row position is after the last row in an
rdoResultset.
Syntax
object.BOF
object.EOF
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The BOF property return values are:
Value Description
True The current row position is before the first row.
False The current row position is on or after the first row.
The EOF property return values are:
Value Description
True The current row position is after the last row.
False The current row position is on or before the last row.

Remarks
The BOF and EOF return values are determined by the location of the current row pointer.   
If either BOF or EOF is True, there is no current row.
You can use the BOF and EOF properties to determine whether an rdoResultset object
contains rows or whether you've gone beyond the limits of an rdoResultset as you move
from row to row.
If you open an rdoResultset containing no rows, BOF and EOF are set to True, and the
result set's RowCount property setting is 0.    When you open an rdoResultset that
contains at least one row, the first row is the current row and BOF and EOF are False; they
remain False until you move beyond the beginning or end of the rdoResultset using the
MovePrevious or MoveNext method, respectively.    When you move beyond the
beginning or end of the rdoResultset, there is no current row.
If you delete the last remaining row in the rdoResultset object, BOF and EOF might
remain False until you attempt to reposition the current row.
If you use the MoveLast method on an rdoResultset containing rows, the last row
becomes the current row; if you then use the MoveNext method, the current row becomes
invalid and EOF is set to True.    Conversely, if you use the MoveFirst method on an
rdoResultset containing rows, the first row becomes the current row; if you then use the
MovePrevious method, there is no current row and BOF is set to True.
Typically, when you work with all the rows in an rdoResultset, your code will loop through
the rows using MoveNext until the EOF property is set to True.
If you use MoveNext while EOF is set to True or MovePrevious while BOF is set to True,
an error occurs.
This table shows which Move methods are allowed with different combinations of BOF and
EOF.

MoveFirst,
MoveLast

MovePrevious,
Move < 0 Move 0

MoveNext,
Move > 0

BOF=True,
EOF=False

Allowed Error Error Allowed

BOF=False,
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error
Both False Allowed Allowed Allowed Allowed
Allowing a Move method doesn't mean that the method will successfully locate a row.    It
merely indicates that an attempt to perform the specified Move method is allowed and
won't generate an error.    The state of the BOF and EOF properties may change as a result
of the attempted Move.
Effect of specific methods on BOF and EOF settings:

An OpenResultset method internally invokes a MoveFirst.    Therefore, an
OpenResultset on an empty set of rows results in BOF and EOF being set to True.

All Move methods that successfully locate a row clear (set to False) both BOF and
EOF.

For dynamic-type rdoResultset objects, any Delete method, even if it removes the
only remaining row from an rdoResultset, won't change the setting of BOF or EOF.

For other types of rdoResultset objects, the BOF and EOF properties are
unchanged as add and delete operations are made because result set membership is fixed.

See Also
BOFAction , EOFAction Properties
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoResultset Object, rdoResultsets Collection
RemoteData Control
RowCount Property

BOF, EOF Properties (Remote Data) Apply To

rdoResultset Object

BOFAction, EOFAction Properties (Remote Data)
See Also Applies To

Returns or sets a value indicating what action the RemoteData control takes when the
BOF or EOF property is True.

Syntax
object.BOFAction [= value]
object.EOFAction [= value]
The BOFAction and EOFAction property syntaxes have these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or value that specifies an action, as described in Settings.

Settings
For the BOFAction property, the settings for value are:
Constant Value Description
rdMoveFirst 0 MoveFirst (Default): Keeps the first row as the current row.
rdBOF 1 BOF: Moving past the beginning of an rdoResultset triggers the

RemoteData control's Validate event on the first row, followed
by a Reposition event on the invalid (BOF) row.    At this point, the
Move Previous button on the RemoteData control is disabled.

For the EOFAction property, the settings for value are:
Constant Value Description
rdMoveLast 0 MoveLast (Default): Keeps the last row as the    current row.
rdEOF 1 EOF: Moving past the end of an rdoResultset triggers the

RemoteData control's Validation event on the last row, followed
by a Reposition event on the invalid (EOF) row.    At this point, the
Move Next button on the RemoteData control is disabled.

rdAddNew 2 AddNew: Moving past the last row triggers the RemoteData
control's Validation event to occur on the current row, followed by
an automatic AddNew, followed by a Reposition event on the
new row.

Remarks
If you set the EOFAction property to rdAddNew, once the user moves the current row
pointer to EOF using the RemoteData control, the current row is positioned to a new row
in the copy buffer.    At this point you can edit the newly added row.    If you make changes
to the new row and the user subsequently moves the current row pointer using the
RemoteData control, the row is automatically appended to the rdoResultset.    If you
don't make changes to this new row, and reposition the current row to another row, the
new row is discarded.    If you use the RemoteData control to position to another row while
it is positioned over this new row, another new row is created.   
When you use code to manipulate rdoResultset objects created with the RemoteData
control, the EOFAction property has no effect it only takes effect when manipulating the
RemoteData control with the mouse.
In situations where the RemoteData control rdoResultset is returned with no rows, or
after the last row has been deleted, using the rdAddNew option for the EOFAction
property greatly simplifies your code because a new row can always be edited as the
current row.

See Also
AddNew Method
BOF , EOF Properties
Edit Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoResultset Object, rdoResultsets Collection
Reposition Event
RowCount Property
SQL Property
Type Property
Validate Event

BOFAction, EOFAction Properties (Remote Data) Apply To

RemoteData Control

Bookmark Property (Remote Data)
See Also Applies To

Returns or sets a bookmark that uniquely identifies the current row in an rdoResultset
object or sets the current row in an rdoResultset to a valid bookmark.

Syntax
object.Bookmark [= value]
The Bookmark property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Variant expression that evaluates to a valid bookmark.

Remarks
When a non-forward-only type rdoResultset object is created or opened, each of its rows
already has a unique bookmark.    You can save the bookmark for the current row by
assigning the value of the Bookmark property to a variable.    To quickly return to that row
at any time after moving to a different row, set the rdoResultset object's Bookmark
property to the value of that variable.

There is no limit to the number of bookmarks you can establish.    To create a bookmark for a
row other than the current row, move to the desired row and assign the value of the
Bookmark property to a Variant variable that identifies the row.
To make sure the rdoResultset supports bookmarks, inspect the value of its
Bookmarkable property before you use the Bookmark property.    If Bookmarkable is
False, the rdoResultset doesn't support bookmarks, and using the Bookmark property
results in a trappable error.
The value of the Bookmark property isn't guaranteed to be the same as a row number.

Note      The Bookmark property doesn't apply to forward-only type rdoResultset objects.

See Also
AddNew Method
Bookmarkable Property
Edit Method
rdoResultset Object, rdoResultsets Collection

Bookmark Property (Remote Data) Applies To

rdoResultset Object

Bookmarkable Property (Remote Data)
See Also Applies To

Returns a value that indicates whether an rdoResultset object supports bookmarks, which
you can set using the Bookmark property.

Syntax
object.Bookmarkable
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Bookmarkable property return values are:
Value Description
True The rdoResultset supports bookmarks.
False The rdoResultset doesn't support bookmarks.

Remarks
To make sure an rdoResultset supports bookmarks, check the Bookmarkable property
setting before you attempt to set or check the Bookmark property.

See Also
Bookmark Property
rdoResultset Object, rdoResultsets Collection

Bookmarkable Property (Remote Data) Applies To

rdoResultset Object

ChunkRequired Property (Remote Data)
See Also Applies To

Returns a Boolean value that indicates if data must be accessed using the GetChunk
method.

Syntax
object.ChunkRequired
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The ChunkRequired property return values are:
Value Description
True The data should be accessed using the GetChunk method.
False The data should not be accessed using the GetChunk method.

Remarks
Use the ChunkRequired property to determine if the column in question must be
manipulated using the AppendChunk and GetChunk methods.    A trappable error is
triggered if the ChunkRequired property is True and you do not use the AppendChunk
and GetChunk methods to manipulate the specified column.
By setting the BindThreshold property, you can adjust the number of bytes that force use
of the AppendChunk and GetChunk methods.    You can also determine the length of a
chunk column by using the ColumnSize method.

See Also
AppendChunk Method
BindThreshold Property
ColumnSize Method
GetChunk Method
Type Property

 ChunkRequired Property (Remote Data) Applies To

rdoColumn Object

Connect Property (Remote Data)
See Also Applies To

Returns or sets a value that provides information about the source of an open
rdoConnection.    When used with the rdoPreparedStatement or rdoConnection
object, this property is read-only.    When used with the RemoteData control , this property
is read-write.

Syntax
object.Connect [= value]
The Connect property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string expression as described in Remarks.    (Data type is String.)

Settings
The Connect property return value is a String expression composed of zero or more
parameters separated by semicolons, as described in Remarks.

Remarks
The Connect property is used to pass additional information to and from the ODBC driver
manager to establish a connection with a data source.    The Connect property holds the
ODBC connect string which is also used as an argument to the OpenConnection method.   
Once a connection is made, the Connect property is completed with the values supplied by
the user and the ODBC driver manager.    The Connect property of the
rdoPreparedStatement contains this amended connect string.
The following table details valid parameters and typical usage.
Parameter Specifies Example
DSN Registered ODBC data

source by name
DSN=MyDataSource;

UID User name of a
recognized user of the
database

UID=Victoria;

PWD Password associated
with user name

PWD=ChemMajor;

DRIVER Description of driver DRIVER=SQL Server;
DATABASE Default database to use

once connected
DATABASE=Pubs;

Note      Some ODBC drivers require different parameters not shown in this list.
For example, to set the Connect property of a RemoteData control, you could use code
like the following:
Dim Cnct As String
Cnct$ = "DSN=WorkData;UID=Chrissy;PWD=MIDFLD;DATABASE=WorkDB;"
RemoteData1.Connect = Cnct$
RemoteData1.SQL = "Select Name, City From Teams Where Type = 12"
RemoteData1.Refresh
You can use this same connect string to establish a new connection:
Dim Cn As rdoConnection
Set Cn = rdoEnvironments(0).OpenConnection("",rdDriverNoPrompt,True,Cnct$)

Note      Valid parameters are determined by the ODBC driver.    The parameters shown in
the preceding example are supported by the Microsoft SQL Server ODBC driver.

LOGINTIMEOUT and DBQ are not valid parameters of the RemoteData control or the
rdoConnection object's Connect property.    These parameters are supported by the
Microsoft Jet database engine, and not by the ODBC driver.    To set login timeout delay, you
must use the LoginTimeout property of the rdoEngine object.
If the connect string is null, the information provided by the DSN is incomplete, or invalid
arguments provided for the connection cannot be established.    If your code sets the
prompt argument of the OpenConnection method or the RemoteData control's Prompt
property to prohibit user completion of missing ODBC connect arguments, a trappable error
is triggered.    Otherwise, a dialog box listing all registered ODBC data source names is
displayed by the ODBC driver so the user can select a data source.    Once the user chooses
a valid DSN from the list presented, other missing information is collected to complete the
connection including user name and password.
If a password is required, but not provided in the Connect property setting, a login dialog
box is displayed the first time a table is accessed by the ODBC driver and each time the
connection is closed and reopened.
When connecting to ODBC data sources that support domain-managed security, set the UID
and PWD parameters to "".    In this case, the Windows NT user name and password are
passed to the data source for validation.    This strategy permits access to the data source
by users with access to the NT domain through authenticated workstation logons.
You can set the Connect property for an rdoConnection object by providing a connect
argument to the OpenConnection method.    Once the connection is established, you can
check the Connect property setting to determine the DSN, database, user name,
password, or ODBC data source of the database.

See Also
Connection Property
LoginTimeout Property
OpenConnection Method
rdoConnection Object, rdoConnections Collection
rdoEngine Object
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoTable Object, rdoTables Collection

Connect Property (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object
RemoteData Control

Connection Property (Remote Data)
See Also Applies To

Returns a reference to a RemoteData control's underlying rdoConnection object.
Syntax
object.Connection
Set connection = object.Connection
The Connection property syntax has these parts:
Part Description
connection An object expression that evaluates to a valid rdoConnection object.
object An object expression that evaluates to an object in the Applies To list.

Remarks
When a RemoteData control is initialized, RDO opens a connection to the data source
specified in the control's Connect property.    The rdoConnection object created by RDO is
exposed by the Connection property.
rdoConnection objects have properties and methods you can use to manage data.    You
can use any method of an rdoConnection object, such as Close and Execute, with the
Connection property of a RemoteData control.    You can also examine the internal
structure of the database by using its rdoTables collection, and in turn, the columns of
individual rdoTable objects.

Connection Property (Remote Data) Applies To

RemoteData Control

See Also
Close Method
Connect Property
DataSourceName Property
Execute Method
Name Property
rdoColumn Object, rdoColumns Collection
rdoConnection Object, rdoConnections Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
RemoteData Control

Count Property (Remote Data)
See Also Applies To

Returns the number of members in an RDO collection.
Syntax
object.Count
The object placeholder is an object expression that evaluates to an object in the Applies To
list.

Return Values
The Count property setting is a Long integer.

Remarks
Use the Count property to determine the number of members in a collection.    For
example, to see how many tables are in a database, examine the Count property of the
rdoTables collection.

See Also
rdoColumn Object, rdoColumns Collection
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
rdoError Object, rdoErrors Collection
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

 Count Property (Remote Data) Applies To

rdoColumns Collection
rdoConnections Collection
rdoEnvironments Collection
rdoErrors Collection
rdoParameters Collection
rdoPreparedStatements Collection
rdoResultsets Collection
rdoTables Collection

CursorDriver Property (Remote Data)
See Also Applies To

Returns or sets a value that specifies the type of cursor to be created.
Syntax
object.CursorDriver [= value]
The CursorDriver property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An Integer or constant as described in Settings.

Settings
Constant Value Description
rdUseIfNeeded 0 The ODBC driver will choose to use the appropriate style of

cursors.    It will use server-side cursors if they are available.
rdUseOdbc 1 The RDO layer will use the ODBC cursor library.    This gives

better performance for small result sets but degrades quickly
for larger result sets.

rdUseServer 2 Use server-side cursors.    For most large operations this will
give better performance, but can cause more network traffic.

Remarks
These constants are also used to set the default cursor driver in the rdoEngine.    This
property only affects connections established after the CursorDriver property has been
set.    Changing the CursorDriver property has no effect on existing connections.

See Also
rdoConnection Object, rdoConnections Collection
rdoDefaultCursorDriver Property
rdoEngine Object
rdoEnvironment Object, rdoEnvironments Collection

 CursorDriver Property (Remote Data) Applies To

rdoEnvironment Object
RemoteData Control

DataSourceName Property (Remote Data)
See Also Applies To

Returns or sets the data source name for a RemoteData control .
Syntax
object.DataSourceName [= datasourcename]
The DataSourceName property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
datasourcename A string expression that indicates the registered data source name.

Remarks
This property can be left blank if the control's Connect property identifies a data source
name (DSN) registered in the ODBC.INI file (16-bit) or Windows Registry (32-bit).
Once the rdoConnection is opened by the RemoteData control, the DataSourceName
property contains the DSN used to establish the connection it may be different from the
value set before the connection is opened, because a user might select a data source from
a list of valid DSN entries during the connection process.

If you change this property after the control's rdoConnection object is open, you must use
the Refresh method to open a new connection to the data source.

DataSourceName Property (Remote Data) Applies To

RemoteData Control

See Also
Connect Property
OpenConnection Method
rdoEngine Object
rdoRegisterDataSource Method
Refresh Method
RemoteData Control

Description Property (Remote Data)
See Also Applies To

Returns a descriptive string associated with an error.
Syntax
object.Description
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Description property return value is a string expression containing a description of
the error.

Remarks
The Description property comprises a short description of the error which can be used to
alert the user to an error that you cannot or do not want to handle.    The Description
property contains context information about where the error occurred.    The SQLState code
is prepended to the message, followed by a colon and a space.    For example "S0021:
Cannot find XXX".

See Also
HelpContext , HelpFile Properties
Number Property
rdoError Object, rdoErrors Collection
Source Property
SQLRetCode Property
SQLState Property

Description Property (Remote Data) Applies To

rdoError Object

Direction Property (Remote Data)
See Also Applies To

Returns or sets a value indicating how a parameter is passed to or from a procedure.
Syntax
object.Direction [= value]
The Direction property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or Integer as described in Settings.

Settings
The settings for value are one of the following values:
Constant Value Description
rdParamInput 0 (Default) The parameter is used to pass information to

the procedure.
rdParamInputOutput 1 The parameter is used to pass information both to and

from the procedure.
rdParamOutput 2 The parameter is used to return information from the

procedure as in an output parameter in SQL.
rdParamReturnValue 3 The parameter is used to pass the return value from a

procedure.
Remarks
Use the Direction property to determine whether the parameter is an input parameter,
output parameter, or both or if the parameter is the return value from the procedure.   
Some ODBC drivers do not provide information on the direction of parameters to a SELECT
statement or procedure call.    In these cases, it is necessary to set the direction prior to
executing the query.

For example, the following procedure returns a value from a stored procedure:
{? = call sp_test}
This call produces one parameter the return value.    It is necessary to set the direction of
this parameter to rdParamOutput or rdParamReturnValue before executing the
prepared statement.    For example:
Dim my_statement As rdoPreparedStatement
Set my_statement = someRdoConnection.CreatePreparedStatement _

("MyPs", "{?=call sp_testprocedure }", ...)
my_statement.rdoParameters(0).Direction = rdParamOutput
my_statement.Execute
Print my_statement.rdoParameters(0).Value
You need to set all parameter directions except rdParamInput before accessing or setting
the values of the parameters and before executing the rdoPreparedStatement.
All parameter directions default to rdParamInput unless the ODBC driver supports
returning the correct information.
You should use rdParamReturnValue for return values, but you can use rdParamOutput
where rdParamReturnValue is not supported.

Note      The Microsoft SQL Server 6.0 driver automatically sets the Direction property for
all procedure parameters.

See Also
Execute Method
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection

 Direction Property (Remote Data) Applies To

rdoParameter Object

EditMode Property (Remote Data)
See Also Applies To

Returns a value that indicates the state of editing for the current row.
Syntax
object.EditMode
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The EditMode property returns an Integer or constant as described in the following table:
Constant Value Description
rdEditNone 0 No editing operation is in progress.
rdEditInProgress 1 The Edit method has been invoked, and the current row is in

the copy buffer.
rdEditAdd 2 The AddNew method has been invoked, and the current row

in the copy buffer is a new row that hasn't been saved in the
database.

Remarks
The EditMode property is most useful when you want to depart from the default
functionality of a RemoteData control .    You can check the value of the EditMode
property and the value of the action parameter in the Validate event procedure to
determine whether to invoke the Update method.
You can also check to see if the LockEdits property of the rdoResultset is True and the
EditMode property setting is rdEditInProgress to determine whether the current data
page is locked.

See Also
AddNew Method
CancelUpdate Method
Edit Method
LockEdits Property
rdoResultset Object, rdoResultsets Collection
Update Method
UpdateRow Method
Validate Event

EditMode Property (Remote Data) Applies To

RemoteData Control

Environment Property (Remote Data)
See Also Applies To

Returns a reference to a RemoteData control's underlying rdoEnvironment object.
Syntax
object.Environment
Set environment = object.Environment
The Environment property syntax has these parts:
Part Description
environment An object expression that evaluates to a valid rdoEnvironment object.
object An object expression that evaluates to an object in the Applies To list.

Remarks
When a RemoteData control is initialized, RDO uses the default rdoEnvironments(0)
the Environment property is initially set to this object.

If you assign another rdoResultset to the RemoteData control's Resultset property, the
Environment property is set to the rdoEnvironment object used to create the result set.
rdoEnvironment objects have properties and methods you can use to manage data.    For
example, you can use any method of an rdoEnvironment object, such as
OpenConnection, BeginTrans, CommitTrans, or RollbackTrans, with the Environment
property.

See Also
BeginTrans , CommitTrans , RollbackTrans Methods
Connect Property
OpenConnection Method
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
rdoResultset Object, rdoResultsets Collection
RemoteData Control

 Environment Property (Remote Data) Applies To

RemoteData Control

ErrorThreshold Property (Remote Data)
See Also Applies To

Returns or sets a value that determines the severity level that constitutes a fatal error.
Syntax
object.ErrorThreshold [= value]
The ErrorThreshold property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or value that specifies a level of error severity as described in

Settings.    (Data type is Long.)
Settings
The setting for value is the severity level that RDO uses to determine whether a trappable
error should be generated.    The default value for ErrorThreshold is determined by the
rdoDefaultErrorThreshold property, and if no value is specified in the
rdoDefaultErrorThreshold property, the ErrorThreshold property defaults to -1, which
indicates the ErrorThreshold is ignored.    The maximum and recommended values are
determined by the ODBC driver and data source.

Remarks
Use the ErrorThreshold to set the severity level which forces error handlers to consider
the error "fatal."    All errors and warnings generated by any operation are logged in the
rdoErrors collection.    However, only errors below the error threshold cause the operation
to terminate and Visual Basic to issue a trappable error.   

See Also
QueryTimeout Property
rdoDefaultErrorThreshold Property

 ErrorThreshold Property (Remote Data) Applies To

rdoPreparedStatement Object
RemoteData Control

HelpContext, HelpFile Properties (Remote Data)
See Also Applies To

HelpContext
returns a context ID for a topic in a Microsoft Windows Help file.

HelpFile
returns a fully qualified path to the Help file as a variable.

Syntax
object.HelpContext
object.HelpFile
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The HelpContext property returns a Long value.
The HelpFile property returns a String value.   

Remarks
If a Microsoft Windows Help file is specified in HelpFile, the HelpContext property is used
to automatically display the Help topic it identifies.

Note      You should write routines in your application to handle typical errors.    When
programming with an object, you can use the Help supplied by the object's Help file to
improve the quality of your error handling, or to display a meaningful message to your user
if the error is not recoverable.

See Also
Description Property
Number Property
rdoError Object, rdoErrors Collection
ShowWhatsThis Method
Source Property
SQLRetCode Property
SQLState Property
WhatsThisHelpID Property

HelpContext, HelpFile Properties (Remote Data) Apply To

rdoError Object
RemoteData Control

hDbc Property (Remote Data)
See Also Applies To

Returns a value corresponding to the ODBC connection handle.
Syntax
object.hDbc
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The hDbc property returns a Long value containing the ODBC connection handle created
by the ODBC driver manager corresponding to the specified rdoConnection object.

Remarks
This handle can be used to execute ODBC functions that require an ODBC hDbc connection
handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc,
and hStmt handles, it is recommended that you do so with caution.    Improper use of
arbitrary ODBC API functions using these handles can result in unpredictable behavior.    You
should not attempt to save this handle in a variable for use at a later time as the value is
subject to change.

See Also
hEnv Property
hStmt Property

 hDbc Property (Remote Data) Applies To

rdoConnection Object

hEnv Property (Remote Data)
See Also Applies To

Returns a value corresponding to the ODBC environment handle.
Syntax
object.hEnv
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The hEnv property returns a Long value containing the ODBC environment handle created
by the ODBC driver manager corresponding to the specified rdoEnvironment object.

Remarks
This handle can be used to execute ODBC functions that require an ODBC hEnv
environment handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc,
and hStmt handles, it is recommended that you do so with caution.    Improper use of
arbitrary ODBC API functions using these handles can result in unpredictable behavior.    You
should not attempt to save this handle in a variable for use at a later time as the value is
subject to change.

See Also
hDbc Property
hStmt Property

 hEnv Property (Remote Data) Applies To

rdoEnvironment Object

hStmt Property (Remote Data)
See Also Applies To

Returns a value corresponding to the ODBC statement handle.
Syntax
object.hStmt
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The hStmt property returns a Long value containing the ODBC statement handle created
by the ODBC driver manager corresponding to the specified rdoResultset object.

Remarks
This handle can be used to execute ODBC functions that require an ODBC hStmt statement
handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc,
and hStmt handles, it is recommended that you do so with caution.    Improper use of
arbitrary ODBC API functions using these handles can result in unpredictable behavior.    You
should not attempt to save this handle in a variable for use at a later time as the value is
subject to change.

See Also
hDbc Property
hEnv Property

 hStmt Property (Remote Data) Applies To

rdoPreparedStatement Object
rdoResultset Object

KeysetSize Property (Remote Data)
See Also Applies To

Returns or sets a value indicating the number of rows in the keyset buffer.
Syntax
object.KeysetSize [= value]
The KeysetSize property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long expression as described in Settings.

Settings
The settings for value must be greater than or equal to the RowsetSize property.

Remarks
The KeysetSize property is a value that specifies the number of rows in the keyset for a
keyset- or dynamic-type rdoResultset cursor.    If the keyset size is 0 (the default), the
cursor is fully keyset-driven.    If the keyset size is greater than 0, the cursor is mixed
(keyset-driven within the keyset and dynamic outside the keyset).
If KeysetSize is a value greater than RowsetSize, the value defines the number of rows in
the keyset that are to be buffered by the driver.
Not all ODBC data sources support keyset cursors.

Note      Because version 2.5 of the Microsoft SQL Server ODBC driver does not support
mixed-style cursors, if you set a value, KeysetSize is reset to 0 and the driver returns error
01S02: "Option value changed."

See Also
MaxRows Property
RowsetSize Property

KeysetSize Property (Remote Data) Applies To

rdoPreparedStatement Object
RemoteData Control

LastModified Property (Remote Data)
See Also Applies To

Returns a bookmark indicating the most recently added or changed row.
Syntax
object.LastModified
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The return value for this property is a Variant data type, as described in Remarks.

Remarks
You can use LastModified to move to the most recently added or updated row.

See Also
Bookmark Property
Bookmarkable Property
rdoResultset Object, rdoResultsets Collection

 LastModified Property (Remote Data) Applies To

rdoResultset Object

LockType Property (Remote Data)
See Also Applies To

Returns or sets a Long integer value indicating the type of concurrency handling.
Syntax
object.LockType [= value]
The LockType property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or Long value as described in Settings.

Settings
The settings for value are:
Constant Value Description
rdConcurReadOnly 1 (Default) Cursor is read-only.    No updates are allowed.
rdConcurLock 2 Pessimistic concurrency.    Cursor uses the lowest level

of locking sufficient to ensure the row can be updated.
rdConcurRowVer 3 Optimistic concurrency based on row ID.    Cursor

compares row ID in old and new rows to determine if
changes have been made since the row was last
accessed.

rdConcurValues 4 Optimistic concurrency based on row values.    Cursor
compares data values in old and new rows to
determine if changes have been made since the row
was last accessed.

Remarks
Not all lock types are supported on all data sources.    For example, for SQL Server and
Oracle servers, static-type rdoResultset objects can only support rdConcurValues or
rdConcurReadOnly.
If the concurrency option is not supported by the data source, the driver substitutes a
different concurrency option and returns a trappable error (SQLState Code 01S02 "Option
Value Changed").    For rdConcurValues, the driver substitutes rdConcurRowVer and
vice versa.    For rdConcurLock, the driver substitutes, in order: rdConcurRowver or
rdConcurValues.

See Also
CreatePreparedStatement Method
OpenResultset Method
rdoPreparedStatement Object, rdoPreparedStatements Collection

 LockType Property (Remote Data) Applies To

rdoPreparedStatement Object

LockEdits Property (Remote Data)
See Also Applies To

Returns a Boolean value indicating the locking that is in effect during editing.
Syntax
object.LockEdits
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The return values for LockEdits are:
Setting Description
True (Default) Pessimistic locking is in effect.
False Optimistic locking is in effect.

Remarks
If a page is locked and the data source uses page locking, no other user can edit rows on
the same page.    If row-level locking is used, the row being edited is locked.    If LockEdits
is True and another user already has the page locked, an error occurs when you use the
Edit method.    Other users can read data from locked pages.
If LockEdits is False and you later use Update while the page is locked by another user,
an error occurs.    To see the changes made to your row by another user (and lose your
changes), set the Bookmark property of your rdoResultset object to itself.

Note      Data page size is determined by the data source.    Microsoft SQL Server uses 2K
data pages.

See Also
Bookmark Property
CancelUpdate Method
Close Method
Edit Method
rdoResultset Object, rdoResultsets Collection
Update Method

LockEdits Property (Remote Data) Applies To

rdoResultset Object

LoginTimeout Property (Remote Data)
See Also Applies To

Returns or sets a value that specifies the number of seconds the ODBC driver manager
waits before a timeout error occurs when a connection is opened.

Syntax
object.LoginTimeout [= value]
The LoginTimeout property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long integer representing the number of seconds the driver manager waits

before timing out and returning an error.
Remarks
If value is 0, no timeout occurs.
When you're using an ODBC database, such as SQL Server, there may be delays due to
network traffic or heavy use of the ODBC data source.    Rather than waiting indefinitely,
you can specify how long to wait before the ODBC driver manager produces an error.
When used with an rdoEnvironment object, the LoginTimeout property specifies a
global value for all login operations associated with the rdoEnvironment.
The default timeout value is either 15 seconds or a value set by the
rdoDefaultLoginTimeout property.    The setting of LoginTimeout on an rdoConnection
object overrides the default value.
If the specified timeout exceeds the maximum timeout in the data source, or is smaller
than the minimum timeout, the driver substitutes that value and the following error is
logged in the rdoErrors collection: SQLState 01S02 "Option value changed."

See Also
QueryTimeout Property
rdoDefaultLoginTimeout Property
rdoEngine Object

 LoginTimeout Property (Remote Data) Applies To

rdoEnvironment Object
RemoteData Control

LogMessages Property (Remote Data)
See Also Applies To

Returns or sets a value indicating the path of the ODBC trace file created by the ODBC
driver manager to record all ODBC operations.

Syntax
object.LogMessages [= value]
The LogMessages property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A String expression as described in Settings.

Settings
Value contains the path of an ASCII file used to log ODBC operations.    If the LogMessages
property is an empty string, no logging takes place.

Remarks
When the LogMessages property is True, all ODBC commands are sent to a log that can
be used to debug or tune queries or other operations.
On Windows NT or Windows 95, tracing should only be used for a single application or each
application should specify a different trace file.    Otherwise, two or more applications might
attempt to open the same trace file at the same time, causing an error.

Note      ODBC performance will be adversely affected when the log is enabled.

See Also
rdoResultset Object, rdoResultsets Collection

 LogMessages Property (Remote Data) Applies To

rdoPreparedStatement Object
RemoteData Control

MaxRows Property (Remote Data)
See Also Applies To

Returns or sets a value indicating the maximum number of rows to be returned from a
query.

Syntax
object.MaxRows [= value]
The MaxRows property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long expression as described in Settings.

Settings
The setting for value ranges from -1 to any number.    If value is set to -1, no limit is placed
on the number of rows returned (default).

Remarks
This property determines the maximum number of rows returned from a query.    Once the
number of rows specified by MaxRows is returned to your application in an rdoResultset,
the query processor stops returning additional rows even if more rows would qualify for
inclusion in the result set.    This property is useful in situations where limited resources
prohibit management of large numbers of result set rows.

See Also
RowsAffected Property

 MaxRows Property (Remote Data) Applies To

rdoPreparedStatement Object
RemoteData Control

Name Property (Remote Data)
See Also Applies To

Returns the name of a remote data object.   
Syntax
object.Name
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Name property returns a string expression that represents the name assigned to the
object.    The following table describes how each object is assigned its name.
Remote Data Object Name property is determined by the:
rdoEnvironments(0) rdoEngine Set to "Default_Environment".
rdoEnvironments(1-n) name argument of rdoCreateEnvironment.
rdoConnections(0-n) Data source name (DSN) used for connection.
rdoResultsets(0-n) First 256 characters of the SQL query.
rdoPreparedStatements(
0-n)

name argument in CreatePreparedStatement
method.

rdoTables(0-n) Database table name once rdoTables collection
is populated.

rdoParameters(0-n) "Paramn" where "n" is the ordinal number.
rdoColumns(0-n) Database column name.
rdoErrors(0-n) Not applicable.    rdoErrors collection members

can only be referenced by their ordinal number.
Remarks
rdoTable and rdoPreparedStatement objects can't share the same name.
Use the Name property to reference members of a collection in code, but in most cases, it
is easier to simply use the ordinal number.    Generally, you can use the Name property to
map database table and column names.

See Also
CreatePreparedStatement Method

Name Property (Remote Data) Applies To

rdoColumn Object
rdoConnection Object
rdoEnvironment Object
rdoError Object
rdoParameter Object
rdoPreparedStatement Object
rdoResultset Object
rdoTable Object
RemoteData Control

Negotiate Property (Remote Data)
See Also Applies To

Sets a value that determines whether a control that can be aligned is displayed when an
active object on the form displays one or more toolbars.    Not available at run time.

Syntax
object.Negotiate [= value]
The Negotiate property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Boolean expression as described in Settings.

Settings
The Negotiate property has these settings:
Setting Description
True If the control is aligned within the form (the Align property is set to a nonzero

value), the control remains visible when an active object on the form displays
a toolbar.

False (Default) The control isn't displayed when an active object on the form
displays a toolbar.    The toolbar of the active object is displayed in place of the
control.

Remarks
The Negotiate property exists for all controls with an Align property.    You use the Align
property to align the control within a Form or MDIForm object; however, the toolbar
negotiation occurs only on the MDIForm.    The aligned control must be on the MDIForm.
If the NegotiateToolbars property is set to False, the setting of the Negotiate property
has no effect.

See Also
Align Property

 Negotiate Property (Remote Data) Applies To

RemoteData Control

Number Property (Remote Data)
See Also Applies To

Returns a numeric value specifying a native error.
Syntax
object.Number
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The return value is a Long integer representing an error number.

Remarks
Number is the Error object's default property.
The Number property returns the SQL native error number for the Error object.
Use the Number property to determine the error that occurred.    The value of the property
corresponds to a unique number that corresponds to an error condition.

Note      The SQL Server error severity level is not returned by the ODBC driver, and is
therefore unavailable.

See Also
Description Property
HelpContext , HelpFile Properties
rdoError Object, rdoErrors Collection
Source Property
SQLRetCode Property
SQLState Property

Number Property (Remote Data) Applies To

rdoError Object

Options Property (Remote Data)
See Also Applies To

Returns or sets a value that specifies one or more characteristics of the rdoResultset
object exposed by the control's ResultsetType property.

Syntax
object.Options [= value]
The Options property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or Integer as described in Settings.

Settings
Use the following value to set the Options property for the RemoteData control:
Constant Value Description
rdAsyncEnable 32 Execute the query asynchronously.

Remarks
Asynchronous operations permit RDO to work in the background on operations like creating
result sets or executing procedures while your foreground code continues to work.
Whenever you use the OpenResultset, Execute, or MoreResults methods with the
rdAsyncEnable option, control returns immediately to your application before the
operation is completed by RDO.    If required, RDO periodically checks the data source to
see if the operation is complete.    You can adjust the frequency of this polling by setting the
AsyncCheckInterval property.    To see if your operation has completed, check the
StillExecuting property which remains True until RDO completes the operation.    To
cancel the operation, use the Cancel method.   
If you change the Options property at run time, you must use the Refresh method for the
change to have any effect.
This property corresponds to the options argument in the OpenResultset and Execute
methods.

Options Property (Remote Data) Applies To

RemoteData Control

See Also
CreatePreparedStatement Method
Execute Method
MoreResults Method
OpenResultset Method
QueryCompleted Event
ResultsetType Property

OrdinalPosition Property (Remote Data)
See Also Applies To

Returns the relative position of an rdoColumn object within the rdoColumns collection.
Syntax
object.OrdinalPosition
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The OrdinalPosition property return value is an Integer expression as described in
Remarks.

Remarks
This property indicates the ordinal position of the column within the rdoColumns
collection.

See Also
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
Refresh Method

OrdinalPosition Property (Remote Data) Applies To

rdoColumn Object

Password Property (Remote Data)
See Also Applies To

Represents the password used during creation of an rdoEnvironment object.
Syntax
object.Password
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
This property setting is write-only it may only be specified in the process of creating a new
rdoEnvironment using the rdoCreateEnvironment method.

The password is set when the rdoEnvironment is either created automatically by the
RemoteData control , by the first reference to a remote data object, or when the
rdoCreateEnvironment method is executed.
The rdoDefaultPassword property of the rdoEngine object is used as a default if no
password is provided.    The initial default password is "".

See Also
rdoCreateEnvironment Method
rdoDefaultUser , rdoDefaultPassword Properties
rdoEngine Object
rdoEnvironment Object, rdoEnvironments Collection
UserName Property

Password Property (Remote Data) Applies To

rdoEnvironment Object
RemoteData Control

PercentPosition Property (Remote Data)
See Also Applies To

Returns or sets a value that indicates or changes the approximate location of the current
row in the rdoResultset object based on a percentage of the rows in the rdoResultset.

Syntax
object.PercentPosition [= value]
The PercentPosition property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A number between 0.0 and 100.00.    (Data type is Single.)

Remarks
To indicate or change the approximate position of the current row in an rdoResultset, you
can check or set the PercentPosition property.    Before you set or check the
PercentPosition property, populate the rdoResultset by moving to the last row.    If you
use the PercentPosition property before fully populating the rdoResultset, the amount
of movement is relative to the number of rows accessed as indicated by the RowCount
property.    You can move to the last row using the MoveLast method.   

Note      Using the PercentPosition property to move the current row to a specific row in
an rdoResultset isn't recommended the Bookmark property or AbsolutePosition
property is better suited for this task.
Once you set the PercentPosition property to a value, the row at the approximate
position corresponding to that value becomes current, and the PercentPosition property
is reset to a value that reflects the approximate position of the current row.    For example, if
your rdoResultset contains only five rows, and you set its PercentPosition value to 77,
the value returned from the PercentPosition property might be 80, not 77.
The PercentPosition property applies to keyset-type and dynamic-type rdoResultset
objects.
You can use the PercentPosition property with a scroll bar on a Form or TextBox to
indicate the location of the current row in an rdoResultset.
The PercentPosition property is not supported by all cursor types and driver
combinations.    If the setting is not supported, the PercentPosition property returns 50.   
If the position cannot be set, no movement occurs.

See Also
AbsolutePosition Property
Bookmark Property
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoResultset Object, rdoResultsets Collection

PercentPosition Property (Remote Data) Applies To

rdoResultset Object

Prompt Property (Remote Data)
See Also Applies To

Returns or sets a value that specifies if the ODBC driver manager should prompt for missing
connect string arguments.

Syntax
object.Prompt [= value]
The Prompt property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or Integer as described in Settings.

Settings
The settings for the Prompt property are:
Constant Value Description
rdDriverPrompt 0 The driver manager displays the ODBC Data Sources

dialog box.    The connection string used to establish
the connection is constructed from the data source
name (DSN) selected and completed by the user via
the dialog boxes.    Or, if no DSN is chosen and the
DataSourceName property is empty, the default DSN
is used.

rdDriverNoPrompt 1 The driver manager uses the connection string
provided in connect.    If sufficient information is not
provided, the OpenConnection method returns a
trappable error.

rdDriverComplete 2 If the connection string provided includes the DSN
keyword, the driver manager uses the string as
provided in connect, otherwise it behaves as it does
when rdDriverPrompt is specified.

rdDriverCompleteRequired 3 (Default) Behaves like rdDriverComplete except
the driver disables the controls for any information not
required to complete the connection.

Remarks
When RDO opens a connection based on the parameters of the RemoteData control , the
Connect property is expected to contain sufficient information to establish the connection. 
If information like the data source name, user name, or password are not provided, the
ODBC driver manager exposes one or more dialog boxes to gather this information from the
user.    If you do not want these dialog boxes to appear, set the Prompt property
accordingly to disable this feature.

See Also
OpenConnection Method

 Prompt Property (Remote Data) Applies To

RemoteData Control

QueryTimeout Property (Remote Data)
See Also Applies To

Returns or sets a value that specifies the number of seconds the ODBC driver manager
waits before a timeout error occurs when a query is executed.

Syntax
object.QueryTimeout [= value]
The QueryTimeout property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Long integer representing the number of seconds the driver manager waits

before timing out and returning an error.
Remarks
If value is 0, no timeout occurs (default).
When you're accessing an ODBC data source, there may be delays due to network traffic or
heavy use of the remote server.    Rather than waiting indefinitely, you can specify how long
to wait before the ODBC driver manager produces a trappable error.    The QueryTimeout
property is used when you create rdoResultset objects or use the Execute method.
When used with an rdoConnection object, the QueryTimeout property specifies a global
value for all queries associated with the data source.
If the specified timeout exceeds the maximum timeout in the data source, or is smaller
than the minimum timeout, the driver substitutes that value and the following error is
logged to the rdoErrors collection: SQLState 01S02: "Option value changed."
When you use an rdoPreparedStatement, the rdoConnection object's QueryTimeout
property is used as a default value unless you specify a new value in the
rdoPreparedStatement object's QueryTimeout    property.

See Also
Execute Method
OpenResultset Method
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object

QueryTimeout Property (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object
RemoteData Control

rdoDefaultCursorDriver Property (Remote Data)
See Also Applies To

Returns or sets the type of ODBC or server cursor used by the ODBC driver manager.
Syntax
object.rdoDefaultCursorDriver [= value]
The rdoDefaultCursorDriver property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An Integer constant or value that specifies a type of ODBC cursor as

described in Settings.
Settings
The settings for value are:
Constant Value Description
rdUseIfNeeded 0 (Default)The ODBC driver will use the appropriate style of

cursors.    Server-side cursors are used if they are available.
rdUseODBC 1 The RDO layer uses the ODBC cursor library.    This option gives

better performance for small result sets, but degrades quickly
for larger result sets.

rdUseServer 2 The ODBC driver will use server-side cursors.    For most large
operations this gives better performance, but might cause
more network traffic.

Remarks
When server-side cursors are used, the database engine uses its own resources to store
keyset values.    Data values are still transmitted over the network as with client-side
cursors, but the impact on local workstation memory and disk space is reduced.
For SQL Server, server-side cursors are not used if the cursor is read-only and forward-only. 

See Also
CursorDriver Property
Type Property

 rdoDefaultCursorDriver Property (Remote Data) Applies To

rdoEngine Object

rdoDefaultUser, rdoDefaultPassword Properties (Remote Data)
See Also Applies To

rdoDefaultUser
returns or sets the default user name assigned to any new rdoEnvironment.

rdoDefaultPassword
returns or sets the default password assigned to any new rdoEnvironment.

Syntax
object.rdoDefaultUser [= value]
object.rdoDefaultPassword [= value]
The rdoDefaultUser and rdoDefaultPassword property syntaxes have these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string expression that specifies either a user name or password.

Remarks
Unless other values are supplied in the rdoCreateEnvironment method, the
rdoDefaultUser and rdoDefaultPassword properties determine the user name and
password used when the rdoEnvironment object is created.    These properties can also
return the name used when an rdoEnvironment is created.
By default, the value for rdoDefaultUser and rdoDefaultPassword is "" (a zero-length
string).

See Also
Password Property
rdoCreateEnvironment Method
UserName Property

 rdoDefaultUser, rdoDefaultPassword Properties (Remote Data) Apply To

rdoEngine Object

rdoDefaultErrorThreshold Property (Remote Data)
See Also Applies To

Returns or sets a value that indicates the default value for the ErrorThreshold property
for rdoPreparedStatement objects .

Syntax
object.rdoDefaultErrorThreshold [= value]
The rdoDefaultErrorThreshold property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or value that specifies a level of error severity as described in

Settings.
Settings
The rdoDefaultErrorThreshold property is a Long expression.    The settings for value
are:
Setting Description
Number property > ErrorThreshold Run-time error is not generated.
Number property <= ErrorThreshold Run-time error is generated.
ErrorThreshold = -1 No error threshold is enforced.

Remarks
Use the rdoDefaultErrorThreshold property to provide a default value for the
ErrorThreshold property.    If you do not specify a value, rdoDefaultErrorThreshold is -
1, which indicates no threshold is enforced.
If an error occurs on the data source, it is passed back to the client.    If the Number
property of the error is less than the ErrorThreshold property, a trappable error results
otherwise, the function causing the error returns with an rdSQLSuccessWithInfo return
code.

See Also
ErrorThreshold Property
Number Property
rdoError Object, rdoErrors Collection
SQLRetCode Property

 rdoDefaultErrorThreshold Property (Remote Data) Applies To

rdoEngine Object

rdoDefaultLoginTimeout Property (Remote Data)
See Also Applies To

Returns or sets a value that determines the number of seconds the ODBC driver waits
before abandoning an attempt to connect to a data source.    This value is used as an
application-wide default unless the LoginTimeout property of the rdoEnvironment object
is used to override this value.

Syntax
object.rdoDefaultLoginTimeout [= value]
The rdoDefaultLoginTimeout property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A value that specifies the number of seconds as described in Settings.    (Data

type is a Long expression.)
Settings
The setting for value is the number of seconds to wait for a login request to complete
before returning a trappable error to the application.    A setting of 0 indicates the timeout is
disabled and a connection attempt will wait indefinitely.

Remarks
Login requests are made when the RemoteData control creates rdoConnection objects
or when you use the OpenConnection method of the rdoEnvironment object.    The
maximum value is dependent on the data source driver.    Any value provided over the
maximum is set to this maximum value.
The default timeout value, if not specified, is 15 seconds.

Note      When you use Data Access Objects (DAO), the LOGINTIMEOUT argument used in
the Connect property is not a valid argument for ODBC connect strings.    Use the
rdoDefaultLoginTimeout property instead.

See Also
Connect Property
LoginTimeout Property
OpenConnection Method
QueryTimeout Property
rdoEnvironment Object, rdoEnvironments Collection
RemoteData Control

 rdoDefaultLoginTimeout Property (Remote Data) Applies To

rdoEngine Object

rdoLocaleID Property (Remote Data)
See Also Applies To
Returns or sets a value indicating the locale of the RDO library.

Syntax
object.rdoLocaleID [= value]
The rdoLocaleID property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or value that specifies a locale as described in Settings.

Settings
The settings for value are:
Constant Value Description
rdLocaleSystem 0 System
rdLocaleEnglish 1 English
rdLocaleFrench 2 French
rdLocaleGerman 3 German
rdLocaleItalian 4 Italian
rdLocaleJapanese 5 Japanese
rdLocaleSpanish 6 Spanish
rdLocaleChinese 7 Chinese

Remarks
The locale determines which language is used when generating error messages.    The
rdoLocaleID defaults to the Windows system locale when the rdoEngine is initialized.
You can override the current locale at any time by setting the rdoLocaleID to any of the
supported values.    If you use an unsupported value, a trappable error occurs.
When the rdoLocaleID property is set or changed, RDO loads the appropriate language
dynamic-link library (DLL) to show error messages in the correct language.
If the specified language DLL is not present on the user's machine, RDO is set to
rdLocaleEnglish, which does not require a separate DLL.    When this happens, an
informational message is placed in the rdoErrors collection indicating that RDO was
unable to load the resource DLL for the specified locale.

See Also
rdoEngine Object
rdoError Object, rdoErrors Collection

 rdoLocaleID Property (Remote Data) Applies To

rdoEngine Object

rdoVersion Property (Remote Data)
See Also Applies To

Returns a value that indicates the version of the RDO library associated with the object.
Syntax
object.rdoVersion
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The rdoVersion property return value is a 5-character string expression.

Remarks
For an rdoEngine object, this property identifies the version of the database engine that
created the connection.    The version is in the form ##.##, where the first two digits are
the major version number and the last two digits are the minor version.

See Also
OpenConnection Method
rdoConnection Object, rdoConnections Collection
Version Property

 rdoVersion Property (Remote Data) Applies To

rdoEngine Object

Resultset Property (Remote Data)
See Also Applies To

Returns or sets an rdoResultset object defined by a RemoteData control's properties or
as returned by the OpenResultset method.

Syntax
Set object.Resultset [= value]
The Resultset property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An object expression that evaluates to an rdoResultset object as described in

Settings.
Settings
The setting for value is an rdoResultset object.

Remarks
The RemoteData control is automatically initialized when your application starts.    If the
SQL property is valid, or if you set the SQL property at run time and use the Refresh
method, the RemoteData control attempts to create a new rdoResultset object.    This
rdoResultset is accessible through the RemoteData control's Resultset property.
You can also determine the type of rdoResultset cursor to be created by setting or
examining the RemoteData control's ResultsetType property.    If you don't request a
specific type when using the RemoteData control, a keyset-type rdoResultset is created. 
You can determine the type of rdoResultset at run time by examining the rdoResultset
object's Type property or the RemoteData control's ResultsetType property.
The RemoteData control can create either keyset- or static-type rdoResultset objects
when accessing SQL Server 6.0.    However, if the ODBC driver does not support keyset
cursors, they cannot be created all drivers support static cursors.    A trappable error is
triggered if you set the RemoteData control's Resultset property to an unsupported type
of rdoResultset.

If you create an rdoResultset object using either RDO code or another RemoteData
control, you can set the Resultset property of the RemoteData control to this new
rdoResultset.    Any existing rdoResultset in the RemoteData control, and the
rdoConnection object associated with it, are released when a new rdoResultset is
assigned to the Resultset property.   
Note      When the Resultset property is set, the RemoteData control doesn't close the
current rdoResultset or rdoConnection, but it does release it.    If there are no other
users, the rdoConnection is closed automatically.    You may want to consider closing the
rdoResultset and rdoConnection associated with the RemoteData control before
setting the Resultset property.
You can also create an rdoResultset object using the OpenResultset method and setting
the Resultset property to the resulting rdoResultset object. However, the bound controls
using the RemoteData control must correctly specify the columns of the new
rdoResultset.    To do so, make sure the DataField properties of the bound controls
connected to the RemoteData control are set to match the new rdoResultset object's
column names.    For example, to create an rdoResultset in code and pass it to an existing
RemoteData control, use code like the following:
Public Cn As rdoConnection, Rs As rdoResultset
Sub ApplyrdoResultset()

Set Cn = rdoEnvironments(0).OpenConnection("MyDSN")
Set Rs = Cn.OpenResultset("Select * From MyTable")
Debug.Print Rs.Type ' Show type created.
Set RemoteData1.Resultset = Rs ' Assign rdoResultset.

End Sub

All rdoResultset objects created by the RemoteData control are built in
rdoEnvironments(0).    If you need to use the RemoteData control to manipulate a
database in another rdoEnvironment, use the technique demonstrated in the preceding
example to open the rdoConnection in the desired rdoEnvironment, create a new
rdoResultset, and set the RemoteData control's Resultset property to this new
rdoResultset.

 Resultset Property (Remote Data) Applies To

RemoteData Control

See Also
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
OpenResultset Method
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
rdoResultset Object, rdoResultsets Collection
RemoteData Control
ResultsetType Property
RowCount Property
SQL Property
Type Property
Understanding Cursors
Updatable Property

ResultsetType Property (Remote Data)
See Also Applies To

Returns or sets a value indicating the type of rdoResultset cursor created or to create.
Syntax
object.ResultsetType [= value]
The ResultsetType property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A constant or value that specifies a type of rdoResultset, as described in

Settings.
Settings
The settings for value are:
Constant Value Description
rdOpenStatic 3 (Default) A static-type rdoResultset.
rdOpenKeyset 1 A keyset-type rdoResultset.

Remarks
Not all drivers support all types of cursors.    For example, SQL Server 6.0 supports both
static and keyset cursors, but SQL Server 4.2 only supports static cursors.    If the ODBC
driver does not support keyset cursors, they cannot be created by RDO or the
RemoteData control .    If the RemoteData control can't create the type of rdoResultset
cursor requested, RDO builds one of the types that can be created and returns the cursor
type in the ResultsetType property.
If you don't specify a ResultsetType before the RemoteData control creates the
rdoResultset, a forward-only-type rdoResultset is created.
If you create an rdoResultset and set the Resultset property with this new object, the
ResultsetType property of the RemoteData control is set to the Type property of the
new rdoResultset.

See Also
OpenResultset Method
rdoResultset Object, rdoResultsets Collection
Refresh Method
RemoteData Control
Requery Method
Type Property
Understanding Cursors

 ResultsetType Property (Remote Data) Applies To

RemoteData Control

ReadOnly Property (Remote Data)
See Also Applies To

Returns or sets a value that determines whether the control's rdoConnection is opened
for read-only access.   

Syntax
object.ReadOnly [= value]
The ReadOnly property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A Boolean expression that determines read/write access, as described in

Settings.
Settings
The settings for value are:
Setting Description
True The RemoteData control's rdoConnection object is opened with read-only

access.    Changes to data aren't allowed.
False (Default)    The RemoteData control's rdoConnection is opened with

read/write access to data.
Remarks
Use the ReadOnly property with a RemoteData control to specify whether data in the
underlying rdoConnection can be changed.    For example, you might create an
application that only displays data.    Accessing a read-only rdoConnection might be
faster.
Even if the ReadOnly property is False, a user might not have write access to a database
because the user does not have permission or the type of rdoResultset in use does not
support updates.
This property corresponds to the readonly argument in the OpenConnection method.

 ReadOnly Property (Remote Data) Applies To

RemoteData Control

See Also
Connection Property
OpenConnection Method
rdoConnection Object, rdoConnections Collection
Refresh Method
RemoteData Control

Required Property (Remote Data)
See Also Applies To

Returns a value that indicates whether an rdoColumn requires a non-Null value.
Syntax
object.Required
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The return values for the Required property are:
Value Description
True A Null value isn't allowed.
False A Null value is allowed.

Remarks
For an rdoColumn object, you can use the Required property along with the
AllowZeroLength property to determine the validity of the Value property setting for that
rdoColumn object.    If Required is set to False, the column can contain Null values as
well as values that meet the conditions specified by the AllowZeroLength property
setting.

See Also
AllowZeroLength Property
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
Value Property

 Required Property (Remote Data) Applies To

rdoColumn Object

Restartable Property (Remote Data)
See Also Applies To

Returns a value that indicates whether an rdoResultset object supports the Requery
method, which re-executes the query the rdoResultset is based on.

Syntax
object.Restartable
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Restartable property return values are:
Value Description
True The rdoResultset object supports the Requery method.
False The rdoResultset object doesn't support the Requery method.

Remarks
Check the Restartable property before using the Requery method on an rdoResultset.   
If the object's Restartable property is set to False, use the OpenResultset method on
the underlying rdoPreparedStatement to re-execute the query.
You can use the Requery method to update an rdoResultset object's underlying
parameter query after the parameter values have been changed.   
If the rdoPreparedStatement does not contain parameters, the Restartable property is
always True.

See Also
OpenResultset Method
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Requery Method

 Restartable Property (Remote Data) Applies To

rdoResultset Object

RowCount Property (Remote Data)
See Also Applies To

Returns the number of rows accessed in an rdoResultset object.   
Syntax
object.RowCount
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The RowCount property return value is a Long integer as discussed in Remarks.

Remarks
Use the RowCount property to find out how many rows in an rdoResultset object have
been accessed.    RowCount doesn't indicate how many rows will be returned by an
rdoResultset query.    After all rows have been accessed, the RowCount property reflects
the total number of rows in the rdoResultset.
Depending on the driver and data source, the RowCount property returns either -1 to
indicate that the number of rows is not available, or 0 to indicate that no rows were
returned by the rdoResultset.    If the driver is capable of returning a row count, the
RowCount property returns the number of rows in the rdoResultset.
Using the Requery method on an rdoResultset resets the RowCount property, just as it
does when a query is run for the first time.

See Also
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
Requery Method

 RowCount Property (Remote Data) Applies To

rdoResultset Object
rdoTable Object

RowsAffected Property (Remote Data)
See Also Applies To

Returns the number of rows affected by the most recently invoked Execute method.
Syntax
object.RowsAffected
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The RowsAffected property return value is a Long value ranging from 0 to the number of
rows affected by the most recently invoked Execute method on either an rdoConnection
or rdoPreparedStatement object.

Remarks
RowsAffected contains the number of rows deleted, updated, or inserted when running an
action query.    When you use the Execute method to run an rdoPreparedStatement, the
RowsAffected property setting is the number of rows affected.    For example, when you
execute a query that deletes 50 rows from a table, the RowsAffected property returns 50.

See Also
Execute Method
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection

 RowsAffected Property (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object

RowsetSize Property (Remote Data)
See Also Applies To

Returns or sets a value that determines the number of rows in an rdoResultset cursor.   
Syntax
object.RowsetSize [= value]
The RowsetSize property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A value that specifies the size of the rowset as described in Settings.    (Data

type is a Long expression.)
Settings
The upper limit of the RowsetSize is determined by the data source driver.    The lower
limit for value is 1, and the default value is 100.

Remarks
The RowsetSize property determines how many rows of the keyset are buffered by the
application.    This property must be set before creating an rdoResultset object.
Tuning the size of RowsetSize can affect performance and the amount of memory required
to maintain the keyset buffer.

See Also
KeysetSize Property
MaxRows Property
Understanding Cursors

 RowsetSize Property (Remote Data) Applies To

rdoPreparedStatement Object

Size Property (Remote Data)
See Also Applies To

Returns a value that indicates the maximum size, in bytes, of the underlying data of an
rdoColumn object that contains text or the fixed size of an rdoColumn object that
contains text or numeric values.   

Syntax
object.Size
The object placeholder is an object expression that evaluates to an object in the Applies To
list.

Return Values
The Size property return value is a Long value.    The value depends on the Type property
setting of the rdoColumn object, as discussed in Remarks.

Remarks
For columns that return character values, the Size property indicates the maximum
number of characters that the data source column can hold.    For numeric columns, the
Size property indicates how many bytes of data source storage are required for the column
data.    This value depends on the data source implementation.
For data source columns that require the use of GetChunk and AppendChunk methods,
the Size property is always 0 you can use the ColumnSize method to return correct size
information.    The maximum size of a chunk-type column is limited only by your system
resources or the maximum size of the database.

See Also
Attributes Property
BindThreshold Property
ColumnSize Method
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
Type Property

 Size Property (Remote Data) Applies To

rdoColumn Object

Source Property (Remote Data)
See Also Applies To

Returns a value that indicates the source of a remote data access error.   
Syntax
object.Source
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Source property return value is a string expression as described in Remarks.

Remarks
When an error occurs during an ODBC operation, an rdoError object is appended to the
rdoErrors collection.    If the error occurred within RDO, the return value begins with
"MSRDO32".    The object class that caused the error might also be appended to the value
of the Source property.

See Also
Description Property
HelpContext , HelpFile Properties
Number Property
rdoError Object, rdoErrors Collection
SQLRetCode Property
SQLState Property

 Source Property (Remote Data) Applies To

rdoError Object

SourceColumn, SourceTable Properties (Remote Data)
See Also Applies To

SourceColumn
returns a value that indicates the name of the column that is the original source of the data

for an rdoColumn object.
SourceTable

returns a value that indicates the name of the table that is the original source of the data
for an rdoColumn object.
This property is not available at design time and is read-only at run time.

Syntax
object.SourceColumn
object.SourceTable
The object placeholder is an object expression that evaluates to an object in the Applies To
list.

Return Values
The SourceColumn property returns a string expression that specifies the name of the
column that is the source of data.    The SourceTable property returns a string expression
that specifies the name of the table that is the source of data.

Remarks
These properties indicate the original column and table names associated with an
rdoColumn object.    For example, you could use these properties to determine the original
source of the data in a query column whose name is unrelated to the name of the column
in the underlying table.
For columns in rdoResultset objects, SourceColumn and SourceTable return the column
name and table name of the base table or the columns and table(s) used to define the
query.

See Also
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

 SourceColumn, SourceTable Properties (Remote Data) Apply To

rdoColumn Object

SQL Property (Remote Data)
See Also Applies To

Returns or sets the SQL statement that defines the query executed by an
rdoPreparedStatement object or a RemoteData control .

Syntax
object.SQL [= value]
The SQL property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string expression that contains a value as described in Settings.    (Data type

is String.)
Settings
The settings for value are:
Setting Description
A table name The name of one of the rdoTable objects defined in the

rdoConnection object's rdoTables collection.
A valid SQL statement An SQL query using syntax appropriate for the data source.
An rdoPreparedStatement The name of one of the rdoPreparedStatement

objects in the rdoConnection object's
rdoPreparedStatements collection.

An rdoResultset The name of one of the rdoResultset objects in the
rdoConnection object's rdoResultsets collection.

A stored procedure The name of a stored procedure supported by the data source
preceded with the keyword "execute".

Remarks
The SQL property contains the structured query language statement that determines how
rows are selected, grouped, and ordered when you execute a query.    You can use a query
to select rows to include in an rdoResultset object.    You can also define action queries to
modify data without returning rows.

Note      You can't use the rdoTable object names until the rdoTables collection is
referenced.    When your code references the rdoTables collection by enumerating one or
more of its members, RDO queries the data source for table meta data.    This results in
population of the rdoTables collection.    This means that you cannot simply provide a table
name for the value argument without first enumerating the rdoTables collection.
The SQL syntax used in a query must conform to the SQL dialect as defined by the data
source query processor.    The SQL dialect supported by the ODBC interface is defined by
the X/Open standard.    Generally, a driver scans an SQL statement looking for specific
escape sequences that are used to identify non-standard operands like timestamp literals
and functions.   
If the SQL statement includes parameter declarations for the query, you must set these
before you execute the query.    Until you reset the parameters, the same parameter values
are applied each time you execute the query.    To use the rdoParameters collection to
manage SQL query parameters, you must include the "?" parameter placeholder in the SQL
statement.    Input, output, and return value parameters must all be identified in this
manner.    Use the Direction property to indicate how the parameter will be used.    For
example, to execute a procedure that accepts two input parameters and returns a return
value and an output parameter, you can use the following code:
QSQL$ = "{ ? = call sp_MyProc (?, ?, ?) }"
Set CPw = cn.CreatePreparedStatement("",QSQL$)
Cpw.rdoParameters(0).Direction = rdReturnValue

Cpw.rdoParameters(1).Direction = rdParamInput
Cpw.rdoParameters(2).Direction = rdParamInput
Cpw.rdoParameters(3).Direction = rdParamOutput
Set MyRs = Cpw.OpenResultSet()

Note      When using Microsoft SQL Server 6.0 as a data source, the ODBC driver
automatically sets the Direction property.    You also do not need to set the Direction
property for input parameters, as this is the default setting.
If the user changes the parameter value, you can re-apply the parameter value and re-
execute the query by using the Requery method against the rdoResultset (MyRs).
Cpw.rdoParameters(0) = Text1.Text
MyRs.Requery
You can also specify parameters in any SQL statement by concatenating the parameters to
the SQL statement string.    For example, to execute the previous example using this
technique, you can use the following code:
QSQL$ = "SELECT * FROM Authors WHERE Au_Lname = '"
QSQL$ = QSQL$ & Text.Text & "'"
Set CPw = cn.CreatePreparedStatement("",QSQL$)
Set MyRs = Cpw.OpenResultSet()
In this case, the rdoParameters collection is not created and cannot be referenced.    To
change the query parameter, you must rebuild the SQL statement with the new parameter
value each time the query is executed, or before you use the Requery method.
The SQL statement may include an ORDER BY clause to change the order of the rows
returned by the rdoResultset or a WHERE clause to filter the rows.

RemoteData Control
When used with the RemoteData control, the SQL property specifies the source of the
data rows accessible through bound controls on your form.   
If you set the SQL property to an SQL statement that returns rows or to the name of an
existing rdoPreparedStatement, all columns returned by the rdoResultset are visible to
the bound controls associated with the RemoteData control.
After changing the value of the SQL property at run time, you must use the Refresh
method to activate the change.

Note      Whenever your rdoPreparedStatement or SQL statement returns a value from
an expression, the column name of the expression is determined by the wording of the SQL
query.      In most cases you'll want to alias expressions so you know the name of the
column to bind to the bound control.
Make sure each bound control has a valid setting for its DataField property.    If you change
the setting of a RemoteData control's SQL property and then use Refresh, the
rdoResultset identifies the new object.    This may invalidate the DataField settings of
bound controls and cause a trappable error.

See Also
CreatePreparedStatement Method
Creating Parameter Queries
Execute Method
OpenResultset Method
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

 SQL Property (Remote Data) Applies To

RemoteData Control
rdoPreparedStatement Object

SQLRetCode Property (Remote Data)
See Also Applies To

Returns the error return code from the most recent RDO operation.
Syntax
object.SQLRetCode
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The SQLRetCode property return value is a Long value that corresponds to one of the
following constants:
Constant Description
rdSQLSuccess The operation is successful.
rdSQLSuccessWithInfo The operation is successful, and additional information is

available.
rdSQLNoDataFound No additional data is available.
rdSQLError An error occurred performing the operation.
rdSQLInvalidHandle The handle supplied is invalid.

Remarks
The SQLRetCode property contains the ODBC return code for the error.

See Also
Description Property
HelpContext , HelpFile Properties
Number Property
rdoError Object, rdoErrors Collection
Source Property
SQLState Property

 SQLRetCode Property (Remote Data) Applies To

rdoError Object

SQLState Property (Remote Data)
See Also Applies To

Returns a value corresponding to the type of error as defined by the X/Open and SQL
Access Group SQL.

Syntax
object.SQLState
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The SQLState return value is a five-character string expression, as described in Remarks.

Remarks
When an RDO operation returns an error, or completes an operation, the SQLState
property of the rdoError object is set.    If the error is not caused by ODBC or if no
SQLState is available, the SQLState property returns an empty string.
The character string value returned by the SQLState property consists of a two-character
class value followed by a three-character subclass value.    A class value of "01" indicates a
warning and is accompanied by a return code of rdSQLSuccessWithInfo.
Class values other than "01", except for the class "IM", indicate an error and are
accompanied by a return code of rdSQLError.    The class    "IM" is specific to warnings and
errors that derive from the implementation of ODBC itself.    The subclass "000" in any class
is for implementation-defined conditions within the given class.    The assignment of class
and subclass values is defined by ANSI SQL-92.

See Also
Description Property
HelpContext , HelpFile Properties
Number Property
rdoError Object, rdoErrors Collection
Source Property
SQLRetCode Property

 SQLState Property (Remote Data) Applies To

rdoError Object

StillExecuting Property (Remote Data)
See Also Applies To

Returns a Boolean value that indicates whether a query is still executing.
Syntax
object.StillExecuting
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The StillExecuting property return values are:
Value Description
True The asynchronous query is still executing.
False The asynchronous query is ready to return the first result set.

Remarks
Use the StillExecuting property to determine if a query executed using the
rdAsyncEnable option is ready to return the first result set.    Until the StillExecuting
property is False, the associated object cannot be accessed.
Once the StillExecuting property returns False, the first or next result set is ready for
processing.    When you use the MoreResults method to complete processing of a result
set, the StillExecuting property is reset to True while subsequent result sets are
retrieved.
Use the Cancel method to terminate processing of an executing query, including all
statements in a batch query.

See Also
Cancel Method
Execute Method
MoreResults Method
OpenResultset Method

 StillExecuting Property (Remote Data) Applies To

rdoConnection Object
rdoPreparedStatement Object
RemoteData Control
rdoResultset Object

Transactions Property (Remote Data)
See Also Applies To

Returns a value that indicates whether an object supports the recording of a series of
changes that can later be rolled back (undone) or committed (saved).

Syntax
object.Transactions
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Transactions property return values are:
Value Description
True The object supports transactions.
False The object doesn't support transactions.

Remarks
Check the Transactions property before using the BeginTrans method to make sure that
transactions are supported.    When Transactions is False, using the BeginTrans,
CommitTrans, or RollbackTrans method has no effect.

See Also
BeginTrans , CommitTrans , RollbackTrans Methods
rdoConnection Object, rdoConnections Collection
rdoEnvironment Object, rdoEnvironments Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

 Transactions Property (Remote Data) Applies To

rdoConnection Object
rdoResultset Object

Type Property (Remote Data)
See Also Applies To

Returns a value that indicates the type or data type of an object.   
Syntax
object.Type
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
For an rdoColumn or rdoParameter object, the Type property returns an Integer.    The
return values are:
Constant Value Description
rdTypeCHAR 1 Fixed-length character string.    Length set by Size

property.
rdTypeNUMERIC 2 Signed, exact, numeric value with precision p and

scale s (1    p 15; 0    s    p).
rdTypeDECIMAL 3 Signed, exact, numeric value with precision p and

scale s (1    p 15; 0    s    p).
rdTypeINTEGER 4 Signed, exact numeric value with precision 10, scale 0

(signed: -231    n    231-1; unsigned:    0    n    232-1).
rdTypeSMALLINT 5 Signed, exact numeric value with precision 5, scale 0

(signed: -32,768    n    32,767, unsigned: 0    n   
65,535).

rdTypeFLOAT 6 Signed, approximate numeric value with mantissa
precision 15 (zero or absolute value 10-308    to
10308).

rdTypeREAL 7 Signed, approximate numeric value with mantissa
precision 7 (zero or absolute value 10-38    to 1038).

rdTypeDOUBLE 8 Signed, approximate numeric value with mantissa
precision 15 (zero or absolute value 10-308    to
10308).

rdTypeDATE 9 Date data source dependent.
rdTypeTIME 10 Time data source dependent.
rdTypeTIMESTAMP 11 TimeStamp data source dependent.
rdTypeVARCHAR 12 Variable-length character string. Maximum length

255.
rdTypeLONGVARCHAR -1 Variable-length character string. Maximum length

determined by data source.
rdTypeBINARY -2 Fixed-length binary data.    Maximum length 255.
rdTypeVARBINARY -3 Variable-length binary data.    Maximum length 255.
rdTypeLONGVARBINARY -4 Variable-length binary data.    Maximum data source

dependent.
rdTypeBIGINT -5 Signed, exact numeric value with precision 19

(signed) or 20 (unsigned), scale 0; (signed: -263    n   
263-1; unsigned:    0    n    264-1).

rdTypeTINYINT -6 Signed, exact numeric value with precision 3, scale 0;
(signed: -128    n    127, unsigned: 0    n    255).

rdTypeBIT -7 Single binary digit.
For an rdoPreparedStatement object, the Type property returns an Integer.    The return
values are:
Constant Value Query type

rdQSelect 0 Select
rdQAction 1 Action
rdQProcedure 2 Procedural
For an rdoResultset object, the Type property returns an Integer.    The return values are:
Constant Value rdoResultset type
rdOpenForwardOnly 0 Fixed set, non-scrolling.
rdOpenKeyset 1 Updatable, fixed set, scrollable query result set

cursor.
rdOpenDynamic 2 Updatable, dynamic set, scrollable query result set

cursor.
rdOpenStatic 3 Read-only, fixed set.

Note      Not all ODBC drivers or data sources support every type of cursor.    If you choose a
type of cursor that is not supported, the ODBC driver reverts to a supported type.
For an rdoTable object, the Type property returns a String.    The settings for value are
determined by the data source driver.
Typically, this string value is "TABLE", "VIEW", "SYSTEM TABLE", "GLOBAL TEMPORARY".   
"LOCAL TEMPORARY", "ALIAS", "SYNONYM" or some other data source-specific type
identifier.

Remarks
Depending on the object, the Type property indicates:
Object Type indicates
rdoColumn, rdoParameter Object data type
rdoPreparedStatement Type of query
rdoResultset Type of rdoResultset
rdoTable Type of table on data source

See Also
rdoColumn Object, rdoColumns Collection
rdoParameter Object, rdoParameters Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object

 Type Property (Remote Data) Applies To

rdoColumn Object
rdoParameter Object
rdoPreparedStatement Object
rdoResultset Object
rdoTable Object

Updatable Property (Remote Data)
See Also Applies To

Returns a Boolean value that indicates whether changes can be made to a remote data
object.

Syntax
object.Updatable
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Updatable property return values are:
Value Description
True The object can be changed or updated.
False The object can't be changed or updated.    This is the only setting for static-

type rdoResultset objects.
Remarks
If the Updatable property setting is True, the specified:

rdoConnection object refers to an updatable data source.
rdoPreparedStatement object refers to an updatable result set.
rdoResultset contains updatable rows.
rdoTable object refers to a table that can be changed.
rdoColumn object refers to data that can be changed.

You can use the Updatable property with all types of rdoResultset objects.   
Many types of rdoResultset objects can contain columns that can't be updated.    For
example, you can create a forward-only rdoResultset that is derived from nonupdatable
sources or that contains computed or derived columns.
If the object contains only nonupdatable columns, the value of the Updatable property is
False.    When one or more columns are updatable, the property's value is True.    You can
edit only the updatable columns.    A trappable error occurs if you try to assign a new value
to a nonupdatable column.
Because an updatable object can contain columns that cannot be updated, check the
Updatable property of each rdoColumn before editing a row in the rdoResultset.

See Also
rdoColumn Object, rdoColumns Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection
Update Method

 Updatable Property (Remote Data) Applies To

rdoColumn Object
rdoConnection Object
rdoPreparedStatement Object
rdoResultset Object
rdoTable Object

UserName Property (Remote Data)
See Also Applies To

Returns or sets a value that represents a user of an rdoEnvironment object.    Use the
UserName property with the Password property to connect to an ODBC data source.

Syntax
object.UserName [= value]
The UserName property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string expression that contains a user name as described in Settings.    (Data

type is String.)
Settings
The user name syntax depends on the ODBC data source.

Return Values
The UserName property represents the user of an rdoEnvironment object.    The user
name is set when the rdoEnvironment is either created automatically by the
RemoteData control, by the first reference to a remote data object, or when the
rdoCreateEnvironment method is executed.
You can determine the default user name by setting or examining the rdoDefaultUser
property of the rdoEngine object.    If no specific user name is supplied in UserName, the
value of the rdoDefaultUser property is used.

See Also
Password Property
rdoCreateEnvironment Method
rdoDefaultUser , rdoDefaultPassword Properties
rdoEnvironment Object, rdoEnvironments Collection Summary

 UserName Property (Remote Data) Applies To

rdoEnvironment Object

Value Property (Remote Data)
See Also Applies To

Returns or sets the value of an object.
Syntax
object.Value [= value]
The Value property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An expression that evaluates to a value appropriate for the data type, as

specified by the Type property of an object.    (Data type is Variant.)
Remarks
Use the Value property to retrieve and alter data in rdoResultset objects.
The Value property is the default property of the rdoColumn and rdoParameter objects. 
Therefore, the following lines of code are equivalent (assuming Column1 is at the first
ordinal position):
Dim MyResultset As rdoResultset
X = MyResultset!Column1
X = MyResultset!Column1.Value
X = MyResultset(0)
X = MyResultset(0).Value
X = MyResultset("Column1").Value
X = MyResultset("Column1")
X = RemoteData1.Resultset("Column1")
X = RemoteData1.Resultset(0)
F$ = "Column1" : X = MyResultset(F$).Value
X = MyResultset(F$)
Set X = MyResultset(0): X.Value : X

See Also
Execute Method
Name Property
OpenResultset Method
rdoColumn Object, rdoColumns Collection
rdoParameter Object, rdoParameters Collection
Type Property
Updatable Property

 Value Property (Remote Data) Applies To

rdoColumn Object
rdoParameter Object

Version Property (Remote Data)
See Also Applies To

Returns a value that indicates the version of the data source associated with the object.   
Syntax
object.Version
The object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Return Values
The Version property return value is a 10-character string expression.

Remarks
For an rdoConnection object, this property identifies the version of the data source used
when the connection was created.    This value is the version of ODBC to which the driver
manager conforms.    The version is in the form ##.##.####, where the first two digits
are the major version number, the next two digits are the minor version, and the last four
digits are the build number.

See Also
OpenConnection Method
rdoConnection Object, rdoConnections Collection
rdoVersion Property

 Version Property (Remote Data) Applies To

rdoConnection Object

Already beyond the end of the result set (Error 40024)
See Also

You attempted to call rdoResultset.MoveNext when the EOF property was set to True.
To avoid this error, check the state of the EOF property before calling MoveNext.

See Also
BOF , EOF Properties
MoveFirst , MoveLast , MoveNext , MovePrevious Methods

An error occurred configuring the DSN. Please check the parameters
and try again (Error 40000)

See Also

The call to rdoEngine.rdoRegisterDataSource failed.   
To avoid this error, check the validity of the rdoRegisterDataSource arguments passed
and try again.

See Also
rdoRegisterDataSource Method

An error occurred loading the ODBC installation library
(ODBCCP32.DLL) (Error 40032)

See Also

You attempted to call rdoEngine.rdoRegisterDataSource and the application could not
load the ODBC installation library file ODBCCP32.DLL.
To avoid this error, make sure ODBC is correctly installed on the machine that generated
the error, and that the file ODBCCP32.DLL is in the system path.

See Also
rdoRegisterDataSource Method

An internal ODBC error was encountered (Error 40002)
See Also

An ODBC error occurred on the most recently invoked property or method.
The exact error depends on the ODBC driver and type of database you are using.    Examine
the rdoErrors Collection for an exact description of the problem.

Note      ODBC can generate more than one error during statement execution.    Make sure
you check each error in the rdoErrors collection.

See Also
rdoError Object, rdoErrors Collection

An invalid ODBC handle was encountered (Error 40004)
See Also

An error caused by an invalid ODBC statement handle occurred when executing an ODBC
operation.
Examine the rdoErrors collection for an exact description of the problem.    If no
information is found, make sure the statement handle wasn't deallocated or altered by a
previous operation.

See Also
rdoError Object, rdoErrors Collection

An invalid value for the concurrency option was passed (Error
40019)

See Also

An invalid lock type was passed to either rdoPreparedStatement.LockType or the
locktype argument in rdoPreparedStatement.OpenResultset.
To avoid this error, make sure you pass one of the following valid lock types:

rdConcurReadOnly
rdConcurLock
rdConcurRowver
rdConcurValues

Note      Not all lock types can be used on every data source.

See Also
LockType Property
OpenResultset Method

An invalid value for the cursor driver was passed (Error 40003)
See Also

An invalid type value was passed to either rdoEnvironment.CursorDriver or
rdoEngine.rdoDefaultCursorDriver.
To avoid this error, pass one of the following values:

rdUseIfNeeded
rdUseODBC
rdUseServer

Note      Not all data source drivers support all cursors.

See Also
CursorDriver Property
rdoDefaultCursorDriver Property

An invalid value for the prompt option was passed (Error 40033)
See Also

You attempted to call rdoEnvironment.OpenConnection, and the value for the prompt
argument was not one of the following values:

rdDriverPrompt
rdDriverNoPrompt
rdDriverComplete
rdDriverCompleteRequired

To avoid this error, make sure the prompt argument is one of the previously mentioned
values.

See Also
OpenConnection Method

An invalid value for the cursor type parameter was passed (Error
40034)

See Also

You attempted to call the OpenResultset method, and the value for the type argument
was not one of the following values:

rdOpenKeyset
rdOpenDynamic
rdOpenStatic
rdOpenForwardOnly

To avoid this error, make sure the type argument is one of the previously mentioned values.

Note      Not all data sources support all cursors.

See Also
OpenResultset Method
Type Property

BOF already set    (Error 40025)
See Also

You attempted to call rdoResultset.MovePrevious when the BOF property was set to
True.    This means that the current row pointer is already positioned before the first row in
the result set, and you are trying to perform a move operation that would move the row
pointer to an invalid position.
To avoid this error, check the state of the BOF property before calling the MovePrevious
method.

See Also
BOF , EOF Properties
MoveFirst , MoveLast , MoveNext , MovePrevious Methods

Can't create prepared statement for invalid database connection
(Error 40015)

See Also

The program tried to create an rdoPreparedStatement on an invalid rdoConnection.
To avoid this problem, make sure the rdoConnection object is currently connected to a
data source.

See Also
CreatePreparedStatement Method
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection

Can't execute empty rdoPreparedStatement (Error 40018)
See Also

A Null or empty string was encountered in the SQL property of rdoPreparedStatement
during the invocation of the Execute method.
To avoid this error, make sure the SQL statement for the rdoPreparedStatement is valid,
either by passing it as an argument to CreatePreparedStatement, or by setting the SQL
property of the rdoPreparedStatement object.

See Also
CreatePreparedStatement Method
Execute Method
SQL Property

Can't execute unprepared rdoPreparedStatement (Error 40017)
See Also

An ODBC error occurred trying to prepare the SQL statement passed in
rdoPreparedStatement.Execute.
Check the rdoErrors collection for more detail and make sure the SQL statement for the
rdoPreparedStatement is valid for the data source you are referencing.

See Also
Execute Method
rdoError Object, rdoErrors Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection

Can't move relative to current row as EOF/BOF already set (Error
40029)

See Also

You attempted to call rdoResultset.Move specifying a relative move (by passing Null as
the bookmark argument) when the result set is currently positioned at EOF or BOF, or the
result set is marked as invalid.

Note      If EOF or BOF are set, a valid bookmark must be passed as part of the call to
Move.
To avoid this error, make sure the EOF or BOF properties are not set, or a valid bookmark is
provided.

See Also
BOF , EOF Properties
Move Method
rdoResultset Object, rdoResultsets Collection

Invalid bookmark (Error 40027)
See Also

An invalid bookmark value was passed to rdoResultset.Move.
To avoid this error, be sure to pass a valid bookmark.    Retrieve the bookmark by using
rdoResultset.Bookmark, and make sure the variable you use to store the bookmark is
still valid.

See Also
Bookmark Property
Move Method
rdoResultset Object, rdoResultsets Collection

Invalid bookmark argument to move (Error 40028)
See Also

The bookmark argument to rdoResultset.Move was not passed as the correct data type.
To avoid this error, be sure to pass the bookmark argument as either an Integer or Byte
data type.    Retrieve the bookmark by using rdoResultset.Bookmark, and be sure that
the variable you use to store the bookmark is still valid.

See Also
Bookmark Property
Move Method
rdoResultset Object, rdoResultsets Collection

Invalid connection string (Error 40005)
See Also

An invalid connection string was passed to rdoEnvironment.OpenConnection.
To avoid this error, be sure to pass a valid ODBC connection string to the OpenConnection
method of rdoEnvironment.

See Also
OpenConnection Method
rdoEnvironment Object, rdoEnvironments Collection

Invalid resultset state for update (Error 40026)
See Also

You attempted to call rdoResultset.Update when the current row pointer was not
pointing to a valid row, or the result set was marked as invalid.    This occurs if:

The current row pointer is pointing at EOF or BOF.
The result set has been marked invalid due to a call to a method such as Cancel.
An SQL error occurs.

Also, deleting a row will mark it as invalid.
To avoid this error, check the state of the BOF and EOF properties before calling Update,
and make sure no method was called prior to calling Update that would mark the result set
as invalid.

See Also
Bookmark Property
rdoResultset Object, rdoResultsets Collection
Update Method

Invalid state for Move (Error 40023)
See Also

An attempt was made to call either rdoResultset.MoveFirst or rdoResultset.MoveNext
when the result set was marked as invalid.    A result set can be marked as invalid if:

You called the Cancel method on the result set prior to calling a Move method.
You called the MoreResults method and there are no more result sets.
An SQL error occurs.

To avoid this error, be sure that the current result set is valid and that you have not called
an operation that would mark it as invalid.

See Also
MoreResults Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods

Object collection: illegal modification -- collection is read-only (Error
40049)

See Also

You attempted to programmatically modify the contents of an RDO collection.    All RDO
collections are read-only, with the exception of the rdoErrors collection, which supports
the Clear method.
To avoid this error, do not attempt to modify the contents of the RDO collections.    Items
are added to the collection automatically, and they are removed when the Close method
for an object is invoked.

See Also
Remote Data Objects and Collections

SQL returned No Data Found (Error 40001)

An SQL statement you tried to execute returned a message indicating no data was found
for a query, or no rows were affected by the action (Insert, Update, Delete) statement
you attempted to execute.    This may be a valid response, however, in cases where you
issue a query expecting no data or rows to exist for that query.
To avoid this error, change the criteria in your SQL statement and try again.

An invalid parameter was passed (Error 40054)

The value passed to a property or method is not a valid value.
Most properties and methods accept values of only a certain type, within a certain range,
and an inappropriate value has been assigned to a property or method.    See the property
or method's Help topic to determine the appropriate types and range of values.

Can't assign value to column unless in edit mode (Error 40039)
See Also

You attempted to assign a value to a column before calling rdoResultset.Edit or
rdoResultset.AddNew.
To avoid this error, make sure the Edit or AddNew method has been called before
assigning values to columns with either the Value property or the AppendChunk method.

See Also
AddNew Method
AppendChunk Method
Edit Method
Value Property

Can't assign value to non-updatable column (Error 40038)
See Also

You attempted to assign a value to a column that is not updatable.
To avoid this error, make sure the rdoColumn's Updatable property is True before
assigning a value to a column with either the Value property or the AppendChunk
method.

See Also
AppendChunk Method
Updatable Property
Value Property

Can't assign value to output-only parameter (Error 40043)
See Also

An attempt was made to set a value for a parameter that is an output parameter.
To avoid this error, use the Direction property to be sure the parameter for which you are
setting a value is defined as either an input (rdParamInput) or input/output
(rdParamInputOutput) parameter.

See Also
Direction Property
rdoParameter Object, rdoParameters Collection

Can't assign value to unbound column (Error 40037)
See Also

You attempted to assign a value to a column that represents a large binary object (BLOB) or
similar object.
To avoid this error, use the AppendChunk method to assign values to columns of this
type.    Use the ChunkRequired property to determine if the column in question requires
the use of AppendChunk.

See Also
AppendChunk Method
BindThreshold Property
ChunkRequired Property
Type Property

Can't assign value to unbound parameter (Error 40042)

An attempt was made to set a value for a parameter that has not been bound.
To avoid this error, make sure no error was returned from prior RDO methods.    If an error
was returned, fix the SQL statement that was passed, and try the operation again.

Column not bound correctly (Error 40035)
See Also

An attempt was made to open a result set with a column of unknown data type.
For more information, consult the documentation for the data source from which the
column data originated.

See Also
OpenResultset Method
Type Property

GetNewEnum: Couldn't get interface for IID_IUnknown (Error 40050)

An internal error occurred while attempting to allocate memory to enable the For...Each
syntax to iterate over a collection.
Close as many open applications as possible and try the operation again.

Incorrect type for parameter (Error 40040)
See Also

A Variant with an invalid type was detected.    This can be caused by passing a value to an
RDO method or property that cannot be coerced to the correct type, such as trying to pass
a string data type as a numeric value.
To avoid this problem, make sure the value passed is the correct type for the operation.   
For column values, you can check the column's Type property to ensure you are passing
the correct type.

See Also
Type Property

Object Collection: Couldn't find item indicated by text (Error 40041)
See Also

You attempted to address an object in a collection by using a text value, and no object in
that collection matched the text string supplied.
To avoid this error, make sure an object in the collection has a Name property that
matches the text string supplied, or use the object's ordinal value.

See Also
Name Property

Object Collection: This collection doesn't support location by text
tag (Error 40021)

You attempted to find an object in a collection with a text string, and the objects in the
collection do not support lookup by text strings.
To avoid this error, use an ordinal value instead, such as rdoErrors(1).

The object has already been closed (Error 40046)
See Also

You have attempted to call the Close method on an object that has already been closed.
To avoid this problem, do not use the Close method on an object that has already been
closed.

See Also
Close Method

This environment name already exists in the collection (Error 40048)
See Also

You attempted to call the rdoEngine.rdoCreateEnvironment method or the
rdoConnection.CreatePreparedStatement method passing a name that already exists
in the rdoEnvironments or rdoPreparedStatements collection.
To avoid this error, make sure the name you pass does not conflict with a name already
added to the collection.

See Also
CreatePreparedStatement Method
Name Property
rdoCreateEnvironment Method
rdoEnvironment Object, rdoEnvironments Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection

Unbound column - use GetChunk (Error 40036)
See Also

You attempted to access a column containing a large binary object (BLOB) or similar object.
To avoid this error, use the GetChunk method to access columns of this type.    If this error
occurs when using parameters, you cannot use parameters on columns that represent
large binary objects (Text or Image columns in SQL Server).    You can use the
ChunkRequired property to determine if the column in question requires the use of
GetChunk.

See Also
BindThreshold Property
ChunkRequired Property
GetChunk Method
Type Property

You cannot execute a query when an asynchronous query is in
progress (Error 40045)

See Also

You have attempted to call a method or property while an asynchronous query is still
executing.
To avoid this error, check the StillExecuting property, and do not call RDO methods or
properties that affect the SQL statement until the StillExecuting property returns False.

See Also
Running Asynchronous Queries
StillExecuting Property

You must specify a valid name for the environment (Error 40047)
See Also

You have attempted to pass an invalid name for the name argument when calling the
rdoEngine.rdoCreateEnvironment method.
To avoid this error, make sure you pass a valid name as the name argument.    The name
can be any string expression that is not null or empty, and it should not be a duplicate of
any name previously added to the collection.

See Also
Name Property
rdoCreateEnvironment Method
rdoEnvironment Object, rdoEnvironments Collection

An attempt was made to issue a select statement using the Execute
method (Error 40057)

See Also

You attempted to issue a select statement using the Execute.
To issue a select query, you should instead use the OpenResultset method.    The
Execute method is designed for use with action queries (Insert, Update, Delete).

See Also
Execute Method
OpenResultset Method
rdoConnection Object, rdoConnections Collection
rdoPreparedStatement Object, rdoPreparedStatements Collection
rdoResultset Object, rdoResultsets Collection

An error occurred loading the version library (VERSION.DLL) (Error
40016)

See Also

You attempted to call rdoEngine.rdoVersion and the application could not load the Win32
library file VERSION.DLL.
To avoid this error, make sure the file VERSION.DLL is in the system path.

See Also
rdoVersion Property

An unexpected error occurred (Error 40006)

An unexpected error occurred that caused the RDO to become unstable.
To avoid this error, make sure you have enough free resources and memory, then restart
the program and try again.

Incompatible data types for compare (Error 40014)

An rdoResultset was called with an argument value whose data type is not compatible
with the compared column's data type.
To avoid this problem, make sure the value you are using in the comparison matches the
data type of the column you are comparing against.    Also, this method is valid only when
called by a data source control.

Invalid operation (Error 40055)
See Also

The property or method invoked is not valid in this context.
To avoid this error, check the sequence of the operations you are attempting and make sure
they are correct.    One possible cause is that you are trying to set a column value on a
column that is a meta data column (that is, a column generated from an rdoTable and not
an rdoResultset).

See Also
rdoResultset Object, rdoResultsets Collection
rdoTable Object, rdoTables Collection

Invalid operation for forward-only cursor (Error 40008)
See Also

The program called rdoResultset.MovePrevious or rdoResultset.MoveFirst while
processing a forward-only query.
To avoid this error, either change the cursor type to rdOpenKeyset, rdOpenDynamic, or
rdOpenStatic, or call only MoveNext for a forward-only rdoResultset.

See Also
Move Method

Invalid row for AddNew (Error 40010)
See Also

There was a call to rdoResultset.AddNew when the cursor was positioned on an invalid
row, or the program had previously called AddNew or Edit without calling Update or
cancelling the operation.
To avoid this error, move the cursor to a valid row and make sure you have a valid result
set, and the sequence of calls to rdoResultset are correct.

See Also
AddNew Method
Edit Method
Update Method

Invalid seek flag (Error 40012)

An invalid seek flag was passed to rdoResultset.    This message is applicable to
developers creating third-party bound controls.
To avoid this error, make sure the flag passed is one of the following values:

DBSEEK_LT
DBSEEK_LE
DBSEEK_EQ
DBSEEK_GE
DBSEEK_GT
DBSEEK_PARTIALEQ

Also, this method is only valid when called by a data source control.

No current row (Error 40009)
See Also

There was a call to rdoResultset.Edit when the cursor was positioned on an invalid row.   
This error may be caused by attempting to edit a deleted row, or by invoking Edit when the
cursor is positioned either before the first row, or after the last row.
To avoid this error, move the cursor to a valid row and make sure you have a valid result
set.

See Also
Edit Method

Object is invalid or not set (Error 40011)

The program called a method or operation on an object that has been closed, discarded, or
not allocated.
To avoid this error, make sure:

The object has been allocated using the Set syntax.
The object or its parent objects have not been closed.
The object has not been set to Nothing.

Partial equality requires string column (Error 40013)

rdoResultset.FindByValues was called specifying DBSEEK_PARTIALEQ on a non-string
column.    DBSEEK_PARTIALEQ works only on columns that contain string data.
To avoid this error, use only DBSEEK_PARTIALEQ on string-based columns.    Also, this
method is valid only when called by a data source control.
This message is applicable to developers creating third-party bound controls.

The row you attempted to move to has been deleted (Error 40056)
See Also

The row you attempted to move to using a bookmark has been deleted from the database.
To avoid this error, try the operation again, specifying a valid bookmark.

See Also
Bookmark Property

The rdoResultset is empty (Error 40022)
See Also

You attempted to make a call to rdoResultset.Move, rdoResultset.MoveNext, or
rdoResultset.MovePrevious on an empty result set.
To avoid this error, make sure the SQL statement used returns a valid result set before
using any of the previously mentioned methods.    You can check to see if a result set is
empty by checking the RowCount property, or by checking to see if both the EOF and
BOF properties are True.

See Also
BOF , EOF Properties
Move Method
RowCount Property

The resultset is read only (Error 40058)
You attempted an Edit, Delete, or Add operation on a read-only result set.    Make sure you
specify the correct LockType value that supports action queries when you open the result
set.

The user canceled the operation. (Error 40059)
The user clicked the Cancel button on an ODBC dialog box.

A control canceled the operation or an unexpected internal error
has occurred (Error 40503)

The RemoteData control tried to update a row based on bound control data, but the
Update operation failed.    This usually occurs because of one of the following reasons:

The data in the bound control fails validation.
The data is not the correct data type for the result set column.
The value in the bound control does not match the row description, rule, or trigger

criteria.
Examine and modify the data values and retry the operation.

An error has occurred. Unable to retrieve error information (Error
40502)

An error has occurred in the RemoteData control , and no detailed error information is
available.    This error occurs only under very unusual circumstances never during normal
operation.    You'll get this error message only when the RemoteData control can't access
detailed error information.    This situation only occurs when OLE is not working properly,
and is generally an indication of a more serious error condition.

An unexpected error occurred (Error 40501)

The RemoteData control tried to call an RDO method that should normally exist.    The
method was not found, or the call did not complete correctly.    This error occurs only under
very unusual circumstances never during normal operation.    You'll see this error message
only when the RemoteData control can't get a dispatch interface to RDO, or when a
method in RDO fails for an unknown reason.    This error message is generally an indication
of a more serious error condition.

An unexpected internal error has occurred (Error 40500)

The RemoteData control attempted to notify the bound controls that new data is
available, but received a failure code from RDO instead.    This error occurs only under very
unusual circumstances never during normal operation
and only if something is seriously wrong with Visual Basic's binding manager or the bound

controls themselves.    This error message is generally an indication of a more serious error
condition.

Could not refresh controls (Error 40504)
See Also

The Refresh method of the RemoteData control failed because of one of the following
reasons:

A connection could not be established.
A result set could not be opened.
A bound control failed to update.

Check the connection, the result set, and the control bindings (review information in Help
about the bound control).    This error can also occur if the server or network unexpectedly
drops the connection.    Generally, it indicates that the rdoResultset or connection is no
longer usable.

See Also
Refresh Method
RemoteData Control

Invalid object (Error 40506)
See Also

An object other than an rdoResultset was assigned to the Resultset property.    Assign a
valid rdoResultset object to the Resultset property.    The only object that can be
assigned to the Resultset property of the RemoteData control is an rdoResultset object
created with another RemoteData control or the OpenResultset method.

See Also
OpenResultset Method
rdoResultset Object, rdoResultsets Collection
Resultset Property

Invalid property value (Error 40505)

An inappropriate value has been assigned to a property.    Most properties only accept
values of a certain type, and within a certain range.   
To see the appropriate values for the property, search Help for the property in question.

Method cannot be called in RDC's current state (Error 40507)
See Also

A method has been called that cannot be completed while an AddNew or Edit operation is
in progress.    For example, you cannot call the Refresh method while the RemoteData
control (RDC) is editing an existing row or adding a new row.    Make sure AddNew and Edit
operations are completed by executing the Update or CancelUpdate method, or by using
one of the Move methods before calling the method that caused the error.
For additional information, search Help for the method in question.

See Also
AddNew Method
CancelUpdate Method
Edit Method
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Update Method

One or more of the arguments is invalid (Error 40508)
See Also

A value of at least one of the arguments called by this method is beyond the valid range of
values for the argument.    Use valid argument values to call the method.
For additional information, search Help for the method in question.

See Also
Remote Data Objects Method Summary

Out of memory (Error 40510)

More system resources were required than are available.    This error might have one or
more of the following causes and solutions:

You have too many applications, documents, or source files open.
Close any unnecessary applications, documents, or source files.

You have terminate-and-stay-resident programs running.
Eliminate terminate-and-stay-resident programs.

You have too many device drivers loaded.
Eliminate unnecessary device drivers.

You have run out of space for Public variables.
Reduce the number of Public variables.

You have exhausted available TEMP or virtual memory space.
Use the System Resource meter to view available system resources.    Check available
disk space.

You have insufficient RAM to run the application or set of applications loaded in
memory.

Increase the amount of available RAM by installing additional memory, or reallocate
memory to reduce the size of SmartDrive or other cache memory allocations.

Your application has generated a memory leak; it allocates memory but does not free
it when it is no longer needed.

You have written reentrant code that is not properly executed or procedures that
allocate excessive memory for arrays.

Property cannot be set in RDC's current state (Error 40513)
See Also

Some properties of the RemoteData control (RDC) cannot be set after you have
programmatically set the Resultset property.    If you create an rdoResultset object in
code and set it to the Resultset property of the RemoteData control, the RemoteData
control cannot automatically reset certain properties, such as DataSourceName,
Options, Password, QueryTimeout, and UserName.    The RemoteData control cannot
reset these properties because the rdoResultset object was created outside the
RemoteData control.   
To reset these properties, close the current rdoResultset object, programmatically set the
RemoteData control properties to new values, and call the Refresh method against the
RemoteData control to rebuild the result set.
For additional information, search Help for the property in question.

See Also
DataSourceName Property
Options Property
Password Property
QueryTimeout Property
rdoResultset Object, rdoResultsets Collection
RemoteData Control
Resultset Property
UserName Property

Property not available in RDC's current state (Error 40514)
See Also

Because some properties cannot be accessed until a valid RemoteData control (RDC) /
RDO connection is established, the state of the RemoteData control restricts read access
for this property.    Set the appropriate RemoteData control properties and use the
Refresh method to establish a connection.
For additional information, search Help for the property in question.

See Also
Refresh Method
RemoteData Control

Resultset is empty (Error 40509)
See Also

The result set is empty, so an operation that requires the UpdateRow method cannot be
called for a nonexistent row.    Make sure the result set is not empty before calling
UpdateRow.

See Also
UpdateRow Method
RemoteData Control

Resultset not available (Error 40511)
See Also

The Resultset property cannot find a valid result set because an error occurred while
opening the result set, or the result set is closed.    Set the SQL property to a valid value
and/or use the Refresh method against the RemoteData control .

See Also
Resultset Property
SQL Property
Refresh Method
RemoteData Control

The connection is not open (Error 40512)
See Also

Because there is no connection to a database, the Connection property cannot reference a
valid database connection.    To establish a database connection, check the SQL property,
set the DataSourceName or Connection property to a valid value, and use the Refresh
method against the RemoteData control .

See Also
Connection Property
DataSourceName Property
Refresh Method
RemoteData Control
SQL Property

Type mismatch (Error 40515)
See Also

The wrong argument type was passed in the RemoteData control event parameter.   
Check the argument's values.   
For additional information, search Help for the event in question.

See Also
Error Event
Reposition Event
QueryCompleted Event
Validate Event

Cannot connect to Remote Data Object (Error 40516)
See Also

The RemoteData control could not create a Remote Data Object.    This can occur if the
Microsoft Remote Data Object 1.0 library was not registered correctly, or if the library is not
present on the computer.   
To manually register the Remote Data Object 1.0 library, type the following at the
command prompt:
regsvr32 msrdo32.dll
If MSRDO32.DLL is not present on your system, reinstall Visual Basic and make sure you
have purchased the Enterprise Edition.

See Also
RemoteData Control

Align Property (Remote Data)

Returns or sets a value that determines whether an object is displayed in any size
anywhere on a form or whether it's displayed at the top, bottom, left, or right of the form
and is automatically sized to fit the form's width.

Syntax
object.Align [= number]
The Align property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
number An integer specifying how an object is displayed, as described in Settings.

Settings
The settings for number are:
Constant Value Description
vbAlignNone 0 (Default in a non-MDI form) None size and location can be set at

design time or in code.    This setting is ignored if the object is on
an MDI form.

vbAlignTop 1 (Default in an MDI form) Top object is at the top of the form, and its
width is equal to the form's ScaleWidth property setting.
vbAlignBottom 2 Bottom object is at the bottom of the form, and its width is
equal to the form's ScaleWidth property setting.
vbAlignLeft 3 Left object is at the left of the form, and its width is equal to the form's
ScaleWidth property setting.
vbAlignRight 4 Right object is at the right of the form, and its width is equal to

the form's ScaleWidth property setting.
Remarks
These constants are listed in the Visual Basic (VB) object library of the Object Browser.
You can use the Align property to quickly create a toolbar or status bar at the top or
bottom of a form.    As a user changes the size of the form, an object with Align set to 1 or
2 automatically resizes to fit the width of the form.

BackColor, ForeColor Properties (Remote Data)

BackColor
returns or sets the background color of an object.

ForeColor
returns or sets the foreground color used to display text and graphics in an object.

Syntax
object.BackColor [= color]
object.ForeColor [= color]
The BackColor and ForeColor property syntaxes have these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
color A value or constant that determines the background or foreground colors of an

object, as described in Settings.
Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color
scheme.    The settings for color are:
Setting Description
Normal RGB colors Colors specified by using the Color palette or by using the RGB or

QBColor functions in code.
System default colors Colors specified by system color constants listed in the Visual Basic

(VB) object library in the Object Browser.    The Windows operating
environment substitutes the user's choices as specified in the
Control Panel settings.

The default settings at design time are:
BackColor

set to the system default color specified by the constant vbWindowBackground.
ForeColor

set to the system default color specified by the constant vbWindowText.
Remarks
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively.    The red, green, and blue
components are each represented by a number between 0 and 255 (&HFF).    If the high
byte isn't 0, Visual Basic uses the system colors, as defined in the user's Control Panel
settings and by constants listed in the Visual Basic (VB) object library in the Object
Browser.
To display text in the Windows operating environment, both the text and background colors
must be solid.    If the text or background colors you've selected aren't displayed, one of the
selected colors may be dithered that is, comprised of up to three different-colored pixels.   
If you choose a dithered color for either the text or background, the nearest solid color will
be substituted.

Caption Property (Remote Data)
See Also

Returns or sets the text displayed in or next to a control.
Syntax
object.Caption [= string]
The Caption property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.    If object is

omitted, the form associated with the active form module is assumed to be
object.

string A string expression that evaluates to the text displayed as the caption.
Remarks
When you create a new object, its default caption is the default Name property setting.   
This default caption includes the object name and an integer, such as Command1 or Form1.
For a more descriptive label, set the Caption property.
You can use the Caption property to assign an access key to a control.    In the caption,
include an ampersand (&) immediately preceding the character you want to designate as
an access key.    The character is underlined.    Press ALT plus the underlined character to
move the focus to that control.    To include an ampersand in a caption without creating an
access key, include two ampersands (&&).    A single ampersand is displayed in the caption
and no characters are underlined.

See Also
Name Property

Drag Method (Remote Data)
See Also

Begins, ends, or cancels a drag operation of an object.
Syntax
object.Drag action
The Drag method syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.    If object is

omitted, the object whose event procedure contains the Drag method is
assumed.

action Optional.    A constant or value that specifies the action to perform, as
described in Settings.    If action is omitted, the default is to begin dragging the
object.

Settings
The settings for action are:
Constant Value Description
vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging object.
vbEndDrag 2 End dragging and drop object.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.
Using the Drag method to control a drag-and-drop operation is required only when the
DragMode property of the object is set to Manual (0).    However, you can use Drag on an
object whose DragMode property is set to Automatic (1 or vbAutomatic).
If you want the mouse pointer to change shape while the object is being dragged, use
either the DragIcon or MousePointer property.    The MousePointer property is only
used if no DragIcon is specified.

See Also
DragIcon Property
DragMode Property
MousePointer Property

DragDrop Event (Remote Data)
See Also

Occurs when a drag-and-drop operation is completed as a result of dragging a control over
a form or control and releasing the mouse button or using the Drag method with its action
argument set to 2 (Drop).

Syntax
Private Sub object_DragDrop([index As Integer,]source As Control, x As Single, y As
Single)
The DragDrop event syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
index An integer that uniquely identifies a control if it's in a control array.
source The control being dragged.    You can include properties and methods with this

argument, for example, Source.Visible = 0.
x, y A number that specifies the current horizontal (x) and vertical (y) position of

the mouse pointer within the target form or control.    These coordinates are
always expressed in terms of the target's coordinate system as set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

Remarks
Use a DragDrop event procedure to control what happens after a drag operation is
completed.    For example, you can move the source control to a new location or copy a file
from one location to another.
When multiple controls can potentially be used in a source argument:

Use the TypeOf keyword with the If statement to determine the type of control used
with source.

Use the control's Tag property to identify a control, and then use a DragDrop event
procedure.

Note      Use the DragMode property and Drag method to specify the way dragging is
initiated.    Once dragging has been initiated, you can handle events that precede a
DragDrop event with a DragOver event procedure.

See Also
Drag Method
DragIcon Property
DragMode Property
MouseDown, MouseUp Events
MouseMove Event

DragIcon Property (Remote Data)
See Also

Returns or sets the icon to be displayed as the pointer in a drag-and-drop operation.
Syntax
object.DragIcon [= icon]
The DragIcon property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
icon Any code reference that returns a valid icon, such as a reference to a form's

icon (Form1.Icon), a reference to another control's DragIcon property
(Text1.DragIcon), or the LoadPicture function.

Settings
The settings for icon are:
Setting Description
(none) (Default) An arrow pointer inside a rectangle.
Icon A custom mouse pointer.    You specify the icon by setting it using the

Properties window at design time.    You can also use the LoadPicture function
at run time.    The file you load must have the .ICO filename extension and
format.

Remarks
You can use the DragIcon property to provide visual feedback during a drag-and-drop
operation for example, to indicate that the source control is over an appropriate target.   
DragIcon takes effect when the user initiates a drag-and-drop operation.    Typically, you
set DragIcon as part of a MouseDown or DragOver event procedure.

Note      At run time, the DragIcon property can be set to any object's DragIcon or Icon
property, or you can assign it an icon returned by the LoadPicture function.

See Also
Drag Method
DragDrop Event
DragMode Property

DragMode Property (Remote Data)
See Also

Returns or sets a value that determines whether manual or automatic drag mode is used
for a drag-and-drop operation.

Syntax
object.DragMode [= number]
The DragMode property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
number An integer specifying the drag mode, as described in Settings.

Settings
The settings for number are:
Constant Value Description
vbManual 0 (Default) Manual requires using the Drag method to initiate a

drag-and-drop operation on the source control.
vbAutomatic1 Automatic clicking the source control automatically initiates a drag-
and-drop operation.
Remarks
These constants are listed in the Visual Basic (VB) object library of the Object Browser.
When DragMode is set to 1 (Automatic), the control doesn't respond as usual to mouse
events.    Use the 0 (Manual) setting to determine when a drag-and-drop operation begins
or ends; you can use this setting to initiate a drag-and-drop operation in response to a
keyboard or menu command or to enable a source control to recognize a MouseDown event
prior to a drag-and-drop operation.
Clicking while the mouse pointer is over a target object or form during a drag-and-drop
operation generates a DragDrop event for the target object.    This ends the drag-and-drop
operation.    A drag-and-drop operation may also generate a DragOver event.

Note      While a control is being dragged, it can't recognize other user-initiated mouse or
keyboard events (KeyDown, KeyPress or KeyUp, MouseDown, MouseMove, or MouseUp).   
However, the control can receive events initiated by code or by a DDE link.

See Also
DragDrop Event
DragIcon Property
DragOver Event

DragOver Event (Remote Data)
See Also

Occurs when a drag-and-drop operation is in progress.    You can use this event to monitor
the mouse pointer as it enters, leaves, or rests directly over a valid target.    The mouse
pointer position determines the target object that receives this event.

Syntax
Private Sub object_DragOver([index As Integer,]source As Control, x As Single, y As
Single, state As Integer)
The DragOver event syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
index An integer that uniquely identifies a control if it's in a control array.
source The control being dragged.    You can refer to properties and methods with this

argument, for example, Source.Visible = False.
x, y A number that specifies the current horizontal (x) and vertical (y) position of

the mouse pointer within the target form or control.    These coordinates are
always expressed in terms of the target's coordinate system as set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

state An integer that corresponds to the transition state of the control being
dragged in relation to a target form or control:
0 = Enter (source control is being dragged within the range of a target).
1 = Leave (source control is being dragged out of the range of a target).
2 = Over (source control has moved from one position in the target to
another).

Remarks
Use a DragOver event procedure to determine what happens after dragging is initiated and
before a control drops onto a target.    For example, you can verify a valid target range by
highlighting the target (set the BackColor or ForeColor property from code) or by
displaying a special drag pointer (set the DragIcon property from code).
Use the state argument to determine actions at key transition points.    For example, you
might highlight a possible target when state is set to 0 (Enter) and restore the object's
previous appearance when state is set to 1 (Leave).
When an object receives a DragOver event when state is set to 0 (Enter):

If the source control is dropped on the object, that object receives a DragDrop event.
If the source control isn't dropped on the object, that object receives another

DragOver event when state is set to 1 (Leave).

Note      Use the DragMode property and Drag method to specify the way dragging is
initiated.    For suggested techniques with the source argument, see Remarks for the
DragDrop event topic.

See Also
Drag Method
DragDrop Event
DragIcon Property
DragMode Property
MouseDown, MouseUp Events
MouseMove Event

Enabled Property (Remote Data)
See Also

Returns or sets a value that determines whether a form or control can respond to user-
generated events.

Syntax
object.Enabled [= boolean]
The Enabled property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.    If object is

omitted, the form associated with the active form module is assumed to be
object.

boolean A Boolean expression specifying whether object can respond to user-generated
events.

Settings
The settings for boolean are:
Setting Description
True (Default) Allows object to respond to events.
False Prevents object from responding to events.

Remarks
The Enabled property allows forms and controls to be enabled or disabled at run time.   
For example, you can disable objects that don't apply to the current state of the
application.    You can also disable a control used purely for display purposes, such as a text
box that provides read-only information.

See Also
Visible Property

Font Property (Remote Data)

Returns a Font object.
Syntax
object.Font
The object placeholder represents an object expression that evaluates to a RemoteData
control.

Remarks
Use the Font property of an object to identify a specific Font object whose properties you
want to use.    For example, the following code changes the Bold property setting of a Font
object identified by the Font property of a RemoteData object:
MSRDC1.Font.Bold = True

Height, Width Properties (Remote Data)
See Also

Return or set the dimensions of an object.
Syntax
object.Height [= number]
object.Width [= number]
The Height and Width property syntaxes have these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
number A numeric expression specifying the dimensions of an object, as described in

Settings.
Measurements are calculated from the center of the control's border so that controls with
different border widths align correctly.    These properties use the scale units of a control's
container.

Remarks
The values for these properties change as the object is sized by the user or by your code.   
Maximum limits of these properties for all objects are system-dependent.
If you set the Height and Width properties for a printer driver that doesn't allow these
properties to be set, no error occurs and the size of the paper remains as it was.    If you set
Height and Width for a printer driver that allows only certain values to be specified, no
error occurs and the property is set to whatever the driver allows.    For example, you could
set Height to 150 and the driver would set it to 144.
Use the Height, Width, Left, and Top properties for operations or calculations based on
an object's total area, such as sizing or moving the object.    Use the ScaleLeft, ScaleTop,
ScaleHeight, and ScaleWidth properties for operations or calculations based on an
object's internal area, such as drawing or moving objects within another object.

See Also
Left , Top Properties
Move Method

HelpContextID Property (Remote Data)
See Also

Returns or sets an associated context number for an object.    Used to provide context-
sensitive Help for your application.

Syntax
object.HelpContextID [= number]
The HelpContextID property syntax has these parts:
Part Description
object An object expression that to a RemoteData control.    If object is omitted, the

form associated with the active form module is assumed to be object.
number A numeric expression specifying the context number of the Help topic

associated with object.
Settings
The settings for number are:
Setting Description
0 (Default) No context number specified.
> 0 An integer specifying a valid context number.

Remarks
For context-sensitive Help on an object in your application, you must assign the same
context number to both object and to the associated Help topic when you compile your
Help file.
If you've created a Microsoft Windows operating environment Help file for your application
and set the application's HelpFile property, when a user presses the F1 key, Visual Basic
automatically calls Help and searches for the topic identified by the current context
number.
The current context number is the value of HelpContextID for the object that has the
focus.    If HelpContextID is set to 0, then Visual Basic looks in the HelpContextID of the
object's container, and then that object's container, and so on.    If a nonzero current
context number can't be found, the F1 key is ignored.

Note      Building a Help file requires the Microsoft Windows Help Compiler, which is included
with the Visual Basic, Professional Edition.

See Also
HelpContext , HelpFile Properties

Index Property (Remote Data)
See Also

Returns or sets the number that uniquely identifies a control in a control array.    Available
only if the control is part of a control array.

Syntax
object[(number)].Index
The Index property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
number A numeric expression that evaluates to an integer that identifies an individual

control within a control array.
Settings
The settings for number are:
Setting Description
No value (Default) Not part of a control array.
0 to 32,767 Part of an array.    Specifies an integer greater than or equal to 0 that identifies

a control within a control array.    All controls in a control array have the same
Name property.    Visual Basic automatically assigns the next integer available
within the control array.

Remarks
Because control array elements share the same Name property setting, you must use the
Index property in code to specify a particular control in the array.    Index must appear as
an integer (or a numeric expression evaluating to an integer) in parentheses next to the
control array name, for example, MyButtons(3).    You can also use the Tag property setting
to distinguish one control from another within a control array.
When a control in the array recognizes that an event has occurred, Visual Basic calls the
control array's event procedure and passes the applicable Index setting as an additional
argument.    This property is also used when you create controls dynamically at run time
with the Load statement or remove them with the Unload statement.
Although Visual Basic assigns, by default, the next integer available as the value of Index
for a new control in a control array, you can override this assigned value and skip integers. 
You can also set Index to an integer other than 0 for the first control in the array.    If you
reference an Index value in code that doesn't identify one of the controls in a control array,
a Visual Basic run-time error occurs.

Note      To remove a control from a control array, change the control's Name property
setting, and delete the control's Index property setting.

See Also
Name Property
Tag Property

Left, Top Properties (Remote Data)
See Also

Left
returns or sets the distance between the internal left edge of an object and the left edge of

its container.
Top

returns or sets the distance between the internal top edge of an object and the top edge of
its container.
Syntax
object.Left [= value]
object.Top [= value]
The Left and Top property syntaxes have these parts:
Part Description
object An object expression that to a RemoteData control.
value A numeric expression specifying distance.

Remarks
The Left and Top properties are measured in units whose size depends on the coordinate
system of its container.    The values for these properties change as the object is moved by
the user or by code.
For both properties, you can specify a single-precision number.
Use the Left, Top, Height, and Width properties for operations based on an object's
external dimensions, such as moving or resizing.

See Also
Move Method

MouseDown, MouseUp Events (Remote Data)
See Also

Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.
Syntax
Private Sub object_MouseDown([index As Integer,]button As Integer, shift As
Integer, x As Single, y As Single)
Private Sub object _MouseUp([index As Integer,]button As Integer, shift As Integer, x
As Single, y As Single)
The MouseDown and MouseUp event syntaxes have these parts:
Part Description
object Returns an object expression that evaluates to a RemoteData control.
index Returns an integer that uniquely identifies a control if it's in a control array.
button Returns an integer that identifies the button that was pressed (MouseDown) or

released (MouseUp) to cause the event.    The button argument is a bit field
with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2).    These bits correspond to the values 1, 2, and 4,
respectively.    Only one of the bits is set, indicating the button that caused the
event.

shift Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT
keys when the button specified in the button argument is pressed or released. 
A bit is set if the key is down.    The shift argument is a bit field with the least-
significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and
the ALT key (bit 2).    These bits correspond to the values 1, 2, and 4,
respectively.    The shift argument indicates the state of these keys.    Some, all,
or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT were pressed, the value of shift
would be 6.

x, y Returns a number that specifies the current location of the mouse pointer.   
The x and y values are always expressed in terms of the coordinate system set
by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties of the
object.

Remarks
Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
given mouse button is pressed or released.    Unlike the Click and DblClick events,
MouseDown and MouseUp events enable you to distinguish between the left, right, and
middle mouse buttons.    You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.
The following applies to both Click and DblClick events:

If a mouse button is pressed while the pointer is over a form or control, that object
"captures" the mouse and receives all mouse events up to and including the last MouseUp
event.    This implies that the x, y mouse-pointer coordinates returned by a mouse event may
not always be in the internal area of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse after
the first press receives all mouse events until all buttons are released.
If you need to test for the button or shift arguments, you can use constants listed in the
Visual Basic (VB) object library in the Object Browser to define the bits within the argument:
Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.
vbShiftMask 1 SHIFT key is pressed.

vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.
The constants then act as bit masks you can use to test for any combination of buttons
without having to figure out the unique bit field value for each combination.

Note      You can use a MouseMove event procedure to respond to an event caused by
moving the mouse.    The button argument for MouseDown and MouseUp differs from the
button argument used for MouseMove.    For MouseDown and MouseUp, the button
argument indicates exactly one button per event; for MouseMove, it indicates the current
state of all buttons.

See Also
MouseMove Event

MouseMove Event (Remote Data)
See Also

Occurs when the user moves the mouse.
Syntax
Private Sub object_MouseMove([index As Integer,] button As Integer, shift As
Integer, x As Single, y As Single)
The MouseMove event syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
index An integer that uniquely identifies a control if it's in a control array.
button An integer that corresponds to the state of the mouse buttons in which a bit is

set if the button is down.    The button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1), and middle button
(bit 2).    These bits correspond to the values 1, 2, and 4, respectively.    It
indicates the complete state of the mouse buttons; some, all, or none of these
three bits can be set, indicating that some, all, or none of the buttons are
pressed.

shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys.    A bit
is set if the key is down.    The shift argument is a bit field with the least-
significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and
the ALT key (bit 2).    These bits correspond to the values 1, 2, and 4,
respectively.    The shift argument indicates the state of these keys.    Some, all,
or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT were pressed, the value of shift
would be 6.

x, y A number that specifies the current location of the mouse pointer.    The x and
y values are always expressed in terms of the coordinate system set by the
ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties of the object.

Remarks
The MouseMove event is generated continually as the mouse pointer moves across objects. 
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.
If you need to test for the button or shift arguments, you can use constants listed in the
Visual Basic (VB) object library in the Object Browser to define the bits within the argument:
Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.
The constants then act as bit masks you can use to test for any combination of buttons
without having to figure out the unique bit field value for each combination.
You test for a condition by first assigning each result to a temporary integer variable and
then comparing the button or shift arguments to a bit mask.    Use the And operator with
each argument to test if the condition is greater than zero, indicating the key or button is
pressed, for example:
LeftDown = (Button And vbLeftButton) > 0
CtrlDown = (Shift And vbCtrlMask) > 0
Then, in a procedure, you can test for any combination of conditions, for example:

If LeftDown And CtrlDown Then

Note      You can use MouseDown and MouseUp event procedures to respond to events
caused by pressing and releasing mouse buttons.
The button argument for MouseMove differs from the button argument for MouseDown and
MouseUp.    For MouseMove, the button argument indicates the current state of all buttons;
a single MouseMove event can indicate that some, all, or no buttons are pressed.    For
MouseDown and MouseUp, the button argument indicates exactly one button per event.
Any time you move a window inside a MouseMove event, it can cause a cascading event.   
MouseMove events are generated when the window moves underneath the pointer.    A
MouseMove event can be generated even if the mouse is perfectly stationary.

See Also
MouseDown, MouseUp Events

Parent Property (Remote Data)

Returns the form on which a control is located.
Syntax
object.Parent
The object placeholder represents an object expression that evaluates to a RemoteData
control.

Remarks
Use the Parent property to access the properties, methods, or controls of a control's
parent form, for example:
MSRDC1.Parent.MousePointer = 4
The Parent property is useful in an application in which you pass controls as arguments.   
For example, you could pass a control variable to a general procedure in a module, and use
the Parent property to access its parent form.

ShowWhatsThis Method (Remote Data)
See Also

Displays a selected topic in a Help file using the What's This popup provided by Windows 95
Help.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51
operating systems.

Syntax
object.ShowWhatsThis
The object placeholder represents an object expression that evaluates to a RemoteData
control.

Remarks
The ShowWhatsThis method is very useful for providing context-sensitive Help from a
context menu in your application.    The method displays the topic identified by the
WhatsThisHelpID property of the object specified in the syntax.

See Also
WhatsThisHelpID Property

Tag Property (Remote Data)
See Also

Returns or sets an expression that stores any extra data needed for your program.    Unlike
other properties, the value of the Tag property isn't used by Visual Basic; you can use this
property to identify objects.

Syntax
object.Tag [= expression]
The Tag property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
expression A string expression identifying the object.    The default is a zero-length string

("").
Remarks
You can use this property to assign an identification string to an object without affecting
any of its other property settings or causing side effects.    The Tag property is useful when
you need to check the identity of a control that is passed as a variable to a procedure.

See Also
Name Property

Visible Property (Remote Data)

Returns or sets a value indicating whether an object is visible or hidden.
Syntax
object.Visible [= boolean]
The Visible property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
boolean A Boolean expression specifying whether the object is visible or hidden.

Settings
The settings for boolean are:
Setting Description
True (Default) Object is visible.
False Object is hidden.

Remarks
To hide an object at startup, set the Visible property to False at design time.    Setting this
property in code enables you to hide and later redisplay a control at run time in response to
a particular event.

WhatsThisHelpID Property (Remote Data)
See Also

Returns or sets an associated context number for an object.    Use to provide context-
sensitive Help for your application using the What's This pop-up in Windows 95 Help.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT
3.51 operating systems.

Syntax
object.WhatsThisHelpID [= number]
The WhatsThisHelpID property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
number A numeric expression specifying a Help context number, as described in

Settings.
Settings
The settings for number are:
Setting Description
0 (Default) No context number specified.
>0 An integer specifying the valid context number for the What's This topic

associated with the object.
Remarks
Visual Basic applications can support either of two different models for context-sensitive
Help.

Window 3.x
Windows 95

The Windows 3.x model uses the F1 key to start Windows Help and load the topic identified
by the HelpContextID property.    The Windows 95 model typically uses the What's This
button in the upper right corner of the window to start Windows Help and load a topic
identified by the WhatsThisHelpID property.    Use the WhatsThisHelp property to select
between the two context-sensitive models.

See Also
HelpContextID Property
ShowWhatsThis Method

ZOrder Method (Remote Data)

Places a specified MDIForm, Form, or control at the front or back of the z-order within its
graphical level.    Doesn't support named arguments.

Syntax
object.ZOrder position
The ZOrder method syntax has these parts:
Part Description
object Optional.    An object expression that evaluates to a RemoteData control.    If

object is omitted, the form with the focus is assumed to be object.
position Optional.    Integer indicating the position of object relative to other instances

of the same object.    If position is 0 or omitted, object is positioned at the front
of the z-order.    If position is 1, object is positioned at the back of the z-order.

Remarks
The z-order of objects can be set at design time by choosing the Bring To Front or Send To
Back menu command from the Edit menu.

Container Property (Remote Data)

Returns or sets the container of a control on a Form.    Not available at design time.
Syntax
Set object.Container [= container]
The Container property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
container An object expression that evaluates to an object that can serve as a container

for other controls, as described in Remarks.
Remarks
The following controls can contain other controls:

Frame control
PictureBox control.

Object Property (Remote Data)

Returns a reference to a property or method of a custom control which has the same name
as a property or method automatically extended to the control by Visual Basic.

Syntax
object.Object[.property | .method] [= value]
The Object property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
property Property of the custom control that is identical to the name of a Visual Basic-

supplied property.
method Method of the custom control that is identical to the name of a Visual Basic-

supplied method.
value Constant or value of the property or method.

Remarks
Visual Basic supplies some or all of a standard set of properties and methods to custom
controls in a Visual Basic project.    It is possible for a custom control to define a property or
method which has the same name as one of these standard properties or methods.    When
this occurs, Visual Basic automatically uses the property or method it supplies instead of
the one with the same name defined in the custom control.    The Object property allows
you to bypass the Visual Basic-supplied property or method and use the identically named
property or method defined in the custom control.
For example, the Tag property is a property supplied to all custom controls in a Visual Basic
project.    If a custom control in a project has the name ctlDemo, and you access the Tag
property using this syntax:
ctlDemo.Tag
Visual Basic automatically uses the Tag property it supplies.    However, if the custom
control defines its own Tag property and you want to access that property, you use the
Object property in this syntax:
ctlDemo.Object.Tag
Visual Basic automatically extends some or all of the following properties and methods to
custom controls in a Visual Basic project:
Properties
Align DragIcon LinkMode TabIndex
Cancel DragMode LinkItem TabStop
Container Enabled LinkTimeout Tag
DataChanged Height LinkTopic Top
DataField HelpContextID Name Visible
DataSource Index Negotiate WhatsThisHelpI

D
Default Left Parent Width
Methods
Drag LinkRequest SetFocus
LinkExecute LinkSend ShowWhatsThis
LinkPoke Move ZOrder

If you use a property or method of a custom control and don't get the behavior you expect,
check to see if the property or method has the same name as one of those shown in the
preceding list.    If the names match, check the documentation provided with the custom

control to see if the behavior matches the Visual Basic-supplied property or method.    If the
behaviors aren't identical, you may need to use the Object property to access the feature
of the custom control that you want.

Appearance Property (Remote Data)
See Also

Returns or sets the paint style of controls on an MDIForm or Form object at run time.   
Read-only at run time.

Syntax
[object].Appearance
The object placeholder represents an object expression that evaluates to a RemoteData
control.

Settings
The Appearance property settings are:
Setting Description
0 Flat.    Paints controls and forms with without visual effects.
1 (Default)    3D.    Paints controls with three-dimensional effects.

Remarks
If set to 1 at design time, the Appearance property draws controls with three-dimensional
effects.

See Also
BackColor , ForeColor Properties

MousePointer Property (Remote Data)
See Also

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is
over a particular part of an object at run time.

Syntax
object.MousePointer [= value]
The MousePointer property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
value An integer specifying the type of mouse pointer displayed, as described in

Settings.
Settings
The settings for value are:
Setting Description
0 (Default) Shape determined by the object.
1 Arrow.
2 Cross (cross-hair pointer).
3 I-Beam.
4 Icon (small square within a square).
5 Size (four-pointed arrow pointing north, south, east, and west).
6 Size NE SW (double arrow pointing northeast and southwest).
7 Size N S (double arrow pointing north and south).
8 Size NW SE (double arrow pointing northwest and southeast).
9 Size W E (double arrow pointing west and east).
10 Up Arrow.
11 Hourglass (wait).
12 No Drop.
13 Arrow and hourglass.
14 Arrow and question mark.
15 Size all (customizable under Microsoft Windows NT 3.51)
99 Custom icon specified by the MouseIcon property.

Remarks
You can use this property when you want to indicate changes in functionality as the mouse
pointer passes over controls on a form or dialog box.    The Hourglass setting (11) is useful
for indicating that the user should wait for a process or operation to finish.

Note      If your application doesn't call the DoEvents function and isn't a 32-bit application,
it overrides all MousePointer settings for all controls and other applications.    If your
application calls DoEvents, the MousePointer property may temporarily change when
over a custom control.

See Also
DragIcon Property
MouseIcon Property
MouseMove Event

MouseIcon Property (Remote Data)
See Also

Sets a custom mouse icon.
Syntax
object.MouseIcon = LoadPicture(pathname)
object.MouseIcon = picture
The MouseIcon property syntax has these parts:
Part Description
object An object expression that evaluates to a RemoteData control.
pathname A string expression specifying the path and filename of the file containing the

custom icon.
picture The Picture property of a Form object, PictureBox control, or Image control.

Remarks
The MouseIcon property provides a custom icon that is used when the MousePointer
property is set to 99.
Although Visual Basic does not create cursor (.CUR) files, you can use the MouseIcon
property to load either cursor or icon files.    This provides your program with easy access to
custom cursors of any size, with any desired hot spot location.    The 32-bit version of Visual
Basic does not load animated cursor (.ANI) files, even though 32-bit versions of Windows
support these cursors.

See Also
DragIcon Property
MousePointer Property

Remote Data Constants
See Also

You can use the Object Browser to browse the list of built-in constants.    From the View
menu, choose Object Browser, select the appropriate library, and then select the Constants
object.    Scroll the list in the Methods/Properties box to see the complete list of constants.
RDO provides built-in constants that you can use with methods or properties.    These
constants all begin with the letters "rd" and are documented with the method or property
to which they apply.

Attributes Property Constants
Constant Value Description
rdFixedColumn 1 The column size is fixed (default for numeric columns).
rdVariableColumn 2 The column size is variable (text columns only).
rdAutoIncrColumn 16 The column value for new rows is automatically

incremented to a unique Long integer that can't be
changed.

rdUpdatableColumn 32 The column value can be changed.
BOFAction Property Constants
Constant Value Description
rdMoveFirst 0 MoveFirst (Default): Keeps the first row as the current

row.
rdBOF 1 BOF: Moving past the beginning of an rdoResultset

triggers the RemoteData control's Validate event on the
first row, followed by a Reposition event on the invalid
(BOF) row.    At this point, the Move Previous button on the
RemoteData control is disabled.

CursorDriver, rdoDefaultCursorDriver Property Constants
Constant Value Description
rdUseIfNeeded 0 The ODBC driver will choose to use the appropriate style of

cursors.    It will use server-side cursors if they are
available.

rdUseOdbc 1 The RDO layer will use the ODBC cursor library.    This gives
better performance for small result sets but degrades
quickly for larger result sets.

rdUseServer 2 Use server-side cursors.    For most large operations this
will give better performance, but can cause more network
traffic.

Direction Property Constants
Constant Value Description
rdParamInput 0 (Default) The parameter is used to pass information to the

procedure.
rdParamInputOutput 1 The parameter is used to pass information both to and from

the procedure.
rdParamOutput 2 The parameter is used to return information from the

procedure as in an output parameter in SQL.
rdParamReturnValue3 The parameter is used to pass the return value from a

procedure.
EditMode Property Constants
Constant Value Description

rdEditNone 0 No editing operation is in progress.
rdEditInProgress 1 The Edit method has been invoked, and the current row is

in the copy buffer.
rdEditAdd 2 The AddNew method has been invoked, and the current

row in the copy buffer is a new row that hasn't been saved
in the database.

EOFAction Property Constants
Constant Value Description
rdMoveLast 0 MoveLast (Default): Keeps the last row as the    current

row.
rdEOF 1 EOF: Moving past the end of an rdoResultset triggers the

RemoteData control's Validation event on the last row,
followed by a Reposition event on the invalid (EOF) row.   
At this point, the Move Next button on the RemoteData
control is disabled.

rdAddNew 2 AddNew: Moving past the last row triggers the
RemoteData control's Validation event to occur on the
current row, followed by an automatic AddNew, followed
by a Reposition event on the new row.

Error Event CancelDisplay Argument Constants
Constant Value Description
rdDataErrContinue 0 Continue.
rdDataErrDisplay 1 (Default) Display the error message.

LockType Property, OpenResultset Method locktype Argument Constants
Constant Value Description
rdConcurReadOnly 1 (Default) Cursor is read-only.    No updates are allowed.
rdConcurLock 2 Pessimistic concurrency.    Cursor uses the lowest level of

locking sufficient to ensure the row can be updated.
rdConcurRowVer 3 Optimistic concurrency based on row ID.    Cursor compares

row ID in old and new rows to determine if changes have
been made since the row was last accessed.

rdConcurValues 4 Optimistic concurrency based on row values.    Cursor
compares data values in old and new rows to determine if
changes have been made since the row was last accessed.

Options Property, Execute and OpenResultset Methods options Argument,
Constants
Constant Value Description
rdAsyncEnable 32 Execute operation asynchronously.

Prompt Property, OpenConnection Method prompt Argument Constants
Constant Value Description
rdDriverPrompt 0 The driver manager displays the ODBC (Open

Database Connectivity) Data Sources dialog box.    The
connection string used to establish the connection is
constructed from the data source name (DSN) selected
and completed by the user via the dialog boxes.    Or, if
no DSN is chosen and the DataSourceName property
is empty, the default DSN is used.

rdDriverNoPrompt 1 The driver manager uses the connection string
provided in connect.    If sufficient information is not

provided, the OpenConnection method returns a
trappable error.

rdDriverComplete 2 If the connection string provided includes the DSN
keyword, the driver manager uses the string as
provided in connect, otherwise it behaves as it does
when rdDriverPrompt is specified.

rdDriverCompleteRequired 3 (Default) Behaves like rdDriverComplete except
the driver disables the controls for any information not
required to complete the connection.

rdoLocaleID Property Constants
Constant Value Description
rdLocaleSystem 0 System
rdLocaleEnglish 1 English
rdLocaleFrench 2 French
rdLocaleGerman 3 German
rdLocaleItalian 4 Italian
rdLocaleJapanese 5 Japanese
rdLocaleSpanish 6 Spanish
rdLocaleChinese 7 Chinese

ResultsetType and Type Properties, OpenResultset Method type Argument
Constants
Constant Value Description
rdOpenForwardOnly 0 Opens a forward-only type rdoResultset object.

(Default)
rdOpenKeyset 1 Opens a keyset-type rdoResultset object.
rdOpenDynamic 2 Opens a dynamic-type rdoResultset object.
rdOpenStatic 3 Opens a static-type rdoResultset object.
SQLRetCode Property Constants
Constant Description
rdSQLSuccess The operation is successful.
rdSQLSuccessWithInfo The operation is successful, and additional information is

available.
rdSQLNoDataFound No additional data is available.
rdSQLError An error occurred performing the operation.
rdSQLInvalidHandle The handle supplied is invalid.

Type Property (rdoColumn, rdoParameter) Constants
Constant Value Description
rdTypeCHAR 1 Fixed-length character string.    Length set by Size

property.
rdTypeNUMERIC 2 Signed, exact, numeric value with precision p and

scale s (1    p 15; 0    s    p).
rdTypeDECIMAL 3 Signed, exact, numeric value with precision p and

scale s (1    p 15; 0    s    p).
rdTypeINTEGER 4 Signed, exact numeric value with precision 10, scale 0

(signed: -231    n    231-1; unsigned:    0    n    232-1).
rdTypeSMALLINT 5 Signed, exact numeric value with precision 5, scale 0

(signed: -32,768    n    32,767, unsigned: 0    n    65,535).
rdTypeFLOAT 6 Signed, approximate numeric value with mantissa

precision 15 (zero or absolute value 10-308    to
10308).

rdTypeREAL 7 Signed, approximate numeric value with mantissa
precision 7 (zero or absolute value 10-38    to 1038).

rdTypeDOUBLE 8 Signed, approximate numeric value with mantissa
precision 15 (zero or absolute value 10-308    to
10308).

rdTypeDATE 9 Date data source dependent.
rdTypeTIME 10 Time data source dependent.
rdTypeTIMESTAMP 11 TimeStamp data source dependent.
rdTypeVARCHAR 12 Variable-length character string. Maximum length 255.
rdTypeLONGVARCHAR -1 Variable-length character string. Maximum length

determined by data source.
rdTypeBINARY -2 Fixed-length binary data.    Maximum length 255.
rdTypeVARBINARY -3 Variable-length binary data.    Maximum length 255.
rdTypeLONGVARBINARY -4 Variable-length binary data.    Maximum data source

dependent.
rdTypeBIGINT -5 Signed, exact numeric value with precision 19 (signed)

or 20 (unsigned), scale 0; (signed: -263    n    263-1;
unsigned:    0    n    264-1).

rdTypeTINYINT -6 Signed, exact numeric value with precision 3, scale 0;
(signed: -128    n    127, unsigned: 0    n    255).

rdTypeBIT -7 Single binary digit.
Type Property (rdoPreparedStatement) Constants
Constant Value Description
rdQSelect 0 Select query
rdQAction 1 Action query
rdQProcedure 2 Procedural query

Validate Event action Argument Constants
Constant Value Description
rdDataActionCancel 0 Cancel the operation when the Sub exits.
rdDataActionMoveFirst 1 MoveFirst method.
rdDataActionMovePrevious2 MovePrevious method.
rdDataActionMoveNext 3 MoveNext method.
rdDataActionMoveLast 4 MoveLast method.
rdDataActionAddNew 5 AddNew method.
rdDataActionUpdate 6 Update operation (not UpdateRow).
rdDataActionDelete 7 Delete method.
rdDataActionBookmark 8 The Bookmark property has been set.
rdDataActionClose 9 The Close method.
rdDataActionUnload 10 The form is being unloaded.

See Also
RemoteData Control
Remote Data Objects and Collections

Documents the SetupWizard application.    For information
about the Setup Toolkit, see the Visual Basic Help file.

Documents Visual Basic for Windows.

Documents the Data Access application.

Documents the Data Manager application.

Tutorials for learning to use Visual Basic for Windows.

Documents Microsoft Support Services.

Lists the applications written in Visual Basic that demonstrate
techniques discussed in the printed documentation.

Documents the custom controls provided with the
Professional Edition.

Documents the Crystal Reports application.

Documents the segmented hypergraphic editor for creating
hotspots within graphics for use in authoring Help files.

Documents the installation tools for ODBC.

Documents the ODBC driver for SQL Server databases.

Documents the VisData sample application.

Documents Windows functions as used in the C programming language.

Documents the Code Profiler add-in.

Documents Remote Automation, the Component Manager,
Remote Data Objects (RDO), and the RemoteData control
provided with the Enterprise Edition.

Documents the SourceSafe add-in for administrators.

Documents the SourceSafe add-in for users.

Text Files

Microsoft Visual Basic 4.0 includes additional information in the following files:
Text File Description
APILOD.TXT Describes how to use the API Text Viewer.
LABELS.TXT Contains information about mailing labels.
PACKING.LST Lists all files on the distribution disks provided with Visual Basic.
VB4DLL.TXT Contains additional information about developing dynamic link libraries

(DLLs) to use with Visual Basic.
VB4Q&A.WRI Contains frequently asked questions concerning Visual Basic version 4.0

and the appropriate answers.
WIN31API.TXT Contains procedure, constant, and type declarations for 16-bit versions

of Windows API functions.
WIN32API.TXT Contains symbolic constants for 32-bit versions of Windows API

functions.
WINMMSYS.TXT Contains procedure, constant, and type declarations for Windows 3.1

multimedia API functions.

Copyright © 1991-1995 Microsoft Corp.    All rights reserved.
Microsoft, MS, MS-DOS, Windows, Visual Basic, Windows NT, and the Windows logo are
either trademarks or registered trademarks of Microsoft Corporation.
Information in this document is subject to change without notice.    Companies, names, and
data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without express written permission of Microsoft Corporation.
The software and/or databases described in this document are furnished under a license
agreement or nondisclosure agreement. The software and/or databases may be used or
copied only in accordance with the terms of the agreement.    It is against the law to copy
the software except as specifically allowed in the license or nondisclosure agreement.    No
part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than the purchaser's personal use, without the
express written permission of Microsoft Corporation.

The Automation Manager could not be started.    'msgtext'

The Automation Manager could not be started on this computer for the reason given in the
system error message appended at 'msgtext.'
For example, an Out of Memory error would prevent the Automation Manager from
starting.

The Automation Manager was started with the following network
protocols: 'protocols'.

Startup message (Information).    The Automation Manager attempts to start using all the
RPC network server protocols currently installed on the computer.    A list of the protocols
that were used successfully appears at 'protocols.'
You can view the list of RPC server protocols on a computer by accessing the following
Windows Registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols

The Automation Manager was unable to use network protocol
'protocol'.    'msgtext'

Startup message (Warning).    The Automation Manager attempts to start with all the RPC
network server protocols currently installed on the computer.    The Automation Manager
was unable to use the protocol 'protocol' for the reason given in the system error message
appended at 'msgtext.'
You can view the list of RPC server protocols on a computer by accessing the following
Windows Registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols

The command line parameter 'parameter' was not recognized.

Startup message (Warning).    The Automation Manager was started with an invalid
command-line parameter, which was ignored.    Valid parameters are:
Parameter Description
/REGSERVER Registers the Automation Manager in the Windows Registry.
/UNREGSERVER Unregisters the Automation Manager.
/AUTOMATION Accepted but ignored.
/EMBEDDING Accepted but ignored.
/HIDDEN Starts the Automation Manager without any visible window, so that it

runs invisibly.    This is particularly useful when the Automation Manager
runs on a Win32 workstation.    If the Automation Manager is started
with this parameter there is no way for the user to close it.

The file 'file' could not be loaded.    'msgtext'

This error occurs during Setup.    The Automation Manager has a dependency on the file
named in the message, and that file cannot be found on the computer where Setup is being
run, for the reason appended at 'msgtext'.
For example, Automation Manager depends on AUTPRX32.DLL.

The network protocol 'protocol' was needed but was not available.   
'msgtext'

The Automation Manager was unable to use the indicated network protocol, for the reason
appended at 'msgtext.'
This error can occur when a client computer passes a reference to an object provided by an
OLE server on the client computer, or on another network computer.    (The client computer
must itself be capable of running the Automation Manager for the first scenario to occur.)
The Automation Manager attempts to connect to the object using the same protocol that
was used to pass the reference.    If this protocol is not available on the network computer
where the Automation Manager is running, the error occurs.
For example, the Named Pipes protocol (ncacn_np) is supported as an RPC client protocol
under Windows 95, but not as an RPC server protocol.    You can view the lists of RPC client
and server protocols on a computer by accessing the following Windows Registry keys:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols
On the client computer, the call that attempted to pass the object reference fails with the
error &H800706D0, RPC_S_PROTSEQ_NOT_FOUND.

The preference setting 'setting' had an invalid value. The default
setting will be used instead.

Automation Manager's RemoteActivationPolicy setting was invalid.    The default setting,
CreateIfKey (2), will be used.    Valid values are:
Setting Description
0 CreateNone.    Do not allow creation of any CLSID.
1 CreateAll.    Allow creation of any CLSID.    Not recommended.
2 CreateIfKey.    Allow creation of only those CLSIDs that include the subkey

AllowRemoteActivation=Y
3 CreateIfAcl.    Allow creation of a CLSID only if the user making the request has

KEY_QUERY_VALUE permission on the CLSID key.
The location of the RemoteActivationPolicy preference is:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\RemoteActivationPolicy

There was a timeout processing a call to this machine.    'msgtext'

A call to a method of an object on this machine has timed out for the reason appended at
'msgtext.'
The timeout occurs if the client computer waits more than a specified number of
milliseconds for an object, because another client computer is making a call to the same
object.
This error only occurs when the Automation Manager serializes requests from two client
computers that are accessing the same object.    It does not occur when two client
computers have separate objects of the same type, nor when OLE serializes requests to an
out-of-process OLE server that is single-threaded.
The number of milliseconds for the timeout is specified in the Automation Manager's
CallTimeout preference setting:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\CallTimeout
The default value is an unsigned four-byte integer, 0xFFFFFFFF, which represents over a
hundred years, and thus is effectively infinite.    Changing this preference affects all calls to
methods of objects on this computer; hence changing it is not recommended.

There was an error accessing preferences in the registry.    'msgtext'

Automation Manager was unable to access its preferences in the Windows Registry for the
reason appended at 'msgtext.'
For example, an error will occur if the Automation Manager is executed from a login that
does not have read permission to the subkeys in the Windows Registry that contain
Automation Manager's preferences:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\CallTimeout
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\RemoteActivationPolicy

There was an error adding information to the registry.    'msgtext'

Setup for the Automation Manager was unable to add the necessary entries to the Windows
Registry for the reason appended at 'msgtext.'    For example, an error will occur if Setup is
executed from a login that does not have write access to the Windows Registry.

There was an error connecting to an object of type 'type'.    'msgtext'

A client computer has a reference to an object on this computer, and has attempted to
pass that reference to a third computer.    The third computer was unable to connect to the
object for the reason appended at 'msgtext.'
'Type' is the fully qualified class name (programmatic ID), for example Customer.Order.

There was an error creating an object of type 'type' for 'user'.   
'msgtext'

A client computer requested creation of an object of the specified type, for example by
using the CreateObject function, or the Set statement with the New operator.    The
request failed for the reason given in the appended 'msgtext.'
If the class the object belongs to is in the Windows Registry of the network computer the
Automation Manager is running on, 'type' is the fully qualified class name (programmatic
ID), for example Customer.Order.
If the object type is not registered, for example when the OLE server that supplies it has not
been installed on the network computer, 'type' is the CLSID of the object, as it appears in
the Windows Registry of the client computer.
The user name associated with the request to create the object is inserted at 'user.'
This form of the error occurs only if both of the following are true:

The Automation Manager must be running under the Microsoft Windows NT operating
system

The client computer must be using an Authentication level other than None (1).
Otherwise, the Automation Manager cannot determine the user name, and the form of the
error without the user information is used.

There was an error creating an object of type 'type'.    'msgtext'

A client computer requested creation of an object of the specified type, for example by
using the CreateObject function, or the Set statement with the New operator.    The
request failed for the reason given in the appended 'msgtext.'
If the class the object belongs to is in the Windows Registry of the network computer the
Automation Manager is running on, 'type' is the fully qualified class name (programmatic
ID).
For example, suppose the Customer server is installed on the network computer, the
Automation Manager is using CreateIfKey security, and the CLSID entry for the Order class
does not have the subkey AllowRemoteActivation=Y.    The error message refers to the
object type Customer.Order.
If the object type is not registered, for example when the OLE server that supplies it has not
been installed on the network computer, 'type' is the CLSID of the object, as it appears in
the Windows Registry of the client computer.

There was an error processing a call to this machine.    'msgtext'

A call to a method of an object provided by an OLE server running on this computer has
failed for the reason appended at 'msgtext.'
This error occurs when the Automation Manager has received the method call from the
client computer, but is unable to make the cross-process call to the OLE server, or made
the cross-process call but failed to receive the result.
This error occurs only for cross-process communication failures.    It does not occur for
errors raised in an OLE server, or for OLE exceptions; such errors are simply returned to the
client application.

There was an error removing information from the registry.   
'msgtext'

The Automation Manager was run with the /UNREGSERVER parameter, and was unable to
remove the necessary entries from the Windows Registry for the reason appended at
'msgtext.'    For example, an error will occur if the Automation Manager is executed in this
fashion from a login that does not have write access to the Windows Registry.

Using the Component Manager

Overview of the Microsoft Component Manager

How-to Information
A listing of task-oriented topics.
Interface Information
A functional listing of menu commands and dialog boxes.

How-to Information

Adding Components to a Component Catalog
Adding Information About Components
Customizing a Component Catalog
Finding and Sorting Components
Overview of the Microsoft Component Manager
Switching Between Local and Remote Execution
Tagging Components

Interface Information

Component Manager Dialog Boxes
Component Manager Menus

Component Manager Dialog Boxes

About Dialog Box
Add Component Catalog Dialog Box
Add OLE Components Dialog Box
Associated Files Tab, Properties Dialog Box
Catalog Properties Dialog Box
Component Manager Toolbar
Create New Catalog Dialog Box
Description Tab, Properties Dialog Box
Details Tab, Properties Dialog Box
Edit Named Collections Dialog Box
Export Component Catalog Dialog Box
Install Dialog Box
Property Tags Tab, Properties Dialog Box
User Options Dialog Box

About Command (Help Menu)

Displays the About dialog box for the Component Manager.

Add Catalog Command (Catalog Menu)
See Also

Displays the Add Component Catalog dialog box, in which you can add additional
component catalogs to the Scope pane.

See Also
Add Component Catalog Dialog Box
Create New Catalog Dialog Box
Customizing a Component Catalog

Add OLE Components Command (Results Menu)
See Also

Displays the Add OLE Components dialog box, in which you can add OLE components from
type libraries, the system registry, .EXE and .DLL files, or other component catalogs.

See Also
Add OLE Components Dialog Box
Adding Components to a Component Catalog
Details Tab, Properties Dialog Box
Install Dialog Box

Clear Search Criteria Command (Search Menu)
See Also

Clears all search selections in the Criteria pane for the selected component catalog, and
returns the date criteria to start 1/1/70 and end on the current date (today's date).    This
will not clear the search criteria for other component catalogs in the Component Manager.
Toolbar shortcut:

See Also
Property Tags Tab, Properties Dialog Box
Finding and Sorting Components
Tagging Components
Component Manager Toolbar

Close Result Pane Outline Command (View Menu)
See Also

Closes the bottom level of open folders in the Results pane.    Successive clicks will close
higher levels until all folders are closed.
Toolbar shortcut:

See Also
Component Manager Toolbar

Contents Command (Help Menu)

Displays this Help file.

Copy Command (Results Menu)
See Also

Copies programming information about a service onto the Clipboard, where it can then be
pasted into code modules.    Enabled only if an item is selected in the Results pane.

If the item is an .EXE folder, the title of the .EXE and its detailed description are
copied onto the Clipboard.

If the item is a class folder, a Dim statement for the class is copied onto the
Clipboard.

If the item is a method or property, a sample statement using the method with all
associated parameter placeholders is copied onto the Clipboard.

See Also
Delete Command (Results Menu)

Delete Command (Results Menu)
See Also

Removes all component catalog references associated with the selected item.    If the item
is an .EXE file or a class, all services related to that item will be deleted from the catalog.

Note      This command does not delete the catalog from the file system.

See Also
Copy Command (Results Menu)

Exit Command (File Menu)

Exits the Component Manager.

Export Component Catalog Command (Catalog Menu)
See Also

Displays the Export Component Catalog dialog box, in which you can export the contents of
one component catalog to another.

See Also
Export Component Catalog Dialog Box

Install Command (Results Menu)
See Also

Displays the Install dialog box, in which you can install a component on your local system
for evaluation or register it for remote use on a network server.

See Also
Details Tab, Properties Dialog Box
Add OLE Components Dialog Box
Overview of the Microsoft Component Manager
Install Dialog Box

Layout Command (View Menu)
See Also

Displays four additional submenus that you use to determine which panes are displayed in
the Component Manager.

See Also
All Panes (View Menu, Layout Submenu)
Component Manager Toolbar
Criteria & Result Pane (View Menu, Layout Submenu)
Result Pane Only (View Menu, Layout Submenu)
Scope & Result Pane (View Menu, Layout Submenu)

Result Pane Only Command (View Menu, Layout Submenu)
See Also

Displays only the Results pane.
Toolbar shortcut:

See Also
Component Manager Toolbar

Scope & Result Pane Command (View Menu, Layout Submenu)
See Also

Displays the Scope and Results panes.
Toolbar shortcut:

See Also
Component Manager Toolbar

Criteria & Result Pane Command (View Menu, Layout Submenu)
See Also

Displays the Criteria and Results panes.
Toolbar shortcut:

See Also
Component Manager Toolbar

All Panes Command (View Menu, Layout Submenu)
See Also

Displays the Criteria, Results, and Scope panes.
Toolbar shortcut:

See Also
Component Manager Toolbar

Open Result Pane Outline Command (View Menu)
See Also

Opens the top level of folders in the Results pane.    Successive clicks will open lower levels
until all folders are open.
Toolbar shortcut:

See Also
Component Manager Toolbar

Properties Command (Catalog Menu)
See Also

Displays the Catalog Properties dialog box for the currently selected component catalog.   
You can use this dialog box to add, edit, and remove a catalog's properties and values, if
you have write permission to the component catalog.

See Also
Catalog Properties Dialog Box
Customizing a Component Catalog

Properties Command (Results Menu)
See Also

Displays the Properties dialog box for the currently selected component.    You can edit
information in the Description, Property Tags, Details, and Associated Files tabs, if you have
write permission to the component catalog.

See Also
Adding Information About Components
Associated Files Tab, Properties Dialog Box
Description Tab, Properties Dialog Box
Property Tags Tab, Properties Dialog Box
Details Tab, Properties Dialog Box

Remove Catalog Command (Catalog Menu)
See Also

Removes the reference to the currently selected component catalog.

See Also
Add OLE Components Dialog Box
Adding Components to a Component Catalog

Find Results Now Command (Search Menu)
See Also

Combines the current criteria into a search query that is applied against the current
component catalog.    The results of the query are displayed in hierarchical order in the
Results pane in the currently defined sort order.   
Toolbar shortcut:

See Also
Component Manager Toolbar
Finding and Sorting Components
Property Tags Tab, Properties Dialog Box
Tagging Components

Show Collection Lists Command (View Menu)
See Also

Displays the user-defined named collections in the Criteria pane.
Toolbar shortcut:

See Also
Component Manager Toolbar
Edit Named Collections Dialog Box

Show Filter & Sort Criteria Command (View Menu)
See Also

Displays the currently selected component catalog's filter and sort criteria.
Toolbar shortcut:

See Also
Component Manager Toolbar
Finding and Sorting Components
Property Tags Tab, Properties Dialog Box
Tagging Components

Switch to Local/Remote Catalog Command (Catalog Menu)
See Also

Toggles the selected component catalog from local to remote.

Note      This command is enabled only if you have previously exported the component
catalog to a remote location with the Export Component Catalog dialog box.

See Also
Switching Between Local and Remote Execution
Export Component Catalog Dialog Box

User Options Command (View Menu)
See Also

Displays the User Options dialog box, in which you can set the menu bar, status bar, and
window position options.
Toolbar shortcut:

See Also
User Options Dialog Box
Component Manager Toolbar

Component Manager Menus

File Menu
View Menu
Catalog Menu
Search Menu
Results Menu
Help Menu

Component Manager Toolbar

Catalog Menu

Add Catalog
Remove Catalog
Export Component Catalog
Switch to Local/Remote Catalog
Properties

File Menu

Exit

Help Menu

Contents
About

Results Menu

Properties
Install
Add OLE Components
Copy
Delete

Search Menu

Clear Search Criteria
Find Results Now

View Menu

Layout
Result Pane Only
Scope & Result Pane
Criteria & Result Pane
All Panes

Show Filter & Sort Criteria
Show Collection Lists
Open Result Pane Outline
Close Result Pane Outline
User Options

About Dialog Box
Displays a dialog box with information about the Component Manager.

Add Component Catalog Dialog Box
See Also

Use the Add Component Catalog dialog box to add additional component catalogs to the
Scope pane.

To open the Add Component Catalog dialog box, click the Add Catalog command on
the Catalog menu, or click the right mouse button over the Scope pane, and then click Add
Catalog.

To close the Add Component Catalog dialog box, click Cancel or double-click the
Control-menu box.    To accept your selections, click OK.
Dialog Box Options
Select Remote Catalog

Selecting this option allows you to browse available ODBC (Open Database Connectivity)
data sources for previously created remote component catalogs.    If you make a valid
selection, a local .MDB file is created at the default .MDB directory path of your system,
and tables are attached to the remote component catalog.    The catalog is then added
to the Scope pane.

Note      Data is not automatically imported to your local component catalog when you
add a remote component catalog.    To do this, you must use the Export Component
Catalog command to copy data from the remote ODBC data source to your local
component catalog.

Select Local Catalog
Selecting this option allows you to add a local component catalog to the Scope pane.    It
displays the Component Catalog Locator dialog box, which allows you to select the path
to the component catalog you want to add.    If the selected catalog is not valid, the
operation is canceled.    If the selected catalog is valid, it is added to the Scope pane.

Create New Catalog
Selecting this option displays the Create New Catalog dialog box, which allows you to
create a new component catalog.    You can define its title and filename, as well as the
native language used (such as English, French, and so forth).

See Also
Add Catalog Command (Catalog Menu)
Adding Components to a Component Catalog
Create New Catalog Dialog Box
Export Component Catalog Dialog Box

Add OLE Components Dialog Box
See Also

Use the Add OLE Components dialog box to add OLE server references from .EXE files, type
libraries, the system registry, or other component catalogs to the active component
catalog, as well as define installation parameters for users who want to use the available
OLE servers.

Note      The Add OLE Components dialog box does not add the actual OLE server files.    It
adds only descriptions of the OLE servers and installation information to the active
component catalog.

To open the Add OLE Components dialog box, click Add OLE Components on the
Results menu, or click the right mouse button over the Results pane, and then click Add OLE
Components

To close the Add OLE Components dialog box, click Close or double-click the Control-
menu box.
Dialog Box Options
Source

You must select one of the following three sources of OLE components:
Exe/TypeLib

Allows you to select executable (.EXE, .DLL) or TypeLib (.TLB, .OLB) files to add to your
component catalog.    Clicking the Browse button displays a dialog box in which you specify a
path to the OLE component you want to add to the component catalog.

Not all OLE components are self-contained .EXE files.    Some store data in an external
TypeLib file.    If you want to add such a component, select the .TLB or .OLB file in the
File Browse dialog box.    The related .EXE file will automatically be loaded along with
the TypeLib file.

Note      Not all .EXE files are valid OLE servers.    As such, you will get an error if you
attempt to add an .EXE file that is not an OLE server to the active component
catalog.

Component Catalog
Allows you to open a local or remote component catalog (.MDB file) from which you can

select OLE component descriptions to add to the active component catalog.
System Registry Library

Allows you to select an OLE component listed in your system registry.    Once you select an
item, it is displayed with the other available class modules and their members in the
Available Object Classes box.

Note      Adding very large OLE servers (such as Microsoft Excel, which contains over
2,300 members) can take a long time to complete.    In such cases, it is more time
effective to add only those classes and members that you will need.

Available Object Classes
Displays the currently available classes and members, based on the selected
component source.

End User Installation
Users of your component catalog can view information on OLE servers, or even install
them for use in their projects.    The End User Installation options allow you to determine
if and how each component will be installed if users attempt to install it locally on their
machines.    These options do not affect remote component installations.
Once you select a class in the Available Object Classes list, you can select an install
option and path which users are prompted for when they attempt to install that object.   
If the source of the component is another component catalog, the Type and Path options
are disabled, because the installation information is taken from the source component
catalog.
Type
There are three installation types:

None
Use this option when you don't want other users to be able to install that particular OLE

server
you just want to provide information about it.    If you select this option, when users attempt

to install the OLE server, they will get an error message alerting them that they cannot
install it.

Copy Server
Installs a copy of the selected OLE server to the user's local machine and registers it.

Use Setup App
Performs the OLE server installation by running a setup application program that you

provide.    This is useful, for example, in cases where the OLE server requires additional files
to operate correctly.    The setup program performs the installation of the files, putting them
in the correct locations on the system.

Path
Used only when the Use Setup App option is selected.    This is the path to the setup
application program.

Close
Closes the Add OLE Components dialog box.

Add
Adds the selected OLE component to the current component catalog.

See Also
Adding Components to a Component Catalog
Details Tab, Properties Dialog Box
Install Dialog Box
Overview of the Microsoft Component Manager

Adding Components to a Component Catalog
See Also

One way to add components to a new or existing component catalog is from an .EXE or
TypeLib (.TLB, .OLB) file.
To add components to a new or existing component catalog
1. Select the catalog in the Scope pane to which you want to add the component(s).
2. Click the right mouse button anywhere over the Results pane, and click the Add OLE

Components command on the context menu.
3. From the Add OLE Components dialog box, select the Exe/TypeLib option, and then click

the Browse button to the right side of it.
4. Select an OLE server .EXE file, and then click Open.    (You could also select a TypeLib

file.)
5. Select the component just added to the Available Object Classes list box, and then

change the End User Installation option, if necessary.
6. Click the Add button, and then close the Add OLE Components dialog box.
The new component should now be visible in the Results pane.    Repeat this process to add
references to other servers.

Note      When you add a new component, the registry (.VBR) file and the TypeLib
(.TLB, .OLB) file (if needed) for the component are automatically added to the list in the
Associated Files tab.
You can also add components from other sources, such as other component catalogs or the
system registry.    The installation procedure for these other sources is very similar to the
one previously outlined.

See Also
Add OLE Components Dialog Box
Associated Files Tab, Properties Dialog Box
Customizing a Component Catalog

Adding Information About Components
See Also

Once you add a component to a component catalog, you can then add detailed information
about it.    You can enter this information in the Description tab of the component properties
dialog box.    It's important that you take the time to add this information, because it lets
other developers know how to use the component, what it does, who wrote it, any usage
constraints that might be associated with it, and so forth.
To add information about a component
1. Open the component by selecting it in the Results pane.    Click the + outline icons to

expose the various classes it contains, in addition to the members contained in each
class.

2. Select an item in the hierarchy.
3. Click the right mouse button, and then click Properties.
4. Click the Description tab and add the information.
Using the Property Tags tab, you can also select global information relating to all classes in
a component or all members in a class by setting the properties on the component and
class respectively.    When you change the tag for an item, the tags for all items subordinate
to it are also changed.

See Also
Add OLE Components Dialog Box
Associated Files Tab, Properties Dialog Box
Description Tab, Properties Dialog Box
Property Tags Tab, Properties Dialog Box
Tagging Components

Associated Files Tab, Properties Dialog Box
See Also

Use the Associated Files tab to associate support files to be included with a particular OLE
component, such as specification files, instructions, Help files, sample client source code
files, and so forth.    Any type of file can be associated with the selected component.

To open the Associated Files tab, select a component in the Results pane, and then
click the right mouse button. Click the Properties command, and then click the Associated
Files tab.

To close the Associated Files tab, click Close or double-click the Control-menu box.
Tab Options
Add

Displays a dialog box in which you can select a file to associate with the selected
component.    To add a file to the associated file list, select a file, and then click Open.

Note      When you add a new component, the registry (.VBR) file and the TypeLib
(.TLB/.OLB) file (if needed) for the component are automatically added to the list in the
Associated Files tab.

Remove
Removes the selected file from the associated file list.    You can remove only one file at
a time.

Open
Opens the currently selected associated file.    For example, if you have associated
a .TXT file and you click Open, the .TXT file is opened in Notepad.

Note      If you have not previously associated the file type in Windows with a particular
program, the Open command will not be able to open the file.    You can prevent this
from happening by associating each file you might possibly open with a program.

Copy
Copies the selected associated file to another location.    To copy a file, select a file in the
associated file list, click Copy, specify a path and filename, and then click OK.

Close
Closes the Properties dialog box.

Update
Updates the component with the currently defined values.

See Also
Add OLE Components Dialog Box
Description Tab, Properties Dialog Box
Details Tab, Properties Dialog Box
Property Tags Tab, Properties Dialog Box

Catalog Properties Dialog Box
See Also

Use the Catalog Properties dialog box to alter existing property tags and values, or enter
new ones.    This dialog box lists the current property and value criteria available in the
Criteria pane.

To open the Catalog Properties dialog box, select a component catalog in the Scope
pane, click the right mouse button, and then click the Properties command.

To close the Catalog Properties dialog box, click Close or double-click the Control-
menu box.
Dialog Box Options
Label

The name of the currently selected property or value.    You can enter new names for
properties and values here.    The default value for Label is New Value for values, and
New Property for properties.

Search Tags
The hierarchical listing of properties and their values.

Title
The name of the component catalog with which the properties and values are
associated.

Path
The path of the component catalog.    This is for information purposes and is read-only.

Close
Closes the Properties dialog box.

Append
Adds a new property or value to the Search Tags list.
To add a new property, select an existing property and click Append.    A property with
the default name of New Property containing a value with the default name of New
Value is created.    To add a new value to a property, click an existing value of the
property for which you want to add the new value, and then click Append.    A value with
the default name of New Value is created.

Delete
Removes the currently selected property or value from the Search Tags list, and
removes all component associations with that value.

See Also
Customizing a Component Catalog
Finding and Sorting Components
Overview of the Microsoft Component Manager
Property Tags Tab, Properties Dialog Box

Component Manager Toolbar
See Also

The toolbar provides easy access to the Component Manager's command set.
The Show Result Pane Only button displays only the Results pane.

The Show Scope & Result Panes button displays the Scope and Results panes only.
The Show Criteria & Result Panes button displays the Criteria pane and Results panes only.
The Show All Panes button displays the Criteria, Scope, and Results panes.
The Show Filter & Sort Criteria button displays a component catalog's filter and sort criteria
in the Criteria pane, as defined by the component catalog's administrator.
The Show Collection Lists button displays user-defined named collections in the Criteria
pane.
The Clear Search Criteria button clears all search criteria selections in the currently
selected component catalog.    It does not affect the search criteria selections of other
component catalogs.    When clicked, it sets the starting date criteria to 1/1/70 and the end
date criteria to the current date.
The Find Results Now button combines the current criteria into a query which is applied
against the current component catalog.    The results of the query are displayed in the
Results pane.
The Expand Outline button opens the top level of folders displayed in the Results pane (OLE
components) to display the classes contained in them.    Another click displays the
members contained in each class.
The Close Outline button closes the bottom-most level of folders displayed in the Results
pane (OLE components), hiding the members contained in them.    Another click hides the
classes contained in each OLE component.
The Set User Options button displays the User Options dialog box, which allows you to
display or not display the menu and status bars, as well as save the main window location.

The Help button displays the Help file.

See Also
Overview of the Microsoft Component Manager
User Options Dialog Box

Create New Catalog Dialog Box
See Also

Use the Create New Catalog dialog box to define a title and filename for a new component
catalog.

To open the Create New Catalog dialog box, click the right mouse button over the
Scope pane, click Add Catalog, select the Create New Catalog option, and click OK.

To close the Create New Catalog dialog box, click Close or double-click the Control-
menu box.
Dialog Box Options
Title

The name of the component catalog displayed in the Component Manager Scope pane.
Filename

The name of the .MDB file that comprises the component catalog.    You can change the
path by entering it manually, or by using the Browse button to specify a new filename.
The default name for new component catalogs is "NEWCCxxx.MDB", where xxx ranges
from 1 999 based on whether files with these names already exist at the specified path. 
New component catalogs have no initial properties or items.    You cannot overwrite
existing component catalogs.

Language
The base language used in the component catalog.    Examples of base languages
include English, French, and Japanese.

See Also
Add Component Catalog Dialog Box
Customizing a Component Catalog
Overview of the Microsoft Component Manager

Customizing a Component Catalog
See Also

To customize a component catalog
1. Select a catalog in the Scope pane.    Note that you must have write permissions to the

file and location of the component catalog you want to alter.
2. Click the right mouse button over the Scope pane and select Properties.

This displays the Properties dialog box, in which you can define properties and values
used to tag catalog components.    For example, you could create a property label called
"Component Type" and add values such as "Finance," "Marketing," "Order Processing,"
"Sales," and "Tax." Another property might be "Author," containing as values a list of
individuals or development groups that built the components in the catalog.

See Also
Catalog Properties Dialog Box
Finding and Sorting Components
Overview of the Microsoft Component Manager
Property Tags Tab, Properties Dialog Box
Tagging Components

Description Tab, Properties Dialog Box
See Also

Use the Description tab to view or change (if you have write permission) the description of
the currently selected item in the Results pane.
When you make changes to a component's description, the Properties dialog box
immediately updates to reflect the changes.

To open the Description tab, select a component in the Results pane, and then click
the right mouse button.    Click the Properties command, and then click the Description tab.

To close the Description tab, click Close or double-click the Control-menu box.
Tab Options
Title

The name of the selected property or value.    This field is read-only.
Index

The Help index number of the selected property or value used for invoking context-
sensitive Help when you double-click the selected item in the Results pane.    This field is
read-only.

Usage Notes
Contains any text an administrator wants to share with users, such as the purpose of
the item, its usage constraints, its author, and so forth.

Close
Closes the Properties dialog box.

Update
Updates the component with the currently defined values.

See Also
Associated Files Tab, Properties Dialog Box
Customizing a Component Catalog
Details Tab, Properties Dialog Box
Property Tags Tab, Properties Dialog Box

Details Tab, Properties Dialog Box
See Also

Use the Details tab to provide a description and technical details about the selected
component.

To open the Details tab, select a component in the Results pane, and then click the
right mouse button.    Click the Properties command, and then click the Details tab.

To close the Details tab, click Close or double-click the Control-menu box.
Tab Options
Class

Name
The class name of the selected item (read-only).

CLSID
The class ID number of the selected item (read-only).
Project

Exe Path
The path location of the selected item.

Version
The version number of the selected item.

File Date
The date that the selected component was last updated.
Install Options

Type
There are three installation types:

None
Use when you don't want other users to be able to install that particular OLE server
you just want to provide information about it.    If you select this option, when users attempt

to install the OLE server, they will get an error message alerting them that they cannot
install it.

Copy Server
Installs a copy of the selected OLE server to the user's local machine and registers it.

Use Setup App

When selected, performs the OLE server installation by running a setup application program
that you provide.    This is useful when the OLE server requires additional files to operate
correctly.    The setup program performs the installation of the files, putting them in the
correct locations on the system.

Path
The Path option is used only when the Use Setup App option is selected.    This is the
path to the setup application program which is run.

Note      The Install Options can be changed only when a component is selected in the
main Component Manager window.

Close
Closes the Properties dialog box.

Update
Updates the selected item with any changes made.

See Also
Add OLE Components Dialog Box
Associated Files Tab, Properties Dialog Box
Description Tab, Properties Dialog Box
Switching Between Local and Remote Execution

Edit Named Collections Dialog Box
See Also

Use the Edit Named Collections dialog box to add, edit, or remove items in a collection list.

Tip      A good method for editing a collection list is to place the Edit Named Collections
dialog box next to the main Component Manager window.    You can then drag items from
the Results pane and drop them into the Edit Named Collections dialog box.

To open the Edit Named Collections dialog box, either click the Show Collection Lists
toolbar button, or click Show Collection Lists on the View menu.    Then, click the right mouse
button over the collection you want to edit, and click Edit.

To close the Edit Named Collections dialog box, click Close or double-click the Control-
menu box.
Dialog Box Options
Named Collections

Contains a list of named collections to edit.
Close

Closes the Edit Named Collections dialog box.
Add

Adds the item selected in the Results pane to the selected collection list.    Alternatively,
you can drag items from the Results pane and drop them into the Named Collections list
box.

Note      You can add a new collection to the Named Collections list in the Criteria pane
by clicking the right mouse button in the Named Collections box displayed, clicking Add,
and then specifying a name in the dialog box.

Remove
Removes the selected item from the selected collection list.

See Also
Component Manager Toolbar
Overview of the Microsoft Component Manager

Export Component Catalog Dialog Box
See Also

Use the Export Component Catalog dialog box to synchronize the contents of one
component catalog with another.    This is generally used to create a portable component
catalog for use when you work on a stand-alone computer, such as a laptop, and don't
have access to remote catalogs on the network.
If you don't have write permission to the destination component catalog, the operation is
halted.    If you have write permission to the destination server, but tables with the same
names exist in the destination component catalog, you will be prompted to overwrite
existing data in the remote catalog.

To open the Export Component Catalog dialog box, click Export Component Catalog
on the Catalog menu, or click the right mouse button in the Scope pane, and then click
Export Component Catalog.

To close the Export Component Catalog dialog box, double-click the Control-menu
box.    To cancel your settings, click Cancel.
Dialog Box Options
Destination

Remote Active Catalog
Exports the selected items to the currently active destination component catalog.

ODBC DSN
Exports the selected items to a new component catalog.    If a database is not listed in this

field, you can add it with the ODBC Control Panel program.
Copy all items from Source to Destination

When selected, all items from the local (source) component catalog are exported to the
destination component catalog.

Update existing Destination items from Source
When selected, items in the destination component catalog with the same name as
those in the local catalog are updated with the items from the local catalog,
synchronizing the data between the two component catalogs.

See Also
Export Component Catalog Command (Catalog Menu)

Finding and Sorting Components
See Also

Once you have defined a component catalog's properties and added and tagged
components, you can use the selection lists in the Criteria pane to filter the items shown in
the Results pane.
To find components
1. From the View menu, click Show Filter & Sort Criteria.
2. Select the filter choices in the Criteria pane.    For example, in the Sample Components

catalog, choosing a Sample Type of Data Access and a Comp Type of Out-Of-Process
Server might yield three components: BookSale Server, Jet1Proj, and ODBC1Proj.    This
means that these three servers share the same Sample and Comp type.

3. Click the Find Results Now toolbar button.
To sort components
1. Select a non-zero value in the sort selector button (the small button to the right of the

filter boxes) of one or more criteria.    To do this, click the button, which defaults to 0,
and select a numeric value.

2. Click the Find Results Now toolbar button.
You will see a hierarchical listing of all available components listed under the sorted criteria
names.    For example, if you choose 1 for the Sample Type property tag and 2 for the Comp
Type property tag, you will see a list of components, listed first under sample types, and
then component types.    After that, the components are listed in the usual nested order.

See Also
Add OLE Components Dialog Box
Component Manager Toolbar
Overview of the Microsoft Component Manager
Property Tags Tab, Properties Dialog Box

Install Dialog Box
See Also

Use the Install dialog box to specify a local or remote server from which to install the
selected OLE component.    When you first click the Install command, the Component
Manager checks to see if the component has been used remotely before.    If so, it loads the
previous values for the Network Address, Network Protocol, and Authentication Level as
default values.

Note      If you are running a Windows 16-bit system, the necessary RPC files needed for
remote access must be installed on your local system.    Also, while 32-bit servers cannot be
installed locally on 16-bit systems, they can be registered for remote use, or when you
want to experiment with such servers on your local system.

To open the Install dialog box, select a component, click the Install command on the
Results menu, or click the right mouse button over the Results pane, and then click Install.

To close the Install dialog box, double-click the Control-menu box.
Dialog Box Options
Install & Register Component for Local System Use

When selected, the remote component is copied to your local system.    This option is
useful for laptop computers where you may not have access to a remote system.
Clicking OK will perform the installation specified in the Details tab (either Copy .EXE or
Use Setup App).

Register Component for Remote System Use
When selected, the component is registered for use on the remote system.    Since it will
be used on the remote system, it is not copied onto your local system.    The network
address, protocol, and authentication level are used to locate and use the remote
system.

Network Address
The network address of the system where the server component is located.    You can enter

the name of the remote server with or without preceding backslashes (\\).    For example, you
can enter either \\MYSERVER or MYSERVER.

Network Protocol
The network protocol that the client and server systems use to communicate with each

other.    The network transport protocols supported within the Component Manager are:
TCP/IP
SPX
Named Pipes
NetBIOS (over NetBEUI, TCP and IPX)
Datagram (IPX and UDP)

Authentication
The RPC (remote procedure call) authentication to use on the client system.   

Authentication is a tool used to ensure data privacy and integrity, and is useful only if you
are concerned about the security of your data.

The authentication levels supported by the Component Manager are:
Default
No Authentication
Connect
Call Packet
Integrity Packet
Privacy Packet

WinSys16
The path to your 16-bit Windows system directory, if you have one installed on your
machine.    If it is in the same directory as the 32-bit systems directory, then specify the
32-bit system path here.

WinSys32
The path to your 32-bit Windows system directory, if you have one installed on your
machine.

See Also
Add OLE Components Dialog Box
Details Tab, Properties Dialog Box
Switching Between Local and Remote Execution

Switching Between Local and Remote Execution
See Also

Once a component has been added to a component catalog and its registry (.VBR) file has
been added to the Associated Files list for the classes of an .EXE file, you can use the
Component Manager to switch back and forth between local and remote execution of the
OLE server.    You can do this with the Install dialog box.
You might elect to do this, for example, if you are testing or debugging a component
locally, and you want to switch to testing it remotely.    This is useful in evaluating the
performance benefits of running a server locally versus running it remotely, since you can
use the Install dialog box to switch between local and remote versions of the same
component.    Another scenario might be where an administrator installs all active
components on a centralized remote system for use by an entire department, and
matching versions of the components are kept on other servers for experimentation or
archival purposes.

Note      You can install whole components only; you cannot install individual classes or
members from components.

To set a component's local/remote execution state
1. Select a member in the Results pane of the class you want to run.
2. Click the right mouse button over the Results pane and click Install.
3. Select Install & Register Component for Local System Use to copy the component to

your local system, or select Register Component for Remote System Use to register the
component for use on a remote system.

Note      The Register Component for Remote System Use option only registers the
component for remote access from the local (client) system that the Component
Manager is running on. It does not install the component on the remote system,
because it is assumed that the administrator of the remote system will be responsible
for doing this.

4. Click OK to accept your settings.
The selected class is now registered as remote or local, depending on which option you
select.

Note      If you want to use the Component Manager rather than the Client Registration
utility to set the local/remote state of an OLE server, use the Associated Files tab of the
Component's Properties dialog to add the .VBR file for the project or class to the Associated
Files tab if it has not already been added.    For information on the Client Registration utility,
see Chapter 3, "Client/Server Tools in the Enterprise Edition," of Building Client/Server
Applications with Visual Basic.

See Also
Associated Files Tab, Properties Dialog Box
Add OLE Components Dialog Box
Overview of the Microsoft Component Manager
Install Dialog Box

Overview of the Microsoft Component Manager
See Also

The Microsoft Component Manager is a tool to help you:
Locate OLE servers scattered throughout a network.
Group and catalog related OLE objects.
Install or register the OLE servers for use in your Visual Basic development projects.
Provide detailed information about OLE servers.

Locating OLE Server Data
The Component Manager provides services for cataloging, locating, and using OLE
components in your Visual Basic projects.    You can group components into multiple
component catalogs that contain variable scopes and cataloging characteristics.   
Component catalogs can reside on your desktop or in any remote ODBC database.
The Component Manager creates an empty component catalog the first time it is started.   
This catalog is listed in the Scope pane of the main Component Manager screen.    The right
pane of the main screen is called the Results pane, which is where components are listed
once they have been added to the catalog.    The top pane of the main screen is called the
Criteria pane, which provides an area for users to specify filter and sort information to help
them locate specific components that are in a catalog.    (The actual location of the various
panes depends on the view layout that you choose.) Clicking the right mouse button over
either the Scope pane or the Results pane displays a list of commands that operate on
those panes.
OLE servers can be complex, containing many different classes and members.    To help you
track and logically group information on various components in your enterprise, you can
create lists of related OLE servers known as named collections.    Using named collections,
you can see at a glance which OLE servers are available to you, for example, for preparing
tax forms, performing inventory, creating marketing surveys, and so on.    Alternatively, you
can use a filtering system to sort through OLE server data and display it in the manner you
want.
You can also track both local and remote components using the Component Manager. The
following diagram illustrates the relationship between local and remote components and
component catalogs.    Component catalog data can reside on local or remote systems, as
can OLE servers.    Local component catalogs can reference remote components, such as
the Order Processing and Sales Forecasting servers on the remote system, or a local
component, such as Tax Rules.

Grouping Related OLE Objects
Using the Component Manager, you can create tags that relate to particular services or
groups of services, such as OLE objects that forecast sales or process orders.    You then
associate these tags with the individual OLE objects that perform those particular services. 
Once this is complete, you can search for and use services based on tags in your project.   
For example, tax rules, order processing components, sales forecasting formulas, and so
on.
The Component Manager does not store the actual OLE servers themselves.    Instead, it
stores references to and information about existing OLE servers in a database known as a
component catalog.    By browsing a component catalog, you can view the hierarchy of OLE
components, the classes they contain, and the members contained in each class.    You can
also browse other component catalogs on any remote ODBC database.

Installing and Registering OLE Servers
Users of your component catalog can view information on OLE servers, or even install them
for use in their projects.    The End User Installation options allow you to determine if and
how each component will be installed if users attempt to install it locally on their machines. 
When you want to install a component, you can install and register components for local
use, or register the component for use on a remote system with specific network address,
protocol, and authentication level values.

Providing Detailed Information About OLE Servers
You can associate files that contain detailed information relating to the various OLE servers:
how to use them, sample client code, registration files, specifications, licensing information,
and so forth.    The Component Manager tracks OLE servers located on other systems on
the network, as well as OLE servers located on the machine on which it is installed.

See Also
Adding Components to a Component Catalog
Adding Information About Components
Associated Files Tab, Properties Dialog Box
Customizing a Component Catalog
Finding and Sorting Components
Install Dialog Box
Switching Between Local and Remote Execution

Property Tags Tab, Properties Dialog Box
See Also

Use the Property Tags tab to select global information relating to all classes in a
component, or all members in a class, by setting the properties on the component and
class, respectively.

To open the Property Tags tab, select an item in the Results pane, and click the right
mouse button.    Click Properties, and then click the Property Tags tab.

To close the Property Tags tab, click the Close button or double-click the Control-menu
box.
Tab Options
The scrollable list boxes list all the available properties of a component catalog and their
enumerated values, and indicates which values apply to the selected item in the main
Component Manager window.    When you change the tag for an item, the tags for all items
subordinate to it are also changed.
Close

Closes the component Properties dialog box.
Update

Updates the component with the currently selected values.

See Also
Customizing a Component Catalog
Finding and Sorting Components
Overview of the Microsoft Component Manager
Tagging Components

User Options Dialog Box
See Also

Use the User Options dialog box to show or hide the menu and status bars, and choose
whether or not to save the main window's position at exit.

To open the User Options dialog box, click the User Options toolbar button, or click
User Options on the View menu.

To close the User Options dialog box, click the Close button or double-click the
Control-menu box.
Dialog Box Options
Show Menu Bar

Allows you to show or hide the menu bar.
Show Status Bar

Allows you to show or hide the status bar.
Save Main Window Position at Exit

Allows you to save the size and position of the main Component Manager window when
you exit.

See Also
Component Manager Toolbar

collection
A named group of related components.    For example, a collection named Tax Preparation
Objects might contain the names of OLE objects like EndOfYear, RoyaltyCalc, and
ExemptionCalc.

collection list
A list of named groups of related collections.    For example, Tested Components might be a
list of all components that have been tested.

component
Any software that supports OLE Automation, which means it can be used programmatically
in a custom solution.    This includes OLE controls (.OCX files), Visual Basic-based OLE
Automation servers, and Visual C-based OLE Automation servers.

component catalog
A sharable database of information that describes and manages components generally OLE
servers.    A component catalog does not contain the objects themselves, but contains
references to where the objects reside on a computer or network.

Criteria pane
Depending on how you arrange the panes, the Criteria pane is generally the top-most
region of the Component Manager window, used for defining the criteria for displaying data
in the Scope and Results panes.

OLE server
An application that provides objects to other applications.

Results pane
Depending on how you arrange the panes, the Results pane is generally the lower right-
most region of the Component Manager window, used for displaying the components
contained in the component catalog selected in the Scope pane, according to the criteria
defined in the Criteria pane.

Scope pane
Depending on how you arrange the panes, the Scope pane is generally the lower left-most
region of the Component Manager window which displays the available added component
catalogs.

tag
An association between a component and the property values of a catalog.    For example, a
component named TaxPreparation might have the Royalty Calculations search tag value for
the Calculation property.

Control-menu box
In Microsoft Windows, the box in the upper-left corner of a window that opens the Control
menu.   
For applications, this menu displays commands that allow you to restore, move, size,
minimize, maximize, or close the current application.    In addition, you may be able to
switch to or run other Microsoft Windows-based applications.
For windows within an application, this menu displays commands that allow you to size,
move, split, or close the active window.

Tagging Components
See Also

As your component catalogs grow, property and value tags can help you sort through and
find components quicker.    The properties are displayed in the Criteria pane of the main
Component Manager window.    Once the properties and values for a catalog have been
defined, individual components can be tagged with the appropriate value(s).
To tag components
1. Select a component in the Results pane.
2. Click the right mouse button, and then click Properties.
3. Click the Property Tags tab.
4. Select all property values that apply to the selected component.

Tip      To more easily set properties for several components, leave the Properties dialog box
open and next to the main Component Manager window.    The Properties dialog updates
each time you select a new component in the main Component Manager window.

See Also
Customizing a Component Catalog
Property Tags Tab, Properties Dialog Box
Overview of the Microsoft Component Manager

An error occurred trying to enumerate the Windows registration
database. The database may be corrupted.

Component Manager was unable to list the components available as OLE servers from the
Windows Registry because the registration data on your hard disk may need to be repaired.
The Windows Registry registration database contains references to components that may
be used as OLE servers.    Applications that include OLE components add these references
to the Windows Registry when they are installed or loaded for the first time.    If the
registration database needs repair, this information will be unreadable by Component
Manager.
For information on restoring the registration database, see your Windows documentation or
online Help (accessible by pressing F1 from within the Registration Editor).

An error occurred trying to open the Windows registration
database.

Component Manager was unable to open the Windows Registry to find information on
components available for use as OLE servers.
The Windows Registry registration database contains references to components that may
be used as OLE servers.    Applications that include OLE components add these references
to the Windows Registry when they are installed or loaded for the first time.    If the
registration database needs repair, this information will be unreadable by Component
Manager.
For information on restoring the registration database, see your Windows documentation or
online Help (accessible by pressing F1 from within the Registration Editor).

An error occurred trying to query the Windows registration
database. The database may be corrupted.

Component Manager was unable retrieve information on components available as OLE
servers because the Windows Registry data on your hard disk may need to be repaired.
The Windows Registry registration database contains references to components that may
be used as OLE servers.    Applications that include OLE components add these references
to the Windows Registry when they are installed or loaded for the first time.    If the
registration database needs to be repaired, this information will be unreadable by
Component Manager.
For information on restoring the registration database, see your Windows documentation or
online Help (accessible by pressing F1 from within the Registration Editor).

Application requires Microsoft Windows 32-bit extensions.

Component Manager could not load the file you selected because its application is
incompatible with the operating system.
If the computer you are working with uses a 16-bit operating system (such as Windows 3.1
or Windows for Workgroups 3.11), check to see if the application was designed for a 32-bit
Windows operating system (such as Windows NT or Windows 95).    If this is the case,
replace the application with a 16-bit version, move it to a 32-bit operating system, or
change its association so that it is associated with an application that will run on your
operating system.

Application was designed for a different operating system.

The file could not be loaded because it was designed for a different operating system.   
Replace the application with a version compatible with your operating system, or change
the file's association so that it is associated with an application that will run on your
operating system.

Application was designed for MS-DOS 4.0.

The file could not be loaded because it was designed for an older version of MS-DOS.   
Replace it with a version compatible with your operating system, or change the file's
association so that it is associated with an application that will run on your operating
system.

Attempt was made to dynamically link to a task, or there was a
sharing or network protection error.

The file could not be loaded because it may already be running.
To run two instances of the same file, you must have loaded in memory a program that
allows multiple instances of the same file, such as SHARE.EXE, or use an operating system
that allows sharing implicitly, such as Windows NT or Windows 95.

Attempt was made to load a compressed executable file. The file
must be decompressed before it can be loaded.

The file could not be loaded because it is compressed.
You will need to decompress the file using a file decompression utility before it can be
loaded.    See the file's provider to learn which utility can be used to decompress it.

Attempt was made to load a real-mode application (developed for
an earlier version of Windows).

The application could not be loaded because it was designed for an earlier version of
Windows. Replace the application with a version compatible with your operating system, or
change the file's association so that it is associated with an application that will run on your
operating system.

Attempt was made to load a second instance of an executable file.

The executable file may contain multiple data segments that were not marked read-only.   
The application could not be loaded because it may use files that are currently being used
by another application.    Close the previous instance of the application you tried to load,
and then try again.

Could not install component.
See Also

There are three possible causes for this error:
Installing the component you selected requires a setup file that could not be found.   

The Add OLE Components dialog box allows you to specify a setup application to be used
when the component is installed.    Installation may fail if the component requires this
application, and the application's path and filename are not specified, or are not valid.   
Ensure that the path and filename for the setup application are correct.

Component Manager is unable to read information about the component from the
component catalog database because its reference to the component may be invalid.   
Delete the component from the catalog, and add it again to update the reference.

Component Manager is unable to read information about the component from the
component catalog database because the database may need to be repaired.    If you have
made a backup of the database, use the backup to restore it.    If you have no backup copy, it
may be necessary to recreate the component catalog.

See Also
Add OLE Components Dialog Box
Install Dialog Box

Could not install component: must have .REG file or .VBR file.
See Also

Remote installation of a component requires that a .REG file or .VBR file be listed in the
Associated Files tab of the Properties dialog box.
When you add a new component, its corresponding Visual Basic registration (.VBR) file or
Windows registration (.REG) file is automatically added to the list in the Associated Files tab
if they exist at the same path as the component file.    When you install a component for
remote use, these files are used to update the Windows Registry to include references to
the Remote Automation proxy and the OLE component's network address.
If a reference to the needed file is not included in the list, you can add it by clicking the Add
button in the Associated Files tab and selecting the appropriate .VBR file.

See Also
Associated Files Tab, Properties Dialog Box
Install Dialog Box

Could not install component: network address not specified.
See Also

You did not include the network address of the system where the OLE component is
located.
The network address, protocol, and authentication level are used to locate the remote
system.    The network address field specifies the system where the server component is
located.
Type the appropriate network address in the Network Address field of the Install OLE
Component dialog box.

See Also
Install Dialog Box

Could not install component: network protocol not specified.
See Also

You did not include the network protocol that the client and server systems use.
The network protocol, address, and authentication level are used to locate the remote
system.    The Network Protocol (TCP/IP or Named Pipes, for example) field specifies the
protocol your client/server system uses for communication.
Select the appropriate network protocol from options in the Network Address field in the
Install OLE Component dialog box.

See Also
Install Dialog Box

Could not open Type Library.

Component Manager was unable to get information about available OLE servers from the
type library (TypeLib).
The file you selected may not be a valid TypeLib file, or the TypeLib file you selected may
need to be repaired.    Restore the file from a backup copy, or reinstall the application
associated with that type library.

Dynamic link library (DLL) file was invalid. One of the DLLs required
to run this application was corrupt.

The application could not be loaded because a .DLL file it requires may need to be repaired.
Restore the .DLL file from a backup copy, or reinstall the application that uses the DLL.

Error creating directory: 'directory'.

The component could not be installed because installation requires that certain files be
copied to an OLE server directory of your Windows or <Common Files> directory, and this
directory could not be created.    Make sure that directories used during installation are not
write-protected.

Error removing file from Catalog

Component Manager was unable to remove the associated file from the component
catalog's database.    (When this error occurs, it is preceded by a message with more
specific information.)
References to associated files in the database may need to be repaired.    To update these
references, exit and restart Component Manager.

Error retrieving type information.

Component Manager was unable to get information about available OLE components from
a type library (TypeLib) or OLE server.    This can occur for two reasons:

The TypeLib or OLE server file you selected may need to be repaired.    Restore the file
from a backup copy, or reinstall the application that uses it.

The file you selected to add does not contain createable object classes.    Not all .EXE
files, for example, are valid OLE servers.    If you are unsuccessful in adding references to
components using an application's .EXE file, look instead for a corresponding TypeLib
(.TLB, .OLB) file.

Executable file was invalid. Either it was not a Windows application
or there was an error in the .EXE image.

The file could not be loaded because it is damaged or is not a Windows-based application.
If the file is a Windows-based application, it may need to be repaired.    If this is the case,
restore the file from a backup copy, or reinstall the application.

File was not found.

The file you selected could not be loaded because it could not be found in the path
specified.    Verify that the path and filename are correct.

Installation Failure. Please specify a valid path to the Windows
System directory.

See Also

You did not specify the correct Windows System directory path in one or both of the WinSys
fields in the Install OLE Component dialog box.
The WinSysxx fields instruct the Component Manager where to find the Remote Automation
support files.    To be able to use OLE servers from both 16- and 32-bit applications, you
must provide the paths for both of your operating systems.
WinSys16 specifies the path to your 16-bit Windows system directory, if you have one
installed on your machine.
WinSys32 specifies the path to your 32-bit Windows system directory, if you have one
installed on your machine.

See Also
Install Dialog Box

Installation Failure. Unable to copy file.
See Also

Installation failed because Component Manager was unable to copy a necessary file to its
appropriate directory.
Files copied during component installation (.VBR, .REG, and/or .TLB files) are listed in the
Associated Files tab of Component Manager's Properties dialog box.    There are two
possible reasons why these wouldn't be copied:

The needed file or its destination path (the Windows or <Common Files> directory)
may already exist as write-protected, and can't be overwritten.    Remove write protection
from the file or directory, or delete the existing file, and then install the component.

The needed file may already exist in the directory as a write-protected file, and can't
be overwritten.    Delete the existing file, and then install the component.

The file reference is no longer valid.    Check to be sure that referenced files still exist
in the paths given.    If not, click the Add button in the Associated Files dialog box to add a
reference to the file.

See Also
Associated Files Tab, Properties Dialog Box
Install Dialog Box

Library required separate data segments for each task.
The file could not be loaded because it was designed for a different operating system.   
Replace the application with a version compatible with your operating system, or change
the file's association so that it is associated with an application that will run on your
operating system.

Maximum limit reached, unable to create additional items.
See Also

You can specify up to 40 property values for each property label.

See Also
Catalog Properties Dialog Box

Path was not found.

The file could not be loaded because the path specified could not be found.    Check to be
sure the path and filename are correct.

Please select a component before using this command.

You did not select a component name before using this command.    Click the name of the
component to select it, and then choose the command.

Please specify a title for the new catalog
See Also

You did not include any text in the Title field of the Create New Catalog dialog box.    When
creating a new component catalog, you must give it a title. Component catalog titles can
include any text and be as many as 50 characters long.

See Also
Create New Catalog Dialog Box

Please specify a valid file name
See Also

You typed an invalid filename or path in the FileName field of the Create New Catalog dialog
box.    Check the path and filename to be sure you have typed them correctly.    For
example, the following characters are not valid within filenames:
:    "    <    >    |    *    ?    \    /
On Win32 systems (including Windows 95 and Windows NT), filenames may include spaces
and may be longer than eight characters.

See Also
Create New Catalog Dialog Box

Property limit reached, unable to create additional properties
See Also

Each component catalog may include up to eight user-defined properties.

See Also
Catalog Properties Dialog Box

Selected file does not contain appropriate OLE typeinfo data. Unable
to add component

The file you selected can't be added to the component catalog because it doesn't contain
information about OLE components.
Files containing OLE components include executable (.EXE, .DLL) or TypeLib (.TLB, .OLB)
files. Even so, not all .EXE files are valid OLE servers.    To reduce the size of .EXE files, some
applications provide OLE servers that store these components in TypeLib files.

System was out of memory, executable file was corrupt, or
relocations were invalid.

The file could not be loaded.    There are two possible reasons for this error:
Its application is corrupted.    Replace the application file with a backup, or reinstall it.
There are insufficient system resources.    Reboot the computer and try loading the

file again.

There are no browseable objects registered in your Windows
system.

The Windows Registry currently contains no objects which may be added to the component
catalog.
Applications containing OLE components are registered in the Windows Registry when they
are installed or loaded for the first time.
You have not installed any applications with OLE components; the Windows Registry will not
contain references to any.
For information on restoring the registration database, see your Windows documentation or
online Help (accessible by pressing F1 from within the Registration Editor).

There was insufficient memory to start the application.

The application could not be started because there is insufficient system memory available.
Close other applications to free up memory.

This file cannot be opened.

Component Manager could not open the file you selected.    This error can occur for three
reasons:

The file is not associated with an application that can be used to open or edit it.    See
your Windows documentation for instructions on associating files with applications.

The component has been moved.    To update its path and name reference in the
component catalog, use Component Manager to add the component again.

A file used by Component Manager has been damaged.    To restore the file, reinstall
Component Manager.

This is not an installable component.

The component you selected is not designed for installation as an OLE component.
The component does not contain type information, or information describing the objects
and interfaces it exposes.    If the component you selected is an .EXE or .DLL file, there may
be a corresponding type library (TypeLib) file that does contain the needed information.   
These files will have an .OLB or .TLB extension and may be located in the same directory as
the .EXE or .DLL, or in the Windows System directory.

Type of executable file was unknown.

The file could not be loaded because it may have been designed for a different operating
system.    Replace the application with a version compatible with your operating system, or
change the file's association so that it is associated with an application that will run on your
operating system.

Unable to create new catalog

Component Manager was unable to create a new component catalog.    There are three
possible reasons for this error:

There is insufficient system memory available.    Close other applications to free up
memory.

You have created the maximum allowable number of component catalogs.    Remove
a catalog and try again.

If this error was related to the component catalog database, a more specific error
message preceded this one.

Unable to find topic

Component Manager was unable to find a reference to the file you selected in the
component catalog's database.
Close and reopen Component Manager to update its references.    If this error occurs again,
try updating the reference to the file by removing it from the catalog, and then adding it
again.
If this fails, your component catalog's database (.MDB file) may need repair, and you should
restore it from a backup copy.

Unable to load Component Catalog.

Component Manager was unable to load the component catalog database file.    This error
can occur for three reasons:

There isn't enough available system memory.    Closing another application may free
up enough memory to allow the component catalog to be opened.

The maximum number of component catalogs may already be open.    Close or delete
a component catalog before opening a new one.

The file you tried to view can't be used as a component catalog.    Component
Manager searches for specific characteristics to identify databases as component catalogs.   
The database you selected either does not have these characteristics, or its data source
name (DSN) is not included among the data sources accessible from your computer.   
Component Manager opens a connection to a component catalog database through a
reference to its data source name.    To update this reference, use the ODBC Administrator
utility installed with Visual Basic to add the data source name corresponding to the database
of the component catalog you want to open.

Unable to retrieve information for this method or property; code
template may be missing parameters.

Component Manager was unable to find the information it needs to build a reference to the
component's methods and properties.
The component's type library (TypeLib), which contains references to its methods and
properties, may be invalid or in need of repair.    If it needs repair, reinstalling the
component may create a usable version of the file on the hard disk.    If it is invalid, obtain
an updated version of the file from the vendor/author.

Unable to set an active catalog. Closing.

Component Manager was unable to specify an .MDB file as an active component catalog.
Component Manager must be able to set a currently active component catalog to run.    By
default, it creates a new component catalog if no other exists to set as active.    Run
Component Manager again to create a new active component catalog.    If this fails, delete
or rename the Component Manager initialization file (\WINDOWS\CMPMGR.INI), and then try
again.

Windows version was incorrect.

The file could not be loaded because it requires a different version of Windows.    Obtain a
copy of the file that is compatible with your version of Windows.

