
OLE Document Objects Specifications

Version 1.0, Also Known as "DocObjects"

OLE Design Team and Office Design Team
30 April, 1996

Note: This document is an early release of the final specification. It is meant to specify and
accompany software that is still in development. Some of the information in this documentation may
be inaccurate or may not be an accurate representation of the functionality of the final specification or
software. Microsoft assumes no responsibility for any damages that might occur either directly or
indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending
patent applications, or other intellectual property rights covering subject matter in this document. The
furnishing of this document does not give you a license to these trademarks, copyrights, patents, or
other intellectual property rights.

Ó Microsoft Corporation,2021. All Rights Reserved

Distribution: Public

© Copyright Microsoft Corporation,2021. All Rights Reserved.

Page ii OLE Document Objects Specifications

Contents

Introduction..
Feature Description..
A General Overview of Document Objects...

Summary of Requirements for Document Object Participation...
Architectural Details of Document Objects..

Overview..
Relevant Objects and the Interfaces They Must Implement..

Document Objects (Server)...
Views Objects (Server)...
Document Site Objects (Container)..
View Site Objects (Container)..
Frame Object (Container)...

Help Menu Merging: An Extension to OLE Documents...
Programmatic Printing (IPrint & IContinueCallback)..
Command Targets..

Implementation Notes..
Becoming a DocObject Server..

IOleObject::SetClientSite..
IOleObject::DoVerb..
In-Place Activation Differences..
Storage requirements...
Registration..
Limiting Embedding Support..

Becoming a DocObject Container...
Storage Provisions and User Interface..
Creation and Initialization...
Activation..
Saving and Shutdown..
Support for Other OLE Features and Completeness of Interface Implementations............

Document Objects Interface Reference...
The IOleDocument Interface...

IOleDocument::CreateView..
IOleDocument::GetDocMiscStatus...
IOleDocument::EnumViews..

The IEnumOleDocumentViews Interface...
IEnumOleDocumentViews::Next..
IEnumOleDocumentViews::Skip...
IEnumOleDocumentViews::Reset...
IEnumOleDocumentViews::Clone..

The IOleDocumentSite Interface...
IOleDocumentSite::ActivateMe..

The IOleDocumentView Interface..
IOleDocumentView::SetInPlaceSite...
IOleDocumentView::GetInPlaceSite..
IOleDocumentView::GetDocument..
IOleDocumentView::SetRect...
IOleDocumentView::GetRect..
IOleDocumentView::SetRectComplex..
IOleDocumentView::Show..
IOleDocumentView::UIActivate...
IOleDocumentView::Open..

Ó Microsoft Corporation,2021. All Rights Reserved

OLE Document Objects Specifications Page iii

IOleDocumentView::CloseView...
IOleDocumentView::SaveViewState...
IOleDocumentView::ApplyViewState...
IOleDocumentView::Clone...

The IPrint Interface..
PAGERANGE Structure...
PAGESET Structure..
PRINTFLAG Enumeration...
IPrint::SetInitialPageNum..
IPrint::GetPageInfo..
IPrint::Print...

The IContinueCallback Interface..
IContinueCallback::FContinue...
IContinueCallback::FContinuePrinting...

The IOleCommandTarget Interface..
OLECMDF Enumeration..
OLECMD Structure...
OLECMDTEXTF Enumeration..
OLECMDTEXT Structure..
OLECMDEXECOPT Enumeration..
OLECMDID Enumeration..
IOleCommandTarget::QueryStatus..
IOleCommandTarget::Exec..
Standard Command List..
The Zoom Commands...

Appendix: Office Binder Issues..
Binder Level Printing..
Section Level Page Setup and Printing...
Calling IContinueCallback::FContinuePrinting..

Ó Microsoft Corporation,2021. All Rights Reserved

OLE Document Objects Specifications Page 4

Introduction

The software industry has entered an era in which customers rely on many products to complete their work. For
example, when a new company creates its business plan, it may rely on Microsoft Word to create the basic proposal,
Excel to create a summary of projected financial performance, and PowerPoint to create a slide show for potential
investors. Although customers rely on several distinct products to complete their projects, they think of each project as
a single entity: a business plan, a sales proposal, a book, and so forth.

Office for Windows 95 introduced a new application called the Binder, that makes it easier for customers to complete
projects that contain heterogeneous documents (that is, a variety of documents created by many distinct applications).
And it makes it easy for them to use the standard Office applications as they do so. It may be helpful to think of the
Binder as a an electronic paper clip: it holds together text files, spreadsheets, graphics presentations and other
documents so that the user can manipulate them as a single entity. From another perspective, the Binder is a
sophisticated “viewer” that can host a variety of heterogeneous documents which let the user create, edit, save, print,
and view distinctly different kinds of information.

“Document Objects” (DocObjects for short) is the core technology that makes Office Binder work. While originally
developed as a proprietary technology for Microsoft Office, Microsoft believe that DocObjects represents an important
step forward and that is will benefit customers in many more ways than just Office and Office-Compatible applications.
Most notably is that the technology is flexible enough to support document containers other than Office Binder, and can
support document servers other than just Office and Office Compatible applications.

One obvious application for this technology is within the domain of “Internet browsers”, where the adoption of Binder
technology will not only facilitate the presentation of Internet-based information (Web pages and so forth) but will, at
the same time with the same implementation, enable the browser to present documents from Office and Office
Compatible applications. In short, the user need only go to one navigation tool to browse and view all documents
whether local or network-based.

This specification explains the Document Objects architecture in terms of the container and the server side of the
technology.

Note: This specification has been written from the perspective of an advanced OLE programmer. For additional
information about OLE issues discussed below, please consult the OLE Programmer’s Reference and related
publications.

The current Internet Explorer does not implement all features described in this specification. It’s
features are as follows:

1. Internet Explorer only supports one document view as a container. It also views only one
document at a time (per instance of IE).

2. Internet Explorer makes no use of IPrint.

3. Internet Explorer does route a number of commands through IOleCommandTarget.

OLE Document Objects Specifications Page 5

Feature Description

The following picture illustrates the Office 95 Binder, which for the purposes of this document serves merely as an
illustration of a “document container.”

As this illustration shows, the Binder includes two primary panes, as will most containers. The left pane shows
thumbnails that correspond to the section of the Binder. For example, the preceding Binder contains a Word document,
a PowerPoint slide show, and an Excel spreadsheet. Users can click these images to activate the corresponding
“document object” or “DocObject.” The right pane of the Binder shows the document on which the user is currently
working (a Word document in the preceding illustration). In an “Explorer” type of container, the left pane would
display a hierarchical tree list of a drive or network while the right pane would display the available document or page
in that point of the hierarchy.

When a document is “activated” in the right hand pane, it looks and acts, for all intents and purposes, as if the user was
running the stand-alone application that normally manages that particular document type, complete with toolbars,
menus, and all other user interface elements. A container like Office Binder thus provides a single frame in which to
work with documents, instead of forcing the user to multiple application frames for each document type. (This is also
different than working with embeddings in a compound document where only a single piece of content is being
activated; here we are activating an entire document, that is, an entire application, within the context of a single frame).

While the Document Objects technology allows an application like Office Binder to present literally a “three-ring
binder” paradigm, DocObjects is generic enough to accommodate many other possible user interfaces that have the
same requirements.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 6 OLE Document Objects Specifications

A General Overview of Document Objects

The DocObjects technology is a set of extensions to OLE Documents, the compound document technology of OLE. The
extensions are in the form of additional interfaces that allow what mostly looks like an embeddable in-place object to
represent an entire document instead of a single piece of embedded content. As with OLE Documents, DocObjects
involve a container that provides the display space for DocObjects and servers that provide the user interface and
manipulation capabilities for DocObjects themselves.

A DocObject server is a product that supports one or more document object classes, where each object itself supports the
extension interfaces that allow the object to be activated in a suitable container, such as Binder. A DocObject is best
understood by distinguishing it from a standard OLE embedded object. Following the OLE convention, an embedded
object is one which is displayed within the “page” of the document that “owns it” where the document is managed by an
OLE container. The container stores the embedded object’s data with the rest of the document.

However, embedded objects are limited in that they do not control the page on which they appear. By necessity they
tend to be rather small objects: a picture that supplements the surrounding text (provided by the container), a
spreadsheet that clarifies its supporting analysis (again provided by the container), and so forth.

By contrast, a document object provided from a DocObject server is essentially a full-scale, conventional document
which is embedded as an object within another DocObject container (Binder, browsers, etc.). Unlike embedded objects,
DocObjects have complete control over their pages, and the full power of the application is available to the user to edit
them. Thus, unlike embedded objects, DocObjects tend to be full-scale, robust documents that exploit the complete
native functionality of the server (application) that creates them. Users can create documents (called sections within the
Binder, for example) using the full horsepower of their favorite applications (if they are DocObject enabled), yet they
can treat the resulting project as a single entity, which can be uniquely named, saved, transmitted to coworkers for
review or editing, printed as a single entity, and so forth. In the same way, a user of an Internet browser (such as a
future Explorer) can treat the entire network as well as local file systems as a single document-storage entity with the
ability to browse the documents in that storage from a single location.

Summary of Requirements for Document Object Participation
A DocObject container that wishes to integrate DocObjects must:

1. Be capable of handling object storage through the IPersistStorage interface, that is, it must provide an
IStorage instance to each DocObject.

2. Support the basic embedding features of OLE Documents, necessitating “site” objects (one per document
or embedding) that implements IOleClientSite and IAdviseSink.

3. Support in-place activation of embedded objects or DocObjects, requiring the container’s site objects to
implement IOleInPlaceSite and requiring the container’s frame object to provide IOleInPlaceFrame.

4. Support the DocObjects extensions through the implementation of IOleDocumentSite and possibly
IContinueCallback on the site object, along with IOleCommandTarget on the frame object.

(Note that OLE Documents support in a container implies more than just interface implementations: it also requires
knowledge of using the interfaces of an embedded object. Same applies to DocObjects extensions where the container
must also know how to use those extension interfaces on the DocObjects themselves.)

Correspondingly, a “document object” that wishes to work within a DocObject container must:

1. Use OLE’s Compound Files as their storage mechanism, that is, implement IPersistStorage.

2. Support the basic embedding features of OLE Documents, including “Create From File.” This
necessitates the interfaces IPersistFile, IOleObject, and IDataObject.

3. Support the in-place activation extension of OLE Documents, that is, IOleInPlaceObject and
IOleInPlaceActiveObject (using the container’s IOleInPlaceSite and IOleInPlaceFrame interfaces).

4. Support the DocObjects extensions that involves these new interfaces: IOleDocument,
IOleDocumentView, IOleCommandTarget, and IPrint.

OLE Document Objects Specifications Page 7

Again, knowledge of when and how to use the container-side interfaces is implied in these requirements.

The remainder of this document will describe the architecture of Document Objects and how the new interfaces of
IOleDocument, IEnumOleDocumentViews, IOleDocumentView, IOleDocumentSite, IPrint, IContinueCallback, and
IOleCommandTarget work together to achieve the document-activation features described earlier. First will be the
architectural details of Document Objects including special requirements for Help menu merging (an extension to OLE
Documents), programmatic printing, and “command targets.” This is followed by implementation notes for DocObject
containers and servers, followed by the complete interface reference and an appendix describing additional details of the
Office Binder’s implementation this architecture.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 8 OLE Document Objects Specifications

Architectural Details of Document Objects

Overview
In general, a particular product owns a set of data, the storage in which they are saved, and the views through which they
are displayed for the user. OLE Documents introduced technology that let applications store their documents (including
data and information about the way they should be displayed) in an abstract manner. That is, the application was freed
from the need to understand the granular aspects of its storage vehicle, and it could, instead, deal with a variety of
storage sites in a consistent fashion (that is, without regard for their underlying properties). Products that exploited this
OLE “abstract storage technology”, could save their documents into files, databases, and other types of storage in a
uniform way. In addition, OLE enabled applications (via IPersist* interfaces) to permanently save their documents in
storage that they did not own. Thus, applications that support OLE can treat storage abstractly.

The OLE Documents architecture also took an important step toward letting applications treat their views (that is, the
port through which their data are displayed for the user) abstractly. Products that supported in-place activation could
display their content in a “foreign” frame that they did not own. While this represented an important step forward, it
had its limitations. In particular, in-place activation supports an object view of the data rather than a document view.
That is, the OLE container is responsible for siting the object’s view port, for controlling the overall display of its pages,
for printing them, and so forth. To overcome some of these limitations, the embedded object can be opened so that
more of the native functionality of its parent (that is, the OLE server) can be used. Nevertheless, some important
limitations remained.

Among these limitations, it is worth noting that a defining characteristic of a document, as distinguished from an
embedded object, is that it owns the printed page. It can have headers, footers, footnotes, endnotes, revision marks, and
so forth, and it knows where to place them on the page and how to display them for the user. Embedded objects (that is,
object views) do not control the page on which they appear. Instead, they must live within a containment hierarchy
whose root container is an actual document.

The Document Objects architecture defines an abstraction for views and their management, so that objects can function
within containers and yet retain control over their display and some important printing functions. This architecture
makes it possible to display documents both in foreign frames (such as Binder or Explorer) and in native frames (such as
the product’s own view ports).

A view can be divided into two components: the view frame component and the view component. The view frame
could consist of just the frame window in the case of an Single Document Interface (SDI) product, or it could include
the frame and the Multiple Document Interface (MDI) window in the case of an MDI product. The view frame
component provides the space for menus, toolbars, a status bar, and so forth. The frame component also provides the
view port within which adornments such as rulers, scroll bars, and similar tools can be displayed. Note that the frame
does not “tell the document” how big it should be, nor does it care. On the contrary, it merely conveys to the contained
application the view port size that was selected by the user. The view port, by contrast, is the region within which the
data themselves are displayed. If the frame were an SDI frame, for example, then the view port could be the client area
of the frame window minus the space allocated for tool bars, status bar, and such. In an MDI setting, the view port
would be the client area of the MDI document window minus any other frame level user interface elements (for
example, space for tab bar in case of workbook).

This breakdown of components offers several advantages:

· The view frame can be of any type: SDI, MDI, Workbook, Form, and so forth. A single implementation
of the document’s view can be used within many different types of frames.

· Multiple applications can have the same frame level UI and functionality, while supporting distinctly
different data sets. In principle, this offers a great advantage to vendors who wish to develop a core user
interface as a frame that is used throughout their entire product line. In essence, they can build the frame
once and re-use it as appropriate.

OLE Document Objects Specifications Page 9

Special attention should be given to the fact that the view and storage aspects of a data set are two entirely orthogonal
aspects of the document to which they belong. The storage provider and the view frame provider could be the same, or
they could be different. In any case, the application can proceed with its work in a standard manner that isolates it from
the need to understand either its storage or its view port in specific detail. In some sense, this separation of views and
storage is present within OLE, since when an embedded object is “open edited”, the server application provides the view
frame while its container provides the storage. However, the Document Objects architecture takes matters much further,
since it lets the document’s storage container (or some other container) provide the view frame. In addition, moniker
binders can also provide view frames, and this can enable in-place activation of links.

Relevant Objects and the Interfaces They Must Implement
A DocObject can support one or more views, each of which is capable of in-place activation. The document component
of the object must support standard OLE Document interfaces, but in addition it must support new interfaces such as
IOleDocument. The view component must also support certain standard OLE interfaces (IOleInPlaceObject and
IOleInPlaceActiveObject), and in addition it must support the new IOleDocumentView interface, too. DocObject
containers must implement IOleDocumentSite along with OLE container interfaces, and they must implement
IOleInPlaceSite on each view site. Finally, the frame object, the view object(s), and the container object can optionally
implement IOleCommandTarget to support the dispatch of certain commands (as discussed below).

View and container objects can also optionally implement IPrint and IContinueCallback (discussed below), to support
programmatic printing.

The following illustration shows the conceptual relationships between a container and its components (on the left) and
the DocObject and its views (on the right), where the DocObject manages storage and data and the view displays and
possibly prints that data. Interfaces in bold are those required for DocObject participation; those bold and italic are
optional. All others are required according to OLE Document rules:

Container
Frame

Container
Frame

Document
Object

Document
Object

Container
(Document)
Container

(Document)

Document
Site

Document
Site

IOleClientSite

IAdviseSink

IOleInPlaceSite

IOleInPlaceFrame

IOleContainer

IOleCommandTarget

IOleInPlaceUIWindow

View
Site

View
Site

IOleDocumentSite

IContinueCallback

IOleObject

IDataObject

IPersistStorage

IOleDocument

View
Sub-Object

(can be
multiple)

View
Sub-Object

(can be
multiple)

IOleInPlaceObject

IOleInPlaceActiveObject

IOleDocumentView
IPrint

IOleCommandTarget

IPersistFile

Ó Microsoft Corporation,2021. All Rights Reserved

Page 10 OLE Document Objects Specifications

Note that a document that supports only a single view can implement both the view and document components (that is,
their corresponding interfaces) on a single concrete class. In addition, a container site that only supports one view at a
time can combine the document site and the view site into a single concrete site class. The container’s frame object,
however, must remain distinct, and the container’s document component is merely shown here to complete the OLE
Documents architecture. This piece of the container is not affected by the Document Objects architecture.

A DocObject is one that has some data and one or more views associated with it. The Document Objects architecture
formalizes the relationship between the document, its views, and their view sites/frames .

Document Objects (Server)
The DocObject owns a set of data and has access to storage where the data can be saved and retrieved. It can create and
manage one or more views on its data. In addition to supporting the usual embedding and in-place activation interfaces
according to OLE Documents, the DocObject communicates its ability to create views through IOleDocument. Through
this interface the container can ask to create (and possibly enumerate) the views that the DocObject can display.
Through this interface, the DocObject can also provide miscellaneous information about itself, such as whether it
supports multiple views or complex rectangles.

interface IOleDocument : IUnknown
 {
 HRESULT CreateView([in] IOleInPlaceSite *pIPSite, [in] IStream *pstm
 , [in] DWORD dwReserved, [out] IOleDocumentView **ppView);
 HRESULT GetDocMiscStatus([out] DWORD *pdwStatus);
 HRESULT EnumViews([out] IEnumOleDocumentViews **ppEnum
 , [out] IOleDocumentView **ppView);
 }

Every DocObject must have a view frame provider with this interface. If the document is not embedded within a
container, then the DocObject server itself must provide the view frame. However, when the DocObject is embedded in
a DocObject container then the container provides the view frame.

The IEnumOleDocumentViews interface is a standard OLE enumerator for IOleDocumentView * types.

Views Objects (Server)
A DocObject can create one or more types of views (for example, normal, outline, page layout, etc.) of its data. From a
functional perspective, views act like filters through which the data can be seen. 1

Even if the document has only one type of view, it may still wish to support multiple views as a means of supporting
“Window/New Window” functionality (for example, the Window menu in Office applications). Functionally these
views are like ports onto a particular method for displaying the data.

To be represented within the a DocObject container, a view component must support IOleInPlaceObject and
IOleInPlaceActiveObject in addition to IOleDocumentView:

interface IOleDocumentView : IUnknown
 {
 HRESULT SetInPlaceSite([in] IOleInPlaceSite *pIPSite);
 HRESULT GetInPlaceSite([out] IOleInPlaceSite **ppIPSite);
 HRESULT GetDocument([out] IUnknown **ppunk);
 [input_sync] HRESULT SetRect([in] LPRECT prcView);
 HRESULT GetRect([in] LPRECT prcView);
 [input_sync] HRESULT SetRectComplex([in] LPRECT prcView
 , [in] LPRECT prcHScroll, [in] LPRECT prcVScroll
 , [in] LPRECT prcSizeBox);
 HRESULT Show([in] BOOL fShow);
 HRESULT UIActivate([in] BOOL fUIActivate);
 HRESULT Open(void);
 HRESULT CloseView([in] DWORD dwReserved);
 HRESULT SaveViewState([in] IStream *pstm);
 HRESULT ApplyViewState([in] IStream *pstm);
 HRESULT Clone([in] IOleInPlaceSite *pIPSiteNew, [out] IOleDocumentView **ppViewNew);
 }

1 There is some question as to when a server would support multiple views. At the time Document Objects were specified, Microsoft had some plansas to
how multiple views might be used, and thus the interfaces were designed to be flexible without putting overhead on the single view implementor. When
multiple views will be used is hard to say.

OLE Document Objects Specifications Page 11

Every view has an associated view site, which encapsulates the view frame and the view port (HWND and a rectangular
area in that window). The site exposes this functionality though the standard IOleInPlaceSite interface. Note that it is
possible to have more than one view port on a single HWND.

Typically each type of view has a different printed representation. Hence views and the corresponding view sites should
implement the printing interfaces if IPrint and IContinueCallback, respectively. The view frame must negotiate with
the view provider through IPrint when printing begins, so that headers, footers, margins, and related elements are
printed correctly. The view provider notifies the frame of printing-related events through IContinueCallback. For more
information on the use of these interfaces, see “Programmatic Printing” later in this document.

Do note that if a DocObject only supports a single view, then the DocObject and that single view can be implemented
using a single concrete class. IOleDocument::CreateView simply returns the same object’s IOleDocumentView interface
pointer. In short, it is not necessary that there be two separate object instances when only one view is required.

A view object can also choose to be a command target by implement IOleCommandTarget. This allows it to easily
receive commands that originate in the container’s user interface (such as File New, Open, SaveAs, Print; Edit Copy,
Paste, Undo, etc.). For more information, see “Command Targets” later in this document.

Document Site Objects (Container)
In the Document Objects architecture, a document site is the same as a client site object in OLE Documents with the
addition of the IOleDocument interface:

interface IOleDocumentSite : IUnknown
 {
 HRESULT ActivateMe(IOleDocumentView *pViewToActivate);
 }

The document site is conceptually the container for one or more “view site” objects that are each associated with
individual view objects of the document managed by the document site. If the container only supports a single view per
document site, then it can implement the document site and the view site with a single concrete class.

View Site Objects (Container)
A container’s “view site” object manages the display space for a particular view of a document. In addition to
supporting the standard IOleInPlaceSite interface, a view site also generally implements IContinueCallback for
programmatic printing control. (Note that the view object never queries for IContinueCallback so it can actually be
implemented on any object the container desires).

A container that supports multiple views must be able to create multiple view site objects within the document site.
This provides each view with separate activation and deactivation services as provided through IOleInPlaceSite.

Frame Object (Container)
The container’s frame object is, for the most part, the same frame that is used for in-place activation in OLE Documents,
that is, the one that handles menu and toolbar negotiation. A view object has access to this frame object through
IOleInPlaceSite::GetWindowContext which also provides access to the container object representing the container
document (which can handle pane-level toolbar negotiation and contained object enumeration).

In Document Objects, a container can augment the frame by adding IOleCommandTarget. This allows it to receive
commands that originate in the DocObject’s user interface in the same way that this interface can allow a container to
send the same commands (such as File New, Open, SaveAs, Print; Edit Copy, Paste, Undo, etc.) to a DocObject. For
more information, see “Command Targets” later in this document.

Help Menu Merging: An Extension to OLE Documents
When an object is active within a container, the menu merging protocol of OLE Documents gives the object complete
control of the Help menu. As a result, the container’s Help topics are not available unless the user deactivates the
object. The Document Objects architecture expands on the rules for in-place menu merging to allow both the container

Ó Microsoft Corporation,2021. All Rights Reserved

Page 12 OLE Document Objects Specifications

and an active DocObject to share the menu. The new rules are simply additional conventions about what component
owns what part of the menu and how the shared menu is constructed.

The new convention is simple. In DocObjects, the Help menu has two top-level menu items organized as follows:

Help
Container Help >
Object Help >

For example, when a Word section is active in the Office Binder, then the Help menu would appear as follows:

Help
Binder Help >
Word Help >

Both menu items are cascade menus under which any additional menu items specific to the container and the object are
provided to the user. What items appear here will vary with the container and objects involved.

To construct this merged Help menu, the Document Objects architecture modifies the normal OLE Documents
procedure. According to OLE Documents, the merged menu bar can have 6 groups of menus, namely File, Edit,
Container, Object, Window, Help, in that order, and in each group there can be 0 or more menus. The groups File,
Container and Window belong to the container and the groups Edit, Object and Help belong to the object. When the
object wants to do menu merging it creates a blank menu bar and hands it over to the container, to let it insert its menus,
by calling IOleInPlaceFrame::InsertMenus. The object also hands over a structure which is an array of six LONGs
(OLEMENUGROUPWIDTHS). After inserting the menus, container would mark how many menus he added in each
one of its groups, and then returns. Then the object inserts its menus paying attention to the count of menus in each
container group. Then finally object passes the merged menu bar and the array (which contains the count of menus in
each group) to OLE, which returns an opaque “menu descriptor” handle. Later the object passes that handle and the
merged menu bar to the container, via IOleInPlaceFrame::SetMenu. At this time container displays the merged menu
bar and also passes the handle to OLE, so that OLE can do proper dispatching of menu messages.

In the modified DocObject procedure, the object must first initialize the OLEMENUGROUPWIDTHS elements to zero
before passing it to the container. Then the container would do what it normally does in its menu insertion code with
one exception. The container inserts a Help pop-up menu as the last item and stores a value of 1 in the last (sixth) entry
of the OLEMENUGROUPWIDTHS array (that is, width[5] which belongs to the object’s Help group). This Help
popup menu will have only one item which is another popup menu, the “Container Help >” cascade menu as described
above.

The object then does its normal menu insertion code, except that before inserting its help menu, it checks the sixth entry
of the OLEMENUGROUPWIDTHS array. If the value is 1 and the name of the last menu is Help (or the appropriate
localized string), then the object inserts its help popup menu as sub-menu of container’s Help popup menu.

The object then sets the sixth element of OLEMENUGROUPWIDTHS to zero and increments the fifth element by one.
This lets OLE know that the Help menu belongs to the container and the menu messages corresponding that menu (and
its sub menus) should be routed to the container. It is then the container’s responsibility to forward
WM_INITMENUPOPUP, WM_SELECT, WM_COMMAND, and other menu-related messages that belong to the
object’s portion of the help menu.2 The container should use the window returned from the object’s
IOleInPlaceActiveObejct::GetWindow function as the destination for these messages.

If the object detects a zero in the sixth element of OLEMENUGROUPWIDTHS it otherwise proceeds according to the
normal OLE Documents rules. This will take care of containers that do participate in help menu merging as well as
those which do not.

When the object calls IOleInPlaceFrame::SetMenu, before displaying the merged menu bar, the container checks
whether his Help popup menu has an additional sub-menu, in addition to what it has inserted. If so the container would

2 This is accomplished by using WM_INITMENU to clear a flag that tells the container whether or not the user has navigated into the object’s Help
menu. The container then watches WM_MENUSELECT for entry into or exit from any item on the Help popup that the container did not add itself. On
entry, it means the user has navigated into an object popup, so the container sets the “in object Help menu” flag and uses the state of that flag to forward
any WM_MENUSELECT, WM_INITMENUPOPUP, and WM_COMMAND messages, as a minimum, to the object window. On exit, the container
clears the flag and then processes these same messages itself.

OLE Document Objects Specifications Page 13

leave his Help popup menu in the merged menu bar, else he will remove it from the merged menu bar. This will take
care of the objects that do participate in help menu merging as well as those that do not.

Finally, during menu disassembling time, the object would remove the inserted help menu, in addition to removing the
other inserted menus. And when container gets a chance to removed its menus, it will remove its help popup menu in
addition to the other menus that it has inserted.

Programmatic Printing (IPrint & IContinueCallback)
OLE provided the means to uniquely identify persistent documents (GetClassFile) and load them into their associated
code (CoCreateInstance, QueryInterface(IID_IPersistFile/IID_IPersistStorage...), IPersistFile/IPersistStorage::Load) .
To further enable printing of documents, Document Objects (using an existing OLE design not shipped with OLE 2.0
originally) introduces a base-standard printing interface, IPrint, generally available through any object which can load
the persistent state of the document type. Each view of a document object in the Document Objects architecture can
optionally support the IPrint interface to provide these capabilities.

The IPrint interface is defined as follows:

interface IPrint : IUnknown
 {
 HRESULT SetInitialPageNum([in] LONG nFirstPage);
 HRESULT GetPageInfo([out] LONG *nFirstPage, [out] LONG *pcPages);
 HRESULT Print([in] DWORD grfFlags, [in,out] DVTARGETDEVICE **pptd
 , [in,out] PAGESET ** ppPageSet , [in,out] STGMEDIUM **ppstgmOptions
 , [in] IContinueCallback* pCallback, [in] LONG nFirstPage
 ,[out] LONG *pcPagesPrinted, [out] LONG *pnPageLast);
 };

Clients and containers simply use IPrint::Print to instruct the document to print itself once that document is loaded,
specifying printing control flags, the target device, the pages to print, and additional options. The client can also control
the continuation of printing through the interface IContinueCallback (see below).

In addition, IPrint::SetInitialPageNum supports the ability to print a series of documents together as if they were one by
numbering pages seamlessly, obviously a benefit for DocObject containers like Office Binder. IPrint::GetPageInfo
simply allows the caller to retrieve the starting page number previously passed to SetInitialPageNum (or the document’s
internal default starting page number) and the number of pages in the document, useful for displaying pagination
information.

Objects that support IPrint mark themselves in the registry with the “Printable” key stored under the object’s CLSID:

HKEY_CLASSES_ROOT\CLSID\{...}\Printable

IPrint is usually implemented on the same object supporting either IPersistFile or IPersistStorage. Callers note the
capability to programmatically print the persistent state of some class by looking in the registry for the “Printable” key.
At the time being, “Printable” indicates support for at least IPrint; other interfaces may be defined in the future which
would then be available through QueryInterface where IPrint simply represents the base level of support.

During a print procedure, the client or container that initiated the printing may wish to control whether or not the
printing should continue. For example, the container may support a “Stop Print” command that should terminate the
print job as soon as possible. To support this capability, the client of a printable object can implement a small
notification sink object with the interface IContinueCallback:

interface IContinueCallback : IUnknown
 {
 HRESULT FContinue(void);
 HRESULT FContinuePrinting([in] LONG cPagesPrinted, [in] LONG nCurrentPage
 , [in] LPOLESTR pszPrintStatus);
 };

This interface is designed to be useful as a generic continuation callback function which takes the place of the various
continuation procedures in the Win32 API (such as the AbortProc for printing and the EnumMetafileProc for metafile
enumeration). Thus this interface design is useful in a wide variety of time-consuming processes.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 14 OLE Document Objects Specifications

In the most generic cases, IContinueCallback::FContinue function is called periodically by any lengthy process. The
sink object returns S_OK to continue the operation, S_FALSE to stop the procedure as soon as possible.

FContinue, however, is not used in the context of IPrint::Print; rather, printing uses
IContinueCallback::FContinuePrint. Any printing object should periodically call FContinuePrinting passing the
number of pages that have been printing, the number of the page being printed, and an additional string describing the
print status that the client may choose to display to the user (such as “Page 5 of 19”).

Complete details of these interfaces is given in the reference section at the end of this document.

Command Targets
The command dispatch interface IOleCommandTarget defines a simple and extensible mechanism to query and execute
commands. This mechanism is simpler than OLE Automation’s IDispatch because it relies entirely on a standard set of
commands, commands rarely have arguments, and no type information is involved (type safety is diminished for
command arguments as well).

In this design, each command belongs to a “command group” which is itself identified with a GUID. Therefore anyone
can define a new group and define all the commands within that group without any need to coordinate with Microsoft
nor any other vendor.3

IOleCommandTarget handles the following scenarios:

1. When an object is in-place activated, only the object’s toolbars are typically displayed and the object’s toolbars
may have buttons for some of the container commands like “Print,” “Print Preview,” “Save,” “New,”
“Zoom,” etc.4 Currently there is no mechanism for the object to dispatch these commands to the container.

2. When a DocObject is embedded in a DocObject container (such as Binder), the container may need to send
commands such “Print,” “Page Setup,” “Properties,” etc. to the contained DocObject.

Obviously this simple command routing could be handled through existing OLE Automation standards and IDispatch.
However, the overhead involved with IDispatch is more than is necessary here, so IOleCommandTarget provides a
simpler means to achieve the same ends:

interface IOleCommandTarget : IUnknown
 {
 HRESULT QueryStatus([in] GUID *pguidCmdGroup, [in] ULONG cCmds
 , [in,out][size_is(cCmds)] OLECMD *prgCmds, [in,out] OLECMDTEXT *pCmdText);
 HRESULT Exec([in] GUID *pguidCmdGroup, [in] DWORD nCmdID, [in] DWORD nCmdExecOpt
 , [in] VARIANTARG *pvaIn, [in,out] VARIANTARG *pvaOut);
 }

The QueryStatus method here tests whether a particular set of commands, the set being identified with a GUID, is
supported. This call fills an array of OLECMD values (structures) with the supported list of commands as well as
returning text describing the name of a command and/or status information. When the caller wishes to invoke a
command, it can pass the command (and the set GUID) to Exec along with options and arguments, getting back a return
value.

For more information on this interface, see the reference section at the end of this document.

3 This is essentially the same means of definition as a dispinterface plus dispIDs in OLE Automation. There is overlap here, although this command
routing mechanism is just for command routing and not for scripting/programmability on a large scale as OLE Automation handles.
4 In-place activation standards recommend that objects remove such buttons from their toolbars, or at least disable them. This design allows those
commands to be enabled and yet routed to the right handler.

OLE Document Objects Specifications Page 15

Implementation Notes

Becoming a DocObject Server
This section discusses issues related to server side implementation of the Document Objects architecture, specifically the
implementation of a DocObject and its view.

A DocObject can be implemented as an in-process object or as a local object (in an EXE). The Document Objects
architecture has been designed so that it is relatively easy to transform an existing in-place implementation into a
DocObject. The document object itself must support those interfaces described earlier which will require existing object
implementations to slightly modify their code in several places: IOleObject::DoVerb, IOleObject::SetClientSite, and in-
place activation functions. The following sections describe these issues in more detail.

IOleObject::SetClientSite
An object must be able to determine whether it can and should activate as a DocObject. This will depend on whether
the client site (that is, the container) supports IOleDocumentSite. When an object’s IOleObject::SetClientSite is called,
it should query the given pointer for IOleDocumentSite as the following code illustrates:

HRESULT IOleObject::SetClientSite(IOleClientSite *pSite)
 {
 //Perform regular SetClientSite processing.
 // If we currently have a document site pointer, release it.
 if (NULL!=m_pDocSite)
 {
 ReleaseInterface(m_pDocSite); //Macro to Release and NULL
 m_fDocObj=FALSE;
 }
 if (NULL!=pSite)
 {
 if (SUCCEEDED(pSite->QueryInterface(IID_IOleDocumentSite, &m_pDocSite)))
 m_fDocObj=TRUE;
 }
 }

IOleObject::DoVerb
When a DocObject’s IOleObject::DoVerb is called, it will know whether to activate itself as a DocObject or not as
determined in IOleObject::SetClientSite. One DocObject support is acknowledged, various verbs are handled
differently than a normal embedded object would handle them.

Verb Handling Procedure
OLEIVERB_SHOW The object calls IOleDocumentSite::ActivateMe. The object does not call

IOleClientSite::ShowObject nor IOleClientSite::OnShowWindow at this time because
it waits until calls to IOleDocumentView for specific activation instructions.

OLEIVERB_OPEN Same as OLEIVERB_SHOW—note that this is not recommended for containers.
OLEIVERB_UIACTIVATE Same as OLEIVERB_SHOW.
OLEIVERB_HIDE The object should return an error (E_INVALIDARG)

In-Place Activation Differences
When activating as a DocObject, the object should behave as follows:

· Bypass displaying the in-place hatch border and object adornments (such as sizing handles etc.)

· Do not generate IOleInPlaceSite::OnPosRectChange calls (no need for them)

· Ignore IOleObject::SetExtent calls

Ó Microsoft Corporation,2021. All Rights Reserved

Page 16 OLE Document Objects Specifications

· Draw scroll bars within the view rectangle (see IOleDocumentView::SetRect and SetRectComplex) as
opposed to drawing them outside that rectangle (as in normal in-place activation)

· Do not call IOleClientSite::ShowObject during activation.

Storage requirements.
The storage format of a DocObject must be the same whether it opens the file on its own and writes the data or whether
it saves that data into storage provided by its container. In short, the DocObject must depends on IStorage and IStream
for its persistence mechanisms. This enables a DocObject container to take the data in the object’s storage and create a
file out of it. Binder, for example, uses this mechanism to move the bound sections on to the shell.

In standard OLE, when IPersistFile::Save method is called with NULL for the file name, then the object must save itself
into the file that it currently owns. The frame provider, which is not the storage provider, can use this mechanism to ask
the document to save itself into the storage it currently owns.

Registration
Every DocObject server should include the “DocObject” key in the registry entries of its supported classes. This key
indicates Document Objects support. For example:

HKCR\Word.Document.6\DocObject = 0
HKCR\CLSID\{<CLSID for Word Document>} = Microsoft Word 7.0 Document
HKCR\CLSID\{<CLSID for Word Document>}\DocObject = 0

(HKCR is short for HKEY_CLASSES_ROOT.)

The DocObject subkey should appear under both the server’s ProgID and its CLSID. The value of the “DocObject” key
indicates whether the DocObject can create multiple views and whether it can accept complex rectangles. See
IOleDocument::GetDocMiscStatus for more information.

The DocObject must also use the “DefaultExtension” key to register the default extension used by its files along with a
descriptive string that can be used in a File Open or File Save As dialog. For example:

\<CLSID for Word Document>\DefaultExtension=.doc, Word Documents (*.doc)

Finally, if the object supports the IPrint interface, it must register the “Printable” key. For example:

\<CLSID…>\Printable

Limiting Embedding Support
All DocObjects will be embeddable due to the fact that they implement all the relevant interfaces for OLE Documents
(IOleObject, IDataObject, IPersistFile, and IPersistStorage). However, they can choose to limit the embedding
functionality they support. This can be done as follows:

· Do not register the “Insertable” key to prevent compound document containers from listing the document
object class in the Insert Object dialog.5

· Do not offer “Embed Source” or “Embedded Object” formats in data exchange operations. This prevents
the object from being pasted into compound document containers.

· Set the OLEMISC_CANTLINKINSIDE bit in your MiscStatus key of the registry to prevent linking to
embedded DocObjects.

· Set the OLEMISC_ICONICONLY bit to force the document to appear as an icon in any container that
might still receive the object through the Insert From File dialog (an option in Insert Object) or when the
file is dropped on a container from the system shell. Because it is only displayed as an icon, there is no
need to worry about generating metafiles nor in handling IOleObject::SetExtent calls, etc.

5 Also do not register a “\protocol\StdFileEditing\server” to prevent inclusion in an OLE 1 container’s Insert Object dialog.

OLE Document Objects Specifications Page 17

Becoming a DocObject Container
This section discusses issues related to container or host side implementation of the Document Objects architecture. It
goes without saying that a container supports the necessary interfaces as described in the architecture. However, there
are a number of other considerations:

1. Storage provisions and user interface
2. Creation and initialization of a DocObject
3. Activation of a DocObject
4. DocObject saving and shutdown
5. Support for other OLE features, completeness of interface implementations

The following sections describe each of these topics in more detail. These are the core pieces of a DocObject container
that require more comment than is found elsewhere in this specification, and the following discussion is not intended to
touch on every container-side detail. As such, specific items like Help menu merging and command targets are not
described here and are left for sample code to demonstrate.

Storage Provisions and User Interface
A DocObject container is generally a container that manages multiple “documents” (from the user perspective) in a
single data store of some kind. Now, that data store could be something as complex as an entire file system, or it could
be something simple like an individual compound file. In general, the container’s methods for dealing with the ultimate
storage of documents edited as DocObjects will in many ways determine the type of user interface that the container
supports.

The Office Binder, for example, uses a single “Binder” file, an OLE Compound File, as its own data store. Within that
single Binder file, the Binder can embed any number of other documents as “sections” in the binder. Technically
speaking, while the Binder file itself is a single root instance of IStorage, each section is then given the IStorage of a
sub-storage within the root. Each embedded DocObject is handed this sub-storage pointer through
IPersistStorage::InitNew or IPersistStorage::Load (either at creation or reloading time, respectively) and stores all of its
data directly in that storage.

What the Office Binder does for a user interface, then, is provide a left-hand pane that displays the “documents” or
sections in the binder, activating them one at a time in the right-hand pane as if they were being opened in their
respective applications. However, one never leaves the binder paradigm as one changes from section to section. Each
so-called document is just a sub-storage in the entire binder.

Now a container that browses a file system, on the other hand, will see the whole file system, or the World Wide Web
for that matter, as a single “file” or “binder” in which are found many individual documents. This kind of container
would have the browsing UI in the left hand pane and would individually activate DocObjects within a viewing pane of
that browser. In this case the IStorage handed to each DocObject is the root IStorage for the entire document on the file
system itself.

One must not confuse the use of an IStorage in the DocObjects architecture with the use of streams to save and re-load
view states through IOleDocumentView::SaveViewState and IOleDocumentView::ApplyViewState as described in more
detail below.

Creation and Initialization
However a container wishes to create an embedded DocObject is up to that container. This will generally involve one of
the OLE API functions OleCreate, OleCreateFromData, OleCreateFromFile, and OleLoad. OleCreate, of course, is
used to create a new, uninitialized DocObject—when that object is activated the user starts with a clean slate.
OleCreateFromData and OleCreateFromFile, on the other hand, create new instances of objects with a state initialized
from either the contents of a data object (clipboard, drag and drop, etc.) or from the contents of a file, respectively.
Once a DocObject is saved to its IStorage via OleSave, it can then be reloaded with OleLoad, of course.

The full initialization sequence for a DocObject will depend on the exact nature of the container. As a minimum,
however, it will involve these steps after creation or loading:

1. IPersistStorage::InitNew (create) or IPersistStorage::Load (reload)

Ó Microsoft Corporation,2021. All Rights Reserved

Page 18 OLE Document Objects Specifications

2. IOleObject::SetClientSite
3. IOleObject::Advise

These three calls will initialize the DocObject and set up communication between it and the container’s IOleClientSite
and IAdviseSink interfaces. Nothing more is essential, although containers that display something like an iconic
rendering of the object may also include calls to IViewObject2 members such as GetExtent and SetAdvise.

Note that as described in the server section above, the container’s call to IOleObject::SetClientSite will generate a
QueryInterface call to the container for IOleDocumentSite. The object then uses this interface during activation, which
is the next topic.

Activation
Activating a DocObject is largely just a matter of calling IOleObject::DoVerb(OLEIVERB_SHOW, …) then responding
to IOleDocumentSite::ActivateMe. OLEIVERB_SHOW is generally the most appropriate activation verb here, but
OLEIVERB_PRIMARY and OLEIVERB_UIACTIVATE are also allowable. OLEIVERB_OPEN isn’t recommended
as highly because it implies separate-window activation instead of an in-place activation.

Activation of a DocObject is almost entirely self-contained within IOleDocumenSite::ActivateMe whose implementation
generally appears as follows:

STDMETHODIMP CImpIOleDocumentSite::ActivateMe(IOleDocumentView *pView)
 {
 RECT rc;

 /*
 * If we're passed a NULL view pointer, then try to get one from
 * the document object.
 */
 if (NULL==pView)
 {
 IOleDocument *pDoc;
 if (FAILED(m_pSite->m_pObj->QueryInterface(IID_IOleDocument
 , (void **)&pDoc)))
 return E_FAIL;
 if (FAILED(pDoc->CreateView(m_pSite->m_pImpIOleIPSite, NULL
 , 0, &pView)))
 return E_OUTOFMEMORY;
 }
 else
 {
 //Make sure that the view has our client site
 pView->SetInPlaceSite(m_pSite->m_pImpIOleIPSite);
 //We're holding onto the pointer, so AddRef it.
 pView->AddRef();
 }
 //Remember the type of object we have and the view pointer
 m_pSite->m_fDocObj==TRUE;
 m_pSite->m_pIOleDocView=pView;

 //This sets up toolbars and menus first
 pView->UIActivate(TRUE);
 //Set the window size sensitive to new toolbars
 GetClientRect(m_pSite->m_hWnd, &rc);
 pView->SetRect(&rc);
 //Makes it all visible
 pView->Show(TRUE);
 return NOERROR;
 }

This code is taken from a working DocObject container and demonstrates the proper sequence of operations for
DocObject activation:

OLE Document Objects Specifications Page 19

1. If ActivateMe is passed an IOleDocumentView pointer, then call IOleDocumentView::SetInPlaceSite followed
by AddRef if you’re holding onto the pointer (which is generally the case). Otherwise query the document
object itself for IOleDocument and call IOleDocument::CreateView passing in the container’s
IOleInPlaceSite pointer. In both cases you’ll end up with an IOleDocumentView pointer for the
DocObject’s view that should be released when the container no longer needs it.

2. Activate the DocObject view by calling IOleDocumentView::UIActivate(TRUE) which will cause it to perform
menu merging, toolbar negotiation, and re-parent its display window to the window returned through
IOleInPlaceSite::GetWindow. Part of the toolbar negotiation sequence should be for the container to
remember exactly how much border space is taken up, resizing any client-area windows in the container to
account for this space.

3. Call IOleDocumentView::SetRect (or SetRectComplex depending on the container) to tell the view exactly how
much space to occupy in its parent. If the container manages a client-area window as the code sample
above is doing, then this rectangle is simply the client area of that window. Note that this step is important
to do after calling UIActivate because the container would otherwise send the view the wrong dimensions
that wouldn’t account for toolbar space.

4. Call IOleDocumentView::Show(TRUE) to make the DocObject visible. This is the last step because the
DocObject view knows exactly what space it occupies and all its other tools are there.

While the DocObject remains active, it is also imperative that the container fulfill a few other requirements, some of
which come from standard in-place activation rules:

1. Call IOleInPlaceActiveObject::ResizeBorder when the container frame is resized so the object can resize its
toolbars appropriately.

2. Call IOleDocumentView::SetRect whenever the window used for the DocObject parent is resized. This might
be the frame window, a client-area window, or a document window (in an MDI container). SetRect tells
the DocObject to resize its view to fully occupy the parent window’s client area.

3. Implement IOleInPlaceFrame::SetStatusText if the container has a toolbar.

4. Call IOleInPlaceActiveObject::TranslateAccelerator from the container’s message loop.

5. Detect the F1 key to enter context-sensitive help mode as well as ESC to leave it, calling
IOleInPlaceActiveObject::ContextSensitiveHelp with TRUE and FALSE, respectively.

6. Handle WM_SETFOCUS to the frame window by setting focus to the window returned from
IOleInPlaceActiveObject::GetWindow.

All of these bits other than step 2 are standard in-place activation requirements.

Saving and Shutdown
When a DocObject is closed, the container should ensure that its data is saved as it would with any other embedded
object. That is, the container must handle IOleClientSite::SaveObject in which it generates a call to the object’s
IPersistStorage::Save, usually through OleSave, followed by IPersistStorage::SaveCompleted and an IStorage::Commit
if transactioned storage is being employed.

When the container wishes to close the object entirely, that is, unload it completely (with or without saving), then the
container should first call IOleInPlaceObject::InPlaceDeactivate, IOleObject::Close, followed by Release calls on all
interface pointers that the container is holding. When the last reference count is released, the DocObject will delete
itself and its server will shut down as appropriate.

Again, all of this is standard for standard embedding scenarios in OLE Documents.

Support for Other OLE Features and Completeness of Interface Implementations
As described in the previous section, DocObject servers will never generate calls to various members of the
IOleClientSite and IOleInPlaceSite interfaces, such as:

· IOleClientSite::GetMoniker
· IOleClientSite::GetContainer

Ó Microsoft Corporation,2021. All Rights Reserved

Page 20 OLE Document Objects Specifications

· IOleClientSite::RequestNewObjectLayout
· IOleClientSite::OnShowWindow
· IOleClientSite::ShowObject
· IOleInPlaceSite::OnPosRectChange
· IOleInPlaceSite::Scroll
· IOleInPlaceSite::ContextSensitiveHelp (if container has no support for this)

Therefore strictly DocObject containers can simply return E_NOTIMPL from these members. In addition, most of the
IAdviseSink members need no implementation, with IAdviseSink::OnClose being the only one of probable interest; in
some cases a container may not need IAdviseSink at all, and thus would never need to call IOleObject::Advise (or
IViewObject::SetAdvise when the container doesn’t display anything for the object visually).

All other members of IOleClientSite and IOleInPlaceSite, as well as those in IOleInPlaceFrame require some
implementation which is sometimes considerable and at other times nothing more than a return of NOERROR (such as
IOleInPlaceSite::CanInPlaceActivate).

Of course, the container may support more than just DocObjects—it might also support normal OLE compound
document linking and embedding in which case it will completely implement these interfaces as specified for OLE
Documents. The container may also support OLE Controls in which case it would have IDispatch, event handlers,
IOleControlSite, and so on. It should be noted, however, that DocObjects do not interfere with support for these other
types of objects, provided that the container maintains a variable (like m_fDocObj as described in the activation section
above) that tells the rest of its code that certain operations won’t be needed when a DocObject is in use.

Finally, there is also the separate-window activation model available through IOleDocumentView which can be
employed as a container sees fit. Support for that model is not a requirement for all DocObject containers, however.

OLE Document Objects Specifications Page 21

Document Objects Interface Reference

This section lists all interfaces, related structures, and related enumerations that are defined by this architecture. The
section has a detailed description of interface member functions and their arguments.

The IOleDocument Interface
By implementing this interface alongside other interfaces relating to OLE Documents, an object indicates its ability to
act as a “document object.” Through this interface, a container for DocObjects can ask the object to create views of
itself as well as to enumerate those views and to retrieve MiscStatus bits related to the document object.

IDL:

[
uuid(B722BCC5-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IOleDocument : IUnknown
 {
 HRESULT CreateView([in] IOleInPlaceSite *pIPSite, [in] IStream *pstm
 , [in] DWORD dwReserved, [out] IOleDocumentView **ppView);
 HRESULT GetDocMiscStatus([out] DWORD *pdwStatus);
 HRESULT EnumViews([out] IEnumOleDocumentViews **ppEnum
 , [out] IOleDocumentView **ppView);
 }

IOleDocument::CreateView
HRESULT IOleDocument::CreateView([in] IOleInPlaceSite *pIPSite, [in] IStream *pstm

, [in] DWORD dwReserved, [out] IOleDocumentView **ppView)

Ask the document object to create a new view sub-object, returning that view object’s IOleDocumentView interface
pointer. Optionally this call can also initialize the view from the contents a given stream. A container calls this
function to both create new views as well as to reload previously saved views. The view must wait for calls to either
IOleDocumentView::Show or IOleDocumentView::UIActivate before showing itself.

Argument Type Description
pIPSite IOleInPlaceSite * A pointer to the container’s “view site” object associated with

the new view. May be NULL in which case the caller must
initialize the view with a call to
IOleDocumentView::SetInPlaceSite.

pstm IStream * A pointer to the stream from which the view should initialize
itself. If NULL, then this function creates a new view with a
default state.

dwReserved DWORD Reserved for future use. Must be zero.6

ppView IOleDocumentView * Address of the variable to receive the interface pointer to the
new view. If CreateView succeeds, the caller is responsible for
calling Release through this pointer when the view object is no
longer needed.

Return Value Meaning
S_OK The view was created successfully.
E_POINTER The address in ppView is NULL.
E_OUTOFMEMORY There is not enough memory to create the new view.
E_UNEXPECTED An unknown error occurred.

6 In the future this parameter could be used to specify the type of view that needs to be created. Currently there are no defined values for this argument.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 22 OLE Document Objects Specifications

E_FAIL This document object only supports a single view which has already
been created.

Comments:
This function must be completely implemented in any document object; therefore E_NOTIMPL is not an acceptable
return code.

As with all new interface pointers, CreateView calls AddRef on the pointer in *ppView before returning. The caller is
responsible for calling Release through this pointer when it is no longer needed.

If pIPSite is non-NULL, then the document object should pass the pointer to the new view through
IOleDocumentView::SetInPlaceSite. If NULL, the caller is responsible for this same call. In addition, if pstm is non-
NULL, then the object should initialize the view object by passing pstm to IOleDocumentView::ApplyViewState.

IOleDocument::GetDocMiscStatus
HRESULT IOleDocument::GetDocMiscStatus([out] DWORD *pdwStatus)

Returns miscellaneous status bits describing the document object, such as whether the object can create multiple views
and accept complex rectangles.7 These values are also stored in the registry as the value of the “DocObject” key:

typedef enum
 {
 DOCMISC_CANCREATEMULTIPLEVIEWS = 1, //Object supports multiple views
 DOCMISC_SUPPORTCOMPLEXRECTANGLES = 2, //IOleDocumentView::SetRectComplex is supported
 DOCMISC_CANTOPENEDIT = 4, //IOleDocumentView::Open is unsupported
 DOCMISC_NOFILESUPPORT = 8 //Object does not support file read/write
 } DOCMISC;

The bits DOCMISC_CANTOPENEDIT, DOCMISC_NOFILESUPPORT need further explanation. There can be objects
which can only be embedded, can only be in-place activated, and which do not have files of their own, regardless of
whether they are implemented as in-process or local servers. Objects which have limited UI for activation purposes
should set DOCMISC_CANTOPENEDIT. Those that only support IPersistStorage as a persistence mechanism should
specify DOCMISC_NOFILESUPPORT. Otherwise and object must also implement IPersistFile implementation.

If an object desires none of these status bits it must return a zero in *pdwStatus.

Argument Type Description
pdwStatus DWORD * The address of the variable to receive the status bits about this

document object.

Return Value Meaning
S_OK The status bits were returned successfully.
E_POINTER The address in pdwStatus is NULL.

Comments:
This function must be completely implemented in any document object even if a zero is returned; therefore
E_NOTIMPL is not an acceptable return code.

IOleDocument::EnumViews
HRESULT IOleDocument::EnumViews([out] IEnumOleDocumentViews **ppEnum

, [out] IOleDocumentView **ppView)

Creates an enumerator object that enumerates the IOleDocumentView interface pointers of the views of the document
object. The enumerator supports the interface IEnumOleDocumentViews, a pointer to which is returned in *ppEnum.
An object that supports only a single view (that is, DOCMISC_CANCREATEMULTIPLEVIEWS is not specified

7 One rectangle each for view, horizontal scroll bar, vertical scroll bar and size box. See IOleDocumentView::SetRectComplex.

OLE Document Objects Specifications Page 23

through IOleDocument::GetMiscStatus) does not create an enumerator but instead returns the single view pointer
through *ppView.

Argument Type Description
ppEnum IEnumOleDocumentViews ** The address of the variable to receive the

interface pointer of the enumerator.
ppView IOleDocumentView ** The address of the variable to receive the

interface pointer of a single view.

Return Value Meaning
S_OK If the object supports multiple views, then *ppEnum contains the

enumerator pointer. Otherwise *ppEnum is NULL and *ppView
contains the interface pointer to the single view..

E_POINTER The address in ppEnum or ppView is invalid. The caller must pass
pointers for both arguments.

E_OUTOFMEMORY The enumerator could not be created because there is insufficient
memory.

Comments:
This function must be completely implemented in any document object; therefore E_NOTIMPL is not an acceptable
return code.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 24 OLE Document Objects Specifications

The IEnumOleDocumentViews Interface
A document object can be asked to enumerate its views through IOleDocument::EnumViews. The resulting enumerator
returned from this member implements the interface IEnumOleDocumentViews through which a client can access all the
individual view sub-objects supported within the document object itself, where each view implements
IOleDocumentView.

Therefore IEnumOleDocumentViews is a standard enumerator interface typed for IOleDocumentView *.

IDL:

[
uuid(B722BCC8-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IEnumOleDocumentViews : IUnknown
 {
 HRESULT Next([in] ULONG cViews
 , [out, max_is(cViews)] IOleDocumentView **rgpView
 , [out] ULONG *pcFetched);
 HRESULT Skip([in] ULONG cViews);
 HRESULT Reset(void);
 HRESULT Clone([out] IEnumOleDocumentViews **ppEnum);
 }

IEnumOleDocumentViews::Next
HRESULT IEnumOleDocumentViews::Next([in] ULONG cViews , [out, max_is(cViews)]

IOleDocumentView **rgpView, [out] ULONG *pcFetched);

Enumerates the next cViews elements in the enumerator’s list, returning them in rgpView along with the actual number
of enumerated elements in pcFetched. The caller is responsible for calling IOleDocumentView::Release through each
pointer returned in rgpView.

Argument Type Description
cViews ULONG Specifies the number of IOleDocumentView* values to return

in the array pointed to by rgpView. This argument must be 1 if
pcFetched is NULL.

rgpView IOleDocumentView * A pointer to a caller-allocated IOleDocumentView * array of
size cViews in which to return the enumerated document views.
The caller is responsible for calling
IOleDocumentView::Release through each pointer enumerated
into the array once this method returns successfully. If cViews
is greater than 1 the caller must also pass a non-NULL pointer
passed to pcFetched to know how many pointers to release.

pcFetched ULONG A pointer to the variable to receive the actual number of
document views enumerated in rgpView. This argument can be
NULL in which case the cViews argument must be 1.

Return Value Meaning
S_OK The requested number of elements has been returned and *pcFetched

(if non-NULL) is set to cViews if
S_FALSE The enumerator returned fewer elements than cViews because there

were not that many elements left in the list.. In this case, unused
elements in rgpView in the enumeration are not set to NULL and
*pcFetched holds the number of valid entries, even if zero is
returned.

OLE Document Objects Specifications Page 25

E_POINTER The address in rgpView is not valid (such as NULL)
E_INVALIDARG The value of cViews is not 1 when pcFetched is NULL; or the value

of cViews is zero.
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to enumerate the elements.

Comments:
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpView array are valid on
exit and require no release.

IEnumOleDocumentViews::Skip
HRESULT IEnumOleDocumentViews::Skip([in] ULONG cConnections);

Instructs the enumerator to skip the next cViews elements in the enumeration such that the next call to
IEnumOleDocumentViews::Next will not return those elements.

Argument Type Description
cViews ULONG Specifies the number of elements to skip in the enumeration.

Return Value Meaning
S_OK The number of elements skipped is cViews.
S_FALSE The enumerator skipped fewer than cViews because there were not

that many left in the list. The enumerator will, at this point, be
positioned at the end of the list such that subsequent calls to Next
(without an intervening Reset) will return zero elements.

E_INVALIDARG The value of cViews is zero, which is not valid.
E_UNEXPECTED An unknown error occurred.

IEnumOleDocumentViews::Reset
HRESULT IEnumOleDocumentViews::Reset(void);

Instructs the enumerator to position itself back to the beginning of the list of elements.

Argument Type Description
NA NA NA

Return Value Meaning
S_OK The enumerator was successfully reset to the beginning of the list.
S_FALSE The enumerator was not reset to the beginning of the list.
E_UNEXPECTED An unknown error occurred.

Comments:
There is no guarantee that the same set of elements will be enumerated on each pass through the list: it depends on the
collection being enumerated. It is too expensive for some collections, such as files in a directory, to maintain this
condition.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 26 OLE Document Objects Specifications

IEnumOleDocumentViews::Clone
HRESULT IEnumOleDocumentViews::Clone([out] IEnumOleDocumentViews **ppEnum);

Creates another view enumerator with the same state as the current enumerator, which iterates over the same list. This
makes it possible to record a point in the enumeration sequence in order to return to that point at a later time.

Argument Type Description
ppEnum IEnumOleDocumentViews* The address of the variable to receive the

IEnumOleDocumentViews interface pointer to the newly
created enumerator. The caller must release this new
enumerator separately from the first enumerator.

Return Value Meaning
S_OK Clone creation succeeded.
E_NOTIMPL Cloning is not supported for this enumerator.
E_POINTER The address in ppEnum is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to create the clone enumerator.

OLE Document Objects Specifications Page 27

The IOleDocumentSite Interface
By implementing this interface on an client site alongside other client site interfaces required by OLE Documents, a
container indicates its support for document object activation to any such objects associated with this site. The interface
allows a document object to ask the container to activate it as a document instead of as an in-place embedded object.
The document object can alternately specify which view to activate.

The view site encapsulates the view port (the HWND and a rectangle in that HWND) and the frame context of the view
port. There can be multiple view ports in a single window. A view site is attached to a view through the pIPSite
argument of IOleDocument::CreateView or through IOleDocumentView::SetInPlaceSite.

IDL:

[
uuid(B722BCC7-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IOleDocumentSite : IUnknown
 {
 HRESULT ActivateMe([in] IOleDocumentView *pViewToActivate);
 };

IOleDocumentSite::ActivateMe
HRESULT IOleDocumentSiteActivateMe([in] IOleDocumentView *pViewToActivate)

When a document object is asked to in-place activate through IOleObject::DoVerb, a document object bypasses the
normal in-place activation sequence of OLE Documents and instead calls IOleDocumentSite::ActivateMe to become
active as a document. This should be done in the OLEIVERB_OPEN, OLEIVERB_SHOW,
OLEIVERB_INPLACEACTIVATE, and OLEIVERB_UIACTIVATE cases.

The document object can specify which view to activate by passing that view’s IOleDocumentView pointer in
pViewToActivate. The container in this case will proceed and activate that view through that pointer. Otherwise, the
container calls the object’s IOleDocument::CreateView to obtain the view it wishes to activate.

Argument Type Description
pViewToActivate IOleDocumentView ** If non-NULL, specifies the view to bring forward.

The caller does not call AddRef on this pointer before
passing it in—if the receiver wishes to hold the
pointer outside of this member function it must call
pViewToActivate->AddRef();

Return Value Meaning
S_OK The container activated the view successfully.
E_OUTOFMEMORY pViewToActivate is NULL and the container’s call to

IOleDocument::CreateView failed with E_OUTOFMEMORY.
E_FAIL Another error occurred in either view creation or activation.

Comments:
This function must be completely implemented in a container; therefore E_NOTIMPL is not an acceptable return code.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 28 OLE Document Objects Specifications

The IOleDocumentView Interface
Each view of a document object is a sub-object that implements IOleDocumentView alongside IOleInPlaceObject,
IOleInPlaceActiveObject, and other optional interfaces like IPrint and IOleCommandTarget. This interface provides all
the necessary operations for a container to manipulate, manage, and activate a view.

IDL:

[
uuid(B722BCC6-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IOleDocumentView : IUnknown
 {
 //import "unknwn.idl";
 HRESULT SetInPlaceSite([in] IOleInPlaceSite *pIPSite);
 HRESULT GetInPlaceSite([out] IOleInPlaceSite **ppIPSite);
 HRESULT GetDocument([out] IUnknown **ppunk);
 [input_sync] HRESULT SetRect([in] LPRECT prcView);
 HRESULT GetRect([out] LPRECT prcView);
 [input_sync] HRESULT SetRectComplex([in] LPRECT prcView
 , [in] LPRECT prcHScroll, [in] LPRECT prcVScroll
 , [in] LPRECT prcSizeBox);
 HRESULT Show ([in] BOOL fShow);
 HRESULT UIActivate([in] BOOL fUIActivate);
 HRESULT Open(void);
 HRESULT CloseView([in] DWORD dwReserved);
 HRESULT SaveViewState([in] IStream *pstm);
 HRESULT ApplyViewState([in] IStream *pstm);
 HRESULT Clone([in] IOleInPlaceSite *pIPSiteNew
 , [out] IOleDocumentView **ppViewNew);
 }

The members SetInPlaceSite and GetInPlaceSite manage the IOleInPlaceSite interface pointer for the container’s view
site associated with this view. The semantics of SetInPlaceSite are encompassed in the pIPSite argument of
IOleDocument::CreateView.

GetDocument provides access to the IUnknown pointer of the document object that owns this view.

The SetRect and GetRect members manage the simple rectangle that the view will occupy in the container.
SetRectComplex allows the container to specify not only the simple rectangle but also the spaces that should be occupied
by the view’s scrollbars and size box. An view specifies whether it understands SetRectComplex through the
DOCMISC_SUPPORTCOMPLEXRECTANGLES status bit (see IOleDocument::GetMiscStatus).

The view’s visual state is managed through the pair Show and UIActivate as well as Open. Show instructs the view to
activate or deactivate itself in-place; when the view is active, UIActivate instructs the view to activate or deactivate its
user interface elements such as menus, toolbars, and accelerators. Show and UIActivate in this interface are thus
equivalents of the IOleInPlaceObject members of InPlaceActivate, InPlaceDeactivate, UIActivate, and UIDeactivate
that are used for control of an in-place embedding.

The Open member, on the other hand, works with activation in a separate window (as happens with embeddings in OLE
Documents when in-place is not supported). DocObjects marked with DOCMISC_CANTOPENEDIT (see
IOleDocument::GetMiscStatus) do not support this form of activation. If support is present, however, Open instructs the
view to activate in a separate window similar to IOleObject::DoVerb(OLEIVERB_OPEN). At this point Show instructs
the view to show and hide this window.

In all cases, CloseView instructs the view to deactivate the view, destroying any separate window and releasing the view
site pointer passed previously to IOleDocumentView::SetInPlaceSite. This functionality is similar to that described for
IOleObject::Close.

A view’s internal state can be saved to a stream through SaveViewState and later reloaded from a stream with the same
contents through ApplyViewState. The semantics of ApplyViewState are encompassed in the pstm argument of
IOleDocument::CreateView.

OLE Document Objects Specifications Page 29

Finally, a container can create a duplicate view object to the current one with Clone.

IOleDocumentView::SetInPlaceSite
HRESULT IOleDocumentView::SetInPlaceSite([in] IOleInPlaceSite *pIPSite)

Associates a view site object with this view. If this member is called and the view already has an associated view site,
the view must first deactivate itself in that site, release that site, then remember the new pointer if that pointer is non-
NULL (save the value and call AddRef on the pointer). The container will tell the view when to activate itself in the
new site.

Argument Type Description
pIPSite IOleInPlaceSite * The interface pointer of the site to associate with this

view. Can be NULL in which case the view loses all
association with the container.

Return Value Meaning
S_OK The site was successfully associated (or disassociated if pIPSite is

NULL)
E_FAIL Another error occurred.

Comments:
This function must be completely implemented in a view; therefore E_NOTIMPL is not an acceptable return code.

IOleDocumentView::GetInPlaceSite
HRESULT IOleDocumentView::GetInPlaceSite([out] IOleInPlaceSite **ppIPSite)

Returns the most recent IOleInPlaceSite pointer passed to SetInPlaceSite, or NULL if SetInPlaceSite has not yet been
called. The view will call AddRef on this pointer before returning it, thus the caller must later call Release.

Argument Type Description
ppIPSite IOleInPlaceSite ** The address in which to return the current view site

interface pointer associated with this view object.
The caller becomes responsible for this pointer.

Return Value Meaning
S_OK The site was successfully returned. The caller must call Release

through this pointer when it is no longer needed.
E_FAIL Another error occurred.

Comments:
This function must be completely implemented in a view; therefore E_NOTIMPL is not an acceptable return code.

IOleDocumentView::GetDocument
HRESULT IOleDocumentView::GetDocument([out] IUnknown **ppunk)

Returns the IUnknown interface pointer of the document object that owns this view. As a document owning the view
must always exist, this function will always succeed, calling AddRef on the pointer stored in *ppunk before returning.

Argument Type Description
ppunk IUnknown ** The address in which to return the IUnknown pointer

of the document object that owns this view. The
caller becomes responsible for this pointer.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 30 OLE Document Objects Specifications

Return Value Meaning
S_OK The document object’s interface pointer was successfully returned.

This is the only valid return code for this function.

IOleDocumentView::SetRect
[input_sync] HRESULT IOleDocumentView::SetRect([in] LPRECT prcView)

Sets the rectangular coordinates of the view port in the client coordinates of the view window (the window is obtained
through IOleInPlaceSite::GetWindow). The view must resize itself to view the new coordinates.

This member function is defined with the [input_sync] attribute, hence the implementing object cannot yield or make
another non input_sync RPC call while executing this method.

Argument Type Description
prcView LPRECT Points to a RECT structure containing the

coordinates of the view port in the client coordinates
of the view window.

Return Value Meaning
S_OK The view was successfully resized to the rectangle.
E_FAIL Some other critical error occurred that prevented resizing to occur.

Comments:
This function must be completely implemented in a view; therefore E_NOTIMPL is not an acceptable return code.

IOleDocumentView::GetRect
HRESULT IOleDocumentView::GetRect([out] LPRECT prcView)

Returns the rectangular coordinates of the view port in the client coordinates of the view window, as was last specified
through IOleDocumentView::SetRect or IOleDocumentView::SetRectComplex .

Argument Type Description
prcView LPRECT Points to a RECT structure to receive the current

view coordinates.

Return Value Meaning
S_OK The view was successfully resized to the rectangle.
E_UNEXPECTED This view has not yet seen a call to IOleDocumentView::SetRect or

IOleDocumentView::SetRectComplex, thus it has no rectangle to
return.

Comments:
This function must be completely implemented in a view; therefore E_NOTIMPL is not an acceptable return code.

IOleDocumentView::SetRectComplex
[input_sync] HRESULT IOleDocumentView::SetRectComplex([in] LPRECT prcView, [in] LPRECT

prcHScroll, [in] LPRECT prcVScroll, [in] LPRECT prcSizeBox)

Sets the rectangular coordinates of the view port, horizontal and vertical scroll bars, and the size box. This method
typically gets used by the view frames which have a workbook metaphor. However, not all DocObjects support these
detailed specifications; those that do mark themselves with DOCMISC_SUPPORTCOMPLEXRECTANGLES as
described in IOleDocument::GetMiscStatus. DocObjects that do not support this member can return E_NOTIMPL.

OLE Document Objects Specifications Page 31

Within this member, the view should resize itself according to prcView and fit its scrollbars and size box to the areas
described in prcHScroll, prcVScroll, and prcSizeBox, respectively.

This member function is defined with the [input_sync] attribute, hence the implementing object cannot yield or make
another non input_sync RPC call while executing this method.

Argument Type Description
prcView [in] LPRECT Points to a RECT structure containing the coordinates

of the view port in client coordinates of the view
window.

prcHScroll [in] LPRECT Points to a RECT structure containing the coordinates
of the horizontal scroll bar in client coordinates of the
view window.

prcVScroll [in] LPRECT Points to a RECT structure containing the coordinates
of the vertical scroll bar in client coordinates of the
view window.

prcSizeBox [in] LPRECT Points to a RECT structure containing the coordinates
of the size box in client coordinates of the view
window.

Return Value Meaning
S_OK The view was successfully resized to the rectangle.
E_NOTIMPL The document object that owns this view does not support complex

rectangle specifications.
E_FAIL Some other critical error occurred that prevented resizing of the view

or placement of the scrollbars and size box.

IOleDocumentView::Show
HRESULT Show ([in] BOOL fShow)

Instructs a view to in-place activate or in-place deactivate itself as described in the following pseudo-code:

if (fShow)
 {
 in-place activate the view but do not UI activate it.
 Show the view window.
 {
else
 {
 call IOleDocumentView::UIActivate(FALSE) on this view
 Hide the view window
 }

Argument Type Description
fShow BOOL TRUE instructs the view to show itself, FALSE instructs the

view to hide itself.

Return Value Meaning
S_OK The view was successfully shown or hidden.
E_OUTOFMEMORY There was not enough memory to activate or hide the view.
E_FAIL Some other critical error occurred that prevented activation or hiding.
E_UNEXPECTED This member was called before a call to

IOleDocumentView::SetInPlaceSite.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 32 OLE Document Objects Specifications

Comments:
All views of a document object must at least support the in-place activation mode, therefore E_NOTIMPL is not
allowed as a return value.

IOleDocumentView::UIActivate
HRESULT IOleDocumentView::UIActivate([in] BOOL fUIActivate)

Instructs the view to activate or deactivate its user interface elements (menus, toolbars, accelerators) as described in the
following pseudo-code:

if (fActivate)
 {
 UI activate the view (do menu merging, show frame level tools, process accelerators)
 Take focus, and bring the view window forward.
 }
else
 call IOleInPlaceObject::UIDeactivate() on this view

The view may, and should, participate in extended Help menu merging if it desires.

Argument Type Description
fActivate BOOL TRUE instructs the view to activate its UI, FALSE instructs the

view to deactivate its UI.

Return Value Meaning
S_OK The view’s UI was successfully activated or deactivated.
E_OUTOFMEMORY There was not enough memory to activate the UI elements.
E_FAIL Some other error occurred that prevented success.
E_UNEXPECTED This member was called before a call to

IOleDocumentView::SetInPlaceSite.

Comments:
All views of a document object must at least support the in-place activation mode, therefore E_NOTIMPL is not
allowed as a return value.

IOleDocumentView::Open
HRESULT IOleDocumentView::Open(void)

Asks the view to display itself in a separate popup window with semantics equivalent to
IOleObject:;DoVerb(OLEIVERB_OPEN). If the document object specified DOCMISC_CANTOPENEDIT through
IOleDocument::GetMiscStatus, this call can return E_NOTIMPL. Otherwise implementation generally calls the view’s
own IOleInPlaceObject::InPlaceDeactivate after which the view shows its separate popup window and brings that
window to the foreground.

Contrary to the normal in-place deactivation sequence for OLE Documents, a view continues to hold the
IOleInPlaceSite pointer that it obtained in IOleDocumentView::SetInPlaceSite (likewise the view site continues to hold
the view’s interface pointers, obviously). This pointer is only released through
IOleDocumentView::SetInPlaceSite(NULL) or in IOleDocumentView::CloseView.

When the user closes the view’s window (via File.Close), then the view should not shut itself down. Instead it should
call pIPSite->OnInPlaceActivate. The view site then decides whether to UI activate the view at that time or at a later
time.

When the container decides that the view window is no longer needed, it calls IOleDocumentView::CloseView. The
view uses that call to determine when to release the site pointer and destroy the window.

OLE Document Objects Specifications Page 33

If is legal for the container to call IOleDocumentView::Show(FALSE) when the view is in this Open mode. In this case
the view hides its window. Similarly, IOleDocumentView::Show(TRUE) instructs the view to show the window again
and bring it to the foreground.

Argument Type Description
NA NA NA

Return Value Meaning
S_OK The view successfully created its separate window.
E_OUTOFMEMORY There was not enough memory to activate the view in a separate

window.
E_FAIL Some other error occurred that prevented success.
E_NOTIMPL The document object that owns this view does not support separate

window activation.
E_UNEXPECTED This member was called before a call to

IOleDocumentView::SetInPlaceSite.

IOleDocumentView::CloseView
HRESULT IOleDocumentView::CloseView([in] DWORD dwReserved)

Asks the view to close down and release its IOleInPlaceSite pointer obtained in IOleDocumentView::SetInPlaceSite.
The container must call this method before it wants to delete the view (that is, release its last reference to the view). In
general, implementation of this member will call IOleDocumentView::Show (FALSE) to hide the view if it’s not already,
then call IOleDocumentView::SetInPlaceSite(NULL) to deactivate itself and release the view site pointer.

Argument Type Description
dwReserved DWORD Reserved. Must be zero.

Return Value Meaning
S_OK The view successfully closed itself.

Comments:
Because CloseView is called when the container wishes to completely shut down the view, this member must be
implemented and has no reason to fail.

IOleDocumentView::SaveViewState
HRESULT IOleDocumentView::SaveViewState([in] IStream *pstm)

Instructs the view to save its state into the given stream, where the state includes properties like the view type, zoom
factor, insertion point, and so on. The container typically calls this function before deactivating the view. The stream
can then later be used to reinitialize a view of the same document to this saved state through
IOleDocumentView::ApplyViewState.

The view must write its CLSID as the first element in the stream according to the rules that apply to IPersistStream.
Any cross-platform file format compatibility issues that apply to the document’s storage representation also apply to this
context.

Argument Type Description
pstm [in] IStream * ask the view to save the view state into this

stream.

Argument Type Description
pstm IStream * The stream in which the view should save its state.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 34 OLE Document Objects Specifications

Return Value Meaning
S_OK The view successfully saved its state to the stream.
E_POINTER The value in pstm is NULL.
E_NOTIMPL This view has no meaningful state to save; this should be a rare case

as most views will have at least some information.

IOleDocumentView::ApplyViewState
HRESULT IOleDocumentView::ApplyViewState([in] IStream *pstm)

Instructs a view to reinitialize itself according to the data in a stream that was previously written through
IOleDocumentView::SaveViewState. Typically this function is called when the view is being displayed for first time
after its instantiation. It is the responsibility of the view to validate the data in the view stream as the container does not
attempt to interpret view state stream data in any way.

Argument Type Description
pstm IStream * The stream from which the view should load its state.

Return Value Meaning
S_OK The view successfully loaded its state from the stream.
E_POINTER The value in pstm is NULL.
E_NOTIMPL This view has no meaningful state that it would load; this should be a

rare case as most views will have at least some information.

IOleDocumentView::Clone
HRESULT IOleDocumentView::Clone([in] IOleInPlaceSite *pIPSiteNew, [out] IOleDocumentView

**ppViewNew)

Creates a duplicate view object with an identical internal state to the current view. This is useful for creating a new
view with a different view port and view site but with the same view context as the view being cloned. Typically this
will be used to implement the “Window-New window” functionality.

Argument Type Description
pipsiteClone [in] IOleInPlaceSite * pointer to the in-place site for the clone
ppviewClone [out] IOleDocumentView ** the location where the pointer to the new view

should be returned.

Argument Type Description
pIPSiteNew IOleInPlaceSite * The IOleInPlaceSite pointer of the view site to associate with

the clone. The view being cloned should pass this to the new
view’s IOleDocumentView::SetInPlaceSite member. This can
be NULL in which case the caller is responsible for calling
SetInPlaceSite on this new view directly.

ppViewNew IOleDocumentView * The address of the variable to receive the pointer to the new
view’s IOleDocumentView interface. The caller is responsible
for this pointer any must call Release through it when it is no
longer needed.

Return Value Meaning
S_OK The view successfully cloned. The caller is responsible for the

pointer in *ppViewNew.
E_POINTER The value in ppViewNew is NULL.
E_FAIL The document object only supports one view. E_NOTIMPL can also

OLE Document Objects Specifications Page 35

be used.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 36 OLE Document Objects Specifications

The IPrint Interface
Any object that wishes to support programmatic printing can implement the IPrint interface. Through this interface a
caller can tell the object to print, set the initial page number (for printing multiple documents together), and retrieve
print-related information from the object:

IDL:

[
uuid(B722BCC9-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IPrint : IUnknown
 {
 typedef [unique] IPrint *LPPRINT;
 typedef enum
 {
 PRINTFLAG_MAYBOTHERUSER = 1,
 PRINTFLAG_PROMPTUSER = 2,
 PRINTFLAG_USERMAYCHANGEPRINTER = 4,
 PRINTFLAG_RECOMPOSETODEVICE = 8,
 PRINTFLAG_DONTACTUALLYPRINT = 16,
 PRINTFLAG_FORCEPROPERTIES = 32,
 PRINTFLAG_PRINTTOFILE = 64
 } PRINTFLAG;
 typedef struct tagPAGERANGE
 {
 LONG nFromPage;
 LONG nToPage;
 } PAGERANGE;
 typedef struct tagPAGESET
 {
 ULONG cbStruct;
 BOOL fOddPages;
 BOOL fEvenPages;
 ULONG cPageRange;
 [size_is(cPageRange)] PAGERANGE rgPages[];
 } PAGESET;

 HRESULT SetInitialPageNum([in] LONG nFirstPage);
 HRESULT GetPageInfo([out] LONG *pnFirstPage, [out] LONG *pcPages);
 HRESULT Print([in] DWORD grfFlags, [in,out] DVTARGETDEVICE **pptd
 , [in,out] PAGESET **ppPageSet
 , [unique][in,out] STGMEDIUM *pstgmOptions
 , [in] IContinueCallback *pcallback, [in] LONG nFirstPage
 , [out] LONG *pcPagesPrinted, [out] LONG *pnLastPage);
 };
#define PAGESET_TOLASTPAGE ((WORD)(-1L))

The structures of this interface will be described first, followed by the member functions.

PAGERANGE Structure
Identifies a single range of pages. Note that is nFromPage is greater than nToPage, the pages are printed in the reverse
order.

Member Type Description
nFromPage LONG The first page to print. The first page of a document is 1.
nToPage LONG The last page to print. A special value of PAGESET_TOLASTPAGE indicates

that all the remaining pages should be printed.

PAGESET Structure
Identifies a series of page-ranges and optionally identifies only the even or odd pages as part of this PAGESET.

OLE Document Objects Specifications Page 37

Member Type Description
cbStruct ULONG The number of bytes in this instance of the PAGESET structure. Must be a

multiple of 4.
fOddPages BOOL If true, then only the odd-numbered pages in the page-set indicated by rgPages

are to be printed.
fEvenPages BOOL If true, then only the even-numbered pages in the page-set indicated by

rgPages are to be printed.
cPageRange ULONG The number of page-range pairs specified in rgPages.
rgPages PAGERANGE * Specifies the pages to be printed. The page ranges must be sorted in increasing

order and non-overlapping. It is an error to attempt to print a page which does
not exist.

PRINTFLAG Enumeration
A combination of values from PRINTFLAG is passed in as grfFlags to IPrint::Print.

Value Description
PRINTFLAG_MAYBOTHERUSER Specifies whether any interaction is permitted with the user at all.

Unless this flag is set, no part of the printing process may interact
with the user.

PRINTFLAG_PROMPTUSER Only valid if PRINTFLAG_MAYBOTHERUSER is specified.
Prompt the user for job-specific printing options using the normal
print dialog for the object. Support for this option is required.

PRINTFLAG_USERMAYCHANGEPRINTER Only valid if PRINTFLAG_PROMPTUSER is specified. Indicates
that the user may change the printer to be printed to; in the absence
of this flag, the user must print on the printer provided.

PRINTFLAG_RECOMPOSETODEVICE Indicates that the object should attempt to recompose itself to the
indicated target device. In the absence of this flag, the object should
retain any existing compositional-device association that it may
happen to presently have if at all possible.

PRINTFLAG_DONTACTUALLYPRINT Carry out any indicated user-prompting and object-recomposing
actions as indicated, but don’t actually carry out the printing
operation.

PRINTFLAG_PRINTTOFILE The object should print to the file, name of which is passed through
“portname” field of DVTARGETDEVICE.

IPrint::SetInitialPageNum
HRESULT IPrint::SetInitialPageNum([in] LONG nFirstPage)

Attempt to set the number of the first page of this document. Note that setting a negative first page number is legal: this
may be useful in printing a portion of the document with offset page numbers from what it would normally print. Note
also that not all implementations permit the initial page number to be set, as some implementations simply lack the
information as to how this page information should be reflected in the final output.

Argument Type Description
nFirstPage LONG The desired first page number.

Return Value Meaning
S_OK The first page was set as requested.
E_FAIL The first page could not be set to the indicated value.
E_UNEXPECTED An unknown error occurred.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 38 OLE Document Objects Specifications

IPrint::GetPageInfo
HRESULT IPrint::GetPageInfo([out] LONG *nFirstPage, [out] LONG *pcPages)

Return information about the pages in the document.

Argument Type Description
pnFirstPage LONG* Location to return the page number of the first page. May be NULL, indicating the

caller doesn’t need this number. If IPrint::SetInitialPageNum has been called, this
should contain the same value passed to that method. Otherwise the value is the
document’s internal first page number.

pcPages LONG* Location to return the total number of pages in this document. May be NULL,
indicating the caller doesn’t need this number.

Return Value Meaning
S_OK Success.
E_UNEXPECTED An unexpected error occurred.

IPrint::Print
HRESULT IPrint::Print([in] DWORD grfFlags, [in,out] DVTARGETDEVICE **pptd

, [in,out] PAGESET **pppageset, [unique][in,out] STGMEDIUM *pstgmOptions
, [in] IContinueCallback *pcallback, [in] LONG nFirstPage, [out] LONG *pcPagesPrinted
, [out] LONG *pnLastPage)

Print this object on the printer indicated by the DVTARGETDEVICE structure in ptd. The DEVMODE in the target
device indicates whole-job printer-specific options, such as number of copies, paper size, print quality, etc. It may or
may not also contain orientation information in the dmOrientation field (this is indicated in the dmFields field). If
present, then this paper orientation should be used; if absent, then natural orientation as determined by the object content
is to be used.

Due to the possibility of user input, the parameters pptd and ppPageSet are both [in,out] structures. In the absence of
user interaction (that is, without PRINTFLAG_PROMPTUSER), both the target device and the page set will necessarily
be the same on input and output. However, if the user is prompted for print options, then the object returns target device
and page set information appropriate to what the user has actually chosen during interaction.

ppstgmOptions is an [in,out] parameter. On exit, the object should return through *ppstgmOptions any object-specific
information that it would need to reproduce this exact print job. Examples might include whether the user selected
“sheet, notes, or both” in a spreadsheet application. The data returned is in the format of a serialized property set. The
returned data can usually only be usefully used by passing it back in a subsequent call to the same object; however, that
call may have different user interaction flags, different target device, etc. Thus, the caller can cause the exact same
document to be printed multiple times in slightly different printing contexts.

Argument Type Description
grfFlags DWORD A bit field whose values are taken from the enumeration

PRINTFLAG.
pptd DVTARGETDEVICE** The target device on which the printing is to occur.
ppPageSet PAGESET** Indicates which pages are to be printed.
ppstgmOptions STGMEDIUM** Contains object-specific printing options in the form of a serialized

OLE property set. May be NULL in one or both directions.
pCallback IContinueCallback* A callback interface which is to be periodically polled at human-

response speeds to determine whether printing should be abandoned.
May be NULL.

OLE Document Objects Specifications Page 39

nFirstPage LONG The starting page number to print. This overrides any value
previously passed to IPrint::SetInitialPageNum.

pcPagesPrinted LONG* The place at which the object is to return the actual number of pages
that were successfully printed.

pnLastPage LONG* The place at which the object is to return the last legal page number.

Return Value Meaning
S_OK Success
PRINT_E_CANCELLED The print process was canceled. *pcPagesPrinted indicates the number

of pages that were in fact successfully printed before this occurred.
PRINT_E_NOSUCHPAGE An attempt has been made to print a page which does not exist.
E_UNEXPECTED An unexpected error occurred.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 40 OLE Document Objects Specifications

The IContinueCallback Interface
This interface is a generic callback mechanism for interruptible processes that should periodically ask an object with this
interface whether to continue the process.

IDL:

[
uuid(B722BCCA-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IContinueCallback : IUnknown
 {
 HRESULT FContinue(void);
 HRESULT FContinuePrinting([in] LONG nCntPrinted
 , [in] LONG nCurPage, [unique][in] wchar_t *pszPrintStatus);
 }

The FContinue function is a generic continuation request. FContinuePrinting carries extra information pertaining to a
printing process and is used in the context of IPrint.

IContinueCallback::FContinue
HRESULT IContinueCallback::FContinue(void)

Answer as to whether a given generic operation should continue.

Argument Type Description
NA NA NA

Return Value Meaning
S_OK Continue the operation.
S_FALSE Cancel the operation as soon as possible

IContinueCallback::FContinuePrinting
HRESULT IContinueCallback::FContinuePrinting(cPagesPrinted, nCurrentPage, wszPrintStatus)

Answer as to whether a given lengthy printing operation should continue. Implementations of IPrint call back on this
method at periodic intervals during the printing process. The IPrint implementation should call back at least after
printing each page, so that its client can display useful visual feedback to the user. Further, the implementation can
legally call back multiple times with the same cPagesPrinted and nCurrentPage values; this is sometimes useful when a
page being printed is complex and it is appropriate to give the user a chance to cancel mid-page.

Argument Type Description
cPagesPrinted LONG The total number of pages printed so far.
nCurrentPage LONG The page number of the current page being printed.
pszPrintStatus LPOLESTR Status message about the print job which the recipient of this call may choose to

display to the user. May be NULL.

Return Value Meaning
S_OK Continue printing.
S_FALSE Cancel the print job as soon as possible
E_UNEXPECTED An unknown error occurred.

OLE Document Objects Specifications Page 41

The IOleCommandTarget Interface
The command dispatch interface IOleCommandTarget defines a simple and extensible mechanism to query and execute
commands which are defined as integer identifiers in a group. The group is identified itself with a GUID. The interface
allows a caller to both query for support of commands within a group as well as to instruct the object to execute those
commands.

IDL:

[
uuid(B722BCCB-4E68-101B-A2BC-00AA00404770)
 , object, pointer_default(unique)
]
interface IOleCommandTarget : IUnknown
 {
 typedef [unique] IOleCommandTarget *LPOLECOMMANDTARGET;
 typedef enum
 {
 OLECMDF_SUPPORTED = 0x00000001,
 OLECMDF_ENABLED = 0x00000002,
 OLECMDF_LATCHED = 0x00000004,
 OLECMDF_NINCHED = 0x00000008
 } OLECMDF;
 typedef struct _tagOLECMD
 {
 ULONG cmdID;
 DWORD cmdf;
 } OLECMD;
 typedef enum
 {
 OLECMDTEXTF_NONE = 0,
 OLECMDTEXTF_NAME = 1,
 OLECMDTEXTF_STATUS = 2
 } OLECMDTEXTF;
 typedef struct _tagOLECMDTEXT
 {
 DWORD cmdtextf;
 ULONG cwActual;
 ULONG cwBuf;
 [size_is(cwBuf)] wchar_t rgwz[];
 } OLECMDTEXT;
 typedef enum
 {
 OLECMDEXECOPT_DODEFAULT = 0,
 OLECMDEXECOPT_PROMPTUSER = 1,
 OLECMDEXECOPT_DONTPROMPTUSER = 2,
 OLECMDEXECOPT_SHOWHELP = 3
 } OLECMDEXECOPT;
 typedef enum
 {
 OLECMDID_OPEN = 1,
 OLECMDID_NEW = 2,
 OLECMDID_SAVE = 3,
 OLECMDID_SAVEAS = 4,
 OLECMDID_SAVECOPYAS = 5,
 OLECMDID_PRINT = 6,
 OLECMDID_PRINTPREVIEW = 7,
 OLECMDID_PAGESETUP = 8,
 OLECMDID_SPELL = 9,
 OLECMDID_PROPERTIES = 10,
 OLECMDID_CUT = 11,
 OLECMDID_COPY = 12,
 OLECMDID_PASTE = 13,
 OLECMDID_PASTESPECIAL = 14,
 OLECMDID_UNDO = 15,
 OLECMDID_REDO = 16,
 OLECMDID_SELECTALL = 17,

Ó Microsoft Corporation,2021. All Rights Reserved

Page 42 OLE Document Objects Specifications

 OLECMDID_CLEARSELECTION = 18,
 OLECMDID_ZOOM = 19,
 OLECMDID_GETZOOMRANGE = 20,
 OLECMDID_UPDATECOMMANDS = 21,
 OLECMDID_REFRESH = 22,
 OLECMDID_STOP = 23,
 OLECMDID_HIDETOOLBARS = 24,
 OLECMDID_SETPROGRESSMAX = 25,
 OLECMDID_SETPROGRESSPOS = 26,
 OLECMDID_SETPROGRESSTEXT= 27,
 OLECMDID_SETTITLE = 28
 } OLECMDID;
 [input_sync] HRESULT QueryStatus([unique][in] const GUID *pguidCmdGroup
 , [in] ULONG cCmds, [in,out][size_is(cCmds)] OLECMD *prgCmds
 , [unique][in,out] OLECMDTEXT *pCmdText);
 HRESULT Exec([unique][in] const GUID *pguidCmdGroup
 , [in] DWORD nCmdID, [in] DWORD nCmdExecOpt
 , [unique][in] VARIANTARG *pvaIn
 , [unique][in,out] VARIANTARG *pvaOut);
 };

OLECMDF Enumeration
Values from the OLECMDF enumeration are used to fill the value of the cmdf field in OLECMD structures as passed to
IOleCommandTarget::QueryStatus.

Flag Description
OLECMDF_SUPPORTED The command is supported by this object.
OLECMDF_ENABLED The command is available and enabled.
OLECMDF_LATCHED The command is an on-off toggle and is currently on.
OLECMDF_NINCHED The command is an on-off toggle but the state cannot be determined because the attribute

of this command is found in both on and off states in the relevant selection. This state
corresponds to an “indeterminate” state of a 3-state checkbox, for example.

OLECMD Structure
The OLECMD structure is used to associate command flags from the OLECMDF enumeration with a command
identifier through IOleCommandTarget::QueryStatus.

Field Type Description
cmdID ULONG A command identifier.
cmdf DWORD Flags associated with cmdID taken from the OLECMDF enumeration.

OLECMDTEXTF Enumeration
Values from the OLECMDTEXTF enumeration are used to describe what a command target object should store in the
OLECMDTEXT structure passed to IOleCommandTarget::QueryStatus. One value from this enumeration is stored in
the cmdtextf of the structure to indicate the desired information.

Flag Description
OLECMDTEXTF_NONE No extra information is requested.
OLECMDTEXTF_NAME The object should return the localized name of the command.
OLECMDTEXTF_STATUS The object should return a localized status string for the command.

OLECMDTEXT Structure
Used to return a text name or a status string for a single command identifier when used with
IOleCommandTarget::QueryStatus.

OLE Document Objects Specifications Page 43

Field Type Description
cmdtextf DWORD Filled on input; a value from the OLECMDTEXTF enumeration describing

the information the caller wishes to receive in return.
cwActual ULONG Filled on output; the number of characters actually written into the rgwz

buffer before the function returns.
cwBuf ULONG Filled on input; the size of the string buffer in cwBuf.
rgwz wchar_t A caller allocated array of wide characters to receive the string on output.

OLECMDEXECOPT Enumeration
Flag Description
OLECMDEXECOPT_PROMPTUSER Execute the command after taking user input.
OLECMDEXECOPT_DONTPROMPTUSER Execute the command without prompting the user (for example,

clicking on the Print toolbar button, causes the document to be
immediately printed without requiring the user input).

OLECMDEXECOPT_DODEFAULT Caller is not sure whether the user should be prompted or not.
OLECMDEXECOPT_SHOWHELP Object should show help for the corresponding command and not

execute.

OLECMDID Enumeration
See below under “Standard Command List.”

IOleCommandTarget::QueryStatus
[input_sync] HRESULT QueryStatus([unique][in] const GUID *pguidCmdGroup, [in] ULONG cCmds,

[in,out][size_is(cCmds)] OLECMD *prgCmds , [unique][in,out] OLECMDTEXT *pCmdText);

Queries the object for the status of one or more commands, typically used in WM_INITMENU or
WM_INITMENUPOPUP messages, enabling the caller to disable those commands that would be routed to the object
but that are not available. The caller passes an array of OLECMD structures in prgCmds that describe the commands of
interest from the group specified in pguidCmdGroup, where each structure’s cmdID is set to a command identifier and
the cmdf field is set to zero. The object receiving the call the fills the cmdf field for each command with bits taken from
the OLECMDF enumeration to describe the status of each command.

The caller can also use this method to get the name or status text of a single command. The called object should first
mark the command as described above. If the command is supported (OLECMDF_SUPPORTED) then the object
should check the OLECMDTEXTF flags in the OLECMDTEXT structure. If the OLECMDFTEXF_NAME flag is
specified, then the object should copy the localized name of the command (for example, “Open”, “Copy”, etc.) into the
rgwz field of OLECMDTEXT, paying attention to the size specified by the cwBuf field in that same structure.

If, however, the caller specifies OLECMDFTEXTF_STATUS then the object should instead copy a localized status
string for the command into the rgwz field. The status string is typically contextual, and it depends on the state of the
command such as enabled/disabled. If the buffer is not big enough then the object should zero terminate the buffer.
Whether the buffer is big enough or not the object must return the total actual size of the string(s), that he attempted to
copy, via cwActual field.

If the command array contains more than one command, then the textual information should be returned for the first
command in the command array that the object supports. Typically this functionality is used to show the status text of a
command. Note that the caller can use a stack or global variable for rgwz, it not be dynamically allocated memory.

This member function is defined with the [input_sync] attribute, hence the implementing object cannot yield or make
another non input_sync RPC call while executing this method.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 44 OLE Document Objects Specifications

Argument Type Description
pguidCmdGroup const GUID * Unique identifier of the command group which can be NULL to specify the

standard group. All the commands that are passed in the rgCmds array must
belong to this group.

cCmds ULONG The number of commands in the prgCmds array.
prgCmds OLECMD * An caller-allocated array of OLECMD structures where the cmdID fields of

the structures initialized with the commands being queried.
pcmdText OLECMDTEXT * Pointer to the structure in which to return name and/or status information.

Can be NULL to indicate that the caller is not interested in such information.

Return Value Meaning
S_OK The command status as any optional strings were returned

successfully.
E_POINTER The prgCmds argument is NULL.
E_UNEXPECTED An unexpected error occurred.
E_FAIL An error occurred
OLECMDERR_E_UNKNOWNGROUP pguidCmdGroup is non-NULL but does not specify a recognized

command group.

Comments:
A command target must implement this function; therefore E_NOTIMPL is not a valid return code.

IOleCommandTarget::Exec
HRESULT Exec([unique][in] const GUID *pguidCmdGroup, [in] DWORD nCmdID

, [in] DWORD nCmdExecOpt, [unique][in] VARIANTARG *pvaIn
, [unique][in,out] VARIANTARG *pvaOut)

Executes a specified command or displays help for a command. As in the case of IOleCommandTarget::QueryStatus,
the pguidCmdGroup and nCmdID arguments uniquely identify the command to invoke. The exact action to take is
specified in nCmdExecOpt (see the OLECMDEXECOPT enumeration for more details).

Most of the commands take no arguments nor do they return any values. Hence, for majority of the commands the
caller can pass NULLs for pvaIn and pvaOut. For the commands which expect one or more input value, the caller can
declare and initialize a VARIANTARG variable and pass a pointer to that variable in pvaIn.8 If the input to the
command is a single value then the argument can be stored directly in the VARIANTARG and passed to the function. If
the command expects multiple arguments then they must be packaged appropriately within the VARIANTARG using
one of the supported types (such as IDispatch, SAFEARRAY, etc.).

Similarly, if a command returns one or more arguments the caller is expected to declare a VARIANTARG, initialize it
to VT_EMPTY, and pass its address in pvaOut. If the command returns a single value then the object can store that
value directly in pvaOut. If the command has multiple output values then it will package those in some way appropriate
for the VARIANTARG.

Note that both pvaIn and pvOut are caller-allocated, thus stack variables are perfectly usable. For commands that take
zero or one argument on input and return zero or one values, then no extra memory allocation is necessary. 9 the caller
and callee can use stack variables.

The list of in and out arguments of a command and how they are packaged is unique to each command; such
information should be documented with the specification of the command group (see the Zoom command later in this
section). In the absence of any specific information the command is assumed to take no arguments and have no return
value.

8 VARIANTARG is defined in OLE Automation.
9 Most of the types supported by VARIANTARG do not require memory allocation, few of the exceptions are SAFEARRAY and BSTR. For the
complete list, see OLE documentation.

OLE Document Objects Specifications Page 45

Argument Type Description
pguidCmdGroup const GUID * Unique identifier of the command group which can be NULL to specify the

standard group. The command passed in nCmdID must belong to this group.
nCmdID DWORD The command to execute which must be in the group specified with

pguidCmdGroup.
nCmdExecOpt DWORD One or more values from the OLECMDEXECOPT enumeration describing

how the object should execute the command.
pvaIn VARIANTARG * Pointer to a VARIANTARG containing input arguments. Can be NULL.
pvaOut VARIANTARG * Pointer to a VARIANTARG to receive the output return values. Can be

NULL.

Return Value Meaning
S_OK The command was executed successfully.
E_UNEXPECTED An unexpected error occurred.
E_FAIL An error occurred
OLECMDERR_E_UNKNOWNGROUP pguidCmdGroup is non-NULL but does not specify a recognized

command group.
OLECMDERR_E_NOTSUPPORTED The nCmdID argument is not recognized as a valid command in

the group identified with pguidCmdGroup.
OLECMDERR_DISABLED The command identified with nCmdID is currently disabled and

cannot be executed.
OLECMDERR_NOHELP The caller has asked for help on the command identified by

nCmdID but no help is available.
OLECMDERR_CANCELED The user canceled the execution of the action.

Comments:
A command target must implement this function; therefore E_NOTIMPL is not a valid return code.

Standard Command List
Following is the list of standard commands that have been defined by Office 95 which are identified as the group with a
NULL GUID (that is, pguidCmdGroup as passed to IOleCommandTarget::Exec is NULL; this is not the same as
GUID_NULL, which is not used in this context).

Ó Microsoft Corporation,2021. All Rights Reserved

Page 46 OLE Document Objects Specifications

Identifier Description
OLECMDID_OPEN File Open

OLECMDID_NEW File New

OLECMDID_SAVE File Save

OLECMDID_SAVEAS File Save As

OLECMDID_SAVECOPYAS File Save Copy As

OLECMDID_PRINT File Print

OLECMDID_PRINTPREVIEW File Print Preview

OLECMDID_PAGESETUP File Page Setup

OLECMDID_SPELL Tools Spelling

OLECMDID_PROPERTIES File Properties

OLECMDID_CUT Edit Cut

OLECMDID_COPY Edit Copy

OLECMDID_PASTE Edit Paste

OLECMDID_PASTESPECIAL Edit Paste Special

OLECMDID_UNDO Edit Undo

OLECMDID_REDO Edit Redo

OLECMDID_SELECTALL Edit Select All

OLECMDID_CLEARSELECTION Edit Clear

OLECMDID_ZOOM View Zoom (see below for details)

OLECMDID_GETZOOMRANGE Retrieves zoom range applicable to View Zoom (see below for details)

OLECMDID_UPDATECOMMANDS Informs the receiver of state changes at which time the receiver (usually the
frame but not limited to it) can query the status of the commands at a
convenient time.

OLECMDID_REFRESH Instructs the receiver to refresh its display.

OLECMDID_STOP Stop all current processing

OLECMDID_HIDETOOLBARS View Toolbar. Hide all toolbars owned by the receiving object (usually a
Document Object).

OLECMDID_SETPROGRESSMAX Sets the maximum value of a progress indicator if one if owned by the
receiving object (usually a frame).

OLECMDID_SETPROGRESSPOS Sets the current value of a progress indicator if one if owned by the receiving
object (usually a frame).

OLECMDID_SETPROGRESSTEXT Sets the text contained inside a progress indicator if one if owned by the
receiving object (usually a frame). If the receiver currently has no progress
indicator, this text should be displayed in the status bar, if one exists, as with
IOleInPlaceFrame::SetStatusText.

OLECMDID_SETTITLE Sets the title bar text of the receiving object (usually the frame).

The Zoom Commands
Under normal OLE Documents functionality, an object being edited in-place disabled its Zoom control on its toolbar
and its View.Zoom menu are disabled, because logically the Zoom applies to the container document and not the object.
With the OLECMDID_ZOOM and OLECMDID_GETZOOMRANGE commands in the standard set for
IOleCommandTarget, the object now has a means through which it can notify the container’s frame object (the one with

OLE Document Objects Specifications Page 47

IOleInPlaceFrame as well as IOleCommandTarget, if supported) as well as retrieve the zoom range that it should
display in its user interface.

OLECMDID_ZOOM

The OLECMDID_ZOOM command takes one LONG argument as input and returns one LONG argument on output.
This command is used for three purposes:
· To query the current zoom value the caller passes OLECMDEXECOPT_DONTPROMPTUSER as the execute

option in nCmdExecOpt and NULL for pvIn. The object returns the current zoom value in pvaOut. When the
object goes UI active, it retrieves the current zoom value from the container’s frame object using this same
mechanism and updates its zoom control with the returned value.

· To display the Zoom dialog box the caller passes OLECMDEXECOPT_PROMPTUSER in nCmdExecOpt. The
caller can optionally pass the initial value for the dialog box through pvaIn, otherwise pvaIn must be NULL. If
the user presses CANCEL, the object returns OLECMDERR_E_CANCELED; if the user presses OK, then the
object returns the user selected value in pvaOut. When user selects the View.Zoom menu item, the object calls
container’s frame object in the same manner. The container then zooms the document to the user selected
value, and the object updates its Zoom control with that value.

· To set a Zoom value the caller passes OLECMDEXECOPT_DONTPROMPTUSER in nCmdExecOpt and passes the
zoom value to apply through pvaIn. The object validates and normalizes the new value and returns the validated
value in pvaOut. When the user selects a new zoom value (using the Zoom control on the toolbar for instance) the
object calls the container’s frame object in this manner. The container zooms the document to the normalized value
and object updates the Zoom control with that value.

OLECMDID_GETZOOMRANGE

The OLECMDID_GETZOOMRANGE command is used to determine the range of valid zoom values from a command
target object. The caller passes MSOCMDEXECOPT_DONTPROMPTUSER in nCmdExecOpt and NULL for pvaIn.
The object returns its zoom range as a DWORD in pvaOut where the HIWORD contains the maximum zoom value and
the LOWORD contains the minimum zoom value. Typically this command is used when the user drops down the
Zoom control on the toolbar of the UI active object. The applications and objects that support this command are
required to support all the integral zoom values that are within the (min,max) pair they return.

Ó Microsoft Corporation,2021. All Rights Reserved

Page 48 OLE Document Objects Specifications

Appendix: Office Binder Issues

This short appendix describes some of the details concerning Office Binder’s implementation of programmatic printing.
In addition, one other note is worth mention which is that Binder allows the user to open a document object into a
separate window (the semantics of IOleDocumentView::Open). It is recommended that Office-compatible DocObjects
support separate window activation if possible.

As for printing, Binder uses IPrint for Binder level printing, thus DocObjects that wish to work well with Binder must
implement IPrint. The Binder supports two distinct levels of printing. At the Binder level, users can print multiple
sections. At the section level, only the selected section will be printed (implemented via the IOleCommandTarget
interface).

Binder Level Printing
When printing a section of the Binder level, Binder will be responsible for displaying the user interface elements that are
related to print progress, canceling of the print job, and so forth. This will be indicated by the absence of the
PRINTFLAG_MAYBOTHERUSER flag in the call to IPrint::Print. Binder is always going to call IPrint::Print with
PRINTFLAG_RECOMPOSETODEVICE bit set. Depending on the user’s selection, Binder may set the
DM_COLLATE and DM_COPIES bits of dmFields field of DVTARGETDEVICE. When DM_COPIES bit is set then
the dmCopies field contains the number of copies that need to be printed. The document object being printed must look
at these fields and use the information they contain when it prints.

When the user selects the Print to file option in the print dialog box, then the Binder will call IPrint::Print with
PRINTFLAG_PRINTTOFILE and it will pass the name of the file (into which the document object must print) through
the “portname” field of DVTARGETDEVICE. The document object can then put that file name in the DOCINFO
structure, and pass it to the WIN32 StartDoc API as part of the printing process. This will take handle the “print to file”
request.

Section Level Page Setup and Printing
A user can opt to perform Page Setup and Printing at the section level. When Page Setup is chosen, Binder will call the
IOleCommandTarget::Exec method with OLECMDID_PAGESETUP. This indicates that the object should prompt the
user for page-specific options using its Page Setup dialog.

Similarly when printing a section at the section level, the Binder will call the IOleCommandTarget::Exec method with
OLECMDID_PRINT, indicating that printing is to be performed. The document object should prompt the user with its
File/Print dialog and use it’s own settings to perform the print job.

During section level printing the object should display any user interface elements that are needed by the user (that is,
print job status, cancellation buttons, etc).

Calling IContinueCallback::FContinuePrinting
During Binder-level printing, it is important for DocObjects to call IContinueCallback::FContinuePrinting often, so that
Binder can response quickly if the user presses the Cancel button in the Binder’s print dialog box. The document object
must call at least once for each page that it is printing. If a specific page will take a long time to compose and print,
then the document object should call more often to assure a timely response to the user’s commands.

	Introduction
	Feature Description
	A General Overview of Document Objects
	Summary of Requirements for Document Object Participation

	Architectural Details of Document Objects
	Overview
	Relevant Objects and the Interfaces They Must Implement
	Document Objects (Server)
	Views Objects (Server)
	Document Site Objects (Container)
	View Site Objects (Container)
	Frame Object (Container)

	Help Menu Merging: An Extension to OLE Documents
	Programmatic Printing (IPrint & IContinueCallback)
	Command Targets

	Implementation Notes
	Becoming a DocObject Server
	IOleObject::SetClientSite
	IOleObject::DoVerb
	In-Place Activation Differences
	Storage requirements.
	Registration
	Limiting Embedding Support

	Becoming a DocObject Container
	Storage Provisions and User Interface
	Creation and Initialization
	Activation
	Saving and Shutdown
	Support for Other OLE Features and Completeness of Interface Implementations

	Document Objects Interface Reference
	The IOleDocument Interface
	IOleDocument::CreateView
	IOleDocument::GetDocMiscStatus
	IOleDocument::EnumViews

	The IEnumOleDocumentViews Interface
	IEnumOleDocumentViews::Next
	IEnumOleDocumentViews::Skip
	IEnumOleDocumentViews::Reset
	IEnumOleDocumentViews::Clone

	The IOleDocumentSite Interface
	IOleDocumentSite::ActivateMe

	The IOleDocumentView Interface
	IOleDocumentView::SetInPlaceSite
	IOleDocumentView::GetInPlaceSite
	IOleDocumentView::GetDocument
	IOleDocumentView::SetRect
	IOleDocumentView::GetRect
	IOleDocumentView::SetRectComplex
	IOleDocumentView::Show
	IOleDocumentView::UIActivate
	IOleDocumentView::Open
	IOleDocumentView::CloseView
	IOleDocumentView::SaveViewState
	IOleDocumentView::ApplyViewState
	IOleDocumentView::Clone

	The IPrint Interface
	PAGERANGE Structure
	PAGESET Structure
	PRINTFLAG Enumeration
	IPrint::SetInitialPageNum
	IPrint::GetPageInfo
	IPrint::Print

	The IContinueCallback Interface
	IContinueCallback::FContinue
	IContinueCallback::FContinuePrinting

	The IOleCommandTarget Interface
	OLECMDF Enumeration
	OLECMD Structure
	OLECMDTEXTF Enumeration
	OLECMDTEXT Structure
	OLECMDEXECOPT Enumeration
	OLECMDID Enumeration
	IOleCommandTarget::QueryStatus
	IOleCommandTarget::Exec
	Standard Command List
	The Zoom Commands
	OLECMDID_ZOOM
	OLECMDID_GETZOOMRANGE

	Appendix: Office Binder Issues
	Binder Level Printing
	Section Level Page Setup and Printing
	Calling IContinueCallback::FContinuePrinting

