
Asynchronous Moniker Specification

 Last updated: 5/30/96

1. Introduction
1.1 Overview...
1.2 Technical Details..

NOTE: THIS DOCUMENT IS AN EARLY RELEASE OF THE FINAL SPECIFICATION. IT IS
MEANT TO SPECIFY AND ACCOMPANY SOFTWARE THAT IS STILL IN DEVELOPMENT.
SOME OF THE INFORMATION IN THIS DOCUMENTATION MAY BE INACCURATE OR MAY
NOT BE AN ACCURATE REPRESENTATION OF THE FUNCTIONALITY OF THE FINAL
SPECIFICATION OR SOFTWARE. MICROSOFT ASSUMES NO RESPONSIBILITY FOR ANY
DAMAGES THAT MIGHT OCCUR EITHER DIRECTLY OR INDIRECTLY FROM THESE
INACCURACIES. MICROSOFT MAY HAVE TRADEMARKS, COPYRIGHTS, PATENTS OR
PENDING PATENT APPLICATIONS, OR OTHER INTELLECTUAL PROPERTY RIGHTS
COVERING SUBJECT MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS
DOCUMENT DOES NOT GIVE YOU A LICENSE TO THESE TRADEMARKS, COPYRIGHTS,
PATENTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

1Introduction
The Internet requires new approaches to application design, primarily due to its low-speed, high latency
network access. In general, applications will want to perform all expensive network operations asyn-
chronously to avoid stalling the user interface. An application triggers an operation and receives a notifi -
cation on completion (or partial completion). It then proceeds with the next step of the operation or pro-
vides additional information needed at that point.
An application will also want to be able to provide users with progress information and the opportunity to
cancel an operation at any time.
A common operation in COM/OLE scenarios is that of binding to a moniker, be it for instantiation of an
object or to obtain access to a persisted representation. This specification provides for different levels of
asynchronous behavior during the bind operation, while providing backwards compatibility for applica-
tions either unaware of or not requiring asynchronous behavior.
There are other related technologies that provide asynchronous behavior. Of special significance in this
context is Asynchronous Storage. Asynchronous Monikers and Asynchronous Storage will work “hand in
hand” to provide a complete asynchronous binding behavior. The moniker triggers the bind operation and
sets up the components involved (notifications, objects, etc.). Once the components are connected, the
moniker “gets out of the way” and the rest of the bind is executed between the components implementing
the storage, the object and eventual coordinating services.

Related documents:
Document Filename
HREF="urlmon.doc urlmon.doc
HREF="Asynchronous (for review only) Asynchronous Storage.doc

1.1Overview
The following figures show the components involved in using monikers and asynchronous monikers:

Bind
Context

IBindCtx

Moniker
Any

Client

IMoniker

System-Provided

Figure 1. Components Involved in using traditional monikers (small light-gray boxes), who they are
implemented by (larger dark-gray boxes), and their references to one-another (dotted lines).

Bind-Status
IBindStatusCallback

Bind
Context

IBindCtx

Callback

Moniker
Async

Client-Provided

IMoniker

System-Provided Moniker Provided

IParseDisplayName

IBinding

Binding

Figure 2. Components Involved in using Asynchronous Monikers (small light-gray boxes), who they
are implemented by (larger dark-gray boxes), and their references to one-another (dotted lines).

A client of a standard moniker (Figure 1) typically creates and holds a reference to the moniker as well as
the bind-context to be used during binding (BindToStorage or BindToObject). Standard monikers are typically
created through APIs, such as CreateFileMoniker, CreateItemMoniker, or CreatePointerMoniker, or since they are
persistable, through OleSaveToStream and OleLoadFromStream.
As shown in the Figure 2, a client of an asynchronous moniker also creates and holds a reference to the
moniker and bind-context to be used during binding. The client furthermore implements a bind-status-
callback object supporting IBindStatusCallback and registers it with the bind-context using RegisterBindStatus-
Callback. This callback object receives the IBinding interface associated with the specific bind operation
during IBindStatusCallback::OnStartBinding and will tell the asynchronous moniker how it wants to bind dur-
ing IBindStatusCallback::GetBindInfo. The callback object also receives progress notification through IBindSta-
tusCallback::OnProgress, data availability notification through IBindStatusCallback::OnDataAvailable, as well as
various other notifications from the moniker about the status of the binding.

1.1.1Asynchronous vs. Synchronous Binding
Clients may check if a moniker might support asynchronous binding by using the IsAsyncMoniker API. An
asynchronous moniker will not return an object or storage from IMoniker::BindToStorage and IMoniker::Bind-
ToObject when the BINDF_ASYNCHRONOUS flag is specified by the client in IBindStatusCallback::GetBindInfo.
In this case, the moniker returns MK_S_ASYNCHRONOUS and NULL for the resulting object/storage pointer,
and the client should wait to receive the requested object or storage during IBindStatusCallback::OnDataAvail-
able and IBindStatusCallBack::OnObjectAvailable. If, on the other hand, the client does not specify the
BINDF_ASYNCHRONOUS flag, the moniker bind operation will proceed synchronously, and the desired ob-
ject/storage will be returned in IMoniker::BindToObject or IMoniker::BindToStorage.1

1.1.2Asynchronous vs. Synchronous Storage
Asynchronous monikers may also return an asynchronous storage object in the IBindStatusCallback::On-
DataAvailable notification resulting from an asynchronous call to IMoniker::BindToStorage. This storage object
may allow access to some of the data while the binding is still in progress. A client can choose between
two modes for the storage: blocking and non-blocking. Blocking mode (the default) is compatible with
current implementations of storage objects. If data is not available yet, the call blocks 2 until the data ar-
rives. In non-blocking mode, the storage object returns the error E_PENDING when data is not yet avail-
able. An asynchronous aware client notes this error and waits for further notifications
(IBindStatusCallback::OnDataAvailable) to retry the operation. A client can choose between a synchronous
(blocking) and asynchronous (non-blocking) storage by choosing whether or not to set the
BINDF_ASYNCSTORAGE flag in the pgrfBINDF value returned to IBindStatusCallback::GetBindInfo.

1 Note: this bind operation may be expensive for asynchronous monikers. Asynchronous monikers are usually useful in cases where
network latency or bandwidth limitations make it too expensive to bind to objects or data synchronously. However, using these
monikers for synchronous binding is useful to support legacy applications and applications that are not able to perform progressive
rendering.

2 In a traditional OLE sense of blocking: some messages are dispatched and IMessageFilter is called.

1.1.3Data-pull model vs. data-push model
A client of an asynchronous moniker can choose between a data-pull and data-push model for driving an
asynchronous IMoniker::BindToStorage operation and receiving asynchronous notifications. In a data-pull
model, the client drives the bind operation, and the moniker only provides data to the client when it is
read. Specifically, this means that beyond the first call to IBindStatusCallback::OnDataAvailable, the moniker
will not provide any data to the client unless the client has consumed all of the data that is already avail-
able.3
On the other hand, in a data-push model, the moniker will drive the asynchronous bind operation and will
continuously notify the client whenever new data is available. In such cases, the client of the bind opera -
tion may choose whether or not to read the data at any point during the bind operation, but the moniker
will continue to drive the bind operation until completion.

1.2Technical Details
typedef enum {

BINDVERB_GET,
BINDVERB_POST,
BINDVERB_PUT,
BINDVERB_CUSTOM

} BINDVERB;

typedef enum {
BINDINFOF_URLENCODESTGMEDDATA,
BINDINFOF_URLENCODEDEXTRAINFO,

} BINDINFOF;

typedef struct tagBINDINFO {
ULONG cbSize;
LPWSTR szExtraInfo;
STGMEDIUM stgmedData; DWORD grfBindInfoF;
DWORD dwBindVerb,
LPWSTR szCustomVerb;
DWORD cbStgmedData;

} BINDINFO;

typedef enum {
BINDF_ASYNCHRONOUS,
BINDF_ASYNCSTORAGE,
BINDF_PULLDATA,
BINDF_GETNEWESTVERSION,
BINDF_NOWRITECACHE
BINDF_IGNORESECURITYPROBLEM

} BINDF;

typedef enum tagBSCF {
BSCF_FIRSTDATANOTIFICATION,
BSCF_LASTDATANOTIFICATION,
BSCF_INTERMEDIATEDATANOTIFICATION

} BSCF;

typedef enum tagBINDSTATUS {
BINDSTATUS_FINDINGRESOURCE,
BINDSTATUS_CONNECTING,
BINDSTATUS_SENDINGREQUEST,
BINDSTATUS_REDIRECTING,
BINDSTATUS_USINGCACHEDCOPY,
BINDSTATUS_BEGINDOWNLOADDATA,
BINDSTATUS_DOWNLOADINGDATA,
BINDSTATUS_ENDDOWNLOADDATA,
BINDSTATUS_CLASSIDAVAILABLE

} BINDSTATUS;

3 Because data is only downloaded as it is requested, clients that choose the data-pull model must make sure to read this data in a
timely manner. In the case of internet-downloads with URL monikers, the bind operation may fail if a client waits to long before re-
questing more data.

interface IBinding : IUnknown {
HRESULT Abort(void);
HRESULT Suspend(void);
HRESULT Resume(void);
HRESULT SetPriority([in] LONG nPriority);
HRESULT GetPriority([out] LONG* pnPriority);
HRESULT GetBindResult([out] CLSID *pclsidProtocol, [out] DWORD *pdwBindResult,

[out] LPWSTR *pszBindResult, [in] DWORD dwReserved);

};

interface IBindStatusCallback : IUnknown {
HRESULT GetBindInfo([out] DWORD* pgrfBINDF, [in, out] BINDINFO* pbindinfo);
HRESULT OnStartBinding([in] DWORD dwReserved, [in] IBinding* pbinding);
HRESULT GetPriority([out] LONG* pnPriority);
HRESULT OnProgress([in] ULONG ulProgress, [in] ULONG ulProgressMax, [in] ULONG ulStatusCode,

[in] LPCWSTR szStatusText);
HRESULT OnDataAvailable([in] DWORD grfBSC, [in] DWORD dwSize,

[in] FORMATETC* pformatetc, [in] STGMEDIUM* pstgmed);
HRESULT OnObjectAvailable([in] REFIID riid, [in] IUnknown *punk);
HRESULT OnLowResource([in] DWORD dwReserved);
HRESULT OnStopBinding([in] HRESULT hrStatus, [in] LPCWSTR szStatusText);
};

interface IPersistMoniker : IPersist {
HRESULT IsDirty(void);
HRESULT Load([in] BOOL fFullyAvailable, [in] IMoniker* pmkSrc, [in] IBindCtx* pbc, [in] DWORD grfMode);
HRESULT Save([in] IMoniker* pmkDst, [in] IBindCtx* pbc, [in] BOOL fRemember);
HRESULT SaveCompleted([in] IMoniker* pmkNew, [in] IBindCtx* pbc);
HRESULT GetCurMoniker([out] IMoniker** ppmkCur);
};

// IID_IAsyncMoniker: {660658f0-2e14-11cf-80fe-00aa00389b71}
DEFINE_GUID(IID_IAsyncMoniker, 0x660658f0, 0x2e14, 0x11cf, 0x80, 0xfe, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71);

HRESULT CreateAsyncBindCtx([in] DWORD dwReserved, [in] IBindStatusCallback* pbsc,
[in] IEnumFORMATETC* penumfmtetc, [out] IBindCtx** pbc);

HRESULT RegisterBindStatusCallback([in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc,
[in] IBindStatusCallback** ppBSCBPrev, [in] DWORD dwReserved);

HRESULT RevokeBindStatusCallback([in] IBindCtx* pbc, [in] IBindStatusCallback* pbsc);
HRESULT IsAsyncMoniker([in] IMoniker* pmk);

BINDVERB Enumeration
Values from the BINDVERB enumeration are passed to the client within IBindStatusCallback::GetBindInfo to
distinguish different types of bind operations.
Value Description
BINDVERB_GET Perform a “get” operation (the default). The stgmedData member

of the BINDINFO should be set to TYMED_NULL.
BINDVERB_POST Perform a “post” operation. The data to post should be specified

in the stgmedData member of the BINDINFO.
BINDVERB_PUT Perform a “put” operation. The data to put should be specified in

the stgmedData member of the BINDINFO.
BINDVERB_CUSTOM Perform a custom operation (protocol specific, see szCustomVerb

member of BINDINFO). The data to use should be specified in the
stgmedData member of the BINDINFO.

BINDINFOF Enumeration
Values from the BINDINFOF enumeration are passed to the client within IBindStatusCallback::GetBindInfo to
specify additional flags for the bind operation.

Value Description
BINDINFOF_URLENCODESTGMEDDATA Use URL encoding to pass is the data provided in the stgmedData

member of the BINDINFO. (for PUT and POST operations)
BINDINFOF_URLENCODEEXTRAINFO Use URL encoding to pass is the data provided in the szExtraInfo

member of the BINDINFO.

BINDINFO Structure
The BINDINFO structure is returned to the asynchronous moniker through IBindStatusCallback::GetBindInfo.
The user of the asynchronous moniker uses this structure to qualify the binding operation that will be oc-
curring. The meaning of this structure is somewhat specific to the type of the asynchronous moniker. The
technical specification provided applies here describes the meaning of the structure when used for URL
monikers.
Member Type Description
cbSize ULONG Size of this structure, in bytes.
szExtraInfo LPWSTR The behavior of this field is moniker-specific. For URL monikers,

this string is appended to the URL when the bind operation is
started. Note: like all other OLE strings, this is a Unicode string
that the client should allocate using CoTaskMemAlloc. The URL
Moniker will free the memory later..

stgmedData STGMEDIUM Data to be PUT or POST.
grfBindInfoF DWORD Flag from the BINDINFOF enumeration specifying additional

flags modifying the bind operation. (URL specific)
dwBindVerb DWORD A value from the BINDVERB enumeration specifying the action

to be performed for the bind operation.
szCustomVerb LPWSTR String specifying a protocol specific custom verb to be used for

the bind operation (only if grfBindInfoF is set to BINDINFOF_CUS-
TOM)

cbstgmedData DWORD Size of the data provided in stgmedData.

BINDF Enumeration
Values from the BINDF enumeration are returned to the binding layer from the client’s
IBindStatusCallback::OnStartBinding. These values are used to identify what type of binding the client wants
from the moniker.

Value Description
BINDF_ASYNCHRONOUS The moniker should return immediately from IMoniker::BindToStor-

age or IMoniker::BindToObject. The actual result of the object bind or
the data backing the storage will arrive asynchronously in calls to
IBindStatusCallback::OnDataAvailable or IBindStatusCallback::OnObjec-
tAvailable. If the client does not choose this flag, the bind operation
will be synchronous, and the client will not receive any data from
the bind operation until the IMoniker::BindToXXX call returns.

BINDF_ASYNCSTORAGE The client of IMoniker::BindToStorage prefers that the IStorage and
IStream objects returned in IBindStatusCallback::OnDataAvailable return
E_PENDING when they reference data not yet available through
I/O methods, rather than blocking until the data becomes avail -
able. This flag applies only to BINDF_ASYNCHRONOUS operations.4

BINDF_PULLDATA5When this flag is specified, the asynchronous moniker will allow the client of
IMoniker::BindToStorage to drive the bind operation by pulling the
data, (rather than having the moniker driving the operation and
pushing the data upon the client). Specifically, when this flag is
chosen, new data will only be read/downloaded after the client
finishes reading all data that is currently available. This means
data will only be downloaded for the client after the client does
an IStream::Read operation that blocks or returns E_PENDING.
When the client chooses this flag, it must be sure to read all the
data it can, even data that is not necessarily available yet. When
this flag is not specified, the moniker will continue downloading
data and will call the client with IBindStatusCallback::OnDataAvailable
whenever new data is available. This flag applies only to
BINDF_ASYNCHRONOUS bind operations.

BINDF_GETNEWESTVERSION The moniker bind operation should retrieve the newest version of
the data/object possible6.

BINDF_NOWRITECACHE The moniker bind operation should not store retrieved data in the
disk cache.

BINDF_IGNORESECURITYPROBLEM The moniker should ignore security problems during the bind op-
eration. For examples of security problems, see the URL
Monikers documentation for IHttpSecurity. This flag is dangerous
and should only be set by clients when certain that this is ok - e.g.
if a user claimed that all security problems should be ignored.

BSCF Enumeration
Values from the BSCF enumeration are passed to the client in IBindStatusCallback::OnDataAvailable to clarify
the type of data which is available.

4 Note: Asynchronous IStream objects will return E_PENDING while data is still downloading return S_FALSE for end-of-file.
5 This flag was called BINDF_NOCOPYDATA in earlier versions of this document.
6 For URL Monikers, this maps to an HTTP If-modified-since request. Cached data is only used if it is the most recent version.

Value Description
BSCF_FIRSTDATANOTIFICATION Identifies the first call to IBindStatusCallback::OnDataAvailable for a

given bind operation.
BSCF_LASTDATANOTIFICATION Identifies the last call to IBindStatusCallback::OnDataAvailable for a

bind operation. t.
BSCF_INTERMEDIATEDATANOTIFICATION

Identifies an intermediate call to IBindStatusCallback::OnDataAvailable
for a bind operation.

BINDSTATUS Enumeration
A single value from the BINDSTATUS enumeration is passed as ulStatusCode to the IBindStatusCallback::On-
Progress function to tell the client about the progress of the bind operation.

Value Description
BINDSTATUS_FINDINGRESOURCE The bind operation is finding the resource that holds the object or

storage being bound to. The szStatusText accompanying IBindStatus-
Callback::OnProgress() provides the display name of the resource be-
ing searched for (e.g. “www.microsoft.com”).

BINDSTATUS_CONNECTING The bind operation is connecting to the resource that holds the
object or storage being bound to. The szStatusText accompanying
IBindStatusCallback::OnProgress() provides the display name of the
resource being connected to (e.g. an IP address).

BINDSTATUS_SENDINGREQUEST The bind operation is requesting the object or storage being
bound to. The szStatusText accompanying IBindStatusCallback::On-
Progress() provides the display name of the object (e.g. a file-
name).

BINDSTATUS_REDIRECTING The bind operation has been redirected to a different data loca-
tion. The szStatusText accompanying IBindStatusCallback::On-
Progress() provides the display name of the new data location.

BINDSTATUS_USINGCACHEDCOPY The bind operation is retrieving the requested object or storage
from a cached copy. The szStatusText accompanying IBindStatusCall-
back::OnProgress() is NULL.

BINDSTATUS_BEGINDOWNLOADDATA The bind operation has begun receiving the object or storage be-
ing bound to. The szStatusText accompanying
IBindStatusCallback::OnProgress() provides the display name of the
data location.

BINDSTATUS_DOWNLOADINGDATA The bind operation continues to receive the object or storage be-
ing bound to. The szStatusText accompanying
IBindStatusCallback::OnProgress() provides the display name of the
data location.

BINDSTATUS_ENDDOWNLOADDATA The bind operation has finished receiving the object or storage
being bound to. The szStatusText accompanying
IBindStatusCallback::OnProgress() provides the display name of the
data location.

1.2.2BINDSTATUS_CLASSIDAVAILABLE For BindToObject() operations only -
this notification is provided just before CoCreateInstance is called to create
an instance of the object being bound to.The szStatusText accompanying
IBindStatusCallback::OnProgress() provides the clsid of the new object in string
format, allowing the client an opportunity to cancel the bind operation
via IBinding::Abort, if desired.IBinding Interface
Asynchronous monikers must provide a binding object to their callers via IBindStatusCallback::OnStartBinding
to allow control over the binding process.

When to Implement
Implementations of custom asynchronous monikers will implement and expose this interface to allow
control of the bind operation. They will usually implement this interface on a separate object created by
the moniker on a per-bind basis.

When to Use
Clients of asynchronous monikers obtain this interface through IBindStatusCallback::OnStartBinding. They typ-
ically keep a reference to this interface to be able to control the bind operation over the course of the bind
or to receive protocol-specific information about the outcome of a bind operation.

IBinding::Abort
HRESULT IBinding::Abort();
Permanently aborts the bind operation. After aborting the bind operation the client may still receive some
notifications about the binding.
An aborted bind operation will either result in a call to IBindStatusCallback::OnStopBinding with the error
code E_ABORT, or a failure of the IMoniker::BindToObject/BindToStorage call in case this call did not previ-
ously return. At this point the bind operation is officially complete and the client must release any point-
ers obtained during the binding.
NOTE: Calling the last IBinding::Release does not terminate the bind operation.
Argument Type Description
Returns S_OK Success.

S_FALSE The bind operation was already aborted.
E_FAIL The bind operation could not be aborted.

IBinding::Suspend
HRESULT IBinding::Suspend();
Suspends the bind operation. The bind operation will be suspended until resumed by a later call to IBind-
ing::Resume or canceled by a call to IBinding::Abort.
After calling IBinding::Suspend the client may still receive some notifications about the bind.
Argument Type Description
Returns S_OK Success.

S_FALSE The bind operation was already suspended.
E_FAIL The bind operation could not be suspended.

IBinding::Resume
HRESULT IBinding::Resume();
Resumes a suspended bind operation. The bind operation must have been previously suspended by a call
to IBinding::Suspend.
Argument Type Description
Returns S_OK Success.

S_FALSE The bind operation was not previously suspended.
E_FAIL The suspended bind operation could not be resumed.

IBinding::SetPriority
HRESULT IBinding::SetPriority(nPriority);
Establishes the priority for the bind operation to nPriority. Priority values are taken from the Win32 thread
priority APIs (SetThreadPriority and GetThreadPriority). The final priority is determined from values gathered
from all clients of the bind operation.7

Argument Type Description
nPriority LONG A value indicating the priority to establish for this binding rela-

tive to other bindings and the system.
Returns S_OK Success.

E_FAIL The priority could not be changed.

7 This method is currently unimplemented, and the policy for determining priority level is TBD. Tentatively, this policy may be to
use the minimum priority from values specified by all clients.

IBinding::GetPriority
HRESULT IBinding::GetPriority(pnPriority);
This method retrieves the current priority of this bind operation. Priority values are taken from the Win32
thread priority APIs (SetThreadPriority and GetThreadPriority).
Argument Type Description
pnPriority LONG* Location to return a value indicating the priority established for

this binding relative to other bindings and the system. May not be
NULL.

Returns S_OK Success.
E_INVALIDARG The pnPriority argument is invalid.

IBinding::GetBindResult
HRESULT IBinding::GetBindResult(pclsidProtocol, pdwBindResult, pszBindResult, dwReserved);
This method can be used to query the protocol-specific outcome of a bind operation. It is typically called
by an asynchronous moniker client upon receiving the IBindStatusCallback::OnStopBinding notification.
Argument Type Description
pclsidProtocol CLSID * A CLSID is returned here to identify the specific protocol that

was used in the bind operation. For example, this may be one
of CLSID_HttpProtocol, CLSID_FtpProtocol, CLSID_GopherProtocol,
CLSID_HttpSProtocol, or CLSID_FileProtocol.

pdwBindResult DWORD * A protocol-specific DWORD bind result.
pszBindResult LPWSTR * A protocol-specific string describing the bind result. May be

NULL.
dwReserved DWORD Reserved - must set to NULL.
Returns S_OK Success.

E_INVALIDARG The argument is invalid.

1.2.3IBindStatusCallback Interface
Clients have to provide an object exposing the following callback interface. An Asynchronous Moniker
will provide information regarding the bind by calling methods on this interface.
This interface also serves the purpose of passing additional bind information to the moniker. The moniker
will call two methods (GetBindInfo and GetPriority) after receiving the call to BindToObject/BindToStorage,
to obtain this additional bind information. The IBindStatusCallback::QueryInterface method provides extensi-
bility to IBindStatusCallback because it allows the moniker to request additional interfaces from the client in
case the bind operation requires additional information or negotiaion
All methods in IBindStatusCallback may be invoked from within the IMoniker::BindToObject/BindToStorage call
and after the moniker returns the call, if the bind information indicates asynchronous binding
(BINDF_ASYNCHRONOUS).
Clients of asynchronous monikers register their callback interface into the bind context using RegisterBind-
StatusCallback. This API allows only one client to register callback functions for a single bind operation.
If it is attempted to register more than one callback on a given bind context, the RegisterBindStatusCallback
API will forcibly revoke the previous IBindStatusCallback and register the new one..
The moniker retrieves the IBindStatusCallback interface from the bind context.
If the Asynchronous Moniker needs to invoke other monikers as part of the bind operation, it may register
its own IBindStatusCallback interface in the bind context just like any other client of a moniker would.
This allows chaining of notifications, where the “out-most” moniker can consolidate its own progress
with the inner moniker’s progress notifications.

When to Implement
Any client of an Asynchronous Moniker has to implement this interface, in order to obtain asynchronous
behavior. A client will implement this interface on a separate object (similar to a site object) that it asso-
ciates with a specific bind operation. Note: A client should only implement those callback member
functions that it is interested in. Almost all the callback functions are optional, and a client may re-
turn NOERROR in most cases as noted below.
The methods in IBindStatusCallbacks do not provide information as to which specific bind the notifica-
tion belongs to, so that a client will want to provide a separate object instance for each simultaneous
asynchronous bind operation it initiates.
The client registers the interface into the bind context by calling RegisterBindStatusCallback. The bind con-
text will keep a reference to the object. The moniker will optionally add references to this object.

When to Use
Implementations of Asynchronous Monikers will use this interface for two purposes:
· Obtain additional bind information: During the call to BindToStorage/BindToObject the moniker

will call IBindStatusCallback::GetBindInfo to check at least the BINDF_ASYNCHRONOUS
flag. If this flag is not set, the method may not return until the object/storage object is available.
The moniker may call IBindStatusCallback::GetPriority at this time or at a later point. Lastly,
the moniker may call IBindStatusCallback::QueryInterface to request a new interface from the client if
the bind operation needs further information or additional services from the client.

· Provide notifications: During the call to BindToStorage/BindToObject the moniker may call any of
the notification methods as well as the bind information methods. After returning from the call, the
moniker will provide additional notifications for the duration of the bind.

IBindStatusCallback::QueryInterface
HRESULT IBindStatusCallback::QueryInterface(riid, ppvObject);
The moniker calls this method to query the client for additional services necessary for completing the
bind operation. This mechanism provides extensibility to the IBindStatusCallback interface, because it al-
lows querying the client for new callback interfaces for passing information or querying information. A
moniker client may also provide these “extension” callback interfaces via an IServiceProvider interface. Af-
ter the moniker uses IBindStatusCallback::QueryInterface to directly query the client for an extension interface,
the moniker will then query for the IServiceProvider interface, and will then try using IServiceProvider::Query-
Service to query for the desired extension interface.8

For examples of additional services that may be requested from an asynchronous moniker, see the URL
Monikers specification.
Argument Type Description
riid REFIID The REFIID for the interface for the requested service.
ppvObject void * The interface returned by the client
Returns S_OK Success. The interface returned is used by the moniker to commu-

nicate further information pertaining to the bind operation.
E_NOINTERFACE The client does not know how to support the requested interface.

Note: if none of the callbacks registered for a particular bind op-
eration return S_OK to this call, the bind operation will perform
default action.

E_OUTOFMEMORY Out of memory.
E_INVALIDARG One or more arguments are invalid.

8 Because IServiceProvider::QueryService is not restricted by COM identity rules in the same way as QueryInterface, this mech-
anism allows moniker clients to delegate such extension services to other objects. Note that if delegating a QueryService request
to another IBindStatusCallback implementation, one should first delegate an interface acquired via QueryInterface before query-
ing the secondary IBindStatusCallback implementation for IServiceProvider.

IBindStatusCallback::GetBindInfo
HRESULT IBindStatusCallback::GetBindInfo(pgrfBINDF, pbindinfo);
An asynchronous moniker calls this method to obtain the bind information for the bind operation. The
moniker calls this method within its implementations of BindToObject and BindToStorage before returning, in
order to obtain information about the specific bind operation. Note that even though multiple IBindStatus-
Callback interfaces may be registered on the BindCtx, only one moniker client will actually receive the IBind-
StatusCallback::GetBindInfo callback. (see additional details under RegisterBindStatusCallback).
Argument Type Description
pgrfBINDF DWORD* Location to return a value taken from the BINDF enumeration

which indicates whether the bind should proceed synchronously
or asynchronously.

pbindinfo BINDINFO* Location to return the BINDINFO structure which describes how
the caller wants the binding to occur.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IBindStatusCallback::OnStartBinding
HRESULT IBindStatusCallback::OnStartBinding(dwReserved, pbinding);
Asynchronous monikers typically call this method while initiating the bind operation, during
IMoniker::BindToStorage or IMoniker::BindToObject.
This notification passes the binding object associated with the current bind operation to the client. The
binding object allows control of the bind operation and the client may call it at any time.
To keep a reference to the binding object, the client must store the pointer and call AddRef, and Release it
when they are done. Calling Release does not cancel the bind operation, it simply frees the reference to
the IBinding interface sent in the callback.
Note: if a client is not interested in this callback, it may simply return from this callback with a sim-
ple return value of S_OK or E_UNIMPL.
Argument Type Description
dwReserved DWORD Reserved, must be zero..
pbinding IBinding* The IBinding interface of the current bind operation. May not be

NULL. The client should call AddRef() on this pointer if it wishes to
keep a reference to the binding object.Returns S_OK Success.

Returns S_OK Success.
E_INVALIDARG The pbinding argument is invalid.

IBindStatusCallback::GetPriority
HRESULT IBindStatusCallback::GetPriority(pnPriority);
The moniker calls this method, typically prior to initiating the bind operation, to obtain the priority for
the bind. This method may be called at any time during the bind operation if the moniker needs to make
new priority decisions.9

It may use this value for setting the actual priority of a thread associated with a download operation but
more commonly it will interpret the priority to perform its own scheduling among multiple bind opera-
tions. The moniker must not change the priority of the thread used for calling BindToStorage or BindToOb-
ject.
Note: if a client is not interested in this callback, it may simply return from this callback with a sim-
ple return value of S_OK or E_UNIMPL.

9 Policy for determining priority level is TBD.

Argument Type Description
pnPriority LONG* Location to return a value indicating the priority of this down-

load. Priorities may be any of the constants defined for prioritiz-
ing threads. See the Win32 documentation for SetThreadPriority and
GetThreadPriority for details.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IBindStatusCallback::OnProgress
HRESULT IBindStatusCallback::OnProgress(ulProgress, ulProgressMax, ulStatusCode, szStatusText);
The moniker calls this method repeatedly to indicate the current progress of this bind operation, typically
at reasonable intervals during a lengthy operation.
The client may use the progress notification to provide progress information to the user (ulProgress/ulPro-
gressMax and szStatusText) or to make programmatic decisions based on ulStatusCode.
Note: if a client is not interested in this callback, it may simply return from this callback with a sim-
ple return value of S_OK or E_UNIMPL.
Argument Type Description
ulProgress ULONG Indicates the current progress of the bind operation relative to the

expected maximum indicated in ulProgressMax.
ulProgressMax ULONG Indicates the expected maximum value of ulProgress for the dura-

tion of calls to OnProgress for this operation. Note that this value
may change across invocations of this method.

ulStatusCode ULONG Provides additional information regarding the progress of the bind
operation. Valid values are taken from the BINDSTATUS enumera-
tion.

szStatusText LPCWSTR Information about the current progress, depending on the value of
ulStatusCode. See definition of the BINDSTATUS enumeration for
further details.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IBindStatusCallback::OnDataAvailable
HRESULT IBindStatusCallback::OnDataAvailable(grfBSCF, dwSize, pfmtetc, pstgmed);
During asynchronous IMoniker::BindToStorage() bind operations, an asynchronous moniker calls this method
to provide data to the client as it becomes available. Note that the behavior of the storage returned in pst-
gmed depends on the BINDF flags returned in IBindStatusCallback::GetBindInfo¾this storage may be asynchro-
nous or blocking, and the bind operation may follow a “datapull” model or a “datapush” model.. Further-
more, it is important to note that for BINDF_PULLDATA bind operations, it is not possible to seek back-
wards into data streams provided in IBindStatusCallback::OnDataAvailable. On the other hand, for push model
bind operations, it is commonly possible to seek back into a data stream and read any data that has been
downloaded for an ongoing IMoniker::BindToStorage operation.

Argument Type Description
grfBSCF DWORD Values taken from the BSCF enumeration.
dwSize DWORD The amount (in bytes) of total data available from the current

bind operation.
pfmtetc FORMATETC* Indicates the format of the available data when called as a result

of IMoniker::BindToStorage. If there is no format associated with the
available data, pformatetc may contain CF_NULL.

pstgmed STGMEDIUM* Holds the actual data that became available when called as a re-
sult of IMoniker::BindToStorage. If it wishes to keep the data in pst-
gmed alive, the client should call AddRef() on pstgmed->pUnkForRe-
lease (if the pointer is non-NULL), and eventually use the Releas-
eStgMedium API to release the storage.10

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IBindStatusCallback::OnObjectAvailable
HRESULT IBindStatusCallback::OnObjectAvailable(riid, punk);
During asynchronous IMoniker::BindToObject() bind operations, an asynchronous moniker calls this method
to pass the requested object interface pointer to the client. This method is never called for IMoniker::Bind-
ToStorage operations.
Argument Type Description
riid REFIID The REFIID of the requested interface.
punk IUnkown * The object pointer requested in the call to IMoniker::BindToObject.

The client should call AddRef() on this pointer in order to maintain
a reference to the object.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IBindStatusCallback::OnLowResource
HRESULT IBindStatusCallback::OnLowResource(dwReserved);
The moniker calls this method when it detects low resources. The client should free any resource it no
longer needs when receiving this notification.
Note: if a client is not interested in this callback, it may simply return from this callback with a sim-
ple return value of S_OK or E_UNIMPL.
Argument Type Description
dwReserved DWORD Reserved for future use. Must be zero.
Returns S_OK Success.

IBindStatusCallback::OnStopBinding
HRESULT IBindStatusCallback::OnStopBinding(hrStatus, szStatusText);
The moniker calls this method to indicate the end of the bind operation. This method is always called,
whether the bind operation succeeded, failed, or was aborted by a client. At this point, the client may use
IBinding::GetBindResult to query protocol-specific information about the outcome of the bind operation. At
the end of this callback, the moniker client must call Release() on the IBinding pointer it received in IBindSta-
tusCallback::OnStartBinding.

10 Note that keep the pstgmed alive will not always be possible, in which case pstgmed->pUnkForRelease will be NULL. For ex-
ample, this will be the case when using URL Monikers to download data that is not being cached.

Note: if a client is not interested in this callback, it may simply return from this callback with a sim-
ple return value of S_OK or E_UNIMPL. However, the client must implement this callback if it has
kept a reference count onto the IBinding object provided in IBindStatusCallback::OnStartBinding.
Argument Type Description
hrStatus HRESULT Status code which would have been returned from the method

that initiated the bind operation (IMoniker::BindToObject or
IMoniker::BindToStorage).

szStatusText LPCWSTR Status text. In case of error, this string may provide additional in-
formation describing the error11. In case of success, szStatusText
provides the friendly name of the data location bound to.

Returns S_OK Success.

1.2.4IPersistMoniker Interface
Objects, especially asynchronous-aware objects may expose the IPersistMoniker interface to obtain more
control over the way they bind to their persistent data.
Existing moniker implementations QueryInterface the client for persistence interfaces such as IPersistFile,
IPersistStream[Init], or IPersistStorage as part of their BindToObject implementation as they are instantiating and
initializing the object. IPersistMoniker allows moniker implementations and other applications which in-
stantiate objects from persistent data to give control to the object to choose how it wishes to bind to its
persistent data. A typical usage scenario for objects is to implement IPersistMoniker::Load by calling
IMoniker::BindToStorage for the interface they prefer – IStorage, IStream, asynchronously bound, etc.
Unlike some other persistent object interfaces IPersistMoniker does not include an InitNew method. This
means that IPersistNew cannot be used to initialize an object to a 'freshly initialized state'. Clients of IPer-
sistNew, who wish to initialize the object should QueryInterface for IPersistStreamInit, IPersistMemory, and/or
IPersistPropertyBag and use the InitNew method found there to initialize the object. The client then can safely
use IPersistMoniker to save the persistent state of the object.

When to Implement
Implement IPersistMoniker on any object which can persist to multiple storage mediums or which can take
advantage of any of the asynchronous stream, storage, or IMoniker::BindToStorage behavior described above.

When to Use
Custom moniker implementations should support IPersistMoniker as the highest or most flexible persistence
interface in their implementation of IMoniker::BindToObject if they are instantiating and arbitrary class and
need to initialize it from persistent data. Typically these monikers should use the published persistence
interfaces in the following order: IPersistMoniker, IPersistStream[Init], IPersistStorage, IPersistFile, IPersistMemory.

IPersistMoniker::IsDirty
HRESULT IPersistMoniker::IsDirty();
Checks an object for changes since it was last saved.
Argument Type Description
Returns S_OK Yes, the object has changed since it was last saved.

S_FALSE No, the object has not changed since it was last saved.

IPersistMoniker::Load
HRESULT IPersistMoniker::Load(fFullyAvailable, pmkSrc, pbc, grfMode);
Loads an object from the persistent state referred to by pmkSrc. Typically the object will immediately
bind to its persistent state using pmkSrc->BindToStorage(pbc, …) for either IStream or IStorage.

11 Currently the string is empty in error cases.

Argument Type Description
fFullyAvailable BOOL If TRUE, then the data referred to by the moniker has already been

loaded once, and subsequent binding to the moniker should be
synchronous. If this value is FALSE, then the implementation of
Load should be prepared to bind to the moniker asynchronously.

pmkSrc IMoniker* A reference to the persistent state to initialize this object from.
pbc IBindCtx* The bind context to use for any moniker binding during this

method.
grfMode DWORD A combination of the values from the STGM enumeration which

indicate the access mode to use when binding to the persistent
state. The IPersistMoniker::Load method can treat this value as a sug-
gestion, adding more restrictive permissions if necessary. If grf-
Mode is zero, the implementation should bind to the persistent
state using default permissions.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IPersistMoniker::Save
HRESULT IPersistMoniker::Save(pmkDst, pbc, fRemember);
Requests that the object save itself into the location referred to by pmkDst.
Argument Type Description
pmkDst IMoniker* Moniker to the location where the object should persist itself. The

object typically binds to the location using pmkDst->BindToStorage
for either IStream or IStorage. May be NULL, in which case the ob-
ject is requested to save itself to the same location referred to by
the moniker passed to it in IPersistMoniker::Load. This may act as an
optimization to prevent the object from binding, since it has typi-
cally already bound to the moniker it was loaded from.

pbc IBindCtx* The bind context to use for any moniker binding during this
method.

fRemember BOOL Indicates whether pmkDst is to be used as the reference to the cur-
rent persistent state after the save. If TRUE, pmkDst becomes the
reference to the current persistent state and the object should clear
its dirty flag after the save. If FALSE, this save operation is a
"Save A Copy As ..." operation. In this case, the reference to the
current persistent state is unchanged and the object should not
clear its dirty flag. If pmkDst is NULL, the implementation should
ignore the fRemember flag..

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IPersistMoniker::SaveCompleted
HRESULT IPersistMoniker::SaveCompleted(pmkNew, pbc);
Notifies the object that it has been completely saved and points it to its new persisted state. Typically the
object will immediately bind to its persistent state using pmkNew->BindToStorage(pbc, …) for either IStream
or IStorage, as in IPersistMoniker::Load.

Argument Type Description
pmkNew IMoniker* The moniker to the object’s new persistent state, or NULL as an

optimization if the moniker to the object’s new persistent state is
the same as the previous moniker to the object’s persistent state –
only allowed if there was a prior call to IPersistMoniker::Save with
fRemember=TRUE – in which case the object need not rebind to
pmkNew.

pbc IBindCtx* The bind context to use for any moniker binding during this
method.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

IPersistMoniker::GetCurMoniker
HRESULT IPersistMoniker::GetCurMoniker(ppmkCur);
Retrieves the moniker that refers to the object’s persistent state. Typically, this is the moniker last passed
to the object via IPersistMoniker::Load or IPersistMoniker::Save/::SaveCompleted.
Argument Type Description
ppmkCur IMoniker** Location to return the moniker to the object’s current persistent

state.
Returns S_OK Success.

E_INVALIDARG The ppmkCur argument is invalid.

1.2.5Helper Functions

CreateAsyncBindCtx
HRESULT CreateAsyncBindCtx(dwReserved, pbsc, penumfmtetc, ppbc);
Creates an asynchronous bind context for use with asynchronous monikers.
This function automatically registers the IBindStatusCallback and the IEnumFORMATETC interfaces with the
bind context.
CreateAsyncBindCtx also initializes the grfFlags in the bind context’s BIND_OPTS to the value of BIND_MAY-
BOTHERUSER (using IBindCtx::SetBindOptions). This means that by default a moniker bind operation using
asynchronous bind contexts may try to interrupt the user in order to display UI to complete the bind oper-
ation.12

Argument Type Description
dwReserved DWORD Reserved for future use. Must be zero.
pbsc IBindStatusCallback* The callback to receiving data availability and progress notifica-

tion.
penumfmtetc IEnumFORMATETC* Enumerator of formats to use for format negotiation during bind-

ing, if applicable. May be NULL, in which case the caller is not in-
terested in format negotiation during binding and the default for-
mat of the object will be bound to.

ppbc IBindCtx** Location to return the new bind-context.
Returns S_OK Success.

E_OUTOFMEMORY Out of memory.

12 Such interruptions are necessary for actions such as HTTP authentication. A client may reset this flag to 0 if they wish to run bind
operations in UI-free mode.

E_INVALIDARG One or more arguments are invalid.

RegisterBindStatusCallback
HRESULT RegisterBindStatusCallback(pbc, pbsc, ppBSCBPrev, dwReserved);
Registers an IBindStatusCallback with an existing bind context. The given IBindStatusCallback will be the only
callback interface to receive asynchronous notifications during the bind operation, although the callback
may choose to delegate notifications on to other callbacks. This callback interface will be used for all
asynchronous bind operations using this bind context, until either the callback interface is revoked via Re-
vokeBindStatusCallback, or until the bind context is destroyed.
Note also that this function revokes and returns the previous IBindStatusCallback registered on the BindCtx.

Argument Type Description
pbc IBindCtx* The bind context to register the callback with.
pbsc IBindStatusCallback* The callback interface to register.
ppBSCBPrev IBindStatusCallback** Optional pointer. If set to a non-NULL address, the previous

IBindStatusCallback registered on the BindCtx will be revoked, Ad-
dRef()ed, and returned in this parameter.

dwReserved DWORD Reserved for future extension.
Returns S_OK Success.

E_OUTOFMEMORY Insufficient memory to register the callback with the bind con-
text.

E_INVALIDARG One or more arguments are invalid.

RevokeBindStatusCallback
HRESULT RevokeBindStatusCallback();
Revokes an IBindStatusCallback callback previously registered on a bind context. This call will not succeed
if it is made during a bind operation. Note: it is not necessary to make this call for every use of a bind
context¾it is technically possible (although not recommended) to reuse the same bind context and call -
back object for many bind operations. Upon calling IBindCtx::Release(), all registered object on that bind
context will be revoked, including the IBindStatusCallback. Therefore releasing a bind context implicitly re-
leases all registered IBindStatusCallback objects. However, if one chooses to reuse a bind context, one can
use RevokeBindStatusCallback to remove a registered IBindStatusCallback object so it is not re-used.
Argument Type Description
pbc IBindCtx* The bind context to revoke the callback from.
pbsc IBindStatusCallback* The callback interface to revoke.
Returns S_OK Success.

E_FAIL The IBindStatusCallback is not registered on the bind context.
E_INVALIDARG One or more arguments are invalid.

IsAsyncMoniker
HRESULT IsAsyncMoniker(pmk);
Tests if a moniker supports asynchronous binding. A moniker implementation indicates that it is asyn-
chronous by supporting the IMonikerAsync interface, an “empty” interface which is actually just IUnknown,
as demonstrated here:

 STDMETHODIMP
MyCustomMoniker::QueryInterface(REFIID riid, void** ppv) {

if (riid == IID_IUnknown || riid == IID_IPersistStream || riid == IID_IMoniker || riid == IID_IAsyncMoniker) {
*ppv = this;
AddRef();
return S_OK;
}

*ppv = NULL;
return E_NOINTERFACE;

}
IsAsyncMoniker tests support for this interface and also handles composite monikers correctly.

Argument Type Description
pmk IMoniker* The moniker to test.
Returns S_OK Yes, the moniker is asynchronous.

S_FALSE No, the moniker is not asynchronous.
E_INVALIDARG The pmk argument is invalid.

	1 Introduction
	1.1 Overview
	1.1.1 Asynchronous vs. Synchronous Binding
	1.1.2 Asynchronous vs. Synchronous Storage
	1.1.3 Data-pull model vs. data-push model

	1.2 Technical Details
	BINDVERB Enumeration
	BINDINFOF Enumeration
	BINDINFO Structure
	BINDF Enumeration
	BSCF Enumeration
	BINDSTATUS Enumeration
	1.2.2 BINDSTATUS_CLASSIDAVAILABLE For BindToObject() operations only - this notification is provided just before CoCreateInstance is called to create an instance of the object being bound to.The szStatusText accompanying IBindStatusCallback::OnProgress() provides the clsid of the new object in string format, allowing the client an opportunity to cancel the bind operation via IBinding::Abort, if desired.IBinding Interface
	IBinding::Abort
	IBinding::Suspend
	IBinding::Resume
	IBinding::SetPriority
	IBinding::GetPriority
	IBinding::GetBindResult

	1.2.3 IBindStatusCallback Interface
	IBindStatusCallback::QueryInterface
	IBindStatusCallback::GetBindInfo
	IBindStatusCallback::OnStartBinding
	IBindStatusCallback::GetPriority
	IBindStatusCallback::OnProgress
	IBindStatusCallback::OnDataAvailable
	IBindStatusCallback::OnObjectAvailable
	IBindStatusCallback::OnLowResource
	IBindStatusCallback::OnStopBinding

	1.2.4 IPersistMoniker Interface
	IPersistMoniker::IsDirty
	IPersistMoniker::Load
	IPersistMoniker::Save
	IPersistMoniker::SaveCompleted
	IPersistMoniker::GetCurMoniker

	1.2.5 Helper Functions
	CreateAsyncBindCtx
	RegisterBindStatusCallback
	RevokeBindStatusCallback
	IsAsyncMoniker

