
OLE Control and Control Container Guidelines

V2.0 Preliminary
13th December 1995

Distribution: Public
© Copyright Microsoft Corporation,2021. All Rights Reserved.

DRAFT

1Contents
1. Contents..

2. Overview..
2.1 Why are the OLE Control and Control Container Guidelines Important?..
2.2 What to do When an Interface You Need is Not Available..
2.3 What’s New in V2.0?...

3. Controls...
3.1 Self Registration...
3.2 What Support for an Interface Means...
3.3 Persistence Interfaces..
3.4 Optional Methods..
3.5 Class Factory Options...
3.6 Properties..
3.7 Methods (via IDispatch and Other dispinterfaces)..
3.8 Events..
3.9 Property Pages...
3.10 Ambient Properties...
3.11 Using the Container’s Functionality...

4. Containers...
4.1 Required Interfaces...
4.2 Optional Methods..
4.3 Miscellaneous Status Bits Support...
4.4 Keyboard Handling...
4.5 Storage Interfaces...
4.6 Ambient Properties...
4.7 Extended Properties, Events and Methods...
4.8 Message Reflection...
4.9 Automatic Clipping..
4.10 Degrading Gracefully in the Absence of an Interface...

5. Component Categories..
5.1 What are Component Categories and how do they work?..
5.2 SimpleFrameSite Containment...

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 2

5.3 Simple Data Binding...
5.4 Advanced Data Binding..

6. General Guidelines...
6.1 Overloading IPropertyNotifySink..
6.2 Container-Specific Private Interfaces...
6.3 Multi-Threaded Issues..
6.4 Event Freezing..
6.5 Container Controls..
6.6 WS_GROUP and WS_TABSTOP Flags in Controls..
6.7 Multiple Controls in One DLL...
6.8 IOleContainer::EnumObjects...
6.9 Enhanced Metafiles..
6.10 Licensing...
6.11 Dual Interfaces..
6.12 IPropertyBag and IPersistPropertyBag...

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS MEANT TO SPECIFY
AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT. SOME OF THE INFORMATION IN THIS
DOCUMENTATION MAY BE INACCURATE OR MAY NOT BE AN ACCURATE REPRESENTATION OF THE FUNC-
TIONALITY OF THE FINAL SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR
ANY DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE INACCURACIES.
MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR PENDING PATENT APPLICATIONS, OR
OTHER INTELLECTUAL PROPERTY RIGHTS COVERING SUBJECT MATTER IN THIS DOCUMENT. THE
FURNISHING OF THIS DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 3

2Overview
The purpose of this document is to provide guidelines for implementing OLE controls and containers that will
interoperate well with other controls and containers. This document defines the minimum set of interfaces, methods, and
features that are required of OLE Controls and Containers to accomplish seamless and useful interoperability.

An OLE Control is essentially a simple OLE object that supports the IUnknown interface. It will usually support a lot
more interfaces in order to offer functionality, but all additional interfaces may be viewed as optional and as such, a
control container should not rely on any additional interfaces being supported. By not specifying additional interfaces
that a control must support a control may efficiently target a particular area of functionality without having to support
particular interfaces to qualify as a control. As always with OLE, whether in a control or a control container, it should
never be assumed that an interface is available and standard return-checking conventions should always be followed. It is
important for a control or control container to degrade gracefully and offer alternative functionality if an interface
required is not available.

An OLE Control container must be able to host a minimal OLE Control as specified in this document, it will also support
a number of additional interfaces as specified in the ‘Containers’ section of this document. There are a number of
interfaces and methods that a container may optionally support, which are grouped into functional areas known as
Component Categories. A container may support any combination of component categories, for example, a component
category exists for ‘Databinding’ and a container may or may not support the databinding functionality, depending on the
market needs of the container. If a control needs databinding support from a container to function, then it will enter this
requirement in the registry. This allows a control container to only offer for insertion those controls that it knows it can
successfully host. It is important to note that Component Categories are specified as part of OLE and are not specific to
OLE Controls, the controls architecture uses Component Categories to identify areas of functionality that an OLE
component may support. Component categories are not cumulative or exclusive, so a control container can support one
category without necessarily supporting another.

It is important for controls that require optional features, or features specific to a certain container to be clearly packaged
and marketed with those requirements. Similarly containers that offer certain features or component categories must be
marketed and packaged as offering those levels of support when hosting OLE controls. It is recommended that controls
target and test with as many containers as possible and degrade gracefully to offer less or alternative functionality if
interfaces or methods are not available. In a situation where a control cannot perform its designated job function without
the support of a component category, then that category should be entered as a requirement in the registry in order to
prevent the control being inserted in an inappropriate container.

These guidelines define those interfaces and methods that a control may expect a control container to support, although
as always a control should check the return values when using QueryInterface or other methods to obtain pointers to these
interfaces. A container should not expect a control to support anything more than the IUnknown interface, and these
guidelines identify what interfaces a control may support and what the presence of a particular interface means.

2.1Why are the OLE Control and Control Container Guidelines Important?
OLE Controls have become the primary architecture for developing programmable software components for use in a
variety of different containers ranging from software development tools to end-user productivity tools. In order for a
control to operate well in a variety of containers, the control must be able to assume some minimum level of
functionality that it can rely on in all containers.

By following these guidelines, control and container developers make their controls and containers more reliable and
interoperable, and ultimately, better and more usable components for building component-based solutions.

This document provides guidelines towards good interoperability. It is expected that new interfaces and component
categories will develop over time, future versions of this document reflecting these changes will be made readily
available through Microsoft. It is important to note that this document does not cover detailed semantics of the OLE
interfaces, this is covered by the SDK documentation.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 4

2.2What to do When an Interface You Need is Not Available
This section states some fundamental rules that apply to all OLE programming. OLE programs should use QueryInterface
to acquire interface pointers, and must check the return value. OLE applications cannot safely assume that
QueryInterface will succeed, this requirement applies to all OLE applications. If the requested interface is not available
(i.e., QueryInterface returns E_NOINTERFACE), the control or container must degrade gracefully, even if that means
that it cannot perform its designated job function.

2.3What’s New in V2.0?
This release of the guidelines embraces the concept of Component Categories which are a part of the OLE specification.
In previous versions of this dicument component categories were loosely referred to as ‘function groups’ and were used
to identify areas of functionality that a container may optionally support, for this version there has been a definition of
how component categories work for OLE Controls and some fundamental categories are identified. The use of
component categories allows the relaxing of some of the previous rules that identified interfaces as being mandatory, and
allows greater flexibility for controls to efficiently target certain areas of functionality without having to provide
superfluous additional support in order to qualify as a control. This edition of the guidelines also discusses what the
presence or absence of an interface means and what to do in that situation.

The remainder of this document is divided into four sections. The first discusses guidelines for implementing controls,
the second discusses guidelines for implementing control containers, the third discusses component categories, and the
fourth discusses general guidelines, relevant to both control and control container developers.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 5

3Controls
An OLE control is really just another term for “OLE Object” or more specifically, “COM Object.” In other words, a
control, at the very least, is some COM object that supports the IUnknown interface and is also self-registering. Through
IUnknown::QueryInterface a container can manage the lifetime of the control as well as dynamically discover the full
extent of a control’s functionality based on the available interfaces. This allows a control to implement as little
functionality as it needs to, instead of supporting a large number of interfaces that actually don’t do anything. In short,
this minimal requirement for nothing more than IUnknown allows any control to be as lightweight as it can.

In short, other than IUnknown and self-registration, there are no other requirements for a control. There are however
conventions that should be followed about what the support of an interface means in terms of functionality provided to
the container by the control. This section then describes what it means for a control to actually support an interface, as
well as methods, properties, and events that a control should provide as a baseline if it has occasion to support methods,
properties, and events.

3.1Self Registration
OLE controls must support self-registration by implementing the DllRegisterServer and DllUnregisterServer functions.
OLE controls must register all of the standard registry entries for embeddable objects and automation servers.

OLE Controls must use the component categories API to register themselves as a control and register the component
categories that they require a host to support and any categories that the control implements, see the Component
Categories section of this document. In addition an OLE Control may wish to register the ‘control’ keyword in order to
allow older control containers such as VB4 to host them.

OLE Controls should also register the ToolBoxBitmap32 registry key, although this is not mandatory.

The Insertable component category should only be registered if the control is suitable for use as a compound document
object. It is important to note that a compound document object must support certain interfaces beyond the minimum
IUnknown required for an OLE Control. Although an OLE Control may qualify as a Compound Document Object, the
control’s documentation should clearly state what behavior to expect under these circumstances.

3.2What Support for an Interface Means
Besides the IUnknown interface, an OLE Control—or COM Object for that matter—expresses whatever optional
functionality it supports through additional interfaces. This is to say that no other interfaces are required above
IUnknown. To that end, the following table lists the interfaces that an OLE Control might support, and what it means to
support that interface. Further details about the member functions of these interfaces are given in a later section.

Interface Comments/What it Means to Support the Interface
IOleObject If the control requires communication with its client site for anything other than

events (see IconnectionPointContainer), then IOleObject is a necessity. When
implementing this interface, the control must also support the semantics of the
following members: SetHostNames, Close, EnumVerbs, Update, IsUpToDate,
GetUserClassID, GetUserType, GetMiscStatus, and the Advise, Unadvise, and
EnumAdvise members that work in conjunction with a container’s IAdviseSink
implementation.1

IOleInPlaceObject Expresses the control’s ability to be in-place activated and possibly UI activated.
This interface means that the control has a user interface of some kind that can be

1 A control implementing IOleObject must be able to handle IAdviseSink if the container provides one; a container may not, in
which case a control ensures, of course, that it does not attempt to call a non-existent sink.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 6

Interface Comments/What it Means to Support the Interface
activated, and IOleInPlaceActiveObject is supported as well. Required members
are GetWindow, InPlaceActivate, UIDeactivate, SetObjectRects, and
ReactivateAndUndo. Support for this interface requires support for IOleObject.

IOleInPlaceActiveObject An in-place capable object that supports IOleInPlaceObject must also provide this
interface as well, though the control itself doesn’t necessarily implement the
interface directly.

IOleControl Expresses the control’s ability and desire to deal with (a) mnemonics
(GetControlInfo, OnMnemonic members), (b) ambient properties
(OnAmbientPropertyChange), and/or (c) events that the control requires the
container to handle (FreezeEvents). Note that mnemonics are different than
accelerators that are handled through IOleInPlaceActiveObject: mnemonics have
associated UI and are active even when the control is not UI active. A control’s
support for mnemonics means that the control also knows how to use the container’s
IOleControlSite::OnControlInfoChanged member. Because this requires the control
to know the container’s site, support for mnemonics also means support for
IOleObject. In addition, knowledge of mnemonics requires in-place support and
thus IOleInPlaceObject.

If a control uses any container-ambient properties, then it must also implement this
interface to receive change notifications, as following the semantics of changes is
required. Because ambient properties are only available through the container site’s
IDispatch, ambient property support means that the control supports IOleObject (to
get the site) as well as being able to generate IDispatch::Invoke calls.

The FreezeEvents method is necessary for controls that must know when a
container is not going to handle an event—this is the only way for control to know
this condition. If FreezeEvents is only necessary in isolation, such that other
IOleControl members are not implemented, then IOleControl can stand alone
without IOleObject or IOleInPlaceObject.

IDataObject Indicates that the control can supply at least (a) graphical renderings of the control
(CF_METAFILEPICT is the minimum if the control has any visuals at all) and/or
(b) property sets, if the control has any properties to provide. The members
GetData, QueryGetData, EnumFormatEtc, DAdvise, DUnadvise, and EnumDAdvise
are required. Support for graphical formats other than CF_METAFILEPICT is
optional.

IViewObject2 Indicates that the control has some interesting visuals when it is not in-place active.
If implemented, a control must support the members Draw, GetAdvise, SetAdvise,
and GetExtent.

Idispatch Indicates that the control has either (a) custom methods, or (b) custom properties
that are both available via late-binding through IDispatch::Invoke. This also
requires that the control provides type information through other IDispatch
members. A control may support multiple IDispatch implementations where only
one is associated with IID_IDispatch—the others must have their own unique
dispinterface identifiers.

A control is encouraged to supply dual interfaces for custom method and property
access, but this is optional if methods and properties exist.

IConnectionPointContainer Indicates that a control supports at least one “outgoing” interface, such as events or
property change notifications. All members of this interface must be implemented
if this interface is available at all, including EnumConnectionPoints which requires

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 7

Interface Comments/What it Means to Support the Interface
a separate object with IEnumConnectionPoints.

Support for IConnectionPointContainer means that the object also supports one or
more related objects with IConnectionPoint that are available through
IConnectionPointContainer members. Each “connection point” object itself must
implement the full IConnectionPoint interface, including EnumConnections, which
requires another enumerator object with the IEnumConnections interface.

IProvideClassInfo[2] Indicates that the object can provide its own coclass type information directly
through IProvideClassInfo::GetClassInfo. If the control supports the later variation
IProvideClassInfo2, then it also indicates its ability to provide its primary source
IID through IProvideClassInfo2::GetGUID. All members of this interface must be
implemented.

ISpecifyPropertyPages Indicates that the control has property pages that it can display such that a container
can coordinate this control’s property pages with other control’s pages when
property pages are to be shown for a multi-control selection. All members of this
interface must be implemented when support exists.

IPerPropertyBrowsing Indicates the control’s ability to (a) provide a display string for a property, (b)
provide pre-defined strings and values for its properties and/or (c) map a property
dispID to a specific property page. Support for this interface means that support for
properties through IDispatch as above is provided. If (c) is supported, then it also
means that the object’s property pages mapped through
IPerPropertyBrowsing::MapPropertyToPage themselves implement
IPropertyPage2 as opposed to the basic IPropertyPage interface.

IPersistStream See “Persistence Interfaces” section.

IPersistStreamInit See “Persistence Interfaces” section.

IPersistMemory See “Persistence Interfaces” section.

IPersistStorage See “Persistence Interfaces” section.

IPersistMoniker See “Persistence Interfaces” section.

IPersistPropertyBag See “Persistence Interfaces” section.

IOleCache[2] Indicates support for container caching of control visuals. A control generally
obtains caching support itself through the OLE function CreateDataCache. Only
controls with meaningful static content should choose to do this (although it is not
required). If a control supports caching at all, it should simply aggregate the data
cache and expose both IOleCache and IOleCache2 interfaces from the data cache.2

IExternalConnection Indicates that the control supports external links to itself; that is, the control is not
marked with OLEMISC_CANTLINKINSIDE and supports IOleObject::SetMoniker
and IOleObject::GetMoniker. A container will never query for this interface itself
nor call it directly as calls are generated from inside OLE’s remoting layer.

IRunnableObject Indicates that the control differentiates being “loaded” from being “running”, as

2 IOleCacheControl is only important if the control has an external out-of-process data source that itself implements IDataObject
such that the control could directly connect the data source to the cache without any intervening layers. This will be exceptionally
rare.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 8

Interface Comments/What it Means to Support the Interface
some in-process objects do.

3.3Persistence Interfaces
Objects that have a “persistent state” of any kind must implement at least one IPersist* interface, and preferably multiple
interfaces, in order to provide the container with the most flexible choice of how it wishes to save a control’s state.

If a control has any persistent state whatsoever, it must, as a minimum, implement either IPersistStream or
IPersistStreamInit (the two are mutually exclusive and shouldn’t be implemented together for the most part). The latter
is used when a control wishes to know when it is created new as opposed to reloaded from an existing persistent state
(IPersistStream does not have the “created new” capability). The existence of either interface indicates that the control
can save and load its persistent state into a stream, that is, an instance of IStream.

Beyond these two stream-based interfaces, the IPersist* interfaces listed in the following table can be optionally provided
in order to support persistence to locations other than an expandable IStream.

A set of component categories is identified to cover the support for persistency interfaces see the ’Component
Categories‘ section of this document.

Interface Usage

IPersistMemory The object can save and load its state into a fixed-length sequential byte array (in memory).

IPersistStorage The object can save and load its state into an IStorage instance. Controls that wish to be
marked “Insertable” as other compound document objects (for insertion into non-control
aware containers) must support this interface.

IPersistPropertyBag The object can save and load its state as individual properties written to IPropertyBag which
the container implements. This is used for “Save As Text” functionality in some containers.

IPersistMoniker The object can save and load its state to a location named by a moniker. The control calls
IMoniker::BindToStorage to retrieve the storage interface it requires, such as IStorage,
IStream, ILockBytes, IDataObject, etc.

While support for IPersistPropertyBag is optional, it is strongly recommended as an optimization for containers with
“Save As Text” features, such as Visual Basic.

With the exception of IPersistStream[Init]::GetSizeMax and IPersistMemory::GetSizeMax, all methods of each interface
must be fully implemented.

3.4Optional Methods
Implementing an interface doesn’t necessarily mean implementing all member functions of that interface to do anything
more than return E_NOTIMPL or S_OK as appropriate. The following table identifies the methods of the interfaces
listed in the ‘What Support for an Interface Means’ section that a control may implement in this manner. Check with the
SDK OLE Reference documentation for full syntax and valid return values from these methods. Any method not listed
here must be fully implemented if the interface is supported.

Method Comments

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 9

Method Comments
IOleControl

GetControlInfo, OnMnemonic Mandatory for controls with mnemonics.
OnAmbientPropertyChange Mandatory for controls that use ambient properties.
FreezeEvents See ‘Event Freezing’ in the General Guidelines section.

IOleObject
SetMoniker Mandatory if the control is not marked with

OLEMISC_CANTLINKINSIDE
GetMoniker Mandatory if the control is not marked with

OLEMISC_CANTLINKINSIDE
InitFromData Optional
GetClipboardData Optional
SetExtent Mandatory only for DVASPECT_CONTENT
GetExtent Mandatory only for DVASPECT_CONTENT
SetColorScheme Optional
DoVerb See Note 1.

IoleInPlaceObject
ContextSensitiveHelp Optional
ReactivateAndUndo Optional

IOleInPlaceActiveObject
ContextSensitiveHelp Optional

IViewObject2
Freeze Optional
Unfreeze Optional
GetColorSet Optional

IpersistStream[Init], IPersistMemory
GetSizeMax See Note 2.

Notes:
1. A control with property pages must support IOleObject::DoVerbs for the OLEIVERB_PROPERTIES and

OLEIVERB_PRIMARY verbs. A control that can be active must support IOleObject::DoVerbs for the
OLEIVERB_INPLACEACTIVATE verb. A control that can be UI active must also support
IOleObject::DoVerbs for the OLEIVERB_UIACTIVATE verb.

2. If a control supports IPersistStream[Init] and can return an accurate value, then it should do so.

3.5Class Factory Options
An OLE Control, by virtue of being a COM object, must have associated server code that supports control creation
through IClassFactory as a minimum.

It is optional, not required, that this class object also supports IClassFactory2 for licensing management. Only those
vendors that are concerned about licensing need to support COM’s licensing mechanism. In other words, because
IClassFactory2 is the only way to achieve COM-level licensing, this interface is required on the class object for those
controls that wish to be licensed.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 10

3.6Properties
Although most controls do have properties, controls are not required to expose any properties and thus the control does
not require IDispatch. If the control does have properties, there are no requirements for which properties a control must
expose.

3.7Methods (via IDispatch and Other dispinterfaces)
Although most controls do expose and support several methods, controls are not required to expose or support any
methods and thus the control does not require IDispatch. If the control does have any methods, there are no requirements
for which methods a control must expose.

3.8Events
Although most controls do expose and fire several events, controls are not required to expose or fire any events and thus
the control does not require IConnectionPointContainer. If the control does have any events, there are no requirements
for which events a control must expose.

3.9Property Pages
Support for property pages and per-property browsing is strongly recommended, but not required. If a control does
implement property pages, then those pages should conform to one of the standard sizes: 250x62 or 250x110 dialog units
(DLUs).

3.10Ambient Properties
If a control supports any ambient properties at all, it must at least respect the values of the following ambient properties
under the conditions stated in the following table using the standard dispids.

Ambient Property Dispid Comment/Conditions for Use
LocaleID -705 If Locale is significant to the control, e.g. for text output
UserMode -709 If the control behaves differently in user (design) mode and run mode
UIDead -710 If the control reacts to UI events, then it should honor this ambient property
ShowGrabHandles -711 If the control support in-place resizing of itself
ShowHatching -712 If the control support in-place activation and UI activation
DisplayAsDefault -713 Only if the control is marked OLEMISC_ACTSLIKEBUTTON (which means that

support for keyboard mnemonics is provided, thus IoleControl::GetControlInfo and
IOleControl::OnMnemonic must be implemented).

As described previously, use of ambients requires both IOleControl (for OnAmbientPropertyChange as a minimum) as
well as IOleObject (for SetClientSite and GetClientSite).

The OLEMISC_SETCLIENTSITEFIRST bit may not necessarily be supported by a container. In these circumstances, a
control must resort to default values for the ambient properties that it requires.

3.11Using the Container’s Functionality
The previous sections have described some of the necessary caller-side support that an OLE Control must have in order
to access certain features of its container. The following table describes a control’s usage of container-side interfaces and
when such usage would occur.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 11

Interface Container
Object

Usage

IOleClientSite Site Controls that implement IOleObject call IOleClientSite members as part of the
standard OLE embedding protocol, specifically the members SaveObject,
ShowObject, OnShowWindow (only if a separate-window activation state is
supported), RequestNewObjectLayout, and GetContainer (if communication
with other controls is desired). The GetMoniker member is only used when the
control can be linked to externally, that is, the control is not marked with
OLEMISC_CANTLINKINSIDE.

IOleInPlaceSite Site Controls that have an in-place activate and possibly a UI active state will call
IOleInPlaceSite members (generally all of them with the exception of
ContextSensitiveHelp) as part of the standard OLE in-place activation protocol.

IAdviseSink Site Control calls OnDataChange if the control supports IDataObject,
OnViewChange if the control supports IViewObject2, and OnClose, OnSave, and
OnRename if the control supports IOleObject.

IOleControlSite Site If supported, control calls OnControlInfoChanged when mnemonics change,
LockInPlaceActive and TransformCoords if events are fired (the latter member
is only used if coordinates are passed as event arguments), OnFocus and
TranslateAccelerator if the control has a UI active state, and
GetExtendedControl if the control wants to look at extended-control (container-
owned) properties.

IDispatch (ambient
properties)

Site Used to access ambient properties.

IPropertyNotifySink Varies A control must generate OnChanged and OnRequestEdit for any control
properties that are marked as [bindable] and [request], respectively.

Other event sink
interfaces

Varies A control that has outgoing interfaces other than IPropertyNotifySink will be
handed other interface pointers of the correct IID to the control’s
IConnectionPoint::Advise implementations (which are usually found in sub-
objects of the control). A control always knows how to call its own event
interfaces since the control defines those interfaces.

IOleInPlaceFrame Frame Used when a control has an in-place UI active state that requires frame-level
tools or menu items.

IOleInPlaceUIWindow Document Used only when a control has an in-place UI active state that requires document-
level or pane-level UI tools. This is rare.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 12

4Containers
An OLE control container is an OLE container that supports the following additional features:
1. Embedded objects from in-process servers
2. In Place activation
3. OLEMISC_ACTIVATEWHENVISIBLE
4. Event Handling
OLE Control Containers must provide support for all of these features.

The following sections describe the specific interfaces, methods, and other features that are required of OLE Control
Containers. Required Interfaces, Optional Methods, Misc. Status Bits Support, Keyboard Handling, Storage Interfaces,
Ambient Properties, Extended Properties, Events, Methods, Message Reflection, and Automatic Clipping. The last
section describes how to gracefully degrade when a particular control interface is not supported.

4.1Required Interfaces
The table below lists the OLE Control Container interfaces, and denotes which interfaces are optional, and which are
mandatory and must be implemented by control containers.

Interface Support
Mandatory?

Comments

IOleClientSite Yes
IAdviseSink No Only when the container desires (a) data change

notifications (controls with IDataObject), (b) view change
notification (controls that are not active and have
IViewObject[2]), and (c) other notifications from controls
acting as standard embedded objects.

IOleInPlaceSite Yes
IOleControlSite Yes
IOleInPlaceFrame Yes
IOleContainer Yes See Note 1.
IDispatch for ambient properties Yes See Note 2 and “Ambient Properties” section
Control Event Sets Yes See Note 2.
ISimpleFrameSite No ISimpleFrameSite and support for nested simple frames is

optional.
IPropertyNotifySink No Only needed for containers that (a) have their own property

editing UI which would require updating whenever a control
changed a property itself or (b) want to control
[requestedit] property changes and other such data-binding
features.

IErrorInfo Yes Mandatory if container supports dual interfaces. See Note 2.
IClassFactory2 No Support is strongly recommended.

Notes:
1. IOleContainer is implemented on the document or form object (or appropriate analog) that holds the container sites.

Controls use IOleContainer to navigate to other controls in the same document or form.
2. Support for dual interfaces is not mandatory, but is strongly recommended. Writing OLE Control Containers to take

advantage of dual interfaces will afford better performance with controls that offer dual interface support.

OLE control containers must support OLE Automation exceptions. If a control container supports dual interfaces, then it
must capture automation exceptions through IErrorInfo.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 13

4.2Optional Methods
An OLE component can implement an interface without implementing all the semantics of every method in the interface,
instead returning E_NOTIMPL or S_OK as appropriate. The following table describes those methods that an OLE control
container is not required to implement (i.e. the control container can return E_NOTIMPL).

The table below describes optional methods; note that the method must still exist, but can simply return E_NOTIMPL
instead of implementing “real” semantics. Note that any method from a mandatory interface that is not listed below must
be considered mandatory and may not return E_NOTIMPL.

Method Comments
IOleClientSite

SaveObject Necessary for persistence to be successfully supported.
GetMoniker Necessary only if the container supports linking to controls within its own form or

document.

IOleInPlaceSite
ContextSensitiveHelp Optional
Scroll May return S_FALSE with no action.
DiscardUndoState Can return S_OK with no action.
DeactivateAndUndo Deactivation is mandatory; Undo is optional.

IOleControlSite
GetExtendedControl Necessary for containers that support extended controls.
ShowPropertyFrame Necessary for containers that wish to include their own property pages to handle

extended control properties in addition to those provided by a control.
TranslateAccelerator May return S_FALSE with no action.
LockInPlaceActive Optional

IDispatch (Ambient properties)
GetTypeInfoCount Necessary for containers that support non-standard ambient properties.
GetTypeInfo Necessary for containers that support non-standard ambient properties.
GetIDsOfNames Necessary for containers that support non-standard ambient properties.

IDispatch (Event sink)
GetTypeInfoCount The control knows its own type information, so it has no need to call this.
GetTypeInfo The control knows its own type information, so it has no need to call this.
GetIDsOfNames The control knows its own type information, so it has no need to call this.

IOleInPlaceFrame
ContextSensitiveHelp
GetBorder Necessary for containers with toolbar UI (which is optional)
RequestBorderSpace Necessary for containers with toolbar UI (which is optional)
SetBorderSpace Necessary for containers with toolbar UI (which is optional)
InsertMenus Necessary for containers with menu UI (which is optional)
SetMenu Necessary for containers with menu UI (which is optional)
RemoveMenus Necessary for containers with menu UI (which is optional)
SetStatusText Necessary only for containers that have a status line
EnableModeless Optional
TranslateAccelerator Optional

IOleContainer
ParseDisplayName Only if linking to controls or other embeddings in the container is supported, as

this is necessary for moniker binding.
LockContainer As for ParseDisplayName
EnumObjects Returns all OLE Controls through an enumerator with IEnumUnknown, but not

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 14

Method Comments
necessarily all objects (since there’s no guarantee that all objects are OLE controls;
some may be regular Windows controls).

4.3Miscellaneous Status Bits Support
OLE Control Containers must recognize and support the following OLEMISC_ status bits:

Status Bit Support
Mandatory?

Comments

ACTIVATEWHENVISIBLE Yes
IGNOREACTIVATEWHENVISIBLE No Needed for inactive and windowless control support. See

Note 1.
INSIDEOUT No Not generally used with OLE Controls but rather with

compound document embeddings. Note this is contrary to
some SDK documentation that says this bit must be set for
the ACTIVATEWHENVISIBLE bit to be set.

INVISIBLEATRUNTIME Yes Designates a control that should be visible at design time,
but invisible at run time.

ALWAYSRUN Yes
ACTSLIKEBUTTON No Support is normally mandatory although it is not necessary

for document style containers.
ACTSLIKELABEL No Support is normally mandatory although it is not necessary

for document style containers.
NOUIACTIVATE Yes
ALIGNABLE No
SIMPLEFRAME No See ‘SimpleFrameSite Containment’ in the Component

Categories section.
SETCLIENTSITEFIRST No Support for this bit is recommended but not mandatory.
IMEMODE No

Notes:
1. The IGNOREACTIVATEWHENVISIBLE bit is for containers hosting inactive and windowless controls. The

IGNOREACTIVATEWHENVISIBLE bit is introduced as part of the OLE Controls 96 specification, see this
documentation for more details.

4.4Keyboard Handling
Keyboard handling support for the following functionality is strongly recommended, although it is recognized that it is
not applicable to all containers.
n Support for OLEMISC_ACTSLIKELABEL and OLEMISC_ACTSLIKEBUTTON status bits.
n Implementing the DisplayAsDefault ambient property (if it exists, it can return FALSE).
n Implementing tab handling, including tab order.
Some containers will use OLE controls in traditional compound document scenarios. For example, a spreadsheet may
allow a user to embed an OLE control into a worksheet. In such scenarios, the container would do keyboard handling
differently, because the keyboard interface should remain consistent with the user’s expectations of a spreadsheet.
Documentation for such products should inform users of differences in control handling in these different scenarios.
Other containers should endeavor to honor the above functionality correctly, including Mnemonic handling.

4.5Storage Interfaces
Control containers must be able to support controls that implement IPersistStorage, IPersistStream, or IPersistStreamInit.
Optionally, a container can support any other persistence interfaces such as IPersistMemory, IPersistPropertyBag, and
IPersistMoniker for those controls that provide support.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 15

Once an OLE Control Container has chosen and initialized a storage interface to use (IPersistStorage, IPersistStream,
IPersistStreamInit, etc), that storage interface will remain the primary storage interface for the lifetime of the control, i.e.
the control will remain in possession of the storage. This does not preclude the container from saving to other storage
interfaces.

OLE Control Containers do not need to support a “save as text” mechanism, thus using IPersistPropertyBag and the
associated container-side interface IPropertyBag are optional.

4.6Ambient Properties
At a minimum, OLE control containers must support the following ambient properties using the standard dispids.

Ambient Property Dispid Comments/Conditions
LocaleID -705
UserMode -709 For containers that have different user and run environments.
DisplayAsDefault -713 For those containers where a default button is relevant.

4.7Extended Properties, Events and Methods
OLE Control Containers are not required to support extended controls. However, if the control container does support
extended properties, then it must support the following minimal set:

Visible
Parent
Default
Cancel

Currently, extended properties, events, and methods do not have standard dispids.

4.8Message Reflection
It is strongly recommended that an OLE control container supports message reflection. This will result in more efficient
operation for subclassed controls. If message reflection is supported, the MessageReflect ambient property must be
supported and have a value of TRUE. If a container does not implement message reflection, then the OLE CDK creates
two windows for every sub-classed control, to provide message reflection on behalf on the control container.

4.9Automatic Clipping
It is strongly recommended that an OLE control container supports automatic clipping of its controls. This will result in
more efficient operation for most controls. If automatic clipping is supported, the AutoClip ambient property must be
supported and have a value of TRUE.

Automatic clipping is the ability of a container to ensure that a control’s drawn output goes only to the container’s
current clipping region. In a container that supports automatic clipping, a control can paint without regard to its clipping
region, because the container will automatically clip any painting that occurs outside the control’s area. If a container
does not support automatic clipping, then CDK-generated controls will create an extra parent window if a non-null
clipping region is passed.

4.10Degrading Gracefully in the Absence of an Interface
Because a control may not support any interface other than IUnknown, a container has to degrade gracefully when it
encounters the absence of any particular interface.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 16

One might question the usefulness of a “control” with nothing more than IUnknown. But consider the advantages that a
control receives from a container’s visual programming environment (such as VB) when the container recognizes the
object as a “control”:

1. A button for the object appears in a toolbox.
2. One can create an object by dragging it from the toolbox onto a form.
3. One can give the object a name that is recognized in the visual programming environment.
4. The same name in (3) above can be used immediately in writing any other code for controls on the

same form (or even a different form).
5. The container can automatically provide code entry points for any events available from that object.
6. The container provides its own property browsing UI for any available properties.

When an object isn’t recognized as a “control”, then it potentially loses all of these very powerful and beneficial
integration features. For example, in Visual Basic 4.0 it is very difficult to really integrate some random object that is
not a “control” in the complete sense, but may still have properties and events. Because VB 4’s idea of a control is very
restrictive the object does not gain any of the integration features above. But even a control with IUnknown, where the
mere lifetime of the control determines the existence of some resource, should be able to gain the integration capabilities
described above.

As current tools require a large set of control interfaces to gain any advantage, controls are generally led to over-
implementation, such that they contain more code than they really need. Controls that could be 7K might end up being
25K, which is a big performance problem in areas such as the Internet. This has also led to the perception that one can
only implement a control with one tool like the CDK because of the complexity of implementing all the interfaces—and
this has implications when a large DLL like OC30.DLL is required for such a control, increasing the working set. If not
all interfaces are required, then this opens up many developers to writing very small and light controls with straight OLE
or with other tools as well, minimizing the overhead for each control.

This is why this document recognizes a “control” as any object with a CLSID and an IUnknown interface. Even with
nothing more than IUnknown, a container with a programming environment should be able to provide at least features #3
and #4 from the list above. If the object provides a ToolBoxBitmap32 registry entry, it gains #1 and #2. If the object
supplies IConnectionPointContainer (and IProvideClassInfo generally) for some event set, it gains #5, and if it supports
IDispatch for properties and methods, it gains #6, as well as better code integration in the container.

In short, an object should be able to implement as little as IDispatch and one event set exposed through
IConnectionPointContainer to gain all of those visual features above.

With this in mind, the following table describes what a container might do in the absence of any possible interface. Note
that only those interfaces are listed that the container will directly obtain through QueryInterface. Other interfaces, like
IOleInPlaceActiveObject, are obtained through other means.

Interface Meaning of Interface Absence
IViewObject2 The control has no visuals that it will draw itself, so has no definite extents to

provide. In run-time, the container simply doesn’t attempt to draw anything when
this interface is absent. In design time, the container must at least draw some kind
of default rectangle with a name in it for such a control, so a user in a visual
programming environment can select the object and check out its properties,
methods, and events that exist. Handling the absence of IViewObject2 is critical for
good visual programming support.

IOleObject The control doesn’t need the site whatsoever, nor does it take part in any embedded
object layout negotiation. Any information (like control extents) that a container
might expect from this interface should be filled in with container-provided
defaults.

IOleInPlaceObject The control doesn’t go in-place active (like a label) and thus never attempts to
activate in this manner. Its only activation may be its property pages.

IOleControl Control has no mnemonics and no use of ambient properties, and doesn’t care if the

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 17

Interface Meaning of Interface Absence
container ignores events. In the absence of this interface, the container just doesn’t
call its members.

IDataObject The control provides no property sets nor any visual renderings that could be
cached, so the container would choose to cache some default presentation in the
absence of this interface (support for CF_METAFILEPICT, specifically) and
disable any property-set related functionality.

IDispatch The control has no custom properties or methods. The container does not need to
try to show any control properties in this case, and should disallow any custom
method calls that the container doesn’t recognize as belonging to its own extended
controls (that may support methods and properties). As extended controls generally
delegate certain IDispatch calls to the control, an extended control should not
expect the control to have IDispatch at all.

IConnectionPointContainer The control has no events, so the container doesn’t have to think about handling
any.

IProvideClassInfo[2] The control either doesn’t have type information or events, or the container needs to
go into the control’s type information through the control’s registry entries. The
existence of this interface is an optimization.

ISpecifyPropertyPages The control has no property pages, so if the container has any UI that would invoke
them, the container should disable that UI.

IPerPropertyBrowsing The control has no display name itself, no predetermined strings and values, and no
property to page mapping. This interface is nearly always used for generating
container user interface, so such UI elements would be disabled in the absence of
this interface.

IPersist* The control has no persistent state to speak of, so the container doesn’t have to
worry about saving any control-specific data. The container will, of course, save its
own information about the control in its own form or document, but the control
itself has nothing to contribute to that information.

IOleCache[2] The object doesn’t support caching. A container can still support caching by just
creating a data cache itself using CreateDataCache.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 18

5Component Categories
OLE’s component categories allow a software component’s abilities and requirements to be identified by entries in the
registry. In a scenario where a container may not wish to or not be able to support an area of functionality, such as
databinding for example, the container will not wish to host controls that require databinding in order to perform their job
function. Component Categories allow areas of functionality such as databinding to be identified, so that the control
container can avoid those controls that state it to be a requirement. Component Categories are specified separately as part
of OLE and are not specific to the OLE Control architecture, the specification for component categories includes a set of
APIs for manipulation of the component category registry keys.

5.1What are Component Categories and how do they work?
Component Categories identify those areas of functionality that a software component supports and requires, a registry
entry is used for each category or identified area of functionality. Each component category is identified by a globally
unique identifier (GUID), when a control is installed it registers itself as a control in the system registry using the
component category ID for control, see the ‘Self Registration’ section. Within the control’s self registration it will also
register those component categories that it implements and those component categories that it requires a container to
support in order to successfully host the control.
When a control container is offering controls to the user to insert, it only allows the user to select and instantiate those
controls that will be able to function adequately in that environment. For example, if the control container does not
support databinding, then the container will not allow the user to select and instantiate those controls that have an entry
in the registry signifying that they require the databinding component category. A common dialog for control insertion
and APIs to handle the registry entries are available.
Component categories are not cumulative or exclusive, a control can require any mix of component categories to
function. A control that has no required entries for component categories may be expected to be capable of functioning in
any control container and not require any specific functionality of a control container to function.

The following component categories are identified here, where necessary more detailed specifications of the categories
may be available.
· ISimpleFrameSite control containment.
· Simple Databinding through the IPropertyNotifySink interface.
· Advanced Databinding (as supported by the additional databinding interfaces of VB4.0).
· Visual Basic private interfaces - IVBFormat, IVBGetControl
· Internet aware controls.
· Windowless controls.
This is not a definitive list of categories; further categories are likely to be defined in the future as new requirements are
identified. An up-to-date list of component categories is available from Microsoft on their world wide web site, this list
reflects those component categories that have been identified by Microsoft and any others that about which vendors have
informed Microsoft.

It is important to remember that controls should attempt to work in as many environments as possible. If it is possible,
the control should degrade its functionality when placed in a container that does not support certain interfaces. The
purpose of component categories is to prevent a situation where the control is placed in an environment that is unsuitable
and the control can not achieve its desired task. Generally, a control should degrade gracefully when interfaces are not
present, a control may choose to advise the user with a message box that some functionality is not available or clearly
document the functionality required of a control container for optimal performance.

Note older controls and containers do not make use of Component Categories and instead rely on the ‘control’ keyword
being present against the control in the registry. In order to be recognized by older containers controls may wish to
register the ‘control’ keyword in the registry, control developers should check that the control can successfully be hosted
in such containers before doing this. Containers that use component categories may successfully use them to host older
controls as the components category DLL handles the mapping, a separate category exists for older controls
CATID_ControlV1 so that a container may optionally exclude them if necessary.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 19

As Component Categories are identified by GUIDs it is possible for containers that offer particular specific functionality
to have their own category IDs, generated using a GUID generation tool. However this can possibly undermine the
advantage of interoperability of controls and containers so it is preferred that wherever possible existing component
categories be used. Vendors are encouraged to consult together when defining new component categories to ensure that
they meet the common requirements of the marketplace, and follow the spirit of interoperability of OLE Controls.

5.2SimpleFrameSite Containment
A container control is an OLE control that is capable of containing other controls. A group box that contains a collection
of radio buttons is an example of a container control. Container controls should set the OLEMISC_SIMPLEFRAME
status bit, and should call its container’s ISimpleFrameSite implementation. An OLE control container that supports
Container Controls must implement ISimpleFrameSite.
CATID - {157083E0-2368-11cf-87B9-00AA006C8166} CATID_SimpleFrameControl

5.3Simple Data Binding
The OLE Controls Architecture defines a data-binding mechanism, whereby an OLE Control can specify that one or
more of its properties are bindable. In most cases, a data-bound control should not absolutely require data binding, so that
it could be inserted into a container that does not support data binding. Obviously, in such a situation, the functionality of
the control may be reduced.
CATID - {157083E1-2368-11cf-87B9-00AA006C8166} CATID_PropertyNotifyControl

5.4Advanced Data Binding
There is a set of advanced data binding interfaces that allow a more complex databinding scenario to be supported. This
component category covers that area of functionality.
CATID - {157083E2-2368-11cf-87B9-00AA006C8166} CATID_VBDataBound

5.5Visual Basic private interfaces
Two interfaces that are implemented by Visual Basic are identified here for component categories. It is not expected that
controls should require these categories as it is possible for controls to offer alternative functionality when these are not
available.
The IVBFormat interface allows controls to better integrate into the Visual Basic environment when formatting data.
CATID - {02496840-3AC4-11cf-87B9-00AA006C8166} CATID_VBFormat
The IVBGetControl interface allows a control to enumerate other controls on the VB form.
CATID - {02496841-3AC4-11cf-87B9-00AA006C8166} CATID_VBGetControl

5.6Internet-Aware Objects
There are certain categories identified to cover the persistency interfaces, these have been identified as a result of
defining how controls function across the internet. A container that does not support the full range of persistency
interfaces should ensure that it does not host a control that requires a combination of interfaces that it does not support.
Details of the features required for internet aware controls are available in the ‘OLE Controls - COM objects for the
internet’ specification.

The following tables describe the meaning for various categories as both “implemented” and “required” categories.

“Required” Categories Description
CATID_PersistsToMoniker,

CATID_PersistsToStreamInit,

Each of these categories are mutually exclusive and are only used
when an object supports only one persistence mechanism at all (hence
the mutual exclusion). Containers that do not support the persistence

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 20

“Required” Categories Description
CATID_PersisitsToStream,
CATID_PersistsToStorage,
CATID_PersistsToMemory,
CATID_PersistsToFile,
CATID_PersistsToPropertyBag

mechanism described by one of these categories should prevent
themselves from creating any objects of classes so marked.

CATID_RequiresDataPathHost The object requires the ability to save data to one or more paths and
requires container involvement, therefore requiring container support
for IBindHost.

“Implemented” Categories Description
CATID_PersistsToMoniker,
CATID_PersistsToStreamInit,
CATID_PersistsToStream,
CATID_PersistsToStorage,
CATID_PersistsToMemory,
CATID_PersistsToFile,
CATID_PersistsToPropertyBag

Object supports the corresponding IPersist* mechanism for the
category.

The following table provides the exact CATIDs assigned to each category:

Category CATID
CATID_RequiresDataPathHost 0de86a50-2baa-11cf-a229-00aa003d7352

CATID_PersistsToMoniker 0de86a51-2baa-11cf-a229-00aa003d7352
CATID_PersistsToStorage 0de86a52-2baa-11cf-a229-00aa003d7352
CATID_PersistsToStreamInit 0de86a53-2baa-11cf-a229-00aa003d7352
CATID_PersistsToStream 0de86a54-2baa-11cf-a229-00aa003d7352
CATID_PersistsToMemory 0de86a55-2baa-11cf-a229-00aa003d7352
CATID_PersistsToFile 0de86a56-2baa-11cf-a229-00aa003d7352
CATID_PersistsToPropertyBag 0de86a57-2baa-11cf-a229-00aa003d7352

5.7Windowless Controls
The OLE Controls 96 specification includes a definition for ‘windowless’ controls. Such controls do not operate in their
own window and require a container to offer a shared window into which the control may draw, see the ‘OLE Controls
96’ specification. Windowless controls are designed to be compatible with older control containers by creating their own
window in that situation, windowless control containers should host windowed controls in the traditional way with no
problem. It may however be useful for a container to distinguish those controls that can operate in a windowless mode, so
an appropriate component category is defined.
CATID - {1D06B600-3AE3-11cf-87B9-00AA006C8166} CATID_WindowlessObject

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 21

6General Guidelines
This section describes various features, hints and tips for OLE control and OLE control container developers to help
ensure good interoperability between controls and control containers.

6.1Overloading IPropertyNotifySink
Many OLE Control Containers implement a modeless property browsing window. If a control’s properties are altered
through the control’s property pages, then the control’s properties can get out of sync with the container’s view of those
properties (the control is always right, of course). To ensure that it always has the current values for a control’s
properties, an OLE Control Container can overload the IPropertyNotifySink interface (data binding) and also use it to be
notified that a control property has changed. This technique is optional, and is not required of OLE Control Containers
or OLE controls.

Note that a control should use IPropertyNotifySink::OnRequestEdit only for data binding; it is free to use OnChanged
for either or both purposes.

6.2Container-Specific Private Interfaces
Some containers provide container-specific private interfaces for additional functionality or improved performance.
Controls that rely on those container-specific interfaces should, if possible, work without those container-specific
interfaces present so that the control functions in different containers. For example, Visual Basic® implements private
interfaces that provide string formatting functionality to controls. If a control makes use of VB’s private formatting
interfaces, it should be able to run with default formatting support if these interfaces are not available. If the control can
function without the private interfaces, it should take appropriate action (such as warn the user of reduced functionality)
but continue to work. If this is not an option, then a component category should be registered as required to ensure that
only containers supporting this functionality can host these controls.

6.3Multi-Threaded Issues
Starting with Microsoft® Windows® 95 and Microsoft® Windows NT™ 3.51, OLE provides support for multi-threaded
applications, allowing applications to make OLE calls from multiple threads. This multi-threaded support is called the
“apartment model”, it is important that all OLE components using multiple threads follow this model. The apartment
model requires that interface pointers are marshaled (using CoMarshallInterface, and CoUnmarshalInterface) when
passed between threads. For more information about apartment model threading, refer to the Win32 SDK
documentation, and the OLEAPT sample (in Win32® SDK).

6.4Event Freezing
A container can notify a control that it is not ready to respond to events by calling IOleControl::FreezeEvents(TRUE). It
can un-freeze the events by calling IOleControl::FreezeEvents(FALSE). When a container freezes events, it is freezing
event processing, not event receiving; that is, a container can still receive events while events are frozen. If a container
receives an event notification while its events are frozen, the container should ignore the event. No other action is
appropriate.

A control should take note of a container’s call to IOleControl::FreezeEvents(TRUE) if it is important to the control that
an event is not missed. While a container’s event processing is frozen, a control should implement one of the following
techniques:

1. Fire the events in the full knowledge that the container will take no action.
2. Discard all events that the control would have fired.
3. Queue up all pending events and fire them after the container has called IOleControl::FreezeEvents(FALSE).

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 22

4. Queue up only relevant or important events and fire them after the container has called
IOleControl::FreezeEvents(FALSE).

Each technique is acceptable and appropriate in different circumstances. The control developer is responsible for
determining and implementing the appropriate technique for the control’s functionality.

6.5Container Controls
As described above, container controls are OLE Controls that visually contain other controls. The OLE Controls
Architecture specifies the ISimpleFrameSite interface to enable container controls. Containers may also support
container controls without supporting ISimpleFrameSite, although the behavior cannot be guaranteed. For this reason, a
component category exists for SimpleFrameSite controls where the full functionality of this interface is required.

In order to support container controls without implementing ISimpleFrameSite, an OLE Control Container must:
· Activate all controls at all times.
· Reparent the contained controls to the hWnd of the containing control.
· Remain the parent of the container control.

6.6WS_GROUP and WS_TABSTOP Flags in Controls
A control should not use the WS_GROUP and WS_TABSTOP flags internally; some containers rely on these flags to
manage keyboard handling.

6.7Multiple Controls in One DLL
A single .OCX DLL can container any number of OLE controls, thus simplifying the distribution and use of a set of
related controls.

If you ship multiple controls in a single DLL, be sure to include the vendor name in each control name in the package.
Including the vendors’ names in each control name will enable users to easily identify controls within a package. For
example, if you ship a DLL that implements three controls, Con1, Con2 and Con3, then the control names should be:

<Your company name> Con1 Control
<Your company name> Con2 Control
<Your company name> Con3 Control

6.8IOleContainer::EnumObjects
This method is used to enumerate over all the OLE objects contained in a document or form, returning an interface
pointer for each OLE object. The container must return pointers to each OLE object that shares the same container.
Nested forms or nested controls must also be enumerated.

Some containers implement “extender controls”, which wrap non-OLE controls, and then return pointers to these
extender controls as a form is enumerated. This behavior enables OLE controls and OLE control containers to integrate
well with non-OLE controls, and is thus recommended, but not required.

6.9Enhanced Metafiles
Not surprisingly, enhanced metafiles provide more functionality than standard metafiles; using enhanced metafiles
generally simplifies rendering code. An enhanced metafile DC is used in exactly the same way as a standard metafile
DC. Enhanced metafiles are not available in 16-bit OLE. OLE supports enhanced metafiles, and includes backwards
compatibility with standard metafiles and 16-bit applications.

© Microsoft Corporation,2021. All Rights Reserved.

OLE Control and Control Container Guidelines Page 23

32-bit OLE control containers should use enhanced metafiles instead of standard metafiles.

6.10Licensing
In order to embed licensed controls successfully, OLE control containers must use IClassFactory2 instead of
IClassFactory. Several OLE creation and loading helper functions (i.e., OleLoad and CoCreateInstance) explicitly call
IClassFactory and not IClassFactory2, and therefore cannot be used to create or load licensed OLE controls. OLE
Control Containers should explicitly create and load OLE controls using IClassFactory2. In the future, Microsoft will
update these standard APIs to use both IClassFactory and IClassFactory2, as appropriate.

6.11Dual Interfaces
OLE Automation enables an object to expose a set of methods in two ways: via the IDispatch interface, and through
direct OLE Vtable binding. IDispatch is used by most tools available today, and offers support for late binding to
properties and methods. Vtable binding offers much higher performance because this method is called directly instead of
through IDispatch::Invoke. IDispatch offers late bound support, where direct Vtable binding offers a significant
performance gain; both techniques are valuable and important in different scenarios. By labeling an interface as “dual”
in the type library, an OLE Automation interface can be used either via IDispatch, or it can be bound to directly.
Containers can thus choose the most appropriate technique. Support for dual interfaces is strongly recommended for both
controls and containers.

6.12IPropertyBag and IPersistPropertyBag
IPropertyBag and IPersistPropertyBag optimize “save as text” mechanisms, and therefore are recommended for OLE
control containers that implement a “save as text” mechanism. IPropertyBag is implemented by a container, and is
roughly analogous to IStream. IPersistPropertyBag is implemented by controls, and is roughly analogous to
IPersistStream.

© Microsoft Corporation,2021. All Rights Reserved.

	1 Contents
	2 Overview
	2.1 Why are the OLE Control and Control Container Guidelines Important?
	2.2 What to do When an Interface You Need is Not Available
	2.3 What’s New in V2.0?

	3 Controls
	3.1 Self Registration
	3.2 What Support for an Interface Means
	3.3 Persistence Interfaces
	3.4 Optional Methods
	3.5 Class Factory Options
	3.6 Properties
	3.7 Methods (via IDispatch and Other dispinterfaces)
	3.8 Events
	3.9 Property Pages
	3.10 Ambient Properties
	3.11 Using the Container’s Functionality

	4 Containers
	4.1 Required Interfaces
	4.2 Optional Methods
	4.3 Miscellaneous Status Bits Support
	4.4 Keyboard Handling
	4.5 Storage Interfaces
	4.6 Ambient Properties
	4.7 Extended Properties, Events and Methods
	4.8 Message Reflection
	4.9 Automatic Clipping
	4.10 Degrading Gracefully in the Absence of an Interface

	5 Component Categories
	5.1 What are Component Categories and how do they work?
	5.2 SimpleFrameSite Containment
	5.3 Simple Data Binding
	5.4 Advanced Data Binding
	5.5 Visual Basic private interfaces
	5.6 Internet-Aware Objects
	5.7 Windowless Controls

	6 General Guidelines
	6.1 Overloading IPropertyNotifySink
	6.2 Container-Specific Private Interfaces
	6.3 Multi-Threaded Issues
	6.4 Event Freezing
	6.5 Container Controls
	6.6 WS_GROUP and WS_TABSTOP Flags in Controls
	6.7 Multiple Controls in One DLL
	6.8 IOleContainer::EnumObjects
	6.9 Enhanced Metafiles
	6.10 Licensing
	6.11 Dual Interfaces
	6.12 IPropertyBag and IPersistPropertyBag

