
Texture Editor
User Guide V. 1.0

for Windows
®

, first public Release

Contents

Chapter 1
Texture Editor Overview:

Texture Editor � What the f**k is that ?....................3
Why to use procedurals textures instead of static images ?.3
Let�s start with some basics..4
Features...4
System Requirements...4

Chapter 2
Texture Editor Basics:

Main View...5
Texture Properties Tab...6

Chapter 3
Generators:

Introduction..7
Sinus Overlay..7
Perlin Noise...8
Circle/Ellipse..8
Box/Rectangle...8
Brick/Stones..9
Text..9
Cellular...9
Texture Source...10
Synthesize...10

Chapter 4
Filters:

Introduction..11
Blur...11
Unsharp Mask (USM)...11
Bump..11
Solarize..12
Distort..12
Brightness / Contrast / Gamma..............................12

Chapter 5
Useful Tools:

Color Picking Tool...13
3D Preview..13
Sample Image..13

Appendix A
Complete Operations List.........14

Appendix B
Short API Library Reference....15

Appendix C
Legal Disclaimer and Copyright
Information....................................19

Texture Editor 2

Chapter 1
Texture Editor Overview

Texture Editor � What the f**k is that ?

The Texture Editor is a powerful tool to generate procedural quadratic textures.
You can use them for your stunning 3D scenes, demos, games etc, wherever textures are needed.
Use the Texture Editor to create:

� color texture maps
� bump maps
� specular / diffuse maps
� reflection / refraction maps
� transparency maps
� displacement / height maps

Why to use procedural textures instead of static images ?

� Procedurals tile seamlessly
� Procedurals can be easily reused and modified
� Procedurals do not contain any lighting artifacts
� Procedurals can be generated in high resolutions (up to 1024 x 1024) pixels
� Procedurals can be used to generate many different textures of the same scheme

(see illustration 1). This is useful in large scale mass renderings.
We will provide an effective mechanism to generate texture masses in later versions.

illustration 1.3: three textures - with similar but not identical patterns.

illustration 1.1 & 1.2: different noise & brick patterns generated each with the same parameter set, but different random seeds.

Texture Editor 3

Chapter 1
Texture Editor Overview

Let�s start with some
basics..

Each texture consists of 9 layers
and each layer can contain a
generator (perl in noise,
cellular..).
can add up to 4 filters to modify
the generated layer.
All these layers are blended
together, similar to those in
Photoshop� and your texture
is finished.
You can generate up to 16
textures in one, let�s say
session, and those 16 textures
form one texture set. Within
this set you can use one texture
as input for another texture
(directly or indirectly as input
for a filter). Well that sound�s
quite complex, luckily illustration
2 shows the concept.

Features

� interactive real-time texture
generator

� OpenGL 3D Preview
� Code Library for TSD file

import and texture
generation

Requirements

Minimum Requirements
� x86 CPU with MMX Instruction

Support (Pentium Pro, AMD K6)
� OS: MS Windows 2000 / XP.

(Will not run properly under Windows 95,
Windows98; not tested on Windows ME,
Windows NT)

� 1024x768 pixels screen resolution with 16 million
colors (32 bit color depth)

� 128 MB RAM

Recommended Requirements
� very fast x86 CPU for real-time editing

(2 GHz and more).
� 1280x1024 pixels screen resolution with 32bit

color depth
� 256 MB RAM

illustration 2: basic concept of procedural texture generation

Texture Editor 4

Chapter 2
Texture Editor Basics

Main View

Set layer as active
Click with the left mouse button in a layer rectangle
to select a layer. The layer has now a red rectangle.
All operations are applied to the active layer. By
using the arrow keys, you can also switch quickly
to another layer.

Move layer
By moving your mouse pointer over the top of a
layer the background color turns into a dark blue.
Now, push and hold the left mouse button over
the layer to move it.

Resize layer
Click with the left mouse button on the small arrow
on the bottom left side of the layer to resize a
layer.
By double clicking on it you can switch to the
original (texture) size of the layer.

Full Size Preview
If you want to see the layer in its original size
push the right mouse button over any of the views.
A new window pops up which can be closed simply
by pushing again the left mouse button over the
preview window.

illustration 3: the main view & basic elements

illustration 4: layer movement illustration 5 (above) & 6 (below): active layer, resizing

Chapter 2
Texture Editor Basics

The Texture Properties Tab

Here you select the texture you want to edit, setup
the texture size and control layer blending.
Texture Size can be varied from 16 x 16 up to
1024 x 1024.
For each layer you define opacity and an appropriate
blending mode. The blending of the first layer in
use is always set to add no matter if you setup a
different mode.
There are four different blending modes available:
Add, Multiply, Overlay, Difference.

Add: layers are added, the result is
clamped to the range (0..255).

Multiply: multiply layers the result gets darker
Overlay: pixels with intensities over 50% get

brighter, pixels with lower intensities
darker

Difference: layers are subtracted the result is
clamped

If you fill an empty layer with a generator the
appropriate generator name appears in the property
tab.

illustration 7: texture properies tab

illustration 8: full size preview of an layer Texture Editor 6

Chapter 3
Generators

Introduction

Generators are the most important part of the
Texture Editor, although there are only 8 different
generators at the moment (Yeah I�m going to
extend that later) you can do quite a lot of things.
Experiment as much as you can and improve visual
output by adding filters.
Since in most cases you need a while to get the
right parameters, efficient editing is important.
Try to use as much keyboard shortcuts as you
can.

Every generator dialog has a �Dynamic Update�
checkbox. When Dynamic Update is enabled the
generator is applied to the actual layer every time
you change a generator parameter. This can be
quite useful when trying to find the right parameter
combination but it can also get really slow when
used on large textures (512 x 512, 1024 x 1024).
For testing purposes it is recommend to turn down
the texture size.
You can also hit the enter button instead of clicking
every time with the mouse on the apply button.

In many cases you will find edit boxes where you
have to enter numbers. You can increase or
decrease the numbers by clicking with to mouse
on the up/down arrows or you can use the up/down
arrow keys for faster editing.

Often you have to enter position values who refer
to the coordinate system used in this application.
[0,0] refers always to the upper left corner of your
layer.

Sinus Overlay

Quite simple one to
generate gradients, dot
patterns, horizontal &
vertical lines.
With the right scaling & position values, the
texture gets tileable.
Combine several Sinus Overlay generators
with different parameters and colors to get
cool patterns.
Foreground and background color are averaged
together, so high contrast can not be achieved,
use contrast filter or USM (UnSharpMask)
filter to gain higher contrast.

Parameters:
Size X horizontal scale � higher values

higher scaling
Size Y vertical scale � higher values �

higher scaling
Position X
horizontal position
Position Y
vertical position

illustration 9: perlin noise generator

illustration 10:
coordinate system

illustration 11:
sinus overlay filter Texture Editor 7

Chapter 3
Generators

Perlin Noise

A very popular noise generator, all frequency bands are summed together,
supports independent horizontal & vertical zoom factors, and can be used in
tileable and un-tileable mode.

Parameters:
Amplitude higher values result in higher contrast. It is only

used if Octave > 1
Octave number of frequency bands. Since using more

frequency bands increases computation time,
try to use as few as possible. At a certain
amount, which depends upon the used zoom
factors, the visual impact is not noticeable.

Seed some kind of offset to produce different patterns
Zoom X self-explaining
Zoom Y self-explaining
Seamless Alignment produces a tileable texture

Circle / Ellipse

Generates a circle or an ellipse.

Parameters:
Self explaining - use different position values to produce an ellipse. If ellipse
disappears, use a higher radius or reduce distance between the positions.

Box / Rectangle

Generates a box or a rectangle. The greyed input fields
are reserved for further versions.

Parameters:
Position X horizontal position from the middle of the box
Position Y vertical position from the middle of the box
Width self explaining
Height self explaining
Angle in tenth of degrees (0 � 3600)
Smooth X in pixels - produces smoother edges

illustration 12: perlin noise
generator

illustration 13: circle / ellipse
generator

illustration 14:box generator Texture Editor 8

Chapter 3
Generators

Brick / Stones

Generates a tileable brick / stone pattern.

Parameters:
Space X mortar width in pixels
Space Y mortar height in pixels
Stones line number of stones per line � the exact number of stones

can vary sometimes.
Stones row number of stones per row � the exact number of stones

can vary sometimes.
Variation varies the width, height and stone positions
Variation Angle varies the angle of stones.
Variation Color varies the color intensities of stones.
Shift shift each line by the number of pixels into right direction
Seed random seed used for variation, variation angle and color

variation

Text

Generates text with up to 255
characters.
The background color is only used
within the bounding rectangle of the
characters.

Parameters:
Space distance between text lines
Angle in tenth of degrees (0 � 3600)

Cellular

Generates a wide range of fancy cellular patterns. The texture is tileable (in
most cases)

Parameters:
Cells number of cells, randomly placed within the texture. High

cell numbers produce slightly performance penalties.
Seed some kind of offset to produce different patterns.
Type Type 1 : the classical cell structure

Type 2 : fancy pattern, use low amplitude values otherwise
the texture get filled with the foreground color

Type 3: similar to Type 1, no gradients

illustration 15:brick generator

illustration 16: text generator

Chapter 3
Generators

Form Circle: generates circular patterns
Box: generates square patterns
Star: generates star patterns

Amplitude high Amplitude � much foreground color, adjust according to the different
types & forms

Variation every cell gets some kind of different radius
Noise to add extra noise

Texture Source

Adds an existing texture as layer. This is helpful to add filters to an entire texture or if 9 layers are
not enough to produce a texture. Note that infinite recursions are not allowed.
Example: texture B uses texture A as input layer and texture A uses Texture B.
So texture B would calculate texture A, and texture A would calculate Texture B . As this would never
end and since it is really stupid we do not allow this, instead you get the error message: �Recursive
texture definitions are not allowed !�
Note that wherever it is possible to specify source textures such error messages can appear.

Synthesize

An image synthesizer. Use this to produce larger textures from smaller input textures.
The synthesizer picks random blocks from the input image and randomly assembles it to a larger
texture, without resizing. Try to experiment a bit with this generator, you can get fancy and great
looking results. It can also be used to modify a texture without changing its size. Tileable versions of
untileable patterns can be created with ease using this generator.

Parameters:
Block Size size of the random patterns
Overlap Ratio specifies the overlap region of the blocks, higher
overlap ratio produces harder edges. Overlap ratios that are

lower than its corresponding Block Size results in hard
edges without overlap region.

Seed some kind of offset to produce different patterns.
Quality high quality produces perfect matching blocks and low

quality produces more random blocks. Note that high
quality can produce significant performance penalties.

Seamless Alignment if switched to on, a tileable texture is produced it only
works with high and high-end quality settings.

illustration 18: texture
synthesizer

Texture Editor 10

Chapter 4
Filters

Introduction

Filters can greatly improve the visual output. As said before filters can only be applied to layers.
If you want to apply a filter on a whole texture, you have to do the following:

1. Create a new texture. (File-> New Texture)
2. Enter a name.
3. Go to: (Generator->Texture Source)
4. Select the desired texture
5. Apply filter

Existing filters can be edited by clicking Filter->Edit
At the current status only the last filter can be deleted (Filter->Delete).
Some Filters require a source texture, recursive texture definitions are not allowed (see Chapter 3,
Texture Source).

Blur

A Gaussian blur filter. Edges are clamped, so tiling artifacts can be produced
when blurring too much.

Parameters:
Strength Blur pixel radius

Unsharp Mask (USM)

Use it to sharpen mid to high contrast. This filter locates surrounding pixels
by differences in lightness values that you specify, and it increases their
contrast by the amount you select by changing the Strength parameter.

Parameters:
Radius small radius sharpens high frequencies, higher radius

sharpens low frequencies.
Strength sharpening strength
Clipping all pixels under this intensity threshold are not sharpened

Bump

This filter produces some kind of bump or emboss effect. You can also
use a different texture than the bump source. Make sure that the source
texture does not use (in direct or indirect way) the texture in which
the filter is applied. See Infinite recursion Problem explained in Texture
Source Generator.

illustration 19: blur filter

illustration 20: USM filter

Chapter 4
Filters

Parameters:
Radius strength of the bump effect
Azimuth Azimuth angle in degrees (0..360), specifies light

source direction
Elevation Elevation angle in degrees (0..90), specifies light

source direction

Solarize

Inverts all pixels which have intensities greater or equal to the solarize
threshold. A threshold of zero is used to negate the entire layer.

Distort

Shifts pixels in a specified direction, the shift amount is specified by
the source image. The first pixel in the layer is shifted by the intensity
of the first pixel in the source image. Source and destination can be
identical, every color component is processed seperatly.
Use this to produce wood, marble or fancy LSD like effects.
If you use grey-scaled source images the color components do not drift
apart. The layer texture remains tileable, pixels that pass the right edge
get to the left side and vice versa. The same applies to bottom and top.

Parameters:
Amplitude global shift amount
Direction shift angle in degrees (0..360)

Brightness / Contrast / Gamma:

Adjusts brightness, contrast and gamma, there is nothing more to say ;)
illustration 24: Solarize filter - the
type parameter is reserved for
further versions

illustration 23: distort filter

illustration 22: elevation angle
describing the incoming light
source onto a surface

Texture Editor 12

Chapter 5
Useful Tools

Color Picking Tool

Pick colors by clicking left
mouse button into Final
Texture View or into Sample
Image.
Note that a Sample Image
has to be loaded before
colors can be picked. In
Sample Image Difference
View, the picking isn�t
allowed. You can also
average picking colors by
choosing picking fields of 3x3
up to 9x9 Pixels.
Once a Color is chosen you
can easily drop it in a color

field of a generator by pressing left mouse button.

The 3D Preview

Here you can see:
� How your newly generated texture looks

on different mapping schemes
� Appearance with basic lighting
� tiling of your texture
� How it looks as an environment map

To open the 3D Preview click on View -> 3D
Preview. Three basic mapping types can be
choosen: Box, Cylinder, Sphere.
By dragging the left mouse button in the
preview window you can rotate the object,
use the right button to zoom in / out.
Note that the window is resizable.

Sample Image

This is useful when you have to rebuild procedural textures from
existing bitmaps. At the current Version only uncompressed
Windows Bitmaps are supported . All bitmaps must have n x n
size which means the bitmap must be a quadratic one.
In Difference Viewing Mode you see the difference of the sample
image and the final texture. (high intensity = high difference)

illustration 25: STEP A - pick a color

illustration 26: STEP B - drag into dialog
window

illustration 27: 3D Preview in action.

Texture Editor 13
illustration 28: Final Texture & Differance Map of
a photo and the (Final) Texture

Appendix A
Complete Operations List

File
New Texture Create new, empty texture.
Delete Texture Delete selected texture. The name of the selected texture

can be seen in the properties tab.
Load Texture Set Load Load complete texture set
Save Texture Set Save complete texture set
Save Texture Set as
Export Current Texture

RAW File Save current texture image as raw data (without any header
information)

Windows Bitmap Save current texture image as uncompressed windows bitmap
Delete Texture Set Delete whole texture set.
Load Sample Image Load Sample image (see Chapter 5)
Exit Exit Application

Edit
Undo Undo last operation. Second undo undos the undo operation (redo).
Cut Layer Cut selected layer and places it on the clippoard.
Copy Layer Copy selected layer.
Paste Layer Paste clipboard content into selected layer.

View
Texture Properties Show/hide texture properties tab.
3D Preview Show/hide 3D Preview.
Color Picker Show/hide color picker
Status Bar Show/hide status bar (at the bottom).
Sample Image � Normal Sample image normal mode (see Chapter 5)
Sample Image � Difference Sample Image difference mode (see Chapter 5)
Align Layers Align all views.

Generator
Sinus Overlay see detailed generator description in Chapter 3
Perlin Noise
Circle
Box
Brick
Text
Cellular
Texture Source
Synthesize

Filter
Add add one of the following filters

Blur see detailed filter description in Chapter 4
Unsharp Mask
Bump
Solarize
Distort
Brightness / Contrast / Gamma

Edit modify already applied filters.
Delete delete last filter on filter stack

Help
About EDT... show Copyright and author information.

Texture Editor 14

Appendix B
Short API Library Reference

Texture EDiTor - Library

This is a simple library to generate procedural textures directly in your application. The concept is quite
straightforward:

1. Load as many TSD files as you want, you get an id for every loaded TSD file
2. Generate textures, by specifying the id and texture number

Enumerators:

Error Enumerators:
TEDT_NO_ERROR
No error

TEDT_ERROR_INVALID_VALUE
Numeric argument out of range

TEDT_ERROR_INVALID_ENUM
Enumerate out of range

TEDT_ERROR_OUT_OF_MEMORY
Not enough memory left to execute command

TEDT_ERROR_WRONG_VERSION
Incorrect file format

TEDT_ERROR_FILE_NOT_FOUND
File not found

TEDT_ERROR_READ
Can not read file

Output Enumerators:
TEDT_FORMAT_BYTE_LUMINANCE
luminance image, 1 byte per pixel

TEDT_FORMAT_BYTE_RED
red component, 1 byte per pixel

TEDT_FORMAT_BYTE_GREEN
Green component, 1 byte per pixel

TEDT_FORMAT_BYTE_BLUE
blue component, 1 byte per pixel

Texture Editor 15

Appendix B
Short API Library Reference

TEDT_FORMAT_BYTE_RGB
Red, green, blue component, 3 bytes per pixel, interleaved order

TEDT_FORMAT_BYTE_RGBA
red, green, blue, alpha component, 4 bytes per pixel, interleaved order

TEDT_FORMAT_BYTE_BGR
blue, green, red, alpha component, 3 bytes per pixel, interleaved order

TEDT_FORMAT_BYTE_BGRA
blue, green, red, alpha component, 4 bytes per pixel, interleaved order

TEDT_FORMAT_FLOAT_LUMINANCE
luminance image, float single precision (4 bytes per pixel)

TEDT_FORMAT_FLOAT_RED
red component, float single precision (4 bytes per pixel)

TEDT_FORMAT_FLOAT_GREEN
green component, float single precision (4 bytes per pixel)

TEDT_FORMAT_FLOAT_BLUE
blue component, float single precision (4 bytes per pixel)

TEDT_FORMAT_FLOAT_RGB
Red, green, blue component, float single precision (12 bytes per pixel), interleaved order

TEDT_FORMAT_FLOAT_RGBA
Red, green, blue, alpha component, float single precision (16 bytes per pixel), interleaved order

TEDT_FORMAT_FLOAT_BGR
blue, green, red component, float single precision (12 bytes per pixel), interleaved order

TEDT_FORMAT_FLOAT_BGRA
blue, green, red, alpha component, float single precision (16 bytes per pixel), interleaved order

Texture / Layer Status Enumerators:
TEDT_STATUS_EMPTY
Texture / Layer is empty

TEDT_STATUS_PRESENT
Texture / Layer is present

TEDT_STATUS_UNDEFINED
Texture / Layer is undefined; this happens when id, texture or layer was specified outside the range

Texture Editor 16

Appendix B
Short API Library Reference

Functions:

int tedtLoadTextureSet(const char *filename);
Load TSD file.
Parameters:

filename TSD filename
Return value:

TSD id, on error zero

int tedtGetError();
Get last error.
Parameters:

none
Return value:

error enumerator

int tedtGetTextureSize(int id, int texture);
Get texture size.
Parameters:

id id referencing the texture set
texture texture number (1..16)

Return value:
Texture size or zero if texture doesn't exists.

int tedtGetTextureStatus(int id, int texture);
Get texture status.
Parameters:

id id referencing the texture set
texture texture number (1..16)

Return value:
status enumerator

int tedtGetLayerStatus(int id, int texture, int layer);
Get layer status.
Parameters:

id id referencing the texture set
texture texture number (1..16)
layer layer number (1..9)

Return value:
status enumerator

Texture Editor 17

Appendix B
Short API Library Reference

void tedtRenderTexture(int id, int texture, int format, void *pixels);
Render texture. If texture is empty, the memory block is not touched.
Parameters:

id id referencing the texture set
texture texture number (1..16)
format your desired output format, must be one of the Output Enumerators
pixels pointer to a memory block; make sure you have allocated enough memory

Return value:
none

void tedtRenderLayer(int id, int texture, int layer, int format, void *pixels);
Render layer. If layer is empty, the memory block is not touched.
Parameters:

id id referencing the texture set
texture texture number (1..16)
layer layer number (1..9)
format your desired output format, must be one of the Output Enumerators
pixels pointer to a memory block; make sure you have allocated enough memory

Return value:
none

Texture Editor 18

Appendix C
Legal Disclaimer and Copyright
Information

Copyright (c) 2001-2003 Aick in der Au, All rights reserved.

Permission to use, copy, and distribute this software and its documentation, without any modification,
for any purpose (including commercial) and without fee or royalty is hereby granted.

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

DO NOT USE THIS SOFTWARE FOR DIRECT OR INDIRECT CREATION OF WEAPONS OF MASS
DESTRUCTION.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

Texture Editor 19

