
OLE Hyperlinks

December 1995

Distribution: Public

© Microsoft Corporation 1995. All Rights Reserved.

DRAFT

Hyperlinking and in-frame navigation are central parts of the Internet user-interface model. This
document contains the specification for OLE Hyperlinks, a set of system services and integration
interfaces that, along with OLE Document Objects, allow applications to integrate their new and existing
applications with each other and with Web browsers.

1. OLE Hyperlinks
1.1. Introduction...
1.2. Architecture Overview..
1.3. Examples...
1.4. Technical Details...

2. Index

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS
MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT.
SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY
NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL
SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY
DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE
INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR
PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS
COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS
DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

© Microsoft Corporation 1995. All Rights Reserved.

OLE Hyperlinks Page 3

1 OLE Hyperlinks

Introduction
One of the most compelling ease-of-use features in World Wide Web applications is the navigation-based
user-interface model including point-and-click hyperlink navigation, a history list (with commands like
Go Back and Go Forward), and a favorites list. Like other OLE-based application integration
technologies, OLE Hyperlinks enable you to offer this same user-interface and navigation model within
your documents and application, allowing you to integrate them seamlessly with other hyperlinking
applications including web browsers.
Specifically, OLE Hyperlinks allow you to:

· Add hyperlinking support to existing documents, objects, and applications.
· Integrate the documents of your application into enabled World Wide Web

browsers.
· Support and integrate with key features of OLE Hyperlink applications (History,

Favorites, Go Back, Go Forward, Go Home)
· Support navigation to documents on the Internet or any large-scale public network

characterized by high latency.
This document provides an overview of the OLE Hyperlinking architecture and then describes
the interfaces needed to add hyperlink support to an application. Not all the details described are
necessary for participating in OLE Hyperlinking¾applications can choose to support various
degrees of integration with the OLE Hyperlinking architecture. Where applicable, this document
describes how to provide minimal or “simple” hyperlinking support, and also how to extend this
support for more complete hyperlinking integration.
Related Document Location
HREF="hlsimple.doc hlsimple.doc

Note: Many of the details of OLE Hyperlinking are still in flux. Application developers are
currently encouraged to use the “Simple Hyperlink Navigation” APIs (see above) to add
hyperlinking support to their documents and applications. The rest of the architecture and
the interfaces specified below are still subject to change as the implementation is being
finalized. Clients of “Simple Hyperlink Navigation” will continue to work using the full
OLE Hyperlinking architecture once it is final.

What is a Hyperlink?
A hyperlink is a reference to another location - within the existing application/document or in a new
application/document1. The data of the document/object can be stored in file-system files, machines on
the Internet (referred to by URLs), or any arbitrary location that can be referenced via OLE monikers. The
hyperlink reference is a (target, location) tuple, stored as a moniker for the target part and a string for the
location part. The navigation to the location can be done by binding to the target and then asking it to
navigate to the location.2

1 Specifically, a hyperlink may be a reference to a location in (1) the same document/object that contains the hyperlink, (2) a
different (top-level or embedded) object/document of the same class, or (3) a different object/document of a different class.

2 There is a deliberate avoidance of using a single moniker for the hyperlink reference. The drawback with the single moniker
approach is that the binding results in object creation, one per each location we navigate to. The object creation introduces all the
problems associated with the life time management in addition to incurring the performance overhead (overhead of marshaling one
extra object in cross-process scenarios, etc.) and memory overhead. With this referencing mechanism, there is no object creation
for the location if the hyperlink is used for navigation only. Hyperlinks are different than regular OLE or DDE links. In the case of
OLE or DDE links, the link resolver would want to maintain a connection to the link source, and the maintenance of this
connection introduces issues of object life-time management. On the other hand, the system hyperlink “resolver” is interested
mainly in navigation to the hyperlink target. By avoiding the binding to the destination object, we simplify the hyperlinking
interfaces and implementations. In a very high percentage of cases hyperlinks are used for navigation only, and hence there won’t
be any need for hyperlink resolver to keep an (interface) reference to the hyperlink. The object stays running either because it is
visible to the user and/or because the hyperlink browse context keeps a reference to it.

How a hyperlink is presented to the user is up to the hyperlink container and the context of the hyperlink.
It is common for hyperlinks to be presented as colored, underlined text, as hotspot regions on an image,
or as pushbuttons. However, there are no user interface requirements limiting the presentation of
hyperlinks, although guidelines suggest that they should be made obvious¾via coloring, underlining, or
by changing the cursor or displaying tooltips when moused over.

What is Hyperlink Navigation?
Hyperlink navigation involves a transition from one document/object/application, known as the hyperlink
container, to another document/object/application, known as the hyperlink target3. Usually both remain
running, but the hyperlink target visually replaces the hyperlink container. Hyperlink containers and
targets may be top-level documents or OLE Document Objects (DocObjs) in a browser application.
Because of this variation, there are many possible forms of navigation. 4

1. From one top-level document to another top-level document . (in the absence of a browser).
2. From a top-level document to an OLE DocObj in a browser (e.g. navigation from a stand-

alone application to an HTML document).
3. From one OLE DocObj in a browser to another OLE DocObj in the same browser. (e.g.

navigation from one HTML document to another)
4. From an OLE DocObj in a browser to an OLE DocObj in a Binder-like application . (e.g. if

the hyperlink target is embedded in an Office Binder document).5

5. From one location in a object/document to another location in the same object/document.
This is applicable to all flavors of hyperlink containers / targets.

As you can see, the window gets reused only in cases 3 and 5. In the other cases, the hyperlink target
appears in a new window. The OLE Hyperlinks architecture suggests a mechanism for creating the
illusion of window reuse in such cases: the hyperlink container passes its current window position to the
hyperlink target, and the hyperlink target positions its window in the exact same location. Upon
successful navigation the hyperlink container hides its window.

Browse Contexts
By looking at the possible forms of navigation one can see that multiple objects/documents (perhaps from
different processes) share some global context. This context knows the order in which documents have
been visited. All jumps are recorded with this context, and this context chains them together in a
navigation stack, thus knowing where to go as result of Go Back or Go Forward. This context is called
the Browse Context.
Even though a browse context is global and spans multiple processes, it need not be global per User like
History and Favorites. There can be multiple browse contexts active at once. For example, in a web
browser one can start a new browse context using the right mouse pop-up menu item Open In New
Window.
OLE Hyperlinking defines the interface for the standard system browse context. This allows hyperlink-
aware documents and applications to integrate the browse context’s navigation stack via standard
interfaces defined below.

Architecture Overview
In the following sections you will find the description of various components in the OLE Hyperlinks
architecture and the interfaces they implement. Some components below are standard, system-provided
objects, whereas others are user-defined components that participate in OLE Hyperlinking because they
implement the appropriate interface(s).

3 Often the hyperlink target also serves as a hyperlink container. For the sake of clarity, a document or object is henceforth referred
to as a hyperlink container when it acts as origin of hyperlink navigation, and as a target when it is navigated to.

4 Several describable cases are not listed here as they actually coincide with one or more of the listed cases.
5 In this scenario the user model gets complicated and confusing if the embedded OLE Document Object is shown in the browser’s

window, instead of letting it appear in its own container’s window.

© Microsoft Corporation 1995. All Rights Reserved.

The “simple” hyperlinking API functions.
OLE Hyperlinking provides many useful functions and services that are needed for general purpose uses
and for complete application integration. However, many simple applications are interested only in
navigating to a hyperlink target6. For simple navigation needs, there are a number of “simple
hyperlinking” APIs: HlinkSimpleNavigateToString , HlinkSimpleNavigateToMoniker , HlinkNavigateString ,
HlinkNavigateMoniker, HlinkGoBack, HlinkGoForward , that allow hyperlink navigation without knowledge of any
other hyperlink interfaces or objects. The more complex objects and interfaces described below are useful
for more complex needs, such as supporting navigation to a sub-location within a new document type, or
allowing cut/paste or drag/drop of hyperlinks.

Note: As described above, many details of OLE Hyperlinking are still in flux. Developers
are encouraged to use the “simple hyperlink navigation” APIs above to add hyperlinking
support to their documents and applications. The rest of the architecture and the interfaces
specified below are still subject to change as the implementation is being finalized.

Hyperlink Target
 A hyperlink target is a destination of hyperlink navigation. This can be a persisted OLE object that
exposes IHlinkTarget, a persisted OLE object that exposes IOleObject, or any file that is viewed when its
viewer application is launched via ShellExecute(). An object (document) that wants to be targeted by
hyperlinks can choose to implement all or part of the IHlinkTarget interface to integrate tightly with OLE
Hyperlinks. If the object does not support IHlinkTarget , it can still act as a hyperlink target, but it won’t be
able to support internal navigation, and it will not have access to the common browse context that holds
the navigation stack. A hyperlink target may be a top level container document, or an embedded object of
arbitrary nesting, or in general, any object that can be referenced via a moniker.

How to implement an IHlinkTarget
An existing OLE Documents application which supports OLE Linking need only implement the
IHlinkTarget interface on the same object that implements IPersistFile and IOleItemContainer. The application
may also implement IPersistMoniker to support incremental rendering or asynchronous download as a
persistence mechanism, rather than IPersistFile. Supporting IHlinkTarget from an OLE Document Object is
the recommended way to make sure your document is viewable by browsers and participates in
hyperlinking smoothly.

Hyperlink
A hyperlink object implements the IHlink interface and encapsulates four pieces of reference information:
a moniker to the hyperlink target, a string for the sub-location within the target, a friendly name for the
target, and additional parameters. This object completely encapsulates the behavior of navigating to a
referenced location. It also supports the ability to save and load itself via IPersistStream, and the ability to
be transferred through the clipboard or through drag-and-drop via IDataObject.7

A standard hyperlink object implementation is provided with the system, and it is not advisable to
implement another version. A document can use the standard hyperlink object to represent hyperlinks
within itself, thus encapsulating the work of navigating, saving, loading, dragging, dropping, cutting, and
pasting hyperlinks. Standard hyperlink objects are created via the HlinkCreateFromData,
HlinkCreateFromMoniker, HlinkCreateFromString, and OleLoadFromStream APIs. The standard hyperlink object
implements the IHlink, IPersistStream, and IDataObject interfaces.

Hyperlink Container and Hyperlink Site

6 For example, a spreadsheet application may wish to allow hyperlinking from individual spread sheet cells. As another example, an
OLE Control embedded in an HTML page may wish to navigate to another document.

7 Note: When saved, the hyperlink object saves the relative moniker in addition to the absolute moniker to the target.

A hyperlink container is a document or application that contains hyperlinks8. If a hyperlink container
(document) uses the hyperlink object (described above) to perform hyperlinking functions, then it may
optionally implement hyperlink site objects supporting IHlinkSite for each contained hyperlink.
A hyperlink site is used by its corresponding hyperlink to retrieve the moniker of the hyperlink container.
This moniker is used to evaluate relative monikers to the hyperlink target. When the relative moniker is
NULL, this indicates the target of the link is in the same container object, and IHlink::Navigate can result in
an efficient internal jump.9

Hyperlink Frame
A hyperlink frame is an outer frame that manages one or more hyperlink container documents. An
application (e.g. a web browser) that wishes to be a viewer for multiple hyperlink target document types
implements IHlinkFrame and manages hyperlink containers in a consistent user interface. Browser
applications such as Microsoft® Internet Explorer and the Microsoft® Office Binder are examples of
hyperlink frames. Ideally, a hyperlink frame also serves as an OLE Document Object frame, allowing it
to support browsing and hyperlinking between various Document Objects.

Hyperlink Browse Context
The hyperlink browse context maintains the navigation stack that is passed around during navigation
from one document or application to another. Like the hyperlink object, the browse context is a standard
object provided with the system. In addition to maintaining the navigation stack, the browse context
knows whether or not Go Back and Go Forward commands should be enabled.10 It is also used to pass
around window position information so that hyperlinking from one top-level window to another can
happen while giving the illusion of window reuse (by positioning the windows on top of each other).
Each hyperlink target is passed a browse context (through IHlinkTarget::SetBrowseContext) the first time it is
navigated to. The hyperlink target registers with the browse context (through IHlinkBrowseContext::Register)
and holds a reference to it. The target must also notify the browse context each time it is navigated to via
IHlinkBrowseContext::OnNavigateHlink. The browse context uses this information to maintain the navigation
stack, to remember the “current item” in the stack, and also to manage the lifetimes of registered
hyperlink target applications using a MRU (most recently used) scheme 11.

How the pieces connect to each other
The diagram below shows various COM objects involved in OLE Hyperlinking, the interfaces they
implement, and the way they are inter-connected:

8 Note: usually an object that acts as a hyperlink container can also act as a hyperlink target.
9 Note: The standard hyperlink object performs internal jumps by retrieving the container’s IHlinkTarget interface using

IHlinkSite::GetInterface (avoiding an unnecessary moniker bind), and asks it to navigate directly via IHlinkTarget::Navigate.
10 For example if you navigate from A to B, then A would create an instance of the browse context object (if it had not been given one

before) and pass it to B. Next if you navigate to C, then B would pass the same browse context pointer to C. At this moment the
navigation stack of the browse context contains A, B, and C. Go Back is enabled but Go Forward is disabled. Now if you do Go
Back, then you will navigate to B and the navigation stack still contains the same three items. Now both Go Back and Go Forward
are enabled. If you Go Back again, you will navigate to A, and again the navigation stack contains the same three elements. But
now Go Back is disabled and only Go Forward is enabled.

11 The browse context maintains an internal table of monikers and corresponding IHlinkTarget interfaces. This table is consulted
before binding to a target moniker. If the target object is already registered with the browse context, then that instance of the target
is used. Otherwise the moniker is used to create a brand new target object by passing a valid moniker for the pmkToLeft parameter
to IMoniker::BindToObject. This avoids collision with existing instances of the hyperlink target running via some other means.

Browse
Context

IHlinkBrowseContext

Hyperlink
IHlinkSite

Hyperlink IHlinkSite

Hyperlink Container
(Document / Object)

Hyperlink Frame

IHlinkTarget

IHlinkFrame

Hyperlink
IHlinkSite

Hyperlink IHlinkSite

Hyperlink Container
(Document / Object)

Hyperlink Frame

IHlinkTarget

IHlinkFrame

Internal Jump

External Jump

Textual Reference HlinkNavigateToStringReference

HlinkNavigateToMonikerReferenceMoniker Reference

Examples

“Simple Hyperlinking”
The navigation in this example takes place between simple hyperlink containers and simple hyperlink
targets, none of which understand how to use the hyperlinking browse context. For OLE Controls or OLE
Document Objects hosted within a browser such as Microsoft ® Internet Explorer, this is the only
hyperlinking support that is necessary to integrate fully in the navigation stack and history list. The
following pseudo-code outlines the order or execution of methods among the various objects during
navigation.
Note: “simple hyperlinking” is simple mainly for the hyperlink container and the hyperlink target,
particularly if both are Document Objects hosted in a DocObj frame. In these cases, the frame takes over
all responsibility for providing a navigation stack and integrated history/favorites. Note that there is no
definition of “simple hyperlinking” for hyperlink frames.

Starting with a Hyperlink Container
The hyperlink container (e.g. a document or an OLE Control embedded within a document) initiates the
hyperlink navigation using one of the “simple hyperlinking” APIs:

// do the navigation
HlinkSimpleNavigateToString(“http://www.microsoft.com/foo.htm”, NULL, NULL, punkMe, 0, pbc, pbsc, 0);

IHlinkFrame::Navigate
The hyperlink frame (e.g. Microsoft Internet Explorer) is called from within the simple navigation API
(which packages up the call into a full call to HlinkNavigate). This is the frame’s chance to provide a
integrated user-interface, progress feedback, cancellation options, and so forth. Often the hyperlink frame
simply sets some flags and defers to IHlink::Navigate (sample code provided in “fully integrated”
hyperlinking example). Other frames may choose to do more work. For instance, a frame may decide to
provide its own IBindStatusCallback in order to listen in on progress notifications during navigation.

IHlink::Navigate
Usually, the system-provided hyperlink object gains control to do the brunt of the navigation work on
behalf of the container or frame, resulting in a call to the hyperlink target.

IHlinkTarget::Navigate
The hyperlink target then receives control to navigate to the specific location within the target. Notice
that support for “sub-locations” is optional. Also, the interpretation of location strings is left to the
interpretation of the target object.

 STDMETHODIMP
IHlinkTarget::Navigate(DWORD grfHLNF, LPCWSTR szLocation)
{

IHlinkFrame* phlFrame = NULL;
// if szLocation is not visible show it

// if this hyperlink target is an OLE Document Object, try to retrieve the hyperlink frame pointer from the IOleInPlaceFrame
if (m_poleinplaceframe)

m_poleinplaceframe->QueryInterface(IID_IHlinkFrame, (void**)&phlFrame);

// notify the hlink frame and the browse context that the navigation is complete. Note: either phlFrame or m_phlbc may be NULL
HlinkOnNavigate(phlFrame, NULL, grfHLNF, m_pmk, szLocation, szFriendlyName);

m_fHide = FALSE;
m_fHideFrame = FALSE;

} // IHlinkTarget::Navigate

IHlinkFrame::OnNavigate
The hyperlink frame next receives notification of a successful navigation from IHlinkTarget::Navigate in
order to reposition its windows and update its windows’ visibility. If this is the same frame that hosted
the hyperlink container that initiated the navigation, then the flags set below will ensure that the frame
remains visible (sample code provided in “fully integrated” hyperlinking example).

“Fully integrated” Hyperlink Navigation
The navigation in the example below takes place between hyperlink containers and hyperlink targets
which understand how to use the hyperlinking browse context. The following pseudo-code outlines the
order or execution of methods among the various objects during navigation.

Starting with a Hyperlink Container
Before any navigation occurs, the container starts with a hyperlink object that has either been created
(using HlinkCreateFromData, HlinkCreateFromMoniker, HlinkCreateFromString) or loaded from persistent data
(using OleLoadFromStream). The hyperlink container may initialize the hyperlink through IHlink::SetHlinkSite
by passing in an IHlinkSite interface and hyperlink-specific data (dwSiteData), which allows the hyperlink
container to use the same hyperlink site to service multiple hyperlinks.
When the container decides to navigate the link as a result of user action it does roughly the following:

// retrieve the hyperlink frame pointer
if (!m_fTriedToGetFrame && m_poleinplaceframe && m_phlframe == NULL) {

m_fTriedToGetFrame = TRUE;
m_poleinplaceframe->QueryInterface(IID_IHlinkFrame, (void**)&m_phlFrame);
}

if (m_phlbc == NULL) {
// get the browse context pointer
if (m_phlFrame)

m_phlFrame->GetBrowseContext(&m_phlbc);
else

HlinkCreateBrowseContext(&m_phlbc);
if (m_phlbc == NULL)

return E_FAIL;

// register with the browse context
m_phlbc->Register(pmkThis, phls, &m_dwRegister);

// because we want the user to be able to come back this object via GoBack functionality add
// self to the navigation stack. This effectively tells the browse context that the current hyperlink container
// refered to by pmkThis is a member (at the top) of the navigation stack
m_phlbc->OnNavigateHlink(NULL, pmkThis, szLocation, szFriendlyName);
}

if (m_phlframe == NULL) {
HLBWINFO hlbwinfo;

// initialize hlbwinfo with window locaitons and flags

// register the browse window info in the browse context so it is later available to the hyperlink target and
m_phlbc->SetBrowseWindowInfo(&hlbwinfo)

// set the flag indicating that this window should be hidden after navigation. But this flag
// is cleared in the IHlinkTarget::Navigate and IHlinkFrame::OnNavigate methods.
m_fHide = TRUE;
v_fHideAppFrame = TRUE; // only the MDI applications need this separate flag
}

else {
m_fHide = FALSE;
v_fHideAppFrame = FALSE;

}

hr = HlinkNavigate(pkl, m_phlframe, NULL, pbc /* could be NULL */, pibsc, m_phlbc);

if (hr == NOERROR) {
if (m_fHide)

// Hide this document
if (m_vfHideAppFrame)

// Hide/Minimize application’s frame window
}

IHlinkFrame::Navigate
The hyperlink frame is called from within HlinkNavigate. This is the frame’s chance to provide a integrated
user-interface, progress feedback, cancellability, and so forth. Often the hyperlink frame simply sets
some flags and defers to IHlink::Navigate.

 STDMETHODIMP
IHlinkFrame::Navigate(DWORD grfHLNF, IBindCtx* pbc, IBindStatusCallback* pbsc, IHlink* phlDest)
{

// This flag gets cleared in IHlinkFrame::OnNavigate(). Thus if the Navigation within the same
// frame window then we will get the right behaviour as this flag gets cleared in the OnNavigate()
// method.
m_fHide = TRUE;

// some frames need only the following function so that they can properly show and hide themselves.
// others may hook themselves in to the IBindStatusCallback for progress notification
hr = IHlink::Navigate(NULL, pbc, pbsc, phlDest);
if (SUCCEEDED(hr) && m_fHide)

// Hide the frame window
} // IHlinkFrame::Navigate

Other frames may choose to do much more work. For instance, a frame may decide to provide its own
IBindStatusCallback in order to listen in on progress notifications during navigation.

IHlink::Navigate
When called by the hyperlink frame, the system hyperlink object gains control to do the brunt of the
navigation work on to integrate the results with the browse context. The code below is a sample
implementation of a hyperlink object. The system provided hyperlink object uses similar code:

STDMETHODIMP
IHlink::Navigate(DWORD grfHLNF, IBindCtx* pbc, IBindStatusCallback* pbsc, IHlinkBrowseContext* phlbc)
{

IHlinkTarget* phlTarget = NULL;
IMoniker* pmkLeft = NULL;

if (grfHLNF & HLNF_USEBROWSECONTEXTCLONE) {
grfHLNF &= ~HLNF_USEBROWSECONTEXTCLONE;
phlbc->Clone(NULL, IID_IHlinkBrowseContext, &phlbc);
}

else {
hr = m_phlSite->GetMoniker(m_dwSiteData, OLEGETMONIKER_ONLYIFTHERE, OLEWHICHMK_CONTAINER,
&pmkLeft);
if (FAILED(hr) || m_pmkTarget->IsEqual(pmkLeft)) {

hr = m_phlsite->GetInterface(dwSiteData, 0, IID_IHlinkTarget, (void**)&phlTarget);
if (FAILED(hr))

phlbc->GetObject(m_pmkTarget, &phlTarget);
}

if (phlTarget == NULL) {
// Set the pbsc in the pbc to get asynch and notification binding behavior requested by caller
m_pmkTarget->BindToObject(pmkLeft, IID_IHlinkTarget, &phlTarget);
phlTarget->SetBrowseContext(phlbc);
}

phlTarget->Navigate(grfHLNF, m_szLocation);
} // IHlink::Navigate

IHlinkTarget::SetBrowseContext
During the execution of the above code, the hyperlink target receives the browse context for the
navigation. This provides information about the hyperlink navigation stack and about window positions
for the hyperlinking. Note: This function is not called in all hyperlinking circumstances, for example in
the “simple hyperlinking” example above. A “simple” hyperlink target need not implement this function.

STDMETHODIMP

CHlinkTarget::SetBrowseContext(IHlinkBrowseContext* phlbc)
{

if (m_phlbc != NULL) {
m_phlbc->Revoke(m_dwRegister);
m_phlbc->Release();
}

m_phlbc = phlbc;
if (m_phlbc != NULL) {

m_phlbc->AddRef();
m_phlbc->Register(0, (IUnknown*)this, m_pmk, &m_dwRegister);
}

return S_OK;
} // CHlinkTarget::SetBrowseContext

IHlinkTarget::Navigate
The hyperlink target then receives control to navigate to the specific location within the target.

 STDMETHODIMP
IHlinkTarget::Navigate(DWORD grfHLNF, LPCWSTR szLocation)
{

IHlinkFrame* phlFrame = NULL;

// if the object is not visible, activate it and show it. jump to the location indicated by szLocation

// if this hyperlink target is an OLE Document Object, try to retrieve the hyperlink frame pointer from the IOleInPlaceFrame
if (m_poleinplaceframe)

m_poleinplaceframe->QueryInterface(IID_IHlinkFrame, (void**)&phlFrame);

// notify the hlink frame and the browse context that the navigation is complete. Note: either phlFrame or m_phlbc may be NULL
HlinkOnNavigate(phlFrame, m_phlbc, grfHLNF, m_pmk, szLocation, szFriendlyName);

if (phlframe == NULL && !(grfHLNF & HLNF_INTERNALJUMP)) {
HLBWINFO hlbwi;
phlbc->GetBrowseWindowInfo(&hlbwi);

// adjust the document and frame windows according to the dimensions in HLBWI
}

m_fHide = FALSE;
m_fHideFrame = FALSE;

} // IHlinkTarget::Navigate

IHlinkFrame::OnNavigate
The hyperlink frame next receives notification of a successful navigation from within IHlinkTarget::Navigate
in order to reposition its windows and update their visibility. If this is the same frame that hosted the
hyperlink container that initiated the navigation, then the m_fHide flag set below will ensure that the frame
remains visible.

 STDMETHODIMP
IHlinkFrame::OnNavigate(DWORD grfHLNF)
{

if (!(grfHLNF & HLNF_INTERNALJUMP)) {
HLBWINFO hlbwi;
m_phlbc->GetBrowseWindowInfo(&hlbwi);
// Adjust this document/frame windows according to the dimensions in hlbwi

}
m_fHide = FALSE;

} // IHlinkFrame::OnNavigate

IHlinkBrowseContext::OnNavigateHlink
Finally, the browse context receives notification of a successful navigation from IHlinkTarget::Navigate in
order to update the navigation stack.

 STDMETHODIMP
IHlinkBrowseContext::OnNavigateHlink(DWORD grfHLNF, IMoniker* pmkTarget, LPCWSTR szLocation, LPCWSTR

szFriendlyName)
{

// if CreateNoHistory or NavigatingToStackItem, return immediately
// unless NavigatingBack or NavigatingForward is also set
if (grfHLNF & (HLNF_CREATENOHISTORY | HLNF_NAVIGATINGTOSTACKITEM)) {

if (!(grfHLNF & (HLNF_NAVIGATINGBACK | HLNF_NAVIGATINGFORWARD)))
return NOERROR;

}
if (grfHLNF & HLNF_NAVIGATINGBACK)

--m_iCurrent;
else if (grfHLNF & HLNF_NAVIGATINGFORWARD)

++m_iCurrent;
else {

// Add this hyperlink to the navigation stack at m_iCurrent+1, remove all items greater than m_iCurrent+1,

++m_iCurrent;
}

} // IHlinkBrowseContext::OnNavigateHlink

Technical Details12

typedef enum tagHLNF {
HLNF_INTERNALJUMP,
HLNF_NAVIGATINGBACK,
HLNF_NAVIGATINGFORWARD,
HLNF_USEBROWSECONTEXTCLONE,
HLNF_OFFSETWINDOWORG,
HLNF_OPENINNEWWINDOW,
HLNF_CREATENOHISTORY,
HLNF_NAVIGATINGTOSTACKITEM,
} HLNF;

typedef enum {
HLINKWHICHMK_CONTAINER,
HLINKWHICHMK_BASE
} HLINKWHICHMK;

interface IHlinkSite : IUnknown {
HRESULT GetMoniker([in] DWORD dwSiteData, [in] DWORD dwAssign, [in] DWORD dwWhich, [out] IMoniker** ppmk);
HRESULT GetInterface([in] DWORD dwSiteData, [in] DWORD dwReserved, [in] REFIID riid, [out, iid_is(riid)] IUnknown** ppv);
HRESULT OnNavigationComplete([in] DWORD dwSiteData, [in] HRESULT hrStatus, [in] LPCWSTR pszStatus);
};

typedef enum {
HLINKGETREF_DEFAULT,
HLINKGETREF_ABSOLUTE,
HLINKGETREF_RELATIVE
} HLINKGETREF;

typedef enum {
HLFNAMEF_DEFAULT,
HLFNAMEF_TRYCACHE,
HLFNAMEF_TRYPRETTYTARGET,
HLFNAMEF_TRYFULLTARGET,
HLFNAMEF_TRYWIN95SHORTCUT
} HLFNAMEF;

typedef enum {
HLINKMISC_ABSOLUTE,
HLINKMISC_RELATIVE
} HLINKMISC;

interface IHlink : IUnknown {
HRESULT SetHlinkSite([in] IHlinkSite* phlSite, [in] DWORD dwSiteData);
HRESULT GetHlinkSite([out] IHlinkSite** pphlSite, [out] DWORD* pdwSiteData);
HRESULT GetMonikerReference([in] DWORD dwWhichRef, [out] IMoniker** ppmk, [in, out, unique] LPWSTR* pszLocation);
HRESULT GetStringReference([in] DWORD dwWhichRef, [out] LPWSTR* pszTarget, [out] LPWSTR* pszLocation);
HRESULT GetFriendlyName([in] DWORD grfHLFNAMEF, [out] LPWSTR* pszFriendlyName);
HRESULT SetFriendlyName([in] LPCWSTR szFriendlyName);
HRESULT GetTargetFrameName([out] LPWSTR* pszTargetFrameName);
HRESULT SetTargetFrameName([in] LPCWSTR szTargetFrameName);

12 For technical details of the “Simple Hyperlink Navigation” API, see the corresponding document, hlsimple.doc.

HRESULT GetAdditionalParams([out] LPWSTR* pszAdditionalParams);
HRESULT SetAdditionalParams([in] LPCWSTR szAdditionalParams);
HRESULT Navigate([in] DWORD grfHLNF, [in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc, [in] IHlinkBrowseContext* phlbc);
HRESULT GetMiscStatus([out] DWORD *pdwStatus);
};

interface IHlinkTarget : IUnknown {
HRESULT SetBrowseContext([in, unique] IHlinkBrowseContext* phlbc);
HRESULT GetBrowseContext([out] IHlinkBrowseContext** pphlbc);
HRESULT Navigate([in] DWORD grfHLNF, [in, unique] LPCWSTR szJumpLocation);
HRESULT GetMoniker([in,unique] LPCWSTR szLocation, [in] DWORD dwAssign, [out] IMoniker** ppmkLocation);
HRESULT GetFriendlyName([in,unique] LPCWSTR szLocation, [out] LPWSTR* pszFriendlyName);
};

interface IHlinkFrame : IUnknown {
HRESULT SetBrowseContext([in] IHlinkBrowseContext* phlbc);
HRESULT GetBrowseContext([out] IHlinkBrowseContext** pphlbc);
HRESULT Navigate([in] DWORD grfHLNF, [in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc, [in] IHlink* phlNavigate);
HRESULT OnNavigate([in] DWORD grfHLNF);
};

typedef struct tagHLITEM {
ULONG uHLID;
LPWSTR szFriendlyName;

 } HLITEM;

typedef Enum<HLITEM*> IEnumHLITEM;

typedef enum tagHLBWIF {
HLBWIF_HASFRAMEWNDINFO,
HLBWIF_HASDOCWNDINFO ,
HLBWIF_FRAMEWNDMAXIMIZED,
HLBWIF_DOCWNDMAXIMIZED
} HLBWIF;

typedef struct tagHLBWINFO {
ULONG cbSize;
DWORD grfHLBWIF;
RECTL rcFramePos;
RECTL rcDocPos;
} HLBWINFO;

typedef enum tagHLID {
HLID_PREVIOUS,
HLID_NEXT,
HLID_CURRENT,
HLID_STACKBOTTOM,
HLID_STACKTOP

 } HLID;

typedef enum tagHLQF {
HLQF_ISVALID,
HLQF_ISCURRENT
} HLQF;

interface IHlinkBrowseContext : IUnknown {
HRESULT Register([in] DWORD dwReserved, [in, unique] IUnknown* punk, [in, unique] IMoniker* pmk, [out] DWORD* pdwRegister);
HRESULT GetObject([in, unique] IMoniker* pmk, [out] IUnknown** ppunk);
HRESULT Revoke([in] DWORD dwRegister);
HRESULT SetBrowseWindowInfo([in, unique] HLBWINFO* phlbwi);
HRESULT GetBrowseWindowInfo([out] HLBWINFO* phlbwi);
HRESULT EnumNavigationStack([out] IEnumHLITEM** ppenumhlitem);
HRESULT QueryHlink([in] DWORD grfHLQF, [in] ULONG uHLID);
HRESULT GetHlink([in] ULONG uHLID, [out] IHlink** pphl);
HRESULT SetCurrentHlink([in] ULONG uHLID);
HRESULT OnNavigateHlink([in] DWORD grfHLNF, [in] IMoniker* pmkTarget, [in] LPCWSTR szLocation, [in] LPCWSTR

szFriendlyName);
HRESULT Clone([in] IUnknown* punkOuter, [in] REFIID riid, [out, iid_is(riid)] IUnknown** ppv);
HRESULT Close([in] DWORD dwReserved);
};

// CLSID_StdHlink: {79eac9d0-baf9-11ce-8c82-00aa004ba90b}
DEFINE_GUID(CLSID_StdHlink, 0x79eac9d0, 0xbaf9, 0x11ce, 0x8c, 0x82, 0x00, 0xaa, 0x00, 0x4b, 0xa9, 0x0b);

// CLSID_StdHlinkBrowseContext: {79eac9d1-baf9-11ce-8c82-00aa004ba90b}
DEFINE_GUID(CLSID_StdHlinkBrowseContext, 0x79eac9d1, 0xbaf9, 0x11ce, 0x8c, 0x82, 0x00, 0xaa, 0x00, 0x4b, 0xa9,

0x0b);

#define CFSTR_HYPERLINK TEXT(“HyperLink”)
#define CF_HYPERLINK RegisterClipboardFormat(CFSTR_HYPERLINK)

HRESULT HlinkCreateBrowseContext([in] IUnknown* punkOuter, [in] REFIID riid, [out, iid_is(riid)] void** ppv);
HRESULT HlinkQueryCreateFromData([in] IDataObject* pdatobj);
HRESULT HlinkCreateFromData([in] IDataObject* pdatobj, [in] IHlinkSite* phlSite, [in] DWORD dwSiteData, [in] IUnknown* punkOuter, [in]

REFIID riid, [out, iid_is(riid)] void** ppv);
HRESULT HlinkCreateFromMoniker([in] IMoniker* pmkTarget, [in] LPCWSTR szLocation, [in] LPCWSTR szFriendlyName, [in]

IHlinkSite* phlSite, [in] DWORD dwSiteData, [in] IUnknown* punkOuter, [in] REFIID riid, [out, iid_is(riid)] void** ppv);
HRESULT HlinkCreateFromString([in] LPCWSTR szTarget, [in] LPCWSTR szLocation, [in] LPCWSTR szFriendlyName, [in] IHlinkSite*

phlSite, [in] DWORD dwSiteData, [in] IUnknown* punkOuter, [in] REFIID riid, [out, iid_is(riid)] void** ppv);

typedef enum {
HLSR_HOME,
HLSR_SEARCHPAGE,
HLSR_HISTORYFOLDER
} HLSR;

HRESULT HlinkGetSpecialReference([in] DWORD dwReference, [out] LPWSTR** pszReference);
HRESULT HlinkSetSpecialReference([in] DWORD dwReference, [in] LPCWSTR szReference)
HRESULT HlinkNavigateToStringReference([in] LPCWSTR szTarget, [in] LPCWSTR szLocation, [in] IHlinkSite* phlSite, [in] DWORD

dwSiteData, [in] IHlinkFrame* phlframe, [in] DWORD grfHLNF, [in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc, [in] IHlinkBrowseContext*
phlbc);

HRESULT HlinkNavigate ([in] IHlink *phl, IHlinkFrame* phlFrame, [in] DWORD grfHLNF, [in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc,
[in] IHlinkBrowseContext* phlbc);

HRESULT HlinkOnNavigate([in] IHlinkFrame* phlframe, [in] IHlinkBrowseContext* phlbc, [in] DWORD grfHLNF, [in] IMoniker* pmkTarget,
[in] LPCWSTR szLocation, [in] LPCWSTR szFriendlyName);

HLNF Enumeration
Values from the HLNF enumeration are used to indicate how hyperlink navigation is to proceed, and also
convey contextual information about the navigation from each of the objects participating in the
navigation protocol to the others.

Value Description
HLNF_INTERNALJUMP The navigation is an internal jump within the current hyperlink target.

The system-provided Hyperlink object will add this flag to the grfHLNF
passed to its IHlink::Navigate prior to calling IHlinkTarget::Navigate when it
determines that its relative moniker is NULL. Sending this flag on to
the hyperlink target allows the target to exclude any expensive
operations and avoid spurious repainting during IHlinkTarget::Navigate.

HLNF_NAVIGATINGBACK The navigation is occurring due to the Go Back command, in which
case no history should be created in the browse context, and the
current position in the navigation stack should be moved back one
element. Hyperlink frames and hyperlink containers send this flag to
IHlink::Navigate for their Go Back command.

HLNF_NAVIGATINGFORWARD The navigation is occurring due to the Go Forward command, in
which case no history should be created in the browse context, and the
current position in the navigation stack should be moved forward one
element. Hyperlink frames and hyperlink containers send this flag to
IHlink::Navigate for their Go Forward command.

HLNF_USEBROWSECONTEXTCLONE When called in IHlink::Navigate, the passed in IHlinkBrowseContext should
be immediately cloned (via IHlinkBrowseContext::Clone) and used for all
subsequent browse context calls and parameters to other methods.

HLNF_OFFSETWINDOWORG Indicates that the hyperlink target should offset its frame- and/or
document-level window(s) from the position returned in the
HLBWINFO structure by IHlinkBrowseContext::GetBrowseWindowContext
during IHlinkTarget::Navigate. This flag is often passed in conjunction
with HLNF_USEBROWSECONTEXTCLONE to implement an Open in New
Window command.

HLNF_OPENINNEWWINDOW An abbreviation for two commonly coincident options:
HLNF_USEBROWSECONTEXTCLONE and HLNF_OFFSETWINDOWORG.

HLNF_CREATENOHISTORY Indicates that the browse context should not during
IHlinkBrowseContext::OnNavigateHlink add this hyperlink to the navigation
stack.

HLNF_NAVIGATINGTOSTACKITEM Indicates that the browse context should not during
IHlinkBrowseContext::OnNavigateHlink add this hyperlink to the navigation
stack, and further that it should update its current position to reflect
that this hyperlink is the current hyperlink. This flag is used when, for
example, the user selects a particular hyperlink from the navigation
stack – the user should navigate to the location, but the jump should
not be recorded in the navigation stack, and the availability of the Go
Forward and Go Back commands should be reevaluated.

HLINKWHICHMK Enumeration
A single value from the HLINKWHICHMK enumeration is passed to IHlinkSite::GetMoniker to specify whether
the client is requesting the moniker for the container document or a base moniker specific to the site.

Member Description
HLINKWHICHMK_CONTAINER Used to specify that the hyperlink wishes to retrieve the moniker for

the hyperlink container corresponding to a particular hyperlink site.
HLINKWHICHMK_BASE Used to specify that the hyperlink wishes to request the base moniker

corresponding to the particular hyperlink site. (these may be different,
for example, if a <BASE> tag is used in HTML)

HLINKGETREF Enumeration
A single value from the HLINKGETREF enumeration is passed to the IHlink::GetMonikerReference and
IHlink::GetStringReference methods to specify whether the client is requesting the absolute reference for the
hyperlink target.
Member Description
HLINKGETREF_DEFAULT Used to specify that the client of the hyperlink wishes to retrieve the

default reference for hyperlink target. This depends on whether the
hyperlink was initialized as a relative or an absolute reference.

HLINKGETREF_ABSOLUTE Used to specify that the client of the hyperlink wishes to retrieve the
absolute reference for hyperlink target.

HLINKGETREF_RELATIVE Used to specify that the client of the hyperlink wishes to retrieve the
relative reference for hyperlink target.

HLFNAMEF Enumeration
A single value from the HLFNAMEF enumeration is passed to IHlink::GetFriendlyName to specify which
friendly name the client is requesting.
Member Description
HLFNAMEF_TRYCACHE Requests the friendly name that is cached in the Hlink object.
HLFNAMEF_TRYFULLTARGET Requests the full display name of the hyperlink target.
HLFNAMEF_TRYPRETTYTARGET Requests a beautified version of the display name of the hlink target.
HLFNAMEF_TRYWIN95SHORTCUT Requests a simplified version of the full display name of the hyperlink

target (i.e. after stripping the path and the extension).
HLFNAMEF_DEFAULT Requests the cached friendly name, else the simplified display name.

HLINKMISC Enumeration
A single value from the HLINKMISC enumeration is returned from IHlink::GetMiscStatus specifying whether
the hyperlink object is a relative or an absolute hyperlink.
Member Description
HLINKMISC_ABSOLUTEThe given hyperlink object contains an absolute reference to the hyperlink target.
HLINKMSIC_RELATIVE The given hyperlink object contains a relative reference to the

hyperlink target.

HLITEM Structure
This structure is returned from IEnumHLITEM::Next calls on enumerators returned from
IHlinkBrowseContext::EnumNavigationStack.

Member Type Description
uHLID ULONG Identifies the hyperlink. Standard enumerators never return one of the

logical HLID constants in this field, always an identifier.
szFriendlyName LPWSTR Friendly name of the hyperlink. Appropriate for display in the user

interface.

HLBWIF Enumeration
HLBWIF flags are passed as part of the HLBWINFO structure which is associated with each browse context.
The HLBWINFO structure is retrieved from the browse context using
IHlinkBrowseContext::GetBrowseWindowContext, and put into the browse context using
IHlinkBrowseContext::SetBrowseWindowContext.
Value Description
HLBWIF_HASFRAMEWNDINFO Indicates that this browse context has available frame-level window

positioning information.
HLBWIF_HASDOCWNDINFO Indicates that this browse context has available document-level

window positioning information.
HLBWIF_FRAMEWNDMAXIMIZED Only useful in combination with HLBWIF_HASFRAMEWNDINFO.

Indicates that frame-level windows of the browse context should
appear maximized.

HLBWIF_DOCWNDMAXIMIZED Only useful in combination with HLBWIF_HASDOCWNDINFO. Indicates
that document-level windows of the browse context should appear
maximized.

HLBWINFO Structure
Contains information relating to the locations and sizes of frame- and document-level windows within a
browse context. The HLBWINFO structure is retrieved from the browse context using
IHlinkBrowseContext::GetBrowseWindowContext, and put into the browse context using
IHlinkBrowseContext::SetBrowseWindowContext. Hyperlink targets retrieve the HLBWINFO structure during
IHlinkTarget::Navigate in order to reposition their user interface properly and ensure as seamless a transition
as possible to the new document or object.

Member Type Description
cbSize ULONG Total size of this structure in bytes.
grfHLBWIF DWORD Values taken from the HLBWIF enumeration.
rcFramePos RECTL If grfHLBWIF & HLBWIF_HASFRAMEWNDINFO, contains the rectangle in

screen coordinates of current frame-level windows within the browse
context. When grfHLBWIF & HLBWIF_FRAMEWNDMAXIMIZED, frame-level
windows are currently being displayed maximized. In this case
rcFramePos is the “normal” size of frame-level windows, i.e. the
rectangle to use for any frame-level window when it is non-
maximized.

rcDocPos RECTL If grfHLBWIF & HLBWIF_HASDOCWNDINFO, contains the rectangle in
screen coordinates of current document-level windows within the
browse context. When grfHLBWIF & HLBWIF_DOCWNDMAXIMIZED,
document-level windows are currently being displayed maximized. In
this case rcDocPos is the “normal” size of document-level windows,
i.e. the rectangle to use for any document-level window when it is
non-maximized.

HLID Constants
For convenience and performance, individual hyperlink objects are often identified in a navigation stack
(the browse context or a history/favorites list) using a ULONG identifier – an HLID – rather than an IHlink
interface pointer. This prevents unnecessary passing of interface pointers across process boundaries in
common user-interface scenarios, such as building a drop-down menu or scrollable list of the history, or
when testing the current location in the navigation stack to enable Go Back and Go Forward. Several
HLID values are reserved and identify logical positions within a navigation stack.

Member Description
HLID_PREVIOUS Indicates the hyperlink prior to the current one. If the current

hyperlink is the first or only hyperlink in the navigation stack, or if
there are no hyperlinks in the navigation stack, there is no previous
hyperlink, and methods such as IHlinkBrowseContext::GetHlink will return
NULL and E_FAIL when passed this value.

HLID_NEXT Indicates the hyperlink after the current one. If the current hyperlink is
the last or only hyperlink in the navigation stack, or if there are no
hyperlinks in the navigation stack, there is no next hyperlink, and
methods such as IHlinkBrowseContext::GetHlink will return NULL and
E_FAIL when passed this value.

HLID_CURRENT Indicates the current hyperlink. A browsing tool might offer a
command to reload the current page, or to re-center the user interface
around the beginning portion of the current hyperlink destination, or
to restart animation, sound, or other activity by re-navigating to the
current hyperlink.

HLID_STACKBOTTOM Indicates the very first hyperlink in the navigation stack. If there are
no hyperlinks in the navigation stack, there is no stack-bottom
hyperlink, and methods such as IHlinkBrowseContext::GetHlink will return
NULL and E_FAIL when passed this value.

HLID_STACKTOP Indicates the very last hyperlink in the navigation stack. If there are
no hyperlinks in the navigation stack, there is no stack-top hyperlink,
and methods such as IHlinkBrowseContext::GetHlink will return NULL and
E_FAIL when passed this value.

HLQF Constants
A single value from the HLQF enumeration is passed to IHlinkBrowseContext::QueryHlink to allow the caller to
determine the state of a particular hyperlink.
Member Description
HLQF_ISVALID Used to test the validity of a particular hyperlink. The uHLID parameter

may specify either a specific hyperlink within the navigation stack or
a relative hyperlink, such as HLID_NEXT or HLID_PREVIOUS.

HLQF_ISCURRENT Used to test if the specific hyperlink (identified by the uHLID
parameter) is the user’s current position within the navigation stack.

CF_HYPERLINK Clipboard Format
The CF_HYPERLINK format consists of a serialized hyperlink. When occurring as part of Uniform Data
Transfer in an IDataObject, the format may appear in either TYMED_ISTREAM or TYMED_HGLOBAL mediums.
Any hyperlink that supports IPersistStream can be placed into an IStream using OleSaveToStreamEx

HLSR Enumeration
A single value from the HLSR enumeration is passed to HlinkGetSpecialReference or HlinkSetSpecialReference
to determine which value to set or get.

Member Description
HLSR_HOME Specifies the hyperlink reference to the global user “home” page.
HLSR_SEARCHPAGE Specifies the hyperlink reference to the global user “search page”.
HLSR_HISTORYFOLDER Specifies the reference to the global user “history folder” page.

HlinkCreateBrowseContext
HRESULT HlinkCreateBrowseContext(punkOuter, riid, ppv);
Creates an empty, default instance of the system browse context object. This helper API is identical to
calling CoCreateInstance(CLSID_StdHlinkBrowseContext, punkOuter, CLSCTX_SERVER, riid, ppv).
Argument Type Description
punkOuter IUnknown* Controlling IUnknown for the new browse context.

Typically NULL, in which case the new browse context is
not aggregated.

fcriid REFIID Identifies the interface to return on the new browse
context. Typically IID_IHlinkBrowseContext, although it
must be IID_IUnknown when punkOuter is non-NULL so that
the aggregator can retrieve the new browse context’s
inner IUnknown for future delegation of QueryInterface. See
the COM aggregation documentation for details.

ppv void** Location to return the riid interface.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

HlinkQueryCreateFromData
HRESULT HlinkQueryCreateFromData(pdatobj);
Determines if a hyperlink can be created from a given IDataObject. A hyperlink can be created from an
IDataObject if either,

1. The IDataObject offers CF_HYPERLINK on either TYMED_ISTREAM or TYMED_HGLOBAL.
2. The IDataObject offers Win95 shortcut data.13

Argument Type Description
pdatobj IDataObject* The source data object to query about the availability of

hyperlink formats.
Returns S_OK Yes, a hyperlink can be created from the data.

S_FALSE No, a hyperlink can not be created from the data.
E_INVALIDARG One or more arguments are invalid.

HlinkCreateFromData
HRESULT HlinkCreateFromData(pdatobj, phlSite, dwSiteData, punkOuter, riid, ppv);
Creates a standard hyperlink object from an IDataObject. Typically the IDataObject originates from a data
transfer operation, such as copy-paste using the clipboard, or via drag-and-drop. In the clipboard transfer
case, the application retrieves the IDataObject pointer via OleGetClipboard when processing a paste
command. During drag-and-drop, the IDataObject is passed in through IDropTarget::Drop to the IDropTarget
registered (using RegisterDragDrop) to the window over which the mouse was released during the drag
operation.
Once an application obtains an IDataObject, it enumerates available formats to determine how the new data
is to merge with existing data. Typically, applications check first for highest-fidelity formats, such as
OLE embedding or link objects and their own native data formats, next for medium-fidelity transfer
13 Further details about this format or how exactly this works to be determined.

formats, such as CF_RTF, CF_METAFILEPICT, CF_DIB, and so on, and finally for low-fidelity transfer
formats, such as CF_TEXT. The exact order of course depends on the context of the paste or drop
operation and of course on the application itself and its user interaction model.
The following code would typically be inserted at some point in paste or drop logic to allow for pasting
and dropping of hyperlinks:

if (HlinkQueryCreateFromData(pdatobj) == S_OK) {
// create a hyperlink site and other hyperlink-specific information as needed
hr = HlinkCreateFromData(pdatobj, &hlSiteNew, dwSiteData, NULL, IID_IHlink, (void**)&hlNew);
}

Argument Type Description
pdatobj IDataObject* The source data to create the hyperlink from.
phlSite IHlinkSite* The site for the new hyperlink object.
dwSiteData DWORD Additional site data for the new hyperlink object.
punkOuter IUnknown* Controlling IUnknown for the new hyperlink object.

Typically NULL, in which case the new hyperlink is not
aggregated.

riid REFIID Identifies the interface to return on the new hyperlink
object. Typically IID_IHlink, although it must be
IID_IUnknown when punkOuter is non-NULL so that the
aggregator can retrieve the new hyperlink’s inner
IUnknown for future delegation of QueryInterface. See the
COM aggregation documentation for details.

ppv void** Location to return the riid interface.
Returns S_OK Success.

E_NOINTERFACE The object did not support the riid interface.
E_INVALIDARG One or more arguments are invalid.

HlinkCreateFromMoniker
HRESULT HlinkCreateFromMoniker(pmkTarget, szLocation, szFriendlyName, phlSite, dwSiteData,

punkOuter, riid, ppv);
Creates a new system hyperlink object from a moniker, a location string, and a friendly name. This
function may be significantly faster than HlinkCreateFromString if a target moniker is already in-hand.
This API is typically used by hyperlink containers as part of user-interface which create a new hyperlink
based on an existing hyperlink, or which allows editing of an existing hyperlink. The following example
demonstrates creating a new hyperlink phlNew from an existing hyperlink, phl, by changing only the
location within the hyperlink target.

phl->GetMonikerReference(&pmk, &szLocation);
phl->GetFriendlyName(&szFriendlyName);
// present UI allowing the user to change the destination of the hyperlink within the same hyperlink target
// show them szLocation, allow them to change it to szLocationNew, same for szFriendlyName
HlinkCreateFromMoniker(pmk, szLocationNew, szFriendlyNameNew, &hlSite, dwSiteData, NULL, IID_IHlink, &phlNew);

Argument Type Description
pmkTarget IMoniker* The moniker to the hyperlink target for the new

hyperlink. May not be NULL.
szLocation LPCWSTR The string representing the location within the hyperlink

target for the new hyperlink. May not be NULL.
szFriendlyName LPCWSTR The string to use as the friendly name for the hyperlink.
phlSite IHlinkSite* The site for the new hyperlink object.
dwSiteData DWORD Additional site data for the new hyperlink object.
punkOuter IUnknown* Controlling IUnknown for the new hyperlink. Typically

NULL, in which case the new hyperlink is not aggregated.
riid REFIID Identifies the interface to return on the new hyperlink.

Typically IID_IHlink, although it must be IID_IUnknown
when punkOuter is non-NULL so that the aggregator can
retrieve the new browse context’s inner IUnknown for
future delegation of QueryInterface. See the COM
aggregation documentation for details.

ppv void** Location to return the riid interface.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

HlinkCreateFromString
HRESULT HlinkCreateFromString(szTarget, szLocation, szFriendlyName, phlSite, dwSiteData,

punkOuter, riid, ppv);
Creates a new hyperlink object from strings representing the hyperlink target, the location within the
target, and a friendly name. This function may take some time, as parsing a target string into a moniker
may be as expensive as actually binding to the resulting hyperlink.
This API is typically used by hyperlink containers as part of user-interface for creating brand new
hyperlinks, where the user fills in a form or dialog of items – target, location, friendly name – which are
used to construct the hyperlink.
Argument Type Description
szTarget LPCWSTR String which helps identify the hyperlink target. This

string is resolved into a moniker via
MkParseDisplayNameEx.

szLocation LPCWSTR The string representing the location within the hyperlink
target for the new hyperlink.

szFriendlyName LPCWSTR The string to use as the friendly name for the hyperlink.
phlSite IHlinkSite* The site for the new hyperlink object.
dwSiteData DWORD Additional site data for the new hyperlink object.
punkOuter IUnknown* Controlling IUnknown for the new hyperlink. Typically

NULL, in which case the new hyperlink is not aggregated.
riid REFIID Identifies the interface to return on the new hyperlink.

Typically IID_IHlink, although it must be IID_IUnknown
when punkOuter is non-NULL so that the aggregator can
retrieve the new browse context’s inner IUnknown for
future delegation of QueryInterface. See the COM
aggregation documentation for details.

ppv void** Location to return the riid interface.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

HlinkGetSpecialReference
HRESULT HlinkGetSpecialReference(dwReference, pszReference);
For a given value from the HLSR enumeration, this function returns the current user’s default global
home, search, or history page for browsing as a string. As an example, applications use this API to
retrieve the string (convertible to a hyperlink via HlinkCreateFromString) which they navigate to on launch
or when executing a Go Home command.
Note: need to make sure everybody is using the same registry locations! <HadiP>
Argument Type Description
dwReference DWORD A value taken from the HLSR enumeration.
pszReference LPWSTR* Location to return the string to the global default page.

May not be NULL.
Returns S_OK Success.

E_INVALIDARG The arguments are invalid.

HlinkSetSpecialReference
HRESULT HlinkSetSpecialReference(dwReference, szReference);
For a given value from the HLSR enumeration, this function sets the current user’s default global home,
search, or history page for browsing. As an example, applications use this API to implement a Set Home
command, which sets the currently visible navigation point as the home page for the current user.
Argument Type Description
dwReference DWORD A value taken from the HLSR enumeration.
szReference LPCWSTR The string to set to the global default page.
Returns S_OK Success.

E_INVALIDARG The arguments are invalid.

HlinkNavigateToStringReference
HRESULT HlinkNavigateToStringReference(szTarget, szLocation, phlSite, dwSiteData, phlFrame,

grfHLNF, pbc, pbsc, phlbc);
Simple Helper function which encapsulates the following common sequence of calls:

// create hyperlink site, IBindStatusCallback, gather bind context, and browse context
HlinkCreateFromString(szTarget, szLocation, szFriendlyName, &hlSite, dwSiteData, NULL, IID_IHlink, (void**)&phl);
HlinkNavigate(phl, phlFrame, grfHLNF, pbc, pbsc, phlbc);
phl->Release();

Argument Type Description
szTarget LPCWSTR String which helps identify the hyperlink target. This

string is resolved into a moniker for underlying binding
operations via MkParseDisplayNameEx.

szLocation LPCWSTR The string representing the location within the hyperlink
target for the new hyperlink.

phlSite IHlinkSite* The site for the new hyperlink object. (optional, in which
case szTarget must be an absolute reference)

dwSiteData DWORD Additional site data for the new hyperlink object.
phlFrame IHlinkFrame* The hyperlink frame of the hyperlink container. May be

NULL if the hyperlink container does not have a hyperlink
frame.

grfHLNF DWORD Values taken from the HLNF enumeration.
pbc IBindCtx* The bind context to use for any moniker binding

performed during the navigation. May not be NULL.
pbsc IBindStatusCallback* The bind-status-callback to use for any asynchronous

moniker binding performed during the navigation. May
be NULL, in which case the caller is not interested in
progress notification, cancellation, pausing, or low-level
binding information.

phlbc IHlinkBrowseContext* The browse context to use for this navigation. The
browse context includes history information in which
this navigation is logged, if !(grfHLNF &
HLNF_CREATENOHISTORY).

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

HlinkNavigate
HRESULT HlinkNavigate (phl, phlFrame, grfHLNF, pbc, pbsc, phlbc);
This function can be used to navigate a hyperlink given a hyperlink object and an optional hyperlink fram
eobject. This helper function which encapsulates the following common sequence of calls:

if (phlFrame)
phlFrame->Navigate(grfHLNF, pbc, pbsc, phl);

else if (phl)
phl->Navigate(grfHLNF, pbc, pbsc, phlbc);

Argument Type Description
phl Ihlink * The hyperlink.to navigate to.
phlFrame IHlinkFrame* The hyperlink frame of the hyperlink container. May be

NULL if the hyperlink container does not have a hyperlink
frame.

grfHLNF DWORD Values taken from the HLNF enumeration.
pbc IBindCtx* The bind context to use for any moniker binding

performed during the navigation. May not be NULL.
pbsc IBindStatusCallback* The bind-status-callback to use for any asynchronous

moniker binding performed during the navigation. May
be NULL, in which case the caller is not interested in
progress notification, cancellation, pausing, or low-level
binding information.

phlbc IHlinkBrowseContext* The browse context to use for this navigation. The
browse context includes history information in which
this navigation is logged, if !(grfHLNF &
HLNF_CREATENOHISTORY).

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

HlinkOnNavigate
HRESULT HlinkOnNavigate(phlFrame, phlbc, grfHLNF, pmkTarget, szLocation, szFriendlyName);
Encapsulates a sequence of common steps performed in hyperlink targets during IHlinkTarget::Navigate,
namely the calling of IHlinkBrowseContext::OnNavigateHlink and IHlinkFrame::OnNavigate if the hyperlink target
has a hyperlink frame. This function encapsulates the following functionality:

phlbc->OnNavigateHlink(grfHLNF, pmkTarget, szLocation, szFriendlyName);
if (phlframe)

phlframe->OnNavigate(grfHLNF);
Argument Type Description
phlFrame IHlinkFrame* The hyperlink frame of the hyperlink container. May be

NULL if the hyperlink container does not have a hyperlink
frame.

phlbc IHlinkBrowseContext* The browse context being used for this navigation. The
browse context includes this navigation in its history
information during IHlinkBrowseContext::OnNavigateHlink if !
(grfHLNF & HLNF_CREATENOHISTORY).

grfHLNF DWORD Values taken from the HLNF enumeration.
pmkTarget IMoniker* The moniker of the hyperlink target. May not be NULL.
szLocation LPCWSTR The string representing the location within the hyperlink

target for the new hyperlink. May not be NULL.
szFriendlyName LPCWSTR The friendly name of the hyperlink.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlinkSite Interface

IHlinkSite::GetMoniker
HRESULT IHlinkSite::GetMoniker(dwSiteData, dwAssign, dwWhich, ppmk);
Returns the moniker of the hyperlink site’s container. Called by a hyperlink on its hyperlink site to
retrieve a relative moniker during IHlink::Navigate so that the hyperlink can determine if the navigation is
internal (within the same container) or not.
Argument Type Description
dwSiteData DWORD Identifies the hyperlink to the hyperlink site. The

hyperlink site initializes the hyperlink with this value as
part of IHlink::SetHlinkSite.

dwAssign DWORD A value from the OLEGETMONIKER enumeration.
Typically OLEGETMONIKER_ONLYIFTHERE, indicating
that the function should not force a moniker to be
created if one does not already exist, or
OLEGETMONIKER_FORCEASSIGN, indicating that the
function should create a moniker if one does not exist.

dwWhich DWORD A value from the OLEWHICHMK enumeration. Typically
OLEWHICHMK_CONTAINER, indicating that the site should
return the moniker of the hyperlink container.

ppmk IMoniker** Location to return the IMoniker interface of the specific
moniker.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IHlinkSite::GetInterface
HRESULT IHlinkSite::GetInterface(dwSiteData, dwReserved, riid, ppv);
Retrieves an interface on the hyperlink container (usually the document that contains the hyperlink site).
A hyperlink typically calls this method on its hyperlink site after calling IHlinkSite::GetMoniker and
determining that there is no relative moniker as part of IHlink::Navigate. The hyperlink next calls this
method with riid==IID_IHlinkTarget to retrieve the hyperlink target of the container so that the hyperlink can
directly call IHlinkTarget::Navigate, avoiding the typical moniker binding process.
Note: IHlinkSite::GetInterface behaves similarly to QueryInterface, except that it may choose what interface to
return based on the dwSiteData parameter. Furthermore, this interface is not necessarily implemented on
the same object that exposes IHlinkSite.
Argument Type Description
dwSiteData DWORD Identifies the hyperlink to the hyperlink site. The

hyperlink site initializes the hyperlink with this value as
part of IHlink::SetHlinkSite.

dwReserved DWORD Reserved for future use. Must be zero.
riid REFIID Identifies the interface to return.
ppv void** Location to return the riid interface.
Returns S_OK Success.

E_NOINTERFACE The desired interface is not available.
E_INVALIDARG One or more arguments are invalid.

IHlinkSite::OnNavigationComplete
HRESULT IHlinkSite::OnNavigationComplete(dwSiteData, hrStatus, pszStatus);
The hyperlink object calls this method on the hyperlink site to notify it that a hyperlink has completed
navigation. This notification is particularly useful if the hyperlink has been navigated asynchronously,
because it is the only notification the hyperlink receives to realize that hyperlinking has completed.
Argument Type Description
dwSiteData DWORD Identifies the hyperlink to the hyperlink site. The

hyperlink site initializes the hyperlink with this value as
part of IHlink::SetHlinkSite.

hrStatus HRESULT Result of the hyperlink navigation. Either S_OK for
success or E_ABORT or E_FAIL.

pszStatus LPCWSTR A string describing the failure that occurred.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink Interface

IHlink::SetHlinkSite
HRESULT IHlink::SetHlinkSite(phlSite, dwSiteData);
Sets the hyperlink site and associated site data on a hyperlink object. A hyperlink container typically
constructs a hyperlink site first and then passes it through this method to a newly constructed hyperlink
object. The hyperlink object uses the hyperlink site in order to navigate properly when IHlink::Navigate is
called. Calls on this method are often encapsulated in helper functions such as HlinkCreateFromData,
HlinkCreateFromMoniker, and HlinkCreateFromString.
Argument Type Description
phlSite IHlinkSite* The new hyperlink site for this hyperlink.
dwSiteData DWORD Further site data to be kept on behalf of the site.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::GetHlinkSite
HRESULT IHlink::GetHlinkSite(pphlSite, pdwSiteData);
Returns the hyperlink site and associated site data from a hyperlink object. This method is infrequently
used by clients.
Argument Type Description
pphlSite IHlinkSite** Location to return the IHlinkSite interface. May not be

NULL.
pdwSiteData DWORD* Location to return the site data. May not be NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::GetMonikerReference
HRESULT IHlink::GetMonikerReference(dwWhichRef, ppmk, pszLocation);
Returns the moniker and location portions of the hyperlink reference. The moniker portion of the
hyperlink reference can bind to the hyperlink target of the reference via IMoniker::BindToObject(…,
IID_IHlinkTarget,…). The location portion of the hyperlink reference can be passed to the hyperlink target

via IHlinkTarget::Navigate to navigate to the proper destination within the target, or it can be used to retrieve
the current friendly name of the location within the target via IHlinkTarget::GetFriendlyName.
Argument Type Description
dwWhichRef DWORD Value from the HLINKGETREF enumeration specifying

whether to get the absolute or relative reference to the
hyperlink target.

ppmk IMoniker** Location to return the moniker to the hyperlink target of
the hyperlink reference, if any. May be NULL, in which
case the caller is not interested in the moniker to the
hyperlink target.

pszLocation LPWSTR* Location to return the location portion of the hyperlink
reference, if any. May be NULL, in which case the caller
is not interested in the location portion of the hyperlink
reference.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IHlink::GetStringReference
HRESULT IHlink::GetStringReference(dwWhichRef, pszTarget, pszLocation);
Retrieves strings that identify the hyperlink target and the location within the hyperlink target.
The pszTarget string is typically retrieved by calling IMoniker::GetDisplayName on the moniker to the
hyperlink target that the hyperlink contains within it.
Argument Type Description
dwWhichRef DWORD Value from the HLINKGETREF enumeration specifying

whether to get the absolute or relative reference to the
hyperlink target.

pszTarget LPWSTR* Location to return a string that helps identify the
hyperlink target of the hyperlink reference. May be
NULL, in which case the caller is not interested in the
target string of the hyperlink reference.

pszLocation LPWSTR* Location to return the location portion of the hyperlink
reference. May be NULL, in which case the caller is not
interested in the location portion of the hyperlink
reference.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IHlink::GetFriendlyName
HRESULT IHlink::GetFriendlyName(grfHLFNAMEF, pszFriendlyName);
Retrieves the friendly name of the hyperlink reference. Since the friendly name may be cached as part of
the hyperlink object itself, it may therefore not necessarily correspond to the friendly name that the
hyperlink target would return were it activated and queried via IHlinkTarget::GetFriendlyName. The system-
provided hyperlink implementation does cache the friendly name, and updates it as part of IHlink::Navigate.
This method is typically called by hyperlink containers, which use friendly names to represent hyperlinks
within their user interface.

Argument Type Description
grfHLFNAMEF DWORD Get from Srini.
pszFriendlyName LPWSTR* Location to return the friendly name of the hyperlink

reference. May not be NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::SetFriendlyName
HRESULT IHlink::SetFriendlyName(szFriendlyName);
Sets the friendly name for the hyperlink. This friendly name is used by hyperlink containers to represent
the hyperlink within their user interface.
Argument Type Description
pszFriendlyName LPCWSTR The friendly name of the hyperlink reference.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::GetTargetFrameName
HRESULT IHlink::GetTargetFrameName(pszTargetFrameName);
Retrieves the name of the target-frame for the hyperlink. This string names the target frame (as in HTML
frame-sets) in which the hyperlink navigation is to occur. This string is only useful if the hyperlink is
navigated to in a context/container that understands named frame-sets.
Argument Type Description
pszTargetFrameName LPWSTR* Location to return the target frame name. May not be

NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::SetTargetFrameName
HRESULT IHlink::SetTargetFrameName(szTargetFrameName);
Sets the target frame name for the hyperlink. This string names the target frame (as in HTML frame-sets)
in which the hyperlink navigation is to occur. This string is only useful if the hyperlink is navigated to in
a context/container that understands named frame-sets.

Argument Type Description
pszTargetFrameName LPCWSTR The target frame name for the hyperlink.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::GetAdditionalParams
HRESULT IHlink::GetAdditionalParams(pszAdditionalParams);
Retrieves additional parameters or properties for the hyperlink. This parameter string is an extensible
string in the following format:

<ID1 = “value1” > <ID2 = “value2”> … <Idn = “valuen”>
The parameters saved in this string are mainly interpreted by the hyperlink frame.

Argument Type Description
pszAdditionalParams LPWSTR* Location to return the additional parameters of the

hyperlink. May not be NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::SetAdditionalParams
HRESULT IHlink::SetAdditionalParams(szAdditionalParams);
Sets the additional parameters or properties for the hyperlink. This parameter string is an extensible string
in the following format:

<ID1 = “value1” > <ID2 = “value2”> … <Idn = “valuen”>
The parameters saved in this string are mainly interpreted by the hyperlink frame.

Argument Type Description
pszAdditionalParams LPCWSTR The additional parameters for the hyperlink.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlink::Navigate
HRESULT IHlink::Navigate(grfNLF, pbc, pbsc, phlbc);
.
Argument Type Description
grfNLF DWORD Values taken from the HLNF enumeration.
pbc IBindCtx* The bind context to use for any moniker binding

performed during the navigation. May not be NULL.
pbsc IBindStatusCallback* The bind-status-callback to use for any asynchronous

moniker binding performed during the navigation. May
be NULL, in which case the caller is not interested in
progress notification, cancellation, pausing, or low-level
binding information.

phlbc IHlinkBrowseContext* The browse context to use for this navigation. May not
be NULL. As part of navigation, this browse context’s
navigation stack may be updated (depending on grfHLNF)
and its cache of hyperlink targets will be consulted for
matching hyperlink targets.

Returns S_OK Success.
HLINK_S_NAVIGATEDTOLEAFNODE TBD.
E_INVALIDARG One or more arguments are invalid.

IHlink::GetMiscStatus
HRESULT IHlink::GetMiscStatus(*pdwStatus);
Queries whether the hyperlink is an absolute or a relative link.

Argument Type Description
pdwStatus DWORD* Location to return a value from the HLINKMISC

enumeration. May not be NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlinkTarget Interface
A hyperlink target implements this interface to allow navigation to locations within its objects. A typical
implementation of a hyperlink target keeps track of only a few extra values that keep track of the current
hyperlinking browse context.

class CHlinkTarget : public IHlinkTarget {
// prototypes for IHlinkTarget and IUnknown implementation …

IHlinkBrowseContext* m_phlbc;
IHlinkFrame* m_phlframe;
IMoniker* m_pmk;
DWORD m_dwRegister;
BOOL m_fHide;
BOOL m_fHideFrame;
};

IHlinkTarget::SetBrowseContext
HRESULT IHlinkTarget::SetBrowseContext(phlbc);
Establishes the current browse context for this hyperlink target. Since a hyperlink target has only one
browse context at a time, a typical implementation of this method is to hold a reference to the new
browse context and release any references to prior browse contexts, as shown in the code sample shown
earlier in this document.
Besides registering itself with its browse context during this method, a hyperlink target also uses its
browse context during to notify the browse context of a navigation event by calling
IHlinkBrowseContext::OnNavigateHlink during IHlinkTarget::Navigate.
NOTE: for simple hyperlink targets it is not necessary to implement this method. If you wish to
participate as a hyperlink target but you do not wish to integrate with the system browse context,
you may return E_NOTIMPL from this call.
Argument Type Description
phlbc IHlinkBrowseContext* The browse context to set for the hyperlink target.
Returns S_OK Success.

E_NOTIMPL This hyperlink target does not understand browse
contexts.

E_INVALIDARG One or more arguments are invalid.

IHlinkTarget::GetBrowseContext
HRESULT IHlinkTarget::GetBrowseContext(pphlbc);
Retrieves the browse context which this hyperlink target is currently running within. The following code
example demonstrates the implementation of this method by a typical hyperlink target holding a
reference to its browse context:

 STDMETHODIMP
CHlinkTarget::GetBrowseContext(IHlinkBrowseContext** pphlbc)
{

*pphlbc = m_phlbc;
if (m_phlbc)

m_phlbc->AddRef();
return S_OK;

} // CHlinkTarget::GetBrowseContext

NOTE: for simple hyperlink targets it is not necessary to implement this method. If you wish to
participate as a hyperlink target but you do not wish to integrate with the system browse context,
you may return E_NOTIMPL from this call.
Argument Type Description
pphlbc IHlinkBrowseContext* Location to return the IHlinkBrowseContext interface of the

current browse context.
Returns S_OK Success.

E_NOTIMPL This hyperlink target does not understand browse
contexts.

E_INVALIDARG The pphlbc argument is invalid.

IHlinkTarget::Navigate
HRESULT IHlinkTarget::Navigate(grfHLNF, szLocation);
If the given location is not visible, navigates to and shows the szLocation position within the
object/document. The code example earlier in this document demonstrates an implementation of this
method.
NOTE: for simple hyperlink targets that do not integrate with the system browse context, it is not
necessary to remember and use the browse context and window position info for this operation.
Argument Type Description
grfHLNF DWORD Values taken from the HLNF enumeration.
szLocation LPCWSTR Location within the hyperlink target to navigate to.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlinkTarget::GetMoniker
HRESULT IHlinkTarget::GetMoniker(szLocation, dwAssign, ppmk);
Returns a moniker to the hyperlink target object for the given hyperlink destination, szLocation. Most
hyperlink targets return the same moniker for every szLocation, however this is not required, since
different monikers may bind to the same IHlinkTarget instance yet yield different contextual information to
the underlying object. A simple hyperlink target would have an implementation such as the sample
below:

 STDMETHODIMP
CHlinkTarget::GetMoniker(LPCWSTR szLocation, DWORD dwAssign, IMoniker** ppmk)
{

// possibly create moniker dynamically according to dwAssign, simple targets will keep one on hand
*ppmk = m_pmk;
if (m_pmk)

m_pmk->AddRef();
return S_OK;

} // CHlinkTarget::GetMoniker

Argument Type Description
szLocation LPCWSTR Identifies the hyperlink destination within this target.
dwAssign DWORD A value from the OLEGETMONIKER enumeration. Must be

either OLEGETMONIKER_ONLYIFTHERE, indicating that the
function should not force a moniker to be created if one
does not already exist, or
OLEGETMONIKER_FORCEASSIGN, indicating that the
function should create a moniker if one does not exist.

ppmk IMoniker** Location to return an IMoniker interface.
Returns S_OK Success.

E_FAIL A moniker does not exist for this hyperlink target and
OLEGETMONIKER_ONLYIFTHERE was specified for
dwAssign.

E_INVALIDARG One or more arguments are invalid.
others From moniker creation APIs such as CreateFileMoniker,

MkParseDisplayName, etc.

IHlinkTarget::GetFriendlyName
HRESULT IHlinkTarget::GetFriendlyName(szLocation, pszFriendlyName);
Returns a friendly name for the given hyperlink destination within this target.
Argument Type Description
szLocation LPCWSTR Identifies the hyperlink destination within this target.
pszFriendlyName LPWSTR* Location to return the friendly name. This string must be

allocated using CoTaskMemAlloc. It is the caller’s
responsibility to free this string using CoTaskMemFree.

Returns S_OK Success.
E_OUTOFMEMORY Insufficient memory to return the friendly name.
E_INVALIDARG One or more arguments are invalid.

IHlinkFrame Interface

IHlinkFrame::SetBrowseContext
HRESULT IHlinkFrame::SetBrowseContext(phlbc);
Sets the browse context of the hyperlink frame.
Note: for hyperlink frames that do not integrate with the system browse context, it is acceptable to
return E_NOTIMPL from this call.
Argument Type Description
phlbc IHlinkBrowseContext* The browse context to set for the hyperlink frame.
Returns S_OK Success.

E_NOTIMPL This hyperlink target does not understand browse
contexts.

E_INVALIDARG The phlbc argument is invalid.

IHlinkFrame::GetBrowseContext
HRESULT IHlinkFrame::GetBrowseContext(pphlbc);
Returns the browse context of the hyperlink frame.

Note: for hyperlink frames that do not integrate with the system browse context, it is acceptable to
return E_NOTIMPL from this call.
Argument Type Description
pphlbc IHlinkBrowseContext** Location to return the browse context of the hyperlink

frame.
Returns S_OK Success.

E_NOTIMPL This hyperlink target does not understand browse
contexts.

E_INVALIDARG The pphlbc argument is invalid.

IHlinkFrame::Navigate
HRESULT IHlinkFrame::Navigate(grfHLNF, pbc, pbsc, phlNavigate);
Navigates to phlNavigate. Called by a hyperlink object during IHlink::Navigate when phlframe is non-NULL, to
allow the hyperlink frame to interpose itself in the navigation process.
Argument Type Description
grfHLNF DWORD Values taken from the HLNF enumeration.
pbc IBindCtx* The bind context to use for any moniker binding

performed during the navigation. May not be NULL.
pbsc IBindStatusCallback* The bind-status-callback to use for any asynchronous

moniker binding performed during the navigation. May
be NULL, in which case the caller is not interested in
progress notification, cancellation, pausing, or low-level
binding information.

phlNavigate IHlink* The hyperlink to navigate to.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.
others From IHLink::Navigate.

IHlinkFrame::OnNavigate
HRESULT IHlinkFrame::OnNavigate(grfHLNF);
Notifies the hyperlink frame that a hyperlink has been navigated to. This allows the hyperlink frame to
update user interface elements associated with navigation. A hyperlink target calls this method on its
hyperlink frame (if any) during IHlinkTarget::Navigate, usually via the helper function HlinkOnNavigate.
Argument Type Description
grfHLNF DWORD Values taken from the HLNF enumeration.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IEnumHLITEM Interface
The IEnumHLITEM interface is a standard OLE enumeration interface for HLITEM structures. This interface
is returned by IHlinkBrowseContext::EnumNavigationStack.

IEnumHLITEM::Next
HRESULT IEnumHLITEM::Next(celt, rgelt, pceltFetched);
Retrieves the next celt HLITEMs in the enumeration sequence. If there are fewer than the requested number
of elements left in the sequence, it retrieves the remaining elements. The number of elements actually
retrieved is returned through pceltFetched.

Argument Type Description
celt ULONG The number of elements to retrieve.
rgelt HLITEM* Location to return at most celt HLITEM structures. May not

be NULL.
pceltFetched ULONG* Location to return the actual number of elements

returned in rgelt. May be NULL, in which case the caller is
not interested in the actual number of elements returned.

Returns S_OK Success. celt elements were returned in rgelt.
S_FALSE Success, fewer than celt and possibly zero elements were

returned in rgelt. The actual number of elements returned
is returned through pceltFetched, if non-NULL.

E_INVALIDARG One or more arguments are invalid.

IEnumHLITEM::Skip
HRESULT IEnumHLITEM::Skip(celt);
Skips over the next celt elements in the enumeration sequence.
Argument Type Description
celt ULONG The number of elements which are to be skipped.
Returns S_OK Success. celt elements were skipped.

S_FALSE Success. Fewer than celt and possibly zero elements were
skipped. This indicates that the enumerator has reached
the end of the collection.

IEnumHLITEM::Reset
HRESULT IEnumHLITEM::Reset();
Resets the enumeration sequence to the beginning. There is no guarantee that the same set of HLITEMs
will be enumerated after the Reset, because it depends on the implementation doing the enumeration. It
can be too expensive for some collections to guarantee this condition or it may not be possible due to
concurrent access to the same collection by multiple threads or processes.
Argument Type Description
Returns S_OK Success.

IEnumHLITEM::Clone
HRESULT IEnumHLITEM::Clone(ppenumhlitem);
Creates another enumerator that contains the same enumeration state as the current one. Using this
function, a client can record a particular point in the enumeration sequence, and then return to that point
at a later time.
Argument Type Description
ppenumhlitem IEnumHLITEM** Location to return the new enumerator. Must be cleared

to NULL on failure.
Returns S_OK Success.

E_OUTOFMEMORY Insufficient memory to create the new enumerator.
E_INVALIDARG The ppenumhlitem argument is invalid.

IHlinkBrowseContext Interface

IHlinkBrowseContext::Register
HRESULT IHlinkBrowseContext::Register(dwReserved, punk, pmk, pdwRegister);
Registers an object with the browse context. The browse context maintains a table of moniker-object
bindings to facilitate reuse of hyperlink targets during navigation. When a hyperlink navigates to a
hyperlink target, this table is consulted (via IHlinkBrowseContext::GetObject) to see if the hyperlink target is
already registered and running, thus avoiding launching a new instance of the hyperlink target application
and reloading the same document/object.
Currently, only hyperlink targets are required to register themselves the browse context when they
receive IHlinkTarget::SetBrowseContext. Hyperlink targets should keep the returned *pdwRegister and
unregister themselves from the browse context on shutdown or if their browse context changes (see
IHlinkTarget::SetBrowseContext for details).
Argument Type Description
dwReserved DWORD Reserved for future use. Must be zero.
punk IUnknown* The object being registered.
pmk IMoniker* Moniker that identifies the object being registered.
pdwRegister DWORD* Location to return a value identifying the registration

which can be used to subsequently revoke the
registration.

Returns S_OK Success.
MK_S_MONIKERALREADYREGISTERED Indicates that the object was successfully

registered, but that another object (possibly the same
object) has already been registered with the same
moniker in this browse context.

E_OUTOFMEMORY There was insufficient memory to register the object
with the browse context.

E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::GetObject
HRESULT IHlinkBrowseContext::GetObject(pmk, ppunk);
Retrieves an object previously registered in the browse context under the name pmk.
Argument Type Description
pmk IMoniker* Identifies the object being retrieved.
ppunk IUnknown** Location to return the IUnknown interface of the object

being retrieved.
Returns S_OK Success.

S_FALSE There was no object registered under pmk in the browse
context.

E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::Revoke
HRESULT IHlinkBrowseContext::Revoke(dwRegister);
Revokes an object previously registered with this browse context using IHlinkBrowseContext::Register.

Argument Type Description
dwRegister DWORD Identifies the object to revoke. Returned by a previous

call to IHlinkBrowseContext::Register.
Returns S_OK Success.

E_INVALIDARG The dwRegister argument is invalid.

IHlinkBrowseContext::SetBrowseWindowInfo
HRESULT IHlinkBrowseContext::SetBrowseWindowInfo(phlbwi);
Establishes the HLBWINFO structure of this browse context. The HLBWINFO structure contains information
about the position and properties of the document- and frame-level windows of other hyperlink frames
and documents in the same browse context. This method is called by hyperlink targets and containers
whenever their document-level (and optionally their frame-level) user interface is resized – for example
under Windows if the user moves their document window, tiles several frame-level applications, or
moves the task-bar and causes their windows to receive WM_SIZE, WM_MOVE, or
WM_WINDOWPOSCHANGED messages.
Argument Type Description
phlbwi HLBWINFO* Points to the new HLBWINFO structure for this browse

context.
Returns S_OK Success.

E_INVALIDARG The phlbwi argument is invalid.

IHlinkBrowseContext::GetBrowseWindowInfo
HRESULT IHlinkBrowseContext:: GetBrowseWindowInfo(phlbwi);
Retrieves the HLBWINFO structure currently associated with the browse context. This structure contains
information about the position and properties of the document- and frame-level windows of other
hyperlink frames and documents in the same browse context. This method is typically called by a
hyperlink target during IHlinkTarget::Navigate as part of determining how to position its document-level (and
optionally its frame-level) user interface such that the user’s experience navigating between disparate
applications will be as visually seamless as possible.
Argument Type Description
phlbwi HLBWINFO* Location to return the HLBWINFO structure.
Returns S_OK Success.

E_INVALIDARG The phlbwi argument is invalid.

IHlinkBrowseContext::EnumNavigationStack
HRESULT IHlinkBrowseContext:: EnumNavigationStack(ppenumhlitem);
Returns an enumerator which can be used to enumerate the current contents of the navigation stack. The
enumerator returns HLITEM structures, which contain references to the underlying hyperlinks (by HLID),
and “friendly names” which can be displayed in the user interface. This method is typically called by
hyperlink frame objects as part of presenting drop-down lists and dialog boxes with browse-level history
lists.
Argument Type Description
ppenumhlitem IEnumHLITEM** Location to return the IEnumHLITEM enumeration

interface over the set of hyperlinks in this navigation
stack.

Returns S_OK Success.
E_INVALIDARG The ppenumhlitem argument is invalid.

IHlinkBrowseContext::QueryHlink
HRESULT IHlinkBrowseContext:: QueryHlink(grfHLQF, uHLID);
Tests the validity of an uHLID value. This method is typically called by hyperlink frame-level user
interface elements to determine whether or not to enable commands such as Go Forward and Go Back
by passing HLID_NEXT and HLID_PREVIOUS, for example:

// tests if Go Forward should be enabled
phlbc->QueryHlink(HLQF_ISVALID, HLID_NEXT);
// tests if Go Back should be enabled
phlbc->QueryHlink(HLQF_ISVALID, HLID_PREVIOUS);

Argument Type Description
grfHLQF DWORD A single value taken from the HLQF enumeration.
uHLID ULONG Identifies the hyperlink to query about. May be a value

taken from the HLID constants to indicate a logically
identified hyperlink, such as HLID_PREVIOUS or
HLID_NEXT.

Returns S_OK If grfHLQF is HLQF_ISVALID, uHLID identifies a valid
hyperlink within the browse context. If grfHLQF is
HLQF_ISCURRENT, uHLID identifies the current hyperlink
of the browse context.

S_FALSE If grfHLQF is HLQF_ISVALID, uHLID does not identify a
valid hyperlink within the browse context. If grfHLQF is
HLQF_ISCURRENT, uHLID does not identify the current
hyperlink of the browse context

E_INVALIDARG The grfHLQF flags are invalid. grfHLQF must specify either
HLQF_ISVALID or HLQF_ISCURRENT.

IHlinkBrowseContext::GetHlink
HRESULT IHlinkBrowseContext::GetHlink(uHLID, pphl);
Retrieves a hyperlink from this browse context.
Argument Type Description
uHLID ULONG Identifies the hyperlink to retrieve. May be a value taken

from the HLID constants to indicate a logically identified
hyperlink, such as HLID_PREVIOUS or HLID_NEXT.

pphl IHlink** Location to return the IHlink interface of the hyperlink.
Returns S_OK Success.

E_FAIL The specified hyperlink does not exist.
E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::SetCurrentHlink
HRESULT IHlinkBrowseContext:: SetCurrentHlink(uHLID);
Sets the current hyperlink in this browse context’s navigation stack.
Argument Type Description
uHLID ULONG Identifies the hyperlink to set. May be a value taken

from the HLID constants to indicate a logically identified
hyperlink, such as HLID_PREVIOUS or HLID_NEXT.

Returns S_OK Success.
E_FAIL The specified hyperlink does not exist.
E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::OnNavigateHlink
HRESULT IHlinkBrowseContext::OnNavigateHlink(grfHLNF, pmkTarget, szLocation,

szFriendlyName);
Notifies a browse context that a hyperlink has been navigated. Called by the hyperlink target during
IHlinkTarget::Navigate to indicate that the hyperlink has been successfully navigated to.
Argument Type Description
grfHLNF DWORD Values taken from the HLNF enumeration.
pmkTarget IMoniker* The moniker of the hyperlink target.
szLocation LPCWSTR A string identifying the location within the hyperlink

target that was navigated to. May not be NULL.
szFriendlyName LPCWSTR The friendly name of the location within the hyperlink

target that has been navigated to. May not be NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::Clone
HRESULT IHlinkBrowseContext:: Clone(punkOuter, riid, ppv);
Duplicates a browse context.
Argument Type Description
punkOuter IUnknown* Controlling IUnknown for the new browse context.

Typically NULL, in which case the new browse context is
not aggregated.

riid REFIID Identifies the interface to return on the new browse
context. Typically IID_IHlink, although it must be
IID_IUnknown when punkOuter is non-NULL so that the
aggregator can retrieve the new browse context’s inner
IUnknown for future delegation of QueryInterface. See the
COM aggregation documentation for details.

ppv void** Location to return the riid interface.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

IHlinkBrowseContext::Close
HRESULT IHlinkBrowseContext::Close(dwReserved);
Closes the hyperlink browse context. Releases all hyperlink targets that have been registered with the
browse context via IHlinkBrowseContext::Register.
Argument Type Description
dwReserved DWORD Reserved for future use. Must be zero.
Returns S_OK Success.

E_INVALIDARG The dwReserved argument is invalid.

	1 OLE Hyperlinks
	Introduction
	What is a Hyperlink?
	What is Hyperlink Navigation?
	Browse Contexts

	Architecture Overview
	The “simple” hyperlinking API functions.
	Hyperlink Target
	How to implement an IHlinkTarget

	Hyperlink
	Hyperlink Container and Hyperlink Site
	Hyperlink Frame
	Hyperlink Browse Context
	How the pieces connect to each other

	Examples
	“Simple Hyperlinking”
	Starting with a Hyperlink Container
	IHlinkFrame::Navigate
	IHlink::Navigate
	IHlinkTarget::Navigate
	IHlinkFrame::OnNavigate

	“Fully integrated” Hyperlink Navigation
	Starting with a Hyperlink Container
	IHlinkFrame::Navigate
	IHlink::Navigate
	IHlinkTarget::SetBrowseContext
	IHlinkTarget::Navigate
	IHlinkFrame::OnNavigate
	IHlinkBrowseContext::OnNavigateHlink

	Technical Details
	HLNF Enumeration
	HLINKWHICHMK Enumeration
	HLINKGETREF Enumeration
	HLFNAMEF Enumeration
	HLINKMISC Enumeration
	HLITEM Structure
	HLBWIF Enumeration
	HLBWINFO Structure
	HLID Constants
	HLQF Constants
	CF_HYPERLINK Clipboard Format
	HLSR Enumeration
	HlinkCreateBrowseContext
	HlinkQueryCreateFromData
	HlinkCreateFromData
	HlinkCreateFromMoniker
	HlinkCreateFromString
	HlinkGetSpecialReference
	HlinkSetSpecialReference
	HlinkNavigateToStringReference
	HlinkNavigate
	HlinkOnNavigate
	IHlinkSite Interface
	IHlinkSite::GetMoniker
	IHlinkSite::GetInterface
	IHlinkSite::OnNavigationComplete

	IHlink Interface
	IHlink::SetHlinkSite
	IHlink::GetHlinkSite
	IHlink::GetMonikerReference
	IHlink::GetStringReference
	IHlink::GetFriendlyName
	IHlink::SetFriendlyName
	IHlink::GetTargetFrameName
	IHlink::SetTargetFrameName
	IHlink::GetAdditionalParams
	IHlink::SetAdditionalParams
	IHlink::Navigate
	IHlink::GetMiscStatus

	IHlinkTarget Interface
	IHlinkTarget::SetBrowseContext
	IHlinkTarget::GetBrowseContext
	IHlinkTarget::Navigate
	IHlinkTarget::GetMoniker
	IHlinkTarget::GetFriendlyName

	IHlinkFrame Interface
	IHlinkFrame::SetBrowseContext
	IHlinkFrame::GetBrowseContext
	IHlinkFrame::Navigate
	IHlinkFrame::OnNavigate

	IEnumHLITEM Interface
	IEnumHLITEM::Next
	IEnumHLITEM::Skip
	IEnumHLITEM::Reset
	IEnumHLITEM::Clone

	IHlinkBrowseContext Interface
	IHlinkBrowseContext::Register
	IHlinkBrowseContext::GetObject
	IHlinkBrowseContext::Revoke
	IHlinkBrowseContext::SetBrowseWindowInfo
	IHlinkBrowseContext::GetBrowseWindowInfo
	IHlinkBrowseContext::EnumNavigationStack
	IHlinkBrowseContext::QueryHlink
	IHlinkBrowseContext::GetHlink
	IHlinkBrowseContext::SetCurrentHlink
	IHlinkBrowseContext::OnNavigateHlink
	IHlinkBrowseContext::Clone
	IHlinkBrowseContext::Close

