
URL Monikers

Last updated: 5/30/96

Distribution: Public
© Copyright Microsoft Corporation,2021. All Rights Reserved.

DRAFT

Monikers offer a convenient programming abstraction for Uniform Resource Locators (URLs). This
document contains the specification for the URL Moniker, a new asynchronous moniker implementation
which can be used to encapsulate the locating and download capabilities of URLs.

1. URL Monikers
1.1. Introduction...
1.2. Overview...
1.3. MIME..
1.4. Examples...
1.5. Technical Details of URL Monikers...
1.6. Extension services requested during a bind operation..
1.7. Technical Review of Monikers...

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS
MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT.
SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY
NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL
SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY
DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE
INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR
PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS
COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS
DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

© Microsoft Corporation,2021. All Rights Reserved.

URL Monikers Page 3

1 URL Monikers

Introduction
The World Wide Web uses Uniform Resource Locators (URLs) to encode the names and addresses of
objects on the Internet.1 Refer to the following pages for background material about URLs:
· Uniform Resource Locators (URL) (http://ds.internic.net/rfc/rfc1738.txt)
· Relative Uniform Resource Locators (http://ds.internic.net/rfc/rfc1808.txt)
· Universal Resource Identifiers in WWW (RFC1630) (http://ds.internic.net/rfc/rfc1630.txt)
· Names and Addresses, URIs, URLs, URNs, URCs (http://www.w3.org/pub/WWW/Addressing/Addressing.html)
· IETF - Hypertext Transfer Protocol (HTTP) Working Group (http://www.ics.uci.edu/pub/ietf/http)

URL syntax was fundamentally designed to be
· Extensible, such that new naming schemes could be added later.
· Complete, such that it is possible to encode any naming scheme.
· Printable, such that it is possible to express any URL string using 7-bit ASCII characters so that

URLs can, if necessary, be passed using pen and ink.
Due to these simple goals, the OLE moniker architecture in fact offers a convenient programming model
for working with URLs in practice. The moniker architecture supports extensible and complete name
parsing through the MkParseDisplayName(Ex) API and the IParseDisplayName and IMoniker interfaces, as well
as printable names through IMoniker::GetDisplayName method. Monikers allow applications to spend time
and resources on what they want to do with objects and resources and to leverage an extensible
infrastructure that takes care of how things actually gets done, such as downloading files, finding and
launching code, or encoding or decoding raw data into appropriate formats. The IMoniker interface is the
way you actually use URLs you encounter, and building components that fit into the moniker architecture
is the way to actually extend URL namespaces in practice.
This document describes a new system-provided moniker class, the URL Moniker, which provides a
framework for building and using certain URLs. Since URLs frequently refer to resources across high-
latency networks, the URL Moniker supports asynchronous as well as synchronous binding. Refer to the
Asynchronous Moniker specification for low-level details about asynchronous binding; this document
assumes a working knowledge of that specification.

Overview
The following diagram shows the components involved in using URL monikers. All of these components
should be familiar from the Asynchronous Moniker specification.

1 In reality, Universal Resource Identifiers (URIs) are actually the general naming mechanism of the Internet, however,
URLs are the common subset of URIs that are actually in use in today’s Internet software..

© Microsoft Corporation 1995. All Rights Reserved.

Bind-Status
IBindStatusCallback

Bind
Context

IBindCtx

Callback
Moniker

URL

Client-Provided

IMoniker

System-Provided Transport-Provided

Requested
IEnumFormatETC

Formats

IBindProtocol

IParseDisplayName

(protocol-specific)

IBinding

Transport
transport-specific

(Protocol)

interface(s)

Figure 1. Components Involved in using URL Moniker (small light-gray boxes), who they are
implemented by (larger dark-gray boxes), and their references to one-another (dotted lines).

As shown in the diagram, a client or user of URL monikers typically creates and holds a reference to the
moniker as well as the bind-context to be used during binding (BindToStorage or BindToObject). This is
identical to normal moniker usage. To support asynchronous binding, the client can implement a bind-
status-callback object supporting IBindStatusCallback and register it with the bind-context using
RegisterBindStatusCallback. This object will receive the IBinding interface of the transport during
IBindStatusCallback::OnStartBinding. The URL moniker identifies the protocol by the URL prefix and
retrieves the IBinding interface from the transport layer. The client uses IBinding to support pausing,
cancellation, and prioritization of the binding operation. The callback object also receives progress
notification through IBindStatusCallback::OnProgress, data availability notification through
IBindStatusCallback::OnDataAvailable, as well as various other notifications from the transport about the status
of the binding. The URL moniker or specific transport layers may also request extended information from
the client via IBindStatusCallback::QueryInterface, allowing the client to provide protocol-specific information
that will affect the bind operation. To support media-type negotiation the client can register a format
enumerator implementing the IEnumFORMATETC interface on the bind-context using
RegisterFormatEnumerator. URL Moniker translates these formats into MIME Types when performing
binding to HTTP URLs.

Callback Synchronization
The asynchronous WinInet API (used for the most common protocols) leave the synchronization of the
callback mechanism and the calling application as an exercise for the client. This is intentional as it
allows the greatest degree of flexibility. The default protocols and the URL moniker implementation
perform this synchronization and guarantee that single- and apartment-threaded applications will never
have to deal with free-thread style contention. That is, the client’s IEnumFORMATETC and
IBindStatusCallback interfaces are only ever called on their proper thread. This feature is transparent to the
user of the URL moniker as long the thread that calls BindToStorage and BindToObject have a message
queue.

Fine-grain Priority Control
The Asynchronous Moniker specification requires a finer grain control over the prioritization and
management of downloads than allowed for at either the WinSock or WinInet level. URL Moniker
actually manages all the downloads for any given caller’s thread and using – as part of its
synchronization – a priority scheme based on the IBinding specification.

© Microsoft Corporation,2021. All Rights Reserved.

MIME
Many application-level2 Internet protocols are based on the exchange of messages in a simple, flexible
format known as MIME, or Multipurpose Internet Mail Extensions. This format was developed for
exchanging electronic mail messages with rich content across heterogeneous networking, machine, and e-
mail environments. MIME has since been adopted in numerous non-mail applications, and several of its
useful core features extended by further protocols, such as Hyper-Text Transfer Protocol (HTTP). For an
overview of MIME and its use in HTTP, refer to the following pages:

· MIME Overview (http://ds.internic.net/rfc/rfc1630.txt)
· Media Type Registration Procedure (http://ds.internic.net/rfc/rfc1590.txt)
· IETF - Hypertext Transfer Protocol (HTTP) Working Group (http://www.ics.uci.edu/pub/ietf/http)

Media Types (MIME Content Types)

One recurring construct, the MIME Content Type, or Media Type3 for short, is used extensively in Web
applications to allow data format negotiation between a client and an object or resource. Media Types are
simple strings which denote a type and subtype (such as “text/plain” or “text/html”) and are used to label data
or qualify a request. A Web browser, for example, lists as part of an HTTP request-for-data (Get Request-
Line) or request-for-info (Head Request-Line) that it is requesting “image/gif” or “image/jpeg” Media Types,
to which a Web server responds by returning (as a Response) the Media Type label of “image/gif” and
optionally the image data itself in the GIF format if the call was a request-for-data.
Media type negotiation is often similar to how existing desktop applications negotiate with the system
clipboard to determine which data format to paste when the users chooses Edit/Paste or when they query
for formats when they receive an IDataObject during drag-and-drop. The subtle difference in HTTP media
type negotiation is that the client lists media types in fidelity order up-front and the server responds with
the best available format rather than the client knowing up-front which formats the server has available.

Media Type Negotiation with URL Moniker
URL monikers support Media Type negotiation in order to allow clients to negotiate the data format to be
downloaded in BindToStorage scenarios.

Requesting Media Types
The possible media types requested by the client are represented to URL monikers through FORMATETC
structures available from the IEnumFORMATETC enumerator registered by the caller on the bind-context:

// implement enumfmtetc to hold a set of FORMATETCs, then do the following or
// use CreateAsyncBindCtx, which encapsulates this functionality
CreateBindCtx(0, &pbc);
RegisterFormatEnumerator(pbc, &enumfmtetc, 0);

Each FORMATETC specifies a clipboard format identifying the media type, a NULL target device,
DVASPECT_CONTENT, a value of -1 for lindex, and TYMED_NULL, for example:

FORMATETC fmtetc;
fmtetc.cfFormat = RegisterClipboardFormat(CF_MIME_POSTSCRIPT);
fmtetc.ptd = NULL;
fmtetc.dwAspect = DVASPECT_CONTENT;
fmtetc.lindex = -1;
fmtetc.tymed = TYMED_NULL;

A special clipboard format value, CF_NULL, is used to indicate that the default media type of the resource
pointed to by the URL should be retrieved. This FORMATETC can be placed anywhere within the
enumerator to indicate the priority which the client places on the default media type, although it is
typically the last format the client is interested in if it is bothering to list formats it prefers. When no
enumerator is registered with the bind context, URL Moniker works as if an enumerator containing a
2 Distinguishable from transport-level protocols, such as TCP or UDP.
3 According to RFC1590, the term “Media Type” is to be used in preference to “MIME Type”.

© Microsoft Corporation,2021. All Rights Reserved.

single FORMATETC with cfFormat=CF_NULL is available; that is, URL Moniker will automatically bind to or
download the default media-type of the resource, which is a common case.

Receiving Media Types
In all cases, the client is notified of the actual media type (if applicable) that it receives during
BindToStorage through the pformatetc argument on its IBindStatusCallback::OnDataAvailable method.4

Overriding Default Viewers
When using IMoniker::BindToObject, it is possible to override the object registered as the default class for
handling a particular media type. This is useful, for example, when binding to a .txt file within a web
browser¾the web browser should be used to view the “text/plain” MIME type even though there is a
default viewer registered as the class for .txt files. Note, however, that this function must be used with
special care, and it is only advised for advanced programmers.
The RegisterMediaTypeClass API may be used to register a mapping of media types to CLSIDs with a bind
context. When binding to objects using this bind context, this mapping overrides the default mapping of
file types to CLSIDs. The FindMediaTypeClass API may be used to query the particular CLSID registered on a
bind context as the appropriate class for a given media type.

Complex Media Types
How important are Media Type parameters, i.e. “ image/jpeg; quality=low”? If parameters are generally used more in a global
sense rather than on a per-transfer basis, they should be established elsewhere, perhaps as strings floating around on another
object on the bind-context. If not, putting them in the clipboard format by concatenating strings and then using
RegisterClipboardFormat is not unreasonable (there are >16000 clipboard formats available to RegisterClipboardFormat)
Also, should clients be able to specify Content-Transfer-Encoding? The answer appears to be no from the client perspective, as it
should really be mostly transparent. Will eventually describe how Content-Transfer-Encodings are bound into the HTTP
protocol, and how you build a custom decode piece for media-types.

Examples

Downloading an Image from a Full URL
// register the clipboard formats and create an IEnumFORMATETC object around them, enumfmtetc
// this is probably such a common form of request that this will be a global object that is multi-usable
cfGIF = RegisterClipboardFormat(CFSTR_MIME_GIF);
cfJPEG = RegisterClipboardFormat(CFSTR_MIME_JPEG);

// create some enumfmtetc object based on the above formats

// create a bind-status-callback object, bsc, that supports IBindStatusCallback

CreateURLMoniker(NULL, L”http://www.foo.com/some_image”, &pmk);

// create the bind-context for the bind operation
CreateAsyncBindCtx(0, &bsc, &enumfmtetc, &pbc)

// start the binding operation.
pmk->BindToStorage(pbc, NULL, IID_IStream, &pstm);
pbc->Release();
pmk->Release();

// the actual work to interpret the data stream will occur during ::OnDataAvailable to bsc
// at some later date, at which point the transport will tell us which media type is actually
// being downloaded and chunks of it will begin arriving.
// over the duration of the download, IBindStatusCallback will be receiving progress
// notifications as well, which we can use to update our UI’s progress meter

Downloading an Image from a Relative/Partial URL
// as above, except that the created URL moniker is a partial URL…
CreateURLMoniker(NULL, L”./some_other_image”, &pmk);

// …and furthermore the caller registers the full URL of the current document with the bind-context

4 Note: if received content is of an unrecognized MIME type, the new type is automatically registered using RegisterMediaTypes.

© Microsoft Corporation,2021. All Rights Reserved.

// before binding so that the partial URL can pull context from the document’s full URL, which is
// “http://www.foo.com/main.html”
pbc->RegisterObjectParam(SZ_URLCONTEXT, &m_pmkCurrentDocument);

// as before, except that pmk will end up binding to “http://www.foo.com/some_other_image”
pmk->BindToStorage(pbc, NULL, IID_IStream, &pstm);
…

Technical Details of URL Monikers
// CLSID_URLMoniker: {79EAC9E0-BAF9-11CE-8C82-00AA004BA90B}
DEFINE_GUID(CLSID_URLMoniker, 0x79eac9e0, 0xbaf9, 0x11ce, 0x8c, 0x82, 0x00, 0xaa, 0x00, 0x4b, 0xa9, 0x0b);

HRESULT CreateURLMoniker([in] IMoniker* pmkContext, [in] LPWSTR szURL, [out] IMoniker** ppmk);
HRESULT IsValidURL(LPBC pBC, LPCWSTR szURL, DWORD dwReserved);
HRESULT RegisterMediaTypes([in] UINT ctypes, [in, length_is(ctypes)] LPTSTR* rgszTypes,

[out, length_is(ctypes)] CLIPFORMAT* rgcfTypes);
HRESULT CreateFormatEnumerator([in] UINT cfmtetc, [in, length_is(cfmtetc)] FORMATETC* rgfmtetc,

[out] IEnumFORMATETC** ppenumfmtetc);
HRESULT RegisterFormatEnumerator([in] LPBC pBC, [in] IEnumFORMATETC* pEFetc, [in] DWORD dwReserved);
HRESULT RevokeFormatEnumerator([in] LPBC pBC, [in] IEnumFORMATETC* pEFetc);
HRESULT RegisterMediaTypeClass([in] LPBC pBC, [in] UINT ctypes, [in] const LPCSTR* rgszTypes,

[in] CLSID *rgclsID, [in] DWORD dwReserved);
HRESULT FindMediaTypeClass([in] LPBC pBC, [in] LPCSTR szType, [out] CLSID *pclsID, [in] DWORD dwReserved);
HRESULT UrlMkSetSessionOption([in] DWORD dwOption, [in] LPVOID pBuffer,

[in] DWORD dwBufferLength, [in] DWORD dwReserved);

#define CF_NULL 0
#define SZ_URLCONTEXT (L”URL Context”)
#define CFSTR_MIME_FRACTALS (TEXT(“application/fractals”))
#define CFSTR_MIME_RAWDATA (TEXT(”application/octet”))
#define CFSTR_MIME_POSTSCRIPT (TEXT(“application/postscript”))
#define CFSTR_MIME_AIFF (TEXT(“audio/aiff”))
#define CFSTR_MIME_BASICAUDIO (TEXT(“audio/basic”))
#define CFSTR_MIME_WAV (TEXT(“audio/wav”))
#define CFSTR_MIME_X_AIIF (TEXT(“audio/x-aiif”))
#define CFSTR_MIME_X_REALAUDIO (TEXT(“audio/x-pn-realaudio”))
#define CFSTR_MIME_X_WAV (TEXT(“audio/x-wav”))
#define CFSTR_MIME_BMP (TEXT(“image/bmp”))
#define CFSTR_MIME_GIF (TEXT(“image/gif”))
#define CFSTR_MIME_JPEG (TEXT(“image/jpeg”))
#define CFSTR_MIME_TIFF (TEXT(“image/tiff”))
#define CFSTR_MIME_XBM (TEXT(“image/xbm”))
#define CFSTR_MIME_X_BITMAP (TEXT(“image/x-bitmap”))
#define CFSTR_MIME_HTML (TEXT(“text/html”))
#define CFSTR_MIME_TEXT (TEXT(“text/plain”))
#define CFSTR_MIME_AVI (TEXT(“video/avi”))
#define CFSTR_MIME_MPEG (TEXT(“video/mpeg”))
#define CFSTR_MIME_QUICKTIME (TEXT(“video/quicktime”))
#define CFSTR_MIME_X_MSVIDEO (TEXT(“video/x-msvideo”))
#define CFSTR_MIME_X_SGI_MOVIE (TEXT(“video/x-sgi-movie”))

// URL Moniker possible error return values - returned in IBindStatusCallback::OnStopBinding
INET_E_INVALID_URL
INET_E_NO_SESSION
INET_E_CANNOT_CONNECT
INET_E_RESOURCE_NOT_FOUND
INET_E_OBJECT_NOT_FOUND
INET_E_DATA_NOT_AVAILABLE
INET_E_DOWNLOAD_FAILURE
INET_E_AUTHENTICATION_REQUIRED
INET_E_NO_VALID_MEDIA
INET_E_CONNECTION_TIMEOUT
INET_E_INVALID_REQUEST
INET_E_UNKNOWN_PROTOCOL

© Microsoft Corporation,2021. All Rights Reserved.

IsValidURL
HRESULT IsValidURL(pBC, szURL, dwReserved);
This simple API is used to determine if a given string szURL is a valid absolute URL that may be used to
construct a URL moniker. Note: relative URLs are not considered “valid” by this API.
Argument Type Description
pBC IBindCtx * Optional bind context parameter. Currently ignored,

should be set to NULL.
szURL LPCWSTR The URL to check for validity.
dwReserved DWORD Reserved, must be set to zero.
Returns S_OK The szURL is a valid URL address.

S_FALSE The szURL is not a valid URL address.
E_INVALIDARG One or more arguments are invalid.

RegisterMediaTypes
HRESULT RegisterMediaTypes(ctypes, rgszTypes, rgcfTypes);
Registers media types strings.
Argument Type Description
ctypes UINT The number of media type strings in the rgszTypes array.

May not be zero.
rgszTypes LPTSTR* Array of strings identifying the media types to be

registered. None may be NULL.
rgcfTypes CLIPFORMAT* An array of 32-bit values that should be assigned to the

corresponding media types in rgszTypes.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

CreateFormatEnumerator
HRESULT CreateFormatEnumerator(cfmtetc, rgfmtetc, ppenumfmtetc);
Creates an object which implements IEnumFORMATETC over a static array of cfmtetc FORMATETCs.
Argument Type Description
cfmtetc UINT The number of FORMATETCs in rgfmtetc. May not be zero.
rgfmtetc CLIPFORMAT* Static array of formats.
ppenumfmtetc IEnumFORMATETC** Location to return the IEnumFORMATETC interface of the

enumerator.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

RegisterFormatEnumerator
HRESULT RegisterFormatEnumerator(pbc, pEFetc, dwReserved);
Registers a format enumerator object onto the given bind context. This format enumerator is used to
determine what format types are prefered for the bind operation.

© Microsoft Corporation,2021. All Rights Reserved.

Argument Type Description
pbc LPBC The pointer to the bind context.
pEFetc IEnumFORMATETC * The format enumerator.
dwReserved DWORD Reserved for future use, must be zero.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

RevokeFormatEnumerator
HRESULT RevokeFormatEnumerator(pbc, pEFetc);
Removes a format enumerator from the given bind context.
Argument Type Description
pbc LPBC The pointer to the bind context.
pEFetc IEnumFORMATETC * The format enumerator.
Returns S_OK Success - the format enumerator was removed.

E_INVALIDARG One or more arguments are invalid.

RegisterMediaTypeClass
HRESULT RegisterMediaTypeClass(pbc, ctypes, rgszTypes, rgclsid, dwReserved);
Registers a mapping of media types to CLSIDs to override the default mapping when binding to objects
using the given bind context. This function is primarily used by moniker clients (e.g. web browsers) that
wish to override the default registry file-type to CLSID mapping. The function creates an object that is
registered on the bind context and is used by monikers when choosing the class to instantiate as the result
of a IMoniker::BindToObject operation. Note: this function is only intended for use by very advanced
users!
Argument Type Description
pbc LPBC The pointer to the bind context.
ctypes UINT The number of media type strings in the rgszTypes array.

May not be zero.
rgszTypes LPCSTR * Array of strings identifying the media types to be

registered. None may be NULL.
rgszclsid CLSID * Array of CLSIDs corresponding to the given media types.
dwReserved DWORD Reserved for future use, must be zero.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

FindMediaTypeClass
HRESULT FindMediaTypeClass(pbc, szType, pclsID, dwReserved);
Queries the particular CLSID registered on a bind context as the appropriate class for a given media type.
This function is primarily used by a moniker implementation when servicing a call to BindToObject.

© Microsoft Corporation,2021. All Rights Reserved.

Argument Type Description
pbc LPBC The pointer to the bind context.
szType LPCSTR A string identifying the media types. May not be NULL.
pclsid CLSID * On return, this contains the corresponding CLSID.
dwReserved DWORD Reserved for future use, must be zero.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

UrlMkSetSessionOption
HRESULT UrlMkSetSessionOption(dwOption, pBuffer, dwBufferLength, dwReserved);
This API can be used by URL Moniker clients to set options for the current “internet session”. This
function maps directly to the Windows Internet API InternetSetOption(), although this API only allows
session global options to be set. Note: in order to use this function the client code muse #include the
“wininet.h” header file which declares values for the dwOption parameter and structures for the
pBuffer parameter.
Argument Type Description
dwOption DWORD The session option to set. For instance, a value of

INTERNET_OPTION_PROXY allows the client to overwrite
the current proxy settings

pBuffer LPVOID Buffer containing new session settings. May not be NULL.
dwBufferLength DWORD The size of pBuffer.
dwReserved DWORD Reserved for future use, must be zero.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

URL Moniker class

CreateURLMoniker
HRESULT CreateURLMoniker(pmkContext, szURL, ppmk);
Creates a URL moniker from either a full URL string or from a base context URL moniker and a partial
URL string.
Partial URLs are similar to relative paths within file systems in that resolution to an object requires
context outside the partial string alone, whereas full URL strings are like fully-qualified paths – self-
contained and often location independent. When creating an URL moniker from a partial URL string, the
caller may specify through pmkContext the URL moniker to draw context from when creating a full URL
string from the partial URL string. In this case, CreateURLMoniker retrieves the display name of pmkContext
(via IMoniker::GetDisplayName) and manually composes it with szURL according to URL composition rules.
The caller may alternately create a moniker from a partial URL string without context (pmkContext=NULL),
in which case the resulting moniker will draw further context during binding (IMoniker::BindToObject and
IMoniker::BindToStorage) by looking first in the passed IBindCtx for a contextual URL moniker object
parameter by using IBindCtx::GetObjectParam(SZ_URLCONTEXT, (IUnknown**)&pmkContext), and next to its left
for another URL Moniker from which to draw context.

© Microsoft Corporation,2021. All Rights Reserved.

Argument Type Description
pmkContext IMoniker* The URL to use as the base context when szURL is a

partial URL string. NULL when szURL is a full URL string
or if this moniker will retrieve full URL context from its
left or from the bind-context during IMoniker::BindToObject
or IMoniker::BindToStorage.

szURL LPWSTR The display name to be parsed.
ppmk IMoniker** Location to return a moniker if successful.
Returns S_OK Success.

E_OUTOFMEMORY Out of memory.
MK_E_SYNTAX A moniker could not be created because szURL does not

correspond to valid URL syntax for a full or partial URL.
This is uncommon, since most parsing of the URL
occurs during binding and also since the syntax for URLs
is extremely flexible.

URL Moniker–IUnknown::QueryInterface
URL Moniker supports IUnknown, IAsyncMoniker, IPersist, IPersistStream, and IMoniker. Recall that
IMonikerAsync is simply IUnknown (there are no actual methods), and is used to allow clients to determine
transparently if a moniker supports asynchronous binding.

URL Moniker–IPersist::GetClassID
Returns CLSID_StdURLMoniker.

URL Moniker–IPersistStream::IsDirty
Returns S_OK if the Moniker has changed since it was last saved (IPersistStream::Save with
fClearDirty==TRUE), S_FALSE otherwise.

URL Moniker–IPersistStream::Load
Initializes a URL moniker from data within a stream, usually stored there previously using its
IPersistStream::Save (via OleSaveToStream or OleSaveToStreamEx). The binary format of URL Moniker is its
URL string in Unicode™ (may be a full or partial URL string, see CreateURLMoniker for details). This is
represented as a ULONG (32-bit) count of characters followed by that many Unicode characters.

URL Moniker–IPersistStream::Save
Saves a URL moniker to a stream. The binary format of URL Moniker is its URL string in Unicode (may
be a full or partial URL string, see CreateURLMoniker for details). This is represented as a ULONG (32-bit)
count of characters followed by that many Unicode™ characters.

URL Moniker–IPersistStream::GetSizeMax
Returns the maximum number of bytes in the stream that will be required by a subsequent call to
IPersistStream::Save. This value is SIZEOF(ULONG)==4 plus SIZEOF(WCHAR)*n where n is the length of the
full or partial URL string including the NULL terminator.

URL Moniker–IMoniker::BindToObject
Since the URL Moniker supports asynchronous binding, the actual return value of its BindToObject may
vary depending on the object parameters established in the bind-context, however the semantics of the
bind operation are identical regardless of synchronous or asynchronous usage, and are as follows:

© Microsoft Corporation,2021. All Rights Reserved.

1. URL Moniker pulls further information for the bind operation from the bind-context (for example,
the IBindStatusCallback and IEnumFORMATETC interfaces).5

2. It next checks the Running Object Table of the bind-context to determine if it is already running,
using IBindCtx::GetRunningObjectTable(&prot) followed by prot->IsRunning(this). If it is already
running, it retrieves the running object with prot->GetObject(this, &punk) and QueryInterface’s for
the requested interface.

3. Otherwise, it queries the client in IBindStatusCallback::GetBindInfo, initiates the bind operation, and
passes the resulting IBinding to the client via IBindStatusCallback::OnStartBinding.

4. If in step 1 it was determined that this was an asynchronous bind, BindToObject returns
MK_S_ASYNCHRONOUS at this point with NULL in ppv. The caller will receive the actual object
pointer during IBindStatusCallback::OnObjectAvailable at some later point. The following steps then
occur asynchronously to the caller, typically on another thread of execution.

5. The class of the resource designated by the URL Moniker is next determined in one of the
following ways:

· In the case of HTTP, the initial HTTP response packet header may contain the CLSID of
the actual (Get) or referred to (Head) resource as an extension-header to the Entity
Header section of the Full-Response message of the form:

CLSID = “CLSID” “: ” stringized-clsid

where stringized-clsid can be created using StringFromCLSID and interpreted using
CLSIDFromString. New HTTP servers can support this functionality readily.6

· URL Moniker examines the media type of the data. If the media type is “application/x-
oleobject”7 the first 16-bytes of the actual data (Content-Body) contain the CLSID of
the resource and subsequent data is to be interpreted by the class itself. For all other
media types, URL Moniker looks in the system registry for the
HKEY_CLASSES_ROOT\MIME\Database\Content-Type\<media-type>\CLSID key.

· URL Moniker matches portions of arriving data to patterns registered in the system
registry under HKEY_CLASSES_ROOT\FileTypes.

· Finally, if all else fails, URL Moniker correlates the trailing extension of the resource,
if any, to a CLSID using the HKEY_CLASSES_ROOT\.??? keys in the system registry, as is
done by GetClassFile and the shell.

1. Having determined the class, URL moniker creates an instance using CoCreateInstance of
CLSCTX_SERVER asking for the IUnknown interface.

2. URL Moniker next QueryInterfaces the newly created object for IPersistMoniker and if successful calls
IPersistMoniker::Load passing itself (this) as the moniker parameter. The object typically turns
around and calls IMoniker::BindToStorage asking for the storage interface that they’re interested
in.

3. Otherwise, URL Moniker QueryInterfaces for IPersistStream and if successful calls IPersistStream::Load,
passing the object an IStream which is being filled asynchronously by the transport. If the class
being called is not marked with the category CATID_AsyncAware, calls to IStream::Read or
IStream::Write which reference data not yet available block8 until the data becomes available. If
the class is marked with the category CATID_AsyncAware, calls to IStream::Read or IStream::Write
which reference data not yet available return E_PENDING.

4. Otherwise, URL Moniker asks for QueryInterfaces for IPersistFile, and if successful completes the
download into a temporary file and then calls IPersistFile::Load. The created file is cached along
with other Internet-downloaded data. The client must be sure not to delete this file.

5 Note that “further information” may include additional bind options specified on the bind context BIND_OPTS using
IBindCtx::SetBindOptions, such as dwTickCountDeadline or the grfFlags value of BIND_MAYBOTHERUSER.

6 Refer to the HTTP Specification, Hypertext Transfer Protocol – HTTP 1.0 (http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-
v10-spec-04.html), as well as further references at IETF - Hypertext Transfer Protocol (HTTP) Working Group
(http://www.ics.uci.edu/pub/ietf/http) for details about extension-headers.

7 This media-type will be used initially, until we receive approval for “application/oleobject” from IANA as outlined in Media
Type Registration Procedure (http://ds.internic.net/rfc/rfc1590.txt).

8 These calls block in the traditional OLE-sense: a message-loop is entered which allows certain messages to be processed
and the IMessageFilter of the thread is called appropriately. See the Win32 documentation of IMessageFilter for details.

© Microsoft Corporation,2021. All Rights Reserved.

5. When the object returns from one of the various IPersistXXX::Load calls above, URL Moniker returns
the client the interface pointer originally requested in IMoniker::BindToObject using the callback
IBindStatusCallBack::OnObjectAvailable.

URL Moniker–IMoniker::BindToStorage
The system implementation of URL Moniker supports BindToStorage for IStream on all URLs and for
IStorage in the case where the designated resource is in fact a compound file.9

Since the URL Moniker supports asynchronous binding, the actual return value of its BindToStorage may
vary depending on the object parameters established in the bind-context, however the semantics of the
bind operation are identical regardless of synchronous or asynchronous usage, and are as follows:

1. URL Moniker pulls further information for the bind operation from the bind context (for example,
the IBindStatusCallback and the IEnumFORMATETC interfaces).10 The Moniker then queries the
client in IBindStatusCallback::GetBindInfo, initiates the bind operation with the transport, and
passes the resulting IBinding to the client via IBindStatusCallback::OnStartBinding.

2. If the caller requested an asynchronous IStream or IStorage via the BINDF_ASYNCSTORAGE flag in the
BINDINFO retrieved from IBindStatsCallback::GetBindInfo, URL Moniker returns the object as soon
as possible. Calls to these IStorage or IStream objects which reference data not yet available
return E_PENDING.

3. If the caller does not specify asynchronous IStream or IStorage as described above, URL Moniker
will still return an object through IBindStatusCallback::OnDataAvailable as soon as possible. However
calls to these objects which reference data not yet available will block until the data becomes
available. For some applications this will require the least modification of their existing I/O code,
yet may still result in improved performance depending on their access-patterns.

URL Moniker–IMoniker::Reduce
Returns MK_S_REDUCED_TO_SELF and itself (this) in *ppmkReduced.

URL Moniker–IMoniker::ComposeWith
URL Monikers support composition of two URLs (a base URL composed with a relative URL). This
composition is done according to the RFC on relative URLs11. URL monikers do not currently support the
composition of a base URL moniker with a relative file moniker, although this may be supported in the
future. However, URL Monikers do support generic composition. If fOnlyIfNotGeneric==FALSE, this method
returns CreateGenericComposite(this, pmkRight, ppmkComposite). See the Win32 documentation about
IMoniker::ComposeWith for details.

URL Moniker–IMoniker::Enum
Returns S_OK and sets *ppenumMoniker to NULL, indicating that the moniker does not contain sub-monikers.

URL Moniker–IMoniker::IsEqual
Returns S_FALSE if the other moniker (pmkOtherMoniker) is not a URL moniker, which it checks using
IPersist::GetClassID to see if the CLSID is CLSID_URLMoniker. If the other moniker is an URL moniker, it
compares the display names of the monikers for equality, returning either S_OK if they are identical or
S_FALSE if not.

9 In the future support for ILockBytes may also be added.
10 Note that “further information” may include additional bind options specified on the bind context BIND_OPTS using

IBindCtx::SetBindOptions, such as dwTickCountDeadline or the grfFlags value of BIND_MAYBOTHERUSER.
11 See http://ds.internic.net/rfc/rfc1808.txt.

© Microsoft Corporation,2021. All Rights Reserved.

URL Moniker–IMoniker::Hash
Creates a hash value based on the URL string of the moniker. This hash value is identical when URL
strings are identical, although it may also be identical for different URL strings. This method is used to
speed up comparisons by reducing the amount of time that it is necessary to call IsEqual.

URL Moniker–IMoniker::IsRunning
Returns S_OK if this moniker is currently “running”, otherwise returns S_FALSE. URL Moniker
determines if it is running by first checking if it is equal to the newly running moniker (by calling
pmkNewlyRunning->IsEqual(this) which is typically an inexpensive operation) and next by checking if it is
registered with the Running Object Table of the passed-in bind-context.

URL Moniker–IMoniker::GetTimeOfLastChange
Returns the time of last change of an object that is registered in the running object table

URL Moniker–IMoniker::Inverse
Returns MK_E_NOINVERSE.

URL Moniker–IMoniker::CommonPrefixWith
Currently returns E_NOTIMPL. May in the future properly compute the proper common prefix of two URL
monikers. See the Win32 documentation about IMoniker::CommonPrefixWith for details.

URL Moniker–IMoniker::RelativePathTo
Returns E_NOTIMPL. May in the future properly compute the relative path between two URL monikers.
See the Win32 documentation about IMoniker::RelativePathTo for details.

URL Moniker–IMoniker::GetDisplayName
URL Moniker attempts to return its full URL string. If the moniker was created with a partial URL string
(see CreateURLMoniker), it will first attempt to find an URL moniker in the bind-context under
SZ_URLCONTEXT, and will next look to the moniker to its left for contextual information. If it can not
return its full URL string, it will return its partial URL string.

URL Moniker–IMoniker::ParseDisplayName
Parses a full or partial URL string into a result moniker (ppmkOut). If szDisplayName represents a full URL
string (i.e. “http://foo.com/default.html”), the result is a new full URL moniker. If szDisplayName represents a
partial URL string (i.e. “..\default.html”), the result is a full URL that takes its context from either the bind-
context’s SZ_URLCONTEXT object-parameter or from this URL moniker (i.e., if the context moniker was
“http://foo.com/pub/list.html” and szDisplayName was “..\default.html”, the resulting URL moniker would
represent “http://foo.com/default.html”).

URL Moniker–IMoniker::IsSystemMoniker
Returns S_OK and MKSYS_URLMONIKER in *pdwMksys.

Extension services requested during a bind operation
A URL bind may require additional services from the client in order to complete negotiations necessary
for a download operation. These services may be additional callbacks that are implemented by the client
and are requested by the moniker. These callback extensions are commonly requested using
IBindStatusCallback::QueryInterface. However, a moniker client may also provide these extension callback
interfaces via an IServiceProvider interface. After the moniker uses IBindStatusCallback::QueryInterface to

© Microsoft Corporation,2021. All Rights Reserved.

directly query the client for an extension interface, the moniker will then query for the IServiceProvider
interface, and will then try using IServiceProvider::QueryService to query for the desired extension interface.12

Two such extension callback services that may be needed for URL downloads are authentication and
“generic HTTP negotiation”. The corresponding interfaces requested in IBindStatusCallback::QueryInterface or
IServiceProvider::QueryService are IAuthenticate and IHttpNegotiate. A more generic interface is
IWindowForBindingUI, an interface which is requested from the client when the moniker wishes to display
UI. Another extension callback is IHttpSecurity, an interface which a client may implement in order to
provide custom UI or UI-less operation when HTTP security issues arise. Note that for all these extension
callbacks, if there are multiple clients for an asynchronous moniker bind operation (e.g. an OLE object
and its container are both receiving callbacks), it is usually the responsibility of the container to
implement the extension callbacks, thus relieving the contained object (e.g. controls) of extra work.
Alternatively, a client may request protocol-specific services from the URL moniker during a bind
operation. Such services are requested by querying for additional interfaces from the IBinding object
corresponding to a particular bind operation. Two such protocol-specific service are IWinInetInfo and
IWinInetHttpInfo, interfaces used for querying specific information related to Internet protocols.

IWindowForBindingUI
This simple interface is implemented by URL Moniker clients that wish to allow the moniker to display
UI when necessary. As with other callback extension interfaces, this interface is usually implemented by
OLE containers that also implement the IBindHost interface. Note: the URL Moniker will not request this
interface from clients unless the bind context BIND_OPTS specify the grfFlags value of
BIND_MAYBOTHERUSER using IBindCtx::SetBindOptions.13 The IWindowForBindingUI interface is very similar to
the existing IOleWindow interface. A new interface is used here because IOleWindow is semantically used
only for in-place activation.

interface IWindowForBindingUI : IUnknown {
HRESULT GetWindow([in] REFGUID rguidReason, [out] HWND* phwnd);

};

IWindowForBindingUI::GetWindow
This function is called by the URL Moniker when it needs a window to present UI during a bind
operation.
Argument Type Description
rguidReason REFGUID The reason why the moniker is requesting to display UI

during a bind operation. This value may be one of
IID_IAuthenticate, IID_IHttpSecurity, IID_ICodeInstall, or any
other future reasons for displaying UI.

phwnd HWND * Client-provided HWND of the parent window to use for
displaying UI.

Returns S_OK Success.
S_FALSE No window is available for UI.
E_INVALIDARG One or more arguments are invalid.

IAuthenticate
This interface is implemented by URL Moniker clients that are interested in participating in user
authentication. This interface allows clients a chance to display custom UI or use a custom password-list
to specify a username and password for accessing secure Internet resources. Note: this interface should
only be implemented by URL Moniker clients that wish to display custom authentication UI or wish
to do UI-less authentication. If default UI is acceptable, implementing IWindowForBindingUI is all that
is needed to make sure bind operations go smoothly.

12 Because IServiceProvider::QueryService is not restricted by COM identity rules in the same way as QueryInterface, this
mechanism allows moniker clients to delegate such extension services to other objects.

13 The CreateAsyncBindCtx API will automatically set this flag on all bind contexts.

© Microsoft Corporation,2021. All Rights Reserved.

interface IAuthenticate : IUnknown {
HRESULT Authenticate([out] HWND* phwnd, [out] LPWSTR *pszUsername, [out] LPWSTR *pszPassword);

};

IAuthenticate::Authenticate
This function is called by the URL Moniker when it needs basic authentication information from a bind
client. The client may choose to return username and password strings, or it may provide an HWND that
is used to present default authentication UI.

Argument Type Description
phwnd HWND * Client-provided HWND of the parent window for default

authentication UI. If no UI is desired, the client must
provide a username and password in the other
parameters, and this handle.is set to the value -1.

pszUsername LPWSTR * Client-provided username for authentication. If the client
returns a value here it should also set *phwnd = -1.

pszPassword LPWSTR * Client-provided password for authentication. If the client
returns a value here it should also set *phwnd = -1.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IHttpNegotiate
This interface is implemented by those moniker clients that are interested in participating in the HTTP
negotiations that take place when binding to “http:” URLs. The callbacks in this interface provide clients
with the opportunity to add headers to HTTP requests and to examine HTTP response headers. 14 Note that
this callback may be sent to multiple clients of an HTTP bind operation¾each client may participate in
the HTTP negotiation process by looking at existing request headers and adding additional ones.

interface IHttpNegotate : IUnknown {
HRESULT BeginningTransaction([in] LPCWSTR szURL, [in] DWORD dwReserved,

 [in] LPCWSTR szHeaders, [out] LPWSTR *pszAdditionalHeaders);
HRESULT OnResponse([in] DWORD dwResponseCode, [in] LPCWSTR szResponseHeaders,

[in] LPCWSTR szRequestHeaders, [out] LPWSTR *pszAdditionalRequestHeaders);
};

IHttpNegotiate::BeginningTransaction
This function is called by the URL Moniker before sending an HTTP request. It notifies the client of the
URL being bound to at the beginning of the HTTP transaction. It also allows the client to add additional
headers (such as Accept-Language) to the request.

14 Note: although this interface allows clients to add HTTP headers, not all header types may be added at this point. Specifically,
clients should not use this mechanism for adding Content-Length or Accept headers to HTTP requests. Instead of adding Accept
headers, the RegisterFormatEnumerator API should be used for specifying accepted types for a bind operation.

© Microsoft Corporation,2021. All Rights Reserved.

Argument Type Description
szURL LPCWSTR The URL for the HTTP transaction.
dwReserved DWORD Reserved for future use.
szHeaders LPCWSTR The current request headers.
pszAdditionalHeaders LPWSTR * Optional additional headers to append to the HTTP

request. If these conflict with existing values in
szHeaders, then the new request headers take precedence.
Note: if no headers are provided, then no headers are
appended to the HTTP request.

Returns S_OK Success, append the headers (if any) in
pszAdditionalHeaders to the HTTP request headers.

E_INVALIDARG The argument is invalid.
E_ABORT Abort the HTTP transaction.

IHttpNegotiate::OnResponse
This function is called upon receiving a response to an HTTP request. In success cases, this callback
allows the client of a bind operation to examine the response headers and possibly abort the bind
operation. In error cases (errors that cannot be resolved using default behavior), this callback allows the
client to add HTTP headers to the request before it is sent again.15

Argument Type Description
dwResponseCode DWORD HTTP response code (see HTTP specification).
szResponseHeaders LPCWSTR Response headers from the HTTP server.
szRequestHeaders LPCWSTR In dwResponseCode error cases, the HTTP headers that

will be used when the request is resent.
pszAdditionalRequestHeaders

LPWSTR * In dwResponseCode error cases, the client may use this
optional parameter to add to the request headers before
resending. If the specified header value conflicts with
existing values in szRequestHeaders, then the new request
headers take precedence. Note: if no headers are
provided in this parameter, then no headers are
appended to the HTTP request.

Returns S_OK Success. In dwResponseCode error cases, append
pszAdditionalRequestHeaders (if any) to the resent request
headers.

E_INVALIDARG The argument is invalid.
E_ABORT Abort the HTTP transaction.

IHttpSecurity
This interface is implemented by URL Moniker clients that are interested in hearing about HTTP security
problems. This interface allows clients a chance to display custom UI or make decisions about whether or
not to ignore various security issues. Note: this interface should only be implemented by URL
Moniker clients that wish to display custom UI or wish to make security decisions without
displaying UI. If default UI is acceptable, implementing IWindowForBindingUI is all that is needed to
make sure bind operations go smoothly. URL Moniker will query for this interface and use it to resolve

15 Note: if there are multiple callbacks registered on the BindCtx for a bind operation, it is possible that more than one client provides
an IHttpNegotiate callback. In such cases, every registered client receives the IHttpNegotiate callback methods, and each is given
a chance to add HTTP headers or to abort the HTTP transaction. In such cases, the last client to receive the callback (the client
driving the download operation) will dictate the final decision.

© Microsoft Corporation,2021. All Rights Reserved.

security issues if it is implemented by the client, but if the interface is absent the URL Moniker will
resort to using IWindowForBindingUI in order to display default UI. Note: in order to use this interface,
client code must also #include the wininet.h header file because of flag definitions in that header
file.

interface IHttpSecurity : IWindowForBindingUI {
HRESULT OnSecurityProblem([in] DWORD dwProblem);

};

IHttpSecurity::OnSecurityProblem
This function is called by the URL Moniker when it needs to decide whether or not to abort a bind
operation when a security problem has occured. The client may choose to abort the bind operation,
continue the operation, or “claim ignorance”. Note that an URL Moniker client may choose to ignore all
security issues by specifying BINDF_IGNORESECURITYPROBLEM during IBindStatusCallback::GetBindInfo

Argument Type Description
dwProblem DWORD Identifies the security problem that has occurred.

Possible values are the security related error return
values from the Windows Internet API
InternetSendRequest(), such as
ERROR_INTERNET_SEC_CERT_DATE_INVALID,
ERROR_INTERNET_SEC_CERT_CN_INVALID,
ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR,
ERROR_INTERNET_HTTPS_TO_HTTP_ON_REDIR.

Returns S_OK The client wishes to continue the bind operation.
S_FALSE The client does not understand the security problem.
E_ABORT The client wishes to abort the bind operation..

IWinInetInfo
This interface is implemented by the IBinding object for standard Internet protocols. An URL Moniker
client may request this interface via IBinding::QueryInterface, and may then query protocol-specific
information from the IBinding object. Note: in order to use this interface, client code must also #include
the wininet.h header file because of flags and structure definitions in that header file.

interface IWinInetInfo : IUnknown {
HRESULT QueryOption([in] DWORD dwOption, [out] LPVOID pBuffer, [in/out] DWORD *pcbBuf);

};

IWinInetInfo::QueryOption
This function is called by a client of URL Moniker in order to query protocol-specific information
pertaining to Internet bind operations. The implementation of this method maps directly to the Windows
Internet InternetQueryOption() API.
Argument Type Description
dwOption DWORD Specifies what information to query. Valid values are

documented along with InternetQueryOption.
pBuffer LPVOID Buffer to receive the result of the query.
pcbBuf DWORD * Pointer to the size of the given buffer. Upon return, this

contains the length of the data written into pBuffer.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

© Microsoft Corporation,2021. All Rights Reserved.

IWinInetHttpInfo
This interface is implemented by the IBinding object for bind operations to HTTP URLs. An URL Moniker
client may request this interface via IBinding::QueryInterface, and may then query HTTP-specific
information from the IBinding object. Note: in order to use this interface, client code must also #include
the wininet.h header file because of flags and structure definitions in that header file.

interface IWinInetHttpInfo : IWinInetInfo {
HRESULT QueryInfo([in] DWORD dwOption, [out] LPVOID pBuffer, [in/out] DWORD *pcbBuf,

 [in/out] DWORD *pdwFlags, [in] DWORD dwReserved);
};

IWinInetHttpInfo::QueryInfo
This function is called by a client of URL Moniker in order to query HTTP-specific information
pertaining to Internet bind operations. The implementation of this method maps directly to the Windows
Internet HttpQueryInfo() API.
Argument Type Description
dwOption DWORD Specifies what information to query and flags which

modify the request. Valid values are documented along
with HttpQueryInfo.

pBuffer LPVOID Buffer to receive the result of the query.
pcbBuf DWORD * Pointer to the size of the given buffer. Upon return, this

contains the length of the data written into pBuffer.
pdwIndex DWORD * A pointer to a zero-based index. See documentation for

HttpQueryInfo for details.
dwReserved DWORD Reserved for future use, must be zero.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

Technical Review of Monikers
interface IParseDisplayName : IUnknown {

HRESULT ParseDisplayName([in] IBindCtx* pbc, [in] LPWSTR szDisplayName, [out] ULONG* pcchEaten, [out] IMoniker**
ppmkOut);

};
HRESULT MkParseDisplayNameEx([in] IBindCtx* pbc, [in] LPWSTR szDisplayName, [out] ULONG* pcchEaten, [out] IMoniker** ppmk);

MkParseDisplayNameEx
HRESULT MkParseDisplayNameEx(pbc, szDisplayName, pcchEaten, ppmk);
Given a string, this function returns a moniker of the object that the string denotes. This operation is
known as parsing. A display name is parsed into a moniker; it is resolved into its component moniker
parts.
If a syntax error occurs, than an indication of how much of the string was successfully parsed is returned
in pcchEaten and NULL is returned through ppmk. Otherwise, the value returned through pcchEaten indicates
the entire size of the display name.
This API differs from the original MkParseDisplayName in that it supports Universal Resource Indicator
(URI) syntax as established in IETF RFC1630 (http://ds.internic.net/rfc/rfc1590.txt).

© Microsoft Corporation,2021. All Rights Reserved.

Argument Type Description
pbc IBindCtx* The binding context in which to accumulate bound

objects.
szDisplayName LPCWSTR The display name to be parsed.
pcchEaten ULONG* On exit the number of characters of the display name

that was successfully parsed. Most useful on syntax
error, when a non-zero value is often returned and
therefore a subsequent call to MkParseDisplayNameEx with
the same pbc and a shortened szDisplayName should return
a valid moniker.

ppmk IMoniker** Location to return a moniker if successful.
Returns S_OK Success.

MK_E_SYNTAX Parsing failed because szDisplayName could only be
partially resolved into a moniker. In this case, *pcchEaten
holds the number of characters that were successfully
resolved into a moniker prefix.

E_OUTOFMEMORY Out of memory.
Parsing a display name may in some cases be as expensive as binding to the object that it denotes, since
along the way various non-trivial name space managers (such as a spreadsheet application that can parse
into ranges in its sheets) need to be connected to by the parsing mechanism to succeed. As might be
expected, objects are not released by the parsing operation itself, but are instead handed over to the
passed-in binding context (via IBindCtx::RegisterObjectBound). Thus, if the moniker resulting from the parse
is immediately bound using this same binding context, redundant loading of objects is maximally
avoided.
In many other cases, however, parsing a display name may be quite inexpensive since a single name-
space manager may quickly return a moniker that will perform further expensive analysis on any
acceptable name during IMoniker::BindToObject or other methods. An example of such an inexpensive parser
is the Win32 implementation of a File Moniker. A theoretical example would be a naïve URL moniker
which parsed from any valid URL strings (i.e., “http:…”, “file:…”) and only during binding took time to
resolve the string against the Internet, a potentially expensive operation.
The parsing process is an inductive one, in that there is an initial step that gets the process going, fol -
lowed by the repeated application of an inductive step. At any point after the beginning of the parse, a
certain prefix of szDisplayName has been parsed into a moniker, and a suffix of the display name remains
not understood. This is illustrated in Figure 2.

"c:\foo\bar\baz.doc\summarytable\chart 5\series 1\point 7"lpszUserName

c:\foo\bar\baz.doc "summarytable\chart 5\series 1\point 7"moniker-so-far remaining suffix

Figure 3. Intermediate stage in parsing a display name into a moniker.
The inductive step asks the moniker-so-far using IMoniker::ParseDisplayName to consume as much as it
would like of the remaining suffix and return the corresponding moniker and the new suffix. The moniker
is composed onto the end of the existing moniker-so-far, and the process repeats.
Implementations of IMoniker::ParseDisplayName vary in exactly where the knowledge of how to carry out
the parsing is kept. Some monikers by their nature are only used in particular kinds of containers. It is
likely that these monikers themselves have the knowledge of the legal display name syntax within the
objects that they themselves denote, and so they can carry out the processes completely within IMoniker::-
ParseDisplayName. The common case, however, is that the moniker-so-far is generic in the sense that is not
specific to one kind of container, and thus cannot know the legal syntax for elements within the con tain-
er. File monikers are an example of these, as are Item Monikers. These monikers in general employ the
following strategy to carry out parsing. First, the moniker connects to the class of object that it currently
denotes, asking for IParseDisplayName interface. If that succeeds, then it uses the obtained interface pointer

© Microsoft Corporation,2021. All Rights Reserved.

to attempt to carry out the parse. If the class refuses to handle the parse, then the moniker binds to the
object it denotes, asking again for IParseDisplayName interface. If this fails, then the parse is aborted.
The effect is that ultimately an object always gets to be in control of the syntax of elements contained
inside of itself. It’s just that objects of a certain nature can carry out parsing more efficiently by having a
moniker or their class do the parsing on their behalf.
Notice that since MkParseDisplayNameEx knows nothing of the legal syntax of display names (with the
exception of the initial parsing step; see below). It is of course beneficial to the user that display names in
different contexts not have gratuitously different syntax. While there some rare situations which call for
special purpose syntax, it is recommended that, unless there are compelling reasons to do otherwise, the
syntax for display names should be the same as or similar to the native file system syntax; the aim is to
build on user familiarity. Most important about this are the characters allowed for the delimiters used to
separate the display name of one of the component monikers from the next. Unless through some special
circumstances they have very good reason not to, all moniker implementations should use inter-moniker
delimiters from the character set:

\ / : ! [

Standardization in delimiters promotes usability. But more importantly, notice that the parsing algorithm
has the characteristic that a given container consumes as much as it can of the string being parsed before
passing the remainder on to the designated object inside themselves. If the delimiter expected of the next-
to-be-generated moniker in fact forms (part of) a valid display name in the container, then the container’s
parse will consume it!
Monikers and objects which have implementations on more than one platform (such as File Monikers)
should always parse according to the syntax of the platform on which they are currently running. When
asked for their display name, monikers should also show delimiters appropriate to the platform on which
they are currently running, even if they were originally created on a different platform. In total, users will
always deal with delimiters appropriate for the host platform.
The initial step of the parsing process is a bit tricky, in that it needs to somehow determine the initial
moniker-so-far. MkParseDisplayNameEx is omniscient with respect to the syntax with which the display
name of a moniker may legally begin, and it uses this omniscience to choose the initial moniker.
The initial moniker is determined by trying the following strategies in order, using the first to succeed.

1. “ProgID:” Case: If a prefix of szDisplayName conforms to the legal ProgID syntax, is more than
1 character long, and is followed by a colon (‘:’), the ProgID is converted to a CLSID
with CLSIDFromProgID, an instance of this class is asked for the IParseDisplayName
interface, and IParseDisplayName:ParseDisplayName is called with the entire
szDisplayName.16

2. ROT Case: All prefixes of szDisplayName that consist solely of valid file name characters are
consulted as file monikers in the Running Object Table.

3. File-System Case: The file system is consulted to check if a prefix of szDisplayName
matches an existing file. Said file name may be drive absolute, drive relative, working-
directory relative, or begin with an explicit network share name. This is a common
case.

4. “@ProgID” Case: If the initial character of szDisplayName is ‘@’, then the maximal string
immediately following the ‘@’ which conforms to the legal ProgID syntax is determined.
This is converted to a CLSID with CLSIDFromProgID. An instance of this class is asked in turn
for IParseDisplayName interface; the IParseDisplayName interface so found is then given the
whole string (starting with the ‘@’) to continue parsing.

IParseDisplayName Interface
The IParseDisplayName interface is implemented by objects supporting their own namespace and with
custom requirements for parsing it.

16 This case distinguishes MkParseDisplayNameEx from MkParseDisplayName.

© Microsoft Corporation,2021. All Rights Reserved.

IParseDisplayName::ParseDisplayName
HRESULT IParseDisplayName::ParseDisplayName(pbc, szDisplayName, pcchEaten, ppmkOut)
Parse szDisplayName and return a moniker representing it. In general, the maximal prefix of szDisplayName
which is syntactically valid and which currently represents an existing object should be consumed.
The initial step of MkParseDisplayName(Ex) may retrieve this interface directly from an instance of the class
identified with either “@ProgID” or “ProgID:” notation, or later parsing steps may request this object on an
intermediary object.
The main loop of MkParseDisplayName(Ex) finds the next piece moniker piece by calling the IMoniker-
equivalent function (IMoniker::ParseDisplayName) on the moniker-so-far that it holds on to, passing NULL
through pmkToLeft. In the case that the moniker-so-far is a generic composite, this is forwarded by that
composite onto its last piece, passing the prefix of the composite to the left of the piece in pmkToLeft.
Some moniker classes will be able to handle this parsing internally to themselves since they are designed
to designate only certain kinds of objects. Others will need to bind to the object that they designate in or-
der to accomplish the parsing process. As is usual, these objects should not be released by IMoniker::Parse-
DisplayName but instead should be transferred to the bind context (via IBindCtx::RegisterObjectBound or
IBindCtx::GetRunningObjectTable followed by IRunningObjectTable::Register) for release at a later time.
If a syntax error occurs, then NULL should be returned through ppmkOut and MK_E_SYNTAX returned. In
addition, the number of characters of the display name that were successfully parsed should be returned
through pcchEaten.
Argument Type Description
pbc IBindCtx* The binding context in which to accumulate bound

objects.
szDisplayName LPWSTR The display name to be parsed.
pcchEaten ULONG* The number of characters of the input name that this

parse consumed.
ppmkOut IMoniker* Location to return a result moniker if successful.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.
MK_E_SYNTAX Parsing failed because szDisplayName could only be

partially resolved into a moniker. In this case, *pcchEaten
holds the number of characters that were successfully
resolved into a moniker prefix.

© Microsoft Corporation,2021. All Rights Reserved.

	1 URL Monikers
	Introduction
	Overview
	Callback Synchronization
	Fine-grain Priority Control

	MIME
	Media Types (MIME Content Types)
	Media Type Negotiation with URL Moniker
	Complex Media Types

	Examples
	Downloading an Image from a Full URL
	Downloading an Image from a Relative/Partial URL

	Technical Details of URL Monikers
	IsValidURL
	RegisterMediaTypes
	CreateFormatEnumerator
	RegisterFormatEnumerator
	RevokeFormatEnumerator
	RegisterMediaTypeClass
	FindMediaTypeClass
	UrlMkSetSessionOption
	URL Moniker class
	CreateURLMoniker
	URL Moniker–IUnknown::QueryInterface
	URL Moniker–IPersist::GetClassID
	URL Moniker–IPersistStream::IsDirty
	URL Moniker–IPersistStream::Load
	URL Moniker–IPersistStream::Save
	URL Moniker–IPersistStream::GetSizeMax
	URL Moniker–IMoniker::BindToObject
	URL Moniker–IMoniker::BindToStorage
	URL Moniker–IMoniker::Reduce
	URL Moniker–IMoniker::ComposeWith
	URL Moniker–IMoniker::Enum
	URL Moniker–IMoniker::IsEqual
	URL Moniker–IMoniker::Hash
	URL Moniker–IMoniker::IsRunning
	URL Moniker–IMoniker::GetTimeOfLastChange
	URL Moniker–IMoniker::Inverse
	URL Moniker–IMoniker::CommonPrefixWith
	URL Moniker–IMoniker::RelativePathTo
	URL Moniker–IMoniker::GetDisplayName
	URL Moniker–IMoniker::ParseDisplayName
	URL Moniker–IMoniker::IsSystemMoniker

	Extension services requested during a bind operation
	IWindowForBindingUI
	IWindowForBindingUI::GetWindow

	IAuthenticate
	IAuthenticate::Authenticate

	IHttpNegotiate
	IHttpNegotiate::BeginningTransaction
	IHttpNegotiate::OnResponse

	IHttpSecurity
	IHttpSecurity::OnSecurityProblem

	IWinInetInfo
	IWinInetInfo::QueryOption

	IWinInetHttpInfo
	IWinInetHttpInfo::QueryInfo

	Technical Review of Monikers
	MkParseDisplayNameEx
	IParseDisplayName Interface
	IParseDisplayName::ParseDisplayName

