
LANGUAGE REFERENCE

RR
..EE..LL..EE..AA

..SS..EE

Cross-Product BASIC Scripting Language

Copyright

Under the copyright laws, neither the documentation nor the software may be
copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form, in whole or in part, without the prior
written consent of Lotus Development Corporation, except in the manner
described in the software agreement.

Copyright 1994, 1996 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. Printed in the United States.

Notes and Word Pro are trademarks and 1-2-3, Freelance Graphics, Lotus, Lotus
Forms, Lotus Notes, and LotusScript are registered trademarks of Lotus
Development Corporation. System 7 is a trademark and Macintosh is a
registered trademark of Apple Computer, Inc. HP and HP_UX are registered
trademarks of Hewlett-Packard Company. PowerPC is a trademark and OS/2 is
a registered trademark of International Business Machines Corporation.
Windows NT is a trademark and MS-DOS and Windows are registered
trademarks of Microsoft Corporation. Motorola is a registered trademark of
Motorola, Incorporated. Sun is a trademark and Solaris is a registered trademark
of Sun Microsystems, Inc. UNIX is a registered trademark in the United States
and other countries, licensed exclusively through X/Open Company, Limited.

Preface . ix. . .
Typographical conventions ix.

Running examples . x.

Part 1 Scripting Basics

Chapter 1 Script and
Statement Construction Rules . 1. . .
Script and statement construction rules . 1.

Literal number construction rules 2.

Literal string construction rules 3.

Identifier construction rules 4.

Labels . 5.

Keywords . 5.

Special characters . 7.

Scope of declarations 9.

Implicit declaration of variables 12. . . .

Data type conversion 13. . . .

Constants . 14. . . .

Chapter 2 Procedures 15. .
Declaring function and sub parameters . 16. . . .

Passing arguments by reference and by
value . 17. . . .

Returning a value from a function 19. . . .

Recursive functions . 20. . . .

Chapter 3 Calling External
C-Language Functions 23. .
Passing arguments to C functions 24. . . .

String arguments to C functions 26. . . .

Array, type, and object arguments
to C functions . 27. . . .

Return values from C functions 31. . . .

Chapter 4 File Handling 33. .
Sequential files . 33. . . .

Opening sequential files 34. . . .

Writing to sequential files 34. . . .

Reading from sequential files 35. . . .

Random files . 36. . . .

Opening random files 36. . . .

Defining record types 36. . . .

Reading from random files 37. . . .

Writing to random files 37. . . .

Binary files . 38. . . .

Opening binary files 38. . . .

Using variable-length fields 38. . . .

Writing to binary files 39. . . .

Reading from binary files 39. . . .

Chapter 5 Error Processing . . . 41. .
Defining errors and error numbers 41. . . .

Run-time error processing 43. . . .

Part 2 Language Elements

Chapter 6 Operators 45. .
Operator order of precedence 45. . . .

Exponentiation operator 46. . . .

Negation operator . 47. . . .

Multiplication operator 47. . . .

Division operator . 48. . . .

Integer division operator 49. . . .

Mod operator . 50. . . .

Addition operator . 50. . . .

Subtraction operator 52. . . .

Comparison operators 53. . . .

Contents iii

Contents

LotusScript Lanaguage Reference
Please note that the page numbers listed in the Table of Contents refer to the page numbers that appear in the footers of the printed documentation. To navigate through the document, use the linked table of contents that appears in the window on the left, or use the scroll buttons in the tool bar at the top of the document.

Not operator . 55. . . .

And operator . 56. . . .

Or operator . 58. . . .

Xor operator . 59. . . .

Eqv operator . 60. . . .

Imp operator . 62. . . .

String concatenation operator 63. . . .

Like operator . 64. . . .

Is operator . 66. . . .

IsA operator . 67. . . .

Chapter 7 Statements, Built-In
Functions, Subs, Data Types,
and Directives 69. .
Abs function . 69. . . .

ACos function . 70. . . .

ActivateApp statement 70. . . .

Asc function . 71. . . .

ASin function . 72. . . .

ATn function . 72. . . .

ATn2 function . 73. . . .

Beep statement . 74. . . .

Bin function . 75. . . .

Bracket notation . 76. . . .

Call statement . 77. . . .

CCur function . 79. . . .

CDat function . 80. . . .

CDbl function . 82. . . .

ChDir statement . 82. . . .

ChDrive statement . 83. . . .

Chr function . 84. . . .

CInt function . 85. . . .

Class statement . 85. . . .

CLng function . 89. . . .

Close statement . 89. . . .

Command function . 90. . . .

Const statement . 91. . . .

Cos function . 93. . . .

CreateObject function 93. . . .

CSng function . 95. . . .

CStr function . 96. . . .

CurDir function . 96. . . .

CurDrive function . 97. . . .

Currency data type . 98. . . .

CVar function . 98. . . .

DataType function . 99. . . .

Data types . 101. . .

Date function . 102. . .

Date statement . 103. . .

DateNumber function 103. . .

DateValue function . 104. . .

Day function . 105. . .

Declare statement (external C calls) 106. . .

Declare statement (Forward reference) . . 110. . .

Deftype statements . 112. . .

Delete statement . 114. . .

Dim statement . 115. . .

Dir function . 121. . .

Do statement . 123. . .

Dot notation . 124. . .

Double data type . 125. . .

End statement . 126. . .

Environ function . 127. . .

EOF function . 128. . .

Erase statement . 129. . .

Erl function . 130. . .

Err function . 130. . .

Err statement . 132. . .

Error function . 133. . .

Error statement . 134. . .

Evaluate function and statement 136. . .

Execute function and statement 137. . .

Exit statement . 139. . .

Exp function . 141. . .

FileAttr function . 141. . .

FileCopy statement . 143. . .

iv LotusScript Language Reference Guide

FileDate time function 143. . .

FileLen function . 144. . .

Fix function . 144. . .

For statement . 146. . .

ForAll statement . 148. . .

Format function . 151. . .

Formatting codes 151. . .

Formatting dates and times in
Asian languages 157. . .

Fraction function . 159. . .

FreeFile function . 160. . .

Function statement . 160. . .

Get statement . 164. . .

GetFileAttr function . 166. . .

GetObject function . 168. . .

GoSub statement . 170. . .

GoTo statement . 171. . .

Hex function . 172. . .

Hour function . 173. . .

If...GoTo statement . 174. . .

If...Then...Else statement 175. . .

If...Then...ElseIf statement 176. . .

%If directive . 177. . .

IMEStatus function . 180. . .

%Include directive . 181. . .

Input # statement . 182. . .

Input function . 184. . .

InputB function . 186. . .

InputBox function . 187. . .

InputBP function . 188. . .

InStr function . 189. . .

InStrB function . 190. . .

InStrBP function . 192. . .

Int function . 193. . .

Integer data type . 194. . .

IsArray function . 194. . .

IsDate function . 195. . .

IsDefined function . 196. . .

IsElement function . 196. . .

IsEmpty function . 198. . .

IsList function . 198. . .

IsNull function . 199. . .

IsNumeric function . 200. . .

IsObject function . 201. . .

IsScalar function . 202. . .

Kill statement . 203. . .

LBound function . 203. . .

LCase function . 204. . .

Left function . 204. . .

LeftB function . 205. . .

LeftBP function . 205. . .

Len function . 206. . .

LenB function . 208. . .

LenBP function . 209. . .

Let statement . 210. . .

Line Input # statement 212. . .

ListTag function . 213. . .

LOC function . 213. . .

Lock and Unlock statements 215. . .

LOF function . 216. . .

Log function in LotusScript 217. . .

Log function . 218. . .

Long data type . 218. . .

LSet statement . 219. . .

LTrim function . 220. . .

MessageBox function and statement 220. . .

Mid function . 222. . .

Mid statement . 223. . .

MidB function . 224. . .

MidB statement . 224. . .

MidBP function . 224. . .

Minute function . 225. . .

MkDir statement . 226. . .

Month function . 227. . .

Name statement . 227. . .

Now function . 228. . .

Contents v

Oct function . 229. . .

On Error statement . 230. . .

On Event statement . 232. . .

On...GoSub statement 234. . .

On...GoTo statement 235. . .

Open statement . 237. . .

Option Base statement 241. . .

Option Compare statement 241. . .

Option Declare statement 244. . .

Option Public statement 244. . .

Print statement . 245. . .

Print # statement . 246. . .

Property Get/Set statements 249. . .

Put statement . 253. . .

Randomize statement 256. . .

ReDim statement . 257. . .

Rem statement . 259. . .

%Rem directive . 260. . .

Reset statement . 261. . .

Resume statement . 261. . .

Return statement . 263. . .

Right function . 264. . .

RightB function . 264. . .

RightBP function . 265. . .

RmDir statement . 265. . .

Rnd function . 266. . .

Round function . 267. . .

RSet statement . 268. . .

RTrim function . 269. . .

Run statement . 269. . .

Second function . 270. . .

Seek function . 271. . .

Seek statement . 272. . .

Select Case statement 273. . .

SendKeys statement . 275. . .

Set statement . 278. . .

SetFileAttr statement 280. . .

Sgn function . 281. . .

Shell function . 282. . .

Sin function . 283. . .

Single data type . 284. . .

Space function . 284. . .

Spc function . 285. . .

Sqr function . 286. . .

Stop statement . 286. . .

Str function . 287. . .

StrCompare function 287. . .

StrConv function . 288. . .

String data type . 290. . .

String function . 291. . .

Sub statement . 291. . .

Sub Delete . 294. . .

Sub Initialize . 296. . .

Sub New . 297. . .

Sub Terminate . 299. . .

Tab function . 300. . .

Tan function . 301. . .

Time function . 302. . .

Time statement . 302. . .

TimeNumber function 303. . .

Timer function . 303. . .

TimeValue function . 304. . .

Today function . 305. . .

Trim function . 305. . .

Type statement . 306. . .

TypeName function . 309. . .

UBound function . 311. . .

UCase function . 312. . .

UChr function . 312. . .

Uni function . 313. . .

Unlock statement . 313. . .

Use statement . 314. . .

UseLSX statement . 315. . .

UString function . 315. . .

Val function . 316. . .
Variant data type . 317. . .

vi LotusScript Language Reference Guide

Weekday function .

319. . .

While statement . 320. . .

Width # statement . 320. . .

With statement . 322. . .

Write # statement . 323. . .

Year function . 325. . .

Yield function and statement 326. . .

Part 3 Appendixes

Appendix A Language and
Script Limits 329.
Limits on numeric data representation . . 329. . .

Limits on string data representation 330. . .

Limits on array variables 330. . .

Limits on file operations 331. . .

Limits in miscellaneous source language
statements . 331. . .

Limits on compiler and compiled
program structure 331. . .

Appendix B Platform
Differences 333.
OS/2 platform differences 333. . .

UNIX platform differences 334. . .

Macintosh platform differences 337. . .

Appendix C LotusScript/Rexx
Integration . 339.
REXXCmd function . 339. . .

REXXFunction function and statement . . 341. . .

REXXLTS.EXE call . 343. . .

Index . 345.

Contents vii

Preface

The LotusScript Language Reference is a comprehensive summary of the LotusScript®
language. It is also available as on-line help in all Lotus® products that support
LotusScript.

Besides this language reference, Lotus provides the following documentation of
LotusScript:

The LotusScript Programmer’s Guide, a general introduction to LotusScript that
describes the language’s basic building blocks and how to put them together to
create applications.

The documentation that accompanies each of the Lotus products that support
LotusScript. This documentation describes the application development
environment as well as the various extensions to the language that the individual
product provides.

Typographical conventions
The LotusScript Language Reference follows certain typographical conventions in its
code examples and syntax diagrams. These conventions are summarized in the
following two tables.

Code examples

Item Convention Example

Apostrophe (') Introduces a comment. ' This is a comment.

Underscore (_) Signifies that the current line
of code continues on the
following line.

Dim anArray(1 To 3, 1 To 4) _ As String

Colon (:) Separates discrete statements
on the same line

anInt% = anInt% * 2 : Print anInt%

Keyword Begins with a capital letter.
May contain mixed case.

Print UCase$("hello")

Variable Begins with a lowercase
letter. May contain mixed
case.

anInt% = 5

Procedure Begins with a capital letter.
May contain mixed case.

Call PrintResults()

ix

Syntax diagrams
Type face or character Meaning Example and comment

Bold Items in bold must appear
exactly as shown.

End [returnCode]
The keyword End is required.

Italics Items in italics are
placeholders for values that
you supply.

End [returnCode]
You can specify a return code by entering a
value or expression after the keyword End.

Square brackets [] Items enclosed in square
brackets are optional.

End [returnCode]
You can include a return code or not, as
you prefer.

Vertical bar | Items separated by vertical
bars are alternatives: you
can choose one or another.

Resume [0 | Next | label]
You can enter the value 0, the keyword
Next, or a label after the keyword Resume.
Since these items are enclosed in square
brackets, you can also choose to enter none
of these.

Braces { } Items enclosed in braces are
alternatives: you have to
choose one. Items within
braces are always separated
by vertical bars.

Exit { Do | For | ForAll | Function |
Property | Sub }
You have to enter one of the following
keywords after the keyword Exit: Do, For,
ForAll, Function, Property, or Sub.

Ellipsis Items followed by an
ellipsis can be repeated. If a
comma precedes an ellipsis
(,...), you have to separate
repeated items by commas.

ReDim arrayName(subscript,...)
You can specify multiple subscripts in a
ReDim statement.

Running examples
Many topics in this reference manual include one or more LotusScript code examples,
under a heading such as “Example” or “Example 1”. These programming examples
illustrate specific language features of LotusScript.

In general terms, you can turn an example in this book into a LotusScript application
by placing the executable code in a procedure. You run the example by executing that
procedure. The following instructions describe the main steps in this process when
you are running LotusScript in any of several Lotus products, including Lotus
Forms®, Lotus Notes®, Word Pro™, and Freelance Graphics®. The details of how
you prepare an example to run depend on the programming environment and the
content and intent of the particular example.

1. Navigate to the Declarations script in an empty script module.

x LotusScript Language Reference Guide

For example, in a new form in the Forms Designer, select the Script tab, and select
Form from the Object drop-down list box and Declarations from the Proc
drop-down list box.

In a Notes™ Agents view (or in any Notes view or document), choose Agent from
the Create menu, enter a name for the agent, and select the Script option button.
The (Declarations) script is selected in the Event drop-down list box.

In a new Word Pro document or Freelance Graphics presentation, select
Edit-Script-Show Script Editor, and then select (Declarations) from the Script
drop-down list box.

2. Type the example into the script editor.

If the example includes executable code that is not in a procedure, put the
executable code in a sub. For example, type “RunExample Sub” in the line above
the first line of executable code, and type “End Sub” after the last line.

If the example includes one or more procedures followed by a call to a procedure,
delete the call statement, but note which procedure is being called. This is the
startup procedure.

In Lotus Forms, type the example into Declarations.

In Notes, type the example into (Declarations). Notes automatically separates
procedures into separate procedure scripts.

In other Lotus products, do the following:

Type module-level declarations into (Declarations).

Type Option statements into (Options).

For each procedure, use the Script-New Sub or Script-New Function command
to create the new procedure, and type the contents of the procedure into the
script editor.

Caution If you are entering a product script that already exists (such as Initialize
or Terminate), select the script from the drop-down list box, and then type the
script into the script editor.

3. Run the example.

For example, in Lotus Forms, put a call to the startup procedure in the Form object
NewForm script, and choose View-Filler Mode (or press F7).

In Notes, put a call to the startup procedure in the Initialize script, choose
File-Save, and choose the agent name from the Actions menu.

In Word Pro or Freelance Graphics, select RunExample in the Script drop-down
list box, and use the Script menu to run the sub (or press F5). If the procedure
includes parameters, put a call to the procedure in the Initialize script, and then
use the Script menu (or press F5) to run the Initialize script.

See your product’s documentation for details on writing and running LotusScript
applications in that programming environment.

Preface xi

The examples in this reference manual also appear in LotusScript Help as secondary
topics attached to many Help topics. To run an example starting from Help, you copy
and paste the example text appropriately, in a process similar to the one described
above for examples in this manual. The process is described in instructions accessed
by clicking in the icon bar of each example topic in Help. (You can also find these
instructions as a separate topic in Help by searching for “Examples” or “Running
examples”.)

xii LotusScript Language Reference Guide

Part 1
Scripting Basics

Chapter 1
Script and Statement Construction Rules

This chapter describes the rules for writing the basic elements of a script in the
LotusScript language.

Script and statement construction rules
The following rules govern the construction of statements in a script.

The statements of a script are composed of lines of text. Each text element is a
LotusScript keyword, operator, identifier, literal, or special character.

The script can include blank lines without effect.

The text on a line can begin at the left margin or be indented without affecting the
meaning.

Within a statement, elements are separated with white space: spaces or tabs.
Where white space is legal, extra white space can be used to make a statement
more readable, but it has no effect.

Statements typically appear one to a line. A newline marks the end of a statement,
except for a block statement; the beginning of the next line starts a new statement.

Multiple statements on a line must be separated by a colon (:).

A statement, except for a block statement, must appear on a single line unless it
includes the line-continuation character underscore (_), preceded by white space.

The line-continuation character must appear at the end of a line to be continued,
preceded by at least one space or tab. Only white space or inline comments (those
preceded with an apostrophe) can follow the underscore on the line. Line
continuation within a literal string or a comment is not permitted.

Examples: Script and statement construction rules
' One statement on one line
Print "One line"

' One statement on two lines; extra white space
Print "One" & _ ' Comment allowed here
 "Two"

' Two statements on one line
Print "One" : Print "Two"

1

Literal number construction rules
The following rules govern the construction of literal numbers in a script.
Kind of literal Example Description

Decimal integer 777 The legal range is the range for Long values. If the
number falls within the range for Integer values, its data
type is Integer; otherwise, its data type is Long.

Decimal 8 The legal range is the range for Double values. The
number’s data type is Double.

Scientific notation 7.77E+02 The legal range is the range for Double values. The
number’s data type is Double.

Binary integer &B1100101 The legal range is the range for Long values. A binary
integer is expressible in 32 binary digits of 0 or 1. Values
of &B100000 ... (31 zeroes) and larger represent negative
numbers.

Octal integer &O1411 The legal range is the range for Long values. An octal
integer is expressible in 11 octal digits of 0 to 7. Values
of &O20000000000 and larger represent negative
numbers. Values of &O40000000000 and larger are out
of range.

Hexadecimal integer &H309 The legal range is the range for Long values. A
hexadecimal integer is expressible in eight hexadecimal
digits of 0 to 9 and A to F. Values of &H80000000 and
larger represent negative numbers.

2 LotusScript Language Reference Guide

Literal string construction rules
The following rules govern the construction of literal strings in a script.

A literal string in LotusScript is a string of characters enclosed in one of the
following sets of delimiters:

A pair of double quotation marks (“ ”)

A pair of vertical bars (| |)

Open and close braces ({ })

A literal string can include any character.

Strings enclosed in vertical bars or braces can span multiple lines.

To include one of the closing delimiter characters “, |, or } as text within a string
delimited by that character, double it.

The empty string has no characters at all; it is represented by ”".

Strings delimited by vertical bars, braces, or double quotation marks cannot be
nested.

Examples: Literal string construction rules
"A quoted string"
|A bar string|
{A brace string}
|A string
 on two lines|
|A bar string with a double quote " in it|
"A quoted string with {braces} and a bar | in it"
"A quoted string with ""quotes"" in it"
|A bar string with a bar || in it|
{A brace string with {braces}} in it}

Chapter 1: Script and Statement Construction Rules 3

Identifier construction rules
An identifier is the name you give to a variable, a constant, a type, a class, a function, a
sub, or a property.

The following rules govern the construction of identifiers in a script.

The first character in an identifier must be an uppercase or lowercase letter.

The remaining characters must be letters, digits, or underscore (_).

A data type suffix character (%, &, !, #, @, or $) can be appended to an identifier. It
is not part of the identifier.

The maximum length of an identifier is 40 characters, not including the optional
suffix character.

Names are case-insensitive. For example, VerED is the same name as vered.

Characters with ANSI codes higher than 127 (that is, those outside the ASCII
range) are legal in identifiers.

Escape character for illegal identifiers
Lotus product and OLE classes may define properties or methods whose identifiers
use characters not legal in LotusScript identifiers. Variables registered by Lotus
products might also use such characters. In these cases, prefix the illegal character
with a tilde (~) to make the identifier valid.

Examples: Identifier construction rules
' $ is illegal as character in identifier
Call ProductClass.LoMethod$ ' Illegal
Call ProductClass.LoMethod~$ ' Legal

X = OLEClass.Hi@Prop ' Illegal
X = OLEClass.Hi~@Prop ' Legal

4 LotusScript Language Reference Guide

Labels
A label gives a name to a statement.

A label is built in the same way as an identifier. It is followed by a colon (:). It can’t be
suffixed with a data type suffix character.

The following statements transfer control to a labeled statement by referring to its
label:

GoSub

GoTo

If...GoTo

On Error

On...GoSub

On...GoTo

Resume

These rules govern the use of labels in a script:

A label can only appear at the beginning of a line. It labels the first statement on
the line.

A label can appear on a line by itself. This labels the first statement starting after
the line.

A given statement can have more than one label preceding it; but the labels must
appear on different lines.

A given label can’t be used to label more than one statement in the same
procedure.

Keywords
A keyword is a word with a reserved meaning in the LotusScript language. The
keywords name LotusScript statements, built-in functions, built-in constants, and data
types. The keywords New and Delete can be used to name subs that you can define in
a script. Other keywords are not names, but appear in statements: for example,
NoCase or Binary. Some of the LotusScript operators are keywords, such as Eqv and
Imp.

You cannot redefine keywords to mean something else in a script, with one exception:
they can name variables within a type, and variables and procedures within a class.

Chapter 1: Script and Statement Construction Rules 5

The following are all the LotusScript keywords.
Abs
Access
ACos
ActivateApp
Alias
And
Any
Append
As
Asc
ASin
Atn
Atn2
Base
Beep
Bin
Bin$
Binary
Bind
ByVal
Call
Case
CCur
CDat
CDbl
ChDir
ChDrive
Chr
Chr$
CInt
Class
CLng
Close
Command
Command$
Compare
Const
Cos
CSng
CStr
CurDir
CurDir$
CurDrive
CurDrive$
Currency
CVar
DataType

DefDbl
DefInt
DefLng
DefSng
DefStr
DefVar
Delete
Dim
Dir
Dir$
Do
Double
Else
ElseIf
End
Environ
Environ$
EOF
Eqv
Erase
Erl
Err
Error
Error$
Evaluate
Event
Execute
Exit
Exp
FALSE
FileAttr
FileCopy
FileDateTime
FileLen
Fix
For
ForAll
Format
Format$
Fraction
FreeFile
From
Function
Get
GetFileAttr
GoSub
GoTo

Input
Input$
InputB
InputB$
InputBox
InputBox$
InputBP
InputBP$
InStr
InStrB
InStrBP
Int
Integer
Is
IsArray
IsDate
IsElement
IsEmpty
IsList
IsNull
IsNumeric
IsObject
IsScalar
IsUnknown
Kill
LBound
LCase
LCase$
Left
Left$
LeftB
LeftB$
LeftBP
LeftBP$
Len
LenB
LenBP
Let
Lib
Like
Line
List
ListTag
LMBCS
Loc
Lock
LOF

Minute
MkDir
Mod
Month
Name
New
Next
NoCase
NoPitch
Not
NOTHING
Now
NULL
Oct
Oct$
On
Open
Option
Or
Output
PI
Pitch
Preserve
Print
Private
Property
Public
Put
Random
Randomize
Read
ReDim
Rem
Remove
Reset
Resume
Return
Right
Right$
RightB
RightB$
RightBP
RightBP$
RmDir
Rnd
Round
RSet

Sin
Single
Space
Space$
Spc
Sqr
Static
Step
Stop
Str
Str$
StrCompare
String
String$
Sub
Tab
Tan
Then
Time
Time$
TimeNumber
Timer
TimeValue
To
Today
Trim
Trim$
TRUE
Type
TypeName
UBound
UCase
UCase$
UChr
UChr$
Uni
Unicode
Unlock
Until
Use
UseLSX
UString
UString$
Val
Variant
Weekday
Wend

6 LotusScript Language Reference Guide

Special characters
LotusScript uses special characters, such as punctuation marks, for several purposes:

To delimit literal strings

To designate variables as having particular data types

To punctuate lists, such as argument lists and subscript lists

To punctuate statements

To punctuate lines in a script

Note Special characters within literal strings are treated as ordinary text characters.

The following table summarizes the special characters used in LotusScript:

Character Usage

“”
(quotation
mark)

Opening and closing delimiter for a literal string on a single line.

|
(vertical bar)

Opening and closing delimiter for a multi-line literal string. To include a
vertical bar in the string, use double bars (||).

{ }
(braces)

Delimits a multi-line literal string. To include an open brace in the string, use a
single open brace ({). To include a close brace in the string, use double close
braces (}}).

:
(colon)

(1) Separates multiple statements on a line.
(2) When following an identifier at the beginning of a line, designates the
identifier as a label.

$
(dollar sign)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as String.
(2) When prefixed to an identifier, designates the identifier as a product
constant.

%
(percent sign)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as Integer.
(2) When suffixed to either the identifier or the value being assigned in a
constant declaration, declares the constant’s data type as Integer.
(3) Designates a compiler directive, such as %Rem or %If.

&
(ampersand)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as Long.
(2) When suffixed to either the identifier or the value being assigned in a
constant declaration, declares the constant’s data type as Long.
(3) Prefixes a binary (&B), octal (&O), or hexadecimal (&H) number.
(4) Designates the string concatenation operator in an expression.

continued

Chapter 1: Script and Statement Construction Rules 7

Character Usage

!
(exclamation
point)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as Single.
(2) When suffixed to either the identifier or the value being assigned in a
constant declaration, declares the constant’s data type as Single.

#
(pound sign)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as Double.
(2) When suffixed to either the identifier or the value being assigned in a
constant declaration, declares the constant’s data type as Double.
(3) When prefixed to a literal number or a variable identifier, specifies a file
number in certain file I/O statements and functions.

@
(at sign)

(1) When suffixed to the identifier in a variable declaration or an implicit
variable declaration, declares the data type of the variable as Currency.
(2) When suffixed to either the identifier or the value being assigned in a
constant declaration, declares the constant’s data type as Currency.

*
(asterisk)

(1) Specifies the string length in a fixed-length string declaration.
(2) Designates the multiplication operator in an expression.

()
(parentheses)

(1) Groups an expression, controlling the order of evaluation of items in the
expression.
(2) Encloses an argument in a sub or function call that should be passed by
value.
(3) Encloses the argument list in function and sub definitions, and in calls to
functions and subs.
(4) Encloses the array bounds in array declarations, and the subscripts in
references to array elements.
(5) Encloses the list tag in a reference to a list element.

.
(period)

(1) When suffixed to a type variable or an object reference variable, references
members of the type or object.
(2) As a prefix in a product object reference, designates the selected product
object.
(3) As a prefix in an object reference within a With statement, designates the
object referred to by the statement.
(4) Designates the decimal point in a floating-point literal value.

..
(two periods)

Within a reference to a procedure in a derived class that overrides a procedure
of the same name in a base class, specifies the overridden procedure.

[]
(brackets)

Delimit names used by certain Lotus products to identify product objects.

continued

8 LotusScript Language Reference Guide

Character Usage

,
(comma)

(1) Separates arguments in calls to functions and subs, and in function and sub
definitions.
(2) Separates bounds in array declarations, and subscripts in references to array
elements.
(3) Separates expressions in Print and Print # statements.
(4) Separates elements in many other statements.

;
(semicolon)

Separates expressions in Print and Print # statements.

’
(apostrophe

Designates the beginning of a comment. The comment continues to the end of
the current line.

_
(underscore)

When preceded by at least one space or tab, continues the current line to the
next line.

White space is needed primarily to separate names and keywords, or to make the use
of a special character unambiguous. It is not needed with most non-alphanumeric
operators. It is sometimes incorrect to use white space around a special character, such
as a data type suffix character appended to a name.

Scope of declarations
Scope is the context in which a variable, procedure, class, or type is declared. Scope
affects the accessibility of an item’s value outside the context in which it was declared.
For example, variables declared within a procedure are typically not available outside
of the scope of that procedure.

LotusScript recognizes three kinds of scope:

Module scope

Procedure scope

Type or class scope

Name conflicts and shadowing
Two variables or procedures with the same name cannot be declared in the same
scope. The result is a name conflict. The compiler reports an error when it encounters a
name conflict in a script.

Variables or procedures declared in different scopes can have the same name. When
such a name is used in a reference, LotusScript interprets it as referring to the variable
or procedure declared in the innermost scope that is visible where the reference is
used.

Chapter 1: Script and Statement Construction Rules 9

A variable or procedure of the same name declared at a scope outside of this
innermost visible scope, is not accessible. This effect is called shadowing: the outer
declaration(s) of the name are shadowed, or made invisible, by the inner declaration.

Module scope
A variable is declared in module scope if the declaration is outside of any procedure,
class, or type definition in the module. The variable name has a meaning as long as the
module is loaded.

The variable name is visible anywhere within the module. Everywhere within the
module, it has the meaning specified in the declaration, except within a procedure,
type, or class where the same variable name is also declared.

The variable is Private by default and can be referred to only within the module that
defines it. A variable can be referred to in other modules only if it is declared as Public
and the other modules access the defining module with the Use statement.

The following situations result in a name conflict across modules:

Two Public constants, variables, procedures, types, or classes with the same name

A Public type with the same name as a Public class

A Public module-level variable with the same name as a Public module-level
constant or procedure

A Public module-level constant with the same name as a Public module-level
procedure

The following situations result in a name conflict within a module:

A type with the same name as a class

A module-level variable with the same name as a module-level constant or
procedure

A module-level constant with the same name as a module-level procedure

Procedure scope
A variable is declared in procedure scope if it is declared within the definition of a
function, a sub, or a property. Only inside the procedure does the variable name have
the meaning specified in the declaration. The variable name is visible anywhere within
the procedure.

Ordinarily, the variable is created and initialized when the procedure is invoked, and
deleted when the procedure exits. This behavior can be modified with the Static
keyword:

If the variable is declared with the Static keyword, its value persists between calls
to the procedure. The value is valid as long as the module containing the
procedure is loaded.

10 LotusScript Language Reference Guide

If the procedure itself is declared Static, the values of all variables in the procedure
(whether explicitly or implicitly declared) persist between calls to the procedure.

The following situations result in a name conflict within a procedure:

Two procedure arguments with the same name

Two labels with the same name

Two variables with the same name

A procedure argument and a variable with the same name

A function that contains a variable or argument of the function name

A property that contains a variable of the property name

Type or class scope
A variable is declared in type or class scope if it is declared within the definition of a
type or a class (for classes, it must additionally be declared outside the definition of a
procedure). The variable is called a member variable of the type or class.

Type member variables: A type member variable is created and initialized when an
instance of that type is declared. It is deleted when the type instance or instance
variable goes out of scope.

The visibility of a type member variable is automatically Public.

Class member variables: A class member variable is created and initialized when an
instance of that class is created. It is deleted when the object is deleted.

Each class member variable can be declared Public or Private. A Private member
can only be referred to within the class or its derived classes; class member
variables are Private by default.

The visibility of a type member variable (which is always Public) and of a Public class
member variable depends, for any particular type or object, on the declaration of the
instance variable that refers to that instance:

If the instance variable is declared Private, then the member variable is visible only
in the owning module.

If the instance variable is declared Public, then the member variable is visible
wherever the instance variable is visible. It can be referred to in the other modules
where the module that owns this instance variable is accessed with the Use
statement.

The following situations result in a name conflict within a type:

Two type members with the same name

The following situation results in a name conflict within a class:

Two class members (variables or procedures) with the same name

Chapter 1: Script and Statement Construction Rules 11

Implicit declaration of variables
A name is implicitly declared if it is used (referred to) when it has not been explicitly
declared by a Dim statement, and also has not been declared as a Public name in
another module that is used by the module where the name is referred to.

LotusScript declares the name as a scalar variable, establishing its data type by the
following rules:

If the name is suffixed by a data type suffix character, that determines the variable
data type

If no data type suffix character is specified in the first use of the name, the data
type is determined by the applicable Deftype, if any

If there is no suffix character and no applicable Deftype, the variable is of type
Variant

If a variable is implicitly declared, it must be used exactly as it first appears: either
with or without the data type suffix character.

Once a variable has been implicitly declared, you cannot explicitly declare it in the
same scope.

An implicit declaration cannot be used to override an existing declaration of the same
variable in an outer scope.

Examples: Implicit declaration of variables

Example 1
penguint = 3 ' Implicit declaration of penguint, assuming
 ' penguint has not been previously declared.
 ' Data type is Variant, assuming
 ' there is no Deftype statement specifying the
 ' data type of names beginning with letter p.

Example 2
penguint% = 3 ' Implicit declaration of penguint.
 ' Data type suffix character %
 ' declares data type as Integer.
Print penguint% ' Prints 3
Print penguint ' Error. Since penguint was implicitly declared
 ' with suffix character %, all references must
 ' specify penguint%, not penguint.

12 LotusScript Language Reference Guide

Data type conversion
LotusScript implicitly converts data from one type to another in the situations
described in the following paragraphs.

You can also convert data types explicitly using the functions CCur, CDat, CDbl, CInt,
CLng, CSng, CStr, and CVar.

Numeric operations
When numeric values with different data types are used in a numeric operation,
LotusScript converts the values to the same data type for evaluation.

In general, LotusScript converts a data type earlier in this ordering to a data type later
in this ordering: Integer, Long, Single, Double, Currency. For example, in an operation
with one Integer operand and one Double operand, LotusScript converts the Integer
value to a Double before evaluating the expression.

Specific rules for conversion in operations are detailed in the documentation of the
individual operators.

Argument passing
When a numeric argument is passed by value to a procedure, LotusScript tries to
convert the value if it is not of the data type that the procedure expects. If the value is
too large to fit in the expected data type, the operation generates an error.

When a numeric argument is passed by reference to a procedure, the data type of the
reference must match that of the declared argument, unless the declared argument is
of type Variant.

Variant variables
LotusScript does not routinely convert numbers to strings or vice versa. However,
when a value is contained in a Variant variable, LotusScript tries to convert the value
to a number or a string, depending on the context.

For example, the Abs built-in function requires a numeric argument. If you pass the
string value “-12” in a String variable as an argument to the Abs function, it generates
an error. If you pass the string value in a Variant variable, LotusScript converts it to
the integer value -12.

Chapter 1: Script and Statement Construction Rules 13

Constants
LotusScript provides several built-in constants that you can use in your scripts. These
are described in the following table.

LotusScript predefines other constants in the file lsconst.lss. To include this in your
scripts, use the %Include directive.

Constant Description

NULL Represents unknown or missing data. Only Variant variables can take the
NULL value.
To test a variable for the NULL value, use the IsNull function.
You can use the NULL value to represent errors in your script, or the absence
of a result. The result of an expression containing a NULL operand is typically
NULL. Many built-in functions return NULL when they are passed a NULL
value.

NOTHING The initial value of an object reference variable. As soon as you assign an
object to the variable, the variable no longer contains NOTHING. When the
object is deleted, the value of the variable returns to NOTHING.
You can explicitly assign the value NOTHING to an object reference variable.
To test a variable for the NOTHING value, use the Is operator.

True The Boolean value TRUE, which evaluates to the numeric value -1. This value
can be returned by a comparison or logical operation. In an If, Do, or While
statement, which tests for TRUE or FALSE, any nonzero value is considered
TRUE.

False The Boolean value FALSE, which evaluates to the numeric value 0. This value
can be returned by a comparison or logical operation.

PI The ratio of the circumference of a circle to its diameter.

LotusScript also includes an internal value named EMPTY. This is the initial value of a
Variant variable. If converted to a string, it is the empty string (“”). If converted to a
number, it is 0 (zero).

To test a variable for the EMPTY value, use the IsEmpty function.

There is no keyword to represent EMPTY.

14 LotusScript Language Reference Guide

Chapter 2
Procedures

Procedures are named sections of a script that you can invoke by name. A procedure
in LotusScript takes the form of a function, a sub, or a property.

A Function statement defines a function. The Function statement also declares the
function name and the data type of its return value; and the types of the function
parameters, if any.

A sub is defined by a Sub statement. The statement also declares the sub name, and
the data types of the sub parameters.

A property is defined by either or both of a Property Get statement and a Property Set
statement. The defining statement also declares the property name and the data type
of the property. A property has no parameters.

A function returns a value; a sub does not. A property has a value.

Any procedure can be forward declared. The forward declaration enables the
procedure to be used before the procedure is defined.

The default data type of any function or sub parameter, and of a function’s return
value, is Variant.

Examples: Defining procedures
' Define the function TestFunc and the sub TestSub.

Function TestFunc (X As Integer, Y As Integer) As Integer
 TestFunc = X * Y
End Function

Sub TestSub (X As Integer, Y As Integer)
 Print X * Y
End Sub

' Call the function TestFunc and the sub TestSub.
Print TestFunc(3, 4) ' Prints 12
TestSub 3, 4 ' Prints 12

TestFunc is a function that multiplies its two Integer arguments and returns the
product as an Integer. TestSub multiplies its two Integer arguments and prints the
product.

15

Declaring function and sub parameters
The parameters declared in a function or sub definition specify the types of the data to
be passed as arguments to the function or sub when you invoke it.

Syntax
[ByVal] argument [() | List] [As dataType]

The elements of a parameter declaration in a parameter list are described in the
following table.

Element Description

ByVal Optional. A ByVal argument is passed by value. If this is omitted, the
argument may be passed by reference.

argument The name of the argument.

() | List Optional. Parentheses mean the argument is an array variable. List means the
argument is a list variable.

dataType Optional. The data type of the argument.

ByVal means that the value assigned to argument when the function or sub is called is
a local copy of a value in memory rather than a reference to that value. You can omit
the clause As dataType and use a data type suffix character to declare the variable as
one of the scalar data types. If you omit this clause and argument doesn’t end in a data
type suffix character (and isn’t covered by an existing Deftype statement), its data type
is Variant.

Enclose the entire parameter list in parentheses, with a comma (,) following each
parameter declaration except the last. The parameter list is written right after the
function or sub name in the function or sub definition. (It may be preceded by white
space.)

A function or sub can be defined with no parameters.

Examples: Declaring function and sub parameters
Function DCal (ByVal x As Single, y() As String, z$) As Integer
 ' ...
End Function

The function DCal takes three parameters:

x, a Single argument that is passed by value

y, a String array argument

z, a String argument as declared by the $ data type suffix character

DCal returns an Integer value to the function caller.

16 LotusScript Language Reference Guide

Passing arguments by reference and by value
LotusScript provides two ways to pass arguments to functions and subs:

By reference: A reference to the argument is passed. The function operates on the
argument.

By value: The value of the argument is copied into memory and the copy is
passed. The function operates on the copy.

Whether an argument is passed by reference or by value depends on the data type and
other characteristics of the argument:

Arrays, lists, type instances, and objects must be passed by reference

Constants and expressions are automatically passed by value

Other arguments can be passed either by reference or by value, as specified in
either the definition or the call of the function or sub. They are passed by reference
unless the definition or the call specifies passing by value (see below).

Passing by reference
A variable passed to a function or sub by reference must have the same data type as
the corresponding parameter in the function definition, unless the parameter is
declared as Variant or is an object variable. An object variable can be passed to an
object of the same class, an object of a base class, or an object of a derived class. In the
latter case, the base class must contain an instance of the derived class or a class
derived from the derived class.

A variable passed to a function or sub by reference, and modified by the function or
sub, has the modified value when the function or sub returns.

Passing by value
LotusScript provides two ways for you to specify that a function or sub argument
should be passed by value:

Use the ByVal keyword in the argument’s declaration in the function or sub
definition.

Use this method if you want the argument to be passed by value whenever the
function or sub is called.

Insert parentheses around the argument in the function or sub call.

Use this method if you want to control whether an argument is passed by
reference or by value at the time when the function or sub is called.

A value passed to a function or sub is automatically converted to the data type of the
function or sub argument if conversion is possible. A Variant argument will accept a
value of any built-in data type; and any list, array, or object.

Chapter 2: Procedures 17

If a variable is passed by value to a function or sub, and the argument is modified by
the function or sub, the variable has its original value after the function or sub returns.
The function or sub operates only on the passed copy of the variable, so the variable
itself is unchanged.

Examples: Passing arguments by reference and by value

Example 1
' Define a function FOver with three Integer parameters:
' a variable, an array variable, and a list variable.
Function FOver(a As Integer, b() As Integer, c List As Integer)
 ' ...
End Function

Dim x As Integer, y As Integer
Dim y(5) As Integer
Dim z List As Integer

' Call the function FOver correctly, with arguments
' whose types match the types of the declared parameters.
Call FOver(x, y, z)

Example 2
' Define a function GLevel with one Integer list parameter.
Function GLevel (b List As Integer)
 ' ...
End Function

Dim z List As Integer

' Call the function GLevel incorrectly, passing a list
' argument by value.
Call GLevel ((z))
' Output:
' Error: Illegal pass by value: Z
' A list argument cannot be passed by value.

Example 3
' Define a function FExpr with two Integer parameters;
' the second must always be passed by value.
Function FExpr(a As Integer, ByVal b As Integer)
 ' ...
End Function

Dim x As Integer, w As Integer
Dim y(5) As Integer
Dim z List As Integer

' Call the function FExpr correctly with two Integer arguments:
' a constant and a variable.

18 LotusScript Language Reference Guide

Call FExpr(TRUE, x)
' Both arguments are passed by value:
' the first, TRUE, because it is a constant;
' and the second, x, because of the ByVal declaration in FExpr.

' The following call produces two error messages:
Call FExpr(TRUE, y)
' Output:
' Error: Illegal pass by value: Y
' Error: Type mismatch on: Y
' Because Y is an array variable, it is an illegal argument to pass by
' value and its type does not match the declared parameter type.

Example 4
' When a function modifies one of its parameters,
' the argument value is changed after the function returns if the
' argument was passed by reference. The value is not changed
' if the argument was passed by value.

Function FTRefOrVal(a As Integer) As Integer
 FTRefOrVal = a + 1
 a = a + 5
End Function

Dim x As Integer, y As Integer

' Show results of passing argument by reference.
Print x, FTRefOrVal(x As Integer), x
' Output:
' 0 1 5
' The value of x was changed from 0 to 5 in FTRefOrVal.

' Show results of calling with argument by value
' (note the extra parentheses around y%).
Print y, FTRefOrVal((y)), y
' Output:
' 0 1 0
' The value of the copy of y was changed from 0 to 5
' in FTRefOrVal. The value of y is unchanged.

Returning a value from a function
Within the body of a function definition, the function name automatically names a
local variable. The data type of this variable is the same as the declared (or default)
data type of the function’s return value.

When the function is called, the variable is initialized to the LotusScript initial value
for a variable of that data type. The variable value may be assigned one or more times

Chapter 2: Procedures 19

during execution of the function. The return value of the function is the value of the
variable when the function returns from the function call.

Depending on how the function is called, the return value may be used or not after the
function call returns.

Examples: Returning a value from a function
' Define the function TestFunc.

Function TestFunc (X As Integer, Y As Integer) As Integer
 TestFunc = X * Y
End Function

Dim holdVal As Integer
' Call the function TestFunc and use the return value.
holdVal = -1 + TestFunc(3, 4) ' Set holdVal to 11.

' Call the function TestFunc and don't use the return value.
Call TestFunc 3, 4 ' Return the value 12 (unused).

Recursive functions
A user-defined function can call itself. The function is called a recursive function. A
call to itself from within the function is called a recursive call.

The definition of a recursive function must provide a way to end the recursion.

The depth of recursion is limited by available memory.

Examples: Recursive functions

Example 1
Public Function Factorial (n As Integer) As Long
 If n <= 1 Then ' End the recursive calling chain.
 Factorial = 1
 Else
 Factorial = n * Factorial (n - 1)
 End If
End Function

Print Factorial(2) ' Prints 2
Print Factorial(3) ' Prints 6
Print Factorial(5) ' Prints 120

20 LotusScript Language Reference Guide

Example 2
When recursively calling a function that has no arguments, you must insert empty
parentheses following the function name in the call if you use the function’s return
value. The parentheses show that the function is being called. The function name
without parentheses is interpreted as the variable that represents the return value of
the function.

Function Recurse As Integer
 ' ...
 ' Call Recurse and assign the return value to x.
 x = Recurse()
 ' ...
 ' Assign the current value of the Recurse variable to x.
 x = Recurse
 ' ...
End Function

Chapter 2: Procedures 21

Chapter 3
Calling External C-Language Functions

LotusScript allows you to call external C language functions.

You implement external C functions inside a named library module. Under
Windows®, this is a Dynamic Link Library (DLL). Such a library module generally
contains several C functions.

In order to call C functions contained in an external library module from LotusScript,
you must use the Declare statement for external C calls, for each function you want to
call.

To avoid declaring external library functions in multiple scripts, use Declare Public
statements in a module which remains loaded.

Under Windows 3.1, all external functions must use the Pascal calling convention. The
following table shows the function calling convention that function calls from
LotusScript to external functions must use on each LotusScript-supported platform.

Platform Calling convention

Windows 3.1 Pascal

Windows 95, Windows NT™ STDCALL

OS/2® _System

UNIX® CDECL

Macintosh® CDECL

If you are using Windows 95 or Windows NT, the name of an exported DLL function
is case sensitive. However, LotusScript automatically converts the name to uppercase
in the Declare statement. To successfully call an exported DLL, use the Alias clause in
the Declare statement to specify the function name with correct capitalization.
LotusScript leaves the alias alone.

Examples: Calling external C language functions
' The following statements declare an exported DLL with an alias
' (preserving case sensitivity), and then call that function.
Declare Function DirDLL Lib "C:\myxports.dll" _
 Alias "_HelpOut" (I1 As Long, I2 As Long)
DirDLL(5, 10)

23

Passing arguments to C functions
Arguments to C functions are passed either by reference or by value.

As described in the following, the rules for determining which types of data are legal
arguments to C functions, and which arguments are passed by reference, and which
passed by value, differ slightly from the rules for passing arguments to LotusScript
functions and subs.

Passing arguments by value
When an argument is passed by value, the C function receives a copy of the actual
value of the argument.

By default, arguments to C functions are passed by reference. To specify that an
argument should be passed by value to a C function, you can use the same methods as
for a LotusScript function or sub.

To specify that the argument should always be passed by value, use the keyword
ByVal preceding the parameter declaration for that argument in the Declare
statement for the C function.

To specify that the argument should be passed by value in a particular call to the
function, use parentheses around the argument in the call.

The C routine cannot change the value of an argument passed by value, even if the C
routine defines the argument as passed by reference.

The following table shows the data types that can be passed by value, and how the
data is passed to the C function.

Data type How this data type is passed by value to a C function

Integer A 2-byte Integer value is pushed on the call stack.

Long A 4-byte Long value is pushed on the call stack.

Single A 4-byte Single value is pushed on the call stack.

Double An 8-byte Double value is pushed on the call stack.

Currency An 8-byte value, in the LotusScript internal Currency format, is pushed on
the call stack.

String A 4-byte pointer to the characters is pushed on the call stack. The C function
should not write to memory beyond the end of the string.

If the call is made with a variable, changes to the string by the C function will
be reflected in the variable. Note that this is not true for a string argument to
a LotusScript function declared as ByVal.

Variant A 16-byte structure, in the LotusScript format for Variants, is pushed on the
call stack.

continued

24 LotusScript Language Reference Guide

Data type How this data type is passed by value to a C function

Product object A 4-byte product object handle is pushed on the call stack.

Any The number of bytes of data in the argument is pushed on the call stack. For
example, if the argument contains a Long value, then the called function
receives 4 bytes. Note: It is unknown at compile time how many bytes the
function will receive at run time.

No other data types — arrays, lists, fixed-length strings, types, classes, or voids — can
be passed by value. It is a run-time error to use these types as arguments.

Any of the data types that can be passed by value can also be passed by reference.

If a parameter is declared as type Any and the corresponding argument is passed by
value, then any of the other data types listed in the preceding table can be used as that
argument. The argument is passed as if it were specified as a ByVal argument of that
other data type.

The argument ByVal &0 specifies a null pointer to a C function, when the argument is
declared as Any.

Passing arguments by reference
When an argument is passed by reference, the C function receives a 4-byte pointer to
the value area.

In some cases, the actual stack argument is changed to a publicly readable structure. In
all cases, the data may be changed by the called function, and the changed value is
reflected in LotusScript variables and in the properties of product objects. For such
properties, this change occurs directly after the call has returned.

The following table lists the LotusScript data structures that can be passed by
reference. The called C function receives a 4-byte pointer to these structures as the
argument.

Data type How this data type is passed to a C function

String A 4-byte pointer to the string in the LotusScript internal string
format.

Product object
(including a collection)

A 4-byte product object handle.

Array A 4-byte pointer to the array stored in the LotusScript internal array
format.

Type A 4-byte pointer to the data in the type instance. (This may include
strings as elements.)

User-defined object A 4-byte pointer to the data in the object. (This data may include
strings, arrays, lists, product objects, etc., as elements.)

Chapter 3: Calling External C-Language Functions 25

Note that a list cannot be passed either by value or by reference. A list is illegal as an
argument to a C function.

Examples: Passing arguments to C functions
Declare Sub SemiCopy Lib "mylib.dll" _
 (valPtr As Integer, ByVal iVal As Integer)
Dim vTestA As Integer, vTestB As Integer
vTestA = 1
vTestB = 2

SemiCopy vTestA, vTestB

' The C function named SemiCopy receives a 4-byte pointer to a 2-byte
' integer containing the value of vTestA, and a 2-byte integer
' containing the value of vTestB.
' Since vTestA is passed by reference, SemiCopy can dereference the
' 4-byte pointer and assign any 2-byte integer to that location.

' When control returns to LotusScript, vTestA contains the modified
' value. Since vTestB was passed by value, any changes made by the
' C function are not reflected in vTestB after the function call.

String arguments to C functions
When a string is passed by reference, LotusScript passes a 4-byte pointer to a copy of
the string in an internal buffer allocated in memory. The C function cannot safely
modify the contents of this buffer unless the function is written specifically for
LotusScript.

When a string is passed by value, LotusScript passes a 4-byte pointer to a
Null-terminated string. The C function can modify the contents of this string, as long
as it doesn’t lengthen the string. Any changes to the string will be reflected in the
script variable on return from the function.

You can specify the use of non-platform-native characters as arguments and return
values using the LMBCS and Unicode keywords:

Unicode specifies a Unicode string of two-byte characters (words) using the
platform-native byte order.

LMBCS specifies a LMBCS optimization group 1 string (multibyte characters).

For fixed-length strings passed by value, the string is first converted to a
Null-terminated string. The C function can modify this string; but the string cannot be
lengthened.

26 LotusScript Language Reference Guide

The following table summarizes the behavior of string arguments to a C function. It
assumes a C function named cF with a string argument, declared by a Declare
statement. The first column lists the ways you can declare the string argument of cF,
while the second and third columns list the ways you can call cF.

Declaration for the
string argument in the
Declare statement for the
C function cF

How the arg is passed when cF is
called in one of these forms:
cF ((arg))
cF (ByVal (arg))

How the arg is passed when cF is
called in one of these forms:
cF (arg)
cF (ByVal arg)

ByVal String As a 4-byte pointer to a copy
of arg’s character bytes. If cF
changes the bytes, the value of
arg does not change. If cF
writes past the end of the
string, it may be fatal to
LotusScript.

As a 4-byte pointer to arg’s
character bytes. If cF changes the
bytes, the value of arg changes. If
cF writes past the end of the string,
it may be fatal to LotusScript.

String As a 4-byte pointer to a copy
of the string in the LotusScript
internal string format. If
cFchanges the bytes, the value
of arg does not change.

As a 4-byte pointer to the string in
the LotusScript internal string
format. cF can change the bytes
only by dereferencing the existing
string and adding a reference to
the new one.

Array, type, and object arguments to C functions

Passing arrays as arguments
Because LotusScript stores an array in a private format, you can pass an array by
reference to a C function only if the function is specifically written for LotusScript. The
following example shows how to declare and implement a C function that takes a
LotusScript array of long values.

In LotusScript:

Declare Function LSArrayArg Lib "MYDLL" (ArrLng () As Long) As Long
Dim MyArr(0 to 5) As Long
Print LSArrayArg(MyArr)

In C:

long C_CALL_TYPE LSArrayArg(LSsValueArray *pLSArr)
{
 long *pData=pLSArr->Data; //pData points to first array element
 return pData[0]+pData[1]; //Sum first 2 array elements
}

Chapter 3: Calling External C-Language Functions 27

Or:

long C_CALL_TYPE LSArrayArg(long **pLSArr)
{
 long *pData=*pLSArr; //pData points to first array element
 return pData[0]+pData[1]; //Sum first 2 array elements

C_CALL_TYPE is the calling convention: Pascal, STDCALL, _System, or CDEL.

Other C functions may require an array, such as the Windows function SetBitmapBits.
You can still pass the array by passing the first array element by reference with the
Any keyword, as shown in the following example.

In LotusScript:

Declare Function FncArrayArg(A As Any) As Long
Dim MyArr(0 to 5) As Long
Print FncArrayArg(MyArr(0))

In C:

long C_CALL_TYPE FncArrayArg(long *pArr)
{
 return pArr[0]+pArr[1]; //Sum first 2 array elements
}

Passing types as arguments
Some C functions can require a data structure as a parameter. An example is the
Windows API function GetBrushOrgEx, which requires a pointer to a point structure.
You can define a suitable data type, such as Point, and use that type definition to
declare the C function. Since type variables are passed by reference, the C function
receives a 4-byte pointer to the storage for the type variable.

LotusScript allows you to specify an optional string type, Unicode or LMBCS, on a
type parameter in the Declare statement for a C function. The declarations have this
form, for a function UniTest with one type argument and a function LMBCSTest with
one type argument, where t1 is a user-defined data type:

Declare Function UniTest Lib "Unilib" (typArg As Unicode t1) As Long
Declare Function LMBCSTest Lib "lmbcslib" (typArg As LMBCS t1) As Long

In the first example, all strings (fixed- and variable-length) in type t1 and any of its
nested types will be passed as Unicode strings. In the second example, all strings in
type t1 (fixed- and variable-length) and any of its nested types will be passed as
LMBCS strings.

If Unicode or LMBCS is not specified in this way, the default is to pass all strings in a
type argument in the platform-native character set.

Strings contained in Variants in the type will not be affected.

28 LotusScript Language Reference Guide

Note that this change is incompatible with LotusScript Release 2, because translation
to platform will be invoked by default on types containing strings (previously, these
strings would have been passed as platform-native character set strings). This default
behavior is compatible with LotusScript Release 2.

Also, in the case where the type contains a fixed-length non-Unicode string, the entire
structure must be copied and its size adjusted. The size of the structure will be smaller
(each fixed-length string will contain half as many bytes when translated to platform
or LMBCS, since the length of the string is fixed and must be preserved). This implies
that the string may be truncated (lose information) because a Unicode string of length
20 may require more than 20 bytes to represent in platform (DBCS). The loss cannot
occur with variable-length strings, since they are represented as pointers.

LotusScript aligns type members to their natural boundaries for cross-platform
transportability:

Data type Unicode Platform

Integer 2 bytes 2 bytes

Long 4 bytes 4 bytes

Single 4 bytes 4 bytes

Double 8 bytes 8 bytes

Currency 4 bytes 4 bytes

String 2 bytes 1 byte

Variant 8 bytes 8 bytes

The resulting alignment will not match the platform-specific alignment on Windows
3.1 and Windows 95. For example, consider this type definition:

Type telMet
 A As Integer
 B As Long
End Type

LotusScript will align the type member B on a 4-byte boundary, while the default
alignment in Windows 3.1 will be on a 2-byte boundary.

Chapter 3: Calling External C-Language Functions 29

Passing objects as arguments
When an object is passed to a C function, the function receives a 4-byte pointer to the
unpacked data in the object. Because the data may include pointers to strings, arrays,
lists, and product objects, it is unlikely that the C function has full knowledge of the
internal structure of the object. You should use a C function to manipulate only the
simplest objects.

Examples: Array, type, and object arguments to C functions

Example 1
' The following statements declare the C function SetBitmapBits.
' Its 3rd argument is an array argument. This is declared as type Any.
' In the function call, passing bitArray(0) passes the array
' by reference.
Declare Sub SetBitmapBits Lib "_privDispSys" _
 (ByVal hBM As Integer, ByVal cBytes As Long, pBits As Any)
' ...
SetBitmapBits(hBitmap, cBytesInArray, bitArray(0))

Example 2
' Define a Point type.
Type Point
 xP As Integer
 yP As Integer
End Type

' Call the C function GetBrushOrgEx with an argument of type Point.
Declare Function GetBrushOrgEx Lib "_pointLib" _
 (ByVal hDC As Integer, pt As Point) As Integer
Dim p As Point
' ...
GetBrushOrgEx(hDC,p)

30 LotusScript Language Reference Guide

Return values from C functions
The data type of a C function can be established by explicit data type declaration in the
Declare statement, by a data type suffix character on the function name in the Declare
statement, or by an applicable Deftype statement. One of these must be in effect.
Otherwise the data type of the return value defaults to Variant, which is illegal for a C
function.

The following table shows which data types are legal as C function return value types.

 Data type Legal as C function return type?

Integer Yes

Long Yes

Single Yes

Double Yes

Currency No

String Yes, except for fixed-length string

Variant No

Product object Yes (as a 4-byte object handle of type Long)

User-defined object Yes

Type instance No

Any No

Array No

List No

Chapter 3: Calling External C-Language Functions 31

Chapter 4
File Handling

The following table describes the three kinds of files in LotusScript: sequential,
random, and binary.

File type Description

Sequential The simplest and most common. It is the equivalent of a common text file.
Data in sequential files is delimited with the platform’s end-of-line indicator
(carriage return, line feed, or both). The file is easily read with a text editor.

Random The most useful for structured data. It is not readable except through
LotusScript programs.

Binary The most complex. It requires detailed programming to manipulate, because
access is defined at the level of bytes on the disk.

To store and manipulate data in a file, the file must be opened first. When a file is
opened in LotusScript, it is associated with a file number, an integer between 1 and
255. This number is used in most input and output operations to indicate which file is
being manipulated. (A few file operations use the file name instead of a number.) The
association between file name and file number remains until LotusScript closes the file.

Sequential files
A sequential file is an ordinary text file. Each character in the file is assumed to be
either a text character or some other ASCII control character such as newline.

Sequential files provide access at the level of lines or strings of text: that is, data that is
not divided into a series of records. However, a sequential file is not well suited for
holding numbers, because a number in a sequential file is written as a character string.

33

Opening sequential files
A sequential file can be opened in one of three modes: input, output, or append. After
opening a file, you must close it before opening it in another mode.

Use the Open statement in the following form to open a sequential file:

Open fileName [For {Input | Output | Append}] As fileNumber [Len = bufferSize]

Sequential input mode (using the keyword Input in the Open statement) signifies
read-only access to the file, while Output signifies write-only. Append means
write-only, but starting at the end of the file. Access in all three sequential modes is
one line at a time.

The bufferSize supplied to the Open statement is the number of characters to be loaded
into the internal buffer before being flushed to disk. This is a performance-enhancing
feature: the larger the buffer, the faster the I/O. However, larger buffer sizes require
more memory. The default buffer size for sequential files is 512 bytes.

When you try to open a file for sequential input, the file must already exist. If it
doesn’t, an error is generated. When you try to open a nonexistent file in output or
append mode, the file is created automatically.

Writing to sequential files
To write the contents of variables to a sequential file (opened in output or append
mode), use the Print # statement. For example:

Print #idFile, infV, supV

This writes the contents of infV and supV (separated by tabs, because of the commas
in the statement) to the file numbered idFile. The parameters to Print can be strings or
numeric expressions; they are converted to their string representations automatically.

The Write # statement also can write output to files. It generates output compatible
with the Input # statement by separating each pair of expressions with a comma, and
inserting quotation marks around strings. For example, consider these statements:

Dim supV As Variant, tailV As Variant
supV = 456
tailV = NULL
Write #idFile, "Testing", 123, supV, tailV

The statements generate the following line in the file numbered idFile:

"Testing",123,456,#NULL#

34 LotusScript Language Reference Guide

Reading from sequential files
To read data from a sequential file, open the file in input mode. Then use the Line
Input # statement or the Input # statement, or the Input function, to read data from the
file into variables.

Line Input # reads one line of text from a file, up to an end-of-line. The end-of-line is
not returned in the string. For example:

Do Until EOF(idFile)
 Line Input #idFile, iLine
 Print iLine
Loop

These statements read a file one line at a time until end-of-file. The Print statement
displays the line and appends an end-of-line sequence.

The Input # statement can be used to read in data that was formatted and written with
the Write # statement. For example, suppose the file numbered idFile contained this
line:

"Testing",123,456,#NULL#

Then the following statements would read “Testing” into liLabel, 123 into infA, 456
into supA, and the value NULL into tailV:

Dim liLabel As String, tailV As Variant
Dim infA As Integer, supA As Integer
Input #idFile, liLabel, infA, supA, tailV

If you find that you are using Write # and Input # with sequential files often, you
should consider using a random file instead. Random files are better suited for
record-oriented data.

You can also use the Input function to read data from a sequential file. This function
takes the number of characters to read as an argument, and returns the characters. The
Input$ function returns a string to the caller. The Input function returns a Variant
variable.

For example, this example reads an entire file at once into a string variable:

Dim fulFile As String
fulFile = Input$(LOF(idFile), idFile)
' LOF returns the length of the file in characters.

Chapter 4: File Handling 35

Random files
A random file is made up of a series of records of identical length. A record can
correspond to a scalar data type, such as Integer or String. Or it may correspond to a
user-defined type, in which each record is broken down into fields corresponding to
the members of the type.

The default mode for opening files is random mode. Thus, if you don’t supply Binary
or one of the sequential keywords (Input, Output, or Append), random mode is
assumed.

Opening random files
Use the Open statement in the following form to open a random file:

Open fileName For Random As fileNumber [Len = recordLength]

Here, recordLength is the length of each record in the file. The default length is 128
bytes.

If the file does not exist, it is created.

Defining record types
Because records in a random file must all have the same length, strings in types should
be fixed-length. Otherwise, data read from the file can be incorrect. If a string copied
into a file record contains fewer characters than the record’s fixed length, the
remainder of the record is left unchanged. If a string is too long for a record, it is
truncated when written.

For simplicity, string fields inside the user-defined type should be fixed-length. If you
do use variable-length strings in your type, you must be sure that the Len part of the
Open statement specifies a length that is large enough to hold the longest strings you
wish to write to the file. Also, the Len function will not be able to give you a reliable
value for the length of the record. (You will need to estimate that.) You will also be
unable to navigate between records by omitting the record number in the Get and Put
statements.

User-defined types can be used to define compound records. For example:

Type emploRec
 id As Integer ' Integers are 2 bytes long
 salary As Currency ' Currency is 8 bytes
 hireDate As Double ' Dates are also 8 bytes
 lastName As String * 15 ' Fixed-length string of 30 bytes

36 LotusScript Language Reference Guide

 firstName As String * 15 ' Fixed-length string of 30 bytes
End Type

This record is 78 bytes long, so supply Len = 78 in the Open statement. The length of a
type can be determined at run time using the Len function. For example:

Dim recLen As Integer, idFile As Integer
Dim recHold As emploRec
idFile = 1 ' The file number to use for this
file
recLen = Len(recHold) ' The record length for this file
Open "DATA.TXT" For Random As idFile Len = recLen

Reading from random files
Use the Get statement to read from a random file into variables. This example reads
from the file numbered idFile, at record number 5, into the variable recHold:

' The record number to retrieve from the file
Dim posit As Integer
posit = 5
' The variable to read into
Dim recHold As emploRec
Get idFile, posit, recHold

Writing to random files
Use the Put statement to write to a random file. You can use Put to add new records to
a random file, or to replace records in a random file.

Put takes three parameters: the file number to access, the record number to access, and
a variable containing the data you wish to write. To replace a record in a random file,
simply supply its record number:

Dim posit As Integer
posit = 5
' Replace record 5 with the contents of recHold.
Put idFile, posit, recHold

To add new records to a random file, use a record number equal to one more than the
number of records in the file. To add a record to a file that contains 5 records, for
example, use a position of 6.

Chapter 4: File Handling 37

To delete a record from a random file, you can move each record following it “down”
by one position, thus overwriting the record you wish to delete. For example:

Dim tempRec As emploRec
For I = posit To lastRec - 1
 Get idFile, I + 1, tempRec
 Put idFile, I, tempRec
Next I

The problem with this technique is that it leaves a duplicate record at the end of the
file. A better approach is to create a new file and copy all the valid records from the
original file into the new file. Close the original file and then use the Kill statement to
delete it, then use the Name statement to rename the new file to the same name as the
original.

Binary files
Binary files are designed to provide the ultimate in control over the organization of
your data for both reading and writing. The drawback is that you must know exactly
how the file was written in order to read it properly. Though fewer functions and
statements are available to manipulate data in binary files than in sequential files or
random files, the binary file is also the most flexible.

Opening binary files
Use the Open statement in the following form to open a binary file:

Open fileName For Binary As fileNumber

If you include a record-length argument, it is ignored.

If the file does not exist, it is created, regardless of the access type supplied to the
Open statement.

Using variable-length fields
Unlike random files, binary files can hold variable-length records. Thus, strings do not
have to be fixed-length. However, you need to know the sizes of strings in order to
read them. It is good programming practice to assign a length field to each
variable-length record (each string) for this purpose. However, this is not necessary if
the string is a component of a user-defined type. In this case, LotusScript
automatically assigns a length field in the file to each variable-length string.

Binary access provides a byte-by-byte view of a file. A file appears to be a continuous
stream of bytes, which may or may not be alphanumeric characters.

38 LotusScript Language Reference Guide

Writing to binary files
To write to a binary file, use the Put statement in this form:

Put fileNumber, bytePosition, variableName

The bytePosition parameter is the position in the file at which to start writing. The first
byte in a file is at position 1; position zero is illegal, and specifying it results in an
error.

Reading from binary files
To read data from a binary file, use either the Get statement or the Input function.

The Get statement reads the correct number of bytes into any variable of known
length, such as a fixed-length string or an integer. For variable-length strings, the
number of characters read equals the current length of the string. (Note that this will be
zero for uninitialized variable-length strings.) Therefore you should first set the
current length to the length of the string to be read. If the string in the file is within a
user-defined type, the string length was stored by LotusScript with the string. If the
string is not within a user-defined type, then you must know the length
independently. For example, you can have stored the length as a separate field with
the string.

The Input function or the Input$ function can also be used to read data from a binary
file. The Input function is used in the form:

dataHold = Input (numBytes, fileNumber)

Here, dataHold is a Variant. (If the Input$ function were used instead of the Input
function, dataHold should be a String.) This function reads numBytes bytes from the
file and returns them in the variable dataHold.

Chapter 4: File Handling 39

Chapter 5
Error Processing

LotusScript recognizes two kinds of errors:

Compiler errors are errors that are found and reported when the compiler
attempts to compile the script. Common compiler errors are errors in the syntax of
a statement, or errors in specifying the meaning of names.

A compiler error prevents a script from being compiled. You need to correct any
such errors by revising the script source statements that generated the error, and
re-compiling the script, before the script can run.

Run-time errors are found when LotusScript attempts to execute the script. A
run-time error represents a condition that exists when the script is run, but could
not be predicted at compile time. Examples of run-time errors are attempting to
open a file that doesn’t exist, or attempting to divide a number by a variable with
a zero value.

Run-time errors prevent a script from running to normal completion. When a
run-time error occurs, script execution will end unless your script includes
statements to handle the error.

LotusScript recognizes many run-time errors, and identifies each with a name, a
number, and a standard message to describe it. Within a script, you can also define
your own run-time errors and attach the same kind of information to them.

Defining errors and error numbers
Every error recognized at run time has its own error number that identifies it. When a
recognized error happens during script execution, LotusScript records the error
number, and then proceeds as directed by an On Error statement that refers to that
number.

For example, you might write either one of these On Error statements to tell
LotusScript how to respond to an occurrence of error number 357:

On Error 357 GoTo apoc600
On Error 357 Resume Next

41

Error numbers are established in two ways:

By pre-definition in LotusScript

LotusScript recognizes many common errors, and has a built-in error number
associated with each one. The text file LSERR.LSS defines constants for each error;
the value of the constant is the error number. To make these available to your
script, include this file in your script with the statement:

%Include "LSERR.LSS"

By an Error statement in a script

This statement signals error number 357:

Error 357

When this statement is executed, LotusScript records the occurrence of error 357
and then proceeds as directed by an On Error 357 statement. This facility has two
uses:

You can use it to signal an error, give the error a number, and trigger error
processing for that error. This is how you augment the pre-defined errors with
errors and error processing specific to the needs of your script.

You can use it to simulate a pre-defined error. This is how you force
LotusScript to execute some error-processing code without depending on the
error to occur while other statements are executing. This is useful for testing the
error-processing logic in your script.

When referring in an On Error statement to a pre-defined error, you can use the
constant for the error, not the error number itself. For example, here are the statements
in LSERR.LSS that define the error numbers and constants for two common errors:

Public Const ErrDivisionByZero = 11 ' Division by zero
Public Const ErrIllegalFunctionCall = 5 ' Illegal function call

On Error statements then do not need to mention the numbers 11 and 5. Write the
statements in this form instead, making the script easier to read:

On Error ErrDivisionByZero ...
On Error ErrIllegalFunctionCall ...

Similarly, you can define constants for your own error numbers. Then the constant
names can be used instead of numbers in any Error statements and On Error
statements that refer to the error. For example:

Const ooBounds = 677 ' A specific out-of-bounds error
' ...
Error ooBounds
' ...
On Error ooBounds ...

42 LotusScript Language Reference Guide

Run-time error processing
A run-time error occurs either when LotusScript executes an Error statement, or when
executing some other statement results in an error. LotusScript then proceeds as
follows.

The error is recorded as the current error. LotusScript records the line number in the
script where the error occurred, the error number, and the error message associated
with that number, if any. Until an error handling routine is invoked for this error, or
another error is encountered, these are, respectively, the return values of the functions
Erl, Err, and Error$. (Exception: The Err statement can be used to reset the current
error number returned by the Err function.)

LotusScript then looks in the current procedure for an On Error statement associated
with this error: either an On Error n statement, where n is the error number; or an On
Error statement with no error number specified. If none is found, the search continues
in the procedure that called this procedure, if any; and so on. If no associated On Error
statement is found in any calling procedure, then execution ends and the associated
error message is displayed.

If an associated On Error statement is found, then:

If the On Error statement specifies Resume Next, execution continues in the
procedure that contains the On Error statement. Execution continues with the
statement following the statement that caused the error. (If the On Error statement
is in a calling procedure, then the procedure call is considered to have caused the
error; and all nested procedures are terminated before continuing execution.) The
error is considered handled, but the return values of the functions Erl, Err, and
Error$ are not reset.

If the On Error statement specifies GoTo label, then execution continues at the
statement labeled label. This must be in the same procedure as the On Error
statement.

In this case, the first Resume statement encountered after the labeled statement
ends the error processing. The error is considered handled:

The return values of the functions Erl, Err, and Error$ are reset to their initial
values: line number 0, error number 0, and the empty string (“”) as the error
message, respectively

Execution continues at the location specified by the Resume statement.

Chapter 5: Error Processing 43

Part 2
Language Elements

Chapter 6
Operators

The LotusScript operators are described in detail in the sections of this chapter. The
operators are grouped according to the kinds of operations they perform.

Operator order of precedence
The simplest expression is a language element that represents a value: a constant
literal, variable, function or property. You can build more complex expressions by
combining subexpressions with operators.

The rules for determining the value of an expression are governed by the order in
which the parts of an expression are evaluated. Operators with higher precedence are
evaluated before operators with lower precedence. Operators with the same
precedence are evaluated from left to right.

To override the normal order of evaluation in an expression, use parentheses.
Subexpressions in parentheses are evaluated before the other parts of the expression,
from left to right.

The following table summarizes the order of operator precedence. Operators on the
same line have the same precedence.

LotusScript has both binary and unary operators. Binary operators take two operands;
unary operators take one. The operands in the table are binary except where noted.

Operator Operation performed

^ Exponentiation

- (unary) Negation

* / Multiplication and division

\ Integer division

Mod Modulo division (remainder)

- + Subtraction and addition

& + String concatenation. To avoid ambiguity, use &. If an operand is a
Variant, + can be interpreted as addition rather than concatenation.

continued

45

Operator Operation performed

= <> >< <
<= =< > >=
=>

Numeric or string comparison

Like Pattern matching. Same precedence as comparison operators.

Not (unary) Logical negation (bit-wise)

And Logical and (bit-wise)

Or Logical or (bit-wise)

Xor Logical exclusive-or (bit-wise)

Eqv Logical equivalence (bit-wise)

Imp Logical implication

Is Object reference comparison

Examples: Operator order of precedence
' Arithmetic operators

Print 6 + 4 / 2 ' Prints 8
Print (6 + 4) / 2 ' Prints 5

Print -2 ^ 2 ' Prints -4
Print (-2) ^ 2 ' Prints 4

' Comparison operators

Print 5 < 3 ' Prints False
Print 5 > 3 ' Prints True

Print "Hello" = "Hel" & "lo" ' Prints True

Exponentiation operator
Raises a number to a power.

Syntax
number ^ exponent

Elements
number

Any numeric expression.

exponent
Any numeric expression. If number is negative, exponent must be an integer value.

Return value
The resulting data type is a Double or a Variant of type Double (DataType 5).

46 LotusScript Language Reference Guide

If either or both operands are NULL expressions, the result is a NULL.

Usage
Multiple ^ operators in a single expression are evaluated from left to right.

Examples: Exponentiation operator
Print 4 ^ 3 ' Prints 64
Print 4.5 ^ 3 ' Prints 91.125
Print -2 ^ 3 ' Prints -8
Print 2 ^ 3 ^ 2 ' Prints 64
' Use parentheses to change order of evaluation.
Print 2 ^ (3 ^ 2) ' Prints 512

Negation operator
Returns the negative value of a number.

Syntax
-numExpr

Elements
numExpr

Any numeric expression. An EMPTY operand (DataType 0) is considered a 0.

Return value
The result is of the same data type as numExpr. The data type of -v, where v has the
value EMPTY, is Long.

If numExpr is a NULL, the result is a NULL.

Examples: Negation operator
Dim x As Integer
x% = 56
Print -x% ' Prints -56

Multiplication operator
Multiplies two numbers.

Syntax
numExpr1 * numExpr2

Elements
numExpr1, numExpr2

Any numeric expressions. An EMPTY operand (DataType 0) is considered a 0.

Chapter 6: Operators 47

Return value
The result is a value whose data type in most cases is the same as that of the operand
whose data type is latest in this ordering: Integer, Long, Single, Double, Currency. For
example, if one operand is a Double and the other is a Long, then the data type of the
result is Double.

The exceptions are:

If numExpr1, numExpr2, or both are NULL expressions, the result is a NULL.

If numExpr1 and numExpr2 are both EMPTY, the result has DataType 2 (Integer).

When the result has a Variant data type of DataType 3 (Long), DataType 4
(Single), or DataType 7 (Date/Time) that overflows its legal range, it’s converted
to a Variant of DataType 5 (Double). When the result has a Variant of DataType 2
(Integer) that overflows its legal range, it’s converted to a Variant of DataType 3
(Long).

Examples: Multiplication operator
Dim x As Integer
x% = 2 * 3
Print x% * 3.4 ' Prints 20.4

Division operator
Divides two numbers and returns a floating-point result.

Syntax
numExpr1 / numExpr2

Elements
numExpr1, numExpr2

Any numeric expressions. An EMPTY operand (DataType 0) is considered a 0.

Return value
The resulting data type is a Double or a Variant of DataType 5 (Double).

If either or both operands are NULL expressions, the result is a NULL.

48 LotusScript Language Reference Guide

Examples: Division operator
This example contrasts ordinary division with integer division. Integer division
rounds, then divides, and then drops the fractional part. Note that because the
operands are rounded before division, the result may differ from the integer part of an
ordinary division operation.

Print 8 / 5 ' Prints 1.6
Print 8 \ 5 ' Prints 1
Print 16.9 / 5.6 ' Prints 3.01785714285714
Print 16.9 \ 5.6 ' Prints 2

Integer division operator
Performs integer division on two numbers and returns the result.

Syntax
numExpr1 \ numExpr2

Elements
numExpr1, numExpr2

Any numeric expressions. An EMPTY operand (DataType 0) is considered a 0.

Return value
The result is of data type Integer, Long, or Variant of type Integer (DataType 2) or
Long (DataType 3).

If either or both operands are NULL expressions, the result is a NULL.

Usage
LotusScript rounds the value of each operand to an Integer or Long value. Then
numExpr1 is divided by numExpr2 as an ordinary numerical division; and any
fractional part of the result is dropped.

Examples: Integer division operator
This example contrasts ordinary division with integer division. Integer division
rounds, then divides, and then drops the fractional part. Note that because the
operands are rounded before division, the result may differ from the integer part of an
ordinary division operation.

Print 8 / 5 ' Prints 1.6
Print 8 \ 5 ' Prints 1
Print 16.9 / 5.6 ' Prints 3.01785714285714
Print 16.9 \ 5.6 ' Prints 2

Chapter 6: Operators 49

Mod operator
Divides two numbers and returns the remainder.

Syntax
numExpr1 Mod numExpr2

Elements
numExpr1, numExpr2

Any numeric expressions. An EMPTY operand (DataType 0) is considered a 0.

Return value
The result is of data type Integer, Long, or Variant of type Integer (DataType 2) or
Long (DataType 3).

If either or both operands are NULL expressions, the result is a NULL.

Usage
The remainder operator divides numExpr1 by numExpr2 and returns the remainder.

The operands are rounded to Integer expressions before the division takes place.

Examples: Mod operator
Print 17 Mod 3 ' Prints 2
Print 16.9 \ 5.6 ' Prints 5

Addition operator
Adds two numbers.

Syntax
numExpr1 + numExpr2

Elements
numExpr1, numExpr2

Any numeric expressions. An EMPTY operand (DataType 0) is considered a 0.

Return value
When adding expressions of numeric data types, the result is a value whose data type
in most cases is the same as that of the operand whose data type is latest in this
ordering: Integer, Long, Single, Double, Currency. For example, if one operand is a
Double and the other is an Integer, then the data type of the result is Double.

50 LotusScript Language Reference Guide

The exceptions are:

When the resulting data type is a Variant of DataType 2 (Integer) that overflows
its legal range, the result is converted to a Variant of DataType 3 (Long).

If numExpr1 and numExpr2 are both EMPTY, the result has DataType 2 (Integer).

When the resulting data type is a Variant of DataType 3 (Long), DataType 4
(Single), or DataType 7 (Date/Time) that overflows its legal range, the result is
converted to a Variant of DataType 5 (Double).

Usage
LotusScript interprets the + operator as either addition or string concatenation,
depending on the data types of expr1 and expr2. The following table lists these
interpretations. The numeric data types are Integer, Long, Single, Double, Currency,
and (in a Variant variable only) Date/Time.

One expression Other expression Operation

Numeric Numeric Addition

Numeric String (Type mismatch error
occurs)

Numeric Variant (other than NULL) Addition

String Variant (other than NULL) String concatenation

String String String concatenation

Any type Variant that contains EMPTY Returns first expression

Any type NULL Returns NULL

Variant of numeric data type Variant of numeric data type Addition

Variant of numeric data type Variant of String data type Addition

Variant of String data type Variant of String data type String concatenation

To avoid confusion, you should use the & operator, not the + operator, for string
concatenation.

Chapter 6: Operators 51

Examples: Addition operator
Dim a As Variant
Dim b As Integer
a = "8"
b% = 7

' Use operator for addition.
Print 8 + 7 ' Prints 15
Print a + 7 ' Prints 15
Print 8 + b% ' Prints 15
Print a + b% ' Prints 15

' Use operator for string concatenation.
Print "Hello " + "there" ' Prints "Hello there"
Print a + "7" ' Prints "87"

Subtraction operator
Finds the difference between two numbers.

Syntax
numExpr1 - numExpr2

Elements
numExpr1, numExpr2

Any numeric constant, variable, or expression; or any function that returns a
number. An EMPTY operand (DataType 0) is considered a 0.

Return value
The result is a value whose data type in most cases is the same as that of the operand
whose data type is latest in this ordering: Integer, Long, Single, Double, Currency. For
example, if one operand is a Long and the other is a Currency, then the data type of
the result is Currency.

The exceptions are:

When the result is a Variant of DataType 2 (Integer) that overflows its legal range,
the result is converted to a Variant of DataType 3 (Long).

When the result is a Variant of DataType 3 (Long), DataType 4 (Single), or
DataType 7 (Date/Time) that overflows its legal range, the result is converted to a
Variant of DataType 5 (Double).

If numExpr1 and numExpr2 are both EMPTY, the result has DataType 2 (Integer).

If either or both operands are NULL expressions, the result is a NULL.

Examples: Subtraction operator
Print 5 - 3.4 ' Prints 1.6

52 LotusScript Language Reference Guide

Comparison operators
Compare two expressions.

Syntax
expr1 operator expr2

Elements
expr1, expr2

Any expressions.

operator
One of the following operators: <, >, <=, =<, >=, =>, <>, ><, =.

Return value
The result of a comparison is TRUE or FALSE. If either or both operands are NULL
expressions, the result is a NULL.

The following table lists the results of comparing two expressions, neither of which is
NULL.

Operator Operation TRUE if FALSE if

< Less than expr1 < expr2 expr1 >= expr2

<= or =< Less than or equal to expr1 <= expr2 expr1 > expr2

> Greater than expr1 > expr2 expr1 <= expr2

>= or => Greater than or equal to expr1 >= expr2 expr1 < expr2

= Equal to expr1 = expr2 expr1 <> expr2

<> or >< Not equal to expr1 <> expr2 expr1 = expr2

Usage
Comparison operators are also called relational operators.

LotusScript interprets the comparison operator as either numeric comparison or string
comparison, depending on the data types of expr1 and expr2. The following table lists
these interpretations. The numeric data types are Integer, Long, Single, Double,
Currency, and (in a Variant variable only) Date/Time.

One expression Other expression Operation

Numeric Numeric Numeric comparison

Numeric Variant of numeric data type or
Variant containing string value that
can be converted to a number

Numeric comparison

continued

Chapter 6: Operators 53

One expression Other expression Operation

Numeric Variant containing String value that
cannot be converted to a number

Type mismatch error occurs.

Numeric Variant that contains EMPTY Numeric comparison, with 0
substituted for the EMPTY
expression.

String String String comparison

String Variant (other than NULL) String comparison

String Variant that contains EMPTY String comparison

Variant containing
string value

Variant containing string value String comparison

Variant that contains
EMPTY

Variant containing string value String comparison, with the
empty string (“”) substituted
for the EMPTY expression.

Variant of numeric
data type

Variant of numeric data type Numeric comparison

Variant that contains
EMPTY

Variant of numeric data type Numeric comparison, with 0
substituted for the EMPTY
expression.

Variant of numeric
data type

Variant containing string value Numeric comparison. The
numeric expression is less than
the string expression.

Variant that contains
EMPTY

Variant that contains EMPTY Expressions are equal.

For string comparison, the Option Compare statement sets the comparison method:

Option Compare Case and Option Compare NoCase specify comparison using the
character collating sequence determined by the Lotus product that you are using.
Case specifies case sensitive comparison, and NoCase specifies case insensitive
comparison.

Option Compare Pitch and Option Compare NoPitch specify comparison using
the character collating sequence determined by the Lotus product that you are
using. Pitch specifies pitch sensitive comparison, and NoPitch specifies pitch
insensitive comparison. These options apply to Asian (double byte) characters.

Option Compare Binary specifies string comparison in the platform’s collating
sequence. The effect is platform sort-order, case sensitive comparison.

If you omit the Option Compare statement, the default method of string comparison is
the same as Option Compare Case, Pitch.

54 LotusScript Language Reference Guide

To compare strings, LotusScript examines the two strings character by character,
starting with the first character in each string. The collating sequence values (positions
in the character sort sequence) of the two characters are compared.

If these values are not equal, the string whose character has the larger collating
sequence value (appears later in the sort sequence) is the larger string.

If the collating sequence values of the pair of characters are the same, and both
strings contain more characters, then the character comparison proceeds to the
next character.

If the end of both strings is reached simultaneously by this process, then neither string
has been found larger than the other, and the strings are equal. Otherwise the longer
string is the larger string.

Examples: Comparison operators
' Use operator for numeric comparisons.
Print 1 < 2 ' Prints True
Print 2 > 1 ' Prints True
Print 1 <> 2 ' Prints True
Print 2 >= 2 ' Prints True
Print 2 <= 2 ' Prints True
Print 2 = 2 ' Prints True

' Use operator for string comparisons.
Print "hello" < "hellp" ' Prints True

Dim myVar As Variant, myStr As Variant
myStr = "34"
myVar = 34
Print myVar < myStr ' Prints True
Print 45 > myStr ' Prints True
Print "45" > myVar ' Prints True

Not operator
Performs logical negation on an expression. The Not operator has the effect of
rounding its argument to the nearest integer, changing the sign, and subtracting 1.

Syntax
Not expr

Elements
expr

Any expression. Its value must lie within the range for Long values.

Chapter 6: Operators 55

Usage
The following table explains how LotusScript determines the result of the Not
operation.

expr Result

TRUE FALSE

FALSE TRUE

NULL NULL

In addition to performing logical negation, the Not operator reverses the bit values of
any variable and sets the corresponding bit in the result according to the following
table.

Bit n in expr Bit n in result

0 1

1 0

Examples: Not operator
Print Not TRUE ' Prints False
Print Not 12.4 ' Prints -13

And operator
Performs a logical conjunction on two expressions. LotusScript rounds to the nearest
integer before performing the And operation.

Syntax
expr1 And expr2

Elements
expr1, expr2

Any expressions. Their values must lie within the range for Long values.

56 LotusScript Language Reference Guide

Usage
The following table explains how LotusScript determines the result when the And
operator is used.

expr1 expr2 Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

TRUE NULL NULL

NULL TRUE NULL

FALSE NULL FALSE

NULL FALSE FALSE

NULL NULL NULL

In addition to performing a logical conjunction, the And operator compares identically
positioned bits in two numeric expressions (known as a bit-wise comparison) and sets
the corresponding bit in the result as follows.

Bit n in expr1 Bit n in expr2 Bit n in result

1 1 1

1 0 0

0 1 0

0 0 0

Examples: And operator
' Boolean usage
Dim johnIsHere As Integer, jimIsHere As Integer
Dim bothAreHere As Integer
johnIsHere% = TRUE
jimIsHere% = FALSE
bothAreHere% = johnIsHere And jimIsHere
Print bothAreHere% ' Prints 0 (False)

' Bit-wise usage
Dim x As Integer, y As Integer
x% = &b11110000
y% = &b11001100
Print Bin$(x% And y%) ' Prints 11000000

Chapter 6: Operators 57

Or operator
Performs a logical disjunction on two expressions.

Syntax
expr1 Or expr2

Elements
expr1, expr2

Any expressions. Their values must lie within the range for Long values.

Usage
The following table explains how LotusScript determines the result of the Or
operation.

expr1 expr2 Result

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

TRUE NULL TRUE

NULL TRUE TRUE

FALSE NULL NULL

NULL FALSE NULL

NULL NULL NULL

In addition to performing a logical disjunction, the Or operator compares identically
positioned bits in two numeric expressions (known as a bit-wise comparison) and sets
the corresponding bit in the result according to the following table.

Bit n in expr1 Bit n in expr2 Bit n in result

1 1 1

1 0 1

0 1 1

0 0 0

58 LotusScript Language Reference Guide

Examples: Or operator
' Boolean usage
Dim johnIsHere As Integer, jimIsHere As Integer
Dim oneOrMoreIsHere As Integer
johnIsHere% = TRUE
jimIsHere% = FALSE
oneOrMoreIsHere% = johnIsHere% Or jimIsHere%
Print oneOrMoreIsHere% ' Prints -1 (True)

' Bit-wise usage
Dim x As Integer, y As Integer
x% = &b11110000
y% = &b11001100
Print Bin$(x% Or y%) ' Prints 11111100

Xor operator
Performs a logical exclusion on two expressions.

Syntax
expr1 Xor expr2

Elements
expr1, expr2

Any expressions. Their values must lie within the range for Long values.

Usage
The following table explains how LotusScript determines the result of the Xor
operation.

expr1 expr2 Result

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

TRUE NULL NULL

NULL TRUE NULL

FALSE NULL NULL

NULL FALSE NULL

NULL NULL NULL

Chapter 6: Operators 59

In addition to performing a logical exclusion, the Xor operator compares identically
positioned bits in two numeric expressions (known as a bit-wise comparison) and sets
the corresponding bit in the result according to the following table.

Bit n in expr1 Bit n in expr2 Bit n in result

1 1 0

1 0 1

0 1 1

0 0 0

Examples: Xor operator
' Boolean usage
Dim johnIsHere As Integer, jimIsHere As Integer
Dim oneButNotBothIsHere As Integer
johnIsHere% = TRUE
jimIsHere% = FALSE
oneButNotBothIsHere% = johnIsHere% Xor jimIsHere%
Print oneButNotBothIsHere% ' Prints -1 (True)

' Bit-wise usage
Dim z As Integer, y As Integer
z% = &b11110000
y% = &b11001100
Print Bin$(z% Xor y%) ' Prints 111100

Eqv operator
Performs a logical equivalence on two expressions.

Syntax
expr1 Eqv expr2

Elements
expr1, expr2

Any expressions. Their values must lie within the range for Long values.

60 LotusScript Language Reference Guide

Usage
The following table explains how LotusScript determines the result of the Eqv
operation.

expr1 expr2 Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE

TRUE NULL NULL

NULL TRUE NULL

FALSE NULL NULL

NULL FALSE NULL

NULL NULL NULL

In addition to performing a logical equivalence, the Eqv operator compares identically
positioned bits in two numeric expressions (known as a bit-wise comparison) and sets
the corresponding bit in the result according to the following table.

Bit n in expr1 Bit n in expr2 Bit n in result

1 1 1

1 0 0

0 1 0

0 0 1

Examples: Eqv operator
Dim a As Variant, b As Variant, c As Variant
a = &HF
b = &HF0
c = &H33
Print TRUE Eqv TRUE ' Prints True
Print FALSE Eqv FALSE ' Prints True
Print TRUE Eqv FALSE ' Prints False
Print Hex$(a Eqv b) ' Prints FFFFFF00
Print Hex$(a Eqv c) ' Prints FFFFFFC3
Print Hex$(b Eqv c) ' Prints FFFFFF3C

Chapter 6: Operators 61

Imp operator
Performs a logical implication on two expressions.

Syntax
expr1 Imp expr2

Elements
expr1, expr2

Any expressions. Their values must lie within the range for Long values.

Usage
The following table explains how LotusScript determines the result of the Imp
operation.

expr1 expr2 Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE TRUE

FALSE FALSE TRUE

TRUE NULL NULL

NULL TRUE TRUE

FALSE NULL TRUE

NULL FALSE NULL

NULL NULL NULL

In addition to performing a logical implication, the Imp operator compares identically
positioned bits in two numeric expressions (known as a bit-wise comparison) and sets
the corresponding bit in the result according to the following table.

Bit n in expr1 Bit n in expr2 Bit n in result

1 1 1

1 0 0

0 1 1

0 0 1

62 LotusScript Language Reference Guide

Examples: Imp operator
Dim youCanSee As Integer, lightIsOn As Integer

' You don't need the light to see.
youCanSee% = TRUE
lightIsOn% = FALSE
Print youCanSee% Imp lightIsOn% ' Prints False

' You need the light to see.
youCanSee% = FALSE
lightIsOn% = FALSE
Print youCanSee% Imp lightIsOn% ' Prints True

String concatenation operator
Concatenates two expressions as strings.

Syntax
expr1 & expr2

Elements
expr1, expr2

Any String expressions, or any of the following:

Numeric expression: LotusScript converts it to a Variant of DataType 8 (String).

NULL: LotusScript treats it as a zero-length String value when concatenated
with the other expression. If both expressions are NULL, the result is NULL.

EMPTY: LotusScript treats it as a zero-length String value.

Return value
The result is a Variant of DataType 8 (String).

Usage
The + operator also concatenates two character strings, but you should use the &
operator for string concatenation to avoid confusion.

Examples: String concatenation operator
Dim x As Variant
x = 56 & " Baker St."
Print x ' Prints "56 Baker St."

Chapter 6: Operators 63

Like operator
Determines whether a string expression matches a pattern string.

Syntax
stringExpr Like patternString

Elements
stringExpr

Any String expression.

patternString

A string expression that can include any individual ANSI characters and any of
the wildcard characters or collections that follow. You can use as many wildcards
as you need within a single patternString.

Wildcard Matches

? Any one character

Any one digit from 0 through 9

* Any number of characters (zero or more)

[characters] Any one of the characters in the list or range specified here

[!characters] Any one character not included in the list or range of characters specified here

Usage

Matching characters in a list
For a list, just type the characters; don’t use any type of separator, not even a space
(the separator would be considered part of the list). For example, [1 2 3 4 5] represents
the characters 1, space, 2, 3, 4, and 5 (the redundant occurrences of the space would be
ignored). But [12345] represents the characters 1, 2, 3, 4, and 5 (with no space
character).

Matching characters in a range
For a range, separate the lower and upper bounds with a hyphen, as in [1-5].

Specify the range in ascending character collating sequence order (for example, [5-1] is
invalid). If binary comparison (Option Compare Binary) is in effect, LotusScript uses
the international ANSI character collating sequence. This is the sequence of values
Chr(0), Chr(1), Chr(2), It is the same on all LotusScript platforms. A range specified
in ascending order will produce a valid pattern string. However, if Option Compare
Case, NoCase, Pitch, or NoPitch is in effect, then the collating sequence order depends
on the Lotus product that you are using. The order for alphanumeric characters will be
the same as international ANSI, but using other characters to define a range may
produce an invalid pattern string. If you define a range using nonalphanumeric

64 LotusScript Language Reference Guide

characters, specify Option Compare Binary in your script to be certain of defining a
valid pattern string.

When you specify multiple ranges, you don’t have to separate them with anything; for
example, [1-5A-C] contains the ranges 1-5 and uppercase A-C.

Matching special characters
To match one of these characters, include it in a characters list:

Hyphen (-)

Question mark (?)

Asterisk (*)

Number sign (#)

Open bracket ([)

Be sure to place the hyphen at the beginning of the list; if you’re using the [!characters]
format, the hyphen immediately follows the exclamation point, as in [!-123]. The other
characters can appear anywhere in the characters list. For example, [-?A-Z] matches the
hyphen, the question mark, and any uppercase letter from A through Z.

To match one of these characters, place the character anywhere within your wildcard
specification except in a characters list or range:

Comma (,)

Close bracket (])

Exclamation mark (!)

For example, !,[1-6] matches the exclamation point, the comma, and any digit from 1
through 6.

Return value
If stringExpr matches patternString, the result is TRUE; if not, the result is FALSE. If
either stringExpr or patternString is NULL, the result is NULL.

Usage
By default, the comparison is case sensitive. You can modify case sensitivity with the
Option Compare statement.

Examples: Like operator

Example 1
' Print the numbers from 1 to 100 that include the digit 5.
For x = 1 To 100
 If CStr(x) Like "*5*" Then Print x
Next x
' Output:
' 5 15 25 35 45 50 51 52 53 54 55 56 57 58 59 65 75 85 95

Chapter 6: Operators 65

Example 2
' Print the numbers from 1 to 100 that end in 3 and don't begin with
2.
For x = 1 To 100
 If CStr(x) Like "[!2]3" Then Print x
Next x
' Output:
' 13 33 43 53 63 73 83 93

Is operator
Compares two object reference variables.

Syntax
obj1 Is obj2

Elements
obj1, obj2

Expressions whose values are object references.

Usage
The result of the Is operator is TRUE only if obj1 and obj2 refer to the same object.

The operands obj1 and obj2 may be Variant variables, object reference variables, or any
variable elements that accept an object reference, such as an element of an array, list,
or user-defined type.

Examples: Is operator
Class MyClass
 ' ...
End Class
Dim x As MyClass
Dim y As MyClass
Set x = New MyClass
Set y = New MyClass
Print x Is y ' Prints False
Set x = y ' x now refers to the same object as
y.
Print x Is y ' Prints True

66 LotusScript Language Reference Guide

IsA operator
Determines if an object reference variable is of a specified class or a class derived from
the specified class.

Syntax
obj IsA objName

Elements
obj

Expression whose value is an object reference.

objName
String expression representing an object name.

Usage
The result of the IsA operator is TRUE if obj is of the class objName or a class derived
from objName.

Obj can be a native (user defined) object, a product object, or an OLE object.

Obj can be a Variant variable, an object reference variable, or any variable element that
accepts an object reference, such as an element of an array, list, or user-defined type or
class. Obj can be an expression, for example, a function that returns an object or array
of objects.

ObjName represents the class that is visible in the current scope if the class name
defines more than one class.

Examples: IsA operator
Sub PrintIt(objA)
 If objA IsA "ClassA" Then
 objA.Print
 Else
 Print "Not a ClassA object"
 End If
End Sub

Chapter 6: Operators 67

Chapter 7
Statements, Built-In Functions, Subs, Data Types,
and Directives

Abs function
Returns the absolute value of a number.

Syntax
Abs (numExpr)

Elements
numExpr

Any numeric expression.

Return value
Abs returns the absolute value of numExpr.

The data type of the return value is the same as the data type of numExpr, unless
numExpr is a Variant. In that case, the following rules apply:

If numExpr contains a string that LotusScript can convert to a number, the data
type is Double.

If numExpr contains a value that LotusScript cannot convert to a number, the
function returns an error.

If numExpr contains a NULL, the return value is NULL.

Usage
The absolute value of a number is its unsigned magnitude; for example, 3 and -3 both
have an absolute value of 3.

Examples: Abs function
Print Abs(12) ' Prints 12
Print Abs(-12) ' Prints 12
Print Abs(13 - 25) ' Prints 12
Print TypeName(Abs(-12)) ' Prints INTEGER

Dim someV As Variant
someV = "123"
Print Abs(someV) ' Prints 123
someV = NULL
Print Abs(someV) ' Prints #NULL#

69

ACos function
Returns the arccosine, in radians, of a number between -1 and 1, inclusive.

Syntax
ACos (numExpr)

Elements
numExpr

A numeric expression with a value between -1 and 1, inclusive.

Return value
ACos returns the arc cosine, in radians, of the value of numExpr.

The range of the return value is zero to PI, inclusive.

The data type of the return value is Double.

If the value of numExpr is not in the range -1 to 1, inclusive, the function returns an
error.

Usage
The arc cosine of a number is the angle, in radians, whose cosine is equal to the value
of that number.

Examples: ACos function
Dim rad As Double
Dim degrees As Double

' Assign the value PI/2, the angle whose cosine is 0.
rad# = ACos(0)

' Assign the value 90, the same angle in degrees.
degrees# = rad# * (180 / PI)

Print rad#; degrees# ' Prints 1.5707963267949 90

ActivateApp statement
Makes a program window the active window.

Syntax
ActivateApp windowName

AppActivate is acceptable in place of ActivateApp.

70 LotusScript Language Reference Guide

Elements
windowName

A string expression designating the program window to activate.

Usage
windowName is not case-sensitive. It must exactly match the leftmost characters of the
program title that appears in the program window title bar. For example, if the
program title of a running program window is “Lotus Notes - Workspace”, then a
windowName value of “Lotus Notes” will activate that window. If more than one
program title matches windowName, LotusScript will choose one of the program
windows.

ActivateApp can activate a minimized window, but cannot restore or maximize it. Use
SendKeys to restore or maximize a window. Use Shell to start a program.

Examples: ActivateApp statement
' Activate the Lotus Notes program window
' (assuming that Lotus Notes is already running).
' This would match a windows with the title "Lotus Notes - Workspace".
ActivateApp "Lotus Notes"

Asc function
Returns the platform-specific numeric character code for the first character in a string.

Syntax
Asc (stringExpr)

Elements
stringExpr

Any string expression.

Return value
Asc returns the numeric character code of the first character in stringExpr. The code
represents the character in the character set of the platform on which you are running
LotusScript.

The data type of the return value is Long.

If the value of stringExpr is NULL or the empty string (""), the function returns an
error.

Examples: Asc function
Dim bigA As Long
Dim littleA As Long
bigA& = Asc("A")
littleA& = Asc("a")
Print bigA&; littleA& ' Prints 65 97

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 71

ASin function
Returns the arcsine, in radians, of a number between -1 and 1, inclusive.

Syntax
ASin (numExpr)

Elements
numExpr

A numeric expression with a value between -1 and 1, inclusive.

Return value
ASin returns the angle, in radians, whose sine is equal to the value of numExpr.

The range of the return value is -PI/2 to PI/2, inclusive.

The data type of the return value is Double.

If the value of numExpr is not in the range -1 to 1, inclusive, the function returns an
error.

Examples: ASin function
Dim rad As Double
Dim degrees As Double

' Assign the value PI/2, the angle whose sine is 1.
rad# = ASin(1)

' Assign the value 90, the same angle in degrees.
degrees# = rad# * (180 / PI)

Print rad#, degrees# ' Prints 1.5707963267949 90

ATn function
Returns the arctangent, in radians, of a number.

Syntax
ATn (numExpr)

Elements
numExpr

Any numeric expression.

72 LotusScript Language Reference Guide

Return value
ATn returns the angle, in radians, whose tangent is equal to the value of numExpr.

The range of the return value is -PI/2 (-90 degrees) to PI/2 (90 degrees), exclusive.

The data type of the return value is Double.

Examples: ATn function
Dim rad As Double
Dim degrees As Double

' Assign the value PI/4, the angle whose tangent is 1.
rad# = ATn(1)

' Assign the value 45, the same angle in degrees.
degrees# = rad# * (180 / PI)

Print rad#; degrees# ' Prints .785398163397449 45

ATn2 function
Returns the polar coordinate angle, in radians, of a point in the Cartesian plane.

Syntax
ATn2 (numExprX , numExprY)

Elements
numExprX, numExprY

Any numeric expressions. At least one of the two must be non-zero. numExprX
and numExprY designate the coordinates of a point in the Cartesian plane.

Return value
ATn2 returns the angular portion of the polar coordinate representation of the point
(numExprX, numExprY) in the Cartesian plane.

The range of the return value is -PI to PI, inclusive.

If numExprX is 0, then ATn2 returns one of the following values:

-PI/2, if numExprY is negative

PI/2, if numExprY is positive

If numExprX is positive, then ATn2(numExprX, numExprY) returns the same value as
ATn(numExprY / numExprX).

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 73

Examples: ATn2 function
Dim quad1 As Double, quad2 As Double, _
 quad3 As Double, quad4 As Double

' Assign the arctangents of four points in the plane.
quad1# = ATn2(1, 1)
quad2# = ATn2(-1, 1)
quad3# = ATn2(-1, -1)
quad4# = ATn2(1, -1)

' Print the value each angle in degrees.
Print quad1# * (180 / PI) ' Prints 45
Print quad2# * (180 / PI) ' Prints 135
Print quad3# * (180 / PI) ' Prints -135
Print quad4# * (180 / PI) ' Prints -45

Beep statement
Generates a tone on the computer.

Syntax
Beep

Usage
The tone that LotusScript produces depends on the sound-generating hardware in
your computer.

Examples: Beep statement
' While a user-specified interval (in seconds) is elapsing, beep and
' count the beeps. Then tell the user the number of beeps.

Dim howLong As Single, howManyBeeps As Integer
Function HowManyTimes (howLong As Single) As Integer
 Dim start As Single, finish As Single, counter As Integer
 start! = Timer
 finish! = start! + howLong!
 While Timer < finish!
 Beep
 counter% = counter% + 1
 Wend
 HowManyTimes% = counter%
End Function
howLong! = CSng(InputBox _
 ("For your own sake, enter a small number."))
howManyBeeps% = HowManyTimes(howLong!)
MessageBox "Number of beeps:" & Str(howManyBeeps%)

74 LotusScript Language Reference Guide

Bin function
Returns the binary representation of a number as a string.

Syntax
Bin[$] (numExpr)

Elements
numExpr

Any numeric expression. If numExpr evaluates to a number with a fractional part,
LotusScript rounds it to the nearest integer before deriving its binary
representation.

Return value
Bin returns a Variant of DataType 8 (String), and Bin$ returns a String.

Return values will only include the characters 0 and 1. The maximum length of the
return value is 32 characters.

Usage
If the data type of numExpr is not Integer or Long, then LotusScript attempts to
convert it to a Long. If it cannot be converted, a type mismatch error occurs.

Examples: Bin function
Print Bin$(3) ' Prints "11"

' Converts Double argument to Long.
Print Bin$(3.0) ' Prints "11"

' Rounds Double argument, then converts to Long.
Print Bin$(3.3) ' Prints "11"

' Computes product 2.79, rounds to 3.0, then converts to Long.
Print Bin$(3.1 * .9) ' Prints "11"

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 75

Bracket notation
For applications built in some Lotus products, such as 1-2-3®, you can use names in
brackets rather than object reference variables to identify Lotus product objects. To
determine whether your Lotus product supports this notation, see the product
documentation.

Syntax
[prodObjName]

Elements
prodObjName

The name understood by the product to identify an object (an instance of a
product class).

Usage
In some cases, Lotus products assign names to objects, and in other cases you can use
the product user interface to name the objects you create. In a spreadsheet, for
example, A1 identifies a particular cell, and you could use the user interface to name a
chart SalesTracking.

Bracket notation lets you use these names without declaring an object variable and
binding it to the object. For example, the product might allow you to use:

[A1].Value = 247000

instead of:

Dim myCell As Cell
Set myCell = Bind Cell("A1")
myCell.Value = 247000

In some cases, the product uses bracket notation when it records transcripts of user
actions. This makes the transcripts easier to read and modify. For more information,
see the product documentation.

The LotusScript compiler does not attempt to determine the class of objects that are
identified with bracket notation, so any class syntax errors you make (such as the
incorrect use of properties and other methods), will generate run-time errors, not
compile-time errors.

You can also use empty brackets to identify the currently selected product object.
Empty brackets are equivalent to leading dot notation. For example, if the current
selection is a range named SalesQuotas, then

[].Print

and

.Print

76 LotusScript Language Reference Guide

 are equivalent to

[SalesQuotas].Print

All three statements print the contents of the SalesQuotas range.

To include square brackets as text within a string, double the brackets. For example, if
the current selection is a range named SalesQuotas[East], use the following syntax:

[SalesQuotas[[East]]].Print

Examples: Bracket notation
' Use the Chart class Print method to print the chart SalesTracking.
[SalesTracking].Print

Call statement
Calls a LotusScript sub or function.

Syntax 1
Call subOrFunction [([argList])]

Syntax 2
subOrFunction [argList]

Syntax 3
subOrFunction (argPassedByVal)

Syntax 4 (functions only)
returnVal = function [([argList])]

Elements
subOrFunction

The name of the sub or function being called.

argList
A comma-separated argument list for the sub or function being called.

argPassedByVal

A single argument to be passed by value to the sub or function being called.

function
The name of the function being called.

returnVal
The assignment variable containing the function’s return value.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 77

Usage
When you use the Call keyword, you must include parentheses around the argument
list. If there are no arguments, the empty parentheses are optional.

When you omit the Call keyword, the following parenthesis rules apply:

For a sub or a function, do not use parentheses around the argument list (Syntax 2)
unless you are passing a single argument by value to the sub or function (Syntax
3).

For a function within an expression, enclose the argument list (if there is one) in
parentheses (Syntax 4).

Sub calls do not return a value.

LotusScript uses a function’s return value if the function call appears in an expression.
The call can appear anywhere in an expression where the data type of the function’s
return value is legal. Function calls that use the Call keyword, however, do not return
a value and cannot appear in an expression.

LotusScript always uses the return value of a call to a built-in function. You must use
its return value in an expression, and you cannot use the Call keyword.

Referencing a function that returns an array, list, or collection
If a function returns an array, list, or collection, a reference to the function can contain
subscripts according to the following rules:

If the function has parameters, the first parenthesized list following the reference
must be the argument list. A second parenthesized list is treated as a subscript list.
For example, f1(1,2)(3) is a reference to a function f1 that has two parameters and
returns a container.

If the function has no parameters and the return type is a variant or collection
object, two parenthesized lists, but not one, can follow the reference. The first
must be empty and the second is treated as a subscript list. For example, f1()(3) is
a reference to a function f1 that contains no parameters but is a container.

If the function has no parameters and the return type is not a variant or collection
object, any parenthesized list following the reference is an error, except that a
single empty list is allowed. For example, f1() is a reference to a function f1 that
contains no parameters and may or may not be a container; if f1 is a container, the
reference is to the entire container.

78 LotusScript Language Reference Guide

Examples: Call statement

Example 1
' Define a function and then invoke it in three ways.

Function MiniMult (x As Integer, y As Integer) As Integer
 MiniMult = x% * y%
End Function
Dim result As Integer

Call MiniMult(3, 4) ' With Call; return value (12) is not
used.
MiniMult 3, 4 ' Without Call; return value is not used.
result% = MiniMult(3, 4) ' With Call; return value is used.
Print result ' Prints 12.

Example 2
' Define a sub and then invoke it in two ways.

Sub PrintProduct(a As Integer, b As Integer)
 Print a% * b%
End Sub

Call PrintProduct(34, 5) ' With Call; prints 170.
PrintProduct 34, 5 ' Without Call; prints 170.

CCur function
Returns a value converted to the Currency data type.

Syntax
CCur (expr)

Elements
expr

Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CCur returns the numeric value of expr rounded to four decimal places, as a Currency
value.

CCur(EMPTY) returns 0.

If expr is a string expression, CCur returns the numeric representation of the string,
rounded to four decimal places. If LotusScript cannot convert the string to a number,
the function returns an error.

If the value of expr is too large to fit in the Currency data type, the function returns an
error.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 79

Examples: CCur function
Dim bulkPrice As Double
Dim labelPrice As String
Dim unitsSold As Integer
Dim paymentDue As Currency

bulkPrice# = 11.400556
unitsSold% = 57
paymentDue@ = CCur(bulkPrice# * unitsSold%)
Print paymentDue@ ' Prints 649.8317

labelPrice$ = "12.99"
paymentDue@ = CCur(labelPrice$) * unitsSold%
Print paymentDue@ ' Prints 740.43

CDat function
 Converts a numeric value or string value to a date/time value.

Syntax
CDat (expr)

CVDate is acceptable in place of CDat.

Elements
expr

Any of the following kinds of expression:

A numeric expression

A string expression that can be converted to a number

A string expression that can be converted to a date/time value

Return value
CDat returns a date/time value.

The data type of the return value is a Variant of DataType 7 (Date/Time).

If the integer part of expr is not in the range -657434 to 2958465, the function returns an
error.

CDat(0) returns the date December 30, 1899, formatted as 12/30/1899. CDat(EMPTY)
returns the same value.

80 LotusScript Language Reference Guide

Usage
CDat converts expr to a date/time value in the LotusScript date/time format.

CDat uses different conversion rules depending on the form of expr:

If expr is a numeric expression, CDat converts the integer part of its value to a date
and the fractional part to a time, and returns the corresponding date/time value.

A date/time value stored in a Variant is an eight-byte floating-point value. The
integer part represents a serial day counted from Jan 1, 100 AD. Valid dates are
represented by integer numbers in the range -657434, representing Jan 1, 100 AD,
to 2958465, representing Dec 31, 9999 AD. The fractional part represents the time
as a fraction of a day, measured from time 00:00:00 (midnight on the previous
day). In this representation of date/time values, day 1 is the date December 31,
1899.

If expr is a string expression that can be converted to a number, CDat converts the
string to a number and then converts the number to a date/time value and returns
the result, as described above.

If expr is a string expression in the form of a date, for example “4/20/95”, CDat
converts the value to a date/time in the internal date/time format.

If LotusScript cannot convert the value to a date/time, the function returns an error.

Examples: CDat function
Dim dateV As Variant

' Convert a numeric value to a date/time value.
dateV = CDat(34814.3289)

' Display the formatted date and time.
Print Format$(dateV, "Medium Date"), _
 Format$(dateV, "Medium Time")
' Prints 25-Apr-95 07:53 AM

' Convert the date back to a number.
Print CDbl(dateV) ' Prints 34814.3289

' Convert a date string to a date.
Print CDat("April 25, 1995") ' Prints 4/25/95

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 81

CDbl function
Returns a value converted to the Double data type.

Syntax
CDbl (expr)

Elements
expr

Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CDbl returns the numeric value of expr as a Double value.

CDbl(EMPTY) returns 0.

If expr is a string expression, CDbl returns the numeric representation of the string,
including any fractional part. If LotusScript cannot convert the string to a number, the
function returns an error.

If the value of expr is too large to fit in the Double data type, the function returns an
error.

Examples: CDbl function
' Convert the sum of two Single values to Double.
Dim x As Single
Dim y As Single
Dim result As Double
x! = 11.06E23
y! = 6.02E23
result# = CDbl(x! + y!)
Print result# ' Prints 1.70800003057064E+24

ChDir statement
Sets the current directory.

Syntax
ChDir path

Elements
path

A string expression representing the path of an existing directory.

82 LotusScript Language Reference Guide

Usage
ChDir sets the current directory to path. The current directory is the directory that
LotusScript uses when you specify a file name without a path.

If the value of path does not begin with a drive letter, ChDir sets the current directory
for the current drive.

If the value of path includes a drive letter, ChDir sets the current directory for that
drive, but does not reset the current drive. The path will not be used as the current
directory until the current drive is reset. To change the current drive, use ChDrive.

To return the current drive, use CurDrive. To return the current directory, use CurDir.

The format and maximum length of path follow the conventions of the platform on
which LotusScript is running.

Examples: ChDir statement
' Set the current drive to d.
ChDrive "d"

' Set current directory on the c drive to \test.
ChDir "c:\test"

' Set current directory on current drive (d) to \test.
ChDir "\test"

Print CurDir() ' Prints d:\test

ChDrive statement
Sets the current drive.

Syntax
ChDrive drive

Elements
drive

A string expression representing an existing drive.

Usage
ChDrive sets the current drive to the value of drive. The current drive is the drive that
LotusScript uses whenever you specify a file name or a path that does not include a
drive.

If the value of drive is the empty string (""), ChDrive does not change the current drive.

If the value of drive is a string of more than one character, ChDrive uses only the first
character. ChDrive does not require a colon (:) after the drive letter.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 83

The drive must be in the range A to lastdrive, inclusive, where lastdrive is the maximum
drive letter specified in CONFIG.SYS.

To change the current directory, use ChDir.

To return the current drive, use CurDrive. To return the current directory, use CurDir.

Examples: ChDrive statement
' Set the current drive to D.
ChDrive "D"

Chr function
Returns the character represented by a platform-specific numeric character code.

Syntax
Chr[$] (numExpr)

Elements
numExpr

A numeric expression of data type Long, representing a numeric character code in
the platform character-code set. Its legal range is the range of the platform
character-code set.

Return value
Chr returns the platform-specific character corresponding to the value of numExpr.

Chr returns a Variant of DataType 8 (String). Chr$ returns a String.

Usage
If the value of numExpr contains a fraction, LotusScript rounds the value before using
it.

Examples: Chr function
Dim myAlph As String
Dim letterCode As Long
' Iterate through the character codes for "a" through "z".
' Build an alphabet string by concatenating the letters.
For letterCode& = Asc("a") To Asc("z")
 myAlph$ = myAlph$ & Chr$(letterCode&)
Next
Print myAlph$ ' Prints abcdefghijklmnopqrstuvwxyz

84 LotusScript Language Reference Guide

CInt function
Returns a value converted to the Integer data type.

Syntax
CInt (expr)

Elements
expr

Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CInt returns the value of expr rounded to the nearest integer, as an Integer value.

CInt(EMPTY) returns 0.

If expr is a string expression, CInt returns the numeric representation of the string,
rounded to the nearest integer. If LotusScript cannot convert the string to a number,
the function returns an error.

If the value of expr is too large to fit in the Integer data type, the function returns an
error.

Examples: CInt function
' Convert a Currency value to Integer.
Dim x As Currency
x@ = 13.43
Print CInt(x@) ' Prints 13

Class statement
Defines a class with its member variables and procedures.

Syntax
[Public | Private] Class className [As baseClass]

 classBody

End Class

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 85

Elements
Public | Private

Optional. Public specifies that the class is visible outside the module where the
class is defined, as long as this module is loaded. Private specifies that the class is
visible only in this module.

A class is Private by default.

className
The name of the class.

baseClass
Optional. The name of another class from which this class is derived.

classBody
Declarations and definitions of class members. Class members can include
member variables; member procedures (functions, subs, and properties); a
constructor sub, named New; and a destructor sub, named Delete. Constants
cannot be class members.

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

Rules for defining classes:

Define a class only in module scope. Do not define a class within a procedure or
within another class.

Do not use the word Object as a class name.

Rules for declaring member variables:

Omit the Dim keyword from the variable declaration of member variables.

A separate declaration is required for each member variable. You can’t declare
two or more member variables in a single declaration using a comma-separated
list.

You can use the Public or Private keywords for variable declarations. A member
variable is private by default; it can be accessed only within the class.

Member variables cannot be declared Static.

A class can include an instance of itself as a member, but the variable declaration
cannot include the New keyword. That is, the variable declaration cannot create
an object of the class.

Do not use the following LotusScript keywords as member variable names: Public,
Private, Static, Sub, Function, Property, Get, Set, New, Delete, and Rem.

86 LotusScript Language Reference Guide

Rules for declaring member procedures:

You can use the keywords Public or Private for procedure declarations. A member
procedure is Public by default; it can be accessed outside of the class.

Member procedures cannot be declared Static.

All LotusScript keywords are legal as member procedure names. Use the names
New and Delete only to name the class constructor and destructor subs,
respectively.

Rules for referring to class members:

Refer to class members using the notation objName.memberName, where
memberName identifies a class member defined in the class of the object reference
variable objName.

You can use the keyword Me to refer to the object itself when you are inside a
member procedure. In the example, Me.textColor refers to the value currently
assigned to the textColor member of this instance of the class.

If you name a class member with a LotusScript keyword, you must refer to the
member within member subprograms using the Me keyword.

Derived class methods can override methods of the base class. The signature of
the overriding member must match the signature of the overridden member.
Within a derived class’s procedure, you refer to a base class member of the same
name using the notation baseClassName..memberName.

Use the With statement to work with members of a specific class using the
notation .memberName.

Rules for working with objects (class instances):

To create an object, use the New keyword in a Dim or Set statement for an object
reference variable.

LotusScript sets the initial value of an object reference variable to NOTHING. Use
the Is operator to test an object reference variable for the NOTHING value.

Any Variant variable can take an object reference as its value. Use the IsObject
function to test whether the contents of a Variant variable is an object reference.

Use the Delete statement to delete an object. LotusScript sets the value of variables
that refer to the object to NOTHING.

A class definition can include a definition for the constructor sub, named New. If the
definition exists, LotusScript calls this sub each time it creates an object of that class.

A class definition can include a definition for the destructor sub, named Delete. If the
definition exists, LotusScript calls this sub whenever it deletes an object of that class.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 87

Examples: Class statement
' Define a class.
Class textObject

 ' Declare member variables.
 backGroundColor As Integer
 textColor As Integer
 contentString As String

 ' Define constructor sub.
 Sub New (bColor As Integer, tColor As Integer, _
 cString As String)
 backGroundColor% = bColor%
 textColor% = tColor%
 contentString$ = cString$
 End Sub

 ' Define destructor sub.
 Sub Delete
 Print "Deleting text object."
 End Sub

 ' Define a sub to invert background and text colors.
 Sub InvertColors
 Dim x% As Integer, y% As Integer
 x% = backGroundColor%
 y% = textColor%
 Me.backGroundColor% = y%
 Me.textColor% = x%
 End Sub

End Class

' Create a new object of class textObject.
Dim y As textObject
Set y = New textObject(0, 255, "This is my text")

' Invert the object's background and text colors.
y.InvertColors

' Delete the object.
Delete y
' Output:
' Deleting text object.

88 LotusScript Language Reference Guide

CLng function
Returns a value converted to the Long data type.

Syntax
CLng (expr)

Elements
expr

Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CLng returns the value of expr rounded to the nearest integer, as a Long value.

CLng(EMPTY) returns 0.

If expr is a string expression, CLng returns the numeric representation of the string,
rounded to the nearest integer. If LotusScript cannot convert the string to a number,
the function returns an error.

If the value of expr is too large to fit in the Long data type, the function returns an
error.

Examples: CLng function
' Convert a Double value to Long.
Dim x As Double
x# = 13.400556
Print CLng(x#) ' Prints 13

Close statement
Closes one or more open files, after writing all internally buffered data to the files.

Syntax
Close [[#] fileNumber [, [#] fileNumber] ...]

Elements
fileNumber

Optional. The number that LotusScript assigned to the file when it was opened.

If you omit fileNumber, Close closes all open files.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 89

Usage
The pound sign (#) preceding fileNumber is optional and has no effect on the statement.

Before closing the open files, Close writes all internally buffered data to the files.

If LotusScript encounters a run-time error that is not handled by an On Error
statement, LotusScript closes all open files; otherwise, the files remain open.

If the value of fileNumber contains a fraction, LotusScript rounds the value before
using it.

Examples: Close statement
Open "c:\rab.asc" For Input Access Read Shared As 1 Len = 128
Close #1

Command function
Returns the command-line arguments used to start the Lotus product that started
LotusScript.

Syntax
Command[$]

Return value
The return value does not include the program name.

Command returns a Variant of DataType 8 (String). Command$ returns a String.

If the command that started the product specified no arguments, the function returns
the empty string ("").

Usage
You can call the Command function as either Command or Command(). You can call
the Command$ function as either Command$ or Command$().

To run a Lotus product macro in a script, use Evaluate. To start a program from a
script, use Shell.

Examples: Command function
If Command$() = "" Then
 Print "No command-line arguments"
Else
 Print "Command-line arguments are: " + Command$()
End If

90 LotusScript Language Reference Guide

Const statement
Defines a constant.

Syntax
[Public | Private] Const constName = expr [, constName = expr]...

Elements
Public | Private

Optional. Public specifies that the constant is visible outside the module where the
constant is defined, as long as that module is loaded. Private specifies that the
constant is visible only within the module where the constant is defined.

A constant is Private by default.

If you declare a constant within a procedure, you cannot use Public or Private.

constName
The name of the constant.

expr
An expression. The value of the expression is the value of the constant.

The expression can contain any of the following.

Literal values (numbers and strings)

Other constants

Arithmetic and logical operators

Built-in functions, if their arguments are constant and if LotusScript can
evaluate them at compile time. The following functions are evaluated at
compile time if their arguments are expressions including only literals and
constants.

Functions that can be evaluated as LotusScript constants
Abs
ACos
ASin
ATn
ATn2
Bin
Cos
DataType
DateNumber
Exp
Fix
Fraction
Hex
InStr

InStrB
Int
LCase
Left
LeftB
Len
LenB
LenBP
Log
LTrim
Mid
MidB
Oct
Right

RightB
Round
RTrim
Sgn
Sin
Sqr
Str
Tan
TimeNumber
Trim
TypeName
UCase
Val

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 91

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

A constant is a named variable whose value cannot be changed. You can declare a
constant in a module or a procedure, but you cannot declare a constant in a type or
class definition.

You can specify the data type of a constant by appending a data type suffix character
to constName. Alternatively, if the constant is numeric and expr is a numeric literal, you
can specify the data type by appending a data type suffix character to expr.

If you do not append a data type suffix character to constName or expr, LotusScript
determines the data type of the constant by the value assigned to it.

For a floating-point value, the data type is Double.

For an integer value, the data type is Integer or Long, depending on the magnitude
of the value.

These rules are illustrated in the examples following.

Whether you specify a suffix character in the Const statement or LotusScript
determines the data type based on the constant’s value, you can use the constant in a
script with or without a data type suffix character. If you use the constant with a suffix
character, the suffix character must match the data type of the constant.

The data type of a constant is not affected by Deftype statements.

Examples: Const statement

Example 1
Const x = 123.45 ' Define a Double constant.
Const y = 123 ' Define an Integer constant.
Const z = 123456 ' Define a Long constant. The value is too large
 ' to define an Integer constant.

Example 2
' Define a String constant, firstName.
Const firstName$ = "Andrea"
' Define a Single constant, appInterest.
Const appInterest! = 0.125
' Define a Currency constant, appLoan.
Const appLoan@ = 4350.20

' Display a message about the amount of interest owed.
MessageBox firstName$ & " owes " _
 & Format(appLoan@ * appInterest!, "Currency")

92 LotusScript Language Reference Guide

Cos function
Returns the cosine of an angle.

Syntax
Cos (angle)

Elements
angle

A numeric expression, specifying an angle expressed in radians.

Return value
Cos returns the cosine of angle, a value between -1 and 1, inclusive.

The data type of the return value is Double.

Examples: Cos function
Dim degrees As Integer
Dim rad As Double

' Convert the angle 45 degrees to radians.
degrees% = 45
rad# = degrees% * (PI / 180)

' Print the cosine of that angle.
Print Cos(rad#) ' Prints .707106781186548

CreateObject function
Creates an OLE Automation object of the specified class.

Note CreateObject is not supported under OS/2, under UNIX, or on the Macintosh.

Syntax
CreateObject (className)

Elements
className

A string of the form appName.appClass, designating the kind of object to create (for
example, “WordPro.Application”).

The appName is an application that supports OLE Automation.

The appClass is the class of the object to create. Products that support OLE
Automation provide one or more classes. See the product documentation for
details.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 93

Return value
CreateObject returns a reference to an OLE Automation object.

Usage
Use the Set statement to assign the object reference returned by CreateObject to a
Variant variable.

If the application is not already running, CreateObject starts it before creating the OLE
Automation object. References to the object remain valid only while the application is
running. If the application terminates while you are using the object reference,
LotusScript returns a run-time error.

LotusScript supports the OLE vartypes listed in the table below. Only an OLE method
or property can return a vartype designated as “OLE only.”

OLE vartype Description

VT_EMPTY (No data)

VT_NULL (No data)

VT_I2 2-byte signed integer

VT_I4 4-byte signed integer

VT_R4 4-byte real

VT_R8 8-byte real

VT_CY Currency

VT_DATE Date

VT_BSTR String

VT_DISPATCH IDispatch, OLE only

VT_ERROR Error, OLE only

VT_BOOL Boolean

VT_VARIANT (A reference to data of any other type)

VT_UNKNOWN IUnknown, OLE only

VT_ARRAY (An array of data of any other type)

LotusScript supports iterating over OLE collections with a ForAll statement.

LotusScript supports passing arguments to OLE properties. For example:

' Set v.prop to 4; v.prop takes two arguments.
v.prop(arg1, arg2) = 4

LotusScript does not support identifying arguments for OLE methods or properties by
name rather than by the order in which they appear, nor does LotusScript support
using an OLE name by itself (without an explicit property) to identify a default
property.

94 LotusScript Language Reference Guide

Results are unspecified for arguments to OLE methods and properties of type boolean,
byte, and date that are passed by reference. LotusScript does not support these data
types.

The word CreateObject is not a LotusScript keyword.

Examples: CreateObject function
This example creates a Notes session and displays some information from it.

' Create a Notes session and display the name of the current user.
Dim session As Variant
Set session = CreateObject("Notes.NotesSession")
Messagebox session.UserName

CSng function
Returns a value converted to the Single data type.

Syntax
CSng (expr)

Elements
expr

Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CSng returns the numeric value of expr as a Single value.

CSng(EMPTY) returns 0.

If expr is a string expression, CSng returns the numeric representation of the string,
including any fractional part. If LotusScript cannot convert the string to a number, the
function returns an error.

If the value of expr is too large to fit in the Single data type, the function returns an
error.

Examples: CSng function
' Convert a Double value by rounding to nearest Single.
Dim x As Double
x# = 1.70800003057064E+24
Print CSng(x#) ' Prints 1.708E+24

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 95

CStr function
Returns a value converted to the String data type.

Syntax
CStr (expr)

expr
Any numeric expression, or a string expression that LotusScript can convert to a
number.

Return value
CStr returns the value of expr as a String value.

CStr(EMPTY) returns the empty string (“”).

Examples: CStr function
Dim x As Integer
Dim y As Integer
x% = 1
y% = 2

' Use the addition operator +
Print x% + y% ' Prints 3

' Use the string concatenation operator +
Print CStr(x%) + CStr(y%) ' Prints 12

CurDir function
Returns the current directory on a specified drive.

Syntax
CurDir[$] [(drive)]

Elements
drive

Optional. A string expression specifying an existing drive. If you omit drive,
CurDir uses the current drive.

Return value
CurDir returns the current directory on drive.

CurDir returns a Variant of DataType 8 (String). CurDir$ returns a String.

96 LotusScript Language Reference Guide

Usage
If the value of drive is a string of more than one character, CurDir uses only the first
character. CurDir does not require a colon after the drive letter.

To set the current directory on a specified drive, use ChDir. To set the current drive,
use ChDrive. To return the current drive, use CurDrive.

You can call this function with no arguments as either CurDir or CurDir().

Examples: CurDir function
ChDir "c:\test"
Print CurDir$() ' Prints "c:\test"

CurDrive function
Returns a string identifying the current drive.

Syntax
CurDrive[$]

Return value
CurDrive returns the current drive letter followed by a colon.

CurDrive returns a Variant of DataType 8 (String). CurDrive$ return a String.

To set the current directory on a specified drive, use ChDir. To set the current drive,
use ChDrive. To return the current directory on a drive, use CurDir.

You can call the CurDrive function as either CurDrive or CurDrive(). You can call the
CurDrive$ function as either CurDrive$ or CurDrive$().

Examples: CurDrive function
Dim tempDrive As String
tempDrive$ = CurDrive$()
If tempDrive$ <> "c:" Then
 ChDrive "c"
End If
ChDir "\test"
Print CurDir$() ' Prints "c:\test"

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 97

Currency data type
Specifies a variable that contains an 8-byte integer, scaled to four decimal places to
suitably represent a monetary value.

Usage
The Currency suffix character for implicit type declaration is @.

Use the Currency data type for calculations with money.

Currency variables are initialized to 0.

Currency values must fall within the range -922,337,203,685,477.5807 to
922,337,203,685,477.5807 inclusive.

Use the Currency data type for fixed point calculations in which four-decimal-place
accuracy is meaningful.

LotusScript aligns Currency data on a 4-byte boundary. In user-defined types,
declaring variables in order from highest to lowest alignment boundaries makes the
most efficient use of data storage space.

Examples: Currency data type
' Explicitly declare two Currency variables.
Dim sales As Currency
Dim expenses As Currency
sales@ = 20.9999
expenses@ = 10.5555
' Implicitly declare a Currency variable.
earnings@ = sales@ - expenses@
' Currency is calculated to four decimal places.
Print earnings@ ' Prints 10.4444

CVar function
Returns a value converted to the Variant data type.

Syntax
CVar (expr)

Elements
expr

Any expression.

Return value
CVar returns the value of expr.

The data type of the return value is Variant.

98 LotusScript Language Reference Guide

Examples: CVar function
' The Abs function requires a numeric or Variant argument.
' Convert a string value to Variant and use it in Abs.
Dim gNum As String
gNum$ = "-1"
Print Abs(CVar(gNum$)) ' Prints 1 (absolute value of -1)
Print Abs(gNum$) ' Generates an error

DataType function
Returns the data type of the value of an expression.

Syntax
DataType (expr)

VarType is acceptable in place of DataType.

Elements
expr

Any expression.

Return value
DataType returns a number representing the data type of expr.

The following table describes the possible return values. The first column is the return
value. The last column is “Yes” if the return value applies to variants only.

Return Value type Constant Variant

0 EMPTY V_EMPTY Yes

1 NULL V_NULL Yes

2 Integer V_INTEGER

3 Long V_LONG

4 Single V_SINGLE

5 Double V_DOUBLE

6 Currency V_CURRENCY

7 Date/Time V_DATE Yes

8 String V_STRING

9 OLE object or NOTHING V_DISPATCH Yes

10 OLE error V_ERROR Yes

11 Boolean V_BOOLEAN Yes

12 Variant list or array V_VARIANT

continued

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 99

Return Value type Constant Variant

13 IUNKNOWN (OLE
value)

V_IUNKNOW
N

Yes

34 User-defined object V_LSOBJ

35 Product object V_PRODOBJ

2048 List

8192 Fixed array

8704 Dynamic array

Usage
The file lsconst.lss defines the constants described in the preceding table. If you want
to refer to the return values as symbolic constants instead of numbers, use the
%Include directive to include this file in your script.

If the argument to DataType is a list or an array, the return value is the sum of the
value that represents a list or an array plus the value that represents the data type of
elements of the list or array. For example, a fixed array of Integers is 8194 (that is, 8192
+ 2); a list of Variants is 2060 (that is, 2048 + 12).

The return value 13 signifies an unknown value type, corresponding to the OLE value
IUNKNOWN. To test for this value, use the IsUnknown function.

Examples: DataType function
Dim item(5) As Variant ' Declare a Variant fixed array.
Dim itemWeight As Single
Dim itemName As String

itemWeight! = 2.7182
itemName$ = "Jute twine"

item(1) = itemWeight!
item(2) = itemName$
Print DataType(item(1)) ' Prints 4
Print DataType(item(2)) ' Prints 8
Print DataType(item(3)) ' Prints 0 (initalized to EMPTY)

Dim cells As Range ' Suppose Range is a
 ' product-defined class.
Print DataType(cells) ' Prints 35
Set cells2 = cells
Print DataType(cells2) ' Prints 35
Dim areas(3) As Range ' An array of Range product objects
Print DataType(areas) ' Prints 8227 (8192 + 35)

Set cal = CreateObject("dispcalc.ccalc")
Print DataType(cal) ' Prints 9

100 LotusScript Language Reference Guide

Dim stats(3) As Integer ' An array of Integers
Print DataType(stats%) ' Prints 8194 (8192 + 2)

Dim misc List As Variant ' A list of Variants
Print DataType(misc) ' Prints 2060 (2048 + 12)

Data types
LotusScript recognizes the following scalar (numeric and string) data types:

Data type Suffix Value range Size

Integer % -32,768 to 32,767
Initial value: 0

2 bytes

Long & -2,147,483,648 to 2,147,483,647
Initial value: 0

4 bytes

Single ! -3.402823E+38 to 3.402823E+38
Initial value: 0

4 bytes

Double # -1.7976931348623158+308 to
1.7976931348623158+308
Initial value: 0

8 bytes

Currency @ -922,337,203,685,477.5807 to
922,337,203,685,477.5807
Initial value: 0

8 bytes

String $ (String length ranges from 0 to 32K
characters)
Initial value: “” (empty string)

(2 bytes/character)

Besides these scalar data types, LotusScript supports the following additional data
types and data structures:

Data type or
structure

Description

Size

Array An aggregate set of elements having the same data type.
An array can comprise up to 8 dimensions whose subscript
bounds can range from -32768 to 32767.
Initial value: Each element in a fixed array has an initial
value appropriate to its data type.

Up to 64K bytes

List A one-dimensional aggregate set whose elements have the
same data type and are referred to by name rather than by
subscript.

Up to 64K bytes

continued

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 101

Data type or
structure

Description

Size

Variant A special data type that can contain any scalar value, array,
list, or object reference.
Initial value: EMPTY

16 bytes

User-defined
data type

An aggregate set of elements of possibly disparate data
types. Comparable to a record in Pascal or a struct in C.
Initial value: Member variables have initial values
appropriate to their data types.

Up to 64K bytes

Class An aggregate set of elements of possibly disparate data
types together with procedures that operate on them.
Initial value: When you create an instance of a class,
LotusScript initializes its member variables to values
appropriate to their data types, and generates an object
reference to it.

Object
reference

A pointer to an OLE Automation object or an instance of a
product class or user-defined class.
Initial value: NOTHING.

4 bytes

In each of the preceding tables, the specified storage size is platform-independent.

Date function
Returns the current system date as a date/time value.

Syntax
Date[$]

Return value
Date returns the integer part of the value returned by the Now function. Date returns
that value as a Variant of DataType 7 (Date/Time). Date$ returns that value as a
String.

Usage
The Date function is equivalent to the Today function.

You can call the Date function as either Date or Date(). You can call the Date$
function as either Date$ or Date$()

Examples: Date function
Print Date$ ' Prints "04/25/95" if the current
 ' system date is April 25, 1995.

102 LotusScript Language Reference Guide

Date statement
Sets the system date.

Syntax
Date[$] = dateExpr

Elements
dateExpr

Any expression whose value is a valid date/time value: either a String in a valid
date/time format, or else a Variant containing either a date/time value or a string
value in date/time format.

If dateExpr is a string in which the date part contains only numbers and valid date
separators, the operating system’s international Short Date format determines the
order in which the numbers are interpreted as month, day, and year values. The
date part of the string must have one of the following forms:

mm-dd-yy or dd-mm-yy
mm-dd-yyyy or dd-mm-yyyy
mm/dd/yy or dd/mm/yy
mm/dd/yyyy or dd/mm/yyyy

Usage
For a string date/time value, LotusScript interprets a 2-digit year designation as a year
in the twentieth century. For example, “1/1/17” and “1/1/1917” are considered the
same.

Examples: Date statement
' Depending on the international Short Date format,
' set the system date to September 7, 1995 or to 9 July, 1995.
Date$ = "09-07-95"

DateNumber function
Returns a date value for a given set of year, month, and day numbers.

Syntax
DateNumber (year , month , day)

DateSerial is acceptable in place of DateNumber.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 103

Elements
year

A numeric expression designating a year. 0 through 99 designate the years 1900
through 1999. To specify another century, use all four digits: for example, 1895.

month
A numeric expression designating a month of the year (a value from 1 through 12).

If you assign month a negative value, DateNumber calculates a prior date by
measuring backward from December of the preceding year. (For example, 1995, -2,
10 is evaluated as October 10, 1994.)

day
A numeric expression designating a day of the month (a value from 1 through 31).

If you assign day a negative value, then DateNumber calculates a prior date by
measuring backward from the last day of the month immediately preceding the
specified month. (For example, 1995, 5, -3 is evaluated as April 27, 1995, by
subtracting 3 from 30, the last day of April, the month before the 5th month.)

Return value
DateNumber returns the date value for the given year, month, and day.

The data type of the return value is a Variant of DateType 7 (Date/Time).

Examples: DateNumber function
Print DateNumber(1947, 10, 8) ' Prints 10/8/47

' The following two functions calculate a past date
' using negative arguments.
' Print the date 5 months and 10 days before 2/4/95.
Print DateNumber(95, 2 - 5, 4 - 10) ' Prints 8/25/94
' Print the date 3 months and 6 days before 1/1/95.
Print DateNumber(95, -3, -6) ' Prints 8/25/94

DateValue function
Returns the date value represented by a string expression.

Syntax
DateValue (stringExpr)

Elements
stringExpr

A string expression representing a date/time. stringExpr must be a String in a
valid date/time format or else a Variant containing either a date/time value or a
string value in date/time format. If you omit the year in stringExpr, DateValue
uses the year in the current system date.

104 LotusScript Language Reference Guide

If stringExpr is a string whose date part contains only numbers and valid date
separators, the operating system’s international Short Date format determines the
order in which the numbers are interpreted as month, day, and year values.

In a string representation of a date/time, a 2-digit designation of a year is
interpreted as that year in the twentieth century. For example, 17 and 1917 are
equivalent year designations.

Return value
DateValue returns the date value represented by stringExpr.

The data type of the return value is a Variant of DataType 7 (Date/Time).

Usage
If the stringExpr argument specifies a time of day, DateValue validates the time, but
omits it from the return value.

Examples: DateValue function
Dim birthDateV As Variant
' Calculate the date value for October 8, 1947.
birthDateV = DateValue("October 8, 1947")
' Print this value as a date string.
Print CDat(birthDateV) ' Prints 10/8/47
' Print the age this person reaches, in years,
' on this year's birthday.
Print Year(Today) - Year(birthDateV)

Day function
Returns the day of the month (an integer from 1 to 31) for a date/time argument.

Syntax
Day (dateExpr)

Elements
dateExpr

Any of the following kinds of expression:

A valid date/time string of String or Variant data type. In a date/time string, a
2-digit designation of a year is interpreted as that year in the twentieth century.
For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time)

A number within the valid date range: the range -657434 (representing Jan 1,
100 AD) to 2958465 (Dec 31, 9999 AD)

NULL

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 105

Return value
Day returns an integer between 1 and 31.

The data type of the return value is a Variant of DataType 2 (Integer).

Day(NULL) returns NULL.

Examples: Day function
Dim x As Variant, dd As Integer
x = DateNumber(1992, 4, 7)
dd% = Day(x)
Print dd% ' Prints 7

Declare statement (external C calls)
Declares a LotusScript function or sub that calls an external C function, allowing calls
to a function that is defined in a shared library of C routines.

Syntax
Declare [Public | Private] { Function | Sub } LSname Lib libName [Alias aliasName]
 ([argList]) [As returnType]

Elements
Public | Private

Optional. Public indicates that the declared C function is visible outside this
module, for as long as the module is loaded. Private indicates that the declared C
function is visible only within this module.

A declared C function is Private by default.

Function | Sub
Specifies that the C function is to be called as either a function or a sub.

LSname
The function or sub name used within LotusScript. If you omit the Alias clause,
this name must match the name declared in the shared library.

If the statement is declaring a Function (using the keyword Function), then you
can append a data type suffix character to LSname, to declare the type of the
function’s return value.

libName
A literal string, or a string constant, specifying the shared library file name. The
file name extension is optional. You can optionally include a complete path
specification. LotusScript automatically converts libName to uppercase. If you need
to preserve case sensitivity, use the aliasName described below.

106 LotusScript Language Reference Guide

aliasName
Optional. A literal string containing one of the following:

A case-sensitive C function name as declared in the shared library.

A pound sign (#) followed by an ordinal number representing the position of
the function in the library; for example, “#1”.

This argument is useful when the C function name is not a valid LotusScript name,
or when you need to preserve case sensitivity (for example, when calling an
exported library function in a 32-bit version of Windows).

argList
Optional. An argument list for the external function. Parentheses enclosing the list
are required, even if the C function takes no arguments.

argList has the form:

argument [, argument] ...

where argument is:

[ByVal] name As [LMBCS | Unicode] [dataType | Any]

The optional LMBCS and Unicode keywords may be used with the String data
type only, to specify the character set. See the usage information and examples
that follow.

Use the keyword Any to pass an argument to a C function without specifying a
data type, suppressing type checking.

returnType
The data type of the function’s return value. The clause As returnType is not
allowed for a sub, since a sub doesn’t return a value.

For a function, either specify As returnType, or append a data type suffix character
to LSname, to declare the data type of the function’s return value. Do not specify
both a returnType and a data type suffix character.

You can’t use Any as a returnType.

You can’t use Variant, Currency, or fixed-length String as a returnType.

If you omit As returnType and the function name has no data type suffix character
appended, the function returns a value of the data type specified by a Deftype
statement that applies to the function name. A C function can’t return a Variant; so
a DefVar statement can’t apply to the function name.

returnType has the form:

[LMBCS | Unicode] dataType

The dataType must match the C function return type exactly; no conversion is
performed on the return value.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 107

The optional LMBCS and Unicode keywords may be used with the String data
type only, to specify the character set. See the usage information and examples
that follow.

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

You can only declare external functions at the module level. If a function is not typed
with a return type or a data type suffix character, LotusScript generates an error.

Passing arguments
By default, LotusScript passes arguments to external functions by reference.
Arguments can be passed by value using the ByVal keyword, but only if LotusScript
can convert the value passed to the data type of the corresponding C function
argument.

Arrays, type variables, and user-defined objects must be passed by reference.

You can’t pass lists as arguments to C functions.

You can’t use a fixed-length String as an argument.

Product objects can be passed by reference (passing a reference to the instance handle)
or by value (passing the instance handle itself).They can be passed by value only by
using the keyword ByVal. Parentheses can’t be used on the actual argument.

An argument can be typed as Any to avoid data type restrictions. Arguments of type
Any are always passed by reference, regardless of the type of data they contain. You
can pass a Variant containing an array or list to a C function argument declared as
Any.

Using LMBCS or Unicode strings
Use the optional keywords LMBCS and Unicode with a String argument or returnType
to specify the character set.

Unicode designates a Unicode string of two-byte characters (words) using the
platform-native byte order.

LMBCS designates a LMBCS optimization group 1 string (multibyte characters).

If neither LMBCS nor Unicode is specified, the string variable uses the platform-native
character set.

108 LotusScript Language Reference Guide

Calling exported library functions in 32-bit versions of Windows
If you’re using a 32-bit version of Windows, the names of exported library functions
are case-sensitive; however, LotusScript automatically converts them to uppercase in
the Declare statement. To successfully call an exported library function, use the Alias
clause to specify the function name with correct capitalization (LotusScript leaves the
alias alone).

Examples: Declare statement (external C calls)

Example 1
Dim strOut As String
' Declare the external function StrUpr, defined in the library StrLib.
Declare Function StrUpr Lib "StrLib" (ByVal inVal As String) As String
' Call StrUpr
strOut$ = StrUpr("abc")

Example 2
' Declare an exported library function (SendDLL) with an alias
' to preserve case sensitivity.
Declare Function SendDLL Lib "C:\myxports.dll" _
 Alias "_SendExportedRoutine" (i1 As Long, i2 As Long)
' Call SendDLL
SendDLL(5, 10)

Example 3
' Pass the string argument amIStr to the function StrFun as
' a Unicode string. The function's return value is also
' a Unicode string.
Declare Function StrFun Lib "lib.dll" _
 (amIStr As Unicode String) As Unicode String

Example 4
' Pass the string argument amLStr to the function StrFun as
' a LMBCS string. The function's return value is a LotusScript
' platform-native string.
Declare Function StrFun Lib "lib.dll" _
 (amLStr As LMBCS String) As String

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 109

Declare statement (Forward reference)
Declares a forward reference to a procedure (a function, sub, or property), allowing
calls to a procedure that has not yet been defined.

Syntax
Declare [Static] [Public | Private] procType procName [([argList])] [As returnType
]

Elements
Static

Optional. Specifies that the values of the procedure’s local variables are saved
between calls to the procedure.

If this keyword is present, it must also be present in the definition of the
procedure.

Public | Private
Optional. Public indicates that the declared procedure is visible outside this
module, for as long as the module is loaded. If this keyword is present, it must
also be present in the definition of the procedure.

Private indicates that the declared procedure is visible only within this module. If
this keyword is present, it must also be present in the definition of the procedure.

procType
One of the following four keyword phrases, to identify the kind of procedure:

Function
Sub
Property Get
Property Set

procName
The name of a function, sub, or property. If procType is Function (a function is
being declared), then procName can have a data type suffix character appended to
declare the type of the function’s return value.

argList
A comma-separated list of argument declarations for the procedure. The
procedure must be a function or a sub (procType must be Function or Sub). The
argument declarations must match the argument declarations in the function or
sub definition exactly.

The syntax for each argument declaration is:

[ByVal] argument [() | List] [As type]

ByVal means that argument is passed by value: that is, the value assigned to
argument is a local copy of a value in memory, rather than a pointer to that
value.

110 LotusScript Language Reference Guide

argument() is an array variable. argument List identifies argument as a list
variable. Otherwise, argument can be a variable of any of the other data types
that LotusScript supports.

As dataType specifies the variable’s data type. You can omit this clause and use
a data type suffix character to declare the variable as one of the scalar data
types. If you omit this clause and argument doesn’t end in a data type suffix
character (and isn’t covered by an existing Deftype statement), its data type is
Variant.

Enclose the entire list of argument declarations in parentheses.

returnType
The data type of the function’s return value. This is optional for a function, and
not allowed for a sub or a property, because they don’t return values. returnType
must match the return type specified in the function definition; no conversion is
performed on the return value.

If you omit As returnType, the function name’s data type suffix character
appended to procName (the function name) determines the return value’s type. Do
not specify both a returnType and a data type suffix character.

If you omit As returnType and procName has no data type suffix character
appended, the function returns a value either of data type Variant or of the data
type specified by a Deftype statement.

Usage
The IDE implicitly generates forward declarations of procedures; directly entering
them in the IDE is unnecessary and causes syntax errors. You can %Include a file
containing forward declarations of procedures contained in the file. You can directly
enter in the IDE forward declarations of class properties and methods.

The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

You can make a forward declaration only at the module level or within a class.

The procedure, if it exists, must be defined in the same scope as the forward
declaration. LotusScript does not generate an error if a procedure has a forward
declaration but is not defined. (An error will be generated if you try to call a
procedure that has been declared but not defined.)

A procedure declared within a class definition cannot be declared as Static.

The use of Static, Public, and Private keywords in a Property Get forward declaration
must match their use in the corresponding Property Set forward declaration, if one
exists.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 111

Examples: Declare statement (forward reference)
' In this example, the forward declaration of the function Times
' allows the use of Times within the definition of the sub PrintFit.
' The function definition of Times appears later in the script.

' Forward declare the function Times.
Declare Function Times (a As Single, b As Single) As Single

' Define the sub PrintFit. It calls Times.
Sub PrintFit (lead As String, x As Single)
 Print lead$, Times (x!, x!)
End Sub

' Define Times.
Function Times (a As Single, b As Single) As Single
 Times = (a! - 1.0) * (b! + 1.0)
End Function

' Call the sub PrintFit.
PrintFit "First approximation is:", 13
' Prints "First approximation is: 168"

Deftype statements
Set the default data type for variables, functions, and properties whose names begin
with one of a specified group of letters.

Syntax
DefCur range [, range] ...

DefDbl range [, range] ...

DefInt range [, range] ...

DefLng range [, range] ...

DefSng range [, range] ...

DefStr range [, range] ...

DefVar range [, range] ...

112 LotusScript Language Reference Guide

Elements
range

A single letter, or two letters separated by a hyphen. Spaces or tabs around the
hyphen are ignored. A two-letter range specifies the group of letters including the
given letters and any letters between. These must be letters with ASCII code less
than 128.

Letters in range are case-insensitive. For example, the group of letters J, j, K, k, L,
and l can be designated by any one of these range specifications: J-L, L-J, j-L, L-j,
J-l, l-J, j-l, or l-j.

Usage
The following table lists the Deftype statements, the data type that each one refers to,
and the data type suffix character for that data type.

Statement Data type Suffix character

DefCur Currency @

DefDbl Double #

DefInt Integer %

DefLng Long &

DefSng Single !

DefStr String $

DefVar Variant (none)

Deftype statements can only appear at the module level, but they affect all declarations
contained within the module at module level and within its procedures. They do not
affect the declarations of data members of types and classes. (They do affect
declarations of function members and property members of classes.)

All Deftype statements in a module must appear before any declaration, explicit or
implicit, in the module. Exception: the declaration of a constant (by the Const
statement) is not affected by Deftype statements.

No range in any Deftype statement can overlap any other range in the same Deftype
statement or in any other Deftype statement in the same module.

The range A-Z is special. It includes all international characters, not only the letters
with ASCII code less than 128. It is the only range specification that includes
international characters. For example, to change the default data type of all variables,
functions, and properties to Single (the standard data type for several versions of
BASIC), specify DefSng A-Z.

Declarations that are explicit as to data type (such as Dim X As Integer, Dim Y$, or
Define MyFunction As Double) take precedence over Deftype declarations.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 113

Examples: Deftype statements
DefInt a-z

' x is declared explicitly, with no type.
Dim x
Print TypeName(x) ' Output: INTEGER

' Ñ is declared explicitly, with no type.
Dim Ñ
Print TypeName(Ñ) ' Output: INTEGER

' y is declared explicitly, with the String type.
' The specified type overrules the DefInt statement.
Dim y As String
Print TypeName(y) ' Output: STRING

' b is declared implicitly, with the String type.
' The suffix character $ overrules the DefInt statement.
b$ = "Rebar"
Print TypeName(b$) ' Output: STRING

' sNum is declared implicitly, which makes it Integer by
' default because DefInt a-z is in effect.
sNum = 17.6
Print TypeName(sNum), sNum ' Output: INTEGER 18
 ' because LotusScript rounds when
 ' converting to type Integer.

Delete statement
Executes an object’s Delete sub, if the sub exists, and then deletes the object.

Syntax
Delete objRef

Elements
objRef

An object reference variable or Variant containing an object reference.

Usage
The Delete statement calls the Delete sub in the object’s class definition (if one exists),
and then sets all references to the object to NOTHING.

If the object’s class is a derived class, LotusScript executes the base class’s Delete sub
(if one exists) after executing the class’s Delete sub.

For product objects, the interpretation of a Delete statement is up to the product. In
some cases, for example, the Delete statement deletes the object reference, but not the
object itself. A product may provide its own script mechanism for deleting the object.

114 LotusScript Language Reference Guide

In Lotus Notes Release 4, for example, you can use the Delete statement to delete an
object reference to a Notes database, but you use the NotesDatabase class Remove
method to delete the database itself (a .nsf file).

Examples: Delete statement
' Define the class Customer.
Class Customer
 Public Name As String
 Public Address As String
 Public Balance As Currency

 ' Define a constructor sub for the class.
 Sub New (Na As String, Addr As String, Bal As Currency)
 Me.Name$ = Na$
 Me.Address$ = Addr$
 Me.Balance@ = Bal@
 End Sub

 ' Define a destructor sub for the class.
 Sub Delete
 Print "Deleting customer record for: "; Me.Name$
 End Sub
End Class

' Create an object of the Customer class.
Dim X As New Customer ("Acme Corporation", _
 "55 Smith Avenue, Cambridge, MA", 14.92)
Print X.Balance@
' Output:
' 14.92

' Delete the object, first running the destructor sub.
Delete X
' Output:
' Deleting customer record for: Acme Corporation."

' Then the object is deleted.

Dim statement
Declares variables.

Syntax
{ Dim | Static | Public | Private } variableDeclaration [, variableDeclaration]...

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 115

Elements
Dim | Static | Public | Private

Variable declarations begin with one of the words Dim, Static, Private, or Public.

Dim indicates that a variable is nonstatic and private by default.

Static indicates that the variable’s value is saved between calls to the procedure
where the variable is declared.

Public indicates that the variable is visible outside the scope (module or class)
where the variable is defined, for as long as this module remains loaded.

Private indicates that the variable is visible only within the current scope.

You can use the Static keyword in procedure scope, but not in module or class
scope. You can use the Public and Private keywords in module or class scope, but
not in procedure scope.

variableDeclaration
The declaration has one of the following forms, depending on the kind of variable
being declared:

Scalar variable: variableName[dtSuffix] [As type]

Object reference variable: variableName As [New] type [argList]

List variable: variableName[dtSuffix] List [As type]

Array variable: variableName[dtSuffix] ([bounds]) [As type]

You can declare any number of variables in a single statement, separated by
commas.

variableName

The name of the variable being declared.

dtSuffix

Optional. A character that specifies the data type of variableName. The data type
suffix characters and the data types that they represent are: @ for Currency, #
for Double, % for Integer, & for Long, ! for Single, and $ for String.

type

Optional for scalar variables, lists, and arrays. A valid LotusScript data type,
user-defined data type, user-defined class, or product class. This specifies the
type of variableName.

If type is the name of a class, variableName is an object reference for that type: its
value can only be a reference to an instance of that class or to an instance of a
derived class of that class, or the value NOTHING.

116 LotusScript Language Reference Guide

New

Optional. Valid only if type is the name of a user-defined or product class. New
creates a new object of the class named by type, and assigns a reference to that
object in variableName.

Note that in some cases, Lotus products provide other mechanisms for creating
product objects in scripts, such as product functions or product object methods.
See your Lotus product documentation for details.

argList

Optional. This is valid only if the New keyword is specified.

For user-defined classes, argList is the comma-separated list of arguments
required by the class constructor sub New, defined in the class named by type.
For product classes, consult the product documentation.

bounds

Optional. bounds is a comma-separated list of bounds for the dimensions of a
fixed array. Each bound is specified in the form

[lowerBound To] upperBound

where lowerBound is a number designating the minimum subscript allowed for
the dimension, and upperBound is a number designating the maximum. If no
lowerBound is specified, the lower bound for the array dimension defaults to
zero (0), unless the default lower bound has been changed to 1 using the Option
Base statement.

If you don’t define any bounds, the array is defined to be a dynamic array.

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

Explicit declarations and implicit declarations
You can declare a variable name either explicitly or implicitly. The Dim statement
declares a name explicitly. A name is declared implicitly if it is used (referred to) when
it has not been explicitly declared, or when it is not declared as a Public name in
another module being used by the module where the name is referred to. You can
prohibit implicit declarations by including the statement Option Declare in your script.

Specifying the data type
Either dtSuffix or As type can be specified in variableDeclaration, but not both. If neither
is specified, the data type of variableName is Variant.

The data type suffix character, if it is specified, is not part of the variable name. When
the name is used (referred to) in the script, it can be optionally suffixed by the
appropriate data type suffix character.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 117

Declaring arrays
For a fixed array, Dim specifies the type of the array, the number of dimensions of the
array, and the subscript bounds for each dimension. Dim allocates storage for the
array elements and initializes the array elements to the appropriate value for that data
type (see “Initializing variables,” later in this section).

For a dynamic array, Dim only specifies the type of the array. The number of
dimensions of the array and the subscript bounds for each dimension are not defined;
and no storage is allocated for the array elements. The declaration of a dynamic array
must be completed by a later ReDim statement.

Arrays can have up to 8 dimensions.

Array subscript bounds must fall in the range -32,768 to 32,767, inclusive.

Declaring lists
A list is initially empty when it is declared: it has no elements, and no storage is
allocated for it. An element is added to a list when the list name with a particular list
tag first appears on the left-hand side of an assignment statement (a Let statement or a
Set statement).

If the character set is single byte, Option Compare determines whether list names are
case sensitive. For example, if Option Compare Case is in effect, the names “ListA”
and “Lista” are different; if Option Compare NoCase is in effect, these names are the
same. If the character set is double-byte, list names are always case and pitch sensitive.

Declaring object reference variables
If type is the name of a class and the keyword New is not specified, the initial value of
the declared object reference variable is NOTHING. To assign another value to an
object reference variable, use the Set statement later in the script.

Dim variableName As New className generates executable code. When you save a
compiled module, module-level executable code is not saved, so be careful about
using such a statement at the module level. Your Lotus product may prohibit you
from placing executable statements at the module level.

You may prefer to declare the object reference variable at the module level with Dim
variableName As className, which is not executable code, then use a Set statement
(which is executable code) in a procedure to bind the object reference variable to an
object.

The New keyword is not valid in an array declaration or a list declaration.

118 LotusScript Language Reference Guide

Initializing variables
Declaring a variable also initializes it to a default value.

Scalar variables are initialized according to their data type:

Numeric data types (Integer, Long, Single, Double, Currency): Zero (0)

Variants: EMPTY

Fixed-length strings: A string filled with the NULL character Chr(0).

Variable-length strings: The empty string (“”).

Object reference variables are initialized to NOTHING, unless New is specified in
the variable declaration.

Each member of a used-defined data type variable is initialized according to its
own data type.

Each element of an array variable is initialized according to the array’s data type.

A list variable has no elements when it is declared, so there is nothing to initialize.

Visibility of declarations
The default visibility for a declaration at the module level is Private, unless Option
Public has been specified.

The default visibility for a variable declaration within a class is Private.

Public and Private can only be used to declare variables in module or class scope.
Variables declared within a procedure are automatically Private; members of
used-defined data types are automatically Public (these cannot be changed).

Examples: Dim statement

Example 1
' Declare a one-dimensional Integer array and a Single variable.
Dim philaMint(5) As Integer
Dim x As Single
x! = 10.0
philaMint%(0) = 3 ' Assigns an Integer value
philaMint%(1) = x ' Converts Single 10.0 to Integer 10
Print DataType(philaMint%(0)); DataType(philaMint%(1))
' Output:
' 2 2
' Both values are Integers.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 119

Example 2
Dim xB As New Button("Merge", 60, 125)

xB is declared as an object reference variable to hold references to objects of the class
named Button. A new Button object is created. For this example, suppose that the
constructor sub for the class Button takes three arguments: a name for a button, and x-
and y-position coordinates for the location of the button. The new button created is
named “Merge,” and positioned at (60, 125). A reference to this button is assigned to
xB.

Example 3
' Declare iVer and kVer as Integer variables. Note that the phrase
' As Integer must be repeated to declare both variables as Integer.
Dim iVer As Integer, kVer As Integer
' Declare nVer as an Integer variable.
' The declared type of mVer is Variant, the default data type, because
' no data type is declared for mVer: there is no As type phrase for
' mVer, and no data type suffix attached to mVer.
Dim mVer, nVer As Integer
Print TypeName(mVer), TypeName(nVer%) ' Prints EMPTY INTEGER

Example 4
' Declare marCell and perDue as Integer variables.
' The phrase As Integer declares marCell as an Integer variable.
' The data type suffix % declares perDue as an Integer variable.
Dim marCell As Integer, perDue%
Print TypeName(marCell), TypeName(perDue%) ' Prints INTEGER INTEGER

Example 5
Dim marCell% As Integer
' Error, because the Dim statement attempts to declare the
' Integer variable marCell using both the data type suffix character
' for Integer, and the data type name Integer. The declaration should
' include one or the other, but not both.

Example 6
' A data type suffix character is optional in references to a
' declared variable.

' Declare marCell as an Integer variable.
Dim marCell As Integer
' Use the data type suffix character in a reference to marCell.
marCell% = 1
' Refer to marCell without using the suffix character.
Print marCell ' Prints 1

120 LotusScript Language Reference Guide

Example 7
' Declare marCell as an Integer variable.
Dim marCell As Integer
' Assign integer value to marCell.
marCell% = 1
Print marCell$
' Error, because the Print statement refers to marCell using the
' data type suffix character $ for a String variable, but marCell was
' declared as an Integer.

Example 8
Dim Leads As New DB ("LotusFormLeads")

This Dim objRef As New prodClass(argList) statement declares an object reference to,
and creates an instance of, the Lotus Forms DB class. The Dim statement for creating a
DB object requires one string argument: a DB object name.

Dir function
Returns file or directory names from a specified directory, or returns a drive volume
label.

Syntax
Dir[$] [(fileSpec [, attributeMask])]

Elements
fileSpec

A string expression that specifies a path and the file names you want returned.
The argument is required only for the first call to Dir$ for any path.

Standard wildcard characters can be used in fileSpec to designate all files satisfying
the wildcard criterion. Asterisk (*) for either the file name or the extension
designates all files with any characters in that position. Question mark (?) in any
character position in either part of the name designates any single character in that
position.

attributeMask
An integer expression whose value specifies what names should be returned. If
this argument is omitted, the names of normal files that match fileSpec are
returned. If you supply an attributeMask argument, you must supply a fileSpec
argument.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 121

To include other files in the returned list of file names, specify the sum of those
values in the following table that correspond to the desired kinds of files:

Mask File attribute Constant

0 Normal file ATTR_NORMAL

2 Hidden file ATTR_HIDDEN

4 System file ATTR_SYSTEM

8 Volume label ATTR_VOLUME. If this is specified, then the presence (or
absence) of 2, 4, and 16 is irrelevant. The hidden, system, or
directory attributes are not meaningful for a volume label.

16 Directory ATTR_DIRECTORY

Return value
Dir returns a Variant of DataType 8 (String), and Dir$ returns a String.

Usage
The constants in the table are defined in the file lsconst.lss. Including this file in your
script allows you to use constant names instead of their numeric values.

To determine whether a particular file exists, use an exact file name for the file_spec
argument to Dir or Dir$. The return value is either the file name, or, if the file does not
exist, the empty string (“”).

The first call to Dir or Dir$ returns the name of the first file in the specified directory
that fits the file name specifications in the fileSpec argument. Then:

Subsequent calls to Dir or Dir$ without an argument retrieve additional file names
that match fileSpec.

If there are no more file names in the specified directory that match the
specification, Dir returns a Variant of DataType 8 (String); Dir$ returns the empty
string (“”).

If Dir or Dir$ is called without an argument after the empty string has been returned,
LotusScript generates an error.

You can call the Dir function with no arguments as either Dir or Dir(). You can call
the Dir$ function with no arguments as either Dir$ or Dir$()

Examples: Dir function
' List the contents of the c:\ directory, one entry per line.
Dim pathName As String, fileName As String
pathName$ = "c:*.*"
fileName$ = Dir$(pathName$, 0)

Do While fileName$ <> ""
 Print fileName$
 fileName$ = Dir$()
Loop

122 LotusScript Language Reference Guide

Do statement
Executes a block of statements repeatedly while a given condition is true, or until it
becomes true.

Syntax 1
Do [While | Until condition]

[statements]

Loop

Syntax 2
Do

[statements]

Loop [While | Until condition]

Elements
condition

Any numeric expression. 0 is interpreted as FALSE, and any other value is
interpreted as TRUE.

Usage
In Syntax 1, condition is tested before entry into the loop, and before each subsequent
repetition. The loop repeats as long as condition evaluates to TRUE (if you specify
While), or until condition evaluates to TRUE (if you specify Until).

In Syntax 2, condition is tested after the body of the loop executes once, and after each
subsequent repetition. The loop repeats as long as condition evaluates to TRUE (if you
specify While), or until condition evaluates to TRUE (if you specify Until).

Terminating the loop
You can exit the loop with an Exit Do statement or a GoTo statement. Exit Do transfers
control to the statement that follows the Do...Loop block; GoTo transfers control to the
statement at the specified label.

If you do not specify a While or Until condition, the loop will run forever or until an
Exit Do or a GoTo statement is executed within the loop. For example, this loop
executes forever:

Do
 ' ...
Loop

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 123

Examples: Do statement
' Each loop below executes four times,
' exiting when the loop variable reaches 5.
Dim i As Integer, j As Integer
i% = 1
j% = 1
Do While i% < 5 ' Test i's value before executing loop.
 i% = i% + 1
 Print i% ;
Loop
' Output:
' 2 3 4 5
Do
 j% = j% + 1
 Print j% ;
Loop Until j% >= 5 ' Test j's value after executing loop.
' Output:
' 2 3 4 5

Dot notation
Use dot notation to refer to members of user-defined types, user-defined classes, and
product classes.

Syntax 1
typeVarName.memberName

Syntax 2
objRefName.memberName [(argList)]

Elements
typeVarName

A variable of a user-defined data type.

memberName
A member of a user-defined type, a user-defined class, or a product class. Class
members may include methods, properties, and variables.

objRefName
An object reference variable.

argList
Optional. A list of one or more arguments; some class methods and properties
require an argument list.

124 LotusScript Language Reference Guide

Usage
Use dot notation to refer to the members of user-defined data types, user-defined
classes, and product classes.

When referring to the currently selected product object, you may omit objRefName. In
some cases, you can use bracket notation, substituting [prodObjName] for objRefName.
For more information, see your Lotus product documentation.

Note that dot notation is interpreted differently when it appears within a With
statement. See that topic for details.

Examples: Dot notation

Lotus Forms example
In Lotus Forms, you use the Forms Designer to place pictures on a form. A picture is
an instance of the Forms Picture class. In a script, you can change the bitmap or
metafile that the Picture object displays.

This example sets the value of the FileName property and uses the Update method to
refresh the display. The FileName property and Update method both apply to the
Picture class. For information about Lotus Forms classes, see the Lotus Forms
documentation.

' statePicture is an object reference to a Picture object.
If state$ = "Ohio" Then
 ' Set the FileName property and refresh the display.
 statePicture.FileName = "c:\maps\ohio.bmp"
 statePicture.Update
End If

Double data type
Specifies a variable that contains a double-precision floating point value maintained as
an 8-byte floating point value.

Usage
The Double suffix character for implicit type declaration is #.

Double variables are initialized to 0.

The range of Double values is -1.7976931348623158E+308 to 1.7976931348623158E+308,
inclusive.

On UNIX platforms, the range is -1.7976931348623156E+308 to
1.797693134862315E+308, inclusive.

The smallest non-zero Double value (disregarding sign) is 2.2250738585072014E-308.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 125

LotusScript aligns Double data on an 8-byte boundary. In user-defined types,
declaring variables in order from highest to lowest alignment boundaries makes the
most efficient use of data storage space.

Examples: Double data type
' Explicitly declare a Double variable.
Dim rate As Double
rate# = .85

' Implicitly declare a Double variable.
interest# = rate#

Print interest# ' Prints .85

End statement
Terminates execution of the currently executing script.

Syntax
End [returnCode]

Elements
returnCode

Optional. An integer expression. The script returns the value of this expression to
the Lotus product that executed the script.

Usage
Some Lotus products do not expect a return value when an End statement executes.
See the product’s documentation. If the product does not expect a return value, you
do not need to use returnCode. (The product will ignore it if you do.)

Examples: End statement
' The End statement terminates execution of the script
' that is running when the function is called.
Function Func1 ()
 Print 1
 End ' Terminates program execution
 Print 2 ' Never executed
End Function ' Ends the function definition
Func1
' Output:
' 1

126 LotusScript Language Reference Guide

Environ function
Returns information about an environment variable from the operating system.

Syntax 1
Environ[$] ({ environName | n })

Elements
environName

A string of uppercase characters indicating the name of an environment variable.

n
A numeric value from 1 to 255, inclusive, indicating the position of an
environment variable in the environment string table.

Return value
Environ returns a Variant, and Environ$ returns a String.

If you specify the environment variable by name with environName, LotusScript
returns the value of the specified environment variable. If that environment variable is
not found, LotusScript returns the empty string (“”). If environName is the empty string
or evaluates to NULL or EMPTY, LotusScript generates an error.

If you specify the environment variable by position with n, LotusScript returns the
entire environment string, including the name of the environment variable. If n is
larger than the number of strings in the environment string table, LotusScript returns
the empty string (“”).

If n is less than 1, greater than 255, an EMPTY Variant, or NULL, LotusScript
generates an error.

Examples: Environ function
Microsoft Windows 3.1 stores temporary files in the directory defined by the Temp
environment variable. This example makes the temp directory the current directory,
and writes the string you enter to a file (MYAPP.TMP) in that directory. To determine
the location of your temp directory, see the Set Temp command in your
AUTOEXEC.BAT.

Dim TempDir As String, tempFile As Integer
Dim tempFileName As String, tempStuff As String
tempStuff$ = InputBox("Enter some temporary information")
TempDir$ = Environ("Temp")
ChDir TempDir$
tempFile% = FreeFile()
tempFileName$ = "myapp.tmp"
Open tempFileName$ For Output As tempFile%
Print #tempFile%, tempStuff$
Close tempFile%

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 127

EOF function
Returns an integer value that indicates whether the end of a file has been reached.

Syntax
EOF (fileNumber)

fileNumber
The ID number assigned to the file when it was opened.

Return value
The return value depends on the type of file that you are using. The following table
shows the EOF return values for binary, random, and sequential file types.

File type EOF returns TRUE (-1) if: EOF returns FALSE (0) if:

Binary The last executed Get
statement cannot read the
amount of data (the number
of bytes) requested.

It successfully reads the amount of data
requested.

Random The last executed Get
statement cannot read an
entire record.

It successfully reads an entire record.

Sequential The end of the file has been
reached.

The end of the file has not been reached.

Usage
The end of file is determined by the operating system (from the file length stored in
the file system). A Ctrl+Z character (ASCII 26) is not considered an end-of-file marker
for any type of file: sequential, random, or binary.

Examples: EOF function
' Open a file, print it, and close the file.
Dim text As String, fileNum As Integer
fileNum% = FreeFile()

Open "c:\config.sys" For Input As fileNum%
Do Until EOF(1)
 Line Input #1, text$
 Print text$
Loop
Close fileNum%

128 LotusScript Language Reference Guide

Erase statement
Deletes an array, list, or list element.

Syntax
Erase { arrayName | listName | listName (tag) }
 [, { arrayName | listName | listName (tag) }]...

Elements
arrayName

An array or a Variant variable containing an array. arrayName can end with empty
parentheses.

listName
A list or a Variant variable containing a list. listName can end with empty
parentheses.

tag
The list tag of a list element to be erased from the specified list.

Usage
The following table shows how the Erase statement affects arrays and lists.

Item Effect of Erase statement

Fixed array Its elements are reinitialized.

Dynamic array LotusScript removes all elements from storage and recovers the storage. The
array retains its type, but has no elements.

You must use ReDim to redeclare the array before referring to its elements
again. If you used ReDim before it was erased, the array maintains the same
number of dimensions.

List LotusScript removes all elements from storage and recovers the storage. The
list retains its type, but has no elements.

List element The element no longer exists in the list.

Examples: Erase statement
' Use Erase to reinitialize the Integer elements of the
' array baseLine to zero.
Option Base 1
Dim baseLine(3) As Integer ' Declare the fixed array baseLine.
baseLine%(1) = 1 ' Assign values to baseLine.
baseLine%(2) = 2
baseLine%(3) = 6
Erase baseLine% ' Erase baseLine.
Print baseLine%(1) ' Prints 0.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 129

Erl function
Returns the line number in the script source file where the current error occurred.

Syntax
Erl

Return value
Erl returns an Integer. It returns FALSE (0) if there is no current error, which signifies
that the most recent error has been handled.

Usage
You can call the function as either Erl or Erl().

The line number returned by Erl is for the procedure handling the error. If a calling
procedure contains an On Error statement and the called procedure does not, an error
in the called procedure is reported at the line number of the Call statement or function
reference in the calling procedure.

Examples: Erl function
' Assign the line number where an error occurs
' (if any) to the variable x.
Sub RepErr
 Dim x As Integer
 x% = Erl()
 Print x%
End Sub
Call RepErr
' Output:
' 0 ' There is no current error.

Err function
Returns the current error number.

Syntax
Err

Return value
Err returns an Integer. If there is no current error, Err returns FALSE (0).

130 LotusScript Language Reference Guide

Usage
The error number is set when an error occurs, or by the Err statement. Generally, the
function Err is used within an error-handling routine.

You can call the function as either Err or Err().

Examples: Err function
' This example uses the Err function, Err statement, Error function,
' and Error statement.
' Ask the user to enter a number between 1 and 100. If the user's
entry
' cannot be converted to a 4-byte single, an error occurs.
' The example defines two additional errors for numeric entries
' not in the range 1 - 100.

Public x As Single
Const TOO_SMALL = 1001, TOO_BIG = 1002
Sub GetNum
 Dim Num As String
 On Error GoTo Errhandle
 Num$ = InputBox$("Enter a value between 1 and 100:")
 x! = CSng(Num$) ' Convert the string to a 4-byte single.
 ' Check the validity of the entry.
 If x! < 1 Then
 Error TOO_SMALL, "The number is too small or negative."
 ElseIf x! > 100 Then
 Error TOO_BIG, "The number is too big."
 End If
 ' If the script gets here, the user made a valid entry.
 MessageBox "Good job! " & Num$ & " is a valid entry."
 Exit Sub
 ' The user did not make a valid entry.
 ' Display the error number and error message.
Errhandle:
 ' Use the Err function to return the error number and
 ' the Error$ function to return the error message.
 MessageBox "Error" & Str(Err) & ": " & Error$
 Exit Sub
End Sub
GetNum ' Call the GetNum sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 131

Err statement
Sets the current error number.

Syntax
Err = errNumber

Elements
errNumber

A numeric expression whose value is an error number.

Usage
The Err statement sets the current error number to an error number you specify. This
may be any number in the range 0 to 32767 inclusive.

Examples: Err statement
' This example uses the Err function, Err statement, Error function,
' and Error statement.
' Ask the user to enter a number between 1 and 100. If the user's
entry
' cannot be converted to a 4-byte single, an error occurs.
' the example defines two additional errors for numeric entries
' not in the range 1 - 100.

Public x As Single
Const TOO_SMALL = 1001, TOO_BIG = 1002
Sub GetNum
 Dim Num As String
 On Error GoTo Errhandle
 Num$ = InputBox$("Enter a value between 1 and 100:")
 x! = CSng(Num$) ' Convert the string to a 4-byte single.
 ' Check the validity of the entry.
 If x! < 1 Then
 Error TOO_SMALL, "The number is too small or negative."
 ElseIf x! > 100 Then
 Error TOO_BIG, "The number is too big."
 End If
 ' If the script gets here, the user made a valid entry.
 MessageBox "Good job! " & Num$ & " is a valid entry."
 Exit Sub
 ' The user did not make a valid entry.
 ' Display the error number and error message.
Errhandle:
 ' Use the Err function to return the error number and
 ' the Error$ function to return the error message.
 MessageBox "Error" & Str(Err) & ": " & Error$
 Exit Sub
End Sub
GetNum ' Call the GetNum sub.

132 LotusScript Language Reference Guide

Error function
Returns an error message for either a specified error number or the current error.

Syntax
Error[$] [(errNumber)]

Elements
errNumber

A numeric expression whose value is an error number. If no errNumber is
specified, LotusScript returns the message for the current (most recent) error.

Return value
Error returns a Variant, and Error$ returns a String. If no errNumber is specified, and
there is no current error, the function returns the empty string (“”).

You can call the Error function with no arguments as either Error or Error(). You can
call the Error$ function with no arguments as either Error$ or Error$().

Examples: Error function
' This example uses the Err function, Err statement, Error function,
' and Error statement.
' Ask the user to enter a number between 1 and 100. If the user's
entry
' cannot be converted to a 4-byte single, an error occurs.
' The example defines two additional errors for numeric entries
' not in the range 1 - 100.

Public x As Single
Const TOO_SMALL = 1001, TOO_BIG = 1002
Sub GetNum
 Dim Num As String
 On Error GoTo Errhandle
 Num$= InputBox$("Enter a value between 1 and 100:")
 x! = CSng(Num$) ' Convert the string to a 4-byte single.
 ' Check the validity of the entry.
 If x! < 1 Then
 Error TOO_SMALL, "The number is too small or negative."
 ElseIf x! > 100 Then
 Error TOO_BIG, "The number is too big."
 End If
 ' If the script gets here, the user made a valid entry.
 MessageBox "Good job! " & Num$ & " is a valid entry."
 Exit Sub
 ' The user did not make a valid entry.
 ' Display the error number and error message.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 133

Errhandle:
 ' Use the Err function to return the error number and
 ' the Error$ function to return the error message.
 MessageBox "Error" & Str(Err) & ": " & Error$
 Exit Sub
End Sub
GetNum ' Call the GetNum sub.

Error statement
Signals an error number and its corresponding message.

Syntax
Error errNumber [, msgExpr]

Elements
errNumber

A numeric expression whose value is a LotusScript-defined error number or a
user-defined error number. The errNumber argument can be any number between
1 and 32767 inclusive.

msgExpr
Optional.

A string expression containing an error message. This string replaces any existing
message associated with the error number.

Usage
If errNumber is a LotusScript-defined error number, this Error statement simulates a
LotusScript error. If it is not, this statement creates a user-defined error. When the
Error statement is executed, LotusScript behaves as if a run-time error has occurred. If
no error handling is in effect (set up by an On Error statement) for the specified error,
execution ends and an error message is generated.

The error message generated is msgExpr if it is specified. If msgExpr is omitted, the
error message is the LotusScript error message for the specified error number, if that
number designates a LotusScript error. Otherwise the message “User-defined error” is
generated.

134 LotusScript Language Reference Guide

Examples: Error statement
' This example uses the Err function, Err statement, Error function,
' and Error statement. The On Error statement specifies which error
the
' error-handling routine ErrTooHigh handles. The Error statement tests
' the routine.
' Ask the user to enter a number between 1 and 100. If the user's
entry
' cannot be converted to to a 4-byte single, an erorr occurs.
' The example defines two additional errors for numeric entries not in
' the range 1 - 100.

Public x As Single
Const TOO_SMALL = 1001, TOO_BIG = 1002
Sub GetNum
 Dim Num As String
 On Error GoTo Errhandle
 Num$= InputBox$("Enter a value between 1 and 100:")
 x! = CSng(Num$) ' Convert the string to a 4-byte single.
 ' Check the validity of the entry.
 If x! < 1 Then
 Error TOO_SMALL, "The number is too small or negative."
 ElseIf x! > 100 Then
 Error TOO_BIG, "The number is too big."
 End If
 ' If the script gets here, the user made a valid entry.
 MessageBox "Good job! " & Num$ & " is a valid entry."
 Exit Sub
 ' The user did not make a valid entry.
 ' Display the error number and error message.
Errhandle:
 ' Use the Err function to return the error number and
 ' the Error$ function to return the error message.
 MessageBox "Error" & Str(Err) & ": " & Error$
 Exit Sub
End Sub
GetNum ' Call the GetNum sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 135

Evaluate function and statement
Execute a Lotus product macro.

Syntax
Evaluate (macro [, object])

Elements
macro

The text of a Lotus product macro, in the syntax that the product recognizes. Refer
to the Lotus product documentation for the correct syntax of the macro.

The macro text must be known at compile time, so use a constant or string literal.
Do not use a string variable.

object
Optional. The name of a product object. Refer to the product documentation to
determine if the macro requires an object, and what the object is.

Return value
If the Lotus product macro being executed returns a value, the Evaluate function
returns a Variant containing that value. Otherwise, the function does not return a
value.

Examples: Evaluate function and statement
' For each document in a Notes database, use a Notes macro to compute
' the average for a list of numeric entries in the NumberList field.
' Evaluate returns a Variant, and Notes macros return an array. In
' this case, the array contains only one element (element 0).
' For more information, see the Notes documentation.

Sub Click(Source As Button)
 ' The macro text must be known at compile time.
 Const NotesMacro$ = "@Sum(NumberList) / @Elements(NumberList)"
 Dim result As Variant, j As Integer
 Dim db As New NotesDatabase("", "MYSALES.NSF")
 Dim dc As NotesDocumentCollection
 Dim doc As NotesDocument
 Set dc = db.AllDocuments
 For j% = 1 To dc.Count
 Set doc = dc.GetNthDocument(j%)
 result = Evaluate(NotesMacro$, doc)
 MessageBox("Average is " & result(0))
 Next
End Sub

136 LotusScript Language Reference Guide

Execute function and statement
Compiles and executes a text expression as a temporary module.

Statement Syntax
Execute text

Function Syntax
Execute (text)

Elements
text

A string expression specifying the text to be compiled and executed.

Return value
The Execute function returns one of the following values:

The return code of an End statement, if one was executed.

Zero (0), if no End statement was executed, or if the executed End statement had
no return value.

Usage
LotusScript considers text a separate script, compiling and executing it as a temporary
module that’s unloaded as soon as execution finishes.

Variables declared in the calling script (where the Execute statement appears) are only
accessible in the temporary module if they are declared Public. Both these Public
variables, and variables declared Public in external modules used by the calling script,
will be accessible automatically. To reference a local variable in the temporary module,
use the CStr function to convert its value to a string, and then include the result in text.

Variables declared in the temporary module are not accessible outside of that script.

To delimit text that spans several lines or includes double-quote characters, use
vertical bars (| |) or braces ({ }).

Any compilation error in the temporary module will be reported as a run-time error in
the scope containing the Execute statement. Any run-time error in the temporary
module will be reported as a run-time error within the scope of that module, not the
scope containing the Execute statement. To handle run-time errors within the
temporary module, use the On Error statement.

The Execute statement is not legal at the module level; you can use it only in
procedures.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 137

Examples: Execute function and statement

Example 1 (Execute statement)
' The Execute statement performs a calculation entered by the user and
' displays the result. If the user enters an invalid calculation, a
' compilation error occurs, and the DoCalc sub displays an
' appropriate message. The Option Declare statement disallows
' the implicit declaration of variables in the calculation. The user
' can enter 700 * 32, for example, or "My name is " & "Fred", or
' Today - 365, but an entry such as x / y generates an error.

Sub DoCalc
 ' To handle any compilation error in the Execute statement
 On Error GoTo BadCalc
 Execute |Option Declare
 Dim x ' x is a Variant to accept any calculation.
 x = | & InputBox ("Enter your calculation") & |
 MessageBox "The result is " & x|
 Exit Sub
' Report an error and exit.
BadCalc:
 MessageBox "Not a valid calculation"
 Exit Sub
End Sub
DoCalc ' Call the sub.

Example 2 (Execute function)
' You can use the Execute function to return an integer such as a
' status code. In this example, the Execute function performs the
' calculation entered by the user. If the result is less than 0
' or greater than 1 (100%), Execute returns a status code, and the
' ComputeInterest sub displays an appropriate message.

Sub ComputeInterest
 Dim script As String, calc As String, retcode As Integer
 calc$ = InputBox("Compute loan interest (charge/loan)")
 script$ = _
 |Option Declare
 Sub Initialize
 Dim pct As Single
 pct! = | & calc$ & |
 If pct! < 0 Then
 End -2 ' -2 is a status code.
 ElseIf pct! > 1 Then
 End -3 ' -3 is a status code.
 End If
 MessageBox("Interest is " & Format(pct!,"percent"))
 End Sub|
 retcode% = Execute (script$)
 If retcode% = -2 Then

138 LotusScript Language Reference Guide

 MessageBox("You computed a negative interest rate!")
 ElseIf retcode% = -3 Then
 MessageBox("You computed an excessive interest rate!")
 End If
End Sub
ComputeInterest ' Call the sub.

Exit statement
Terminates execution of the current block statement.

Syntax
Exit blockType

Elements
blockType

A keyword designating the type of the block statement for which execution is to
be terminated. It must be one of the following keywords:

Do
For
ForAll
Function
Sub
Property

Usage
When LotusScript encounters this statement, it returns control to the scope containing
the block statement for which execution is to be terminated.

An Exit statement of a particular type is legal only within an enclosing block
statement. LotusScript returns control from the innermost block statement or
procedure of that type.

However, the innermost block statement containing the Exit statement need not be of
that type. For example, a function definition can include a For...Next block statement,
and an Exit Function statement can appear within this statement. If LotusScript
encounters the Exit Function statement during execution, control is returned
immediately from the function, in which case the For...Next block statement is not
executed to completion.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 139

The following table shows the rules for transfer of control after the Exit statement.

Exit block type Execution continues

Exit Do At the first statement following the end of the Do block statement.

Exit For At the first statement following the end of the For block statement.

Exit ForAll At the first statement following the end of the ForAll block statement.

Exit Function In the calling script, as it would from a normal return from the
procedure.

Exit Sub In the calling script, as it would from a normal return from the
procedure.

Exit Property In the calling script, as it would from a normal return from the
procedure.

If you exit a function or a Property Get without assigning a value to the function or
property variable, that function or property returns the initialized value of the
variable. Depending on the data type of the function or property’s return value, this
value can be either 0, EMPTY, or the empty string (“”).

Examples: Exit statement
' The user is asked to enter a 5-character string. If the length of
' the entry is not 5, the result of Exit Function is to return the
' empty string and issue a message telling you the entry is invalid.

Function AssignCode As String
 Dim code As String
 code$ = InputBox("Enter a 5-character code")
 If Len(code$) <> 5 Then Exit Function
 AssignCode = code$ ' It is a valid code.
End Function
If AssignCode() <> "" Then
 MessageBox "You entered a valid code."
Else
 MessageBox "The code you entered is not valid."
End If

140 LotusScript Language Reference Guide

Exp function
Returns the exponential (base e) of a number.

Syntax
Exp (numExpr)

Elements
numExpr

Any numeric expression, designating the power to which you wish to raise the
value e.

If the value of numExpr exceeds 709.78, LotusScript returns an overflow error.

Return value
Exp returns the exponential (base e) of numExpr.

The data type of the return value is Double.

Usage
The value of e is approximately 2.71828182845905.

Exp is the inverse function of Log.

Examples: Exp function
Print Exp(2) ' Prints 7.38905609893065

FileAttr function
Returns the access type, or the operating system file handle, for an open file.

Syntax
FileAttr (fileNumber, attribute)

Elements
fileNumber

The number associated with the file when you opened it.

attribute
A number (either 1 or 2) specifying the type of information you want. Instead of 1
or 2, you can specify the constant ATTR_MODE or ATTR_HANDLE, respectively.
These constants are defined in the file lsconst.lss. Including this file in your script
allows you to use constants instead of their numeric values.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 141

Return value
If attribute is ATTR_HANDLE, then FileAttr returns the operating system file handle
for the file.

If attribute is ATTR_MODE, then FileAttr returns an integer representing the access for
the file, as shown in the following table.

Return value Access Constant

1 Input ATTR_INPUT

2 Output ATTR_OUTPUT

4 Random ATTR_RANDOM

8 Append ATTR_APPEND

32 Binary ATTR_BINARY

Examples: FileAttr function
' The following example creates a file and displays its attributes.

%Include "lsconst.lss"

Dim mode As String, msg As String
Dim hdl As Integer, fileNum As Integer
fileNum% = FreeFile()

Open "data.txt" For Append As fileNum%
hdl% = FileAttr(fileNum%, ATTR_HANDLE)

Select Case FileAttr(fileNum%, ATTR_MODE)
 Case 1 : mode$ = "Input"
 Case 2 : mode$ = "Output"
 Case 4 : mode$ = "Random"
 Case 8 : mode$ = "Append"
 Case 32 : mode$ = "Binary"
End Select

Close fileNum%
Print "DOS File Handle = "; hdl%; "Mode = "; mode$

142 LotusScript Language Reference Guide

FileCopy statement
Makes a copy of a file.

Syntax
FileCopy source , destination

Elements
source

A string expression containing the name of the file you want to copy. The
expression can optionally include a path.

destination
A string expression containing the name to be given to the copy. The expression
can optionally include a path.

Usage
The file being copied must not be open.

The source and destination strings cannot include wildcard characters.

If destination names a file that already exists, the copy replaces the existing file with
that name. To prevent this, you can use the Dir function to determine whether a file
with the name destination already exists. Or use the SetFileAttr statement to set the
read-only attribute for the file.

Examples: FileCopy statement
' Copy C:\WINDOWS\APP.BAT to the root directory of drive C: and
' name the copy APPLOAD.BAT.
FileCopy "C:\WINDOWS\APP.BAT", "C:\APPLOAD.BAT"

FileDate time function
Returns a string showing the date and time that a file was created or last modified.

Syntax
FileDateTime (fileName)

Elements
fileName

A string expression; you can include a path. fileName cannot include wildcard
characters.

Return value
The returned date and time appear in the default format based on the operating
system’s international settings. If the file doesn’t exist, FileDateTime returns an error.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 143

Examples: FileDateTime function
' This script creates a file called data.txt
' and prints its creation date and time.

%Include "lsconst.lss"

Dim fileName As String, fileNum As Integer
fileNum% = FreeFile()
fileName$ = "data.txt"

Open fileName$ For Output As fileNum% ' Create data.txt file.
Close fileNum%
Print fileName$; " Created on "; FileDateTime(fileName$)

FileLen function
Returns the length of a file in bytes.

Syntax
FileLen (fileName)

Elements
fileName

A string expression; you can optionally include a path. The fileName cannot
contain wildcard characters.

Return value
FileLen returns a Long value.

Examples: FileLen function
' Assign the length (in bytes) of the file c:\config.sys
' to the variable verLen, and print the result.
Dim verLen As Long
verLen& = FileLen("c:\config.sys")
Print verLen&

Fix function
Returns the integer part of a number.

Syntax
Fix (numExpr)

Elements
numExpr

Any numeric expression.

144 LotusScript Language Reference Guide

Return value
Fix returns the value of its argument with the fractional part removed. The data type
of the return value is determined by the data type of numExpr. The following table
shows special cases.

numExpr Return value

NULL NULL

Variant containing a string
interpretable as a number

Double

Variant containing a date/time
value

The date part of the value

Usage
The Fix function rounds toward 0:

For a positive argument, Fix returns the nearest integer less than or equal to the
argument (if the argument is between 0 and 1, Fix returns 0).

For a negative argument, Fix returns the nearest integer larger than or equal to the
argument (if the argument is between 0 and -1, Fix returns 0).

The Fix function and the Int function behave differently. The return value from Int is
always less than or equal to its argument.

Examples: Fix function
Dim xF As Integer, yF As Integer
Dim xT As Integer, yT As Integer
xF% = Fix(-98.8)
yF% = Fix(98.2)
xT% = Int(-98.8)
yT% = Int(98.2)
Print xF%; yF%
' Output:
' -98 98
Print xT%; yT%
' Output:
' -99 98

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 145

For statement
Executes a block of statements a specified number of times.

Syntax
For countVar = first To last [Step increment]

 [statements]

Next [countVar]

Elements
countVar

A variable used to count repetitions of the block of statements. The data type of
countVar should be numeric.

first
A numeric expression. Its value is the initial value of countVar.

last
A numeric expression. Its value is the final value of countVar.

increment
The value (a numeric expression) by which the countVar is incremented after each
execution of the statement block. The default value of increment is 1. Note that
increment can be negative.

Usage
After exit from a loop, the countVar for the loop has its most recent value.

Executing the loop the first time
Before the block of statements is executed for the first time, first is compared to last. If
increment is positive and first is greater than last, or if increment is negative and first is
less than last, the body of the loop isn’t executed. Execution continues with the first
statement following the For loop’s terminator (Next).

Otherwise countVar is set to first and the body of the loop is executed.

Executing the loop more than once
After each execution of the loop, increment is added to countVar. Then countVar is
compared to last. When the value of countVar is greater than last for a positive
increment, or less than last for a negative increment, the loop is complete and execution
continues with the first statement following the For loop’s terminator (Next).
Otherwise the loop is executed again.

146 LotusScript Language Reference Guide

Exiting the loop early
You can exit a For loop early with an Exit For statement or a GoTo statement. When
LotusScript encounters an Exit For, execution continues with the first statement
following the For loop’s terminator (Next). When LotusScript encounters a GoTo
statement, execution continues with the statement at the specified label.

Nested For loops
You can include a For loop within a For loop, as in the following example:

Dim x As Integer
Dim y As Integer
For x% = 1 To 3
 For y% = 1 To 2
 Print x% ;
 Next ' Next y
Next ' Next x
' Output: 1 1 2 2 3 3

If you don’t include countVar as part of a For loop terminator (Next), LotusScript
matches For loop delimiters from the most deeply nested to the outermost.

LotusScript lets you combine For loop terminators when they are contiguous, as in the
following example:

Dim x As Integer
Dim y As Integer
For x% = 1 To 3
 For y% = 1 To 2
 Print x% ;
Next y%, x% ' Terminate the inner loop and then the outer
loop.
' Output: 1 1 2 2 3 3

Examples: For statement
' Compute factorials for numbers from 1 to 10
Dim m As Long
Dim j As Integer
m& = 1
For j% = 1 To 10
 m& = m& * j%
 Print m&
Next
' Output:
' 1 2 6 24 120 720 5040 40320 362880 3628800

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 147

ForAll statement
Executes a block of statements repeatedly for each element of an array, a list, or a
collection. A collection is an instance of a product collection class or an OLE collection
class.

Syntax
ForAll refVar In container

 [statements]

End ForAll

Elements
refVar

A reference variable for the array, list, or collection element. In the body of the
ForAll loop, you use refVar to refer to each element of the array, list, or collection
named by container. refVar can’t have a data type suffix character appended.

container
The array, list, or collection whose elements you wish to process.

Usage
On entry to the loop, refVar refers to the first element of the array, list, or collection.
On each successive iteration, refVar refers to the next element of the array, list, or
collection. Upon completion of the loop, execution continues with the first statement
following the loop’s End ForAll statement.

Note If you’re using Forall on an array of arrays, do not ReDim the iterator (this
generates the “Illegal ReDim” error).

Exiting the loop early
You can force the loop to be exited early with the Exit ForAll statement or the GoTo
statement. When LotusScript encounters an Exit ForAll statement, execution
immediately continues with the first statement following the loop’s terminator (End
ForAll). When LotusScript encounters a GoTo statement, execution immediately
continues with the statement at the specified label.

Using refVar
Since refVar is an alias for the actual array, list, or collection element, you can change
the value of the element to which it refers by assigning a new value to refVar. For
example:

ForAll x In y
 x = x + 1
End ForAll

148 LotusScript Language Reference Guide

This adds 1 to the value of each element in the array, list, or collection named y.

If container is a list, you can pass refVar to the ListTag function to get the name (the list
tag) of the list element that refVar currently refers to. For example:

Print ListTag(refVar)

Because refVar is implicitly defined by the ForAll statement, you should not include it
in your variable declarations. The scope of refVar is the loop, so you can’t refer to it
from outside of the loop.

If container is an array or list, refVar has the data type of the array or list being
processed. If this data type cannot be determined by LotusScript at compile time or if
container is a collection, refVar is a Variant. In that case, the data type of the array or
list cannot be a user-defined data type, because Variants cannot be assigned values of
a user-defined data type.

You can reuse a refVar in a subsequent ForAll loop, provided that the data type of the
container matches that of the container in the ForAll loop where refVar was first
defined.

You can’t use the ReDim statement on the reference variable. For example, suppose
that zArr is an array of arrays, and a ForAll statement begins:

ForAll inzArr In zArr

Then the statement ReDim inzArr(2) generates an error.

Examples: ForAll statement

Example 1
Dim myStats List As Variant
myStats("Name") = "Ian"
myStats("Age") = 29
ForAll x In myStats
 Print ListTag(x); " = "; x
End ForAll
' Output:
' Name = Ian
' Age = 29

Example 2
Dim minima(5) As Integer
minima%(0) = 5
minima%(1) = 10
minima%(2) = 15
' Set all elements of array minima to 0.
ForAll x In minima%
 x = 0
End ForAll

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 149

Example 3
In Freelance Graphics, an Application object contains a DocumentCollection object.
The DocumentCollection object contains a collection of Document objects. Each
Document object contains a PageCollection object. Each PageCollection object contains
a number of Page objects. Each Page object contains an ObjectCollection object.
ObjectCollection is a heterogenous collection that may include TextBox objects.

In addition to For loops, you can use ForAll loops or indexing to access individual
members of a collection class. This example uses three nested ForAll loops to iterate
through the collections. Within individual TextBlock objects, the script uses indexing
to set list entries at levels 2 through 5 in each TextBox object to Italic.

Dim level As Integer
ForAll doc In [Freelance].Documents
 ForAll pg In Doc.Pages
 ForAll obj In Pg.Objects
 ' If the object is a TextBlock, set the font to Garamond,
 ' and set list entries at levels 2 through 5 to Italic.
 If obj.IsText Then
 obj.Font.FontName = "Garamond"
 For level% = 2 To 5
 obj.TextProperties(level%).Font.Italic = TRUE
 Next level%
 End If
 End ForAll
 End ForAll
End ForAll

The Application class Documents property returns an instance of the
DocumentCollection class. Each element in the collection is a document, an instance of
the Document class.

The Document class Pages property returns an instance of the PageCollection class.
Each element in the collection is a page, an instance of the Page class.

The Page Objects property returns an instance of the ObjectCollection class. Some of
the elements in this collection may be text blocks, instances of the TextBox class.

150 LotusScript Language Reference Guide

Format function
Formats a number, a date/time, or a string according to a supplied format.

Syntax
Format[$] (expr [, fmt])

Elements
expr

Any expression. The expression is evaluated as a numeric expression if fmt is a
numeric format, as a date/time if fmt is a date/time format, and as a string if fmt
is a string format.

fmt
Optional. A format string: either a string consisting of the name of a format
pre-defined in LotusScript, or else a string of format characters. If this format
string is not supplied, Format[$] behaves like Str[$], omitting the leading space
character for positive numbers.

Return value
Format returns a Variant containing a string, and Format$ returns a String.

If expr is a string and fmt is a numeric format string, LotusScript attempts to convert
the string to a number. If successful, LotusScript then formats the result.

If the string can’t be converted to a number, LotusScript attempts to interpret it as a
date/time, and attempts to convert it to a numeric value. If successful, LotusScript
then formats the result.

If expr can’t be converted to the data type of the format string, Format returns expr
without formatting it.

Formatting codes

Numeric formats
If expr is numeric, you can use one of the named numeric formats shown in the
following section, or create a custom numeric format using the numeric formatting
codes shown in the subsequent section.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 151

Named numeric formats

Format name Display of the value of expr is ...

General Number As stored, without thousands separators.

Currency As defined in the operating system’s international settings. For example,
you can format currency values with thousands separators, negative values
in parentheses, and two digits to the right of the decimal separator.
In OS/2, the function does not append the currency symbol to the number.

Fixed With at least one digit to the left of the decimal separator, and with two
digits to the right of the decimal separator.

Standard With thousands separators, with at least one digit to the left of the decimal
separator, and with two digits to the right of the decimal separator.

Percent expr multiplied by 100, with at least one digit to the left of the decimal
separator. Two digits are displayed to the right of the decimal separator,
and a percent sign (%) follows the number.

Scientific In standard scientific notation: with one digit to the left of the decimal
separator and two digits to the right of the decimal separator, followed by
the letter E or e and a number representing the exponent.

Yes/No No if the number is 0, and Yes otherwise.

True/False False if the number is 0, and True otherwise.

On/Off Off if the number is 0, and On otherwise.

Custom numeric formatting codes
The following table describes the characters you can use in fmt to create custom
formats for numeric values.

Formatting code Meaning

"" (Empty string) Display the number with no formatting

0 (zero) Digit forced display. A digit is displayed for each zero in fmt, with leading
or trailing zeros to fill unused spaces. All digits to the left of the decimal
separator are displayed. If the number includes more decimal places than
fmt, it is rounded appropriately.

(pound sign) Digit conditional display. The same display as 0 (digit forced display),
except that no leading or trailing zeros are displayed.

. (period) Decimal separator. The position of the decimal separator in fmt. Unless
your formatting code includes a 0 immediately to the left of the decimal
separator, numbers between -1 and 1 begin with the decimal separator.
The actual decimal separator used in the returned formatted value is the
decimal separator specified in the operating system’s international settings.

continued

152 LotusScript Language Reference Guide

Formatting code Meaning

% (percent sign) Percentage placeholder. Multiplies the number by 100 and inserts the
percent sign (%) in the position where it appears in fmt. If you include
more than one percentage placeholder, the number is multiplied by 100 for
each %. For example, %% means multiplication by 10000.

, (comma) Thousands separator. To separate groups of three digits, counting left from
the decimal separator, within numbers that include at least four digits to
the left of the decimal separator, enclose the comma between a pair of the
digit symbols 0 or #. The actual thousands separator used in the returned
formatted value is the thousands separator specified in the operating
system’s international settings.

A special case is when the comma is placed immediately to the left of the
decimal separator (or the position of the implied decimal separator). This
causes the number to be divided by 1000. For example, this returns “100”:
x = Format$(100000,“##0,.”)
If 100000 is replaced in this example by a number less than 1000 in
absolute value, then this function returns “0.”

E- E+ e- e+ Scientific notation. The number of digit symbols (0 or #) to the left of the
decimal separator specifies how many digits are displayed to the left of the
decimal separator, and the resulting magnitude of the exponent.

Use E+ or e+ to display the sign of all exponents (the symbol + or -). Use
E- or e- to display the sign of negative exponents only (the symbol -).

All exponent digits are displayed, regardless of how many digit symbols
follow the E-, E+, e-, or e+. If there are no digit symbols (the symbol 0 or
#), an exponent of zero is not displayed; otherwise at least one exponent
digit is displayed. Use 0 to format a minimum number of exponent digits,
up to the maximum of three.

$ (dollar sign) Currency symbol. Designates a currency value. The actual currency
symbol used in the returned formatted value is the currency symbol
specified in the operating system’s international settings.

- + () space Literal characters. These are displayed as they appear in the format string.

\ (backslash) Literal character prefix. The character following the backslash is displayed
as is; for example, \# displays #. To display a backslash itself, precede it
with another backslash; that is, \\ displays \.

“ABC” Literal string enclosed in double quotation marks. To specify the double
quotation mark character in the fmt argument, you must use Chr(34).
The characters enclosed in quotation marks are displayed as they appear in
the format string.

; (semicolon) Format section separator. Separates the positive, negative, zero, and NULL
sections in fmt. If you omit the negative or zero format sections, but
include the semicolons representing them, they are formatted like the
positive section.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 153

A custom format string for numeric values can have from one to four sections,
separated by semicolons. In a format string with more than one section, each section
applies to different values of expr. The number of sections determines the values to
which each individual section applies. The following table describes how each section
of a one-part or multi-part format string is used.

Number of sections Description

One The format applies to all numbers.

Two The first section formats positive numbers and 0.
The second section formats negative numbers.

Three The first section formats positive numbers.
The second section formats negative numbers.
The third section formats 0.

Four The first section formats positive numbers.
The second section formats negative numbers.
The third section formats 0.
The fourth section formats NULL.

Date/time formats
Since date/time values are stored as floating point numbers, date/time values can be
formatted with numeric formats. They can also be formatted with date/time formats.
You can either use one of the named date/time formats shown in the following
section, or create a custom date/time format using the date/time formatting codes
shown in the subsequent section.

Named date/time formats

Format name Display of the date/time value is ...

General Date In a standard format. Converts a floating-point number to a date/time. If
the number includes no fractional part, this displays only a date. If the
number includes no integer part, this displays only a time.

Long Date A Long Date as defined in the operating system’s international settings.

Medium Date dd-mmm-yy (yy/mmm/dd in Japan)

Short Date A Short Date as defined in the operating system’s international settings.

Long Time A Long Time as defined in the operating system’s international settings.
Long Time always includes hours, minutes, and seconds.

Medium Time Hours (0 - 12) and minutes using the time separator and AM/PM notation
(AMPM notation in Japan)

Short Time Hours (0 - 23) and minutes using only the time separator.

154 LotusScript Language Reference Guide

Custom date/time formatting codes
The following table describes the characters you can use in fmt to create custom
formats for date/time values.

Formatting code Meaning

: (colon) Time separator. Separates hours, minutes, and seconds in formatted time
values. The actual time separator used in the returned formatted value is
the time separator specified for the given country in the operating
system’s international settings.

/ (slash) Date separator. Separates day, month, and year in formatted date values.
The actual date separator used in the returned formatted value is the
date separator specified in the operating system’s international settings.

c Displays a date as ddddd, and a time as ttttt (see below). If the value
includes no fractional part, only a date is displayed. If the value includes
no integer part, only a time is displayed.

y Day of the year as a number (1 - 366).

d Day of the month as a number without a leading zero (1 - 31).

dd Day of the month as a number with a leading zero
(01 - 31).

ddd Weekday as a three-letter abbreviation (Sun - Sat).

dddd Weekday spelled out (Sunday - Saturday).

ddddd Serial date number as a complete date (day, month, and year) formatted
as an international Short Date string. If there is no Short Date string
provided in the operating system, the date format defaults to
mm/dd/yy.

dddddd Serial date number as a complete date (day, month, and year) formatted
as an international Long Date string. If there is no Long Date string
provided in the operating system, the date format defaults to mmmm
dd, yyyy.

w Weekday as a number (1 - 7). Sunday is 1.

ww Week of the year as a number (1 - 53).

m Month of the year as a number without a leading zero (1 - 12). If the
character is preceded by h in fmt, it displays the minute of the hour as a
number without a leading zero (0 - 59).

mm Month of the year as a number with a leading zero (01 - 12). If the
character is preceded by h in fmt, it displays the minute of the hour as a
number with a leading zero (00 - 59).

mmm Month name as a 3-letter abbreviation (Jan - Dec).

mmmm Month name spelled out (January - December).

q Quarter of the year as a number (1 - 4).

continued

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 155

Formatting code Meaning

yy The last two digits of the year (00 - 99).

yyyy The full (four-digit) year (0100 - 9999).

h Hour of the day as a number without a leading zero (0 - 23).

hh Hour of the day as a number with a leading zero
(00 - 23).

n Minute of the hour as a number without a leading zero (0 - 59).

nn Minute of the hour as a number with a leading zero (00 - 59).

s Second of the minute as a number without a leading zero (0 - 59).

ss Second of the minute as a number with a leading zero (00 - 59).

ttttt Time serial number as a complete time (including hour, minute, and
second), formatted using the time separator provided in the operating
system’s international settings. A leading zero is displayed if the
international leading zero setting is TRUE and the time is before 10:00
AM or PM. The default time format is h:mm:ss.

AM/PM am/pm Uses hour values from 1 to 12, displaying AM or am for hours before
noon, and PM or pm for hours after noon.

A/P a/p Uses hour values from 1 to 12, displaying A or a for hours before noon,
and P or p for hours after noon.

AMPM Uses hour values from 1 to 12. Displays the contents of the 1159 string
(s1159) in WIN.INI for hours before noon, and the contents of the 2359
string (s2359) for hours after noon. AMPM is case-insensitive, but the
case of the string displayed matches the string as it exists in the
operating system’s international settings. The default format is AM/PM.

The following table shows some custom date/time formats applied to one date and
time: 6:43:04 in the evening of April 12, 1995.

fmt Display

m/d/yy 4/12/95

d-mmm-yy 12-Apr-95

d-mmmm 12-April

mmmm-yy April-95

y 102

hh:mm AM/PM 06:43 PM

h:mm:ss a/p 6:43:04 p

h:mm 18:43

h:mm:ss 18:43:04

m/d/yy h:mm 4/12/95 18:43

156 LotusScript Language Reference Guide

String formatting codes
To format a string using Format or Format$, use the formatting codes in the following
table to create a custom string format. There are no named string formats.

Custom string formats can have one section, or two sections separated by a semicolon
(;). If the format has one section, the format applies to all strings. If the format has two
sections, then the first applies to nonempty strings, and the second applies to the value
NULL and the empty string ("").

The following table describes the characters you can use in fmt to create a custom
string format.

Formatting code Meaning

@ (at sign) Character forced display.

If the string being formatted includes a character in this position, display
it. If not, display a space. @ is filled from right to left unless fmt contains
an exclamation point (!).

& (ampersand) Character optional display.

If the string being formatted includes a character in this position, display
it. If not, display nothing. & is filled from right to left unless fmt contains
an exclamation point (!).

< (less-than sign) All characters in the formatted string are displayed in lowercase.

> (greater-than sign) All characters in the formatted string are displayed in uppercase.

! (exclamation point) Forces @ and & to fill from left to right, rather than from right to left.

Formatting dates and times in Asian languages
The Format function supports additional formatting characters for dates and times in
versions of LotusScript for Japan, People’s Republic of China, Taiwan, and Korea.

Only single-byte characters are recognized as formatting characters. Double-byte
characters are treated as literal characters. Some of the formatting characters for
LotusScript in People’s Republic of China and Taiwan are case-sensitive (see the
following paragraphs); all of the other Asian language date/time formatting characters
are case-insensitive.

When a date/time formatting code used in the Format function in LotusScript for
Japan is also a date/time formatting code in WIN.INI, LotusScript for Japan interprets
the code appropriately. For example, the formatting expression “Long Date” has the
same meaning in LotusScript for Japan as in English-language LotusScript. (The
meaning is to use the WIN.INI Long Date format.)

These formats only have meanings in Asian versions of Lotus products.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 157

Date/time format codes
The first table shows the formatting codes for Japan.

Formatting code Meaning

aaa Weekday in abbreviated format (one double-byte character)
aaaa Weekday in full format
e Year in era (“0” suppressed)
ee Year in era (“0” not suppressed)
g Era name (single-byte one-character abbreviation)
gg Era name (double-byte one-character abbreviation)
ggg Full era name

This table shows the formatting codes for People’s Republic of China.

Formatting code Meaning

aaaa Weekday in full format (three double-byte characters)
O Month (double-byte)
o Month (single-byte)
A Day (double-byte)
a Day (single-byte)
E Short year (double-byte)
e Short year (single-byte)
EE Long year (double-byte)
ee Year (single-byte)

This table shows the formatting codes for Taiwan.

Formatting code Meaning

aaaa Weekday in full format (three double-byte characters)
O Month (double-byte)
o Month (single-byte)
A Day (double-byte)
a Day (single-byte)
E Year in era (double-byte)
e Year in era (single-byte)
EE Year in era with era abbreviation (double-byte)
ee Year in era with era abbreviation (single-byte)
EEE Year in era with era name (double-byte)
eee Year in era with era name (single-byte)
EEEE Christian year with Christian era name (double-byte)
eeee Christian year with Christian era name (single-byte)

158 LotusScript Language Reference Guide

This table shows the formatting codes for Korea.

Formatting code Meaning

aaa Weekday in abbreviated format (one double-byte character)

aaaa Weekday in full format (three double-byte characters)

Examples: Format function
' Get monthly revenue and expenses from the user, converting strings
to
' currency. Compute and display the balance, formatted as currency.

Dim rev As Currency, expense As Currency, bal As Currency
rev@ = CCur(InputBox("How much did we make this month?"))
expense@ = CCur(InputBox("How much did we spend?"))
bal@ = rev@ - expense@
MessageBox "Our balance this month is " _
 & Format(bal@, "Currency")

Fraction function
Returns the fractional part of a number.

Syntax
Fraction (numExpr)

Elements
numExpr

Any numeric expression.

Return value
The data type of the return value is the same as the data type of numExpr.

Usage
The following table shows special cases of the return value:

numExpr Return value

A date/time value The time part

An integer 0

NULL NULL

Examples: Fraction function
' Print the fractional part of PI
Print Fraction(PI) ' Prints .141592653589793

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 159

FreeFile function
Returns an unused file number.

Syntax
FreeFile

Return value
FreeFile returns an Integer value.

Usage
Use FreeFile when you need a file number (to open a file), but you don’t know what
file numbers are currently available.

If no more file numbers are available, an error is generated.

LotusScript limits the number of open files to 255. Depending on your operating
system environment and the Lotus product you are running, the actual number of files
that you can open may be 15 or less. See your product documentation for details.

You can call the function as either FreeFile or FreeFile().

Examples: FreeFile function
Dim fileNum As Integer
Dim cdr As String
cdr$ = CurDrive() + "\AUTOEXEC.BAT"
' Assign the lowest available file number to fileNum.
fileNum% = FreeFile()
Print FreeFile() ' Prints 1 (1 is unused)
Open cdr$ For Input Access Read As fileNum% ' Use file number 1
Print FreeFile() ' Prints 2 (1 is in use)
Close fileNum%
Print FreeFile() ' Prints 1 (1 is unused again)

Function statement
Defines a function.

Syntax
[Static] [Public | Private] Function functionName [([paramList])] [As returnType]

 [statements]

End Function

160 LotusScript Language Reference Guide

Elements
Static

Optional. Specifies that the values of the function’s local variables are saved
between calls to the function.

Public | Private
Optional. Public specifies that the function is visible outside the scope (module or
class) where the function is defined, as long as that remains loaded. Private
specifies that the function is visible only within the current scope.

A function in module scope is Private by default; a function in class scope is Public
by default.

functionName
The name of the function. This name can have a data type suffix character
appended, to declare the type of the function’s return value.

paramList
Optional. A comma-separated list of declarations indicating the parameters to be
passed to this function in function calls.

The syntax for each parameter declaration is:

[ByVal] parameter [() | List] [As type]

ByVal means that parameter is passed by value: that is, the value assigned to
parameter is a local copy of a value in memory, rather than a pointer to that
value.

parameter() is an array variable. parameter List identifies parameter as a list
variable. Otherwise, parameter can be a variable of any of the other data types
that LotusScript supports.

As dataType specifies the variable’s data type. You can omit this clause and
append a data type suffix character to parameter to declare the variable as one of
the scalar data types. If you omit this clause and parameter has no data type
suffix character appended (and isn’t covered by an existing Deftype statement),
its data type is Variant.

Enclose the entire list of parameter declarations in parentheses.

returnType
Optional. The data type of the value returned by the function.

returnType can be any of the scalar data types, or Variant, or a class name.

If As returnType is not specified, the function name’s data type suffix character
determines the return value’s type. Do not specify both a returnType and a data
type suffix character; LotusScript treats that as an error.

If you omit returnType and the function name has no data type suffix character
appended, the function returns a value either of data type Variant or of the data
type specified by a Deftype statement.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 161

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

Arrays, lists, type instances, and objects can’t be passed by value as arguments. They
must be passed by reference.

To return a value from a function, assign a value to functionName within the body of
the function definition (see the example).

If you assign an array to functionName, you cannot refer to an element of functionName
within the body of the function; such a reference will be taken as a recursive call of the
function. To refer to an element of functionName, assign functionName to a variant
variable and index the element there.

A function returns a value; a sub does not. To use the value returned by a function,
put the function call anywhere in an expression where a value of the data type
returned by the function is legal.

You don’t have to use the value returned by a function defined by the Function
statement. (The value returned by a built-in function must be used.) To call a function
without using the return value, use the Call statement.

A function definition cannot contain another function or sub definition, or a property
definition.

A function member of a class cannot be declared Static.

You can exit a function using an Exit Function statement.

Note If you’re using a 32-bit version of Windows, an integer has four bytes; use the
short integer (two bytes) to correspond to the LotusScript Integer when passing data
to LotusScript.

Examples: Function statement
Use a sub and a function to compute the cost of buying a house as follows:

Ask the user for the price of the house, and call the ComputeMortgageCosts sub
with price as the argument.

The ComputeMortgageCosts sub gathers down payment (at least 10% of cost),
annual interest rate, and the term of the mortgage from the user, then calls the
Payment function with 3 arguments. Annual interest and term (years) are passed
by value rather than reference so the Payment function can adjust them to
compute monthly rate and monthly payment without changing the values of these
variables in the ComputeMortgageCosts sub.

If the user enters positive values, Payment returns the monthly payment.
Otherwise, it returns 0. ComputeMortgageCosts then constructs an appropriate
message.

162 LotusScript Language Reference Guide

Dim price As Single, message As String

Function Payment (princpl As Single, _
 ByVal intrst As Single, _
 ByVal term As Integer) As Single
 intrst! = intrst! / 12
 term% = term% * 12
 ' If any of the arguments are invalid, exit the function
 ' (payment will return the value 0).
 If princpl! <= 0 Or intrst! <= 0 Or term% < 1 Then _
 Exit Function
 ' The standard formula for computing the amount of the
 ' periodic payment of a loan:
 Payment = princpl! * intrst! / (1 - (intrst! + 1) ^ (-term%))
End Function

Sub ComputeMortgageCosts (price As Single)
 Dim totalCost As Single, downpmt As Single
 Dim mortgage As Single, intrst As Single
 Dim monthlypmt As Single, years As Integer
EnterInfo:
 downpmt! = CSng(InputBox("How much is the down payment?"))
 ' The downpayment must be at least 10% of the price.
 If downpmt! < (0.1 * price!) Then
 MessageBox "Your down payment must be at least " _
 & Format(price! * .1, "Currency")
 GoTo EnterInfo
 Else
 mortgage! = price! - downpmt!
 End If
 intrst! = CSng(InputBox("What is the interest rate?"))
 years% = CInt(InputBox("How many years?"))
 ' Call the Payment function, which returns the
 ' monthly payment.
 monthlypmt! = Payment(mortgage!, intrst!, years%)
 totalCost! = downpmt! + (monthlypmt! * years% * 12)
 If monthlypmt! > 0 Then ' Create a multiline message.
 message$ = _
|Price | & Format(price!, "Currency") & |
Down Payment: | & Format(downpmt!, "Currency") & |
Mortgage: | & Format(mortgage!, "Currency") & |
Interest: | & Format(intrst!, "Percent") & |
Term: | & Str(years%) & | years
Monthly Payment: | & Format(monthlypmt!, "Currency") & |
Total Cost: | & Format(monthlypmt! * years% * 12, "Currency")
 Else
 message$ = "You did not enter valid input."
 End If
End Sub

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 163

' Start here.
price! = CSng(InputBox("How much does the house cost?"))
' Call the Compute MortgageCosts sub.
ComputeMortgageCosts (price!)
' Display the message.
MessageBox message$

Get statement
Reads data from a binary file or a random file into a variable.

Syntax
Get [#]fileNumber , [recordNumber] , variableName

Elements
fileNumber

The number assigned to the file when it was opened with the Open statement.
Note that the pound sign (#), fileNumber, and variableName are all required.

recordNumber
Optional. The file position (the byte position in a binary file, or the record number
in a random file) where data retrieval begins. If you omit recordNumber,
LotusScript retrieves data beginning from the current file position.

variableName
The variable to be used for storing the retrieved data. variableName cannot be an
array. However, a fixed-length array defined within a data type is allowed (this
array could also contain other arrays as elements).

Usage
The first byte or record in a file is always file position 1. After each read operation, the
file position is advanced:

For a binary file, by the size of the variable

For a random file, by the size of a record

164 LotusScript Language Reference Guide

The Get statement reads data into variableName depending on the variable’s data type.
The following table shows how the Get statement behaves for different data types.

variableName data type Get statement’s behavior

Variant The Get statement interprets the first two bytes as the DataType
of the data to be read.
If the DataType is EMPTY or NULL, the Get statement stops
reading data and sets variableName to EMPTY or NULL.
If the DataType is numeric, the Get statement reads the
appropriate number of bytes used to store data of that Data Type:
Integer: 2 bytes
Long: 4 bytes
Single: 4 bytes
Double: 8 bytes
Currency: 8 bytes
Date/time: 8 bytes

Fixed-length string The Get statement reads the specified number of characters. For
example, if a variable is declared as String*10, the Get statement
reads exactly 10 characters.

Variable-length string The Get statement behaves differently, depending on the type of
file you’re using.
Random file: The first two bytes read indicate the string’s length.
The Get statement reads exactly that number of characters. If
variableName is larger than a random file record, data is read
from the file until variableName is filled. After variableName is
filled, the file position is advanced to the next record.
Binary file: The number of bytes read from the file is equal to the
length of the string currently assigned to variableName. If
variableName has not been initialized, no data is read from the
file.

A variable of a
user-defined type

The number of bytes required to read the data is the sum of the
number of bytes required to read all members of the
used-defined data type, which cannot contain a dynamic array, a
list, or an object.

Examples: Get statement
Type PersonRecord
 empNumber As Integer
 empName As String * 20
End Type

Dim fileNum% As Integer
Dim fileName$ As String
Dim rec As PersonRecord
fileNum% = FreeFile()
fileName$ = "data.txt"

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 165

' Open a random file with record length equal to the
' size of the records in rec.
Open fileName$ For Random As fileNum% Len = Len(rec)

' Write a record at position 1.
rec.empNumber% = 123
rec.empName$ = "John Smith"
Put #fileNum%, 1, rec

' Write a record at position 2.
rec.empNumber% = 456
rec.empName$ = "Jane Doe"
Put #fileNum%, 2, rec

' Write a record at position 3.
rec.empNumber% = 789
rec.empName$ = "Jack Jones"
Put #fileNum%, , rec

' Rewind to the beginning of the file and print all records.
Seek fileNum%, 1
Do While Not EOF(fileNum%)
 Get #fileNum%, , rec
 Print rec.empNumber%; rec.empName$
 ' The Get function advances to the next record automatically.
Loop

Close fileNum%

' Prints three records:
' 123 John Smith
' 456 Jane Doe
' 789 Jack Jones

GetFileAttr function
Retrieves file-system attributes of a file or directory.

Syntax
GetFileAttr (fileName)

GetAttr is acceptable in place of GetFileAttr.

Elements
fileName

The name of a file or directory. File and directory names can optionally include
paths.

166 LotusScript Language Reference Guide

Return value
The return value is the sum of the Integer values in the following list for those
attributes that apply to fileName:

Value Attribute Constant

0 Normal file ATTR_NORMAL

1 Read-only file ATTR_READONLY

2 Hidden file ATTR_HIDDEN

4 System file ATTR_SYSTEM

16 Directory ATTR_DIRECTORY

32 File that has changed since it was last
backed up (archived)

ATTR_ARCHIVE

Usage
The constants in the preceding list are defined in the file lsconst.lss. Including this file
in your script allows you to use constant names instead of their numeric values.

Examples: GetFileAttr function
' This example creates a file, calls SetFileAttr to set its attributes
' to Read-Only, System, and Hidden, and then calls GetFileAttr to
' determine the file attributes.

%Include "lsconst.lss"

Dim fileNum As Integer, attr As Integer
Dim fileName As String, msg As String
fileNum% = FreeFile()
fileName$ = "data.txt"

Open fileName$ For Output As fileNum%
Close fileNum%
SetFileAttr fileName$, ATTR_READONLY + ATTR_SYSTEM + ATTR_HIDDEN
attr% = GetFileAttr(fileName$)
If (attr% And ATTR_READONLY) Then
 msg$ = msg$ & " Read-Only "
Else
 msg$ = msg$ & " Normal "
End If
If (attr% And ATTR_HIDDEN) Then msg$ = msg$ & " Hidden "
If (attr% And ATTR_SYSTEM) Then msg$ = msg$ & " System "
If (attr% And ATTR_DIRECTORY) Then msg$ = msg$ & " Directory "
Print msg$

SetFileAttr fileName$, ATTR_NORMAL ' Reset to normal.
Kill fileName$

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 167

GetObject function
Opens an OLE Automation object contained in an application file, or returns the
currently active OLE Automation object of the specified class.

Note GetObject is not supported under OS/2, under UNIX, or on the Macintosh.

Syntax
GetObject (pathName [, className])

Elements
pathName

Either a string containing the full path and file name of an application file or an
empty string. The application must support OLE Automation. If pathName is the
empty string (“”), you must specify a className.

className
A string of the form appName.appClass that identifies the application in which the
class is defined and the class of the object to retrieve (for example,
“WordPro.Application”).

appName is the name of an application that supports OLE Automation. appClass is
the name of the class of which you want to retrieve an instance.

Return value
GetObject returns an OLE Automation object reference.

Usage
Use the Set statement to assign the object reference returned by GetObject to a Variant
variable.

If the application specified by appName is not already running, GetObject starts it
before retrieving the OLE Automation object. References to the object remain valid
only while the application is running. If the application terminates while you are using
the object reference, LotusScript generates a run-time error.

If pathName is the empty string (“”), GetObject retrieves the currently active object of
the specified class. If no object of that class is active, an error occurs.

If className is omitted, GetObject determines the application to run and the object to
retrieve based on the pathName. This form of GetObject is useful only when the
application file contains a single object.

Each product that supports OLE Automation provides one or more classes. See the
product’s documentation for details.

LotusScript supports the following return types for OLE properties and methods.
Only an OLE method or property can return a type designated as “OLE only.”

168 LotusScript Language Reference Guide

OLE return type Description

VT_EMPTY (No data)

VT_NULL (No data)

VT_I2 2-byte signed integer

VT_I4 4-byte signed integer

VT_R4 4-byte real

VT_R8 8-byte real

VT_CY Currency

VT_DATE Date

VT_BSTR String

VT_DISPATCH IDispatch, OLE only

VT_ERROR Error, OLE only

VT_BOOL Boolean

VT_VARIANT (A reference to data of any other type)

VT_UNKNOWN IUnknown, OLE only

VT_ARRAY (An array of data of any other type)

You can use a ForAll loop to iterate over the members of OLE collections.

LotusScript supports passing arguments to OLE properties. For example:

' Set v.prop to 4; v.prop takes two arguments.
v.prop(arg1, arg2) = 4

LotusScript does not support identifying arguments for OLE methods or properties by
name rather than by the order in which they appear, nor does LotusScript support
using an OLE name by itself (without an explicit property) to identify a default
property.

Results are unspecified for arguments to OLE methods and properties of type Boolean,
byte, and date that are passed by reference. LotusScript does not support these data
types.

The word GetObject is not a LotusScript keyword.

Examples: GetObject function
Dim myDoc As Variant

' Get the WordPro.Application object from a file.
Set myDoc = GetObject("c:\status.sam", "WordPro.Application")

' Call the Print method defined for WordPro.Application object.
myDoc.Print

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 169

GoSub statement
Transfers control in a procedure to a labeled statement, with an optional return of
control.

Syntax
GoSub label

Elements
label

The label of a statement to which you want to transfer control.

Usage
You can’t use the GoSub statement at the module level; you can only use it in a
procedure. The GoSub statement, its label, and the Return statement must all reside in
the same procedure.

When LotusScript encounters a GoSub statement, execution branches to the specified
labeled statement and continues until either of two things happen:

LotusScript encounters a Return statement, at which point execution continues
from the statement immediately following the GoSub statement.

LotusScript encounters a statement such as Exit or GoTo, which passes control to
some other part of the script.

Examples: GoSub statement
' In response to user input, LotusScript transfers control to one of
' three labels, constructing an appropriate message, and continues
' execution at the statement following the GoSub statement.

Sub GetName
 Dim yourName As String, Message As String
 yourName$ = InputBox$("What is your name?")
 If yourName$ = "" Then ' The user enters nothing.
 GoSub EmptyString
 ' Do a case-insensitive comparison.
 ElseIf LCase(yourName$) = "john doe" Then
 GoSub JohnDoe
 Else
 Message$ = "Thanks, " & yourName$ _
 & ", for letting us know who you are."
 End If
 ' The Return statements return control to the next line.
 MessageBox Message$
 Exit Sub

EmptyString:
 yourName$ = "John Doe"

170 LotusScript Language Reference Guide

 Message$ = "Okay! As far as we're concerned, " _
 & "your name is " & yourName$ & ", and you're on the run!"
 Return

JohnDoe:
 Message$ = "We're on your trail, " & yourName$ _
 & ". We know you are wanted dead or alive!"
 Return
End Sub
GetName ' Call the GetName sub.

GoTo statement
Transfers control within a procedure to a labeled statement.

Syntax
GoTo label

Elements
label

A label of a statement to which you want to transfer control.

Usage
You can’t use the GoTo statement at the module level; you can only use it in a
procedure. You can’t use GoTo to transfer control into or out of a procedure or a
With...End With block.

Use the GoTo statement to transfer control to any labeled statement that does not
violate either of the preceding rules.

Examples: GoTo statement
This example illustrates On Error...GoTo, On...GoTo, Resume...GoTo, and GoTo.

The user enters a value. If the value is 1, 2, or 3, the On...GoTo statement transfers
control to label1, label2, or label3. If the value is another number in range for
On...GoTo (the range is 0-255), control moves on the next statement. If the user enters
a number that is out of range for On...GoTo or that the CInt function cannot convert to
an integer, an error condition occurs, and the OnError...GoTo statement transfers
control to the OutOfRange label.

Depending on the user’s entry, the OneTwoThree sub displays an appropriate
message. If the entry is valid, an Exit Sub statement exits the Sub. If the entry is not
valid, a GoTo statement transfers control to the EnterNum label, and the user is given
another chance to make a valid entry.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 171

Sub OneTwoThree
 Dim num As Integer
 On Error GoTo OutOfRange
EnterNum:
 num% = CInt(InputBox("Enter 1, 2, or 3"))
 On num% GoTo label1, label2, label3
 ' The user did not enter 1, 2, or 3, but a run-time error
 ' did not occur (the user entered a number in the range 0-255).
 MessageBox "You did not enter a correct value! Try again!"
 GoTo EnterNum
label1:
 MessageBox "You entered 1."
 Exit Sub
label2:
 MessageBox "You entered 2."
 Exit Sub
label3:
 MessageBox "You entered 3."
 Exit Sub
 ' An error condition has occurred.
OutOfRange:
 MessageBox "The value you entered is negative, " _
 & "greater than 255, or is not a number. Try again!"
 GoTo EnterNum
End Sub
OneTwoThree ' Call the OneTwoThree sub.

Hex function
Return the hexadecimal representation of a number as a string.

Syntax
Hex[$] (numExpr)

Elements
numExpr

Any numeric expression. If numExpr evaluates to a number with a fractional part,
LotusScript rounds it to the nearest integer before deriving its hexadecimal
representation.

Return value
Hex returns a Variant of DataType 8 (String), and Hex$ returns a String.

Return values will only include the characters 0 - 9 and A - F, inclusive. The maximum
length of the return value is eight characters.

172 LotusScript Language Reference Guide

Usage
If the data type of numExpr is not Integer or Long, LotusScript attempts to convert it to
a Long. If it cannot be converted, an error occurs.

Examples: Hex function
Print Hex$(15) ' Prints "F"

' Converts Double argument to Long.
Print Hex$(15.0) ' Prints "F"

' Rounds Double argument, then converts to Long.
Print Hex$(15.3) ' Prints "F"

' Computes product 14.841, rounds to 15.0, then converts to 15.
Print Hex$(15.3 * .97) ' Prints "F"

Hour function
Returns the hour of the day for a date/time argument as an integer from 0 to 23.

Syntax
Hour (dateExpr)

Elements
dateExpr

Any of the following:

A valid date/time string of String or Variant data type. LotusScript interprets a
2-digit year designation in a date/time string as that year in the twentieth
century. For example, 17 and 1917 are considered the same.

A Variant with a value of DataType 7 (Date/Time)

A number within the valid date range: the range -657434 (Jan 1, 100 AD) to
2958465 (Dec 31, 9999 AD), inclusive

NULL

Return value
Hour returns a Variant containing a value of DataType 2 (Integer). If the dateExpr is a
Variant containing the value NULL, then Hour returns NULL.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 173

Examples: Hour function
' Construct a message that displays the current time and
' the number of hours, minutes, and seconds remaining in the day.
Dim timeFrag As String, hoursFrag As String
Dim minutesFrag As String, secondsFrag As String
Dim crlf As String, message As String
timeFrag$ = Format(Time, "h:mm:ss AM/PM")
hoursFrag$ = Str(23 - Hour(Time))
minutesFrag$ = Str(59 - Minute(Time))
secondsFrag$ = Str(60 - Second(Time))
crlf$ = Chr(13) & Chr(10) ' Carriage return/line feed
message$ = "Current time: " & timeFrag$ & ". " & crlf$ _
 & "Time remaining in the day: " _
 & hoursFrag$ & " hours, " _
 & minutesFrag$ & " minutes, and " _
 & secondsFrag$ & " seconds."
MessageBox(message$)

If...GoTo statement
Conditionally executes one or more statements or transfers control to a labeled
statement, depending on the value of an expression.

Syntax
If condition GoTo label [Else [statements]]

Elements
condition

Any numeric expression. A value of 0 is interpreted as FALSE, and any other
value is interpreted as TRUE.

label
The name of a label.

statements
A series of statements, separated by colons.

Usage
An If...GoTo statement must occupy a single line of code — line continuation with the
underscore character (_) is allowed.

If condition is TRUE, LotusScript executes the GoTo statement, transferring control to
the statement following the label label. If condition is FALSE, LotusScript executes the
block of statements in the Else clause. If there is no Else clause, execution continues
with the next statement.

You can’t use an If...GoTo statement to transfer control into or out of a procedure, and
you can’t use it at the module level.

174 LotusScript Language Reference Guide

Examples: If...GoTo statement
Ask the user to propose a down payment for a house. Elsewhere, the cost has been set
at $235,000. Depending on whether or not the user proposes a down payment of at
least 10% of cost, respond accordingly.

Sub ProcessMortgage(cost As Single)
 Dim downpmt As Single, msg As String
 msg$ = "Cost: " + Format(cost!, "Currency") _
 & ". Enter a down payment:"
 downpmt! = CSng(InputBox(msg$))
 If downpmt! < .1 * cost! GoTo NotEnough
 msg$ = Format(downpmt!, "Currency") & " will do fine!"
 MessageBox msg$
 ' Continue processing the application
 ' ...
 ' ...
 Exit Sub

 NotEnough:
 msg$ = "Sorry, " & Format(downpmt!, "Currency") _
 & " is not enough!"
 MessageBox msg$
End Sub

Dim cost As Single
cost! = 235000
ProcessMortgage(cost!) ' Call the ProcessMortgage sub.

If...Then...Else statement
Conditionally executes one or more statements, depending on the value of an
expression.

Syntax
If condition Then [statements] [Else [statements]]

Elements
condition

Any numeric expression. A value of 0 is interpreted as FALSE, and any other
value is interpreted as TRUE.

statements
A series of statements, separated by colons.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 175

Usage
An If...Then...Else statement must occupy a single line of code—line continuation with
the underscore character (_) is allowed.

If condition is TRUE, the statements following Then, if any, are executed. If condition is
FALSE, the statements following Else are executed.

If no statements follow Then, and there is no Else clause, Then must be followed by a
colon (:). Otherwise LotusScript assumes that the statement is the first line of an
If...Then...Else...End If statement.

Examples: If...Then...Else statement
Dim x As Integer
If x% > 0 Then Print FALSE Else Print TRUE
' Output:
' True

The initial value of x is 0, so LotusScript prints True.

If...Then...ElseIf statement
Conditionally executes a block of statements, depending on the value of one or more
expressions.

Syntax
If condition Then

 statements

[ElseIf condition Then

 statements]

...

[Else

statements]

End If

Elements
condition

Any numeric expression. A value of 0 is interpreted as FALSE, and any other
value is interpreted as TRUE.

statements
Statements that are executed if condition is TRUE.

176 LotusScript Language Reference Guide

Usage
LotusScript executes the statements following the Then keyword for the first condition
whose value is TRUE. It evaluates an ElseIf condition if the preceding condition is
FALSE. If none of the conditions is TRUE, LotusScript executes the statements
following Else keyword. Execution continues with the first statement following the
End If statement.

You can include any number of ElseIf expressions in the block.

You can include an If statement within an If statement. Each If block must be
terminated by an End If.

Examples: If...Then...ElseIf statement
Dim quantity As Integer, pctDiscount As Single
Dim unitPrice As Currency, total As Currency
unitPrice@ = 3.69
quantity% = 50

' Define discount based on quantity purchased.
If quantity% > 99 Then
 pctDiscount! = .20
ElseIf quantity% > 49 Then
 pctDiscount! = .10
Else
 pctDiscount! = 0
End If
total = (quantity% * unitPrice@) * (1 - pctDiscount!)
Print "Unit price: $"; unitPrice@, _
 "Quantity: "; quantity%, _
 "Discount%: "; pctDiscount!, _
 "Total: $"; total@

%If directive
Conditionally compiles a block of statements, depending on the value of one or more
product constants.

Syntax
%If productConst

 statements

[%ElseIf productConst

 statements]

...

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 177

[%Else

 statements]

%End If

Elements
productConst

A constant defined by a Lotus product, or one of the platform-identification
constants described below. Refer to the product’s documentation for a list of
product-defined constants.

statements
Statements that are compiled if productConst evaluates to TRUE.

Usage
You cannot enter %If, %ElseIf, %Else, and %End If directly in the IDE. You must enter
these directives in a file and insert the file in the IDE with the %Include directive.

 productConst must appear on the same line as %If or %ElseIf. Nothing except a
comment can appear on the same line following %If productConst or %ElseIf
productConst, or on the same line with %Else or %End If. None of these lines can be
continued with the underscore character (_).

To test each %If condition or %ElseIf condition in this statement, the LotusScript
compiler calls the Lotus product to evaluate the constant productConst. The product
returns either TRUE (-1) or FALSE (0).

A condition is evaluated only if the product returns FALSE for the preceding
condition. LotusScript compiles the statements for the first %If condition or %ElseIf
condition that the product evaluates as TRUE. Once this happenss, no further
conditions are evaluated, and no further statements are compiled.

If neither the %If condition nor any %ElseIf condition evaluates to TRUE, the %Else
statements (if any) are compiled.

You can include any number of %ElseIf directives in the block.

You can’t include an %If block within an %If block.

LotusScript implements the constants in the following table as product #defines. When
one of these is used as productConst, the LotusScript compiler does not call the product
to evaluate productConst. LotusScript itself evaluates the constant as TRUE or FALSE.
The value of each constant depends on the platform LotusScript is running on.

178 LotusScript Language Reference Guide

Constant Platform or functionality

WIN16 Windows with 16-bit API (Windows 3.1)

WIN32 Windows with 32-bit API (Windows NT or Windows 95)

WINNT Windows NT

WIN95 Windows 95

WIN40 Windows 95 or Windows NT 4.0

WINDOWS Any Windows platform type (any of the above WINxx constants)

HPUX HP®/UNIX 9.X or greater

SOLARIS SunOS™ 5.0 or greater

UNIX Any UNIX type (HP_UX® or Solaris®)

OS2 OS/2, version 2.0 or greater

MAC Macintosh System 7™

OLE OLE-2 is available

MAC68K Macintosh Motorola® 68000 version (running on either a 68xxx Macintosh or
the PowerPC™)

MACPPC Macintosh PowerPC version

For example, here are several platforms and the constants that identify them:

Windows 3.1
WIN16, WINDOWS

Windows 95
WIN32, WIN95, WIN40, WINDOWS

HP/UNIX 9.X
HPUX, UNIX

Examples: %If directive
This example compiles and runs in either Windows 3.1, Windows NT, or Windows 95.
Depending on whether the application is compiled and run under 16-bit Windows
(Windows 3.1) or 32-bit Windows (Windows 95 or Windows NT), you should declare
and use an appropriate Windows handle variable and the appropriate version of two
Windows API functions.

GetActiveWindow returns the handle (an Integer in 16-bit Windows, a Long in 32-bit
Windows) of the currently active window. GetWindowText returns the text in the
window title bar.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 179

Dim winTitle As String * 80
%If WIN16 ' 16-bit Windows
 Dim activeWin As Integer ' Window handles are Integer.
 Declare Function GetActiveWindow% Lib "User" ()
 Declare Function GetWindowText% Lib "User" _
 (ByVal hWnd%, ByVal lpstr$, ByVal i%)
%ElseIf WIN32 ' 32-bit Windows
 Dim activeWin As Long ' Window handles are Long.
 Declare Function GetActiveWindow& Lib "User32" ()
 Declare Function GetWindowText% Lib "User32" _
 Alias "GetWindowTextA" _
 (ByVal hWnd&, ByVal lpstr$, ByVal i&)
%End If

' Print the name of the currently active window.
activeWin = GetActiveWindow() ' Returns an Integer or a Long.
Call GetWindowText(ActiveWin, winTitle$, 80)
Print winTitle$

IMEStatus function
Returns an integer indicating the current input mode (IME) for extended character
sets.

Syntax
IMEStatus

Return value
IMEStatus provides support for languages that use extended character sets. The
function returns a status code indicating the current input mode (IME). This code
depends on the country for which the Lotus product is built. The following table
describes the return values. For countries not listed in the table, the return value is 0.

Country Constant Value Description

All IME_NOT_INSTALLED 0 IME is not installed

IME_ON 1 IME is on

IME_OFF 2 IME is off

Japan IME_HIRAGANA 4 Double-byte Hiragana

IME_KATAKANA_DBCS 5 Double-byte Katakana

IME_KATAKANA_SBCS 6 Single-byte Katakana

IME_ALPHA_DBCS 7 Double-byte alphanumeric

IME_ALPHA_SBCS 8 Single-byte alphanumeric

continued

180 LotusScript Language Reference Guide

Country Constant Value Description

Taiwan IME_NATIVE_MODE 4 Taiwan native mode

IME_ALPHA_DBCS 7 Double-byte alphanumeric

IME_ALPHA_SBCS 8 Single-byte alphanumeric

Korea IME_HANGEUL 4 Hangeul DBC

IME_HANJACONVERT 5 Hanja conversion

IME_ALPLHA_DBCS 7 Double-byte alphanumeric

IME_ALPHA_SBCS 8 Single-byte alphanumeric

PRC IME_NATIVE_MODE 4 PRC native mode

IME_ALPHA_DBCS 7 Double-byte alphanumeric

IME_ALPHA_SBCS 8 Single-byte alphanumeric

Usage
IMEStatus is supported for Windows DBCS only. The Taiwan and PRC codes are
supported for Win95 only.

%Include directive
At compile time, inserts the contents of an ASCII file into the module where the
directive appears.

Syntax
%Include fileName

Elements
fileName

A string literal whose value is a file name; you can optionally include a path.

If you omit the file name extension, LotusScript assumes .lss. To include a file that
has no extension, include a period at the end of the the file name. For example:

%Include "orfile."

This prevents LotusScript from adding the .lss extension to the file name.

Usage
The %Include directive must be the only item on a line, except for an optional trailing
comment. It must be followed by white space (a space character, a tab character, or a
newline character).

If you don’t specify a path for the included file, the search path depends on the
specific Lotus product you’re using.

An included file can itself contain %Include directives. You can nest up to 16 files.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 181

At compile time, LotusScript replaces the %Include directive with the entire contents
of the named file. They are then compiled as part of the current script.

If a run-time error occurs in a statement in an included file, the line number reported
is that of the %Include directive.

If a compile-time error occurs in a statement in an included file, the file name and the
line number within that included file are reported with the error.

The file you include must be a text file containing only LotusScript statements. If
anything in the included file cannot be compiled, LotusScript generates a compiler
error.

If the file is not found, LotusScript generates an error.

Examples: %Include directive
' Include the contents of c:\testfile.txt with
' the current script when it is compiled.
%Include "c:\testfile.txt"

Input # statement
Reads data from a sequential file and assigns that data to variables.

Syntax
Input #fileNumber , variableList

Elements
fileNumber

The number assigned to the file when you opened it. A pound sign (#) sign must
precede the file number.

variableList
A comma-separated list of variables. The data read from the file is assigned to
these variables. File data and its data types must match these variables and their
data types.

variableList cannot include arrays, lists, variables of a user-defined data type, or
object reference variables. It can include individual array elements, list elements,
and members of a user-defined data type or user-defined class.

182 LotusScript Language Reference Guide

Usage
The following table shows how the Input # statement reads characters for various data
types.

variableList
data type

 How Input #
reads characters

Numeric variable The next non-space character in the file is assumed to begin a number. The
next space, comma, or end-of-line character in the file ends the number.
Blank lines and non-numeric values are translated to the number 0.

String
variable

The next non-space character in the file is assumed to begin a string. Note
these special conditions:

If that character is a double quotation mark (“), it is ignored; however, all
characters following it (including commas, spaces, and newline characters)
up to the next double quotation mark are read into the string variable.

If the first character is not a double quotation mark, the next space, comma,
or end-of-line character ends the string.

Blank lines are translated to the empty string (”“).

Note that tab is a non-space character.

Fixed-length
string variable

LotusScript reads this according to its length. For example, LotusScript
reads a variable declared as String *10 as 10 bytes.

Variant variable The next non-space character in the file is assumed to begin the data.

If the data is:

Empty (a delimiting comma or blank line), LotusScript assigns the variable
the EMPTY value.

The literal ”#NULL#“, LotusScript assigns the variable the NULL value.

A date/time literal, LotusScript assigns the variable the DataType 7
(Date/Time).

A whole number, LotusScript assigns the variable the Data Type 2 (integer)
if the number is in the legal range for integer; the DataType 3 (Long) if the
number is in the legal range for Long but not within the range for integer;
and otherwise the DataType 5 (Double).

A number with a fractional part, LotusScript assigns the variable the
DataType 5 (Double).

If none of the above applies, LotusScript assigns the variable the String type.

If LotusScript encounters an EOF (end-of-file), input terminates and an error is
generated.

LotusScript inserts a “\n” character in any multi-line string (for example, a string that
you type in using vertical bars or braces). If you Print the string to a file, the \n will be
interpreted as a newline on all platforms. If you Write the string to a file, the \n may
not be interpreted as a newline on all platforms. Therefore, when reading a multi-line
string from a sequential file, use Input, not Line Input.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 183

When reading record-oriented data, using a random file with the Get statement is
easier and more efficient than using Input #.

Examples: Input # statement
Dim fileNum As Integer, empNumber As Integer, i As Integer
Dim fileName As String, empName As String
Dim empLocation As Variant
Dim empSalary As Currency

fileNum% = FreeFile()
fileName$ = "data.txt"

' Write out some employee data.
Open fileName$ For Output As fileNum%
Write #fileNum%, "Joe Smith", 123, "1 Smith Road", 25000.99
Write #fileNum%, "Jane Doe", 456, "Two Cambridge Center", 98525.66
Write #fileNum%, "Jack Jones", 789, "Fourth Floor", 0
Close fileNum%

' Now read it all back and print it.
Open fileName$ For Input As fileNum%
For i% = 1 To 3
 Input #fileNum%, empName$, empNumber%, empLocation, empSalary@
 Print empName$, empNumber%, empLocation, empSalary@
Next i%

' Output:
' Outputs the following groups of four values, each
' consisting of String, Integer, Variant, and Currency values.

' Joe Smith 123 1 Smith Road 25000.99
' Jane Doe 456 Two Cambridge Center 98525.66
' Jack Jones 789 Fourth Floor 0

Close fileNum%

Input function
Reads a sequence of characters from a sequential or binary file into a string variable,
without interpreting the input.

Syntax
Input[$] (count , [#]fileNumber)

Elements
count

The number of characters to read. count must not exceed 32000.

184 LotusScript Language Reference Guide

fileNumber
The number assigned to the file when you opened it.

Return value
The Input function returns a Variant, and Input$ returns a String.

LotusScript returns the specified number of characters, beginning at the current
position in the file.

If you request more characters than are available, then the available characters are
returned in the string, the length of the returned string is less than count, and
LotusScript generates an error.

If count is 0, LotusScript returns the empty string (“”).

Usage
The input data is not filtered or translated in any way. All characters are returned,
including newline characters, quotation marks, and spaces.

If you want to work with bytes instead of characters, use the InputB or InputB$
function.

You cannot use the Input, Input$, InputB, or InputB$ functions to read a file opened in
Output, Append, or Random mode.

Examples: Input function
Dim fileNum As Integer
Dim fileName As String
Dim firstCheck As String

fileNum% = FreeFile()
fileName$ = "data.txt"

' Write out some employee data.
Open fileName$ For Output As fileNum%
Write #fileNum%, "Joe Smith", 123, "1 Smith Road", 25000.99
Write #fileNum%, "Jane Doe", 456, "Two Cambridge Center", 98525.66
Close fileNum%

' Read in first 23 characters of data and print.
Open fileName$ For Input As fileNum%
firstCheck$ = Input$(23, fileNum%)
Print firstCheck$ ' Output: "Joe Smith",123,"1 Smit
Close fileNum%

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 185

InputB function
Reads a sequence of bytes from a sequential or binary file into a string variable
without interpreting the input.

Syntax
InputB[$] (count , [#]fileNumber)

count
The number of bytes to read. The count must not exceed 64000 (this number of
bytes represents 32000 characters).

fileNumber
The number assigned to the file when it was opened.

Return value
The InputB function returns a Variant, and InputB$ returns a String.

LotusScript returns the specified number of bytes, beginning at the current position
within the file. If you request more bytes than are available, then the available bytes
are returned in the string and LotusScript generates an error.

The length of the returned string (measured in characters, as computed by the Len
function) is (# bytes returned) / 2 if an even number of bytes is returned, and otherwise
 (# bytes returned + 1) / 2, if an odd number of bytes is returned. If an odd number of
bytes is returned, then the last character in the returned string is padded with a 0 byte.

If count is 0, LotusScript returns the empty string (“”).

Usage
The input data is not filtered or translated in any way. All bytes are returned,
including the bytes representing newline, quotation marks, and space.

If you want to work with characters instead of bytes, use the Input or Input$ function.

You cannot use the Input, Input$, InputB, or InputB$ function to read a file opened in
Output, Append, or Random mode.

Examples: InputB function
Print InputB$(4, 1) ' Prints the next four bytes from file number 1.

186 LotusScript Language Reference Guide

InputBox function
Displays a dialog box containing a prompt for user entry, and returns input from the
user as a string.

Syntax
InputBox[$] (prompt [, [title] [, [default] [, xpos , ypos]]])

Elements
prompt

A string expression. This is the message displayed in the dialog box. prompt can be
up to 128 characters in length.

title
Optional. A string expression. This is displayed in the title bar of the dialog box.
title can be up to 128 characters in length.

If you omit title, nothing is displayed in the title bar. If you omit title and specify
either default or xpos and ypos, include a comma in place of title.

default
Optional. A string expression. This is displayed in the text entry field in the dialog
box as the default user response. default can be up to 512 characters in length.

If you omit default, the text input box is empty. If you omit default and specify xpos
and ypos, include a comma in place of default.

xpos
Optional. A numeric expression that specifies the horizontal distance, in units of 1
pixel, between the left edge of the dialog box and the left edge of the display
screen. If you omit xpos, the distance is 0. If you specify xpos, you have to specify
ypos as well.

ypos
Optional. A numeric expression that specifies the vertical distance, in units of 1
pixel, between the top edge of the dialog box and the top edge of the screen. If you
omit ypos, the distance is 0. If you specify ypos, you have to specify xpos as well.

Return value
The InputBox function returns a Variant containing a string. InputBox$ returns a
String.

Usage
InputBox displays a dialog box with OK and Cancel buttons and a text entry field,
interrupting execution of the script until the user confirms the text entry by clicking
OK or Cancel. Then InputBox returns that entry. If the user clicks Cancel, InputBox
returns the empty string (“”). When the user clicks OK or Cancel, execution resumes.

The Lotus product where you are running LotusScript may allow longer strings than
described above for prompt, title, default, and the text entered into the text entry field.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 187

LotusScript will support longer strings for these items if the Lotus product does, up to
16000 characters.

Examples: InputBox function
' Ask the user for an integer. Convert user input
' from a string to an integer.

Dim num As Integer
num% = CInt(InputBox$("How many do you want?"))

InputBP function
Reads a sequence of bytes (in the platform-native character set) from a sequential or
binary file into a string variable without interpreting the input.

Syntax
InputBP[$] (count , [#]fileNumber)

count
The number of bytes to read. The count must not exceed 32000 (this number of
bytes represents 32000 ASCII characters and 16000 DBCS characters).

fileNumber
The number assigned to the file when it was opened.

Return value
The InputBP function returns a Variant, and InputBP$ returns a String.

LotusScript returns the specified number of bytes, beginning at the current position
within the file. If you request more bytes than are available, then the available bytes
are returned in the string and LotusScript generates an error.

The length of the returned string (measured in characters, as computed by the Len
function) is the number of Unicode characters that the bytes translate into. For
example, 10 bytes of ASCII characters translate into 10 Unicode characters; 10 bytes of
DBCS characters translate into 5 Unicode characters. If the last requested byte read is
the lead byte of a DBCS character, the byte is dropped and the file pointer is
positioned one byte before the last requested byte.

If count is 0, LotusScript returns the empty string (“”).

188 LotusScript Language Reference Guide

Usage
The input data is translated into Unicode.

If you want to work with characters instead of platform bytes, use the Input or Input$
function. If you want to work with untranslated bytes, use the InputB or InputB$
function.

You cannot use the Input, Input$, InputB, InputB$, InputBP, or InputBP$ function to
read a file opened in Output, Append, or Random mode.

Examples: InputBP function
Print InputBP(4, 1) ' Prints the next four bytes from file number 1.

InStr function
Returns the position of the character that begins the first occurrence of one string
within another string.

Syntax
InStr ([begin ,] string1 , string2 [, compMethod])

Elements
begin

Optional. A numeric expression with a positive integer value. begin specifies the
character position in string1 where InStr should begin searching for string2. If you
omit begin, it defaults to 1. If you specify compMethod, you must specify begin as
well.

string1
The string that InStr searches for the occurrence of string2.

string2
The string for which InStr searches to see if it occurs in string1.

compMethod
A number designating the comparison method: 0 for case sensitive and pitch
sensitive, 1 for case insensitive and pitch sensitive, 4 for case sensitive and pitch
insensitive, 5 for case insensitive and pitch insensitive. If you omit compMethod, the
default comparison mode is the mode set by the Option Compare statement for
this module. If there is no statement for the module, the default is case sensitive
and pitch sensitive.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 189

Return value
InStr returns the character position of the first occurrence of string2 within string1. The
following table shows how the function responds to various conditions.

Condition Return value

string1 is the empty string (“”) 0

string2 is not found after begin in string1 0

begin is larger than the length of string1 0

string2 is the empty string (“”) The value of begin. If you omit begin, InStr returns
the value 1.

string1 is NULL NULL

string2 is NULL NULL

begin or compMethod is NULL Error

Usage
If you want to work with bytes, use the InStrB function.

Examples: InStr function
' The value 5 (the position of the character where the first
' occurrence of LittleString begins in BigString) is assigned
' to the variable positionOfChar.

Dim big As String, little As String
Dim positionOfChar As Long
big$ = "abcdefghi"
little$ = "efg"
positionOfChar& = InStr(1, big$, little$)
Print positionOfChar& ' Output: 5

InStrB function
Returns the position of the byte beginning the first occurrence of one string within
another string.

Syntax
InStrB ([begin ,] string1 , string2)

190 LotusScript Language Reference Guide

Elements
begin

Optional. A numeric expression with a positive integer value, begin specifies the
character position in string1 where InstrB should begin searching for string2. If you
omit begin, it defaults to 1.

string1
The string to be searched.

string2
The string for which InStrB searches.

Return value
InStrB returns the byte position of the first occurrence of string2 in string1. The
following table shows how the function responds to various conditions.

Condition Return value

string1 is “ ” (the empty string) 0

string2 is not found after begin in string1 0

begin is larger than the length of string1 0

string2 is “ ” (the empty string) The value of begin. (If you omit begin, InStrB
returns the value 1.)

string1 is NULL NULL

string2 is NULL NULL

begin is NULL Error

Usage
If you want to work with characters, use the InStr function.

Note that the byte position returned by InStrB is independent of the platform-specific
byte order.

Examples: InStrB function
' The value 9 (the position of the byte where the first
' occurrence of littleStr begins in bigStr) is assigned to
' the variable positionOfByte.

Dim bigStr As String, littleStr As String
Dim positionOfByte As Long
bigStr$ = "abcdefghi"
littleStr$ = "efg"
positionOfByte& = InStrB(1, bigStr$, littleStr$)
Print positionOfByte& ' Output: 9

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 191

InStrBP function
Returns the position of the byte (in the platform-native character set) beginning the
first occurrence of one string within another string.

Syntax
InStrBP ([begin ,] string1 , string2)

Elements
begin

Optional. A numeric expression with a positive integer value, begin specifies the
character position in string1 where InstrBP should begin searching for string2. If
you omit begin, it defaults to 1.

string1
The string to be searched.

string2
The string for which InStrBP searches.

Return value
InStrBP returns the byte position in the platform-specific character set of the first
occurrence of string2 in string1. The following table shows how the function responds
to various conditions.

Condition Return value

string1 is “ ” (the empty string) 0

string2 is not found after begin in string1 0

begin is larger than the length of string1 0

string2 is “ ”(the empty string) The value of begin. (If you omit begin, InStrB
returns the value 1.)

string1 is NULL NULL

string2 is NULL NULL

begin is NULL Error

Usage
If you want to work with characters, use the InStr function.

192 LotusScript Language Reference Guide

Examples: InStrBP function
' The value 5 or other value depending on platform
' (the position of the byte where the first
' occurrence of littleStr begins in bigStr) is assigned to
' the variable positionOfByte.

Dim bigStr As String, littleStr As String
Dim positionOfByte As Long
bigStr$ = "abcdefghi"
littleStr$ = "efg"
positionOfByte& = InStrBP(1, bigStr$, littleStr$)
Print positionOfByte& ' Output: 9

Int function
Returns the nearest integer value that is less than or equal to a number.

Syntax
Int (numExpr)

Elements
numExpr

Any numeric expression.

Return value
The data type of numExpr determines the data type of the value returned by the Int
function. The following table shows special cases.

numExpr Return value

NULL NULL

Variant containing a string
interpretable as a number

Double

Usage
The value returned by the Int function is always less than or equal to its argument.

The Fix function and the Int function behave differently. Fix removes the fractional
part of its argument, truncating toward 0.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 193

Examples: Int function
Dim xF As Integer, yF As Integer
Dim xT As Integer, yT As Integer
xF% = Fix(-98.8)
yF% = Fix(98.2)
xT% = Int(-98.8)
yT% = Int(98.2)
Print xF%; yF%
' Output:
' -98 98
Print xT%; yT%
' Output:
' -99 98

Integer data type
Specifies a variable that contains a signed 2-byte integer.

Usage
An Integer value is a whole number in the range -32768 to 32767, inclusive.

Integer variables are initialized to 0.

The Integer suffix character for implicit type declaration is %.

LotusScript aligns Integer data on a 2-byte boundary. In user-defined data types,
declaring variables in order from highest to lowest alignment boundaries makes the
most efficient use of data storage space.

Examples: Integer data type
' The variable count is explicitly declared as type Integer.
' The variable nextOne is implicitly declared as type Integer
' by the % suffix character.
Dim count As Integer
count% = 1
nextOne% = count% + 1
Print count%; nextOne% ' Output: 1 2

IsArray function
Tests the value of an expression to determine whether it is an array.

Syntax
IsArray (expr)

194 LotusScript Language Reference Guide

Elements
expr

Any expression.

Return value
IsArray returns TRUE (-1) if expr is an array; otherwise IsArray returns FALSE (0).

Examples: IsArray function
Dim arrayFixed(1 To 5)
Dim arrayDynam()
Print IsArray(arrayFixed) ' Output: True
Print IsArray(arrayDynam) ' Output: True

Dim v As Variant
Print IsArray(v) ' Output: False
v = arrayFixed
Print IsArray(v) ' Output: True

IsDate function
Tests the value of an expression to determine whether it is a date/time value.

Syntax
IsDate (expr)

Elements
expr

Any expression.

Return value
IsDate returns TRUE (-1) if expr is any of the following:

A Variant value of DataType 7 (Date/Time)

A Variant value of type String, where the string represents a valid date/time value

A String value representing a valid date/time value

Otherwise IsDate returns FALSE (0).

Usage
A date/time value stored in a Variant is an 8-byte floating-point value. The integer
part represents a serial day counted from Jan 1, 100 AD. Valid dates are represented
by integers between -657434 (representing Jan 1, 100 AD) and 2958465 (representing
Dec 31, 9999 AD). The fractional part represents the time as a fraction of a day,
measured from time 00:00:00 (midnight on the previous day). In this representation of
date/time values, day 1 is the date December 31, 1899.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 195

Examples: IsDate function
Dim x As Variant, y As Variant, z As Variant
x = 100 ' Numeric value
y = CDat(100) ' Numeric date value
z = "Nov 2, 1983" ' String representing a date

Print IsDate(x) ' Output: False
Print IsDate(y) ' Output: True
Print IsDate(z) ' Output: True
Print IsDate("100") ' Output: False
Print IsDate("Nov 2, 1983") ' Output: True

IsDefined function
Tests a string expression to determine whether it is the name of a product constant at
run time.

Syntax
IsDefined (stringExpr)

Elements
stringExpr

Any string expression.

Return value
IsDefined returns TRUE (-1) if stringExpr is the name of a product constant at run time.
Otherwise IsDefined returns FALSE (0).

Usage
The IsDefined function is used as a run-time parallel to the %If directive. It is
commonly used to test the run-time value of a platform-identification constant that
may be used to govern conditional compilation in a %If directive.

Note that IsDefined is not a LotusScript keyword.

IsElement function
Tests a string to determine whether it is a list tag for a given list.

Syntax
IsElement (listName (stringExpr))

Elements
listName

The name of a defined list.

196 LotusScript Language Reference Guide

expr
Any expression.

Return value
The IsElement function returns TRUE (-1) if stringExpr is the list tag for any element of
listName. Otherwise IsElement returns FALSE (0).

Usage
If listName is not the name of a defined list, LotusScript generates an error.

If expr is a numeric expression, LotusScript first converts its value to a string.

If the character set is single byte, Option Compare determines whether list names are
case sensitive. For example, if Option Compare Case is in effect, the names “ListA”
and “Lista” are different; if Option Compare NoCase is in effect, these names are the
same. If the character set is double byte, list names are always case and pitch sensitive.

Examples: IsElement function
' Use IsElement to determine whether
' the user correctly identifies a list tag.

' Declare a list to hold employee Ids.
Dim empList List As Double
Dim empName As String, Id As Double, found As Integer
' Create some list elements and assign them values.
empList#("Maria Jones") = 12345
empList#("Roman Minsky") = 23456
empList#("Joe Smith") = 34567
empList#("Sal Piccio") = 91234
' Ask the user to identify the list item to be removed.
empName$ = InputBox$("Which employee is leaving?")

' Check to see if empName$ corresponds to a list tag. If not, display
' a message and stop. Otherwise, validate the employee's Id.
' If everything checks out, remove the item from the list.
If IsElement(empList#(empName$)) = TRUE Then
 Id# = CDbl(InputBox$("What's " & empName$ & "'s Id?"))
 found% = FALSE ' Initialize found to 0 (FALSE)
 ForAll empId In empList#
 If empId = Id# Then
 found% = TRUE ' Set found to -1 (TRUE).
 If ListTag(empId) = empName$ Then
 Erase empList#(empName$)
 ' Verify the removal of the list element.
 If IsElement(empList#(empName$)) = FALSE Then
 MessageBox empName$ & _
 " has been removed from the list."
 End If
 Else

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 197

 MessageBox "Employee name and Id do not match."
 End If
 ' No need to look farther for Id, so get out
 ' of the ForAll loop.
 Exit ForAll
 End If
 End ForAll
 If found% = FALSE Then
 MessageBox "Not a valid employee Id."
 End If
Else
 MessageBox "We have no such employee."
End If

IsEmpty function
Tests the value of an expression to determine whether it is EMPTY.

Syntax
IsEmpty (expr)

Elements
expr

Any expression.

Return value
The IsEmpty function returns TRUE (-1) if expr has the value EMPTY. This occurs only
if expr is a Variant and has not been assigned a value.

Otherwise IsEmpty returns FALSE (0).

Examples: IsEmpty function
Dim dynaVar As Variant
Print IsEmpty(dynaVar) ' Output: True
dynaVar = PI
Print IsEmpty(dynaVar) ' Output: False

IsList function
Tests the value of an expression to determine whether it is a list.

Syntax
IsList (expr)

198 LotusScript Language Reference Guide

Elements
expr

Any expression.

Return value
The IsList function returns TRUE (-1) if expr is a list; otherwise IsList returns FALSE
(0).

Examples: IsList function
Dim myList List
Print IsList(myList) ' Output: True

Dim v As Variant
Print IsList(v) ' Output: False
v = myList
Print IsList(v) ' Output: True

IsNull function
Tests the value of an expression to determine whether it is NULL.

Syntax
IsNull (expr)

Elements
expr

Any expression.

Return value
IsNull returns TRUE (-1) if expr is NULL; otherwise it returns FALSE (0).

Usage
The IsNull function checks whether a Variant contains NULL. For example:

If IsNull(LoVar) Then Print "LoVar is NULL" Else Print LoVar

Examples: IsNull function
Dim v As Variant
Print IsNull(v) ' Output: False
Print IsEmpty(v) ' Output: True
v = NULL
Print IsNull(v) ' Output: True

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 199

IsNumeric function
Tests the value of an expression to determine whether it is numeric, or can be
converted to a numeric value.

Syntax
IsNumeric (expr)

Elements
expr

Any expression.

Return value
The IsNumeric function returns TRUE (-1) if the value of expr is a numeric value or can
be converted to a numeric value. The following values are numeric:

Integer

Long

Single

Double

Currency

Date/Time

EMPTY

String (if interpretable as number)

OLE error

Boolean (TRUE, FALSE)

If expr is not a numeric value and cannot be converted to a numeric value, IsNumeric
returns FALSE (0). The following values are not numeric:

NULL

Array

List

Object (OLE Automation object, product object, or user-defined object)

String (if not interpretable as number)

NOTHING

Usage
A common use of IsNumeric is to determine whether a Variant expression has a
numeric value.

200 LotusScript Language Reference Guide

Examples: IsNumeric function
Dim v As Variant
Print IsNumeric(v) ' Output: True (v is EMPTY)
v = 12
Print IsNumeric(v) ' Output: True

' A string that is not interpretable as a number
v = "Twelve"
Print IsNumeric(v) ' Output: False

' A string that is interpretable as a number
v = "12"
Print IsNumeric(v) ' Output: True

IsObject function
Tests the value of an expression to determine whether it is a user-defined object, a
product object, or an OLE Automation object.

Note IsObject is not supported under OS/2, under UNIX, or on the Macintosh.

Syntax
IsObject (expr)

Elements
expr

Any expression.

Return value
The IsObject function returns TRUE (-1) if the value of expr is an object (user-defined
object, product object, or OLE Automation object) or NOTHING. Otherwise IsObject
returns FALSE (0).

Examples: IsObject function
' Define two classes, Vegetable and Fruit.
Class Vegetable
 ' ... class definition
End Class
Class Fruit
 ' ... class definition
End Class

Dim tomato As Variant, turnip As Variant
Print IsObject(tomato) ' Output: False
Set turnip = New Vegetable
Print IsObject(turnip) ' Output: True
Set tomato = New Fruit
Print IsObject(tomato) ' Output: True

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 201

IsScalar function
Tests an expression to determine if it evaluates to a single value.

Syntax
IsScalar (expr)

Elements
expr

Any expression.

Return value
The IsScalar function returns TRUE (-1) if expr evaluates to one of the following:

EMPTY

Integer

Long

Single

Double

Currency

Date/Time

String

OLE error

Boolean (TRUE, FALSE)

Otherwise (if expr is an array, list, object, NOTHING, or NULL), IsScalar returns
FALSE (0).

Examples: IsScalar function
Dim var As Variant
Print IsScalar(var) ' Output: True
var = 1
Print IsScalar(var) ' Output: True
var = "hello"
Print IsScalar(var) ' Output: True

Class SenClass
 ' ... class definition
End Class
Set var = New SenClass
Print IsScalar(var) ' Output: False

202 LotusScript Language Reference Guide

Dim senArray(1 To 5)
var = senArray
Print IsScalar(var) ' Output: False

Dim senList List
var = senList
Print IsScalar(var) ' Output: False

Kill statement
Deletes a file.

Syntax
Kill fileName

Elements
fileName

A string expression whose value is a file name; wildcards are not allowed.
fileName can contain a drive indicator and path information.

Usage
Use Kill with care. If you delete a file with the Kill statement, you can’t restore it with
LotusScript statements or operating system commands. Make sure the file is closed
before you attempt to delete it.

Kill deletes files, not directories. To remove directories, use the RmDir statement.

Examples: Kill statement
' Delete the file c:\test from the file system.
Kill "c:\test"

LBound function
Returns the lower bound for one dimension of an array.

Syntax
LBound (arrayName [, dimension])

Elements
arrayName

The name of an array

dimension
Optional. An integer argument that specifies the array dimension; the default is 1.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 203

Return value
The LBound function returns an Integer.

Usage
The default value for dimension is 1.

LotusScript sets the lower bound for each array dimension when you declare a fixed
array or define the dimensions of a dynamic array with a ReDim statement.

The default lower bound for an array dimension is 0 or 1, depending on the Option
Base setting.

Examples: LBound function
Dim minima(10 To 20)
Print LBound(minima) ' Output: 10

LCase function
Returns the lowercase representation of a string.

Syntax
LCase[$] (expr)

Elements
expr

Any numeric or String expression for LCase; and any Variant or String expression
for LCase$.

Return value
LCase returns a Variant of DataType 8 (a String), and LCase$ returns a String.

Usage
LCase ignores non-alphabetic characters.

LCase(NULL) returns NULL. LCase$(NULL) returns an error.

Examples: LCase function
Print LCase$("ABC") ' Output: "abc"

Left function
Extracts a specified number of the leftmost characters in a string.

Syntax
Left[$] (expr , n)

204 LotusScript Language Reference Guide

Elements
expr

Any numeric or String expression for Left; and any Variant or String expression
for Left$. If expr is numeric, LotusScript converts it to a string before performing
the extraction.

n
The number of characters to be returned.

Return value
Left returns a Variant of DataType 8 (a String), and Left$ returns a String.

If n is 0, the function returns the empty string (“”). If n is greater than the length (in
characters) of expr, the function returns the entire string.

Left(NULL) returns NULL. Left$(NULL) is an error.

Examples: Left function
' Assign the leftmost 2 characters in "ABC".
Dim subString As String
subString$ = Left$("ABC", 2)
Print subString$ ' Output: "AB"

LeftB function
Lotus does not recommend using the LeftB function in LotusScript Release 3 because
Release 3 uses Unicode, a character set encoding scheme that represents each character
as two bytes. Because a two-byte character can be accompanied by leading or trailing
zeroes, extracting characters by byte position no longer yields reliable results.

Use the Left function for left character set extractions instead.

LeftBP function
Extracts a specified number of the leftmost bytes in a string using the
platform-specified character set.

Syntax
LeftBP[$] (expr , n)

Elements
expr

Any numeric or String expression for LeftBP; and any Variant or String expression
for LeftBP$. If expr is numeric, LotusScript converts it to a string before
performing the extraction.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 205

n
The number of bytes to be returned using the platform-specified character set.

Return value
LeftBP returns a Variant of DataType 8 (a String), and LeftBP$ returns a String.

If n is 0, the function returns the empty string (“”). If n is greater than the length (in
bytes) of expr, the function returns the entire string.

LeftBP(NULL) returns NULL. LeftBP$(NULL) is an error.

If a double-byte character is divided, the character is not included.

Examples: LeftBP function
' The value "AB" or other value depending on platform
' is assigned to the variable subString.

Dim subString As String
subString = LeftBP$("ABC", 2)
Print subString$ ' Output: "AB"

Len function
Returns the number of characters in a string, or the number of bytes used to hold a
numeric value.

Syntax
Len ({ stringExpr | variantExpr | numericExpr | typeName })

Elements
stringExpr

Any string expression.

variantExpr
Any Variant expression that includes a variable name.

numericExpr
The name of a variable, an element of an array, an element of a list, or a member
variable of a user-defined data type or class. The data type of numericExpr is
numeric.

typeName
An instance of a user-defined data type. It can be a simple variable of that data
type, or an element of an array variable or a list variable of that data type.

Return value
For stringExpr, Len returns the number of characters in the string expression.

206 LotusScript Language Reference Guide

For variantExpr, Len returns the number of characters required to hold the value of
variantExpr converted to a String.

For numericExpr, Len returns the number of bytes required to hold the contents of
numericExpr.

For typeName, Len returns the number of bytes required to hold the contents of all the
member variables, unless the user-defined data type includes Variant or
variable-length String members. In that case, the length of the variable of the
user-defined data type may not be the same as the sum of the lengths of its member
variables.

Usage
In LotusScript Release 3, Len(NULL) generates an error. In previous releases of
LotusScript, Len(NULL) returned NULL.

Len(v), where v is EMPTY, returns 0.

To determine the length of a string in bytes rather than in characters, use the LenB
function. To determine the length of a string in bytes in the platform-native character
set, use the LenBP function.

Examples: Len function

Example 1
' The length of a string, in characters
Dim theString As String
theString$ = "alphabet"
Print Len(theString$) ' Output: 8

' The number of bytes used to hold a Single variable
Dim singleVar As Single
Print Len(singleVar!) ' Output: 4

Example 2
' User-defined data type with variable-length String member
Type OrderInfo
 ordID As String * 6
 custName As String
End Type

' An instance of the user-defined data type
Dim ord As OrderInfo
ord.ordID$ = "OR1234"
ord.custName$ = "John R. Smith"

' Total length of the ord's members is 19.
Print Len(ord.ordID$) + Len(ord.custName)

' Length of ord is 16.
Print Len(ord)

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 207

LenB function
Returns the length of a string in bytes, or the number of bytes used to hold a variable.

Syntax
LenB ({ stringExpr | variantExpr | numericExpr | typeName })

Elements
stringExpr

Any string expression.

variantExpr
Any Variant expression that includes a variable name.

numericExpr
The name of a variable, an element of an array, an element of a list, or a member
variable of a user-defined data type or class. The data type of numericExpr is
numeric.

typeName
An instance of a user-defined data type. It can be a simple variable of that data type,
or an element of an array variable or a list variable of that data type.

Return value
For stringExpr, LenB returns the number of bytes in the string expression.

For variantExpr, LenB returns the number of bytes required to hold the value of
variantExpr converted to a String.

For numericExpr, LenB returns the number of bytes required to hold the contents of
numericExpr.

For typeName, LenB returns the number of bytes required to hold the contents of all
the member variables, unless the user-defined data type includes Variant or
variable-length String members. In that case, the length of the variable of the
user-defined data type may not be the same as the sum of the lengths of its member
variables.

Usage
In LotusScript Release 3, LenB(NULL) generates an error. In previous releases of
LotusScript, LenB(NULL) returned NULL.

LenB(v), where v is EMPTY, returns 0.

To determine the length of a string in characters, use the Len function. To determine
the length of a string in bytes in the platform-native character set, use the LenBP
function.

208 LotusScript Language Reference Guide

Examples: LenB function
' The length of an 8-character string, in bytes
Dim theString As String
theString$ = "alphabet"
Print LenB(theString$) ' Output: 16

' The number of bytes used to hold a Single variable
Dim singleVar As Single
Print LenB(singleVar!) ' Output: 4

LenBP function
Returns the length of a string in bytes, or the number of bytes used to hold a variable,
in the platform-native character set.

Syntax
LenBP ({ stringExpr | variantExpr | numericExpr | typeName })

Elements
stringExpr

Any string expression.

variantExpr
Any Variant expression that includes a variable name.

numericExpr
The name of a variable, an element of an array, an element of a list, or a member
variable of a user-defined data type or class. The data type of numericExpr is
numeric.

typeName
An instance of a user-defined data type. It can be a simple variable of that data
type, or an element of an array variable or a list variable of that data type.

Return value
For stringExpr, LenBP returns the number of bytes in the string expression.

For variantExpr, LenBP returns the number of bytes required to hold the value of
variantExpr converted to a String.

For numericExpr, LenBP returns the number of bytes required to hold the contents of
numericExpr.

For typeName, LenBP returns the number of bytes required to hold the contents of all
the member variables, unless the user-defined data type includes Variant or
variable-length String members. In that case, the length of the variable of the
user-defined data type may not be the same as the sum of the lengths of its member
variables.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 209

Usage
LenBP(NULL) generates an error.

LenBP(v), where v is EMPTY, returns 0.

To determine the length of a string in characters, use the Len function. To determine
the length of a string in bytes in the LotusScript internal character set, use the LenB
function.

Let statement
Assigns a value to a variable.

Syntax
[Let] variableID = expr

Elements
Let

Optional. The Let statement is chiefly useful as a means of documenting an
assignment statement. The absence of the Let keyword has no effect on the
assignment.

variableID
A variable or variable element to which the value of expr is assigned. variableID
can be of any data type that LotusScript recognizes, other than an object reference,
an array, or a list. variableID can take any of these forms:

variableName

A non-array, non-list variable. The variable may not be an array or list variable,
but it may be a Variant containing an array or list.

arrayName (subscripts)

An array element. arrayName is an array variable or a Variant containing an
array.

listName (listTag)

A list element. listName is a list variable or a Variant containing a list.

typeVar.memberVar

A member variable of a user-defined data type. typeVar is an instance of a
user-defined data type. typeVar can be an element of an array or list. memberVar
is a member variable of that user-defined data type. memberVar can be a scalar
data type, a fixed array, or a Variant containing a scalar data type, an array, a
list, or an object reference.

210 LotusScript Language Reference Guide

object.memberVar
object..memberVar
Me.memberVar

A member variable or property of a class. object is an expression whose value is
an object reference. memberVar is a member variable or property of that class, or
an element of an array member variable, or an element of a list member
variable. Use Me only within a procedure defined within the class.

expr
Any expression except one whose value is an object reference. The expr must be of
the same data type as variableID, or else must be convertible to the data type of
variableID. The rules for data type conversion determine how (if at all) LotusScript
converts the value of expr before assigning it to variableID.

Usage
LotusScript assigns the value of expr to the variable or variable element named by
variableID.

Do not use the Let statement to assign an object reference to a variable. Use the Set
statement to do that.

Examples: Let statement
' This example shows several cases of assignment.
' Wherever the keyword Let appears, it can be omitted without effect.

Dim a As Integer, b As Integer, c As Integer
Let a% = 2
Let b% = a%
Print b% ' Output: 2
Let c% = b% + 1
Print c% ' Output: 3

' Assign the value of b to an array element.
Dim devArray(3)
Let devArray(1) = b%
Print devArray(1) ' Output: 2

' Assign the value of c to a list element.
Dim devList List
Let devList("one") = c%
Print devList("one") ' Output: 3

' For an instance of a user-defined data type,
' assign the value of c - a to a member variable.
Type DevType
 num As Integer
End Type
Dim inst As DevType

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 211

Let inst.num% = c% - a%
Print inst.num% ' Output: 1

' For an instance of a user-defined class,
' assign the value of a + b to a member variable.
Class DevClass
 Public num% As Integer
End Class
Set devObj = New DevClass
Let devObj.num% = a% + b%
Print devObj.num% ' Output: 4

Line Input # statement
Reads a line from a sequential file into a String or Variant variable.

Syntax
Line Input #fileNumber , varName

Elements
#fileNumber

The number assigned to the file when you opened it. A # sign must precede the
file number.

varName
A String or Variant variable to hold the contents of one line of the file

Usage
Line Input # reads characters from a sequential file until it encounters a newline
character. Line Input # does not read the newline character into the variable.

When reading a multi-line string from a sequential file, use the Input # statement, not
the Line Input # statement.

Examples: Line Input # statement
' Display the contents of c:\config.sys a line at a time.

Dim text As String, fileNum As Integer
fileNum% = FreeFile()

Open "c:\config.sys" For Input As fileNum%
Do While Not EOF(fileNum%)
 Line Input #1, text$
 Print text$ ' Prints one line of config.sys
Loop

Close fileNum%

212 LotusScript Language Reference Guide

ListTag function
Returns the name of the list element currently being processed by a ForAll statement.

Syntax
ListTag (refVar)

Elements
refVar

The reference variable in a ForAll list iteration loop.

Return value
ListTag returns a String that is the name of the list element currently referred to by
refVar.

ListTag generates an error if refVar is not the reference variable specified in the ForAll
statement.

If Option Compare NoCase is in effect and the character set is single byte, names are
returned as all uppercase. Option Compare has no effect if the character set is double
byte.

Usage
The ListTag function is valid only inside a ForAll block whose target is a list.

Examples: ListTag function
Dim loft List As Integer
loft%("first") = 0
loft%("second") = 1
loft%("third") = 2

' Print list tags for the elements of Loft,
' each on its own line.
ForAll i In Loft%
 Print ListTag(i)
End ForAll
' Output:
' first
' second
' third

LOC function
Returns the current position of the file pointer in a file.

Syntax
LOC (fileNumber)

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 213

Elements
fileNumber

The number assigned to the file when you opened it.

Return value
The following table presents the LOC return values for random, sequential, and binary
files.

File type Return value

Random The number of the last record read from or written to the file. This is the file
pointer position, minus 1.

Sequential The byte position in the file, divided by 128 and truncated to an integer.

Binary The position of the last byte read from or written to the file. This is the file
pointer position, minus 1.

Examples: LOC function
Type PersonRecord
 empNumber As Integer
 empName As String *20
End Type

Dim rec1 As PersonRecord, rec2 As PersonRecord
Dim fileNum As Integer
Dim fileName As String
fileNum% = FreeFile()
fileName$ = "data.txt"

' Create a sample file.
Open fileName$ For Random As fileNum%

' Write at record 1.
rec1.empNumber% = 123
rec1.empName$ = "John Smith"
Put #fileNum%, 1, rec1
Print LOC(fileNum%) ' Output: 1

' Write at record 2.
rec2.empNumber% = 456
rec2.empName$ = "Jane Doe"
Put #fileNum%, 2, rec2
Print LOC(fileNum%) ' Output: 2

' Read from record 1.
Get #fileNum%, 1, rec2
Print LOC(fileNum%) ' Output: 1

Close fileNum%

214 LotusScript Language Reference Guide

Lock and Unlock statements
Provide controlled access to files.

Syntax
Lock [#]fileNumber [, recordNumber | { [start] To end }]

Unlock [#]fileNumber [, recordNumber | { [start] To end }]

Elements
fileNumber

The number assigned to the file when you opened it.

recordNumber
In a random file, the number of the record that you want to lock or unlock. In a
binary file, the byte that you want to lock or unlock. The first record in a random
file is record number 1; the first byte in a binary file is byte number 1. LotusScript
locks or unlocks only the specified record or byte.

In a sequential file, LotusScript locks or unlocks the whole file, regardless of value
you specify for recordNumber.

start To end
In a random file, the range of record numbers you want to lock or unlock. In a
binary file, the range of bytes that you want to lock or unlock. If you omit start,
LotusScript locks records or bytes from the beginning of the file to the specified
end position. In a sequential file, LotusScript locks or unlocks the whole file,
regardless of the start and end values.

Usage
In Windows 3.1, you must run SHARE.EXE to enable the locking feature if you are
using MS-DOS® version 3.1 or later. Earlier versions of MS-DOS do not support Lock
and Unlock.

Always use Lock and Unlock statements in pairs whose elements — fileNumber,
recordNumber, start, and end — match exactly. If you do not remove all locks, or if the
elements do not match exactly, unpredictable results can occur.

Examples: Lock and unlock statements
Type PersonRecord
 empNumber As Integer
 empName As String * 20
End Type

Dim rec1 As PersonRecord, rec2 As PersonRecord
Dim fileNum As Integer, recNum As Integer
Dim fileName As String
recNum% = 1

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 215

fileNum% = FreeFile()
fileName$ = "data.txt"

' Create a record.
Open fileName$ For Random As fileNum%
rec1.empNumber% = 123
rec1.empName$ = "John Smith"
Put #fileNum, recNum%, rec1
Print rec1.empName$; rec1.empNumber%
' Output:
' John Smith 123

' Lock and update the record.
Lock #fileNum%, recNum%
Get #fileNum%, recNum%, rec2
Print rec2.empName$; rec2.empNumber%
' Output:
' John Smith 123
rec2.empName$ = "John Doe"
Put #fileNum%, recNum%, rec2
Print rec2.empName$; rec2.empNumber%
' Output:
' John Doe 123

' Release the lock.
Unlock #fileNum%, recNum%
Close fileNum%

LOF function
Returns the length of an open file in bytes.

Syntax
LOF (fileNumber)

Elements
fileNumber

The number assigned to the file when you opened it.

Return value
The LOF function returns a value of type Long.

Usage
LOF works only on an open file. To find the length of a file that isn’t open, use the
FileLen function.

216 LotusScript Language Reference Guide

Examples: LOF function
Dim izFile As Integer
Dim fileName As String, fileContents as String

izFile% = FreeFile()
fileName$ = "c:\autoexec.bat"
Open fileName$ For Input As izFile%

' Use LOF to find the file length, and Input$ to read
' the entire file into the string veriable izFile.
fileContents$ = Input$(LOF(izFile%), izFile%)Log
Print fileContents$ ' Display the file contents.

Log function in LotusScript
Returns the natural (base e) logarithm of a number.

Syntax
Log (numExpr)

Elements
numExpr

Any numeric expression greater than zero.

Return value
The Log function returns a value of type Double.

Usage
The base for natural logarithms (e) is approximately 2.71828.

Examples: LOF function
Dim izFile As Integer
Dim fileName As String, fileContents as String

izFile% = FreeFile()
fileName$ = "c:\autoexec.bat"
Open fileName$ For Input As izFile%

' Use LOF to find the file length, and Input$ to read
' the entire file into the string veriable izFile.
fileContents$ = Input$(LOF(izFile%), izFile%)
Print fileContents$ ' Display the file contents.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 217

Log function
Returns the natural (base e) logarithm of a number.

Syntax
Log (numExpr)

Elements
numExpr

Any numeric expression greater than zero.

Return value
The Log function returns a value of type Double.

Usage
The base for natural logarithms (e) is approximately 2.71828.

Examples: Log function

Example 1
Dim natLog As Double
natLog# = Log(18) ' Assigns 2.89037175789617

Example 2
' Compute the base 10 logarithm of a number.
Function Log10 (inVal As Single) As Single
 Log10 = Log(inVal!) / Log(10)
End Function

Print Log10(10) ' Output: 1
Print Log10(100) ' Output: 2
Print Log10(1 / 100) ' Output: -2
Print Log10(1) ' Output: 0

Long data type
Specifies a variable that contains a signed 4-byte integer.

Usage
The Long suffix character is &.

Long variables are initialized to 0.

A Long value is a whole number in the range -2,147,483,648 to 2,147,483,647 inclusive.

LotusScript aligns Long data on a 4-byte boundary. In user-defined types, declaring
variables in order from highest to lowest alignment boundaries makes the most
efficient use of data storage space.

218 LotusScript Language Reference Guide

Examples: Long data type
' Explicitly declare a Long variable.
Dim particles As Long

' Implicitly declare a Long variable.
bigInt& = 2094070921

particles = bigInt&
Print bigInt&; particles ' Output: 2094070921 2094070921

LSet statement
Assigns a specified string to a string variable and left-aligns the string in the variable.

Syntax
LSet stringVar = stringExpr

Elements
stringVar

The name of a string variable. It may be a fixed-length String variable, a
variable-length String variable, or a Variant variable.

stringExpr
The string to be assigned to the variable and left-aligned.

Usage
If the length of stringVar is greater than the length of stringExpr, LotusScript left-aligns
stringExpr in stringVar and sets the remaining characters in stringExpr to spaces.

If the length of stringVar is less than the length of stringExpr, LotusScript copies only
that many of the leftmost characters from stringExpr to stringVar.

If stringVar contains a numeric value, LotusScript converts it to a string to determine
the length of the result.

If stringVar is a Variant, it can’t contain NULL.

You can’t use LSet to assign values from an instance of one user-defined data type to
another.

Examples: LSet statement
Dim x As Variant
x = "qq" ' Length of x is 2
LSet x = "abc" ' Assigns leftmost 2 characters
Print x ' Prints "ab"
LSet x = "c" ' Assigns "c" and pads on the right with a space,
 ' because length of x is 2
Print x & "high" ' Prints "c high"
x = "c" ' Ordinary assignment; new length of x is 1
Print x & "high" ' Prints "chigh"

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 219

LTrim function
Removes leading spaces from a string and returns the result.

Syntax
LTrim (stringExpr)

Elements
stringExpr

Any string expression.

Return value
LTrim returns the trimmed version of stringExpr without modifying the contents of
stringExpr itself. LTrim returns a Variant of DataType 8 (a String), and LTrim$ returns
a String.

Examples: LTrim function
Dim trimLeft$ As String
trimLeft$ = LTrim$(" abc ")
Print trimLeft$
Print Len(trimLeft$)
' Output:
' abc
' 4
' The string "abc " is assigned to trimLeft.
' Note that the trailing space was not removed.

MessageBox function and statement
Displays a message in a message box and waits for user acknowledgment. The
function form returns a value corresponding to the button the user presses.

Function Syntax
MessageBox (message [, [buttons + icon + default + mode] [, boxTitle]])

Statement Syntax
MessageBox message [, [buttons + icon + default + mode] [, boxTitle]]

The MessageBox function and statement are identical, except that only the function
has a return value.

MsgBox is acceptable in place of MessageBox.

220 LotusScript Language Reference Guide

Elements
message

The message to be displayed in the message box (a string). message can be up to
512 characters in length.

buttons
Defines the number and type of buttons to be displayed in the message box:

Constant name Value Buttons displayed

MB_OK 0 OK

MB_OKCANCEL 1 OK and Cancel

MB_ABORTRETRYIGNORE 2 Abort, Retry, and Ignore

MB_YESNOCANCEL 3 Yes, No, and Cancel

MB_YESNO 4 Yes and No

MB_RETRYCANCEL 5 Retry and Cancel

icons
Defines the icons to be displayed in the message box:

Constant name Value Icon displayed

MB_ICONSTOP 16 Stop sign

MB_ICONQUESTION 32 Question mark

MB_ICONEXCLAMATION 48 Exclamation point

MB_ICONINFORMATION 64 Information

Examples: MessageBox function and statement

Example 1
' Display the message "Do you want to continue?"
' in a message box labeled "Continue?" and containing
' Yes and No buttons. Assign the return value from
' the MessageBox function to the variable answer.
%Include "lsconst.lss"
Dim boxType As Long, answer As Integer
boxType& = MB_YESNO + MB_ICONQUESTION
answer% = MessageBox("Do you want to continue?", boxType&, _
 "Continue?")

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 221

Example 2
' Use the MessageBox statement to display a
' multiline message in a message box labeled "Demo"
' and containing an OK button.
%Include "lsconst.lss"
Dim twoLiner$ As String
twoLiner$ = |This message
is on two lines|
MessageBox twoLiner$, MB_OK, "Demo"

Mid function
Extracts a string from within another string, beginning with the character at a
specified position.

Syntax
Mid[$] (expr , start [, length])

Elements
expr

Any numeric or string expression. LotusScript converts a numeric to a string
before performing the extraction.

start
The position of the first character to extract from the string, counting from 1 for
the leftmost character. The value of start must be between 1 and 32000, inclusive.

length
The number of characters to extract from the string. The value of length must be
between 0 and 32000, inclusive.

Return value
Mid returns a Variant of DataType 8 (a string), and Mid$ returns a String.

If there are fewer than length characters in the string beginning at the start position, or
if you omit the length argument, the function returns a string consisting of the
characters from start to the end of expr.

If start is greater than the length of expr, the function returns the empty string (“”).

Examples: Mid function
Dim subString As String
subString$ = Mid$("ABCDEF", 2, 3)
Print subString$ ' Output: BCD

222 LotusScript Language Reference Guide

Mid statement
Replaces part or all of one string with characters from another string.

Syntax
Mid[$] (stringVar , start [, length]) = stringExpr

Elements
stringVar

A String variable, or a Variant variable containing a string value. The stringVar
cannot be a literal string.

start
The position of the first character in stringVar that you want to replace. This value
must be between 1 and 32000, inclusive.

length
Optional. The number of characters you want to use from stringExpr. This value
must fall between 1 and 64000, inclusive.

stringExpr
A string expression. Characters from stringExpr replace characters in stringVar.

Usage
Mid can alter the size of stringVar in bytes if you are working with multibyte
characters. For example, if you are replacing a single-byte character with a double-byte
character, the size of the string in bytes increases.

Otherwise, Mid does not alter the length of stringVar. That is, Mid does not append
characters to stringVar. Mid uses as many characters of stringExpr as will fit in
stringVar beginning at start and ending at start + length – 1.

To direct Mid to use all of stringExpr, either omit length, or specify a length greater than
the length of the value in stringExpr.

If start is greater than the length of stringVar, LotusScript generates an error.

Examples: Mid statement
Dim string1 As String, string2 As String
string1$ = "ABCDEF"
string2$ = "12345"
' Replace the characters "BCD" in string1
' with the characters "123" in string2.
Mid$(string1$, 2, 3) = string2$
Print string1$ ' Output: A123EF

The three-character string “BCD”, beginning at the second character of string1, is
replaced with the first three characters contained in string2, “123”.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 223

MidB function
Lotus does not recommend using MidB in LotusScript Release 3 because Release 3
uses Unicode, a character set encoding scheme that represents each character as two
bytes. Because a two-byte character can be accompanied by leading or trailing zeroes,
extracting characters by byte position no longer yields reliable results.

Instead, use the Mid function for character set extractions.

MidB statement
Lotus does not recommend using MidB statements in LotusScript Release 3 because
Release 3 uses Unicode, a character set encoding scheme that represents each character
as two bytes. This means that a character can be accompanied by leading or trailing
zeroes.

Instead, use the Mid statement for character set replacement.

MidBP function
Extracts a number of bytes (using the platform-specified character set) from within
another string, beginning at a specified position.

Syntax
MidBP[$] (expr , start [, length])

Elements
expr

Any numeric or String expression for MidBP; and any Variant or String expression
for MidBP$. If expr is numeric, LotusScript converts it to a string before
performing the extraction.

start
The position of the first byte in expr that you want to return. This value must be
between 1 and 64000, inclusive.

length
Optional. The number of characters you want to use from expr. This value must
fall between 1 and 64000, inclusive.

224 LotusScript Language Reference Guide

Return value
MidBP returns a Variant of DataType 8 (a String), and LeftBP$ returns a String.

If there are fewer than length bytes in the string beginning at the start position, or if
you omit the length argument, the function returns a string consisting of the characters
from start to to the end of expr.

If start is greater than the length in bytes of expr, the function returns an empty string.

If a double-byte character is divided, the character is not included.

Examples: MidBP function
' The value "BCD" or other value depending on platform
' is returned.

Print MidBP("ABCDE"; 2; 3)

Minute function
Returns the minute of the hour (an integer from 0 to 59) for a date/time argument.

Syntax
Minute (dateExpr)

Elements
dateExpr

Any of the following kinds of expression:

A valid date/time string of type String or Variant. LotusScript interprets a
2-digit designation of a year in a date/time string as that year in the twentieth
century. For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time)

A number within the valid date range: the range -657434 (representing Jan 1,
100 AD) to 2958465 (Dec 31, 9999 AD), inclusive

NULL

Return value
Minute returns an integer between 0 and 59.

The data type of the return value is a Variant of DataType 2 (Integer).

Minute(NULL) returns NULL.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 225

Examples: Minute function
' Construct a message that displays the current time and
' the number of hours, minutes, and seconds remaining in the day.
Dim timeFrag As String, hoursFrag As String
Dim minutesFrag As String, secondsFrag As String
Dim crlf As String, message As String
timeFrag$ = Format(Time, "h:mm:ss AM/PM")
hoursFrag$ = Str(23 - Hour(Time))
minutesFrag$ = Str(59 - Minute(Time))
secondsFrag$ = Str(60 - Second(Time))
crlf$ = Chr(13) & Chr(10) ' Carriage return/line feed
message$ = "Current time: " & timeFrag$ & ". " & crlf$ _
 & "Time remaining in the day: " _
 & hoursFrag$ & " hours, " _
 & minutesFrag$ & " minutes, and " _
 & secondsFrag$ & " seconds."
MessageBox(message$)

MkDir statement
Creates a directory.

Syntax
MkDir path

Elements
path

A string expression whose value is the name of the directory you want to create.

Usage
A drive letter in path is optional. If it is not included, the current path is used,
including the current drive and directory.

Use the path syntax for the platform on which you are running LotusScript. The
maximum allowable length of the path string varies with the platform.

LotusScript generates an error if the directory cannot be created.

Examples: MkDir statement
' Create directory TEST, in the root directory of drive C.
MkDir "c:\test"

226 LotusScript Language Reference Guide

Month function
Returns the month of the year (an integer from 1 to 12) for a date/time argument.

Syntax
Month (dateExpr)

Elements
dateExpr

Any of the following kinds of expression:

A valid date/time string of String or Variant data type. LotusScript interprets a
two-digit designation of a year in a date/time string as that year in the
twentieth century. For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time)

A number within the valid date range: the range -657434 (representing Jan 1,
100 AD) to 2958465 (Dec 31, 9999 AD), inclusive

NULL

Return value
Month returns an integer between 1 and 12.

The data type of the return value is a Variant of DataType 2 (Integer).

Month(NULL) returns NULL.

Examples: Month function
Dim x As Long
Dim mm As Integer
x& = DateNumber(1994, 4, 1)
mm% = Month(x&)
Print mm%
' Output:
' 4

Name statement
Renames a file or directory.

Syntax
Name oldName As newName

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 227

Elements
oldName

A string expression whose value is the name of an existing file or directory,
optionally including a path.

newName
A string expression whose value is the name to be given to the file or directory,
optionally including a path. The newName cannot be another file or directory that
already exists.

Usage
To move a file, specify complete paths in both oldName and newName. Use the same
file name for both arguments if you don’t want to rename it.

You can’t move a file from one drive to another except under Windows NT and
Windows 95.

You can’t rename a file or directory to itself except under Windows NT and Windows
95.

You can rename a directory, but you can’t move it.

You can’t rename the current directory.

Examples: Name statement
' Rename the file WINDOWS\TEST1 to TEST2 and
' move it to the root directory of drive C.
Name "C:\WINDOWS\TEST1" As "C:\TEST2"

Now function
Returns the current system date and time as a date/time value.

Syntax
Now

Return value
Now returns the current system date and time as a Variant of DataType 7
(Date/Time).

Usage
A date/time value is an eight-byte floating-point value. The integer part represents a
serial day counted from the date January 1, 100 AD. The fractional part represents the
time as a fraction of a day, measured from midnight on the preceding day.

You can call the function as either Now or Now().

228 LotusScript Language Reference Guide

Examples: Now function
' Display the current date and time in the Long Date format
' (in Windows 3.1, determined by the system's LongDate
' International setting).

Print Format(Now(), "Long Date")
' Output:
' Tuesday, June 06, 1995

Oct function
Returns the octal representation of a number as a string.

Syntax
Oct[$] (numExpr)

Elements
numExpr

Any numeric expression. If numExpr evaluates to a number with a fractional part,
LotusScript rounds it to the nearest integer before deriving its octal representation.

Return value
Oct returns a Variant of DataType 8 (String), and Oct$ returns a String.

Return values will only include the numerals 0 - 7, inclusive. The maximum length of
the return value is 11 characters.

Usage
If the data type of numExpr is not Integer or Long, then LotusScript attempts to
convert it to a Long. If it cannot be converted, a type mismatch error occurs.

Examples: Oct function
Print Oct$(17) ' Prints "21"

' Converts Double argument to Long.
Print Oct$(17.0) ' Prints "21"

' Rounds Double argument, then converts to Long.
Print Oct$(17.3) ' Prints "21"

' Computes product 16.587, rounds to 17.0, then converts to Long.
Print Oct$(17.1 * .97) ' Prints "21"

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 229

On Error statement
Determines how an error will be handled in the current procedure.

Syntax
On Error [errNumber] { GoTo label | Resume Next | GoTo 0 }

Elements
errNumber

Optional. An expression whose value is an Integer error number. If this is omitted,
this statement refers to all errors in the current procedure. This value can be any
error number that is defined in LotusScript at the time the On Error statement is
encountered.

GoTo label
Specifies that when the error errNumber occurs, execution continues with an error
handling routine that begins at label. The error is considered handled.

Resume Next
Specifies that when the error errNumber occurs, execution continues with the
statement following the statement which caused the error. No error handling
routine is executed. The values of the Err, Erl, and Error functions are not reset.
(Note that a Resume statement does reset these values.) The error is considered
handled.

GoTo 0
Specifies that when the error errNumber occurs, the error should not be handled in
the current procedure. If errNumber is omitted, no errors are handled in the current
procedure.

Usage
The On Error statement is an executable statement. It allows the procedure containing
it to change the way LotusScript responds to particular errors. If no On Error
statement is used, an error ordinarily causes execution to end. On Error allows a
procedure to handle the error and continue execution appropriately.

How does On Error work?
An On Error statement is in effect from the time the statement runs until the
procedure that contains it returns control to the calling program or procedure:

If a procedure includes several On Error errNumber statements with the same error
number, only the most recently executed one is in effect for that error number.

The most recently executed On Error statement (with no errNumber element) is in
effect for that error number if there is no On Error errNumber statement for that
error number.

230 LotusScript Language Reference Guide

If no On Error statement (without an errNumber element) has been executed, then
the current procedure doesn’t handle the error.

In this case, LotusScript seeks an On Error statement for the error in the
procedure’s calling procedure, following the same rules for applying an On Error
statement. If the caller doesn’t handle the error, LotusScript looks in the caller’s
caller. If no applicable On Error statement is found by this process, execution
ends, and the error message for the error is printed to the output window.

How does the error handling routine work?
An error handling routine begins with a labeled statement. The routine ends when
LotusScript encounters a Resume, Exit Sub, Exit Property, or Exit Function statement.
If an error occurs in the error handling routine, execution ends.

While the error handling routine is running, the Err, Erl, and Error functions describe
the error being handled. A Resume statement will reset these values.

Where are error numbers and messages defined?
LotusScript specifies a standard set of errors, and corresponding error numbers (as
constants), in the file lserr.lss. To define these errors and their numbers, include this
file (using %Include) in a script that you compile or load before running any other
script. Then these error numbers can be used in On Error statements to control error
handling in the session.

Use the Error statement to define new error numbers and messages.

Examples: On Error statement
In this example, the On Error statement directs LotusScript to continue execution at
the next statement after any error that occurs while the function Best is running.

The Call statement generates a division-by-zero error at the attempted division of y by
z. Execution resumes at the next statement, the If statement. The current error number
is the value of the constant ErrDivisionByZero, which was defined in the file lserr.lss
previously included in the script by the %Include statement. Therefore the Print
statement is executed. Then the Exit Function statement terminates execution within
Best(), without executing further statements within the procedure; and control returns
to the caller.

%Include "lserr.lss"
Function Best()
 Dim x As Integer, y As Integer, z As Integer

 ' After any error-generating statement, resume
 ' execution with the next statement.
 On Error Resume Next
 ' ...
 y% = 3
 z% = 0
 ' ...

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 231

 x% = y% / z% ' Generates division-by-zero error.
 If Err = ErrDivisionByZero Then
 Print "Attempt to divide by 0. Returning to caller."
 Exit Function
 End If
 ' ...
End Function
Call Best()

On Event statement
Binds an event-handling sub or function to an event associated with a Lotus product
object, or breaks an existing binding.

Note The Lotus product may provide an empty sub or function for each object event,
in which case you do not need to use On Event statements. You can enter a script in
the appropriate sub or function, and the script automatically executes when the event
occurs. For details, see the product documentation.

Syntax
On Event eventName From prodObject { Call handlerName | Remove [handlerName] }

Elements
eventName

The name of an event specified in the product class definition.

prodObject
An expression whose value is a reference to a product object. (Events cannot be
specified in user-defined class definitions.)

Call
Binds the handlerName sub or function to the specified eventName from the
specified prodObject.

handlerName
The name of an event-handling sub or function for the specified eventName and
prodObject. Whenever the specified event happens on the specified object,
handlerName is called.

Remove
Detaches the handlerName sub or function from the object-event pair. If no
handlerName is specified, this statement detaches all event-handling subs from the
object-event pair.

232 LotusScript Language Reference Guide

Usage
An event-handling sub or function is defined like any other sub or function, with the
restriction that its first parameter must be a reference to the product object that can
raise the event. The remaining parameters are defined by the event in the product
class, and are used in the handler call.

You can specify multiple event-handling subs or functions for the same event from the
same object, using multiple On Event statements. The order of execution of
event-handling subs or functions bound to the same event is undefined.

A function is necessary only if the event requires a return value from the handler.

Examples: On Event statement
This Lotus Forms example displays page 2 or 3 of the performanceRev form when the
user clicks the buttonTurnPage command button, depending on the name of the
current route stop. The first version uses an object event script provided by Lotus
Forms. The second version uses On Event statements and event handler subs. For
more information, see the Lotus Forms documentation.

' Version 1: Uses the command button Select event sub provided by
' Lotus Forms.

' Here are declarations for the entire form
Dim performanceRev As Form
Sub BUTTONbuttonTurnPage (b1 As Button)
 Set performanceRev = Bind Form ("")
 If performanceRev.RouteStopName = "Supervisor" Then
 performanceRev.GoToPage(2)
 Else
 performanceRev.GoToPage(3)
 End If
End Sub

' Version 2: The OpenForm event script uses On Event statements
' to call the appropriate event handler sub.
' The buttonTurnPage Select event script is empty.

' Here are declarations for the entire form.
Dim performanceRev As Form

' HandlerPage2 and HandlerPage3 are user-defined general subs with
' form-wide scope.
Sub HandlerPage2(B1 As Button)
 performanceRev.GoToPage(2)
End Sub
Sub HandlerPage3(B1 As Button)
 performanceRev.GoToPage(3)
End Sub

Sub FormOpenScript(F1 As Form)
 Set performanceRev = Bind Form("")

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 233

 If performanceRev.RouteStopName = "Supervisor" Then
 On Event Click From buttonTurnPage Call HandlerPage2
 Else
 On Event Click From buttonTurnPage Call HandlerPage3
 End If
End Sub

Sub BUTTONbuttonTurnPage (B1 As Button) ' This sub is not used.
End Sub

On...GoSub statement
Transfers control to one of a list of labels, processes statements until a Return
statement is reached, and returns control to the statement immediately following the
On...GoSub statement.

Syntax
On numExpr GoSub label [, label, ...]

Elements
numExpr

A numeric expression whose value determines which of the labels is the target of
the transfer of control. The value of numExpr must not exceed 255.

label
A label that specifies the location of a series of statements to execute. The last
statement in this series is a Return statement.

Usage
The On...GoSub statement, its labels, and the Return statement must all reside in the
same procedure.

LotusScript transfers control to the first label if numExpr is 1, to the second label if
numExpr is 2, and so on. Execution continues from the appropriate label until a Return
statement executes. Then control returns to the statement immediately following the
On...GoSub statement. If LotusScript encounters a statement (such as Exit or GoTo)
that forces an early exit from the procedure before reaching a Return statement, the
Return statement is not executed.

LotusScript rounds numExpr to the nearest integer before using it to determine the
target label. If numExpr is 0, or is larger than the number of labels in the list, the
On...GoSub statement is ignored and execution continues at the statement that
immediately follows it.

LotusScript generates an error if numExpr evaluates to a number less than 0 or greater
than 255.

234 LotusScript Language Reference Guide

Examples: On...GoSub statement
' The On...GoSub statement transfers control to Label3 and
' "Went to Label 3" is printed. Then control is returned to the
' statement following the On...GoSub statement, and
' "Successful return" is printed.
Sub Cleanup
 Dim x As Integer
 x% = 3
 On x% GoSub Label1, Label2, Label3
 Print "Successful return" ' This prints
 Exit Sub
Label1:
 Print "Error" ' This does not print
 Return
Label2:
 Print "Error" ' This does not print
 Return
Label3:
 Print "Went to Label 3" ' This prints
 Return
End Sub

On...GoTo statement
Transfers control to one of a list of labels.

Syntax
On numExpr GoTo label [, label]...

Elements
numExpr

A numeric expression whose value determines which of the labels is the target of
the transfer of control. The value of numExpr must not exceed 255.

label
A label that specifies where control is to be transferred.

Usage
On...GoTo can’t be used at the module level or to transfer control into or out of a
procedure.

LotusScript transfers control to the first label if numExpr is 1, to the second label if
numExpr is 2, and so on.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 235

LotusScript rounds numExpr to the nearest integer before using it to determine the
target label. If numExpr is 0, or is larger than the number of labels in the list, the
On...GoTo statement is ignored and execution continues at the statement following it.

LotusScript generates an error if numExpr evaluates to a number greater than 255.

Examples: On...GoTo statement
This example illustrates On...GoTo and On Error.

The user enters a value. If the value is 1, 2, or 3, the On...GoTo statement transfers
control to label1, label2, or label3. If the value is another number in the legal range for
On...GoTo (the range is 0 - 255), control moves to the next statement. If the user enters
a number that is out of range for On...GoTo, or that the CInt function cannot convert
to an integer, an error occurs; and LotusScript transfers control to the OutOfRange
label, in accordance with the On Error statement.

Depending on the user’s entry, the OneTwoThree sub displays an appropriate
message. If the entry is valid, an Exit Sub statement exits the Sub. If the entry is not
valid, a GoTo statement transfers control to the EnterNum label, and the user is given
another chance to make a valid entry.

Sub OneTwoThree
 Dim num As Integer
 On Error GoTo OutOfRange
EnterNum:
 num% = CInt(InputBox("Enter 1, 2, or 3"))
 On num% GoTo label1, label2, label3
 ' The user did not enter 1, 2, or 3, but a run-time error
 ' did not occur (the user entered a number in the range 0 - 255).
 MessageBox "You did not enter a correct value! Try again!"
 GoTo EnterNum
label1:
 MessageBox "You entered 1."
 Exit Sub
label2:
 MessageBox "You entered 2."
 Exit Sub
label3:
 MessageBox "You entered 3."
 Exit Sub
 ' An error condition has occurred.
OutOfRange:
 MessageBox "The value you entered is negative, " _
 & "greater than 255, or not a number. Try again!"
 GoTo EnterNum
End Sub
OneTwoThree ' Call the OneTwoThree sub.

236 LotusScript Language Reference Guide

Open statement
Opens a file, enabling access to it for reading or writing data.

Syntax
Open fileName

 [For { Random | Input | Output | Append | Binary }]

 [Access { Read | Read Write | Write }]

 [{ Shared | Lock Read | Lock Read Write | Lock Write }]

 As [#]fileNumber

 [Len = recLen]

This statement must appear on one line, unless you use an underscore (_) for line
continuation.

Elements
fileName

A string expression indicating the file to open. fileName may include a complete
path. If you specify a fileName that does not exist, LotusScript generates an error if
the mode is Input; for all other modes, LotusScript creates the file and opens it.

For mode
Optional. Specifies the file’s mode; the default is Random.

Random

Default mode. Designates random access mode; that is, the file is accessible by
record number. Use the Get and Put statements to read and write the file. If you
omit the Access clause, LotusScript makes three attempts to open the file, using
Read Write access, then Write access, and finally Read access. If all three
attempts fail, an error is generated.

Input

Designates sequential input mode. Use the Input and Input # statements to read
the file. If the mode conflicts with the Access type, LotusScript generates an
error. For example, you can’t open a file in Input mode with Write access.

Output

Designates sequential output mode. Use the Write # and Print # statements to
write to the file. If the mode conflicts with the Access type, LotusScript
generates an error. For example, you can’t open a file in Output mode with
Read access.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 237

Append

Designates sequential output mode, beginning at the current end-of-file. If the
mode conflicts with the Access type, LotusScript generates an error. For
example, you can’t open a file in Append mode with Read access. Unless you
use the Seek statement to move to a file position other than the end of the file,
the Print # and Write # statements append text to the end of the file.

Binary

Designates binary file mode. Use the Get and Put statements to read and write
the file. If you omit the Access clause, LotusScript makes three attempts to open
the file, using Read Write access, then Write access, and finally Read access. If
all three attempts fail, an error is generated.

Access operations
Optional. Specifies what operations can be performed on the file. An error is
generated if the access type conflicts with the file mode specified in the For clause.

Read

Default access type for Input mode. Only read operations are permitted.

Read Write

Default access type for Random mode. Both read and write operations are
permitted.

Write

Default access type for Output, Append, and Binary modes. Only write
operations are permitted.

Lock type
Optional. The default is Shared. Determines how the open file can be shared when
accessed over a network by other processes, including processes owned by other
users.

Under Windows 3.1, you must run SHARE.EXE to enable the locking feature if
you are using MS-DOS version 3.1 or later. Lock is not supported for earlier
versions of MS-DOS.

Shared

Default locking type. No file locking is performed. Any process on any machine
on the network can read from or write to the file.

Lock Read

Prevents other processes from reading the file, although they can write to it.
The lock is applied only if read access has not already been granted to another
process.

238 LotusScript Language Reference Guide

Lock Read Write

Prevents other processes from reading and writing to the file. The lock is
applied only if read or write access has not already been granted to another
process. If a lock is already in place, it must be released before opening a file
with Lock Read Write.

Lock Write

Prevents other processes from writing to the file, although they can read from
it. The lock is applied only if write access has not already been granted to
another process.

fileNumber
An integer expression with a value between 1 and 255, inclusive. This number is
associated with the file when you open the file. Other file-manipulation commands
use this number to refer to the file.

recLen
Optional. Designates the record length; use an integer expression with a value
between 1 and 32767, inclusive.

For a Random file, recLen is the record length for the file (all records in a single file
must have the same length). The default record length is 128 bytes.

For a sequential (Input, Output, or Append) file, recLen is the number of characters
to be read from the file into an internal buffer, or assigned to an internal buffer
before it is written to the file. This need not correspond to a record size, because
the records in a sequential file can vary in size. A larger buffer uses more memory
but provides faster file I/O. The default buffer size is 512 bytes.

For a Binary file, recLen is ignored.

Usage
If a file is already open in Binary, Random, or Input mode, you can open a copy of the
file using a different file number, without closing the open file. If a file is already open
in Append or Output mode, you must close it before opening it with a different file
number.

LotusScript limits the number of open files to 255. Depending on your operating
system environment and the Lotus product you are running, the actual number of files
that you can open may be 15 or less. See your product documentation for details.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 239

Examples: Open statement
' In this example, LotusScript reads the contents of a
' comma-delimited ASCII file (c:\123w\work\thenames.txt)
' into an array of RecType. RecType is a user-defined data type.
' c:\123w\work\thenames.txt consists of the following:
' "Maria Jones", 12345
' "Roman Minsky", 23456
' "Joe Smith", 34567
' "Sal Piccio", 91234

Type RecType
 empId As Double
 employee As String
End Type
Dim arrayOfRecs() As RecType
' A dynamic array that will get sized to
' the number of lines in c:\123w\work\thenames.txt
Dim txt As String
Dim fileNum As Integer
Dim counter As Integer
Dim countRec As Integer
' Get an unused file number so LotusScript can open a file.
fileNum% = FreeFile()
counter% = 0
Open "c:\123w\work\thenames.txt" For Input As fileNum%
Do While Not EOF(fileNum%)
 ' Read each line of the file.
 Line Input #fileNum%, txt$
 ' Increment the line count.
 counter% = counter% + 1
Loop
' Return the file pointer to the beginning of the file.
Seek fileNum%, 1
' The file has counter number of lines in it, so arrayOfRecs()
' is defined with that number of elements.
ReDim arrayOfRecs(1 To counter%)
' Read the contents of the file into arrayOfRecs.
For countRec% = 1 To counter%
 Input #fileNum%, arrayOfRecs(countRec%).employee$, _
 arrayOfRecs(countRec%).empId#
Next
Close fileNum%
Print arrayOfRecs(2).employee$ & " " arrayOfRecs(2).empId#
' Output:
' Roman Minsky 23456

240 LotusScript Language Reference Guide

Option Base statement
Sets the default lower bound for array subscripts to 0 or 1.

Syntax
Option Base base

Elements
base

The default lower bound (either 0 or 1) for all dimensions of all arrays in the
module in which the Option Base statement occurs.

Usage
Option Base can be specified only once in a module, and only at the module level. If
you use Option Base, it must precede all array declarations and all ReDim statements
in the module.

The value set by Option Base applies to all arrays in the module that are either
declared by Dim statements or redefined by ReDim statements.

If the module does not include an Option Base statement, the default lower bound for
all dimensions of all arrays is 0. For example, a one-dimensional array of 10 elements
would use subscripts 0 through 9.

Examples: Option Base statement
Option Base 1
' Create a one-dimensional array with 20 elements,
' which can be referred to as sample(1) to sample(20).
Dim sample(20) As Integer

Option Compare statement
Specifies the method of string comparison.

Syntax
Option Compare option1 [, option2]

Elements
Option can be any of the following:

Binary
Comparison is bit-wise. If Binary is specified, no other option can be specified.

Case or NoCase
Comparison is case sensitive (default) or case insensitive. Only one of these
options can be specified. The keyword Text is acceptable in place of NoCase.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 241

Pitch or NoPitch
Comparison is pitch sensitive (default) or pitch insensitive. Only one of these
options can be specified. These options apply to Asian (double byte) characters.

Usage
The Case, NoCase, Pitch, and NoPitch keywords specify string comparison using the
character collation sequence determined by the Lotus product that you are using. The
Binary keyword specifies string comparison in the platform’s collation sequence: the
effect is platform sort-order, case-sensitive, pitch-sensitive comparison.

Option Compare can be specified more than once per module, but the options cannot
conflict. Option Compare can appear anywhere at module level. Option Compare
applies to all string comparisons in the module. If you omit the Option Compare
statement, the default method of string comparison is the same as Option Compare
Case and Option Compare Pitch.

In certain functions such as InStr and StrCompare, the case and pitch sensitivity
established by Option Compare or by default can be overridden by case-sensitivity
and pitch-sensitivity arguments.

Examples: Option Compare statement

Example 1
In this example, the first call to function StrCompare uses the default (case-sensitive)
setting without the optional argument that specifies a comparison method. In
case-insensitive comparison, “A” equals “a”, so StrCompare returns FALSE (0).

The second call to the function StrCompare specifies case-sensitive comparison in the
country/language collation order, overriding the default established by Option
Compare NoCase. In this comparison, “A” occurs earlier in the sort order than “a”, so
StrCompare returns TRUE (-1).

' The following results are for LotusScript in English,
' running on Windows 3.1.

Option Compare NoCase

' No method specified in StrCompare; use NoCase.
Print StrCompare("A", "a") ' Output: False

' Use case-sensitive comparison
' (in country/language collation order).
Print StrCompare("A", "a", 0) ' Output: True

242 LotusScript Language Reference Guide

Example 2
In this example, no Option Compare statement appears in the module, so the list tags
“a” and “A” are different tags, because case-sensitive comparison in the
country/language collation order is the default. Thus, the assignments to Loft(“a”)
and Loft(“A”) refer to two different list elements. Within the ForAll statement, the
ListTag function retrieves a list tag; and the Print statement prints it on a separate line.

Dim loft List As Integer
loft%("a") = 2
loft%("A") = 17
ForAll i In loft%
 Print ListTag(i) ' Output: "a" and "A"
End ForAll

Example 3
In this example, the Option Compare NoCase statement specifies case-insensitive
comparison in the country/language collation order as the default method for string
comparison,. so the list tags “a” and “A” are the same tag. Thus, the assignments to
loft(“a”) and loft(“A”) refer to the same list element. There is only one list tag for the
ListTag function to retrieve and print.

Option Compare NoCase
Dim loft List As Integer
loft%("a") = 2
loft%("A") = 17
ForAll i In loft%
 Print ListTag(i) ' Output: "A"
End ForAll

Example 4
In this example, the Option Compare Binary statement specifies bit-wise (platform
sort-order, case-sensitive) comparison as the default method for string comparison, so
the list tags “a” and “A” are different tags. Thus, the assignments to loft(“a”) and
loft(“A”) refer to different list elements.

Option Compare Binary
Dim loft List As Integer
loft%("a") = 2
loft%("A") = 17
ForAll i In loft%
 Print ListTag(i) ' Output: "a" and "A"
End ForAll

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 243

Option Declare statement
Disallows implicit declaration of variables.

Syntax
Option Declare

Explicit is acceptable in place of Declare.

Usage
Option Declare can be specified only once in a module, and only at the module level.

If the Option Declare statement appears in a module, then undeclared variables will
generate syntax errors. When Option Declare is in effect, you must use the Dim
statement to declare variables, except for arrays. You can still define an array
implicitly using the ReDim statement.

Option Declare must be used before any variables are implicitly declared.

Examples: Option Declare statement
' Turn off implicit declaration of variables.
Option Declare
Dim y As Integer
y% = 10 ' No error
x = 20 ' Compiler error (x has been not declared)
ReDim simAry(2, 2) ' No error

Option Public statement
Specifies that module-level explicit declarations are Public by default.

Syntax
Option Public

Usage
Option Public can be specified only once in a module, and only at the module level. It
must appear before any declarations in the module.

Option Public applies to module-level declarations for any variable, constant,
procedure, user-defined data type, user-defined class, or external C function. It does
not apply to label definitions, ForAll reference variables, or any implicitly declared
variables.

244 LotusScript Language Reference Guide

The IDE automatically puts an Option Public statement in (Globals) (Options), so all
(Globals) declarations are public by default. If you delete the Option Public statement,
you must explicity specify the Public keyword to make (Globals) declarations public.

If a variable of a user-defined data type or an object reference variable is Public, the
data type or the class to which it refers cannot be Private.

Use the Private keyword in a declaration to override Option Public for that
declaration.

Examples: Option Public statement
' In this example, the Private keyword overrides Option Public in
' the declaration of the variables x, y, and z.
Option Public
Private x, y, z ' x, y, and z are Private variables.
Dim i As Integer ' i is Public.

Print statement
Prints data to the screen.

Syntax
Print [exprList]

Elements
exprList

A list of expressions separated by semicolons, spaces, or commas.

Usage
If exprList is omitted, Print prints a blank line.

Use the Spc and Tab functions to insert spaces and tabs between data items.

The Print statement adds a newline character to the end of exprList (to force a carriage
return), unless exprList ends with a semicolon or a comma.

LotusScript inserts a ‘\n’ character in any multiline string (for example, a string that
you type in using vertical bars or braces). If you use Print to print the string, the \n is
interpreted as a newline on all platforms.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 245

The following table shows how the Print statement handles data items specified in
exprList.

Data item Print statement behavior

A variable Prints the value of the variable.

A string Prints the string.

A date/time value Prints the date as a string in the operating system Short Date
and Time format. If either the date part or the time part is
missing from the value, only the supplied part is printed.

A Variant with the value
EMPTY

Prints an empty string (“”).

A Variant with the value Null Prints the string “#NULL#”.

The following table shows the effect of semicolons and commas in the Print statement.

Punctuation character Print statement behavior

Semicolon or space in exprList The next data item is printed with no spaces between it and
the previous data item.

Semicolon at end of exprList The next Print statement continues printing on the same line,
with no spaces or carriage returns inserted.

Comma in exprList The next data item is printed beginning at the next tab stop.
(Tab stops are at every 14 characters.)

Comma at end of exprList The next Print statement continues printing on the same line,
beginning at the next tab stop. (Tab stops are at every 14
characters.)

Examples: Print statement
Dim a As Integer, b As Integer, c As Integer
a% = 5
b% = 10
c% = 15
Print a%, b%, c% ' Prints 5 10 15
' LotusScript prints the values of a, b, and c, separating them
' with tabs and ending the line with a newline character.

Print # statement
Prints data to a sequential text file.

Syntax
Print #fileNumber , [exprList]

246 LotusScript Language Reference Guide

Elements
fileNumber

The file number assigned to the file when it was opened. Note that the pound sign
(#), the file number, and the comma are all required.

exprList
Optional. A list of string and/or numeric expressions separated by semicolons,
spaces, or commas. If you omit exprList, Print # prints a blank line. The maximum
length of a string that can be printed is 32K characters.

Usage
Use Print # only on files opened in Output or Append mode. Unlike the Write #
statement, the Print # statement does not separate the printed data items with
formatting characters such as commas and quotation marks.

Use the Spc and Tab functions to insert spaces and tabs between data items.

If you set a width for the file using the Width statement, then the following occurs:

A comma moves the next print position to the next tab stop. If this moves the print
position past the defined width, the next data item is printed at the beginning of
the next line.

If the current print position is not at the beginning of a line and printing the next
item would print beyond the defined width, the data item is printed at the
beginning of the next line.

If the item is larger than the defined width, it’s printed anyway because Print #
never truncates items. However, the line is terminated with a newline character to
ensure that the next data item is printed on a new line.

The preceding statements about the effect of the Width statement apply for a width of
0, as well as any positive width.

The following table shows how the Print # statement handles data items specified in
exprList.

Data item Print # statement behavior

A variable Prints the value of the variable.

A string Prints the string.

A date/time value Prints the date as a string in the operating system Short Date
and Time format. If either the date part or the time part is
missing from the value, only the supplied part is printed.

A Variant with the value
EMPTY

Prints nothing to the file for the data item.

A Variant with the value Null Prints the string “NULL” to the file.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 247

The following table shows the effect of semicolons and commas in the Print #
statement.

Punctuation character Print statement behavior

Semicolon or space in exprList The next data item is printed with no spaces between it and
the previous data item.

Comma in exprList The next data item is printed beginning at the next tab stop.
(Tab stops are at every 14 characters.)

Examples: Print # statement
Dim nVar As Variant, eVar As Variant
nVar = NULL

Dim fileNum As Integer
fileNum% = FreeFile()
Open "printext.txt" For Output As fileNum%

' Print two lines to the file and close it.
' First line: two String values, with no separation between.
Print #fileNum%, "First line, " ; "with two String items"
' Second line: NULL value, EMPTY value, Integer variable value,
' and String value, all separated on the line by tabs.
Print #fileNum%, nVar, eVar, fileNum%, "at next tab"
Close fileNum%

' Open the file, print it, and close the file.
Dim text As String
Open "printext.txt" For Input As fileNum%
Do Until EOF(fileNum%)
 ' Read and print to console, one line at a time.
 Line Input #fileNum%, text$
 Print text$
Loop
Close fileNum%
' Output:
' First line, with two String items
' NULL 1 at next tab

248 LotusScript Language Reference Guide

Property Get/Set statements
Define a property. A property is a named pair of Get and Set procedures that can be
used as if they were a single variable.

Syntax
[Static] [Public | Private] Property { Get | Set } propertyName [([paramList])] [
As type]

 [statements]

End Property

Elements
Static

Optional. Specifies that the values of a Static property’s variables are saved
between calls to the property.

Public | Private
Optional. Public specifies that the property is visible outside the scope (module or
class) where the property is defined, as long as this module is loaded. Private
specifies that the property is visible only within the current scope.

A property in module scope is Private by default. A property in class scope is
Public by default.

The Property Get and Property Set definitions for a property must use the same
Public or Private setting.

Get | Set
Specifies which operation the procedure performs. A Property Get procedure
retrieves the value of the property. A Property Set procedure assigns a value to the
property.

propertyName
The name of the property. This name can have a data type suffix character
appended to declare the data type of the value passed to and returned by the
property.

paramList
Optional. A comma-separated list of declarations indicating the parameters to be
passed to this property in Get and Set operations. The Get and Set operations must
have the same number of arguments.

The syntax for each parameter declaration is:

[ByVal] parameter [() | List] [As type]

ByVal means that parameter is passed by value: that is, the value assigned to
parameter is a local copy of a value in memory, rather than a pointer to that
value.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 249

parameter() is an array variable. parameter List identifies parameter as a list
variable. Otherwise, parameter can be a variable of any of the other data types
that LotusScript supports.

As dataType specifies the variable’s data type. You can omit this clause and
append a data type suffix character to parameter to declare the variable as one of
the scalar data types. If you omit this clause and parameter has no data type
suffix character appended (and isn’t covered by an existing Deftype statement),
its data type is Variant.

Enclose the entire list of parameter declarations in parentheses.

type
Optional. The data type of values passed to and returned by the property.

type can be any of the scalar data types, a Variant, or a class name.

If As Type is not specified, the property name’s data type suffix character
determines the value’s type. Do not specify both a type and a data type suffix
character, as LotusScript treats that as an error.

If no type is specified and the property name has no data type suffix character
appended, the property’s value is either of data type Variant or of the data type
specified by a Deftype statement.

The types in the Property Get and Property Set definitions must be the same.

statements
Statements to retrieve or assign a property value.

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

A property usually consists of two procedures with the same name: a Property Get
and a Property Set. However, you are not required to provide both.

A property member of a class cannot be declared Static. That is, a Property Get or
Property Set statement within a class definition cannot begin with Static.

Using Property Get
A Property Get procedure is like a function. For example:

' These statements assign the value of saveInt to x
Dim saveInt As Integer
Property Get pInt As Integer
 pInt% = saveInt%
End Property
x = pInt%

250 LotusScript Language Reference Guide

Or:

' These statements assign the value of saveInt plus increment to x
Dim saveInt As Integer
Property Get pInt (increment As Integer) As Integer
 pInt% = saveInt% + increment%
End Property
x = pInt%(1%)

Using Property Set
A Property Set procedure is the reverse of a Property Get procedure. On entry into a
Property Set procedure, an implicitly declared variable whose name and data type are
the same as those of the Property Set procedure contains a value to be used inside the
Property Set procedure. Inside the Property Set procedure, use the value of the
variable instead of assigning a value to it.

Call a Property Set procedure by using its name on the left side of an assignment
statement. The value on the right side of the statement is used by the Property Set
procedure. For example:

' These statements assign the value of x to SaveInt
Dim SaveInt As Integer
Property Set pInt As Integer
 saveInt% = pInt%
End Property
pInt% = x

Or:

' These statements assign the value of x + increment to SaveInt
Dim SaveInt As Integer
Property Set pInt (increment As Integer) As Integer
 saveInt% = pInt% + increment%
End Property
pInt%(1%) = x

Referencing a property that returns an array, list, or collection
If a Get operation returns an array, list, or collection, a reference to the property can
contain subscripts according to the following rules:

If the property has parameters, the first parenthesized list following the reference
must be the argument list. A second parenthesized list is treated as a subscript list.
For example, p1(1,2)(3) is a reference to a property p1 that has two parameters and
returns a container.

If the property has no parameters and the return type is a variant or collection
object, a single parenthesized list following the reference is treated as a subscript
list. For example, p1(1) is a reference to a property p1 that either contains one
parameter or contains no parameters, but is a container.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 251

If the property has no parameters and the return type is not a variant or collection
object, any parenthesized list following the reference is an error, except that a
single empty list is allowed. For example, p1() is a reference to a property p1 that
contains no parameters and may or may not be a container; if p1 is a container, the
reference is to the entire container.

In a Set operation, the property reference cannot be subscripted. A parenthesized list
following the reference must be the argument list. For example, p1(1) is a reference to
a property p1 with one parameter; p1(1,2)(3) or p1()(3) is illegal in a Set operation.

Passing a property to a function
A LotusScript property (a property defined by Property Get or Property Set) can be
passed to a function by value only, not by reference.

Examples: Property Get/Set statements
' This example illustrates basic operations with a property.
' The counter is a property; it receives a starting value.
' Each time the property is used, it returns a value that is
' 1 greater than the previous value, until a new starting value
' is set. In this example, counter is set to 100. Then the property
' is used to print 101 and again to print 102.

' A variable to store values between uses of the property
Dim count As Integer

Property Get counter As Integer
 count% = count% + 1 ' Add 1 to the previous value.
 counter% = count% ' Return the value.
End Property

Property Set counter As Integer
 count% = counter% ' Assign the value to count.
End Property
counter% = 100

' Each time the property is used, it increments count
' by 1 and returns count's value.
Print counter% ' Prints 101

Print counter% ' Prints 102

252 LotusScript Language Reference Guide

Put statement
Writes data from a variable to a binary file or a random file.

Syntax
Put [#] fileNumber , [recordNumber] , variableName

Elements
fileNumber

The file number assigned to the file when it was opened with the Open statement.
Note that the pound sign (#), fileNumber, and variableName are all required.

recordNumber
Optional. The file position (the byte position in a binary file, or the record number
in a random file) where data is written. If you omit the recordNumber, data is
written starting at the current file position.

variableName
The variable holding the data to be written. variableName cannot be an array;
however, a fixed-length array defined within a data type is allowed (this array
could even contain other arrays as elements).

Usage
The first byte or record in a file is always file position 1. After each write operation, the
file position is advanced:

For a binary file, by the size of the variable

For a random file, by the size of a record

If variableName is shorter than the length of a record in the file, Put does not overwrite
or delete any data that may already be stored in the remainder of that record.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 253

The following table shows how the Put statement behaves for different data types.

variableName data type Put statement’s behavior

Variant The Put statement writes the DataType as the first two bytes before
the value itself.
If the DataType is EMPTY or NULL, the Put statement writes no
more data.
If the DataType is numeric, the Put statement writes the number of
bytes of data appropriate for that DataType:
Integer: 2 bytes
Long: 4 bytes
Single: 4 bytes
Double: 8 bytes
Currency: 8 bytes
Date/time: 8 bytes

Fixed-length String The Put statement writes the specified number of characters. For
example, if a variable is declared as String * 10, then exactly 10
characters are written.

Variable-length String The Put statement behaves differently, depending on the type of file
you’re using.
Random files: The first two bytes written indicate the length of the
string. Then the Put statement writes the number of characters
specified by that length. If variableName is not initialized, the Put
statement writes a string of length 0.
If variableName is longer than a record, LotusScript generates the
“Bad record length” error. If variableName is shorter than a record,
the remainder of the record is not cleared.
Binary files: The number of bytes written to the file is equal to the
length of the string currently stored in variableName. If variableName
is not initialized, no data is written to the file. Note that in binary
files, data is written without regard to record length.

User-defined data type The Put statement writes the sum of the bytes required to write all
members of the used-defined data type, which cannot contain a
dynamic array, a list, or an object.

When Put writes out String data, the characters are always written in the Unicode
character set.

254 LotusScript Language Reference Guide

Examples: Put statement
Type PersonRecord
 empNumber As Integer
 empName As String * 20
End Type

Dim fileNum As Integer
Dim fileName As String
Dim rec As PersonRecord
fileNum% = FreeFile()
fileName$ = "data.txt"

' First, open a random file with a record length equal to
' the size of the records to be stored.
Open fileName$ For Random As fileNum% Len = Len(rec)

rec.empNumber% = 123
rec.empName$ = "John Smith"
Put #fileNum%, 1, rec ' Write this record at position 1.
rec.empNumber% = 456
rec.empName$ = "Jane Doe"
Put #fileNum%, 2, rec ' Write this record at position 2.
rec.empNumber% = 789
rec.empName$ = "Jack Jones"
Put #fileNum%, , rec ' Write at current position (3).

Seek fileNum%, 1 ' Rewind file to beginning.
Do While Not EOF(fileNum%)
 ' Get a record, print it out.
 ' Get advances the file position to the next record automatically.
 Get #fileNum%, , rec
 Print rec.empNumber%, rec.empName$
Loop
' Output:
' 123 John Smith
' 456 Jane Doe
' 789 Jack Jones
Close fileNum% ' Close the file.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 255

Randomize statement
Seeds (initializes) the random number generator.

Syntax
Randomize [numExpr]

Elements
numExpr

Any numeric expression. If you omit numExpr, Randomize uses the return value
from Timer.

Usage
Use Randomize to seed the random number generator before calling Rnd to generate a
number.

If you use Randomize with numExpr and then repeatedly call Rnd with no arguments,
LotusScript returns the same sequence of random numbers every time you run the
script. To generate a different sequence of random numbers each time you run the
script, do one of the following:

Use a variable numExpr to make sure that Randomize receives a different seed
value every time the script is executed.

Use Randomize with no numExpr. This seeds the random number generator with
the return value from Timer.

The particular sequence of random numbers generated from a given seed depends on
the platform where you are running LotusScript.

Examples: Randomize statement

Example 1
Randomize 17 ' Use 17 to seed the random number generator.
Print Rnd(); Rnd(); Rnd(); Rnd(); Rnd()
' Output:
' .9698573 .8850777 .8703259 .1019439 .7683496
' If you rerun this script (on the same platform), LotusScript
' generates the same sequence of random numbers,
' because the same seed is used.

Example 2
Randomize ' Don't provide any seed.
Print Rnd(); Rnd(); Rnd(); Rnd(); Rnd()
 ' Prints a series of random numbers.
' If you rerun this script, LotusScript produces a different sequence
' of random numbers, because Randomize is called with no argument.

256 LotusScript Language Reference Guide

ReDim statement
Declares a dynamic array and allocates storage for it, or resizes an existing dynamic
array.

Syntax
ReDim [Preserve] arrayName (bounds) [As type]

[, arrayName (bounds) [As type]] ...

Elements
Preserve

Optional. If you’ve already declared arrayName, LotusScript preserves the values
currently assigned to it. If you omit Preserve, LotusScript initializes all elements of
the array, depending on the data type of the array variable.

Data type of array variable Initial value of array element

Integer, Long, Single, Double,
or Currency

0

Fixed-length String A string of the specified length, filled with the Null character
(Chr(0))

Variable-length String The empty string (“”)

Variant EMPTY

Class NOTHING

User-defined data type The initial value of each element’s own data type

arrayName
The name of an array to be declared or resized. The arrayName must designate an
array; it cannot be a Variant variable containing an array.

bounds
A comma-separated list of dimension bounds for arrayName. Each set of
dimension bounds has the following form:

[lowerBound To] upperBound

The lowerBound is the minimum subscript allowed for the dimension, and
upperBound is the maximum. If you don’t specify a lowerBound, the lower bound
for the array dimension defaults to 0, unless the default lower bound has been
changed to 1 using the Option Base statement.

Array bounds must fall in the range -32768 to 32767, inclusive.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 257

type
Optional. A valid LotusScript data type, user-defined type, or class that specifies
the data type of arrayName.

You cannot change the data type of an existing array. If arrayName was declared
and type is specified in the current ReDim statement, type must match the original
data type of arrayName.

Usage
A ReDim statement allocates storage for a dynamic array. You can resize the array
with additional ReDim statements as often as you want. Each time you resize the
array, LotusScript reallocates the storage for it.

Unlike a Dim statement, ReDim cannot specify an array as Private, Public, or Static. To
specify a dynamic array with one of these characteristics, declare it first in a Dim
statement. If you declare a dynamic array with a Dim statement, LotusScript doesn’t
allocate storage for the array elements. You can’t actually use the array in your script
until you allocate storage with ReDim.

Arrays can have up to 8 dimensions. The first ReDim statement for an array sets the
number of dimensions for the array. Subsequent ReDim statements for the array can
change the upper and lower bounds for each dimension, but not the number of
dimensions.

If Preserve is specified, you can change only the upper bound of the last array
dimension. Attempting to change any other bound results in an error.

Do not use ReDim on a fixed array (an array already declared and allocated by a Dim
statement).

If you’re using ForAll on a container variable that is an array of arrays, do not ReDim
the reference variable (this generates the “Illegal ReDim” error).

Examples: ReDim statement

Example 1
' The array x has not been previously declared,
' so ReDim automatically assigns it the data type Variant.
ReDim x(5)
Print DataType(x(1)) ' Prints 0.

' The Dim statement declares array y with the data type String.
Dim y() As String

' The ReDim statement can’t change the data type of an existing array.
' If you specify a data type for array y in the ReDim statement,
' it must be String.

ReDim y(5) As String
Print DataType(y$(1)) ' Prints 8.

258 LotusScript Language Reference Guide

Example 2
Option Base 1
' Declare a two-dimensional dynamic array, of Variant type.
ReDim markMar(2, 2)

' Assign a value to each element.
markMar(1, 1) = 1
markMar(2, 1) = 2
markMar(1, 2) = 3
markMar(2, 2) = 4

' Change the upper bound of the last dimension of markMar from 2 to 3,
' preserving the values already stored in existing elements
' of markMar.
ReDim Preserve markMar(2,3)

' Assign values to the additional elements of markMar.
markMar(1, 3) = 5
markMar(2, 3) = 6

Rem statement
Indicates a one-line comment in a script.

Syntax
Rem text

Elements
text

A one-line comment that LotusScript ignores.

Usage
The Rem statement indicates a comment or “remark” in the script.

The Rem statement need not be the first statement on a line, but it is the last: the
LotusScript compiler ignores all text from the Rem keyword to the end of the current
line. A line continuation character (an underscore) does not continue a Rem statement.

The apostophe (’) has the same effect as the Rem keyword and can appear anywhere
on a line without needing a colon (:) to separate the statements. As with Rem,
LotusScript ignores everything after the apostrophe.

Examples: Rem statement

Example 1
Rem This is a comment in the script.
' This is also a comment in the script.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 259

Example 2
x = 5 : Rem The colon is required to separate statements.
x = 5 ' No colon is required before a single quote.

%Rem directive
Indicates one or more comment lines in a script.

Syntax
%Rem

text

%End Rem

Elements
text

One or more lines of text that LotusScript ignores.

Usage
The compiler ignores all text between %Rem and %End Rem, including text on the
same line.

%Rem and %End Rem must each be the first text on a line (they may be preceded on
the line by spaces or tabs). Each must be followed by one or more spaces, tabs, or
newline characters before any more text appears.

%Rem...%End Rem blocks cannot be nested.

Note For compatibility with older versions of the language, LotusScript Release 3
accepts the directive %EndRem (with no space) in place of %End Rem.

Examples: %Rem directive

Example 1
' The compiler ignores the lines of text between %Rem and %End Rem,
' and the text on the line beginning %Rem.
' It also ignores the line containing the Rem statement.
%Rem Note that all text on this line is ignored by the compiler.
 What follows is ignored by the compiler. It can contain comments or
non-working statements.
 Check(, 'This, for example, would have been a syntax error.
%End Rem This text is ignored as well.
Rem Normal parsing and compilation continues from here.

260 LotusScript Language Reference Guide

Example 2
' %Rem blocks cannot be nested, so the second %Rem directive is
' illegal in the following.
%Rem
Comment line 1
Comment line 2
...
%Rem ' Error
Comment line
...
%End Rem
%End Rem

Reset statement
Closes all open files, copying the data from each file to disk.

Syntax
Reset

Usage
Before closing the open files, Reset writes all internally buffered data to the files.

Examples: Reset statement
' All open files are closed and the contents of the operating
' system buffer are written to disk.
Reset

Resume statement
Directs LotusScript to resume script execution at a particular statement in a script,
after an error has occurred.

Syntax
Resume [0 | Next | label]

Elements
0

Resumes execution at the statement that caused the current error.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 261

Next
Resumes execution at the statement following the statement that caused the
current error.

label
Resumes execution at the specified label.

Usage
Use the Resume statement only in error-handling routines; once LotusScript executes
the Resume statement, the error is considered handled.

Resume continues execution within the procedure where it resides. If the error
occurred in a procedure called by the current procedure, and the called procedure
didn’t handle the error, then Resume assumes that the statement calling that
procedure caused the error:

Resume [0] directs LotusScript to execute the procedure-calling statement that
produced the error again.

Note that this may result in an infinite loop, where in every iteration, the
procedure generates the error and is then called again.

Resume Next directs LotusScript to resume execution at the statement following
the procedure call.

The Resume statement resets the values of the Err, Erl, and Error functions.

Examples: Resume statement
Sub ResumeSub()
 On Error GoTo ErrHandler
 ' ...
 Error 1 ' Intentionally raise an error.
 Error 10
 Error 100
 ' ...
 Exit Sub

ErrHandler: ' Error-handling routine
 Print "Error " & Err & " at line number" &Erl
 Resume Next ' Resume the procedure.
End Sub
' The error-handling routine prints information about the current
' error. Then LotusScript resumes execution of the script at the
' statement following the statement that caused the current error.

262 LotusScript Language Reference Guide

Return statement
Transfers control to the statement following a GoSub or On...GoSub statement.

Syntax
Return

Usage
The GoSub and On...GoSub statements transfer control to a labeled statement within a
procedure. Execution continues from this statement until a Return statement is
encountered. LotusScript then transfers control to the first statement following the
GoSub or On...GoSub statement. While executing the procedure, LotusScript can
encounter a statement, such as Exit or GoTo, that forces an early exit from the
procedure; in this case, the Return is not executed.

The GoSub or On...GoSub statement, its labels, and the Return statement must reside
in the same procedure.

Examples: Return statement
' In response to user input, LotusScript transfers control to
' one of three labels, constructs an appropriate message, and
' continues execution at the statement following the GoSub.
Sub GetName
 Dim yourName As String, Message As String
 yourName$ = InputBox$("What is your name?")
 If yourName$ = "" Then ' The user enters nothing.
 GoSub EmptyString
 ' A case-insensitive comparison
 ElseIf LCase(yourName$) = "john doe" Then
 GoSub JohnDoe
 Else
 Message$ = "Thanks, " & yourName$ _
 & ", for letting us know who you are."
 End If
 ' The Return statements return control to the next line.
 MessageBox Message$
 Exit Sub

EmptyString:
 yourName$ = "John Doe"
 Message$ = "Okay! As far as we're concerned, " _
 & "your name is " & yourName$ & ", and you're on the run!"
 Return

JohnDoe:
 Message$ = "We're on your trail, " & yourName$ _
 & ". We know you are wanted dead or alive!"
 Return
End Sub
GetName ' Call the GetName sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 263

Right function
Extracts a specified number of the rightmost characters in a string.

Syntax
Right[$] (expr , n)

Elements
expr

Any numeric or String expression for Right; and any Variant or String expression
for Right$. If the expression is numeric, it is first converted to a string.

n
The number of characters to be returned.

Return value
Right returns a Variant of DataType 8 (String), and Right$ returns a String.

If n is 0, Right returns the empty string (“”); if n is greater than the number of
characters in expr, Right returns the entire string.

Right(NULL,1) returns NULL. Right$(NULL,1) returns an error.

Usage
LotusScript Release 3 represents characters with two bytes instead of one, so Lotus no
longer recommends using the RightB function to work with bytes.

Examples: Right function
Dim subString As String
subString$ = Right$("ABCDEF", 3)
Print subString$ ' Prints "DEF"

RightB function
LotusScript Release 3 uses Unicode, a character set encoding scheme that represents
each character as two bytes. This means that a character can be accompanied by
leading or trailing zeroes, so Lotus no longer recommends using RightB to work with
bytes.

Instead, use the Right function for right character set extractions.

264 LotusScript Language Reference Guide

RightBP function
Extracts a specified number of the rightmost bytes in a string using the
platform-specified character set.

Syntax
RightBP[$] (expr , n)

Elements
expr

Any numeric or String expression for RightBP; and any Variant or String
expression for RightBP$. If expr is numeric, LotusScript converts it to a string
before performing the extraction.

n
The number of bytes to be returned using the platform-specified character set.

Return value
RightBP returns a Variant of DataType 8 (a String), and RightBP$ returns a String.

If n is 0, the function returns the empty string (“”). If n is greater than the length (in
bytes) of expr, the function returns the entire string.

RightBP(NULL) returns NULL. RightBP$(NULL) is an error.

If a double-byte character is divided, the character is not included.

Examples: RightBP function
' The value "BC" or other value depending on platform
' is assigned to the variable subString.

Dim subString As String
subString = RightBP$("ABC", 2)
Print subString$ ' Output: "BC"

RmDir statement
Removes a directory from the file system.

Syntax
RmDir path

Elements
path

A String expression specifying the path of the directory you want to remove.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 265

Usage
The maximum length of path depends on the platform you are using.

If the directory named by path is not empty, RmDir generates an error.

Examples: RmDir statement
' Remove directory c:\test from the file system.
RmDir "c:\test"

Rnd function
Generates a random number greater than 0 and less than 1.

Syntax
Rnd [(numExpr)]

Elements
numExpr

Any numeric expression.

Return value
The return value is a number of data type Single. The following table shows how Rnd
behaves, depending on the sign of numExpr.

Sign of numExpr Rnd behavior

Positive Returns the next random number in the sequence of random numbers
generated from the value that most recently seeded the random number
generator.

Zero (0) Returns the random number most recently generated.

Negative The random number generator is seeded again with numExpr. Rnd
returns the first number in the sequence generated from that seed value.

Usage
Use Randomize to seed the random number generator before calling Rnd to generate
the number.

If you use Randomize with an argument and then repeatedly call Rnd (with no
arguments), LotusScript returns the same sequence of random numbers every time
you execute the script. The particular sequence of random numbers generated from a
given seed depends on the platform where you are running LotusScript.

If you use Randomize without an argument, LotusScript generates a different
sequence of numbers each time you execute the script.

You can call the function with no arguments as either Rnd or Rnd().

266 LotusScript Language Reference Guide

Examples: Rnd function
Randomize -1
Print Rnd(); Rnd(); Rnd(); Rnd(); Rnd()
' Output:
' 7.548905E-02 .5189801 .7423341 .976239 .3883555
Randomize -1
Print Rnd(0)
' Output:
' .3142746
Print Rnd(); Rnd(); Rnd(); Rnd(); Rnd()
' Output:
' 7.548905E-02 .5189801 .7423341 .976239 .3883555
Print Rnd(-1)
' Output:
' .3142746
Print Rnd(-2); Rnd(0)
' Output:
' .6285492 .6285492

Round function
Rounds a number to a specified number of decimal places.

Syntax
Round (numExpr , places)

Elements
numExpr

Any numeric expression. The number to be rounded.

places
Any numeric expression representing the desired number of decimal places. If
places is not an integer, it is converted to one.

Return value
Round returns a Double.

If the first non-significant digit is 5, and all subsequent digits are 0, the last significant
digit is rounded to the nearest even digit. See the example that follows.

If places is negative, the number is rounded to places digits to the left of the decimal
point. See the example that follows.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 267

Examples: Round function
' Round to one decimal place.
Print Round(4.23, 1) ' Prints 4.2
Print Round(4.35, 1) ' Prints 4.4
Print Round(4.45, 1) ' Prints 4.4

' Round to the nearest hundred.
Print Round(153.33, -2) ' Prints 200

RSet statement
Assigns a specified string to a string variable and right-aligns the string in the variable.

Syntax
RSet stringVar = stringExpr

Elements
stringVar

The name of a fixed-length String variable, a variable-length String variable, or a
Variant variable.

stringExpr
The string to be assigned to the variable and right-aligned.

Usage
If the length of stringVar is greater than the length of stringExpr, LotusScript
right-aligns stringExpr within stringVar and sets the remaining characters in stringVar
to spaces.

If the length of stringVar is less than the length of stringExpr, LotusScript copies only as
many left-most characters from stringExpr as will fit within stringVar.

If stringVar contains a numeric value, LotusScript converts it to String to determine the
length of the result.

If stringVar is a Variant, it can’t contain NULL.

You cannot use RSet to assign variables of one user-defined data type to variables of
another user-defined data type.

Examples: RSet statement

Example 1
Dim positFin As String * 20 ' String of 20 null characters
RSet positFin$ = "Right" ' "Right" is shorter than positFin.
Print positFin$ ' Prints " Right"
' The string "Right" is right-aligned in the fixed-length String
' variable named positFin, and the initial 15 characters in positFin
' are set to spaces.

268 LotusScript Language Reference Guide

Example 2
Dim x As Variant
x = "q"
RSet x = "ab"
Print x ' Prints "a"
' The string "q" is assigned to the Variant variable x, giving it a
' length of 1. The single leftmost character "a" of the two-character
' string expression "ab" is assigned to x.

RTrim function
Remove trailing spaces from a string and return the resulting string.

Syntax
RTrim[$] (stringExpr)

Elements
stringExpr

Any String expression.

Return value
RTrim returns a Variant of DataType 8 (String), and RTrim$ returns a String. RTrim
returns the trimmed version of stringExpr, but does not modify the contents of
stringExpr itself.

Examples: RTrim function
Dim trimRight As String
trimRight$ = RTrim$(" abc ")
Print trimRight$
Print Len(trimRight$)
' Output:
' abc
' 6
' The string " abc" is assigned to trimRight.
' Note that the leading spaces were not removed.

Run statement
LotusScript Release 3 no longer supports the Run statement. To execute a Lotus
product macro, use the Evaluate function or statement.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 269

Second function
Returns the second of the minute (an integer from 0 to 59) for a date/time argument.

Syntax
Second (dateExpr)

Elements
dateExpr

Any of the following kinds of expression:

A valid date/time string of String or Variant data type. In a date/time string, a
2-digit designation of a year is interpreted as that year in the twentieth century.
For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time).

A number within the valid date range: the range -657434 (representing Jan 1,
100 AD) to 2958465 (Dec 31, 9999 AD).

NULL.

Return value
Second returns an integer between 0 and 59.

The data type of Second’s return value is a Variant of DataType 2 (Integer).

Second(NULL) returns NULL.

Examples: Second function
' Construct a message that displays the current time and
' the number of hours, minutes, and seconds remaining in the day.
Dim timeFrag As String, hoursFrag As String
Dim minutesFrag As String, secondsFrag As String
Dim crlf As String, message As String
timeFrag$ = Format(Time, "h:mm:ss AM/PM")
hoursFrag$ = Str(23 - Hour(Time))
minutesFrag$ = Str(59 - Minute(Time))
secondsFrag$ = Str(60 - Second(Time))
crlf$ = Chr(13) & Chr(10) ' Carriage return/line feed
message$ = "Current time: " & timeFrag$ & ". " & crlf$ _
 & "Time remaining in the day: " _
 & hoursFrag$ & " hours, " _
 & minutesFrag$ & " minutes, and " _
 & secondsFrag$ & " seconds."
MessageBox(message$)

270 LotusScript Language Reference Guide

Seek function
Returns the file position (the byte position in a binary file or the record number in a
random file) in an open file.

Syntax
Seek (fileNumber)

Elements
fileNumber

The number assigned to the file when it was opened with the Open statement.

Return value
Seek returns a Long value between 1 and 2.0E31 - 1, inclusive, unless the file position
is very large. For a file position larger than 2.0E30, the return value is negative.

For a binary or sequential file, Seek returns the current byte position within the file.

For a random file, Seek returns the number of the next record within the file.

Usage
The first byte or record in a file is always file position 1.

Examples: Seek function
Type personRecord
 empNumber As Integer
 empName As String * 20
End Type

Dim rec1 As personRecord, rec2 As personRecord
Dim fileNum As Integer, recNum As Integer
Dim fileName As String
fileNum% = FreeFile()
fileName$ = "data.txt"
recNum% = 5

Open fileName$ For Random As fileNum% Len = Len(rec1)
rec1.empNumber% = 123
rec1.empName$ = "John Smith"
Print Seek(fileNum%) ' Prints 1 for current position
Put #fileNum%, recNum%, rec1 ' Write data at record 5
Print Seek(fileNum%) ' Prints 6

Seek fileNum%, 1 ' Rewind to record 1
Print Seek(fileNum%) ' Prints 1
Rec2.empNumber% = 456
Rec2.empName$ = "Jane Doe"
Put #fileNum%, , rec2 ' Write at current position
Print Seek(fileNum%) ' Prints 2

Close fileNum%

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 271

Seek statement
Sets the file position (the byte position in a binary file or the record number in a
random file) in an open file.

Syntax
Seek [#]fileNumber , position

Elements
fileNumber

The number assigned to the file when it was opened with the Open statement.

position
The desired file position for the next read or write operation. In a binary or
sequential file, this is a non-zero byte location; in a random file, this is a record
number (in a random file).

In a binary or sequential file, the first byte is byte number 1; in a random file, the
first record is record number 1.

If position is zero or is omitted, Seek returns an error.

Usage
The record number in a Get statement or a Put statement overrides a file position set
by a Seek statement.

Writing to a file after moving the file position beyond the end of the file appends data
to the end of the file.

Examples: Seek statement
Type personRecord
 empNumber As Integer
 empName As String * 20
End Type

Dim rec1 As personRecord, rec2 As personRecord
Dim fileNum As Integer, recNum As Integer
Dim fileName As String
fileNum% = FreeFile()
fileName$ = "data.txt"
recNum% = 5

Open fileName$ For Random As fileNum% Len = Len(rec1)
rec1.empNumber% = 123
rec1.empName$ = "John Smith"
Print Seek(fileNum%) ' Prints 1 for current position
Put #fileNum%, recNum%, rec1 ' Write data at record 5
Print Seek(fileNum%) ' Prints 6

Seek fileNum%, 1 ' Rewind to record 1
Print Seek(fileNum%) ' Prints 1

272 LotusScript Language Reference Guide

Rec2.empNumber% = 456
Rec2.empName$ = "Jane Doe"
Put #fileNum%, , rec2 ' Write at current position
Print Seek(fileNum%) ' Prints 2

Close fileNum%

Select Case statement
Selects a group of statements to execute, based on the value of an expression.

Syntax
Select Case selectExpr

 [Case condList

 [statements]]

 [Case condList

 [statements]]

 ...

 [Case Else

 [statements]]

End Select

Elements
selectExpr

An expression whose value is compared with values in the subsequent condList
conditions. This expression is evaluated once, and its value is used repeatedly for
comparison.

condList
Each condList is a list of conditions, one of which must be met for the subsequent
group of statements to execute. Each condition takes one of the forms listed below,
where expr is any expression:

expr

Returns TRUE if selectExpr matches expr exactly.

expr To expr

Returns TRUE if the selectExpr falls inclusively within this range.

For example, if you specify 25 To 50, the corresponding group of statements is
executed when selectExpr is any value between 25 and 50, inclusive.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 273

Is comparisonOp expr

Returns TRUE when the comparison operation for selectExpr and expr is true.
The comparison operator must be one of the following: = > < <> >< <= =<
>= =>.

For example, if you specify Is < 37, then the corresponding group of statements
is executed when selectExpr is less than 37.

statements
Statements to be executed if one of the governing conditions in the associated
condList is the first condition to be satisfied.

Usage
The selectExpr is compared against each condition, within each condList in succession.
The first time that a condition in some condList is satisfied, the group of statements
associated with that condList is executed and the selection operation ends.

Either a single group of statements is executed, or no statements are executed. If you
include a Case Else group of statements, it’s executed only if selectExpr fails all
conditions in all condList arguments.

Examples: Select Case statement
' One of five Print statements is selected for execution,
' depending on the value of the variable segSelect.
' Note that the Case Else clause is executed only if segSelect
' is less than 0, between 0 and 1, between 1 and 2, between 2 and 3,
' or between 5 and 6.

Dim segSelect As Double
' ...
For segSelect# = -1 to 7
 Select Case segSelect#
 Case 0 : Print "0"
 Case 1, 2 : Print "1, 2"
 Case 3 To 5 : Print "3 TO 5"
 Case Is >= 6 : Print ">=6"
 Case Else : Print "Else"
 End Select
Next
' Output:
' Else
' 0
' 1, 2
' 1, 2
' 3 TO 5
' 3 TO 5
' 3 TO 5
' >=6
' >=6

274 LotusScript Language Reference Guide

SendKeys statement
Enters keystrokes in the active window as if they were entered from the keyboard.

Syntax
SendKeys string [, processNow]

string
Any string expression, specifying a sequence of keystrokes to be sent to the active
window.

To repeat a keystroke in string, use the code {key count}, where key is the keystroke
to repeat, and count is the number of times to repeat it. For example, “{RIGHT 3}”
represents pressing the Right Arrow key three times.

Include a space between key and count; otherwise {key count} may be interpreted as
a function key specification. For example, “{F 4}” represents pressing the letter F
four times, but “{F4}” represents pressing the function key F4.

processNow
Optional. Any numeric value. A nonzero value is interpreted as TRUE; a zero (0)
is interpreted as FALSE.

If processNow is TRUE, script execution does not continue until after all
characters in string have been processed by the active window.

If processNow is FALSE, script execution continues immediately, whether or not
string has been fully processed.

The default value of processNow is FALSE. You will usually want to specify TRUE
for processNow.

Usage
The SendKeys statement is not legal at the module level.

SendKeys is not supported on Macintosh and UNIX platforms.

To send an ordinary keyboard key or sequence of keys, such as A or 8 or DIR, simply
include the character(s) in string.

To send non-printing keyboard keys, such as Tab or Backspace, or keys that perform
actions in the active window, such as Page Up, use the key code from the following
table in string.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 275

Key Code

Backspace {BS} or {BKSP} or {BACKSPACE}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Del {DEL} or {DELETE}

Down arrow {DOWN}

End {END}

Enter ~ or {ENTER}

Esc {ESC} or {ESCAPE}

Help {HELP}

Home {HOME}

Ins {INSERT}

Left arrow {LEFT}

Num Lock {NUMLOCK}

Pg Dn {PGDN}

Pg Up {PGUP}

Right arrow {RIGHT}

Scoll Lock {SCROLLLOCK}

Tab {TAB}

Up arrow {UP}

Function keys {F1} to {F16}

To include a character from the following table in string, enclose it in braces as shown.

Character Code

Brace {{} or {}}

Bracket {[} or {]}

Caret {^}

Parenthesis {(} or {)}

Percent sign {%}

Plus sign {+}

Tilde {~}

276 LotusScript Language Reference Guide

The following table shows how to designate keys pressed in combination with Alt,
Ctrl, or Shift.

Combination key Code Example

Alt % %{F4} represents Alt+F4

Ctrl ^ ^{F4} represents Ctrl+F4

Shift + +{F4} represents Shift+F4

To apply a combination key to a sequence of keys, enclose the sequence in
parentheses. For example, +(xy) holds down the Shift key for both x and y. It is
equivalent to +x+y.

SendKeys cannot send keystrokes to a window that is not a Windows program, and
cannot send the Print Scrn key to any program.

SendKeys generates an “Illegal function call” error if string contains any of the
following:

An unmatched parenthesis

An illegal key code

An illegal repeat count

Too many characters

Note that SendKeys is often useful after Shell, to send keystrokes to the program that
Shell started. Remember that Shell does not guarantee that the program is loaded
before executing the statements that follow it.

Examples: SendKeys statement
' Use Shell to open the Windows Notepad. Then use SendKeys to send
' a note entered by the user to Notepad. The user can continue
' composing the note and use Notepad to save it as a text file.
Sub WriteNote
 Dim taskId As Integer, note As String
 note$ = InputBox("Start your note:")
 taskId% = Shell("notepad.exe", 1)
 SendKeys note$, TRUE
End Sub
WriteNote ' Call the WriteNote sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 277

Set statement
Assigns an object reference to a variable, or associates an object with a variable.

Use one of the following three syntaxes:

Syntax 1: Create an object and assign a reference
Set var = New class [([argList])]

Elements
var

A Variant variable, an object of the class class, an object of a class derived from
class, or any variable element that accepts an object reference, such as an element
of an array, list, or user-defined data type.

class
The name of the user-defined or product class of the object to be created.

argList
For user-defined classes, argList is the comma-separated list of arguments required
by the class constructor sub New, defined in the class named by type. For product
classes, consult the product documentation.

Syntax 2: Copy an existing object reference to another variable
Set var1 = var2

Elements
var1

A Variant variable, an object of the same class as var2, an object of a class derived
from var2’s class, or any variable element that accepts an object reference, such as
an element of an array, list, or user-defined data type.

var2
An expression whose value is NOTHING, an object reference of the same class as
var1, an object reference of a class derived from var1’s class, or an object reference
of a class from which var1 is derived. In the latter case, var2 must contain an
instance of var1’s class or a class derived from var1.

Syntax 3: Associate a product object with a variable
Set var = Bind [prodClass] (objectName)

Elements
var

A Variant variable, an object of prodClass, or any variable element that accepts an
object reference, such as an element of an array, list, or user-defined data type.

278 LotusScript Language Reference Guide

Bind

The Bind keyword associates objectName with var. The association is made by
name, and is valid until any of the following conditions is true:

var is out of scope.

objectName no longer exists.

var is set to another value.

prodClass

Optional. The product class of the object objectName. If prodClass is not specified,
LotusScript assumes that objectName is of the same class as var. If var is a Variant,
you must include prodClass.

objectName

A string specifying the name and, optionally, the path of the product object of
class prodClass.

The form of this string is product-specific. For example, the product object name
might have the form “ApplicationWindowName\ObjectName.” Refer to your Lotus
product documentation for information about specifying product object names.

Usage
The Set statement is the object reference assignment statement. It is parallel to the Let
statement, the general assignment statement for variables of all types except object
reference variables.

When you use the user interface, rather than a script, to create a product object, some
Lotus products implicitly declare the name you (or the product) have assigned the
object as an object reference variable and bind it to the object. This allows you to use
the object name in scripts without explicitly declaring a variable and binding it to the
object.

To test an object reference variable for the NOTHING value, use the Is operator.

Examples: Set statement

Example 1 (Syntax 1)
' The variable terPoint is declared as an object reference variable of
' the class Point, which must already be defined. The New sub for
' class Point has no arguments. The Set statement creates a new object
' of the class Point and assigns its reference to terPoint.
Dim terPoint As Point
Set terPoint = New Point

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 279

Example 2 (Syntax 2)
' The class Worker and the class Carpenter must already be defined,
' with Carpenter as a derived class of Worker. The first Dim statement
' declares x as an object reference variable of the class Worker.
' The second Dim statement declares y as an object reference variable
' of the class Carpenter. This statement also creates a new object of
' the class Carpenter, named "Terry"; and assigns its reference to the
' object reference variable y. The Set statement assigns the reference
' in y to the object reference variable x. (A reference to a Carpenter
' can be assigned to a variable of class Worker because Worker is the
' base class of Carpenter.)
Dim x As Worker
Dim y As New Carpenter("Terry")
Set x = y

Example 3 (Syntax 3)
' The Dim statement declares icCheckBox as an object reference
' variable of the pre-defined product class Check. The Set statement
' binds the object reference variable icCheckBox to
' the product object Checkbox1.
Dim icCheckBox As Check
Set icCheckBox = Bind("Checkbox1")

SetFileAttr statement
Sets the system attributes of a file.

Syntax
SetFileAttr fileName , attributes

SetAttr is acceptable in place of SetFileAttr.

Elements
fileName

A string expression; you can optionally include a path.

attributes
The attributes to apply to the file, expressed as the sum of any of the following
Integer values:

Value Description Constant

0 Normal file ATTR_NORMAL

1 Read-only ATTR_READONLY

2 Hidden ATTR_HIDDEN

4 System ATTR_SYSTEM

32 Changed since last back-up ATTR_ARCHIVE

280 LotusScript Language Reference Guide

The constants are defined in the file lsconst.lss. Including this file in your script allows
you to use constant names instead of the corresponding numeric values.

Usage
Do not use SetFileAttr on an open file, unless the file has been opened as read-only.

Examples: SetFileAttr statement
' This script creates a file and uses SetFileAttr to set the file
' attributes to Read-Only, System, and Hidden. It then uses
' GetFileAttr to verify the file attributes.
%Include "lsconst.lss"
Dim fileNum As Integer, attr As Integer
Dim fileName As String, msg As String
fileNum% = FreeFile()
fileName$ = "data.txt"

Open fileName$ For Output As fileNum%
Close fileNum%

SetFileAttr fileName$, ATTR_READONLY + ATTR_SYSTEM + ATTR_HIDDEN
attr% = GetFileAttr(fileName$)
If (attr% And ATTR_READONLY) Then
 msg$ = msg$ & " Read-Only "
Else
 msg$ = msg$ & " Normal "
End If
If (attr% And ATTR_HIDDEN) Then msg$ = msg$ & " Hidden "
If (attr% And ATTR_SYSTEM) Then msg$ = msg$ & " System "
If (attr% And ATTR_VOLUME) Then msg$ = msg$ & " Volume "
If (attr% And ATTR_DIRECTORY) Then msg$ = msg$ & " Directory "
Print msg$

SetFileAttr fileName$, ATTR_NORMAL ' Reset to normal
Kill fileName$

Sgn function
Identifies the sign (positive or negative) of a number.

Syntax
Sgn (numExpr)

Elements
numExpr

Any numeric expression.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 281

Return value
The following table shows the values that the Sgn function returns.

Sign of numExpr Value

Negative -1

Zero 0

Positive 1

Examples: Sgn function
Dim x As Integer, y As Integer
x% = Sgn(-45)
Print x% ' Prints -1
y% = Sgn(12)
Print y% ' Prints 1
Print Sgn(x% + y%) ' Prints 0

Shell function
Starts another program.

Syntax
Shell (program [, windowStyle])

Elements
program

A string expression whose value is the name of the program to run, including
arguments. program is the name of an executable file that uses a file name
extension of BAT, COM, PIF, or EXE. You can omit the file name extension, and
you can optionally include a complete path specification.

Using an internal DOS command name generates an error.

windowStyle
Optional. A number designating a valid window style, as specified in the
following table.

Style Description Constant

1, 5, or 9 Normal with focus SHELL_NORMAL_FOCUS

2 Minimized with focus
(default)

SHELL_MIN_FOCUS

3 Maximized with focus SHELL_MAX_FOCUS

4 or 8 Normal without focus SHELL_NORMAL_NO_FOCUS

6 or 7 Minimized without focus SHELL_MIN_NO_FOCUS

282 LotusScript Language Reference Guide

The constants are defined in the file lsconst.lss. Including this file in your script allows
you to use constant names instead of the numeric values assigned to them.

Return value
If the operating system is Windows 3.1 and LotusScript successfully starts program,
Shell returns the program’s task ID, a number that uniquely identifies the program. If
the operating system is Windows NT and LotusScript successfully starts program, Shell
returns the number 33.

If LotusScript cannot start program, Shell returns an error.

Usage
Shell must be called from within an expression or an assignment statement, so that its
return value is used.

After Shell starts a program, LotusScript continues executing the script without
waiting to make sure the program has completed. You cannot be sure that a program
started by Shell has finished running before the rest of your script is executed.

Examples: Shell function
' Start the Windows Calculator as a normal (not minimized)
' window with focus.
Dim taskId As Integer
taskId% = Shell("CALC.EXE", 1)

Sin function
Returns the sine, in radians, of an angle.

Syntax
Sin (angle)

Elements
angle

Any numeric expression. It is interpreted as an angle expressed in radians.

Return value
Sin returns the sine of angle, a Double between -1 and 1, inclusive.

Examples: Sin function
' Convert the angle of 45 degrees to radians,
' then compute and print the sine of that angle.
Dim degrees As Double, radians As Double
degrees# = 45
radians# = degrees# * (PI / 180)
Print Sin(radians#) ' Prints .707106781186548

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 283

Single data type
Specifies a variable that contains a 4-byte floating-point value.

Usage
The Single suffix character for implicit data type declaration is the exclamation point
(!).

Single variables are initialized to zero (0).

The range of Single values is -3.402823E+38 to 3.402823E+38, inclusive.

The smallest nonzero Single value, disregarding sign, is 1.175494351E-38.

LotusScript aligns Single data on a 4-byte boundary. In user-defined data types,
declaring variables in order from highest to lowest alignment boundaries makes the
most efficient use of data storage space.

Examples: Single data type
' Explicitly declare a Single variable.
Dim x As Single

' Implicitly declare a Single variable.
mole! = 6.02E23

Print mole! ' Prints the value of mole.

Space function
Returns a specified number of spaces as a string.

Syntax
Space[$] (numExpr)

Elements
numExpr

Any numeric expression. If numExpr includes a fractional part, LotusScript rounds
it to the nearest integer.

Return value
The return value contains numExpr space characters. Space returns a Variant of
DataType 8 (String), and Space$ returns a String.

284 LotusScript Language Reference Guide

Examples: Space function
' Assign a string of four spaces to the variable smallTab.
Dim smallTab As String
smallTab$ = Space$(4)
Print Len(smallTab$)
' Output:
' 4

Spc function
Inserts a specified number of spaces in the output from a Print or Print # statement,
beginning at the current character position.

Syntax
Spc (numExpr)

Elements
numExpr

Any numeric expression whose value is between 0 and 32000, inclusive. numExpr
designates the number of spaces to insert in the Print output.

Usage
If you specify a width for the file (you can set the width only for printed files),
numExpr interacts with that width as follows:

If numExpr is smaller than the width, LotusScript prints numExpr spaces.

If numExpr is larger than the width, LotusScript prints as many spaces as fit on one
line, with the remainder appearing on the next line, until numExpr spaces have
been printed.

If you don’t specify a width for the file, LotusScript prints exactly numExpr spaces.

Examples: Spc function
' The Print # statement prints numbers with a leading space (omitted
' if the number is negative) and a trailing space.

' In this example, Spc(1) inserts another space following each number
' and its trailing space. The second and fourth lines each begin with
' two spaces: the first space on the line is generated by Spc(1), and
' the second space on the line is the leading space before the number
' first printed on the line (3 or 8).

' In the second line, the number 4 is followed by three spaces.
' These last four characters can be read as
' "4, trailing space, Spc(1), leading space".

Open "spc.tst" For Output As #1
' Define line width in SPC.TST as 10 characters.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 285

Width #1, 10
For i = 0 To 9
 Print #1, i; Spc(1);
Next i
Close #1
' Output to the file (the display of each line here includes
' a leading quote character (') and a leading space):
' 0 1 2
' 3 4
' 5 6 7
' 8 9

Sqr function
Returns the square root of a number.

Syntax
Sqr (numExpr)

Elements
numExpr

Any numeric expression greater than or equal to zero.

Return value
Sqr returns a Double. If numExpr is negative, Sqr returns an error.

Examples: Sqr function
Dim root As Double
root# = Sqr(169)
Print root# ' Prints 13

Stop statement
Simulates the occurrence of a breakpoint.

Syntax
Stop

Usage
The Stop statement suspends execution of the script and transfers control to the
LotusScript debugger as though a breakpoint is set at the Stop statement.

The Stop statement is legal within a procedure or class. It is not legal at the module
level.

286 LotusScript Language Reference Guide

Str function
Returns the String representation of a number.

Syntax
Str[$] (numExpr)

Elements
numExpr

Any numeric expression.

Return value
Str returns a Variant of DataType 8 (a string), and Str$ returns a String.

Usage
When LotusScript represents a positive number as a String, it inserts a leading space.

Examples: Str function
' Assign the strings " 123" and "-123" to the variables string1
' and string2, respectively.
' For the positive value, note the addition of a leading space.
Dim string1 As String, string2 As String
string1$ = Str$(123) ' Assigns " 123"
string2$ = Str$(-123) ' Assigns "-123"
Print string2$; string1$
' Output:
' -123 123

StrCompare function
Compares two strings and returns the result.

Syntax
StrCompare (string1 , string2 [, compMethod])

StrComp is acceptable in place of StrCompare.

Elements
string1

Any String expression.

string2
Any String expression.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 287

compMethod
A number designating the comparison method. Use 0 for case-sensitive and
pitch-sensitive, 1 for case-insensitive and pitch-sensitive, 4 for case-sensitive and
pitch-insensitive, 5 for case-insensitive and pitch-insensitive. Use 2 to specify
string comparison in the platform’s collation sequence. If 2 is specified, strings are
compared bit-wise. If you omit compMethod, the default comparison mode is the
mode set by the Option Compare statement for this module. If there is no
statement for the module, the default is case-sensitive and pitch-sensitive.

Return value
The following table shows what StrCompare returns, depending on the relationship
between the strings being compared.

Strings being compared StrCompare result

Either string is NULL NULL

string1 is less than string2 -1

string1 equals string2 0

string1 is greater than string2 1

Examples: StrCompare function
' The following results are for LotusScript in English,
' running on Windows 3.1.
Print StrCompare("abc", "ab", 0) ' Prints 1
Print StrCompare("ab", "abc", 0) ' Prints -1
Print StrCompare("AB", "ab", 1) ' Prints 0
Print StrCompare("AB", "ab", 2) ' Prints -1

StrConv function
Converts a string to a different case or character set.

Syntax
StrConv (expr , conversionType)

Elements
expr

A string or numeric expression. A numeric expression is converted to a string.

288 LotusScript Language Reference Guide

conversionType
An integer that defines the type of conversion:

Constant name Value Type of conversion

SC_UpperCase 1 Uppercase

SC_LowerCase 2 Lowercase

SC_ProperCase 3 Proper case

SC_Wide 4 Single byte to double byte

SC_Narrow 8 Double byte to single byte

SC_Katakana 16 Hiragana to Katakana

SC_Hiragana 32 Katakana to Hiragana

Return value

The return value is a variant containing the result of the conversion.

Usage
The valid values for the conversionType elements listed in the preceding table are
defined as constants in the file lsconst.lss. If you want to use the constants instead of
numbers, include this file in your script.

ConversionType values can be combined (ored) as follows:

Any combination of SC_UpperCase, SC_LowerCase, and SC_ProperCase causes
SC_ProperCase.

Combining SC_Wide and SC_Narrow is illegal.

Combining SC_Katakana and SC_Hiragana is illegal.

If combined, the following operations occur in the following order: case operation,
SC_Wide, SC_Katakana. Case operations are applied to double-byte alphanumeric
characters.

If expr is the null string, the result is the null string. If expr is Null, the result is Null.

For proper case, the following numeric character codes are treated as word separators
in a string literal: 0 (null), 9 (horizontal tab), 12 (form feed), 32 (space), 0x3000
(doubl-byte space). The following are treated as separators in a multi-line string: 10
(line feed), 13 (carriage return).

Examples: StrCompare function
%INCLUDE "lsconst.lss"
nameString$ = Inputbox$("Name?")
nameProper$ = Strconv(nameString$, SC_ProperCase)
Messagebox "nameProper = " & nameProper$

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 289

String data type
Specifies a variable used to store text strings, using the character set of the Lotus
product that started LotusScript.

Usage
The String suffix character for implicit data type declaration is the dollar sign ($).

The declaration of a string variable uses this syntax:

Dim varName As String [* num]

The optional num argument specifies that varName is a fixed-length string variable of
num characters. A fixed-length string variable is initialized to a string of null
characters (the character Chr(0)).

When you assign a string to a fixed-length string variable, LotusScript truncates a
longer string to fit into the declared length. It pads a shorter string to the declared
length with trailing spaces.

Fixed-length strings are often used in declaring data structures for use in file I/O or C
access.

An implicitly declared String variable is always a variable-length string variable.

Variable-length strings are initialized to the empty string (“”).

LotusScript aligns variable-length String data on a 4-byte boundary. In user-defined
data types, declaring variables in order from highest to lowest alignment boundaries
makes the most efficient use of data storage space. Fixed-length strings are not aligned
on any boundary.

Examples: String data type
' In this example, the variable-length String variable firstName and
' the fixed-length String variable homeState are explicitly declared
' and assigned appropriate String values. The variable adStreet is
' implicitly declared to be of type String by the $ suffix character.

' Explicitly declare a variable-length String variable.
Dim firstName As String
firstName$ = "Mark"

' Explicitly declare a fixed-length String variable.
Dim homeState As String * 4
homeState$ = " MA"

' Implicitly declare a variable-length String variable.
adStreet$ = "123 Maple St."

Print firstName$ ' Prints "Mark"
Print adStreet$; homeState$ ' Prints "123 Maple St. MA"

290 LotusScript Language Reference Guide

String function
Returns a string consisting of a particular character, which is identified either by its
platform-specific numeric character code, or as the first character in a string argument.

Syntax
String[$] (stringLen , { charCode | stringExpr })

Elements
stringLen

A numeric expression whose value is the number of characters to put in the
returned string. LotusScript rounds stringLen to the nearest integer.

charCode
A numeric expression of data type Long whose value specifies the
platform-specific character code for each character in the string. The range of legal
codes is platform-dependent.

stringExpr
Any string expression. The first character in this string is the character to be used
in the returned string.

Return value
String returns a Variant of DataType 8 (String), and String$ returns a String.

Examples: String function
Dim stars As String, moreStars As String
stars$ = String$(4, Asc("*"))
moreStars$ = String$(8, "* characters")
Print stars$, moreStars$ ' Prints **** ********

Sub statement
Defines a sub.

Syntax
[Static] [Public | Private] Sub subName [([argList])]

 [statements]

End Sub

Elements
Static

Optional. Directs LotusScript to save the values of the sub’s local variables
between calls to the sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 291

Public | Private
Optional. Public specifies that the sub is visible outside the scope (module or class)
where the sub is defined, as long as this module is loaded. Private specifies that
the sub is visible only within the current scope.

A sub in module scope is Private by default; a sub in class scope is Public by
default.

subName
The sub name. The names Delete, Initialize, New, and Terminated are specialized.
Use these names only as described in the topics Sub Delete, Sub Initialize, Sub
New, and Sub Terminate.

argList
Optional. A comma-separated list of declarations for arguments to be passed to
this sub when it is called.

The syntax for each argument declaration is:

ByVal argument [() | List] [As dataType]

ByVal specifies that argument is passed by value: that is, the value assigned to
argument is a copy of the value specified in the sub call, rather than a reference
to the original value.

argument() is an array variable. argument List identifies argument as a list
variable. Otherwise, argument can be a variable of any of the other data types
that LotusScript supports.

As dataType specifies the variable’s data type. You can omit this clause and use
a data type suffix character to declare the variable as one of the scalar data
types. If you omit this clause and argument doesn’t end in a data type suffix
character (and isn’t covered by an existing Deftype statement), LotusScript
assigns it the Variant data type.

Enclose the entire list of argument declarations in parentheses.

Usage
The Public keyword cannot be used in a product object script or %Include file in a
product object script, except to declare class members. You must put such Public
declarations in (Globals).

Arrays, lists, type instances, and objects can’t be passed by value as arguments. They
must be passed by reference.

A sub does not return a value.

A sub can be called in either of these two forms:

subName arg1, arg2, ...

Call subName (arg1, arg2, ...)

292 LotusScript Language Reference Guide

A sub definition can’t contain the definition of another procedure (a function, sub, or
property).

A sub member of a class cannot be declared Static.

You can exit a sub using an Exit Sub statement.

Your Lotus product can provide special named subs for use in your scripts; see the
product documentation for more information.

Examples: Sub statement
Use a sub and a function to compute the cost of buying a house as follows.

Ask the user for the price of the house, and call the ComputeMortgageCosts sub
with price as the argument.

The ComputeMortgageCosts sub gathers down payment (at least 10% of cost),
annual interest rate, and the term of the mortgage from the user, then calls the
Payment function with 3 arguments. Annual interest and term (years) are passed
by value rather than reference, so the Payment function can adjust them to
compute monthly rate and monthly payment without changing the values of these
variables in the ComputeMortgageCosts sub.

If the user enters positive values, Payment returns the monthly payment.
Otherwise, it returns 0. ComputeMortgageCosts then constructs an appropriate
message.

Dim price As Single, message As String

Function Payment (princpl As Single, _
 ByVal intrst As Single, _
 ByVal term As Integer) As Single
 intrst! = intrst!/12
 term% = term% * 12
 ' If any of the parameters is invalid, exit the function
 ' (Payment will return the value 0).
 If princpl! <= 0 Or intrst! <= 0 Or term% < 1 Then _
 Exit Function
 ' The standard formula for computing the amount of the
 ' periodic payment of a loan:
 Payment = princpl! * intrst! /(1 - (intrst! + 1) ^ (-term%))
End Function

Sub ComputeMortgageCosts (price As Single)
 Dim totalCost As Single, downpmt As Single
 Dim mortgage As Single, intrst As Single
 Dim monthlypmt As Single, years As Integer
EnterInfo:
 downpmt! = CSng(InputBox("How much is the down payment?"))
 ' The downpayment must be at least 10% of the price.
 If downpmt! < (0.1 * price!) Then

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 293

 MessageBox "Your down payment must be at least " _
 & Format(price! * .1, "Currency")
 GoTo EnterInfo:
 End If
 mortgage! = price! - downpmt!
 intrst! = CSng(InputBox("What is the interest rate?"))
 years% = CInt(InputBox("How many years?"))
 ' Call the Payment function, which returns the monthly payment.
 monthlypmt! = Payment(mortgage!, intrst!, years%)
 totalCost! = downpmt! + (monthlypmt! * years% * 12)
 If monthlypmt! > 0 Then ' Create a multiline message.
 message$ = _
|Price | & Format(price!, "Currency") & |
Down Payment: | & Format(downpmt!, "Currency") & |
Mortgage: | & Format(mortgage!, "Currency") & |
Interest: | & Format(intrst!, "Percent") & |
Term: | & Str(years%) & | years
Monthly Payment: | & Format(monthlypmt!, "Currency") & |
Total Cost: | & Format(monthlypmt! * years% * 12, "Currency")
 Else
 message$ = "You did not enter valid input."
 End If
End Sub

' Start here.
price! = CSng(InputBox("How much does the house cost?"))
' Call the Compute MortgageCosts sub.
ComputeMortgageCosts (price!)
' Display the message.
MessageBox message$

Sub Delete
A user-defined sub that LotusScript executes when you delete an object belonging to
the class for which the Delete sub is defined.

Syntax
Sub Delete

 [statements]

End Sub

Usage
In the definition for a user-defined class, you can define a destructor named Delete.
This sub is automatically executed whenever you delete an object belonging to the
class for which you defined the Delete sub.

294 LotusScript Language Reference Guide

The Delete sub is always Public: you can’t declare it as Private.

The Delete sub can’t take any arguments.

The Delete sub can’t be called directly; it’s invoked only when the object is deleted.
The name Delete can only be used as the name of a destructor; it can’t be used to name
any other procedure or a variable, for example.

Examples: Sub Delete
' Define the class Customer.
Class Customer
 Public Name As String
 Public Address As String
 Public Balance As Currency

 ' Define a constructor sub for the class.
 Sub New (Na As String, Addr As String, Bal As Currency)
 Me.Name$ = Na$
 Me.Address$ = Addr$
 Me.Balance@ = Bal@
 End Sub

 ' Define a destructor sub for the class.
 Sub Delete
 Print "Deleting customer record for: "; Me.Name$
 End Sub
End Class

' Create an object of the Customer class.
Dim X As New Customer("Acme Corporation", _
 "55 Smith Avenue, Cambridge, MA", 14.92)
Print X.Balance@
' Output:
' 14.92

' Delete the object, first running the destructor sub.
Delete X
' Output:
' Deleting customer record for: Acme Corporation."

' Then the object is deleted.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 295

Sub Initialize
A user-defined sub that LotusScript executes when the module containing the
Initialize sub is loaded.

Syntax
Sub Initialize

 [statements]

End Sub

Usage
Include in the Initialize sub any statements you want executed when LotusScript loads
the containing module.

The Initialize sub is always Private.

The Initialize sub cannot take any arguments.

Examples: Sub Initialize
' When LotusScript loads the module, Initialize saves the name of the
' current working directory.
Dim StartDir As String
Sub Initialize ' Store the current directory
 StartDir$ = CurDir$
End Sub

' The module changes the working directory.
' ...
' ...

' When LotusScript unloads the module, Terminate changes the working
' directory back to what it was when the module was loaded.
Sub Terminate ' Return to the startup directory.
 ChDir StartDir$
End Sub

296 LotusScript Language Reference Guide

Sub New
A user-defined sub that LotusScript executes when you create an object of the class for
which the New sub is defined.

Syntax
Sub New [([argList])] [, baseClass ([baseArgList])]

 [statements]

End Sub

Elements
argList

Optional. A comma-separated list of parameter declarations for the New sub,
enclosed in parentheses. Use the following syntax for each parameter declaration:

[ByVal] paramName [() | List] [As dataType]

ByVal means that paramName is passed by value: that is, the value assigned to
paramName is a copy of the value specified in the sub call, rather than a
reference to the original value.

paramName() is an array variable; List identifies paramName as a list variable;
otherwise, paramName can be a variable of any of the other data types that
LotusScript supports.

As dataType specifies the variable data type. You can omit this clause and use a
data type suffix character to declare the variable as one of the scalar data types.
If you omit this clause and paramName doesn’t end in a data type suffix
character (and isn’t covered by an existing Deftype statement), its data type is
Variant.

If the New sub for the derived class has no arguments, and the New sub for the
base class has no arguments, omit (argList) and baseClass (baseArgList).

baseClass ([baseArgList])
Optional. The baseClass is the name of the class from which the derived class is
derived. This name must match the baseClass name in the Class statement for the
derived class.

The baseArgList is a comma-separated list of arguments for the sub New of the
base class. Note that these are actual arguments, not parameter declarations. This
syntax enables a call of the New sub for the derived class to furnish actual
arguments to the call of the New sub for the base class.

Include this syntax in the New sub only if all of these conditions are true:

The class being defined is a derived class.

The New sub for the base class of this derived class requires arguments.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 297

Note that these arguments must be furnished to the New sub for the base class
through the call of the New sub for the derived class.

The argument list for the sub New of the base class does not match the
argument list for the sub New of the derived class in number and data type of
arguments; or you want to pass different arguments to the base class’s sub New
than those passed to the derived class’s sub New.

When the class being defined is a derived class, each call of the New sub for the
derived class generates a call of the New sub for the base class. If that base class is
itself a derived class of another base class, another call is generated, and so on.

Usage
In the definition for a user-defined class, you can include a definition for the
constructor sub, named New. If the definition exists, LotusScript calls this sub
whenever it creates an object from that class. LotusScript calls the sub immediately
after creating the object.

Examples: Sub New
' Define a class.
Class textObject

 ' Declare member variables.
 backGroundColor As Integer
 textColor As Integer
 contentString As String

 ' Define constructor sub.
 Sub New (bColor As Integer, tColor As Integer, cString As String)
 backGroundColor% = bColor%
 textColor% = tColor%
 contentString$ = cString$
 Print "Creating new instance of text object ..."
 Print "Text object state:"
 Print "Background color:" ; Me.backGroundColor% ; _
 "Text color:" ; Me.textColor%
 End Sub

 ' Define destructor sub.
 Sub Delete
 Print "Deleting text object."
 End Sub

 ' Define a sub to invert background and text colors.
 Sub InvertColors
 Dim x As Integer, y As Integer
 x% = backGroundColor%
 y% = textColor%
 Me.backGroundColor% = y%

298 LotusScript Language Reference Guide

 Me.textColor% = x%
 End Sub

End Class

' Create a new object of class textObject.
Dim zz As New textObject(0, 255, "This is my text")
' Output:
' Creating new instance of text object ...
' Text object state:
' Background color: 0 Text color: 255

' Invert the object's background and text colors.
zz.InvertColors
' Delete the object, first running the destructor sub.
Delete zz
' Output: Deleting text object.

Sub Terminate
A user-defined sub that LotusScript executes when the module containing the
Terminate sub is unloaded.

Syntax
Sub Terminate

 [statements]

End Sub

Usage
Include in the Terminate sub any statements you want executed when LotusScript
unloads the containing module.

The Terminate sub is always Private.

The Terminate sub cannot take any arguments.

Examples: Sub Terminate
' When LotusScript loads the module, Initialize saves
' the name of the current working directory.
Dim startDir As String
Sub Initialize ' Store the current directory.
 startDir$ = CurDir$
End Sub

' The module changes the working directory.
' ...
' ...

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 299

' When LotusScript unloads the module, Terminate changes the working
' directory back to what it was when the module was loaded.
Sub Terminate ' Return to the startup directory.
 ChDir startDir$
End Sub

Tab function
Moves the print position to a specified character position within a line, when called
from within a Print or Print # statement.

Syntax
Tab (column)

Elements
column

Any integer expression between 1 and 32000, inclusive, specifying a character
position in the printed output. If column is less than 1, the Tab position defaults to
1 (the leftmost print position).

Usage
If you haven’t specified a width for the file, Tab checks column against the current
print position, and acts as follows:

If you’ve already printed past the position specified by column, Tab prints a
newline character, and then prints the next character in the column position on the
next line.

If column is at the current position, or after the current position, Tab prints enough
spaces to move to the position specified by column and prints the next character in
the column position on the current line.

If you print to a file whose width was set with the Width # statement, Tab interacts
with that width as described in the following table.

Column Tab moves to:

> width column Mod width

< 1 column 1

< current print position (column - current position) on the next line

> current print position (column - current position) on the same line

300 LotusScript Language Reference Guide

Examples: Tab function
Dim firstN As String, lastN As String
firstN$ = "Bob"
lastN$ = "Jeremiah"
Print firstN$; Tab(5); lastN$; Tab(1); lastN$; Tab(2); lastN$; _
 Tab(3); lastN$

LotusScript prints the contents of firstN and lastN, using Tab() to separate them as
follows:

Bob Jeremiah
Jeremiah
 Jeremiah
 Jeremiah

The semicolons in the Print statement are optional; they have no effect on the output,
because the print position is determined by Tab.

Tan function
Returns the tangent, in radians, of an angle.

Syntax
Tan (angle)

Elements
angle

Any numeric expression. It is interpreted as an angle expressed in radians.

Return value
Tan returns a Double.

Examples: Tan function
' Convert the angle of 45 degrees to radians, and then
' compute and print the tangent of that angle.
Dim degrees As Double, radians As Double
degrees# = 45
radians# = degrees# * (PI / 180)
Print Tan(radians#) ' Prints 1

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 301

Time function
Returns the system time as a time value.

Syntax
Time[$]

Return value
Time returns a time value representing the system time.

The return value is the fractional part of the value returned by the Now function. Time
returns that value as a Variant of DataType 7 (Date/Time). Time$ returns that value as
a String.

Both forms return the time rounded to the nearest second.

Usage
You can call the Time function as either Time or Time(). You can call the Time$
function as either Time$ or Time$().

Examples: Time function
Dim current As String
current$ = Time$()
Print current$ ' Prints the system time

Time statement
Sets the system time to a specified time.

Syntax
Time[$] = timeExpr

Elements
timeExpr

Any expression whose value is a valid date/time value: either a String in a valid
date/time format, or else a Variant containing either a date/time value or a string
value in date/time format.

Examples: Time statement
' Set the system time to 6:20:15 PM using 24-hour notation.
Time = "18:20:15"

302 LotusScript Language Reference Guide

TimeNumber function
Returns a time value for a specified hour, minute, and second.

Syntax
TimeNumber (hour , minute , second)

TimeSerial is acceptable in place of TimeNumber.

Elements
hour

A numeric expression representing an hour (0 to 23, inclusive).

minute
A numeric expression representing a minute (0 to 59, inclusive).

second
A numeric expression representing a second (0 to 59, inclusive).

Return value
TimeNumber returns a Variant of DataType 7 (Date/Time). Its value represents time
of day as a fraction of 24 hours, measured from midnight.

Usage
You can use expressions for hour, minute, and second to compute a time relative to
another time. For example:

TimeNumber(3, 5, 5 - 10)

computes the time 10 seconds before 3:05:05 AM (the result is 3:04:55 AM).

Examples: TimeNumber function
' Print the time value for an hour, minute, and second.
Print TimeNumber(12, 30, 15) ' Prints 12:30:15 PM

Timer function
Returns the time elapsed since midnight, in seconds.

Syntax
Timer

Return value
Timer returns the number of seconds elapsed since midnight as a Single value.

Usage
LotusScript rounds the number of seconds to the nearest hundredth.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 303

The Randomize Statement uses the return value from Timer as its default seed value.

You can call the function as either Timer or Timer().

Examples: Timer function
' Calculate how long it takes the following loop to iterate
' 1000 times.
Dim startTime As Single
Dim elapsedTime As Single

startTime! = Timer()
For counter% = 1 To 10000
Next counter%
elapsedTime! = Timer() - startTime!

Print "10000 iterations in "; elapsedTime; " seconds"

TimeValue function
Returns the time value represented by a string expression.

Syntax
TimeValue (stringExpr)

Elements
stringExpr

A string expression that represents a valid date/time, or a Variant of DataType 7
(Date/Time). It can use either 12-hour or 24-hour format; for example, both
“14:35” and “2:35PM” are valid. If you omit the seconds value in the stringExpr
argument, it defaults to zero (0).

Return value
TimeValue returns a Variant of DataType 7 that contains a fractional date/time value.

Usage
If stringExpr specifies a date, TimeValue validates the date, but omits it from the
return value.

Examples: TimeValue function
Dim fractionalDay As Single
fractionalDay! = TimeValue("06:00:00")
Print fractionalDay!
' Output:
' .25
' LotusScript assigns the value 0.25 to the variable fractionalDay,
' since 6:00 AM represents a time value of 6 hours, or one-quarter of
' a 24-hour day.

304 LotusScript Language Reference Guide

Today function
Returns the system date as a date value.

Syntax
Today

Return value
Today returns the system date as a Variant of DataType 7 (Date/Time).

The return value is the integer part of the value returned by the Now function.

Usage
The Today function is equivalent to the Date function.

You can call the function as either Today or Today().

Examples: Today function
' LotusScript assigns Today’s date to the String variable whenNow.
Dim whenNow As String
whenNow$ = Today()
Print whenNow$
' Output:
' 6/7/95

Trim function
Removes leading and trailing spaces from a string and returns the resulting string.

Syntax
Trim[$] (stringExpr)

Elements
stringExpr

Any string expression.

Return value
Trim returns the trimmed version of stringExpr, but does not modify the contents of
stringExpr itself.

Trim returns a Variant of DataType 8 (String), and Trim$ returns a String.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 305

Examples: Trim function
Dim trimAll As String, testString As String
testString$ = " a bc "
' Trim the string, removing leading and trailing spaces.
' Embedded spaces are not removed.
trimAll$ = Trim$(testString$) ' Assigns "a bc"
Print trimAll$
Print testString$ ' Unmodified by Trim()
' Output:
' a bc
' a bc

Type statement
Defines a user-defined data type consisting of one or more members.

Syntax
[Public | Private] Type typeName

 member declarations

End Type

Elements
Public | Private

Optional. Public specifies that the user-defined data type is visible outside the
module where it is defined, as long as that module is loaded. Private specifies that
the user-defined data type is visible only within the module where it is declared.

A type is Private by default.

typeName
The name of the type.

member declarations
Declarations for the members of the type. There must be at least one declaration in
the type; the declarations cannot include Const statements.

Usage
Defining types
A Type statement is valid only at module level.

The word Object is illegal as a type name.

Declaring type members
A member is a variable declaration without the Dim, Private, Public, or Static
keywords. A member cannot be declared to be Private, Public, or Static; it’s
automatically Public.

306 LotusScript Language Reference Guide

Each member statement declares one variable.

The data type of a member can be any of the scalar data types, a Variant, a fixed array,
or any other user-defined data type. It cannot be the same data type as that being
defined by the current Type statement.

A member declared as Variant can hold any scalar value, an array (fixed or dynamic), a
list, or a reference to a user-defined object, a product object, or an OLE Automation
object. The following rules apply to type instances that have Variant members
containing arrays, lists, or objects:

You cannot assign a type instance containing a dynamic array or a list to another
type instance.

You cannot use the Put statement to write data to a file from a type instance
containing a dynamic array, a list, or an object.

When you assign a type instance containing an object to another type instance,
LotusScript increments the internal reference count of the object.

A member can use any LotusScript keyword, except Rem, as its name.

Declaring a type variable
A user-defined data type name is used in variable declarations in the same way as any
other data type. The common variable declaration has the syntax:

Dim varName As typeName

This declaration declares a variable of the type typeName and initializes the members
of the new variable. The initial values of the members are the same as for ordinary
variables:

Numeric data types (Integer, Long, Single, Double, Currency): 0

Variants: EMPTY

Strings, fixed-length: A string filled with the Null character Chr(0).

Strings, variable-length: The empty string (“”).

If a member is itself a user-defined data type, then it is assigned initial values in the
same manner.

Referring to type members
Refer to members of a type using dot notation, in the form varName.memberName.
Spaces, tabs, and newline characters are legal on both sides of the period (after
varName and before memberName).

Member references can also include array subscripts if the member is an array.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 307

Examples: Type statement

Example 1
' Define a type with members to hold name, area code,
' and 7-digit local phone number.
Type phoneRec
 name As String
 areaCode As Integer
 phone As String * 8
End Type

Dim x As phoneRec ' x is a variable of type phoneRec.
x.name$ = "Rory" ' Assign values to x's members.
x.areaCode% = 999
x.phone$ = "555-9320"

Print "Call " & x.name$ & " at " & Str$(x.areaCode%) & "-" & x.phone%
Output:
' Call Rory at 999-555-9320"

Example 2
' Create an array to hold five instances of phoneRec.
Dim multiX(5) As phoneRec
multiX(2).name$ = "Maria" ' Assign values.
multiX(2).areaCode% = 212
multiX(2).phone$ = "693-5500"

 ' Retrieve data from a type member.
Dim phoneLocalHold As String * 8
phoneLocalHold$ = multiX(2).phone$
Print phoneLocalHold$
' Output:
' 693-5500

Example 3
' To maintain a file that contains a phone list,
' read all of the data from the file into LotusScript.
' The data fills a list in which each element
' is an instance of the defined type.

' Create a list to hold records from the file.
Dim phoneList List As phoneRec

' Declare a phoneRec variable to hold
' each record from the file in turn. Open the file.
Dim tempRec As phoneRec
Open "c:\phones.txt" For Random Access Read Write _
 As #1 Len = Len(tempRec)

' Read the file and store the records in the list.
Dim recNum As Integer

308 LotusScript Language Reference Guide

recNum% = 1
While EOF(1) = FALSE
 Get #1, recNum%, tempRec
 phoneList(tempRec.Name$) = tempRec
 recNum% = recNum% + 1
Wend
Close #1
' Note that the Get statement automatically fills each member of the
' tempRec variable. Since tempRec and the elements of phoneList are
' both of data type phoneRec, tempRec can be assigned to any element
' of phoneList without reference to its members, which LotusScript
' copies automatically.

TypeName function
Returns a string identifying the data type of the value of an expression.

Syntax
TypeName (expr)

Elements
expr

Any expression.

Return value

 Value of expr Return value Storage of variable

EMPTY “EMPTY” In Variant only

NULL “NULL” In Variant only

Integer “INTEGER”

Long “LONG”

Single “SINGLE”

Double “DOUBLE”

Currency “CURRENCY”

Date “DATE” In Variant only

String “STRING”

NOTHING “OBJECT”

OLE object “OBJECT” In Variant only

OLE error “ERROR” In Variant only

Boolean “BOOLEAN” In Variant only

continued

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 309

 Value of expr Return value Storage of variable

V_UNKNOWN
(OLE value)

“UNKNOWN” In Variant only

User-defined
object or product
object

The name of the object’s class, as an uppercase
string.
For example, for an object of the Employee class,
LotusScript returns “EMPLOYEE.”

List The name of the list’s data type, plus the word
“LIST,” all as an uppercase string.
For example, for a list of type String, LotusScript
returns “STRING LIST.”

Array The name of the array’s data type as an uppercase
string, followed by parentheses enclosing one space.
For example, for an integer array, LotusScript
returns “INTEGER().”

Examples: TypeName function
Dim a As Variant
Print TypeName(a) ' Prints "EMPTY"
a = 1
Print TypeName(a) ' Prints "INTEGER"
a = "hello"
Print TypeName(a) ' Prints "STRING"
Dim b As String
Print TypeName(b$) ' Prints "STRING"

' Arrays
Dim arrayl(1 To 4) As Long
Print TypeName(arrayl&) ' Prints "LONG()"
Dim arrayV(1 To 4)
Print TypeName(arrayV) ' Prints "VARIANT()"
Dim y As Variant
y = arrayl
Print TypeName(y) ' Prints "LONG()"

' Lists
Dim listStr List As String
Print TypeName(listStr$) ' Prints "STRING LIST"
Dim listVar List
Print TypeName(listVar) ' Prints "VARIANT LIST"
Dim p As Variant
p = listStr$
Print TypeName(p) ' Prints "STRING LIST"

' Class instances
Class Employee
 ' ... class definition
End Class

310 LotusScript Language Reference Guide

Dim temp As Employee
Print TypeName(temp) ' Prints "EMPLOYEE"
Set hire = New Employee
Print TypeName(hire) ' Prints "EMPLOYEE"
Dim emps(3) As Employee
Print TypeName(emps()) ' Prints "EMPLOYEE()"

' OLE class instances
Set cal = CreateObject("dispcalc.ccalc")
Print TypeName(cal) ' Prints "OBJECT"

UBound function
Returns the upper bound for one dimension of an array.

Syntax
UBound (arrayName [, dimension])

Elements
arrayName

The name of an array.

dimension
Optional. An integer argument that specifies the array dimension for which you
want to retrieve the upper bound.

Return value
UBound returns an Integer.

Usage
The default value for dimension is 1.

LotusScript sets the upper bound for each array dimension when you declare a fixed
array, or when you use ReDim to define the array dimensions of a dynamic array.

Examples: UBound function
Dim maxima(10 To 20)
Dim upperBound As Integer
upperBound% = UBound(maxima)
Print upperBound%
' Output:
' 20

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 311

UCase function
Converts all alphabetic characters in a string to uppercase, and returns the resulting
string.

Syntax
UCase[$] (expr)

Elements
expr

For UCase, any numeric or string expression. For UCase$, any Variant or string
expression.

Return value
UCase returns a Variant of DataType 8 (String). UCase$ returns a String.

UCase(NULL) returns NULL. UCase$(NULL) returns an error.

Usage
The function has no effect on non-alphabetic characters.

Examples: UCase function
' Convert a string to uppercase.
Dim upperCase As String
upperCase$ = UCase$("abc") ' Assign the value "ABC"

UChr function
Returns the character represented by a Unicode numeric character code.

Syntax
UChr[$] (longExpr)

Elements
longExpr

Any expression with a numeric value between 0 and 65535, inclusive.

Return value
UChr and UChr$ return the Unicode character corresponding to the value of longExpr.

UChr returns a Variant of DataType 8 (String). UChr$ returns a String.

312 LotusScript Language Reference Guide

Examples: UChr function
Dim azAlphabet As String
Dim letterCode As Long

' Iterate through the Unicode values for a through z,
' appending each corresponding letter to azAlphabet.
For letterCode& = Uni("a") To Uni("z")
 azAlphabet$ = azAlphabet$ + UChr$(letterCode&)
Next
Print azAlphabet$ ' Prints abcdefghijklmnopqrstuvwxyz

Uni function
Returns the Unicode numeric character code for the first character in a string.

Syntax
Uni (stringExpr)

Elements
stringExpr

Any string expression.

Return value
Uni returns a Long.

Usage
If stringExpr is NULL or the empty string (""), the function returns an error.

Examples: Uni function
' Print the Unicode character codes for A and a.
Dim x As Long, y As Long
x& = Uni("A")
y& = Uni("a")
Print x&; y& ' Prints 65 97

Unlock statement
See Lock and Unlock Statements.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 313

Use statement
Loads a module containing Public definitions needed by the module being compiled.

Syntax
Use useScript

Elements
useScript

A String literal, or a constant containing a String value, specifying the module to
load.

The Lotus product that you’re using determines whether useScript must be
compiled before use. Consult the product documentation for more information.

Usage
The Use statement can appear only at module level, before all implicit declarations
within the module.

Loading a used module
Whenever LotusScript loads a module that contains a Use statement, LotusScript
executes the Use statement before initializing the module and executing the module’s
Initialize sub, if the module contains one.

Referring to Public names in a used module
A used module remains loaded until it is explicitly unloaded. When a module is
unloaded, references to Public names defined in that module become invalid and
result in run-time errors.

Declaring Public names
A module’s Public names are not visible to other modules until the first module is
used. Multiple Public definitions for the same name cannot be loaded at the same time.

Using modules is transitive: if module A uses module B, and B uses C, then the Public
names in C are visible in A.

Use statements must not contain circular references at compile time. If A uses B,
then B or any module that B uses by transitivity cannot use A.

Examples: Use statement
Use "PreModule"
' The previously defined module PreModule is loaded.
' Any Public definitions in PreModule are available in
' the module where the Use statement appears.

314 LotusScript Language Reference Guide

UseLSX statement
Loads a LotusScript extensions (lsx) file containing Public definitions needed by the
module being compiled.

Syntax
UseLSX lsxLibraryName

lsxLibraryName
A string literal specifying the lsx file to load, either a name prepended with an
asterisk or the full path name of the file. If you specify a name prepended with an
asterisk (for example, “*LSXODBC”), the file is determined by searching the
registry, initialization file, or preferences file, depending on the client platform.
The Windows 95 registry, for example, might contain an entry for
HKEY_LOCAL_MACHINE, SOFTWARE, Lotus, Components,
LotusScriptExtensions, 2.0, LSXODBC, whose value is “c:\notes95\nlsxodbc.dll.”

Usage
LotusScript registers the Public classes defined in the lsx file for use in the module
containing the UseLSX statement. Other modules that use this containing module can
also access these Public classes.

Examples: UseLSX statement
UseLSX "appdll"
' The file appdll is loaded. Public definitions in the file
' are available to the module where the UseLSX statement appears.

UString function
Returns a string of identical characters. You can specify the repeating character either
by its Unicode numeric code, or as the first character in a string argument.

Syntax
UString[$] (stringLen , { charCode | stringExpr })

Elements
stringLen

A numeric expression whose value is the number of characters to put in the
returned string. LotusScript rounds stringLen to the nearest integer.

charCode
A numeric expression whose value specifies the Unicode numeric character code
for the repeating character. LotusScript rounds charCode to the nearest integer.

Unicode codes range from 0 through 65535 inclusive. The Uni function returns the
Unicode code for a given character.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 315

stringExpr
Any string expression. The first character in this string is the character to be used
for the repeating character.

Return value
UString returns a Variant of DataType 8 (String). UString$ returns a String.

Usage
If the value of charCode is less than 0 or greater than 65535, the function returns an
error.

Examples: UString function
Dim stars As String, moreStars As String
stars$ = UString$(4, Uni("*"))
moreStars$ = UString$(8, "*chars")
Print stars$, moreStars$ ' Prints **** ********

Val function
Returns the numeric value represented by a string.

Syntax
Val (stringExpr)

Elements
stringExpr

Any string expression that LotusScript can interpret as a numeric value. It can
contain any of the following kinds of characters.

Digits (0 1 2 3 4 5 6 7 8 9)

Other characters in hexadecimal integers (a b c d e f A B C D E F)

Sign characters (+ -)

Decimal point (.)

Exponent characters (E e D d)

Prefix characters in binary, octal, and hexadecimal integers (& B O H)

Return value
Val returns the converted part of stringExpr as a Double.

Usage
Val strips out spaces, tabs, carriage returns, and newlines from stringExpr. It starts
converting from the beginning of the string and stops when it encounters a character
other than those listed for stringExpr in the preceding list.

316 LotusScript Language Reference Guide

Examples: Val function
Dim hexVal As Double, streetNum As Double
' Assign the hexadecimal value FF (decimal 255).
hexVal# = Val("&HFF")
' Assign the value 106.
streetNum# = Val(" 106 Main St.")
Print hexVal#; streetNum#
' Output:
' 255 106

Variant data type
Specifies a 16-byte variable that can contain data of any scalar type, an array, a list, or
an object.

Usage
A variable that is declared without a data type or a suffix character is of type Variant.

Variant values are initialized to EMPTY.

A Variant variable can contain values of any scalar data type, or any of the following
special values.

Array: A declared array may be assigned to a Variant variable. The reverse is not
true; for example, a Variant variable containing an array may not be assigned to a
declared array variable.

List: A list may be assigned to a Variant variable. The reverse is not true; for
example, a Variant variable containing a list may not be assigned to a declared list
variable.

Object reference: A reference to any instance of a user-defined class or product
class, or to an OLE Automation object, may be assigned to a Variant variable.

Date/time value: An 8-byte floating-point value representing a date/time may be
assigned to a Variant variable. The integer part represents a serial day counted
from Jan 1, 100 AD. Valid dates are represented by integer numbers in the range
-657434 (representing Jan 1, 100 AD) to 2958465 (representing Dec 31, 9999 AD).
The fractional part represents the time as a fraction of a day, measured from time
00:00:00 (midnight on the previous day). In this representation of date/time
values, day 1 is the date December 31, 1899.

NULL: A Variant can take the value NULL either by explicit assignment, or by the
evaluation of an expression containing NULL as an operand. (For most
expressions, if one or both operands are NULL, the expression evaluates to
NULL.)

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 317

EMPTY: In expressions, EMPTY is converted to 0 for numeric operations, and to
the empty string ("") for string operations. Variants take the value EMPTY only
upon initialization, or upon assignment from another Variant whose value is
EMPTY.

A Variant cannot contain an instance of a user-defined type.

To determine the data type of the value in a Variant variable, use the DataType or
TypeName function.

LotusScript aligns Variant data on an 8-byte boundary. In user-defined data types,
declaring variables in order from highest to lowest alignment boundaries makes the
most efficient use of data storage space.

Examples: Variant data type
' Explicitly declare a Variant variable.
Dim someV As Variant

' Use the Variant variable to hold a Currency value.
Dim price As Currency
price@ = 20.00
someV = price@
Print DataType(someV) ' Prints 6 (Currency)

' Use the Variant variable to hold an object reference.
Class Product
 Sub Sell(toCustomer)
 ' ...
 End Sub
End Class
Dim knife As New Product
Set someV = knife
Call someV.Sell("Joe Smith") ' Calls Product method

' Use the Variant variable to hold an array.
Dim salesArray()
ReDim salesArray(3)
salesArray(1) = 200
salesArray(2) = 350
salesArray(3) = 10
someV = salesArray
Print someV(1) ' Prints 200

' Use the Variant variable to hold a list.
Dim customerList List
customerList("one") = "Butcher"
customerList("two") = "Baker"
someV = customerList
Print someV("one") ' Prints Butcher

318 LotusScript Language Reference Guide

Weekday function
Returns the day of the week, an integer from 1 to 7, for a date/time argument.

Syntax
Weekday (dateExpr)

Elements
dateExpr

Any of the following kinds of expression:

A valid date/time string of String or Variant data type. In a date/time string,
LotusScript interprets a 2-digit designation of a year as that year in the
twentieth century. For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time).

A number within the valid date range: -657434, representing Jan 1, 100 AD, to
2958465, representing Dec 31, 9999 AD.

NULL.

Return value
Weekday returns an integer between 1 and 7.

The data type of the return value is a Variant of DataType 2 (Integer).

Weekday(NULL) returns NULL.

Usage
Sunday is day 1 of the week.

Examples: Weekday function
Dim x As Variant, wd As Integer
x = DateNumber(1993, 7, 7)
wd% = Weekday(x)
Print wd%
' Output:
' 4

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 319

While statement
Executes a block of statements repeatedly while a given condition is true.

Syntax
While condition

 [statements]

Wend

Elements
condition

Any numeric expression. LotusScript interprets a value of 0 as FALSE, and
interprets any other value as TRUE.

Usage
LotusScript tests condition before entering the loop and before each subsequent
repetition. The loop repeats while condition is TRUE. When condition is FALSE,
execution continues with the first statement following the Wend statement.

Examples: While statement
' While a user-specified interval (in seconds) is elapsing,
' beep and count the beeps. Then tell the user the number of beeps.

Dim howLong As Single, howManyBeeps As Integer
Function HowManyTimes (howLong As Single) As Integer
 Dim start As Single, finish As Single, counter As Integer
 start! = Timer
 finish! = start! + howLong!
 While Timer < finish!
 Beep
 counter% = counter% + 1
 Wend
 HowManyTimes = counter%
End Function
howLong! = CSng(InputBox _
 ("For your own sake, enter a small number."))
howManyBeeps% = howManyTimes(HowLong!)
MessageBox "Number of beeps:" & Str(howManyBeeps%)

Width # statement
Assigns an output width to a sequential text file.

Syntax
Width #fileNumber , width

320 LotusScript Language Reference Guide

Elements
#fileNumber

The file number that LotusScript assigned to the file when it was opened. The file
must be open. You must include both the pound sign (#) and the file number.

width
An integer expression in the range 0 to 255, inclusive, that designates the number
of characters LotusScript writes to a line before starting a new line. A width of 0,
the default, specifies an unlimited line length.

Usage
If data to be written would cause the width of the current line to exceed the Width #
setting, that data is written instead at the beginning of the next line.

The Print # statement is the only output statement affected by the Width # statement.
Write # ignores the width set by Width #.

Examples: Width # statement
Dim fileNum As Integer
Dim fileName As String
fileName$ = "data.txt"
fileNum% = FreeFile()

Open fileName$ For Output As fileNum%
Width #fileNum%, 20

Print #fileNum%, "First line";

' The next data item, a long string, would extend the current line
' beyond 20 characters; so it is written to the next line in the file.
' An individual data item can not be split across lines;
' so the entire 33-character string is written to one line.
Print #fileNum%, "This will go on one line, though.";

' The next data item is written to the next line in the file
' because the current line is already wider than 20 characters.
Print #fileNum%, "But this is on another.";
Print #fileNum%, "The End";
Close fileNum%

' Output:
' First line
' This will go on one line, though.
' But this is on another.
' The End

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 321

With statement
Provides a shorthand notation for referring to members of an object.

Syntax
With objectRef

 [statements]

End With

Elements
objectRef

An expression whose value is a reference to a user-defined object, a product
object, or an OLE object.

Usage
The With statement lets you refer to the members of an object using a dot to represent
the object name.

You can also use a dot outside of a With statement to represent the currently selected
product object.

You cannot use a dot to refer to the selected product object in a With statement.
LotusScript assumes that any member preceded by a dot is a member of objectRef.

You can nest With statements up to 16 levels.

LotusScript does not support entering a With statement using GoTo.

Reassigning the objectRef variable inside the With statement does not change the object
referred to by the dot. However, any other operation reassigns the object. See the
following example.

Examples: With statement
Class Employee
 Public empName As String
 Public status As Integer
 Sub SetName
 empName$ = InputBox$("Enter name:")
 End Sub
End Class

Dim emp As New Employee
Dim emp2 As New Employee

322 LotusScript Language Reference Guide

With emp
 Call .SetName ' Calls InputBox$ to prompt for an employee
 ' name to assign to emp.empName
 Set emp = emp2 ' Reassigns the emp object variable, to refer to
 ' a different object (the same object that emp2
 ' refers to)
 .status% = 1 ' Sets status of the object that emp referred to
 ' when the With statement was entered.
 emp.status% = 0 ' Sets both emp.status and emp2.status, because
 ' of the preceding Set statement
 Print .status% ; emp.status% ; emp2.status%
' Output:
' 1 0 0
End With

Write # statement
Writes data to a sequential text file with delimiting characters.

Syntax
Write #fileNumber [, exprList]

Elements
#fileNumber

The file number that LotusScript assigned to the file when it was opened. You
must include both the pound sign (#) and the file number.

exprList
Optional. The list of String or numeric expressions to be written to the file,
separated with commas.

If you omit exprList, Write # writes a blank line to the file.

The exprList can’t include arrays, lists, type variables, or objects. The exprList can
include individual array elements, list elements, or type members.

Usage
Use Write # only with files opened for Output or Append.

Use the Input # statement to read data written by Write #.

Write # ignores the file width set by the Width # statement. Data items are separated
with commas, and a newline character is inserted after all data has been written to the
file.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 323

LotusScript inserts a “\n” character in any multiline string (for example, a string that
you type in using vertical bars or braces). If you use the Print # statement to print the
string to a sequential file, the \n is interpreted as a newline on all platforms. If you use
Write # to write the string to a sequential file, the \n may not be interpreted as a
newline on all platforms. Therefore, when reading a multiline string from a sequential
file written by the Write # statement, use Input, not Line Input.

The following table shows how the Write # statement behaves with various data types
specified in exprList.

Data type Write # statement behavior

Numeric Omits leading and trailing spaces.

String Encloses all strings in double quotation marks. Pads
fixed-length strings with spaces as needed.

Variant of DataType 7 (Date/Time) Uses one of the following date formats:
#yyyy-mm-dd hh:mm:ss#
#yyyy-mm-dd#
#hh:mm:ss#
If either the date part or the time part is missing from the
value, LotusScript writes only the part provided to the
file.

Variant with the value EMPTY Writes a comma without data to the file. If that variable is
the last item on the line, the comma is omitted.

Variant with the value NULL Writes the string NULL to the file.

Examples: Write # statement
Dim fileNum As Integer, empNumber As Integer, I As Integer
Dim fileName As String, empName As String
Dim empLocation As Variant
Dim empSalary As Currency

fileNum% = FreeFile()
fileName$ = "data.txt"

' Write out some employee data.

Open fileName$ For Output As fileNum%
Write #fileNum%, "Joe Smith", 123, "1 Rogers Street", 25000.99
Write #fileNum%, "Jane Doe", 456, "Two Cambridge Center", 98525.66
Write #fileNum%, "Jack Jones", 789, "Fourth Floor", 0
Close fileNum%

' Read it all back and print it.
Open fileName$ For Input As fileNum%

For I% = 1 To 3
 Input #fileNum%, empName$, empNumber%, empLocation, empSalary@
 Print empName$, empNumber%, empLocation, empSalary@
Next I%

324 LotusScript Language Reference Guide

Close fileNum%

' Output:
' LotusScript prints out the contents of the file C:\data.txt
' in groups of four values each. Each group consists of a String,
' an Integer, a Variant, and a Currency value, in that order.

Year function
Returns the year, as a 4-digit integer, for a date/time argument.

Syntax
Year (dateExpr)

Elements
dateExpr

Any of the following kinds of expressions:

A valid date/time string of String or Variant data type. In a date/time string,
LotusScript interprets a 2-digit designation of a year as that year in the
twentieth century. For example, 17 and 1917 are equivalent year designations.

A numeric expression whose value is a Variant of DataType 7 (Date/Time).

A number within the valid date range: -657434, representing Jan 1, 100 AD, to
2958465, representing Dec 31, 9999 AD.

NULL.

Return value
Year returns an integer between 100 and 9999.

The data type of the return value is a Variant of DataType 2 (Integer).

Year(NULL) returns NULL.

Examples: Year function
Dim x As Variant
Dim yy As Integer
x = DateNumber(1995, 4, 1)
yy% = Year(x)
Print yy%
' Output:
' 1995

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 325

Yield function and statement
Transfers control to the operating system during script execution.

Syntax
Yield

DoEvents is acceptable in place of Yield.

Return value
The Yield function returns 0 as an Integer value.

Usage
The Yield function and statement transfer control to the operating system, so that it
can process the events in its queue. In Windows, the operating system does not return
control until it has processed all outstanding events, including those generated by a
SendKeys statement.

The Yield function and statement are legal within a procedure or a class. They are not
legal at the module level.

You can call the function as either Yield or Yield().

Examples: Yield function and statement
Yield control to allow the user to perform one or more calculations. When the user is
done, continue with the script.

The DoCalc sub uses a Shell statement to start the Windows calculator. The Shell
statement returns the calculator task ID (also known as the module handle). In a While
loop, the sub calls the GetModuleUsage Windows 3.1 API function, which returns the
module reference count (how many instances of the calculator are currently running).
The Yield statement yields control to the calculator. When the user closes the
calculator, GetModuleUsage returns a reference count of 0, the While loop ends, and
the sub displays an appropriate message.

326 LotusScript Language Reference Guide

If you remove the While loop (try it), the message box appears as soon as the
calculator begins running. In other words, the script continues to execute without
yielding control to the calculator.

' Declare the Windows 3.1 API function at the module level.
Declare Function GetModuleUsage Lib "Kernel" _
 (ByVal taskID As Integer) As Integer

Sub DoCalc
 Dim taskID As Integer
 ' Start the Windows calculator, returning its task ID.
 taskID% = Shell("calc.exe", 1)
 ' As long as the module is still running, yield.
 Do While GetModuleUsage(taskID%) > 0
 Yield
 Loop
 ' When the user closes the calculator, continue.
 MessageBox "Calculations done"
End Sub

DoCalc ' Call the DoCalc sub.

Chapter 7: Statements, Built-In Functions, Subs, Data Types, and Directives 327

Part 3
Appendixes

Appendix A
Language and Script Limits

This appendix describes LotusScript language limits of several kinds: for example, the
legal ranges in data representation, the limits on numerical specifications within
statements, and the maximum number of different kinds of elements that can be
defined in a script.

Limits on numeric data representation
The following table lists the legal range of values for the numeric data types.

Data type Range

Integer -32,768 to 32,767

Long -2,147,483,648 to 2,147,483,647

Single -3.402823E+38 to 3.402823E+38
Smallest non-zero value (unsigned): 1.175494351E-38

Double -1.7976931348623158E+308 to
 1.7976931348623158E+308
On UNIX platforms:
-1.797693134862315E+308 to 1.797693134862315E+308
Smallest non-zero value (unsigned): 2.2250738585072014E-308

Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807
On UNIX platforms:
-922,337,203,685,477.5666 to 922,337,203,685,477.5666
Smallest non-zero value (unsigned): .0001

 329

The legal range of values of binary, octal, or hexadecimal integers is the range for Long
integers (see the preceding table). The following table lists the maximum number of
characters needed to represent integers in binary, octal, and hexadecimal notation.
This is also the maximum number of characters that the Bin, Oct, or Hex function
returns.

 Integer type Maximum number of characters needed to represent a value

Binary 32

Octal 11

Hexadecimal 8

Limits on string data representation
The following table lists the limits on representation of string data.

Item Maximum

Number of strings Limited by available memory

Total string storage In a module, 32K characters (64K bytes). For strings generated
during execution, storage is limited by available memory.

Length of a string literal 16,000 characters (32,000 bytes)

Length of a string value 32,000 characters (64,000 bytes)

Limits on array variables
The following table lists limits on representation of data by array variables.

Item Maximum or range

Array storage size 64K bytes

Number of dimensions 8

Bounds of a dimension -32,768 to 32,767 (the range of values of the Integer data type)

Number of elements Determined by memory available for data, and by the storage size of
each element of the array, which varies with the array data type. For
example, a Long one-dimensional fixed array declared in module
scope can have 16,128 elements. (The total storage size available for
fixed-size data in module scope is 64K bytes, and a Long element
requires 4 bytes for storage.)

330 LotusScript Language Reference Guide

Limits on file operations
The following table lists limits on miscellaneous items related to file operations
and I/O.

Item Maximum

Number of files open
simultaneously

Determined by the product from which you start
LotusScript

fileNumber in Open statement 255

recLen in Open statement 255

Line length of a line written by
Write statement

255 characters

Number of items in Print, Write, or
Input statement

255

Number of characters in path in
MkDir, RmDir, or ChDir statement

128. This includes the drive specifier, if any.

Limits in miscellaneous source language statements
The following table lists limits on miscellaneous language elements.

Item Maximum

Number of characters in a LotusScript identifier, not
including a data type suffix character

40

Number of arguments in definition of a function or sub 31

Number of labels in an On...GoTo statement 255

Limits on compiler and compiled program structure
The following table lists limits on miscellaneous items related to compiling a script.

Item Maximum

Number of lines per script, not including the
contents of %Include files.

64K

Depth of nested %Include directives. 16

Number of compilation errors before the
LotusScript compiler halts.

20

Number of symbols in a module’s symbol
table. (See “Number of symbols,” below.)

Varies

continued

Appendix A: Language and Script Limits 331

Item Maximum

Number of recursive calls (recursion level for
a given function).

Limited by available memory

Storage size of all data in a given scope.
(See “Storage size of data,” below.)

Module: 64K bytes
Class: 64K bytes
Procedure: 32K bytes

Size of executable module code. 64K bytes

Number of symbols
A module symbol table can occupy up to 64K bytes. Each symbol occupies at least 10
bytes. Variables require the minimum space; about 6000 variables can be declared in a
module if no functions or subs are declared. Function and sub declarations need more
space; a maximum of about 450 functions or subs can be declared if no variables are
declared. A module commonly includes symbols of both kinds, and the maximum
number of each is interdependent. In any case it is large.

Storage size of data
The limits on the storage size of data in a given scope apply to fixed-size variables:
scalar variables except for variable-length strings; user-defined type variables; and
fixed arrays of these scalar variables and user-defined type variables. Depending on
the order of declaration, alignment of variables on storage boundaries can take extra
space. For example, an Integer variable is aligned on a 2-byte boundary, and a Long
variable is aligned on a 4-byte boundary.

The maximum size of data in each dynamic variable (each variable-length string, each
list, each dynamic array, and each instance of a class) is 64K. However, each such
variable will use 4 bytes for data in the scope where it is declared.

332 LotusScript Language Reference Guide

Appendix B
Platform Differences

The LotusScript language and functionality on the OS/2 platform, the UNIX platform,
and the Macintosh platform differ in various ways from the language and
functionality described in the rest of this language reference. This appendix describes
the differences.

OS/2 platform differences
Language construct differences

Command Command-line arguments are not normally used on OS/2. However, if the
Lotus product permits arguments, they are returned.

CreateObject Not supported. Generates a run-time error.

GetObject Not supported. Generates a run-time error.

Shell The window style option is not supported for an OS/2 system application
or for a user application that saves its environments via Profile.
The default window style is normal with focus.
Shell always returns a valid value greater than 31.

File system differences
LotusScript supports both HPFS and FAT file systems:

The FAT file system supports conventional file names only. Conventional file
names consist of up to 8 characters, a period separator, and up to 3 characters.

The HPFS file system recognizes both conventional and long file names. Long file
names can be up to 254 characters in length, including any number of periods.
Blanks are supported if the file name is enclosed in double quotes. A file name
consisting either of all periods or all blanks is not supported.

HPFS requires 500K of system memory. Each OS/2 PC must have at least 6MB of
memory as a minimum requirement; otherwise performance will be adversely
affected.

Files with long file names or blank spaces can be copied only to a diskette or disk
formatted with FAT using the direct-manipulation method. Long file names are
truncated to conventional file length when moved from a HPFS to a FAT file system.

 333

The long file name is saved as an extended attribute until the file is copied back to an
HPFS disk using the direct-manipulation method and the workplace shell. The use of
HPFS files incorrectly transferred to a FAT file system results in a run-time error.

An asterisk (*) as a wildcard in a file name indicates that any character can occupy that
position and all remaining character positions. A question mark (?) as a wildcard in a
file name indicates that any character can occupy that position only.

File names are not case sensitive.

Other differences
OLE functions are not supported. This limitation affects CreateObject and GetObject.

OS/2 users can invoke Rexx applications from LotusScript.

UNIX platform differences
Language construct differences

ActivateApp Not supported. Generates a run-time error.

ChDir A run-time error is generated if LotusScript cannot interpret the
argument to ChDir, for example if a drive letter is contained in the
argument.

ChDrive Generates a run-time error unless the drive argument is the empty
string (“”), signifying the default drive.

CreateObject Not supported. Generates a run-time error.

CurDir, CurDir$ Generates a run-time error unless the drive argument is the empty
string (“”), signifying the default drive.

CurDrive, CurDrive$ Return the empty string (“”), since there are no drive letters on UNIX.

Date, Date$ For reasons of security and system integrity, only the superuser can
change the date on a UNIX system. Attempting to change the date
under any other username will generate a run-time error. Attempting
to change the date while logged in as superuser will change the date
system-wide.

Declare The Pascal calling convention for external function calls is not
supported. All external function calls must use the CDECL calling
convention.
Specifying an ordinal number (using the Alias clause) is not supported.
This will return a run-time error at the point of the call to the illegally
declared function.

continued

334 LotusScript Language Reference Guide

Dir, Dir$ Ignores the optional attributeMask argument. These functions behave as
if all files have the attribute Normal. Returns all files for “*.*”, not
just those containing “.”. Returns only those files ending with a
period for “*.”, not every file without an extension.

FileLen, Len, LenB,
LenBP, LOF

Strings containing line terminators are smaller than on DOS/Windows
platforms. The line terminator is one character (linefeed), not two.
Therefore the return value of these functions will be smaller for strings
on UNIX than on Windows.

GetFileAttr Generates a run-time error if a drive letter is included in the argument.

Does not return the following attributes: ATTR_HIDDEN,
ATTR_ARCHIVE, ATTR_VOLUME, ATTR_SYSTEM.

GetObject Not supported. Generates a run-time error.

Input #, Input, Input$,
InputB, InputB$, Line
Input, Print, Write #

Compiled scripts using these constructs may be platform-specific,
since file data is stored in a platform-specific manner. UNIX character
set, byte order, line terminator, and numeric precision specifics may
affect the portability of scripts using these functions.

IsObject, IsUnknown See “Other differences,” below.

Open, Lock, Unlock No explicit or implicit file locking is supported on UNIX. This implies
the following:

LotusScript for UNIX allows the user to copy, open, etc., a file that is
already opened for reading. Thus, the Name statement works
differently on UNIX.

The Open statement may specify only Shared as its lock status. Lock
Read, Lock Write, and Lock Read Write will cause a run-time error.

The Lock and Unlock statements will cause a run-time error.

SendKeys Not supported. Generates a run-time error.

SetFileAttr Ignores the attributes ATTR_HIDDEN, ATTR_ARCHIVE, and
ATTR_VOLUME.

Shell Window styles are ignored.

Time, Time$ For reasons of security and system integrity, only a superuser can
change the time on a UNIX system. Attempting to change the time
under any other username will generate a run-time error. Attempting
to change the time while logged in as superuser will change the time
system-wide.

Appendix B: Platform Differences 335

File system differences
LotusScript respects all aspects of UNIX file system security. This difference affects
Kill, Open, and RmDir.

There are no drive letters on UNIX. All devices reside under the root directory. If you
use a pathname containing a drive letter, LotusScript may return an error. For the
%Include directive, this is a compiler error; for all other uses, this is a run-time error.
(Note that since UNIX allows “:” in file names, the statement Dir$(“a:”) is legal. It
searches the current directory for a file named a:.)

UNIX uses the “/” character (slash) as the directory separator while DOS/Windows
platforms use “\” (backslash). LotusScript supports the use of slash and backslash,
with the following restrictions:

String literals. If a slash is used in a string literal that is a pathname argument, the
.LSO file generated will not run on other platforms, unless that platform supports
slash (for example, the UNIX platform).

String variables. If you assign a string literal containing a slash to a variable, and
then pass the variable as a pathname argument, a run-time error occurs if the
platform does not support slash pathnames (for example, the DOS/Windows
platform).

UNIX allows a wider variety of characters in pathnames than DOS/Windows
platforms. For example, more than one “.” may appear in a valid UNIX pathname.

LotusScript cannot use UNIX filenames (as opposed to pathnames) that contain the
“\” character, since this character is always a path separator on other platforms.

UNIX uses the linefeed (ASCII 10) character as the line terminator. Other platforms
use other characters. This difference means that files manipulated with the same
LotusScript code, but executed on different platforms, may have different sizes. For
instance, the MacIntosh platform uses the carriage return character as the line
terminator, so text files written on that platform have the same length as files written
on UNIX. Since the Windows platform uses a two-character sequence, text files
written there are larger than text files written on UNIX, given identical source code.

Other differences
Function aliasing with ordinal numbers (using the Alias clause in the Declare
statement) is not possible on UNIX, because UNIX has no notion of numbering the
routines in a shared library.

Where wildcards are permitted in file path strings, LotusScript supports the use of
UNIX regular expressions in addition to the “*” and “?” characters. However, using
regular expressions in file path strings makes the script platform-dependent.

The Like operator does not use use the same regular expression syntax as the UNIX
shell. It uses LotusScript regular expressions.

336 LotusScript Language Reference Guide

OLE is not supported on LotusScript Release 3.0 for UNIX platforms. This difference
affects CreateObject, GetObject, IsObject, and IsUnknown. The CreateObject and
GetObject functions will raise run-time errors when executed on UNIX platforms. The
IsObject function tells if a variable refers to a native or product object, but not an OLE
object, since OLE objects don’t exist on the UNIX platform. The IsUnknown function
always returns FALSE on UNIX, since there is no way for a Variant expression to
receive the V_UNKNOWN value.

Macintosh platform differences
Language construct differences

ChDir Macintosh hard drive specifications are supported; for example, “Hard
drive:folder1: folder2:”. DOS drive specifications, such as “C:\”, are not
suppported.

ChDrive Generates a run-time error unless the drive argument is the empty string (“”),
signifying the default drive. To change the drive, use ChDir.

Command Command line arguments are not normally used on the Macintosh. However, if
the Lotus product permits arguments, they are returned.

CurDir Generates a run-time error unless the drive argument is defaulted or explicitly
specified as the empty string (“”), signifying the default drive.

CurDrive Returns the empty string (“”), since there are no drive letters on the Macintosh.

Declare The Pascal calling convention for external function calls is not supported.

Dir Ignores the attributes Hidden Files, Volume Label, and System. Does not return
the directory specifications “.” and “..”. Returns all files for “*.*”, not just those
containing “.”. Returns only those files ending with a period for “*.”, not every
file without an extension.

Environ Returns an empty string. Generates a run-time error only if an illegal argument
is passed, such as a variable number greater than the legal limit.

FileLen Files containing line terminators are smaller than on DOS platforms, because
the line terminator is one character, not two.

GetFileAttr Does not return the following attributes: ATTR_ARCHIVE, ATTR_VOLUME,
ATTR_SYSTEM

Len, LenB Strings that have been read from files containing line terminators are smaller
than on DOS platforms, because the line terminator is one character, not two.

Lock Open files can be manipulated (copied, opened, etc.).

Open Open files can be manipulated (copied, opened, etc.).

SendKeys Not supported. Generates a run-time error.

SetFileAttr Generates a Permission Denied error if passed the attribute ATTR_ARCHIVE or
ATTR_SYSTEM.

Unlock Open files can be manipulated (copied, opened, etc.).

Appendix B: Platform Differences 337

File system differences
Macintosh-style pathnames are assumed unless the pathname contains a backslash. If
the pathname contains a backslash, then a DOS-style pathname is assumed.

There are no drive letters on the Macintosh. All devices reside under the root
directory. If you use a pathname containing a drive letter, LotusScript may return an
error. For the %Include directive, this is a compiler error; for all other uses, this is a
run-time error.

Files are not limited to DOS naming rules (8-character name plus 3-character
extension).

The Macintosh does not store a default directory for each drive. It maintains only one
current directory, not one per drive as in DOS. Drive names can be up to 27 characters
in length. This limitation affects ChDir, ChDrive, and CurDir.

The Macintosh does not recognize the directory specifications “.” and “..”. This
limitation affects the Dir function.

The Macintosh does not use the file system attributes Volume, Archive, and System.
This limitation affects Dir, GetFileAttr, and SetFileAttr.

Macintosh uses the carriage return (ASCII 13) character as the line terminator. Other
platforms use other characters. This difference means that files and strings
manipulated with the same LotusScript code but executed on different platforms may
have different sizes. For instance, the UNIX platform uses a single character (linefeed)
as the line terminator, so text files written on that platform have equal length to those
written on Macintosh. Since the Windows platform uses a two-character sequence,
text files written there are larger than text files written on Macintosh, given identical
source code. This difference affects FileLen, Len, LenB, and LenBP.

Macintosh permits files that are open for reading to be manipulated (copied, opened,
etc.) by another application. A file opened for output by LotusScript is locked; other
applications cannot open or copy the file, but can move or rename it. Lock and Unlock
work only on shared volumes; the file being locked must be on a server or file sharing
must be turned on for a local volume (“Sharing Setup” on the control panel). This
difference affects Open, Lock, and Unlock.

Other differences
Function aliasing with ordinal numbers (using the Alias clause in the Declare
statement) is not possible on the Macintosh PC.

There are no system environment variables on the Macintosh. This limitation affects
Environ.

Please be careful not to remove the floating page footer when you are replacing this
text with your first paragraph.

338 LotusScript Language Reference Guide

Appendix C
LotusScript/Rexx Integration

If you use LotusScript in OS/2, you can use the LTSRXO10.DLL LSX to invoke
applications written in the OS/2 Procedures Language 2/REXX (referred to as REXX
in the rest of this documentation). You can execute a single REXX statement using
REXXFunction, or execute an external REXX command file with REXXCmd.

REXXCmd function
Executes a REXX command file from within a LotusScript application, passing any
needed arguments.

Syntax
REXXCmd (commandFile [, parmList])

Elements
returnString

A string containing the value returned by the REXX command file.

commandFile
A string specifying the name of the REXX command file, optionally including a
path specification.

parmList
Up to 20 parameters of any data type recognized by REXX, except arrays. Separate
parameters with commas; enclose strings in quotation marks.

Usage
The REXXCmd function must be preceded with a UseLSX statement that indicates the
location of the LotusScript/REXX LSX (LTSRXO10.DLL).

Examples: REXXCmd Function
' LotusScript application that uses REXXCmd to execute a REXX command
file.

' A sample REXX command file follows, showing how REXX accepts the

' parameters passed by LotusScript.

'

' Indicate the location of the LSX.

339

UseLSX "C:\LSX\LTSRXO10.DLL"

Function InvokeREXX

 Dim cmdFile As String

 Dim returnValue As Variant

 Dim parmOne As String, parmTwo As String

 parmOne = "Parameter 1"

 parmTwo = "Parameter 2"

 cmdFile = "RXSAMPLE.CMD"

' Invoke the REXX command file RXSAMPLE.CMD and store the return value

' in returnValue.

 returnValue = REXXCmd (cmdFile, parmOne, parmTwo)

End Function

/***
***/

/* RXSAMPLE.CMD
 */

/***
***/

address CMD

/***
***/

/* Get the argument string passed by LotusScript.
 */

/***
***/

vari = ARG(1)

/***
***/

/* Now get the individual arguments; we know there are two.
 */

340 LotusScript Language Reference Guide

/***
***/

parse var vari argument1 ',' argument2

/***
***/

/* Continue processing. . .when done, return the string "OK."
 */

/***
***/

return "OK"

/***
***/

/* Exit the command file, returning control to LotusScript.
 */

/***
***/

exit

REXXFunction function and statement
Executes a single REXX statement from within a LotusScript application, optionally
returning a value to LotusScript.

Function Syntax
REXXFunction (“RETURN REXXStatement”)

Statement Syntax
REXXFunction (“REXXStatement”)

Elements
returnString

A string containing the value returned by the REXX statement. Use this only when
using REXXFunction as a function.

RETURN
Indicates that a value will be returned by the REXX statement. Use this only when
using REXXFunction as a function; be sure to include it within the quotation
marks enclosing REXXStatement.

REXXStatement
A string consisting of a valid REXX statement, enclosed in quotation marks.

Appendix C: LotusScript/Rexx Integration 341

Usage
The REXXFunction function and statement must be preceded with a UseLSX statement
that indicates the location of the LotusScript/REXX LSX (LTSRXO10.DLL).

Examples: REXXFunction function and statement
' LotusScript application that uses REXXFunction to

' execute a REXX statement.

'

' Indicate the location of the LSX.

UseLSX "C:\LSX\LTSRXO10.DLL"

'

Function InvokeREXX

 Dim driveC As Variant

'

' Use REXXFunction as a statement to execute a REXX statement.

 REXXFunction _

 ("Call RxFuncAdd 'SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs' ")

 REXXFunction ("Call SysLoadFuncs")

'

' Now use REXXFunction as a function to execute another REXX statement
and

' return a value to LotusScript, storing it in the driveC variable.

 driveC = REXXFunction ("RETURN SysDriveInfo (""C:"") ")

'

End Function

342 LotusScript Language Reference Guide

REXXLTS.EXE call
Invokes a LotusScript application.

Syntax
“Call REXXLTS.EXE” scriptName functionName parmList

Elements
scriptName

A string specifying the name of the LotusScript file being invoked. Include both
the file name and extension; the extension must be either .LSO or .LSS. If you use
the actual name of a script, include it within the quotation marks enclosing the call
to REXXLTS.EXE; if you use a variable to represent scriptName, it should appear
outside of the quotation marks.

functionName
A string specifying the name of the LotusScript function to execute; this function is
defined within the specified LotusScript file. If you use the actual name of the
script and function, include them within the quotation marks enclosing the call to
REXXLTS.EXE; if you use variables to represent scriptName and functionName, they
should appear outside of the quotation marks. If scriptName is represented with a
variable, then functionName must also be represented with a variable.

parmList
Up to 20 parameters of data type Short, Long, Single, Double, or String. Separate
parameters with spaces; enclose strings in quotation marks.

Usage
Use the REXX Call command to invoke LotusScript from a REXX command file.
LotusScript return codes will be passed back to the command file; these return codes
are described in the LotusScript LSERR.LSS file.

Examples: REXXLTS.EXE call
/***
***/

/* Sample REXX command file that uses REXXLTS.EXE to invoke a
 */

/* LotusScript file called TEST.LSS, passing two parameters to it.
 */

/***
***/

address CMD

Appendix C: LotusScript/Rexx Integration 343

/***
***/

/* Initialize the parameters.
 */

/***
***/

parm1 = "Parameter 1"

parm2 = "Parameter 2"

/***
***/

/* Invoke REXXLTS.EXE and call the LotusScript file.
 */

/* Since scriptName and functionName are represented by
 */

/* variables, do not include them within the quotation marks.
 */

/***
***/

"CALL REXXLTS.EXE TEST.LSS Function1" parm1 parm2

/***
***/

/* Exit the command file.
 */

/***
***/

exit

344 LotusScript Language Reference Guide

Symbols
+ (addition) operator, 50
= (assignment) operator

Let statement, 210
/ (division) operator, 48
. (dot notation), 85, 124, 306
^ (exponentiation) operator, 46
> (greater than) operator, 53
>= (greater than or equal to)

operator, 53
< (less than) operator, 53
<= (less than or equal to) operator, 53
* (multiplication) operator, 47
- (negation) operator, 47
>< or <> (not equal) operators, 53
 & (string concatenation) operator, 63
- (subtraction) operator, 52
~ (tilde) escape character, 4
%If directive, 177
%Include directive, 181
%Rem directive, 260

A
Abs function, 69
Absolute value, 69
Access keyword

Open statement, 237
Access types for files

FileAttr function, 141
ACos function, 70
ActivateApp statement, 70
Addition operator (+), 50
Alias keyword

Declare statement, 106
And operator, 56
ANSI characters

Asc function, 71
Chr function, 84
String function, 291

Any keyword
Declare statement, 24, 27, 106

AppActivate statement, 70
Append keyword

Open statement, 237

Applications, interacting with
ActivateApp statement, 70
SendKeys statement, 275
Shell function, 282

Arccosine, 70
Arcsine, 72
Arctangent, 72, 73
Argument passing, 17, 24, 26, 27

Data type conversion, 13
Arguments, command-line

Command function, 90
Shell function, 282

Arithmetic operators, 45
Array arguments to C functions, 27
Arrays

Dim statement, 115
Erase statement, 129
IsArray function, 194
language limits for, 330
LBound function, 203
Option Base statement, 241
ReDim statement, 257
UBound function, 311

As keyword
Class statement, 85
Declare statement (external C

calls), 106
Declare statement (forward

reference), 110
Dim statement, 115
Function statement, 160
Name statement, 227
Property Get/Set statements, 249
ReDim statement, 257
Sub statement, 291

Asc function, 71
ASin function, 72
Assignment operator (=), 210
Assignment to variables

Let statement, 210
Set statement, 278

ATn function, 72
ATn2 function, 73
Attributes of files, 121

GetFileAttr function, 166
SetFileAttr function, 280

B
Bars, vertical (|), 3
Base keyword

Option Base statement, 241
Base of numbers

Bin function, 75
Hex function, 172
Oct function, 229

BAT files, 282
Beep statement, 74
Bin function, 75
Binary files, 33, 38

Get statement, 164
Input function, 184
Open statement, 237
opening, 38
Put statement, 253
reading, 39
variable-length records, 38
writing, 39

Binary keyword
Open statement, 237
Option Compare statement, 241

Binary numbers, 75
numeric construction rules, 2

Binary operations
data conversion, 13

Bind keyword
Set statement, 278

Blank spaces
LTrim function, 220
RTrim function, 269
Space function, 284
Spc function, 285
statement construction rules, 1
Tab function, 300
Trim function, 305

Block statements
Exit statement, 139

Bounds for arrays
language limits for, 330
LBound function, 203
Option Base statement, 241
UBound function, 311

345

Index

LotusScript Language Reference
Please note that the page numbers listed in the Index refer to the page numbers that appear in the footers of the printed documentation. To navigate through the document, use the linked table of contents that appears in the window on the left, or use the scroll buttons in the tool bar at the top of the document.

Braces ({ }), 3
Bracket notation, 76
Branching statements

GoSub statement, 170
GoTo statement, 171
On...GoSub statement, 234
Return statement, 263

Byte-oriented functions
InputB function, 186
InputBP function, 188
InStrB function, 190
InStrBP function, 192
LeftB function, 205
LenB function, 208
LenBP function, 209
MidB function, 224
RightB function, 264

ByVal keyword, 16, 17
Declare statement, 24, 27, 106
Declare statement (forward

reference), 110
Function statement, 160
Sub statement, 291

C
C functions, calling conventions, 23
C functions, external, 23, 24, 26, 27,

31, 106
C functions, return values, 31, 106
Call keyword

Call statement, 77
On Event statement, 232

Call statement, 77
Case keyword

Option Compare statement, 241
Select Case statement, 273

Case sensitivity
InStr function, 189
InStrB function, 190
InStrBP function, 192
Option Compare statement, 241
StrCompare function, 287

CCur function, 79
CDat function, 80
CDbl function, 82
Changing

directories, 82
drives, 83

Character codes
Asc function, 71
Chr function, 84

String function, 291
UChr function, 312
Uni function, 313
UString function, 315

Character extraction
Left function, 204
LeftBP function, 205
Mid function, 222
MidBP function, 224
Right function, 264
RightBP function, 265

Characters, case of
LCase function, 204
Option Compare statement, 241
UCase function, 312

Characters, special, 7
ChDir statement, 82
ChDrive statement, 83
Chr function, 84
CInt function, 85
Class constructor, 297
Class destructor, 294
Class statement, 85
Classes

Dot notation, 124
naming rules, 4

CLng function, 89
Close statement, 89
Codes, character

Asc function, 71
Chr function, 84
String function, 291
UChr function, 312
Uni function, 313
UString function, 315

Columns in printed output, 300
COM files, 282
Command-line arguments, 90

Shell function, 282
Command function, 90
Comments

%Rem directive, 260
Rem statement, 259

Compare keyword
Option Compare statement, 241

Comparison, string
Option Compare statement, 241
StrCompare function, 287

Comparison operators, 53
Compile-time errors, 41
Compiler directives

%If directive, 177
%Include directive, 181
%Rem, 260

Compiler limits, 331
Concatenation operator (&), 63
Conditional statements

%If directive, 177
If...GoTo statement, 174
If...Then...Else statement, 175
If...Then...ElseIf statement, 176

Const statement, 91
Constants

Const statement, 91
LotusScript, 14
naming rules, 4
platform-identification

constants, 177
Constants file, 14
Constructing scripts, 1
Constructor (New sub), 85
Constructor sub, 297
Continuation character (_) for

statements, 1
Conversion, character case

LCase function, 204
UCase function, 312

Converting data types, 13
CCur function, 79
CDat function, 80
CDbl function, 82
CInt function, 85
CLng function, 89
CSng function, 95
CStr function, 96
CVar function, 98

Converting numbers
Bin function, 75
Hex function, 172
Oct function, 229

Converting strings
Val function, 316

Copying files, 143
Cos function, 93
Cosine, 93
CreateObject function, 93
Creating

objects, 297
CSng function, 95
CStr function, 96
CurDir function, 96
CurDrive function, 97
Curly braces ({ }), 3
Currency conversion, 79
Currency data type, 98
CVar function, 98
CVDate function, 80

346 LotusScript Language Reference Guide

D
Data limits, 329, 330
Data type suffix characters, 7, 12, 16

Deftype statements, 112
Dim statement, 115

Data types, 101
Deftype statements, 112
numeric limits, 329
TypeName function, 309

Data types, converting
CCur function, 79
CDat function, 80
CDbl function, 82
CInt function, 85
CLng function, 89
CSng function, 95
CStr function, 96
CVar function, 98

Data types, LotusScript
Currency data type, 98
DataType function, 99
Double data type, 125
Integer data type, 194
Long data type, 218
Single data type, 284
String data type, 290
Variant data type, 317

Data types, user-defined
Type statement, 306

Data types, converting, 13, 75
DataType function, 99
Date and time handling

CDat function, 80
Date function, 102
Date statement, 103
DateNumber function, 103
DateValue function, 104
Day function, 105
FileDateTime function, 143
Format function, 151
Hour function, 173
IsDate function, 195
Minute function, 225
Month function, 227
Now function, 228
Second function, 270
Time function, 302
Time statement, 302
TimeNumber function, 303
Timer function, 303
TimeValue function, 304

Today function, 305
Weekday function, 319
Year function, 325

Date function, 102
Date statement, 103
DateNumber function, 103
DateSerial function, 103
DateValue function, 104
Day function, 105
Decimal numbers, 2
Declarations

implicit, 12
Declarations, scope, 9
Declare keyword

Declare statement (external C
calls), 106

Declare statement (forward
reference), 110

Option Declare statement, 244
Declaring variables

Dim statement, 115
Option Declare statement, 244

DefCur statement, 112
DefDbl statement, 112
Defining errors, 41
DefInt statement, 112
DefLng statement, 112
DefSng statement, 112
DefStr statement, 112
DefVar statement, 112
Delete statement, 114
Delete sub, 114, 294

Class statement, 85
Deleting

objects, 294
Delimiters, 7
Delimiters, for strings, 3
Destructor

Delete statement, 85, 114
SubDelete statement, 294

Dialog boxes
InputBox function, 187
MessageBox function and

statement, 220
Dim statement, 115
Dir function, 121
Directives, compiler

%If directive, 177
%Include directive, 181
%Rem, 260
placement in scripts, 1

Directories and files, managing
ChDir statement, 82
ChDrive statement, 83
CurDir function, 96
CurDrive function, 97
Dir function, 121
FileCopy statement, 143
Kill statement, 203
MkDir statement, 226
Name statement, 227
Open statement, 237
RmDir statement, 265

Disjunction (Or) operator, 58
Disk drives

ChDrive statement, 83
CurDrive function, 97
Dir function, 121

Division
remainder, 50

Division operator (/), 48
DLL files

Declare statement, 23, 106
UseLSX statement, 315

Do keyword
Do statement, 123
Exit statement, 139

DoEvents function and
statement, 326

Dot notation, 85, 124, 306
Double data type, 125
Drives

ChDrive statement, 83
CurDrive function, 97
Dir function, 121

Dynamic arrays, 257
Dim statement, 115

E
Elapsed time, 303
Else keyword

If...GoTo statement, 174
If...Then...Else statement, 175
If...Then...ElseIf statement, 176
Select Case statement, 273

ElseIf keyword
If...Then...ElseIf Statement, 176

Empty string, 3
EMPTY values, 14

Dim statement, 115
IsEmpty function, 198
Variant data type, 317

End of file, 128
End statement, 126

Index 347

Environ function, 127
EOF function, 128
Equals operator (=), 53
Eqv operator, 60
Erase statement, 129
Erl function, 130
Err function, 130
Err statement, 132
Error handling

Erl function, 130
Err function, 130
Err statement, 132
Error function, 133
Error statement, 134
On Error statement, 230
Resume statement, 261

Error keyword
Error function, 133
Error statement, 134
On Error statement, 230

Error messages file, 41
Error numbers, 41
Error statement, 41, 43
Errors

defining, 41
handling, 41, 43

Escape character (~), 4
Evaluate function, 136
Evaluate statement, 136
Evaluation, order of, 45
Event handling

On Event statement, 232
Event keyword

On Event statement, 232
Examples

LotusScript, 339, 342, 343
running, ii
typographical conventions, i

Exclusive Or (Xor) operator, 59
EXE files, 282
Execute function, 137
Execute statement, 137
Exit statement, 139
Exp function, 141
Explicit declaration of variables

Deftype statements, 112
Dim statement, 115

Exponentiation operator (^), 46
Exported library functions, 23, 106
Expressions

order of evaluation, 45
External declarations, 23, 106
External functions, 23, 106

F
FALSE constant, 14
File information, getting/setting, 216

FileLen function, 144
File operations, 33

binary files, 38
random files, 36
sequential files, 33

FileAttr function, 141
FileCopy statement, 143
FileDateTime function, 143
FileLen function, 144
Files

binary, Input function, 184
binary, Open statement, 237
binary, opening, 38
binary, Put statement, 253
binary, reading, 39
binary, writing, 39

Files, binary
Get statement, 164

Files, closing
Close statement, 89
Reset statement, 261

Files, formatting data in
Spc function, 285
Tab function, 300
Width # statement, 320

Files, locking
Lock and Unlock statements, 215

Files, opening
FreeFile function, 160

Files, positions in
EOF function, 128
LOC function, 213
Seek function, 271
Seek statement, 272

Files, random
Get statement, 164
Open statement, 237
opening, 36
Put statement, 253
reading, 37
writing, 37

Files, reading from
Get statement, 164
Input # statement, 182
Input function, 184
InputB function, 186
InputBP function, 188
Line Input # statement, 212

Files, sequential
Input # statement, 182
Input function, 184
Line Input # statement, 212
Open statement, 237
opening, 34
Print # statement, 246
reading, 35
Write # statement, 323
writing, 34

Files, writing to
Lock and Unlock statements, 215
Print # statement, 246
Put statement, 253
Write # statement, 323

Files, binary, 33, 38
Files, language limits on, 331
Files, random, 33, 36
Files, sequential, 33
Files and directories, managing

ChDir statement, 82
ChDrive statement, 83
CurDir function, 96
CurDrive function, 97
Dir function, 121
FileCopy statement, 143
Kill statement, 203
MkDir statement, 226
Name statement, 227
Open statement, 237

Files and directories, managing
RmDir statement, 265

Files information, getting/setting
FileAttr function, 141
FileDateTime function, 143
GetFileAttr function, 166
SetFileAttr function, 280

Fix function, 144
Fixed arrays

Dim statement, 115
Floating-point numbers, 2

Double data type, 125
Single data type, 284

For keyword
Exit statement, 139
For statement, 146
Open statement, 237

ForAll keyword
Exit statement, 139

ForAll statement, 148
Format function, 151
Forward references, 110

348 LotusScript Language Reference Guide

Fraction function, 159
FreeFile function, 160
From keyword

On Event statement, 232
Function keyword

Declare statement (external C
calls), 106

Declare statement (forward
reference), 110

Exit statement, 139
Function statement, 160

Functions
Call statement, 77
defining, 15
maximum arguments, 331
naming rules, 4

G
Get keyword

Get statement, 164
Open statement, 237
Property Get/Set statements, 249

GetAttr function, 166
GetFileAttr function, 166
GetObject function, 168
Getting file information, 141, 143,

144, 166, 216
GoSub keyword

GoSub statement, 170
On...GoSub statement, 234

GoTo keyword
GoTo statement, 171
If...GoTo statement, 174
On Error statement, 230
On...GoTo statement, 235

Greater than operator (>), 53
Greater than or equal to

operator (> =), 53

H
Handling errors, 41, 43
Hex function, 172
Hexadecimal numbers, 172

numeric construction rules, 2
Hidden files, 121

GetFileAttr function, 166
SetFileAttr function, 280

Hiragana input mode, 180
Host operating system differences,

333, 334, 337
Hour function, 173

I
Identifiers

construction rules, 4
maximum length, 331
reserved for LotusScript, 5

If...GoTo statement, 174
If...Then...Else statement, 175
If...Then...ElseIf statement, 176
If (%If directive), 177
IMEStatus function, 180
Imp operator, 62
Implicit declaration of variables, 12

Deftype statements, 112
In keyword

ForAll statement, 148
Include (%Include directive), 181
Inclusive Or (Or) operator, 58
Initialize sub, 296
Initialized values, 12, 19, 306
Input # statement, 182
Input keyword

Input function, 184
Line Input # statement, 212
Open statement, 237

Input mode, 180
InputB function, 186
InputBox function, 187
InputBP function, 188
Instances of a class, 85
InStr function, 189
InStrB function, 190
InStrBP function, 192
Int function, 193
Integer data type, 194
Integer division operator, 49
Is keyword

Select Case statement, 273
Is operator, 66
IsA operator, 67
IsArray function, 194
IsDate function, 195
IsDefined function, 196
IsElement function, 196
IsEmpty function, 198
IsList function, 198
IsNull function, 199
IsNumeric function, 200
IsObject function, 201
IsScalar function, 202

J
Jumps (branches)

GoSub statement, 170
GoTo statement, 171

Jumps (branching)
On...GoSub statement, 234
Return statement, 263

K
Katakana input mode, 180
Keystrokes, sending, 275
Keywords, 5
Kill statement, 203

L
Labels

construction rules, 5
placement in scripts, 1

Language limits, 330
array size, 330
compiled programs, 331
file operations, 331
function and sub arguments, 331
numeric data representation, 329
string data representation, 330

LBound function, 203
LCase function, 204
Left-aligning strings, 219
Left function, 204
LeftB function, 205
LeftBP function, 205
Len keyword

Len function, 206
Open statement, 237

LenB function, 208
LenBP function, 209
Length of files, 144, 216
Less than operator (<), 53
Less than or equal to

operator (< =), 53
Let statement, 210
Lib keyword

Declare statement, 106
Like operator, 64
Limits, language

array size, 330
compiled programs, 331
file operations, 331
identifier length, 331
numeric data representation, 329
string data representation, 330

Index 349

Line continuation character (_), 1
Line Input # statement, 212
Line number for error, 130
Line width in a file, 320
List keyword

Declare statement (forward
reference), 110

Dim statement, 115
Function statement, 160
Sub statement, 291

Lists
Dim statement, 115
Erase statement, 129
IsElement function, 196
IsList function, 198
ListTag function, 213

ListTag function, 213
LMBCS keyword

Declare statement, 27
LMBCS strings, 106
LOC function, 213
Lock keyword

Lock statement, 215
Open statement, 237

LOF Function, 216
Log function, 217, 218
Logical operators, 45

And, 56
Eqv, 60
Imp, 62
Not, 55
Or, 58
Xor, 59

Long data type, 218
Loop keyword

Do statement, 123
Loops

Do statement, 123
For statement, 146
ForAll statement, 148
While statement, 320

LotusScript
constants, 14
error messages file, 41
keywords, 5

LotusScript and REXX, 339
LotusScript data types, 290, 317

Currency data type, 98
Double data type, 125
Integer data type, 194
Long data type, 218

Lowercase character conversion, 204

LSCONST.LSS file, 14
LSERR.LSS file, 41
LSet statement, 219
LSS files, 181
LSX files, 315
LTrim function, 220

M
Macintosh platform differences, 337
Macros, running, 136
Matching strings, 64
Mathematical functions

Abs function, 69
ACos function, 70
ASin function, 72
ATn function, 72
ATn2 function, 73
Cos function, 93
Exp function, 141
Fix function, 144
Fraction function, 159
Int function, 193
Log function, 217, 218
Randomize statement, 256
Rnd function, 266
Round function, 267
Sgn function, 281
Sin function, 283
Sqr function, 286
Tan function, 301

Mathematical operators, 45
Me keyword

Class statement, 85
Members of a class, 85
Members of a type, 306
MessageBox function and

statement, 220
Mid function, 222
Mid statement, 223
MidB function, 224
MidB statement, 224
MidBP function, 224
Minus sign (-), 52
Minute function, 225
MkDir statement, 226
Mod operator, 50
Modules

Execute function, 137
Initialize sub, 296
limits on symbols, 331
Terminate sub, 299
Use statement, 314
UseLSX statement, 315

Month function, 227
MsgBox function and statement, 220
Multiplication operator (*), 47

N
Name conflicts, 9
Name statement, 227
Names

construction rules, 4
reserved for LotusScript, 5

Natural logarithm, 217, 218
Negation operator (-), 47
New keyword

Class statement, 85
Dim statement, 115
Set statement, 278

New sub, 297
Next keyword

For statement, 146
On Error statement, 230
Resume statement, 261

NoCase keyword
Option Compare statement, 241

NoPitch keyword
Option Compare statement, 241

Not equals operator (> < or < >), 53
Not operator, 55
NOTHING values, 14

Class statement, 85
Delete statement, 114
Dim statement, 115
Set statement, 278

Now function, 228
NULL values, 14

IsNull function, 199
Variant data type, 317

Number handling
Abs function, 69
Fix function, 144
Fraction function, 159
Int function, 193
IsNumeric function, 200
limits on range of values, 329
numeric construction rules, 2
Round function, 267
Sgn function, 281

Numeric conversions, 13
Bin function, 75
CCur function, 79
CDat function, 80
CDbl function, 82
CInt function, 85
CLng function, 89

350 LotusScript Language Reference Guide

CSng function, 95
CStr function, 96
CVar function, 98
Hex function, 172
Oct function, 229
Str function, 287
Val function, 316

O
Object arguments to C functions, 27
Objects

Bracket notation, 76
Class statement, 85
CreateObject function, 93
creating, 297
Delete statement, 114
deleting, 294
Dim statement, 115
Dot notation, 124
GetObject function, 168
Is operator, 66
IsObject function, 201
naming rules, 4
On Event statement, 232
Set statement, 278
With statement, 322

Oct function, 229
Octal numbers, 229

numeric construction rules, 2
OLE objects

CreateObject function, 93
GetObject function, 168
IsObject function, 201
naming rules, 4

On...GoSub statement, 234
On...GoTo statement, 235
On Error statement, 41, 43, 230
On Event statement, 232
Open statement, 237
Opening files

binary, 38
random, 36
sequential, 34

Operating environment
variables, 127

Operating system differences, 333,
334, 337

Operators
addition (+), 50
And, 56
comparison, 53
division (/), 48
Eqv, 60

exponentiation (^), 46
Imp, 62
integer division, 49
Is, 66
IsA, 67
Like, 64
Mod, 50
multiplication (*), 47
negation (-), 47
Not, 55
Or, 58
order of precedence, 45
relational, 53
string concatenation (&), 63
subtraction (-), 52
Xor, 59

Option Base statement, 241
Option Compare statement, 241
Option Declare statement, 244
Option Explicit statement, 244
Option Public statement, 244
Or operator, 58
OS/2 platform differences, 333
Output

Beep statement, 74
MessageBox function and

statement, 220
Print statement, 245

Output keyword
Open statement, 237

P
Parameters, 16
Parentheses ()

order of evaluation, 45
Call statement, 77

Passing arguments, 16, 17, 24, 26, 27
Pattern matching, 64
PI constant, 14
PIF files, 282
Pitch keyword

Option Compare statement, 241
Pitch sensitivity

Option Compare statement, 241
Platform differences, 333, 334, 337
Platforms

Platform-identification
constants, 196

platform-identification
constants, 177

Plus sign (+), 50

Position in a file, 213
EOF function, 128
Seek function, 271
Seek statement, 272

Precedence of operators, 45
Preserve keyword

ReDim statement, 257
Print # statement, 246
Print keyword

Open statement, 237
Print statement, 245
Private keyword

Class statement, 85
Const statement, 91
Declare statement (external

C calls), 106
Declare statement (forward

reference), 110
Dim statement, 115
Function statement, 160
Property Get/Set statements, 249
Sub statement, 291

Procedures
defining, 15
maximum arguments, 331

Product objects
Bracket notation, 76
Delete statement, 114
Dim statement, 115
Dot notation, 124
Set statement, 278

Programs, interacting with
ActivateApp statement, 70
SendKeys statement, 275
Shell function, 282

Properties
defining, 15
naming rules, 4

Property Get/Set statements, 249
Property keyword

Declare statement (forward
reference), 110

Exit statement, 139
Public keyword

Class statement, 85
Const statement, 91
Declare statement (external

C calls), 106
Declare statement (forward

reference), 110
Dim statement, 115
Function statement, 160
Option Public statement, 244

Index 351

Property Get/Set statements, 249
Sub statement, 291

Punctuation characters, 7
Put keyword

Open statement, 237
Put statement, 253

Q
Quotation marks, 3

R
Random files, 33, 36

defining record types, 36
Get statement, 164
Open statement, 237
opening, 36
Put statement, 253
reading, 37
writing, 37

Random keyword
Open statement, 237

Random numbers, 266
Randomize statement, 256
Read-only files

GetFileAttr function, 166
SetFileAttr function, 280

Read keyword
Open statement, 237

Reading from files
binary, 39
Get statement, 164
Input # statement, 182
Input function, 184
InputB function, 186
InputBP function, 188
Line Input # statement, 212
random, 37
sequential, 35

Recursion, 20
Recursion, limits, 331
ReDim statement, 257
Reference, argument passing by, 13,

17, 24, 26, 27
References, forward, 110
Relational operators, 45, 53
Rem (%Rem directive), 260
Rem statement, 259
Remainder of division, 50
Remove keyword

On Event statement, 232

Reserved words, 5
Reset statement, 261
Resume keyword

On Error statement, 230
Resume statement, 261

Resume statement, 41, 43
Return statement, 263
Return values, 15, 16, 19, 31, 106,

110, 160
REXX, 339
REXXCmd Function, 339
REXXFunction Function and

Statement, 341
REXXLTS.EXE, 343
Right-aligning strings, 268
Right function, 264
RightB function, 264
RightBP function, 265
RmDir statement, 265
Rnd function, 266
Roots, square, 286
Round function, 267
Rounding numbers

Int function, 193
RSet statement, 268
RTrim function, 269
Rules for constructing scripts, 1
Running examples, ii
Run-time errors, 41, 43
Run statement, 269

S
Scalar values

IsScalar function, 202
Scientific notation, 2
Scope of declarations, 9
Screen, printing to, 245
Scripts

limits on size, 331
rules for constructing, 1

Searching in strings, 189, 190, 192
Second function, 270
Seeding the random number

generator, 256
Seek function, 271
Seek statement, 272
Select Case statement, 273
Separators, 7

Sequential files, 33
Input # statement, 182
Input function, 184
Line Input # statement, 212
Open statement, 237
opening, 34
Print # statement, 246
reading, 35
Write # statement, 323
writing, 34

Set keyword
Property Get/Set statements, 249
Set statement, 278

SetAttr function, 280
SetFileAttr function, 280
Setting file information, 141
Sgn function, 281
Shadowing, 9
Shared keyword

Open statement, 237
Shared library, 23, 106
Shell function, 282
Sin function, 283
Single data type, 284
Space function, 284
Spaces, blank

LTrim function, 220
RTrim function, 269
Space function, 284
Spc function, 285
statement construction rules, 1
Tab function, 300
Trim function, 305

Spc function, 285
Special characters, 7
Sqr function, 286
Square roots, 286
Statement continuation

character (_), 1
Statement separation character (:), 1
Statements, rules for constructing, 1
Static keyword

Declare statement (forward
reference), 110

Dim statement, 115
Function statement, 160
Property Get/Set statements, 249
Sub statement, 291

Step keyword
For statement, 146

Stop statement, 286
Str function, 287
StrCom function, 287
StrCompare function, 287

352 LotusScript Language Reference Guide

StrConv function, 288
String arguments to

C functions, 26, 27
String concatenation operator (&), 63
String conversions

Str function, 287
String data type, 290
String function, 291
String handling

concatenation operator (&), 63
Format function, 151
InStr function, 189
InStrB function, 190
InStrBP function, 192
language limits for, 330
LCase function, 204
Left function, 204
LeftBP function, 205
Len function, 206
LenB function, 208
LenBP function, 209
Like operator, 64
LSet statement, 219
LTrim function, 220
Mid function, 222
Mid statement, 223
MidBP function, 224
Option Compare statement, 241
Right function, 264
RightBP function, 265
RSet statement, 268
RTrim function, 269
Space function, 284
Str function, 287
StrCompare function, 287
string construction rules, 3
String function, 291
Trim function, 305
UCase function, 312
UString function, 315
Val function, 316

String operators, 45
Sub Delete, 294
Sub Initialize, 296
Sub keyword

Declare statement (external
C calls), 106

Declare statement (forward
reference), 110

Exit statement, 139
Sub statement, 291

Sub New, 297
Sub Terminate, 299

Subexpressions
order of precedence, 45

Subs
Call statement, 77
defining, 15
GoSub statement, 170
maximum arguments, 331
naming rules, 4
Sub statement, 291

Subtraction operator (-), 52
Suffix characters for data types, 12, 16

Deftype statements, 112
Dim statement, 115

Symbolic constants, 91
Symbols, limit per module, 331
Syntax diagrams

typographical conventions, ix
System date

Date function, 102
Date statement, 103

System files, 121
GetFileAttr function, 166
SetFileAttr function, 280

T
Tab function, 300
Tag names in lists, 213
Tan function, 301
Terminate sub, 299
Terminating scripts, 126
Text keyword

Option Compare statement, 241
Then keyword

If...Then...Else statement, 175
If...Then...ElseIf statement, 176

Tilde (~) escape character, 4
Time and date handling

CDat function, 80
Date function, 102
Date statement, 103
DateNumber function, 103
DateValue function, 104
Day function, 105
FileDateTime function, 143
Format function, 151
Hour function, 173
IsDate function, 195
Minute function, 225
Month function, 227
Now function, 228
Second function, 270
Time function, 302
Time statement, 302

TimeNumber function, 303
Timer function, 303
TimeValue function, 304
Today function, 305
Weekday function, 319
Year, 325

Time function, 302
Time statement, 302
TimeNumber function, 303
Timer function, 303
TimeSerial function, 303
TimeValue function, 304
To keyword

Dim statement, 115
For statement, 146
Lock and Unlock statements, 215
ReDim statement, 257
Select Case statement, 273

Today function, 305
Trigonometric functions

ACos function, 70
ASin function, 72
ATn function, 72
ATn2 function, 73
Cos function, 93
Sin function, 283
Tan function, 301

Trim function, 305
Trimming spaces from strings

LTrim Function, 220
RTrim function, 269
Trim function, 305

TRUE constant, 14
Type arguments to C functions, 27
Type statement, 306
TypeName function, 309
Types

naming rules, 4
Typographical conventions

in code examples, ix
in syntax diagrams, ix

U
UBound function, 311
UCase function, 312
UChr function, 312
Uni function, 313
Unicode characters

Declare statement, 106
UChr function, 312
Uni function, 313
UString function, 315

Index 353

Unicode keyword
Declare statement, 27

UNIX platform differences, 334
Unlock statement, 215, 313
Until keyword

Do statement, 123
Uppercase character conversion, 312
Use statement, 314
UseLSX statement, 315
User-defined data types

Dot notation, 124
naming rules, 4
Type statement, 306

UString function, 315

V
Val function, 316
Value, argument passing by, 17, 24,

26, 27
Values, 14

literal numbers, 2
literal strings, 3

Variables
declaring and initializing, 12
Dim statement, 115
Let statement, 210
LSet statement, 219
naming rules, 4
Option Declare statement, 244
RSet statement, 268
Set statement, 278

Variables, environment, 127
Variant data type, 317

data type conversion, 13
DataType function, 99

VarType function, 99
Vertical bars (|), 3
Volume labels, 121

GetFileAttr function, 166
SetFileAttr function, 280

W
Weekday function, 319
While keyword

Do statement, 123
While statement, 320
Width # statement, 320
Wildcards

Like operator, 64
Wildcards, in file names, 121
Windows

ActivateApp statement, 70
SendKeys statement, 275
Shell function, 282

With statement, 322
Write # statement, 323
Write keyword

Open statement, 237
Writing to files

binary, 39
Lock and Unlock statements, 215
Print # statement, 246
Put statement, 253
random, 37
sequential, 34
Write # statement, 323

X
Xor operator, 59

Y
Year function, 325
Yield function and statement, 326

354 LotusScript Language Reference Guide

	LotusScript Language Reference
	Copyright
	Contents
	Preface
	Typographical conventions
	Running examples

	Part 1 Scripting Basics
	Chapter 1 Script and Statement Construction Rules
	Script and statement construction rules
	Literal number construction rules
	Literal string construction rules
	Identifier construction rules
	Labels
	Keywords
	Special characters
	Scope of declarations
	Implicit declaration of variables
	Data type conversion
	Constants

	Chapter 2 Procedures
	Declaring function and sub parameters
	Passing arguments by reference and by value
	Returning a value from a function
	Recursive functions

	Chapter 3 Calling External C-Language Functions
	Passing arguments to C functions
	String arguments to C functions
	Array, type, and object arguments to C functions
	Return values from C functions

	Chapter 4 File Handling
	Sequential files
	Opening sequential files
	Writing to sequential files
	Reading from sequential files
	Random files
	Opening random files
	Defining record types
	Reading from random files
	Writing to random files
	Binary files
	Opening binary files
	Using variable-length fields

	Writing to binary files
	Reading from binary files

	Chapter 5 Error Processing
	Defining errors and error numbers
	Run-time error processing

	Part 2 Language Elements
	Chapter 6 Operators
	Operator order of precedence
	Exponentiation operator
	Negation operator
	Multiplication operator
	Division operator
	Integer division operator
	Mod operator
	Addition operator
	Subtraction operator
	Comparison operators
	Not operator
	And operator
	Or operator
	Xor operator
	Eqv operator
	Imp operator
	String concatenation operator
	Like operator
	Is operator
	IsA operator

	Chapter 7 Statements, Built-In Functions, Subs, Data Types, and Directives
	Abs function
	ACos function
	ActivateApp statement
	Asc function
	ASin function
	ATn function
	ATn2 function
	Beep statement
	Bin function
	Bracket notation
	Call statement
	CCur function
	CDat function
	CDbl function
	ChDir statement
	ChDrive statement
	Chr function
	CInt function
	Class statement
	CLng function
	Close statement
	Command function
	Const statement
	Cos function
	CreateObject function
	CSng function
	CStr function
	CurDir function
	CurDrive function
	Currency data type
	CVar function
	DataType function
	Data types
	Date function
	Date statement
	DateNumber function
	DateValue function
	Day function
	Declare statement (external C calls)
	Declare statement (Forward reference)
	Deftype statements
	Delete statement
	Dim statement
	Dir function
	Do statement
	Dot notation
	Double data type
	End statement
	Environ function
	EOF function
	Erase statement
	Erl function
	Err function
	Err statement
	Error function
	Error statement
	Evaluate function and statement
	Execute function and statement
	Exit statement
	Exp function
	FileAttr function
	FileCopy statement
	FileDate time function
	FileLen function
	Fix function
	For statement
	ForAll statement
	Format function
	Formatting codes
	Formatting dates and times in Asian languages

	Fraction function
	FreeFile function
	Function statement
	Get statement
	GetFileAttr function
	GetObject function
	GoSub statement
	GoTo statement
	Hex function
	Hour function
	If...GoTo statement
	If...Then...Else statement
	If...Then...ElseIf statement
	%If directive
	IMEStatus function
	%Include directive
	Input # statement
	Input function
	InputB function
	InputBox function
	InputBP function
	InStr function
	InStrB function
	InStrBP function
	Int function
	Integer data type
	IsArray function
	IsDate function
	IsDefined function
	IsElement function
	IsEmpty function
	IsList function
	IsNull function
	IsNumeric function
	IsObject function
	IsScalar function
	Kill statement
	LBound function
	LCase function
	Left function
	LeftB function
	LeftBP function
	Len function
	LenB function
	LenBP function
	Let statement
	Line Input # statement
	ListTag function
	LOC function
	Lock and Unlock statements
	LOF function
	Log function in LotusScript
	Log function
	Long data type
	LSet statement
	LTrim function
	MessageBox function and statement
	Mid function
	Mid statement
	MidB function
	MidB statement
	MidBP function
	Minute function
	MkDir statement
	Month function
	Name statement
	Now function
	Oct function
	On Error statement
	On Event statement
	On...GoSub statement
	On...GoTo statement
	Open statement
	Option Base statement
	Option Compare statement
	Option Declare statement
	Option Public statement
	Print statement
	Print # statement
	Property Get/Set statements
	Put statement
	Randomize statement
	ReDim statement
	Rem statement
	%Rem directive
	Reset statement
	Resume statement
	Return statement
	Right function
	RightB function
	RightBP function
	RmDir statement
	Rnd function
	Round function
	RSet statement
	RTrim function
	Run statement
	Second function
	Seek function
	Seek statement
	Select Case statement
	SendKeys statement
	Set statement
	SetFileAttr statement
	Sgn function
	Shell function
	Sin function
	Single data type
	Space function
	Spc function
	Sqr function
	Stop statement
	Str function
	StrCompare function
	StrConv function
	String data type
	String function
	Sub statement
	Sub Delete
	Sub Initialize
	Sub New
	Sub Terminate
	Tab function
	Tan function
	Time function
	Time statement
	TimeNumber function
	Timer function
	TimeValue function
	Today function
	Trim function
	Type statement
	TypeName function
	UBound function
	UCase function
	UChr function
	Uni function
	Unlock statement
	Use statement
	UseLSX statement
	UString function
	Val function
	Variant data type
	Weekday function
	While statement
	Width # statement
	With statement
	Write # statement
	Year function
	Yield function and statement

	Part 3 Appendixes
	Appendix A Language and Script Limits
	Limits on numeric data representation
	Limits on string data representation
	Limits on array variables
	Limits on file operations
	Limits in miscellaneous source language statements
	Limits on compiler and compiled program structure

	Appendix B Platform Differences
	OS/2 platform differences
	UNIX platform differences
	Macintosh platform differences

	Appendix C LotusScript/Rexx Integration
	REXXCmd function
	REXXFunction function and statement
	REXXLTS.EXE call

	Index

