
OLE Controls 96
Distribution: Public - Updated 21th February 1996

© Copyright Microsoft Corporation,2023. All Rights Reserved.

DRAFT

INTRODUCTION..

MOUSE INTERACTION, DRAG & DROP FOR INACTIVE OBJECTS...

MOTIVATION...
MOUSE INTERACTION FOR INACTIVE OBJECTS...
DRAG & DROP ONTO INACTIVE OBJECTS...
CONTAINER SUPPORT NEGOTIATION...
IPOINTERINACTIVE INTERFACE...

IPointerInactive::GetActivationPolicy..
IPointerInactive::OnInactiveSetCursor...
IPointerInactive::OnInactiveMouseMove...

DRAWING OPTIMIZATIONS..

DESCRIPTION...
DVASPECTINFO STRUCTURE..

FLICKER-FREE ACTIVATION/DEACTIVATION..

DESCRIPTION...
IOLEINPLACESITEEX INTERFACE...

IOleInPlaceSiteEx::OnInPlaceActivateEx..
IOleInPlaceSiteEx::OnInPlaceDeactivateEx..
IOleInPlaceSiteEx::RequestUIActivate...

FLICKER-FREE DRAWING...

INTRODUCTION..
TWO PASS DRAWING..
NEW DRAWING ASPECTS..
OBJECT ORIGIN AND EXTENT..
GETTING EXTENTS OF THE DRAWING ASPECTS..
VIEW STATUS..

Checking for opaque objects..
Checking for supported drawing aspects...
View status change notification...
View change notification..

IVIEWOBJECTEX INTERFACE..

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 2

IViewObjectEx::Draw..
IViewObjectEx::GetExtent...
IViewObjectEx::GetRect..
IViewObjectEx::GetViewStatus...

IADVISESINKEX INTERFACE...
IAdviseSinkEx::OnViewStatusChange...

WINDOWLESS OLE OBJECTS...

WHY WINDOWLESS OBJECTS ?...
WINDOWLESS OBJECT MODEL..

General...
Window vs. windowless negotiation..

MESSAGE DISPATCHING...
Mouse messages and capture...
Keyboard messages and focus...
Summary of message dispatching rules...
Accelerators..
Mnemonics..

IVIEWOBJECT::DRAW AND IN-PLACE WINDOWLESS OBJECTS...
DRAG & DROP ONTO WINDOWLESS OBJECTS...
IOLEINPLACEOBJECTWINDOWLESS INTERFACE..

IOleInPlaceObjectWindowless::GetWindow...
IOleInPlaceObjectWindowless::OnWindowMessage...
IOleInPlaceObjectWindowless::GetDropTarget...

IOLEINPLACEACTIVEOBJECT INTERFACE...
IOleInPlaceActiveObject::GetWindow..

IOLEINPLACESITEWINDOWLESS INTERFACE...
IOleInPlaceSiteWindowless::OnInPlaceActivateEx...
IOleInPlaceSiteWindowless::CanWindowlessActivate...
IOleInPlaceSiteWindowless::SetCapture..
IOleInPlaceSiteWindowless::GetCapture...
IOleInPlaceSiteWindowless::SetFocus...
IOleInPlaceSiteWindowless::GetFocus...
IOleInPlaceSiteWindowless::OnDefWindowMessage..

IN-PLACE DRAWING FOR WINDOWLESS OBJECTS...

INTRODUCTION..
OBTAINING / RELEASING A DEVICE CONTEXT...
DISPLAY INVALIDATION...
SCROLLING..
CARET SUPPORT..
IOLEINPLACESITEWINDOWLESS INTERFACE...

IOleInPlaceSiteWindowless::GetDC...
IOleInPlaceSiteWindowless::ReleaseDC..
IOleInPlaceSiteWindowless::InvalidateRect...
IOleInPlaceSiteWindowless::InvalidateRgn...
IOleInPlaceSiteWindowless::ScrollRect...
IOleInPlaceSiteWindowless::AdjustRect...

HIT DETECTION FOR NON-RECTANGULAR OBJECTS..

HIT TEST FOR POINTS...
HIT TEST FOR RECTANGLES..
IVIEWOBJECTEX INTERFACE (HIT TEST SUPPORT)...

IViewObjectEx::QueryHitPoint...
IViewObjectEx::QueryHitRect..

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 3

QUICK ACTIVATION..

OVERVIEW..
IQUICKACTIVATE INTERFACE..

IQuickActivate::QuickActivate..
IQuickActivate::SetContentExtent...
IQuickActivate::GetContentExtent..

UNDO...

MOTIVATION...
TERMINOLOGY..
OVERVIEW..

Symmetric and Non-Symmetric Events..
Parent Units...

IMPLEMENTATION REQUIREMENTS...
THE UNDO MANAGER...
UNDO UNITS...

Simple Undo Units...
Parent Undo Units and Nesting...

HANDLING ERRORS...
Error Handling Summary...
Component or Application Requirements..
Simple Undo Unit Requirements..
Parent Undo Unit Requirements..
Undo Manager Requirements..

UNDO UNIT CREATION..
Determining the State of Open Parents...
Creating an Undo Unit...
Firing Events..

NON-COMPLIANT OBJECTS..
REPEATING ACTIONS...
INTERFACES..

IOleUndoUnit...
IOleParentUndoUnit..
IOleUndoManager...

EXAMPLES AND WALK-THROUGHS..
Simple Undo and Redo...
Compound Undo...
Open-Ended Undoable Actions: Typing..
Event Handler Walk-Through..

CONTROL SIZING...

OVERVIEW..
Autosizing...
Content and Integral Sizing...

IVIEWOBJECTEX INTERFACE..
IViewObjectEx::GetNaturalExtent..

EVENT COORDINATE TRANSLATION...

TEXTUAL PERSISTENCE OF CONTROLS..

OVERVIEW..
INTERFACES..

IPersistPropertyBag...
IPropertyBag..
IErrorLog..

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 4

INTERFACE USAGE:...

STANDARD DISPIDS...

DISPID_MOUSEPOINTER...
DISPID_MOUSEICON..
DISPID_PICTURE...
DISPID_VALID..
DISPID_ AMBIENT_PALETTE...

DATABINDING...

PROPERTY CATEGORIZATION...

OVERVIEW..
ICATEGORIZEPROPERTIES INTERFACE...

ICategorizePriorities::MapPropertiesToCategory...
ICategorizePriorities::GetCategoryName...

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS
MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT.
SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY
NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL
SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY
DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE
INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR
PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS
COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS
DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 5

Introduction
This document presents various enhancements to the OLE model for the OLE Control 96 specification.

The enhancements are designed to offer improved performance and new features whilst maintaining
compatibility with the existing OLE Controls architecture.

The enhancements described in this document include optimizations allowing objects and controls to stay
inactive most of the time, drawing optimizations and enhancements, windowless OLE objects, support
for non-rectangular and transparent objects.

· Each kind of enhancement is documented as a separate entry with a header giving general information
such as main objective and overview.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 6

Mouse interaction, drag & drop for inactive objects
Main objective: Performance, by allowing objects to stay inactive most of the time.

Overview: By allowing inactive OLE objects to minimally interact with the mouse and be drag
& drop aware, a new interface, IPointerInactive, removes the need for most
controls to set the OLEMISC_ACTIVATEWHENVISIBLE flag, and consequently to have a
window. This significantly boots performance and reduces the working set.

Motivation
OLE 2 introduces two fundamental states for objects: active (in-place or UI active states) or inactive
(loaded or running states). Only active objects can respond to mouse and keyboard input. They do this by
creating a window. Inactive objects are a lot less functional; they are merely able to render themselves
and provide a representation of their data in a given format. They have no way to interact directly with
the user.

Since they consume a window and are more functional, objects are likely to be bigger and slower when
active than when not. Consequently, keeping as few objects as possible active at a given time is generally
a performance boost and reduces the overall instance size. Ideally, only one object needs to interact with
the user at a given time, usually the one with the keyboard focus. In that scenario, all objects except one
could stay inactive. Most applications, however, require a certain amount of participation in the user
interface for other (inactive) objects, such as controlling the mouse cursor, firing mouse move events,
acting as drag & drop targets, etc.

OLE 2 provides no way for an object to be notified when the mouse cursor is over it. Consequently, an
object needs to be active all the time to control the mouse cursor, fire mouse events, or act as a drop
target. Most current OLE controls set the OLEMISC_ACTIVATEWHENVISIBLE bit for that very reason. The
net result is that most controls on a form tend to be always active, which severely hits load and paint
performance, and badly increases the overall working set.

By introducing a new interface, IPointerInactive, allowing inactive objects to minimally interact with the
mouse, we can lower the need for most objects to set the OLEMISC_ACTIVATEWHENVISIBLE flag.

Mouse interaction for inactive objects
Whenever the container receive a WM_SETCURSOR or WM_MOUSEMOVE message with the mouse pointer
over an inactive object supporting IPointerInactive, it should call GetActivationPolicy on this interface.
This method returns a combination of flags from the POINTERINACTIVE enumeration. One of the flags,
POINTERINACTIVE_ACTIVATEONENTRY, lets the object request to be in-place activated as soon as the
mouse enters it. Any object wishing to do more than setting the mouse cursor and/or firing a mouse move
event, such as for example giving a special visual feedback, should use that flag and draw the feedback
only when active.

If the object returns this flag, the container should activate it in-place immediately and then forward it the
same message that triggered the call to GetActivationPolicy. The object will then stay active (and
therefore get subsequent messages through its own window) until the container gets another
WM_SETCURSOR or WM_MOUSEMOVE, at which point, it should deactivate the object. For windowless OLE
objects this mechanism is slightly different and is explained in the section entitled “Drag & Drop Onto
Windowless Objects”.

If both the POINTERINACTIVE_ACTIVATEONENTRY and POINTERINACTIVE_DEACTIVATEONLEAVE flags are set
then the object will only be activated when the mouse is over the object. If only the
POINTERINACTIVE_ACTIVATEONENTRY flag is set then the object will only be activated once when the
mouse first enters the object.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 7

The information communicated by GetActivationPolicy should not be cached. Instead, this method
should be called every time the mouse enters an inactive object.

If an inactive object does not request to be in-place activated when the mouse enters it, its container
should dispatch subsequent WM_SETCURSOR messages to this object by calling OnInactiveSetCursor as
long as the mouse pointer stays over the object.

To avoid rounding errors and to make the job easier on the object implementor, this method takes
window client coordinates (of the window the object is displayed in, usually the container window) for
the mouse position , as opposed to himetrics, as it would normally do for an inactive object. The same
coordinates and code path can therefore be used when the object is active and not.

However, window client coordinates would be meaningless for an inactive object unless it was also told
its actual position and size on the screen. This is the role of the lprcBounds parameter. The container
should compute the actual position of the object in window client coordinates and pass it to the object
using this parameter. Knowing its actual rectangle on the screen, the object can accurately interpret the
mouse coordinates. In essence, this is very similar to what happen for IViewObject::Draw, with only a
small difference: since no hdc is available, the mouse position and the object rectangle should always be
in client coordinates of the containing window, as opposed to the logical coordinates of the hdc.

OnInactiveSetCursor takes an additional parameter (fSetAlways) indicating whether the object is
obligated to set the cursor or not. Containers should first call this method with this parameter FALSE. The
object may return S_FALSE to indicate that it did not set the cursor. In that case, the container should either
set the cursor itself, or, if it does not wish to do this, call the OnInactiveSetCursor method again with
fSetAlways being TRUE.

Similarly, the container should dispatch WM_MOUSEMOVE messages to the inactive object under the
mouse pointer using OnInactiveMouseMove. OLE controls can use this to fire mouse move events.

Drag & drop onto inactive objects
Currently, inactive OLE objects have no simple way to act as potential drop targets. Since they do not
have a window they cannot register an IDropTarget interface. Even if the container registers a
IDropTarget for itself, it has no way of knowing whether the inactive object under the mouse pointer
wishes to participate in drag & drop or not. Since the cost of activating an object may be high (especially
for an out of process servers), most containers simply ignore inactive objects as potential drop targets.

In a situation where most objects stay inactive most of the time, this, of course, would make drag & drop
pretty much useless. We need a way for inactive OLE objects to notify their container that they want
participate in drag & drop.

Acting as a drop target means for an object to be capable of reacting to a “drag over” notification by
performing two different actions:

· indicates whether it would accept a drop at the mouse pointer location, based on the available data
formats,

· show the drop location with some kind of visual feedback (outline rectangle, insertion point, etc.)

The first action is quite similar to what happens in OnInactiveSetCursor and could be performed by an
inactive object. The second action however usually requires the object to synchronously redraw parts of
itself, which is not easy for an inactive object.

Given these considerations, trying to get inactive objects to participate in drag & drop while they are
inactive seems difficult. Instead, it would be more practical for most objects to tell the container that they
wish to be in-place activated as soon as the mouse pointer is dragged over them.

Here is what should happen: to let its inactive embeddings act as potential drop targets the container
needs to register a IDropTarget interface for its own window. When, inside a call to
IDropTarget::DragOver (or DragEnter), the mouse pointer is over an inactive object, the container QIs
that object for IPointerInactive. If the object does not support this interface, it is assumed not to be a

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 8

potential drop target. If this interface is supported, the container calls GetActivationPolicy on it. If the
object returns the POINTERINACTIVE_ACTIVATEONDRAG flag, the container in-place activates the object
immediately. At that point the object registers an IDropTarget interface for its own window (for a
windowless object this is a bit different, see the section entitled “Drag & drop onto windowless objects”)
and the drag & drop operation loop continues using that interface.

When the GetActivationPolicy method was called, the container was in the middle of a DragOver call on
its own IDropTarget interface. In order to comply to the contract for this method, it must return a value
for the pdwEffect parameter. Since it cannot query to object for whether it would accept the drop or not,
the container can only safely return DROPEFFECT_NONE here. Note that with windowless OLE objects,
however, because it is controlling the drag & drop loop, the container may find out whether the object
would accept the drop and return that value instead (see the section entitled “Drag & drop onto
windowless objects”).

Then, the drag & drop loop continues as if the object had been active in the first place. OLE figures that
the object under the mouse pointer changed. The container receives a call to IDropTarget::DragLeave
and the object gets a call to IDropTarget::DragEnter.

If the drop occurs onto the object, the object will probably be UI activated and will get UI-deactivated
normally whenever the focus changes again. If the drop did not occur on the object, the container should
deactivate the object the next time it gets a call to IDropTarget::DragEnter. In some cases the drop may
occur on another object that was active originally without the container getting a call to DragEnter in the
mean-time. In that case the container should try to deactivate the object as soon as it get a chance, for
example the next time it UI activates another object.

Container support negotiation
In order for ‘96 objects to work correctly in down-level containers, they may need to have the
OLEMISC_ACTIVATEWHENVISIBLE flag set. However, they also need to let a uplevel container (one that is
supporting the mechanism described above) know that there is no need to activate them when visible.
This is provided by a new MiscStatus flag:
#define OLEMISC_IGNOREACTIVATEWHENVISIBLE ...

If the object has set this flag and the container understands and uses IPointerInactive, then the container
should ignore the OLEMISC_ACTIVATEWHENVISIBLE flag and not in-place activate the object when it
becomes visible.

IPointerInactive interface
The IPointerInactive interface can be used by the container to let inactive object participate in the
interaction with the mouse pointer, including drag & drop.
typedef enum
{

POINTERINACTIVE_ACTIVATEONENTRY = 1,
POINTERINACTIVE_DEACTIVATEONLEAVE = 2,
POINTERINACTIVE_ACTIVATEONDRAG = 4

}
POINTERINACTIVE;

interface IPointerInactive : public IUnknown
{

HRESULT GetPointerActivationPolicy([out] DWORD* pPolicy);
HRESULT OnInactiveSetCursor([in] LPCRECT lprcBounds, [in] LONG x, [in] LONG y,

[in] DWORD dwMouseMsg, [in] BOOL fSetAlways);
HRESULT OnInactiveMouseMove([in] LPCRECT lprcBounds, [in] LONG x, [in] LONG y,

[in] DWORD grfKeyState);
};

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 9

IPointerInactive::GetActivationPolicy
HRESULT GetPointerActivationPolicy([out] DWORD* pPolicy);
Returns the present activation policy for the object. Objects can request to be in-place activated when the
mouse enters them (and in-place deactivated when the mouse leaves them). Any object that want to give
more complex visual feedback than simply setting the mouse cursor should request to be in-place
activated on entry in order to draw and/or set the mouse capture. Objects can also use this method to
request activation when the mouse is dragged over them during a drag & drop operation.

Argument Type Description

pPolicy DWORD* Activation policy

Return value S_OK Success

E_FAIL Some unexpected error occurred.

The pPolicy member is a combination of the following bits:

POINTERINACTIVE_ACTIVATEONENTRY The object should be in-place activated in place when the
mouse enters it during a mouse move operation.

POINTERINACTIVE_DEACTIVATEONLEAVE The object should be deactivated when the mouse leaves the
object during a mouse move operation.

POINTERINACTIVE_ACTIVATEONDRAG The object should be in-place activated in place when the
mouse is dragged over it during a drag & drop operation.

IPointerInactive::OnInactiveSetCursor
HRESULT OnInactiveSetCursor([in] LPCRECT lprcBounds, [in] LONG x, [in] LONG y,

[in] DWORD dwMouseMsg, [in] BOOL fSetAlways);
Called by the container for the inactive object under the mouse pointer on receipt of a WM_SETCURSOR
message.

Note that window client coordinates (pixels) are used to pass the mouse cursor position as opposed to
himetrics. This is made possible by also passing the bounding rectangle of the object in the same
coordinate system.

Argument Type Description

lprcBounds LPCRECT The object bounding rectangle, in client coordinates of the containing
window. Let the object know its exact position and size on the screen
when the WM_SETCURSOR message was received.

x, y LONG Mouse location in client coordinates of the containing window.

dwMouseMsg DWORD Specifies the identifier of the mouse message for which a
WM_SETCURSOR occurred.

fSetAlways BOOL Specifies whether or not the object must set the cursor; if this value is
TRUE, the object must set the cursor; if this value is FALSE, the
cursor is not obligated to set the cursor, and should return S_FALSE
in that case.

Return value S_OK Success

E_FAIL Some unexpected error occurred.

S_FALSE The object didn’t set the cursor; the container should either: set the
cursor, or call the object again with fSetAlways set to TRUE.

IPointerInactive::OnInactiveMouseMove
HRESULT OnInactiveMouseMove([in] LPCRECT lprcBounds, [in] LONG x, [in] LONG y,

[in] DWORD grfKeyState);

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 10

Indicates to an inactive object that the mouse pointer has moved over the object. Called by the container
for the object under the mouse pointer on receipt of a WM_MOUSEMOVE message.

Note that window client coordinates (pixels) are used to pass the mouse position as opposed to himetrics.
This is made possible by also passing the bounding rectangle of the object in the same coordinate system.

Argument Type Description

lprc LPCRECT The object bounding rectangle, in client coordinates of the containing
window. Let the object know its exact position and size on the screen
when the WM_MOUSEMOVE message was received.

x, y LONG Mouse location in client coordinates of the containing window.

grfKeyState DWORD Identifies the current state of the keyboard modifier keys on the
keyboard. Valid values can be a combination of any of the flags
MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

Return value S_OK Success

E_FAIL Some unexpected error occurred.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 11

Drawing optimizations
Main objective: Drawing performance.

Overview: A few enhancements to IViewObject::Draw that allow to speed up rendering of
inactive OLE objects by making a more efficient use of GDI.

Description
A major source of optimization when rendering multiple objects comes from not unnecessarily
deselecting and re-selecting font, brush and pen. Because most objects on a form usually tend to share the
same font, background color and border types, leaving the font, brush and pen selected on return to Draw
would often allow the next object to not have to re-select them and would therefore speed up the display.
Unfortunately, OLE 2 requires that all GDI objects selected into the hdc passed to IViewObject::Draw be
unselected before returning.

To enable these optimizations the container can now use the so far reserved pvApsect parameter to Draw
to pass information on:

· whether it is OK to leave font, brush and pen selected on return to Draw.

The pvAspect parameter (which was supposed to be always NULL in OLE2) can point to a DVASPECTINFO
structure passing this information. If this parameter is NULL, objects should assume that the OLE 2 rules
are in effect.

Containers that allow font, brush and pen to be left selected on return to Draw should always unselect
them from the hdc at the end of the drawing process. It is particularly important that they get deselected
before returning control to the message loop so that their creator has no chance to delete them while they
are still selected into the hdc. Objects should also refrain from deleting font, brush or pen that they left
selected in a separate thread for the same reason.

Containers or other objects may not delete any font, brush or pen that an object selected into the
rendering hdc. It is the responsibility of the object that created them to delete them. A simple way to
implement this is for the object to hold on to the handle and delete it each time it needs a new one. A
more sophisticated scheme (usually the case for fonts) would involve a cache of handles using a LRU
mechanism to free them.

Note that only the selected font, brush, pen may be changed by Draw. The clipping region and selected
bitmap must be left unchanged.

DVASPECTINFO structure
The pvAspect parameter of the IViewObject::Draw method can now point to a DVASPECTINFO structure
which contains information needed for various drawing optimizations.
typedef enum tagAspectInfoFlag
{

DVASPECTINFOFLAG_CANOPTIMIZE = 1,
} DVASPECTINFOFLAG;

typedef struct tagAspectInfoFlag
{ UINT cb; // size

DWORD dwFlags;
} DVASPECTINFO;

Member Type Description

cb INT Count of bytes in the structure, including this member.

dwFlags DWORD See below.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 12

The dwFlags parameter can be the following value:

DVASPECTINFOFLAG_CANOPTIMIZE = 1
By specifying the can optimize flag, a control may leave objects
selected in the draw DC (such as the pen, brush, font, extpen), as well
as leaving other drawing state changes in the DC (such as back color,
text color, ROP code, current point, line drawing, poly fill mode,
etc.). The control may not change other state which another control is
not capable of restoring, like mode or anything which changes
transformation. Also, the selected bitmap, clip region and metafile
may not be changed.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 13

Flicker-free activation/deactivation
Main objective: Suppress flicker when a windowed OLE object in-place activates.

Overview: OLE2 objects have no way of knowing whether their bits are already correct on the
screen when they in-place activate. Therefore they must repaint themselves,
creating unnecessary flicker. A new interface, IOleInPlaceSiteEx, fixes this
problem.

Description
When an OLE2 object is in-place activated, it cannot know whether its bits are already correct on the
screen and therefore must always repaint itself. Similarly, when an in-place object deactivates, it has no
way to let its container know whether its bits are correct on screen at that very moment. Therefore, the
container must repaint the object entirely. All this creates unnecessary and undesirable flicker.

To fix this problem, a new site interface, IOleInPlaceSiteEx, is derived from IOleInPlaceSite. It contains
three new methods, OnInPlaceActivateEx and OnInPlaceDeActivateEx which replace the already
existing method of same name less the “Ex”, and the RequestUIActivate method.

HRESULT OnInPlaceActivateEx(BOOL* pfNoRedraw, DWORD dwFlags);
HRESULT OnInPlaceDeactivateEx(BOOL fNoRedraw);
HRESULT RequestUIActivate();

When OnInPlaceActivateEx is called, the container should let the object know whether it needs to redraw
by returning the appropriate value in the flag pointed to by pfNoRedraw. The container should carefully
check the invalidation status of the object, the z-order, clipping and any other relevant parameters to
determine the appropriate value for that flag.

Similarly, an object can let the container know whether its bit are currently correct on screen when it
deactivates by using the fNoRedraw parameter of OnInPlaceDeActivateEx.

If the site does not support the IOleInPlaceSiteEx interface, objects should use the existing methods on
IOleInPlaceSite instead. If the site supports IOleInPlaceSiteEx but the IOleInPlaceSite methods are
called, the fNoRedraw flag is considered FALSE.

The dwFlags parameter is used for windowless objects (see the section entitled “Window vs. windowless
negotiation”).

A control calls the RequestUIActivate method to determine if UI activation is allowed and to announce
the control's intent to transition to the UI active state. A container might return S_FALSE because the
currently active control will not validate or the user canceled the focus change from an event handler.

If the control determines that it cannot complete the UI activation sequence after calling
RequestUIActivate, the control should call OnUIDeactivate. This gives the container a chance to
cleanup.

If a control does not call RequestUIActivate, the container handles data validation and fires Enter and
Exit events from IOleInPlaceSite::OnUIActivate.

IOleInPlaceSiteEx interface
This interface provides alternate activation / deactivation notification methods to avoid unnecessary
flashing on screen.
interface IOleInPlaceSiteEx : public IOleInPlaceSite
{

HRESULT OnInPlaceActivateEx([out] BOOL* pfNoRedraw, [in] DWORD dwFlags);
HRESULT OnInPlaceDeactivateEx([in] BOOL fNoRedraw);

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 14

HRESULT RequestUIActivate();
}

//Container implements; called by control
//All of the functions are required if interface is implemented (interface is optional).

IOleInPlaceSiteEx::OnInPlaceActivateEx
HRESULT OnInPlaceActivateEx([out] BOOL* pfNoRedraw, [in] DWORD dwFlags);
This method replaces OnInPlaceActivate. Windowed objects can use this method to know whether it is
necessary to redraw after activating. They may still use the old method, but should always redraw in that
case.

Argument Type Description

pfNoRedraw BOOL* Returns FALSE if the object should redraw after completing the
activation, TRUE if it needs not. This parameter can be NULL, in which
case there is no need for the container to compute the value of that
flag.

dwFlags DWORD Communicates extra information to the container, including whether
the object is activating windowless or not.

Returned value HRESULT As defined for IOleInPlaceActivate.

The dwFlags parameter can be a combination of the following values:

ACTIVATE_WINDOWLESS = 1 The object is in-place activating windowless. Within this method, the
container should use this information as opposed to calling
GetWindow on the object to determine whether the object is
windowless or not.

IOleInPlaceSiteEx::OnInPlaceDeactivateEx
HRESULT OnInPlaceDeactivateEx([in] BOOL fNoRedraw);
This method replaces OnInPlaceDeactivate. Windowed objects can use this method to let their container
know whether it is necessary to redraw them after deactivating. If an object use the old method, the
container should always redraw it in that case.

Argument Type Description

fNoRedraw BOOL FALSE if the container should redraw the object after completing the
deactivation, TRUE if it needs not.

Returned value HRESULT As defined for OnInPlaceDeactivate.

IOleInPlaceSiteEx::RequestUIActivate
HRESULT RequestUIActivate();
A control should use this method to warn the container it is about to UIActivate. The container may
refuse this request by returning S_FALSE, in which case the control must call OnUIDeactivate to allow
the container to tidy up.

Argument Type Description

Returned value S_OK The control may continue the activation process and call
OnUIActivate.

S_FALSE The control may not UIActivate. The control must call
OnUIDeactivate to allow the container to tidy up.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 15

Flicker-free drawing
Main objective: Efficient flicker-free drawing, non-rectangular and transparent objects.

Overview: An extension of the IViewObject2 interface, IViewObjectEx, packages a number of
additions to the OLE drawing mechanism to support flicker-free drawing and non
rectangular and transparent inactive objects. Containers can now choose between a
variety of drawing algorithms, depending on their sophistication and the situation.

Note. Although documented here two pass drawing is not currently utilized by any
containers.

Introduction
Flicker is created by redrawing the background before letting an object redraw its foreground. This
happens when following the “Painter’s Algorithm” (back to front drawing). There are essentially two
ways to avoid flickering:

· Draw into an offscreen bitmap and then copy the resulting image to the screen in one chunk. This
might require significant additional resources to store the offscreen image, depending on the size
of the region to drawn, the resolution and the number of colors.

· Draw front to back, excluding each rectangular area from the clipping region as soon as its has been
painted. One benefit of this method is that each pixel is painted only once. Speed depends
essentially on the performance of the clipping support.

The major drawback of the first method - consuming memory resources - can be somewhat offset by
splitting the region to draw in several areas (bands for example) painted one after another. An advantage
of this method is that it works well for non rectangular shapes, since drawing can occur back to front
without concern about flickering.

The second algorithm is as efficient as clipping is. In the case of complex forms with hundreds of objects,
the clipping region can end up fairly complex and slow down the drawing excessively. Algorithms can be
devised to keep the clipping region as simple as possible, but they tend to perform in n2.

Another problem is that clipping gets very inefficient or even impossible for non rectangular or complex
shapes, such as text for example. With the current clipping support in Windows, it is impossible to
exclude the text from the clipping region. Support of pixel perfect regions in future versions of Windows
may allow such a solution.

Finally, clipping of non-rectangular objects only works for objects prepared to support it, while back-to-
front drawing works for all objects. Real applications are likely to contain a mixture of uplevel and
downlevel objects, and should be able to give reasonable, fast and flickerless images of all objects.

Consequently, no one method is perfect. Depending on the situation and their sophistication, containers
may choose to use one or another, or a mix of both. The objective of the design presented here is to allow
the use of both methods with various degrees of sophistication. Simple containers may implement a
simplistic “back to front” painting algorithm directly to the screen. The speed is likely to be high but so
will flicker. If flicker is to be reduced to a minimum, painting to an off-screen device context is the
solution of choice. If memory consumption is a problem, containers can use clipping to reduce the use of
off screen bitmaps.

In short, the goal of this design is to allow algorithms and implementation to evolve as the requirements
on the application change and computers and Windows evolve.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 16

Two pass drawing
To draw as flicker-free as possible without using an offscreen bitmap, the container will have to paint in
two passes. First pass is done front to back. During that pass, each object draws regions of itself that are
cheap enough to clip out efficiently and that it can entirely obscure. These regions will be referred to as
“opaque” in the rest of this document. After each object is done, the container clips out the regions just
painted to ensure that subsequent objects will not modify the bits on the screen.

During the second pass, which occurs back to front, each object draws its remaining parts - irregular,
oblique or in general difficult to clip out, such as text on transparent background. Such parts will be
referred to as “transparent” in the rest of this document. At this point, the container is responsible for
clipping out any opaque, already painted regions in front of the object currently drawing. The less
painting during this second pass, the less flicker on the screen.

Clipping during the second pass may be very inefficient, since the clipping region needs to be recreated
for every object that has something to draw. This might be acceptable if not too many overlapping
objects have irregular or transparent parts. An object can tell its container ahead of time whether it wants
to be called during this second pass or not.

If the container provides an offscreen bitmap to paint into, then it can skip the first pass and ask every
object to render itself entirely during the second pass. In certain cases, the container may also decide than
flicker is not a problem and use that same technique while painting directly on screen. For example,
flicker might be acceptable when painting a form for the first time, but not when repainting.

Note. Although documented here two pass drawing is not currently utilized by any containers.

New drawing aspects
Most of the drawing enhancements described in the previous section are packaged into a new interface,
derived from IViewObject2, and called IViewObjectEx.

The discussion above shows that each object needs to be able to draw and return information about three
separate aspects of itself:

· its entire image,

· its opaque, easy to clip regions only,

· its irregular or transparent parts only.

The following drawing aspects are needed:

DVASPECT_CONTENT Same as before: the entire content of an object. All objects should
support this aspect.

DVASPECT_OPAQUE Represents the opaque, easy to clip parts of an object. Objects may or
may not support this aspect.

DVASPECT_TRANSPARENT Represents the transparent or irregular parts of on object, typically
parts that are expensive or impossible to clip out. Objects may or may
not support this aspect.

The container can determine which of these drawing aspects an object supports by calling the new
method IViewObjectEx::GetViewStatus. Individual bits return information about which aspects are
supported. If an object does not support the IViewObjectEx interface, it is assumed to support only
DVASPECT_CONTENT.

Depending on which aspects are supported the container may ask the object to draw itself during the front
to back pass only, the back to front pass only or both. The various possible cases are:

· Objects supporting only DVASPECT_CONTENT should be drawn during the back to front pass, with all
opaque parts of any overlapping object clipped out. Since all objects should support this aspect, a

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 17

container not concerned about flickering - maybe because it is drawing in an offscreen bitmap -
can opt to draw all objects that way and skip the front to back pass.

· Objects supporting DVASPECT_OPAQUE may be asked to draw this aspect during the front to back pass.
The container is responsible for clipping out the object’s opaque regions (returned by
IViewObjectEx::GetRegion) before painting any further object behind it.

· Objects supporting DVASPECT_TRANSPARENT may be asked to draw this aspect during the back to front
pass. The container is responsible for clipping out opaque parts of overlapping objects before
letting an object draw this aspect.

Even when DVASPECT_OPAQUE and DVASPECT_TRANSPARENT are supported, the container is free to use
these aspects or not. In particular, if it is painting in an offscreen bitmap and consequently is unconcerned
about flicker, the container may use DVASPECT_CONTENT and a one-pass drawing only. However, in a
two-pass drawing, if the container uses DVASPECT_OPAQUE during the front to back pass, then it must use
DVASPECT_TRANSPARENT during the back to front pass to complete the rendering of the object.

Object origin and extent
In order not to break the OLE model too much, all objects, rectangular or not, are required to maintain an
origin and a rectangular extent. This allows the container to still consider all its embedded objects as
rectangles and to pass them appropriate rendering rectangles in IViewObjectEx::Draw.

An object’s extent depends on the drawing aspect. For non rectangular object, the extent should be the
size of a rectangle covering the entire aspect. By convention the origin of an object is the top-left corner
of the rectangle of the DVASPECT_CONTENT aspect. In other words, the origin always coincides with the
top-left corner of the rectangle maintained by the object’s site, even for a non-rectangular object.

All IViewObjectEx methods described in this document that take or return a position assume it to be
expressed in himetric, relative to the origin of the object.

Getting extents of the drawing aspects
IViewObject2::GetExtent is extended to support the new drawing aspects, but must return the same size
as DVASPECT_CONTENT for all the new aspect. (IOleObject::GetExtent must do the same thing.)

In order to let the container easily get the bounding rectangle of the new drawing aspects, a new method
IViewObjectEx::GetRect is added. This method returns a rectangle (in himetric relative to the origin of
the object) defined as follow for the various drawing aspect:

DVASPECT_CONTENT: the returned rectangle corresponds to the object’s extent.

DVASPECT_OPAQUE: only objects with a rectangular opaque region should return a rectangle. Others
should fail and return error code DV_E_ASPECT. If a rectangle is returned, it is guaranteed to be
completely obscured by calling IViewObjectEx::Draw for that aspect. The container should use that
rectangle to clip out the object’s opaque parts before drawing any object behind it during the back to
front pass. For objects with a non-rectangular opaque region (when this method fails) the container
should use draw the entire object in the back to front part using the DVASPECT_CONTENT aspect (In
’97 containers will be able to also use GetRegion).

DVASPECT_TRANSPARENT: the returned rectangle should completely cover the transparent region of the
object. A container may use this rectangle to determine whether there are other objects overlapping the
transparent parts of a given object.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 18

View status

Checking for opaque objects
In order to optimize the drawing process, the container needs to be able to know whether an object is
opaque and/or has a solid background. Indeed, it is not necessary to redraw objects that are entirely
covered by a completely opaque object. Other operations, such as scrolling for example, can also be
highly optimized if an object is opaque and has a solid background.

The IViewObjectEx::GetViewStatus method returns whether the object is entirely opaque or not
(VIEWSTATUS_OPAQUE bit) and whether its background is solid (VIEWSTATUS_SOLID bit). This information
may change in time. An object may be opaque at a given time and become totally or partially transparent
later on (for example because of a change of the BackStyle property). Objects should notify their sites
when it changes using IAdviseSinkEx::OnViewStatusChange. This ensures that the site can cache this
information for high speed access.

Objects not supporting IViewObjectEx are considered to be always transparent.

Checking for supported drawing aspects
The IViewObjectEx::GetViewStatus method also returns a combination of bits indicating which aspects
are supported.

If a given drawing aspect is not supported, all IViewObjectEx methods taking a drawing aspect as an
input parameter should fail and return E_INVALIDARG. The GetViewStatus method allows the container to
get back information about all drawing aspects in one quick call. Normally the set of supported drawing
aspects should not change with time. However if this was not the case, an object should notify its
container using IAviseSinkEx::OnViewStatusChange.

Which drawing aspects are supported is independent of whether the object is opaque, partially or totally
transparent. In particular, a transparent object that does not support DVASPECT_TRANSPARENT should be
drawn correctly during the back to front pass using DVASPECT_CONTENT. However, this is likely to result
in more flicker.

View status change notification
In order to let objects notify their container when their view status information changes, the IAdviseSink
interface is extended (derived) into IAdviseSinkEx, which contains one extra method,
OnViewStatusChange.

In order to determine which interface the sink supports, an object must call the QueryInterface function
using the pointer that was passed to IViewObject::SetAdvise.

View change notification
It is important that controls call the IAdviseSink:OnViewChange method whenever the object’s view
changes even when the control is in place active. Containers’ rely on this notification to keep a control’s
view up-to-date.

IViewObjectEx interface
This interface is an extension to IViewObject2 providing support for enhanced, flicker-free drawing for
irregular and transparent objects. It also support non-rectangular hit-testing, and control sizing (see the
sections entitled “Hit Detection for Non-Rectangular Objects” and “Control Sizing” for a description of
these features).

enum _DVASPECT2

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 19

{
DVASPECT_OPAQUE = 16,
DVASPECT_TRANSPARENT = 32

}
DVASPECT2;
// The above is an extension to DVASPECT

interface IViewObjectEx : public IViewObject2
{

// from IViewObject
HRESULT Draw([in] DWORD dwAspect, [in] LONG lindex, [in] void* pvAspect,

[in] RGETDEVICE* ptd, [in] HDC hicTargetDev, [in] HDC hdcDraw
[in] LPCRECTL lprcBounds, [in] LPCRECTL lprcWBounds,
[in] BOOL (CALLBACK* pfnContinue) (DWORD), [in] DWORD dwContinue);

...

// from IViewObject2
GetExtent([in] DWORD dwAspect, [in] DWORD lindex, [out] DVTARGETDEVICE* ptd

[out] LPSIZEL lpsizel);

// IViewObjectEx methods
HRESULT GetRect([in] DWORD dwAspect, [out] LPRECTL pRect);
HRESULT GetViewStatus([out] DWORD* pdwStatus);

// More methods (see the section entitled Hit Detection For Non-Rectangular Objects)
...

};

IViewObjectEx::Draw
HRESULT Draw([in] DWORD dwAspect, [in] LONG lindex, [in] void* pvAspect,

[in] RGETDEVICE* ptd, [in] HDC hicTargetDev, [in] HDC hdcDraw
[in] LPCRECTL lprcBounds, [in] LPCRECTL lprcWBounds,
[in] BOOL (CALLBACK* pfnContinue) (DWORD), [in] DWORD dwContinue);

Inherited from IViewObject. The contract associated with that method is changed as follow:

· new drawing aspects are supported (see the section entitled “New Drawing Aspects”),

· may be called to redraw a windowless in-place active object (see the section entitled
“IViewObject::Draw and In-Place Windowless Objects”),

· the pvAspect parameter may be used to pass additional information allowing drawing optimizations
(see the section entitled “Drawing Optimizations”).

Arguments have the same meaning as defined by OLE2, with the exception of “lprcBounds” that should
be NULL when this method is called to redraw an in-place active windowless object.

Argument Type Description

dwAspect DWORD Aspect to be drawn.

lindex LONG As defined by OLE2.

pvAspect VOID* Can point to a DVASPECTINFO structure (see the section entitled
“Drawing Optimizations”) to allow drawing optimizations. If this
parameter is NULL, OLE2 rules are in effect.

ptd RGETDEVICE* As defined by OLE2.

hicTargetDev HDC As defined by OLE2.

hdcDraw HDC As defined by OLE2.

lprcBounds LPCRECTL Rectangle (in logical coordinates of hdcDraw) where to draw the
object. Should be NULL to draw a windowless in-place active object.
hdcDraw should be in MM_TEXT with the origin at the client area
origin of the containing window in that case.

lprcWBounds LPCRECTL As defined by OLE2.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 20

pfnContinue BOOL (CALLBACK*) (DWORD) As defined by OLE2.

dwContinue DWORD As defined by OLE2.

IViewObjectEx::GetExtent
GetExtent([in] DWORD dwAspect, [in] DWORD lindex, [out] DVTARGETDEVICE* ptd

[out] LPSIZEL lpsizel);
Inherited from IViewObject2. Extents are returned in himetric. This method may fail for the new aspects
or return the same rectangle as for the DVASPECT_CONTENT aspect.

IViewObjectEx::GetRect
HRESULT GetRect([in] DWORD dwAspect, [out] LPRECTL pRect);
This method returns a rectangle describing a given drawing aspect. The following rectangles should be
returned for depending on the drawing aspect :

DVASPECT_CONTENT Bounding rectangle of the whole object. Top-left corner at the
object’s origin and size equal to the extent returned by
IViewObjectEx::GetExtent.

DVASPECT_OPAQUE Objects with a rectangular opaque region should return that rectangle. Others should
fail and return error code DV_E_DVASPECT.

DVASPECT_TRANSPARENT Rectangle covering all transparent or irregular parts. If the object does
not have any transparent or irregular parts, it may return
DV_E_ASPECT.

The returned rectangle is in himetric, relative to the object’s origin.

Argument Type Description

dwAspect DWORD Drawing aspect of interest (see above).

lindex LONG As defined by OLE2.

lpRectl LPRECTL Pointer to returned region rectangle.

Returned value S_OK A valid region has been returned.

DV_E_DVASPECT This method does not support this aspect. This can be either
because the object does not support the aspect or, for
DVASPECT_OPAQUE, because this aspect is not rectangular.

IViewObjectEx::GetViewStatus
HRESULT GetViewStatus([out] DWORD* pdwStatus);
Returns information about the opacity of the object, and what drawing aspects are supported. This
information is returned as a combination of the following bits:

VIEWSTATUS_OPAQUE Object is completely opaque, i.e., for any aspect, it promises to draw
the entire rectangle passed to Draw. If this bit is not set, the object
contains transparent parts. If it also support DVASPECT_TRANSPARENT,
then this aspect may be used to draw the transparent parts only.

This bit applies only to CONTENT related aspects and not to
DVASPECT_ICON or DVASPECT_DOCPRINT.

VIEWSTATUS_SOLIDBKGND Object has a solid background (consisting in a solid color, not a brush
pattern). This bit is meaningful only if VIEWSTATUS_OPAQUE is set.

This bit applies only to CONTENT related aspects and not to
DVASPECT_ICON or DVASPECT_DOCPRINT.

VIEWSTATUS_DVASPECTOPAQUE Object supports DVASPECT_OPAQUE. All IViewObjectEx methods
taking a drawing aspect as a parameter can be called with this aspect.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 21

VIEWSTATUS_DVASPECTTRANSPARENT Object supports DVASPECT_TRANSPARENT. All IViewObjectEx
methods taking a drawing aspect as a parameter can be called with
this aspect.

Argument Type Description

pdwStatus DWORD Returns view status (see above).

Returned value S_OK This method should never fail.

IAdviseSinkEx interface
Extension of IAdviseSink to provide synchronous and partial display invalidation.
interface IAdviseSinkEx : public IAdviseSink
{

HRESULT OnViewStatusChange([in] DWORD dwViewStatus);
};

IAdviseSinkEx::OnViewStatusChange
HRESULT OnViewStatusChange([in] DWORD dwViewStatus);
Notifies the sink that a view status of an object has changed.

Argument Type Description

dwViewStatus DWORD New view status (see GetViewStatus method).

Returned value S_OK Success.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 22

Windowless OLE objects
Main objective: Allow an OLE object to never consume a window.

Overview: OLE2 requires object to have a window when they are active. This is often an
unnecessary burden on small OLE objects such as control and prevent objects to be
transparent or non-rectangular. A new kind of OLE objects, called windowless
object, can now in-place active without requiring a window. They get user input
and services from their container instead.

Why windowless objects ?
Windows have two major drawbacks for OLE objects: they prevent an object to be transparent or non-
rectangular when active and they add unwanted and unnecessary instance size to the object. These
limitations are usually not insurmountable for big, out of process OLE servers. However, for small
objects such as controls, often found in great numbers on a container, this is an issue.

Modern forms often make use of non-rectangular controls such as lines, arrows, shapes with editable
labels, round “volume” buttons, fancy looking gauges and switches, “real world” or 3-D objects, etc.
These objects cannot be described in term of a rectangle (at best, they need several of them) but still need
go in-place or UI activate to interact with the user. Windows, rectangular by nature, are not well suited
for them.

Transparent objects, used intensively in slide presentation packages for example, are a variation of non
rectangular objects. The most common example is a text control with transparent background. Typically,
all editable text over a bitmap such as a watermark belongs to that category. Other examples include
fancy shadows, postal stamp like borders, etc. Again, with a window, controls have no hope to stay
transparent when active.

Another problem caused by using windows is the unnecessary extra instance size that they carry. Controls
are generally small objects, most often in process. Their typical instance size is in the order of 200 bytes.
Because typical forms can embed hundreds of controls, keeping the instance size small is critical and so
is keeping the loading/instantiation time down. This basically prevents controls from having a window at
all times since the instance size and creation speed of hundreds of window would be unacceptable.

An alternate strategy is to create a window only when an object becomes active - when it needs to get
user input. But as a consequence, the amount of work needed for the inactive-active transition goes up
and the speed of the transition goes down. There are cases when this is a problem: as an example,
consider a grid of text boxes. When cursoring up and down through the column, each control must be in-
place activated and then deactivated. The speed of the inactive/active transition will directly affect the
scrolling speed.

Another case where the burden of creating a window during the inactive-active transition might be a
problem is with nested objects. When the user clicks on a object that is 5 levels down the hierarchy of
objects, as many windows need to be created.

Finally, the bottom line is that controls actually do not need a window. Services that a window offers can
easily be provided via a single shared window (usually the container’s) and a bit of dispatching code.
Having a window is mostly an unnecessary complication on the object.

Windowless object model

General
Windowless objects are an extension of normal Compound Document objects. They follow the same in-
place activation model and share the same definitions for the various OLE states, with the difference that

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 23

they do not consume a window in the in-place and UI active states. They are required to comply with the
OLE2 Compound Document specification (including in-place and UI activation).

Windowless objects require special support from their container. In other words, the container has to be
specifically writing to support this new kind of OLE objects. However, windowless objects are backward
compatible with down level containers. In such containers, they simply create a window when active and
behave as normal Compound Document objects.

As other Compound Document objects, windowless objects need to be in-place active to get mouse and
keyboard messages. In fact, since an object needs to have the keyboard focus to receive keyboard
messages, and having focus implies being UI active for an OLE object, only UI active objects will
actually get keyboard messages. Non active controls can still process keyboard mnemonics.

Since windowless objects do not have a window to get input and keyboard message from, they rely on
their container for this. The container is responsible for routing user input messages sent to its own
window to the appropriate windowless object, via a new interface. Similarly, windowless objects can
obtain services from their container such as capture the mouse, setting the focus, getting a hdc to paint in,
etc. In addition, the container is responsible for drawing any border hatching as well as the grab handles.

Support for windowless objects is provided by extensions of the IOleInPlaceObject and
IOleInPlaceSiteEx interfaces, IOleInPlaceObjectWindowless and IOleInPlaceSiteWindowless. By
extending (deriving from) existing interfaces rather than creating new ones, no new vtable pointer is
added to the object instance. This help keeping the instance size small, an important requirement for
controls.

Window vs. windowless negotiation
When a windowless object gets in-place activated, it should query its site for the
IOleInPlaceSiteWindowless interface. If this interface is supported, the object should call
CanWindowlessActivate on it to determine if it can proceed and in-place activate without a window.

If the container does not support IOleInPlaceSiteWindowless or CanWindowlessActivate returns S_FALSE,
the windowless object should behave like a normal Compound Document object and create a window.

This negotiation implies that the container needs to be “windowless aware”, i.e., to have been written
specifically to support windowless objects. Indeed, the rest of this document details many new behaviors
expected for a windowless aware container. However, these new requirements are not breaking the
overall OLE model and should be implementable on top of existing code without too much difficulty.

The container knows whether or not a given in-place active object has a window by calling
IOleInPlaceObject::GetWindow. This method should fail (return E_FAIL) for a windowless object. As a
convenience for the developer, the CDK for OLE Controls 96 could provide standard support for creating
a window on top of a windowless object.

However, nothing in the OLE2 specification states that an object must have created its window by the
time it calls OnInPlaceActivate on its site. Consequently, many existing OLE objects only create their
window after calling this method. This is a problem for windowless objects since, within the
OnInPlaceActivate call, the container cannot reliably know whether an object is windowless by calling
GetWindow on the object.

This problem is solved by requiring windowless objects to call OnInPlaceActivateEx (as opposed to
OnInPlaceActivate):

HRESULT OnInPlaceActivateEx(BOOL* pfNoRedraw, DWORD dwFlags);

The dwFlags parameter contains additional information about the activation as a combination of bits. The
ACTIVATE_WINDOWLESS bit indicates that the activation happens windowless.

Note: the pfNoRedraw parameter serves a complete different purpose and is explained in the section
entitled “Flicker Free Activation and Deactivation”. Windowless objects usually will not need this
parameter and can therefore pass NULL.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 24

Containers may elect to cache the status of the ACTIVATE_WINDOWLESS flag instead of querying the object
using GetWindow every time they need to know whether an object is windowless or not.

Message dispatching
Since windowless objects do not have a window, we need a mechanism to let the container dispatch
mouse and keyboard messages to them. We also need a way to let them capture the mouse and get the
keyboard focus.

A windowless OLE object gets messages from its container, via the OnWindowMessage method on the
new IOleInPlaceObjectWindowless interface. The signature of this method is similar to the SendMessage
API function, except that

1. It does not take an HWND in parameter,
2. It returns both a HRESULT and a LRESULT code.

Containers should dispatch messages to the appropriate windowless OLE object as described in the
following sections.

Objects should refrain from calling DefWindowProc directly. Objects should instead call
IOleInPlaceSiteWindowless::OnDefWindowMessage to perform the default action. This can be used for
messages such as WM_SETCURSOR or WM_HELP, for which the default action is to propagate the message
up to the container. This gives the object a way to let the container handle the message before processing
it itself. See the IOleInPlaceSiteWindowless interface description for details.

Mouse messages and capture
A windowless OLE object can capture the mouse input, by calling
IOleInPlaceSiteWindowless::SetCapture(TRUE). Mouse capture can be denied, in which case this
method should fail. If the capture is granted, the container must set the Windows mouse capture to its
own window and pass any subsequent mouse message on to the object, regardless of whether the mouse
cursor position is over this object or not.
The object can later on release the capture by calling IOleInPlaceSiteWindowless::SetCapture(FALSE).
The capture can also be released because of an external event (such as the ESC key being depressed). This
will normally be notified by a WM_CANCELMODE message (that the container should forward to the object
with the keyboard focus).

Containers should dispatch all mouse messages (including WM_SETCURSOR) to the windowless OLE
object that has captured the mouse, or, if no object has captured the mouse, to the object under the mouse
cursor. Refer to the section entitled “Summary of message dispatching rules” for more details.

An object can indicate that it did not process a mouse message by returning S_FALSE. The container
should then perform the default behavior for the message. For all mouse message except WM_SETCURSOR,
it should just call DefWindowProc. For WM_SETCURSOR the container can either set the cursor itself or do
nothing. Objects can also use IOleInPlaceWindowlessSite::OnDefWindowMessage to obtain the default
message processing from the container. In the case of the WM_SETCURSOR message, this allows an object
to take action if the container did not set the cursor.

Keyboard messages and focus
In order to get keyboard focus, a windowless object needs the participation of its container. Not only
Windows focus should be set to the container’s window, but also the container should dispatch all
keyboard messages to the windowless object that actually has the focus.

Therefore, windowless objects should call IOleInPlaceSiteWindowless::SetFocus to get the keyboard
focus. This method should be called wherever a windowed object would have called the Windows API
function SetFocus. Normally this happens during the UI activation process and within the notification
methods IOleInPlaceActiveObject::OnDocWindowActivate and OnFrameWindowActivate.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 25

Containers should implement IOleInPlaceSiteWindowless::SetFocus by setting the Windows focus to the
window they are using to get keyboard messages, and redirecting any subsequent keyboard message to
the object requesting the focus. Note that SetFocus can also be called to release the focus (by passing
FALSE) without assigning it to any particular other object. In that case, the container should call the
Windows® API function with a NULL parameter so that no window has the focus.

Objects can use the IOleInPlaceSiteWindowless::GetFocus method to find whether they currently have
the focus or not.

Containers should dispatch all keyboard messages to the windowless OLE object with the keyboard
focus. Other messages intended for the object with the focus such as IME messages,
WM_CANCELMODE or WM_HELP should also be sent to that object. Refer to the following list for a
description of the message dispatching rules.

A windowless object can indicate that it did not process a keyboard message by returning S_FALSE. In
that case, the container should perform the default process of the message on behalf of the object, i.e.,
pass the message to DefWindowProc.

Summary of message dispatching rules
The following table summarizes how containers should dispatch messages:

Message Action

WM_MOUSEMOVE

WM_SETCURSOR

WM_MOUSEMOVE

WM_xBUTTONDOWN

WM_xBUTTONUP

WM_xBUTTONDBLCLK

Dispatch to windowless OLE object that has
captured the mouse, if any. Otherwise, dispatch to
the windowless OLE object under the mouse
cursor. If there is no such object, the container is
free to process the message for itself.

WM_KEYDOWN

WM_KEYUP

WM_CHAR

WM_DEADCHAR

WM_SYSKEYDOWN

WM_SYSKEYUP

WM_SYSDEADCHAR

WM_IME_xxx

WM_HELP

WM_CANCELMODE

Dispatch to the windowless OLE object with the
keyboard focus

All other messages Process in the container

Accelerators
The UI active object checks for its own accelerators in IOleInPlaceActiveObject::TranslateAccelerator.
This also goes for a windowless object. However, a windowless object cannot send a WM_COMMAND
message to itself, as would a windowed OLE object. Therefore, instead of “translating” the key to a
command, a windowless object should simply process the key right away. Except for that difference,
windowless objects should implement this method as defined by the OLE2 specifications. In particular
they should pass the message up to their site if they do not which to handle it, and return S_OK if the

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 26

message got “translated” (or more exactly, in the case of a windowless object, “processed”) and S_FALSE
if not. Non translated messages will come back to the object via
IOleInPlaceObjectWindowless::OnWindowMessage.

Note that because the container’s window gets all keyboard input, a UI active object should look for
messages sent to that window to find those it needs to process in TranslateAccelerator. An object can get
its container’s window by calling IOleWindow::GetWindow.

Mnemonics
OLE Control mnemonics are handled the same way whether the control is windowless or not. The
container gets the control mnemonic table with IOleControl::GetControlInfo and calls
IOleControl::OnMnemonic when it receives a key combination that matches a control mnemonic.

IViewObject::Draw and in-place windowless objects
With OLE2 a container was only responsible for drawing inactive objects, since active objects have their
own window and therefore drew themselves independently. This, however, changes with windowless
objects. Because they do not have a window of their own, they depend on their container to be drawn
even when in-place active.

With OLE 2.0, all inactive drawing was performed using IViewObject::Draw:
HRESULT Draw(DWORD dwAspect, LONG lindex, void* pvAspect,

RGETDEVICE* ptd, HDC hicTargetDev, HDC hdcDraw
LPCRECTL lprcBounds, LPCRECTL lprcWBounds,
BOOL (CALLBACK* pfnContinue) (DWORD), DWORD dwContinue);

In order to stay consistent with OLE2, the container still uses IViewObject::Draw to redraw an in-place
active windowless object. When use to draw an in-place active windowless object, this method should be
used as follow:

· The “lprcBounds” parameter (the rectangle where to draw the object) should be NULL. The object
should use its in-place rectangle - passed by the activation verb or by
IOleInPlaceSite::SetObjectRects - instead.

· Only the following drawing aspects are allowed in that case: DVASPECT_CONTENT, DVASPECT_OPAQUE
and DVASPECT_TRANSPARENT.

· The hdc should be in MM_TEXT mapping mode, with its logical coordinates matching the client
coordinates of the containing window. In other words, the hdc should be in the same state as the
one normally passed by a WM_PAINT message.

Note that IViewObject::Draw can be called with the lprcBounds parameter NULL only to draw an in-place
active windowless object. In every other situation, this is illegal and should result in a E_INVALIDARG
error code.

It is legal, however, to call IViewObject::Draw with lprcBounds not NULL for a in-place active object.
This has the same effect as for an in-place active windowed object: the object should render the requested
aspect into the passed hdc and rectangle. A container can use this to render a second, non active “view”
of an in-place active object, to print an object, etc.

Drag & drop onto windowless objects
In OLE2, the registration of a IDropTarget interface was tied to a window. Because they do not have a
window when active, windowless objects cannot register an IDropTarget interface. Therefore, they
cannot directly participate in the OLE drag & drop loop, but instead, need support from their container.

Here is how it works: windowless objects wishing to be drop targets should still implement the
IDropTarget interface, but not register it and not make it part of their object identity. The container
registers its own IDropTarget interface. When, inside a call to DragEnter or DragOver, the container

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 27

figures that the mouse pointer just entered an in-place active windowless object, it calls GetDropTarget
on its IOleInPlaceObjectWindowless interface. The object should return a pointer to its own IDropTarget
interface if it wants to participate in drag & drop. The interface returned from GetDropTarget may be
cached for use later.

This is preferred to making the IDropTarget interface part of the object identity (and QI-ing for it) since
OLE2 specifically states that it should not be.

The container then calls DragEnter on this interface and passes the returned value for *pdwEffect up
when returning from its own DragOver or DragEnter. From there on, the container forwards all
subsequent DragOver calls to the windowless object. When the mouse leaves the object (if it does) the
container should call DragLeave on the object’s IDropTarget and then release this interface.

Inactive windowless objects that wish to participate in drag & drop should do as explained in the section
entitled “Drag & Drop Onto Inactive Objects” for windowed objects, i.e., return the
POINTERINACTIVE_ACTIVATEONDRAG flag in GetActivationPolicy. However, there are some differences
due to the absence of the window and the fact that the container can directly get to the object’s
IDropTarget interface. Here is the exact sequence of events that should happen when the mouse is
dragged over an inactive windowless object:

· Within a call to its own DragEnter or DragOver, the container calls GetActivationPolicy on the
object’s IPointerInactive interface.

· The object answers by returning the POINTERINACTIVE_ACTIVATEONDRAG flag.

· The container in-place activates the object and then calls
IOleInPlaceObjectWindowless::GetDropTarget on the object to get its IDropTarget interface or
uses the IDropTarget interface for the object that was cached from a previous call.

· The container calls DragEnter on the object, and then returns from the call to its own to DragEnter or
DragOver, forwarding up the value passed by the object for *pdwEffect.

· The container forwards all subsequent DragOver calls to the object’s same method until the mouse
leaves the object or a drop occurs.

· If a drop happens the container forwards the DragDrop call down to the object.

· If the mouse leaves the object, the container calls DragLeave on the object and release its
IDropTarget interface

· Finally, the container in-place deactivates the object.

Objects can return S_FALSE from IDropTarget::DragEnter to indicate that they do not accept any of the
data formats in the data object. In that case the container can decide to accept the data for itself and
return an appropriate dwEffect from its own DragEnter or DragOver method. Note that objects returning
S_FALSE from DragEnter should be prepared to receive subsequent calls to DragEnter without any
DragLeave in between. Indeed, if the mouse is still over the same object during the next call to the
container’s DragOver, the container may decide to try and call DragEnter again on the object.

IOleInPlaceObjectWindowless interface
An extension of IOleInPlaceObject allowing a container to dispatch user input to an in-place active
windowless object.
interface IOleInPlaceObjectWindowless : public IOleInPlaceObject
{

HRESULT GetWindow([out] HWND* phwnd);
// Other IOleInPlaceObject methods
...

// Message dispatching
HRESULT OnWindowMessage([in] UINT msg, [in] WPARAM wParam,

[in] LPARAM lParam, [in] LRESULT* plResult);

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 28

// Drag & drop
HRESULT GetDropTarget([out] IDropTarget** ppDropTarget);

};

IOleInPlaceObjectWindowless::GetWindow
HRESULT GetWindow([out] HWND* phwnd);
This method is inherited from IOleInPlaceObject but has a slightly extended contract for a windowless
object in the sense that it could fail (return E_FAIL). This is how the container knows an object in-place
activated without creating a window. Note that returning E_FAIL is defined by the OLE2 specification as
“No window handle attached to this object”, so no compatibility problem should arise.

IOleInPlaceObjectWindowless::OnWindowMessage
HRESULT OnWindowMessage([in] UINT msg, [in] WPARAM wParam,

[in] LPARAM lParam, [in] LRESULT* plResult);
This method let the container dispatch a message to a windowless OLE object. Containers should send
mouse messages to the object with the mouse capture or under the mouse, keyboard, IME and help
messages to the object with the keyboard focus. Refer to the following section for a summary of the
message dispatching rules.

Argument Type Description

msg UINT Message identifier, as passed by Windows

wParam WPARAM As passed by Windows

lParam LPARAM As passed by Windows

plResult LRESULT* Returned Windows result code (as defined by Windows API spec)

Returned value S_OK Success.

A windowless control should call IOleInPlaceSiteWindowless::OnDefWindowMessage to obtain the
default windows processing of the container.

Window Message Container Responsibilities

WM_MOUSEMOVE

WM_XBUTTONxxx

WM_KEYDOWN

WM_KEYUP

WM_CHAR

WM_DEADCHAR

WM_SYSKEYUP

WM_SYSCHAR

WM_SYSDEADCHAR

WM_IME_xxx

The container must pass the message to the default
window procedure.

WM_SETCURSOR The container must process the message as its own.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 29

WM_CONTEXTMENU

WM_HELP

All coordinates passed to a control are specified as client coordinates of the containing window.

IOleInPlaceObjectWindowless::GetDropTarget
HRESULT GetDropTarget([out] IDropTarget** ppDropTarget);
This method returns a pointer to the object’s IDropTarget interface. Since they do not have a window,
windowless objects cannot register an IDropTarget interface. However, if they wish to participate in drag
& drop, they should still implement this interface and return it here. They should not make this interface
part of their object identity since this is explicitly forbidden by the OLE2 specifications. A container may
cache the pointer to the returned interface for use later.

Argument Type Description

ppDropTarget IDropTarget** Returns a pointer to the object’s IDropTarget interface.

Returned value S_OK Success.

E_NOTIMPL The windowless object does not support drag & drop.

IOleInPlaceActiveObject Interface
1 This interface is not changed, but the GetWindow method behaves differently for a windowless

control.

IOleInPlaceActiveObject::GetWindow
Always fails and returns E_FAIL for a windowless control. Since this is documented in the current OLE2
specification, there should not be any problem with existing containers and frames.

IOleInPlaceSiteWindowless interface
This site interface allows a windowless object to get services from its container in order to carry drawing
related operations.

interface IOleInPlaceSiteWindowless : public IOleInPlaceSiteEx
{

//IOleInPlaceSiteEx methods
HRESULT OnInPlaceActivateEx([out] BOOL* pfNoRedraw, [in] DWORD dwFlags);
HRESULT OnInPlaceDeActivateEx([in] BOOL fNoRedraw);

// windowless vs. window negotiation
HRESULT CanWindowlessActivate();
HRESULT SetCapture([in] BOOL fCapture);
HRESULT GetCapture();
HRESULT SetFocus([in] BOOL fFocus);
HRESULT GetFocus();
HRESULT OnDefWindowMessage([in] MSG msg, [in] WPARAM wparam,

[in] LPARAM lparam, [out] LRESULT* plResult);

// … more methods for in-place painting…
};

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 30

IOleInPlaceSiteWindowless::OnInPlaceActivateEx
HRESULT OnInPlaceActivateEx([out] BOOL* pfNoRedraw, [in] DWORD dwFlags);
 This method is inherited from IOleInPlaceSiteEx. It replaces OnInPlaceActivate. Windowless object are
required to use this method instead of OnInPlaceActivate in order to let their container know whether
they are activating windowless or not.

Argument Type Description

pfNoRedraw BOOL* See explanation the section entitled “Flicker-free
Activation/Deactivation”. Windowless objects usually do not need the
value returned by this parameter and may pass NULL, therefore saving
the container the burden of computing this value.

dwFlags DWORD Communicates extra information to the container, including whether
the object is activating windowless or not.

Returned value HRESULT As defined for IOleInPlaceActivate.

The dwFlags parameter can be a combination of the following values:

ACTIVATE_WINDOWLESS = 1 The object is in-place activating windowless. Within this method, the
container should use this information as opposed to calling
GetWindow on the object to determine whether the object is
windowless or not.

IOleInPlaceSiteWindowless::CanWindowlessActivate
HRESULT CanWindowlessActivate();
Lets an object know whether it can in-place activate without creating a window. If this method returns
S_FALSE, the object should create a window and behave as a normal Compound Document object.

Argument Type Description

Returned value S_OK Object can in-place activate without creating a window. The container
will dispatch events to it using IOleInPlaceObjectWindowless.

S_FALSE Object can’t in-place activate without a window.

IOleInPlaceSiteWindowless::SetCapture
HRESULT SetCapture([in] BOOL fCapture);
Provides a means for a in-place active windowless object to capture all mouse messages. The container
should respond by setting the mouse capture to its own window and dispatching any subsequent mouse
message to this object. Also used to release the mouse capture.

Argument Type Description

fCapture BOOL TRUE to capture the mouse, FALSE to release it.

Returned value S_OK Mouse capture has been granted to the object. If called to release the
capture, this method should never fail.

S_FALSE Mouse capture has been denied to the object.

IOleInPlaceSiteWindowless::GetCapture
HRESULT GetCapture();
An in-place active windowless object can use this method to figure out whether it still has the mouse
capture or not. As an alternative a control may wish to cache whether it has the capture or not.

Argument Type Description

Returned value S_OK The object currently has mouse capture.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 31

S_FALSE The object does not currently have mouse capture.

IOleInPlaceSiteWindowless::SetFocus
HRESULT SetFocus([in] BOOL fFocus);
A UI active windowless object may call this method to take the keyboard focus, for example in response
to a WM_xBUTTONDOWN message being sent via
IOleInPlaceSiteWindowless::OnDefWindowMessage. It should call this method in response to standard
OLE2 notifications IOleInPlaceActiveObject::OnFrameWindowActivate(TRUE) and
OnDocWindowActivate(TRUE) to ensure that the keyboard focus is set back to its containing window
when its Document or Frame gain activation.

The container should implement this method so that it sets the focus to its own window and dispatch all
subsequent keyboard message to the calling object.

Argument Type Description

fFocus BOOL TRUE sets focus to the calling server, FALSE removes focus from the
calling server (provided it has the focus).

Returned value S_OK The object has been given the keyboard focus. If called to release the
focus this method should never fail.

S_FALSE Keyboard focus has been denied to the object.

IOleInPlaceSiteWindowless::GetFocus
HRESULT GetFocus();
An in-place active windowless object can use this method to find out whether it has the keyboard focus or
not. As an alternative a control may wish to cache whether it has the focus or not.

Argument Type Description

Returned value S_OK The object currently has keyboard focus.

S_FALSE The object does not currently have keyboard focus.

IOleInPlaceSiteWindowless::OnDefWindowMessage
HRESULT OnDefWindowMessage([in] MSG msg, [in] WPARAM wparam,

[in] LPARAM lparam, [out] LRESULT* plResult);
This method implements the default processing for all messages passed to an object. An object can
invoke the default processing for a message by calling this method explicitly.

Argument Type Description

msg UINT Message identifier, as passed by Windows

wParam WPARAM As passed by Windows

lParam LPARAM As passed by Windows

plResult LRESULT* Returned Windows result code (as defined by Win32® API
specification for the DefWindowProc function).

Returned value S_OK Success.

S_FALSE Depends on the message, see below.

Containers should implement this method as follow:

Window Message Container Responsibilities

WM_MOUSEMOVE

WM_XBUTTONxxx

The container must pass the message to the default
window procedure (DefWindowProc) and return
S_OK. Note that *plResult should contain the value

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 32

WM_KEYDOWN

WM_KEYUP

WM_CHAR

WM_DEADCHAR

WM_SYSKEYUP

WM_SYSCHAR

WM_SYSDEADCHAR

WM_IME_xxx

returned by DefWindowProc.

WM_SETCURSOR

WM_CONTEXTMENU

WM_HELP

The container can either process the message as its
own and return S_OK or not do anything and return
S_FALSE.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 33

In-place drawing for windowless objects
Main objective: Provide windowless OLE objects with a way to redraw themselves when active.

Overview: Windowless OLE object need services to redraw themselves, scroll or show a caret
when active. A new interface on the site (IOleInPlaceSiteWindowless) provides
these services.

Introduction
When active, a normal OLE object can use its own window to redraw itself. With the model described so
far, a windowless object relies on its container for being redrawn and can only be entirely redrawn. This
may not always be appropriate.

We need to define a way for an object to get a hdc to draw in. However, a particular object has no
knowledge of its surrounding environment and therefore cannot safely draw itself without the
participation of the container. The clipping region needs to be set properly, the background may need to
be repainted, objects in front have to be given a chance to redraw themselves, etc. The same goes for
other drawing related services such as scrolling, drawing a caret, etc. The site interface
IOleInPlaceSiteWindowless is extended to provide these services.

One important characteristic of the IOleInPlaceSiteWindowless interface is that all methods take
positional information in client coordinates of the containing window, i.e., the window the object is
drawn into.

Obtaining / Releasing a device context
To draw on its own when in-place active, an object should:

· call IOleInPlaceSiteWindowless::GetDC to get a device context (HDC) to draw into,

· draw into this HDC,

· hand back the HDC to the container by calling IOleInPlaceSiteWindowless::ReleaseDC.

When calling GetDC, objects pass the rectangle they wish to draw into (in client coordinates of the
containing window). The container is expected to intersect this rectangle with the object’s site rectangle
and clip out everything outside the resulting rectangle. This prevent objects from inadvertently drawing
where they are not supposed to.

Containers are also expected to map the device context origin in such a way that the object can draw in
client coordinates of the containing window - normally the container’s window. If the container is merely
passing its window DC, this will be the case automatically. If it is returning another DC, such as an
offscreen memory DC for example, then the viewport origin should be set appropriately.

The GetDC method also takes various flags indicating what the device context will be used for:

OLEDC_NODRAW When set, indicates that the object won’t use the device context to
perform any drawing but merely to get information about the display
device. The container should simply pass the window’s DC without
further processing.

OLEDC_PAINTBKGND When set, requests that the container paint the background before
returning the DC. Objects should set that flag if they are requesting a
DC for redrawing an area with transparent background.

OLEDC_OFFSCREEN When set, informs the container that the object wishes to render in an
off-screen bitmap that should then be copied to the screen. An object

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 34

should use this flags when the drawing operation it is about to perform
generates a lot of flicker. The container is free to honor this request or
not. However, if this bit is not set, the container must hand back an
on-screen DC. This allows objects to perform direct screen operations
such as showing a selection (via an xor operation).

Depending whether it is returning a on-screen or off-screen device context, and how sophisticated it is,
container may use one of the following algorithms

On-screen, one pass drawing: in GetDC the container should:

· get the window DC,

· if OLEDC_PAINTBKGND is set, draw the DVASPECT_CONTENT aspect of every object behind the object
requesting the device context,

· return the DC.

In ReleaseDC, the container should:

· draw the DVASPECT_CONTENT of every overlapping object,

· release the DC.

On-screen, two pass drawing: in GetDC the container should:

· get the window DC,

· clip out the opaque regions of any overlapping object (these regions do not need to be redrawn since
they are already correct on the screen),

· if OLEDC_PAINTBKGND is not set, return the DC,

· otherwise, clip out the opaque parts of the object requesting the DC and draw the opaque parts of every
object behind it (going front to back),

· draw the transparent aspects of every object behind (going back to front), setting the clipping region
appropriately each time,

· finally return the DC.

In ReleaseDC, the container should:

· draw the transparent parts of every overlapping object,

· release the DC.

Off-screen drawing: in GetDC the container should:

· create a screen compatible memory device context, containing a compatible bitmap of appropriate
size,

· map the viewport origin of the device context to ensure that the calling object can draw using client
area coordinates of the containing window,

· if OLEDC_PAINTBKGND is set, draw the DVASPECT_CONTENT of every object behind the calling object,

· return the DC.

In ReleaseDC the container should:

· draw the DVASPECT_CONTENT aspect of every overlapping object,

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 35

· copy the off-screen bitmap to the screen at the location the calling object originally requested in
GetDC,

· delete and release the memory DC.

Display Invalidation
In-place windowless objects may need to invalidate regions of their on-screen image. Even though the
notification methods in IAdviseSinkEx can be used for that purpose, they are not ideal for in-place active
objects because they take himetric coordinates and force to hold on to a different interface. In order to
simplify and speed up in-place drawing, InvalidateRect and InvalidateRgn provide the same functionality
on IOleInPlaceSiteWindowless.

Objects may not call the Windows API function InvalidateRect and InvalidateRgn directly on the HWND
they get from calling GetWindow on their site. Indeed, containers may need to perform special processing
(such as maintaining a “dirty” state for each site) that would not work correctly in that case.

Scrolling
In-place active windowless objects may need to scroll a given rectangle of their on screen image. This
would be typically the case of a multi-line text control. Because of transparent and overlapping objects,
the Windows API ScrollWindow and ScrollDC are not appropriate. The
IOleInPlaceSiteWindowless::ScrollRect let objects perform scrolling.

Containers may implement this method in a variety of ways. However, all of them should account for the
possibility that the object requesting scrolling may be transparent or not have a solid background, and
that there may be overlapping objects.

The simplest way to implement this method consists in simply redrawing the rectangle to scroll. A
refinement would be to use ScrollDC when the object requesting the scroll is opaque and has a solid
background and there are not overlapping objects. More sophisticated containers may use the following
procedure:

· check whether the object is opaque and has a solid background, using GetViewStatus. If not, simply
invalidate the rectangle to scroll (a refinement would be to check whether the scrolling rectangle
is entirely in the opaque region of a partially transparent object),

· get the window DC,

· clip out the opaque parts (returned by IViewObjectEx::GetRegion) of any overlapping object,

· clip out and invalidate the transparent parts of any overlapping object,

· finally call ScrollDC (Window’s API),

· redraw the previously invalidated transparent parts of any overlapping object.

All redraw generated by the Scroll method should happen synchronously (before this method returns)

Caret support
A windowless object cannot safely show a caret without first checking whether the caret is partially or
totally hidden by overlapping objects. In order to make that possible, an object can submit a rectangle to
its site using IOleInPlaceSiteWindowless::AdjustRect to get it adjusted (reduced) to ensure it fits in the
clipping region.

Objects willing to create a caret should submit the caret rectangle to their site that way and use the
adjusted rectangle for the caret. If the caret is entirely hidden, this method will return S_FALSE and the
caret should not be shown at all in this case.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 36

In a situation where objects are overlapping AdjustRect should return the largest rectangle that is fully
visible.

This method can also be used to figure whether a point or a rectangular area is visible or hidden by
overlapping objects.

IOleInPlaceSiteWindowless interface
This site interface allows a windowless object to get services from its container in order to carry drawing
related operations.

interface IOleInPlaceSiteWindowless : public IOleInPlaceSiteEx
{

//IOleInPlaceSiteEx Methods
…
// windowless control redrawing functions
HRESULT GetDC([in] LPCRECT lpRect, [in] DWORD dwflags, [out] HDC* phdc);
HRESULT ReleaseDC([in] HDC hdc);
HRESULT InvalidateRect([in] LPCRECT lprc, [in] BOOL fErase);
HRESULT InvalidateRgn([in] HRGN hrgn, [in] BOOL fErase);
HRESULT ScrollRect([in] int dx, [in] int dy,

 [in] LPCRECT lprcScroll, [in] LPCRECT lprcClip);
HRESULT AdjustRect([in,out] LPRECT lprc);

};

IOleInPlaceSiteWindowless::GetDC
HRESULT GetDC([in] LPCRECT lpRect, [in] DWORD dwflags, [out] HDC* phdc);
Provides a means for an object to get a screen (or compatible) HDC from its container. See the section
entitled “Obtaining/Releasing a Device Context” for an explanation of how containers should implement
this method. A device context obtained by GetDC should be released by calling ReleaseDC.

Argument Type Description

lpRect LPCRECT The rectangle the object wants to redraw, in client coordinates of the
containing window. NULL means the full object’s extent.

dwflags DWORD A combination of the following bits:

OLEDC_NODRAW Informs the container that the HDC will not be used
for drawing but merely to get device information.

OLEDC_PAINTBKGND Requests that the container paint the
background behind the object before returning the
HDC. Objects should use this flag when requesting a
DC to paint a transparent area.

OLEDC_OFFSCREEN Indicates that an offscreen HDC is preferred.
The container may honor the request or not. If this
bit is cleared, the container must return an on-screen
DC.

phdc HDC* Pointer to returned HDC. The clipping region should be set so that the
object can’t paint in any area it is not supposed to. If the object is not
opaque, the background should have been painted. If this is a screen
HDC, any overlapping opaque areas should be clipped out.

Returned value S_OK A valid HDC has been returned

OLE_E_NESTEDPAINT Already in the middle of a paint session. i.e., GetDC has been
called again without ReleaseDC being called yet.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 37

IOleInPlaceSiteWindowless::ReleaseDC
HRESULT ReleaseDC([in] HDC hdc);
Release a HDC obtained by GetDC. Notifies the container that an object is done with this device context.
If this device context was used for drawing, the container should ensure that all overlapping objects are
repainted correctly. If this was a offscreen device context, its content should also be copied to the screen
in the rectangle originally passed to GetDC.

Argument Type Description

hdc HDC Device context to release.

IOleInPlaceSiteWindowless::InvalidateRect
HRESULT InvalidateRect([in] LPCRECT lpRect, [in] BOOL fErase);
This method let an object invalidate a given rectangle of its in-place image on the screen.

Argument Type Description

lpRect LPCRECTL The rectangle to invalidate, in client coordinates of the containing
window. NULL means the full object’s extent.

fErase BOOL Specifies whether the background within the update region is to be
erased when the update region is processed. If this parameter is
TRUE, the background is erased. If this parameter is FALSE, the
background remains unchanged.

Returned value S_OK Success

E_INVALIDARG Invalid combination of dwFlags

Note that an object is only allowed to invalidate pixels contained in its own site rectangle. Any attempt to
invalidate an area outside of that rectangle should result in a no-op.

IOleInPlaceSiteWindowless::InvalidateRgn
HRESULT InvalidateRgn([in] HRGN hrgn, [in] BOOL fErase);
This method lets an object invalidate a given region of its in-place active image on the screen.

Argument Type Description

hrgn HRGN The region to invalidate, in client coordinates of the containing
window. NULL means the full object’s extent.

fErase BOOL Specifies whether the background within the update region is to be
erased when the update region is processed. If this parameter is
TRUE, the background is erased. If this parameter is FALSE, the
background remains unchanged.

Returned value S_OK Success

E_INVALIDARG Invalid combination of dwFlags

Note that an object is only allowed to invalidate pixels contained in its own site rectangle. Any attempt to
invalidate an area outside of that rectangle should result in a no-op.

IOleInPlaceSiteWindowless::ScrollRect
HRESULT ScrollRect([in] int dx, [in] int dy,

 [in] LPCRECT lprcScroll, [in] LPCRECT lprcClip);
Allows an object to scroll an area within its in-place active image on the screen. This method should take
in account the fact that the caller may be transparent and that there may be opaque or transparent
overlapping objects. See Scrolling for suggestions on algorithms this method may use.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 38

Argument Type Description

lprcScroll LPCRECTL The rectangle to scroll, in client coordinates of the containing
window. NULL means the full object.

lprcClip LPCRECTL The rectangle to clip to (same definition as for the Windows API
function). Only pixels scrolling into this rectangle are drawn. Pixels
scrolling out are not. NULL means no clipping.

dx, dy int The amount to scroll by on both axis.

Returned value S_OK Success

Regardless of the scrolling and clipping rectangle, only pixels contained in the object’s site rectangle will
be painted. The area uncovered by the scrolling operation is invalidated and redrawn immediately (before
this method returns).

This method should automatically hide the caret during the scrolling operation and move the caret by the
scrolling amounts if it is inside the clip rectangle.

IOleInPlaceSiteWindowless::AdjustRect
HRESULT AdjustRect([in,out] LPRECTL lprc);
Adjusts a rectangle if it is entirely or partially covered by overlapping, opaque objects. The main usage of
this method is to adjust the size of the caret.

Argument Type Description

lprc LPRECTL The rectangle to adjust.

Returned value S_OK The rectangle was not entirely covered. It was adjusted successfully.

S_FALSE The rectangle was entirely covered. It was adjusted successfully
(width and height are now null).

This method should check overlapping object for transparency in order not to reduce a rectangle that is
behind a transparent object.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 39

Hit detection for non-rectangular objects
Main objective: Support non rectangular objects.

Overview: Provide entry point allowing the container to have the OLE object participate in the
hit-test logic.

Hit test for points
In order to support hit detection on non-rectangular objects, the container needs a reliable way to ask an
object whether or not a given location is inside one of its drawing aspects. This function is provided by
IViewObjectEx::QueryHitPoint.

Note that since this method is part of the IViewObjectEx interface, the container can figure whether an
mouse hit is over an object without having to necessarily launch the server. If the hit happens to be inside
the object, then it is likely that the object will be in-place activated and the server started.

Normal usage of IViewObjectEx::QueryHitPoint is the following: the container quickly determines
whether a given location is within the rectangular extent of an object and, if yes, calls QueryHitPoint to
get confirmation that the location is actually inside the object. The hit location is passed in client
coordinates of the container window. Since the object may be inactive when this method is called, the
bounding rectangle of the object in the same coordinate system is also passed to this method, similarly to
what happens in IPointerInactive::OnSetCursor.

Possible returned values include: outside, on a transparent region, close enough to be considered a hit
(may be used by small or thin objects) and hit.

QueryHitPoint is not concerned by the sub-objects of the object it is called for. It merely indicates
whether the mouse hit was within an object or not.

QueryHitPoint can be called for any of the drawing aspects an object supports. It should return whether
there is a hit with this particular aspect, or fail.

Transparent objects may wish to implement a complex hit-detection mechanism where the user can select
either the transparent object or an object behind it depending where exactly the click happens inside the
object. For example a transparent TextBox showing big enough text may let the user select the object
behind (possibly a bitmap) when he clicks between the characters. For this reason, the information
returned by QueryHitPoint includes indication about whether the hit happens on an opaque or transparent
region.

An example of non-rectangular and transparent hit detection is a transparent circle control with an object
behind it (a line in the example below):

Hit

CloseOutside

Close

Transparent
(but for the
line, close).Transparent

.

The values shown are for hit tests against the circle; gray regions are not part of the control, but are
shown here to indicate an area around the image considered “close.” Each object implements its own

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 40

definition of “close” but is assisted by a hint provided by the container so that closeness can be adjusted
as images zoom larger or smaller.

In the picture above, the points marked “Hit”, “Close” and “Transparent” would all be hits of varying
strength on the circle, with the exception of the one marked “Transparent, (but for the line, close).” This
illustrates the effect of the different strength of hits. Since the circle responds “transparent” while the line
claims “close,” and transparent is weaker than close, the line takes the hit.

Hit test for rectangles
We saw earlier in this document that containers may need to test whether an object overlaps a given
drawing aspect of another object. This can be achieved by requesting a region or at least a bounding
rectangle of the aspect in question. However, a quicker way to do this would be to simply ask the object
whether a given rectangle intersects one of its drawing aspects. The IViewObjectEx::QueryHitRect
routine serves that purpose.

IViewObjectEx interface (Hit test support)
This interface is an extension of IViewObject2. This section details support for non-rectangular hit-testing
provided by this interface.
typedef enum
{

HITRESULT_OUTSIDE = 0,
HITRESULT_TRANSPARENT = 1
HITRESULT_CLOSE = 2,
HITRESULT_HIT = 3,

} HITRESULT;

interface IViewObjectEx : public IViewObject2
{

// Methods from IViewObject, IViewObject2
// and methods described in the section entitled
// “Flicker Free Drawing”.

...

// Hit test support
HRESULT QueryHitPoint([in] DWORD dwAspect, [in] LPRECT pRectBounds,

[in] POINT ptlLoc, [in] LONG lCloseHint,
[out] DWORD* pHitResult);

HRESULT QueryHitRect([in] DWORD dwAspect, [in] LPRECT pRectBounds,
[in] LPCRECT prclLoc, [in] LONG lCloseHint,

[out] DWORD* pHitResult);
...

};

IViewObjectEx::QueryHitPoint
HRESULT QueryHitPoint([in] DWORD dwAspect, [in] LPRECT pRectBounds,

[in] POINTL ptlLoc, [in] LONG lCloseHint,
[out] DWORD* pHitResult);

Indicates whether a point is within a given aspect of an object. An object supporting IViewObjectEx is
required to implement this method at least for the DVASPECT_CONTENT aspect. The object should not take
any other action in response to this method other than to return the information, i.e. no side-effects.

Argument Type Description

dwAspect DWORD Drawing aspect of interest.

prcBounds LPCRECT Object bounding rectangle in client coordinates of the containing
window. This rectangle is computed and passed by the container so
that the object can meaningfully interpret the hit location.

ptLoc POINTL Hit location client coordinates of the containing window.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 41

lCloseHint LONG Suggested distance in himetric the container considers “close.” This is
a hint, and objects can interpret idiosyncratically. Objects can also use
this to roughly infer output resolution to choose expansiveness of hit
test implementation.

pHitInfo HITRESULT* Pointer to returned information about the hit.

Return value S_OK Success. pHitInfo contains accurate returned information

E_FAIL Method not implemented for this particular aspect. Use
DVASPECT_CONTENT instead.

The value returned by pHitInfo is one of the following:

HITRESULT_OUTSIDELocation is outside the object and not close.

HITRESULT_TRANSPARENT Location is within the bounds of the object, but not close to the image.
For example, a point in the middle of a transparent circle could be
HITRESULT_TRANSPARENT.

HITRESULT_CLOSE Location is inside (or perhaps outside) the object but close enough to
the object to be considered inside. Small, thin or detailed objects may
use this value. Even if a point is outside the bounding rectangle of an
object it may still be close (this is needed for hitting small objects).

HITRESULT_HIT Location is within the image of the object.

IViewObjectEx::QueryHitRect
HRESULT QueryHitRect([in] DWORD dwAspect, [in] LPRECT pRectBounds,

[in] LPCRECT prclLoc, [in] LONG lCloseHint,
[out] DWORD* pHitResult);

Indicates whether any point in a rectangle is within a given drawing aspect of an object. An object
supporting IViewObjectEx is required to implement this method at least for the DVASPECT_CONTENT
aspect. The object should not take any other action in response to this method other than to return the
information, i.e. no side-effects. If there is any ambiguity about whether a point is a hit, for instance due
to coordinates not converting exactly, the object should return HITRESULT_HIT whenever any point in the
rectangle might be a hit on the object. That is, it is permissible to claim a hit for a point that is not
actually rendered, but never correct to claim a miss for any point that is in the rendered image of the
object.

Note that unlike QueryHitPoint, this method does not return HITRESULT_TRANSPARENT or
HITRESULT_CLOSE. It is strictly boolean: Hit or Miss.

Argument Type Description

dwAspect DWORD Drawing aspect of interest.

prcBounds LPCRECT Object bounding rectangle in client coordinates of the containing
window. This rectangle is computed and passed by the container so
that the object can meaningfully interpret the hit location.

prcLoc LPCRECT Hit test rectangle in himetric, relative to top-left corner of the object.

pHitInfo HITRESULT* Pointer to returned information about the hit.

Return value S_OK pHitInfo contains accurate returned information

E_FAIL Method not implemented for this particular aspect. Use
DVASPECT_CONTENT instead.

The value returned by pHitInfo is one of the following:

HITRESULT_OUTSIDENo point in the rectangle is hit.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 42

HITRESULT_HIT At least one point in the rectangle would be a hit on the object. (See
dwHitReason).

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 43

Quick Activation
Main objective: Allow controls and containers to avoid performance bottlenecks on loading

controls.

Abstract: A new interface is added that combines the load-time or init-time handshaking
between the control and its container into a single call.

Overview
The performance interface IQuickActivate was added to prevent the performance hit that occurred when a
container loaded a control.

In the original model, when a container loaded a control it performed a handshake dance: the container
would call certain interfaces on a control and the control, in turn, would call back to certain interfaces on
the container’s client site. First, the container would create the control and call QueryInterface to query
for interfaces that it needed; then, the container would call IOleObjectSetClientSite on the control,
passing a pointer to its client site. Next, the control would call QueryInterface on this site, retrieving a
pointer to additional necessary interfaces.

Using the new IQuickActivate::QuickActivate function, the container passes a pointer to a
QACONTAINER structure, the structure contains pointers to interfaces which are needed by the control
and the values of some ambient properties that the control may need. Upon return, the control passes a
pointer to a QACONTROL structure that contains pointers to its own interfaces that the container
requires, and additional status information.

The IPersist*::Load and IPersist*::InitNew functions should be called after quick activation occurs.

The control should establish its connections to the containers sinks during quick activation. However,
these connections are not “live” until IPersist*::Load or IPersist*::InitNew has been called.

The following ambient flags passed from the container in the dwAmbientFlags member of
QACONTAINER for the equivalent standard ambients of type Boolean:
Name Value Ambient Dispid
QACONTAINER_SHOWHATCHING 1 -712
QACONTAINER_SHOWGRABHANDLES 2 -711
QACONTAINER_USERMODE 4 -709
QACONTAINER_DISPLAYASDEFAULT 8 -713
QACONTAINER_UIDEAD 16 -710
QACONTAINER_AUTOCLIP 32 -715
QACONTAINER_MESSAGEREFLECT 64 -706
QACONTAINER_SUPPORTSMNEMONICS 128 -714

struct QACONTAINER // from container
{

ULONG cbSize;
IOleClientSite* pClientSite;
IAdviseSinkEx* pAdviseSink;
IPropertyNotifySink* pPropertyNotifySink;
IUnknown* pUnkEventSink;
DWORD dwAmbientFlags; // See QACONTAINER_xxxxx
flags above
OLE_COLOR colorFore; // ForeColor Ambient, Dispid = -704
OLE_COLOR colorBack; // BackColor Ambient, Dispid = -
701
IFont* pFont; // Font Ambient, Dispid = -703

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 44

IOleUndoManager* pUndoMgr;
DWORD dwAppearance; // Appearance ambient, Dispid = -716
LONG lcid; // LocaleID ambient, Dispid = -705
HPALETTE hpal; // Palette ambient, Dispid = -726
IBindHost* pBindHost;

};
If an interface pointer in the QACONTAINER structure is NULL it does not indicate that the interface is
not supported, in this situation the control should use Query Interface to obtain the interface pointer in the
standard manner.

struct QACONTROL // from control
{

ULONG cbSize;
DWORD dwMiscStatus; //IOleObject::GetMiscStatus
DWORD dwViewStatus; //IViewObjectEx::GetViewStatus
DWORD dwEventCookie;
DWORD dwPropNotifyCookie;
DWORD dwPointerActivationPolicy; //IPointerInactive::GetActivationPolicy

};
If all the bits of dwPointerActivationPolicy are set then this indicates that the IPointerInactive interface
may not be supported, and QueryInterface should be used to obtain the interface in the standard manner.

IQuickActivate Interface
If this interface is supported then all methods of this interface must be implemented.

interface IQuickActivate : public IUnknown
{

HRESULT QuickActivate([in] QACONTAINER* pqacontainer,
[out] QACONTROL* pqacontrol);

HRESULT SetContentExtent(LPSIZEL lpsizel);
HRESULT GetContentExtent(LPSIZEL lpsizel);

};

IQuickActivate::QuickActivate
HRESULT QuickActivate([in] QACONTAINER* pqacontainer, [out] QACONTROL*
pqacontrol);
Allows the container to activate the control.

Argument Type Description

pqacontainer QACONTAINER* The structure containing information about the container.

pqacontrol QACONTROL* The structure the control fills in to return information concerning the
control. The container calling QuickActivate must reserve memory for
this structure.

Returned value S_OK The quick activation is proceeding and the QACONTROL structure
has been completed.

E_FAIL An unexpected error has occurred. Quick activation will not proceed.

IQuickActivate::SetContentExtent
HRESULT SetContentExtent([in] LPSIZEL lpsizel);
The container calls this to set the content extent of the control.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 45

Argument Type Description

lpsizel LPSIZEL The size of the content extent.

Returned value S_OK The extent has been successfully set.

E_FAIL The extent has not been set, the object’s size is fixed.

IQuickActivate::GetContentExtent
HRESULT GetContentExtent([out] LPSIZEL lpsizel);
The container calls this to get the content extent of the control.

Argument Type Description

lpsizel LPSIZEL The size of the content extent.

Returned value S_OK The extent has been returned.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 46

Undo
Main objective: Allow containers to implement multi-level undo and redo, incorporating undo for

actions performed within contained controls.

Overview: New interfaces are exposed to describe an undo stack, and individual undo objects.
The undo design allows compound undo objects (that is, undo objects which nest
others).

Motivation
The component-software strategy pursued places demands on Undo/Redo support which cannot be
satisfied using the mechanisms defined in OLE 2.0. OLE 2.0 presents a model in which each object
manages its own undo state, with the undo context threading through objects with activation and
deactivation. However, these assumptions lead to limitations that cripple components:

· Only the UI-active object can contribute undo information for any given action. In the component
world, a single action can affect several objects—for example, a user can select several controls
on a form and change their color as a single action.

· There is no way to gracefully discard the oldest information when the stack grows too large; the UI-
active object can only request the container to discard all undo information generated before this
object was UI-activated.

· Undo/Redo UI is managed by the UI-active object. Our strategy breaks this assumption, because the
host application owns menus and toolbars, and bears the responsibility for displaying the undo
stack; the OLE 2.0 interfaces do not give the host application a way to generate a list of all
undoable actions.

To meet these needs, we use a centralized Undo/Redo service, with which objects (whether UI-active or
not) can deposit undo information. The centralized undo manager then has the data necessary to support
the Undo/Redo UI and to discard undo information gradually as the stack becomes full.

Objects get this central undo manager from their sites through the IServiceProvider interface.

Terminology
Due to the number of objects, controls, and applications which interact as part of this undo architecture,
as well as the complexity of their interaction, the documentation of the undo architecture easily becomes
cluttered with words that have multiple meanings. For this reason, the term undo unit is used in this
specification as synonymous with “undo object” and “undo action”. You may discover cases apart from
this specification where the terms “undo action” or “undo object” are used to refer to the object that
encapsulates a state change that can be undone. However, the use of these terms here would cause
confusion, since an undo action is created as a result of a user action, and an OLE object is what creates
an undo object.

Overview
The charter of an undo architecture is to allow the user to undo changes they’ve made to objects if they
decide they don’t want those changes. From the object’s perspective this means ‘un-modifying’ the state
that was modified. In the context of OLE Controls, however, there are two ways the state of an object can
be modified: by the user, and by automation code. For example, the text of a TextBox can be changed by
the user typing into that TextBox, or by some piece of code that changes the Text property on the
TextBox. An example of such a piece of code is an event handler in Visual Basic.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 47

In a simple undo architecture, the two ways of changing an object are treated the same - an undo unit
(some way of describing what changed) is added to the undo stack in either case. Any time an object’s
state changes in a way that is meaningful to the user, the object should create an undo unit that is capable
of undoing that change. The challenge in incorporating undo into OLE Controls is integrating the side
effects of user-written event handlers into the undo stack. That is, when an undoable action is taken on an
object, the object will often fire an event as well as adding an undo unit to the undo stack. If the user has
written an event handler for this event, how are the actions performed by the event handler integrated
with the object’s undo unit?

A solution is to distinguish the cause of an undo unit. If it is possible to determine what caused an undo
unit to be created (whether it was a direct user action or if it was something programmatic in an event
handler) then it is possible to determine what should be done with that undo unit. If the user types into a
TextBox, then the change in the Text property of that TextBox was caused by a direct user action. If the
Text property is changed via a property browser, then the act of applying the changes in the property
browser is also a direct user action. Calling SetText programmatically, however, would be a change not
caused by a direct user action.. Essentially, whoever is interacting directly with the user (the TextBox
when the user types or the property browser) indicates to any object creating an undo unit that the cause
of the change is a direct user action.

If an undo unit was not caused by a direct user action, then it is logical that it should not appear on the
undo stack, since the existence of the undo stack is solely for the benefit of the user. This means that
anytime an object creating an undo unit determines that the undo unit was not caused by a direct user
action, it should discard that unit. Not only that, but the entire undo stack should be discarded. To explain
the necessity of this, consider an object which is manipulated programmatically (e.g. changing the Text
property of a TextBox) such that its state has changed outside of the context of a direct user action. It
isn’t safe for the object to merely throw away the undo unit that encapsulates that change; any undo units
already on the stack assume that the object is in a particular state, and discarding the undo unit would
violate these assumptions. The safest thing for the object to do in this case is to empty the undo stack.
Essentially, to ensure the integrity of the undo stack, objects must either create an undo unit or clear the
undo stack when their state changes.

This architecture is also hierarchical, meaning that one undo unit can contain other undo units. This
allows complex actions, such as a Wizard or changing a property on a multiple selection, to be presented
to the user as a single undoable action. This conforms closely to user expectations. After all, if the user
changes the Text property of a selection of three TextBox controls, then the user expects to see a single
“Undo Property Changes” action on the stack, not three separate actions.

Symmetric and Non-Symmetric Events
The problem of undo gets particularly tricky when you have to consider user-written event handlers for
controls. Consider the following event handler written in Visual Basic:

Sub CommandButton1_Click()
GlobalCounter = GlobalCounter + 1
Text1.Text = Str(GlobalCounter)

End Sub

It is difficult to undo the changes made by this event handler because it affects global state as well as
other objects. In order to undo the changes made by this event handler, Text1 would have to create an
undo unit for the text change, and the language interpreter would have to create an undo unit to undo the
global state change. Requiring language interpreters such as Visual Basic to participate in this fashion is
impossible for both technical and pragmatic reasons. An alternative would be to allow the Visual Basic
programmer to add his or her own undo units to the undo stack, but such a full-blown undo object model
is beyond the scope of this architecture at this time.

The simplest solution is to empty the undo stack anytime an event handler does something that would
change the state of an object. This ensures that if there are any undo units on the stack, there is never any
“missing” information that might be important to an object. This is, in fact, the basic premise of this
architecture; actions taken by user-written event handlers are considered programmatic actions, and as a
result will clear the undo stack if they change the state of an object.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 48

However, this simple solution will often result in an undo stack that has nothing on it.

What we do to partially overcome this disadvantage is take advantage of parallels between the user
undoing an operation by selecting “Undo” and the user manually reversing the operation using the
control’s normal UI. For example, after a user types text into a text box, there are two main avenues for
getting the text back to its original state. The user can undo the Typing operation using the undo stack, or
the user can select the text added and delete it. Both of these operations get the TextBox back to its
original state. In all but the most rare cases, both avenues will be open to the user. This architecture
defines such operations as symmetric operations. They are changes that can be undone both by using the
undo stack and by the user reversing himself manually. Operations that cannot be manually reversed are
non-symmetric.

Often an OLE Control will fire an event when the user does something to change it. For example, the
TextBox fires a Change event when the user types into it, and the button fires a Click event when the user
clicks on it. Events fired by a control are defined as symmetric or non-symmetric by whether the
operation that caused the event to be fired is symmetric or not. For example, the TextBox’s Change event
is symmetric because the user typing into it is symmetric, while the button’s Click event is non-
symmetric because there is no way for the user to manually reverse the button click.

Why is defining events as symmetric or non-symmetric necessary? What this categorization does is allow
us to define cases where undo units created programmatically can be safely discarded. We’ve said that
any change made by code in a user-written event handler is a programmatic change. As a result, any
changes done by a user-written event handler (like setting properties on other controls) would cause the
undo stack to be cleared. However, defining symmetric events allows us to say that any undo units
created by programmatic changes in a symmetric event handler can be safely discarded, as long as the
undo unit created by the control fires that same event again when performing the undo. To illustrate,
consider the following event handler:

Sub Text1_Change()
Text2.Text = Text1.Text

End Sub

We’ve already established that the Change event for a TextBox is symmetric. (If we hadn’t, then the
programmatic change of setting the Text property on Text2 would clear the undo stack). Since it is
symmetric, the undo unit created by Text2 when its Text property changes is merely discarded. Also, the
undo unit created by Text1 is designed to fire the Change event again if the user selects “Undo”. When
the user selects “Undo”, Text1’s undo unit will change the text in Text1 back to its original value and fire
the Change event, which will cause Text2’s text to be updated.

Note that the event handler for a symmetric event can do “non-symmetric” things. For example, the
Text1_Change() event could increment a global variable. There is no way we can prevent this. The goal,
then, is not to produce the “expected” result when the user undoes a symmetric change, at least not if the
expected result is that the world returns to the exact state it was in previously. Rather, the goal is that the
system will end up in the same state it would be in if the user had reversed the change manually.

Parent Units
In the architecture described above, there is some information that must be communicated to objects,
such as whether the current operation is the result of a direct user action and whether an event is
symmetric or not. This is done by creating parent units that enable certain behaviors. Since this
architecture is hierarchical, one undo unit can contain an arbitrary number of other units, which can
contain others, etc. These parent units can be put in different states that correspond to the information
that needs to be communicated to other objects. When an object needs to create an undo unit, it queries
the state of any existing parent units and takes appropriate action depending on the information it
obtained.

One type of parent unit indicates that the current operation is the result of a direct user action. Another
type indicates that a symmetric event is being fired. In certain cases, a third type of parent is used to
indicate that a non-symmetric event is being fired. An object that wishes to create an undo unit queries
the undo manager for information about what type of parent unit is open, and proceeds either to create

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 49

the parent unit or not depending on that data. In many cases, the object will also need to flush the undo
stack.

Parent units are simply normal undo units that support containment of other undo units. They are added
to the undo stack by “opening” them on the stack, adding their children, and then “closing” them. When a
parent unit is open, the central undo manager gives it any new undo units that are added to the stack.
Then, when the parent unit is closed, it is put on the top of the undo stack. It is possible to have nested
parent units, in which case the outermost open unit is given any new undo units, as well as being the one
whose state is returned when an object asks for it. There are two categories of parent units: standard
parent units and special parent units.

Standard parent units are merely regular undo units that add containment behavior so they can contain
other undo units. They can encapsulate state changes themselves as well as containing other undo units.
These are most often used when an object has to make a complex series of calls to enact a state change,
and would prefer to create several undo units to represent that state change instead of just one. Note that
error handling requirements limit the dependencies that such units can have on each other (described
later). Objects creating standard parent units follow the same procedure as when creating non-parent undo
units, which is to query for any special parent units and take the appropriate action.

There are three types of special parent units: enabling parents, blocking parents, and disabling parents.
An enabling parent is used to communicate that the current operation is the result of a direct user
operation, and in effect enables adding new undo units to the stack. A blocking parent is used to
communicate that the current event being fired is a symmetric event and new undo units should be
discarded without clearing the undo stack. A disabling parent is used only in certain cases where a parent
already exists on the stack and an object wishes to fire a non-symmetric event.

An enabling parent unit is technically no different from a standard parent unit, except in the way it is
opened. In fact, once an enabling parent unit is opened, there is no way to distinguish it from a standard
parent unit. The difference between an enabling parent and a standard parent is that a standard parent
requires an enabling parent to exist before it can be opened, while an enabling parent does not.

A blocking parent unit is a parent unit that discards all undo units handed to it. This type of parent is
opened when a symmetric event is fired to prevent new undo units from being added to the stack, and
does not require an enabling parent.

A disabling parent unit is used to tell objects that there is no enabling parent. This will cause objects to
clear the undo stack if their state changes while the disabling parent is open. This is only used when an
enabling parent has been opened, but an object (which did not open the enabling parent) needs to fire a
non-symmetric event. The object then adds a disabling parent, which overrides any enabling parents, and
fires the event. Then, if the event handler changes the state of any objects, the undo stack will be cleared
as required for consistency in the undo stack.

It is possible for special parent units to contain each other. For example, an enabling parent can contain a
blocked parent. A blocked parent, however, can never have an open parent inside itself, by definition. It
is also possible for an open parent to change state - for example, changing from an enabling parent to a
blocked parent and back again. This type of change can only be performed by the object that created the
parent, since it has to be done through privately defined interfaces.

Implementation Requirements
Depending on the complexity of the object, the amount of work needed to add undo support to that object
can vary. Most OLE Controls need only to implement simple undo units, and do not have to worry about
implementing any parent units or the undo manager. This is true if the control fires no events or only fires
non-symmetric events. For each state change (e.g. each property change), the object makes the
appropriate checks for special parent units (described later), and creates a simple undo unit that it hands
to the undo manager. The undo manager is provided by the container of the object. When firing non-
symmetric events, the object just needs to make sure there is no open enabling parent. If the control fires
non-symmetric events as a result of programmatic changes, then it may need to implement a disabling

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 50

parent since an enabling parent may have already been opened by someone else before calling the
control.

If the object fires symmetric events, then it will need to implement a blocking parent unit. Implementing
a blocking parent that is always blocking is not difficult, since it can never contain children if it remains
in the blocked state.

Finally, the control will need to implement an undo manager only if it requires undo in down-level
containers. This is typically true if the control is capable of containing other controls.

The Undo Manager
The host application provides the undo manager service, which manages undoable and redoable state
changes. This service manages two stacks, the undo and redo stacks, each of which serves as a repository
for undo units generated by components or by the host application itself. When an object’s state changes,
it creates an undo unit encapsulating all the information necessary to undo that change and passes it to the
undo manager, which places it on either the undo or the redo stack, as appropriate. When the user selects
Undo (or an object programmatically invokes Undo), the undo manager takes the top undo unit off the
undo stack, instructs it to carry out its encapsulated actions, and releases it. Similarly, when the user
selects Redo, the undo manager takes the top undo unit off the redo stack, instructs it to carry out its
encapsulated actions, and releases it.

The undo manager has three states: the base state, the undo state, and the redo state. It begins in the base
state. To perform an action from the undo stack it puts itself into the undo state, calls Do() on the undo
unit, and goes back to the base state. To perform an action from the redo stack it puts itself into the redo
state, calls Do() on the undo unit, and goes back to the base state.

If the undo manager receives a new undo unit while in the base state, it places the unit on the undo stack
and discards the entire redo stack; while it is in the undo state, it puts incoming units on the redo stack;
and while it is in the redo state, it places them on the undo stack without flushing the redo stack.

The undo manager also allows components to discard the undo or redo stack starting from any object in
either stack.

The host application determines the scope of an undo manager. In one application, for example, the
scope might be at the document level: a separate undo manager is maintained for each document, and
undo is managed independently for each document. However, another application could equally well
decide to maintain one undo manager, and therefore one undo scope, for the entire application.

Undo Units
An undo unit encapsulates the information necessary to undo (or redo) a single action. Its principal
methods are Do() and GetDescription(). The Do() method implements the actual undo (or redo)
operation and shuttles the unit to the other stack—calling Do() on an undo unit in the undo stack creates a
corresponding object on the redo stack, and vice-versa. The GetDescription() method returns a user-
friendly description of the unit, which is used in the Word-style multi-level undo UI and Edit Menu text.

There are two types of undo units: simple and parent. A simple undo unit encapsulates a single undoable
operation, while a parent undo unit can also contain other undo units.

Simple Undo Units
A simple undo unit merely contains the information to undo a single operation; for example, changing the
background color of a checkbox or deleting an object. Simple undo units implement IOleUndoUnit, and
usually require an enabling parent.

A simple undo unit would not require an enabling parent only if it can never be created by a
programmatic action. In other words, an undo unit does not need an enabling parent if the only way it can
be created is by direct user manipulation of the object creating it.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 51

Parent Undo Units and Nesting
In our component software model, actions which the user perceives as single, atomic, undoable actions
may actually involve several components, including components provided by ISV’s. For instance,
running a wizard which manipulates the form and its controls may involve components provided by the
development environment (the window frame), the forms team (the form itself), and ISV’s (individual
controls on the form). In addition, the wizard manipulates the objects using the primary interfaces they
provide; the objects are not directly involved in the semantics of the wizard.

Nevertheless, the user perceives running the wizard as a single action, and expects to see a single “Undo
Format Wizard” item in the Undo drop down. To support this behavior, the undo manager must have a
single undo unit (provided by the wizard) which encapsulates all the actions of all these objects.

To contain other undo units, an undo unit implements IOleParentUndoUnit, which derives from
IOleUndoUnit. The containment behavior is provided by the Open() and Close() methods, which are
supported by both the undo manager itself and all parent undo units. Simple undo units are added
through Add(); parent units are added through Open(), which leaves the unit open. If the undo manager
or a parent undo unit has an open undo unit, it delegates all Add(), Open() and Close() calls to that unit.
The open unit composes all the units it receives (via Open() or Add()) into itself; this may be as simple a
matter as keeping an ordered list of child units.

The undo manager only concerns itself with top-level undo units, i.e. objects which it did not hand on to
an open undo unit. Each parent undo unit is responsible for managing the child units it receives through
Open() or Add().

Handling Errors
Having an undo operation fail and leaving the document in an unstable state is something the undo
manager, undo units, and the application itself all have to work together to avoid. As a result, there are
certain requirements that undo units, the undo manager, and the application or component using undo
must conform to.

Error Handling Summary
To perform an undo the undo manager calls Do() on one or more undo units which can, in turn, contain
more units. If a unit somewhere in the hierarchy fails, the error will eventually reach the undo manager,
who is responsible for making an attempt to roll back the state of the document to what it was before the
call to the last top-level unit. It does this by calling Do() on the unit that was added to the redo stack
during the undo attempt. If the roll-back also fails, then the undo manager is forced to abandon
everything and return to the application. The undo manager indicates whether or not the roll-back
succeeded, and the application can take different actions based on this, such as reinitializing components
so they’re in a known state.

Component or Application Requirements
Typically the component or application using undo puts an undo unit on the stack using the following
steps:

1. Create an undo unit (simple or parent) and initialize it with the current state of the document.
2. Pass the created undo unit to the undo manager.
3. Change the state of the object (which will be undone when the undo unit is called).

These steps may be repeated several times to create a parent undo unit that contains other undo units. The
requirement for the application is that all three steps must occur atomically; that is, all three steps must
succeed or none of them should succeed. Also, undo units cannot depend on each other to the extent that
the document is unstable if only some of the units are executed, even when they are siblings in a parent
unit. “Unstable” here means having invalid internal state, causing the application to crash, lose data, or
otherwise cause the user to not be able to recover from the undo failure. For example, say the user deletes
three controls using a multiple selection. If the undo fails leaving only one of the three controls on the

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 52

form, that is OK. Having bad internal state such that the application GPFs the next time the user adds a
control is not.

Note that if steps (1) or (2) above fail, the application or component has two choices: it can fail the entire
operation, or it can clear the undo and redo stacks and continue with the state change. If step (3) fails,
then the object must ensure the integrity of the undo stack. This may be done by flushing the undo stack
or by creating the undo unit so it doesn’t depend on the success of step (3).

The host application that owns the undo manager decides what action(s) to take when undo fails. At the
very least it should inform the user of the failure. The host application will be told by the undo manager
whether or not the undo succeeded, and if it failed whether or not the attempted rollback succeeded. In
the case both the undo and rollback failed, the host application may choose to present the user with
several options, including immediately shutting down the application.

Simple Undo Unit Requirements
Simple undo units must not change the state of any object if they return failure. This includes the state of
the redo stack (or undo stack if performing a redo). They are also required to put a corresponding unit on
the redo (or undo) stack if they succeed. The application should be stable before and after the unit is
called.

Parent Undo Unit Requirements
Parent undo units have the same requirements as simple units, with one exception. If one or more
children succeeded prior to another child’s failure, the parent unit must commit its corresponding unit on
the redo stack and return the failure to its parent. If no children succeeded, the parent unit should commit
its redo unit only if it has made a state change that needs to be rolled back. For example, say a parent unit
contains three simple units. The first two succeed (and add units to the redo stack), but the third one fails.
At this point the parent unit commits its redo unit and returns the failure.

A side effect of this is that parent units should never make state changes that depend on the success of
their children. Doing this will cause the roll-back behavior to break. If a parent unit makes state changes
it should do them before calling any children; if the state change fails, it should not commit its redo unit,
not call any children, and return the failure to its parent.

Undo Manager Requirements
The undo manager has one primary requirement for error handling: to attempt roll-back when an undo or
redo fails. This discussion applies for both undo and redo, but only undo is mentioned since redo is
symmetric.

When the undo manager calls Do() on a top-level undo unit, it puts itself in the undo state. When it is in
the undo state it should keep track of whether or not any units have been added to the redo stack as a
result of the current undo operation. If the undo fails and nothing has been added to the redo stack, the
undo manager does nothing except return the error code (mapping E_ABORT to E_FAIL). If something
has been added to the redo stack, the undo manager preserves the error code returned from the undo and
calls Do() on the top-level unit on the redo stack. It also passes NULL for the pUndoManager pointer,
indicating that the redo units should not put anything back on the undo stack. If the call to the redo unit
succeeds, the manager clears both stacks and returns the error code saved from the undo call (mapping
E_ABORT to E_FAIL). If the redo unit fails, the manager clears both stacks and returns E_ABORT. (If
IOleUndoManager eventually supports rich error reporting then it will be able to give more useful
information in this case.)

If the undo manager is calling Do() on more than one undo unit it should only roll-back the one which
fails. Note that both stacks are always cleared anytime the undo attempt fails.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 53

Undo Unit Creation
There is a certain sequence to follow when an object’s state changes and it needs to create an undo unit.
It should also take certain steps anytime it fires a symmetric event. The first piece of information an
object needs is what special parent units are open.

Determining the State of Open Parents
Objects need to be able to quickly detect whether there is an open parent undo unit on the stack, and what
its state is. This allows the object to take appropriate action depending on the existence and state of an
open parent unit.

To handle this, a method on the IOleUndoManager interface is used:
#define UAS_NORMAL 0 // Always mask out unused bits with UAS_MASK
#define UAS_BLOCKED 1
#define UAS_NOPARENTENABLE 2
#define UAS_MASK 0x03

interface IOleUndoManager : public IUnknown
{

...
GetOpenParentState(DWORD* pdwState);

...
};

The GetOpenParentState method returns S_OK if there is currently an open parent unit, and S_FALSE if
not. The flags indicate if the open unit is a special parent unit, and what type. Objects should mask out
unused bits when checking for values returned in pdwState, to allow for future expansion. If there is an
open unit, the undo manager delegates through to a corresponding method on the open parent unit:
interface IOleParentUndoUnit : public IUnknown
{

...
GetParentState(DWORD* pdwState);

...
};

GetParentState always returns S_OK, but fills in the pdwState member to indicate the open unit’s current
state. If the open parent contains another open parent, then it delegates to that parent’s GetParentState
method.

Creating an Undo Unit
Objects which participate in undo are expected to retain a pointer to the undo manager. Before an object
creates a simple undo unit, it calls the GetOpenParentState method on the undo manager. If the call
returns S_FALSE then there is no enabling parent. If the call returns S_OK but the
UAS_NOPARENTENABLE flag is set, then the open parent is a disabling parent. In either of these
cases, the object calls DiscardFrom(NULL) on the undo manager and skips creating the undo unit. If the
method returns S_OK, but the UAS_BLOCKED flag is set, then the open parent is a blocking parent, and
the object does not need to create an undo unit since it would be immediately discarded. If the return
value is S_OK and neither of the bit flags are set, then the object creates the undo unit and calls Add() on
the undo manager.

To create an enabling parent unit, the object calls GetOpenParentState on the undo manager and checks
the return value. If the value is S_FALSE, then the object creates the enabling parent and opens it. If the
return value is S_OK, then there is a special parent already open. If the open parent is blocked
(UAS_BLOCKED bit set), or an enabling parent (UAS_BLOCKED and UAS_NOPARENTENABLE
bits not set), then there is no need to create the enabling parent. If the currently open parent is a disabling
parent (UAS_NOPARENTENABLE bit set), then the enabling parent should be created and opened to re-
enable adding undo units. Note that UAS_NORMAL has a value of zero, which means it is the absence
of all other bits and is not a bit flag that can be set. If comparing *pdwState against UAS_NORMAL,
mask out unused bits from pdwState with UAS_MASK to allow for future expansion.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 54

To create a blocked parent, the object calls GetOpenParentState and checks for an open parent that is
already blocked. If one exists, then there is no need to create the new blocking parent. Otherwise, the
object creates it and opens it on the stack.

To create a disabling parent, the object calls GetOpenParentState and checks for an open parent that is
blocked or disabling. If either one exists it is unnecessary to create the new parent. Otherwise, the object
creates the parent and opens it on the stack.

In the event that both the UAS_NOPARENTENABLE and UAS_BLOCKED flags are set, the flag that is
most relevant to the caller should be used, with UAS_NOPARENTENABLE taking precedence. For
example, if an object is creating a simple undo unit, it should pay attention to the
UAS_NOPARENTENABLE flag and clear the undo stack. If it is creating an enabling parent unit, then it
should pay attention to the UAS_BLOCKED flag and skip the creation.

Firing Events
Here’s an example of how a TextBox control might implement its state change when the user types
something into the TextBox:
CTextBox::MessageHandler()
{

case WM_CHAR: // User pressed a key
Check Undo stack for open parent.
If necessary, create enabling parent and open on undo stack.
Call CTextBox::SetText()
Close enabling parent

}

CTextBox::SetText()
{

Check for open enabling parent.
If one exists

Create TextChangeUndo undo unit
Add TextChangeUndo unit to stack

else
Clear undo and redo stacks.

Record the new text value. On failure clear the undo stack.

Mark parent unit as “blocked” (or open a new blocked unit)
Fire Change event
Remove “blocked” status from parent (or close the blocked unit)

}

When the parent undo unit is marked “blocked”, it discards any undo units it receives.

Note that event sequences are not guaranteed to be the same during an undo as when the user makes the
same change. For example, a text box would normally fire a GotFocus or KeyPress event before a
Change event. If the user changes the text via undo, then these events might not be fired.

To summarize, if an undoable operation directly corresponds to a user action, then the object should see
if there is a blocked parent unit currently open. If so, it can skip creating a unit; otherwise, it should pass
the undo unit to the undo manager. That unit may end up being a top level unit or part of a more complex
undo unit. If an undoable operation does not directly correspond to a user action, then it should make sure
there is an unblocked, open unit on the stack before creating the undo unit. If there is no open parent unit
then it should not add a new unit to the undo stack and should tell the undo manager to discard the
current undo and redo stacks. If there is an open, but blocked, unit, then it should do nothing.

Non-Compliant Objects
Objects which do not support multi-level undo can cause serious havoc. Effectively, they poison their
entire context. Since the object cannot be relied on to properly update the undo manager, any units
submitted by other objects are also suspect, since the units may rely on the state of the non-compliant
object. Attempting to undo a compliant object’s units may not be successful, since the state in the non-

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 55

compliant object will not match. Worse, the failure of this undo operation may not be detectable—by
anyone but the user, that is.

The immediate problem is detecting objects which do not support multi-level undo. This is done by
requiring objects which support multi-level undo to mark themselves with a new MiscStatus bit:

#define OLEMISC_SUPPORTSMULTILEVELUNDO ...

When an object without this bit is added to a user-visible undo context, then the safest thing to do is
disable the undo UI for this context. Alternatively, a dialog could be presented to the user, asking them
whether to attempt to provide partial undo support, working around the non-compliance of the new
object.

In addition, non-compliant objects may be added to nested containers. In this case, the nested container
needs to notify the undo manager that undo can no longer be safely supported by calling
IOleUndoManager::Enable(FALSE).

Repeating Actions
This undo/redo architecture does not support repeating the last action, as Word’s “Repeat <action>”
menu item does. An application can provide it’s own method of implementing this behavior if it likes,
perhaps even using the interfaces defined here as a starting point. This architecture may be expanded in
the future to include repeat behavior.

Interfaces
interface IOleUndoUnit : public IUnknown {

HRESULT Do([in] IOleUndoManager* pUndoManager);
HRESULT GetDescription([out] BSTR* pbstr);
HRESULT GetUnitType([out] CLSID* pclsid, [out] LONG* pnID);
HRESULT OnNextAdd(void);

};

interface IOleParentUndoUnit : public IOleUndoUnit {
HRESULT Open([in] IOleParentUndoUnit* pPUU);
HRESULT Close([in] IOleParentUndoUnit* pPUU, [in] BOOL fCommit);
HRESULT Add([in] IOleUndoUnit* pUU);
HRESULT GetParentState([out] DWORD* pdwState);
HRESULT FindUnit([in] IOleUndoUnit* pUU);

};

interface IOleUndoManager : public IUnknown {
HRESULT Open([in] IOleParentUndoUnit* pUU);
HRESULT Close([in] IOleParentUndoUnit* pPUU, [in] BOOL fCommit);
HRESULT Add([in] IOleUndoUnit* pUU);
HRESULT GetOpenParentState([out] DWORD* pdwState);
HRESULT DiscardFrom([in] IOleUndoUnit* pUU);
HRESULT UndoTo([in] IOleUndoUnit* pUU);
HRESULT RedoTo([in] IOleUndoUnit* pUU);
HRESULT EnumUndoable([out] IEnumOleUndoUnits** ppEnum);
HRESULT EnumRedoable([out] IEnumOleUndoUnits** ppEnum);
HRESULT GetLastUndoDescription([out] BSTR* pbstr);
HRESULT GetLastRedoDescription([out] BSTR* pbstr);
HRESULT Enable([in] BOOL fEnable);

};

IOleUndoUnit

IOleUndoUnit::Do
HRESULT Do(IOleUndoManager* pUndoManager);

This method instructs the undo unit to carry out the action it encapsulates. Note that if it contains child
undo units it must call their Do() methods as well.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 56

The undo unit is responsible for moving itself to the redo (or undo) stack or creating a new undo unit and
adding it to the appropriate stack. This is done by creating the undo unit and calling
IOleUndoManager::Open or IOleUndoManager::Add; the undo manager will put the undo unit on the
undo or redo stack depending on its current state. Parent units should put themselves on the redo (or
undo) stack before calling Do() on their children.

If pUndoManager is NULL, the undo unit should perform the undo but not attempt to put anything on the
redo (or undo) stack. If pUndoManager is not NULL, then the unit is required to put a corresponding unit
on the redo (or undo) stack. Parent units must pass to their children the same undo manager (possibly
NULL) that was given to them. It is permissible (but not necessary) when pUndoManager is NULL to
open a parent unit on the redo (or undo) stack as long as it is not committed. This allows the use of a
blocked parent unit to ensure nothing is added to the stack.

After calling this method, the undo manager will release the undo unit.

See “Handling Errors” for the undo error handling strategy which affects the implementation of this
method, particularly for parent units.

Argument Type Description

pUndoManager IOLEUNDOMANAGER* Supplies the undo manager.

Return Value HRESULT S_OK upon success.

IOleUndoUnit::GetDescription
HRESULT GetDescription (BSTR* pbstr)

This method fetches a string which describes the undo unit; this is the string which is displayed in the
undo/redo UI. *pbstr is a string allocated with the standard string allocator; the caller is responsible for
freeing this string. All units are required to provide a user-readable description of themselves.

Argument Type Description

pbstr BSTR* Location to put string.

Return Value HRESULT S_OK upon success.

IOleUndoUnit::GetUnitType
HRESULT GetUnitType (CLSID* pclsid, LONG* pnID)

This method identifies the type of a unit. A parent undo unit can call this method on its child units to
determine whether it can apply special handling to them. The Class ID returned may be the Class ID of
the undo unit itself, or of the creating object, or an arbitrary GUID; the only requirement is that the
CLSID and LONG together uniquely identify this type of undo unit. The undo unit has the option of
returning CLSID_NULL, in which case the caller can make no assumptions about the type of this unit.

Note that the undo manager and parent undo units do not have the option of accepting or rejecting child
units based on their type.

Argument Type Description

pclsid CLSID* Receives a Class ID.

pnID LONG* Receives a type ID relative to the returned Class ID.

Return Value HRESULT S_OK upon success.

IOleUndoUnit::OnNextAdd
HRESULT OnNextAdd (void)

This method notifies the last undo unit in the collection that a new unit has been added. A parent undo
unit should merely call OnNextAdd on its most recently added child undo unit.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 57

This method is useful for supporting fuzzy actions, like typing, which do not have a clear point of
termination but instead are terminated when something else happens. An object can create an undo unit
for an action and add it to the undo manager but continue inserting data into it through private interfaces.
When the undo unit receives an OnNextAdd notification, it communicates back to the creating object that
the context has changed, and the creating object stops inserting data into the undo unit.

Note that parent units merely delegate this method to their most recently added child unit. A parent unit
should terminate communication through any private interfaces when it is closed. A parent unit knows it
is being closed when it returns S_FALSE from IOleParentUndoUnit::Close().

OnNextAdd may not always be called if the undo manager or an open parent unit chooses to discard the
unit by calling Release(). This implies that any connection which feeds data to an undo unit “behind the
scenes” (as described above and in “Open-Ended Undoable Actions: Typing”) should not AddRef the
undo unit.

Implementations of OnNextAdd should always return S_OK. The HRESULT return type is provided only
for remotability.

IOleParentUndoUnit
This interface is supported by undo units which are capable of containing other units. It supports all of
the IOleUndoUnit methods, and supports the following methods in addition:

IOleParentUndoUnit::Open
HRESULT Open(IOleParentUndoUnit* pPUU)

This method opens a new parent undo unit, which will become part of the containing unit’s undo stack.
The given unit is left open and is passed any additional units (via Add or Open) until the Close method is
called. The given unit is not added to the undo stack until the Close method is called with fCommit
TRUE.

The parent undo unit (or undo manager) must contain any undo unit given to it unless it is blocked. If it is
blocked, it must return S_OK but should do nothing else.

Argument Type Description

pPUU IOleParentUndoUnit* Supplies the undo unit to open

Return Value HRESULT S_OK upon success or if blocked.

IOleParentUndoUnit::Close
HRESULT Close(IOleParentUndoUnit* pPUU, BOOL fCommit)

This method closes the most recently opened undo unit. The fCommit parameter indicates whether the
undo unit should be kept or discarded. This allows the client to discard a complex undo unit under
construction if an error or cancellation occurs: the client can use the undo manager to build up this
complex undo unit, rather than building it itself and only adding it on completion.

The pPUU parameter should point to the currently open undo unit. If this parameter does not match the
currently open undo unit then implementations of this method should return E_INVALIDARG without
changing any internal state. The only exception to this is if the unit is blocked (see below).

To process a Close, a parent undo unit first checks to see if it has an open child unit. If it does not, it
returns S_FALSE; if it does, it calls Close on the child. If the child returns S_FALSE, then the parent
undo unit verifies that pPUU points to the child unit, and closes that child undo unit. If the child returns
S_OK then it handled the Close internally and its parent should do nothing. An error return indicates a
fatal error condition. The unit (or undo manager) must accept the undo unit if fCommit is TRUE.

If the parent unit is blocked, it should check the pPUU parameter to determine the appropriate return
code. If pPUU is pointing to itself, then it should return S_FALSE. Otherwise it should return S_OK. The
fCommit parameter is ignored, and no action is taken.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 58

Note that a parent undo unit knows it is being closed when it returns S_FALSE from this method. At that
time it should terminate any private communication with other objects which may be giving data to it.

Argument Type Description

pPUU IOleParentUndoUnit* Pointer to the currently open undo unit.

fCommit BOOL Indicates whether to keep the undo unit. TRUE if the undo
unit should be kept in the collection, FALSE if it should be
discarded.

Return Value HRESULT S_OK for success if an open child existed; S_FALSE if the
undo unit does not have an open child; if the unit is blocked,
see the text above for the appropriate return code;
E_INVALIDARG if pPUU does not point to the currently
open undo unit.

IOleParentUndoUnit::Add
HRESULT Add(IOleUndoUnit* pUU)

This method adds a simple undo unit to the collection. The parent undo unit (or undo manager) must
accept any undo unit given to it unless it is blocked. If it is blocked, it should do nothing but return
S_OK.

Argument Type Description

pUU IOleUndoUnit* Simple unit to add.

Return Value HRESULT S_OK on success or if blocked.

IOleParentUndoUnit::GetParentState
HRESULT GetParentState(DWORD* pdwState)

This method returns state information about the inner-most open parent undo unit. The pdwState
parameter should be filled in with UAS_NORMAL to indicate a normal, unblocked state where new undo
units will be accepted.

If checking for a normal state, unused bits in pdwState should be masked out to allow for future
expansion. The UAS_MASK value is provided for this:

fNormal = ((pdwState & UAS_MASK) == UAS_NORMAL).

The bit values that can be set in pdwState are:

UAS_BLOCKED: The currently open undo unit will reject any undo units added via Open() or
Add(). The caller need not create any new units since they will just be rejected.

UAS_NOPARENTENABLE: The currently open undo unit will accept new units, but the caller
should act like there is no currently open unit. This means if the new unit being created requires a
parent, then this parent does not satisfy that requirement and the undo stack should be cleared.

If the unit has an open child it should delegate this method to that child. If not, it should fill in *pdwState
appropriately and return. Note that a parent unit must never be blocked while it has an open child. If this
happened it could prevent the child unit from being closed, which would cause serious problems.

Argument Type Description

pdwState DWORD* Place to put state information.

Return Value HRESULT S_OK

IOleParentUndoUnit::FindUnit
HRESULT FindUnit(IOleUndoUnit* pUU)

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 59

Indicates if the specified unit is a child of this undo unit or one of its children. This is normally called by
the undo manager in its implementation of DiscardFrom in the (probably rare) event the unit being
discarded is not a top-level unit. The parent unit should look in its own list first, then delegate to each
child that is a parent unit (determined by doing a QueryInterface for IOleParentUndoUnit).

Argument Type Description

pUU IOleUndoUnit* Unit to find.

Return Value HRESULT S_OK if the given unit is in this undo unit’s list of children or is a
descendant of this undo unit, S_FALSE otherwise. An error indicates
an RPC failure condition.

IOleUndoManager
This interface is implemented by the undo manager service, and is the interface objects use to manipulate
the undo and redo stacks.

IOleUndoManager::Open
HRESULT Open(IOleParentUndoUnit* pPUU)

This method is implemented the same as IOleParentUndoUnit::Open. If the undo manager is disabled it
should return S_OK and do nothing else.

Argument Type Description

pPUU IOleParentUndoUnit* Supplies the undo unit to open

Return Value HRESULT S_OK on success, if disabled, or if an open unit is blocked.

IOleUndoManager::Close
HRESULT Close(IOleParentUndoUnit* pPUU, BOOL fCommit)

This method is implemented the same as IOleParentUndoUnit::Close. Which stack the unit is added to is
determined the same way as explained in IOleUndoManager::Add. If the undo manager is disabled it
should immediately return S_OK.

Argument Type Description

pPUU IOleParentUndoUnit* Pointer to the currently open unit.

fCommit BOOL Indicates whether to keep the undo unit. TRUE if the undo
unit should be kept in the collection, FALSE if it should be
discarded.

Return Value HRESULT S_OK for success or if disabled, S_FALSE if there is no open
undo unit. E_INVALIDARG if pPUU is not the currently
open undo unit.

IOleUndoManager::Add
HRESULT Add(IOleUndoUnit pUU)
This method is implemented the same as IOleParentUndoUnit::Add.
If the undo manager is in the base state, it should put the new unit on the undo stack and discard the
entire redo stack. In the undo state it should put new units on the redo stack, and in the redo state it
should put units on the undo stack without affecting the redo stack. (See “The Undo Manager”)

Argument Type Description

pUU IOleUndoUnit* Simple unit to add.

Return Value HRESULT S_OK on success, if disabled, or if an open unit is blocked.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 60

IOleUndoManager::GetOpenParentState
HRESULT GetOpenParentState(DWORD* pdwState)

If there is no open parent unit then this method returns S_FALSE. Otherwise it delegates to the open
unit’s GetParentState method and returns S_OK.

If the undo manager is disabled, it should fill pdwState with UAS_BLOCKED and return S_OK.

Argument Type Description

pdwState DWORD* State of the currently open parent unit is returned here.

Return Value HRESULT S_OK if there is an open unit, S_FALSE if not.

IOleUndoManager::DiscardFrom
HRESULT DiscardFrom(IOleUndoUnit* pUU)

This method instructs the undo manager to discard the specified undo unit and all undo units below it on
the undo or redo stack. The undo manager first searches the undo stack for the given unit, and if not
found there searches the redo stack. Once found, the given unit and all below it on the same stack are
discarded. The undo unit may be a child of a parent unit contained by the undo manager (determined by
calling IOleParentUndoUnit::FindUnit); if it is, then the root unit containing the given unit and all units
below it on the appropriate stack are discarded.

If there is an open parent unit and DiscardFrom(NULL) is called, the undo manager should immediately
release and discard the open parent unit (do not call Close first). When the object that opened the parent
unit attempts to close it, IOleUndoManager::Close will return S_FALSE. If pUU is not NULL, then any
open parent units should be left open.

Argument Type Description

pUU IOleUndoUnit* pointer to the undo unit to discard; NULL for both the entire undo and
redo stacks.

Return Value HRESULT S_OK upon success; E_INVALIDARG if the specified undo unit is
not found in the undo stack. E_UNEXPECTED if disabled.

IOleUndoManager::UndoTo
HRESULT UndoTo (IOleUndoUnit* pUU)

This method instructs the undo manager to perform actions back through the undo stack, down to and
including the specified undo unit. Note that the specified undo unit must be top-level (typically retrieved
through EnumUndoable). The undo manager simply invokes the Do method on each top-level undo unit
and releases it.

In the case an error is returned from the undo unit, the undo manager needs to attempt to roll back the
state of the document by performing actions on the redo stack, and no matter what the success of the
rollback the undo manager should always clear both stacks before returning the error. If the undo
manager has called Do() on more than one top-level unit it should only roll back the unit that returned the
error; the top-level units that succeeded should not be rolled back. The undo manager must also keep
track of whether or not units were added to the opposite stack so it won’t attempt rollback if nothing was
added. “Handling Errors” describes in detail the behavior the undo manager must provide with regard to
handling errors.

E_ABORT is a special error code used to indicate that both the undo attempt and the roll-back attempt
failed. The undo manager should never propagate E_ABORT obtained from a contained undo unit; it
should map E_ABORT returned from other undo units to E_FAIL.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 61

Argument Type Description

pUU IOleUndoUnit* Pointer to the top-level undo unit to undo, or NULL to indicate the
most recently added top-level undo unit.

Return Value HRESULT S_OK; E_INVALIDARG if the specified undo unit is not in the undo
stack. E_ABORT if both the undo and rollback attempt failed.
E_UNEXPECTED if disabled.

IOleUndoManager::RedoTo
HRESULT RedoTo (IOleUndoUnit* pUU)

This method instructs the undo manager to perform actions back through the redo stack, down to and
including the specified undo unit. Note that the specified unit must be top-level (typically retrieved
through EnumRedoable). The undo manager simply invokes the Do method on each top-level undo unit
and releases it.

Error handling is performed the same way as for UndoTo, with the undo stack used for rollback.

Argument Type Description

pUU IOleUndoUnit* Pointer to the top-level undo unit to redo, or NULL to indicate the
most recently added top-level undo unit.

Return Value HRESULT S_OK; E_INVALIDARG if the specified undo unit is not in the redo
stack. E_ABORT if both the undo and rollback attempt failed.
E_UNEXPECTED if disabled.

IOleUndoManager::EnumUndoable
HRESULT EnumUndoable (IEnumOleUndoUnits** ppEnum)
This method enumerates the top-level units in the undo stack.
Argument Type Description

pEnum IEnumOleUndoUnits* Enumeration of the top-level undoable units in the undo stack.

Return Value HRESULT S_OK upon success. E_UNEXPECTED if disabled.

IOleUndoManager::EnumRedoable
HRESULT EnumRedoable (IEnumOleUndoUnits** ppEnum)
This method enumerates the top-level units in the redo stack.
Argument Type Description

pEnum IEnumOleUndoUnits* Enumeration of the top-level redoable units in the redo stack.

Return Value HRESULT S_OK upon success. E_UNEXPECTED if disabled.

IOleUndoManager::GetLastUndoDescription
HRESULT GetLastUndoDescription (BSTR* pstr)

This method fetches the description for the top-level undo unit that is on top of the undo stack. It
provides a convenient shortcut for the host application to add a description to the Edit Undo menu item.
*pbstr is a string allocated with the standard string allocator. The caller is responsible for freeing this
string. If the return value is S_OK then the string will always contain a valid description.

Argument Type Description

pbstr BSTR* Description of transaction on top of stack.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 62

Return Value HRESULT S_OK upon success; E_FAIL if the stack is empty. E_UNEXPECTED
if disabled.

IOleUndoManager::GetLastRedoDescription
HRESULT GetLastRedoDescription (BSTR* pstr)

This method fetches the description for the top-level undo unit that is on top of the redo stack. It
provides a convenient shortcut for the host application to add a description to the Edit Redo menu item.
*pbstr is a string allocated with the standard string allocator. The caller is responsible for freeing this
string. If the return value is S_OK then the string will always contain a valid description.

Argument Type Description

pstr BSTR* Description of transaction on top of stack.

Return Value HRESULT S_OK upon success; E_FAIL if the stack is empty. E_UNEXPECTED
if disabled.

IOleUndoManager::Enable
HRESULT Enable (BOOL fEnable)

This method enables or disables the undo manager. It is particularly useful when a container creates an
object which does not support multi-level undo (i.e. does not have the
OLEMISC_SUPPORTSMULTILEVELUNDO bit set in its miscellaneous flags). See each method of
IOleUndoManager for the appropriate action to take when the manager is disabled. The manager cannot
be disabled if there are any open undo units on the stack or if it is the process of performing an undo or
redo.

The undo manager should clear both stacks when making the transition from enabled to disabled.

Argument Type Description

fEnable BOOL TRUE if the undo manager should be enabled; FALSE if it should be
disabled.

Return Value HRESULT S_OK upon success. E_UNEXPECTED if there is an open undo unit
on the stack or the undo manager is performing an undo or redo.

Examples and Walk-Throughs

Simple Undo and Redo
The user changes the color of a control on a form from blue to red, undoes that change, and finally
decides to redo it and save the form, committing all changes (which discards the undo state).

When the user changes the color of the control to red, the control constructs an undo unit describing this
property change (Property = color, OldValue = blue) and gives it to the undo manager by calling Add.
The undo manager AddRef’s the undo unit and puts it on top of the undo stack. The undo manager also
flushes the redo stack, since it’s in the base state. There is no need for the control to check for an
enabling parent since the only way the color of the control can be changed is directly by the user (this
control has no programmatic access to its color, even through a property browser).

When the user selects Undo, the host application calls IOleUndoManager::UndoTo(NULL) to undo the
last top-level unit. The undo manager takes the control’s undo unit off the top of the undo stack, puts
itself into the undo state, and invokes the undo unit’s Do method.

The undo unit’s Do method changes the control’s color back to blue, adjusts its internal state (OldColor =
red), and gives itself back to the undo manager, through Add. Since the undo manager is in the undo
state, it AddRef’s the undo unit (which now has a reference count of two) and puts it on the redo stack.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 63

After the undo unit’s Do method returns, the undo manager releases the undo unit (reducing its reference
count to one) and puts itself back into the base state.

When the user selects Redo, the host application calls IOleUndoManager::RedoTo(NULL) to redo the
last top-level unit. The undo manager takes the control’s undo unit off the top of the redo stack, puts
itself into the redo state, and invokes the undo unit’s Do method.

The undo unit’s Do method changes the control’s color back to red, adjusts the its internal state
(OldColor = blue), and gives itself back to the undo manager, through Add. Since the undo manager is in
the redo state, it AddRef’s the undo unit (which now has a reference count of two) and puts it on the undo
stack.

After the undo unit’s Do method returns, the undo manager releases the undo unit (reducing its reference
count to one) and puts itself back into the base state.

When the user saves the form, the form calls IUndoManager::DiscardFrom(NULL) to discard all undo
state information. The undo manager takes the undo unit off the undo stack and releases it; this reduces
the undo unit’s reference count to zero, so it destroys itself.

Compound Undo
The user selects five controls on a form and changes their color to red via a property browser, and then
decides to undo that action and restore the controls to their original colors.

When the user presses the Apply button to change the controls’ color, the property browser constructs an
enabling parent undo unit, sets its description to “Change color of controls”, and hands it to the undo
manager through the IOleUndoManager::Open method. This method leaves the undo unit open. Then
the browser calls the SetColor method on each of the controls.

Each control checks for an enabling parent unit (which exists), constructs a simple undo unit which
represents the color change, and adds it to the undo manager through the IOleUndoManager::Add
method. Since the undo manager has an open undo unit (constructed by the property browser), it passes
these undo units on to that parent unit through IOleParentUndoUnit::Add, which stores them inside itself.

After setting the color of the last control, the browser closes its enabling parent unit by calling Close on
the undo manager. Since the undo manager has an open child, it passes the Close on to that undo unit.
The undo unit does not have an open child, so it just returns S_FALSE; this tells the undo manager that
the open unit itself should be closed. The undo manager closes the undo unit.

When the user pulls the Undo list down, the host application fetches the descriptions from the units in the
undo manager, using IOleUndoManager::EnumUndoable. In this example, there is only one top-level
undo unit, the parent undo unit constructed by the property browser; its description is “Change color of
controls”.

When the user selects that item from the Undo list, the host application instructs the undo manager to
undo it, calling IOleUndoManager::UndoTo. The undo manager invokes the Do method on the parent
undo unit; it in turn invokes the Do method on each of its child undo units, which restore the controls to
their old colors.

Open-Ended Undoable Actions: Typing
The user types ‘abcd’ into an edit control on a form, moves the control, and then types in ‘wxyz’. Three
items appear in the Undo drop-down: ‘typing “abcd”’, ‘move control’, and ‘typing “wxyz”’.

When the first character is typed, the edit control constructs an undo unit and adds it to the undo manager
by calling Add. As more characters are typed, it adds them (using privately defined interfaces) to that
undo unit.

When the user moves the control, the form constructs an undo unit describing the move and adds it to the
undo manager by calling Add. At this point, the undo manager calls OnNextAdd on the undo unit
created by the control; that undo unit notifies the edit control (again, through privately defined interfaces)
that a non-typing action has occurred, and that the edit control should stop feeding characters to this undo

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 64

unit. If this were a parent unit which was accepting open-ended data like this, it would terminate the
connection at the time it returned S_FALSE from its Close() method and merely delegate any call to
OnNextAdd to its most recently added unit.

When the next character is typed, the edit control constructs a new undo unit and adds it to the undo
manager by calling Add. Again, as more characters are typed, it adds them to this new undo unit.

The undo manager now has three top-level undo units: ‘typing “abcd”’, ‘move control’, and ‘typing
“wxyz”’.

Event Handler Walk-Through
1. The user types text into a TextBox, which has no event handlers written for it. However, the

TextBox is bound to a database column.
The TextBox creates an undo unit for the change, and adds it to the stack. A Change event is fired,
but no event handlers catch it. The TextBox also fires a property change notification.
When the user undoes this action, the old text is restored, a Change event is fired, and a new
property change notification is fired. The data binding code catches the property change notification
and marks the control as dirty.
2. The user clicks on a PushButton. The Click handler for the button clears the text in a TextBox

on the button’s form.
The PushButton fires a Click event, but does not create an enabling parent, since there is no way to
undo a click. That is, this event is not symmetric. When the Text property of the TextBox is changed,
the TextBox will attempt to create an undo unit and fail, since there is no enabling parent unit. The
TextBox reacts to this by flushing the undo stack.
3. The user clicks on a PushButton. The Click handler increments a global variable, and sets the

text in a TextBox on the same form to be the value of the global variable.
Same as above; the net effect is that the undo stack is flushed.
4. The user clicks a PushButton. The event handler clears a TextBox on another form, with a

different undo stack.
Since no objects on the same form as the PushButton are affected, the undo stack of the PushButton
form is unaffected. However, when the Text property of the TextBox is changed, there is no enabling
parent open on its form, and as a result the undo stack of the TextBox’s form is flushed.
5. The user types text into a TextBox. The Change event handler enables or disables a PushButton

based on whether the text forms a legal identifier.
The TextBox fires a Change event while it has a blocking parent unit open. When the PushButton’s
Enabled property is changed, it examines the undo stack to see if a special parent unit is present.
Since a blocked unit is open, the PushButton changes its Enabled property without logging an undo
unit.
When the user undoes the typing, the TextBox will fire another Change event. The user’s event
handler will be called, and will update the state of the PushButton appropriately.
6. The user types text into a non-compliant TextBox built with the OLE Controls 95 CDK.
This has no effect on the form’s undo stack. If this creates a dangerous situation, then the user
should change the AllowUndo property of the form to False. Alternatively, the form could have
disabled the undo manager at the time the TextBox was inserted since the TextBox did not have the
OLEMISC_SUPPORTSMULTILEVELUNDO flag set. Either method will cause the Form to disallow
any access to the undo stack manager, effectively disabling undo support for all controls on the
Form.
7. The user clicks a PushButton on a DataFrame detail. The event handler causes the current

record to be committed.
The DataFrame flushes the undo stack whenever it commits a record, since the user can’t back up
past the commit.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 65

8. The user edits the Caption property of several PushButtons using the property browser.
The property browser creates and opens an enabling parent undo unit, then applies the changes to
the Caption property to all selected controls. When the Caption property of each PushButton is
changed, the PushButton examines the undo stack, and finds that there is an open and unblocked
parent undo unit. As a result, the PushButton goes ahead and creates an undo unit for the property
change and adds it to the stack. When the property browser is through applying changes, it closes its
open parent.
When the user undoes the change, the parent unit calls the PushButtons’ undo units, which restores
the Caption property to its original value and sends a property change notification. The property
browser catches this notification, and updates the property browser (presuming it still is viewing the
PushButtons).
9. The user runs a wizard which resizes all the controls on the form to reasonable heights and

widths.
Before the wizard code starts manipulating objects, it opens an enabling parent undo unit. When the
X Object for each control receives a Move request, it examines the undo stack, finds an open
unblocked parent unit, and creates an undo unit for the Move.
When the user undoes the wizard’s action, all the X Object undo units are fired, restoring the
original positions of all the controls.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 66

Control Sizing
Main objective: Allow controls to provide sizing hints as the user resizes the control

Abstract: A new interfaces is defined through which controls can specify minimum and
maximum sizes, and can specify the nearest “good” size to a size specified by the
user.

Overview
There are two general approaches to sizing a control: the first approach gives the control responsibility
for sizing itself; the second approach gives the container responsibility for sizing the control. The first
approach is called autosizing; the second approach consists of two alternatives: content and integral
sizing.

Autosizing
Autosizing typically occurs with controls such as the Label control which resizes if the autosize property
was enabled and the associated text changed. Autosizing is handled differently depending on the state of
the control. If the control is inactive, the following occurs:

1. The control calls IOleClientSite::RequestNewObjectLayout

2. The container calls IOleObject::GetExtent and retrieves the new extents

3. The container calls IOleObject::SetExtent and adjusts the new extents

If the control is active, the following occurs:

1. The control calls IOleInPlaceSite::OnPosRectChange to specify that it requires resizing

2. The container calls IOleInPlaceObject::SetObjectRects and specifies the new size

Content and Integral Sizing
In content sizing, the container passes a structure to the control into which the control returns a suggested
size. In integral sizing, the container passes a preferred size to the control and the control modifies the
requested height. Integral sizing is used when the user rubberbands a new size in design mode.

IViewObjectEx interface
In addition to supporting direct manipulation, this interface supports enhanced, flicker-free drawing for
irregular and transparent objects. It also support non-rectangular hit-testing, custom grab handles, and
control sizing.

typedef struct tagExtentInfo

{

UINT cb; //struct size

DWORD dwExtentMode; //

SIZEL sizelProposed;

}DVEXTENTINFO;

typedef enum tagExtentMode

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 67

{

DVEXTENT_CONTENT; //ask control how big it wants to be to exactly fit
content (snap-to-size)

DVEXTENT_INTEGRAL; // while resizing, pass proposed size to control

}DVEXTENTMODE;

interface IViewObjectEx : public IViewObject2
{

// IViewObject methods
...

// IViewObject2 methods
...

// IViewObjectEx methods
...

HRESULT GetNaturalExtent(DWORD dwAspect, LONG lindex, DVTARGETDEVICE* ptd,
 HDC hicTargetDev, DVEXTENTINFO* pExtentInfo, LPSIZEL* psizel);

};

IViewObjectEx::GetNaturalExtent
The IViewObjectEx::GetNaturalExtent function supports two types of control sizing: content and
integral. For content sizing, the control simply returns the suggested size; for integral sizing, the control
actually adjusts its height.

Argument list follows:

Argument Type Description

dwAspect DWORD Specifies how the object is to be represented. It can be one of the
following values:

DVASPECT_CONTENT Provide a representation of
the control so it can be
displayed as an embedded
object inside of a container.
This value is typically
specified for compound
document objects. The
presentation can be
provided for the screen or
printer.

DVASPECT_DOCPRINT Provide a representation of
the control on the screen as
though it were printed to a
printer using the Print
command from the File
menu. The described data
may represent a sequence
of pages..

DVASPECT_ICON Provide an iconic
representation of the
control.

DVASPECT_THUMBNAIL Provide a thumbnail

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 68

representation of an object
so it can be displayed in a
browsing tool. The
thumbnail is approximately
a 120 by 120 pixel, 16-
color (recommended)
device-independent bitmap
potentially wrapped in a
metafile.

lindex LONG Indicates the portion of the object that is of interest for the draw
operation. Its interpretation varies depending on the value in the
dwAspect parameter. See the DVASPECT enumeration for more
information.

ptd DVTARGETDEVICE* Points to the target device structure that describes the device
for which the object is to be rendered. If NULL, the view should be
rendered for the default target device (typically the display). A value
other than NULL is interpreted in conjunction with hicTargetDev and
hdcDraw. For example, if hdcDraw specifies a printer as the device
context, the ptd parameter points to a structure describing that printer
device. The data may actually be printed if hicTargetDev is a valid
value or it may be displayed in print preview mode if hicTargetDev is
NULL.

hicTargetDev HDC Specifies the information context for the target device indicated by
the ptd parameter from which the object can extract device metrics
and test the device's capabilities. If ptd is NULL; the object should
ignore the value in the hicTargetDev parameter.

pExtentInfo DVEXTENTINFO* Points to structure that specifies sizing data.

psizel LPSIZEL* Points to sizing data returned by control. The returned sizing data is
set to -1 for any dimension that was not adjusted. That is if cx is -1
then the width was not adjusted, if cy is -1 then the height was not
adjusted. If E_FAIL is returned indicating no size was adjusted then
psizel may be NULL.

Return Value HRESULT S_OK successfully returned (or adjusted) the size; E_FAIL not
implemented for given mode, or, size was not adjusted; E_NOTIMPL
not implemented.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 69

Event Coordinate Translation
Abstract: The coordinates used by controls when firing events have changed from himetric to

points, in order to be consistent with methods and properties.

The 96 specification for controls requires that coordinates passed for events fired by the control change
from being Hi-metric to being Points based. This change brings the event passing of coordinates in line
with properties and methods and thus coordinate translation is no longer the responsibility of the
container. This raise certain compatibility issues where a control fires events using a coordinate base that
it is not expecting, this should only be an issue where a 96 control container is hosting an older pre-96
control as follows:

· When an older pre-96 container hosts a 96 control the control will present the event coordinates as
points, this should not cause the container any problems as the container should recognize the
parameter type.

· When a 96 container hosts a pre-96 control the control will present the container with coordinates
and expect the container to any translation necessary. However the 96 container will be expecting
a control to conform to the 96 controls specification and present its coordinates as points. The
control uses the TranslateCoordinates method on the IOleControlSite interface provided by the
container in the same way as it does for properties and methods to achieve this.

As a result the user of a 96 container hosting pre-96 controls will need to be aware that further
translation of coordinates may be necessary when events are fired.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 70

Textual Persistence of Controls
Abstract: Although developed separately and prior to the 96 controls specification the textual

persistence of controls has not been documented previously so it has been included
as part of this specification.

Overview
The set of interfaces is of slightly more general purpose than solely text persistence. It is technically
“tagged property persistence”. The OLE Control throws a bunch of properties into a “PropertyBag” at
save time. It is handed back this bag at load time to pull its properties out of. The most important
difference between this set of interfaces and the current Property Set scheme and any other Property Set
interfaces that may be developed is that these are persistence interfaces. It is specifically designed to be
an efficient way of transferring individual properties to and from a container-supplied persistent storage.
Its purpose is not to be confused with those of Property Sets or the emerging IProperty[Set]Storage
interfaces, whose goal is to provide a standard storage format for properties. The existing OLE control
text persistence scheme is ample evidence that we shouldn’t attempt to force one scheme to be used for
the other’s purpose.

Interfaces
interface IPersistPropertyBag : public IPersist
{

HRESULT InitNew();
HRESULT Save([in]LPPROPERTYBAG pPropBag, [in]BOOL fClearDirty, [in]BOOL

fSaveAllProperties);
HRESULT Load([in]LPPROPERTYBAG pPropBag, [in]LPERRORLOG pErrLog);

};

interface IPropertyBag : public IUnknown
{

HRESULT Write([in]LPCOLESTR lpstrName, [in]VARIANT* pvarValue);
HRESULT Read([in]LPCOLESTR lpstrName, [in/out]VARIANT* pvarValue, [in]LPERRORLOG

pErrLog);
};

interface IErrorLog : public IUnknown
{

HRESULT AddError([in]LPCOLESTR lpstrName, [in]LPEXCEPINFO pexcepinfo);
};

IPersistPropertyBag

IPersistPropertyBag::InitNew
HRESULT InitNew()

Initialises the storage. Called when the control is initialised.

Argument Type Description

Return Value HRESULT S_OK - The new storage object was successfully initialized.
CO_E_ALREADYINITIALIZED -The component object has already
been initialized. E_OUTOFMEMORY - The storage object was not
initialized due to a lack of memory. E_FAIL - The storage object was
not initialized due to some reason besides a lack of memory.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 71

IPersistPropertyBag::Save
HRESULT Save([in]LPPROPERTYBAG pPropBag, [in]BOOL fClearDirty,

[in]BOOL fSaveAllProperties)

Called by the container to save the objects properties. The container passes in a pointer to an
IPropertyBag interface that the control uses to write its properties.

Argument Type Description

pPropBag IPropertyBag* A pointer to an IPropertyBag interface that the control uses to write its
properties.

fClearDirty BOOL Instructs the control to clear its dirty flag.

fSaveAllProperties BOOL Instructs the object whether to save all persistent properties (TRUE),
or just the ones that have changed from their defaults (FALSE).

Return Value HRESULT S_OK - Successful. STG_E_MEDIUMFULL - The object was not
saved because of a lack of space on the disk. E_FAIL - The object
could not be saved due to errors other than a lack of disk space.

IPersistPropertyBag::Load
HRESULT Load([in]LPPROPERTYBAG pPropBag, [in]LPERRORLOG pErrLog)

Called by the container to load the control’s properties.

Argument Type Description

pPropBag IPropertyBag* A pointer to an IPropertyBag interface that the control uses to read its
properties.

pErrLog IErrorLog* A pointer to an IErrorLog interface that the control may use to log any
errors that occur whilst loading the properties.

Return Value HRESULT S_OK - Successful. E_OUTOFMEMORY - The properties were not
loaded due to a lack of memory. E_FAIL - The properties were not
loaded due to some reason besides a lack of memory

IPropertyBag

IPropertyBag::Write
HRESULT Write([in]LPCOLESTR lpstrName, [in]VARIANT* pvarValue)

Called by the control to write each property in turn to the storage provided by the container.

Argument Type Description

lpstrName LPCOLESTR A pointer to a string holding the name of the property.

pvarValue VARIANT* A pointer to a Variant containing the value.

Return Value HRESULT S_OK - Successful. STG_E_MEDIUMFULL - The property was not
saved because of a lack of space on the disk. E_FAIL - The property
could not be saved due to errors other than a lack of disk space.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 72

IPropertyBag::Read
HRESULT Read([in]LPCOLESTR lpstrName, [in/out]VARIANT* pvarValue,

[in]LPERRORLOG pErrLog)

Called by the control to read each property in turn from the storage provided by the container.

Argument Type Description

lpstrName LPCOLESTR A pointer to a string holding the name of the property.

pvarValue VARIANT* A pointer to a Variant containing the value.

PErrorLog IErrorLog* A Pointer to an IErrorLog interface used to log errors during the read
process.

Return Value HRESULT S_OK - Successful. E_OUTOFMEMORY - The property was not
loaded due to a lack of memory. E_FAIL - The property was not
loaded due to some reason besides a lack of memory

IErrorLog

IErrorLog::AddError
HRESULT AddError([in]LPCOLESTR lpstrName, [in]LPEXCEPINFO pexcepinfo)

Called to log any errors that occur during the property load process.

Type Description

lpstrName LPCOLESTR A pointer to a string holding the name of the property whose read
resulted in the error.

pexcepinfo EXCEPINFO* A pointer to an EXCEPINFO structure containing details of the error
encountered.

Return Value HRESULT S_OK - Successful. E_FAIL - The error was not successfully added
to the error log.

Interface Usage:
The following usage notes are in the context of text persistence, since this would likely be the most
common usage of the interfaces. Keep in mind that this is not the only conceivable usage of these
interfaces.

When a control is first instantiated, InitNew is called. Note that if a container has multiple save options
(such as Save as Text and Save as Stream) the Save may be called on a different interface than that on
which InitNew was called. This should not present a problem for the control. For consistency this
interface will also have an InitNew method.

To save a control in text, the container would call IPPB::Save, passing in an IPropertyBag. The control
would call IPB::Write for each persistent property, giving the name and value. In addition to the
IPropertyBag, the Save method takes two BOOL parameters. fClearDirty instructs the object to clear its
Dirty bit. fSaveAllProperties instructs the object whether to save all persistent properties (TRUE), or just
the ones that have changed from their defaults (FALSE).

To load a control from text, the container would parse the text file and call IPPB::Load. An optional
IErrorLog can be passed to IPPB::Load. Once the control’s IPPB::Load is called, the control would call

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 73

IPB::Read for each property, passing in a Name and pointer to the destination Variant. If the vt field of
the Variant is VT_EMPTY, the container would simply fill it in with the value in whatever type is easiest
for it. If the vt field had a specific type, the container would coerce the value to the requested type. If it
couldn’t coerce to that type, it could either return an error or fill in the variant with a valid type and leave
it to the caller to check if the return type equaled the requested type.

Errors can be reported on a per-property basis, assuming an IErrorLog was passed into IPPB::Load. The
control can call IEL::AddError if the IPB::Read fails or returns an unsatisfactory value. The excepinfo
argument in the final interface may not actually be OLE Automation’s EXCEPINFO structure, it is just
used here to give an idea of the type of information to be passed to the AddError method.

There is no explicit support for transferring BLOB properties (large chunks of binary data). It was
decided that the interface would be much cleaner and simpler if these types of properties were persisted
by way of an object-valued property, which would support IPersistStream, and whose persistent image
would be the blob in question. The ultimate goal is to eliminate any copying of blobs.

If a control had an object property, it would Write a variant of type VT_UNKNOWN, passing in the
object’s IUnknown pointer as the value. The container could then QI for the supported Persistence
interfaces and save accordingly. This has the effect of giving the topmost container the power to decide
how to save each object, including their subobjects (down until the first level that didn’t support this
interface). This is desirable for text persistence, since the goal is to have a consistent look about the final
text file. If there was a case where an object did not want its subobject saved in text (for whatever
reason), even though it supported IPersistPropertyBag, it could call the subobject’s IPersistStream::Save
(or any other persistence interface) itself, supplying its own implementation of
IStorage/IStream/IPropertyBag, then handing the result to the container in the form of a blob property.
Hence each object still has ultimate control over its subobjects (as it should), but the mechanism is there
to allow the top-level container to keep a consistent text file format.

To read an object property, the control would Read a variant of type VT_UNKNOWN. If the value of
the variant’s punkVal was NULL, the IPB implementation would create the object corresponding to the
property name (hence it must save the CLSID when it Writes the property) and set the punkVal to the
resulting IUnknown. If the punkVal already had a value in it, the IPB implementation would simply QI
for the appropriate persistence interface and call Load on the given object. In the case of reading object-
type properties, the IErrorLog that was passed to IPPB::Load should be passed on to IPB::Read. This is
the only case where this parameter is needed.

Much like IPersistStream behavior, the IPropertyBag pointer passed into IPPB::Load/Save will only be
valid for the duration of that call. The control cannot hold onto it to “scribble” to.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 74

Standard DISPIDS
Abstract: A number of standard dispids have been defined for the 96 controls specification.

DISPID_MOUSEPOINTER
#define DISPID_MOUSEPOINTER -521
Property of type integer.
The Mousepointer property identifies standard mouse icons

Value Description
0 (Default) Shape determined by the object.
1 Arrow
2 Cross (cross-hair pointer)
3 I Beam
4 Icon (small square within a square)
5 Size (four-pointed arrow pointing north, south, east, and west)
6 Size NE SW (double arrow pointing northeast and southwest)
7 Size N S (double arrow pointing north and south)
8 Size NW, SE
9 Size E W (double arrow pointing east and west)
10 Up Arrow
11 Hourglass (wait)
12 No Drop
13 Arrow and hourglass
14 Arrow and question mark
15 Size all
99 Custom icon specified by the MouseIcon property

DISPID_MOUSEICON
#define DISPID_MOUSEICON -522
Property of type Picture.

DISPID_PICTURE
#define DISPID_PICTURE -523
Property of type picture.

DISPID_VALID
#define DISPID_VALID -524 // Is data in control valid?
Property of type BOOL.
Used to determine if the control has valid data or not.

DISPID_ AMBIENT_PALETTE
#define DISPID_AMBIENT_PALETTE -726 // Container's HPAL
Used to allow the control to get the container’s HPAL. If the container supplies an ambient palette then
that is the only palette that may be realized into the foreground. Controls that wish to realize their own
palettes must do so in the background. If their is no ambient palette provided by the container then the
active control may realize its palette in the foreground. Palette handling is further discussed in “Palette
Behaviour for OLE Controls” which is shipped as part of the Microsoft Internet SDK.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 75

Databinding
A new databinding attribute has been added to allow properties distinguish between communicating
changes only when focus leaves the control or during all property change notifications.

The new attribute known as ImmediateBind is to allow controls to differentiate two different types of
bindable properties. One type of bindable property needs to notify every change to the database, for
example with a checkbox control where every change needs to be sent through to the underlying
database even though the control has not lost the focus. However controls such as a listbox only wish
to have the change of a property notified to the database when the control loses focus, as the user may
have changed the highlighted selection with the arrow keys before finding the desired setting, to have
the change notification sent to the database every time that the user hit the arrow key would be give
unacceptable performance. The new immediate bind property allows individual bindable properties on
a form to have this behavior specified, when this bit is set all changes will be notified.

The new ImmediateBind bit maps through to the new VARFLAG_FIMMEDIATEBIND (0x80) and
the FUNCFLAG_FIMMEDIATEBIND (0x80) bits in the VARFLAGS and FUNCFLAGS
enumerations for the ITypeInfo interface allowing for the properties attributes to be inspected.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 76

Property Categorization

Overview
A new interface is provided to allow containers to categorize a control’s properties. A control’s properties
can be categorized using Category IDs allowing a container to place properties together in a property
browser in groups of similar properties. This interface is supported by a control and is optional but
recommended as many containers will in future make use of this interface.

Using this interface a container can ask a control which category a property belongs to, and also ask for
the text name of any control specific category. A number of standard categories are defined, but a control
may also have its own control specific categories. Standard categories are distinguished by having
negative category IDs, whilst control specific categories can have positive IDs.

The following standard categories are defined:
#define PROPCAT_Nil -1
#define PROPCAT_Misc -2
#define PROPCAT_Font -3
#define PROPCAT_Position -4
#define PROPCAT_Appearance -5
#define PROPCAT_Behavior -6
#define PROPCAT_Data -7
#define PROPCAT_List -8
#define PROPCAT_Text -9
#define PROPCAT_Scale -10
#define PROPCAT_DDE -11

ICategorizeProperties Interface
typedef int PROPCAT;
interface ICategorizeProperties : public IUnknown
{

HRESULT MapPropertyToCategory([in] DISPID dispid, [out] PROPCAT* ppropcat);
HRESULT GetCategoryName([in] PROPCAT propcat, [in] LCID lcid, [out] BSTR* pbstrName);

};

ICategorizePriorities::MapPropertiesToCategory
HRESULT MapPropertyToCategory([in] DISPID dispid, [out] PROPCAT* ppropcat);
This method returns the category ID for the property whose dispid is passed in.

Argument Type Description

dispid DISPID The dispid of the property.

ppropcat PROPCAT* A pointer to the property category ID returned.

Return Value HRESULT S_OK - Successful.

E_FAIL - The dispid supplied was invalid.

© Microsoft Corporation,2023. All Rights Reserved.

OLE Controls 96 Page 77

ICategorizePriorities::GetCategoryName
HRESULT GetCategoryName([in] PROPCAT propcat, [in] LCID lcid, [out] BSTR* pbstrName);
This method returns the text name of the category requested. This method need not be supported unless
the control has any specific categories of its own, and should not be called for any of the standard
category ids of which the container should already be aware.

Argument Type Description

propcat PROPCAT The ID of the property category requested.

lcid LCID The locale ID.

Return Value HRESULT S_OK - Successful.

E_NOTIML - The method is not implemented

E_FAIL - The propcat supplied was invalid.

© Microsoft Corporation,2023. All Rights Reserved.

	Introduction
	Mouse interaction, drag & drop for inactive objects
	Motivation
	Mouse interaction for inactive objects
	Drag & drop onto inactive objects
	Container support negotiation
	IPointerInactive interface
	IPointerInactive::GetActivationPolicy
	IPointerInactive::OnInactiveSetCursor
	IPointerInactive::OnInactiveMouseMove

	Drawing optimizations
	Description
	DVASPECTINFO structure

	Flicker-free activation/deactivation
	Description
	IOleInPlaceSiteEx interface
	IOleInPlaceSiteEx::OnInPlaceActivateEx
	IOleInPlaceSiteEx::OnInPlaceDeactivateEx
	IOleInPlaceSiteEx::RequestUIActivate

	Flicker-free drawing
	Introduction
	Two pass drawing
	New drawing aspects
	Object origin and extent
	Getting extents of the drawing aspects
	View status
	Checking for opaque objects
	Checking for supported drawing aspects
	View status change notification
	View change notification

	IViewObjectEx interface
	IViewObjectEx::Draw
	IViewObjectEx::GetExtent
	IViewObjectEx::GetRect
	IViewObjectEx::GetViewStatus

	IAdviseSinkEx interface
	IAdviseSinkEx::OnViewStatusChange

	Windowless OLE objects
	Why windowless objects ?
	Windowless object model
	General
	Window vs. windowless negotiation

	Message dispatching
	Mouse messages and capture
	Keyboard messages and focus
	Summary of message dispatching rules
	Accelerators
	Mnemonics

	IViewObject::Draw and in-place windowless objects
	Drag & drop onto windowless objects
	IOleInPlaceObjectWindowless interface
	IOleInPlaceObjectWindowless::GetWindow
	IOleInPlaceObjectWindowless::OnWindowMessage
	IOleInPlaceObjectWindowless::GetDropTarget

	IOleInPlaceActiveObject Interface
	IOleInPlaceActiveObject::GetWindow

	IOleInPlaceSiteWindowless interface
	IOleInPlaceSiteWindowless::OnInPlaceActivateEx
	IOleInPlaceSiteWindowless::CanWindowlessActivate
	IOleInPlaceSiteWindowless::SetCapture
	IOleInPlaceSiteWindowless::GetCapture
	IOleInPlaceSiteWindowless::SetFocus
	IOleInPlaceSiteWindowless::GetFocus
	IOleInPlaceSiteWindowless::OnDefWindowMessage

	In-place drawing for windowless objects
	Introduction
	Obtaining / Releasing a device context
	Display Invalidation
	Scrolling
	Caret support
	IOleInPlaceSiteWindowless interface
	IOleInPlaceSiteWindowless::GetDC
	IOleInPlaceSiteWindowless::ReleaseDC
	IOleInPlaceSiteWindowless::InvalidateRect
	IOleInPlaceSiteWindowless::InvalidateRgn
	IOleInPlaceSiteWindowless::ScrollRect
	IOleInPlaceSiteWindowless::AdjustRect

	Hit detection for non-rectangular objects
	Hit test for points
	Hit test for rectangles
	IViewObjectEx interface (Hit test support)
	IViewObjectEx::QueryHitPoint
	IViewObjectEx::QueryHitRect

	Quick Activation
	Overview
	IQuickActivate Interface
	IQuickActivate::QuickActivate
	IQuickActivate::SetContentExtent
	IQuickActivate::GetContentExtent

	Undo
	Motivation
	Terminology
	Overview
	Symmetric and Non-Symmetric Events
	Parent Units

	Implementation Requirements
	The Undo Manager
	Undo Units
	Simple Undo Units
	Parent Undo Units and Nesting

	Handling Errors
	Error Handling Summary
	Component or Application Requirements
	Simple Undo Unit Requirements
	Parent Undo Unit Requirements
	Undo Manager Requirements

	Undo Unit Creation
	Determining the State of Open Parents
	Creating an Undo Unit
	Firing Events

	Non-Compliant Objects
	Repeating Actions
	Interfaces
	IOleUndoUnit
	IOleUndoUnit::Do
	IOleUndoUnit::GetDescription
	IOleUndoUnit::GetUnitType
	IOleUndoUnit::OnNextAdd

	IOleParentUndoUnit
	IOleParentUndoUnit::Open
	IOleParentUndoUnit::Close
	IOleParentUndoUnit::Add
	IOleParentUndoUnit::GetParentState
	IOleParentUndoUnit::FindUnit

	IOleUndoManager
	IOleUndoManager::Open
	IOleUndoManager::Close
	IOleUndoManager::Add
	IOleUndoManager::GetOpenParentState
	IOleUndoManager::DiscardFrom
	IOleUndoManager::UndoTo
	IOleUndoManager::RedoTo
	IOleUndoManager::EnumUndoable
	IOleUndoManager::EnumRedoable
	IOleUndoManager::GetLastUndoDescription
	IOleUndoManager::GetLastRedoDescription
	IOleUndoManager::Enable

	Examples and Walk-Throughs
	Simple Undo and Redo
	Compound Undo
	Open-Ended Undoable Actions: Typing
	Event Handler Walk-Through

	Control Sizing
	Overview
	Autosizing
	Content and Integral Sizing

	IViewObjectEx interface
	IViewObjectEx::GetNaturalExtent

	Event Coordinate Translation
	Textual Persistence of Controls
	Overview
	Interfaces
	IPersistPropertyBag
	IPersistPropertyBag::InitNew
	IPersistPropertyBag::Save
	IPersistPropertyBag::Load

	IPropertyBag
	IPropertyBag::Write
	IPropertyBag::Read

	IErrorLog
	IErrorLog::AddError

	Interface Usage:

	Standard DISPIDS
	DISPID_MOUSEPOINTER
	DISPID_MOUSEICON
	DISPID_PICTURE
	DISPID_VALID
	DISPID_ AMBIENT_PALETTE

	Databinding
	Property Categorization
	Overview
	ICategorizeProperties Interface
	ICategorizePriorities::MapPropertiesToCategory
	ICategorizePriorities::GetCategoryName

