
DEVELOPING SMARTSUITE
APPLICATIONS USING
LOTUSSCRIPT

EE..DD
..II..TT..II..OO

..NN

TThhe e BBeesst t SSuuiitte e FFoor r TToodadayy''s s CCoonnnneecctteed d WWoorrlld d — — PPoowweerreed bd by y 11--22--33..

WINDOWS 95 and NT 4.0

COPYRIGHT

Under the copyright laws, neither the documentation nor software may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form, in whole or in part without the prior written consent of
Lotus Development Corporation, except in the manner described in the software
agreement.

© Copyright 1997 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, Massachusetts 02142

All rights reserved. Printed in the United States.

Lotus, Lotus Notes, LotusScript, 1-2-3, Approach, Freelance, Freelance Graphics,
SmartIcons, SmartSuite, and Word Pro are registered trademarks and LotusObjects,
Notes, Notes/FX, SmartMaster, TeamConsolidate, TeamMail, TeamReview, and
TeamShow are trademarks of Lotus Development Corporation. Adobe Acrobat is a
registered trademark of Adobe Systems Incorporated. IBM is a registered
trademark and VisualAge is a trademark of International Business Machines
Corporation. Microsoft, Visual Basic, and Windows are registered trademarks and
Windows NT is a trademark of Microsoft Corporation.

Some of the products referenced appear in online documentation.

The company names appearing in this book are fictitious.

Introduction . ix. .
Who should read this book ix. . .

Using this book with Help x. . . .

Additional LotusScript documentation xi. . .

Organization . xi. . .

Conventions used in this book xiii. .

Object model diagrams xiii. .

Sample files . xiv. .

Installing the sample files xv. . .

Chapter 1 SmartSuite
Applications: An Overview 1-1.
Development needs that are changing 1-1. .

SmartSuite as an application
development platform 1-1. .

Object-oriented technology 1-3. .

SmartSuite and Notes integration 1-4. .

Team Computing . 1-4. .

Chapter 2 LotusObjects:
Building Blocks for
Developing Applications 2-1.
Objects . 2-1. .

Objects and classes . 2-2. .

Collection classes . 2-2. .

The product object models 2-3. .

Methods, properties, and events 2-4. .

Methods . 2-4. .

Properties . 2-4. .

Events . 2-5. .

Dot notation: using methods and
properties with objects 2-6. .

Containment . 2-7. .

Traversing the containment tree to
access objects . 2-8. .

Inheritance . 2-13.

Abstract classes and inheritance 2-14.

Downcasting and inheritance 2-14.

Chapter 3 LotusScript
Programming Tools 3-1.
Using the IDE . 3-1. .

Using the sample application for
this chapter . 3-2. .

Opening the IDE . 3-2. .

Identifying parts of the IDE window 3-3. .

Getting Help in the IDE 3-4. .

Designing applications in the IDE 3-4. .

Selecting objects for your scripts 3-5. .

Planning the scope of your scripts 3-7. .

Working with external script files 3-8. .

Recycling macros . 3-9. .

Assembling the pieces for
an application . 3-9. .

Writing scripts in the Script Editor 3-10.

Selecting objects and their scripts 3-10.

Creating scripts . 3-13.

Renaming scripts . 3-14.

Entering text in scripts 3-15.

Printing scripts . 3-17.

Contents iii

Contents

Developing SS Apps. Using LS
Please note that the page numbers listed in the Table of Contents refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Exporting scripts to external .LSO or
.LSS files . 3-17.

Running and debugging scripts in the
Script Debugger . 3-18.

The Script Debugger 3-19.

Running scripts . 3-20.

Using breakpoints . 3-20.

Stepping through scripts 3-21.

Monitoring variables in your scripts 3-22.

Monitoring calls in your scripts 3-22.

Developing custom dialog boxes in the
Dialog Editor . 3-23.

Creating a custom dialog box 3-23.

Adding controls to the dialog box 3-24.

Writing scripts for controls 3-26.

Running the dialog box from
your application . 3-27.

Developing LotusScript
Extension modules 3-27.

Chapter 4 Building a
Single-Product Application 4-1.
The Memo Signing script 4-2. .

Entering the script . 4-3. .

An explanation of the script 4-5. .

Running the Memo Signing script 4-8. .

Running the script from the Word Pro
Edit - Script & Macros menu 4-8. .

Running the script from an icon 4-8. .

Running the script automatically
using events . 4-9. .

Chapter 5 Building
Cross-Product Applications 5-1.
OLE Automation concepts 5-1. .

OLE Automation controllers 5-1. .

OLE Automation objects 5-2. .

Accessing LotusObjects using
OLE Automation . 5-2. .

LotusScript applications as OLE
Automation controllers 5-3. .

Variables for storing OLE
Automation objects 5-4. .

Object names for applications 5-4. .

OLE Automation using LotusScript with
Word Pro and Approach 5-5. .

Generating a sales report 5-6. .

!Globals and !Document 5-10.

(Declarations) and (Options) 5-11.

Functions and subs of the Video
Summary application 5-12.

OLE Automation using Visual Basic
and 1-2-3 . 5-20.

Updating the map . 5-20.

Subs of the Map Update application 5-22.

Chapter 6 Integration
with Notes . 6-1.
OLE Automation . 6-1. .

Planning ahead . 6-1. .

OLE Automation vs. Notes/FX 6-2. .

Simple scripts that use OLE Automation 6-2. .

Mid-level scripts that use
OLE Automation . 6-6. .

Large scripts that use OLE Automation . 6-10.

The Notes LSX . 6-11.

Planning ahead . 6-11.

Loading the Notes LSX 6-11.

Controlling Notes with a
Word Pro script . 6-12.

i v D e v e l o p i n g S m a r t S u i t e A p p l i c a t i o n s U s i n g L o t u s S c r i p t

Chapter 7 Using
LotusScript in 1-2-3 7-1.
Writing scripts in 1-2-3 . 7-1. .

Automating tasks without scripts 7-1. .

Information for upgraders 7-2. .

The 1-2-3 object model . 7-4. .

1-2-3 containment hierarchy 7-4. .

1-2-3 inheritance relationships 7-8. .

1-2-3 predefined global product
variables . 7-9. .

1-2-3 collection classes 7-10.

Identifying objects in 1-2-3 7-12.

Recording scripts in 1-2-3 7-15.

Recording into an existing script 7-15.

Using the IDE in 1-2-3 . 7-16.

Writing scripts for objects that do not
appear in the Object list 7-17.

Using the Dialog Editor in 1-2-3 7-17.

Customizing the 1-2-3 user interface 7-17.

Attaching a script to the Actions menu . . 7-18.

Attaching a script to an icon 7-19.

Attaching a script to a button 7-20.

Attaching a script to a picture 7-20.

T e a m c o m p u t i n g i n 1 - 2 - 3. 7-21.

Sending a mail message with
an attachment . 7-21.

Routing a range . 7-22.

Top tasks . 7-23.

Creating a custom @function 7-23.

Creating a custom menu 7-25.

Saving and restoring a view 7-28.

Changing labels to values 7-31.

Converting column and sheet letters
to numbers . 7-32.

Creating a cross-tabulation report 7-33.

Automatically saving all
open workbooks . 7-40.

Making global changes to a range 7-42.

Chapter 8 Using LotusScript
in Approach . 8-1.
Writing scripts in Approach 8-1. .

Automating tasks without scripts 8-1. .

Information for upgraders 8-2. .

The Approach object model 8-3. .

Approach containment hierarchy 8-9. .

Approach inheritance relationships 8-18.

Approach predefined global
product variables 8-20.

Creating new objects 8-21.

Approach classes . 8-21.

Application class . 8-21.

Window class . 8-24.

Document class . 8-25.

Table class . 8-26.

View class . 8-27.

Panel class . 8-29.

Display class . 8-32.

Find class . 8-34.

Connection class . 8-36.

Query class . 8-38.

ResultSet class . 8-39.

Recording scripts in Approach 8-41.

Using the IDE in Approach 8-42.

Script templates . 8-43.

Customizing the Approach user interface . . 8-44.

Attaching a script to a button 8-45.

Attaching a script to a menu item 8-46.

Attaching a script to a function key 8-47.

Contents v

Top tasks . 8-47.

Switching between views in
a document . 8-47.

Accessing data from a database using a
batch process . 8-49.

Accessing data from a Notes database . . 8-52.

Finding records using the Find object . . . 8-56.

Modifying records . 8-59.

Displaying data from a result set
in a view . 8-63.

Creating a document to display the
result set . 8-66.

Controlling how users enter data 8-67.

Changing the summaries in a report 8-69.

Inserting and using OLE controls 8-70.

Chapter 9 Using LotusScript
in Freelance Graphics 9-1.
Writing scripts in Freelance Graphics 9-1. .

Information for upgraders 9-1. .

The Freelance Graphics object model 9-4. .

Freelance Graphics
containment hierarchy 9-4. .

Freelance Graphics
inheritance relationships 9-5. .

Freelance Graphics collection classes 9-5. .

Freelance Graphics predefined global
product variables 9-6. .

Using the IDE in Freelance Graphics 9-7. .

Using the Dialog Editor in
Freelance Graphics 9-7. .

Customizing the Freelance Graphics
user interface . 9-7. .

Creating “Click here...” blocks 9-7. .

Attaching scripts to pages and
“Click here...” blocks in an .SMC file . 9-8. .

Attaching scripts to pages or
“Click here...” blocks in a .PRZ file . . . 9-9. .

Running an .LSS file 9-9. .

Attaching a script to an icon 9-10.

Running a script from the command line . . 9-10.

Using names to manipulate objects 9-11.

Using predefined global
product variables 9-12.

Top tasks . 9-15.

Putting clip art on the current page 9-15.

Using an event . 9-16.

Printing the current page 9-16.

Launching a clip art or diagram
browser with a specified file 9-17.

Filling a bulleted list with text 9-19.

Converting text to table entries 9-21.

Putting information in a table into an
agenda format . 9-25.

Chapter 10 Using LotusScript
in Word Pro . 10-1
LotusScript and Word Pro 10-1.

The Word Pro object model 10-1.

Foundry . 10-2.

Focus . 10-3.

Accessing objects that do not have
the focus . 10-3.

Word Pro predefined global
product variables 10-6.

 Word Pro collection classes 10-7.

Word Pro abstract classes 10-9.

Other important Word Pro classes 10-11

Using the IDE in Word Pro 10-15

Recording a script . 10-16

Inserting a script template 10-17

Accessing Word Pro objects and events . 10-19

Saving scripts . 10-21

Using the Dialog Editor in Word Pro 10-23

Migration information . 10-23

vi Developing SmartSuite Applications Using LotusScript

Saving a recorded Ami Pro macro
before conversion 10-23

Converting an Ami Pro macro 10-24

Running existing macros 10-24

Strategies for editing Ami Pro macros . . 10-26

Team Computing in Word Pro 10-26

Modifying editor access 10-27

Modifying markup options 10-30

Modifying document access 10-34

Modifying editing rights 10-35

Top tasks . 10-37

Automating a SmartMaster 10-37

Validating Click Here Blocks 10-39

Creating a custom menu item 10-41

Setting custom views 10-42

Changing the function key setup 10-43

Automating a merge 10-44

Index Index-1.

Contents vii

Introduction

Developing SmartSuite Applications Using LotusScript describes how to use
LotusScript® to develop applications in the following Lotus® products:

Lotus 1-2-3® 97 Edition for Windows® 95 and Windows NT™ 4.0

Lotus Approach® 97 Edition for Windows 95 and Windows NT 4.0

Lotus Freelance Graphics® 97 Edition for Windows 95 and Windows
NT 4.0

Lotus Word Pro® 97 Edition for Windows 95 and Windows NT 4.0

Lotus Notes®

Who should read this book

Developing SmartSuite Applications Using LotusScript is for both new and
experienced application developers. It contains basic information about the
application programming interfaces (APIs) of 1-2-3, Approach, Freelance
Graphics, and Word Pro, and introduces new developers to the concepts of
programmable objects and how to manipulate them. It also includes
information on how to use the Integrated Development Environment (IDE)
and Dialog Editor that Lotus provides.

If you’re already familiar with developing applications using products such
as IBM® VisualAge™ or Microsoft® Visual Basic®, you will be comfortable
with the way LotusScript programming tools support the development
process. If you are experienced in developing applications in Lotus
SmartSuite® 97 Edition for Windows 95 and Windows NT 4.0 products
using macro commands, Developing SmartSuite Applications Using LotusScript
will help you switch from a macro-based development environment to a
structured programming language environment that enables object-oriented
application development within and across products.

Before reading Developing SmartSuite Applications Using LotusScript, you
should be familiar with basic Windows 95 concepts and techniques. For
more information, see your Windows documentation.

ix

Using this book with Help

Developing SmartSuite Applications Using LotusScript and online Help
complement each other. Help documents the LotusScript language
and every LotusScript language extension in 1-2-3, Approach, Freelance
Graphics, and Word Pro. It also provides extensive IDE and Dialog
Editor Help.

To access Help, follow these steps:

Accessing the LotusScript Index from your product
1. Choose Help - Help Topics.

2. Search on “LotusScript” in your product Help index.

The Help topic “Overview: Using LotusScript” is displayed.

3. Click “LotusScript Index.”

Accessing the LotusScript table of contents from your product
1. Choose Help - Help Topics.

2. Click the Contents tab.

The Help table of contents is displayed.

3. Click “LotusScript.”

Accessing Help from the IDE
1. Choose Help.

2. Do one of the following:

Choose LotusScript or product Objects and search on the specific
term you want Help on.

Choose Script Editor.

Accessing Help from the IDE Browser
1. Choose the class or class member name you want Help on.

2. Press F1.

Accessing Help from the Dialog Editor
1. Choose Help.

2. Choose Dialog Editor or Lotus Controls.

x Developing SmartSuite Applications Using LotusScript

Additional LotusScript documentation

In addition to this manual and online Help, you can refer to the following
materials for information on LotusScript. All of the following, with the
exception of the LotusScript Extension (LSX) Toolkit, are available in
hardcopy. They are all available in Adobe Acrobat® or HTML formats
in your SmartSuite 97 package, in the SmartSuite Application Developer’s
Documentation Set, or on the LotusScript home page on the World Wide
Web (http://www.lotus.com/smartsuite/sslotusscript.htm).

Getting the Most Out of LotusScript in SmartSuite 97, a brief overview that
explains how SmartSuite 97 products use the LotusScript programming
language and how your business can take advantage of LotusScript in
developing applications for SmartSuite.

The LotusScript Programmer’s Guide, a general introduction to
LotusScript that describes its basic building blocks and how to put
them together to create applications.

The LotusScript Language Reference, a comprehensive summary of
the LotusScript language, presented in A-Z format. The LotusScript
Language Reference is also available as Help in all Lotus products
that support LotusScript.

The LotusScript Extension (LSX) Toolkit, a source of information about
developing LotusScript Extension (LSX) modules. LSX modules are
Dynamic-Link Libraries (DLLs) that contain public class definitions
for any product that supports the LotusScript language. Typically LSX
modules add classes to your SmartSuite product, effectively expanding
the number of classes available for all your scripts. The Toolkit is
designed for developers with some experience in the C or C++
programming language.

Organization

Developing SmartSuite Applications Using LotusScript has 10 chapters.

Chapter 1, “SmartSuite Applications: An Overview,” contains basic
information about the SmartSuite development environment.

Chapter 2, “LotusObjects: Building Blocks for Developing
Applications,” explains in detail what LotusObjects are and how
to manipulate them using their properties, methods, and events. It
describes the object-oriented programming concepts of containment
and inheritance and what they mean for the applications you develop.

Introduction xi

Chapter 3, “LotusScript Programming Tools,” introduces the IDE and
Dialog Editor and describes how you can use these tools throughout the
development process to design applications, write code, run and debug
applications, and develop reusable code libraries for multiple
applications.

Chapter 4, “Building a Single-Product Application,” builds on the
information in Chapters 2 and 3 to explain how to develop an
application. The chapter presents four different versions of a sample
application that runs in Word Pro to illustrate the various ways you can
design and run an application.

Chapter 5, “Building Cross-Product Applications,” explains how to use
OLE Automation to develop an application that requires two or more
SmartSuite products. The sample application runs in Word Pro and
uses Approach data. This chapter also includes a sample application
developed in Visual Basic that manipulates objects in SmartSuite.

Chapter 6, “Integration with Notes,” describes how to use OLE
Automation and the Notes LSX to control SmartSuite products from
scripts running in Notes™, and Notes from scripts running in
SmartSuite products.

Chapter 7, “Using LotusScript in 1-2-3,” describes the 1-2-3 object
model and explains how to develop applications in 1-2-3. The chapter
contains a collection of sample applications that illustrate application
development concepts.

Chapter 8, “Using LotusScript in Approach,” describes the Approach
object model and explains how to develop applications in Approach.
The chapter contains a collection of sample applications that illustrate
application development concepts.

Chapter 9, “Using LotusScript in Freelance Graphics,” describes the
Freelance Graphics object model and explains how to develop
applications in Freelance Graphics. The chapter contains a collection of
sample applications that illustrate application development concepts.

Chapter 10, “Using LotusScript in Word Pro,” describes the Word Pro
object model and explains how to develop applications in Word Pro.
The chapter contains a collection of sample applications that illustrate
application development concepts.

xii Developing SmartSuite Applications Using LotusScript

Conventions used in this book

Developing SmartSuite Applications Using LotusScript uses the following
conventions.

Object model diagrams
Chapters 2, 7, 8, 9, and 10 present object model diagrams to illustrate partial
views of the containment and inheritance hierarchies in each of the
products. The LotusObjects™ appearing in these diagrams are those that
you are most likely to use in the applications you develop.

The following diagram conventions are used to illustrate object
relationships.

Containment diagrams
A containment relationship is shown by joining two boxes with an arrow.
For example, in the following diagram, the Application class, represented
by the box labeled Application, contains the Documents class, represented
by the box labeled Documents. Application contains Documents through
the Documents property, as indicated by the label Documents property that
appears on the arrow connecting Application and Documents.

Documents is a collection class, as indicated by the dotted line leading to
three boxes labeled Document, all of which are enclosed in a dotted-line
box. This illustrates that Documents is made up of a collection of individual
Document objects.

The Application class also contains the Document class, as indicated by the
arrow pointing to an individual box labeled Document. Application
contains Document through the ActiveDocument property, as indicated by
the label, ActiveDocument property, appearing on the arrow connecting
Application and Document.

Document

Documents

Documents property

 Application

Page

Pages
ActiveDocument

property

Document Page

PageDocument

Pages
property

ActivePage
property

DrawObject

Objects

DrawObject

DrawObject

Objects
property

Selection
property

Introduction xiii

Inheritance diagrams
An inheritance relationship is shown by using a line to connect a class to
one or more of the classes that inherit members from it. For example, the
following diagram illustrates that the following objects inherit from
BaseObject: DrawObject, Documents, Pages, Objects, Colors, Application,
ApplicationWindow, DocWindow, Page, Font, Color, Background, and
TextProperties. BaseObject is the base class for all of these classes.

This diagram also illustrates that Chart, Table, PlacementBlock, OLEObject,
TextBlock, and Selection all inherit from DrawObject. Also, PageSelection
inherits from Page.

Sample files

Developing SmartSuite Applications Using LotusScript uses examples to
illustrate application development concepts for each of the products. These
examples, described in the text, are available in online files so that you can
run them and view the code in the IDE. When SmartSuite is installed, the
files are copied to the default sample files directory
C:\LOTUS\SAMPLES\SUITE. However, because the default directory for
SmartSuite can be changed at Install time, throughout this book files are
referred to only by the file name and a reference to the “sample files
directory,” without any reference to a specific path.

DrawObject

Chart

Table

PlacementBlock

OLEObject

TextBlock

Selection

Documents

Pages

Objects

Colors

Application

ApplicationWindow

DocWindow

Page

PageSelection

Font

Color

Background

TextProperties

BaseObject

xiv Developing SmartSuite Applications Using LotusScript

For example, DW04_S1.LSS refers to a file called DW04_S1.LSS stored in
the sample files directory, which is either C:\LOTUS\SAMPLES\SUITE or
another directory specified at Install time. Check with your system
administrator to verify the name of the path to which your copy of
SmartSuite is installed.

Installing the sample files
When you install SmartSuite, the sample files are not automatically
installed. You have to specify that you want them downloaded by
performing a customized Install. You can rerun the Install program at any
time to download the sample files.

To install sample files when you run Install:

1. In the Select Lotus SmartSuite Applications dialog box, select Suite
DocOnline and then click Next.

Introduction xv

2. In the Install Options dialog box, select Customize features - Manual
install and then click Next.

xvi Developing SmartSuite Applications Using LotusScript

3. In the Select SmartSuite Applications to Customize dialog box, click
Customize and then click Next.

Introduction xvii

4. In the Customize dialog box, click the Suite Sample Scripts tab and
select Suite Sample Scripts.

5. Click OK to install the sample files.

xviii Developing SmartSuite Applications Using LotusScript

Chapter 1
SmartSuite Applications: An Overview

SmartSuite offers a sophisticated development environment to help you
build applications using a variety of Lotus products. With LotusScript, a
powerful BASIC programming language, you can customize, automate, and
integrate the following products to create new and robust applications of
your own:

1-2-3®

Approach®

Freelance Graphics®

Word Pro®

Notes™

The power and flexibility of all these Lotus products allow you to meet
your specific business needs and make you and your users more
productive.

Development needs that are changing
The current environment in business application development demands
greater ability to connect different workgroups and products and to create
more powerful and highly sophisticated applications while paying close
attention to a greater return on investment. This is influenced and
supported by the following technologies:

Desktop suites

Object-oriented technology

Team computing

SmartSuite as an application development platform
Stand-alone products like 1-2-3, Approach, Freelance Graphics, and Word
Pro offer valuable features for specific business needs. Most users working
in these products take advantage of these features to perform repeated
tasks. Your job, as a developer of applications, is to automate these tasks in
the products in which they are performed, thus making your users more
productive.

1-1

These products can also be powerful for users when treated as a single
platform upon which an organization standardizes its processes. For you,
the developer, this translates to a collection of objects that you can
recombine and program across product boundaries to build task-specific
functions and new applications.

The SmartSuite desktop products can be integrated easily not only because
they have compatible user interfaces and functionality, but because they
share a common programming language, similar application programming
interfaces (APIs), a common editor and debugger for writing and
maintaining code, and a common dialog editor for designing custom user
interfaces.

LotusScript: a common language
SmartSuite uses LotusScript, a version of BASIC that offers not only the
standard capabilities of structured programming languages, but a powerful
set of language extensions that enable object-oriented development within
and across products as well. Using LotusScript, you can combine features
of Notes and the various SmartSuite products to customize, automate, and
integrate these products as well as to create new applications.

LotusObjects: the SmartSuite API
1-2-3, Approach, Freelance Graphics, and Word Pro share similar APIs,
composed of LotusObjects. LotusObjects represent millions of lines of
professionally written and tested code that you can combine into your own
applications. These objects share a common design. For example, the
Application object is virtually the same in all the SmartSuite products. This
similarity allows for easy access to objects from one product to another.
Other objects are unique to the individual APIs but can be used in
cross-product scripts because their design is based on a common standard
recognized by all of the Lotus products.

The existence of common objects provides an efficient arena for developing
and implementing applications. LotusObjects expose the internal functions
of these products so that you can develop applications. Furthermore, you
can design your own objects, either based on or independent of
LotusObjects, using LotusScript. All LotusObjects are OLE Automation
objects, allowing for greater ease in cross-product scripting.

Shared tools
SmartSuite products share a common set of programming and design tools:
the Integrated Development Environment (IDE), for creating, editing, and
debugging scripts, and the Dialog Editor, for designing custom dialog
boxes.

1-2 Developing SmartSuite Applications Using LotusScript

Using the IDE, available in all SmartSuite products from the Edit pull-down
menu, you can create, edit, and debug scripts for any of the Lotus products
installed on your system. You can store, compile, and execute scripts that
are associated with specific LotusObjects and run them from inside
SmartSuite or Notes.

The Dialog Editor enables you to design custom dialog boxes containing all
the traditional dialog box controls, such as command buttons, list boxes,
option buttons, and check boxes. These controls are implemented as OLE
controls (OCXs). You are not limited to using the controls supplied with the
Dialog Editor—you may use any standard OCX.

Using LotusScript, LotusObjects, the IDE, and the Dialog Editor, you can
develop rich graphical user interfaces that allow your application to interact
with your users.

For more information about the IDE and the Dialog Editor, see Chapter 3.

Object-oriented technology
More and more companies are providing application development tools
and products based on object-oriented technology, and SmartSuite is no
exception. The use of objects provides great opportunities for code
portability, reuse, and customization. Application developers can write new
applications that are easy to share, maintain, and develop as a team, using
objects from one or more products.

OLE
Object Linking and Embedding is a technology that takes advantage of
object-oriented application design by letting you use LotusObjects and
objects from non-Lotus products to combine and exchange information
across product lines.

OLE Automation
OLE Automation is an OLE technology that allows objects to be
manipulated from outside the application in which they reside. All
LotusObjects are OLE Automation objects, which means that they can be
exposed to different Lotus and non-Lotus products. LotusScript in
SmartSuite uses OLE Automation to expose LotusObjects to Notes and
SmartSuite to other applications. In turn, OLE Automation controllers such
as Visual Basic, can access LotusObjects.

For more information about using OLE Automation with LotusObjects and
user-defined objects, see Chapter 5 and Chapter 6.

SmartSuite Applications: An Overview 1-3

SmartSuite and Notes integration
Notes is a group information manager that enables teams to be more
effective in collecting, organizing, and sharing information across local and
wide-area networks and dial-up lines. Notes database applications help
diverse groups communicate and work as a team.

SmartSuite offers the best integration with Notes available in today’s
marketplace for the following reasons:

The two products have compatible APIs.

SmartSuite products can access the Notes LSX, which exposes Notes
objects, to use Notes for backend database functionality. This enables
you to use the SmartSuite products as an alternate user interface for
Notes.

SmartSuite and Notes share the same programming language
(LotusScript) and similar development tools.

Notes/FX™ enables SmartSuite products and Notes to share
information at the field level, using Notes/FX fields.

For more information about Notes and SmartSuite integration, see
Chapter 6.

Team Computing
Today the success of businesses depends heavily on the ideas and
contributions of all team members. The Lotus Team Computing features
help teams improve productivity by making it easy to gather and distribute
information. You can write scripts that automate many of the Team
Computing features using the product APIs and then include the scripts in
the SmartSuite applications you develop.

Using the Lotus Team Computing technologies, SmartSuite is the first team
desktop suite on the market. SmartSuite enables users to better collaborate
on and share documents, spreadsheets, databases, presentations, and more,
by improving the way people can create, review, and edit all types of
business information. Team Computing reduces the time to complete
business tasks and reduces the cost of collaboration.

Team Computing features include TeamReview™ in Word Pro and
Freelance Graphics, TeamShow™ in Freelance Graphics,
TeamConsolidate™ in Word Pro, Versioning and TeamMail™ in 1-2-3, and
TeamSecurity in all the SmartSuite products.

1-4 Developing SmartSuite Applications Using LotusScript

Some of these features are Notes-enabled, adding to the tight integration
between Notes and SmartSuite. Furthermore, through the TeamMail
feature, you can easily access any VIM-enabled or MAPI-enabled mail
package from within all the SmartSuite products as well as from any
SmartSuite application.

For more information about automating these Team Computing features in
the products, see Chapters 7 and 10.

SmartSuite Applications: An Overview 1-5

Chapter 2
LotusObjects: Building Blocks
for Developing Applications

This chapter presents an overview of LotusObjects and how you use them
to develop applications. The chapter provides a basic, conceptual
introduction to object-oriented programming. The concepts presented here
are used throughout the rest of the book. If you want to go directly to
practical information about applying these concepts in each of the products,
see Chapters 6 through 10 where specific code examples are presented
and explained.

Objects

Objects are the building blocks of any application. An object represents a
part of a product that you manipulate in a script, using its members, which
are the methods, properties, and events that apply to it. For example, the
1-2-3 Range object represents a range in a sheet. You might want to write a
script that checks the data in a range and performs actions based on the
values in that range. To do this, you use the Range object along with its
methods, properties, and events.

Consider objects as the building blocks used to develop an application and
the LotusScript language as the hands that manipulate and put the blocks
together. Using the LotusScript language, you can program SmartSuite
objects, called LotusObjects, to control your applications in creative and
sophisticated ways.

All LotusObjects share a common design. Many objects are implemented
either the same way across products, or almost the same way, with slight
variations from product to product. For example, the Application object is
implemented the same way in both Approach and Word Pro. However, in
Word Pro the Color object has certain characteristics that the Approach
Color object does not. The advantage of a common design is that it lends
itself to ease of learning and ease of use. The time you invest and what you
gain in learning about the LotusObjects in one SmartSuite product can be
carried over into another product.

 2-1

Objects and classes
An object is an instance of a class. For example, an Approach FieldBox
object is a specific instance of the Approach FieldBox class. It represents an
existing field box on one of your Approach forms. If there are four field
boxes on your Approach form, then there are four FieldBox objects, but
only one FieldBox class.

A class is a description or a definition of a part of a SmartSuite product. It
has members, which are its properties, methods, and events. These are the
characteristics and behaviors of the objects instantiated from the class. For
example, Top (a property), Refresh (a method), and Click (an event) are
members of the Approach FieldBox class. They are characteristics of all
FieldBox objects. A class is like a specification of an object.

Classes are identified by their names, for example, the 1-2-3 Rectangle class.
Objects, however, are generally referred to in scripts by the name of the
variable, property, or parameter in which they are stored.

The easiest way to distinguish between classes and objects is to think of the
class as the description of a part of a SmartSuite product, and the object as
one instance of the part described by the class. That instance can be
identified with its own unique name, which distinguishes it from all other
instances of the class. To understand this concept, think of the word
“movie,” which describes a class of entertainment. “Casablanca” is one
instance of the class movie. “Gone with the Wind” is another instance of
that class. “Casablanca” and “Gone with the Wind” are like objects because
they are specific, real movies; whereas movie is like a class because it
describes the characteristics of a movie without specifically naming any
particular movie.

Collection classes
You will notice among the various classes available in SmartSuite products
that the names of some classes end with the word “Collection” or are in the
plural form. For example, Word Pro has a Bookmark class, but it also has a
BookmarkCollection class. It has both a Document class and a Documents
class. BookmarkCollection and Documents are collection classes. A
collection class is what the name implies: a class made up of a collection of
the objects of that particular class. Another way to think of a collection is as
a wrapper around a group of objects of a class that together, as a group,
form a separate object.

Collections are useful for writing programs because they group objects of
the same class together and then allow you to step through, or iterate
through, the collection to do things to each object in it, the way you would
with an array or a list (arrays and lists are actually types of collections). You

2-2 Developing SmartSuite Applications Using LotusScript

use the LotusScript ForAll statement to iterate through a collection. You can
also index an element of a collection using the For statement.

For information about arrays and lists, see Chapter 3 of the LotusScript
Programmer’s Guide. For information about collection classes, see Chapter 9
of the LotusScript Programmer’s Guide. For information about the LotusScript
For and ForAll statements, search on “LotusScript” in your product Help
index, click “LotusScript Index,” then search on “For” and “ForAll.”

The product object models
Every SmartSuite product also has its own set of unique LotusObjects that
are not part of any other product’s object set. Like the common
LotusObjects, these product-specific LotusObjects represent programmable
elements of a particular product. For example, FootNoteLayout is a Word
Pro object that represents the layout of a footnote on a page in a Word Pro
document. This object represents something in Word Pro, but has no
meaning in any of the other SmartSuite products.

The way that a product object set, or object model, is organized also
distinguishes it from the other product object models. The relationships
between the objects vary from product to product. Each SmartSuite object
model has its own containment and inheritance structure. For information
about containment and inheritance, see the sections “Containment” and
“Inheritance” later in this chapter.

SmartSuite user interface (UI) gestures for manipulating data have
equivalent object behaviors, represented by properties, methods, and
events. The power of programming in SmartSuite products lies in
understanding the product objects and their behaviors so that you can
achieve a desired effect in your application. In order to understand the
objects and how they relate to each other, you need to understand each of
the product object models. For diagrams and descriptions of the product
object models, see Chapters 7 through 10.

LotusObjects: Building Blocks for Developing Applications 2-3

Methods, properties, and events

Objects have members: the methods, properties, and events of the class that
an object is instantiated from. The members allow you to manipulate objects
in a variety of ways.

Methods
Methods are the actions performed by an object. These actions are the
object’s behaviors. For example, the Freelance Graphics Document object
has a CreatePage method, which creates a new page in a document. It also
has a Close method, which closes a document. A method is a LotusScript
function (which returns a value) or a sub (which does not return a value).

Methods let you control your application by performing specific object
actions. Whenever you want to perform an action, you invoke a method.

Properties
Objects have characteristics, called properties, that allow you to examine
and control the state of an object, that is, how it looks and behaves. For
example, the Word Pro Document object, which represents a document, has
a ReadOnly property, which indicates whether or not the document is a
read-only document. A read-only document behaves differently than a
read-write document. The Word Pro Document object also has a FullName
property, which defines the document name. You can use a document name
in a script to manipulate the document. The Freelance Document object,
which represents a Freelance presentation, has a ViewMode property,
which indicates the mode, such as Outline, in which you can view a
presentation.

A property is like a variable in that it stores a value. Thus, like a variable, a
property has a data type, so the kind of value you can store in it depends on
its data type. For example, the Word Pro object FullName property has a
data type of String, so any value stored in it must be a text string.

You can specify, or set, the state of an object by setting the value of its
properties. For example, the Freelance Document object ViewMode
property has four acceptable values: $ViewDraw (Page view mode),
$OutlineView (Outliner view mode), $ViewSorter (Page Sorter view mode),
and $ViewSlideShow (Screen Show view mode). If you want to change the
view mode of your presentation, you set its ViewMode property to the
value that represents the view mode you want.

Some properties are read-only; you cannot change these properties by
setting them directly in a statement. Instead, they change by a different
means. For example, the Approach Document object, which represents an
Approach .APR file, has a Modified property that is read-only. The value of

2-4 Developing SmartSuite Applications Using LotusScript

the property, True or False, indicates if the .APR file has been modified.
Since Modified is a read-only property, you cannot set its value directly to
either True or False. It changes, however, when the user makes a change to
the .APR file, via the user interface, or when a script sets a property or
invokes a method of the Document object representing the file and thereby
changes it.

Although you can’t set read-only properties, you can get, or read, their
values in a script and use those values to perform other actions. For
example, you might write a script that gets the value of an Approach
Document object Modified property, and, if the value equals True, closes
the document it represents and opens another one.

Events
LotusObjects are equipped with a rich set of events. An event is an action
performed by a user, an application, or the system. For example, saving a
document is a kind of event. Sometimes a document is saved by a user
action (choosing File - Save) or by the application itself, via the autosave
feature. Clicking a button in 1-2-3 is another kind of event that occurs when
a user clicks a button on a sheet. Most objects have a set of predefined
events with names that match the action of the event. For example, clicking
a button is represented by the Click event of the Button object.

The Integrated Development Environment (IDE) provides a sub for an
event. The name of the sub matches the name of the event. For example, the
Click sub is where you write the event script for the Click event. When the
user clicks a button, the Click event of the Button object occurs, and the
code inside the Click sub is executed. Thus, you can control application
processing and functionality by specifying what operations occur as a result
of an event taking place.

Depending on the product, you can also initiate execution of a script from a
macro, menu option, icon, or from another script; but the most common
way is through an event, since events correspond to specific actions. For
example, the Opened event of the 1-2-3 Document object takes place when
you open a document, so it is easy and convenient to write a script that is
associated with only that specific behavior. For information about viewing
and using events in the IDE, see Chapter 3. For code examples that
illustrate using events to run scripts in an application, see Chapter 4.

LotusObjects: Building Blocks for Developing Applications 2-5

Dot notation: using methods and properties with objects
To manipulate an object in a script, you must indicate which method you
want to invoke or which property you want to set or get. To do this, you
use a syntax style called dot notation. Dot notation lets you easily refer to
the members of a class.

In general, statements that use dot notation have the following structure:

Object.Member

Member is either a name of a property or of a method being invoked.

Dot notation and properties
To set a property, use a statement with the following structure:

Object.Property = Value

For example, the following statement uses dot notation to change the value
of a property in 1-2-3. The statement sets the Name property of a Sheet
object called Sheet1.

Sheet1.Name = "Expenses"

The text to the left of the dot, Sheet1, represents the Sheet object being
manipulated. The text to the right of the dot, Name, represents the class
member, in this case the Name property of the Sheet object. The text to the
right of the equals sign, “Expenses,” is the value assigned to the Name
property.

You can also get a value of a property using dot notation by assigning the
value to a variable. For example, the following statement adds 1 to the
value of a property (assuming the property has a numeric data type) and
assigns the result to the variable CntVariable:

CntVariable = Object.Property + 1

Dot notation and methods
To invoke a method, follow the LotusScript rules for invoking functions
and subs. For example, a statement with the following structure is a method
that is a sub. You can use the same syntax for functions, but the return
value is ignored.

Call Object.Method (< argument list >)

To use the return value of a method, invoke the method and assign its
return value to a variable.

Variable = Object.Method (< argument list >)

For information about how to use functions and subs, see Chapter 4,
LotusScript Programmer’s Guide.

2-6 Developing SmartSuite Applications Using LotusScript

The following simple example, from Freelance Graphics, uses dot notation
to invoke methods that are subs:

Call CurrentDocument.Save
Call CurrentDocument.CloseWindow

The text to the left of the dot, CurrentDocument, represents the object being
manipulated. In both statements, the text to the right of the dots names
methods of that object, Save and CloseWindow, which are invoked in this
script. The Save method saves any changes made to the object. The
CloseWindow method closes the document window in which the document
represented by CurrentDocument is displayed.

Leading dot notation
A statement that starts with a dot uses leading dot notation. The object to
the left of the dot is omitted. For example, the following statement invokes
the Save method of an object.

Call .Save()

All SmartSuite products resolve the leading dot to an object, but exactly
which object is returned and which class it belongs to depends on the
product. See Chapters 7 though 10 for information about how each product
treats the leading dot.

Containment

One way to view the SmartSuite product object models is through their
containment hierarchies. A containment relationship exists between two
classes when one class, the parent, has a property that contains an object of
another class, the child. A property contains an object of a class when the
property data type is that class.

For example, the 1-2-3 Document class has a property called Ranges. The
value of this property is a Ranges object, which means that the Document
class contains the Ranges class through the Ranges property. The Ranges
property has a data type of the Ranges class.

Ranges property

Document class Ranges class

LotusObjects: Building Blocks for Developing Applications 2-7

The 1-2-3 Document class also has a property called CurrentPrintSettings.
The value of this property is a PrintSettings object, which means that
the Document class contains the PrintSettings class through the
CurrentPrintSettings property. The CurrentPrintSettings property has
a data type of the PrintSettings class.

As these examples show, a property name can be the same as the name of
the contained class (Ranges property and Ranges class). However, this is
not always the case (CurrentPrintSettings property and PrintSettings class).

These examples also show that a parent class can have several containment
relationships (the Document class contains the Ranges class and the
PrintSettings class). These relationships can be to objects of the same class
or of different classes. For example, the 1-2-3 Background class has, among
others, three properties, Color, BackColor, and Class, and therefore three
containment relationships. It contains the Color class through the Color
property, the Color class through the BackColor property, and the
ClassInfo class through the Class property. The fact that Background
contains the Color class twice is easy to understand if you think of the
data types of properties. For example, Background also has two other
properties, Description and Name, both with the data type of String. The
BackColor and Color properties are merely two properties with the same
data type, Color.

Similarly, a class can be contained by multiple classes. However, an object,
a single instance of a particular class, can only have a single parent, and that
parent is an instance of one of the parent classes. For example, in Approach,
several different classes, including BodyPanel, SummaryPanel, and
HeaderFooterPanel, contain the FieldBox class. This means that the
FieldBox class has multiple parents, which are all classes directly above it in
the containment hierarchy. (See the Approach object hierarchy diagram in
Chapter 8 for details.) However, a FieldBox object can only have a single
parent, and that parent is an instance of only one of the parent classes, for
example, a particular SummaryPanel object.

For specific descriptions and diagrams of the containment hierarchy in each
of the SmartSuite products, see Chapters 7 through 10.

Traversing the containment tree to access objects
Understanding which classes are contained by other classes, and therefore
which objects are contained by other objects, helps you understand the
syntax to use in a script when you try to access an object or change one of
its properties. If you know a product containment hierarchy, you can access

CurrentPrintSettings
property

Document class PrintSettings class

2-8 Developing SmartSuite Applications Using LotusScript

any object by traversing the containment tree that connects objects with
other objects. To traverse the containment tree, use dot notation.

A statement that uses the structure of Object.Member, in which Member is a
property that contains an object of a class, returns an object. For example, in
all SmartSuite products, an Application object for the current application
session is stored in the predefined global product variable
CurrentApplication. The ActiveDocument property of an Application object
stores a Document object. So, CurrentApplication.ActiveDocument, where
ActiveDocument is the equivalent of Member, returns a Document object.

One of the Document object properties, ReadOnly, specifies whether the
status of the document is read-only. To see if the active document is
read-only, use an If... Then statement:

If CurrentApplication.ActiveDocument.ReadOnly Then

....
End If

In this example, CurrentApplication.ActiveDocument is evaluated and the
appropriate Document object is returned. Then the value of the ReadOnly
property of that object is checked.

There is no limit to the number of objects you can traverse in a statement
such as this. If the Document object contains another object, and that object
in turn contains an object that you want to access, you can add those names
to the right of the dot after ActiveDocument, and separate each name in the
containment hierarchy with a dot. The hierarchy tree is always evaluated
from left to right as in the example above that starts with
CurrentApplication and ends with ReadOnly.

The following Word Pro example illustrates how to use the containment
relationships between objects to set properties of an object. In the example,
the script changes the alignment of a block of selected text.

CurrentApplication.Text.Alignment.AlignmentType = _
 $LtsAlignmentHorizCenter

To change the alignment, the statement uses the Alignment property of the
Text object. Dot notation is used to separate the Text object from its
Alignment property. Note that Alignment is also a Word Pro class, with its
own properties, such as AlignmentType.

The IDE provides a Browser panel that helps you view containment
relationships. (For information about the IDE Browser, see Chapter 3.) It
lists all the classes and their members of the product in which you are
viewing the panel. For example, if you look in the IDE Browser in Word Pro
(illustrated next), you can view the Text class and all its members, including
the Alignment property. Alignment is listed under text as “Alignment As

LotusObjects: Building Blocks for Developing Applications 2-9

Alignment,” which indicates that Alignment is a property of Text with a
data type of the Alignment class. This means that the Text class contains the
Alignment class through the Alignment property.

However, Alignment also appears as its own class with its own properties,
including the AlignmentType property.

2-10 Developing SmartSuite Applications Using LotusScript

If you look through the Browser in any SmartSuite product, you can
examine many containment relationships. For example, Approach has a
CheckBox class, which has a property called LabelFont with a data type of
Font. This means that the CheckBox class contains the Font class through
the LabelFont property.

You’ll also notice that Font is listed in the Approach IDE Browser as a class
with its own properties.

LotusObjects: Building Blocks for Developing Applications 2-11

Notice too that in some cases a class has several properties of the same class
data type. For example, the Approach Envelope class has a property called
Document with a data type of Document. It has another property called
Parent that also has a data type of Document.

Envelope contains Document through the Document property and through
the Parent property. This becomes clearer when you think of a property
data type such as Integer: the Envelope class has two properties,
HideMargins and Visible, that both have a data type of Integer. Document
is merely the data type of both the Document and Parent properties, a role
it can play because it is contained in the class Envelope.

2-12 Developing SmartSuite Applications Using LotusScript

Inheritance

Inheritance refers to the process by which a class is defined by deriving
the members of another class, called the base class. The derived class,
sometimes called a subclass, inherits the members (methods, properties,
and events) of its base class (sometimes called its superclass). The derived
class has direct access to all the members of the base class, but it also has its
own new members: additional properties, methods, and events that do not
exist for the base class.

The advantage of having a base class is that you can refer to an object of
a base class in a script and then use that script for any object of a class
derived from the base class, rather than write a different script for each
object of a derived class.

Because a derived class inherits all the members of the base class,
LotusScript allows you to assign an object of the derived class to a variable
with a data type of the base class. However, once the derived class object is
assigned to the base class variable, you can access only those derived class
members for that object that are shared with the base class. You cannot
access any unique members of the derived class.

The following 1-2-3 script is a sub that accepts an argument with the data
type of any class derived from the DrawObject class, a base class.

Sub ShrinkDrawObject (x As DrawObject)

x.Height = x.Height / 2
x.Width = x.Width / 2

End Sub

In this sub, the parameter x is declared as having a data type of
DrawObject, which specifies that this sub works only on objects that
are instances of derived classes of the DrawObject class.

DrawObject is a base class with, among others, the following derived
classes: Rectangle, Arc, Picture, Map, Ellipse, DrawLine. Since a derived
class inherits the properties of its base class, and Height and Width are
members of the DrawObject class, the Height and Width properties in this
script are valid for all of the derived classes of the DrawObject class. As a
result, this single sub, written for the base class, reduces by half the height
and width of any instance of a class derived from DrawObject.

LotusObjects: Building Blocks for Developing Applications 2-13

After defining the ShrinkDrawObject sub, you can use it with the derived
classes of DrawObject. The following sub is the Click event script for any
Rectangle object.

Sub Click (x As Rectangle)

Call ShrinkDrawObject(x)

End Sub

This sub runs when the user clicks a rectangle, as indicated by the data
type, Rectangle, of the argument. When the script runs, it executes the
ShrinkDrawObject sub. Since Rectangle is a derived class of DrawObject,
ShrinkDrawObject reduces the size of the rectangle that is clicked.

You can also call ShrinkDrawObject in the Click event scripts of each of the
other derived classes of DrawObject. The following sub is the Click event
script of the Ellipse object.

Sub Click (x As Ellipse)

Call ShrinkDrawObject (x)

End Sub

Abstract classes and inheritance
SmartSuite provides some classes called abstract classes that serve only as
base classes for sets of derived classes. You cannot create instances of an
abstract class.

For example, the Approach Display class, an abstract class, has the
following derived classes: Button, CheckBox, DropDownBox, Ellipse,
FieldBox, LineObject, ListBox, OLEObject, Picture, PicturePlus,
RadioButton, Rectangle, RoundRect, and TextBox. In Approach you can
create instances of these classes, but you cannot create instances of the
abstract class, Display. A class from which objects are created is called a
concrete class.

Downcasting and inheritance
LotusScript has a feature called downcasting that is useful for writing
applications that take advantage of inheritance. Downcasting allows you to
successfully assign a source value (a variable, parameter, property, or
expression) with a data type of a base class to a target (a variable,
parameter, or property) with a data type of a derived class, without
generating any run-time errors due to the different data types.

Suppose you have a set of concrete classes that are all derived from an
abstract base class, and you create a collection of objects of the different
derived classes (you can do this because they all share the same set of

2-14 Developing SmartSuite Applications Using LotusScript

members from the base class). By definition, a collection is made up of
objects of the same class. An object returned from the collection will be
treated as having a data type of the abstract base class. Without
downcasting, this wouldn’t be very useful because you’d only be able to
access the methods, properties, and events of the base class for each object.
Downcasting “casts” down the inheritance hierarchy from the abstract, base
class to the concrete, derived class, allowing you to access all the derived
class members.

To illustrate how this works, consider the inheritance relationship between
the following three classes: LotusCheckBox, LotusOptionButton, and
LotusControl. LotusCheckBox and LotusOptionButton are derived classes
of the base class LotusControl. They inherit all the properties and methods
of LotusControl, and they each have their own additional properties and
methods. You use these classes to create objects that appear on a dialog box.

LotusDialog, another class, represents a dialog box. It has a property called
Controls, which returns a collection of LotusControl objects (the controls on
the dialog box represented by the LotusDialog object). Such a collection can
include both LotusCheckBox and LotusOptionButton objects. As explained
earlier in this chapter, you would use the collection to step through and do
things to each object in the collection. Since the objects in the collection are
probably not of the same type (it’s unlikely that you would have a dialog
box with only one kind of control), you must write a script that performs
type checking at run time to set properties and execute methods that are
specific to each control.

For example, suppose you want to uncheck check boxes on a dialog box
and make option buttons visible. The following script iterates through the
collection of controls on a dialog box represented by the object Dialog1, and
then, depending on the data type of the element, performs an action on the
object. Notice that in this example, the Value property belongs to the
derived class (LotusCheckBox), while the Visible property belongs to the
base class (LotusControl).

Dim Control As LotusControl

ForAll Control in Dialog1.Controls
If TypeName(Control) = "LOTUSCHECKBOX" then

 Dim ChkBox As LotusCheckBox

 Set ChkBox = Control

 ChkBox.Value = 0

Else
 Control.Visible = True

End If
End ForAll

LotusObjects: Building Blocks for Developing Applications 2-15

In the preceding example, if the element being indexed is a LotusCheckBox
object, then a variable called ChkBox is declared as having a data type of
LotusCheckBox. It is then set to a value of the actual element (Control) in
the collection. Remember, since Control is an element of the collection, it
has a data type of LotusControl, the base class. Downcasting allows you to
assign the object stored in Control to ChkBox, despite the different data
types of the two variables. Furthermore, downcasting allows access to the
members of a different derived class, LotusOptionButton, if the data type of
Control is not a LotusCheckBox.

Notice that the data type of the object is verified before Control is assigned
to ChkBox. This data type check has to take place at run time before the
assignment; otherwise, if an object of a derived type other than
LotusCheckBox is stored in Control, and you try to assign it to ChkBox,
which has a data type of LotusCheckBox, an error occurs.

Another approach is to always attempt the assignment and trap the
run-time error, if it occurs.

Dim Control As LotusControl

ForAll Control in Dialog1.Controls
On Error Resume Next

Dim ChkBox As LotusCheckBox

Set ChkBox = Control

ChkBox.Value = 0
End ForAll

In this second example, even if Control stores a value of a derived type
other than LotusCheckBox, the assignment is attempted. If it fails, the error
is trapped and processing continues. In the first example, which uses the
If... Then... Else statement, the data type of the derived class object is
checked first. The assignment of the object to the variable ChkBox is
attempted only if the data type is correct. In both cases, if the assignment
takes place, an object of the derived class is always valid and the derived
class members are always available.

2-16 Developing SmartSuite Applications Using LotusScript

Chapter 3
LotusScript Programming Tools

Lotus provides a powerful set of programming tools for creating and
debugging applications in SmartSuite products. If you have developed
applications in IBM VisualAge or Microsoft Visual Basic, you will be
comfortable with the way LotusScript programming tools support the
development process:

The Integrated Development Environment (IDE) consists of an editor,
debugger, class browser, and utilities designed to support designing,
writing, and debugging scripts.

The Dialog Editor is an authoring tool for creating custom dialog boxes.

The LotusScript Extension (LSX) Toolkit is a separate applications
development kit for developing reusable class definitions that work
with SmartSuite products and Notes.

This chapter introduces each of these tools and illustrates how you can use
them throughout the development process: designing applications, writing
the code, running and debugging the applications, and developing reusable
code libraries for multiple applications.

Using the IDE

Your primary tool for developing applications is the IDE. Each SmartSuite
product supporting LotusScript uses the same IDE. Each document that
you create in a SmartSuite product stores three types of information:

All the product objects that you create in the product, such as
paragraphs, tables, ranges, and diagrams

All the scripts that you write in the IDE for objects in that document

All custom dialog boxes that you create in the Dialog Editor for
that document

Whenever you open a SmartSuite document, all the scripts and dialog
boxes stored in that document are read by your SmartSuite product
automatically. Although you can export your scripts to compiled
LotusScript Object (.LSO) files or plain text LotusScript Script (.LSS) files,
you do not have to create or manage separate files for your scripts and
dialog boxes.

 3-1

Using the sample application for this chapter
To illustrate how these programming tools support real applications, this
chapter provides code examples. All the examples are derived from a
sample application named DW03_S1.123 found in the sample files
directory. To get the most out of this chapter, load this sample application
into 1-2-3 and preview the objects and scripts that it contains.

Opening the IDE
Use the Edit menu command in your SmartSuite product to open the IDE.
To open the IDE and view scripts in the sample application for this chapter:

1. Start 1-2-3.

2. Choose File - Open from the 1-2-3 main menu.

3. Select DW03_S1.123 from the directory containing sample applications
for this book.

4. Choose Edit - Scripts & Macros - Show Script Editor to open an IDE
window for the current document.

Note Choose Edit - Show Script Editor in Approach.

3-2 Developing SmartSuite Applications Using LotusScript

Identifying parts of the IDE window
The IDE uses one window for all the programming tools that it provides:

IDE menus and SmartIcons® provide access to commands and
preferences.

The Script Editor or the Script Debugger are displayed alternately in
one pane. The Script Editor lets you write scripts and check their
syntax. It also lets you set, clear, disable, and enable breakpoints that
you use to debug your scripts. The Script Debugger lets you set, clear,
disable, and enable breakpoints and step through scripts to locate the
source of problems that may occur while a script is executing.

The Object drop-down box lists all global and product objects in
your current document.

The Script drop-down box lists all scripts available for an object
selected in the Object drop-down box.

The Errors drop-down box lists syntax and run-time errors if they
occur.

The Pane Splitter lets you resize, display, or hide panes in the IDE
window.

Menus

SmartIcons

Object drop-down box

Script drop-down box

Script Editor pane

Errors drop-down box

Browser panel

Breakpoints panel

Output panel

Variables panel

Pane splitter

LotusScript Programming Tools 3-3

The Script Utilities pane has four panels, each containing a tool:

The Browser panel lists LotusScript keywords; classes, constants,
procedures and variables defined by your product; and type libraries
and classes for OLE Automation objects. You can copy items from
the Browser panel and paste them into the Script Editor.

The Breakpoints panel lists breakpoints that you set in your scripts in
the order that you set them, and lets you navigate to, clear, disable,
or enable them.

The Output panel displays output generated by any LotusScript
Print statements that you include in your scripts.

During debugging, the Variables panel displays information about
variables for the current script and lets you change their values.

Navigating around the parts of the IDE window is easy. To activate a pane
or panel, click it or use the View menu commands.

Getting Help in the IDE
You can get several forms of Help while you are working in the IDE:

Choose Help - LotusScript for reference Help on the LotusScript
language and its language elements.

Choose Help - Script Editor for task-oriented Help on the Script Editor
and other programming tools in the IDE.

Choose Help - product Objects for Help on the classes for a particular
SmartSuite product.

Select an entry in any drop-down box and press F1 to get
context-sensitive Help on that entry.

Move the insertion point to a keyword in a script in the Script Editor
or Script Debugger and press F1 to get context-sensitive Help on
that keyword.

Designing applications in the IDE

Developing an effective application in LotusScript involves knowing what
script resources are available to you and how you can use them in the
overall structure of your application. To develop basic applications, you do
not need to call external files or write scripts stored outside your current
document. To develop more sophisticated applications and groups of
applications, you can develop and use external files that contain frequently
used scripts and definitions.

3-4 Developing SmartSuite Applications Using LotusScript

Selecting objects for your scripts
LotusScript is closely integrated with the LotusObjects that are created by
SmartSuite products. One of the first steps in developing an application in
the IDE is determining which objects and accompanying scripts for those
objects are relevant to your application.

Using the Object and Script drop-down boxes
The IDE Object drop-down box lists objects that are present in every
product document and objects that you create in your document.
SmartSuite products create a global object for you named (Globals) in 1-2-3,
Approach, and Freelance, or !Globals in Word Pro. The sample application
DW03_S1.123 has a default LotusScript object named (Globals), default
spreadsheet objects such as the 1-2-3 application and your current
document, and user-defined objects such as command buttons, pictures,
and charts. To write a script for an object in your document, select the name
of that object in the Object drop-down box.

The Script drop-down box lists available scripts for the object selected in
the Object drop-down box. Although the scripts available for an object
differ according to the scope and function of the object in the product, the
following scripts are available for most objects:

(Options) scripts contain statements that specify LotusScript language
options, external .LSO or .LSS files, and some constants used by
external files.

(Declarations) scripts contain declaration statements, constant
definitions, and class definitions.

Initialize scripts set up variables declared in a (Declarations) script.

Terminate scripts clean up variables declared in a (Declarations) script.

Event scripts for an object define how that object should respond to
particular events that it receives, such as being clicked, moved, or
opened.

The (Globals) object
The Application object
The Document object

Product objects

Dialog box object

LotusScript Programming Tools 3-5

Using the Browser
The IDE Browser complements the Object and Script drop-down boxes by
providing a view into the hierarchy of classes available to you in your
product.

The Object drop-down box lists objects currently instantiated in your
document (for example a chart named Chart1); the Browser lists classes of
objects from which particular objects get instantiated (the Chart class and
its derived classes such as ChartAxis or ChartBackground).

Whereas the Script drop-down box lists default event scripts for a product
object, the Browser lists all properties, methods, and events associated with
each class. Click the right arrow or down arrow to expand or collapse levels
of information about the selected entry in the list.

To change the title of a chart axis in your document, for example, you need
to know the name of the property that specifies a description for the chart
axis title. Select the ChartAxis class in the Browser and expand it to list all
its properties, including the one you need, the Description property.

Tip Press F1 to display Help on a selected entry in the Browser.

3-6 Developing SmartSuite Applications Using LotusScript

Recording scripts
Recording scripts from your product is another useful way to learn about
the kinds of objects that are relevant to the design of your application. If
your product supports this feature, do the following to record scripts:

1. Choose Edit - Scripts & Macros - Record Script.

Note Choose Edit - Record Transcript in Approach.

2. Specify the location and name of the script into which the IDE records
script statements.

3. Click OK to begin recording.

4. Perform actions in your product that are similar to those that you plan
for your application.

5. Choose Edit - Scripts & Macros - Stop Recording.

6. Review the recorded scripts in the Script Editor.

Planning the scope of your scripts
The IDE offers two ways to manage the scope of scripts:

Write them in (Globals) or in an object script.

Declare their scope explicitly.

Defining scope in (Globals) and object scripts
Besides product objects, each document has a special object named
(Globals) or !Globals. The (Globals) object functions similarly to global
modules or .BAS files in other BASIC programming environments. If you
have identified declarations and procedures that need to be available to all
scripts in your document, you should write them in one of the scripts for
the (Globals) object.

LotusScript Programming Tools 3-7

The IDE automatically adds the following statement to the (Options) script
in (Globals):

Option Public

This has the effect of making all variable, constant, procedure, class, and
type declarations that you create in (Globals) public by default.

Unlike scripts in (Globals), object scripts contain variable, constant,
procedure, class, and type declarations that are available only to other
scripts for that object.

Declaring scope explicitly
You can use the Public and Private keywords to specify the scope of your
declarations explicitly. Using Public does not change the scope of variables
declared in (Globals) when Option Public is set. Using Private in a (Globals)
declaration limits the scope of the declaration to the current object, be that
the (Globals) object or scripts for the current object.

Here are some examples of the scope of public and private declarations in
(Globals):

Declaration Scope

Dim Var1 As String Public by default because of Option Public

Public Var2 As String Public explicitly

Private Var3 As String Private explicitly

Declarations that you create in object scripts are available only to other
scripts for that object; in effect all such declarations are private. You cannot
declare public variables in object scripts.

Working with external script files
As you develop applications that use multiple documents containing
scripts, you may require some common declarations or procedures.
Although you could copy the same scripts to each document that uses
them, it is more efficient to store these common scripts in external script
files that you can call from multiple documents. There are two types of
external script files that you can call from the scripts in your current
document.

.LSS files containing scripts stored as text

.LSO files containing compiled scripts

For information on external script files, search on “Files” in the IDE Script
Editor Help index.

3-8 Developing SmartSuite Applications Using LotusScript

Recycling macros
In planning your application, you don’t have to exclude or reimplement
many macros that you have written in previous releases of 1-2-3 or Word
Pro. For example, to call a 1-2-3 macro named NEWEXPENSE in your
LotusScript application, you can include the following statement in one
of your scripts:

[NEWEXPENSE].MacroRun

To convert and run an Ami Pro macro named GETGLOSS.SMM in Word
Pro, include the following statement in your Word Pro script:

.Application.MacroPlay("C:\AMIPRO\MACROS\GETGLOSS.SMM")

Assembling the pieces for an application
To illustrate how these LotusScript resources work together in an
application, here is an inventory of the objects and scripts that comprise
the sample application DW03_S1.123. This sample is a basic data-entry
application; the first sheet provides command buttons for opening
data-entry dialog boxes and for printing a summary report.

Resource How the resource gets used

Global scripts Declarations in (Globals) used by several scripts

%Include directive for using constants in an external file
LSCONST.LSS

Product objects A command button named cmdExpenses, used to display
a dialog box for entering new income items

A command button named cmdIncome, used to display
a dialog box for entering new income items

Named ranges for database records

A chart

Macros Two macros named NEWEXPENSE and NEWINCOME,
used to copy output from the custom dialog boxes to
database tables named INCOMETABLE and
EXPENSETABLE

External script files Constants in the file LSCONST.LSS included by reference

LotusScript Programming Tools 3-9

Writing scripts in the Script Editor

The IDE Script Editor supports four main tasks:

Selecting objects and their accompanying scripts

Creating custom subs, functions, and properties

Entering LotusScript statements in the selected scripts

Printing, exporting, and importing scripts

Selecting objects and their scripts
To edit scripts in the IDE, you must select an object in the Object
drop-down box and then one of its scripts listed in the Script drop-down
box.

Selecting global options and declarations
Global options and declarations are stored in the (Declarations) and
(Options) scripts for the (Globals) object. To edit global options or
declarations, select (Globals) in the Object drop-down box.

The (Options) script in (Globals) in the sample application DW03_S1.123
contains global options for all scripts in the application:

' All declarations in (Globals) are public by default.

Option Public

' All variables must be declared explicitly.

Option Declare
' Include the contents of an external script file

' that contains LotusScript constants.
%Include "C:\LOTUS\COMPNENT\LSCONST"

The (Options) script is designed to contain Option statements, Deftype
statements, Use and UseLSX statements, and Const statements needed for
Use and UseLSX statements.

To edit global declarations, select (Declarations) in the Script drop-down
box. The following global declarations are used by several scripts in
DW03_S1.123:

' Declare a String variable for getting text

' from the custom dialog box controls.
Dim Dlgstring As String

' Declare an Integer variable for getting numeric

' data from custom dialog box controls.
Dim Dlginteger As Integer

3-10 Developing SmartSuite Applications Using LotusScript

Selecting document scripts
You can also select and edit scripts attached to the document itself. To edit
a document script, select the name of your document in the Object
drop-down box and select a script attached to the document in the Script
drop-down box.

Document scripts are useful when you want to manage what happens when
a document gets opened, closed, moved, resized, and so on. The following
script from DW03_S1.123 illustrates how to hide elements of the 1-2-3 user
interface when the document is opened in 1-2-3.

Sub Opened(Source As Document)

 ' Hide the set of SmartIcons and status bar on startup.

 CurrentApplication.IconBarsVisible = False

 CurrentApplication.StatusBarVisible = False
End Sub

Selecting scripts for product objects
Most of your work in programming SmartSuite products involves creating
and writing scripts for product objects. You do not need to create all the
scripts for product objects because each object in your document has a set
of default scripts. Initially these default scripts are empty. Typically a
product object has the following default scripts:

An (Options) script designed to contain Option statements, Deftype
statements, Use and UseLSX statements, and Const statements needed
for Use and UseLSX statements.

A (Declarations) script designed to contain Dim statements for
variables that you want to be available to all scripts for the current
object and Const statements for those constants that you want to be
available to all scripts for the current object and that are not needed for
Use or UseLSX statements in (Options).

An Initialize sub designed to set up variables you declared in the
object’s (Declarations) script.

LotusScript Programming Tools 3-11

A Terminate sub designed to clean up variables that you declared in the
object’s (Declarations) script.

Event scripts designed to manage the way an object responds to events
that it receives, such as being clicked, selected, or moved.

For information on working with object scripts, search on “Object scripts”
in the IDE Script Editor Help index.

One of the event scripts for the command button named cmdExpenses
(labeled “New expense”) in DW03_S1.123 displays a custom dialog box
when the user clicks that button.

To edit this script, select cmdExpenses in the Object drop-down box and
select Click in the Script drop-down box.

The following script is attached to the command button and opens the
custom dialog box DlgNewExpense.

Sub Click(Source As ButtonControl)

 ' Display the custom dialog box for entering

 ' new expense items.

 ' Display the dialog box modally using the argument "1".

 DlgNewExpense.Show 1
End Sub

3-12 Developing SmartSuite Applications Using LotusScript

Selecting scripts for custom dialog boxes
A dialog box has two types of scripts, those attached to the dialog box itself
and those attached to the dialog box controls that it contains. To select
a script for a dialog box, click the name of the dialog box in the Object
drop-down box and select one of its scripts in the Script drop-down box.
To select a script for a dialog box control, click the right arrow next to the
name of the custom dialog box in the Object drop-down list, select the name
of one of the dialog box controls in that custom dialog box, and select one
of its scripts in the Script drop-down box.

Note The process for developing a custom dialog box in the Dialog Editor
is described later in this chapter.

To edit the Click event script for the command button named
CmdExpenseCancel in the custom dialog box named DlgNewExpense:

1. Select DlgNewExpense in the Object drop-down box.

2. Press ENTER or click the right arrow to display the names of controls
in that dialog box.

3. Select CmdExpenseCancel.

4. Click the Script drop-down box to display a list of scripts available for
CmdExpenseCancel.

5. Select Click to display the script.

Sub Click(Source As LotusCommandButton)

 ' Close the DlgNewExpense dialog box without
 ' processing any of its content.

 DlgNewExpense.Close
End Sub

When the user clicks the Cancel button in the dialog box DlgNewExpense,
1-2-3 closes the dialog box.

Creating scripts
You can create your own subs, functions, and properties in (Globals) or for
any object that is listed in the Object drop-down box. Once you create these
scripts, the IDE lists them in the Script drop-down box. Scripts that you
create in (Globals) can be called from any script in your document, unless
you declare them explicitly as private. Scripts that you create for objects
can be called only from scripts attached to that object.

LotusScript Programming Tools 3-13

There are three ways to add scripts to (Globals) or to object scripts:

Enter the opening line of a Sub, Function, or Property statement in a
script (except within a class). When you move the insertion point off the
line, the IDE completes the procedure by appending a blank line and
the appropriate End line and moves the statements to its own script.

Note If you entered the opening Sub, Function, or Property line in a
script for a product object, the IDE creates the script for that object;
otherwise, the IDE moves the script to (Globals).

Use Create - Sub and Create - Function in the IDE main menu to create
new subs and functions. You can specify whether the new script should
be added to scripts for a product object or for (Globals).

Use File - Import Script to add scripts contained in a text file to
(Globals) or to object scripts.

In each case, the IDE automatically adds the name of the new script to the
Script drop-down box for (Globals) or for an object. To distinguish scripts
that you created from the predefined ones, the IDE displays them in bold
italics in the drop-down box.

For information on creating scripts, search on “Scripts, creating” in the IDE
Script Editor Help index.

Renaming scripts
You can rename subs, functions, and properties in your document; you
cannot rename (Options) or (Declarations). To rename a procedure:

1. Navigate to the procedure.

2. Navigate to the first line of the procedure, which includes its name.

For example:

Sub GetNotesMail (TemplateName as String)

3. Change the name of the procedure.

For example:

Sub GetNotesNetMail (TemplateName as String)

Note You cannot have duplicate names in (Globals) or within the
scripts for a particular object. If you enter a duplicate name under these
circumstances, the Script Editor displays a message notifying you of the
error.

4. Move the insertion point off the line. The Script Editor lists the
procedure with its new name in the Script drop-down box.

Tip Choose Edit - Find and Replace to replace references to the old
procedure name in your existing statements.

3-14 Developing SmartSuite Applications Using LotusScript

Entering text in scripts
The Script Editor provides immediate feedback on the syntax and
formatting of text that you enter in scripts. When you complete a line by
moving the insertion point to another line, the Script Editor formats the line
for correct indentation and checks the line that you typed for syntax errors
such as missing argument separators, missing quotation marks, incorrect
nesting for arguments, and so on. If it finds a syntax error in a line, it marks
the line in a new color and provides information about the error in the
Errors drop-down box.

To get more information about the syntax error and an example of correct
syntax, highlight the error in the drop-down box and press F1.

The following example from DW03_S1.123 illustrates how to enter
comments, LotusScript language statements, product statements, and
multiline statements. The script is attached to the Click event for the 1-2-3
command button named cmdPrint on the first sheet. When the user clicks
cmdPrint, 1-2-3 displays a message box, selects a named range for printing,
and prints the range.

Sub Click(Source As ButtonControl)
 ' Display a message box reminding the user to
 ' check the shared printer.

 %REM
 The constant MB_ICONINFORMATION is derived from

 the external script file LSCONST.LSS.
 %END REM
 MsgBox "Remember to check the printer.", _

 MB_ICONINFORMATION, _ ' MsgBox icon
 "Printer Reminder" ' MsgBox title
 Rem Print the named range "Report".

 Set CurrentPrintSettings.PrintSelection = [REPORT]
 CurrentApplication.Print
End Sub

LotusScript Programming Tools 3-15

Entering comments
You can add comment lines to any script in your document. LotusScript
does not execute any text in a comment. LotusScript uses the following
conventions for comment lines:

A single quotation mark designates the beginning of a comment on one
line. Although the single quotation mark need not begin the line
because it can follow a statement, all text after the single quotation
mark is part of the comment.

The keyword Rem designates the beginning of a comment on one line.
Although Rem need not begin the line because it can follow a statement,
all text after Rem is part of the comment.

The %REM and %END REM directives designate the beginning and
end of one or more lines of comment. %REM and %END REM must be
the first text on a line although they may be preceded on the line by
spaces or tabs. Each must be followed by one or more spaces, tabs, or
newline characters before any more text appears. %REM blocks cannot
be nested.

If you receive a syntax error message on a comment that you enter, press F1

to get Help on entering legal comments.

Entering LotusScript language statements
When you enter a statement containing a LotusScript language keyword,
such as Print or MsgBox in the example above, the Script Editor displays
the keyword in a different color to differentiate it from comments, data, or
product statements.

For information on the LotusScript language and LotusScript language
keywords, search on “Keywords” in the IDE Script Editor Help index.

Entering product statements
The Script Editor also checks the syntax of scripts that contain product
statements such as the following:

Set CurrentPrintSettings.PrintSelection = [REPORT]
CurrentApplication.Print

The Script Editor marks product keywords in a color to distinguish them
from language keywords, comments, and data.

3-16 Developing SmartSuite Applications Using LotusScript

Entering multiline statements
The Script Editor does not wrap long lines to fit the width of the IDE
window; you can navigate to any part of a long line. For the sake of
readability, however, you can break a long statement across multiple lines
in the Script Editor. To break a long statement into multiple lines, terminate
each line with a space and a line continuation character (_), an underscore.

MsgBox "Remember to check the printer.", _

 MB_ICONINFORMATION, _
 "Printer Reminder"

The Script Editor does not provide feedback on syntax until you complete
the multiline statement.

For more information on multiline statements, search on “Line continuation
character” in the IDE Script Editor Help index.

Printing scripts
To print your current script, all scripts for the current object, or all scripts in
your document:

1. Choose File - Print Script from the IDE main menu.

2. Specify the range of scripts to print:

Current script

All scripts for current object

All scripts for document

3. Click Print to begin printing the scripts.

Exporting scripts to external .LSO or .LSS files
All your scripts and dialog boxes are stored in a product document. If you
want to export some or all of the scripts in your document, you can do it in
two ways: by exporting scripts in (Globals) to an object file or exporting
scripts to a text file.

Exporting global scripts to an .LSO file
.LSO files contain public definitions that you can use in your applications.
To export the global scripts in your current document to an .LSO file:

1. Choose File - Export Globals as LSO from the IDE main menu.

2. Specify a name and location for the .LSO file.

3. Click Save to create the .LSO file.

LotusScript Programming Tools 3-17

Once you create an .LSO file containing public definitions, you can make its
definitions available to any of your applications with the Use statement.

Use "C:\LOTUS\ADDINS\WKREPORT.LSO"

For information on LotusScript Object files, search on “LSO files” in the IDE
Script Editor Help index.

Exporting scripts to an .LSS file
You can also export scripts in your current document to an .LSS file. .LSS
files contain plain text versions of scripts. You can edit .LSS files in any text
editor, import them to other applications, or reference them from
applications.

To export the scripts in your current document to an .LSS file, do the
following:

1. Choose File - Export Script from the IDE main menu.

2. Specify a scope for the scripts to be exported.

Current script only

All scripts for this object

3. Specify a name and location for the .LSS file.

Note The default extension for LotusScript script files is .LSS; you can
use any extension or no extension.

4. Click Save to create the .LSS file.

Once you create the .LSS file, you can use its scripts by entering the
following statement in your current document:

%Include "C:\LOTUS\COMPNENT\LSCONST.LSS"

For information on LotusScript script files, search on “LSS files” in the IDE
Script Editor Help index.

Running and debugging scripts in the Script Debugger

Once you have written your scripts in the Script Editor, the IDE Script
Debugger offers a powerful set of tools for running scripts, debugging
problems in the scripts, and monitoring how efficiently your scripts
execute. In the IDE Script Debugger, you can set, clear, disable, and enable
breakpoints and step through scripts to locate the source of problems that
may occur while a script is executing.

3-18 Developing SmartSuite Applications Using LotusScript

The Script Debugger
The Script Debugger lets you examine your script as it executes in your
product. In the Script Editor, you can set, clear, enable, and disable
breakpoints in your scripts. When you run a script containing an enabled
breakpoint, the Script Debugger pauses script execution at the breakpoint
and lets you evaluate how the script is running.

The Script Debugger is displayed automatically when a script is executing
and it encounters one of your breakpoints, a Stop statement in your script,
or a run-time error.

The following illustration shows the major parts of the Script Debugger:

The utilities in the Script Debugger provide additional support for
debugging your scripts:

The Calls drop-down box provides information about the name of your
current procedure and any procedures that called it.

The Breakpoints panel lists all breakpoints that you set in your scripts
in the order that you set them, and lets you navigate to them, clear
them, enable them, or disable them.

The Output panel displays output generated by LotusScript Print
statements that you put in your scripts.

The Variables panel displays information about variables for the current
procedure and lets you change their values while debugging the script.

Calls drop-down box

Browser panel

Breakpoints panel

Output panel

Variables panel

Disabled breakpoint

Enabled breakpoint

LotusScript Programming Tools 3-19

Running scripts
You can run scripts while the IDE window is open or closed. Here are some
guidelines for running scripts:

If your current sub has no parameters, you can run it by pressing F5 or
by choosing Script - Run Current Sub.

If your current sub has parameters that are supplied by the procedure
that calls it, you can select that calling procedure and run it.

If your current sub is an event script for a product object, you must
trigger the event for the product object in order to run the sub.

Using breakpoints
Breakpoints are markers that you set in your scripts to assist in the
debugging process. When you set a breakpoint on a statement, the
Debugger pauses at that line when it executes your script. You can get an
accurate picture of how your script is executing by placing breakpoints at
key points in your script. If you do not want a breakpoint to pause
execution of your script, you can disable it. In effect, the breakpoint is still
on the line in case you need it again, but the Script Debugger does not
pause execution at that line.

Setting and clearing breakpoints
You can set or clear breakpoints in your scripts with the mouse or with
Script or Debug menu commands. The IDE sets breakpoints for individual
lines; you cannot set breakpoints for a group of selected statements. You
can clear breakpoints for individual statements, for a group of selected
statements, or for all statements in your document.

For information on setting and clearing breakpoints, search on
“Breakpoints” in the IDE Script Editor Help index.

Enabling and disabling breakpoints
You can enable or disable breakpoints in your scripts with the mouse or
with Script or Debug menu commands. Disabling breakpoints is useful
when you want to stop using breakpoints temporarily but plan to use them
again later.

For information on enabling and disabling breakpoints, search on
“Breakpoints” in the IDE Script Editor Help index.

3-20 Developing SmartSuite Applications Using LotusScript

Stepping through scripts
You can identify potential problems with the flow of control or execution of
your script by stepping through your scripts on a statement-by-statement or
procedure-by-procedure basis.

The following menu items for stepping through scripts are available in the
IDE Debug menu and via the Debugger SmartIcons.

Step
Step lets you execute a script procedure one statement at a time. This lets
you evaluate the effect of each statement on your product or on your script
variables. If a statement in the current procedure calls another procedure,
the Script Debugger also executes statements in that procedure one at a
time. If another product window was active before the Script Debugger
stepped to the current script statement, that product window is activated
once again before the Script Debugger executes the next statement in your
script. As you step through statements in your script, the Variables panel
updates accordingly.

Step Over
Step Over works the same as Step with the exception that Step Over does
not stop inside procedures that are called by the current statement.

Step Exit
Step Exit completes execution of the current procedure and stops at the first
statement after the current procedure call. From there you can use other
Step commands. If the current procedure was called from the product, the
script terminates normally. If another product window was active before
the Script Debugger executed the current script, that product window is
activated once again before script execution resumes.

Continue Execution
Continue Execution resumes script execution until the current script
completes successfully or until a breakpoint is encountered. If another
product window was active before the Script Debugger resumed execution
of your script, that product window is activated once again before script
execution resumes.

Stop Execution
Stop Execution terminates the execution of your current script at its current
location. The IDE displays the Script Editor.

LotusScript Programming Tools 3-21

Monitoring variables in your scripts
You can monitor and change the value of a variable when scripts that use
that variable are running in the Script Debugger. The Variables panel lists
the current value of variables used in scripts that are running. You can
monitor how your scripts are using variables by changing their values while
the script executes.

To change a variable value during debugging:

1. In the Calls drop-down box in the Script Debugger, select the procedure
that contains the value definition.

2. In the Variables panel, select the variable whose value you want to
change.

If the variable value can be changed, the value box, at the bottom of the
Variables panel, is enabled. The following illustration shows where you
could change the value of the Text property of the command button
from “New Expense” to something else.

3. In the value box, enter a new value for the variable.

If a variable stores more than 1024 characters, you can view and edit
only the first 1024 characters in the box.

4. Press ENTER or click the check mark next to the box to change the value
of the variable.

5. Press ESC or click the check mark next to the box to cancel editing the
value of the variable.

Monitoring calls in your scripts
The Calls drop-down box provides a view into calls between procedures,
that is, which procedure makes what calls to other procedures as your
script executes. The Calls drop-down box has an entry for each call between
procedures. Each item contains the name of the current procedure, the
name of the procedure that called it, other procedures that called it, objects
associated with each procedure, and so on. When you select an item, the

3-22 Developing SmartSuite Applications Using LotusScript

Script Debugger displays the script that made the procedure call. A white
arrow in the breakpoint gutter marks the current script statement. A yellow
arrow in the breakpoint gutter marks the location of a call to the procedure
that contains the current statement.

Items in the drop-down box are dimmed if they are procedures contained
in another product document, referenced with the %Include directive, or
used with the Use statement. You cannot select these items.

When you select a script in the list, the Variables panel displays variables
for the current procedure, their current values, and any global variables
used by the script. You can use the Variables panel to view information
about a variable or change its value.

Developing custom dialog boxes in the Dialog Editor

The Dialog Editor provides an easy-to-use set of tools for creating custom
dialog boxes in 1-2-3, Freelance, and Word Pro. The process is familiar:

Create the dialog box using the Dialog Editor.

Add controls to the dialog box using the Dialog Editor.

Write scripts for the controls using the IDE.

Run the scripts and display the dialog box in your SmartSuite product.

Note Custom dialog boxes are stored in product documents along with the
other scripts in your application.

Creating a custom dialog box
To open the Dialog Editor for your current document, choose Edit - Scripts
& Macros - Show Dialog Editor from a product menu.

The Dialog Editor provides a tabbed panel for each dialog box in your
current document. To select a dialog box to edit in the Dialog Editor, click
its tab.

To create a new dialog box and set some of its design properties:

1. Choose Create - Dialog from the Dialog Editor main menu to create a
new dialog box panel in the Dialog Editor.

2. Right-click the background of the new dialog box to select it and to
display the shortcut menu for that dialog box.

3. Choose Properties from the shortcut menu to display the InfoBox for
that dialog box.

LotusScript Programming Tools 3-23

4. Click the Basics tab in the InfoBox to display a panel containing fields
for the name and caption of the dialog box.

5. Change properties for the dialog box.

Note Some dialog box properties can be set only at design time: colors, fill
patterns, Help file names for context-sensitive Help, and Help topic ID.

The sample application DW03_S1.123 has two custom dialog boxes,
DlgNewExpense and DlgNewIncome. To view the design of the dialog box
DlgNewExpense, open the Dialog Editor and click the tab named
DlgNewExpense.

Adding controls to the dialog box
The Dialog Editor is an OLE container that supports OLE controls (OCXs)
developed by Lotus and other control vendors. The Dialog Editor provides
12 Lotus controls and displays icons for each control in the control Toolbox.
The Toolbox displays the name of controls when you move the mouse
pointer over Toolbox icons.

Tip Each Lotus control is listed in the Browser.

The following illustration shows the Toolbox and the types of controls that
you can add to your dialog box.

To add one of these controls to your dialog box, do one of the following:

Click the icon in the Toolbox, click the background of the dialog box
where you want to place the control, and size the control.

Double-click the icon in the Toolbox to create a default instance of the
control in the center of the dialog box and size that control.

3-24 Developing SmartSuite Applications Using LotusScript

The sample dialog box DlgNewExpense uses nine instances of three types
of controls:

To examine the properties for a control, right-click the control and choose
Properties from the shortcut menu. Use the InfoBox for each control to
determine text colors, fonts, borders, names, captions, and default values in
list boxes.

To view a list of both Lotus and third-party controls that you can add to
your dialog boxes, choose Create - Control - More in the Dialog Editor and
select from among the OLE controls registered on your system.

Lotus TextBoxes

Lotus Labels

Lotus CommandButtons

Lotus controls
in the Toolbox

Registered OLE controls

LotusScript Programming Tools 3-25

Writing scripts for controls
The Dialog Editor and the IDE are closely integrated. To display the most
recently edited or default script for a control, double-click that control.

The following illustration shows the dialog box control named
CmdExpenseOK selected in the Object drop-down box and its
corresponding default event script, Click, selected in the Script drop-down
box.

As you add controls to your dialog boxes, the IDE adds their names to the
list of objects in the Object drop-down box. Click the object in the
drop-down list to select it so you can write a script for it. Click the Script
drop-down box in the IDE to display a list of scripts associated with the
selected object.

When the user enters values or makes selections in a dialog box, you can
use that information in your scripts by accessing the properties of the dialog
box controls. The following script gets the current value of the text box
control named TxtExpenseDate in the dialog box DlgNewExpense and
reassigns that value to the sheet cell D:B4.

' Assign the value of the text box control TxtExpenseDate

' in DlgNewExpense to the global variable Dlgstring.
Dlgstring = DlgNewExpense.TxtExpenseDate.Text

' Put the value of Dlgstring into cell D:B4, the first

' cell in a temporary range named Temp1.
[D:B4].Contents = Dlgstring

Tip If you want to validate input from the user before using it elsewhere
in your scripts, you can use the Change event script associated with many
dialog box controls. When the user completes entering or selecting
information in a control, any scripts in the Change event script are
executed.

3-26 Developing SmartSuite Applications Using LotusScript

Running the dialog box from your application
To call a dialog box from your scripts, you must use methods for the Dialog
object. The following example illustrates some of the methods for managing
dialog boxes at run time.

Sub DialogFireDrill

 ' Display DlgNewExpense; run it as a modal dialog
 ' box (that is, assumes control of the product

 ' until the user supplies input).

 DlgNewExpense.Show 1

 ' Close DlgNewExpense.
 DlgNewExpense.Close

 ' Display DlgNewExpense; run it as a modeless dialog

 ' (that is, the user can do other tasks in the product

 ' while the dialog is displayed).

 DlgNewExpense.Show
 ' Hide DlgNewExpense temporarily.

 DlgNewExpense.Hide

 ' Redisplay DlgNewExpense.

 DlgNewExpense.Show
End Sub

For more information on using the Dialog Editor and Lotus controls, choose
Help from the Dialog Editor main menu.

Developing LotusScript Extension modules
LotusScript Extension (LSX) modules are Dynamic-Link Library (DLL) files
that contain public class definitions for any product that supports the
LotusScript language. Typically LSX modules add classes to your
SmartSuite product, effectively expanding the number of classes available
for all your scripts. For example, an LSX module that contains a new class
for accessing data in Notes documents would let you connect existing
product objects such as 1-2-3 cells or Approach fields to external Notes
data.

To make an LSX class available to your scripts, use the following statement:

UseLSX "C:\LOTUS\APPROACH\DBENGN01.LSX"

Lotus provides LSX modules for Notes and Approach; other LSX modules
are being developed for SmartSuite products by Lotus and by third-party
developers. To develop your own LSX module, you must obtain a copy of
the LotusScript Extension Toolkit. You can download the Toolkit from the
World Wide Web by connecting to the Lotus home page
(http://www.lotus.com).

LotusScript Programming Tools 3-27

Chapter 4
Building a Single-Product Application

The SmartSuite application you develop, whether it uses one or more
SmartSuite products, can take advantage of product features and perform
tasks that address specific user needs. Any application that you develop is
controlled by one or more subs that run inside the product in which the
script was written. The subs are saved as part of a document in that
product. These scripts act on the objects that the product exposes. In most
cases, to run such scripts, you must open the documents in which they are
stored, and run them from there.

This chapter uses an application developed and run in Word Pro, called the
Memo Signing application, to introduce some basic concepts that will help
you develop custom applications in SmartSuite products.

Several versions of the application are provided:

The first version shows a simple script that runs from the Word Pro
Edit - Script & Macros menu.

The second version attaches the same script to one of the icons in the set
of SmartIcons so that when the user clicks the icon, the script runs.

The third version illustrates how to make the script run automatically
when the user closes the document in which the script is written.

The fourth version, made up of several scripts, creates a new menu
item, attaches a script to the menu item, and runs the script when the
user clicks the menu item.

 4-1

The Memo Signing script

The Memo Signing script automatically adds several lines of information to
the end of the current document as a memo or letter signature, using
information from the Personal tab in the Word Pro Preferences dialog box.

When the script runs in a document, it takes the information from the
dialog box above, and places the following text at the end of the document.

4-2 Developing SmartSuite Applications Using LotusScript

Entering the script
To write the script in this example, do the following in Word Pro:

1. Choose File - New Document to create a new document.

2. Click Create a Plain Document.

A blank document appears.

3. Choose Edit - Script & Macros - Show Script Editor.

The Integrated Development Environment (IDE) Script Editor appears
with the following text in the Script Editor pane. Notice that the Object
drop-down box displays !Globals and the Script drop-down box
displays Main.

Building a Single-Product Application 4-3

4. Type the following script (described in detail in the next section) in the
space between Sub Main and End Sub.

Note The text of this script is stored in DW04_S1.LSS in the sample
files directory. To save time, import the file into the Main sub by
choosing File - Import Script in the IDE.

Dim Ca As WPApplication

Dim Catxt As Text
Dim Caprf As Preferences

Set Ca = CurrentApplication
Set Catxt = CurrentApplication.Text
Set Caprf = CurrentApplication.Preferences

Call Catxt.MoveToEnd ($LwpLocationTypeDocument)
Call Catxt.InsertBreak ($LwpBreakTypeLine)

Catxt.Font.WindowsName = "Brush Script"
Catxt.Font.Size = 16

Call Ca.Type (Caprf.UserName)

Catxt.Font.WindowsName = "Arial"
Catxt.Font.Size = 10

Call Catxt.InsertBreak ($LwpBreakTypeLine)

If (Caprf.Title <> "") Then
 Call Ca.Type (Caprf.Title + ", ")
End If

Call Ca.Type (Caprf.Company)

If (Caprf.PhoneNumber <> "") Then

 Call Catxt.InsertBreak ($LwpBreakTypeLine)
 Call Ca.Type ("Phone: " + Caprf.PhoneNumber)
End If

If (Caprf.FaxNumber <> "") Then

 Call Catxt.InsertBreak ($LwpBreakTypeLine)

 Call Ca.Type ("Fax: " + Caprf.FaxNumber)
End If

If (Caprf.Email <> "") Then

 Call Catxt.InsertBreak ($LwpBreakTypeLine)

 Call Ca.Type ("E-mail: " + Caprf.Email)
End If

5. Choose File - Save As from the Word Pro main menu.

6. Enter the file name SIGNMEMO.LWP in the Save As dialog box.

7. Choose File - Close from the Word Pro main menu to exit the file.

4-4 Developing SmartSuite Applications Using LotusScript

An explanation of the script
This section explains the script in the previous section.

Sub and End Sub
The two lines of code that appear automatically in the Script Editor before
you start entering the script are Sub and End Sub, which indicate the
beginning and end of a sub. Subs are the parts of a script that perform
specific tasks without returning a value (unlike a function, which does
return a value). Subs begin with the Sub keyword followed by the name of
the sub and the sub arguments, and end with the line End Sub. The script
that you write between the Sub and End Sub keywords determines what
the sub does.

The sub name, Main, is assigned automatically by Word Pro. Main is
the default sub of every Word Pro application: the first time you open
the Script Editor, the window appears with an empty sub, Main, in which
you can enter code. Main provides a place for entering code that is not
associated with an object (usually, you enter code into an event script
of an object).

Note You can also use Main to write code that you want to test. For
example, if you are writing a script for the Opened event of a Word Pro
document, it is more convenient to run the script directly from Main, rather
than close and open the document to cause the event to occur and run the
event script. In this case, after you run the script from Main and verify that
there are no errors, you can copy it into the Opened sub of the Document
object.

Setting up the document to sign the memo
The first three lines of the script declare three variables. When you declare a
variable, you specify its data type and in some instances its value. It’s good
practice to put all declarations at the beginning of a script. That way you
always know where to look for information about variables when reading
the code. Use the Dim statement, or one of its variations, to explicitly
declare a variable type. For more information about declaring variables,
search on “LotusScript” in your product Help index, then click “LotusScript
Index.”

Dim Ca As WPApplication

Dim Catxt As Text
Dim Caprf As Preferences

Building a Single-Product Application 4-5

The three variables declared in this script are Ca, Catxt, and Caprf.

Ca is used to store a WPApplication object, which represents the
current Word Pro session.

Catxt is used to store a Text object, as indicated by the data type of
Text. The Text object represents the text in a document.

Caprf is used to store a Preferences object, as indicated by the data type
of Preferences. The Preferences object represents the Word Pro
Preferences dialog box.

Next, the script sets the three variables to the objects you want to store in
them.

Set Ca = CurrentApplication

Set Catxt = CurrentApplication.Text
Set Caprf = CurrentApplication.Preferences

CurrentApplication is a predefined global product variable that stores an
instance of the WPApplication class. WPApplication contains the Text and
Preferences classes as the Text and Preferences properties. By setting Catxt
and Caprf to these two contained objects and Ca to CurrentApplication,
you make the script easier to write and read, since the variable names are
much shorter than the full object specifications.

Next, the script uses the MoveToEnd method of the Text class to move to
the end of a line of text or a document. The method argument,
$LwpLocationTypeDocument, a Word Pro-specific constant, specifies the
location, in this case the end of the document.

Call Catxt.MoveToEnd ($LwpLocationTypeDocument)

The next line of code uses the InsertBreak method of the Text class to insert
a break in the text. The argument is a Word Pro constant,
$LwpBreakTypeLine, that indicates the kind of break you want to insert: in
this case, a line break, which is equivalent to a carriage return.

Call Catxt.InsertBreak ($LwpBreakTypeLine)

Printing the user’s signature
To print the user’s name from the Word Pro Preferences dialog box, the
script first sets the font of the text to Brush Script. Notice the use of
containment in this line. Remember that Catxt represents
CurrentApplication.Text. Text, contained by CurrentApplication, is a
property of the WPApplication class and contains a Text object. Font,
contained by Text, is a property of the Text class and contains a Font object.
WindowsName is a property of the Font class that defines the font name.

Catxt.Font.WindowsName = "Brush Script"

4-6 Developing SmartSuite Applications Using LotusScript

The size of the text is defined as 16 points by setting the Size property for
the Font object.

Catxt.Font.Size = 16

The user’s name, as it appears in the Word Pro Preferences dialog box, is
then printed on the screen using the Type method of CurrrentApplication.
The argument for the Type method is the value to be printed on the screen.
In this case, the value is the variable in which the user’s name is stored,
Caprf.UserName.

Call Ca.Type (Caprf.UserName)

Changing the font
To print the rest of the information, the script changes the font from
16-point Brush Script to 10-point Arial and inserts a carriage return.

Catxt.Font.WindowsName = "Arial"

Catxt.Font.Size = 10
Call Catxt.InsertBreak ($LwpBreakTypeLine)

Printing additional information conditionally
The remainder of the script prints the user’s title, company name, phone
number, fax number, and e-mail address, if each of these exists on the
Personal panel of the Word Pro Preferences dialog box.

For example, the user’s title, followed by a comma and a space, is printed if
the Title property of the Preferences object contains a value.

If (Caprf.Title <> "") Then

Call Ca.Type (Caprf.Title + ", ")
End If

The remaining If statements work in the same manner, printing values if
they are stored in properties of the Preferences object.

Building a Single-Product Application 4-7

Running the Memo Signing script

After you write a script, you have to decide how you want the user to run
it. Ask yourself the following questions:

Do you want the user to run the script from the Edit - Script & Macros
menu?

Do you want to attach the script to an icon that the user must click to
run the script?

Do you want the script to run automatically, using an event, when the
user opens a Word Pro document?

Do you want to attach the script to a menu item that the user must click
to run the script?

Running the script from the Word Pro Edit - Script & Macros menu
The simplest way for the user to run a script is directly from the Word Pro
Edit - Script & Macros menu:

1. In Word Pro, the user chooses Edit - Script & Macros - Run.

2. If the script is stored in the current file, the user selects “Run script
saved in the current file” and selects the name of the script from the
drop-down box.

3. If the script is stored in another file, the user selects “Run script saved
in another file” and enters the path for the file.

4. The user clicks OK.

Running the script from an icon
You probably want to provide your users with a user-friendly interface.
Instead of forcing them to go to the Edit pull-down menu and then the
Script & Macros cascade from which they choose Run, you can provide
them with a more straightforward way to run the script, such as clicking an
icon in the set of SmartIcons.

Attaching the script to an icon
After you write the script, follow these steps in any Word Pro document to
attach the script to an icon:

1. Choose File - User Setup - SmartIcons Setup.

The SmartIcons Setup dialog box appears.

2. Click Edit Icon.

3. Click the desired icon in the “Available icons you can edit or copy” box
and click Attach Script.

The Word Pro - Choose Script dialog box appears.

4-8 Developing SmartSuite Applications Using LotusScript

4. Choose the name of the document you just created, SIGNMEMO.LWP.
This file contains the script for the Memo Signing application.

5. Click Open to return to the Edit SmartIcons dialog box.

If you want a description to appear in the icon bubble help, type it in
the “Description” box.

6. Click Save.

7. Click Done to return to the SmartIcons Setup dialog box.

8. Click OK.

Running the script
To run the script that is now attached to the icon, simply add the icon to the
icon bar. The user can then open a new document (or an existing one, if the
user wants to add the signature text to it), and click the icon. The script
runs and adds the text to the end of the open document.

Running the script automatically using events
You may decide that the script should run automatically as part of a user’s
regular work process. In this case, events are very useful. An event occurs
when the user, application, or system, performs an action. Different actions
trigger different events. For example, opening a document triggers the
Opened event; closing a document triggers the PreClose event.
Document/Opened is an object/event pair. Document/PreClose is another
object/event pair. If a script is associated with the object/event pair, the
script runs automatically when the event is triggered but the user,
application, or system.

You can view all the events of an object in the IDE Browser by clicking the
name of the class from which that object is instantiated and then clicking
the Events subheading under that. For information about viewing class
members in the IDE Browser, see Chapter 3.

You can also view the events associated with an object in the Script Editor:

1. Click the Object drop-down box and select an object name, for example
!Document, which represents the current document in Word Pro.

Building a Single-Product Application 4-9

2. Click the Script drop-down box for a list of events for the object you
selected.

You can enter a script in the Script Editor for each of these events.

Running the script from the PreClose event
The purpose of the Memo Signing script is to sign a document. Most likely,
users would want to do this when they are done writing the document. If
you attach the script to the PreClose event of the document, the script will
run right before the document closes. In other words, the user chooses
File - Close, the script runs, and then the document closes.

To enter the script for the PreClose event for the document, open the file
called SIGNMEMO.LWP (which you created earlier in this chapter) and do
the following:

1. Choose Edit - Script & Macros - Show Script Editor.

The IDE Script Editor appears.

2. Click the Object drop-down box and select !Document.

This is the name that Word Pro automatically assigned to the Document
object that represents the document you are working in.

4-10 Developing SmartSuite Applications Using LotusScript

3. Click the Script drop-down box and select PreClose.

The following text appears in the Script Editor. This is the PreClose
event sub, with space between the Sub and End Sub keywords for you
to write a script for the event.

4. Type the following statements in the space between the Sub and End
Sub keywords:

Call Main
Call Source.Save

The first statement runs the Main sub, which contains the Memo
Signing script, whenever the user closes the document.

The second statement invokes the Save method of the Document object.
Notice that Source As TextDocument is one of the parameter
declarations of the PreClose sub. The parameter Source, which
represents the document being closed, is a convention that SmartSuite
products use within an event script to identify the object of the current
object/event pair.

Because these statements are in the PreClose event script, Main runs,
the signature text is added, and the document is saved, all before the
document closes.

5. Choose File - Save.

Building a Single-Product Application 4-11

Now, close the document. The next time the document is opened and
closed, the script runs, adds the signature information to the end of the
document, and saves the file.

Running the script from a new menu item
Another way to run the script is to attach it to a new menu item so that
when the user clicks the menu item, the script runs. For this to happen, the
application must do the following:

Add a new menu item to the Word Pro menu bar that appears when
the user opens the document.

Attach the Memo Signing script to the menu item.

Run the Memo Signing script.

Delete the new menu item from the Word Pro menu bar when the user
closes the document.

These tasks are performed by three subs (in the file DW04_S2.LWP in the
sample files directory) that together form the application: Opened,
SignMemo, and PreClose. Opened and PreClose are predefined event subs
of the Document object. SignMemo is a user-defined sub that runs when the
user clicks the new menu item called Sign.

Opened
The Opened sub is a script associated with the Opened event of the
Document object that represents the file DW04_S2.LWP.

Every time the user opens DW04_S2.LWP, the Opened event is triggered
and the following script attached to it runs. The script creates a new menu
item on the Word Pro menu bar.

Sub Opened (Source As TextDocument, DocName As String)

Dim MenBar As MenuItem
Dim MenItem As MenuItem

Set MenBar = _
 CurrentApplication.ApplicationWindow.LwpMenuBar
Set MenItem = MenBar.NewItem("&Sign", "!SignMemo")

End Sub

The Opened sub takes two arguments, Source and DocName. Source
represents the Document object. DocName represents the name of the
document.

The first two lines of the script declare two variables, MenBar and
MenItem. MenBar is used to store the Word Pro menu bar, so it is declared
with a data type of MenuItem. MenItem is used to store the new menu item
that will be added to the menu bar and is also declared with a data type of

4-12 Developing SmartSuite Applications Using LotusScript

MenuItem. This means that the only kind of data that can be stored in
MenBar and MenItem is an instance of the Word Pro MenuItem class. A
Word Pro MenuItem object represents either a menu bar or a menu item on
a menu bar.

The last two lines of the script are two Set statements. The Set statement
initializes a variable to an object.

Set MenBar=CurrentApplication.ApplicationWindow.LwpMenuBar

The first Set statement, above, sets MenBar to the Word Pro menu bar.
CurrentApplication, an object that is an instance of the Word Pro
Application class, represents the current Word Pro session. It contains the
ApplicationWindow class through the ApplicationWindow property, which
represents the Word Pro application window. LwpMenuBar is a property
of ApplicationWindow, and represents the Word Pro menu bar.

If you look in the IDE Browser at the list of Word Pro classes and click
ApplicationWindow and then Properties, you see LwpMenuBar listed as a
property with a data type of MenuItem, indicating that the
ApplicationWindow class contains the MenuItem class through the
LwpMenuBar property. Since MenBar and LwpMenuBar have the same
data type, MenuItem, MenBar can be set to the value of the LwpMenuBar
property.

Building a Single-Product Application 4-13

The second Set statement, next, does several things simultaneously.

Set MenItem = MenBar.NewItem("&Sign", "!SignMemo")

The statement does the following:

Creates a new menu item on the Word Pro menu bar using the
NewItem method of the MenuItem class.

Assigns the name Sign to the new menu item and underscores the first
character (the letter S) of the name.

Attaches a sub called SignMemo to the new menu item, using
“!SignMemo” as an argument of the NewItem method. The exclamation
point (!) is a Word Pro script convention.

Sets the variable MenItem to the new menu item called Sign.

SignMemo
The SignMemo sub is the script now attached to the new menu item. It
contains the same code you entered in the Main sub of SIGNMEMO.LWP,
earlier in this chapter. The SignMemo sub, triggered when the user clicks
the menu item, causes the information from the Word Pro Preferences
dialog box to appear at the end of the document.

This sub is a !Globals object script. (!Globals is listed as (Globals) in other
SmartSuite products.) For information about defining scope in !Globals
scripts, see Chapter 3.

PreClose
The PreClose sub is the script that runs when the Document object PreClose
event is triggered. When the user chooses a Word Pro command to close
the document (for example, File - Close or File - Exit), the script runs
immediately before the document closes.

The script deletes the Sign menu item from the menu bar for two reasons.
First, this menu item is associated with this document, but if the menu item
is not removed, it will remain on the menu bar when a different document
is opened, causing problems when the user clicks the item. Second, the next
time this document is opened, another instance of the Sign menu item will
be added, which means that the menu bar will contain as many Sign menu
items as the number of times the document is opened.

Sub PreClose (Source As TextDocument, DocName As String)

Dim MenBar As MenuItem

Set MenBar = _
 CurrentApplication.ApplicationWindow.LwpMenuBar
Call MenBar.DeleteItem ("&Sign")

End Sub

4-14 Developing SmartSuite Applications Using LotusScript

The PreClose sub, like the Opened sub, takes two arguments, Source and
DocName.

The script declares a single variable, MenBar, with a data type of
MenuItem. This variable is local to this sub, and although it has the same
name as the variable declared in the Opened sub, it can only be used inside
this sub.

The second line in the script sets the variable MenBar to the Word Pro
menu bar, as was done in the Opened sub. The last line of the script deletes
the menu item called Sign from the Word Pro menu bar using the
DeleteItem method of the MenuItem class.

Building a Single-Product Application 4-15

Chapter 5
Building Cross-Product Applications

A major benefit of building applications in SmartSuite is that you can
combine data and functionality from multiple products to create a single
custom application. Because SmartSuite products that support LotusScript
share similar object models and are OLE applications, you can expose
LotusObjects from one product to another as OLE Automation objects.
These same products are also OLE Automation controllers, so you can use
them or any other OLE Automation controller, such as Visual Basic, to
manipulate LotusObjects.

This chapter presents an overview of OLE Automation concepts and two
sample applications. The first application uses LotusScript to perform OLE
Automation between Word Pro and Approach. The second application uses
Visual Basic to control objects in 1-2-3.

OLE Automation concepts

OLE Automation lets you access and control one product’s objects from a
script running in another product. The product through which you
manipulate such objects is called the OLE Automation controller. The
objects exposed to the OLE Automation controller are called OLE
Automation objects. 1-2-3, Approach, Freelance Graphics, and Word Pro
function as OLE Automation controllers and also expose all of their
LotusObjects as OLE Automation objects.

OLE Automation controllers
LotusScript lets you manipulate LotusObjects in the product in which you
are running LotusScript. In addition, you can use LotusScript to control
objects in products other than the one in which you are running
LotusScript. For example, through LotusScript, 1-2-3 can act as an OLE
Automation controller and manipulate objects in Word Pro. All Lotus
products that support LotusScript are OLE Automation controllers.

5-1

OLE Automation objects
When an OLE Automation controller accesses objects created by another
product, the objects that are exposed to the controller are called OLE
Automation objects. SmartSuite products provide OLE Automation objects
that are the same LotusObjects available in the product in which they are
instantiated. The only difference is that they are manipulated by an outside
product, the OLE Automation controller.

The OLE Automation controller can manipulate or extract data from the
objects in another product by getting and setting properties and invoking
methods. Every Lotus product that supports LotusScript can expose its
objects as OLE Automation objects. You can also access such OLE
Automation objects through Visual Basic, Visual C++™, or other languages
written for applications that support OLE Automation.

Accessing LotusObjects using OLE Automation
Once you know how to write scripts that run independently within
products, you don’t have to learn much more to take advantage of OLE
Automation. When you write a script that controls another product’s
objects, the syntax you use and the methods and properties of those objects
are quite similar to what you would use in a script written for that product.

The following script, written in LotusScript to run in Word Pro, is an
example of a product manipulating its own objects. This script creates a
new Word Pro document, inserts some text, and saves the file:

Dim App As WPApplication

Set App = CurrentApplication

Call App.NewDocument ("Foo.Lwp")

Call App.Text.InsertText ("This is a New Line")
Call App.Save

You can do the same task from outside Word Pro using a product that runs
a scripting language other than LotusScript. The next script is an example of
a product manipulating objects in another product, using Visual Basic. The
product running the Visual Basic script is an OLE Automation controller
and Word Pro is an OLE Automation object:

Dim App As Object

Set App = CreateObject ("WordPro.Application")
App.Visible = True

Call App.NewDocument ("Foo.Lwp")

Call App.Text.InsertText ("This is a New Line")
Call App.Save

5-2 Developing SmartSuite Applications Using LotusScript

In this example, Visual Basic starts Word Pro, makes it visible, and instructs
it to create the new Word Pro document, insert some text, and save the file.
The syntax of the Visual Basic example differs from the Word Pro example
in the following ways:

The variable App is declared with the data type of Object, rather than
WPApplication. Object is a Visual Basic data type.

The Visual Basic CreateObject function is used to access Word Pro via
OLE Automation.

The Visible property of the object must be set to True to allow the user
to see the Word Pro session.

Notice that aside from the Set statement that accesses Word Pro, the rest of
the code in the two examples is the same. The Set statements differ because
in the first example, LotusScript is already running in Word Pro; in the
second example, Visual Basic is running outside of Word Pro and must use
OLE Automation to start the product. The three Call statements in the two
examples, however, are identical.

LotusScript applications as OLE Automation controllers
Any product that supports LotusScript can act as an OLE Automation
controller. The LotusScript CreateObject and GetObject functions allow you
to write scripts that access OLE Automation objects. These objects are
stored in variables of type Variant, a LotusScript data type. For information
about LotusScript data types, search on “LotusScript” in your product Help
index and click “LotusScript Index.”

The following script is an example of one SmartSuite product manipulating
objects in another SmartSuite product, using LotusScript. The script can be
run, for example, in Approach or in any other product that supports
LotusScript. Like the two preceding examples, it creates a new Word Pro
document, inserts some text, and saves the file.

In this example Approach is an automation controller accessing Word Pro,
an automation object:

Dim App As Variant

Set App = CreateObject ("WordPro.Application")
App.Visible = True

Call App.NewDocument ("Foo.Lwp")

Call App.Text.InsertText ("This is a New Line")
Call App.Save

Building Cross-Product Applications 5-3

Notice that this example closely resembles the Visual Basic example shown
in the preceding section. The Word Pro OLE Automation object is created
in both examples using the CreateObject method. The only difference is that
LotusScript declares the variable App, in which the Word Pro OLE
Automation object is stored as type Variant, rather than as type Object.

Variables for storing OLE Automation objects
One of the differences between a LotusObject and a LotusObject accessed
via OLE Automation is the data type of the variable in which the object is
stored.

A LotusObject is stored in a variable with a data type of the class
of the object.

For example, CurrentApplication is a predefined global Word Pro
variable that stores an object of the WPApplication class. Any variable
you set to CurrentApplication must have a data type of WPApplication.

A LotusObject accessed via OLE Automation is stored in a variable
with a LotusScript data type of Variant or a Visual Basic data type of
Object.

For example, suppose you want to automate Word Pro using
LotusScript. As in the previous example, you create the OLE
Automation object that is a WPApplication object using the
CreateObject function and set it to a variable, App, with a data type
of Variant.

Storing an OLE Automation object in a variable with a data type of Variant
does not affect the availability of the methods and properties of the
LotusObject it represents. In the previous example, CreateObject is using
OLE Automation to create an instance of the WPApplication class. All the
methods and properties of the object stored in App, which is a variable of
type Variant, are available to the script, irrespective of OLE Automation.

Object names for applications
All SmartSuite object models have an Application object. From an
Application object, you can traverse the hierarchy to find all other objects.
To create an OLE Automation object in a Lotus product that has
LotusObjects, use the CreateObject method of your scripting language.

5-4 Developing SmartSuite Applications Using LotusScript

Lotus products use the following object names when exposing their objects
for OLE Automation:

Lotus123.Workbook

Note Unlike the other SmartSuite products, 1-2-3 returns an object of
type Document, instead of an object of type Application. To access the
1-2-3 Application object, once you have accessed the Document object,
use the Parent property of the Document object (Document.Parent).

Approach.Application

Freelance.Application

WordPro.Application

OLE Automation using LotusScript with Word Pro and Approach

The Video Summary application allows the user to create a document in
Word Pro by extracting data from an Approach database. Word Pro, the
product in which all the application’s scripts are running, is the OLE
Automation controller. Approach, the product from which the controller is
accessing objects, provides the OLE Automation objects.

In this sample application, Millennia is a video tape supplier that sells
videos to stores. A user, perhaps a salesperson at Millennia, might run the
Video Summary application every week to generate sales reports for
management. When the application runs, the result is a memo containing
text and a table filled with sales data that has been automatically extracted
from Approach.

Note Before you run this application, make sure that the file
DW05_S1.APR is stored on the sample files directory
(<DRIVE>:\...\SAMPLES\SUITE). If you have moved it to another
directory, then follow these steps:

1. Open the Word Pro document DW05_S1.LWP.

2. Choose Edit - Script & Macros - Show Script Editor.

3. Click the Object drop-down box and select !Globals.

4. Click the Script drop-down box and select (Declarations).

5. In the following statement, specify the path (in <PATH>) in which the
file DW05_S1.APR is stored:

Const DBPATH = < PATH>

6. Click the Script drop-down box and select Menu_Invoices.

Building Cross-Product Applications 5-5

7. Uncomment the following statement:

' Call gApproach.OpenDocument ("dw05_s1.apr", DBPATH, _
' "" ,"" ,False , True)

8. Comment the following statement:

Call gApproach.OpenDocument ("dw05_s1.apr", AutoPATH, _
 "" ,"" ,False , True)

9. Choose File - Save.

10. Choose File - Close.

Generating a sales report
The following steps outline a procedure that the user follows to run the
Video Summary application.

1. Open the Word Pro document DW05_S1.LWP.

A custom menu item, Database, appears in the menu bar. The
document initially contains boilerplate text for a memo to the sales
manager. As yet, there is no table, no data, in the memo.

2. Choose Database.

The pull-down menu displays three items: Invoices, Accounts, and
Customers. These three choices correspond to three databases in
Approach.

5-6 Developing SmartSuite Applications Using LotusScript

3. To generate a report about the number of invoices received from a
specific vendor, choose Invoices; this item corresponds to the Invoices
database in Approach, which contains all the invoice data.

A cascade displays with three items: Open Database, Get Data,
and Close. Only Open Database is active.

4. Choose Open Database.

The Approach file DW05_S1.APR opens, via OLE Automation. This file
gives you access to the database of sales information.

Building Cross-Product Applications 5-7

5. Do a find in Approach to generate the sales data needed for the memo.

In this example, the user wants to generate a report that lists all the
invoices received from Video Stop. The following illustration shows the
found set that results from doing this find.

6. Press ALT+TAB to return to Word Pro.

7. Choose Database - Invoices - Get Data.

This creates the table in the Word Pro document and fills it with the
data of the found set in the Approach file.

5-8 Developing SmartSuite Applications Using LotusScript

8. Choose Database - Invoices - Close before exiting Word Pro.

This closes Approach.

The user can now print the report or attach the Word Pro file to a Notes
e-mail and send it to the recipient. Upon closing the document, the
Database menu item is removed from the menu bar so that the user can
open another document without having an unrelated menu item
appearing in the menu bar.

The Video Summary application used to generate this report comprises the
functions, subs, and program sections described in the following sections.
Lotus strongly recommends that you run the Video Summary application
and view the code in the Integrated Development Environment (IDE) as
you read the following sections.

The functions and subs are described in the order in which they are
typically executed. To view these functions, subs, and program sections in
the IDE, open the file DW05_S1.LWP and choose Edit - Script & Macros -
Show Script Editor. Select an item in the Object drop-down box and the
name of the function, sub, or program section you want to view in the
Script drop-down box.

Building Cross-Product Applications 5-9

!Globals and !Document
When you open the IDE in DW05_S1.LWP and click the Object drop-down
box, two items appear at the top of the list: !Globals and !Document.

Note An exclamation point (!) is a Word Pro LotusScript convention. In
1-2-3, Approach, and Freelance Graphics, Globals appears in parentheses in
the Object drop-down box: (Globals).

As explained in Chapter 3, !Globals is a default LotusScript object that
works similarly to global modules or .BAS files in other BASIC
programming environments. Use !Globals or (Globals) to identify
declarations and procedures that need to be available to all scripts in your
application file.

!Document represents the current document, or an instance of the
TextDocument class (in Word Pro, documents are represented by the
TextDocument class, not the Document class). In contrast to !Globals, use
!Document to identify declarations and procedures that apply only to the
scripts of the TextDocument object that represents the current document.

5-10 Developing SmartSuite Applications Using LotusScript

(Declarations) and (Options)
All objects, including !Globals, have two scripts called (Options) and
(Declarations). Like other scripts, they are in the IDE in the Script
drop-down box. They are worth mentioning here because they are relevant
to most of the functions and subs of this application.

In the (Declarations) script, you declare the information that is available to
all the subs and functions of the object selected in the Object drop-down
box (as opposed to information that is unique to individual subs and
functions). Because the subs and functions in !Globals are available to all
objects in the application, the information provided in the (Declarations)
script of !Globals is available across the entire application. In the Video
Summary application, (Declarations) for the !Globals script includes the
following information:

The %Include directive that lets you use the constants in
LSCONST.LSS, a file that contains predefined LotusScript constants
necessary for the application to process data.

The definition of DBPATH, a constant that represents the path where
the file DW05_S1.APR is located.

Note If DW05_S1.APR has been moved out of the sample files
directory (<DRIVE>:\...\SAMPLES\SUITE), make sure that DBPATH
matches the path where the file is stored.

Several variables that are used by different subs and functions in the
application.

Every object has an associated (Options) script, which you use to indicate
how variables, constants, procedures, and user-defined data types must be
declared for that object. Use (Options) to control how data is checked at
compile time. In this application, the (Options) section of !Globals has two
statements:

Option Public
Option Declare

Option Public makes all variable, constant, procedure, class, and type
declarations that you create in !Globals scripts public by default. In other
words, all the variables in any of the functions and subs of !Globals are
public, unless they are explicitly declared as private. The advantage of
using Option Public (or Option Private) is that you can expose (or hide)
declarations to (or from) other parts of the application. So, in this case,
Option Public for !Globals means that the declarations are public to the
entire application file.

Building Cross-Product Applications 5-11

Option Declare indicates that variables must be explicitly declared. In other
words, a variable must be declared using the Dim statement, which
requires that you specify a data type. The advantage of this is that it makes
the code easier to debug because simple errors, such as mistyped variable
names, can be caught at compile time.

Functions and subs of the Video Summary application
The following sections describe the functions and subs of the Video
Summary application.

Opened
Opened is one of two events of the TextDocument object. This event takes
place every time the user opens the file DW05_S1.LWP and is a good place
to insert code for initialization tasks. In this example, the Opened sub has
been coded with one line that calls the Main sub.

Main
When the document opens, Main runs automatically and calls the following
four subs in this order:

DeleteMenus

InitAppr

CreateMenus

DeleteTable

These subs set up the document and the Word Pro and Approach
environment required for the application to work.

DeleteMenus
DeleteMenus deletes Database from the menu bar. It’s unlikely that the
menu item is there when the document opens because it is deleted from the
menu bar every time the document is closed (DeleteMenus also runs when
the document closes). But in the event that the application or the system
terminates abnormally, the menu item might still exist in the menu bar.
DeleteMenus deletes the item, if it is still there, to ensure that the menu bar
doesn’t display Database twice (since Main also runs CreateMenus, which
adds Database to the menu bar).

5-12 Developing SmartSuite Applications Using LotusScript

InitAppr
This sub controls the OLE Automation of Approach. It initializes Approach
by running the LotusScript CreateObject function, which creates an
Approach OLE Automation object. Word Pro acts as the OLE Automation
controller, accessing the Approach Application object.

Set gApproach = CreateObject("Approach.Application")

gApproach is a global variable that is declared in (Declarations). The
variable is set to the OLE Automation object (“Approach.Application”) that
is created by CreateObject. gApproach now contains an OLE Automation
object that is an Approach Application object.

The InitAppr sub also performs some error trapping. If the Approach
database cannot be found or opened, the On Error GoTo statement points
processing to the section in the sub called Problem. This error-handling
routine determines what kind of error occurred and, using the MessageBox
statement, displays a message.

Problem:

If Err = 208 Then

 MessageBox "InitAppr: Couldn't create Approach" _
 MB_ICONSTOP+MB_OK,"Approach Automation Error. _
 Verify that Approach is installed."

Else

 MessageBox "InitAppr: Got an error - _
 "+Str$(Err)+":"+Error$, MB_ICONSTOP+MB_OK,"Approach _
 Automation Error.Verify that Approach is installed."
End If

CreateMenus
This sub creates the menu item Database and the items in its pull-down
menu and cascades. The sub also adds them to the Word Pro menu bar.
CreateMenus associates subs with each menu item, and these subs are
triggered when the user chooses the menu item.

DeleteTable
This sub deletes the table that was created the last time the application ran.
Presumably, the user runs this application every week, so each week a new
table is created and stored in the document. The following week, the user
runs the application again; this means the previous week’s table has to be
replaced with the current week’s table. If an old table exists in the
document, DeleteTable removes it before the new one is created.

Building Cross-Product Applications 5-13

Menu_Invoices
This sub runs when the user chooses Database - Invoices - Open Database.

Recall that the CreateMenus sub creates the Database menu and then
associates subs with each menu item. When the user selects one of the menu
items, the appropriate sub runs. At that point, the Menu_Invoices sub is
associated with the Open Database menu item.

Menu_Invoices performs several actions:

It calls InitAppr, which creates the instance of Approach. Once
Approach is open, the application can open the Approach file
DW05_S1.APR, using the OpenDocument method of the Approach
Application class. Opening the file gives the user access to the database.

Depending on the directory location of DW05_S1.APR, some text in
Menu_Invoices is commented out and some is uncommented. See the
note with instructions at the beginning of “OLE Automation using
LotusScript with Word Pro and Approach,” earlier in this chapter,
for information about what text is commented and uncommented in
this sub.

5-14 Developing SmartSuite Applications Using LotusScript

OpenDocument has several arguments:

The name of the Approach file, DW05_S1.APR.

The path of the file, represented by DBPATH, a constant explicitly
defined in (Declarations), or AutoPATH, a variable declared in
Menu_Invoices. AutoPATH is used to store the current path if
DW05_S1.APR is stored on the default sample files directory.
DBPATH is used if you have moved DW05_S1.APR to another
directory.

The file type. The empty string used here refers to the Approach
default file type (.APR).

The password. The empty string means the file has no password.

A True/False indicator determining whether the document is to be
opened in read-only mode. False means the file is not to be opened as
a read-only file, but rather as a read-write file.

A True/False indicator determining whether the instance of
Approach is visible. True means that the instance is visible and that
the user can switch to a window displaying the .APR file.

Although InitAppr creates an Approach OLE Automation object, the
object does not automatically appear anywhere on the desktop because
Windows does not recognize it as visible. When the user chooses
Database - Invoices - Open Database, the Approach OLE Automation
object becomes visible as a button in the taskbar. The user can then
maximize Approach and do a find for specific records. The following
statement in Menu_Invoices makes Approach visible:

 gApproach.Visible = True

When the user first chooses Database in the Word Pro menu bar, the
items in the pull-down menu (Invoices, Accounts, and Customers) are
all active. The user chooses Invoices and a cascade displays three items:
Open Database, Get Data, and Close.

Open Database is active and Get Data and Close are dimmed (see the
previous illustration). This gives the user only one choice: Open
Database.

Building Cross-Product Applications 5-15

Choosing Open Database not only makes the Approach application
visible, it also reverses what is dimmed and what is active: Open
Database is dimmed and Get Data and Close become available. The
user can now do a find in Approach. After Approach finds the records,
the user returns to Word Pro and chooses Database - Invoices - Get
Data to create a table displaying the found set in the memo.

The change in what is dimmed in the Invoices cascade is controlled by a
sub called SubMenuToggleVisibility, which is called from
Menu_Invoices in the following script. The last argument indicates
whether the menu is dimmed or not: True makes it available; False
dims it.

Call SubMenuToggleVisibility (m111.Items, _
 "&Open Database", False)
Call SubMenuToggleVisibility (m111.Items, _

 "&Get Data", True)

Call SubMenuToggleVisibility (m111.Items, "&Close", True)

Call SubMenuToggleVisibility (gMenuCollection, _
 "A&ccounts", False)
Call SubMenuToggleVisibility (gMenuCollection, _
 "Cu&stomers", False)

5-16 Developing SmartSuite Applications Using LotusScript

SubMenuToggleVisiblity
SubMenuToggleVisibility dims menu items. To do this, it runs a sub called
ToggleMenu. ToggleMenu steps through the collection of Database menu
items: the three items in the pull-down and the nine items composing the
three cascades. For each item in the pull-down menu, ToggleMenu calls
itself to enable or disable the items in the corresponding menu cascade.

Menu_GetData
Menu_GetData runs when the user chooses Database - Invoices - Get Data.
It creates a table in the Word Pro document that contains data extracted
from the Approach Invoices database. Therefore, before this sub runs, the
user has to do a find in the view Worksheet 2 of the Approach file
DW05_S1.APR to specify the data to appear in the memo.

Menu_GetData runs the following functions and subs to extract data from
Approach, create the table in Word Pro, and copy the Approach data to the
table:

DeleteTable

LoadData

MakeTable

GetTable

DisplayTable

To run these functions and subs, Menu_GetData uses the following script:

Case gInvoices

Call DeleteTable
Call LoadData (gArray(), NumRows, NumCols, gApproach)

Set CurTable = MakeTable (NumRows+1, NumCols)

Set CurTable = GetTable
Call DisplayTable (CurTable, gArray())

Menu_GetData is designed to handle the Get Data menu item for the active
database, whether it’s Invoices, Customers, or Accounts. Currently, only
one database, Invoices, is implemented in the Video Summary Application.
If the other two—Accounts and Customers—existed, you could write
similar code in Menu_GetData to extract data from those databases and
create corresponding tables in the Word Pro document. The Case
statements determine which actions are performed depending on which
database is active.

Building Cross-Product Applications 5-17

The following code in Menu_GetData provides a place to add routines for
processing the Customers and Accounts databases:

Case gCustomers
'Add code for Customers item in Database pull-down menu.

Case gAccounts
'Add code for Accounts item in Database pull-down menu.

LoadData
LoadData, called from Menu_GetData, extracts the data from the Approach
Invoices database and creates an array called gArray, in which the data is
stored. This array is supplied to DisplayTable as an argument when
Menu_GetData runs.

GetColumnNamesInv
To create gArray, LoadData calls a function named GetColumnNamesInv
that does the following:

Returns the number of columns that are currently in the found set
displayed in Worksheet 2 of DW05_S1.APR.

Returns an array containing the field names in the current
Approach view.

MakeTable
MakeTable, called from Menu_GetData, is a function that creates the table
and places it on the page in the Word Pro document.

GetTable
Get Table, called from Menu_GetData, returns a Table object that
MakeTable uses to create the table.

DisplayTable
DisplayTable, called from Menu_GetData, fills the table created by
MakeTable with data extracted from Approach and stored by LoadData in
the array called gArray.

Menu_CloseDatabase
After the table is created and placed in the Word Pro document, the user
should terminate the Approach session. If the user chooses Database -
Invoices - Close, Menu_CloseDatabase runs. This closes Approach by
removing the OLE Automation object that was originally created when
InitAppr ran.

Menu_CloseDatabase also changes the format of the Database menu items.
By calling CreateMenus, it refreshes the menu items so that they return to
their original state when the user first opened the Word Pro document:
Accounts and Customers, items in the Database pull-down menu, are no

5-18 Developing SmartSuite Applications Using LotusScript

longer dimmed. Also, Open Database (the first item in the Invoice cascade)
is no longer dimmed, and Get Data and Close (the other items in that
cascade) are dimmed.

Call gApproach.Quit (False)

Call DeleteMenus
Call CreateMenus

In addition to returning the menus to their original state, CreateMenus also
adds the Database menu and its cascades to the Word Pro menu bar. To
avoid having two instances of Database in the menu bar, DeleteMenus is
called first to delete the Database menu before CreateMenus adds it again
to the menu bar.

PreClose
After closing Approach, the user can close the Word Pro document. Either
File - Close or File - Exit closes the document. When the document closes,
the PreClose event of !Document runs.

!Document has only two events: Opened and PreClose. PreClose calls
DeleteMenus, which removes the Database menu that the Video Summary
application adds to the Word Pro menu bar. This is useful if the user closes
the document but keeps Word Pro running and then opens a different
document that cannot use the Database menu. Deleting the menu when the
document closes makes good usability sense and avoids unnecessary errors.

PreClose also closes Approach should the user close the document before
choosing Database - Invoices - Close.

If Not (gApproach Is Nothing) Then

Call gApproach.Quit (False)
End If

Building Cross-Product Applications 5-19

OLE Automation using Visual Basic and 1-2-3

The Map Update application allows a user to use Visual Basic to update a
map of the United States created in 1-2-3 to show data such as sales figures
for each state. The 1-2-3 file containing the map is embedded in Visual Basic
through the OLE container control, a control that lets you embed an OLE
object in a Visual Basic form.

When the Map Update application runs, the object displayed in the OLE
container control is updated using OLE Automation.

The Map Update application shows how LotusObjects can be manipulated
using Visual Basic. In this simple application, the user must enter numeric
data for each state in a text box. In a more elaborate application, the user
would not be required to enter data; Visual Basic would most likely extract
the data automatically from a database such as Approach, and the map
would update as soon as the application ran in Visual Basic. For
information about the 1-2-3 Map feature, search on “Maps, overview” in the
1-2-3 Help index. For information about Visual Basic, see the Visual Basic
documentation.

Updating the map
The following steps outline a procedure that the user follows to run the
Map Update application, using Visual Basic.

1. Start Visual Basic and open the project DW05_S2.FRM.

2. Select DW05_S2.FRM from the list of forms in the Project window and
click View Form.

OLE container control
in Visual Basic

5-20 Developing SmartSuite Applications Using LotusScript

3. Click Run - Start.

The following form appears.

4. Select State and select a state name.

5. Enter a numeric value in the Values box.

6. Click Add to List.

The name of the state and the value appear in the list box.

7. Repeat steps 4 - 6 until you have a list of several states and values in the
list box.

8. Click Update Map.

The map is updated with a legend and color-coding in each of the
selected states.

State name combo box

State/value list box

Embedded 1-2-3
Sheet object

Values text box

Building Cross-Product Applications 5-21

Subs of the Map Update application
The Map Update application consists of three subs described in the order in
which they are executed. You can view these subs by opening
DW05_S2.FRM and clicking View Code in the Project window.

Form_Load
This sub is the Load event script of the map form that first appears when
the user runs the application. Form_Load fills the State box with the list of
state names from which the user can select a state.

Add_To_List
This sub is the Click event script for the Add to List button. When the user
clicks Add to List, this sub adds the selected state and the numeric value
entered in the Values box to the list box.

Update_Map
This sub, the Click event script for the Update Map button, controls the
OLE Automation of 1-2-3. After entering the list of states and values, the
user clicks Update Map, and the map is updated to display the data entered
by the user.

To do this, Update_Map connects the application to the 1-2-3 Sheet object
where the map data is stored. The sub writes to the 1-2-3 sheet that
generates the map, and 1-2-3 updates the map. Note that no subs or
functions are executed in 1-2-3. All programming operations of the
application occur in Visual Basic.

The following statements in Update_Map update the 1-2-3 sheet with the
map data that the user entered in the Visual Basic Map Update application.

OLE1.Object.Ranges.Item("A:F" + CStr(i + 2)).Contents = _
 StateAndSales(i).State

OLE1.Object.Ranges.Item("A:G" + CStr(i + 2)).Contents = _
 StateAndSales(i).Sales

The following code, extracted from the above statements, represents the
OLE container control and the OLE Automation object.

OLE1.Object

OLE1 specifies the Visual Basic OLE container control. Object, which
specifies the Object property of the OLE container control, returns the 1-2-3
Sheet object. Object performs the same task as the GetObject function in
Visual Basic and LotusScript: it returns an OLE Automation object for the
embedded object. In this case the OLE Automation object being returned by
the Object property is the 1-2-3 Sheet object.

5-22 Developing SmartSuite Applications Using LotusScript

The text to the right of OLE1.Object represents the data being manipulated
in 1-2-3 using OLE Automation.

.Ranges.Item("A:F" + CStr(i + 2)).Contents = _
 StateAndSales(i).State

.Ranges.Item("A:G" + CStr(i + 2)).Contents = _
 StateAndSales(i).Sales

Ranges.Item(“A:F” + CStr(i + 2)) and Ranges.Item(“A:G” + CStr(i + 2))
indicate specific cell addresses in the 1-2-3 sheet, in this case cells in
columns G and F. The Contents property of the first statement is set to the
value entered in the State box. The Contents property in the second
statement is set to the value entered in the Value box. These statements are
processed for each State/Value pair until the 1-2-3 sheet has been updated
with all the data entered in the Visual Basic Map Update application.

Building Cross-Product Applications 5-23

Chapter 6
Integration with Notes

Applications built with both SmartSuite and Notes can take advantage of
the features in both products. This chapter surveys the basics of integrating
the two products using LotusScript. It covers the following subjects:

Controlling SmartSuite objects from Notes using OLE Automation

Controlling Notes from SmartSuite using the Notes LotusScript
Extension (LSX) module

Note This chapter does not cover accessing Notes databases using
Approach. To learn how to access Notes databases using Approach, see
Chapter 8.

OLE Automation

Using OLE Automation you can create and manipulate objects of each
SmartSuite product from scripts running in Notes. This greatly augments
your Notes application development toolbox because it means that you can
incorporate SmartSuite product features into your Notes database design.

If you’ve used OLE Automation to control one SmartSuite product from
another, you’ll find doing so from Notes to be very easy. If you haven’t
used OLE Automation before, you may want to read Chapter 5, since it
covers in depth the concepts behind scripting with OLE Automation.

Planning ahead
As you design your Notes database, remember that users can access a
SmartSuite OLE Automation object through scripts only if they are running
Notes Release 4 or later. Also, in order for a user to activate an OLE
Automation object, the object’s parent SmartSuite product must be installed
on the user’s machine. Therefore, if an object is embedded in a Notes
document and a user hasn’t installed the supporting product for the object,
the user can’t access the object via a script. Although such a limitation may
seem obvious, it’s worth considering before you deploy a Notes database
that only some of the database users can fully run.

 6-1

Although OLE Automation can add to the power of your Notes database,
its performance can sometimes be slow. OLE performance is most affected
by the amount of random-access memory (RAM) in a user’s machine.
Optimize your database design to the performance level of your users’
machines. If you know that users won’t have a lot of RAM, design your
Notes database so that OLE Automation takes place on demand only. For
example, if RAM is minimal, don’t set a form to activate an OLE object each
time a document is opened. Rather, let the users manually activate the
object to refresh it whenever they want to see the most current data.

OLE Automation vs. Notes/FX
Notes provides a feature called Notes/FX that lets you exchange data
between fields in a Notes document and prepared Notes/FX fields in an
embedded object contained by the Notes document. You don’t write scripts
when you use Notes/FX. Since one of the reasons you use OLE Automation
is for exchanging data between Notes documents and SmartSuite objects, it
may be unclear when to use each tool.

Use OLE Automation in the following situations:

The embedded object is to receive data from a large number of Notes
fields.

You want to perform more than just simple data transfers. For example,
the embedded object needs to contain computed data based on the
fields in the Notes document.

You want to exchange data between a Notes document and a file in a
directory (rather than an embedded object in the Notes document).

Use Notes/FX in the following situations:

You want the embedded object to include data from a limited number
of fields in the Notes document.

The embedded object is to include real field data, as opposed to
computed data based on fields.

Note For more information about Notes/FX, search on “Notes/FX” in
your SmartSuite product Help Index.

Simple scripts that use OLE Automation
The following examples are very basic. However, they demonstrate OLE
Automation in its simplest forms—namely, creating and working with an
embedded object or file, and working with an existing object or file.

Because they’re short and academic rather than practical, the code for these
basic examples is included in this book, but not on disk. If you want, try the
scripts yourself by attaching them to buttons in a Notes document.

6-2 Developing SmartSuite Applications Using LotusScript

Embedding a new 1-2-3 Workbook object using OLE Automation
The following short script for a Notes button does several things. First, it
embeds a 1-2-3 Workbook object in the Body field of the current Notes
document, and names it Temp. Then, it inserts some text into a range in the
1-2-3 Workbook object and makes the text appear in bold. Finally, it inserts
some numbers and tells 1-2-3 to add them.

Note Notes fields must be defined as rich text fields in order to contain
embedded objects.

Sub Click(Source As Button)

Dim Workspace As New NotesUIWorkspace

Dim Uidoc As NotesUIDocument

Dim Handle As Variant
Dim MyRange As Variant

' Get the current Notes document.
Set Uidoc = Workspace.CurrentDocument

' Put the current Notes document in Edit mode.
Uidoc.EditMode = True

' Move the insertion point to the Body field.
Uidoc.GoToField("Body")

' Create and embed a 1-2-3 Workbook object at the

' insertion point.
Set Handle = _
Uidoc.CreateObject("Temp","Lotus123.Workbook")

' Manipulate the embedded 1-2-3 Workbook object
' from Notes:

Set MyRange = Handle.Ranges.Item("A:A3")

MyRange.Contents = "Total:"

MyRange.Font.Bold = True

Set MyRange = Handle.Ranges.Item("A:B1")
MyRange.Contents = "3"

Set MyRange = Handle.Ranges.Item("A:B2")

MyRange.Contents = "6"

Set MyRange = Handle.Ranges.Item("A:B1..A:B3")

MyRange.SmartSum
End Sub

Integration with Notes 6-3

Working with a 1-2-3 Workbook object using OLE Automation
You get a handle (a connection) to an OLE Automation object in a Notes
document in order to control it from Notes. The previous example uses
OLE Automation to create a new 1-2-3 Workbook object named Temp in a
Notes document. The following example demonstrates how you can access
Temp now that it already exists. Like the previous example, this script is
written for a Notes button.

Sub Click(Source As Button)

Dim Workspace As New NotesUIWorkspace
Dim Uidoc As NotesUIDocument

Dim Handle As Variant
Dim MyRange As Variant

' Get current Notes document.
Set Uidoc = Workspace.CurrentDocument

' Put current Notes document in Edit mode.
Uidoc.EditMode = True

' Get handle to the embedded 1-2-3 Workbook object

' named Temp.
Set Handle = Uidoc.GetObject ("Temp")

' Manipulate the 1-2-3 Workbook object from Notes:

Set MyRange = Handle.Ranges.Item("A:B1")

MyRange.Contents = "333"

Set MyRange = Handle.Ranges.Item("A:B2")

MyRange.Contents = "666"
End Sub

6-4 Developing SmartSuite Applications Using LotusScript

Creating a new 1-2-3 file from Notes using OLE Automation
Instead of working with an embedded 1-2-3 Workbook object in a Notes
document (as in the preceding examples), you might want to create a new
1-2-3 file in a directory. The following script for a Notes button creates a
new 1-2-3 file named TEMP.123 in the default 1-2-3 directory.

Sub Click(Source As Button)

Dim Handle As Variant
Dim MyRange As Variant

' Create 1-2-3 session.
Set Handle = CreateObject("Lotus123.Workbook")

' Manipulate the 1-2-3 file from Notes:

Set MyRange = Handle.Ranges.Item("A:A3")
MyRange.Contents = "Total:"

MyRange.Font.Bold = True

Set MyRange = Handle.Ranges.Item("A:B1")

MyRange.Contents = "3"

Set MyRange = Handle.Ranges.Item("A:B2")
MyRange.Contents = "6"

Set MyRange = Handle.Ranges.Item("A:B1..A:B3")
MyRange.SmartSum

' Save the file as TEMP.123 in the default 1-2-3
directory.
Handle.SaveAs "TEMP", Handle.Parent.DefaultPath

' Close 1-2-3 session.

Handle.Parent.Quit

End Sub

Integration with Notes 6-5

Writing to a 1-2-3 file from Notes using OLE Automation
The last example uses OLE Automation to create a new 1-2-3 file named
TEMP.123 in a directory. The following script for a Notes button opens the
1-2-3 file TEMP.123, makes some changes to it, saves it, and closes 1-2-3.

Sub Click(Source As Button)

Dim Handle As Variant
Dim MyRange As Variant

' Open the file TEMP.123 in the default 1-2-3 directory.
Set Handle = GetObject ("TEMP.123", "Lotus123.Workbook")

' Manipulate the 1-2-3 file:

Set MyRange = Handle.Ranges.Item("A:B1")
MyRange.Contents = "333"

Set MyRange = Handle.Ranges.Item("A:B2")

MyRange.Contents = "666"
Set MyRange = Handle.Ranges.Item("A:B1..A:B3")

' Save the file TEMP.123 in the default 1-2-3 directory.
Handle.SaveAs "TEMP", Handle.Parent.DefaultPath

' Close 1-2-3 session.

Handle.Parent.Quit

End Sub

Mid-level scripts that use OLE Automation
The remaining examples in this chapter appear in the Stock Portfolios Notes
database. The database file is named DW06_S1.NSF, which you can find in
the sample files directory. To use the database and see the examples online,
copy the file to your Notes data directory and open it using Notes Release 4
or later.

6-6 Developing SmartSuite Applications Using LotusScript

By default, the database opens in the Customers\All by name view shown
here.

Each Customer document contains information, such as customer name,
address, and portfolio value. Also, when a Customer document is first
created, a 1-2-3 Workbook object is embedded in its Body field. This 1-2-3
Workbook object is used to store account transactions.

You can open a Customer document and can click Notes buttons to buy or
sell stock. When buying stock, you can choose from among the companies
that have Company documents in the Stock Portfolios database. When
selling stock, you can choose from among the companies in which the
customer owns shares. OLE Automation is used to read and write these
transactions to the 1-2-3 Workbook object.

Action buttons

Customer document

Notes buttons

Embedded 1-2-3
workbook

Integration with Notes 6-7

Printing a letter for a specific Customer document
Clicking the Print Letter button in a Customer document sends data from
the Customer document to a Word Pro file, tells Word Pro to print, and
closes Word Pro. To do this, the script first detaches a Word Pro file named
TEMP.LWP to the local drive. Then it uses OLE Automation to write data
from the current Customer document to TEMP.LWP, prints the file, and
closes Word Pro. After the Word Pro file is printed, TEMP.LWP is deleted
from the local drive.

To see the scripts for Print Letter button online, open the Stock Portfolios
database, choose View - Design, and examine the Customer form design.

Sub Click(Source As Button)

Dim Session As New NotesSession
Dim Workspace As New NotesUIWorkspace

Dim Uidoc As NotesUIDocument

Dim Doc As NotesDocument
Dim Handle As Variant

' The file, TEMP.LWP, is stored in another document in
' the Notes database. The following local sub,

' DetachTemplateLetter, is also attached to the Print

' Letter button. It locates the document containing

' TEMP.LWP and detaches TEMP.LWP to the current drive.
DetachTemplateLetter

' Get the current Notes document.

Set Uidoc = Workspace.CurrentDocument
Set Doc = Uidoc.Document

' Get object handle to Word Pro, make it visible,

' and open TEMP.LWP.
Set Handle = CreateObject("WordPro.Application")

Handle.Visible = True
Handle.OpenDocument Curdrive$() + "\TEMP.LWP"

' Get customer name from field CustName in the current

' Notes Customer document and write it in two Click Here
' Blocks in TEMP.LWP.

Dim TheCustomer As String

TheCustomer = Doc.GetFirstItem("CustName").Text

Call Handle.Foundry.ClickHeres("Name" _

).InsertText(TheCustomer)
Call Handle.Foundry.ClickHeres("Greeting" _
).InsertText("Dear " + TheCustomer + ":")

6-8 Developing SmartSuite Applications Using LotusScript

' Get street address from field CustAddress1 in the

' current Notes Customer document and write to a Click
' Here Block in TEMP.LWP:

Dim Address1 As String

Address1 = Doc.GetFirstItem("CustAddress1").Text

Call Handle.Foundry.ClickHeres("Address" _
).InsertText(Address1)

' Get city, state, and zip from field CustAddress2 in the

' current Notes Customer document and write to a Click

' Here Block in TEMP.LWP.

Dim Address2 As String

Address2 = Doc.GetFirstItem("CustAddress2").Text
Call Handle.Foundry.ClickHeres("CityStateZip" _
).InsertText(Address2)

' Get the portfolio value from field PortValue in the

' current Notes Customer document and write to a Click

' Here Block in TEMP.LWP.
Dim PortFolioValue As String

PortFolioValue = Doc.GetFirstItem("PortValue").Text

Call Handle.Foundry.ClickHeres("Portfolio Info" _
).InsertText("Portfolio value: $" + PortFolioValue)

' Depending on the portfolio value, write one of two
' closing sentences in a Click Here Block in TEMP.LWP.

Dim ClosingSentence As String

If CInt (PortFolioValue) < 5000 Then

 ClosingSentence = "Feel free to contact us with " _

 + "any questions regarding your account."
Else

 ClosingSentence = "Your account is important to " _

 + "us! One of our brokers will contact you soon."

End If
Call Handle.Foundry.ClickHeres("Closing" _
).InsertText(ClosingSentence)

' Write the author's name in a Click Here Block

' in TEMP.LWP.

Call Handle.Foundry.ClickHeres("YourName" _
).InsertText(Session.CommonUserName)

Integration with Notes 6-9

' Print TEMP.LWP and end the Word Pro session without

' saving changes.
Handle.Print

Handle.Close False
Handle.Quit

' Delete the file TEMP.LWP from the current drive.

Kill Curdrive$() + "\TEMP.LWP"
End Sub

Printing letters for each account
The script for the Print form letters for all clients action button in the
Customers\All by name view in the Stock Portfolios Notes database is very
similar to the script for the Print Letter button in a Customer document.
However, instead of printing a Word Pro letter for the current Customer
document, the action button prints letters for every Customer document in
the database. You can examine the scripts attached to the action button in
the view design for the view Customers\All by name.

To optimize performance, the Print form letters for all clients action button
script only detaches the file TEMP.LWP once. Also, the action button
creates a single Word Pro session, but uses it to print every letter.

Large scripts that use OLE Automation
Large scripts use OLE Automation the same way that small ones do.
Buying and selling stock in the Stock Portfolios Notes database is
accomplished through scripts that are long because they do a lot, not
because they use OLE Automation.

Clicking the Buy Stock button in a Customer document in the Stock
Portfolios database displays a Notes dialog box in which you can select a
stock quote and enter the number of shares to purchase. When you click
OK in the dialog box, and then click OK in a confirmation input box, a
global sub named WriteToSheet is called. Through this sub, Notes uses
OLE Automation to write data to the embedded 1-2-3 Workbook object.

Whenever the sub WriteToSheet writes to the range C:A5 in the embedded
1-2-3 Workbook, the 1-2-3 CellContentsChange event occurs and the
handler attached to this event processes the transaction.

To see the scripts for the Buy Stock and Sell Stock buttons, or to see the sub
WriteToSheet, open the Stock Portfolios database, choose View - Design,
and examine the Customer form design.

To see the scripts for the CellContentsChange event in the embedded 1-2-3
Workbook, create a Customer document, double-click the embedded 1-2-3
Workbook, choose Edit - Scripts & Macros - Show Script Editor, and
examine the CellContentsChange event script for range C:A5.

6-10 Developing SmartSuite Applications Using LotusScript

The Notes LSX

The Notes LotusScript Extension (LSX) module enables you to access the
Notes object hierarchy from scripts that run in SmartSuite products. When
you want to control Notes from scripts running in a SmartSuite product,
use the Notes LSX instead of OLE Automation.

Why use the Notes LSX instead of OLE Automation?

LSXs are type safe. Since the LotusScript compiler can check data types,
you can catch and debug type mismatches before run time, which
means safer code, created in less time.

LSXs execute in the same process space as your application scripts. In
other words, they are faster than scripts that use OLE Automation
because they don’t carry the overhead of OLE, and use less virtual
memory.

Planning ahead
Since the Notes LSX module wasn’t available until Notes Release 4, you’ll
only be able to use the Notes LSX in a script if you are running Notes
Release 4 or later. Your script can connect to a Notes Release 3 database,
but both your desktop and server must be running Notes Release 4 or later.

Anyone who uses your application must have database access to a given
database in order to connect to it via SmartSuite scripts that use the Notes
LSX. Users can’t connect to a Notes database that they couldn’t otherwise
connect to manually.

Note In order to access the Notes LSX module your Notes directory must
be in your path.

Loading the Notes LSX
To load the Notes LSX module, enter the following statement in the
(Options) section of your SmartSuite product script:

UseLSX "*NOTES"

Then, when you execute a sub in your script, the Notes object hierarchy is
made available. You may find it helpful to press F2 after entering the
statement in (Options). This makes the Notes object hierarchy appear in
your Integrated Development Environment (IDE) Browser. When you
browse your SmartSuite product classes, you’ll find the Notes classes as
well.

When the Notes LSX module is loaded, you can access a Notes database
from your SmartSuite product using the same syntax that you would use to
access one Notes database from another.

Integration with Notes 6-11

For example, the following lines of script open the Notes file PLAN.NSF on
the server named Barcelona and then display a message box containing the
name of the database:

Dim Db As NotesDatabase

Set Db = New NotesDatabase("Barcelona","PLAN.NSF")
MessageBox(Db.Title)

Controlling Notes with a Word Pro script
The Stock Portfolios Notes database contains a Word Pro SmartMaster file
MILLCORP.MWP. Word Pro documents created using this SmartMaster
can access the Stock Portfolios Notes database and read fields from
Customer documents.

Setting up the SmartMaster
Click the Install MillCorp SmartMaster action button in the Customers\All
by name view of the Stock Portfolios database. The action button detaches
MILLCORP.MWP and writes the Notes server name and the Stock Portfolio
database file name into two fields in MILLCORP.MWP.

Creating a letter using MILLCORP.MWP
Open Word Pro and create a new file using the SmartMaster
MILLCORP.MWP. The Created event occurs. The script attached to this
event opens and reads the first Customer document in the Stock Portfolios
Notes database and writes the customer name, address, and portfolio value
in your new Word Pro file. Before the script finishes executing, it displays
an input box asking whether you want to print data for the next Customer
document. It repeats this operation until either you indicate that you don’t
want to print data for the next Customer document or until it reaches the
last Customer document in the Stock Portfolios database.

The following script appears in each document created using the
MILLCORP.MWP SmartMaster:

UseLSX "*NOTES" ' Added to (Options)

Sub Created (Source As TextDocument, StyleSheet as String)

Dim Answer As Integer

Dim NotesName As String
Dim NotesAddress As String

Dim NotesCityStateZip As String
Dim NotesPortfolioValue As String

' When you install MILLCORP.MWP using the action button in

' the Customer Stock Portfolios database, the server name
' and file name for the Notes database are written in two
' document fields in MILLCORP.MWP.

6-12 Developing SmartSuite Applications Using LotusScript

' The alternative to this approach is to specify the
' server name and file name when declaring the
' NotesDB variable.

' Get the name of the Notes database file from Field1 in

' the current Word Pro file.

Dim DbName As String

DbName = .ActiveDocument.DocInfo.FieldManager.Fields(_
 "Field1").Contents

' Get the name of the Notes server from Field2 in

' the current Word Pro file. If the database is on

' your local machine, this will be an empty string.

Dim DbServer As String
DbServer = .ActiveDocument.DocInfo.FieldManager.Fields(_
 "Field2").Contents

' Connect to the Notes database.
Dim NotesDB As New NotesDatabase(DbServer,DbName)

' Get a collection of the documents in the database.
Dim Dc As NotesDocumentCollection
Set Dc = NotesDB.AllDocuments

' Get the first Customer document.

Dim Doc As NotesDocument

For j = 1 To Dc.Count
 Set Doc = Dc.GetNthDocument(j)

 If Doc.HasItem("CustName") Then

 ' Write the Customer name in two bookmark

 ' fields in the current Word Pro file.

 NotesName = Doc.GetFirstItem("CustName").Text
 .GoToBookMark "IncomingName"

 .Type NotesName

 .GoToBookMark "IncomingGreeting"
 .Type "Dear " + NotesName + ":"

 ' Write the Customer street address in a
 ' bookmark field in the current Word Pro file.

 NotesAddress = Doc.GetFirstItem(_

 "CustAddress1").Text

 .GoToBookMark "IncomingStreet"
 .Type NotesAddress

Integration with Notes 6-13

 ' Write the Customer city, state, and zip

 ' in a bookmark field in the current
 ' Word Pro file.

 NotesCityStateZip = Doc.GetFirstItem(_

 "CustAddress2").Text

 .GoToBookMark "IncomingCityStateZip"
 .Type NotesCityStateZip

 ' Write the Customer portfolio value in a

 ' bookmark field in the current Word Pro file.

 NotesPortfolioValue = Doc.GetFirstItem(_

 "PortValue").Text

 .GoToBookMark "IncomingPortfolioValue"
 .Type "The current value of your portfolio is:" _
 + $" + NotesPortfolioValue + "."

 ' Give user the option to print information from

 ' the next Customer document in the Notes

 ' database.
 If j = Dc.Count Then Exit For

 Answer = MsgBox ("Print Another?", MB_YESNO _

 + MB_IconQuestion, "Continue?")

 If Answer <> IDYES Then Exit For

 End If
Next

End Sub

6-14 Developing SmartSuite Applications Using LotusScript

Chapter 7
Using LotusScript in 1-2-3

Writing scripts in 1-2-3

In 1-2-3, you can use LotusScript to create applications and automate
practically any 1-2-3 task. Some of the tasks you can accomplish with
LotusScript in 1-2-3 include the following:

Writing your own @functions

Creating and displaying your own menus

Running scripts when a user clicks a button or presses a certain
key combination

Displaying custom dialog boxes you create with the Dialog Editor and
running scripts based on the selections users make and the data they
enter in the dialog boxes

Creating your own SmartIcons and attaching scripts to them

Retrieving data automatically from other applications, such as Notes,
or from the Internet

Integrating 1-2-3 with other products using OLE Automation

Creating your own 1-2-3 add-ins

Automating tasks without scripts
You can still write macros to automate tasks in 1-2-3. If you are an
experienced 1-2-3 macro writer, you might still want to write macros to
automate simple tasks. For more information about using macros in 1-2-3,
search on “Macros” in the 1-2-3 Help Index.

If you are comfortable writing more complicated macros, you should be
able to learn LotusScript relatively quickly. While simple macros are easy
to write, scripts are generally more flexible and let you automate far more
1-2-3 functionality than macros do.

 7-1

Information for upgraders
In previous releases of 1-2-3, you could record your keystrokes and mouse
events as macros. Although you can no longer record macros—1-2-3
records all your actions as scripts—you can still write macros yourself. You
can also still run the macros you created in previous releases of 1-2-3.

Recording 1-2-3 Classic commands
1-2-3 records any command you execute using 1-2-3 Classic as its
corresponding LotusScript statement. For example, suppose you use 1-2-3
Classic to format the currently selected range as Currency with two decimal
places. 1-2-3 records the 1-2-3 Classic keystrokes

/RFC2

as

Selection.Format "US Dollar",2

If a 1-2-3 Classic command has no corresponding LotusScript statement,
1-2-3 does not record the command. A 1-2-3 Classic command that
has no corresponding command on the 1-2-3 main menu also has no
corresponding LotusScript statement. For more information about using
the 1-2-3 Classic in this release, search on “1-2-3 Classic” in the 1-2-3 Help
Index.

Running a macro from a script
You can easily incorporate an existing macro into a new script you write
by calling the macro from the script. To call a macro, use the MacroRun
method. For example, to call a macro named ROLLUP, use:

[Rollup].MacroRun

For more information about running macros from scripts, search on
“MacroRun method” or “MacroRunText method” in the 1-2-3 Help Index.

Upgrading macro buttons
When you open a .WK4 file, 1-2-3 automatically converts macro buttons
that you created with previous releases of 1-2-3 into buttons that run
scripts.

7-2 Developing SmartSuite Applications Using LotusScript

If a button ran a macro stored in a sheet, 1-2-3 creates the following Click
event script for the button:

Sub Click(Source As ButtonControl)
 [file].Ranges(" range ")MacroRun
End Sub

file is an optional file reference. You need to specify the file only if the
macro is stored in a different file than the button, for example, if the macro
is stored in a macro library.

range is the name or address of the first cell in the macro.

For example, the following sub runs the macro named INTEREST stored in
the active file D:\LOTUS\WORK\MYMACROS.WK4:

Sub Click()
 [d:\lotus\work\mymacros.wk4].Ranges("interest").MacroRun
End Sub

If a button ran a macro stored with the button in the Assign Button dialog
box, 1-2-3 creates the following Click event script for the button:

Sub Click(Source As ButtonControl)
 .MacroRunText("{macro_command}")
End Sub

For example, the following sub runs a macro that enters the label “Weekly
Status Report” in the current cell and changes the font and column width:

Sub Click(Source As ButtonControl)
 .MacroRunText |{CELL-ENTER "Weekly Status Report"} _
 {STYLE-FONT "Baskerville"}{COLUMN-WIDTH 30}|
End Sub

Note If you open a .WK4 file that contains macros stored with buttons and
then subsequently save the file as a .WK4 file, macros stored with buttons
are preserved.

Upgrading custom dialog boxes
In previous releases of 1-2-3, after you created a dialog box in the Dialog
Editor, you copied it to the Clipboard and pasted it in a worksheet file so
that you could use it in a macro. While you can continue to run the macros
that display these dialog boxes, you cannot upgrade them. For information
about creating new dialog boxes with the Dialog Editor, see Chapter 3.

Using LotusScript in 1-2-3 7-3

The 1-2-3 object model

Before you begin writing scripts in 1-2-3, you should take some time to
understand the 1-2-3 object model, which describes all the 1-2-3 objects and
their organization.

Before continuing to read this section, you should understand the concepts
of classes and objects, containment and inheritance, and dot notation. For
this information, see Chapter 2.

Like all LotusObjects, objects in 1-2-3 have properties, methods, and events.
Properties are characteristics that describe the state of an object. Methods
are subs or functions that can be performed by the object. Events represent
external actions performed on objects by users, the application, or the
operating system.

The following sections describe important 1-2-3 objects and their
relationships to one another:

1-2-3 containment hierarchy
1-2-3 inheritance relationships
Predefined global product variables that make it easier for you to
specify commonly used 1-2-3 objects
Collection classes in 1-2-3
Examples of how to specify 1-2-3 objects in scripts

1-2-3 containment hierarchy
Like all SmartSuite product object models, the 1-2-3 object model is
organized by containment hierarchies, which describe the containment
relationships of the 1-2-3 classes. The 1-2-3 containment hierarchy is
constructed logically along the lines of what you might think of as
“containment” in the 1-2-3 user interface. For example, just as workbooks
contain ranges and sheets, the Ranges and Sheets objects are contained by
the Document object. The 1-2-3 containment hierarchy begins with the
outermost 1-2-3 object, the Application class, and works in through
workbook files (.123), sheets, ranges, charts, OLE objects, and graphic
objects. Contained objects can be identified by using a property of the
container. Look for a property of the container in one of the following
configurations:

The property is included in the definition of the container class.

In the most simple case, you can tell the containment relationship from
the class description. The property name is part of the class definition.
You can find the property listed in the Browser, and by selecting the
property and pressing F1, you can see a description of the property
in Help.

7-4 Developing SmartSuite Applications Using LotusScript

For example, the Sheets class is contained by the Document class
through the Sheets property.

The property identifies a collection of the contained objects.

This case also allows you to tell the containment relationship by looking
at the class description. You must also know the relationship between
the object you want to identify and the collection. Identify the object by
referring to an element of the collection.

For example, all the ranges for a workbook (Document object) are in a
collection of Range objects. The collection is a Ranges object and is
contained in the Ranges property of the Document object. Each Range
object is an element of the Ranges object.

You can manipulate a collection object just as you would any other
object. For example, the following script creates the object r, which
represents the collection of ranges in the current workbook:

Dim r as Ranges
Set r = CurrentDocument.Ranges

Because collections are special classes, however, you need to use
LotusScript to access individual elements in a collection. For example,
you can use the following statement to access the second range in a
collection:

CurrentDocument.Ranges(1)

LotusScript uses indexes to identify the position of an element in a
collection. Because the first index is always 0, the number 1 indicates
the second range in the collection. Note that 1-2-3 does not guarantee
the order or elements in a collection.

In addition to using index numbers, you can also access individual
items in a collection by using their names. For example, you can use the
following statement to access the range named Sales in the current
document:

CurrentDocument.Ranges("Sales")

For more information about collections, see “Collection classes in 1-2-3”
later in this chapter.

Using LotusScript in 1-2-3 7-5

Important containment relationships in 1-2-3
The following diagram illustrates the containment relationships of the most
important 1-2-3 classes.

The most important relationships in the 1-2-3 containment hierarchy are
described next.

Application class as container
The Application class in 1-2-3 represents a 1-2-3 session started from the
executable 123W.EXE. The Application class contains three important 1-2-3
classes: ApplicationWindow, Documents, and MenuBar.

To refer to a document in the current 1-2-3 session, specify its position in
the Documents collection. For example, the following statement refers to
the first document in the current 1-2-3 session:

CurrentApplication.Documents(0)

For information about using the MenuBar class to customize 1-2-3 menus,
see “Creating a custom menu” later in this chapter.

Document class as container
The Document class in 1-2-3 represents an active workbook (.123 file). The
Document class contains other important 1-2-3 classes: Sheets, OLEObjects,
Charts, DrawObjects, and Ranges.

To refer to a sheet in the current workbook, you can specify either the
position of the sheet in the Sheets collection or the name of the sheet. For
example, the following statement displays the second sheet in the current
workbook:

CurrentDocument.Sheets(1).GoTo

Document

Documents

Documents property

 Application

Sheet

Sheets

Document Sheet

SheetDocument

MenuBar

RangesDrawObjectsCharts

Charts property

DrawnObjects
property

Ranges propertyActiveDocument
property

Sheets property

 CurrentMenuBar property

 CurrentSheet property

7-6 Developing SmartSuite Applications Using LotusScript

The following statement displays the sheet named Sales:

CurrentDocument.Sheets("Sales").GoTo

Objects that represent ranges, charts, drawn objects, and OLE objects are
also contained by Document objects. Using the containment relationships
discussed earlier in this chapter, you can identify individual objects in
either of the following ways:

Using the object’s name

' A chart named MyChart in the current workbook
CurrentDocument.Charts("MyChart")

' A range named Q2Sales in the current workbook
CurrentDocument.Ranges("Q2Sales")

' A rectangle named Rectangle 1 in the current workbook
CurrentDocument.DrawObjects("Rectangle 1")

Using indexes to identify the position of an object in a collection

' The third OLE object in a collection.
CurrentDocument.OLEObjects(2)

Identifying containers using the Parent property
The Parent property plays an important, though not apparent, role in the
1-2-3 containment hierarchy. Most 1-2-3 objects have a Parent property,
which returns the parent (or container) object of a specified object.
Sometimes when you write scripts in 1-2-3, it is useful to be able to find a
parent, or container, object through one of its children, or contained,
objects. For example, you might already have a Range object, but might
want to know what Document object contains it.

The following example updates a range, and then saves the workbook that
contains the range:

[MyRange].RangeFill
MyRange.Parent.Save

The Parent property is especially useful when you are working with events.
An event receives the object that owns the event as the parameter Source.
Source identifies the object for which an event occurs. The Parent property
lets you access the source object’s container object.

Using LotusScript in 1-2-3 7-7

For example, the following code, which is executed when the user clicks a
button, uses the Parent property to identify the file that the button is in and
then closes that file:

Sub Click(Source As ButtonControl)

' The sheet that contains the button is its parent

Set X = Source.Parent

' The file that contains the sheet is its parent

X.Parent.Close

End Sub

1-2-3 inheritance relationships
The following diagram shows the the important inheritance relationships in
1-2-3 classes. For more information about inheritance, see “Inheritance” in
Chapter 2.

Application

Document

Range

Sheet

Version

PrintSettings

Preview

MapBin

Freehand

BaseObject

Window

ApplicationWindow

DocWindow

VersionGroup

Rectangle

Picture

Map

Ellipse

DrawLine

Polygon

PolyLine

Arc

ButtonControl

DrawCollection

EditText

Group

DrawObject

DataLink

QueryTable

ApproachConnection

OLEObject

7-8 Developing SmartSuite Applications Using LotusScript

1-2-3 abstract classes
1-2-3 has the following abstract classes, which exist only to derive other
classes, called concrete classes. You cannot create an instance of an
abstract class.

The BaseCollection class is the base class for all collection classes in
1-2-3. For more information about collections and a diagram of the
important 1-2-3 classes derived from BaseCollection, see “Collection
classes in 1-2-3,” later in this chapter.

The BaseObject class is the base class for all 1-2-3 classes. All 1-2-3
classes inherit the following properties from BaseObject: Application,
Description, IsValid, Name, Parent, and VersionID.

The Window class is the base class for the 1-2-3 window classes:
ApplicationWindow and DocWindow.

The DrawObject class is the base class for all 1-2-3 drawn object classes.
The following 1-2-3 classes inherit from the DrawObject class: Arc,
ButtonControl, DrawCollection, DrawLine, EditText, Ellipse, Freehand,
Group, Map, Picture, Polygon, Polyline, and Rectangle.

1-2-3 predefined global product variables
1-2-3 supports several predefined global product variables that greatly
simplify specifying objects.

Variable Description

CurrentApplication Represents the current session of 1-2-3. Uses the
properties and methods of the Application class.

CurrentDocument Represents the current 1-2-3 workbook (.123 file) in
the current 1-2-3 session. Uses the properties and
methods of the Document class.

CurrentWindow Represents the window in which 1-2-3 displays the
current document. Uses the properties and methods
of the DocWindow class. If no files are open, then
CurrentWindow represents the 1-2-3 application
window and uses the properties and methods of the
ApplicationWindow class.

Selection Represents the currently selected object, for
example, the currently selected range, chart, or
graphic object.

ThisDocument Represents the document that contains the script
that is currently running. Uses the properties and
methods of the Document class.

Using LotusScript in 1-2-3 7-9

Global product variables replace all the objects that are containers for the
current object. For example, to use the Name property to determine the
name of the current document, use the following syntax:

Correct:

n = CurrentDocument.Name

Do not use other variables to fill in the containment tree.

Incorrect:

n = CurrentApplication.CurrentDocument.Name

1-2-3 collection classes
A collection is a special class that consists of a set of objects of a particular
type, grouped together to form a separate object. For example, the Sheets
class contains all the sheets in a particular workbook. Each object in a
collection is called an element in that collection. You can access elements in
a collection in two ways:

Iteration is the process of stepping through a collection and acting on
each element in the collection. Use the LotusScript ForAll statement to
iterate through a collection.

For example, the following statement makes all the charts in the current
workbook pie charts:

ForAll x in CurrentDocument.Charts
 x.Type = 6
End ForAll

Note that you can only access named ranges by iterating through the
Ranges collection. For example, the following statement lists all the
named ranges in the current workbook:

ForAll x in CurrentDocument.Ranges
 Print x.Name
End ForAll

Indexing is the process of using the Item method or the indexing syntax
to access a specific object in the collection.

The following example lists the names of the sheets in the current
workbook:

Sub ListSheets
 Dim n As Long
 n = CurrentDocument.Sheets.Count
 For x = 0 To n - 1
 Print CurrentDocument.Sheets.Item(x).Name
 Next
End Sub

7-10 Developing SmartSuite Applications Using LotusScript

Note that you can access any Range object by using the string
equivalent of its address as the index into the Ranges collection. For
example, the following code changes the background color of the range
A:A1..A:B10 to red:

CurrentDocument.Ranges("A:A1..A:B10" _
).Background.BackColor.ColorName = "red"

Methods and properties for collection classes
Like other classes, collection classes have their own properties and
methods. You can use these properties and methods to control individual
elements in the collection or to control the entire collection.

Each 1-2-3 collection class has the following methods:

Item returns the specified element in the collection.

Next returns the next element in the collection.

Open resets the Next method so that it returns the first element of
the collection.

Each 1-2-3 collection class has the following property:

Count returns the number of elements in the specified collection.

For more information about each of these methods and properties, search
on “Methods (LotusScript)” or “Properties (LotusScript)” in the 1-2-3
Help Index.

Using LotusScript in 1-2-3 7-11

Common collections
The 1-2-3 object model contains a number of collection classes. You will use
some of these classes more than others. The following diagram shows the
most commonly used collection classes in 1-2-3. For more information about
any of the 1-2-3 collections, search on “Classes (LotusScript)” in the 1-2-3
Help Index.

Identifying objects in 1-2-3
When you write scripts in 1-2-3, you can identify a 1-2-3 object with its
name, provided you enclose the name in square brackets ([]). The following
examples show several 1-2-3 objects identified by name:

' Bold data in the range February.
[February].Font.Bold = True

' Change the chart MyChart to a doughnut chart.
[MyChart].Type = $Doughnut

' Protect all cells in the sheet Budget.
[Budget].IsProtected = True

You can also identify a range with its address enclosed in square brackets.

' Add a border and border style to A:A1..A:B10.
[A:A1..A:B10].OutlineBorder.Style = $SolidBorder

' Change the background color of sheet A to cornflower.
[A].Background.BackColor.ColorName = "Cornflower"

Documents

DrawObjects

Ranges

OLEObjects

BaseCollection

Maps

QueryTables

Windows

Sheets

7-12 Developing SmartSuite Applications Using LotusScript

By default, names within square brackets identify objects in the workbook
that has the focus. To identify objects in other workbooks, use a file
reference with the following format:

[<< FileName >>ObjectName]

For example, the following statement identifies a range named MyRange in
the workbook D:\LOTUS\WORK\123\MYFILE:

[<<D:\Lotus\Work\123\MyFile>>MyRange].CopyToClipboard

Type qualifiers
If multiple objects in a workbook share the same name, use a type qualifier
to specify which object you want the script to act on. The syntax for an
object specification that includes a type qualifier is as follows:

[ObjectName : Type]

For example, suppose a workbook contains a map named Sales and a chart
named Sales. Use the following reference for the map:

[Sales:Map]

Use the following reference for the chart:

[Sales:Chart]

If you do not include a type qualifier in an object specification, 1-2-3 first
looks for a range with the specified name, because ranges have the highest
order of precedence in a workbook. The order of precedence for all other
objects within a workbook is neither guaranteed nor consistent.

For example, if a workbook contains a range named Sales, a chart named
Sales, and a map named Sales, the following statement always selects
the range:

[Sales].Select

If a workbook contains only a chart named Sales and a map named Sales,
unexpected results occur. The statement selects either the map or the chart,
arbitrarily. To avoid this, you should not assign the same name to two
objects in the same workbook. However, if a workbook contains multiple
objects with the same name, always include type qualifiers in your object
specifications. For more information about naming objects in 1-2-3, search
on “Naming, conventions for” in the 1-2-3 Help Index.

Using LotusScript in 1-2-3 7-13

Leading dot notation
Leading dot notation can save you time when you are writing a script. For
example, the following statement invokes the Save method of an object.

Call .Save()

The following statement also invokes the Save method of an object, but
involves more typing.

MyDocument.Save()

1-2-3 resolves the leading dot to the nearest object in the script that the
method can act on. For example, because the Save method applies to a
Document object, but not to a Chart object, if no object is selected, the Save
method in the following script would not try to save the object MyChart. It
would save the object MyDocument:

MyDocument.Open
Select.MyChart
Selection.Type = $Bar
.Save()

If an object is selected, either with the Select method or via the user
interface, the leading dot resolves to the currently selected object. For
example, the following code selects a range and then formats the currently
selected range:

[A:A1..A:D10].Select
.Font.FontName = "Baskerville"
.Font.Size = 10
.Font.Italics = True

7-14 Developing SmartSuite Applications Using LotusScript

Recording scripts in 1-2-3

1-2-3 lets you record actions you perform in 1-2-3 as scripts.

To record a script in 1-2-3:

1. Choose Edit - Scripts & Macros - Record Script.

2. Type a name for the script in the “Script name” box.

You must enter a name for your script. 1-2-3 does not provide a default
name, and displays an error if you do not name your script.

3. Select a workbook in which to store the recorded script. You can store
the script in any active workbook. 1-2-3 stores the recorded script in the
(Globals) object in that file.

4. Click Record.

5. Perform the task you want to record.

6. To stop recording and display the recorded script in the Script Editor,
choose Edit - Scripts & Macros - Stop Recording.

Recording into an existing script
You can record actions you perform in 1-2-3 into a script that you
previously wrote or recorded.

To record into an existing script:

1. Choose Edit - Scripts & Macros - Show Script Editor.

2. Select the object and then the script you want to add to.

3. In the Script Editor, click at the end of the line after which you want to
begin recording and press ENTER.

Note Always begin recording at the beginning of a new line, not in the
middle of an existing line.

4. In the Integrated Development Environment (IDE), choose
Script - Record at Cursor.

1-2-3 displays recording controls.

5. Minimize the IDE so that you can see more of the 1-2-3 window.

6. Perform the task you want to record.

7. To stop recording and display the recorded script in the IDE, choose
Edit - Scripts & Macros - Stop Recording.

Using LotusScript in 1-2-3 7-15

Using the IDE in 1-2-3

To open the IDE in 1-2-3, choose Edit - Scripts & Macros - Show Script
Editor. The IDE displays the script that was last displayed or recorded, or a
blank default script for the currently selected object if no scripts have yet
been written or recorded.

You can also open the IDE by selecting an object in 1-2-3 and then choosing
Show Script Editor from the shortcut menu. The IDE appears and displays
the first script associated with the object. If the object has no scripts
associated with it, the IDE displays an empty script.

The Object drop-down box in the IDE lists the 1-2-3 objects. When you first
open the list, you see the following items:

(Globals), which lists the global subs and functions.

The name of the Document object (.123 file) associated with this IDE
window. This object is always the one that represents the current
workbook.

Lotus123, which is the name of the Application object.

The name of the currently selected object. For example, if the cell
pointer is in cell B:A25 when you open the IDE, B:A25 appears in the
Object list.

The names of all objects in the workbook that have scripts attached.

The Script drop-down box lists available scripts for the object selected in
the Object drop-down box. Although the scripts available for an object
differ according to the scope and function of the object in 1-2-3, the
following scripts are available for most objects:

(Options) scripts contain statements that specify LotusScript language
options, external .LSO or .LSS files, and some constants used by
external files.

(Declarations) scripts contain declaration statements, constant
definitions, and class definitions.

Initialize scripts set up variables declared in a (Declarations) script.

Terminate scripts clean up variables declared in a (Declarations) script.

Event procedures for an object define how that object should respond
to particular events that it receives, such as being clicked, moved, or
opened.

7-16 Developing SmartSuite Applications Using LotusScript

Writing scripts for objects that do not appear in the Object list
Some objects you want to write scripts for cannot be selected in 1-2-3 and
do not appear in the Object drop-down box. When you write scripts for
these objects, you must manually create an object variable.

For example, suppose you write a script that you want to run when a
particular DocWindow object gets the focus. You cannot select a
DocWindow object in 1-2-3 or from the Object drop-down box. To
associate the event script named MyGetFocus with the event GetFocus
of the first DocWindow object, you could use the following script in the
Opened event script:

Sub Opened(Source As Document)
 Dim DocWindow1 as DocWindow
 Set DocWindow1 = ThisDocument.DocWindows(0)
 On Event GetFocus From DocWindow1 Call MyGetFocus
End Sub

You could then put your GetFocus event script in the (Globals) object in
the IDE.

Using the Dialog Editor in 1-2-3

To open the Dialog Editor in 1-2-3, choose Edit - Scripts & Macros - Show
Dialog Editor. 1-2-3 saves dialog boxes you create with the Dialog Editor
with the .123 file in which you created them. For more information about
using the Dialog Editor, see Chapter 3.

Customizing the 1-2-3 user interface

You can use LotusScript to customize practically every aspect of
the 1-2-3 user interface. This section describes the steps necessary
to do the following:

Create a new menu item and attach a script to it

Customize an icon and attach a script to it

Create a button and attach a script to it

To see examples of scripts attached to custom menus, SmartIcons, and
buttons, including sample code, see “Top Tasks” later in this chapter.

Using LotusScript in 1-2-3 7-17

Attaching a script to the Actions menu
You can make it easy for users to run your scripts by displaying menu
choices for the scripts on the Actions menu. To run a particular script, the
user simply chooses the corresponding menu choice from the Actions
menu. Note that the Actions menu is only displayed in the 1-2-3 menu bar
when there are scripts attached to it.

To attach a script to the Actions menu:

1. Choose Edit - Scripts & Macros - Global Script Options.

2. Select the name of an open workbook from the “Edit options for script
from” drop-down box.

3. Select the name of a script from the “Scripts” box.

4. Click Edit Options.

5. Enter the text you want to appear in the Actions menu in the “Menu
command on Actions menu” box.

When you enter command names, an ampersand (&) followed by a
character creates a keyboard shortcut for a command. The letter that
follows the ampersand appears underlined; the user can choose this
command from the keyboard by pressing ALT plus the underlined
letter. For example, if you enter First &Quarter, 1-2-3 displays First
Quarter in the Actions menu. The user can press ALT+Q to select the
command. To display an ampersand in the command name, enter two
ampersands (&&). For example, to display B&W, enter B&&W.

6. (Optional) Enter a description of the command in the “Help text for
menu command” box.

7. Click OK to return to the Global Script Options dialog box.

8. Click Done.

Tips for attaching scripts to the Actions menu
Keep the following in mind when you attach scripts to the Actions menu:

You can attach only subs that have no parameters to the Actions menu.

If the script is stored in a workbook, it appears on the Actions menu
only when the workbook is in memory.

If you delete the script in the Script Editor, 1-2-3 automatically removes
the entry from the Actions menu and deletes the shortcut key assigned
to it.

7-18 Developing SmartSuite Applications Using LotusScript

If you make any changes to the script in the Script Editor, 1-2-3 checks
to see if it is still valid for attaching to the Actions menu. If the script is
invalid, 1-2-3 automatically removes the menu command to which it is
attached from the Actions menu.

For example, if you add parameters to a global sub that appears on the
Actions menu, 1-2-3 automatically removes the sub from the menu.

Attaching a script to an icon
SmartIcons provide a quick, simple way to do many 1-2-3 tasks. When you
attach a script to an icon, it runs when the user clicks the icon. You can
attach a script to an existing icon in 1-2-3 or to an icon that you design
yourself. For example, you can create a script that enters a company name
and address in a special style in a sheet. Then you can create an icon with
the company logo on it and assign the script to this icon.

Designing a new icon
To create a custom icon, you must start with a new, blank icon and add a
bitmap to it.

To create the bitmap for your icon, you can do one of the following:

Copy the bitmap of an existing icon and edit it

Start with a blank icon and paint your own bitmap

Copy a bitmap to the Clipboard from another application, such as
Paintbrush, and paste it into a blank icon

To design a new icon:

1. Choose File - User Setup - SmartIcons Setup.

2. Click Edit Icon.

3. Click Create a New Blank Icon to create a new icon or select an icon to
modify from the “Available icons you can edit or copy” box.

4. Edit the icon by applying or changing colors.

5. Enter the icon bubble help in the “Description” box.

6. Click Save As to name and save the new bitmap.

7. Click Done to return to the SmartIcons Setup dialog box.

The new icon appears in the “Available icons” box.

8. Click OK.

Using LotusScript in 1-2-3 7-19

Attaching a script to an icon
You can attach a script to an existing icon or to a custom-designed icon.

To attach a script to an icon:

1. Choose File - User Setup - SmartIcons Setup.

2. Click Edit Icon.

3. Click an icon in the “Available icons” box.

4. Click Attach Script.

5. Select the name of an open workbook from the “From” drop-down box.

6. Select the name of a script from the “Script name” box.

7. Click Attach.

Attaching a script to a button
You can create a button on a sheet and attach a script to the button. When
the user clicks the button, the script runs.

To create a button:

1. Choose Create - Button.

2. Position the mouse pointer in the sheet where you want the
button to appear.

3. Do one of the following:

To create a button in the default size, click the sheet.

To size the button, drag across the sheet and release the mouse
button when the button is the size you want.

When you release the mouse button, 1-2-3 opens the Script Editor,
which contains an empty sub for the Click event for the button.
The statements you enter in the sub will execute when the user
clicks the button.

Tip When you create a button, 1-2-3 assigns it a default name and button
text. To change the name of the button, button text, or other properties,
right-click the button and choose Button Properties from the shortcut menu.

Attaching a script to a picture
Although you cannot display a picture on a button you create in 1-2-3 with
the Create - Button command, you can add a picture, such as a bitmap, to
the sheet and then attach a script to the picture. The script runs when the
user selects the picture.

7-20 Developing SmartSuite Applications Using LotusScript

Adding a picture to a sheet
To add a picture to a sheet:

1. Choose Create - Drawing - Picture.

2. Select the drive and folder containing the picture file from the
“Look in” box.

3. (Optional) Select the file type of the picture from the “Files of type”
drop-down box.

4. Select the picture file you want from the list.

5. Click Open.

6. Click the sheet at the point where you want to place the top left corner
of the picture.

Tip You can also bring a picture into 1-2-3 by copying it to the Clipboard
and pasting it in the sheet.

Attaching a script to a picture
To attach a script to a picture:

1. Right-click the picture.

2. Choose Show Script Editor from the shortcut menu.

3. Choose the Selected event script from the “Script” drop-down box.

4. Write and save the script.

Now, when the user selects the picture, the script runs.

Team computing in 1-2-3

Team computing features help you communicate, collaborate, and
coordinate with others in your organization to work together more
effectively. You can use LotusScript to automate the following Team
Computing features in 1-2-3:

Sending a mail message

Sending or routing a range or workbook

Sending a mail message with an attachment
TeamMail provides enhanced electronic mail support that lets you
distribute an entire 1-2-3 workbook or a broadcast message to co-workers.
TeamMail is useful when you only want to distribute information without
receiving input from those who receive the information.

This example assumes the user created a sheet that is updated daily with
stock-price information. It sends an electronic mail message that includes a

Using LotusScript in 1-2-3 7-21

bitmap image of the sheet to a specified group of people. This example is
written to be run from a button at the top of the sheet.

Sub MailDaily
 [A5].Select

 ' Turn off the display of graphic objects and
 ' version borders in the template.
 [].ShowDrawLayer = False
 [].ShowVersionBorders = False

 ' Select the active area of the sheet.
 [].SelectAll

 ' Copy the selected range to the Clipboard
 ' as a bitmap image.
 .CopyToClipboard $BitMapFormat
 [A5].Select

 ' Log into the e-mail system.
 CurrentApplication.UserLogin "DKearns","newcastle"

 ' Send a mail message with the subject "Portfolio"
 ' to the mailing list MyTeam and attach the bitmap
 ' image of the selected range from the Clipboard.
 [].SendMail "MyTeam",,"Portfolio",,,,$Clipboard

 ' Turn the display of graphic objects and version
 ' borders back on.
 [].ShowDrawLayer = True
 [].ShowVersionBorders = True
End Sub

Routing a range
TeamReview lets you use your e-mail system to send a range of workbook
data to other 1-2-3 users. You can send a range to members of a team,
collect their input, and have it returned to you automatically.

This example assumes that the user created a schedule template. Once each
month, the user needs to get scheduling information from the manager of
each department. This example routes the range that contains the schedule
to a specified group of people. This example is written to be run from a
button at the top of the sheet.

Sub RouteSchedule
 [A5].Select
 ' Turn off the display of graphic objects and
 ' version borders in the template.
 [].ShowDrawLayer = False
 [].ShowVersionBorders = False

7-22 Developing SmartSuite Applications Using LotusScript

 ' Select the active area of the sheet.
 [].SelectAll

 ' Log into the e-mail system.
 CurrentApplication.UserLogin "RSmith","taylor"

 ' Route the currently selected range to the department
 ' managers. Have changes mailed back as each person
 ' sends the range on to the next.
 [].Send "TeamLeaders",,"Schedule"

 ' Turn the display of graphic objects and
 ' version borders back on.
 [].ShowDrawLayer = True
 [].ShowVersionBorders = True
End Sub

Top tasks
This section describes some 1-2-3 tasks that you might want to automate
and illustrates LotusScript solutions for them. This section describes the
following tasks:

Creating a custom @function

Creating a custom menu

Saving and restoring a view

Changing labels to values

Converting column and sheet letters to numbers

Creating a cross-tabulation report

Automatically saving all open workbooks

Making global changes to a range

The code for each example is stored in a .123 file in the sample files
directory. Each file contains sample data, as well as instructions for running
the scripts it contains. The file name for each code example is given before
each example.

Creating a custom @function
In the past, only add-in developers who used the 1-2-3 Add-In Toolkit
could create their own @functions. Now, anyone can use LotusScript to
write custom @functions for 1-2-3.

A custom @function is simply a LotusScript function—a procedure in a
script with a name assigned to it that returns a value. Users use a custom

Using LotusScript in 1-2-3 7-23

@function in the same way they use the @functions that are built into 1-2-3.
They simply type the @function and its arguments into a cell.

To create a custom @function:

1. Choose Create - @Function.

2. Enter a name for the function in the “Name” box. Do not include the at
sign (@) in the name.

Follow the LotusScript function naming conventions when naming
custom @functions. Do not use the name of an existing @function,
macro keyword, or LotusScript keyword.

3. Click OK.

1-2-3 displays the empty function in the Script Editor.

4. Enter statements that you want to execute when 1-2-3 invokes the
function.

5. Close the Script Editor when you finish writing the function statements.

The following example creates an @function named @ELAPSED that
calculates the number of hours, minutes, and seconds that have elapsed
between two times, and displays the information as a label. @ELAPSED
takes two arguments, a start time and an end time.

Note The text of this script is stored in DW07_S1.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

Function Elapsed (Start As Double, End As Double) As String
 Dim w As Double
 Dim x As Double
 Dim y As Double
 Dim z As Double

 ' Subtract start time from end time and extract
 ' the hours, minutes, and seconds from the
 ' resulting time number.
 w = End - Start
 x = Hour(w)
 y = Minute(w)
 z = Second(w)

 ' Display a label that contains the elapsed hours,
 ' minutes, and seconds.
 Elapsed = Str(x)&"Hr "&Str(y)&"Mn "&Str(z)&"Sc"
End Function

7-24 Developing SmartSuite Applications Using LotusScript

Creating a custom menu
One of the easiest ways to get users to run your scripts is to place them on a
menu that you insert in the 1-2-3 main menu. The following example creates
a menu that displays a list of custom @functions. When the user picks an
@function from the menu, 1-2-3 displays it in a cell, with placeholders for
the arguments. The code for the two custom @functions, @ISEVEN and
@ISODD, is also included in this example.

If you want a menu to be available when the workbook that contains it is
active, attach the menu script to the document Opened event:

1. Choose Edit - Scripts & Macros - Show Script Editor.

The Script Editor appears.

2. In the Object drop-down box, select the name of the current file.

3. In the Script drop-down box, select Opened.

The empty Opened sub appears in the Script Editor.

4. Enter statements in the sub that you want 1-2-3 to execute when the
sub runs.

5. Save the script by saving the .123 file.

When you open the file, 1-2-3 automatically runs the script.

If you want a menu to be available at the start of each 1-2-3 session, attach
the menu script to the document Opened event, then store the .123 file that
contains the script in the “Automatically opened files” directory. At the
start of each session, 1-2-3 opens all the files in the “Automatically opened
files” directory in alphabetical order, words before numbers. Any scripts
attached to the Opened event of a file will run when 1-2-3 opens the file. For
more information about automatically opening files in 1-2-3, search on
“Opening, files automatically” in the 1-2-3 Help Index.

Note The text of this script is stored in DW07_S2.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

'This definition appears in (Declarations):
Dim IsMenuSet as Integer

'Display the Functions menu when 1-2-3 opens this file.
Sub Opened(Source as Document)
Call SetMenu
 IsMenuSet = True
End Sub

Using LotusScript in 1-2-3 7-25

Sub SetMenu
 'Set constants for menu and menu items.
 Const M_Functions ="F&unctions"
 Const M_IsOdd ="Is&Odd"
 Const M_IsEven ="Is&Even"

 ' Set constants for menu item long prompts.
 Const P_Functions ="Select a custom @function"
 Const P_IsOdd = "Returns True for an odd value"
 Const P_IsEven ="Returns True for an even value"

 ' Set constants for global function names.
 Const S_IsOdd ="PutIsOdd"
 Const S_IsEven ="PutIsEven"

 Dim FuncMenu As Menu
 Dim MainMenu As Menu

 SetMainMenu = CurrentApplication.MenuBar
 Set FuncMenu = CurrentApplication.NewMenu

 FuncMenu.MenuText = M_Functions
 FuncMenu.MenuPrompt = P_Functions

 ' This statement prevents duplicate menus if the
 ' Functions menu is already in the menu bar.
 MainMenu.DeleteItem M_Functions

 ' Add the Functions menu to the end of the
 ' 1-2-3 main menu.
 Call CurrentApplication.CurrentMenubar.AddMenu(-1, _
 FuncMenu)

 'Add the two menu items to FuncMenu.
 Call FuncMenu.AddItem(-1, M_IsOdd, P_IsOdd, _
 ThisDocument, S_IsOdd)
 Call FuncMenu.AddItem(-1, M_IsEven, P_IsEven, _
 AddItem(-1, ThisDocument, S_IsEven))
End Sub

Use the Preclose event to determine if the Functions menu is still displayed.
If it is, use the Postclose event to remove the Functions menu.

Function Preclose(Source As Document, _
 P1 As Variant) As Variant
 ' If IsMenuSet = True, then the Functions menu is still
 ' displayed. Block the close.
 If IsMenuSet Then
 Preclose = $Block
 ' If IsMenuSet = False, then the Functions menu is not
 ' displayed. Close the file.
 Else
 Preclose = $Continue

7-26 Developing SmartSuite Applications Using LotusScript

 End If
End Function

Sub Postclose(Source As Document, P1 As Variant)
 Dim MainMenu As MenuBar
 Set MainMenu = CurrentApplication.CurrentMenuBar
 IsMenuSet = False
 ' If the Functions menu appears in the 1-2-3
 ' main menu, remove it.
 If MainMenu.GetItemText(-1) = "F&unctions" Then
 MainMenu.RemoveItem(-1)
 End If
 ' Close the file.
 Source.Close
End Sub

Sub PutIsOdd
 ' Enter the @ISODD @function in the current cell
 ' and leave 1-2-3 in Edit mode.
 .UpdateSheetDisplay = False
 Selection.Contents = "@ISODD(x)"
 SendKeys "{F2}"
 .UpdateSheetDisplay = True
End Sub

Sub PutIsEven
 ' Enter the @ISEVEN @function in the current cell
 ' and leave 1-2-3 in Edit mode.
 .UpdateSheetDisplay = False
 Selection.Contents = "@ISEVEN(x)"
 SendKeys "{F2}"
 .UpdateSheetDisplay = True
End Sub

' Returns 1 for an odd number; 0 for all other entries.
Function IsOdd (x As Integer) As Integer
 If x Mod 2 <> 0 Then
 IsOdd = 1
 Else
 IsOdd = 0
 End If
End Function

' Returns 1 for an even number; 0 for all other entries.
Function IsEven (x As Integer) As Integer
If x Mod 2 <> 0 Then
 IsEven = 0
 Else
 IsEven = 1
 End If
End Function

Using LotusScript in 1-2-3 7-27

Saving and restoring a view
Often users work on the same 1-2-3 files, day after day. They must open
those files at the start of every 1-2-3 session and then adjust the workbook
window sizes and positions.

The scripts in this example perform the following tasks:

The sub SaveDocGroup saves the names of all open workbooks, along
with the size and position of their windows, and stores this information
in a text file named WINLIST.LST in the default workbook directory.

The sub OpenDocGroup opens all the files listed in the text file
WINLIST.LST and restores their windows to their previous sizes and
positions.

The user runs SaveDocGroup to save the current view, then runs
OpenDocGroup to restore that view at the start of a 1-2-3 session.

Note The text of this script is stored in DW07_S3.123 in the sample files
directory. To view the script, open the file by choosing File - Open from
the 1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

' Opens the text file WINLIST.LST and enters the name
' of each active workbook and the size and position of
' its window on a separate line.
Sub SaveDocGroup
 Dim GroupFile as String
 Dim App As Application
 Dim WinLst As DocWindows
 Dim Win As DocWindow
 Dim l As Integer
 Dim File As Integer
 Dim FileName As String
 Dim WbNameL as String
 Dim WbNameS as String

 ' Create a collection of all open document windows.
 Set App = CurrentApplication
 Set WinLst = App.Windows
 MessageBox Str$(WinLst.Count) + " Open document windows"
 Set Win = WinLst.Open

 ' Open file WINLIST.LST for writing.
 On Error Goto OpenError 'Set error handler.
 File = FreeFile()
 FileName = GetWinListName()

 ' Remove the << >> that 1-2-3 automatically surrounds
 ' the workbook name with when it writes the name to the
 ' text file.

7-28 Developing SmartSuite Applications Using LotusScript

 WbNameL = Win.Document.Name
 WbLen = (Len(WbNameL)-4)
 WbNameS = Mid$(WbLenL,3,WbLen)
 Open FileName For Output As #File
 On Error GoTo 0 'Disable error handler.

 ' Write the names and window positions of all documents
 ' in the collection WinLst.
 For l = 0 To WinLst.Count-1
 Set Win = WinLst.Item(l)
 ' Enter the name of the document.
 Print #File, WbNameS; ",";
 ' Enter window position.
 Print #File, Win.Left; ","; Win.Top; ",";
 Print #File, Win.Height; ","; Win.Width;
 Print #File, 'Line feed

 Next
 Close #File

 ' Ends sub SaveDocGroup.
 ExitSave:
 Exit Sub

 ' Error routine for errors opening text file.
 OpenError:

 MessageBox "Open Error: "+Error$(Err)+" on "+GroupFile
 Close #File
 Resume ExitSave
End Sub

The user runs OpenDocGroup at the start of a 1-2-3 session to restore the
view saved with SaveDocGroup.

' Opens the text file WINLIST.LST. Reads the name and
' window size and position of each workbook listed there
' and then opens the workbooks.
Sub OpenDocGroup
 Dim App As Application
 Dim File As Integer
 Dim Top As Integer
 Dim Lft As Integer
 Dim Wdth As Integer
 Dim Hght As Integer
 Dim RetVal As Integer
 Dim Fname As String
 Dim DocLst List As Document
 Dim FileName As String

 Set App = CurrentApplication

Using LotusScript in 1-2-3 7-29

 ' Open file WINLIST.LST.
 ' Get next free file number.
 File = FreeFile()
 FileName = GetWinListName()
 On Error GoTo OpenError ' Set error handler.
Open FileName For Input As #file
On Error Goto 0 ' Disable open error handler.

' Read each line of WINLIST.LST and open the
' workbooks listed.
Do While Not EOF(File)
 Input #file, Fname, Lft, Top, Hght, Wdth
 MessageBox Fname+","+Str$(Lft)+Str$(Top) _
 +Str$(Hght)+Str$(Wdth)

 If IsElement(DocLst(Fname)) Then
 ' If the workbook is already open, then
 ' open a new window for the same workbook.
 DocLst(Fname).NewDocWindow
 ' Reset the current window to its original size.
 CurrentWindow.Top = Top
 CurrentWindow.Left = Lft
 CurrentWindow.Height = Hght
 CurrentWindow.Width = Wdth
 Else
 ' The workbook is not open yet.
 ' Set error handler.
 On Error GoTo OpenDocumentError
 ' Open the workbook.
 App.OpenDocument Fname
 ' Disable error handler.
 On Error GoTo 0
 ' Add workbook name to list of opened documents.
 Set DocLst(Fname) = CurrentDocument
 End If

Loop
Close #file
.ActiveDocWindow.Restore
Exit Sub

' Error routine for opening text file
OpenError:

 MessageBox "Open error: "+Error$(Err) _
 +" on "+GroupFile+" (A group file may not have" _
 +" been saved yet.)",0,"Open Doc.Group"
 Exit Sub
 Resume 0

7-30 Developing SmartSuite Applications Using LotusScript

' Error routine for opening workbooks
OpenDocumentError:

 RetVal = MessageBox("Can't open Workbook" _
 +Fname, MB_OKCANCEL + MB_ICONINFORMATION, _
 "Open Doc.Group")
 If RetVal = IDOK Then
 'If user clicks OK, don't try to open workbook.

 Resume Next
 Else
 ' If user clicks Cancel, end sub.
 Close #File
 Exit Sub
 End If
End Sub

The function GetWinListName, which is used in the subs SaveDocGroup
and OpenDocGroup, finds the text file WINLIST.LST.

Function GetWinListName() As String
 ' The name of the text file is WINLIST.LST.
 Const WinListName = "winlist.lst"
 ' WINLIST.LST should be in the 1-2-3 default directory.
 GetWinListName = CurrentApplication.DefaultPath + _
 WinListName
End Function

Changing labels to values
Data imported into 1-2-3 from text files or word-processing programs is
often imported into 1-2-3 as labels (strings). In order to perform calculations
on the data, you must first convert it to (numeric) values.

The following script converts the labels in a selected range to values. The
script only converts labels that look like numbers; any other labels in the
range remain unchanged. For example, the script converts the label '55 to
the value 55, but does not change the label 'Budget. Similarly, the script
converts a label that looks like a date number, such as '35704, but does not
change a label that looks like a date format, such as 'Oct-97.

Note The text of this script is stored in DW07_S4.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

Sub LabelToValue
 Dim rs As RangeSelector
 Set rs = CurrentApplication.RangeSelector
 Dim r As Range

Using LotusScript in 1-2-3 7-31

 ' Select a range to modify.
 Set r = rs.GetRange
 ForAll Cell In r.Cells
 If Cell.Contents <> " " Then
 Cell.Contents = Cell.CellValue
 End If
 End Forall
End Sub

Converting column and sheet letters to numbers
In 1-2-3, you will likely want to automate tasks that involve database tables
or lookup tables. When you write scripts that work with tables, it is useful
to be able to convert sheet and column letters to numbers and to convert the
zero-based offset numbers returned by some LotusScript properties to their
equivalent column and sheet letters.

This example converts column and sheet letters to numbers and offset
numbers to column and sheet letters.

Note The text of these functions is stored in DW07_S5.123 in the sample
files directory. To view the script, open the file by choosing File - Open
from the 1-2-3 main menu and then choose Edit - Scripts & Macros - Show
Script Editor to display the IDE.

The function NumToLetters converts a number from 0 through 255 to a
column or sheet letter from A through IV.

Function NumToLetters(NumVal As Integer) As String
 If NumVal < 26 Then
 NumToLetters = Chr(NumVal + 65)
 Else
 NumToLetters = Chr((NumVal \ 26) + 64) & _
 Chr((NumVal Mod 26) + 65)
 End If
End Function

The function LettersToNum converts a letter from A through IV to a
number from 0 through 255.

Function LettersToNum (Letters As String) As Integer
 If Len(Letters) > 1 Then
 LettersToNum = ((Asc(Ucase$(Letters)) - 64) _
 * 26) + (Asc(Ucase$(Right$(Letters,1))) - 64)
 Else
 LettersToNum = Asc(Ucase$(Letters)) - 64
 End If
End Function

7-32 Developing SmartSuite Applications Using LotusScript

Creating a cross-tabulation report
A cross-tabulation, or crosstab, table categorizes and summarizes database
records. Where a database table has rows containing individual records, a
crosstab table shows cells that summarize underlying records grouped by
the fields you specify.

A crosstab table is a good tool for analyzing data with three or more
variables. For example, use a crosstab table to present products by type, by
quantity sold, and by sales representative.

The following example creates a crosstab table in a new sheet. Note that this
example incorporates the NumToLetters and LettersToNum functions from
the immediately preceding example in this section.

Note The text of this script is stored in DW07_S6.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

Sub CrossTab
 Dim SelectRange As String
 Dim Range1 As Range
 Dim Col1 As String
 Dim Col2 As String
 Dim ColNum1 As Integer
 Dim ColNum2 As Integer
 Dim Row1 As Integer
 Dim Row2 As Integer
 Dim Sheet1 As String
 Dim Sheet2 As String
 Dim Temp1 As Integer
 Dim FieldList List As String
 Dim ListString As String
 Dim ColHeading As String
 Dim RowHeading As String
 Dim ActionField As String
 Dim CTAction As String
 Dim FunctionName As String
 Dim FunctionDesc As String
 Dim DefField As String

 ' Constants that determine the placement of input boxes
 Const XPos = 3000
 Const YPos = 3000

 ' Error message constants. Text can be
 ' changed or translated.
 Const SmallRangeError = "Database range must contain" _
 +" at least two rows and three columns."

Using LotusScript in 1-2-3 7-33

 Const No3DError = "Database range cannot span" _
 +" worksheets."
 Const BlankFieldError = "Column headings cannot" _
 +" be blank, numbers, or formulas."
 Const InvalidField = "Invalid field name." _
 +" Choose a field name from the list."
 Const InvalidOp = "You specified an invalid" _
 +" operation! Choose an operation from the list."

 ' Input box constants. Text can be changed or translated.
 Const RowPrompt = "Choose a row heading field from" _
 +" the following fields: "
 Const RowTitle = "Row Heading"
 Const ColPrompt = "Choose a column heading field from" _
 +" the following fields: "
 Const ColTitle = "Column Heading"
 Const SumFieldPrompt = "Choose a summary field" _
 +" from the following fields: "
 Const SumFieldTitle = "Summary Field"
 Const SummaryPrompt = "Choose the summary operation: "
 Const SummaryTitle = "Crosstab Data Options"

 ' Operator constants
 Const SumName = "Sum"
 Const SumFunc = "Dsum"
 Const SumDesc = "Total"
 Const AvgName = "Average"
 Const AvgFunc = "Davg"
 Const AvgDesc = "Average"
 Const CntName = "Count"
 Const CntFunc = "Dcount"
 Const CntDesc = "A count of"
 Const MaxName = "Maximum"
 Const MaxFunc = "Dmax"
 Const MaxDesc = "Maximum"
 Const MinName = "Minimum"
 Const MinFunc = "Dmin"
 Const MinDesc = "Minimum"

 ' String constants. Text can be changed or translated.
 Const CTDesc1 = "Crosstab table for "
 Const CTDesc2 = " by "
 Const CTDesc3 = " and "

 SelectRange = .CoordinateString

 ' Check to see if selection is a single cell.
 If InStr(1, SelectRange, "..") = 0 Then

7-34 Developing SmartSuite Applications Using LotusScript

 ' Display error for single-cell selection.
 MessageBox SmallRangeError
 Exit Sub
 End If

 ' Extract sheet letters and convert them to numbers.
 Sheet1 = Left$(SelectRange, InStr(1, SelectRange, _
 ":") - 1)
 Sheet2 = Mid$(SelectRange, InStr(1, SelectRange, _
 "..") + 2, InStr(4, SelectRange, ":") - _
 InStr(1, SelectRange, "..") -2)

 ' Check for multiple-sheet selection.
 If LettersToNum(Sheet2) - LettersToNum(Sheet1) _
 <> 0 Then
 ' Display error for multiple-sheet selection.
 MessageBox No3DError
 Exit Sub
 End If

 ' Extract column letters and convert to numbers.
 Col1 = Mid$(SelectRange, InStr(1, SelectRange, _
 ":") + 1, 1)
 If IsNumeric (Mid$(SelectRange, InStr(1, _
 SelectRange, ":") + 2, 1)) = 0 Then
 Col1 = Col1 & Mid$(SelectRange, InStr(1, _
 SelectRange, ":") + 2, 1)
 End If

 Col2 = Mid$(SelectRange, InStr(4, SelectRange, _
 ":") + 1, 1)
 If IsNumeric (Mid$(SelectRange, InStr(4, _
 SelectRange, ":") + 2, 1)) = 0 Then
 Col2 = Col2 & Mid$(SelectRange, InStr(4, _
 SelectRange, ":") + 2, 1)
 End If

 ' Sort columns.
 If LettersToNum(Col2) > LettersToNum(Col1) Then
 ColNum1 = LettersToNum(Col1)
 ColNum2 = LettersToNum(Col2)
 Else
 ColNum1 = LettersToNum(Col2)
 ColNum2 = LettersToNum(Col1)
 End If

Using LotusScript in 1-2-3 7-35

 ' Extract row numbers.
 Row1 = CInt(Mid$(SelectRange, InStr(1, SelectRange, _
 ":") + 1 + Len(Col1), InStr(1, SelectRange, _
 "..") - InStr(1, SelectRange, ":") - 1 - Len(Col1)))
 Row2 = CInt(Mid$(SelectRange, InStr(4, SelectRange, _
 ":") + 1 + Len(Col2), Len(SelectRange) _
 - InStr(4, SelectRange, ":") - Len(Col2)))

 If Row2 < Row1 Then
 Temp1 = Row1
 Row1 = Row2
 Row2 = Temp1
 End If

 ' Check that the range contains at least two
 ' rows and three columns.
 If (Row2 - Row1) < 1 Or (ColNum2 - ColNum1) < 2 Then
 ' If the range is smaller than two rows by
 ' three columns, display error message.
 MessageBox SmallRangeError
 Exit Sub
 End If

 ' Get field names and check them for spaces or formulas.
 Dim y As Integer
 For x = ColNum1 To ColNum2
 y = x
 Set Range1 = Bind(Sheet1 & ":" & NumToLetters(y) _
 & Cstr(Row1))
 If (Range1.CellValue <> Mid$(Range1.Contents,2) _
 Or Range1.CellValue = "") Then
 ' Display error for field names that contain
 ' spaces or formulas.
 MessageBox BlankFieldError
 Exit Sub
 End If
 FieldList(y) = Range1.CellValue
 Next

 ' Choose row headings.
 ForAll z In FieldList
 ListString = ListString & ", " & z
 End ForAll
 ListString = Mid$ (ListString, 3)

 RowHeading = "%^#"
 DefField = Left$(ListString, _
 InStr(1, ListString, ",") - 1)
 Do While InStr(1, ListString, RowHeading, 1) = 0
 RowHeading = InputBox$(RowPrompt & ListString, _
 RowTitle, DefField , XPos, YPos)

7-36 Developing SmartSuite Applications Using LotusScript

 ' End script execution if the user clicks Cancel.
 If RowHeading = "" Then
 Exit Sub
 End If
 If InStr(1, ListString, RowHeading, 1) = 0 Then
 ' Display error for wrong field name.
 MessageBox InvalidField
 End If
 Loop

 ' Choose column headings.
 ListString = ""
 ForAll w In FieldList
 If w <> RowHeading Then
 ListString = ListString & ", " & w
 End If
 End ForAll
 ListString = Mid$(ListString, 3)

 ColHeading = "%^#"
 DefField = Left$(ListString, InStr(1, ListString, _
 ",") - 1)
 Do While InStr(1, ListString, ColHeading, 1) = 0
 ColHeading = InputBox$(ColPrompt & ListString, _
 ColTitle, DefField, XPos, YPos)
 ' End script execution if the user clicks Cancel.
 If ColHeading = "" Then
 Exit Sub
 End If
 'Display error for wrong field name.
 If InStr(1, ListString, ColHeading, 1) = 0 Then
 MessageBox InvalidField
 End If
 Loop

 ' Choose action field.
 ListString = ""
 ForAll q In FieldList
 If (q <> RowHeading And q <> ColHeading) Then
 ListString = ListString & ", " & q
 End If
 End ForAll
 ListString = Mid$(ListString, 3)
 ActionField = "%^#"

 If InStr(1, ListString, ",") = 0 Then
 DefField = ListString

Using LotusScript in 1-2-3 7-37

 Else
 DefField = Left$(ListString, InStr(1, _
 ListString, ",") - 1)
 End If

 Do While InStr(1, ListString, ActionField, 1) = 0
 ' Display Summary Operation input box.
 ActionField = InputBox$(SumFieldPrompt & _
 ListString, SumFieldTitle, DefField, XPos, YPos)
 'End script execution if the user clicks Cancel.
 If ActionField = "" Then
 Exit Sub
 End If
 ' Display error for wrong field name.
 If InStr(1, ListString, ActionField, 1) = 0 Then
 MessageBox InvalidField
 End If
 Loop

 ListString = "Sum, Average, Count, Min, Max"
 CTAction = "&*%$"
 Do While InStr(1, ListString, CTAction, 1) = 0
 CTAction = InputBox$(SummaryPrompt & ListString, _
 SummaryTitle, "Sum", XPos, YPos)
 ' End script execution if the user clicks Cancel.
 If CTAction = "" Then
 Exit Sub
 End If
 If InStr(1, ListString, CTAction, 1) = 0 Then
 ' Display error for wrong operation.
 MessageBox InvalidOp
 End If
 Loop

 ' Set operation name and string name
 ' for title, based on CTAction.
 Select Case Ucase$ (CTAction)
 Case SumName :FunctionName = SumFunc
 FunctionDesc = SumDesc
 Case AvgName :FunctionName = AvgFunc
 FunctionDesc = AvgDesc
 Case CountName :FunctionName = CountFunc
 FunctionDesc = CountDesc
 Case MaxName :FunctionName = MaxFunc
 FunctionDesc = MaxDesc
 Case MinName :FunctionName = MinFunc
 FunctionDesc = MinDesc
 End Select

7-38 Developing SmartSuite Applications Using LotusScript

 ' Insert a new sheet after the current sheet.
 ' Crosstab table appears on new sheet.
 .NewSheet $After, 1, True

 ' Freeze screen to prevent flashing while
 ' 1-2-3 builds the crosstab table.
 CurrentApplication.UpdateSheetDisplay = False

 ' Get unique list of row heading entries with
 ' 1-2-3 Classic command /Data Query Unique.
 [A5].Contents = RowHeading
 [A1].Contents = "/dqri" & SelectRange & "~oa5~uq"
 [A1].MacroRun
 [A5].Cut

 ' Get unique list of column heading entries with
 ' 1-2-3 Classic command /Data Query Unique and
 ' then transpose the data to display across the rows.
 [B5].Contents = ColHeading
 [A1].Contents = "/dqri" & SelectRange & _
 "~ob5..b" & CStr(Row2 - Row1 +4) & "~uq"
 [A1].MacroRun

 Set Range1 = Bind("b6..b" & CStr(Row2 - Row1 +4))
 Range1.Transpose[B5]
 Range1.Cut
 [A1].Cut

 ' Enter the title for the table in cell A4.
 [A4].Contents = CTDesc1 & FunctionDesc & " " & _
 ActionField & CTDesc2 & RowHeading & CTDesc3 & _
 ColHeading
 [A4].Font.Bold = 1

 ' Set up the what-if table with two variables.
 [A1].Contents = RowHeading
 [B1].Contents = ColHeading
 [A5].Contents = "@" & FunctionName & _
 "(" & SelectRange & ",""" & ActionField & """,a1..b2)"

 ' Create the crosstab table.
 [C1].Contents = _
 {GoTo}a5~/dtr/dt2.{End}{d}...{End}{r}~a2~b2~"
 [C1].MacroRun

Using LotusScript in 1-2-3 7-39

 ' Cleanup work: Delete macros from sheet and
 ' turn sheet display back on.
 [A1..A3].DeleteRows $Full
 [A2].Cut
 [A1].Select
 CurrentApplication.UpdateSheetDisplay = True
Exit Sub

'Error routine for any other error not previously
'specified in the CrossTab sub.
GenError:
 Messagebox Error$()
 .DeleteSheet
End Sub

Automatically saving all open workbooks
The following example automatically saves all open workbooks when a
specified number of minutes elapses. This example displays a dialog box
that lets users specify the following:

A number of minutes, from 1 through 1440 (24 hours)
Whether to turn automatic file saving on or off

Note The text of this script is stored in DW07_S7.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

The sub AutoSave, in (Globals), displays the AutoSave dialog box. The
names of the dialog box controls, which are used throughout the script, are
shown in the following illustration:

Sub AutoSave
 AutoSaveDlg.Show
End Sub

' Close the dialog box if the user clicks Cancel.
Sub Click(Source As LotusCommandButton)

IDE_Minutes

IDO_Enable

IDO_Disable

7-40 Developing SmartSuite Applications Using LotusScript

 ' Do nothing; close the dialog box.
 Call Source.Parent.Close()
End Sub

If the user clicks the OK button, 1-2-3 runs the InitAutoSave sub and then
closes the dialog box:

Sub Click(Source As LotusCommandButton)
 ' Start the timer and close the dialog box.
 Call InitAutoSave()
 Call Source.Parent.Close()
End Sub

The following scripts are in the (AutoSaveDlg Globals) object, which
contains global scripts for the dialog box object AutoSaveDlg. To see these
scripts in the IDE, click the arrow to the left of the AutoSaveDlg object in
the Object drop-down box and then select the (AutoSaveDlg Globals)
object. The scripts for the object are listed in the Script drop-down box.

' The constant definitions appear in (Declarations):
' Default elapsed time is 10 minutes.
Const SaveTimer = 10
' Minimum elapsed time is 1 minute.
Const MinTimer = 1
' Maximum elapsed time is 1440 minutes (24 hours).
Const MaxTimer = 1440 ' Maximum elapsed time = 1440
 ' minutes (24 hours)
Const AutoSavePoll = 1

Sub InitAutoSave
 Dim PollTimer As Double

 ' Enable the Poll event if the user selected
 ' "Enable Auto-Save," or disable the Poll event if
 ' the user selected "Disable Auto-Save."
 If AutoSaveDlg.IDO_Enable.Value Then
 'Get timer value.
 PollTimer = Val(AutoSaveDlg.IDE_Minutes.Caption)

 'Check for a valid value for the timer.
 If PollTimer < MinTimer Or PollTimer > _
 MaxTimer Then
 MessageBox "The Auto-Save timer is invalid", _
 MB_OK, "Invalid Timer"
 Exit Sub
 End If

 ' Multiply the value the user entered in
 ' the dialog box by 60 * 1000 to convert it
 ' into milliseconds.
 PollTimer = PollTimer * 60 *1000

Using LotusScript in 1-2-3 7-41

 ' Start the timer.
 Call ThisDocument.StartPoll(AutoSavePoll, _
 PollTimer, 0)
 Else
 Call ThisDocument.EndPoll(AutoSavePoll)
 End If
End Sub
' This Poll1 event script for the document object saves
' the open files.
Sub Poll1(Source As Document)
 ' Save any open workbooks that have been modified
 ' since the last save.
 ForAll Doc In CurrentApplication.Documents
 If Doc.Changed Then
 Call Doc.Save()
 End If
 End ForAll
End Sub

Making global changes to a range
You can write a script that makes it easy for the user to make global
changes to an entire range. For example, suppose the user frequently
imports numeric data and always makes the same mathematical changes to
it. You can write a script that automates those changes for a specified range.

The following example displays a dialog box that lets the user select a range
and then choose from a number of changes to apply to the entire range. The
user can also decide if the changes result in formulas or values. For
example, suppose the user chooses to multiply each value in the range
A1..A10 by 5. If cell A3 contains the value 100, the script can store the result
either as the formula 100*5 or as the value 500.

Note The text of this script is stored in DW07_S8.123 in the sample files
directory. To view the script, open the file by choosing File - Open from the
1-2-3 main menu and then choose Edit - Scripts & Macros - Show Script
Editor to display the IDE.

7-42 Developing SmartSuite Applications Using LotusScript

The sub ModifyRange, in (Globals), displays the Modify Range dialog box.
The names of the dialog box controls, which are used throughout the script,
are shown in the following illustration:

Sub ModifyRange
 ModifyRangeDlg.Show
End Sub

' The following script is executed when 1-2-3
' loads the ModifyRangeDlg dialog box.
Sub Load(Source As Lotusdialog)
 Dim RgText As LotusTextBox, ValText As LotusTextBox
 Dim Cbox As LotusComboBox

 ' Get the selected range.
 Set RgText = Source.Range

 ' Display the address of the currently selected
 ' range in the "Range to modify" box.
 RgText.Text = CurrentDocument.Selection.Allnames(0)

 ' Get the the Operation control.
 Set Cbox = Source.Operation

 ' Add mathematical operators to drop-down box.
 Cbox.AddItem("+")
 Cbox.AddItem("-")
 Cbox.AddItem("*")
 Cbox.AddItem("/")
 Cbox.SelectItem(0)
 Cbox.Refresh

 ' Get the Value control.
 Set ValText = Source.Value

 ' Display an initial value in the ValText text box.
 ValText.Text = "0"
End Sub

' Close the dialog box if the user clicks Cancel.
Sub Click(Source As LotusCommandButton)
 ' Do nothing; close the dialog box.
 Source.Parent.Close
End Sub

Range
Evaluate

Operator
Value

Using LotusScript in 1-2-3 7-43

' Perform the specified calculation on the selected
' range if the user clicks OK.
Sub Click(Source As LotusCommandButton)
 Dim Sel As Variant
 Dim Oper As LotusComboBox
 Dim Value As LotusTextBox
 Dim EvalCheck As LotusCheckBox

 ' Get the value of the "Range to modify" text box.
 Set Sel = Selection

 ' Get the value of the Operator drop-down box.
 Set Oper = Source.Parent.Operation

 ' Get the specified value from the Value text box.
 ' There is no check for a valid numeric value.
 Set Value = Source.Parent.Value

 ' Get the value of the "Evaluate to constant" check box.
 Set EvalCheck = Source.Parent.Evaluate

 Call DoModifyRange(Sel, Oper.Caption, _
 Value.Text, EvalCheck.Value)

 'Close the dialog box.
 Source.Parent.Close
End Sub

The following script is in the (ModifyRangeDlg Globals) object, which
contains global scripts for the dialog box object ModifyRangeDlg. To see
these scripts in the IDE, click the arrow to the left of the ModifyRangeDlg
object in the Object drop-down box and then select the (ModifyRange
Globals) object. The scripts for the object are listed in the Script
drop-down box.

Sub DoModifyRange(Sel As Variant, Oper As String, _
 Value As String, Eval As Variant)

 Dim RetVal As Integer
 Dim Dtype As Integer

 ' Loop through all rows and columns of selected range
 ' and modify the contents of the cells.
 ForAll X In Sel.Cells
 Dtype = DataType(X.CellValue)
 ' Make sure the current cell contains a value.
 If X.Contents <> "" And Ctype >= _
 V_INTEGER And Dtype < V_STRING Then
 X.Contents = "(" + X.Contents + ")" _
 + oper + " " + Value

7-44 Developing SmartSuite Applications Using LotusScript

 ' If user checked "Evaluate to a constant,"
 ' then replace the formula with its value.
 If Eval Then
 X.Contents = X.CellValue
 End If
 End If
 End ForAll
 End ForAll

End Sub

Using LotusScript in 1-2-3 7-45

Chapter 8
Using LotusScript in Approach

Writing scripts in Approach

LotusScript is an object-oriented programming language for automating
tasks in applications you develop in Approach. LotusScript is more
powerful and flexible than the Approach macro language, but it also
requires that you have some basic programming skills.

Some of the tasks that you can accomplish with LotusScript in Approach
include the following:

Triggering the execution of scripts in response to user actions (clicking
or double-clicking the mouse, pressing a key)

Changing the attributes (color, size, position, visibility) of a text block
or other display elements in views

Displaying or manipulating Approach dialog boxes

Quickly searching or making global changes to data in large databases

Automating the display and modification of data in views

Incorporating OCXs (OLE controls) into an application

Automating tasks without scripts
When you are planning to automate Approach tasks, keep in mind some
of the other tools Approach provides for automating tasks. In some cases,
there may be a better method than writing a script for accomplishing a
particular task. For example, creating a named find lets you search for
records according to the find conditions you define. Then, by saving the
conditions, you can easily repeat the search anytime. Creating a named find
in Approach is easier and more efficient than writing a script in LotusScript
to do the same task.

Another example of a feature that automates tasks is Drill-down to Data,
which allows you to select data in a crosstab or chart and view the details
behind that data. When you display information in a crosstab or chart, you
see grouped data and calculated summaries, totals, counts, averages, and
so on. Drill-down reveals the record values that make up the groups or
calculated values and displays the records in a worksheet.

8-1

These complex but common tasks can be accomplished with LotusScript,
but why write a script if Approach has already automated the task for you?

Macros are another way of automating frequently performed tasks and are
easily built using point-and-click functionality. Some of the tasks you can
easily automate using macros include the following:

Switching from one Approach view to another in an
Approach document

Changing data in a field for a small-to-medium set of records

Importing or exporting records

Switching between records

Displaying a box containing a message and offering the user a choice
of actions

Finding records according to user-specified input

Macros have the advantage of being very easy to build. LotusScript has the
advantages of speed and flexibility, especially when you want to process
large amounts of data in a database.

Using scripts and macros together
Your application may use both scripts and macros for automation. When
executing a script or macro, Approach does not give preference to one or
the other. To avoid a situation that requires Approach to run scripts or
macros in a particular order, follow these guidelines:

Don’t trigger both a script and a macro from the same event.

To control the order of operations, call a script from inside the body of
a macro.

For example, if you want both a script and a macro to run when users close
an application, define the macro to run when the application is closed and
call the script from inside the macro.

Information for upgraders
This release of Approach introduces the ability to create scripts by
recording user actions. Creating a transcript of an action is described later
in this chapter in “Recording scripts in Approach.”

This release also contains new classes for creating finds and sorts. The Find
class allows you to automate creating a found set. For more information,
see “Find class” later in this chapter.

8-2 Developing SmartSuite Applications Using LotusScript

The Approach object model

You must understand the Approach object model before you can efficiently
write scripts. In particular, understanding how Approach objects are
related to one another in the containment hierarchy helps you use dot
notation to identify objects.

Before continuing to read this section, you should be familiar with
LotusScript classes and objects, containment and inheritance between
LotusScript classes, and dot notation. For this information, see Chapter 2.

Like all LotusObjects, objects in Approach have properties, methods, and
events. Properties are characteristics that describe an object’s state.
Methods are subs or functions that can be performed by the object. Events
represent external actions performed on objects by users, the application,
or the operating system.

For example, suppose you are writing a script to change the color of a form
when the user clicks a button. You associate a script that changes the color
of the form with the Click event for the button. As shown here, the form
itself contains other objects that come into play as you write the script.

The following sequence describes the objects that are involved in changing
the color of the form and the dot notation used to identify each object.

The form is represented by an object.

It is an instance of the Form class. The name of the Form object is
Form1. Although the form probably wasn’t created in a script, a Form
object exists representing the actual form on the screen.

You need to know about the form as an object so that you can work
with the objects it contains and manipulate the characteristics of the
form itself.

Change ColorButton object

Form object

BodyPanel object

Background object

Color object
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A

Using LotusScript in Approach 8-3

Specifying the Form object first ignores two other important objects:

A Document object, in this case, SAMPLE.APR

An Application object, or the session of Approach in which the .APR
file is open

Considering these objects, the identification of the form changes as
shown:

For the moment, however, consider the Form object as the top level of
the hierarchy.

The body of the form is represented by a separate object.

It is an instance of the BodyPanel class, which is contained by the Form
class, through the expanded property Body. Approach automatically
creates a BodyPanel object when it creates the form.

You need to know about the BodyPanel object because you control
characteristics of the form, such as its color, through the BodyPanel
object.

Form

Identified by:
Form1

Form

Identified by:
Approach.Sample.Form1

Document

Application

BodyPanel

Identified by:
Form1.Body

Form

8-4 Developing SmartSuite Applications Using LotusScript

Expanded properties are properties of an object that are created
automatically when a related object is created. In this example, when
you created Form1, an expanded property identifying the BodyPanel
object of the form is also created as part of Form1. The section
“Approach containment hierarchy” later in this chapter describes
expanded properties in more detail.

When you create scripts in Approach, the Integrated Development
Environment (IDE) shows you where the BodyPanel object (identified
by Body) appears in the containment hierarchy.

The background of the form is represented by a separate object.

It is an instance of the Background class, which is contained by
the BodyPanel class, through the expanded property Background.
Approach automatically creates a Background object named
Background when it creates an object with a background.

The Object listing
shows each object
in the containment
hierarchy.

Background

Identified by:
Form1.Body.Background

BodyPanel

Form

Using LotusScript in Approach 8-5

The color of the background is represented by a separate object.

It is an instance of the Color class, which is contained by the
Background class, through the property Color. This object
represents the characteristics of the color of the background of
the body of the form.

The Color class has many characteristics, including descriptions of the
red, blue, and green components that make up the final color of an
object. Approach automatically creates a Color object when it creates
an object that can have colors.

You can change the color of the background of the body of the form
using a method of the Color object.

The Color class includes the SetRGB method, which changes the color
of an object.

Color

Identified by:
Form1.Body.Background.Color

Background

BodyPanel

Form

Color

Background

BodyPanel

Form

SetRGB method

Identified by:
Form1.Body.Background.Color.SetRGB

8-6 Developing SmartSuite Applications Using LotusScript

To change the color of the form, then, you call the SetRGB method as
follows, with an Approach LotusScript constant describing the new
color:

SetRGB(COLOR_IRIS)

For information about choosing and setting colors using the Color class,
search on “Classes (LotusScript)” in the Approach Help Index.

At this point, recall that the form is not at the top of the hierarchy.
Approach has a predefined global product variable, CurrentDocument,
that specifies the Approach executable (Application object) and .APR file
(Document object) that are currently in use. Using this variable to indicate
the part of the hierarchy above the form, the statement used to call the
SetRGB method is as follows:

Call CurrentDocument.Form1.Body.Background.Color.SetRGB _
 (COLOR_IRIS)

Next, you must define the button the user clicks to change the color of the
form and the event that triggers the change.

The button that the user clicks is represented by an object.

Like the background of the form, the button is identified by its location
in the hierarchy.

The button is an instance of the Button class. The name of the Button
object is ObjButton, by default. The Button object is contained by the
BodyPanel class, through an expanded property that corresponds to
the name of the Button object.

Button

Identified by:
Form1.Body.ObjButton

BodyPanel

Form

Using LotusScript in Approach 8-7

In the IDE, you can see where the button appears in the containment
hierarchy.

The button has a Click event that represents the user’s act of clicking
the button.

You associate the statement that calls the SetRGB method with this
Click event. The statement runs when the user clicks the button.

Associate the statement with the Click event by entering the statements
inside a sub for the Click event. To do this, choose ObjButton from the
Object drop-down box in the IDE, make sure the Click event is showing
in the Script drop-down box, and enter the statement after the Sub Click
line, as follows:

Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)

Call CurrentDocument.Form1.Body.Background.Color.SetRGB _
 (COLOR_IRIS)

End Sub

The Object listing
shows each object
in the containment
hierarchy.

Button

BodyPanel

Form

Click event

Identified by:
Form1.Body.ObjButton.Click

8-8 Developing SmartSuite Applications Using LotusScript

The preceding example illustrates the way that Approach objects are related
to one another in a hierarchy. It further illustrates the way that you identify
objects and their properties, methods, and events by their location in the
hierarchy.

The following sections go on to describe the hierarchy of Approach objects
in more detail. One goal of this description is to make you familiar enough
with these relationships that after some study and use, you’ll be able to
write scripts without having to look up the hierarchy of classes each time
you need to refer to an object.

The sections describe Approach objects in the following order:

Approach containment hierarchy

Approach class inheritance

Predefined global product variables that help you specify Approach
objects

The most important Approach classes and their members

Examples of how you specify Approach objects in scripts

Approach containment hierarchy
For general information about classes and containment, see “Containment”
in Chapter 2.

The containment hierarchy for Approach begins at the top with the
Application class and works its way through the familiar elements of the
Approach interface: from .APR files to views to panels to display elements
such as field boxes and text blocks. The relationship between container and
contained object is always established through a property of the container.
If you don’t know the relationship between two objects, look for a property
of the container in one of the following three configurations:

The property is included in the definition of the container class.

The most simple case allows you to know the containment relationship
from the description of an object. The property name is part of the class
definition. You can find the property listed in the Browser, and by
selecting the property and pressing F1, you can see a description of the
property in Help.

For example, the DocWindow class is contained by the Document class
through the property Window.

Window property
Document DocWindow

Using LotusScript in Approach 8-9

The property identifies a collection (or array) of the contained objects,
where the object you seek is one of the objects in the collection.

This case also allows you to know the containment relationship by
looking at the class description. You must also know the relationship
between the object you seek and the collection. Identify the object by
referring to an element of the collection.

For example, all of the tables for an .APR file (Document object) are in
a collection, or array, of Table objects. The collection is a BaseCollection
object and is contained in the Tables property of the Document object.
Each Table object is an element of the BaseCollection object. To identify
a Table object, you specify which element that Table object is in the
BaseCollection using an index.

You can manipulate the BaseCollection object as you would any other
Approach object. For example, the following script creates an object x
that represents the collection of tables in MyDocument:

Dim x As BaseCollection
Set x = MyDocument.Tables

LotusScript allows you to access each element of the collection using
notation built into the language. For example, the table OrderData is the
second table in the collection (numbered from 0). Access OrderData
directly as follows:

Dim y As Table
Set y = MyDocument.Tables(1)

The elements of the BaseCollection object are numbered from 0.

Tables property
Document BaseCollection

Tables(2)

Tables(1)

Tables(0)

8-10 Developing SmartSuite Applications Using LotusScript

The property doesn’t appear as part of the container until the contained
object is created.

In this case, the property defining the containment relationship is an
expanded property of the container. The property takes the name of the
contained object. For example, a Form object named OrderEntryForm is
contained by a Document object named Orders through the expanded
property OrderEntryForm.

When you cannot name the contained object because it has no Name
property, the expanded property takes the class name. For example,
a Background object is contained through the expanded property
Background.

The BodyPanel object is an exception to this rule; although the class is
named BodyPanel, it is contained through the expanded property Body.

Some objects can be identified by more than one property. The expanded
property is often more convenient in these cases. For example, you can
identify a Document object through its location in a collection, as follows:

Dim x As Document
Set x = CurrentApplication.Documents(1)

You can more easily identify the Document, however, by using the name
of the Document object, which is an expanded property of the Application
object:

Dim x As Document
Set x = CurrentApplication.Orders

CurrentPrintSettings
property

Document Class PrintSettings
Class

Using LotusScript in Approach 8-11

Containment hierarchy diagram
The following diagram shows the containment relationships for many
Approach classes. The Application class is the top of the hierarchy, shown
here at the far left. The classes that are not shown are not contained by
other classes.

Application class as a container
The Application class in Approach represents the Approach session
invoked from an executable.

Note In this chapter, the term “application” refers to a Document object
(an .APR file) that you are using or developing. The term “Application
object,” however, refers to Approach itself rather than your application.
Expect the term “Approach” when the text refers to an Application object,
and “application” or “.APR file” when the text refers to a Document object.

Application

BaseCollection

Display
element name

property

BaseCollection

Document

Application/
Window

BaseCollection

BaseCollection

View

Table

DocWindowWindows
property

Documents
property

BodyPanel

Display

Views
property

View name
expanded
property

Panel
name

expanded
property

ObjectList
property

Collection

Windows
property

Tables
property

8-12 Developing SmartSuite Applications Using LotusScript

An Application object can contain two kinds of objects: ApplicationWindow
objects and Document (.APR file) objects. In both cases, the contained
objects are part of a BaseCollection object identified through a property of
the Application class. The following illustration shows these containment
relationships:

To identify a document relative to the current application, specify the index
of the Document object in the BaseCollection object identified by the
Documents property, as follows:

CurrentApplication.Documents(0)

Windows
property

BaseCollection

Application/
Window

Application/
Window

Application/
Window

Documents
property

Application

BaseCollection

Document

Document

Document

Using LotusScript in Approach 8-13

Document class as a container
The Document class represents an application (an .APR file) running in
Approach.

A Document object can contain three kinds of objects: Table objects, a
DocWindow object, and objects representing Approach views. Table objects
are related to a Document object through the Tables property, which
identifies all of the tables associated with the .APR file in a collection (or
array) of objects called a BaseCollection. Each Table object is an element of
the collection.

To identify a Table object relative to the current document, specify the
index of the Table object in the BaseCollection object identified by the
Tables property, as follows:

CurrentDocument.Tables(0)

The DocWindow object is related to the Document object through a
property. The DocWindow object represents the window inside the
Approach window that contains the views for a specific Document object
(.APR file). There is only one DocWindow object for each Document; the
DocWindow object is identified through the Window property.

To identify a document window relative to the Document object, you
specify the DocWindow object through the Window property:

CurrentDocument.Window

Tables property
Document BaseCollection

Tables(2)

Tables(1)

Tables(0)

Window property
Document DocWindow

8-14 Developing SmartSuite Applications Using LotusScript

Objects representing Approach views are related to Document objects both
through a collection class and through expanded properties, as shown:

Using these containment relationships, you can identify a view in either of
the following ways:

Using the view name as an expanded property

CurrentDocument.DataEntryForm

Using the collection through the Views property

CurrentDocument.Views(0)

View and Panel classes as containers
The View class acts as a container for the Panel class. The View class is an
abstract class used to create classes representing Approach forms, reports,
and other views. The Panel class is also an abstract class. It is used to create
classes representing header, footer, summary, body, and repeating panels.

The Panel class acts as a container for the Display class. The Display class is
an abstract class used to create classes representing field boxes, text blocks,
buttons, and other display elements.

The containment relationships between the View, Panel, and Display
abstract classes are maintained between all of the classes derived from
them. For example, a FieldBox object (derived from the Display class) is
contained by a BodyPanel object (derived from the Panel class), which is
contained by a Form object (derived from the View class).

Views
property

Document

BaseCollection

Object name
expanded
properties

Worksheet

Report

Form

Using LotusScript in Approach 8-15

These classes are related both through collections and expanded properties.

Using these containment relationships, you can identify a display element,
such as a field box, in either of two ways:

Using the name of the field box as an expanded property

CurrentView.Body.fbxLastName

Using the collection through the ObjectList property, where you know
the index number corresponding to the field box

CurrentView.ObjectList(0)

The BodyPanel object in the current view is identified through the
expanded property Body.

Identifying containers using the Parent property
So far, this chapter has described containment relationships from the top
down: from container to the contained object. Using the Parent property
of most Approach objects, you can look at containment relationships in the
opposite direction: if you know the contained object, the Parent property of
that object identifies the container object. The container is the parent, and
the contained object is the child.

When working with events, it is useful to be able to determine a parent
object from a child object. An event receives the object that owns the event
as the parameter Source. The Parent property allows you access to related
objects using general references.

In the example at the beginning of the section “Approach object model,” the
Click event script for the button was specific to the object affected:

Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)

 Call CurrentDocument.Form1.Body.Background.Color.SetRGB _
 (COLOR_IRIS)

End Sub

ObjectList
property

View

Collection

Object name
expanded
properties

Panel

Display(2)

Display(1)

Display(0)Object name
expanded
property

8-16 Developing SmartSuite Applications Using LotusScript

Instead of identifying the SetRGB method relative to the CurrentDocument,
you can write a more general script using what you know about the
immediately affected objects. In this example, you know the following:

In the Click event script, the variable Source identifies the Button object.

The Button object and the object performing SetRGB (the Color object)
are both contained by the BodyPanel object.

The Parent property of the Button object identifies the BodyPanel
object. That is, the parent of the Button object is the BodyPanel object.

Using the Button object as the starting point in the form of Source, you can
then back your way up the hierarchy using the Parent property until you
reach the shared object, BodyPanel.

The Call statement in the Click event script becomes less specific and more
easily applicable in other scripts:

Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)

 Call Source.Parent.Background.Color.SetRGB(COLOR_IRIS)

End Sub

Identified by:

Source

Button

Identified by:

Source.Parent

BodyPanel

Using LotusScript in Approach 8-17

Approach inheritance relationships
Approach provides abstract classes that exist only to create other derived
classes. The following diagram shows the abstract class View and the
classes derived from it.

The following diagram shows the abstract class Panel and the classes
derived from it.

Form

Report

Worksheet

Crosstab

View

FormLetter

Envelope

MailingLabels

ChartView

BodyPanel

SummaryPanel

HeaderFooterPanel

RepeatingPanel

Panel

8-18 Developing SmartSuite Applications Using LotusScript

The following diagram shows the abstract class Display and the classes
derived from it.

For more information about inheritance, see “Inheritance” in Chapter 2.

TextBox

FieldBox

DropDownBox

Button

Display

ListBox

RadioButton

CheckBox

Picture

PicturePlus

OLEObject

Ellipse

LineObject

Rectangle

RoundRect

Using LotusScript in Approach 8-19

Approach predefined global product variables
Approach supports several predefined global product variables that greatly
simplify specifying objects. Each of these variables lets you specify an object
in the current Approach session, document, or view that was defined
outside the current sub or function.

Variable Description

CurrentApplication Represents the current session of Approach and is the
object at the top of the entire hierarchy.

CurrentDocument Represents the current Approach document (.APR file)
for the current session of Approach.

CurrentWindow Represents the document window in the current
Approach document. The DocWindow class includes
properties and methods that control Approach interface
elements, such as menus and sets of SmartIcons, that are
independent of views or data.

CurrentView Represents the current view (form, report, crosstab, and
so on) in the current Approach document.

These variables replace all of the objects that are containers for the current
object. For example, to specify an object contained by the current view, use
the following syntax:

Correct:

CurrentView. ObjName

Do not use other variables to fill in the containment tree:

Incorrect:

CurrentApplication.CurrentDocument.CurrentView. ObjName

Another global product variable you will see in Approach LotusScript
examples is Source. Source identifies the object for which an event occurs.
For more information about using Source, see Chapter 4.

8-20 Developing SmartSuite Applications Using LotusScript

Creating new objects
To create a new object in LotusScript, you must declare a variable of the
object’s type and assign the new object to it. In Approach, there are two
ways to create a new object using the LotusScript New keyword:

Declare the object variable in one statement, and assign the new object
to it in a second statement. For example, the following script creates a
new Document object variable, MyDocument:

Dim MyDocument As Document
Set MyDocument = New Document(MyTable)

The argument MyTable indicates the data source used to create the
Document. In this case, the New keyword is treated as a method of the
Document class. For information on the New method, search on
“Methods” in the Approach Help Index.

Declare the object variable and create the new object in the same
statement. For example, the following statement creates a new
Document object variable, MyDocument:

Dim MyDocument As New Document(MyTable)

In this case, the New keyword is an element of the Dim statement. For
information on the Dim statement, search on “LotusScript” in the
Approach Help Index, then click “LotusScript Index.”

Approach classes

Approach classes give access to almost all of the functionality of Approach.
There are 47 classes in Approach; the following sections describe the most
important of these classes. Four of these classes are abstract classes, and the
descriptions of these abstract classes give a general understanding of the
classes that inherit from them. To explore the details of the classes derived
from each abstract class, search on “Classes (LotusScript)” in the Approach
Help Index.

The section “Approach containment hierarchy” earlier in this chapter
describes how each class relates to other Approach classes.

Application class
The Application class represents the Approach application invoked from an
executable. The Application class is not an abstract class.

Using LotusScript in Approach 8-21

Application properties
Application objects have the characteristics described by the following
Application class properties:

Characteristics of the application Application class properties

The .APR file, application window, and
view currently in use.

ActiveDocument, ActiveDocWindow,
ActiveView

The Approach application and window
in use.

Application, ApplicationWindow

All documents, sets of SmartIcons, user
language (such as English or French),
menus, and windows in use in
Approach. Documents and Windows
both identify collections of objects
contained in the Application object.

Documents, IconSets, Language,
Menus, Windows

Full path and file name of the Approach
session, only its name, or only its path.

FullName, Name, Path

The OLE Automation controller that
invoked Approach.

Parent

The element that currently has focus;
whether Approach is visible.

Selection, Visible

Application methods
Application objects can perform the operations described by the following
Application class methods:

Actions that the application performs Application class methods

Ending the session CloseWindow

Making a Color object available GetColorFromRGB

Opening an .APR file OpenDocument

Running a sub or function RunProcedure

8-22 Developing SmartSuite Applications Using LotusScript

Application events
An Application object responds to actions by the user or operating system
as described by the following Application class events:

Actions that can affect the application Application class events

Passing a value at the time Approach
is invoked

Broadcast

Closing, creating, or opening an
.APR file

DocumentClose, DocumentCreated,
DocumentOpened

Checking, receiving, or sending mail
from Approach

MailCheck, MailReceived, MailSend

Exiting Approach Quit

Application class example
In the following example, the Application object identified by the
predefined global product variable CurrentApplication determines the
number and name of each .APR file that is currently open.

Sub ListDocuments

 Dim i As Integer
 Dim DocList As BaseCollection
 Dim DocCount As Integer

 ' Store the collection in DocList.
 Set DocList = CurrentApplication.Documents

 ' Retrieve the number of documents open.
 DocCount = DocList.Count

 ' Print a summary of the number of documents open.
 Print ("There are " & DocCount & " documents open:")

 ' Print the index and name of each document.

 ' DocList starts counting at 0.
 For i = 0 To DocCount -1

 Print (i & " " & DocList(i).Name)

 Next
End Sub

Using LotusScript in Approach 8-23

Window class
The Window class comprises the methods that describe the Approach
window (ApplicationWindow class) and the .APR file window
(DocWindow class). The Window class is an abstract class. You cannot
create an instance of the Window class as such, but you can create and
manipulate instances of the classes derived from it. The
ApplicationWindow class and the DocWindow class inherit methods from
the Window class.

Window properties
The Window class has no properties.

Some of the classes derived from the Window class have properties. For a
list of the properties of each class, search on “Classes (LotusScript)” in the
Approach Help Index, click “Approach classes,” and click a class name. In
the topic, click the Class Members button.

Window methods
The Window class and all classes derived from it can perform the
operations described by the following Window class methods:

Actions that windows perform Window class methods

Changing the window display Close, Maximize, Minimize, Restore

Retrieving operating system information
about the window in order to call it from
another product

GetHandle

Window events
The Window class has no events.

Some of the classes derived from the Window class do have events. For a
list of the events of each class, search on “Classes (LotusScript)” in the
Approach Help Index, click “Approach classes,” and click a class name. In
the topic, click the Class Members button.

Window class example
Identify instances of classes derived from the Window class using the
Window property of the container class. For example, to minimize the
window for the current document, use the following statement:

Call CurrentDocument.Window.Minimize()

Minimize the window for the current application as follows:

Call CurrentApplication.Window.Minimize()

8-24 Developing SmartSuite Applications Using LotusScript

Document class
The Document class is not an abstract class. The Document class represents
an application (an .APR file) running in Approach.

Note The term “application” refers to a Document object (an .APR file)
that you are using or developing. The term “Application object,” however,
refers to Approach itself rather than your application. In this chapter,
“Approach” refers to an Application object, and “application” or “.APR
file” refers to a Document object.

There are two ways to create a new Document object; they are described in
“Creating new objects” earlier in this chapter.

Document properties
Document objects have the characteristics described by the following
Document class properties:

Characteristics of documents Document class properties

.APR file information entered by
its creator

Author, Description, Keywords

.APR file information FileName, FullName, Name, Path,
User

The parent object of the Document object;
that is, the Application object that
contains the Document object

Parent

.APR file revision information CreateDate, LastModified, Modified,
NumRevisions

Connections to information used in the
.APR file, including tables of calculated
fields and variable fields

CalcTable, NumJoins, NumTables,
Tables, VarTable

Information about the design of the
.APR file

Menus, NamedFindSorts,
NamedStyles, NumViews, Views,
Window

Document methods
Document objects can perform the operations described by the following
Application class methods:

Actions that documents perform Document class methods

Creating a new Document object New

Moving the application focus to a
another application

Activate

Creating or deleting a calculated field CreateCalcField, DeleteCalcField

Assigning a Table object to a variable GetTableByName

Using LotusScript in Approach 8-25

Document events
The Document class has no events.

Document class example
This example uses the Document object for the Orders application and its
Description property to print a description of the .APR file:

Sub DocDescription

 Print ("The Orders application: " & _
 CurrentApplication.Orders.Description)

End Sub

Table class
The Table class represents a table associated with an .APR file.

Note In this chapter, “table” refers to a single table in a database that may
contain more than one table. Approach Help and other Approach
documentation, however, use the term “database” broadly to mean both
“database” and “table.”

You can identify a table through the Tables property of a Document object,
which is a BaseCollection object representing all of the tables associated
with the .APR file.

Table properties
Table objects have the characteristics described by the following Table class
properties:

Characteristics of tables Table class properties

Table information FileName, FullName, Path,
TableName

The Document object with which this
Table is associated

Parent

Name of each field in a table FieldNames

Counts of the fields and records in a table NumFields, NumRecords

Table methods
Table objects can perform the operations described by the following Table
class methods:

Actions that tables perform Table class methods

Retrieving or replacing a table’s
data source

CreateResultSet, ReplaceWithResultSet

Retrieving information about a field GetFieldFormula, GetFieldOptions,
GetFieldSize, GetFieldType

8-26 Developing SmartSuite Applications Using LotusScript

Table events
The Table class has no events.

Table class example
The following example uses the Table object variable MyTable to retrieve
the name and data type for each field in the table.

Sub TableInfo

 Dim i As Integer

 Dim NumColumns As Integer

 Dim MyTable As Table
 Dim ColumnNames As Variant

 ' Store the first table object from the current document
 ' in MyTable.
 Set MyTable = CurrentDocument.Tables(0)

 ' Store the collection of field names in ColumnNames.
 ColumnNames = MyTable.FieldNames

 ' Print the field names and their data types.
 For i = 0 To MyTable.NumFields - 1

 Print (i & " " & ColumnNames(i) & " " & _
 Str$(MyTable.GetFieldType(ColumnNames(i))))
 Next

End Sub

View class
The View class comprises the properties and events that describe the views
in Approach: forms, reports, worksheets, crosstabs, charts, form letters,
mailing labels, and envelopes. The View class is an abstract class. You
cannot create an instance of the View class as such, but you can create and
manipulate instances of the classes derived from it.

The following classes are derived from the View class:

Form

Report

Worksheet

Crosstab

ChartView

FormLetter

MailingLabels

Envelope

Using LotusScript in Approach 8-27

View properties
All Approach views have characteristics described by the following View
class properties:

Characteristics of views View class properties

Appearance of the view MenuBar, Visible

The application that the view appears in,
the view name, and the view type

Document, Name, Type

The parent object of the view, that is, the
Document object that contains the view

Parent

Data connection MainTable

Macro executed by switching to or away
from the view

OnSwitchFromMacro,
OnSwitchToMacro

The classes derived from the View class have additional properties. These
additional properties describe characteristics that make the various views
different from one another. For example, the Report class includes the
KeepRecsTogether property, but none of the other classes derived from the
View class needs to disable page breaks within a record.

For a list of the properties of each class, search on “Classes (LotusScript)” in
the Approach Help Index, click “Approach classes,” and click a class name.
In the topic, click the Class Members button.

View methods
The View class has no methods.

Some of the classes derived from the View class do have methods. For a
list of the methods of each class, search on “Classes (LotusScript)” in the
Approach Help Index, click “Approach classes,” and click a class name.
In the topic, click the Class Members button.

Each class derived from the View class has a New method for creating a
new instance of the class. To create a new Form object, for example, you
must declare a variable and assign the new Form object to the variable.
For more information, see “Creating new objects” earlier in this chapter.

8-28 Developing SmartSuite Applications Using LotusScript

View events
The View class and all classes derived from it respond to actions by the
user, application, or operating system as described by the following View
class events:

Actions that affect views View class events

Switching to or from another view SwitchFrom, SwitchTo

Waiting the time indicated by a
timer before executing or continuing
an operation

UserTimer

View class example
Identify instances of classes derived from the View class using the name
of the object as an expanded property of the Document object. For example,
identify the Form1 view by using the following dot notation:

CurrentDocument.Form1

You can also identify the form by its location in the BaseCollection object
contained through the Views property of the Document object. In this
example, Form1 is the second item in the BaseCollection object:

CurrentDocument.Views(1)

The following example shows how to create a new Form object and assign
a name to it:

Dim MyForm As Form

Set MyForm = New Form(CurrentDocument)
MyForm.Name = "My New Form"

Panel class
The Panel class comprises the properties and methods that describe the
common characteristics and operations of the following components of
Approach views:

The body panel of a form, report, worksheet, crosstab, chart, form
letter, mailing label, or envelope

The header, footer, and summary panels of a report

The repeating panel on a form

The Panel class is an abstract class. You cannot create an instance of the
Panel class as such, but you can create and manipulate instances of the
classes derived from it.

Using LotusScript in Approach 8-29

The following illustration shows the classes derived from the Panel class
and the panels in a report you can create by using these classes. The
RepeatingPanel is not shown, but is also derived from the Panel class.

You cannot name objects representing panels in Approach because they
have no Name property. To identify a panel in a script, use the following
identifiers created by Approach for the panel:

Panel type Identifier

BodyPanel Body

SummaryPanel Summary, Summary1, Summary2, and so on

HeaderFooterPanel Header, Footer

RepeatingPanel RepeatingPanel, RepeatingPanel1,
RepeatingPanel2, and so on

Panel properties
All Approach panels have characteristics described by the following Panel
class properties:

Characteristics of panels Panel class properties

Size of the panel Height

Appearance of the panel Background, Border, NamedStyle

The parent object of the Panel object, that is,
the view in which the panel resides

Parent

The type of panel Type

HeaderFooterPanel

SummaryPanel

BodyPanel

HeaderFooterPanel

8-30 Developing SmartSuite Applications Using LotusScript

The classes derived from the Panel class have additional properties. These
additional properties describe characteristics that make the various panels
different from one another. For example, the SummaryPanel class includes
the property PageBreak, which indicates that a page break occurs each time
the panel appears. None of the other panels has this property.

For a list of the properties of each class, search on “Classes (LotusScript)”
in the Approach Help Index, select “Approach classes,” and select a class
name. In the topic, click the Class Members button.

Panel method
The Panel class and all classes derived from it can perform the operation
described by the following Panel class method:

Action that panels perform Panel class method

Creating a named style from the
display element attributes

MakeNamedStyle

Panel events
The Panel class has no events.

Some of the classes derived from the Panel class do have events. For a list of
the events of each class, search on “Classes (LotusScript)” in the Approach
Help Index, click “Approach classes,” and click a class name. In the topic,
click the Class Members button.

Panel class example
Identify instances of classes derived from the Panel class using the name
of the object as an expanded property. For example, to identify the second
summary panel placed in a report, use the following dot notation:

CurrentView.Summary1

In an event script for an object in the same view, identify the summary
panel as follows:

Source.Summary1

Using LotusScript in Approach 8-31

Display class
The Display class comprises properties, methods, and events that describe
the most common elements in Approach: text blocks, field boxes, buttons,
pictures, drawn objects, and so on. The Display class is an abstract class.
You cannot create an instance of the Display class as such, but you can
create and manipulate instances of the classes derived from it. The
following illustration shows the classes derived from the Display class
and the display elements you can create by using these classes:

The OLEObject, Picture, and PicturePlus classes are not shown, but they are
also classes derived from the Display class.

Display properties
All Approach display elements have characteristics described by the
following Display class properties:

Characteristics of display elements Display class properties

Location and size of the element in the view Top, Left, Height, Width, Page

The element name, parent object, and type Name, Parent, Type

Position in tab order TabOrder, TabStop

The macro executed by tabbing to or away
from the element

MacroTabIn, MacroTabOut

Print behavior SlideLeft, SlideUp, NonPrinting,
ShowInPreview, Visible

Button

ListBox

RadioButton

FieldBox

CheckBox

DropDownBox

TextBox

Ellipse

LineObject

Rectangle

RoundRect

8-32 Developing SmartSuite Applications Using LotusScript

Some of the classes derived from the Display class have additional
properties. These additional properties describe characteristics that make
the various display elements different from one another. For example, the
FieldBox class has the DataField and DataTable properties to indicate the
connection between a field in a table and the field box in a view. Text blocks
do not have these properties because they do not display data from a table.

For a list of the properties of each class, search on “Classes (LotusScript)” in
the Approach Help Index, click “Approach classes,” and click a class name.
In the topic, click the Class Members button.

Display methods
The Display class and all classes derived from it can perform the operations
described by the following Display class methods:

Actions that display elements perform Display class methods

Changing the arrangement of elements in
the view

BringToFront, SendToBack

Moving the application focus to the element SetFocus

Updating the data displayed by the element Refresh

Placing a new element in a view InsertAfter

Creating a named style from the display
element attributes

MakeNamedStyle

All classes derived from the Display class also have the New method for
creating an instance of the class. The New method is different for each
derived class, so it isn’t part of the Display class description. To create a
new FieldBox object, for example, you must declare a variable and assign
the new FieldBox object to it. For more information, see “Creating new
objects” earlier in this chapter.

Some of the classes derived from the Display class have additional
methods. These additional methods describe operations that make the
various display elements behave differently from one another. For example,
the RadioButton and CheckBox classes include the SetState method to
predefine the value displayed by the field. Other display elements do not
have this method.

For a list of the methods of each class, search on “Classes (LotusScript)”
in the Approach Help Index, select “Approach classes,” and select a class
name. In the topic, click the Class Members button.

Using LotusScript in Approach 8-33

Display events
The Display class and all classes derived from it respond to actions by the
user, application, or operating system as described by the following Display
class events:

Actions that affect display elements Display class events

Clicking or double-clicking the element Click, DoubleClick

Selecting an element with the mouse to drag
it and releasing the mouse button

MouseDown, MouseUp

Display class example
Identify instances of classes derived from the Display class using the name
of the object. For example, to identify a field box that displays last name
information, use the following dot notation:

CurrentView.Body.fbxLastName

In an event script for an object on the same panel as the field box, identify
the field box as follows:

Source.Parent.fbxLastName

Find class
The Find class represents all of the information needed to create a found
set. It automates the process of creating a find request and running the find.
After you create a Find object, run the find using the FindSort method of
the DocWindow class.

There are two ways to create a new Find object; they are described in
“Creating new objects” earlier in this chapter.

For more information about creating and running a find, see the examples
described in “Top tasks” later in this chapter.

The following classes are similar to the Find class:

Sort class

Sorts records. Run a sort using the FindSort method of a DocWindow
object. You can run a sort at the same time as a find.

FindDistinct class

Finds records with unique field values. You can specify a FindDistinct
object in any operation where you can use a Find object.

FindDuplicate class

Finds records with duplicate field values. You can specify a
FindDuplicate object in any operation where you can use a Find object.

8-34 Developing SmartSuite Applications Using LotusScript

Find properties
Find objects have the characteristics described by the following Find class
property:

Characteristic of finds Find object property

The FindDuplicate or FindDistinct object
contained by the Find object

FindSpecial

Find methods
Find objects can perform the operations described by the following Find
class methods:

Actions that finds perform Find class methods

Adding an AND or OR condition to the find And, Or

Retrieving find condition details and the
number of conditions in the find

GetAt, GetCount

Clearing conditions from the find RemoveAll

Creating a find New

Find events
The Find class has no events.

Find class example
The following example shows how to create the Find object FindLast, and
how to run the find.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

 ' Declare a DocWindow object variable.
 Dim MyDocWin As DocWindow

 ' Retrieve the active DocWindow.
 Set MyDocWin = CurrentApplication.ActiveDocWindow

 ' Declare a Table object variable.
 Dim MyTable As String

 ' Retrieve the name of the main table for the view.
 MyTable = CurrentDocument.Tables(0).TableName

 ' Create a new Find object to search for a last name.
 Dim FindLast As New Find (MyTable & ".Last", "Garcia")
 ' Find last name.
 Call MyDocWin.FindSort (FindLast)

End Sub

Using LotusScript in Approach 8-35

Connection class
Using LotusScript in Approach, you can bypass the user interface and
access data directly from a table. The table can be one already
associated with the .APR file, or a distinct table. This batch process
involves three classes:

The Connection class represents all of the information needed to make a
connection to a specific database format.

The Query class represents the selection information for which records
from a table are returned in the batch operation.

The ResultSet class represents the records returned from the connection
to the table.

Accessing data through this batch process can be very fast for the following
operations:

Examining or modifying many or all records in a very large database

Performing calculations using data from a large number of records

For illustrations of the relationships between the Table, Connection, Query,
and ResultSet objects, see the examples described in “Top tasks” later in
this chapter.

There are two ways to create a new Connection object; they are described in
“Creating new objects” earlier in this chapter.

Accessing Approach data from other Lotus products
The Connection, Query, and ResultSet objects can be made available to
other Lotus products that use LotusScript, so that applications written in
those products can access Approach data. These objects are exposed to
other Lotus products via a LotusScript Extension (LSX) module,
DBENGN01.LSX, which combines functionality of the Connection, Query,
and ResultSet objects. An LSX module is like a Dynamic-Link Library (DLL)
that gives you access to the data.

For example, to access Approach data through a Word Pro application, do
the following:

1. Click the Object drop-down box in the IDE.

2. Select !Globals from the list.

8-36 Developing SmartSuite Applications Using LotusScript

3. Type the following statement in the Script Editor:

UseLSX "< drive >\< path >\dbengn01.lsx"

drive refers to the drive on which the Approach DBENGN01.LSX file is
stored.

path refers to the directory path where the Approach DBENGN01.LSX
file is stored.

4. Write scripts in Word Pro using the Approach Connection, Query, and
ResultSet objects to retrieve data from a table.

Connection properties
Connection objects have the characteristics described by the following
Connection class properties:

Characteristics of connections Connection class properties

Record commit status AutoCommit

Information about the PowerKey and
user information needed to make the
data connection

DataSourceName, Password, UserId

Status of the connection IsConnected

Connection methods
Connection objects can perform the operations described by the following
Connection class methods:

Actions that connections perform Connection class methods

Specifying the table type to access ConnectTo

Retrieving error information GetError, GetErrorMessage,
GetExtendedErrorMessage

Retrieving information about available
data format types and tables

ListDataSources, ListFields, ListTables

Committing or rolling back
record changes

Transactions

Deleting and creating the connection Disconnect, New

Connection events
The Connection class has no events.

Using LotusScript in Approach 8-37

Connection class example
The following example shows how a new Connection object is created and
set to a data source type. See the example in “ResultSet class” to understand
more of the steps involved in creating a data connection.

Dim MyConnection as New Connection
Call MyConnection.ConnectTo("ODBC Data Sources")

Query class
The Query class represents an SQL (Standard Query Language) statement.
This statement is used to search through a table and return records that
match given find conditions. Use a Query object with a Connection object
and a ResultSet object for data access operations.

For illustrations of the relationships between the Table, Connection, Query,
and ResultSet objects, see the examples described in “Top tasks” later in
this chapter.

There are two ways to create a new Query object; they are described in
“Creating new objects” earlier in this chapter.

Query properties
Query objects have the characteristics described by the following Query
class properties:

Characteristics of queries Query class properties

Connection to data source for the query Connection

Find conditions specified using SQL
and the table to return if there are no
find conditions

SQL, TableName

Query methods
Query objects can perform the operations described by the following Query
class methods:

Actions that queries perform Query class methods

Retrieving query error information GetError, GetErrorMessage,
GetExtendedErrorMessage

Creating a new query object New

Query events
The Query class has no events.

8-38 Developing SmartSuite Applications Using LotusScript

Query class example
The following example shows how to create a Query object to retrieve all
records from a table.

Sub RunQuery

 Dim MyConnection As New Connection
 Dim ThisQuery As New Query

 Dim ThisTable As String
 Dim ThisResultSet As New ResultSet

 ' Open the connection.
 Call MyConnection.ConnectTo ("dBASE IV")

 ' Store the name of the table to find records in.

 ' In this case, it is the Orders table.
 ThisTable = "Orders.dbf"

 ' Use this connection and table in the query definition.
 Set ThisQuery.Connection = MyConnection

 ThisQuery.TableName = CurrentDocument.Tables(0).Path & _
 ThisTable

 ' The definition and execution of a result set must
 ' follow here.

End Sub

ResultSet class
The ResultSet class represents all of the information returned from a query.
A result set is exactly like a found set, except that the data from a result set
does not appear in the user interface. Instead, the result set data is available
as a table that you can access through LotusScript.

Use a ResultSet object with a Query object and a Connection object for data
access operations.

Found set

Data from a table
used in the
application...

Appears in views
as the found set.

Data from any
table...

Is accessible
through
LotusScript.

Result set

Using LotusScript in Approach 8-39

For illustrations of the relationships between the Table, Connection, Query,
and ResultSet objects, see the examples described in “Top tasks” later in
this chapter.

There are two ways to create a new ResultSet object; they are described in
“Creating new objects” earlier in this chapter.

ResultSet properties
ResultSet objects have the characteristics described by the following
ResultSet class properties:

Characteristics of result sets ResultSet class properties

The record currently in use CurrentRow

Flags that indicate the first and last records
in the result set

IsBeginOfData, IsEndOfData

The Query object used to create the result set Query

Flags that indicate the status of the result set IsReadOnly, IsResultSetAvailable

ResultSet methods
ResultSet objects can perform the operations described by the following
ResultSet class methods:

Actions that result sets perform ResultSet class methods

Adding or deleting a record AddRow, DeleteRow

Moving between records FirstRow, LastRow, NextRow,
PreviousRow

Closing the result set Close

Creating a new result set New

Setting how records are updated Options

Filling the result set with data
from a table

Execute

Writing record changes to a table UpdateRow

Retrieving error information GetError, GetErrorMessage,
GetExtendedErrorMessage

Retrieving and setting elements of the
find conditions

GetParameter, GetParameterName,
GetValue, SetParameter, SetValue

Retrieving and setting field information FieldExpectedDataType, FieldId,
FieldName, FieldNativeDataType,
FieldSize

Retrieving statistics about the result set NumColumns, NumParameters,
NumRows

8-40 Developing SmartSuite Applications Using LotusScript

ResultSet events
The ResultSet class has no events.

ResultSet class example
The following example shows how the ResultSet object ThisResultSet is
given a query and executed.

Sub RunQuery

 Dim MyConnection As New Connection

 Dim ThisQuery As New Query

 Dim ThisTable As String
 Dim ThisResultSet As New ResultSet

 ' Open the connection.
 Call MyConnection.ConnectTo ("dBASE IV")

 ' Store the name of the table to find records in.

 ' In this case, it is the first table for the document.
 ThisTable = CurrentDocument.Tables(0).TableName

 ' Use this connection and table in the query definition.
 Set ThisQuery.Connection = MyConnection
 ThisQuery.TableName = CurrentDocument.Tables(0).Path & _
 ThisTable

 ' Use this query in the result set definition.
 Set ThisResultSet.Query = ThisQuery

 ' Create the result set.
 Call ThisResultSet.Execute()

 ' Now the ResultSet is available to use.

End Sub

Recording scripts in Approach

Approach can record a transcript of actions you perform in Approach. Store
the transcript as a script in an .LSS file or in the IDE at the insertion point;
or as a macro. The resulting script or macro can be edited or copied.

Recording Approach tasks as LotusScript involves the following operations:

Practicing the actions you intend to record.

Determining how to store the transcript: Choose Edit - Record
Transcript.

Performing the actions you want to record.

Stopping the recording process: Choose Edit - Stop Recording.

Using LotusScript in Approach 8-41

Using the IDE in Approach

This section describes Approach-specific behavior of the IDE. For general
IDE operation, see Chapter 3.

In Approach, open the IDE by choosing Edit - Show Script Editor.

The Object drop-down box in the IDE lists the Approach objects in their
containment structure. When you first open the list, you see the following
items:

Globals, which lists the global subs and functions

The name of the Document object (.APR file) associated with
this IDE window

Approach, which is the default name of the Application object

When you select the Document object, you see a list of the views it contains.
Each view opens to show the objects it contains, and so on through the
containment hierarchy.

The Browser lists Approach classes, constants, subs and functions, and
variables. Detailed information is available for each entry in the Browser
by pressing F1.

Global subs and
functions
The Document object
associated with this
IDE window

The Application
object, Approach

8-42 Developing SmartSuite Applications Using LotusScript

Script templates
As you use LotusScript, you may find yourself entering the same function
or other code in numerous scripts. In the Script Editor, Approach provides
several frequently used scripts as script templates. You can use these
templates to insert script statements into the current script. You can also
add your own scripts to the list of templates available through the Script
Editor.

Inserting a script template
To insert a script template:

1. In the Script Editor, open the script to which you want to add the script
template.

2. Place the insertion point in the script where you want to insert the
template.

3. Choose Script - Insert Template.

4. Select a script template.

Template name Description

Automation example Finds field values less than a given number and
stores them statically in a new Word Pro document.

Connection example Connects to a sample DB2 database.

Create calculated field Creates a calculated field for the current .APR file.

Notes connect Connects to a sample Notes database.

5. Click OK.

Select a category to
see lists of relevant
LotusScript elements.

Using LotusScript in Approach 8-43

Approach places the script and code comments in the current script at the
insertion point. You can and will probably want to modify the code that
was inserted from the script template because the templates contain
example text and variable names.

Creating a script template
You can add scripts to the list of templates available through the Script
Editor. To create a template:

1. In the Script Editor, select the script statements from which you want
create a template.

2. Choose Edit - Copy.

3. Paste the script in a text editor outside Approach.

4. Add a comment line to the top of the script.

For example, if your template contains statements to add today’s date
to a field, enter the following comment to the top of the file:

' Insert today's date

The comment text appears in the Insert Script Template dialog box.

5. Save the text file (with a .TPL extension) to the directory
C:\<PATH>\APPROACH\SCRIPTS.

PATH is either the default SmartSuite directory or an alternative
directory selected during Install.

Customizing the Approach user interface
Use LotusScript in Approach to enhance the usability of your application by
customizing the user interface. You can use LotusScript or macros to build
enhancements, such as the following:

Add buttons and menu items to execute tasks that you define.

Execute tasks based on data the user enters in a view.

Create dialog boxes to control how users enter information.

The following sections describe how to associate a script with a button or
menu in the application.

8-44 Developing SmartSuite Applications Using LotusScript

Attaching a script to a button
Approach makes it easy for you to attach a script (or a macro) to a button in
a view. If the button isn’t already in the view, add the button by clicking the
Button icon on the Tools palette.

To name objects you create in Design
Approach assigns a name to all elements you create in a view. For example,
if you add a button to a form, Approach automatically names the button
ObjButton. You can see the name in the InfoBox and change it there.

To change the name of a button or any other display element that you
create in Design:

1. In Design, double-click the button.

2. Click the Macros tab in the InfoBox.

The button’s name appears in the “Object name” box.

3. Enter the new name.

To attach a script to a button
1. Choose Edit - Show Script Editor.

2. Select the Button object by its name in the Object drop-down box.

To find the Button object, you have to open each object in the
containment hierarchy till you reach the container that contains the
button.

3. Verify that Click appears in the Script drop-down box.

The Script Editor shows an empty Sub statement for the Click event of
the button. The script you enter between the lines Sub and End Sub
runs when the user clicks the button.

4. Enter the script.

Using LotusScript in Approach 8-45

The following illustration shows an Approach view that offers a list of tasks
a user can do in a room-reservation application. The button to the left of
each menu item has a script (or macro) attached to it. When the user clicks
a button, the script or macro runs.

For example, the script attached to the “See Schedule for” button looks like
this:

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

 Set CurrentWindow.ActiveView = CurrentDocument.Enter~ Date

End Sub

The Enter Date view appears as a dialog box in which the user indicates
which day of reservations to display. The space in the view name is
represented as a tilde (~) followed by a space.

Attaching a script to a menu item
Approach lets you attach a script to a custom menu item so a user can run
the script by selecting the menu item. The script must be a global sub or
function.

Attaching a script to a menu item requires you to do the following:

Create a global sub or function in the IDE.

For information on how to create a sub or function, see “Creating
scripts” in Chapter 3.

Create a macro that runs the sub or function.

For information on how to create a macro, search on “Macros, creating”
in the Approach Help Index.

Choose the macro as the Item Action when creating the menu item.

For information on how to create a custom menu item, search on
“Menus, creating” in the Approach Help Index.

8-46 Developing SmartSuite Applications Using LotusScript

Attaching a script to a function key
Approach lets you attach a script to a function key so a user can run the
script by pressing the key. The script must be a global sub or function.

Attaching a script to a function key requires you to do the following:

Create a global sub or function in the IDE.

For information on how to create a sub or function, search on
“LotusScript” in the Approach Help Index, click “LotusScript Index,”
and then search on “Subs, creating.”

Create a macro that runs the sub or function.

For information on how to create a macro, search on “Macros, creating”
in the Approach Help Index.

Specify the function key in the macro definition.

Top tasks

This section describes some common Approach tasks and gives LotusScript
solutions for them. The code for these examples is available in the sample
files directory. File names are listed with the individual examples.

The following tasks are described in this section:

Switching between views in a document

Accessing data from a database using a batch process

Accessing data from a Notes database

Finding records using the Find object

Modifying records

Displaying data from a result set in a view

Creating a document to display the result set

Controlling how users enter data

Changing the summaries in a report

Inserting and using OLE controls

Switching between views in a document
One of the most common ways to control the flow of an application is to
create a view for each task that a user may perform in the application.
Provide a menu view to guide users through the tasks. For each task, attach
a script (or a macro) to a button in the menu view that switches to a view
that you have set up for the task.

Using LotusScript in Approach 8-47

You can easily automate switching views with a macro. If switching views
is only one out of a series of actions being automated, a script may be more
suitable.

The following example comes from the Approach Meeting Room Scheduler
SmartMaster™ application. To open this SmartMaster, choose File - New
Database and select the Meeting Room Scheduler. The script appears in the
Click event for the btnToday object on the Start view. When the user clicks
this button, the script is executed and the following occurs:

The application switches to the Schedule Display view in order to show
the rooms and times that are reserved for a specific date.

The current date (from the system) is formatted and appears in a text
block at the top of the view.

Schedule information in the view from previous uses is cleared.

Today’s schedule information appears in the view.

The following scripts accomplish this sequence of operations:

This script appears in the Click event of the btnToday object on the Start
view.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

 ' Display the schedule for the current system date.
 Call DisplaySchedule(Format$(Now, "m/d/yy"))

End Sub

The function DisplaySchedule is a global function in the same .APR file. The
tilde (~) precedes a space in the name of a view.

Function DisplaySchedule(DateToDisplay As String)

 ' DateToDisplay–Schedule date to display information for.

 ' Change to the Schedule Display view.

 Set CurrentWindow.ActiveView = _
 CurrentDocument.Schedule~ Display

 ' Display the passed-in date in fbxDateDisplay field box.
 CurrentView.Body.fbxDateDisplay.Text = DateToDisplay

 ' Clear schedule information from the view.
 Call ClearDisplay() ' Global sub

 ' Fill the schedule information for the date.
 Call ReadBlock(DateToDisplay) ' Global function

End Function

8-48 Developing SmartSuite Applications Using LotusScript

Accessing data from a database using a batch process
There are two strategies for working with data using LotusScript in
Approach:

You can access values in records through the fields in a view.

You can bypass the user interface and access data directly from a
database.

LotusScript lets you automate the first type of data access by controlling
elements of the Approach interface that you are already familiar with:
placing fields in a view and modifying the value entered in the field.

The second strategy accesses the data in a fast batch process without using
the Approach user interface. This data access process involves the following
operations:

Establishing a link to a database using a Connection object

Selecting the records to access from the database using a Query object

Storing the required information locally while it is in use using a
ResultSet object

To understand more about when to use this method for accessing data, see
“Connection class” earlier in this chapter.

The following example illustrates each of the steps for accessing data
directly. It uses these objects:

Document (referred to using the global product variable
CurrentDocument)

Connection

Query

ResultSet

Using LotusScript in Approach 8-49

The following script comes from the Approach Meeting Room Scheduler
SmartMaster application. To open this SmartMaster, choose File - New
Database and select the Meeting Room Scheduler. The script is a global sub.

Sub ReadBlock(DateReserved As String)

 ' DateReserved Date formatted as a string

 ' Declare objects for connecting to the
 ' reservation database.

 Dim C As New Connection

 Dim Q As New Query
 Dim RS As New ResultSet

 Dim s As Double ' Start time of existing
 ' reservation

 Dim f As Double ' End time of existing reservation

 Dim Row As String ' Room reserved

 Dim n As String ' Reservation owner

 Dim Tname As String ' A shorter reservation table name
 ' reference
 Dim FullTname As String ' Table name and path reference

 ' Collect the name of the first table associated with the

 ' document, numbered starting at 0.
 Tname = CurrentDocument.Tables(0).TableName

 ' Place the names of the current rooms in the view.
 Call DisplayRooms()

 ' Build the connection to retrieve the reservation

 ' information for the passed-in date. This is a standard

 ' data-access sequence. To reuse it, modify SQL SELECT
 ' statement as needed.

 ' Note that the database is dBASE IV in this case.
 If C.ConnectTo("dBASE IV") Then

 Set Q.Connection = C

 ' Table name for the query needs to have full path.
 FullTname = CurrentDocument.Tables(0).Path & Tname & _
 ".dbf"

 ' The query is set to retrieve values from all the

 ' table fields for records whose Date Reserved field
 ' matches the date.

8-50 Developing SmartSuite Applications Using LotusScript

 ' Note that the syntax for the SQL SELECT statement

 ' requires extra quotation marks to define
 ' the string oncatenation.

 Q.SQL = "SELECT * FROM """+FullTname+""""+ Tname+ _

 " WHERE ((" + Tname+".""Date Reserved"" = ' " _
 +DateReserved+"'))"

 ' Assign this query to the result set.
 Set RS.Query = Q

 ' Use the result set to fill in the reservation

 ' information in the view.

 ' If the result set was created successfully, then...
 If (RS.Execute) Then

 ' Confirm that there are reservations for this date.
 If (RS.NumRows) Then

 RS.FirstRow ' Go to the first record in the
 ' result set.

 ' Loop through all of the records in the result
 ' set and display the reservation information
 ' in the view.

 Do

 s = RS.GetValue("Start Time")

 f = RS.GetValue("End Time")

 Row = RS.GetValue("Room Name/Number")
 n = RS.GetValue("Reserved By")

 ' Build a text block in the view with the
 ' reservation information from this pass
 ' through the loop by calling the global
 ' function DisplayBlock.

 Call DisplayBlock(n, s, f, row)

 Loop While RS.NextRow

 End If ' NumRows not 0

 End If ' Result set successful
 End If ' Connection successful

 ' Close the connection to allow other connections
 ' to this database.
 C.Disconnect
End Sub

Using LotusScript in Approach 8-51

Accessing data from a Notes database
The Connection, Query, and ResultSet objects let you access Notes data
from Approach. You might want to do this to create Approach reports or
to search for data in a Notes database.

To create a connection to a Notes database, you must know the following:

The data-source type of the database: Is the database on a server, on
your local hard disk, or on the workspace?

The name of the table to search.

The user name and password, if required to access the table.

The fields that you want to use in the find.

Connecting to a Notes database on a server involves the following
operations:

Determining the exact server name. To do so, choose File - Open; from
“Files of type” select Lotus Notes - Server; note the name of the server
you are working with. The following is an example of a server name:

CN=Approach_OU=SJC_OU=A_O=Lotus

Changing the underscores (_) in the server name to forward slashes
(/). The example server name becomes the following:

CN=Approach/OU=SJC/OU=A/O=Lotus

Determining the database file name, including path. An example
database file name is EXAMPLES\BUSCARD.NSF.

Determining the user name and password, if necessary to access the
database name.

Building ConnectTo method arguments. The following table describes
these arguments.

ConnectTo method argument Value

DataSourceType Lotus Notes - Server

UserId A string

Password A string

Database ServerName!DatabaseName

8-52 Developing SmartSuite Applications Using LotusScript

The following connection script shows how these pieces come together in
the ConnectTo method statement:

Dim Con As Connection
Dim Qry As Query

' Make the connection.

' No UserId or Password is required to access this database.
If Con.ConnectTo("Lotus Notes - Server",,, _
 "CN=Approach/OU=SJC/OU=A/O=Lotus!Examples\Buscard.nsf") then

 Set Qry.Connection = Con

 ' Continue building query and result set.
 Con.Disconnect

End If

The following example illustrates a connection to a local Notes database.
The text of this script is stored in DW08_S1.LSS in the sample files
directory. It does the following:

Determines the types of connections you can make and prints a list to
the Output panel of the IDE.

Makes a “Lotus Notes - Local” data source connection and connects to
a database file called NAMES.NSF.

Lists all of the tables in NAMES.NSF and opens one called People.

Searches that table in the First Name and Last Name fields and prints
the names of the people in that table to the IDE.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

 ' Declare objects for a Connection, Query, and ResultSet.

 Dim MyConnection As New Connection

 Dim MyQuery As New Query
 Dim MyResultSet As New ResultSet

' Declare a set of variables for an array, and for the
' arguments of the above objects.

Dim MyArray As Variant ' Array for temporary
 ' storage

Dim MyPath As String ' Data source path

Dim MyDatabaseSource As String ' Current data source type
Dim MyDatabase As String ' Database name

Dim MyTable As String ' Table name

Dim MyUserId As String ' User login name

Dim MyPassword As String ' User password

Dim i As Integer ' MyArray index

Using LotusScript in Approach 8-53

Dim LastName As String ' Data retrieved from table
Dim FirstName As String ' Data retrieved from table

' Print a list of data source types available in the Output

' panel of the IDE. Use this list to determine the exact

' string required (in the ConnectTo method) to make the

' connection to the data source.
MyArray = MyConnection.ListDataSources()

' Use LotusScript functions LBound (lower bound) and UBound

' (upper bound) to determine the limits of the data source

' types array.
For i = LBound(MyArray) To UBound(MyArray)

 ' Print the data source types to the Output panel of
 ' the IDE.

 Print "Data source("i") = "MyArray(i)
Next

' Set the arguments for the Connection object.

' Tip: You could use an input box to get this information
' from the user and connect to whatever the user specifies.
MyDatabaseSource = "Lotus Notes - Local"

' Change this path to match your operating system.

MyPath = "C:\NOTES\DATA\"
MyDatabase = "NAMES.NSF"

' This table has no user or password requirements, so these
' strings are blank.

MyUserId = ""
MyPassword = ""

' Connect to the database.
If MyConnection.ConnectTo(MyDatabaseSource, MyUserId, _
 MyPassword, MyPath & MyDatabase) Then

 ' List the available tables in the database.
 MyArray = MyConnection.ListTables()

 For i = LBound(MyArray) To UBound(MyArray)

 ' Print the data source types to the IDE Output panel.
 Print "Table("i") = "MyArray(i)
 Next

 ' Specify the table that data will be extracted from.
 MyTable = "People"

8-54 Developing SmartSuite Applications Using LotusScript

 ' Set the Connection property of the Query object to

 ' the current connection.
 Set MyQuery.Connection = MyConnection

 ' Specify the table to be searched, including path.

 ' The ampersand (&) concatenates pieces of the string.
 MyQuery.TableName = MyPath & MyDatabase & "\" & MyTable

 ' Set the Query property of the ResultSet to the query.
 Set MyResultSet.Query = MyQuery

 ' Get the data from the table and put it in the result set.
 If (MyResultSet.Execute) Then

 ' Make sure there is data in the table.
 If (MyResultSet.NumRows) Then

 ' Start at the first row.
 MyResultSet.FirstRow

 ' Loop through the records and get the values from

 ' the First_Name and Last_Name fields.

 Do

 LastName = MyResultSet.GetValue("Last_Name")
 FirstName = MyResultSet.GetValue("First_Name")

 ' Print the data to the Output panel of the IDE.
 Print "Person" & MyResultSet.CurrentRow & _
 "in the table is " & FirstName & _
 " " & LastName

 ' Continue looping until there are no more rows.

 Loop While MyResultSet.NextRow
 Else

 ' If the table is empty, warn the user.
 MessageBox "The table is empty.", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Empty Table"

 End If ' If there is data in the table.
 Else

 ' If the result set was not successful, warn the user.
 MessageBox "The query did not succeed. Check the " & _
 "connection.", MB_OK + MB_ICONINFORMATION + _
 MB_APPLMODAL, "Unsuccessful Query"

 End If ' If the result set was successful.

Using LotusScript in Approach 8-55

Call MyConnection.Disconnect()
Else

 ' If the connection was not successful, warn the user.
 MessageBox "Connection failed", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Connection"

End If ' If the connection was successful.

End Sub

Finding records using the Find object
There are two ways to automate finding records:

Create a found set from records in a main or detail table associated
with the specified .APR file. Specify the first find condition with the
New method, and add more find conditions using the And or Or
method of the Find object.

Create a result set by accessing data from any table through
Connection, Query, and ResultSet objects. Specify find conditions using
the SQL property of the Query object. The retrieved data is
manipulated without appearing in the user interface.

For more information about creating a result set, see “Accessing data
from a database using a batch process” earlier in this chapter.

Before you choose which way to find data, consider how you want to use
the found records:

If you create a found set, you can see the record data immediately in
fields in the application views.

If you create a result set, you must do one of the following with the
data:

Modify the data through LotusScript.

Display data from the result set in text blocks or other display
elements.

Create a new .APR file based on the result set.

These techniques for working with a result set are described in “Modifying
records” later in this chapter.

8-56 Developing SmartSuite Applications Using LotusScript

Finding records using a Find object involves the following operations:

Determining the find condition or conditions. To use input from the
user for the find, display a form as a dialog box or use the LotusScript
InputBox function.

Creating a Find object, specifying the field to search and the value to
match.

Adding other conditions to the Find object, using the And or Or
methods.

The following example prompts the user for a last name and a state name,
and it creates and executes a find using the input. The script is part of the
sample application stored in DW08_S2.APR in the sample files directory.
The script is attached to the Click event for a button on a form.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

' Click event for the btnLast_St object

' Apply the Find and Sort objects to the DocWindow using the

' FindSort method.

' Prompt the user to enter an employee's last name and state.

' Start search after the user enters the information.
 ' Create a DocWindow object.
 Dim MyDocWin As DocWindow

 ' Retrieve the active DocWindow.
 Set MyDocWin = CurrentApplication.ActiveDocWindow

 ' Create a Table object.
 Dim MyTable As String

 ' Retrieve the name of the first table for the document.
 MyTable = CurrentDocument.Tables(0).TableName

' Prompt the user to enter find conditions for Last name
' and State.

 Dim MyLast As String ' User input for Last name
 Dim MyState As String ' User input for State

 ' Prompt user to enter employee's last name.
 MyLast = InputBox$("Enter employee's last name", , _
 ,300,300)

 ' Prompt user to enter postal code for the state.
 MyState = InputBox$("Enter state abbreviation " & _
 "(For example, CA for California)", , ,300,300)

Using LotusScript in Approach 8-57

' Check that the user enters information or does not
' press Cancel.
If MyLast <> "" And MyState <> "" Then

' Find the records that match the user's input and
' sort them in ascending order by last name and first name.

 ' Create a new instance of Find object to search by last

 ' name entered by the user.
 Dim MyFind As New Find (MyTable & ".Last", MyLast)

 ' Also find by state.
 Call MyFind.AND (MyTable & ".ST", MyState)

 ' Create new instance of Sort object, sorted by last name.

 ' The constant LTSSORTASCENDING indicates the sort
 ' direction.
 Dim MySort As New Sort (MyTable & ".Last", _
 LTSSORTASCENDING)

 ' Also sort by first name in ascending order.
 Call MySort.ADD (MyTable & ".First", LTSSORTASCENDING)

 ' Start Find/Sort.

 ' Add error handling here to check for finds that return
 ' no records.

 ' Run the find.
 Call MyDocWin.FindSort (MyFind,MySort)

 ' Show the find results in a worksheet view.

 Set CurrentWindow.ActiveView = _
 CurrentDocument.Worksheet~ 1
Else

 Exit Sub ' Exit if user pressed Cancel or did not
 ' enter values.

End Sub ' Click event for the btnLast_St object

8-58 Developing SmartSuite Applications Using LotusScript

Modifying records
There are two ways to modify records in a database using LotusScript:

Create a result set and modify data in fields without exposing the data
to the user. This method is especially useful if you are modifying a large
number of records or updating records with information that isn’t
unique to each record or doesn’t require user input.

Change the text property of a field box, drop-down box, radio button,
or other display object. This method handles each field in each record
individually. It is especially suited to entering specific user input into
a database.

Modifying records using a result set
This technique requires you to create a result set using Connection and
Query objects as described in “Accessing data from a database using a
batch process” earlier in this chapter. After you create the result set, loop
through the records in the result set and make the changes.

The following example illustrates this process. The text of this script is
stored in DW08_S3.LSS in the sample files directory.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

' Click event for any button object

' * RUN-TIME DEPENDENCIES

' * Files: This script requires an ODBC database named Sample

' * in the same directory as the .APR file. The database

' * contains a table named USERID.CUSTOMER. The table
' * contains the fields State and SaleRep.

 Dim fName As String

 Dim Con As New Connection

 Dim Qry As New Query

 Dim Rs As New ResultSet
 Dim ChkSetV As Integer

 Dim MyVal As Variant

 Dim i As Integer ' Index to table rows
 Dim TextToMatch As String

' Determine the find condition.

' Note: Here you can use some value in the current .APR to
' evaluate changes in the other file.
' For example, use "If MyVal = Val(Source.Field1.Text) Then"

TextToMatch = "CA"

Using LotusScript in Approach 8-59

 ' Open a connection to the table.
 If (Con.ConnectTo ("ODBC Data Sources","userid", _
 "password", "!Sample")<>False) Then

 ' Use this connection for the query.
 Set Qry.Connection = con

 ' Specify the table for the query.
 Qry.TableName = "USERID.CUSTOMER"

 ' Use this query to create the result set.
 Set Rs.Query = Qry

 ' Create the result set.

 ' If the query was successful, then...
 If ((Rs.Execute)<>False) Then

 ' Find the number of columns (fields) in the table.
 N = Rs.NumColumns

 ' Print the number of columns

 ' to the IDE Output panel.
 Print "Number of columns = ", N

 ' Print the names of each field in the table.
 For i= 1 To N

 fName = Rs.Fieldname (i)

 Print fName ' Output appears in the IDE.
 Next

 Else ' If the result set was not successful,
 ' warn the user.

 MessageBox "The query did not succeed.", _
 MB_OK + MB_ICONINFORMATION + MB_APPLMODAL, _
 "Unsuccessful Query"

 End If ' If the result set was successful.
 Else ' If the connection was not successful,
 ' warn the user.

 MessageBox "Connection failed", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Connection"

 End If ' If the connection was successful.

8-60 Developing SmartSuite Applications Using LotusScript

 ' Read the value in a field and check if it
 ' matches the value.

 ' Continue while the variable i is less than or equal to
 ' the number of rows in the table.

 For i = 1 To Rs.NumRows
 Print i

 ' Get the value of the field State.

 MyVal = Rs.GetValue("State")
 Print MyVal

 ' If the value in the field matches the find condition,
 ' then set the value of another field.
 If MyVal = TextToMatch Then

 ' Set the field "SalesRep" to the value SF.
 Rs.SetValue "SalesRep", "SF"

 End If ' The field value matches.

 ' Update the current row and move to the next one.

 ' UpdateRow is required to commit the changes for
 ' each record.
 Rs.UpdateRow

 Rs.NextRow
 Next ' Until there are no more rows in the table

 ' Disconnect here to avoid trouble reconnecting later.

 Con.Disconnect
End Sub

Modifying records using a display element
This technique assumes that the data you want to modify appears in a view.
The script loops through each record in the current found set to make the
modifications. This script is in the sample application stored in
DW08_S4.APR in the sample files directory.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

' Click event for the btnEnterComment Button object
' Prompt the user for input.

' Append today's date to the user's comment.

' Append the comment to each record in the found set.

' * RUN-TIME DEPENDENCIES

' * Files: This script requires a field named Note in the
' * main table associated with the .APR file.

Using LotusScript in Approach 8-61

 ' Create a DocWindow object.
 Dim MyDocWin As DocWindow

 ' Retrieve the active DocWindow.
 Set MyDocWin = CurrentApplication.ActiveDocWindow

 Dim UserInput As String ' User input

 Dim NoteEntry As String ' The input with

 ' today's date.
 Dim PreviousEntries As String ' Existing contents of Note

 Dim WholeNote As String ' All the data from Note
 Dim i As Integer ' Index of found set

 ' Get input from user.
 UserInput = InputBox$("Enter your comments", , ,300,300)

 ' Check that the user entered a comment.
 If UserInput <> "" Then

 ' Append today's date to the user input.
 NoteEntry = Date$ & ": " & UserInput

 ' Loop through each record in the found set and

 ' update the Note field.
 MyDocWin.FirstRecord ' Go to first record.

 ' Loop through the number of records in the found set.
 For i = 1 To MyDocWin.NumRecordsFound

 ' Store the existing contents of the Note field.
 PreviousEntries = Source.Note.Text

 ' Append the new entry to the existing ones.
 WholeNote = PreviousEntries & " " & NoteEntry & "."

 ' Insert the new Note in the field.
 Source.Note.Text = WholeNote

 ' Go to the next record in the found set.
 MyDocWin.NextRecord
 Next

 End If ' If the user entered a comment.
End Sub ' Click event for btnEnterComment

8-62 Developing SmartSuite Applications Using LotusScript

Displaying data from a result set in a view
When you create a result set, there are two ways to show the retrieved data
in an Approach view:

Use the result set as a table associated with a new Approach document.
Use this technique if you are going to use this subset of information for
tasks that require user input, such as finding records with user input or
building reports.

For more information, see “Creating a document to display a result set”
later in this chapter.

Display data from the result set in text blocks or other display elements.
Use this technique if you are using the information from the result set in
addition to data already available in a view. For example, add text
blocks containing result set information to a report that already
contains information from another database.

To display information from the result set in a view, create display elements
and place them in a view. As described in “The Approach object model”
earlier in this chapter, you can modify display elements using these
properties:

Background

Border

Color

Height, Width

Top, Left

Name

The script that accomplishes this task involves the following operations:

Creating the text block (or other display element) to hold the
information

Filling the text block with the correct value from the result set

Setting the display properties for the text block so it matches the view

Positioning the text block in the view

Naming the text block

The following script illustrates this process. It is part of the Approach
Meeting Room Scheduler SmartMaster application. To open this
SmartMaster, choose File - New Database and select the Meeting Room
Scheduler.

Using LotusScript in Approach 8-63

The example sub, DisplayBlock, displays the owner of a room reservation
in the correct time slot in a view that displays the reservation information
for a particular day. The sub is called from another sub that creates a result
set for the specified day and passes the reservation information to
DisplayBlock.

Sub DisplayBlock(Txt As String, Start As Double, _
 Finish As Double, RoomName As String)

' Display the reservation owner in the correct time slot

' in the current view body.

' DisplayBlock is called from readBlock.

 ' Txt reservation owner

 ' Start reservation start time
 ' Finish reservation end time
 ' RoomName reserved room name or number

' * RUN-TIME DEPENDENCIES

' * Constants: Uses constants defined by LotusScript

' * in LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the
' * readBlock sub.

 ' Declare variables.

 Dim Tt As TextBox ' New text block to hold the
 ' reservation owner's name

 ' in the view.
 Dim i As Integer ' Index of array with the room names

 ' Index of the room that matches the RoomName passed in.
 ' It is used to determine the vertical placement of the
 ' reservation in the view.
 Dim MatchedRoom As Integer

 ' Offset and multiplier for the vertical placement of
 ' the reservation.
 Dim VerticalPlacement As Integer

 ' Search through the global array Rooms to find the room

 ' passed in from the schedule database using the global
 ' sub readBlock, also part of this .APR file.
 ' Set MatchedRoom to the index of the room passed in.
 For i = 0 To UBound(Rooms)

 If Rooms(i) = RoomName Then

 MatchedRoom = i

 i = UBound(Rooms)
 End If ' If element matches the room passed in.
 Next

8-64 Developing SmartSuite Applications Using LotusScript

 ' Set position and display for the reservation.

 ' Header in the view takes up 1635 twips, each row in
 ' the table is 330 twips tall.
 VerticalPlacement = 1635 + (330 * MatchedRoom)

 ' Create the text block to hold the reservation.
 Set Tt = New TextBox(CurrentView.Body)

 ' Fill the text block with the reservation owner's name
 ' and spaces to center the text properly.
 Tt.Text = " " + Txt + " "

 ' Set display properties so text block matches the form.
 Tt.Font.Size = 8

 ' Use Approach LotusScript constants for border style.

 Tt.Border.Style = $ltsBorderStyleNone
 Tt.Border.Left = True

 Tt.Border.Right = True

 Tt.Border.Top = False
 Tt.Border.Bottom = False

 ' Use Approach LotusScript constants for line width.
 Tt.Border.Width = $apr1point

 ' Use Approach LotusScript constants for color.

 Call Tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
 Call Tt.Background.Color.SetRGB (COLOR_50_GRAY)

 ' Set the position of the text block to correspond to the
 ' correct room and time.

 Tt.Height = 325
 Tt.Top = VerticalPlacement ' Current offset from top
 ' of the form

 ' Convert reservation time (passed in) to the horizontal
 ' location and length on the form.

 Tt.Left = (((start - 8) * 750) + 945)
 Tt.Width = (750 * (finish - start))

 ' Add a prefix to the name of the text block so the
 ' ClearDisplay function can delete the reservation.
 Tt.Name = "Tt" + Str$(Tt.Top) + Str$(Tt.Left)

End Sub

Using LotusScript in Approach 8-65

Creating a document to display the result set
Approach documents (.APR files) are instances of the Document object. To
create a new document to display a result set you must do the following:

Create a connection to an existing table.

Create a general query to extract records from that table.

Create a result set to contain extracted records from the table on disk.

Create a new .APR file using this result set.

The following example illustrates each of these steps. The text of this script
is stored in DW08_S5.LSS in the sample files directory.

The CreateDocument sub creates a new document in Approach that
displays the data from a result set. The result set is the main table for the
new document.

Sub CreateDocument

' * RUN-TIME DEPENDENCIES

' * Files and paths: This script depends on an existing
' * dBASE IV database in the directory
' * C:\LOTUS\WORK\APPROACH\BLANK.DBF

' Declare the necessary variables.

Dim MyConnection As New Connection ' Connection to a table

Dim MyQuery As New Query ' Query used to extract
 ' data from the table

Dim MyResultSet As New ResultSet ' Result set to contain
 ' extracted data in the
 ' new document
Dim MyDoc As Document ' New Document object

' Specify the type of database (dBASE IV) to connect to as
' the source for the new document.
If MyConnection.ConnectTo("dBASE IV") Then

 ' Specify the name of the connection MyConnection that the

 ' query MyQuery uses to create the new document.
 Set MyQuery.Connection = MyConnection

 ' Specify the full path and table name to be used as
 ' source for the new document.
 MyQuery.TableName = "C:\LOTUS\WORK\APPROACH\BLANK.DBF"

 ' Add a statement to specify a subset of records to be

 ' returned in the result set here. "MyQuery.SQL = ..."

 ' Specify the result set in the new database to receive
 ' the new records from the query.
 Set MyResultSet.Query = MyQuery

8-66 Developing SmartSuite Applications Using LotusScript

 ' If the connection and query succeed, create the
 ' new document.
 If (MyResultSet.Execute)Then
 Set MyDoc = New Document(MyResultSet)
 End If ' If the result set was successful.

 ' Error handling for a failed result set would go here.

 ' Disconnect from the source table.
 MyConnection.Disconnect
End If ' If the connection was successful.

' Error handling for a failed connection would go here.
End Sub

Controlling how users enter data
LotusScript gives you control over the flow of your application by allowing
you to set the keyboard focus, prompt for user input, determine which
commands are available at a given time, and determine which actions
happen by default.

The Meeting Room Scheduler SmartMaster application provides several
examples of controlling the flow of an application. One sequence in
particular executes the following operations:

Switching to a form displayed as a dialog box when the user clicks a
button
Setting the focus on the form to indicate where user input is required
Displaying the room reservations using the date entered
Duplicating the dialog box closure so that both clicking the mouse and
pressing ENTER complete the action

These operations are illustrated in following scripts. They are part of the
Approach Meeting Room Scheduler SmartMaster application. To open this
SmartMaster, choose File - New Database and select the Meeting Room
Scheduler.

The first sub is attached to the SwitchTo event for the Enter Date form. This
form is already set in the InfoBox to display as a dialog box.

Sub SwitchTo(Source As Form, View As View)

' SwitchTo event for the Enter Date form

' This script clears any text from the field box for date
' entry on the form. The Enter Date form is set to
' display as a dialog box.

 Source.Body.fbxDate.Text = ""

End Sub

Using LotusScript in Approach 8-67

The next sub processes input when the user clicks the OK button on the
form.

Sub Click(Source As Button, x As Long, y As Long, _
 Flags As Long)

' Click event for the btnOK Button object on the Enter Date
' form. This script processes the date entered in the
' fbxDate field box.

 ' Display the schedule on the Schedule Display view.

 Call ProcessDate() ' Global sub that checks that the date
 ' is valid and displays the schedule
 ' for that date.

End Sub ' Click event for btnOK on the Enter Date form

The final script is almost the same as the previous one, except it runs when
the user presses ENTER to close the dialog box instead of clicking OK. The
sub is attached to the KeyDown event for the user entry text block on the
Enter Date form. The ENTER key translates to a character code of 13.

Sub KeyDown(Source As FieldBox, CharCode As Long, _
 Repeats As Integer, Flags As Integer, _
 OverrideDefault As Integer)

' KeyDown event for the fbxDate FieldBox object on the
' Enter Date form

' When the user presses ENTER while the focus is on this
' field box, this script processes the date entered.

 ' If the KeyDown event returns an ENTER key
 ' (character code 13)

 If CharCode = 13 Then

 ' Display the schedule for that date.
 Call ProcessDate() ' Global sub that checks that the
 ' date is valid and displays the
 ' schedule for that date.

 End If ' If the ENTER key is used in fbxDate
End Sub ' KeyDown event for fbxDate
 ' on the Enter Date form.

8-68 Developing SmartSuite Applications Using LotusScript

Changing the summaries in a report
This example uses the same report to display more than one type of
summary information, according to user input. Changing the summaries
in an existing report involves the following operations:

Prompting the user for a field to group records by

Grouping the panel on the input field

Displaying the report in Print Preview mode

The following script illustrates these operations. This example is part of
the application stored in DW08_S6.APR in the sample files directory.

When the user switches to the report, this script prompts for how to group
the report summaries. The original report is columnar with summary
groupings.

Sub SwitchTo(Source As Report, View As View)

' SwitchTo event for a Report object

' * RUN-TIME DEPENDENCIES
' * Files: The report that the script is attached to is a
' * summary report with a group-by field.

 Dim MyGrp As String ' Store user input.
 Dim Flag As Integer ' Indicates successful field
 ' name entry.

' Go to the Browse environment.
CurrentApplication.ApplicationWindow.DoMenuCommand _
 (IDM_browse)

 ' Prompt the user for the field name by which the user
 ' wants to group records.
 Flag = 1

 While Flag = 1
 MyGrp = InputBox$("What do you want to group by?" _
 &"(Date, Product, RepID)"&Chr(10)&Chr(13)&"Date"& _
 Chr(10)&"Product", "Grouping", "Date", 300, 300)

 If MyGrp <>"Product" And MyGrp<>"RepID" And _
 MyGrp<>"Date" Then

 Flag = 1
 Beep

 MessageBox "Invalid Group Field." & Chr(13) & _
 "Try Again.",0+48+0+0, "Invalid Entry"
 Else

 Flag = 0
 End If
 Wend

Using LotusScript in Approach 8-69

 ' Change the current summary panels (leading and trailing)
 ' to reflect the new grouping.
 Source.Summary.GROUPBYDATAFIELD = MyGrp

 Source.Summary.MyLPanelFld.Datafield = MyGrp
 Source.Summary.MyLPanelFld.LabelText = MyGrp

 ' Go to Print Preview so that the user is prompted to sort
 ' on the new grouping and can see the results.

CurrentApplication.ApplicationWindow.DoMenuCommand _
 (IDM_Preview)

End Sub

Inserting and using OLE controls
If you have an OLE control (OCX) embedded in an Approach form, you can
access the object’s methods and properties through LotusScript as you
would any other object. The following example opens an OCX Web
browser, called Sax Webster Control, in the Internet World Wide Web Sites
SmartMaster application, and passes it a URL string. The Webster OCX
opens the Web page associated with that URL string, and the user is able to
navigate through the Web site. If the Webster browser is not loaded, an
error message alerts the user and informs the user how to install the OCX.

To use an OCX in Approach, you must first install the control. For more
information, search on “Custom Controls” in the Approach Help Index.

Sub Click(Source As Textbox, X As Long, Y As Long, _
 Flags As Long)

' Click event for txtWebsterBrowser of the Found Set Report
' view to run the Webster browser

' * RUN-TIME DEPENDENCIES

' * Files: This script is part of the Internet World

' * Wide Web Sites SmartMaster application. It requires the
' * Sax Webster Control.

 Dim Rval As Integer ' Return value

 ' If there is no browser installed, print a message

 ' to the user (segment below).
 On Error 11026 GoTo NoWebster

 ' Set the global StrURL to the current listing.
 StrURL = "http://" & source.URL.text

8-70 Developing SmartSuite Applications Using LotusScript

 ' If the First Viewed date is blank, add today's date.
 If (Source.fldFirstDate.Text = "") Then

 ' Enter today's date in the FirstDate field box.

 Source.fldFirstDate.ReadOnly = False

 Source.fldFirstDate.Text = Str(Today())

 Source.fldFirstDate.ReadOnly = True ' Set it back.
 End If

 ' Add today's date to the Last Viewed date.

 Source.fldLastDate.ReadOnly = False

 Source.fldLastDate.Text = Str(Today())
 Source.fldLastDate.ReadOnly = True

 ' Switch to the Webster browser view.
 Set CurrentApplication.ActiveView = _
 CurrentDocument.Webster~ Browser

 ' Load the URL into the Webster OCX.
 Rval = CurrentView.Body.oleWebster.LoadPage(StrURL, 0)

 ' Leave this sub.
 GoTo EndLoadPage

NoWebster:

 ' Warn the user that the Webster connection isn't working.

 Print Err
 MessageBox "You don't have the Webster browser " & _
 "installed. Go to Main Menu-Setup to install the " & _
 "Webster browser."

 Resume EndLoadPage

EndLoadPage:
End Sub

Using LotusScript in Approach 8-71

Chapter 9
Using LotusScript in Freelance Graphics

Writing scripts in Freelance Graphics

You can use LotusScript to automate tasks the user does on a regular basis
in Freelance Graphics. For example, you can use LotusScript and Freelance
Graphics objects to create applications that make it easy to edit a frequently
used presentation (by attaching scripts to a SmartMaster). You can also do
the following:

Attach a script to a page, a “Click here...” block, or an icon

Write scripts that operate on documents, pages, and objects

Use scripts to make presentations using information gathered from
other Lotus products, such as 1-2-3

There are examples of scripts at the end of this chapter that you can use as
they are, or as models for your own scripts.

Information for upgraders
This section describes the difference between scripting in Freelance
Graphics 96 and Freelance Graphics 97.

Compatibility
Scripts that were created in Freelance Graphics 96 will run in Freelance
Graphics 97. However, scripts written in Freelance Graphics 97 and saved
in .PRZ (presentation) files or .SMC (SmartMaster with content) files will
not run and cannot be edited in Freelance Graphics 96. If you are in
Freelance Graphics 96 and you run an .LSS file created in Freelance
Graphics 97 by choosing Edit - Script - Run, the script will work only if
it does not use any of the new scripting features.

You can open a Freelance Graphics 97 file in Freelance Graphics 96. If
you save a file containing scripts created in Freelance Graphics 97 file
in Freelance Graphics 96, then all the scripts it contained will be lost.

If you open a Freelance Graphics 96 presentation in Freelance Graphics 97,
open the Integrated Development Environment (IDE), and resave the

9-1

scripts attached to that presentation, the 96 script format will be converted
to the 97 format, and these scripts will no longer be seen by Freelance
Graphics 96.

A Freelance Graphics 96 .LSO file will run in Freelance Graphics 97. How-
ever, a Freelance Graphics 97 .LSO file may fail in Freelance Graphics 96.

Attaching scripts to objects in .PRZ files
In Freelance Graphics 97 you can attach scripts to objects in .PRZ files as
well as .SMC files. In Freelance Graphics 96 you could only attach scripts
to objects in an .SMC file. Note that .SMC files are generally the most useful
files in which to attach scripts to objects.

Events
Freelance Graphics now has events for the following classes:

Class Events

Document class Activated, Created, Opened, PageCreated,
PreClose, Save, SaveAs, Saved, SavedAs,
SMCStarted

Page class Activated, Created

PlacementBlock class Clicked

For more information about Freelance Graphics events, search on “Events
(LotusScript)” in the Freelance Graphics Help Index.

Objects listed in the IDE
For each page of a Freelance Graphics 97 presentation, you can now
see the list of objects that have events by opening the Object drop-down
box of the IDE.

9-2 Developing SmartSuite Applications Using LotusScript

You can use the name listed in the Object drop-down box in a script as
a reference to the object it represents, but you must put square brackets
around it. For example:

[SymbolPlacementBlock1].Insert(MyCircle1)

Using the name of an object as listed in the IDE is a simple way of
manipulating the object in a script.

For information about how to work with those objects not listed in the
IDE, see “Using names to manipulate objects,” later in this chapter.

Default object names
In Freelance Graphics 97, all instances of the DrawObject class have
default names (not just instances of the page and the document classes
as in Freelance Graphics 96). For more information, see “Using names
to manipulate objects,” later in this chapter.

Indexing collections
In Freelance Graphics, the index value of the first element in a collection
or table is 1. In other Lotus products (Word Pro and Approach, for
example) the index of the first element is 0. For more information about
Freelance Graphics collection classes, see “Freelance Graphics collection
classes” later in this chapter.

Note You can use the LotusScript Option Base statement to change the
index value of the first element in a collection. For more information on the
Option Base statement, search on “LotusScript” in the Freelance Graphics
Help Index, then click “LotusScript Index.”

Dialog Editor
Freelance Graphics 97 has a Dialog Editor that you use to create and save
custom dialog boxes. The Dialog Editor offers more flexibility than the
RunDialog method; however, the RunDialog method is still available.
For information about the Dialog Editor, see Chapter 3.

Transcript window
The Transcript window was used in Freelance Graphics 96 to show error
messages and output. However, in Freelance Graphics 97, error messages
generated by event scripts and other scripts (run from the IDE) appear in
the Errors drop-down box in the IDE.

In Freelance Graphics 97, the Transcript window is now referred to as the
Output window. The Output window automatically opens when a script
error happens outside of the IDE, for example, when you run a script by
choosing Edit - Script - Run or when you run a script from an icon. In
addition, when you run presentations containing scripts that were created

Using LotusScript in Freelance Graphics 9-3

in Freelance Graphics 96, the only way you can see error messages is by
opening the Output window. To do so, choose Edit - Script - Show Output
Window.

Printing from the IDE
You can now print a script from the IDE in Freelance Graphics 97. From
the IDE main menu, choose File - Print Script.

The Freelance Graphics object model
Before you begin writing scripts in Freelance Graphics, you should take
some time to understand the Freelance Graphics object model, which
describes the main Freelance Graphics objects and their organization.

Freelance Graphics containment hierarchy
The diagram below shows the main containment hierarchy in Freelance
Graphics.

The containment hierarchy for Freelance Graphics begins at the top with
the Application class and works its way through the familiar structure
of Freelance Graphics: from .PRZ files to pages and elements on a page,
such as rectangles.

The Application class contains the Documents class (a collection class
representing all of the documents currently open in the application),
which is accessed through the Documents property. The Application class
also contains a Document class (representing individual presentations,
or .PRZ files) which is accessed through the ActiveDocument property.

The Document class, in turn, contains the Pages class (a collection class
representing all of the pages in a document), which is accessed through
the Pages property. The Document class also contains the Page class
(representing individual pages), which is accessed through the
ActivePage property.

Document

Documents

Documents property

 Application

Page

Pages
ActiveDocument

property

Document Page

PageDocument

Pages
property

ActivePage
property

DrawObject

Objects

DrawObject

DrawObject

Objects
property

Selection
property

9-4 Developing SmartSuite Applications Using LotusScript

The Page class contains the Objects class (a collection class representing
all of the elements on the page), which is accessed through the Objects
property. The Page class also contains the DrawObject class (representing
elements on the page, such as rectangles, “Click here...” blocks, charts,
and OLE objects), which is accessed through the Selection property.

Freelance Graphics inheritance relationships
The diagram below illustrates the most important inheritance relationships
in Freelance Graphics.

The inheritance diagram shows most of the classes in Freelance Graphics.
BaseObject is an abstract class. Most Freelance Graphics classes are derived
from it. Since the BaseObject class is an abstract class, you never create
instances, or objects, of that class.

The diagram also shows the classes, such as Selection and PlacementBlock,
that are derived from the DrawObject class. The derived classes directly
inherit the members from the DrawObject class.

Freelance Graphics collection classes
The collection classes in Freelance Graphics (Documents, Pages, Objects,
and Colors) inherit from the BaseObject class. A collection class is made
up of a collection of objects of that particular class.

DrawObject

Chart

Table

PlacementBlock

OLEObject

TextBlock

Selection

Documents

Pages

Objects

Colors

Application

ApplicationWindow

DocWindow

Page

PageSelection

Font

Color

Background

TextProperties

BaseObject

Using LotusScript in Freelance Graphics 9-5

The following table shows the types of indexes you use to access elements
of Freelance Graphics collections.

Class Indexed by

Documents class Number

Pages class Number and name

Objects class Number

Colors class Name

You can get the index of any object by using the GetIndex method. The
index numbers correspond to the order in which the objects are created.
Note that the current document is always 1. For general information
about collection classes, see “Collection classes” in Chapter 2.

Note In Freelance Graphics script syntax, the index of the first item in
a collection or table is 1.

Freelance Graphics predefined global product variables
Predefined global product variables let you operate on Freelance Graphics
objects. The following table shows the predefined global variables you can
use to specify Freelance Graphics objects:

Variable Description

CurrentApplication Represents the current session of Freelance
Graphics and uses the properties and methods
of the Application class.

CurrentApplicationWindow Represents the application window of the
current session of Freelance Graphics and uses
the properties and methods of the
ApplicationWindow class.

CurrentDocument Represents the current Freelance Graphics
document and uses the properties and methods
of the Document class.

CurrentDocWindow Represents the current Freelance Graphics
document window and uses the properties
and methods of the DocWindow class.

CurrentPage Represents the current page and uses the
properties and methods of the Page class.

Selection Represents the currently selected element(s)
on a page and uses the properties and methods
of the DrawObject class.

For examples of how to use global variables see “Using predefined global
product variables,” later in this chapter.

9-6 Developing SmartSuite Applications Using LotusScript

Using the IDE in Freelance Graphics

Open the IDE by choosing Edit - Script - Show Script Editor from the
Freelance Graphics main menu. For more information about the IDE,
see Chapter 3.

Using the Dialog Editor in Freelance Graphics

Open the Dialog Editor by choosing Edit - Script - Show Dialog Editor
from the Freelance Graphics main menu. Freelance Graphics saves the
dialog boxes you create with the Dialog Editor along with the .SMC or
.PRZ file in which you created them.

For more information about using the Dialog Editor, see Chapter 3.

Customizing the Freelance Graphics user interface
You can attach scripts to pages and placement blocks (“Click here...”
blocks) in an .SMC file—the standard method and the one that has greatest
applicability. You can also attach scripts to objects in a SmartMaster
look file (.MAS file) or a .PRZ file. In addition, you can attach scripts
to SmartIcons, run unattached scripts from Freelance Graphics, and
run scripts from the command line.

The advantage of attaching scripts to pages and “Click here...” blocks
in an .SMC file is that .SMC files are the templates for .PRZ files. Scripts
attached to .SMC files can be used each time you create a presentation using
the .SMC file. However, scripts attached to a page or a “Click here...” block
in a .PRZ file can only be used in that .PRZ file.

Creating “Click here...” blocks
A “Click here...” block, also known in scripting as a placement block,
can be either a TextPlacementBlock, a Button, a SymbolPlacementBlock
(for clip art), a ChartPlacementBlock, an OrgChartPlacementBlock, a
TablePlacementBlock, or a DiagramPlacementBlock. Once created, all of
these placement blocks can have scripts attached to them. You can create
placement blocks only while doing one of the following tasks:

Editing SmartMaster content files (.SMC files)

Editing SmartMaster look files (.MAS files)

Editing a page layout or backdrop in a presentation file (.PRZ file)

Using LotusScript in Freelance Graphics 9-7

Note From the scripting point of view, the preferred method is to create
placement blocks and attach scripts to them in .SMC files. Doing so
provides you with the greatest flexibility.

When a placement block is no longer a placement block
A “Click here...” block is defined as a placement block as long as it has not
yet been filled in by the user. When the user fills in a placement block (with
text for example), from the point of view of LotusScript, the placement
block is no longer a placement block (or a “Click here..” block). It is a simple
text block, and a Clicked event associated with the original placement block
will not trigger the execution of the script. If the user filled in the placement
block with a table or an organization chart, then the placement block
becomes a simple table or organization chart, and so on for the other types
of placement blocks.

You cannot attach a script to a simple text block (or to a chart, a table, clip
art, and so on). Once a placement block becomes a text block, the text block
is recognized only as a text block. If you attempt to use a script to look for
a placement block and the placement block has been filled in, the script will
not find the placement block that you are asking it to look for because to
LotusScript, the placement block no longer exists. You have to use the
IsText property (or IsChart, or IsTable, or other related properties) not the
IsPlacementBlock property, when you look for a placement block that has
been filled in with text (or a chart, or a table, and so on). If you bind an
object variable to a placement block, the results will be unpredictable if
the placement block is filled with text.

Note When the user removes text that was entered in a placement block,
then LotusScript will recognize it as a placement block again.

Attaching scripts to pages and “Click here...” blocks in an .SMC file
To attach a script to a page or a “Click here...” block in an .SMC file, choose
File - Open from the Freelance Graphics main menu, then under Files of
Type, select “Lotus Freelance SmartMaster Content (.SMC).” Then go to
the page or create or edit the “Click here...” block to which you want to
attach a script.

Scripts are associated with events. For example, when you want to
attach a script to a “Click here...” block in the Script Editor, select the
PlacementBlock object (such as a TextPlacementBlock, a Button, or a
SymbolPlacementblock), then select the Clicked event and type a script.
To attach a script to a page, follow the same procedure, except select the
Page object and then select one of the events (Created event or Activated
event) associated with the Page class. Scripts are saved with the .SMC file
and with any .PRZ file that is based on the .SMC file.

9-8 Developing SmartSuite Applications Using LotusScript

For “Click here...” blocks, the script runs when the user clicks the
“Click here...” block in a .PRZ file that uses the SmartMaster content
page containing the “Click here...” block.

When you attach a script to a page using the Created event, the script runs
the moment the user chooses the content page with the script attached to it.

For more information about .SMC files, search on “Designing, content
topics” and “Customizing, content topics” in the Freelance Graphics Help
Index. For more information about attaching scripts, search on “Attaching,
scripts” in the Freelance Graphics Help Index.

Note It is possible to attach a script to an object in an .MAS file. Use the
same process as you would for an .SMC file, but open a .MAS file instead.

Attaching scripts to pages or “Click here...” blocks in a .PRZ file
You can also attach scripts to objects in .PRZ files. Presentation files are
the standard files that you create presentations in when you open Freelance
Graphics. When you attach a script to a “Click here...” block or to a page,
it is saved with the .PRZ file.

Note You can attach scripts to a “Click here...” block (such as, a
TextPlacementBlock, a SymbolPlacement Block, or a Button) in a
presentation file, but you cannot create a “Click here...” block in a
presentation file. You must be in either an .SMC file or an .MAS file,
or be editing a page layout or backdrop. For more information about
editing a page layout or backdrop, search on “Editing, page layouts”
or “Customizing, the backdrop” in the Freelance Graphics Help Index.

Running an .LSS file
You can use any text editor to write a script that operates on a document,
page, or object. When you write a script, save it as a plain text, LotusScript
(.LSS) file. You run an .LSS file in Freelance Graphics by choosing Edit -
Script - Run and typing the file name or by attaching the .LSS file to an icon.

When you run an .LSS file in Freelance Graphics by attaching it to an icon
or by choosing Edit - Script - Run, Freelance Graphics executes module-
level code; that is, code that is not placed between the Sub and End Sub
keywords in a Sub statement. For example:

Call SpecialPrg1

or

Print "Foo"

However, if Freelance Graphics does not find module-level code in the
.LSS file, it looks for a sub named Main and runs it. Since the IDE does not

Using LotusScript in Freelance Graphics 9-9

support module-level code, naming a sub Main makes it possible to write
a script in the IDE that will not cause errors and that runs when you run
it using the Edit - Script - Run command and when you attach the script
to an icon.

Note If you import a script with module-level code in the IDE or attempt
to write module-level code in the IDE, you will get errors. You have to
write scripts with module-level code in a text editor and save them as
.LSS files.

Attaching a script to an icon
SmartIcons provide a quick, simple way to do many Freelance Graphics
tasks. When you attach a script to an icon, it runs when the user clicks
the icon.

To attach a script to an icon:

1. Choose File - User Setup - SmartIcons Setup.

2. Click Edit Icon.

3. Click the icon you want to edit in the “Available icons” box.

4. Click Attach Script.

5. Select “Run a script (*.LSS)” and either enter the name of an .LSS file
or click Browse and select a file.

6. Click OK.

Note If the script you attach does not have module-level code, it must
have a Main sub in it. For more information, see the preceding section.

For more information about attaching scripts to SmartIcons, search on
“Attaching, scripts” in the Freelance Graphics Help Index.

Running a script from the command line

You can run an .LSS file from the command line by choosing Start - Run
in the Windows task bar and typing the following:

C:\Freelancepath\F32main /r lsscript.lss filename.prz

where lsscript.lss is the name of the script you want to run and filename
is the name of the presentation in which you want to run the script. The
default directory for .LSS files is LOTUS\SMASTERS\FLG; for .PRZ files
the default directory can be set by the user by choosing File - User Setup -
Freelance Preferences, and then clicking “File locations”.

9-10 Developing SmartSuite Applications Using LotusScript

Using names to manipulate objects

Names offer a convenient way of manipulating Freelance Graphics objects
and what they represent. In Freelance Graphics objects of Application class,
Document class, Page class, and DrawObject class have default names.
Objects of the Font, Background, Border, and LineStyle classes, and chart
class, do not have default names.

A Document object name is the file name and is read-only. A DrawObject
object has a default descriptive name, such as PlacementBlock1 or
Rectangle1, which can be changed through a script. The name of a page
is shown in the InfoBox or the IDE; it can be changed by editing the name
in the InfoBox or by writing a script.

Note “Page 1” is the default name of the first page created in a
presentation, “Page 2” is the name of the next page, and so on.

When objects are created, they are given names by default. You can change
these names with scripts. Freelance Graphics stores the names given to the
objects in the presentation, so that they are available in future script
sessions. You can assign to a variable a value that identifies an existing
page. For example:

Dim Pg As Page
Set Pg = CurrentDocument.Pages("Page 1")

To change the name of a page using a script, do the following (continuing
with the above example):

Pg.Name = "Agenda"

Names provide a useful way of identifying an object so that it can be
manipulated with a script. Application objects and objects with events are
listed in the IDE, but page elements are not. To find out the names of all of
the page elements that you can manipulate with a script, run the following
script:

' Find the names of all elements on this page.
ForAll Obj in CurrentPage.Objects
 Print Obj.Name
End ForAll

Note Print output appears in the Output panel of the IDE.

For example, if you have several elements on a page, such as a text block,
a rectangle, and an ellipse, and you want to manipulate the rectangle,
you would use the preceding script to learn that the rectangle is named

Using LotusScript in Freelance Graphics 9-11

Rectangle1. You can find any drawn object if you know its name by using
the FindObject method. Once you find an element, you can manipulate it.
If you want to move the rectangle, write a script such as the following:

Set Rect = CurrentPage.FindObject("Rectangle1")
Rect.Move 1000, 1000

You can even change the element name. For example:

Rect.Name = "Euclid"

Once you change the name of an element, you must refer to it by the new
name. In the above example, once you renamed “Rectangle1” to “Euclid,”
you would have to refer to the rectangle as “Euclid” the next time you
used the FindObject method, unless, of course, you change the name again.

Freelance Graphics stores the names given to pages and elements in the
presentation so that they are available in future script sessions.

You can use the Bind keyword to bind an object variable to an instance
of the Document, Page, and DrawObject classes. For example:

Dim p As Page
Set p = Bind("Page 1")
Print p.Number

Using predefined global product variables
You can use predefined global product variables to write scripts that
operate on the current application, application window, document window,
document, or page, or the currently selected element on a page (such as a
rectangle). Freelance Graphics always maintains a valid value for the global
product variables.

The following script changes the pattern of the currently selected element
or elements. Selection is a predefined global product variable that
represents the currently selected element or elements on a page.

Sub Main
 Selection.Background.Pattern = $LtsFillGray2
End Sub

The following script gives a screen show transition delay of ten seconds
to the currently selected page. CurrentPage represents the current page
and uses the properties and methods of the Page class.

Sub Main
 CurrentPage.PageTransitionDelay = 10
End Sub

9-12 Developing SmartSuite Applications Using LotusScript

Using global product variables to assign values to object variables
Use global product variables as a convenient way to access all other objects.
The Set statement must be used any time an assignment statement involves
an object. Note that the Pages and Objects classes illustrated in the follow-
ing example are collections and can be indexed like arrays. For example:

Dim MyRect As DrawObject
Dim MyPage As Page
' Set MyPage equal to the third page in the presentation,
' and MyRect to the second item on MyPage.
Set MyPage = CurrentDocument.Pages(3)
Set MyRect = MyPage.Objects(2)

Notice that in the example the global product variable CurrentDocument
is used to refer to the current document and that the collection property,
Pages, is used to refer to the third page of the document. Once you use the
global product variable, CurrentDocument, to assign a value to the object
variable MyPage, the example shows how you then use MyPage to refer
to a specific element on a page.

In the example that follows, note the use of the global product variable
CurrentPage in combination with the CreateRect method, to assign a
value to the object variable, Rect1:

Dim Rect1 As DrawObject
' Create a rectangle of default size, then name it MyRect1.
Set Rect1 = CurrentPage.CreateRect
Rect1.Name = "MyRect1"

Later in a script you could use the name MyRect1 which you gave to
the rectangle in the preceding code example, to find the rectangle so that
you can manipulate it in some way. You can find an existing named page
element (for example, MyRect1) on the current page by using the global
product variable CurrentPage and the FindObject method (a Page Class
method that CurrentPage can use).

Dim Obj1 As DrawObject
' Find a rectangle named MyRect1.
Set Obj1 = CurrentPage.FindObject("MyRect1")

To continue with this example, if you wanted to move the rectangle once
you found it, you could use the following statement. The statement makes
use of the object variable Obj1 that was set in the example above and the
Move method (a method of the DrawObject class, since Obj1 is an instance
of that class).

Obj1.Move 1000,1000

Using LotusScript in Freelance Graphics 9-13

Creating elements and objects
To create a Freelance Graphics element, you must use the appropriate
method. In general, you create an element by using a method of the
appropriate class. You have already seen some examples of creating
elements in the preceding section. In this section you will find more
examples.

The methods for creating elements on a page belong to the Page class.
For instance, the following example creates a rectangle:

Dim MyRect As DrawObject
Set MyRect = CurrentPage.CreateRect (2000, 3000, 3000, 4000)

In this example, you create the rectangle, MyRect, by using the global
product variable CurrentPage (it uses the methods and properties of the
Page class) and the CreateRect method (a Page class method) to create the
rectangle. The numbers in parenthesis give the location and size and width
of the rectangle on the page. For more information about how to use the
CreateRect method, search on “Methods (LotusScript)” in the Freelance
Graphics Help Index.

The method for creating a page belongs to the Document class; therefore
you can use it with the global product variable CurrentDocument. In the
following example, the CreatePage method takes two parameters, the title
of the page and the SmartLook (or template) on which the page will be
based.

Dim MyPage As Page
Set MyPage = CurrentDocument.CreatePage("Title of Page", 2)

The NewDocument method for creating a document belongs to the
Application class. The following script creates a new document.

CurrentApplication.NewDocument

Note You must save a document to name it.

Also, the OpenDocument method opens an existing document. For
example, to open the existing presentation, PROPOSAL.PRZ, do the
following:

Set MyDoc = CurrentApplication.OpenDocument("proposal.prz")

You use the NewDocument method to create a presentation and the
OpenDocument method to open a presentation.

9-14 Developing SmartSuite Applications Using LotusScript

Top tasks

All of the examples in this section should be used in .SMC files. Some
may work in .PRZ files, but for general applicability, attach your scripts
to objects in .SMC files. The code for each example is in a file in the sample
files directory. The file name for each code example is given before each
example.

Putting clip art on the current page
The text of this script is stored in DW09_S1.LSS. To save time, import the
file into the IDE by choosing File - Import Script.

This script defines a sub named LaunchTextBox that puts a piece of clip art
on the current page. Note that you can attach this script to the Click event
of a button.

Sub LaunchTextBox

' This sub uses the CreateSymbol method (Page class) to
' create clip art. In this example, one of the
' parameters of CreateSymbol uses the TemplateDir property
' of Preferences (Preferences is itself a property of the
' Application class) to specify the path for the clip art
' file. The file name is concatenated to the path.
' The second parameter indicates which of the text box
' symbols to add.

CurrentPage.CreateSymbol _
 CurrentApplication.Preferences.TemplateDir + _
 "textbox.sym", 1

' Once the clip art is created, it is a selected element
' on the page. The next line of code uses the
' ClearSelection method to deselect all
' elements on the page. ClearSelection is a method of
' both the Selection and PageSelection classes.

Selection.ClearSelection

End Sub

Using LotusScript in Freelance Graphics 9-15

Using an event
The text of this script is stored in DW09_S2.LSS. To save time, import
the file into the IDE by choosing File - Import Script.

This script uses an event to run a script that prompts the user for a title for
a page whenever the user creates a page from the .SMC page that this script
is attached to. The script is executed each time a page is created. This script
asks the user for a page title and puts it in the title placement block.

Note You must attach this script to the Created event of a page in an
.SMC file for it to be of use.
Sub Created(Source as Page)

Dim Title As String
Dim MyText As DrawObject

' Use the LotusScript InputBox function to create a
' dialog box with a prompt for user input.

Title = InputBox$ ("Please type a page title ", _
 "Page Title")

' Create a text block that will hold the text
' that the user types.

Set MyText = CurrentPage.CreateText

' Put the text that the user types into the text block.

MyText.Text = Title

' Move the text block into the "Click here..." block by
' using the PutIntoPlacementBlock method—this is
' a method of the DrawObject class.

MyText.PutIntoPlacementBlock(1)

End Sub

Printing the current page
The text of this script is stored in DW09_S3.LSS. To save time, import
the file into the IDE by choosing File - Import Script.

This script opens a dialog box that prompts the user to indicate whether
the current page should be printed. It also demonstrates how to use the
file LSCONST.LSS, which contains a number of predefined LotusScript
constants, such as MB_OKCANCEL and IDOK.

9-16 Developing SmartSuite Applications Using LotusScript

To make use of LSCONST.LSS, use it as an argument to a Use statement
in an (Options) script.

Use "lsconst"
Sub PrintCurrentPage()

Dim PrintRetVal As Integer

' Use the LotusScript MessageBox function to create a
' dialog box with a prompt for user feedback.
PrintRetVal = Messagebox("Would you like to print " + _
 "this page?", MB_OKCANCEL, "Print")

' Assess the user response to the message box; if the user
' clicks OK, then print the current page.
If(PrintRetVal = IDOK) Then
 CurrentDocument.Print CurrentPage.Number, _
 CurrentPage.Number, 1
End If

Selection.ClearSelection

End Sub

Launching a clip art or diagram browser with a specified file
The text of the scripts described here is stored in DW09_S4.LSS. To
save time, import the file into the IDE by choosing File - Import Script.

There are two examples in this section. One shows how to write a script
that opens the clip art browser with a specified file, the other script shows
how to open the diagram browser with a specified file.

For this script to work, the .SMC file must have a symbol placement block
or a diagram placement block on the page. You can attach the script to
the page, the Click event of a button, or the Click event of the placement
block itself.

Launching the clip art browser
This script consists of two subs. The first is LaunchSymBrowser, the
primary sub that actually opens the clip art browser. The second sub is
the sub that calls LaunchSymBrowser with a parameter indicating which
clip art file the browser should open. Once the browser is open, the user
selects which item to place on the page.

Using LotusScript in Freelance Graphics 9-17

The sub LaunchSymBrowser looks for an existing placement block (a
SymbolPlacementBlock in this case) on the current page and then opens the
clip art browser so that the user can select clip art for that placement block.

Private Sub LaunchSymBrowser(SymbolFile As String)

Dim SymPB As DrawObject

' The following line locates the placement block named
' SymbolPlacementBlock1 on the current page and
' then assigns it to the object variable, SymPB.
' To do this, you have to know the name of
' the placement block.

Set SymPB = _
 CurrentPage.FindObject("SymbolPlacementBlock1")

' The next line uses the BrowseSymbols method of the
' PlacementBlock class to open the symbol browser
' with the name of the clip art file that
' has been passed to this sub. Note the use of
' the TemplateDir property to indicate the path to
' the file.

SymPB.PlacementBlock.BrowseSymbols _
 CurrentApplication.Preferences.TemplateDir + SymbolFile

' Note: you could write a variation on this sub that first
' creates the placement block, positions it on the page,
' and then opens the symbol browser.

End Sub

' The following sub, PeopleSymbol, calls the
' LanuchSymBrowser sub with the name of the clip art file
' that it will use.

Sub PeopleSymbol()

LaunchSymBrowser("people.sym")

End Sub

9-18 Developing SmartSuite Applications Using LotusScript

Launching the diagram browser
The following sub LaunchDgmBrowser does the same thing as described
in the previous example. However, in this case, the sub opens the diagram
browser.

The sub, LaunchDgmBrowser, looks for an existing diagram placement
block on the current page, then opens the diagram browser so that the
user’s selection will go into that placement block.

Private Sub LaunchDgmBrowser(DiagramFile As String)

Dim DgmPB As DrawObject
Set DgmPB = _
 CurrentPage.FindObject("DiagramPlacementBlock1")

' The next line uses the BrowseDiagrams method of the
' PlacementBlock class to open the diagram browser.

DgmPB.PlacementBlock.BrowseDiagrams _
 CurrentApplication.Preferences.TemplateDir + _
 DiagramFile

End Sub

' The following sub, GanttDiagram, calls the
' LaunchDgmBrowser sub with the name of the file that
' contains the diagram that is used in this example.

Sub GanttDiagram()

LaunchDgmBrowser("gantt.dgm")

End Sub

Filling a bulleted list with text
The text of this script is stored in DW09_S5.LSS. To save time, import
the file into the IDE by choosing File - Import Script.

This script fills a bulleted list with predefined text. It consists of three subs:
SetAgenda (the primary sub), SampleAgendaPlan, and Main. The sub Main
is used so that this script can be attached to an icon as well as to an event.
The code for all three subs follows one after the other.

' Declare globals.
' Declare a constant containing the text that will be
' used to fill the bulleted list. The text contains the
' markup sequence <= for carriage return.

Const SampleAgendaTxt = "First bullet<=" + _
 "Second bullet<=Third bullet<=Fourth " + _
 "bullet<=Fifth bullet"

Using LotusScript in Freelance Graphics 9-19

' The following sub, SetAgenda, is written with the
' assumption that there is only one placement block
' on the page and that it will be turned into a
' text block.

Private Sub SetAgenda(TextToInsert As String)

Dim AgendaTxtBlk As DrawObject
Dim DummyTextBlk As DrawObject

' Using a ForAll and an If statement, search the
' current page for a placement block.

ForAll Objs In CurrentPage.Objects

 If (Objs.IsPlacementBlock) Then

 ' The variable, AgendaTxtBlk, is set to be
 ' the instance of the PlacementBlock class
 ' found on the current page.

 Set AgendaTxtBlk = Objs

 End If

End ForAll

' Create a temporary text block.

Set DummyTextBlk = _
 CurrentPage.CreateText(1000,1000,1000,1000)

' Enter text in the temporary text block using
' the Text property of the TextBlock class. TextBlock is
' also a property of the DrawObject class. It is
' simpler to move a text block into a placement
' block than it is to move a string of text into a
' placement block, so this script uses this method of
' manipulating text.

DummyTextBlk.Textblock.Text = "temp"

' Put the temporary text into the placement block using
' the Insert method of the PlacementBlock class.

AgendaTxtBlk.Insert DummyTextBlk

 ForAll Object In CurrentPage.Objects

9-20 Developing SmartSuite Applications Using LotusScript

 ' Check each object to see which is the one with
 ' the text "temp" in it. When you find it,
 ' put the text you want to insert into it,
 ' then give it bullet properties.
 If (Object.TextBlock.Text = "temp") Then

 Object.TextBlock.Text = TextToInsert

 Object.TextBlock.BulletProperties.Style = _
 $ltsBulletLargeDot

 Exit ForAll

 End If

 End ForAll

End Sub

' This sub, SampleAgendaPlan, calls the sub SetAgenda
' with the text constant, SampleAgendaTxt.

Sub SampleAgendaPlan()

SetAgenda(SampleAgendaTxt)

End Sub

' This sub, Main, calls SampleAgendaPlan. When you use the
' sub Main, the sub is generically available
' in Freelance Graphics, so that you
' can run the sub even when it is not attached to an
' event. It can, for example, be attached to an icon.

Sub Main

SampleAgendaPlan

End Sub

Converting text to table entries
The text of this script is stored in DW09_S6.LSS. To save time, import
the file into the IDE by choosing File - Import Script.

This script converts text into entries in a table. It consists of two subs:
Main and TableInsert. Main finds the first non-empty text block on the
page and converts it into a table. In this implementation, a new line creates
a new row and a tab creates a new column.

Because the sub is called Main, it can be run from an icon as well as by
choosing Edit - Script - Run. Alternatively, you could attach the sub to
an event, such as the Click event of a placement block.

Using LotusScript in Freelance Graphics 9-21

The sub Main calls another sub, TableInsert, to do some work for it. The
code for TableInsert follows this sub.

Sub Main

' Declare variables.

Dim CurrentRow As Integer
Dim CurrentCol As Integer
Dim MyText As String
Dim MyCellText As String
Dim MyTable As Table
Dim MyTextB As TextBlock
Dim MyBlockId As Integer

' Check if there is one text block that is not empty
' on the page. Do this by looping through all
' objects on the page and stopping when you find
' a text block that has something in it.

ForAll MyOb In CurrentPage.Objects

 ' If you find a filled in text block,
 ' set MyTextB equal to it and exit the
 ' ForAll statement.

 If (MyOb.IsText And Len(MyOb.TextBlock.Text) > 0) Then
 Set MyTextB = MyOb
 Exit ForAll
 End If

End ForAll

' If you have found nothing, then
' put up a message box letting the user know
' there is nothing valid on the page and exit the sub.
' Note, NOTHING is a predefined LotusScript constant; it
' is the initial value of an object variable.

If (MyTextB Is NOTHING) Then
 MessageBox "There are no good text blocks on the page."
 Exit Sub
End If

' Initialize the variable MyText to the text
' contained in the text block MyTextB.
MyText = MyTextB.Text

' Create the table and fill it with the data.
' Initialize variables.
CurrentRow = 1
CurrentCol = 1

9-22 Developing SmartSuite Applications Using LotusScript

' Create the table, setting the rows and columns equal
' to one. Also, select the type of table.

Set MyTable = _
 CurrentPage.CreateTable(1,CurrentRow,CurrentCol)

' Figure out how many rows and columns you need.
' Do this by counting newlines.

' Parse the text string, MyText, using the length
' of the text string as the limit of the For loop, and
' going through each character until a carriage return or
' a tab is encountered. When one of these
' characters is encountered, call the
' sub TableInsert to put the characters found
' up to that point into a table cell. If necessary,
' the sub TableInsert also expands the table.

For i = 1 To Len(MyText)
 CurrentChar = Mid$(MyText,i,1)

 ' Is the current character a carriage return?
 ' If it is a carriage return, insert text, then
 ' go to next row.
 If (CurrentChar = Chr$(13)) Then
 ' You call the sub TableInsert with the arguments
 ' it requires. Note, Trim$ removes the leading and
 ' trailing spaces from a text string (in this case,
 ' the text contained in the string MyCellText).
 Call TableInsert(MyTable, _
 Trim$(MyCellText),CurrentRow,CurrentCol)
 CurrentCol = 1
 ' Increment row number; that is, go down to the
 ' next row.
 CurrentRow = CurrentRow + 1
 ' Reinitialize the text string variable MyCellText
 ' to the empty string.
 MyCellText = ""

 ' Is it a tab? If so, follow same steps
 ' as above, but, after inserting text,
 ' instead of moving down, stay in the same row
 ' and move to the next column.
 ElseIf (CurrentChar = Chr$(9)) Then

 Call TableInsert(MyTable, _
 Trim$(MyCellText),CurrentRow,CurrentCol)

 ' Increment column number, that
 ' is, move to next column.
 CurrentCol = CurrentCol + 1
 MyCellText = ""

Using LotusScript in Freelance Graphics 9-23

 ' If neither, then keep on assembling string.
 ' Also, make sure the character isn't a standard
 ' newline (\n, or ASCII 10).

 ElseIf (CurrentChar <> Chr$(10)) Then

 ' Assemble string by adding valid characters.
 MyCellText = MyCellText + CurrentChar

 End If

Next i

' Don't forget to fill the very last cell in the table.

If (Len(Trim$(MyCellText)) > 0) Then

 Call TableInsert(MyTable, _
 Trim$(MyCellText),CurrentRow,CurrentCol)

End If

' Finally, delete the text block you found at the
' beginning of this script and put the table into
' the placement block that originally held the text block.

MyBlockID = MyTextB.PlacementBlock.Id
MyTextB.Remove
MyTable.PlacementBlock.PutIntoPlacementBlock(MyBlockId)

End Sub

' This sub, TableInsert, works with the above sub, Main.
' The job of TableInsert is to insert text into a table
' cell and, if it is necessary, to expand the number of
' rows and columns in the table.

' The table that was created in Main is passed to it, as is
' the text string and the projected number of rows and
' columns in the table. When the projected number of rows
' and columns in the table is more than the actual number,
' this sub adds a row or a column to the table.

Sub TableInsert(ATable As Table, SomeText As String, _
 RowNum As Integer, ColNum As Integer)

' Declare variable.
Dim MyTableCell As TextBlock

' Check to see if you were passed a NOTHING reference.

If (ATable Is NOTHING) Then
 Exit Sub
End If

9-24 Developing SmartSuite Applications Using LotusScript

' Expand the table if necessary—both columns and rows.

While(ATable.RowCount < RowNum)
 ATable.InsertRow(ATable.RowCount + 1)
Wend

While(ATable.ColCount < ColNum)
 ATable.InsertCol(ATable.ColCount + 1)
Wend

' Now, insert the text into the table cell.
Set MyTableCell = ATable.GetCell(RowNum,ColNum)
MyTableCell.Text = SomeText

End Sub

Putting information in a table into an agenda format
The text of this script is stored in DW09_S7X.LSS. To save time, import
the file into the IDE by choosing File - Import Script.

The sub CreatePagesFromAgenda turns information in a table into agenda
or “to do” pages, with the name of the person responsible for each task and
the task as the title of a page, and the due date in the top right corner of the
page. Each page has a bulleted list to be filled in by the person responsible
for the task. CreatePagesFromAgenda is followed by the Main sub, that
allows you to call CreatePagesFromAgenda from an icon or from the menu
by choosing Edit - Script - Run. You could also attach the script to an event
and avoid using the sub Main.

CreatePagesFromAgenda is designed to work with a three-column table
containing the following information: The first column contains the date
that the task is to be completed; the second column contains the task;
and the third column contains the name of the person responsible for
completing the task. This sub is set up to accommodate as many as 40
tasks. You can adjust that number to suit your needs. Also, you can have
more columns containing additional information. If you do, you will have
to adjust the sub as necessary.

' Declare global constants. These constants are text
' strings as well as numerical values. In the case of the
' numerical values, these constants are contained in
' the file LSCONST.LSS. You can use a Use
' statement to make use of LSCONST.LSS and avoid having to
' declare these constants. However, in the interests of
' completeness, the constants are explicitly
' declared in this script.

Const CreateAgendaPagesMessage = "A page will " + _
 "be created for each agenda item you " + _
 "entered in the table. Press OK to continue."

Using LotusScript in Freelance Graphics 9-25

Const CreateAgendaPagesTitle = "Create Agenda Pages"

Const ColumnError1 = "Agenda pages can't be " + _
 "created because the columns in the table " + _
 "have been modified."

Const ColumnError2 = "The table must have " + _
 "three columns."

Const EmptyTable = "One or more cells are" + _
 "empty. If you continue, the results may " + _
 "not be what you expect. " + _
 "Click Yes to continue or No to quit."

Const NoTable = "There is no table on this page. " + _
 "The script cannot run."

Const NoTitle = "There is no title for the " + _
 "table column. This script will not run without one."

Const ErrorMsg = "Error"

' Use this constant to identify
' which SmartMaster template you want.
Const TemplateIndex = 2

' IDOK stands for OK button clicked.
Const IDOK = 1

' IDNO stands for no button clicked.
Const IDNO = 7

' MB_OK stands for a message box with only an OK button.
Const MB_OK = 0

' MB_OKCANCEL stands for a message box
' with OK and Cancel buttons.
Const MB_OKCANCEL = 1

' MB_YESNO stands for a message box
' with Yes and No buttons.
Const MB_YESNO = 4

' MB_ICONSTOP stands for a message box
' with a "Stop!" icon in it.
Const MB_ICONSTOP = 16

' MB_DEFBUTTON2 stands for a message box with
' the No button as the selected button when the Yes/No
' message box opens.
Const MB_DEFBUTTON2 = 256

Sub CreatePagesFromAgenda()

9-26 Developing SmartSuite Applications Using LotusScript

' Declare the variables that you need for this script.
Dim AgendaTableObj As Table
Dim Cell As TextBlock
Dim TitleTextBlk As TextBlock
Dim DateTextBlk As DrawObject
Dim TitlePB As PlacementBlock
Dim AgendaText(2 To 16, 1 To 8) As String
Dim PageTitle As String
Dim ColumnMessage As String
Dim Row As Integer
Dim Col As Integer
Dim NumRows As Integer
Dim NumCols As Integer
Dim NumChars As Integer
Dim RetVal As Integer
Dim MaxRows As Integer
Dim TableXists As Integer
Dim IsCellEmpty As Integer
Dim NoColumnTitle As Integer

' Put up message box that explains to user what
' this script does and ask if the user wants to
' let the script run to completion, also initialize
' the variable, RetVal, to the return
' value of MessageBox.
RetVal = MessageBox(CreateAgendaPagesMessage, _
 MB_OKCANCEL, CreateAgendaPagesTitle)

' Deselect all selected items on the current page.
Selection.ClearSelection

' Initialize variable.
TableXists = 0

' Check to see if user clicked OK in message box.
' If OK was clicked, then begin.
If(RetVal = IDOK) Then

 ' Check to see that there is a table on the
 ' page. If found, set flag TableXists.
 ForAll Obj In CurrentPage.Objects

 If (Obj.IsTable) Then
 ' Assign the table to the
 ' variable AgendaTableObj.
 Set AgendaTableObj = Obj
 TableXists = 1
 End If

 End ForAll

Using LotusScript in Freelance Graphics 9-27

 ' If no table was found then, notify user and
 ' exit script.
 If (TableXists = 0) Then
 MessageBox NoTable, MB_OK, ErrorMsg
 Exit Sub
 End If

 ' Initialize NumCols to the number of columns
 ' in the table.
 NumCols = AgendaTableObj.ColCount

 ' Check to see if user added/deleted columns,
 ' because addition or deletion will result in
 ' unpredictable results. If number of columns
 ' was changed, then open message box
 ' informing user of unpredictable results.
 If(NumCols <> 3) Then
 ' Assemble message with line break spacing.
 ColumnMessage = ColumnError1 + Chr$(10) + _
 Chr$(10) + ColumnError2

 ' Open message box with the message you
 ' just assembled.
 MessageBox ColumnMessage, MB_OK, ErrorMsg

 Else

 ' If number of columns is correct, begin
 ' processing. Determine number of rows in
 ' table and initialize MaxRows to it.
 NumRows = 1
 MaxRows = AgendaTableObj.RowCount
 ' Set variable Cell to the first cell, that is,
 ' the table column title cell.
 Set Cell = AgendaTableObj.GetCell(NumRows, 1)

 ' Check that column title is filled in.
 ' Note, you could look for specific text
 ' at this point rather than simply checking that
 ' the cell is not empty.
 If (StrCompare(Cell.Text, "") = 0) Then
 ' Open message box explaining that
 ' script will not run without a column
 ' title. Initialize NoColumnTitle to the return
 ' value of the message box, that is, when
 ' user clicks the OK button, MessageBox
 ' returns a value of 1.
 ' When user clicks the OK button, exit script.
 NoColumnTitle = MessageBox(NoTitle, MB_OK + _
 MB_ICONSTOP, ErrorMsg)

9-28 Developing SmartSuite Applications Using LotusScript

 If (NoColumnTitle = IDOK) Then
 Exit Sub
 End If

 End If

 ' As long as the table cell is not empty and
 ' the variable NumRows does not exceed the
 ' number of actual rows in the table, begin
 ' processing the table cells to check that they
 ' all contain text.

 While((Not StrCompare(Cell.Text, " ")) And _
 (NumRows < MaxRows))

 ' Increment the row count, so that you begin
 ' processing text with the second row
 ' (the first row contains column titles).
 NumRows = NumRows + 1
 Set Cell = AgendaTableObj.GetCell(NumRows, 1)

 ' Check to see if a cell is empty. If it is
 ' empty, open a message box, then exit sub.
 ' The logic here is similar to that of the
 ' previous message box code.
 If (StrCompare(Cell.Text, "") = 0) Then

 IsCellEmpty = MessageBox _
 (EmptyTable, MB_YESNO+MB_ICONSTOP + _
 MB_DEFBUTTON2, ErrorMsg)

 If (IsCellEmpty = IDNO) Then
 Exit Sub
 End If

 End If

 Wend

 ' Cycle through the rows of the table and put text
 ' into a string array.
 For Row = 2 To NumRows

 ' Get cell text and put it in variable Cell.
 Set Cell = AgendaTableObj.GetCell(Row, 1)

 ' Check that cell does not contain only spaces.
 ' If it does, then skip it: this will result
 ' in blank entries.
 If(Not StrCompare(Cell.Text, " ")) Then

 ' Cycle through the columns in each row
 ' and put contents in array AgendaText.
 ' Note, AgendaText has been declared
 ' as an array containing 120 elements.

Using LotusScript in Freelance Graphics 9-29

 ' That means it can process a table with
 ' forty rows—for a larger table, adjust
 ' the bounds of the array or use a
 ' dynamic array.
 For Col = 1 To AgendaTableObj.ColCount
 Set Cell = AgendaTableObj.GetCell(Row, Col)
 AgendaText(Row, Col) = Cell.Text
 Next Col

 End If

 Next Row

 ' For each row, concatenate the text from columns
 ' two and three. Put the concatenated text
 ' into the title placement block on the new page.
 For Row = 2 To NumRows

 ' Initialize the variable PageTitle.
 PageTitle = ""

 ' Cycle through columns two and three
 ' of the current row.
 For Col = 2 To NumCols

 ' If at last column (column three),
 ' add text of column three to
 ' the variable PageTitle (that is, add it to
 ' the text from column two) or else
 ' take text from column two and put it in
 ' variable PageTitle.
 If(Col = NumCols) Then
 PageTitle = PageTitle + AgendaText(Row, _
 Col)
 Else
 PageTitle = PageTitle + AgendaText(Row, _
 Col) + ", "
 End If

 Next Col

 ' Create a new page for each row in the table
 ' using the bulleted list SmartMaster look
 ' and use the contents of the variable
 ' PageTitle for the page name.
 CurrentDocument.CreatePage PageTitle, 2

 ' Make a dummy text block. Set variable
 ' TitleTextBlk to it.
 Set TitleTextBlk = CurrentPage.CreateText(1000, _
 1000, 1000, 1000)

9-30 Developing SmartSuite Applications Using LotusScript

 ' Put the concatenated text from columns
 ' two and three into dummy text block.
 ' Note, it is easier to manipulate text that is
 ' in text blocks than it is to manipulate text
 ' strings. Therefore, this script uses
 ' text blocks to manipulate text.
 TitleTextBlk.Text = PageTitle

 ' Search current page to find the "Click here..."
 ' block (placement block) and assign it to the
 ' variable TitlePB.
 ForAll Obj In CurrentPage.Objects

 If (Obj.PlacementBlock.PromptText = _
 "Click here to type page title") Then
 Set TitlePB = Obj
 End If

 End ForAll

 ' Insert text from dummy text block into
 ' the "Click here..." placement block.
 TitlePB.Insert TitleTextBlk

 ' Deselect the selected items on the page.

 Selection.ClearSelection

 ' Create a text block in the top right
 ' corner of the page where the due date,
 ' from column one, will be inserted. Set
 ' the variable DateTextBlk as the handle
 ' to the text block.
 Set DateTextBlk = _
 CurrentPage.CreateText(12000,10500,1000,1000)

 ' Insert text from column one into the
 ' due date text block.
 DateTextBlk.TextBlock.Text = "Due: " + _
 AgendaText(Row, 1)

 ' Deselect the text block.
 Selection.ClearSelection

 Next Row

 End If

End If

End Sub

' The following sub, Main, makes it possible for
' you to run the CreatePagesFromAgenda sub when you

Using LotusScript in Freelance Graphics 9-31

' choose Edit - Script - Run, or to run the
' script from an icon; in both cases, Freelance Graphics
' looks for a sub named Main to execute.
Sub Main
 CreatePagesFromAgenda
End Sub

9-32 Developing SmartSuite Applications Using LotusScript

Chapter 10
Using LotusScript in Word Pro

LotusScript and Word Pro
Word Pro provides a powerful set of objects, such as documents, divisions,
and SmartMaster templates, that you can program using LotusScript. You
can use LotusScript in Word Pro to automate frequent or repetitive tasks or
to develop innovative applications built on Word Pro features. Some of the
tasks you can accomplish with LotusScript in Word Pro include the
following:

Automating documents using a Word Pro SmartMaster

Creating document views

Displaying custom dialog boxes

Managing find and replace options

Managing merge operations

Performing sort operations

Performing special tasks when starting Word Pro

Validating Click Here Blocks

The Word Pro object model

Word Pro has a large and comprehensive object model that provides many
different ways to accomplish any given task. For general information on
SmartSuite product object models, see Chapter 2.

Because the Word Pro object model is so large, the following diagram
depicts only a part of the object model. It shows some of the more
frequently used containment relationships you need to understand when
you work with LotusScript and Word Pro.

10-1

When you write a script, you can access and control any part of Word Pro
that is represented by a class in the Word Pro object model. You can create
as many objects as you want from the same class; however, each object that
is instantiated from a class has properties with unique values, such as the
value of the Name property. For example, if you create a DocWindow
object from the DocWindow class, each DocWindow object will have
similar characteristics. But, the Name property for each DocWindow object
will have a different value. These unique object property values allow you
to control objects independently.

Sometimes Word Pro objects are created automatically when the user
creates things in the Word Pro user interface, such as frames, tables, and
page layouts. You can use LotusScript to access and manipulate these
objects just as you do when you create objects yourself.

Word Pro provides two different ways to navigate and view objects
in the object model: the Foundry (which allows you to explicitly access a
specific object) and Focus (which allows you to access the object in the
current context).

Foundry
One means of accessing an object is the Foundry class. Almost every
element of a Word Pro document is contained by a collection object within
the Foundry object of the division where it was created. The Foundry class

Documents

Application Window

Division

Division

Division

Text

Text

Text

TextDocument

TextDocument

TextDocument

Foundry

TextCollection

DivisionCollection

 LayoutCollection

 Layout

 Layout

 Layout

Divisions property

Texts property

Text property

 MenuItem

LwpMenuBar property

Layouts property

OleObject

OleObject

OleObject

OleObjectCollection

OleObjects property

Foundry property

Divisions property

WPApplication

10-2 Developing SmartSuite Applications Using LotusScript

has properties that contain instances of most collection classes available in
Word Pro. You can access any object in a division by accessing the
corresponding collection object in a division’s Foundry object.

For example, if you want to change the font of a paragraph style, you can
access it by accessing the corresponding ParagraphStyles object, which is a
collection. To make the Default paragraph style have bold text, you can use
the statement:

.Division.Foundry.ParagraphStyles.("Default Text" _
).Font.Bold = True

In this statement, the leading dot identifies the Division property of
WPApplication (the division where the insertion point is). ParagraphStyles
is a collection object that contains a collection of all paragraph styles in the
current division. Using parentheses you can index into the collection and
find the desired object, in this case the paragraph style named Default Text.
Then you can set the Bold property of the Font object to the value True.

Focus
Another means of accessing an object is through focus and the
WPApplication object which is instantiated from the WPApplication class.
Focus is defined as the location of the insertion point in the document.

When you are using LotusScript in Word Pro, the focus of the insertion
point is very important. Focus is usually defined as the place in an
application that is currently active. For example, when the insertion point is
in Division Two of Document One, Division Two is defined as having the
focus. If the insertion point is in Frame Four of Division Two of Document
One, Frame Four is defined as having the focus.

The class that represents the actual Word Pro application is WPApplication.
The Name property of the object instantiated from the WPApplication class
always holds the value Word Pro. Therefore, the WPApplication object
is sometimes referred to as the Word Pro object. (It is always called the
Word Pro object in the Object drop-down box in the IDE.) Although
WPApplication has its own set of properties, methods, and events, it also
has current context properties. These are a special set of properties that
hold objects that can change depending on the focus. For more
information on current context properties, see also “WPApplication” later
in this chapter.

Accessing objects that do not have the focus
Although you can use the focus of an object and the Foundry in different
ways to access an object, you can also use them together to reach an area of
the user interface that does not have the focus.

Using LotusScript in Word Pro 10-3

Using dot notation
To access objects that do not have the focus, most script writers use the
leading dot to access the WPApplication object or the predefined global
product variable CurrentApplication. For more information on the leading
dot, see “Dot notation: using methods and properties with objects” in
Chapter 2. However, you can also use the Application property, which is
a member of every Word Pro class, to gain access to the WPApplication
object.

Note You especially want to use the Application property when a script
is written in another programming language or when it is going to be
executed by a SmartSuite product other than Word Pro.

Every class in the Word Pro object model has a property named
Application. The Application property always has a data type of
WPApplication. Therefore, you can use the WPApplication object contained
in the Application property of every object to gain access to other parts of
the Word Pro application that do not have the focus. To do that, you can
traverse the containment hierarchy.

For example, if a block of text has the focus and you want to change
the background color of a frame in the next division, you can use the
Application property of the corresponding Text object (which contains an
instance of the WPApplication class) to access the WPApplication object.
Then you can access the frame without changing the focus from the Text
object.

The following example uses a ForAll Statement to iterate through all of the
Division objects in CurrentDocument, which is a global variable that
represents the current TextDocument object. The script uses an If statement
to look for the specified division, Body. If the script finds the Body division,
it does the following:

Accesses the internal name of the division

Indexes into the Divisions collection based on the internal
division name

Indexes into the Frames collection based on the frame name

Sets the background color of the frame

To use this example in Word Pro, you need to do the following:

1. Create a new document in Word Pro using any SmartMaster.

2. Create two divisions: Body and Division1.

For more information on creating divisions in a document, search on
“Divisions, creating” in the Word Pro Help Index.

3. Create a frame in the Body division.

10-4 Developing SmartSuite Applications Using LotusScript

4. Type text in the Division1 division.

5. Leave the insertion point in the text in Division1.

6. Choose Edit - Script & Macros - Show Script Editor.

7. Type the following script in the space between Sub Main and End Sub.

Note Word Pro divisions have two names: the name that appears on the
divider tab and an internal hexadecimal name. Word Pro uses an internal
name because two divisions can have the same name on their divider tabs.
If you want to access the name that appears on the divider tab (for example,
Body, Division 1, and so on), you need to access the Name property of the
DivisionInfo object. If you want to access the internal division name, use the
Name property of the Division object.
Sub Main
 Dim DivName As String
 ForAll MyDivision In CurrentDocument.Divisions
 If MyDivision.DivisionInfo.Name = "Body" Then
 DivName = MyDivision.Name
 With CurrentApplication.Divisions(DivName).Foundry
 .Frames("Frame1" _
).Background.BackColor SetRGB 128, 0, 128
 .Color.Override = $LwpColorOverrideRgb
 End With
 Exit Sub
 End If
 End ForAll
End Sub

An explanation of the script
Each Division object contains a Foundry object, as explained in the previous
section. The Foundry class contains an instance of the
FramesLayoutCollection class in the Frames property. The
FramesLayoutCollection holds all of the FrameLayout objects in the named
division. In order to indicate the frame for which you want to change the
background color, you must use a reference (Frame1) to specify the desired
FrameLayout object.

For more information on the FrameLayoutCollection class, search on
“Classes (LotusScript)” in the Word Pro Help Index.

Each FrameLayout object contains a Background object in the Background
property. Each Background object has a BackColor property that contains
an instance of the Color class. To set the RGB values for a Color object, you
must set the Override property. Using the Override property allows the
SetRGB method to override the existing color of the object. For more
information on the SetRGB method, search on “Methods (LotusScript)” in
the Word Pro LotusScript Help Index.

Using LotusScript in Word Pro 10-5

Using Bind
You can also access an object that does not have the focus by using the Bind
keyword. The following uses the Bind keyword to accomplish the same task
as the previous example.

Sub Bind
 ' Declare a variable for the frame you want to access.
 Dim Frame1 As FrameLayout
 ' Bind the name of the frame to the frame variable.
 Set Frame1 = Bind("!Body:Frame1")
 ' Access the Background property of the FrameLayout object
 ' and change the color.
 With Frame1.Background
 .BackColor.SetRGB 128, 0, 128
 .Color.Override = $LwpColorOverrideRgb
 End With
End Sub

For more information on the Bind keyword, search on “LotusScript” in the
Word Pro Help Index, then click “LotusScript Index.”

Word Pro predefined global product variables
Word Pro provides several variables that are available any time you are
running a script in Word Pro. These predefined global product variables
represent instances of three Word Pro classes.

Note Word Pro global product variables are not available when using the
Word Pro object model from another programming language or when using
LotusScript in another SmartSuite product.

Variable Description

CurrentApplication Represents the current session of Word Pro and is the object
at the top of the containment hierarchy. The variable has
the data type WPApplication. CurrentApplication gives
you access to the WPApplication class.

CurrentDocument Represents the current Word Pro document (.LWP file) in
the current session of Word Pro (the document in which the
insertion point is located). The variable has the data type
TextDocument. The same TextDocument object that is
represented by this variable is also contained by the
ActiveDocument property of the WPApplication object.

CurrentWindow Represents the window that contains the current document
(the window in which the insertion point is located). The
variable has the data type DocWindow. The same
DocWindow object that is represented by this variable is
also contained by the ActiveDocWindow property of the
WPApplication object.

10-6 Developing SmartSuite Applications Using LotusScript

 Word Pro collection classes
The Word Pro object model helps you access and enumerate objects by
grouping objects of the same type together in collections. For general
information about collection classes, see “Collection classes” in Chapter 2.
Most of the objects that you need to manipulate in Word Pro have a
corresponding collection. For example, the Documents object, which is
a collection object, is made up of all objects instantiated from the
TextDocument class. Each TextDocument object is an element of the
Documents object.

Each collection object has a fixed scope that determines which objects the
collection object can hold. Most collection object scopes in Word Pro are
limited to the division in which an object is instantiated. For example, the
FrameLayoutCollection object holds all the FrameLayout objects for a
particular division of the document. Therefore, if the document has three
divisions, Word Pro maintains a FrameLayoutCollection object for each
division that contains a FrameLayout object.

You can access objects in a collection in two ways:

Indexing—using the Item method or the indexing syntax to access one
specific object in the collection.

The Item method is a member of every collection class available in
Word Pro; however, its parameter is different from class to class. For
more information on the Item method, search on “Methods
(LotusScript)” in the Word Pro Help Index.

Iteration—using the ForAll statement to step through the entire
collection. For example:

ForAll MyStyle in .Division.ParagraphStyles
 Print MyStyle.Name
 MyStyle.Font.Bold = True
End ForAll

ClickHere 3

ClickHere 2

ClickHere 1

ClickHeres Object

Using LotusScript in Word Pro 10-7

Common collection classes
The Word Pro object model contains more than 50 collection classes. You
will use some of these classes more than others. The following is a list of
some of the common collection classes you are likely to use when you write
scripts in Word Pro.

Collection class Description

BookMarkCollection A collection of Bookmark objects in the
BookmarkManager class. Use this collection to access
any Bookmark object in the BookmarkManager class.

ClickHereCollection A collection of ClickHere objects in the Foundry of a
specific division, document, or application. Use this
collection to access all ClickHere objects in a document
division.

DivisionCollection A collection of all Division objects in a Word Pro
document. Use this collection to access specific Division
objects and Foundry objects.

Documents A collection of all TextDocument objects in Word Pro.
Use this collection to access any TextDocument object in
the current session of Word Pro.

DocWindowCollection A collection of DocWindow objects. Use this collection
to access all DocWindow objects that are available
during the current session of Word Pro.

FrameLayoutCollection A collection of FrameLayout objects in a division. Use
this collection to access any FrameLayout object in the
Foundry object of a specific division.

LayoutCollection A collection of Layout objects in the Foundry object of a
specific division. Use this collection to access any
Layout object (such as Header, Footer, and so on) in the
Foundry of a specific division.

MarkerCollection A collection of Marker objects in the Foundry object of a
specific division. Use this collection to access any
Marker object in the Foundry of a specific division.

ParagraphStyleCollection A collection of ParagraphStyle objects in the Foundry
object of a specific division. Use this collection to
manipulate any ParagraphStyle object in the Foundry of
a specific division.

10-8 Developing SmartSuite Applications Using LotusScript

Word Pro abstract classes
The Word Pro object model has several abstract classes. These abstract
classes are the fundamentals of the Word Pro object model; familiarity with
them helps you understand inheritance. Listed below are some of the more
important abstract classes.

BaseCollection
BaseCollection is the class from which all collection classes are derived in
Word Pro. The collection classes that are derived from BaseCollection have
the following properties: Application, Count, Description, IsValid, Name,
Parent, and VersionID. BaseCollection has only one method, IsEmpty, and
no events. For more information on collection classes in Word Pro, see
“Common collection classes” earlier in this chapter.

The following is a diagram of some of the important collection classes that
are derived from BaseCollection:

BaseContainer
BaseContainer is the abstract class from which all container classes are
derived in Word Pro. Container objects are unique to the Word Pro object
model. They contain, or hold, similar, related objects that have the focus.
For example, if the focus is on a table cell, Word Pro instantiates a container
object from the CellContainer class to hold all the objects related to that cell.
The CellContainer object comprises a group of related objects, including a
CellLayout object and a Cell object, and all the properties, methods, and
events that pertain to these objects.

BookmarkCollection

ClickHereCollection

DivisionCollection

Documents

DocWindowsCollection

FrameLayoutCollection

LayoutCollection

MarkerCollection

ParagraphStyleCollection

BaseCollection

Using LotusScript in Word Pro 10-9

The following is a diagram of the entire inheritance model for
BaseContainer. For specific information about the BaseContainer class and
containment, see “Other important Word Pro classes” later in this chapter.

Content
Content is the abstract class from which all content classes are derived. The
classes derived from Content are used to instantiate objects that represent
the contents of a particular type of object. For example, a Formula object
represents the content of a CellLayout object; a Text object might represent
the contents of a page or the prompt in a Click Here Block; a Graphic object
might represent the contents of a frame.

The following is a diagram of the entire inheritance model for Content. For
more information about the Content class, search on “Classes (LotusScript)”
in the Word Pro Help Index.

FrameContainer

NoteContainer

RubyContainer

PageContainer

SubPageContainer

SuperPageContainer

CellContainer

RowContainer

SuperContainer

TableContainer

ParallelColsContainer

TableOnlyContainer

BaseContainer

BaseTable

FootnoteTable

ParallelColumns

Glossary

Table

TableHeading

Formula

SuperTable

Text

GraphicOleObject

Graphic

OleObject

Content

10-10 Developing SmartSuite Applications Using LotusScript

BaseTable
As seen in the diagram above, several classes are derived from BaseTable.
Because BaseTable is derived from the Content class, objects instantiated
from the classes derived from BaseTable can be used as Content objects.

Layout
While not technically an abstract class, Layout is the base class for all layout
classes, including PageLayout, FrameLayout, NoteLayout, TableLayout,
RowLayout, and CellLayout. Layout derived classes, such as CellLayout,
hold formatting information. For example, CellLayout has properties that
deal with the size and position of a cell. Layout derived classes usually
contain classes derived from the Content class.

Other important Word Pro classes
When you write LotusScript applications for Word Pro, you should be
familiar with several widely used Word Pro classes. Some of these classes
are described briefly in this section. For more complete information on
these classes and their class members, search on “Classes (LotusScript)” in
the Word Pro Help Index.

PageLayout

HeaderLayout

FooterLayout

FrameLayout

FrameGroupLayout

NoteLayout

RubyLayout

SuperTableGroupLayout

SuperTableLayout

RowLayout

CellGroupLayout

CellLayout

ConnectedLayout

TableLayout

TableHeadingLayout

TOCSuperTableLayout

EndNoteLayout

FootnoteLayout

Layout

Using LotusScript in Word Pro 10-11

ClickHere
ClickHereCollection objects hold objects of the type ClickHere. ClickHere
objects can be accessed in several ways using the Word Pro containment
hierarchy. The most common way of accessing them is through the Foundry
object (which is contained by a Division object). When you access the
Foundry object of the current division, you can manipulate all the
ClickHere objects contained in that particular Division object. For example:

.Division.Foundry.ClickHeres.Item("Name")

Note The object instantiated from the ClickHereCollection class is the
ClickHeres object not the ClickHereCollection object.

BaseContainer
As stated earlier, container objects contain, or hold, similar or related
objects that have the focus. They are important because they are an
excellent means of accessing Layout objects. For more information on
container objects, see “BaseContainer” earlier in this chapter.

Objects instantiated from a container class are temporary and exist only as
long as a group of related objects in the user interface has the focus. If you
move the insertion point to another object or group of objects in the
interface, Word Pro deletes the container object and creates another one for
the new group of objects. The parts of a Word Pro document that can have
related objects held in container objects include pages, tables, parallel
columns, cells, and frames. For example, if a frame has the focus, Word Pro
creates a container object that holds all of the objects related to that frame.

The WPApplication class has several properties that can hold container
objects. The type of container objects that these properties can hold depends
on the location of the insertion point.

For example, if the focus is on a particular table cell that is in a frame on a
page, then the container properties of WPApplication would allow you to
access the following container objects:

WPApplication property Container object

Cell Object instantiated from the CellContainer class

Container Object instantiated from the CellContainer class

Frame Object instantiated from the FrameContainer class

Page Object instantiated from the PageContainer class

SuperTableContainer Object instantiated from the SuperTableContainer class

TableContainer Object instantiated from the TableContainer class

TableOnlyContainer Object instantiated from the TableOnlyCont class

10-12 Developing SmartSuite Applications Using LotusScript

Using these properties and the objects they contain, you can gain access to
the layouts of any of the objects in the containment hierarchy.

Division
Divisions in Word Pro can hold text, frames, text marked as sections, other
divisions with different properties from each other, external files linked to a
document, or OLE objects. Therefore, Division objects can contain any of
the objects associated with these parts of a division. Each Division object
contains an instance of the Foundry class. The Foundry object contains
instances of most collection classes that are available in the Word Pro object
model. For more information on the Foundry, see “Foundry” earlier in this
chapter. For more information on collections, see “Collection classes” in
Chapter 2 or “Collection classes in Word Pro” earlier in this chapter.

Documents
The WPApplication class has a Documents property that contains an
instance of the Documents class. If you want to access a TextDocument
object other than the currently active document, you can use the
Documents class.

The following example uses the Documents class to print the names of all
open documents:

x = 1
ForAll CrntDoc In .Documents
 Print "Doc Number " & x & " - " & CrntDoc.Name
 x = x + 1
End ForAll

This example uses a ForAll loop to iterate through the objects collected in
the Documents object, since Documents is a collection class. Each time
through the loop, the script prints the text string “Doc Number,” the actual
number of the document, and the document name. CrntDoc is an object
variable for the elements in the Documents object, which is contained in the
Documents property of WPApplication. Documents collection elements are
always TextDocument objects.

TextCollection
Most text in a document in Word Pro can be represented by a Text object.
Text objects are collected in the TextCollection object. You can access the
TextCollection object through the Text property of a Foundry object. The
Text property of WPApplication provides access to the Text object that
currently has the focus. To manipulate a Text object that does not have the
focus, you need to know its name. If you do not know its name, you can
iterate through the collection that contains the object and find the name.

Using LotusScript in Word Pro 10-13

Sometimes, rather than knowing the name of the Text object, you may
know the name of the Layout object that contains it. In this case, the Text
object can be accessed by using the Content property of the Layout object.
For example, you can use the following syntax to access a Text object that is
contained by a FrameLayout object:

.Division.Foundry.Frames(FrameObject1).Content.InsertText _
 "Hello"

In this last example, you need to know the name of the FrameLayout object
that contains the Text object. The Content property of the FrameLayout
object gives you access to the Text object.

WPApplication
The WPApplication class is derived from the parent class Application and
is crucial to understanding the Word Pro object model. The WPApplication
class gives you access to the whole Word Pro application, including the
application engine, the Word Pro workspace, and any documents created
by the application. By using the members of this class, you can work with
any part of Word Pro.

Each time you start Word Pro, a single object is instantiated from the
WPApplication class. That object represents the Word Pro application.
Unless you run more than one session of Word Pro at a time, only one
WPApplication object exists at any given time.

WPApplication has two types of properties—static and current context:

Static properties, such as Name and UserInterfacePrefs, apply to the
Word Pro application as a whole. Their values do not depend on which
document or other object is active. The values of static properties
remain the same, regardless of which document is active, or where the
focus is.

Current context properties change as the focus moves from one
document or division to another. They are called current context
properties because their values depend on which objects have the focus.

For example, in a document with two divisions named ChapterOne and
ChapterTwo, you can move the focus from one division to the other.
While the focus is on ChapterOne, the current context of the Division
object is ChapterOne. Therefore, the Division property of
WPApplication contains the ChapterOne Division object. However,
when you move the focus of Word Pro to ChapterTwo, the current
context changes, and the contents of the Division property change to
the ChapterTwo Division object.

10-14 Developing SmartSuite Applications Using LotusScript

The following is a list of some of the more important current context
properties and their data types. For a more complete list, search on
“Classes (LotusScript)” in the Word Pro Help Index, click “Word Pro
Classes,” then click “WPApplication.”

Current context property Data type

ActiveDocument TextDocument

ActiveDocWindow DocWindow

ApplicationWindow ApplicationWindow

Content Content

CurrentCell CellLayout

CurrentColumn Layout

CurrentRow RowLayout

Division Division

Documents Documents

Foundry Foundry

Frame FrameContainer

Graphic Graphic

Layout Layout

Page PageContainer

Table Table

Text Text

The global product variable CurrentApplication contains the current
WPApplication object.

Using the IDE in Word Pro

You can use the Integrated Development Environment (IDE) in Word Pro
to do the following:

Record a script in the current file

Record a script as a separate file

Record a script at the insertion point in the IDE

Insert a script template

Access a named object

Write a sub or function

Save a script as a module or an .LSS file

Using LotusScript in Word Pro 10-15

To open the IDE in Word Pro, choose Edit - Script & Macros - Show Script
Editor. For more information about the IDE, see Chapter 3.

Recording a script
In Word Pro, just as in Ami Pro, you can record your actions in the product
and then view the code behind the actions. This is called recording a script.
When you record a script, you can insert the code in three places:

The current file

A separate file

The Script Editor at the current location

Recording a script in the current file or in a separate file
In some cases, you may want to record a script into the current file. For
example, if you want to customize a SmartMaster or create startup scripts,
you need to save the script as part of the current file. The script is stored as
part of the Word Pro (.LWP) or SmartMaster (.MWP) file. In other cases,
you may want to record a script into a separate file. Lotus recommends that
you save scripts that you want to attach to SmartIcons in a separate file.

To record a script in the current file or another file:

1. Choose Edit - Script & Macros - Record Script.

2. Select where you want to store the script:

Into this file—You must specify a name for the script. If you do not,
Word Pro inserts the recorded script into the Main sub of the
!Globals object. If you enter a name for your script, Word Pro inserts
the script into a sub of that name associated with the !Globals object.

Into another file—You must specify the name of the file in which to
place the script. You can select an existing file name by clicking
Browse. You can also specify a name for the script by typing a file
name, an exclamation point (!) and a name for the sub. For example,
type: MYFILE.LWP!MYSUB()

3. Click OK to start recording.

10-16 Developing SmartSuite Applications Using LotusScript

4. Perform the task or tasks you want to record.

5. After you complete the task, choose Edit - Script & Macros - Stop
Recording.

After you record the script, the IDE opens so you can view and test the
script you just recorded.

Recording a script into the Script Editor at the current location
If you are writing a script and want to include the script equivalent of a
certain task but do not know what the equivalent statements are, you can
record your actions and save the recorded script in the Script Editor. After
you record your actions, you can use the Script Editor to view and modify
the LotusScript code.

To record a script at the current location:

1. Choose Edit - Script & Macros - Show Script Editor.

2. In the Script Editor, place the insertion point in the script where you
want to record the task.

3. In the Script Editor, choose Script - Record at Cursor.

4. Perform a task.

Note To move the focus back to Word Pro without clicking a specific
object, move or minimize the Script Editor and click the Word Pro
title bar.

5. After you complete the task, click “Recording” in the Word Pro
status bar.

Inserting a script template
As you use LotusScript, you may find yourself entering the same function
or other code in numerous scripts. In the Script Editor, Word Pro provides
several sets of frequently used scripts as script templates. You can use these
templates to insert frequently used functions into the current script.

To insert a script template:

1. In the Script Editor, display the script to which you want to add the
script template.

2. Place the insertion point in the script where you want to insert the
template.

3. Choose Script - Insert Template.

4. Select a script template.

For a complete list of script templates available in Word Pro, see the
table at the end of this procedure.

Using LotusScript in Word Pro 10-17

5. Click Insert.

Word Pro places the script or scripts and comments in the current
script at the insertion point. For some of the script templates, Word Pro
places variable names and remarks in the (Declarations) script for the
!Globals object. You can and will probably need to modify the code that
was inserted from the script template because the templates contain
example text and/or variable names.

For example, in the Cut, Copy, and Paste template below, “Sample text to
copy,” will appear in your document when you run the script if you do not
modify the template.

Sub Main
 ' Copy the selected text.
 .Type("Sample text to copy")
 .Type("[home][ShiftCtrlDown]")
 .CopySelection
 ' Cut the selected text.
 .CutSelection
 ' Paste the selected text.
 .Type("[CtrlDown]")
 .Paste
End Sub

The following table lists the script templates available in Word Pro and
describes what tasks they accomplish.

Script template Description

Basic - Cut, Copy,
and Paste

Selects, cuts (copies), and pastes text.

Basic - Find and Replace Finds and replaces text.

Basic - List fonts Builds a list of all available fonts in a parallel
column format.

Basic - Set Page margins Changes margins and page layouts.

Collection - All layouts Retrieves all of the layouts in the current division and
prints the following: layout information, class name,
layout name, and editor name.

Collection - All styles Retrieves all of the paragraph styles in the current
division and prints the following: paragraph style
name, description, font name, font size, font type,
and whether or not the font is bold.

Create a Data Set Attaches a data set to the current document and
names the data set.

continued

10-18 Developing SmartSuite Applications Using LotusScript

Script template Description

Create a Timer Creates a named timer within Word Pro, sets the
interval in seconds, and turns the timer on.

Display a common
dialog box

Creates a common File - Open dialog box for the
current operating system.

Frame - modify a frame Modifies an existing frame layout.

Intermediate -
Using Bookmarks

Creates, manipulates, and goes to a bookmark.

Issue a menu/icon
command

Issues a menu or icon command to Word Pro.

Menu -
Create a new menu item

Creates a new top-level menu item. Also, provides a
HitMenu sub to use when a menu item is selected.

Type text Types text and changes the font. Also, shows how to
manipulate the current Text object.

Accessing Word Pro objects and events
Objects appear in the object drop-down box in the IDE because they are
capable of raising events in LotusScript. Word Pro objects that raise events
automatically appear in the object drop-down box. These objects include
the following:

The !Document object, which represents the current document

The !Word Pro object, which represents the application

!StatusBarButtons objects, which include !Font object, !Style object, and
so on

Division objects, such as !Body object, which include the parts of the
document, such as !Body:DefaultPage, !Body:DefaultFrame, named
layout objects, ClickHere objects, and so on

Using LotusScript in Word Pro 10-19

Note In addition to the objects that raise events, the !Globals object is also
listed in the Object drop-down box. The !Globals object is used with scripts
that are not tied to a particular Word Pro object.

Although layout objects, such as tables, can raise events, they do not appear
automatically in the Object drop-down box. If a layout object does not
appear in the Script Editor, it does not have a name. To make a layout
object appear in the Script Editor Object drop-down box, you must name it
in Word Pro.

For example, if you have a document with a table (which is a layout object)
and you want to create a script to handle an event raised by the
corresponding table object, you must first name the table.

To name a table:

1. In Word Pro, choose Table - Table Properties.

2. Click the Misc tab.

3. Type a name for the table in the “Name” box.

4. Collapse, move, or close the InfoBox.

5. Choose Edit - Script & Macros - Show Script Editor.

The object that you named appears in the Object drop-down box in the
Script Editor under the division in which it is located.

You can name an object using any name, for example, MyNameClickHere
for a Click Here Block. However, when these objects show up in the Object
drop-down box, they may appear with a prefix. For example, if the object is
part of the body of a document, such as a Click Here Block, the object name
appears with the prefix !Body. Therefore, the complete object name for the
MyNameClickHere Click Here Block would be !Body:MyNameClickHere.

The objects appear with prefixes in the Object drop-down box because they
are contained by other objects. In the example above, the block called
MyNameClickHere is contained by the Division object named Body. Every
object that is contained by the Division object named Body appears under
the heading !Body.

The general format for named objects in Word Pro is as follows:

DocumentName!TopLevelDivisionName\SecondLevelDivisionName\...
LowestLevelDivisionName:ObjectName

10-20 Developing SmartSuite Applications Using LotusScript

Sometimes objects are not contained in a Document object and
DocumentName is omitted; however, the separator exclamation point (!) is
still included. Because of these formatting rules, objects contained in a
Division object but not in a Document object appear in the following format
in the Script Editor:

!DivisionName:ObjectName

When divisions are not involved in naming objects, the division names and
their separators, backslash (\) and colon (:), are also omitted. For example,
if a script accesses an object from a collection in the Foundry, the script
need only specify ObjectName because the document and division are
understood to be the document and division that contain that Foundry
object.

When the script accesses the object by using the Bind keyword, however,
you must specify the full name of the object including the separators,
exclamation point (!), backslash (\), and colon (:), because no document or
division is implied when you use the Bind keyword. For more information
on the Bind keyword, search on “LotusScript” in the Word Pro Help Index,
then click “LotusScript Index.”

Saving scripts
When you are using Word Pro and the IDE, you can save scripts in three
different ways.

You can save scripts with the current document (.LWP file) or
SmartMaster (.MWP file).

You can export scripts for the !Globals object of a compiled script to a
LotusScript Object (.LSO) file.

You can export the script source code as a plain text LotusScript Script
(.LSS) file.

Saving a script with the current file
If your script needs to execute each time a new document is created from
a particular SmartMaster, you will need to save the script as part of a
SmartMaster file (.MWP). If your script is designed to work only with a
particular document, you should save your script as part of that Word Pro
document file (.LWP).

Note Scripts that are designed to work with multiple SmartSuite products
can also be stored in an .LWP or .MWP file. However, such scripts can only
be executed from Word Pro.

Using LotusScript in Word Pro 10-21

To save a script as part of an .MWP or an .LWP file:

1. Open the file.

2. Choose Edit - Script & Macros.

3. Choose Show Script Editor or Record Script.

4. Enter your script in the Script Editor by typing it in or by recording it.

5. In the IDE, choose File - Save Scripts.

The IDE saves the script as part of the current file (.MWP or .LWP).
Every time that you open this file, you can open the Script Editor to
view and edit the script.

To edit a script that is part of a Word Pro SmartMaster, you must open
the .MWP file.

Saving a script as an .LSO file
If you need to execute your script within multiple SmartSuite products, you
can save the object code as an .LSO file. In the IDE, choose File - Export
Globals As LSO. The IDE saves the code as an .LSO file in the specified
directory.

Note When you export scripts to an .LSO file, the IDE only exports
compiled code that is part of the !Globals object.

If you want to call a sub or function in an .LSO file, use the following
syntax:

Use filename.lso
MyProcedure

Because an .LSO file contains object code, you cannot edit it directly. To
change an .LSO file, you must edit the source code contained in the
corresponding .LWP, .MWP, or .LSS file.

Saving a script as an .LSS file
Sometimes you may want to save your script as an external text file. In
this case, you can export your script to an .LSS file. In the IDE, choose
File - Export Script. The IDE saves the current script or all the scripts for
an object in the current document as an .LSS file in the specified directory.

If you want to call a sub or function in an .LSS file, use the following syntax
to include the .LSS file:

%Include " filename.lso "

10-22 Developing SmartSuite Applications Using LotusScript

Using the Dialog Editor in Word Pro
To open the Dialog Editor in Word Pro, choose Edit - Script & Macros -
Show Dialog Editor. Word Pro saves dialog boxes that you create using the
Dialog Editor with the Word Pro file (.LWP) in which you created them.

For more information about using the Dialog Editor, see “Developing
custom dialog boxes in the Dialog Editor” in Chapter 3.

Migration information
The two types of macros that you can create in Ami Pro are recorded
macros and coded macros. If the macro was recorded in Ami Pro, you must
open the macro inside Ami Pro and save it as a macro file (.SMM) before
you try to run it in Word Pro. The process of opening the macro and saving
it as an .SMM file places the recorded macro in a Sub statement and makes
it easier for Word Pro to convert the macro. If a macro is coded using the
Ami Pro macro language (that is, if it is part of a statement with Function
and End Function lines), you can run it in Word Pro, and Word Pro
automatically converts the macro to a format that LotusScript can read.

Note If you attempt to play an Ami Pro recorded macro in Word Pro
without first displaying and saving it in Ami Pro, Word Pro displays an
error message.

Saving a recorded Ami Pro macro before conversion
To save an Ami Pro macro as an .SMM file:

1. Open Ami Pro.

2. Choose File - Open.

3. Choose Ami Pro Macro in the “List files of type” box.

4. Specify the name of the macro you want to convert in the “File name”
box.

5. Click OK.

Ami Pro displays the macro in the document window.

6. Choose File - Save.

7. Choose File - Close.

Using LotusScript in Word Pro 10-23

Converting an Ami Pro macro
Although it is possible to run most Ami Pro 3.x macros inside Word Pro 97,
Word Pro must first convert the macro to a file that LotusScript can read—a
type of hybrid ASCII file.

Note Lotus recommends that you back up the macro to a separate file
before you run it inside Word Pro.

To convert an Ami Pro macro:

1. In Word Pro, choose Edit - Scripts & Macros - Run.

2. In the Run Script dialog box, select “Run script saved in another file.”

3. Specify the name of the Ami Pro macro that you want to run in
Word Pro.

4. Click OK.

Word Pro displays a message before it converts the macro.

5. Click Yes.

Word Pro runs the macro.

Running existing macros
After you convert a macro, you still may not be able to successfully run it. If
a macro will not run or will not run properly inside Word Pro, the whole
macro or one of its functions may have a compatibility problem. Word Pro
may not be able to run a macro for any of the following reasons:

The function is not supported in Word Pro.

Some Ami Pro functions are not supported in Word Pro at all. For
example, the Ami Pro functions ShowStylesBox, HideStylesBox, and
ToggleStylesBox are not supported in Word Pro because Word Pro
does not use the Styles Box.

The function is supported in a different manner in Word Pro.

Most of the Word Pro user interface and functionality is completely
different from the Ami Pro user interface and functionality. This
difference can lead to macro incompatibility.

10-24 Developing SmartSuite Applications Using LotusScript

The Type function is a good example of how the user interface and
functionality have changed. The Type function is still fully supported in
that all keystrokes specified to be typed are still sent to the document to
be typed; however, Word Pro responds differently to some keystrokes.
For example, in Ami Pro, function keys are used to select a paragraph
style, but in Word Pro, function keys are used as CycleKeys. If the Ami
Pro macro selects styles using the Type function, it will not have the
same functionality in Word Pro.

Options or parameters of the function are not supported in Word Pro.

In some cases, a macro function is supported, but because of product
differences, one or more of the function options or parameters are not
supported. For example, the New function, which creates a new
document, is supported in both Ami Pro and Word Pro.

However, in Ami Pro, options for the New function include bringing in
the contents of a style sheet. In Word Pro, the content of style sheets
(SmartMaster templates) are always brought in.

The function is supported in Word Pro, but cannot be converted.

Occasionally, functionality that is supported by both Ami Pro and
Word Pro is not supported by the macro conversion process. Examples
of product functionality that may not be converted include master
document, table of contents, and index. Because the same functionality
can be very different in the two products, some required parameters for
Word Pro cannot be supplied using the Ami Pro macro language.
Therefore, the macro does not convert correctly.

Note When you try to run functions that are not convertible, Word Pro
displays a message that indicates that the function is not supported.

The function uses 16-bit API calls.

Some macros may contain Windows 3.1 API calls. Since Word Pro 97 is
a 32-bit, or Windows 95, product, it cannot convert or use 16-bit API
calls for two reasons. First, all handles in Windows 95 moved from
16-bit to 32-bit, thus changing the signature for all Windows calls.
Second, the way you call a 16-bit DLL differs from the way you call a
32-bit DLL. Therefore, Word Pro cannot execute calls to 16-bit DLLs in
macros that contain them. For example, if your macro contains DllLoad
or DllCall functions, the macro will not run in Word Pro.

Using LotusScript in Word Pro 10-25

Strategies for editing Ami Pro macros
If your Ami Pro 3.x macro does not run in Word Pro, open the macro in
Word Pro and try one or more of the following:

Remove any nonsupported functions.

Remove any 16-bit API calls.

Verify that all macro parameters and values have equivalent
parameters and values in Word Pro.

If you try to run a macro that creates and formats documents and it does
not execute, you can use a Word Pro SmartMaster as a substitute. Because
SmartMaster templates can contain Click Here Blocks and because they
have the ability to include multiple page layouts, they can replace much of
the functionality of this type of macro.

If you try to run a macro that was recorded in Ami Pro and it does not
execute, you can rerecord the functionality using the IDE. A recorded script
will play back faster than an Ami Pro 3.x macro, and you will not have to
spend time converting it.

Team Computing in Word Pro

The diverse and powerful Team Computing features of Word Pro can be
accessed using LotusScript and Word Pro objects. You can write scripts to
modify the following:

Editor access

Markup options

Document access

Editing rights

Note You cannot use LotusScript to bypass Team Computing restrictions.
For example, Word Pro will never allow an unauthorized editor to access a
document that is password-protected with TeamSecurity, even using
LotusScript.

The following are examples of scripts that will enhance your Team
Computing capabilities.

10-26 Developing SmartSuite Applications Using LotusScript

Modifying editor access
TeamReview and TeamSecurity are Word Pro Team Computing features
that allow the user to determine who can review a document, how much
control a reviewer has, and how the document can be distributed. To access
TeamReview and TeamSecurity and use their features, the user needs to set
options in the TeamReview Assistant and in the TeamSecurity Assistant.

The ReviewRightsExample script sets the following TeamSecurity and
TeamReview options:

A standard greeting for all editors of the document

All editors’ access rights as read-only, other than for the current editor

The current editor’s access rights as unlimited

To run this example, you can type the following script (described in detail
in the next section) in the space between Sub Main and End Sub.

Note The text of this script is stored in DW10_S1.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.

Option Public
%Include "WPBITMSK.LSS"

Sub ReviewRightsExample
' Get name of the current editor and set it equal to the
' variable CrntEditor. Then, set up a greeting for the
' document.
Dim MyGreeting As String
Dim CrntEditor As String
CrntEditor = CurrentApplication.Preferences.UserName
MyGreeting = InputBox("What greeting do you want to" _
 +" display?","Set Review Option")
' Set TeamReview properties to prevent anyone other than
' the current editor from editing this document.

 With .ActiveDocument

 .DocControl.UseGreeting = True
 .DocControl.Greeting = MyGreeting
 .DocControl.FileProtectionType = _
 $LwpFileProtectTypeEditors
 .EditorManager.Editors("All Others").Abilities = _
 $LwpEditAbilEditingNotAllowed
 .EditorManager.Editors("All Others").Locks = _
 LwpEditLocksNoCopyAndNoSaveas
 .EditorManager.Editors("All Others").Suggestions = _
 LwpEditSuggEditingInNewVersion

Using LotusScript in Word Pro 10-27

 .EditorManager.Editors(CrntEditor).Abilities = _
 $LwpEditAbilEditCurrentOrNewVer
 .EditorManager.Editors(CrntEditor).Locks = _
 LwpEditLocksNoLocks
 .EditorManager.Editors(CrntEditor).Suggestions = _
 LwpEditSuggNoSuggestions
 End With
End Sub

An explanation of the script
The first section of the script uses the %Include directive to load the
WPBITMSK.LSS file. WPBITMSK.LSS is located in the main Word Pro
directory, and it contains a list of constants that you can use as values for
properties. When you write scripts for Team Computing features, you may
need to use WPBITMSK.LSS to set properties.

The first two lines of the sub ReviewRightsExample declare two variables,
CrntEditor and MyGreeting.

Next, the script assigns values to the two variables. CrntEditor stores a
string that contains the name of the current editor.

CrntEditor = CurrentApplication.Preferences.UserName

CurrentApplication, which represents the current Word Pro application,
has a property named Preference which contains an instance of the
Preferences class. The Preferences class has UserName as a property.
CrntEditor stores the name that is stored in the UserName property.

MyGreeting stores a string of text that the user enters in an input box.

MyGreeting = InputBox("What greeting do you want" _
 +" to display?","Set Review Option")

To assign MyGreeting a value, LotusScript displays an input box with the
text “What greeting do you want to display?” and provides a text box for
the user’s response. “Set Review Option” is the title of the input box.

This script uses a With statement to access the properties of the
TextDocument class. The DocControl property and the EditorManager
property provide access to the DocControl object and the EditorManager
object.

.DocControl.UseGreeting = True

.DocControl.Greeting = MyGreeting

.DocControl.FileProtectionType = $LwpFileProtectTypeEditors

10-28 Developing SmartSuite Applications Using LotusScript

The DocControl class allows you to access a document, assign editing
rights, enable password protection, select or change colors that show editor
markups, make insertions and deletions, and enable document protection in
a division. This example sets the following options in the TeamSecurity
Assistant using properties of the DocControl object:

Property TeamSecurity Assistant option Value

UseGreeting Editing Rights tab - “Display
Greeting with this text”
check box

Checked.

Greeting Editing Rights tab - “Display
Greeting with this text”
text box

Sets the greeting in the dialog
box to the greeting the user
entered in the input box.

FileProtectionType Access tab - “Who can open
(access) this document”
group box

Selects the “Current editors
only” button. Only those
listed as editors on the
Editing Rights panel can
open the document.

This portion of the script sets options in the TeamReview Assistant.

.EditorManager.Editors("All Others").Abilities = _
 $LwpEditAbilEditingNotAllowed
.EditorManager.Editors("All Others").Locks = _
 LwpEditLocksNoCopyAndNoSaveas
.EditorManager.Editors("All Others").Suggestions = _
 LwpEditSuggEditingInNewVersion
.EditorManager.Editors(CrntEditor).Abilities = _
 $LwpEditAbilEditCurrentOrNewVer
.EditorManager.Editors(CrntEditor).Locks = _
 LwpEditLocksNoLocks
.EditorManager.Editors(CrntEditor).Suggestions = _
 LwpEditSuggNoSuggestions

Editors is a property of the EditorManager class, and it holds an instance of
the EditorCollection class. By using the Editors property of the
EditorManager class to index into the EditorsCollection object, the script
indicates which editors it is setting options for in the TeamReview
Assistant. To do so, it uses the String value “All Others” and the variable
CrntEditor. “All Others” is a literal value in the EditorsCollection that
represents all editors other than the current editor and the SmartMaster
that created the document. CrntEditor is the variable that holds the value of
the UserName property. The script uses properties of the Editor class (the
EditorsCollection class is a collection of Editor objects) to set options in the
TeamReview Assistant.

Using LotusScript in Word Pro 10-29

The following is a list of options that the script sets for “All Others”:

Property TeamReview Assistant option Value

Abilities Step 2: What tab - “Edits are”
drop-down box

Not allowed (read-only)

Locks Step 2: What tab - “Limited to”
drop-down box

No copying or saving as a
new file

Suggestions Step 2: What tab - “Greeting will
suggest” drop-down box

Editing in a new version

The following is a list of options that the script sets for the current editor:

Property TeamReview Assistant option Value

Abilities Step 2: What tab - “Edits are”
drop-down box

Allowed in current version
or new version

Locks Step 2: What tab - “Limited to”
drop-down box

(No limits)

Suggestions Step 2: What tab - “Greeting will
suggest” drop-down box

(Nothing)

This script can run when a menu option is chosen or when the user clicks a
custom icon. For more information on running a script, see “Running the
Memo Signing Script” in Chapter 4.

Modifying markup options
Sometimes when a user receives a document, he or she may want to use
Review & Comment Tools to mark the document for editing. In the
TeamSecurity Assistant, users can set markup options for themselves, or if
they have the access rights, for anyone else reviewing the document.

The MarkupOptions example below allows the user to set TeamSecurity
markup options without having to view the Markup Options dialog box. It
also sets access options for the current editor.

To run this example, you can insert the following script in the space
between Sub Main and End Sub.

Note The text of this script is stored in DW10_S2.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.
Option Public
%Include "WPBITMSK.LSS"
Sub MarkupOptions
 Dim CrntEditor As String
 CrntEditor = CurrentApplication.Preferences.UserName

10-30 Developing SmartSuite Applications Using LotusScript

 ' Section 1 - Specify markup options for the
 ' current editor.
 With .ActiveDocument.EditorManager

 ' Set font and attributes for inserted text by first
 ' making sure the text reverts to its original style
 ' then changing the color of the text to purple.

 .Editors(CrntEditor).InsertFont.FontColor.Red = 255
 .Editors(CrntEditor).InsertFont.FontColor.Blue = 255
 .Editors(CrntEditor).InsertFont.FontColor.Green = 0
 .Editors(CrntEditor).InsertFont.FontColor.Override = _
 $LwpColorOverrideRgb
 .Editors(CrntEditor).InsertFont.DoubleUnderline = False
 .Editors(CrntEditor).InsertFont.Underline = False
 .Editors(CrntEditor).InsertFont.Bold = False
 .Editors(CrntEditor).InsertFont.Italic = True

 ' Section 2 - Specify font and attributes for
 ' deleted text.
 .Editors(CrntEditor).DeleteFont.FontColor.Red = 128
 .Editors(CrntEditor).DeleteFont.FontColor.Blue = 0
 .Editors(CrntEditor).DeleteFont.FontColor.Green = 0
 .Editors(CrntEditor).DeleteFont.FontColor.Override = _
 $LwpColorOverrideRgb
 .Editors(CrntEditor).DeleteFont.Overstrike = True

 ' Section 3 - Specify a color for highlighting text.
 .Editors(CrntEditor).HiLiteColor.Red = 128
 .Editors(CrntEditor).HiLiteColor.Blue = 128
 .Editors(CrntEditor).HiLiteColor.Green = 255
 .Editors(CrntEditor).HiLiteColor.Override = _
 $LwpColorOverrideRgb

 ' Section 4 - Specify access rights so the current
 ' editor has unlimited access.
 .Editors(CrntEditor).Abilities = _
 $LwpEditAbilEditNewVersionsOnly
 .Editors(CrntEditor).Locks = LwpEditLocksNoLocks
 .Editors(CrntEditor).Suggestions = _
 LwpEditSuggNoSuggestions
 End With

End Sub

An explanation of the script
The first section of the script uses the %Include directive to load the
WPBITMSK.LSS file. WPBITMSK.LSS contains a list of constants that you
can use as values for properties, and it is located in the main Word Pro
directory. When you write scripts for Team Computing features, you may
need to use WPBITMSK.LSS to set properties.

Using LotusScript in Word Pro 10-31

The first line of the sub MarkupOptions declares a variable, CrntEditor.
The script assigns a value to the variable. It stores a string that contains the
name of the current editor.

CrntEditor = CurrentApplication.Preferences.UserName

CurrentApplication, which represents the current Word Pro application,
has a property named Preferences, which contains an instance of the
Preferences class. The Preferences class has UserName as a property.
CrntEditor stores the name that is stored in the UserName property.

This script uses a With statement to access the properties of the
TextDocument class. The TextDocument class contains an instance of the
EditorManager class, which has an Editors property. The Editors property
contains an instance of the EditorsCollection class. The EditorsCollection is
a collection of all the Editor objects. The InsertFont and DeleteFont
properties (of the Editor class) contain instances of the Font class, which
represent the font attributes to be applied to inserted and deleted text. By
using the EditorManager object to index into the EditorCollection object,
the script indicates which editors it is setting options for in the Markup
Options dialog box.

In section one of the example, the With statement sets the markup options,
such as font color and italics, for inserted text in a TeamSecurity session.

.Editors(CrntEditor).InsertFont.FontColor.Red = 255

.Editors(CrntEditor).InsertFont.FontColor.Blue = 255

.Editors(CrntEditor).InsertFont.FontColor.Green = 0

.Editors(CrntEditor).InsertFont.FontColor.Override = _
 $LwpColorOverrideRgb

The first three lines of code above set the color of the font for text inserted
during a TeamReview session. The combined value of these three color
properties, Red, Green, and Blue, is equivalent to the color that a user
would choose in the “Markup for insertions: Text color” drop-down
box in the Markup Options dialog box. The last line sets the Override
property of the Color object (which is contained by FontColor) to
$LwpColorOverrideRgb. You can also use the enumerated value 2016 to
substitute for $LwpColorOverrideRgb. When the Override property value
is $LwpColorOverrideRgb, the Color object color is defined by the values
in the Red, Green, and Blue properties.

.Editors(CrntEditor).InsertFont.DoubleUnderline = False

.Editors(CrntEditor).InsertFont.Underline = False

.Editors(CrntEditor).InsertFont.Bold = False

.Editors(CrntEditor).InsertFont.Italic = True

10-32 Developing SmartSuite Applications Using LotusScript

The last lines of the first section set properties of the InsertFont object.
These statements turn off double underlining, underlining, and bold by
assigning the DoubleUnderline, Underline, and Bold properties the value
False. The last statement turns on italics by assigning the value True to the
Italic property.

Section two of the example sets the markup options for deleted text in a
TeamSecurity session.

.Editors(CrntEditor).DeleteFont.FontColor.Red = 128

.Editors(CrntEditor).DeleteFont.FontColor.Blue = 0

.Editors(CrntEditor).DeleteFont.FontColor.Green = 0

.Editors(CrntEditor).DeleteFont.FontColor.Override = _
 $LwpColorOverrideRgb

Just as in the first section, the example assigns values to the Red, Blue,
and Green properties of the Color object to create a color for the text. The
combined value of these three color properties is equivalent to the color
that a user would select in the “Markup for deletions: Text color”
drop-down box in the Markup Options dialog box. This section also
assigns the $LwpColorOverrideRgb value to the Override property of
the Color object.

.Editors(CrntEditor).DeleteFont.Overstrike = True

The last line of the second section assigns a value to the Overstrike property
of the DeleteFont object. By assigning the property the value True, the script
turns on overstriking. This value is the same as selecting Overstrike in the
“Markup for deletions” drop-down box in the Markup Options dialog box.

Section three of the example sets the markup options for highlighted text in
a TeamSecurity session.

.Editors(CrntEditor).HiLiteColor.Red = 128

.Editors(CrntEditor).HiLiteColor.Blue = 128

.Editors(CrntEditor).HiLiteColor.Green = 255

.Editors(CrntEditor).HiLiteColor.Override = _
 $LwpColorOverrideRgb

Just as in the first two sections, the example assigns values to the Red, Blue
and Green properties of the Color object. However, this Color object is
contained by the HiLiteColor object, not the FontColor object, because these
properties are assigning a value for highlighted text.

Using LotusScript in Word Pro 10-33

Section four of the example sets access rights in the TeamSecurity Assistant
for the current editor.

' Section 4 - Specify access rights so the current editor has
' unlimited access.
.Editors(CrntEditor).Abilities = _
 $LwpEditAbilEditCurrentOrNewVer
.Editors(CrntEditor).Locks = LwpEditLocksNoLocks
.Editors(CrntEditor).Suggestions = LwpEditSuggNoSuggestions

The script uses properties of the Editor class to set the following options for
the current editor:

Property TeamReview Assistant option Value

Abilities Step 2: What tab - “Edits are”
drop-down box

Allowed in current version
or new version

Locks Step 2: What tab - “Limited to”
drop-down box

(No limits)

Suggestions Step 2: What tab - “Greeting will
suggest” drop-down box

(Nothing)

This script can run when a menu item is chosen or when the user clicks a
custom icon. For more information on running a script, see “Running The
Memo Signing Script” in Chapter 4.

Modifying document access
TeamSecurity features in Word Pro allow users to limit document access to
themselves or to a restricted number of editors. You can write a script that
limits access to a document to only the author of that document.

To run this example, you can add the following script in the space between
Sub Main and End Sub.

Note The text of this script is stored in DW10_S3.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.
Sub DocAccess

 ' Declare the variable CrntEditor and assign it the value
 ' of the current user's name.
 Dim CrntEditor As String
 CrntEditor = .Preferences.UserName

 ' Restrict editing of this document to the current editor.
 CurrentDocument.DocControl.DocControlRestrictedToEditor _
 = CrntEditor

 CurrentDocument.DocControl.FileProtectionType = _
 $LwpFileProtectTypeOrigAuthor

End Sub

10-34 Developing SmartSuite Applications Using LotusScript

An explanation of the script
This example uses the DocControl object that is contained by the
CurrentDocument global product variable to assign a value to two
properties: DocControlRestrictedToEditor and FileProtectionType.
CurrentDocument, which represents the current text document, is a
predefined Word Pro global variable. CurrentDocument contains an
instance of the TextDocument class, and the TextDocument class has a
property named DocControl, which contains an instance of the DocControl
class. DocControlRestrictedToEditor is a property of the DocControl class
that has a data type of String. This script assigns the value of the variable
CrntEditor, which represents the current user, to this property.

The example also sets the property FileProtectionType to
$LwpFileProtectTypeOrigAuthor. FileProtectionType is a property of the
DocControl class. It has a Variant data type and can have various values,
such as original author, anyone, or only certain specified editors. In this
script, FileProtectionType is set to the enumerated constant for the original
author. (You can use the numeric equivalent 262 instead of the enumerated
constant $LwpFileProtectTypeOrigAuthor.) This value indicates that the
only person who can edit this document is the original author.

This script can run when a menu item is selected or when the user clicks a
custom icon. For more information on running a script, see “Running The
Memo Signing Script” in Chapter 4.

Note If the user is not the original author or if the user does not have
access to the TeamSecurity Assistant for this document, this script will
cause an error when the user attempts to run it.

Modifying editing rights
The TeamSecurity features in Word Pro also allow the user to control
who has access to the TeamSecurity Assistant and in what version an
editor can view a particular file. The TeamSecurity EditingRights script
does the following:

Restricts access to the TeamSecurity Assistant to the current editor

Sets access to the document

Restricts all editors to making remarks in new versions of the document

Allows the current editor to edit the document with no restrictions

To run this example, you can insert the following script in the space
between Sub Main and End Sub.

Note The text of this script is stored in DW10_S4.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.

Using LotusScript in Word Pro 10-35

Option Public
%Include "WPBITMSK.LSS"

Sub EditingRights
 ' Declare the variable CrntEditor and assign it the value
 ' of the current user's name.
 Dim CrntEditor As String
 CrntEditor = CurrentApplication.Preferences.UserName

 With .ActiveDocument

 ' Restrict access to the TeamSecurity Assistant to the
 ' current editor.
 .DocControl.DocControlRestrictedToEditor = CrntEditor

 ' Specify who has access to open the document.
 .DocControl.FileProtectionType = $LwpFileProtectTypeNone

 ' Restrict all editors other than the current editor to a
 ' new version with remarks only, and do not allow them to
 ' make any suggestions.
 .EditorManager.Editors("All Others").Abilities = _
 $LwpEditAbilEditNewVersionsOnly
 .EditorManager.Editors("All Others").Locks = _
 LwpEditLocksRevmarkOnly
 .EditorManager.Editors("All Others").Suggestions = _
 LwpEditSuggNoSuggestions

 ' Specify the current editor's rights as unlimited.
 .EditorManager.Editors(CrntEditor).Abilities = _
 $LwpEditAbilEditCurrentOrNewVer
 .EditorManager.Editors(CrntEditor).Locks = _
 LwpEditLocksNoLocks
 .EditorManager.Editors(CrntEditor).Suggestions = _
 LwpEditSuggNoSuggestions
 End With

End Sub

An explanation of the script
The first section of the script uses the %Include directive to load the
WPBITMSK.LSS file. WPBITMSK.LSS is located in the main Word Pro
directory, and it contains a list of constants that you can use as values for
properties. When you write scripts for Team Computing features, you may
need to use WPBITMSK.LSS to set properties.

This script uses a With statement to access the properties of the
TextDocument class. The DocControl property and the EditorManager
property provide access to the DocControl object and the EditorManager
object. For more information about the DocControl object and the
EditorManager object, see “Modifying editor access” earlier in this chapter.

10-36 Developing SmartSuite Applications Using LotusScript

This example sets the following options in the TeamSecurity Assistant using
properties of the DocControl Object:

Property TeamSecurity Assistant option Value

DocControlRestrictedTo-
Editor

Access tab - “Who can open
this dialog, and change access,
editing rights, and other
protection options“
option buttons

Selects “Only.” The
name in the
drop-down box is
assigned the value of
the variable CrntEditor.

FileProtectionType Access tab - “Who can open
(access) this document”
option buttons

Selects “Anyone
(unprotected).”
Anyone can open the
document.

By using the Editors property of the EditorManager class to index
into the EditorsCollection object, the script indicates which editors it is
setting options for in the TeamReview Assistant. This example sets the
same options as in the editor access example. For more information
about the options and their values, see “Modifying editor access” earlier
in this chapter.

Top tasks
This section describes several common Word Pro tasks and illustrates how
you can use LotusScript to automate the processes associated with them.
All of the code is available online in the sample files directory, so you can
copy and paste it into the IDE. The name of the example file is listed with
each individual example.

Automating a SmartMaster
The most common use of a word processor is to type and format text,
usually in a letter, a fax, or a report. Word Pro uses SmartMaster templates
and Click Here Blocks to automate typing and formatting text. When you
create a Word Pro SmartMaster, you can create Click Here Blocks that
prompt users for specific information.

The following script takes a SmartMaster and multiple Click Here Blocks
and uses them to automate the process of gathering and inputting
information. With this script, you can ask the user specific questions and
then insert the responses automatically into the appropriate Click Here
Blocks in the document.

Using LotusScript in Word Pro 10-37

The subs in the following example are set to run when a user creates a
document using the SmartMaster DW10_S5.MWP. In other words, the subs
in the example can form a startup script that runs when the Created event
of a document occurs. This example uses the Click Here Blocks that are
available in the DW10_S5.MWP SmartMaster.

To run this example, you can open the DW10_S5.MWP SmartMaster that is
available online in the sample files directory, or you can enter the following
script into the appropriate event sub. You can create a dialog box with
buttons to attach this sub to or use the one that is available in the
SmartMaster.

Sub Created(Source As TextDocument, DocName As String)
 ' Created event script for the document
 DataDialog.Show
End Sub

Sub Load(Source As LotusDialog)
 ' This sub is the Load event script for the dialog box
 ' DataDialog. It clears all of the text boxes and sets the
 ' focus in the first text box.
 Source.RecName.Caption = ""
 Source.Phone.Caption = ""
 Source.Subject.Caption = ""
 Source.RecName.SetFocus
End Sub

Sub Click(Source As LotusCommandButton)
 ' This is the Click event script for the OK button
 ' cmdOK. This sub hides the dialog box while the Click
 ' Here Blocks are being populated.
 Dim TxtRecName As String
 Dim TxtPhone As String
 Dim TxtSubject As String

 With Source.Parent
 .Hide

 ' Get the user input from dialog box.
 TxtRecName = .RecName.Text
 TxtPhone = .Phone.Text
 TxtSubject = .Subject.Text

 'Insert the user's responses into Click Here Blocks.
 With CurrentApplication.Foundry.ClickHeres
 .Item("RecipientName").DeleteContents
 .Item("RecipientFaxNumber").DeleteContents
 .Item("SubjectLine").DeleteContents
 .Item("RecipientName").InsertText TxtRecName

10-38 Developing SmartSuite Applications Using LotusScript

 .Item("RecipientFaxNumber").InsertText TxtPhone
 .Item("SubjectLine").InsertText TxtSubject
 End With

 ' Close the dialog box
 .Close
 End With
End Sub

Sub Click(Source As LotusCommandButton)
 ' This is the Click event script for the Cancel button
 ' cmdCancel. It closes the dialog box if the user clicks
 ' Cancel.
 Source.Parent.Close
End Sub

Validating Click Here Blocks
Sometimes when you create a Click Here Block in a SmartMaster, you want
to make sure that the person who uses the Click Here Block fills in the exact
type of information that is requested. For example, you may want the user
to fill in a Click Here Block with a Social Security number composed of a
nine-digit number with dashes.

Word Pro ClickHere objects allow you to write scripts that validate the type
of information that they contain. The following example uses the
ExitClickHere event for the object named ClickHere31 to make sure that the
user entry is either a nine-character numeric response or an eleven-
character entry that contains dashes. If the entry is neither, the script
displays a message box when the user exits the Click Here Block.

To run this example, you can open the DW10_S6.MWP SmartMaster that is
available online in the sample files directory, or you can insert the following
into the appropriate event sub.

Sub ExitClickHere(Source As ClickHere, _
 ClickHereName As String)

 ' Define three constants: a message box, a number length,
 ' and a number length that includes dashes.
 Const MsgTxt = "Contents is not correct format, please" _
 +" enter a valid SSN."
 Const NumLgth = 9
 Const DashLgth = 11

 ' Define a variable for the contents of the
 ' Click Here Block.
 Dim MyContents As String

 ' Retrieve the contents of the Click Here Block
 MyContents = Source.GetMarkedText

Using LotusScript in Word Pro 10-39

 ' Check the user response in the Click Here Block to see
 ' if it has 11 characters (DashLgth) and that the fourth
 ' and seventh characters are dashes.

 If Len(MyContents) = DashLgth And Mid$(MyContents,4,1) = _
 "-" And Mid$(MyContents,7,1) = "-" Then

 ' If it has 11 characters, make sure that all
 ' characters that the user entered between the dashes
 ' are numeric.
 If Not(IsNumeric(Mid(MyContents,1,3)) And _
 IsNumeric(Mid(MyContents,5,2)) And _
 IsNumeric(Mid(MyContents,8,4))) Then

 ' If the characters entered between dashes are not
 ' numeric, display a message box with the value of
 ' the String constant MsgTxt to ask the user
 ' to enter a valid Social Security number.
 MessageBox MsgTxt

 ' Go back to the Click Here Block and select the
 ' user's previous response.
 Source.GoTo(True)
 End If

 ' Otherwise, if the user entry is numeric and if it is
 ' 9 characters long (NumLgth), format the numbers as a
 ' Social Security number with dashes. Delete the user
 ' entry and insert the new formatted number (MyContents)
 ' into the Click Here Block.

 ElseIf
IsNumeric(MyContents) And Len(MyContents) = NumLgth Then
 MyContents = Format$(MyContents,"###-##-####")
 Source.DeleteContents
 Source.InsertText MyContents

 ' If the entry is not 11 or 9 characters, display a
 ' message box with the value of the String constant
 ' MsgTxt to ask the user to enter a valid social
 ' security number.
 Else
 MessageBox MsgTxt
 Source.Goto(True)

 End If

End Sub

10-40 Developing SmartSuite Applications Using LotusScript

Creating a custom menu item
You may want to create a script that accomplishes a repetitive task. If you
make the task an item on a custom menu, you can decrease the number of
steps that a user must complete in order to accomplish the task.

The following example creates a custom menu named My Menu with three
menu items: First Menu Option, Second Menu Option, and Third Menu
Option. It details how to associate a script with a menu item by calling the
MenuSelection sub if the user chooses one of the menu items. The example
also illustrates how to create a separator line in a custom menu.

If you want these custom menus to be available every time a user starts
Word Pro, you need to make the custom menu script a startup script. For
more information on startup scripts, search on “Scripts, startup” in the
Word Pro Help Index.

Note The text of this script is stored in DW10_S7.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.

Sub CustomMenu
 ' Set constants for the main menu and menu item titles.
 Const MenuName = "&My Menu"
 Const Option1 = "&First Menu Option"
 Const Option2 = "&Second Menu Option"
 Const Option3 = "&Third Menu Option"

 ' Create two MenuItem variables.
 Dim CrntMenu As MenuItem
 Dim MyMenu As MenuItem

 ' Set the variable CrntMenu to the MenuItem object
 ' contained in the Word Pro main menu property
 ' LwpMenuBar.
 Set CrntMenu = .ApplicationWindow.LwpMenuBar

 ' Check to see if the menu item already exists and delete
 ' it to prevent duplicates.
 CrntMenu.DeleteItem MenuName

 ' Create MyMenu as a main menu item on the Word Pro menu
 ' bar. Set the 3rd parameter of NewItem to False. Specify
 ' where MyMenu will display by giving the 4th parameter
 ' the name of the main menu item that should follow it.
 CrntMenu.NewItem MenuName,"",False,"&Help"

 ' Set the variable MyMenu to newly created main menu item.
 Set MyMenu = CrntMenu.Items.Item(MenuName)

Using LotusScript in Word Pro 10-41

 ' Add the first two menu items to the new main menu item
 ' and associate the menu items with the sub MenuSelection.
 MyMenu.NewItem Option1,"!MenuSelection",,
 MyMenu.NewItem Option2,"!MenuSelection",,

 ' Create a separator line on the menu.
 MyMenu.NewItem "-","",,

 ' Add the last menu item to the new main menu item and
 ' associate the menu items with the sub MenuSelection.
 MyMenu.NewItem Option3,"!MenuSelection",,
End Sub

Sub MenuSelection

' Create a message box to be displayed when a menu
' item is selected.
 MessageBox "A Menu Item was Selected!",64,"Menu Example"

End Sub

Setting custom views
Users often have preferences in how they like to view documents. This
example creates a custom view using the Word Pro WinViewPrefs object.

The script first creates a split view and then displays the same document in
two windows. In the top window, it displays the document at page width.
In the bottom window, it displays the document in a multiple-page view
showing the first seven pages.

This script can run when a menu option is chosen or when the user clicks a
custom icon. For more information on running a script, see “Running The
Memo Signing Script” in Chapter 4.

Note The text of this script is stored in DW10_S8.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.

Option Public
%Include "WPBITMSK.LSS"

Sub SetViews

 ' Clear any current document splits.
 CurrentWindow.WinViewPrefs.ClearSplits

 ' Make the current window display 7 pages left to
 ' right by creating 7 columns in the window, turning off
 ' draft mode, and setting the view type to multiple pages.
 CurrentWindow.WinViewPrefs.NumCols = 7
 CurrentWindow.WinViewPrefs.IsInDraft = False
 CurrentWindow.WinViewPrefs.ViewType = LwpViewsMuliplePages

10-42 Developing SmartSuite Applications Using LotusScript

 ' Create a new window that uses 66% of the
 ' document window.
 .ApplicationWindow.UserInterfacePrefs.VerticalSplitWindow _
 = True
 .ApplicationWindow.UserInterfacePrefs.SplitPercentage = 66

 ' Display the new window.
 .NewWindow

 ' Makes the new window display with the page width view by
 ' turning off vertical splitting and draft mode,
 ' and by setting the view type to page width.
 .ApplicationWindow.UserInterfacePrefs.VerticalSplitWindow _
 = False
 CurrentWindow.WinViewPrefs.IsInDraft = False
 CurrentWindow.WinViewPrefs.ViewType = LwpViewsPageWidth
End Sub

Changing the function key setup
In Ami Pro, function keys are associated with the paragraph styles available
in the current style sheet. In Word Pro, function keys are associated with
the CycleKey setup. (For more information on CycleKeys, search on
“CycleKeys” in Word Pro Help Index.) Using LotusScript, you can once
again associate the function keys with styles in the current style
sheet (SmartMaster).

The following example runs every time a user presses a key. If the key is
a function key, the script suppresses the Word Pro CycleKey feature and
changes the style of the current paragraph to the style indicated in the
script.

If you want styles to be associated with function keys every time a user
starts Word Pro, you need to make this example a startup script. For more
information on startup scripts, search on “Scripts, startup” in the Word Pro
Help Index.

Note The text of this script is stored in DW10_S9.LSS in the sample files
directory. To save time, import the file into the Main sub by choosing File -
Import Script in the IDE.

' These constants are in the (Declarations) script of the
' !Globals object. They are the numeric equivalents of the
' function key values.

Const F2 = 113
Const F3 = 114
Const F4 = 115

Using LotusScript in Word Pro 10-43

Sub Main
 ' Every time the user presses a key, run the
 ' sub MyKeyStroke.
 On Event KeyStroke From CurrentApplication Call _
 MyKeyStroke
End Sub

Sub MyKeyStroke(Source As WpApplication, Key As Integer, _
 Modifier As Integer, ReceivingLayout As String)

 ' If the user presses the F2, F3, or F4 key
 Select Case Key
 Case F2
 ' Change the style to Default Text.
 .Text.ParagraphStyleName = "Default Text"
 ' Prevents Word Pro from processing keystrokes
 ' as CycleKeys.
 End 2
 Case F3
 ' Change the style to Body Single.
 .Text.ParagraphStyleName = "Body Single"
 End 2
 Case F4
 ' Change the style to Bullet 1.
 .Text.ParagraphStyleName = "Bullet 1"
 End 2
 End Select
End Sub

Automating a merge
You can use LotusScript and Word Pro to merge variable data in one file
(such as names and addresses) with text in another file. The data file can be
a Word Pro data file (.LWP) or it can be an Approach data file (.APR).

In the following example, the script uses a custom dialog box and an
existing data file DW10_D10.LWP (located in the sample files directory) to
illustrate how to do the following:

Insert merge fields in a Word Pro document

View merge data

Print merged data in a document

To run this example:

1. Copy DW10_D10.LWP into the default document path specified in the
Word Pro Preferences dialog box on the Locations panel.

2. In Word Pro, open the example document, DW10_S10.LWP.

10-44 Developing SmartSuite Applications Using LotusScript

Note DW10_S10.LWP is available in the sample files directory, and it
contains a dialog box that works with this example. You can use this
dialog box, or you can create your own.

3. Choose Edit - Scripts & Macro - Run.

4. Select “Run script saved in the current file.”

5. Click OK.
Option Public

%Include "WPBITMSK.LSS"

Sub Main

 ' Declare a variable to hold the merge data file

 ' name and a variable to hold the status of opening

 ' the merge data file.

 Dim DataFile As String

 Dim Status As Integer

 ' Set the variable DataFile to the default document path.

 DataFile = .ApplicationWindow.UserInterfacePrefs.DocPath

 ' Add the name of the merge data file to the

 ' default document path.

 DataFile = DataFile & "\DW10_D10.LWP"

 ' Initialize the merge process.

 ApplicationWindow.ActiveDocument.MergeOptions.MergeStepNumber = _

 $LwpMergeStepNumber1

 ' Link the merge data file to the merge document. If an

 ' error occurs, exit the sub.

 Status = .MergeSetDataFile (DataFile, 0)

 If Status = False Then

 Exit Sub

 End If

 ' Insert the merge fields into the current document.

 ' Format the fields appropriately.

 .InsertField "TITLE"

 .Text.InsertHardSpace

 .InsertField "FIRSTNAME"

 .Text.InsertHardSpace

 .InsertField "LASTNAME"

 .Text.SplitParagraph

Using LotusScript in Word Pro 10-45

 .InsertField "ADDRESS"

 .Text.SplitParagraph

 .InsertField "CSZ"

 .Text.SplitParagraph

 .InsertField "FAVORITESPORT"

 ' Start the merge process.

 .ApplicationWindow.ActiveDocument.MergeOptions.MergeStepNumber = _

 $LwpMergeStepNumber3

 ' Show the custom dialog box.

 MergeDialog.Show

End Sub

' This sub prints the current record and displays the next

' record in the file.

Sub MergePrint

 ' Print the current record.

 .Print

 ' Merge the next record.

 .Merge $LwpMergeActionNextRecord

 .Merge $LwpMergeActionMergeOne

End Sub

' Merges the current record and displays the next record in

' the file.

Sub MergeViewNext

 ' Set merge options to view next.

 .ApplicationWindow.ActiveDocument.MergeOptions.Options = _

 LwpMergeOptFlgMergeViewAndPrint

 ' Merge the next record.

 .Merge $LwpMergeActionNextRecord

 .Merge $LwpMergeActionMergeOne

End Sub

' This sub closes the custom dialog box. It is attached

' to the Cancel button.

Sub Click(Source As LotusCommandButton)

 .ApplicationWindow.ActiveDocument.MergeOptions.Options = _

 LwpMergeOptFlgMergeViewAndPrint

 .ApplicationWindow.ActiveDocument.MergeOptions.MergeStepNumber = _

 $LwpMergeStepNumber2

 .Merge $LwpMergeActionClose

 Source.Parent.Close

End Sub

10-46 Developing SmartSuite Applications Using LotusScript

' This sub calls the MergeViewNext sub when the View next

' button is clicked.

Sub Click(Source As LotusCommandButton)

 Call MergeViewNext

End Sub

' This sub calls the MergePrint sub when the Print

' button is clicked.

Sub Click(Source As LotusCommandButton)

 Call MergePrint

End Sub

Using LotusScript in Word Pro 10-47

Symbols
! (exclamation point), 5-10
_ (line continuation character), 3-17
' (single quotation mark), 3-16

1
1-2-3

abstract classes, 7-9
and Team Computing, 7-21
automation: top tasks, 7-23
Classic, 7-2
collection classes, 7-10
containment hierarchy, 7-4
controlling Notes using OLE

Automation, 6-2, 6-4, 6-5, 6-6
Dialog Editor in, 7-17
global product variables, 7-9
IDE in, 7-16
inheritance relationships, 7-8
interface: customizing, 7-17
LotusScript in, 7-1
macros, 7-1
object model, 7-4
object name for, 5-5
recycling macros, 3-9
scripts: recording, 7-15
upgrader information, 7-2

16-bit API calls, 10-25

A
Abstract classes, 2-14

in 1-2-3, 7-9
in Approach, 8-18
in Freelance Graphics, 9-5
in Word Pro, 10-9

Actions menu (1-2-3)
attaching scripts, 7-18

Ami Pro macros, 10-23, 10-24, 10-26
Application class. See also

WPApplication class
1-2-3, 7-6
Approach, 8-12, 8-21
Freelance Graphics, 9-4

Application property (Word Pro),
10-4

Applications
cross-product, 5-1
object names for, 5-4, 8-12
single-product, 4-1

Approach
IDE in, 8-42
abstract classes, 8-18
as OLE Automation controller, 5-3
automation: top tasks, 8-47
containment hierarchy, 8-9
data access, 8-49
global product variables, 8-20
inheritance relationships, 8-18
interface: customizing, 8-44
macro language, 8-1
macro language vs. LotusScript

in, 8-1
Notes database access, 8-52
object model, 8-3
object name for, 5-5
records: finding, 8-56
records: modifying, 8-59, 8-61
scripts: recording, 8-41
upgrader information, 8-2
Visual Basic and, 5-20

B
Base classes, 2-13
BaseCollection class (Word Pro), 10-9
BaseContainer class (Word Pro), 10-9,

10-12
BaseTable class (Word Pro), 10-11
Batch processes, in Approach, 8-49
Bind keyword (Word Pro), 10-6
Bitmasks (Word Pro), 10-28
!Body (Word Pro), 10-19
Bookmark objects (Word Pro), 10-8,

10-19
Breakpoints, 3-20
Breakpoints panel, 3-4, 3-19
Browser, 3-6
Browser panel, 3-4

Bulleted list
filling (Freelance Graphics), 9-19

Buttons, attaching scripts to, 7-20,
8-45

C
Calls, monitoring, 3-22
Calls drop-down box, 3-19, 3-22
Classes, 2-2. See also specific classes

abstract, 2-14, 7-9, 8-18, 9-5, 10-9
and objects, 2-2
base, 2-13
collection, 2-2, 7-5, 7-10, 8-10, 9-5,

10-3, 10-7, 10-8
concrete, 2-14
containment relationship of, 2-7
derived, 2-13

Click Here Blocks
Freelance Graphics, 9-7, 9-8, 9-9
Word Pro, 10-8, 10-37, 10-39

ClickHere class (Word Pro), 10-12
Clip art (Freelance Graphics), 9-15,

9-17
Collection classes, 2-2, 10-8

in 1-2-3, 7-5, 7-10
in Approach, 8-10
in Freelance Graphics, 9-5
in Word Pro, 10-3, 10-7, 10-8

Collections, 2-2
indexing, 7-10, 8-10, 9-3, 10-7

Column letters, converting to
numbers (1-2-3), 7-32

Command line, running scripts from,
9-10

Comments, in scripts, 3-15, 3-16
Concrete classes, 2-14
Connection class (Approach), 8-36
Containers

Application classes as, 7-6, 8-12
Document classes as, 7-6, 8-14
identifying, 8-16
Panel classes as, 8-15
View classes as, 8-15

Containment diagrams, xiii

Index-1

Index

Developing SS Apps. Using LS
Please note that the page numbers listed in the Index refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Containment hierarchies, 2-7
and collections, 7-5, 8-10
in 1-2-3, 7-4
in Approach, 8-9
in Freelance Graphics, 9-4
in Word Pro, 10-1
tree, traversing, 2-9

Content class (Word Pro), 10-10
Control Toolbox, 3-24
Controllers (OLE Automation), 5-1
Controls, scripts for, 3-26
Converting columns and sheet letters

(1-2-3), 7-32
Cross-product applications, 5-1
Cross-product scripts, 1-2
Crosstab report (1-2-3), 7-33
Current context properties

(Word Pro), 10-3, 10-14, 10-15
CurrentApplication, 4-6
Custom dialog boxes, 3-23

1-2-3, 7-3
adding controls to, 3-24
running, 3-27
scripts for, 3-13
third-party controls in, 3-25

Custom menus
1-2-3, 7-25
Approach, 8-46
Word Pro, 10-41

Custom views
in 1-2-3, 7-28
in Word Pro, 10-42

CycleKey setup (Word Pro), 10-43

D
Data entry (Approach), 8-67
Database tables (1-2-3), 7-33
Debugger, 3-3, 3-18, 3-19
Declarations, 3-10

placement of, 4-5
selecting, 3-10

(Declarations) scripts, 3-5, 3-10, 3-11,
5-11

Default scripts, 3-11
Derived classes, 2-13
Diagram browser

launching (Freelance Graphics),
9-19

Dialog Editor, 1-2, 3-1
creating custom dialog boxes in,

3-23
in 1-2-3, 7-17
in Freelance Graphics, 9-3, 9-7
in Word Pro, 10-23

Display class (Approach), 8-32
Display element, for modifying

records, 8-61
Division class (Word Pro), 10-13
DocControl class (Word Pro), 10-29
Document access (Word Pro), 10-34
!Document (Word Pro), 5-10, 10-19
Document class, 9-4

1-2-3, 7-6
Approach, 8-14, 8-25
Word Pro, 10-8

Document object (Approach), 8-14
Document scripts, selecting, 3-11
Documents class (Word Pro), 10-13
DocWindow object

Approach, 8-14
Word Pro, 10-8

Dot notation, 2-6
Downcasting, 2-14

E
Editing rights (Word Pro), 10-35
Editor access (Word Pro), 10-27
E-mail. See Mail.
% END REM, 3-16
End Sub, 4-5
Errors drop-down box, 3-3
Event scripts, 3-5, 3-12

default, 3-6
Events

of objects, 2-5, 7-4, 8-3, 9-2, 10-19
running scripts from, 4-9

Exclamation point (!), 5-10
Expanded properties (Approach), 8-5
External script files, 3-8

F
Find class (Approach), 8-34
Find object, 8-57
Focus (Word Pro), 10-3
Fonts, in Word Pro, 10-19
For statement, 2-3
ForAll statement, 2-3

in Word Pro, 10-7

Foundry class (Word Pro), 10-2
Freelance Graphics

abstract classes, 9-5
automation: top tasks, 9-15
collection classes in, 9-5
containment hierarchy, 9-4
Dialog Editor in, 9-3, 9-7
global product variables, 9-6
IDE in, 9-2
inheritance relationships, 9-5
interface: customizing, 9-7
LotusScript in, 9-1
object model, 9-4
object name for, 5-5
upgrader information, 9-1

Freelance Graphics 96, 9-1
Function keys

attaching scripts to (Approach),
8-47

in Word Pro, 10-43
@Functions, 7-1

custom, 7-23

G
Global options, selecting, 3-10
Global product variables

1-2-3, 7-9
Approach, 8-20
Freelance Graphics, 9-6, 9-12, 9-13
Word Pro, 10-6

Global scripts, exporting, 3-17
(Globals). See also !Globals

adding scripts to, 3-14
scope, 3-7
selecting, 3-10

!Globals (Word Pro), 5-10, 10-20,
10-22

H
Help, x

displaying, 3-6
in IDE, 3-4

I
IBM Visual Age, 3-1
Icons

attaching scripts to, 7-19, 9-10
running scripts from, 4-8

Index-2

IDE (Integrated Development
Environment), 1-2, 3-1

1-2-3, 7-16
Approach, 8-42
designing applications, 3-4
Freelance Graphics, 9-2, 9-7
Help, 3-4
opening, 3-2
printing from (Freelance

Graphics), 9-4
Word Pro, 10-15

IDE Browser, 3-6
and containment relationships,

2-9
IDE window, 3-3
Identifying objects, 7-12
Indexes

1-2-3, 7-32
Approach, 8-10
Freelance Graphics, 9-3
Word Pro, 10-7

Inheritance, 2-13
1-2-3, 7-8
abstract classes and, 2-14
Approach, 8-18
downcasting and, 2-14
Freelance Graphics, 9-5
Word Pro, 10-9

Inheritance diagrams, xiv
Initialize scripts, 3-5, 3-11
Input, validating, 3-26
Insertion point (Word Pro), 10-3
Installing sample files, xv
Integrated Development

Environment (IDE), 1-2, 3-1
1-2-3, 7-16
Approach, 8-42
designing applications, 3-4
Freelance Graphics, 9-2, 9-7
Help, 3-4
opening, 3-2
printing from (Freelance

Graphics), 9-4
Word Pro, 10-15

Item method (Word Pro), 10-7
Iteration, ForAll loop, 10-7

L
Labels, (1-2-3)

changing to values, 7-31
Layout class (Word Pro), 10-11
Leading dot notation, 2-7, 7-14, 10-4

Line continuation character (_), 3-17
LotusObjects. See also Objects
LotusObjects, 1-2, 2-1

accessing, 5-2, 5-20
common design, 2-1

LotusScript, 1-2, 3-1
additional documentation, xi
and Notes, 1-4
and OLE Automation, 5-3
and Visual Basic, 5-2
Help, x
in Word Pro, 5-2

LotusScript ASCII file. See
LotusScript Script (.LSS) file

LotusScript Extension (LSX) modules,
1-4, 3-27, 6-1, 6-11

LotusScript Extension Toolkit, 3-1
LotusScript language statements,

3-15, 3-16
LotusScript Object (.LSO) files, 3-1,

3-8
exporting scripts to, 3-17, 10-22
in Freelance Graphics, 9-2

LotusScript Script (.LSS) files, 3-1, 3-8
exporting scripts to, 3-18, 10-22
in Freelance Graphics, 9-1
running, 9-9

.LSO files, 3-1, 3-5, 3-8
exporting scripts to, 3-17, 10-22
in Freelance Graphics, 9-2

.LSS files, 3-1, 3-5, 3-8
exporting scripts to, 3-18, 10-22
in Freelance Graphics, 9-1
running, 9-9

LSX (LotusScript Extension) modules,
1-4, 3-27, 6-1, 6-11

.LWP files, 10-21

M
Macros, recycling, 3-9
Macros (1-2-3), 7-1

buttons: upgrading, 7-2
running from scripts, 7-2

Macros (Approach), 8-1
Macros (Word Pro), 10-23
Mail, 1-5
Main, 4-5
MAPI-enabled mail, 1-5
Markup options (Word Pro), 10-30
.MAS (SmartMaster look) files, 9-9
Memo Signing application

(Word Pro), 4-2

Menu items
attaching scripts to, 7-18, 8-46
running scripts from, 4-12

Menu items, custom, 10-41
Merges, automating (Word Pro),

10-44
Methods, of objects, 2-4, 7-4, 8-3

dot notation with, 2-6
Microsoft Visual Basic, 3-1, 5-1, 5-2,

5-20
and Approach, 5-20
and LotusScript, 5-2

Multiline statements, 3-15, 3-17
.MWP (SmartMaster) files, 10-21

automating, 10-37

N
Named objects (Word Pro), 10-19
Names, of objects (Freelance

Graphics), 9-3, 9-11
Notes

backend database functionality,
1-4

controlling with Word Pro script,
6-12

data access from Approach, 8-52
integration with SmartSuite, 1-4,

6-1
OLE Automation and, 6-1

Notes/FX, 1-4, 6-2
Notes LotusScript Extension (LSX),

6-1

O
Object drop-down box, 3-3, 3-5, 3-6
Object Linking and Embedding

(OLE), 1-3, 5-1
Object model diagrams

containment, xiii
inheritance, xiv

Object models, 2-3
1-2-3, 7-4
Approach, 8-3
Freelance Graphics, 9-4
Word Pro, 10-1

Object names, for Lotus products, 5-4
Object scripts, 3-7

adding scripts to, 3-14
Object sets. See Object models

Index-3

Objects, 1-3
and classes, 2-2
common, 1-2
creating, 8-21, 9-14
default names (Freelance

Graphics), 9-3, 9-11
events, 2-5
LotusObjects, 1-2
methods, 2-4
named, in Word Pro, 10-19
OLE Automation, 5-1
properties, 2-4
scripts for, 3-5
selecting, 3-10

OCXs (OLE controls), 1-3, 3-24
in Approach, 8-70

OLE (Object Linking and
Embedding), 1-3, 5-1

OLE Automation, 1-3, 5-1
accessing LotusObjects, 5-2, 5-20
and Notes, 6-1
application example, 5-5, 5-20
scripts: difficult, 6-10
scripts: simple, 6-2
vs. Notes/FX, 6-2

OLE Automation controllers, 5-1
and LotusScript applications, 5-3

OLE Automation objects, 1-3, 5-1, 5-2
variables for storing, 5-4

OLE Automation vs. Notes/FX, 6-2
OLE container control, 5-20
OLE controls (OCXs), 1-3, 3-24

in Approach, 8-70
Opened sub, 4-12
Option Declare, 5-12
Option Public, 3-8, 5-11
(Options) scripts, 3-5, 3-10, 3-11, 5-11
Output panel, 3-4, 3-19
Output window (Freelance

Graphics), 9-3

P
Page class (Freelance Graphics), 9-5
Page title (Freelance Graphics), 9-16
Pages, attaching scripts to, 9-8, 9-9
Pane Splitter, 3-3
Panel class (Approach), 8-15, 8-29
Parent property

1-2-3, 7-7
Approach, 8-16

Pictures, attaching scripts to, 7-20
Placement blocks, 9-7, 9-8. See also

Click Here Blocks

PreClose event, running scripts from,
4-10

PreClose sub, 4-14
Predefined Global product variables.

See Global product variables
Presentation (.PRZ) files, 9-1, 9-9

attaching scripts to objects in, 9-2
Printing current page (Freelance

Graphics), 9-16
Product object models, 2-3
Product objects, scripts for, 3-11
Product statements, in scripts, 3-15,

3-16
Programming tools, 3-1
Properties, of objects, 2-4, 7-4, 8-3

dot notation, 2-6
read-only, 2-4

.PRZ (Presentation) files, 9-1, 9-9
attaching scripts to objects in, 9-2

Q
Query class (Approach), 8-38

R
Ranges (1-2-3)

global changes to, 7-42
in Workbooks, 7-22

Recording scripts, 7-15, 8-41, 10-16
% REM, 3-16
Reports

changing summaries, 8-69
Result set

displaying, 8-66
for displaying data, 8-63
for modifying records, 8-59

ResultSet class (Approach), 8-39
RunDialog (Freelance Graphics 96),

and Dialog Editor, 9-3

S
Sample files, xiv

installing, xv
Saving workbooks (1-2-3), 7-40
Scope

explicit, 3-8
in (Globals), 3-7
in object scripts, 3-7

Script Debugger, 3-3, 3-18, 3-19
Script drop-down box, 3-3, 3-5, 3-6
Script Editor, 3-3, 3-10
Script files, external, 3-8

Script templates (Word Pro), 10-17
Script Utilities pane, 3-4
Scripts

adding to (Globals), 3-14
adding to object scripts, 3-14
and macros: using together, 8-2
and objects, 3-5, 3-10
automating without, 7-1
calls in, 3-22
comments in, 3-15, 3-16
creating, 3-10, 3-13, 7-15, 8-41,

10-16
cross-product, 1-2
debugging, 3-18
default, 3-11
document, 3-11
entering text in, 3-15
event, 3-12
exporting, 3-17
external, 3-8
for controls, 3-26
for custom dialog boxes, 3-13
for product objects, 3-11
in 1-2-3, 7-15
LotusScript language statements

in, 3-15, 3-16
Memo Signing (Word Pro), 4-2
multiline statements in, 3-15, 3-17
printing, 3-17
product statements in, 3-15, 3-16
recording, 3-7
recording in 1-2-3, 7-15
recording in Approach, 8-41
recording in Word Pro, 10-16
renaming, 3-14
running, 3-18, 3-20, 4-8
running 1-2-3 macros from, 7-2
saving in Word Pro, 10-21
scope, 3-7
startup, 10-16
stepping through, 3-21
syntax errors in, 3-15
variables in, 3-22
vs. Approach macro language, 8-1
writing, 3-10, 3-13

Shared tools, 1-2
Sheet letters, converting to numbers

(1-2-3), 7-32
SignMemo sub, 4-14
Single-product application, 4-1
single quotation mark, 3-16
SmartIcons. See Icons
SmartMaster (.MWP) files, 10-21

automating, 10-37

Index-4

SmartMaster content (.SMC) files, 9-1
attaching scripts to objects in, 9-2,

9-7, 9-8
SmartMaster look (.MAS) files, 9-9
SmartSuite

API, 1-2
as development platform, 1-1
integration with Notes, xi, 1-4
user interface (UI), 2-3

.SMC (SmartMaster content) files, 9-1
attaching scripts to objects in, 9-2,

9-8
Static properties (Word Pro), 10-14
!StatusBarButtons (Word Pro), 10-19
Sub line, 4-5
Subclass, 2-13
Subs, 4-5

and events, 2-5
Superclass, 2-13
Syntax errors, 3-15

T
Table, converting to agenda format

(Freelance Graphics), 9-25
Table class (Approach), 8-26
Table entries

converting from text (Freelance
Graphics), 9-21

Table object (Approach), 8-14
Team Computing, 1-4

in 1-2-3, 7-21
in Word Pro, 10-26

TeamConsolidate (Word Pro), 1-4
TeamMail (1-2-3), 1-4, 7-21
TeamReview, 1-4

in 1-2-3, 7-22
in Word Pro, 10-27

TeamSecurity, 1-4
in Word Pro, 10-27, 10-34

TeamShow (Freelance Graphics), 1-4
Terminate scripts, 3-5, 3-12
TextCollection class (Word Pro),

10-13
Toolbox, 3-24
Transcript window (Freelance

Graphics 96), 9-3
Type qualifiers, 7-13

U
Unattached script file. See .LSS file
User interface (UI), 2-3

V
Variables. See also Global product

variables
declaring, 4-5
for storing OLE Automation

objects, 5-4
global (1-2-3), 7-9
monitoring, 3-22

Variables panel, 3-4, 3-19
Versioning (1-2-3), 1-4
View class (Approach), 8-15, 8-16,

8-27
Views, custom

in 1-2-3, 7-28
in Word Pro, 10-42

Views, switching between
(Approach), 8-47

VIM-enabled mail, 1-5
Visual Age, 3-1
Visual Basic, 3-1, 5-1, 5-2, 5-20

and Approach, 5-20
and LotusScript, 5-2

Visual C++, 5-2

W
Window class (Approach), 8-24
Windows 3.1 API calls

converting (Word Pro), 10-25
With statement (Word Pro), 10-28
Word Pro

abstract classes, 10-9
and Team Computing, 10-26
as OLE Automation object, 5-3
automation: top tasks, 10-37
classes, 10-9, 10-11
collection classes, 10-7
controlling Notes from, 6-12
divisions, 10-5
focus, 10-3
Foundry class, 10-2
global product variables, 10-6
IDE in, 10-15
inheritance relationships, 10-9
LotusScript in, 5-2, 10-1
macros: recycling, 3-9, 10-23
Memo Signing application, 4-2
object model, 10-1
object name for, 5-5
running scripts, 4-8
scripts: recording, 10-16
SmartMaster files, 6-12

!Word Pro, 10-19

Workbooks, 7-28
ranges, 7-22
saving automatically, 7-40

WPApplication class (Word Pro),
10-3, 10-4, 10-12, 10-14, 10-15

Index-5

Calls drop-down box

Browser panel
Breakpoints panel

Output panel
Variables panel

Disabled breakpoint

Enabled breakpoint

Part No. 12773

The Script Debugger
When an enabled breakpoint is reached during debugging, script execution is
stopped and the script containing the breakpoint is displayed in the Script
Debugger. You can display another procedure by selecting it in the Calls
drop-down box at the bottom of the Debugger pane or in the Script drop-down
box at the top right.

Script drop-down box

Breakpoints panel

Object drop-down box

Errors drop-down box

Browser panel

Menus
SmartIcons

Script Editor pane

Output panel
Variables panel

Pane splitter

Registered OLE Controls
Registered OLE Controls (OCX's)
You can add to a dialog box any third-party OLE
Control (OCX) installed on your system. Third-party
controls provide specialized features or enhanced
versions of the standard controls. To add a third-party
control, choose Create - Control - More and select a
control from the list of available controls.

Pointer

Label

Command Button

CheckBox

ListBox

SpinButton

Slider

Frame

TextBox

Image

OptionButton

ComboBox

ProgressBar

Lotus Controls Toolbox
The Lotus Controls Toolbox displays the
icons for dialog box controls, such as text
boxes, check boxes, option buttons, and
so on. Click an icon to add the control to
a dialog box.

The LotusScript IDE
The LotusScript Integrated Development Environment (IDE) provides a powerful and
easy-to-use set of tools for creating and debugging scripts in Lotus products.

LotusScript Dialog Editor
The LotusScript Dialog Editor provides a
powerful and easy-to-use set of tools for
creating and writing scripts for dialog boxes
used in Lotus products.

	Contents
	Introduction
	Who should read this book
	Using this book with Help
	Additional LotusScript documentation
	Organization
	Conventions used in this book
	Object model diagrams

	Sample files
	Installing the sample files

	Chapter 1 SmartSuite Applications: An Overview
	Development needs that are changing
	SmartSuite as an application development platform
	Object-oriented technology
	SmartSuite and Notes integration
	Team Computing

	Chapter 2 LotusObjects: Building Blocks for Developing Applications
	Objects
	Objects and classes
	Collection classes
	The product object models

	Methods, properties, and events
	Methods
	Properties
	Events
	Dot notation: using methods and properties with objects

	Containment
	Traversing the containment tree to access objects

	Inheritance
	Abstract classes and inheritance
	Downcasting and inheritance

	Chapter 3 LotusScript Programming Tools
	Using the IDE
	Using the sample application for this chapter
	Opening the IDE
	Identifying parts of the IDE window
	Getting Help in the IDE

	Designing applications in the IDE
	Selecting objects for your scripts
	Planning the scope of your scripts
	Working with external script files
	Recycling macros
	Assembling the pieces for an application

	Writing scripts in the Script Editor
	Selecting objects and their scripts
	Creating scripts
	Renaming scripts
	Entering text in scripts
	Printing scripts
	Exporting scripts to external .LSO or .LSS files

	Running and debugging scripts in the Script Debugger
	The Script Debugger
	Running scripts
	Using breakpoints
	Stepping through scripts
	Monitoring variables in your scripts
	Monitoring calls in your scripts

	Developing custom dialog boxes in the Dialog Editor
	Creating a custom dialog box
	Adding controls to the dialog box
	Writing scripts for controls
	Running the dialog box from your application

	Developing LotusScript Extension modules

	Chapter 4 Building a Single-Product Application
	The Memo Signing script
	Entering the script
	An explanation of the script

	Running the Memo Signing script
	Running the script from the Word Pro Edit - Script & Macros menu
	Running the script from an icon
	Running the script automatically using events

	Chapter 5 Building Cross-Product Applications
	OLE Automation concepts
	OLE Automation controllers
	OLE Automation objects
	Accessing LotusObjects using OLE Automation
	LotusScript applications as OLE Automation controllers
	Variables for storing OLE Automation objects
	Object names for applications

	OLE Automation using LotusScript with Word Pro and Approach
	Generating a sales report
	!Globals and !Document
	(Declarations) and (Options)
	Functions and subs of the Video Summary application

	OLE Automation using Visual Basic and 1-2-3
	Updating the map
	Subs of the Map Update application

	Chapter 6 Integration with Notes
	OLE Automation
	Planning ahead
	OLE Automation vs. Notes/FX
	Simple scripts that use OLE Automation
	Mid-level scripts that use OLE Automation
	Large scripts that use OLE Automation

	The Notes LSX
	Planning ahead
	Loading the Notes LSX
	Controlling Notes with a Word Pro script

	Chapter 7 Using LotusScript in 1-2-3
	Writing scripts in 1-2-3
	Automating tasks without scripts
	Information for upgraders

	The 1-2-3 object model
	1-2-3 containment hierarchy
	1-2-3 inheritance relationships
	1-2-3 predefined global product variables
	1-2-3 collection classes
	Identifying objects in 1-2-3

	Recording scripts in 1-2-3
	Recording into an existing script

	Using the IDE in 1-2-3
	Writing scripts for objects that do not appear in the Object list

	Using the Dialog Editor in 1-2-3
	Customizing the 1-2-3 user interface
	Attaching a script to the Actions menu
	Attaching a script to an icon
	Attaching a script to a button
	Attaching a script to a picture

	Team computing in 1-2-3
	Sending a mail message with an attachment
	Routing a range

	Top tasks
	Creating a custom @function
	Creating a custom menu
	Saving and restoring a view
	Changing labels to values
	Converting column and sheet letters to numbers
	Creating a cross-tabulation report
	Automatically saving all open workbooks
	Making global changes to a range

	Chapter 8 Using LotusScript in Approach
	Writing scripts in Approach
	Automating tasks without scripts
	Information for upgraders

	The Approach object model
	Approach containment hierarchy
	Approach inheritance relationships
	Approach predefined global product variables
	Creating new objects

	Approach classes
	Application class
	Window class
	Document class
	Table class
	View class
	Panel class
	Display class
	Find class
	Connection class
	Query class
	ResultSet class

	Recording scripts in Approach
	Using the IDE in Approach
	Script templates

	Customizing the Approach user interface
	Attaching a script to a button
	Attaching a script to a menu item
	Attaching a script to a function key

	Top tasks
	Switching between views in a document
	Accessing data from a database using a batch process
	Accessing data from a Notes database
	Finding records using the Find object
	Modifying records
	Displaying data from a result set in a view
	Creating a document to display the result set
	Controlling how users enter data
	Changing the summaries in a report
	Inserting and using OLE controls

	Chapter 9 Using LotusScript in Freelance Graphics
	Writing scripts in Freelance Graphics
	Information for upgraders

	The Freelance Graphics object model
	Freelance Graphics containment hierarchy
	Freelance Graphics inheritance relationships
	Freelance Graphics collection classes
	Freelance Graphics predefined global product variables

	Using the IDE in Freelance Graphics
	Using the Dialog Editor in Freelance Graphics
	Customizing the Freelance Graphics user interface
	Creating “Click here...” blocks
	Attaching scripts to pages and “Click here...” blocks in an .SMC file
	Attaching scripts to pages or “Click here...” blocks in a .PRZ file
	Running an .LSS file
	Attaching a script to an icon

	Running a script from the command line
	Using names to manipulate objects
	Using predefined global product variables

	Top tasks
	Putting clip art on the current page
	Using an event
	Printing the current page
	Launching a clip art or diagram browser with a specified file
	Filling a bulleted list with text
	Converting text to table entries
	Putting information in a table into an agenda format

	Chapter 10 Using LotusScript in Word Pro
	LotusScript and Word Pro
	The Word Pro object model
	Foundry
	Focus
	Accessing objects that do not have the focus
	Word Pro predefined global product variables
	Word Pro collection classes
	Word Pro abstract classes
	Other important Word Pro classes

	Using the IDE in Word Pro
	Recording a script
	Inserting a script template
	Accessing Word Pro objects and events
	Saving scripts

	Using the Dialog Editor in Word Pro
	Migration information
	Saving a recorded Ami Pro macro before conversion
	Converting an Ami Pro macro
	Running existing macros
	Strategies for editing Ami Pro macros

	Team Computing in Word Pro
	Modifying editor access
	Modifying markup options
	Modifying document access
	Modifying editing rights

	Top tasks
	Automating a SmartMaster
	Validating Click Here Blocks
	Creating a custom menu item
	Setting custom views
	Changing the function key setup
	Automating a merge

	Index

