
Freelance Graphics: Activate method
{button ,AL(`;H_DOCUMENT_CLASS;H_OLEOBJECT_CLASS;H_PLACEMENTBLOCK_CLASS;',0)} See list of

classes
Simulate a click action on a document, a "Click here..." block, or an OLE object. (Activate for an OLE object is only
available in Freelance Graphics 97.) The object becomes the current object and is brought to the foreground.

Syntax
DocumentObject.Activate
or
PlacementBlockObject.Activate
or
OLEObject.Activate

Parameters
None

Return values
None

Usage
When used on an instance of the Document class, the Activate method brings the document to the front. When used
on an instance of the PlacementBlock class, the Activate method simulates a click on a "Click here..." block. When
used on an instance of the OLEObject class, the Activate method launches the server associated with the embedded
object.

Examples
CurrentApplication.Documents(2).Activate
or
[TextPlacementBlock1].Activate
or
Set MyOLE = CurrentPage.CreateObject "PaintBrush Picture"
MyOLE.Activate

Freelance Graphics: AddPoint method
{button ,AL(`H_ADDPOINT_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Add a point to the object.

Syntax
drawobject.AddPoint(segment, x, y)

Parameters
segment as Integer

Identifies the point after which you want to add the new point. (The first drawn point is 1.) If the object in question
is not a polygon, line, arrow, or curve, this value is ignored.

x as Integer
Horizontal coordinate of the point relative to the left edge of the window, in twips.

y as Integer
Vertical coordinate of the point relative to the bottom of the window, in twips.

Return values
None

Freelance Graphics: AddToPageSelection method
{button ,AL(`H_ADDTOPAGESELECTION_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Add a page to the set of selected pages in the document.

Syntax
documentobject.AddToPageSelection(pageobject)

Parameters
pageobject as Page

Any page object.

Return values
None

Examples
CurrentDocument.AddToPageSelection MyPage

Freelance Graphics: AddToSelection method
{button ,AL(`H_ADDTOSELECTION_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;H_PAGESELECTION_CLAS

S;H_SELECTION_CLASS;',0)} See list of classes
Add the specified object to the set of selected documents, pages, or objects.

Syntax
object.AddToSelection(drawobject)

Parameters
drawobject as DrawObject

Any DrawObject object.

Return values
None

Examples
CurrentPage.Selection.AddToSelection MyRect
or
Selection.AddToSelection MyRect

Freelance Graphics: Align method
{button ,AL(`H_ALIGN_METHOD_MEMDEF_RT;H_SELECTION_CLASS;',0)} See list of classes
Align the currently selected objects.

Syntax
selectionobject.Align(aligntype, centeronpage)

Parameters
aligntype as Variant (Enumerated)

Value Description
$AlignLeft Align left sides
$AlignRight Align right sides
$AlignTop Align tops
$AlignBottom Align bottoms
$AlignRow Center in a row
$AlignColumn Center in a column
$AlignPoint Center on a point

centeronpage as Integer (Boolean)

Value Description
TRUE (-1) Center on page
FALSE (0) Do not center on page

Return values
None

Examples
Selection.Align $AlignLeft, False

Freelance Graphics: ApplyStyle method
{button ,AL(`H_APPLYSTYLE_METHOD_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
Apply the specified style name to the text block.

Syntax
textblockobject.ApplyStyle(stylename)

Parameters
stylename as String

Name to apply to the style.

Return values
None

Freelance Graphics: BrowseDiagrams method
{button ,AL(`H_BROWSEDIAGRAMS_METHOD_MEMDEF_RT;H_PLACEMENTBLOCK_CLASS;',0)} See list of

classes
Launch the Clip Art browser using the specified diagram file. When the user clicks OK in the browser, insert the
currently selected diagram in the "Click here..." block.

Syntax
placementblockobject.BrowseDiagrams(filename)

Parameters
filename as String

Optional name of the diagram file. If omitted, defaults to the first .DGM file in the \SMASTERS\FLG directory.

Return values
None

Freelance Graphics: BrowseSymbols method
{button ,AL(`H_BROWSESYMBOLS_METHOD_MEMDEF_RT;H_PLACEMENTBLOCK_CLASS;',0)} See list of

classes
Launch the Clip Art browser using the specified symbol file. When the user clicks OK in the browser, insert the
currently selected symbol in the "Click here..." block.

Syntax
placementblockobject.BrowseSymbols(filename)

Parameters
filename as String

Optional name of the symbols file. If omitted, defaults to the first .SYM file in the \SMASTERS\FLG directory.

Return values
None

Freelance Graphics: Cascade method
{button ,AL(`H_CASCADE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;'

,0)} See list of classes
Cascades all document windows within the Freelance Graphics application window.

Syntax
applicationwindowobject.Cascade

Parameters
None

Return values
None

Examples
CurrentApplication.Cascade

Freelance Graphics: ClearSelection method
{button ,AL(`H_CLEARSELECTION_METHOD_MEMDEF_RT;H_PAGESELECTION_CLASS;H_SELECTION_CLAS

S;',0)} See list of classes
Deselect all selected items.

Syntax
object.ClearSelection

Parameters
None

Return values
None

Examples
Selection.ClearSelection

Freelance Graphics: CloseWindow method
{button ,AL(`H_CLOSEWINDOW_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
Closes the Freelance Graphics application.

Syntax
applicationobject.CloseWindow(closewindow)

Parameters
closewindow as Integer

Optional and ignored.

Return values
None

Status codes
None

Examples
CurrentDocument.Save
CurrentDocument.CloseWindow

Freelance Graphics: Close method
{button ,AL(`H_CLOSE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCUMENT_CLASS;H_D

OCWINDOW_CLASS;',0)} See list of classes
Close the Freelance Graphics application window (exit Freelance Graphics), or close a document or document
window.

Syntax
documentobject.Close(savechanges, docname, location)
or
appwindowbject.Close
or
docwindowobject.Close(exitapplication)

Parameters
savechanges As Integer

Optional. If True (non-zero), changes are always saved. If False (zero), changes are never saved. If omitted, the
user is consulted if the file has been changed.

docname As String
Optional. Document name.

location As String
Optional. Path.

exitapplication As Integer
Optional. If False (zero), saves the document (if this is the first time the file is saved, opens the SaveAs dialog
box, so user can enter a file name). If True (non-zero) or omitted, file closes without saving the document.

Return values
None

Usage
The Close method works slightly differently for each of the classes where it is available.
In the Document.Close case: If the first parameter, savechanges, is omitted, the user is consulted if the file is
changed. If savechanges is True, the file is saved. If savechanges is False, the file is closed without being saved.
In the ApplicationWindow.Close case: The application simply closes, parameters are ignored. Nothing is saved.
In the DocWindow.Close case: There is only one parameter in this case. If the parameter, exitapplication, is False
(zero), the file is saved. If the parameter, exitapplication, is True or omitted, the file is closed without being saved.

Examples
CurrentApplication.Close

Freelance Graphics: ColorToRGB method
{button ,AL(`H_COLORTORGB_METHOD_MEMDEF_RT;H_COLORS_CLASS;',0)} See list of classes
Return the RGB value of the color produced by the current values of the Red, Green, and Blue properties of a Color
object.

Syntax
colorsobject.ColorToRGB(colorobject)

Parameters
colorobject as Color

The Color object whose RGB value you want returned.

Return values
Long, RGB value.

Examples
Dim MyColorRGB as Long
MyColorRGB = CurrentApplication.Colors.ColorToRGB(MyColor)

Freelance Graphics: Connect method
{button ,AL(`H_CONNECT_METHOD_MEMDEF_RT;H_SELECTION_CLASS;',0)} See list of classes
Connect the currently selected line objects.

Syntax
selection.Connect

Parameters
None

Return values
None

Example
Selection.Connect

Freelance Graphics: ConvertTo method
{button ,AL(`H_CONVERTTO_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Convert the object to lines or polygons.

Syntax
drawobject.ConvertTo(conversiontype)

Parameters
conversiontype as Integer (Enumerated)

Value Description
$ConvertToPolygons Create one or more polygons from

the object
$ConvertToLines Create one or more lines from the

object

Return values
None

Examples
Dim MyRect as DrawObject
Set MyRect = CurrentPage.CreateRect
MyRect.ConvertTo($ConvertToLines)

Freelance Graphics: CopyPage method
{button ,AL(`H_COPYPAGE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Copy a page to the Clipboard.

Syntax
pageobject.CopyPage

Parameters
None

Return values
None

Examples
CurrentPage.CopyPage

Freelance Graphics: CopySelection method
{button ,AL(`H_COPYSELECTION_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Copy the selection to the Clipboard.

Syntax
documentobject.CopySelection

Parameters
None

Return values
None

Examples
CurrentPage.CopySelection

Freelance Graphics: Copy method
{button ,AL(`H_COPY_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Copy an object to the Clipboard.

Syntax
drawobject.Copy

Parameters
None

Return values
None

Examples
CurrentSelection.Copy
or
Dim MyRect as DrawObject
Set MyRect = CurrentPage.CreateRect
MyRect.Copy

Freelance Graphics: CreateArrow method
{button ,AL(`H_CREATEARROW_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Draw an arrow on the page.

Syntax
pageobject.CreateArrow(xstart, ystart, xfinish, yfinish)

Parameters
xstart as Integer

(Optional, see note) Starting horizontal coordinate of the arrow, in twips.
ystart as Integer

(Optional, see note) Starting vertical coordinate of the arrow, in twips.
xfinish as Integer

(Optional, see note) Ending horizontal coordinate of the arrow, in twips.
yfinish as Integer

(Optional, see note) Ending vertical coordinate of the arrow, in twips.
Note If you omit the parameters, the arrow will be centered on the page.

Return values
An instance of the DrawObject class (the drawn arrow).

Examples
Dim MyArrow as DrawObject
Set MyArrow = CurrentPage.CreateArrow(1000, 1000, 3000, 3000)

Freelance Graphics: CreateChart method
{button ,AL(`H_CREATECHART_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Create a chart on the page.
Note For more information on working with charts in LotusScript, search for ChartBase in the Help Index.

Syntax
pageobject.CreateChart(x, y, width, height)

Parameters
x as Integer

(Optional, see note) Right edge of the chart object relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Bottom edge of the chart object relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
Note If you omit the parameters, the chart will be centered on the page.

Return values
An instance of the DrawObject class (the drawn chart).

Examples
Dim MyChart as Chart
Set MyChart = CurrentPage.CreateChart(4000,10000,6000,6000)

Freelance Graphics: CreateComment method
{button ,AL(`H_CREATECOMMENT_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Create TeamReview comments on a page.

Syntax
pageobject.CreateComment(x, y, width, height)

Parameters
x as Integer

(Optional, see note) Right edge of the comment object relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Bottom edge of the comment object relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
Note If you omit the parameters, the comment will be centered on the page.

Return values
An instance of the DrawObject class (the TeamReview comments).

Examples
CurrentPage.CreateComment "Four score and seven years ago"

Freelance Graphics: CreateLine method
{button ,AL(`H_CREATELINE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Draw a line on the page.

Syntax
pageobject.CreateLine(xstart, ystart, xfinish, yfinish)

Parameters
xstart as Integer

(Optional, see note) Starting horizontal coordinate of the line, in twips.
ystart as Integer

(Optional, see note) Starting vertical coordinate of the line, in twips.
xfinish as Integer

(Optional, see note) Ending horizontal coordinate of the line, in twips.
yfinish as Integer

(Optional, see note) Ending vertical coordinate of the line, in twips.
Note If you omit the parameters, the line will be centered on the page.

Return values
An instance of the DrawObject class (the drawn line).

Example
Dim MyLine as DrawObject
Set MyLine = CurrentPage.CreateLine(1000, 1000, 3000, 3000)

Freelance Graphics: CreateMovie method
{button ,AL(`H_CREATEMOVIE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Add a movie to the page.

Syntax
pageobject.CreateMovie(x, y, width, height, filename)

Parameters
x as Integer

(Optional, see note) Left edge of the movie window relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Bottom edge of the movie window relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
filename as String

 Name of the file containing the movie to be added to the page.
Note If you omit the optional parameters, the movie will be located in a default position defined by the product.

Return values
An instance of the DrawObject class (the movie object).

Freelance Graphics: CreateObject method
{button ,AL(`;H_PAGE_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Controls the creation of an OLE object. The OLE object is an instance of the DrawObject class.

Syntax
PageObject.CreateObject(Class type As String|Filename As String, Link As Intger, DisplayIcon As Integer, x As
Integer, y As Integer, w As Integer, h As Integer)

Parameters
ClassType As String

Optional only if the second parameter is present, otherwise this parameter is manditory. Input parameter. The
type of object that you want to embed in a presentation. The list of object types includes a Bitmap Image,
Paintbrush Picture, and so on. In Freelance Graphics choose Create - Object to see the list of objects available to
you. The list is dependent on those OLE applications that you have on your system. Use the program name as it
appears in the Windows registry or you can use the progid from the registry.

FileName As String
Optional only if the first parameter is present, otherwise this parameter is manditory. Input parameter. If creating
the object from a file, use this parameter to show path and name of the file.

Link As Integer
Optional. Input. True (link) or false (embed), where false is zero, and true is any non-zero integer.

DisplayAsIcon As Integer
Optional. Input. True (displayed as an icon) or false (displayed as a metafile representation). Where false is zero,
and true is any positive integer.

x As Integer
(Optional, see note) Input. Horizontal coordinate measured in twips. The default value results in an object
roughly centered on the page.

y As Integer
(Optional, see note) Input. Vertical coordinate measured in twips. The default value results in an object roughly
centered on the page.

w As Integer
(Optional, see note) Input. Width of area taken up by the OLE object measured in twips. The default value results
in an object roughly centered on the page.

h As Integer
(Optional, see note) Input. Height of the area taken up by the OLE object measured in twips. The default value
results in an object roughly centered on the page.

Note If you omit the parameters, the object will be centered on the page.

Return values
Returns a OLEObject class reference.

Usage
Either the first or second parameter must be present.

Example
' In this example, you create an instance of an OLE object (a Paintbrush picture).
Set MyOLE = CurrentPage.CreateObject ("PaintBrush Picture")

Freelance Graphics: CreateOval method
{button ,AL(`H_CREATEOVAL_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Draw an oval on the page.

Syntax
pageobject.CreateOval(xcenter, ycenter, width, height)

Parameters
xcenter as Integer

(Optional, see note) Horizontal coordinate starting at the top-left "corner" of the oval, in twips.
ycenter as Integer

(Optional, see note) Vertical coordinate starting at the top-left "corner" of the oval, in twips.
width as Integer

(Optional, see note) Width of the oval, in twips.
height as Integer

(Optional, see note) Height of the oval, in twips.
Note If you omit the parameters, the oval will be centered on the page.

Return values
An instance of the DrawObject class (the drawn oval).

Examples
Dim MyOval as DrawObject
Set MyOval = CurrentPage.CreateOval(1000, 1000, 3000, 3000)

Freelance Graphics: CreatePageFromTemplate method
{button ,AL(`H_CREATEPAGEFROMTEMPLATE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
Create a new page using a content topic.

Syntax
document.CreatePageFromTemplate pagetitle, templateindex

Parameters
PageTitle as String

Name for the new page.
TemplateIndex as Integer

Identifies the content topic page type (the first type is 1).

Return values
An instance of the Page class.

Freelance Graphics: CreatePage method
{button ,AL(`H_CREATEPAGE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Create a new page.

Syntax
documentobject.CreatePage pagetitle, masterindex

Parameters
pagetitle as String

Name for the new page
masterindex as Integer

Identifies the SmartLook to be used (1--refers to the first one in the list of SmartLooks that are on your system; 2--
refers to the second, and so on). To see the list of SmartLooks: in the main menu, choose Presentation - Choose
a Different SmartMaster Look.

Return values
An instance of the Page class.

Examples
Dim Page1 as Page
Set Page1 = CurrentDocument.CreatePage("My Title Page",1)

Freelance Graphics: CreatePlacementBlock method
{button ,AL(`H_CREATEPLACEMENTBLOCK_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Create a "Click here..." block.

Syntax
pageobject.CreatePlacementBlock(x, y, width, height, blocktype, text)

Parameters
x as Integer

(Optional, see note) Left edge of the object relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Bottom edge of the object relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
blocktype as Variant

Value Description
pbTypeText Click here to enter text
pbTypeSymbol Click here to add a symbol
pbTypeChart Click here to create a chart
pbTypeOrgChart Click here to create an organization chart
pbTypeTable Click here to create a table
pbTypeButton Click here to add a button

text as String
Prompt text to include in the "Click here..." box.

Note If you omit the optional parameters, the block will be centered on the page.

Return values
An instance of the DrawObject class.

Freelance Graphics: CreateRect method
{button ,AL(`H_CREATERECT_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Draw a rectangle on the page.

Syntax
pageobject.CreateRect(xcenter, ycenter, width, height)

Parameters
xcenter as Integer

(Optional, see note) Horizontal coordinate starting at the top-left corner of the rectangle, in twips.
ycenter as Integer

(Optional, see note) Vertical coordinate starting at the top-left corner of the rectangle, in twips.
width as Integer

(Optional, see note) Width of the rectangle, in twips.
height as Integer

(Optional, see note) Height of the rectangle, in twips.
Note If you omit the parameters, the rectangle will be centered on the page.

Return values
An instance of the DrawObject class (the drawn rectangle).

Examples
Dim MyRect as DrawObject
Set MyRect = CurrentPage.CreateRect(1000, 1000, 2000, 2000)

Freelance Graphics: CreateStyle method
{button ,AL(`H_CREATESTYLE_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Create a new named style based on the attributes of the text block.

Syntax
textblockobject.CreateStyle(stylename)

Parameters
stylename as String

Name of the new style.

Return values
None

Freelance Graphics: CreateSymbol method
{button ,AL(`H_CREATESYMBOL_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Add a symbol to the page.

Syntax
pageobject.CreateSymbol(filename, index, x, y, width, height)

Parameters
filename as String

Name of the file containing the symbol.
index as Integer

 Sequence number of the symbol in the file.
x as Integer

(Optional, see note) Left edge of the symbol relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Bottom edge of the symbol relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
Note If you omit the optional parameters, the symbol will be centered on the page.

Return values
An instance of the DrawObject class (the symbol object).

Freelance Graphics: CreateTable method
{button ,AL(`H_CREATETABLE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Create a table on the page.

Syntax
pageobject.CreateTable(type, rows, columns, x, y, width, height)

Parameters
type as Integer

See the Create Table dialog's Table Gallery for examples of the following grid types.

Value Description
1 Full grid
2 Grid except for first row and column
3 Outline around outside of table
4 No grid lines

rows as Integer
Number of rows.

columns as Integer
Number of columns.

x as Integer
(Optional, see note) Left edge of the table relative to the left edge of the window, in twips.

y as Integer
(Optional, see note) Bottom edge of the table relative to the bottom of the window, in twips.

width as Integer
(Optional, see note) Width in twips.

height as Integer
(Optional, see note) Height in twips.

Note If you omit the optional parameters, the table will be centered on the page.

Return values
An instance of the Table class.

Freelance Graphics: CreateText method
{button ,AL(`H_CREATETEXT_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Create a text block.

Syntax
pageobject.CreateText(x, y, width, height)

Parameters
x as Integer

(Optional, see note) Left edge of the text block relative to the left edge of the window, in twips.
y as Integer

(Optional, see note) Top edge of the text block relative to the bottom of the window, in twips.
width as Integer

(Optional, see note) Width in twips.
height as Integer

(Optional, see note) Height in twips.
Note If you omit the parameters, the text will be centered on the page.

Return values
An instance of the DrawObject class.

Freelance Graphics: CutPage method
{button ,AL(`H_CUTPAGE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Cut a Page object and place it on the Clipboard.

Syntax
pageobject.CutPage

Parameters
None

Return values
None

Examples
CurrentPage.CutPage

Freelance Graphics: CutSelection method
{button ,AL(`H_CUTSELECTION_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Cut the current selection and place it on the Clipboard.

Syntax
documentobject.CutSelection

Parameters
None

Return values
None

Examples
CurrentSelection.CutSelection

Freelance Graphics: Cut method
{button ,AL(`H_CUT_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Cut a DrawObject and place it on the Clipboard.

Syntax
drawobject.Cut

Parameters
None

Return values
None

Examples
Dim MyRect as DrawObject
Set MyRect = CurrentPage.CreateRect()
MyRect.Cut

Freelance Graphics: DeleteCol method
{button ,AL(`H_DELETECOL_METHOD_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
Delete a specified column from the table.

Syntax
tableobject.DeleteCol(column)

Parameters
column as Integer

 Number of the column to delete.

Return values
None

Freelance Graphics: DeletePage method
{button ,AL(`H_DELETEPAGE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Delete the specified page.

Syntax
documentobject.DeletePage(pageobject)

Parameters
pageobject as Page

 The page to delete.

Return values
None

Freelance Graphics: DeleteReviewer method
{button ,AL(`H_DELETEREVIEWER_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Open the dialog box used to delete a TeamReview reviewer.

Syntax
documentobject.DeleteReviewer

Parameters
None

Return values
None

Freelance Graphics: DeleteRow method
{button ,AL(`H_DELETEROW_METHOD_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
Delete a specified row from the table.

Syntax
tableobject.DeleteRow(row)

Parameters
row as Integer

 The number of the row to delete.

Return values
None

Freelance Graphics: DeleteSpeakerNote method
{button ,AL(`H_DELETESPEAKERNOTE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Delete speaker notes from the page.

Syntax
pageobject.DeleteSpeakerNote

Parameters
None

Return values
None

Examples
CurrentPage.DeleteSpeakerNote

Freelance Graphics: Deselect method
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
Clear all the selected objects on the current page.

Syntax
documentobject.Deselect

Return values
None

Example
CurrentDocument.Deselect

Freelance Graphics: DistributeForComment method
{button ,AL(`H_DISTRIBUTEFORCOMMENT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
Open the Distribute for Comment dialog box.

Syntax
documentobject.DistributeForComment

Parameters
None

Return values
None

Freelance Graphics DoVerb method
{button ,AL(`;H_OLEOBJECT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
DoVerb is a variant.

Syntax
OLEObject.DoVerb(Index)

Parameters
Index As Integer

Indicates which action to take. Starts with zero. Indicates whatever action is available for this instance of the
OLEObject. For example, a Freelance Graphics presentation OLE object has the actions: Edit presentation, Run
Screen Show, and Convert. These actions correspond to the index values of 0, 1, and 2, respectively.

Return values
None.

Usage
You use this method to perform actions on an instance of the OLEObject.

Example
' In this example, you create an instance of an OLE object
' (a Paintbrush picture), and then using the reference, MyOLE, you
' use the DoVerb method to act on the created object.
Set MyOLE = CurrentPage.CreateObject ("PaintBrush Picture")
EDITPICT = 0
MyOLE.DoVerb EDITPICT

Freelance Graphics: EnterEditMode
{button ,AL(`H_ENTEREDITMODE_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Enter edit mode on a text block.

Syntax
textblockobject.EnterEditMode

Parameters
None

Return values
None

Freelance Graphics: FindNextObject method
{button ,AL(`H_FINDNEXTOBJECT_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Find the next occurrence of the specified named object on the Page.
Note Use FindObject to find the first occurrence of an object on a Page.

Syntax
pageobject.FindNextObject(objectname, afterme)

Parameters
objectname as String

Name of the object to find.
afterme as DrawObject

(Optional) The object after which to begin the search.

Return values
An instance of the DrawObject class (the found object).

Examples
Dim Rect2 as DrawObject
Set Rect2 = CurrentPage.FindNextObject("MyRect")

Freelance Graphics: FindObject method
{button ,AL(`H_FINDOBJECT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;H_PAGE_CLASS;',0)} See list of

classes
Find the first occurrence of the specified named object in the Document or on the Page.
Note Use FindNextObject to find subsequent occurrences of an object on a Page.

Syntax
object.FindObject(objectname)

Parameters
objectname as String

 Name of the object to find.

Return values
An instance of the DrawObject class.

Examples
Dim Rect1 as DrawObject
Set Rect1 = CurrentPage.FindObject("My Rect")

Freelance Graphics: Flip method
{button ,AL(`H_FLIP_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Flip the object top-to-bottom or left-to-right.

Syntax
drawobject.Flip(flipdirection)

Parameters
flipdirection as Variant (Enumerated)

Value Description
$FlipLeftToRight Mirror the image on the vertical plane
$FlipTopToBottom Mirror the image on the horizontal plane

Return values
None

Examples
CurrentSelection.Flip($FlipLeftToRight)

Freelance Graphics: GetBulletCount method
{button ,AL(`H_GETBULLETCOUNT_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Return the number of bulleted items in the text block.

Syntax
textblock.GetBulletCount

Parameters
None

Return values
Number of bullets (Integer)

Freelance Graphics: GetCell method
{button ,AL(`H_GETCELL_METHOD_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
Return the specified cell as a drawn object.

Syntax
tableobject.GetCell(row, column)

Parameters
row as Integer

Row number of the row containing the text.
column as Integer

Column number of the column containing the text.

Return values
An instance of the TextBlock class.

Freelance Graphics: GetEnum method
{button ,AL(`H_GETENUM_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
Resolve the specified enumerated type to its value. This is useful for cross-application scripts.

Syntax
applicationobject.GetEnum(enumerationname)

Parameters
enumerationname as Variant

An enumeration name as a string, with or without the $.

Return values
Value of the specified enumeration name.

Example
CurrentApplication.GetEnum("ViewDraw")

Freelance Graphics: GetIndex method
{button ,AL(`H_GETINDEX_METHOD_MEMDEF_RT;H_COLORS_CLASS;H_DOCUMENTS_CLASS;H_OBJECTS_

CLASS;H_PAGES_CLASS;',0)} See list of classes
Returns the index (e.g., the fifth object in the set).

Syntax
objectset.GetIndex(object, startingindex)

Parameters
object as object

The instance of the object whose index you want.
startingindex as Integer

Optional starting position in the set for the search.

Return values
Integer indicating the object occurrence within the set of objects (for example, the page number of a specified page
within the set of pages).

Example
Dim ThisIndex as Integer
ThisIndex = CurrentPage.Objects.GetIndex(MyRect)
or
Dim ThisIndex as Index
ThisIndex = CurrentApplication.Colors.GetIndex(MyColor)

Freelance Graphics: GetMarkup method
{button ,AL(`H_GETMARKUP_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Return the text and all markup attributes from a TextBlock, as a string.

Syntax
textblockobject.GetMarkup

Parameters
None

Return values
A string containing the text from a TextBlock object, and all markup attributes for that text.

Freelance Graphics: GetNearestColor method
{button ,AL(`H_GETNEARESTCOLOR_METHOD_MEMDEF_RT;H_COLORS_CLASS;',0)} See list of classes
Return the closest available color (in the Freelance Color Library) to the color specified.

Syntax
colorsobject.GetNearestColor(colorobject)

Parameters
colorobject as Color

 The Color object whose color you want to match as closely as possible.

Return values
An object of the Color class that is the closest match to the passed color.

Example
Dim MyLibraryColor as Color
Dim MyColor as Color
Set MyColor = CurrentApplication.Colors.RGBToColor(17395023)
Set MyLibraryColor = CurrentApplication.Colors.GetNearestColor(MyColor)

Freelance Graphics: GetNearestIndex method
{button ,AL(`H_GETNEARESTINDEX_METHOD_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
Return the index of the closest available color for the color specified.

Syntax
colorobject.GetNearestIndex(colorobject)

Parameters
colorobject as Color

 The Color object whose color you want to match as closely as possible.

Return values
An integer containing the index of the Color class that is the closest match to the passed color.

Freelance Graphics: GetNthBullet method
{button ,AL(`H_GETNTHBULLET_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Return the text from the nth bulleted item within the text block.

Syntax
textblockobject.GetNthBullet(n)

Parameters
n as Integer

Sequence number of the bullet.

Return values
A string containing the text from the nth bulleted item.

Freelance Graphics: GetObjectData method
{button ,AL(`H_GETOBJECTDATA_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Return user-defined object data (persistent, string-valued name and value pair).

Syntax
drawobject.GetObjectData(variablename)

Parameters
variablename as String

Name of a user-defined variable.

Return values
String containing the value of the named variable.

Freelance Graphics: GetRGB method
{button ,AL(`H_GETRGB_METHOD_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
Return the RGB value of the color produced by the current values of the Red, Green, and Blue properties of a Color
object.

Syntax
colorobject.GetRGB

Parameters
None

Return values
Long, RGB value.

Examples
Dim RGBValue as Long
RGBValue = MyColor.GetRGB()

Freelance Graphics: GetSelection method
{button ,AL(`H_GETSELECTION_METHOD_MEMDEF_RT;H_PAGESELECTION_CLASS;H_SELECTION_CLASS;',

0)} See list of classes
Returns the specified selected object from the set of currently selected objects.

Syntax
objectselection.GetSelection(objectnumber)

Parameters
objectnumber as Integer
The number of the object or page to be returned.

Return values
The DrawObject at the specified index in the selection.

Examples
'with at least two draw objects selected:
Dim Rect2 as DrawObject
Set Rect2 = Selection.GetSelection(2)

Freelance Graphics: GetSpeakerNoteMarkup method
{button ,AL(`H_GETSPEAKERNOTEMARKUP_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Return the text from the speaker notes from a page, including all markups.

Syntax
pageobject.GetSpeakerNoteMarkup

Parameters
None

Return values
A string containing the text from the speaker notes for a page, and all markup attributes for that text.

Freelance Graphics: GotoNotes method
{button ,AL(`H_GOTONOTES_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;',0)} See list of classes
Switch window focus to Lotus Notes. (If Notes is not running, it will be launched.)

Syntax
applicationwindow.GotoNotes

Parameters
None

Return values
None

Freelance Graphics: GotoPage method
{button ,AL(`H_GOTOPAGE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Go to the page specified by a page number, page name, or object name.

Syntax
documentobject.GotoPage pageindicator

Parameters
pageindicator as Variant

Page number (integer), page name (string), or Page object.

Return values
None

Examples
CurrentDocument.GotoPage(5)

Freelance Graphics: Group method
{button ,AL(`H_GROUP_METHOD_MEMDEF_RT;H_SELECTION_CLASS;',0)} See list of classes
Group currently selected objects.

Syntax
selectionobject.Group

Parameters
None

Return values
A new instance of a grouped DrawObject.

Examples
Dim MyGroup as DrawObject
Set MyGroup = Selection.Group()

Freelance Graphics: Import method
{button ,AL(`H_IMPORT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Import a file.

Syntax
documentobject.Import(filename, includewithfile, converttopostscript, includetemplate, codepage)

Parameters
filename as String

 Name of the file to import.
includewithfile as Integer (Enumerated)

Value Description
TRUE (-1) Include the imported file with the presentation
FALSE (0) Do not include the imported file (default)

converttopostscript as Integer (Enumerated)

Value Description
TRUE (-1) Convert the imported file to PostScript
FALSE (0) Do not convert the imported file (default)

includetemplate as Integer (Enumerated)

Value Description
TRUE (-1) Include the imported template with the

presentation
FALSE (0) Do not include the imported template (default)

codepage as integer
Identifies a special code page for the import operation (defaults to 0).

Return values
The imported object.

Freelance Graphics: InsertCol method
{button ,AL(`H_INSERTCOL_METHOD_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
Insert a new column as the specified column in a table.

Syntax
tableobject.InsertCol(newcolumnnumber)

Parameters
newcolumnnumber as Integer

The column number of the new column in the table.

Return values
None

Freelance Graphics: InsertRow method
{button ,AL(`H_INSERTROW_METHOD_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
Insert a new row as the specified row in a table.

Syntax
tableobject.InsertRow(newrownumber)

Parameters
newrownumber as Integer

The row number of the new row in the table.

Return values
None

Freelance Graphics: Insert method
{button ,AL(`H_INSERT_METHOD_MEMDEF_RT;H_PLACEMENTBLOCK_CLASS;',0)} See list of classes
Insert the specified object in a placement ("Click here...") block.

Syntax
placmentblockobject.Insert object

Parameters
object as DrawObject

The object to be inserted in the "Click here..." block.

Return values
None

Freelance Graphics: IsEmpty method
{button ,AL(`H_ISEMPTY_METHOD_MEMDEF_RT;H_COLORS_CLASS;H_DOCUMENTS_CLASS;H_OBJECTS_C

LASS;H_PAGES_CLASS;',0)} See list of classes
Test if a collection type object (Colors, Documents, Objects, or Pages) is empty (contains no items).

Syntax
objectcollection.IsEmpty

Parameters
None

Return values
Integer (Boolean)

Value Description
TRUE There are no items in the object
FALSE There are one or more items in the object

Examples
If CurrentPage.Objects.IsEmpty() Then
Print "There are no objects on this page"
End If

Freelance Graphics: Item method
{button ,AL(`H_ITEM_METHOD_MEMDEF_RT;H_COLORS_CLASS;H_DOCUMENTS_CLASS;H_OBJECTS_CLAS

S;H_PAGES_CLASS;',0)} See list of classes
Return an item from a collection type object (Colors, Documents, Objects, or Pages).

Syntax
objectcollection.Item(index)

Parameters
index as Variant

The index of the item to return, or the name of the color.

Return values
An instance of the Color, Document, DrawObject, or Page class.

Examples
Dim MyPage2 as Page
Set MyPage2 = CurrentDocument.Pages.Item(2)
or
Dim MyBlueColor as Color
Dim MyGreenColor as Color
Set MyBlueColor = CurrentApplication.Colors.Item("Blue")
Set MyGreenColor = CurrentApplication.Colors.Item(35)

Freelance Graphics: LeaveEditMode
{button ,AL(`H_LEAVEEDITMODE_METHOD_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
Leave edit mode for the text block (simulate clicking outside that block).

Syntax
textblockobject.LeaveEditMode

Parameters
None

Return values
None

Freelance Graphics: Maximize method
{button ,AL(`H_MAXIMIZE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;'

,0)} See list of classes
Maximize the Freelance application or document window.

Syntax
windowobject.Maximize

Parameters
None

Return values
None

Examples
CurrentApplicationWindow.Maximize
or
CurrentDocWindow.Maximize

Freelance Graphics: Minimize method
{button ,AL(`H_MINIMIZE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;',

0)} See list of classes
Minimize the Freelance application or document window.

Syntax
windowobject.Minimize

Parameters
None

Return values
None

Examples
CurrentApplicationWindow.Minimize
or
CurrentDocWindow.Minimize

Freelance Graphics: Move method
{button ,AL(`H_MOVE_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;H_PAGE_CLASS;',0)} See list of

classes
Move an object to a new position on the page, or move a page to or before the specified page number.

Syntax
drawobject.Move xtwips, ytwips
or
pageobject.Move pagenumber, insertbefore

Parameters
xtwips as Long

 Horizontal twips to move (positive moves to right, negative to left).
ytwips as Long

 Vertical twips to move (positive moves up, negative down).
pagenumber as Integer

Page number of the new page, or page before which to insert the new page (see note).
insertbefore as Integer (Enumerated)

(Optional)

Value Description
TRUE (-1) Insert the page before the specified page

number
FALSE (0) (Default) Insert the page at the specified

page number

Return values
None

Freelance Graphics: NearestColorFromRGB method
{button ,AL(`H_NEARESTCOLORFROMRGB_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of

classes
Return the Freelance Graphics palette color that is the closest match to the specified RGB value.

Syntax
applicationobject.NearestColorFromRGB(rgbvalue)

Parameters
rgbvalue as Long

Any RGB value.

Return values
An instance of the Color class.

Examples
Dim MyColor as Color
Set MyColor = CurrentApplication.NearestColorFromRGB(1598564)

Freelance Graphics: NewDocument method
{button ,AL(`H_NEWDOCUMENT_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
Create a new presentation by showing the user interface, with optional parameters supplying default values or
selections.

Syntax
applicationobject.NewDocument name, location, kind, mastername, masterlocation

Parameters
Note The first three parameters are ignored. You must save a document to name it.
name as String

Optional file name.
location as Variant

Optional location of the file.
kind as String

Optional file type.
mastername as String

Optional content topic (.SMC) or SmartLook (.MAS) file name.
masterlocation as Variant

Optional content topic set location (must contain a string).

Return values
Returns the new document as an instance of the Document class.

Freelance Graphics: OpenDocumentFromInternet method
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Opens an existing .PRZ, .PRE, .SMC, .MAS, .SYM, .DGM, or .PAL document from the Internet, analogous to the
OpenDocument function. Returns the document.

Syntax
ApplicationObject.OpenDocumentFromInternet(URL, DocType, Password, MakeVisible, UserId, UserPassword,
UsePassiveConnection, ProxyServerAddress, ProxyPort, ProxyType)

Parameters
URL As String

Optional. Universal Resource Language location (e.g. "ftp://Radium/users/bob/test.123"), if omitted the interactive
dialog will appear to prompt the user.

DocType As String
Optional.

Password As String
Optional.

MakeVisible As Integer
Optional (Freelance Graphics ignors this parameter). Integer used as a boolean: Any non-zero integer is true.
False is zero.

UserId As String
Optional. The id required by the host.

UserPassword As String
Optional. The password required for the host.

UsePassiveConnection As Integer
Optional. Integer used as a boolean. True (any non-zero integer is true): your internal network is connected to the
Internet through a firewall that supports passive transfers. False (that is, zero): the fire wall does not accept
passive transfers.

ProxyServerAddress As String
Optional. Server IP Address or Domain Name

ProxyPort As Integer
Optional. Choose from the available proxy ports.

ProxyType As Integer
Optional. A World Wide Web page is INT_WWW (1) or an FTP file is INT_FTP (2)

Return values
Returns an instance of the Document class.

Usage
Use this method to open a Freelance Graphics file on the internet.

Freelance Graphics: OpenDocumentFromNotes method
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Opens a document attached to a Notes document. Returns the document

Syntax
ApplicationObject.OpenDocumentFromNotes(AttachedFileName As String, UniversalNotesIs, FieldName,
databasePath, ServerName, DocType, Password, OpenAsReadOnly, MakeVisible)

Parameters
AttachedFileName As String

Optional. For example, a file name such as"test.123". If omitted the interactive dialog will appear to prompt the
user.

UnvervisalNotesId As String
Optional. For example, "150DFE45F1089B790065828D852562CA"

FieldName As String
Optional. For example, "Body"

DatabasePath As String
Optional. For example, "Databases\Docs in Progress.nsf"

ServerName As String
Optional. For example, "Local"

DocType As String
Optional. For example, ".PRZ"

Password As String
Optional. Password of document to open.

OpenAsReadOnly As Integer
Optional (Freelance Graphics ignores this parameter). Integer used as a boolean: Any non-zero integer is true.
False is zero.

MakeVisible As Integer
Optional (Freelance Graphics ignores this parameter). Integer used as a boolean: Any non-zero integer is true.
False is zero.

Return values
Returns an instance of the Document class.

Usage
Use this method to open a presentation that is imbedded a Notes docment.

Example
CurrentApplication.OpenDocumentFromNotes "test.prz", "somenotesid", _
 "Body", "Progress.nsf", "Local"

Freelance Graphics: OpenDocument method
{button ,AL(`H_OPENDOCUMENT_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
Open a presentation for editing.

Syntax
applicationobject.OpenDocument name, location, kind, readonly, makevisible

Parameters
name as String

File name of the presentation file to be opened.
location as Variant

Optional path for the file (must contain a string; defaults to the working directory).
kind as String

Optional file type (defaults to PRZ).
readonly as Integer (Enumerated)

Optional read-only flag.

Value Description
TRUE (-1) Read-only
FALSE (0) Read-write (default)

makevisible as Integer (Enumerated)
Ignored and always treated as TRUE (this parameter is declared for compatibility with Open methods in other
Lotus products).

Value Description
TRUE (-1) Visible (default)
FALSE (0) Invisible (ignored)

Return values
Returns the opened document as an instance of the Document class.

Freelance Graphics: OpenPresForCopy method
{button ,AL(`H_OPENPRESFORCOPY_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Open a presentation from which pages can be copied (similar to the presentation browser, however, this method does
not open or use the presentation browser).

Syntax
documentobject.OpenPresForCopy(presentationname)

Parameters
presentationname As String

Name of the presentation file to open in the browser.

Return values
None

Usage
Use this method only in conjunction with two other methods: SelectPageForCopy method and PasteSelectedPages
method.

Example
Sub CopyAPage

CurrentDocument.OpenPresentationForCopy "turtle.prz"
CurrentDocument.SelectPageForCopy 1
CurrentDocument.PasteSelectedPages 1

End Sub

Freelance Graphics: PastePage method
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
Pastes a page into the current document after the current page.

Syntax
documentobject.PastePage

Parameters
None

Return values
Returns a Page object.

Usage
Before calling this method, a Freelance Graphics page must have been placed on the clipboard by a user or by a
script command.

Freelance Graphics: PasteSelectedPages method
{button ,AL(`H_PASTESELECTEDPAGES_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Paste into the document the page(s) copied by the SelectPageForCopy method.

Syntax
documentobject.PasteSelectedPages(pagestartnum)

Parameters
pagestartnum as Integer

Where the selected pages are to be pasted.

Value Description
 0 After the current page
1 Before the current page
2 At the end of the presentation

Return values
None

Freelance Graphics: PasteSpecial method
{button ,AL(`H_PASTESPECIAL_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Paste the Clipboard contents onto the page using a special format (bitmap or chart, for example).

Syntax
pageobject.PasteSpecial(clipboardformat)

Parameters
clipboardformat as String

Any of the Clipboard formats displayed in the Paste Special dialog, or OLE object for an OLE object on the
Clipboard.

Return values
The pasted object (a new instance of the DrawObject class).

Freelance Graphics: Paste method
{button ,AL(`H_PASTE_METHOD_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
Paste the Clipboard contents onto the page or into the document.

Syntax
object.Paste(makevisible)

Parameters
makevisible as Integer (Enumerated)

Ignored and always treated as TRUE (this parameter is declared for compatibility with Paste methods in other
Lotus products).

Value Description
TRUE (-1) Make the pasted page(s) visible (default)
FALSE (0) Make the pasted page(s) invisible (ignored)

Return values
If pasting to a Page, the pasted object (a new instance of the DrawObject class); if pasting to a Document, no return
value.

Freelance Graphics: Play method
{button ,AL(`H_PLAY_METHOD_MEMDEF_RT;H_MEDIA_CLASS;',0)} See list of classes
Play a media object (a sound or a movie).

Syntax
mediaobject.Play

Parameters
None

Return values
None

Freelance Graphics: PrintOut method
{button ,AL(`H_PRINTOUT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Print the presentation.

Syntax
documentobject.Print frompage, topage, copies

Parameters
frompage as Integer

Starting page number to print.
topage as Integer

Ending page number to print.
copies as Integer

Number of copies to print.

Return values
None

Usage
This method is identical to the Print method.

Freelance Graphics: Print method
{button ,AL(`H_PRINT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Print the presentation.

Syntax
documentobject.Print frompage, topage, copies

Parameters
frompage as Integer

Starting page number to print.
topage as Integer

Ending page number to print.
copies as Integer

Number of copies to print.

Return values
None

Usage
This method is identical to the PrintOut method.

Freelance Graphics: PublishToWeb method
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Saves a presentation in HTML format (including GIF files, content page, link to presentation, speaker notes, and so
on).

Syntax
DocumentObject.PublishToWeb(FileName, FileType, Netscape, Resolution, Contents, LinkPres, SpkNote, Media,
Email, EmailName, EmailAddr)

Parameters
FileName As String

Name of main HTM file. If directory is not specified, uses work directory. Appends ".HTM", if not specified.
FileType As Variant

Optional parameter.
$NonHTML20 = Not HTML 2.0 (Default)
$HTML20CERN = HTML 2.0 CERN
$HTML20NCSA = HTML 2.0 NCSA

Netscape As Integer
Optional parameter.
FALSE = not Netscape Enhanced HMTL 2.0
TRUE = Netscape Enhanced HMTL 2.0 (Default)

Resolution As Variant
Optional parameter.
$Res640x480
$Res800x600 (Default)
$Res1024x768
$Res1280x1024

Contents As Integer
Optional parameter.
FALSE = no table of contents
TRUE = table of contents (Default)

LinkPres As Integer
Optional parameter.
FALSE = no link to PRZ file (Default)
TRUE = add link

LotusLink As Integer
Optional parameter.
FALSE = no button linked to Lotus Home Page
TRUE = add button linked to Lotus Home Page (Default)

SpkNote As Integer
Optional Parameter.
FALSE = no speaker notes
TRUE = publish speaker notes (Default)

Media As Integer
Optional Parameter.
FALSE = don't publish multimedia data (Default)
TRUE = publish multimedia data

Email As Integer
Optional Parameter. If this parameter is TRUE, then EmailName and EmailAddr parameters must be included.
FALSE = no mail to URL (Default)
TRUE = add mail to URL

EmailName As String
Optional Parameter. However, if Email is True, this parameter must be included.
String for name in mail to URL.

EmailAddr As String
Optional Parameter. However, if Email is True, this parameter must be included.
String form email address in mail to URL.

Return values
None.

Usage
You can use PublishToWeb to save a presentation in HTML format.

Freelance Graphics: PutIntoPlacementBlock method
{button ,AL(`H_PUTINTOPLACEMENTBLOCK_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of

classes
Place an object in a "Click here..." block.

Syntax
drawobject.PutIntoPlacementBlock(placementblockid)

Parameters
placementblockid as Integer

An integer identifying the "Click here..." block.

Return values
None

Freelance Graphics: Quit method
{button ,AL(`H_QUIT_METHOD_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
Exit Freelance Graphics.

Syntax
applicationobject.Quit

Parameters
None

Return values
None

Freelance Graphics: RemoveFromSelection method
{button ,AL(`H_REMOVEFROMSELECTION_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;H_PAGESELECTIO

N_CLASS;H_SELECTION_CLASS;',0)} See list of classes
Remove the specified object from the set of currently selected objects.

Syntax
objectcollection.RemoveFromSelection object

Parameters
object as DrawObject

 The object you want removed from the selection.

Return values
None

Examples
Selection.RemoveFromSelection MyRect2

Freelance Graphics: Remove method
{button ,AL(`H_REMOVE_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;H_PAGE_CLASS;',0)} See list of

classes
Delete a DrawObject or Page object.

Syntax
object.Remove

Parameters
None

Return values
None

Examples
CurrentSelection.Remove

Freelance Graphics: Replicate method
{button ,AL(`H_REPLICATE_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;H_PAGE_CLASS;',0)} See list of

classes
Replicate an object.

Syntax
drawobject.Replicate

Parameters
None

Return values
A new instance of the replicated object.

Freelance Graphics: Restore method
{button ,AL(`H_RESTORE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;'

,0)} See list of classes
Restore the Freelance Graphics application or document window.

Syntax
windowobject.Restore

Parameters
None

Return values
None

Freelance Graphics: RevertToStyle method
{button ,AL(`H_REVERTTOSTYLE_METHOD_MEMDEF_RT;H_BACKGROUND_CLASS;H_BORDER_CLASS;H_F

ONT_CLASS;H_LINESTYLE_CLASS;H_TEXTBLOCK_CLASS;',0)} See list of classes
Revert to the named style for a Background, Border, Font, LineStyle, or TextBlock object.
Note For this release, the RevertToStyle method has no effect any object class.

Syntax
object.RevertToStyle(attributename)

Parameters
attributename AS String

Optional input parameter.

Return values
None

Freelance Graphics: RGBtoColor method
{button ,AL(`H_RGBTOCOLOR_METHOD_MEMDEF_RT;H_COLORS_CLASS;',0)} See list of classes
Return the Color class object that matches the RGB value specified.

Syntax
colorsobject.RGBtoColor(colornumber)

Parameters
colornumber as Long

An RGB value.

Return values
Color class object matching the RGB value specified.

Examples
Dim MyColor as Color
Set MyColor = CurrentApplication.Colors.RGBToColor(1598564)

Freelance Graphics: Rotate method
{button ,AL(`H_ROTATE_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Rotate the object a specified number of degrees around a specified anchor point.

Syntax
drawobject.Rotate xanchor, yanchor, degrees

Parameters
xanchor as Long

Horizontal coordinate of the anchor point in twips.
yanchor as Long

Vertical coordinate of the anchor point in twips.
degrees as Double

Degrees of rotation in a counterclockwise direction.

Return values
None

Freelance Graphics: RunDialog method
{button ,AL(`H_RUNDIALOG_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Launch one of five hard-coded dialogs.

Syntax
documentobject.RunDialog(dialogtype, dialogcaption, maintext, p4, p5, p6, p7, p8, p9, p10, p11, p12)

Parameters and return values (by dialog type)
The first three parameters are the same for all five dialog types. The usage of parameters 4-12 and the return values
vary by dialog type. The common parameters are described first, followed by the dialog-specific parameters and
return values for each dialog type.
This method always returns a packed 32-bit (integer) value. In the descriptions of the return values, bit 0 is the least
significant bit of the integer.

Common parameters
For all dialogs the first three parameters are always the same.
dialogtype as Integer

Value Description
1 Two radio buttons, each with an associated spinner

control
2 Seven check boxes
3 Four radio buttons, optional second text box
4 Three check boxes, optional second text box
5 List box with up to seven items

dialogcaption as String
The text to display in the caption (title bar) of the dialog.

maintext as String
Instructional text for a display-only text box in the dialog.

The use of the remaining parameters varies depending on the value of first parameter (dialogtype).
Note Parameters 4-10 are always type String, although for some dialog types they contain string representations of
numerics. Parameters 11 and 12 are always type Integer.

Type 1 (two radio buttons, each with an associated spinner control) parameters
Paramete
r

Description

p4 String for first radio button
p5 String for second radio button
p6 String containing the number of the radio button

selected initially
p7, p8 Unused
p9 String containing the first spinner minimum value
p10 String containing the first spinner maximum value
p11 Integer containing the second spinner minimum

value
p12 Integer containing the second spinner maximum

value

Type 1 return values
Bit(s) Description
0-7 The value set by the spinner control for the

selected radio button when the dialog was closed
8 The radio button selected on return:

0 = first
1 = second

9 How the user closed the box:
0 = selected Cancel
1 = selected OK

10-31 Unused

Type 2 (seven check boxes) parameters
Paramete
r

Description

p4-p10 Strings for check boxes 1-7; each parameter is the
string to display with the corresponding check box

p11 Initial state of the check boxes; True (non-zero)
sets all check boxes as checked; False (zero) sets
all check boxes as unchecked.

p12 Unused

Type 2 return values
Bit(s) Description
0-6 Indicates which boxes were selected on return:

0 = not selected
1 = selected

7 Unused
8 How the user closed the box:

0 = selected Cancel
1 = selected OK

9-31 Unused

Type 3 (four radio buttons, optional second text box) parameters
Paramete
r

Description

p4-p7 Strings for radio buttons 1-4; each parameter is the
string to display with the corresponding radio button

p8 String for optional second text block
p9-p12 Unused

Type 3 return values
Bit(s) Description
0-2 A binary number indicating which radio button was

selected on return (for example, 110 indicates that
button three was selected)

3-7 Unused
8 How the user closed the box:

0 = selected Cancel
1 = selected OK

9-31 Unused

Type 4 (three check boxes, optional secondary text) parameters
Paramete
r

Description

p4-p6 Strings for check boxes 1-3; each parameter is the
string to display with the corresponding check box

p7 String for optional secondary text block
p8-p10 Unused
p11 Initial state of the check boxes; True (non-zero)

sets all check boxes as checked; False (zero) sets
all check boxes as unchecked.

p12 Unused

Type 4 return value
Bit(s) Description
0-2 Indicates which boxes were selected on return:

0 = not selected
1 = selected

3-7 Unused
8 How the user closed the box:

0 = selected Cancel
1 = selected OK

9-31 Unused

Type 5 (list box with up to seven items) parameters
Paramete
r

Description

p4-p10 Up to seven strings; each string is a separate entry
in the list box

p11-p12 Unused

Type 5 return values
Bit(s) Description
0-2 A binary number indicating which item in the list

box was selected on return (for example, 110
indicates that item three was selected)

3-7 Unused

8 How the user closed the box:
0 = selected Cancel
1 = selected OK

9-31 Unused

Examples
' Example of posting Dialog 2 and interpreting results...
DIM PackedVal as Integer
PackedVal = CurrentDocument.RunDialog (2, "DialogTitle", "StaticText",_
"CheckBox 1", "CheckBox 2", "CheckBox 3", "CheckBox 4", "CheckBox 5",_
"CheckBox 6", "CheckBox 7", FALSE, 0)
For I = 1 TO 7
 IF PackedVal AND (2^(I-1)) THEN
 Print "CheckBox "+Str$(I)+" was enabled."
 ELSE
 Print "CheckBox "+Str$(I)+" was disabled."
 END IF
NEXT I

Freelance Graphics: SameColor method
{button ,AL(`H_SAMECOLOR_METHOD_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
Compare the color of two Color class objects to determine if they have the same RGB value.

Syntax
colorobject1.SameColor(colorobject2)

Parameters
colorobject2 as Color

 An object of class Color.

Return values
Integer (Boolean).

Value Description
TRUE Same color
FALSE Different colors

Examples
If Color1.SameColor(Color2) Then

Print "Color2 is identical to Color1"
End If

Freelance Graphics: SaveAsToInternet method
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Saves the document to the Internet (analogous to the SaveAs method).

Syntax
DocumentObject.SaveAsToInternet(URL, DocType, Password, UserID, UserPassword, UsePassiveConnection,
ProxyServerAddress, ProxyPort, ProxyType)

Parameters
URL As String

Optional. Universal Resource Language location (e.g. "ftp://Radium/users/bob/test.123"), if omitted the interactive
dialog will appear to prompt the user.

DocType As String
Optional. For example: ".PRZ". The options are: .PRZ, .PRE, .SMC, .MAS, .SYM, .DGM, .PAL, and .HTM.

Password As String
Optional. The document password.

UserID As String
Optional. The user's id for the Internet server.

UserPassword As String
Optional.

UsePassiveConnection As Integer
Optional. Integer used as a boolean. True (any non-zero integer is true): your internal network is connected to the
Internet through a firewall that supports passive transfers. False (that is, zero): the fire wall does not accept
passive transfers.

ProxyServerAddress As String
Optional. The server IP Address or Domain Name

ProxyPort As Integer
Optional.

ProxyType As Integer
Optional. For a World Wide Web page, use INT_WWW (1) ; for an FTP file, use INT_FTP (2)

Return values
None.

Usage
Use this method to save files as a given file type to an Internet server.

Freelance Graphics: SaveAsToNotes method
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
Saves the document as a Notes attachment.

Syntax
DocumentObject.SaveAsToNotes(AttachedFileName, UniversalNotesID, FieldName, DatabasePath, ServerName,
DocType, Password)

Parameters
AttachedFileName As String

Optional. For example: "test.123", if omitted the interactive dialog will appear to prompt the user.
UniversalNotesID As String

Optional. For example: "150DFE45F1089B790065828D852562CA"
FieldName As String

Optional. For example: "Body"
DatabasePath As String

Optional. For example: "Databases\Docs in Progress.nsf"
ServerName As String

Optional. For example: "Local"
DocType As String

Optional (Freelance Graphics ignores this parameter). For example: ".PRZ"
Password As String

Optional (Freelance Graphics ignores this parameter). The document password.

Return values
None.

Usage
Use this method to save presentations to a Notes server.

Freelance Graphics: SaveAs method
{button ,AL(`H_SAVEAS_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Save the current presentation in a new file.

Syntax
documentobject.SaveAs(filename, location, type, backup)

Parameters
filename as String

 Optional file name.
location as Variant

 Optional path in which to save the file.
type as String

(Optional) File type is ignored for this release. The actual type is always PRZ.
backup as Integer

 Indicates if the file should be backed up.

Value Description
TRUE (-1) Back up the file
FALSE (0) Do not back up the file

Return values
None

Freelance Graphics: Save method
{button ,AL(`H_SAVE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Save the current presentation.

Syntax
documentobject.Save

Parameters
None

Return values
None

Freelance Graphics: SelectPageForCopy method
{button ,AL(`H_SELECTPAGEFORCOPY_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Select for copying the specified page of a presentation opened with the OpenPresForCopy method.

Syntax
documentobject.SelectPageForCopy(pagenumber)

Parameters
pagenumber as Integer

The number of the page to select for copying.

Return values
None

Freelance Graphics: Select method
{button ,AL(`H_SELECT_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;H_PAGESELECTION_CLASS;H_SELE

CTION_CLASS;',0)} See list of classes
Select the specified document, page, or object.

Syntax
selectionclasstype.Select(object)

Parameters
object as objecttype

 A Document, DrawObject, or Page object.

Return values
None

Examples
Selection.Select MyRect

Freelance Graphics: SetInternetOptions method
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
This method opens the Internet Options dialog box. The user can select any options within the dialog box and then
press OK.

Syntax
ApplicationObject.SetInternetOptions

Parameters
None.

Return values
None.

Usage
Use this method to connect to a different host or to connect to a host.

Freelance Graphics: SetObjectData method
{button ,AL(`H_SETOBJECTDATA_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Set user-defined object data (persistent, string-valued name and value pair).

Syntax
drawobject.SetObjectData(variablename, variablevalue)

Parameters
variablename as String

The name for the variable.
variablevalue as String

The value for the variable.

Return values
None

Freelance Graphics: SetViewMode method
{button ,AL(`H_SETVIEWMODE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Set the view mode.

Syntax
documentobject.SetViewMode(mode, pagenumber)

Parameters
mode as Variant

Value Description
$ViewDraw Draw view
$ViewOutliner Outliner view
$ViewSorter Page Sorter view
$ViewSlideShow Screen Show view

pagenumber as Integer
Page number to view.

Return values
None

Freelance Graphics: Show method
{button ,AL(`H_SHOW_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Makes the specified document the active document.

Syntax
documentobject.Show

Parameters
None

Return values
None

Usage
If you are working with multiple documents, use this command to switch between them.

Example
' Make two new documents, name them, then use the Show property
' to make first one and then the other document the active document,
' also print the name of the active document in each case.
Set doc1 = CurrentApplication.NewDocument
doc1.SaveAs "Logo1"
Set doc2 = CurrentApplication.NewDocument
doc2.SaveAs "PR_Imag"
doc1.Show
Print CurrentDocument.Name
doc2.Show
Print CurrentDocument.Name

Freelance Graphics: StartGuidedTemplate method
{button ,AL(`H_STARTGUIDEDTEMPLATE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
Start using a content topic.

Syntax
documentobject.StartGuidedTemplate(TemplateName)

Parameters
TemplateName As String

Return values
None

Freelance Graphics: StopGuidedTemplate method
{button ,AL(`H_STOPGUIDEDTEMPLATE_METHOD_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
Stop using a content topic.

Syntax
documentobject.StopGuidedTemplate

Parameters
None

Return values
None

Freelance Graphics: StopPlay method
{button ,AL(`H_STOPPLAY_METHOD_MEMDEF_RT;H_MEDIA_CLASS;',0)} See list of classes
Stop playing the media.

Syntax
mediaobject.StopPlay

Parameters
None

Return values
None

Freelance Graphics: Stretch method
{button ,AL(`H_STRETCH_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Stretch the object.

Syntax
drawobject.Stretch(xanchor, yanchor, xstart, ystart, xfinish, yfinish, sretchmode)

Parameters
All x and y specifications are twips.
xanchor as Long

Horizontal coordinate of the point from which the object will be stretched.
yanchor as Long

Vertical coordinate of the point from which the object will be stretched.
xstart as Long

 Horizontal starting coordinate of the stretch vector.
ystart as Long

 Vertical starting coordinate of the stretch vector.
xfinish as Long

 Horizontal ending coordinate of the stretch vector.
yfinish as Long

 Vertical ending coordinate of the stretch vector.
stretchmode as Integer

Must be zero.

Return values
None

Freelance Graphics: Tile method
{button ,AL(`H_TILE_METHOD_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;',0)}

See list of classes
Tiles all document windows within the Freelance Graphics application window.

Syntax
windowobject.Tile

Parameters
None

Return values
None

Examples
CurrentApplicationWindow.Tile

Freelance Graphics: Ungroup method
{button ,AL(`H_UNGROUP_METHOD_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
Ungroup a grouped object.

Syntax
drawobject.Ungroup

Parameters
None

Return values
None

Examples
Dim MySel as Selection
Set MySel = CurrentSelection
MySel.Group
MySel.Move(50,50)
MySel.Ungroup

Freelance Graphics: ActiveDocument property
{button ,AL(`H_ACTIVEDOCUMENT_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the active presentation document.

Data type
Document

Syntax
set documentobject = applicationobject.ActiveDocument

Legal values
Any instance of the Document class.

Freelance Graphics: ActiveDocWindow property
{button ,AL(`H_ACTIVEDOCWINDOW_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the document window of the active presentation.

Data type
DocWindow

Syntax
set documentwindow = applicationobject.ActiveDocWindow

Legal values
Any instance of the DocWindow class.

Freelance Graphics: ActivePage property
{button ,AL(`H_ACTIVEPAGE_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-write) Get or set the current page, or if in Page Sorter view, the selected page.

Data type
Page

Syntax
set page = documentobject.ActivePage
set documentobject.ActivePage = page

Legal values
Any instance of the Page class.

Freelance Graphics: Active property
{button ,AL(`H_ACTIVE_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Determine if the document is the active presentation.

Data type
Integer (Boolean)

Syntax
value = documentobject.Active

Legal values
Value Description
TRUE (non-0) Document is the active presentation
FALSE (0) Document is not the active presentation

Freelance Graphics: ApplicationWindow property
{button ,AL(`H_APPLICATIONWINDOW_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of

classes
(Read-only) Get the Freelance Graphics application window.

Data type
ApplicationWindow

Syntax
set applicationwindow = applicationobject.ApplicationWindow

Legal values
Any instance of the ApplicationWindow class.

Freelance Graphics: Application property
{button ,AL(`H_APPLICATION_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;H_B

ASEOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the application.

Data type
Application
Document
String

Syntax
set object = objecttype.Application

Legal values
Any instance of the Application or Document class; for the BaseObject class, returns "CurrentApplication."

Freelance Graphics: Author property
{button ,AL(`H_AUTHOR_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-write) Get or set the author of the presentation.

Data type
String

Syntax
authorname = documentobject.Author
documentobject.Author = authorname

Legal values
Any string value.

Freelance Graphics: AutoSaveInterval property
{button ,AL(`H_AUTOSAVEINTERVAL_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of

classes
(Read-write) Get or set the number of minutes between automatic saves.
Note Used only if AutoSave property is TRUE (non-0).

Data type
Integer

Syntax
autosaveinterval = preferencesobject.AutoSaveInterval
preferencesobject.AutoSaveInterval = autosaveinterval

Legal values
Any integer.

Examples
CurrentApplication.Preferences.AutoSaveInterval = 5

Freelance Graphics: AutoSave property
{button ,AL(`H_AUTOSAVE_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Automatic save preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.Autosave
preferencesobject.Autosave= flag

Legal values
Value Description
TRUE (non-0) Perform automatic saves
FALSE (0) Do not perform automatic saves

Usage
The time interval for automatic saves is stored in the AutoSaveInterval property.

Examples
CurrentApplication.Preferences.AutoSave = True

Freelance Graphics: AutoTime property
{button ,AL(`H_AUTOTIME_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) During a screen show, controls whether the page displays for the time interval specified in the
pageobject.Delay property.

Data type
Integer (Boolean)

Syntax
value = pageobject.AutoTime
pageobject.AutoTime = value

Legal values
Value Description
TRUE (non-0) Page displays for the default time interval

specified in pageobject.Delay
FALSE (0) Page remains displayed until the user

selects another page

Freelance Graphics: BackColor property
{button ,AL(`H_BACKCOLOR_PROPERTY_MEMDEF_RT;H_BACKGROUND_CLASS;',0)} See list of classes
(Read-write) Get or set the background color of a drawn object.

Data type
Color

Syntax
set color = backgroundobject.BackColor
set backgroundobject.BackColor = color

Legal values
Any instance of the Color class.

Examples
Dim MyColor as Color
Set MyColor = MyRect1.Background.BackColor
Set MyRect2.Background.BackColor = MyColor

Freelance Graphics: Background property
{button ,AL(`H_BACKGROUND_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the Background property of the object.

Data type
Background

Syntax
set background = drawobject.Background
set drawobject.Background = background

Legal values
Any instance of the Background class.

Usage
You can set a Background to an existing Background, or you can set the individual properties (BackColor, Color, and
Pattern) of the Background class.

Examples
Dim MyBackgroundStyle as Background
Set MyBackgroundStyle = MyRect.Background
Set MyOval.Background = MyBackgroundStyle

Freelance Graphics: BackupDir property
{button ,AL(`H_BACKUPDIR_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the backup directory preference.

Data type
String

Syntax
backupdirectory = preferencesobject.BackupDir
preferencesobject.BackupDir = backupdirectory

Legal values
Any directory.

Examples
CurrentApplication.Preferences.BackUpDir = "c:\backup"

Freelance Graphics: BlackWhitePal property
{button ,AL(`H_BLACKWHITEPAL_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Black-and-white or Color palette flag.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.BlackWhitePal
preferencesobject.BlackWhitePal = flag

Legal values
Value Description
TRUE (non-0) Enable black-and-white palette
FALSE (0) Disable black-and-white palette

Examples
CurrentApplication.Preferences.BlackWhitePal = True

Freelance Graphics: Blue property
{button ,AL(`H_BLUE_PROPERTY_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
(Read-only) Get the amount of blue in a Color object.

Data type
Integer

Syntax
blueamount = colorobject.Blue

Legal values
0 (no blue) to 255 (maximum blue).

Examples
Dim AmountOfBlue as Integer
AmountOfBlue = MyRect.Background.Color.Blue

Freelance Graphics: Bold property
{button ,AL(`H_BOLD_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine if the font is bold.

Data type
Integer (Boolean)

Syntax
value = fontobject.Bold
fontobject.Bold = value

Legal values
Value Description
TRUE (non-0) Bold
FALSE (0) Not bold

Examples
MyText.TextBlock.Font.Bold = True

Freelance Graphics: BorderDisplay property
{button ,AL(`H_BORDERDISPLAY_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the border display preference.

Data type
Integer (Variant)

Syntax
borderdisplay = preferencesobject.BorderDisplay
preferencesobject.BorderDisplay= borderdisplay

Legal values
Value Description
$BorderDispMargin Display drawing area border (recommended)
$BorderDispPrintableArea Display printable area border
$BorderDispNone Display no border

Examples
CurrentApplication.Preferences.BorderDisplay = $BorderDispPrintableArea

Freelance Graphics: Border property
{button ,AL(`H_BORDER_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the Border style for a drawing object.

Data type
Border

Syntax
set border = drawobject.Border
set drawobject.Border = border

Legal values
Any instance of the Border class.

Usage
You can set a Border to an existing Border, but more commonly you will set the individual properties (Color, Pattern,
and Width) of the Border class.

Examples
Set MyRect2.Border = MyRect1.Border
or
MyRect1.Border.Width = $ltsBorderWidthThin

Freelance Graphics: BuildBullets property
{button ,AL(`H_BUILDBULLETS_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Determines if a text block is to be made into a bullet build during a screen show.

Data type
Integer (Boolean)

Syntax
value = drawobject.Buildbullets
drawobject.BuildBullets = value

Legal values
Value Description
TRUE (non-0) Make text block into a bullet build during a

screen show
FALSE (0) Do not make text block into a bullet build

during a screen show

Freelance Graphics: BulletProperties property
{button ,AL(`H_BULLETPROPERTIES_PROPERTY_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
(Read-only) Get the bullet properties for a text block.

DataType
BulletProperties

Syntax
set bulletproperties = textblockobject.BulletProperties

Legal values
Any instance of the BulletProperties class.

Usage
You can access or set the individual properties (Color, ShadowColor, ShadowDepth, and so on) of the
BulletProperties class.

Freelance Graphics: Case property
{button ,AL(`H_CASE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the font case (upper or lower).
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer

Syntax
fontcase = fontobject.Case
fontobject.Case= fontcase

Legal values
Any integer (always returns zero).

Freelance Graphics: Changed property
{button ,AL(`H_CHANGED_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-write) Determine if the document has changed.

Data type
Integer (Boolean)

Syntax
value = documentobject.Changed
documentobject.Changed = value

Legal values
Value Description
TRUE (non-0) Document changed
FALSE (0) Document has not been changed

Freelance Graphics: Chart property
{button ,AL(`H_CHART_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the Chart property for a drawing object.
Note The Freelance Graphics Chart class is derived from the DrawObject class, and has all the properties and
methods of the LotusChart ChartBase class. For more information about the LotusChart ChartBase class, see the
Help contents under LotusScript, LotusChart LotusScript Reference, By Category, Classes.

Data type
Chart

Syntax
set chart = drawobject.Chart

Legal values
Any instance of the Chart class.

Freelance Graphics: CodePage property
{button ,AL(`H_CODEPAGE_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the code page preference.

Data type
Integer

Syntax
codepage = preferencesobject.CodePage
preferencesobject.Author = codepage

Legal values
Value Description
0 System setting
437 U.S. English
850 Multilingual (Latin I)
852 Slavic (Latin II)
860 Portuguese
863 Canadian French
865 Norwegian

Freelance Graphics: ColCount property
{button ,AL(`H_COLCOUNT_PROPERTY_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
(Read-only) Get the number of columns in a table.

Data type
Integer

Syntax
columns = tableobject.ColCount

Legal values
Any positive integer.

Freelance Graphics: Colors property
{button ,AL(`H_COLORS_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the color palette for an application.

Data type
Colors

Syntax
set colorpalette = colorsobject.Colors

Legal values
Any instance of the Colors class.

Usage
You can use this property to retrieve palettecolors using the RGBToColor, Item, and GetNearestColor methods.

Examples
Dim MyPeachColor as Color
Set MyPeachColor = CurrentApplication.Colors.Item(178)
Set MyPeachColor = CurrentApplication.Colors.Item("peach")
Set MyPeachColor = CurrentApplication.Colors.RGBToColor(16764301)

Freelance Graphics: Color property
{button ,AL(`H_COLOR_PROPERTY_MEMDEF_RT;H_BACKGROUND_CLASS;H_BORDER_CLASS;H_BULLET_P

ROPERTIES_CLASS;H_LINESTYLE_CLASS;',0)} See list of classes
(Read-write) Get or set the color for a background, border, bullet, or line style.

Data type
Color

Syntax
set color = object.Color
set object.Color = color

Legal values
Any instance of the Color class.

Usage
You can set a Color to an existing Color, or you can use the RGBtoColor method to create a new Color from a
combination of red, green, and blue. However, once you define a Color object in Freelance Graphics, you cannot
modify its Red, Green, or Blue properties individually.

Examples
Dim MyColor as Color
Set MyColor = MyLine.LineStyle.Color
Set MyRect.Background.Color = MyColor

Freelance Graphics: Count property
{button ,AL(`H_COUNT_PROPERTY_MEMDEF_RT;H_COLORS_CLASS;H_DOCUMENTS_CLASS;H_OBJECTS_C

LASS;H_PAGES_CLASS;',0)} See list of classes
(Read-only) Get the number of open presentations, the number of objects in a collection, the number of colors in the
palette, or the number of pages in a collection.

Data type
Integer

Syntax
count = object.Count

Legal values
Any integer.

Examples
Print "There are " + str$(CurrentDocument.Pages.Count) + " pages in this document."
or
Dim NumObjs as Integer
NumObjs = CurrentPage.Objects.Count

Freelance Graphics: CurrentPrinter property
{button ,AL(`H_CURRENTPRINTER_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the name of the current printer for an application.

Data type
String

Syntax
printername = applicationobject.CurrentPrinter

Legal values
Any printer name.

Freelance Graphics: DefaultFilePath property
{button ,AL(`H_DEFAULTFILEPATH_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the application's default file path.

Data type
String

Syntax
defaultfilepath = applicationobject.DefaultFilePath

Legal values
Any file path.

Examples
Print "The default file path is " + CurrentApplication.DefaultFilePath

Freelance Graphics: Delay property
{button ,AL(`H_DELAY_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;H_PAGE_CLASS;',0)} See list of

classes
(Read-write) Get or set the time delay (in seconds) for a drawing object or page transition during a screen show. For
a page, this delay is used only when pageobject.AutoTime is TRUE (non-0).

Data type
Integer

Syntax
secondsdelay = object.Delay
object .Delay = secondsdelay

Legal values
Any positive integer.

Freelance Graphics: Description property
{button ,AL(`H_DESCRIPTION_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;H_BASEOBJECT_CLASS;',0)}

See list of classes
(Read-write) Get or set the description of the presentation stored in the document, or get the class name of an object.

Data type
String

Syntax
documentobject.Description = description
description = documentobject.Description

Legal values
Any string value.

Freelance Graphics: DimPrevious property
{button ,AL(`H_DIMPREVIOUS_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Determines if the previous items in a bulleted list are to be dimmed during a bullet build (during a screen
show).

Data type
Integer (Boolean)

Syntax
value = drawobject.DimPrevious
drawobject.DimPrevious = value

Legal values
Value Description
TRUE (non-
0)

Dim the previous bullets

FALSE (0) Do not dim the previous bullets

Freelance Graphics: DisplayCoords property
{button ,AL(`H_DISPLAYCOORDS_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Display coordinates preference.

Data type
Integer (Boolean)

Syntax
displaycoordinates = preferencesobject.DisplayCoords
preferencesobject.DisplayCoords = displaycoordinates

Legal values
Value Description
TRUE (non-
0)

Display the coordinates

FALSE (0) Do not display the coordinates

Examples
CurrentApplication.Preferences.DisplayCoords = True

Freelance Graphics: DisplayDrawRuler property
{button ,AL(`H_DISPLAYDRAWRULER_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of

classes
(Read-write) Get or set the Display drawing ruler preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.DisplayDrawRuler
preferencesobject.DisplayDrawRuler = flag

Legal values
Value Description
TRUE (non-
0)

Display the drawing ruler

FALSE (0) Do not display the drawing ruler

Examples
CurrentApplication.Preferences.DisplayDrawRuler = True

Freelance Graphics: DisplayGrid property
{button ,AL(`H_DISPLAYGRID_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Display grid preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.DisplayGrid
preferencesobject.DisplayGrid = flag

Legal values
Value Description
TRUE (non-
0)

Display grid

FALSE (0) Do not display grid

Examples
CurrentApplication.Preferences.DisplayGrid = True

Freelance Graphics: DisplayTextRuler property
{button ,AL(`H_DISPLAYTEXTRULER_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of

classes
(Read-write) Get or set the Display text ruler preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.DisplayTextRuler
preferencesobject.DisplayTextRuler = flag

Legal values
Value Description
TRUE (non-
0)

Display text ruler

FALSE (0) Do not display text ruler

Examples
CurrentApplication.Preferences.DisplayTextRuler = True

Freelance Graphics: DocName property
{button ,AL(`H_DOCNAME_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Get the document (file) name for the presentation.

Data type
String

Syntax
documentname = documentobject.DocName

Legal values
Any string value.

Freelance Graphics: Documents property
{button ,AL(`H_DOCUMENTS_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Get the collection of open presentations.

Data type
Documents

Syntax
set documentcollection = applicationobject.Documents

Legal values
Any instance of the Documents class (a collection of Document objects).

Examples
ForAll doc in CurrentApplication.Documents

Print doc.DocName
End ForAll
or
Dim num as Integer
num = CurrentApplication.Documents.Count
Print "There are " + str$(num) + " presentations open."

Freelance Graphics: Document property
{button ,AL(`H_DOCUMENT_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-only) Get the document containing the page.

Data type
Document

Syntax
set documentobject = pageobject.Document

Legal values
Any instance of the Document class.

Usage
You can set a Document object to an existing Document, or you can set the individual properties (Author, Description,
Location, and so on) of the Document class.

Freelance Graphics: DocWindow property
{button ,AL(`H_DOCWINDOW_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Get the document window size (width and height).

Data type
DocWindow

Syntax
set documentwindow = documentobject.DocWindow

Legal values
Any instance of the DocWindow class.

Usage
Use this property to get the width and height of the document window.

Freelance Graphics: DoubleUnderline property
{button ,AL(`H_DOUBLEUNDERLINE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Double underline (two lines under both words and spaces) font property.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
flag = fontobject.DoubleUnderline
fontobject.DoubleUnderline = flag

Legal values
Value Description
TRUE (non-
0)

Double underline

FALSE (0) No double underline

Freelance Graphics: Embedded property
{button ,AL(`H_EMBEDDED_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is embedded.

Data type
Integer (Boolean)

Syntax
flag = documentobject.Embedded

Legal values
Value Description
TRUE (non-
0)

Embedded object

FALSE (0) Not an embedded object

Freelance Graphics: Exclude property
{button ,AL(`H_EXCLUDE_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) Determine if the page is excluded from the screen show.

Data type
Integer (Boolean)

Syntax
value = pageobject.Exclude
pageobject.Exclude = value

Legal values
Value Description
TRUE (non-
0)

Excluded from screen show

FALSE (0) Not excluded from screen show

Freelance Graphics: ExeName property
{button ,AL(`H_EXENAME_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Determine the executable to launch from an object during a screen show.

Data type
String

Syntax
executablename = drawobject.ExeName
drawobject.ExeName = executablename

Legal values
Any legal executable name.

Freelance Graphics: FirstIndent property
{button ,AL(`H_FIRSTINDENT_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the First indent property for the text (the number of twips the first line of text is to be indented).

Data type
Integer

Syntax
indentation = textobject.FirstIndent
textobject.FirstIndent = indentation

Legal values
Any integer.

Usage
Use the ParaIndent property to set the amount of space you want each paragraph indented.

Freelance Graphics: FontColor property
{button ,AL(`H_FONTCOLOR_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the color for a font.

Data type
Color

Syntax
set color = fontobject.FontColor
set fontobject.Color = color

Legal values
Any instance of the Color class.

Usage
You can set a FontColor to an existing Color, or you can use the Colors class to set a FontColor to a Color from the
Freelance Graphics palette.

Examples
Set MyTextObject1.TextBlock.Font.FontColor = MyColor
Set MyTextObject2.TextBlock.Font.FontColor = CurrentApplication.Colors.Item(178)

Freelance Graphics: FontName property
{button ,AL(`H_FONTNAME_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Font name for a Font class.

Data type
String

Syntax
fontname = fontobject.FontName
fontobject.FontName = fontname

Legal values
Any valid font name.

Examples
MyTextObject.TextBlock.Font.FontName = "Arial"

Freelance Graphics: FontUnit property
{button ,AL(`H_FONTUNIT_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-write) Determine the font units of measurement for an application. For Freelance Graphics, this is always
points.

Data type
Variant

Syntax
fontunit = applicationobject.FontUnit
applicationobject.FontUnit = fontunit

Legal values
The only legal value is $ltsScaleModePoint.

Freelance Graphics: Font property
{button ,AL(`H_FONT_PROPERTY_MEMDEF_RT;H_TEXTBLOCK_CLASS;H_TEXTPROPERTIES_CLASS;',0)} See

list of classes
(Read-write) Determine the font property for the TextProperties or TextBlock class.

Data type
Font

Syntax
set font = object.Font
set object.Font = font

Legal values
Any instance of the Font class.

Usage
You can set a Font to an existing Font, or you can set the individual properties (Bold, Case, FontColor, and so on) of
the Font class.

Examples
Dim MyFont as Font
Set MyFont = MyTextObject.TextBlock.Font
MyFont.Bold = True
Set MyTextObject2.TextBlock.Font = MyFont

Freelance Graphics: FullName property
{button ,AL(`H_FULLNAME_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;',0)} See

list of classes
(Read-only) Get the full application or document path name (the full path name includes the executable file name).

Data type
String

Syntax
fullname = object.FullName

Legal values
Any valid full path name.

Freelance Graphics: Green property
{button ,AL(`H_GREEN_PROPERTY_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
(Read-only) Get the amount of green in a Color object.

Data type
Integer

Syntax
greenamount = colorobject.Green
colorobject.Green= greenamount

Legal values
0 (no green) to 255 (maximum green).

Examples
Dim AmountOfGreen as Integer
AmountOfGreen = MyRect.Background.Color.Green

Freelance Graphics: Height property
{button ,AL(`H_HEIGHT_PROPERTY_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;

H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the application window, document window, or drawing object height, in twips.

Data type
Integer (AppWindow, DocWindow classes)
Long (DrawObject class)

Syntax
twipshigh = object.Height

Legal values
Any positive value.

Freelance Graphics: HorizontalAlignment property
{button ,AL(`H_HORIZONTALALIGNMENT_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list

of classes
(Read-write) Get or set the horizontal alignment property for the text.

Data type
Variant (Enumerated)

Syntax
horizontalalignment = textobject.HorizontalAlignment
HorizontalAlignment = horizontalalignment

Legal values
Value Description
$ltsAlignmentLeft Left aligned
$ltsAlignmentRight Right aligned
$ltsAlignmentHorizCenter Centered horizontally
$ltsAlignmentJustify Fit between margins

Freelance Graphics: ID property
{button ,AL(`H_ID_PROPERTY_MEMDEF_RT;H_PLACEMENTOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the ID for a "Click here..." block.

Data type
Integer

Syntax
idnumber = placementblockobject.ID

Legal values
Any "Click here..." block number.

Freelance Graphics: Image property
{button ,AL(`H_IMAGE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only)Get the image properties for a drawing object. This property is valid only if DrawImageRef.IsImage is
TRUE (non-0).

Data type
Image

Syntax
set image = drawobject.Image

Legal values
Any instance of the Image class.

Usage
You can set an Image to an existing Image, or you can set the individual properties (Brightness, Contrast, Sharpness,
and so on) of the Image class.

Freelance Graphics: Interactive property
{button ,AL(`H_INTERACTIVE_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Determine if the application is interactive. For Freelance Graphics, this value is always TRUE (non-0).

Data type
Integer (Boolean)

Syntax
value = applicationobject.Interactive

Legal values
Value Description
TRUE (non-
0)

Interactive

FALSE (0) Not interactive

Freelance Graphics: IsChart property
{button ,AL(`H_ISCHART_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is a chart object.

Data type
Integer (Boolean)

Syntax
value = drawobject.IsChart

Legal values
Value Description
TRUE (non-
0)

Chart

FALSE (0) Not a chart

Freelance Graphics: IsDraggable property
{button ,AL(`H_ISDRAGGABLE_PROPERTY_MEMDEF_RT;H_BASEOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is draggable.
Note Not implemented for this release.

Data type
Integer (Boolean)

Syntax
value = object.IsDraggable

Legal values
Value Description
TRUE (non-0) Draggable
FALSE (0) Not draggable

Freelance Graphics: IsGroup property
{button ,AL(`H_ISGROUP_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is a grouped object.

Data type
Integer (Boolean)

Syntax
value = drawobject.IsGroup

Legal values
Value Description
TRUE (non-0) Grouped
FALSE (0) Not grouped

Examples
If Selection.IsGroup Then

Print "Selected DrawObject is a Grouped object."
Selection.UnGroup

End If

Freelance Graphics: IsImage property
{button ,AL(`H_ISIMAGE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is an image object (a bitmap or graphics metafile, for example).

Data type
Integer (Boolean)

Syntax
value = drawobject.IsImage

Legal values
Value Description
TRUE (non-0) Image
FALSE (0) Not an image

Freelance Graphics: IsMedia property
{button ,AL(`H_ISMEDIA_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) TRUE if object is a media object (a movie or sound, for example).

Data type
Integer (Boolean)

Syntax
value = drawobject.IsMedia

Legal values
Value Description
TRUE (non-0) Movie or sound object
FALSE (0) Not a movie or sound object

Freelance Graphics: IsOleObj property
{button ,AL(`H_ISOLEOBJ_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is an OLE object.

Data type
Integer (Boolean)

Syntax
value = drawobject.IsOleObj

Legal values
Value Description
TRUE (non-0) OLE object
FALSE (0) Not an OLE object

Freelance Graphics: IsOpen property
{button ,AL(`H_ISOPEN_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Determine if the presentation document is currently open. In Freelance Graphics, this is always TRUE
(non-0).

Data type
Integer (Boolean)

Syntax
value = documentobject.IsOpen

Legal values
Value Description
TRUE (non-0) Open
FALSE (0) Not open

Freelance Graphics: IsPlacementBlock property
{button ,AL(`H_ISPLACEMENTBLOCK_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of

classes
(Read-only) Determine if the object is a "Click here..." block.

Data type
Integer (Boolean)

Syntax
value = drawobject.IsPlacementBlock

Legal values
Value Description
TRUE (non-0) "Click here..." block
FALSE (0) Not a "Click here..." block

Freelance Graphics: IsSelectable property
{button ,AL(`H_ISSELECTABLE_PROPERTY_MEMDEF_RT;H_BASEOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object can be selected.

Data type
Integer (Boolean)

Syntax
value = object.IsSelectable

Legal values
Value Description
TRUE (non-0) Selectable (objects of the DrawObject and

Page classes)
FALSE (0) Not selectable (all other classes)

Freelance Graphics: IsTable property
{button ,AL(`H_ISTABLE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is a table object.

Data type
Integer (Boolean)

Syntax
value = drawobject.IsTable

Legal values
Value Description
TRUE (non-0) Table
FALSE (0) Not a table

Freelance Graphics: IsText property
{button ,AL(`H_ISTEXT_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is a text object

Data type
Integer (Boolean)

Syntax
value = drawobject.IsText

Legal values
Value Description
TRUE (non-0) Text object
FALSE (0) Not a text object

Freelance Graphics: IsValid property
{button ,AL(`H_ISVALID_PROPERTY_MEMDEF_RT;H_BASEOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is valid (still available).

Data type
Integer (Boolean)

Syntax
value = object.IsValid

Legal values
Value Description
TRUE (non-0) Valid
FALSE (0) Not valid

Examples
The following example prints the value zero (FALSE):
MyRect.Cut
Print MyRect.IsValid

Freelance Graphics: Italic property
{button ,AL(`H_ITALIC_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the italic attribute for the font.

Data type
Integer (Boolean)

Syntax
value = font.Italic
font.italic = value

Legal values
Value Description
TRUE (non-0) Italicized
FALSE (0) Not italicized

Examples
MyTextObject.TextBlock.Font.Italic = True

Freelance Graphics: Layout property
{button ,AL(`H_LAYOUT_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) Determine the layout used by the page.

Data type
String

Syntax
layoutname = pageobject.Layout
pageobject.Layout = layoutname

Legal values
Any existing page layout name. Use a zero-length string ("") to refer to the [Blank Page] layout.
Tip Use the Freelance Graphics user interface to display all page layout names.

Freelance Graphics: Left property
{button ,AL(`H_LEFT_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the left edge of the object, in twips.

Data type
Long

Syntax
lefttwip = drawobject.Left

Legal values
Any positive value.

Freelance Graphics: LineLead property
{button ,AL(`H_LINELEAD_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the line leading for the text (the number of points between line skips).

Data type
Integer

Syntax
lineleading = textobject.LineLead
textobject.LineLead= lineleading

Legal values
Any positive integer.

Freelance Graphics: LineStyle property
{button ,AL(`H_LINESTYLE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the line style property.

Data type
LineStyle

Syntax
set linestyleobject = drawobject.LineStyle
set drawobject.LineStyle = linestyleobject

Legal values
You can set a LineStyle to an existing LineStyle, or you can set the individual properties (Color, Pattern, and Width) of
the LineStyle class.

Examples
MyLine1.LineStyle.Width = $ltsBorderWidthThin
Set MyLine2.LineStyle = MyLine1.LineStyle

Freelance Graphics: Location property
{button ,AL(`H_LOCATION_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;',0)} See

list of classes
(Read-only) Get the application or document path.

Data type
String

Syntax
path = object.Location

Legal values
Any valid path name.

Freelance Graphics: Media property
{button ,AL(`H_MEDIA_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the Media class properties for an object. This property is valid only if drawobject.isMedia is TRUE
(non-0).

Data type
Media

Syntax
set media = drawobject.Media
set drawobject.Media = media

Legal values
Any instance of the Media class.

Freelance Graphics: Name property
{button ,AL(`H_NAME_PROPERTY_MEMDEF_RT;H_COLOR_CLASS;H_DRAWOBJECT_CLASS;H_PAGE_CLASS

;H_BASEOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the page or drawing object name; or get the name of any other type of Freelance Graphics
object.
Note Read-only except for the Page and DrawObject classes.

Data type
String

Syntax
name = object.Name
object.Name = name

Legal values
Any ASCII string value, but may not contain a semi-colon (;) or an equal sign (=).

Examples
Dim MyRect as DrawObject
Selection.name = "purple rectangle"
Set MyRect = CurrentPage.FindObject("purple rectangle")
CurrentPage.name = "My Title Page"
Print CurrentPage.Name

Freelance Graphics: Number property
{button ,AL(`H_NUMBER_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) Get or set the page number.

Data type
Integer

Syntax
pagenumber = pageobject.Number
pageobject.Number = pagenumber

Legal values
From 1 to the number of pages in the presentation.

Usage
To move a page, set the page number to the new page number.

Freelance Graphics: Objects property
{button ,AL(`H_OBJECTS_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-only) Get a collection of drawing objects on a page.

Data type
ObjectCollection

Syntax
set objectcollection = pageobject.Objects

Legal values
Any collection of objects.

Examples
ForAll objs in CurrentPage.Objects

Print objs.name
End ForAll
Dim MyPage as Page
Dim num as Integer
num = MyPage2.Objects.Count
Print "There are " + str$(num) + " objects on page 2."

Freelance Graphics: Object property
{button ,AL(`;H_OLEOBJECT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
(Read only) Returns the embedded OLE object's automation interface.

Data type
Variant.

Syntax
set MyOLE = OLEObject.Object

Usage
This property returns the embedded object's native automation interface, so that you can access its methods,
properties, and so on.

Example
' This example uses the Lotus Draw Component as an OLE object.
Dim DrawOCX As DrawObject
Dim OCXAuto As Variant

' When an OLE object is on the page, Freelance Graphics assigns a name to the object;
' in this example, the name is Lotus Draw/Diagram Component1.
' Brackets are shorthand notation in LotusScript for the object with the specified name on the current
' page. In this script the object variable, DrawOCX, is set to the Lotus Draw Component on the
' current page.
Set DrawOCX = [Lotus Draw/Diagram Component1]
' Get the OCX's automation interface.
Set OCXAuto = DrawOCX.Object
' Then use interface to access the OCX's scripting language
OCXAuto.CreateSymbol "C:\lotus\Smasters\FLG\Animals.sym" , 1

Freelance Graphics: OffsetReplicate property
{button ,AL(`H_OFFSETREPLICATE_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of

classes
(Read-write) Get or set the Offset replicate preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.OffsetReplicate
preferencesobject.OffsetReplicate = flag

Legal values
Value Description
TRUE (non-
0)

Offset copy from original

FALSE (0) Place copy on top of original

Examples
CurrentApplication.Preferences.OffsetReplicate = True

Freelance Graphics: OleObject property
{button ,AL(`H_OLEOBJ_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get an OLE object.

Data type
Variant

Syntax
set object = drawobject.OleObject

Legal values
As defined by the application that created the object.

Freelance Graphics: Overstrike property
{button ,AL(`H_OVERSTRIKE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the overstrike attribute for the font. The overstrike characters are typed over existing
characters, usually indicating a deletion.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
value = FontRef.Overstrike
FontRef.Overstrike = value

Legal values
Value Description
TRUE (non-0) Overstrike on
FALSE (0) Overstrike off

Freelance Graphics: PageSelection property
{button ,AL(`H_PAGESELECTION_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;',

0)} See list of classes
(Read-only) Get the set of pages currently selected in an application or document.

Data type
PageSelection

Syntax
set pageselection = object.PageSelection

Legal values
Any page selection.

Freelance Graphics: Pages property
{button ,AL(`H_PAGES_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Get pages in the presentation document.

Data type
PageCollection

Syntax
set pagecollection = documentobject.Pages

Legal values
Any collection of pages in the document.

Examples
ForAll page in CurrentDocument.Pages

Print page.name
End ForAll
Dim num as Integer
num = MyDocument.Pages.Count
Print "There are " + str$(num) + " pages in MyDocument."

Freelance Graphics: PageTransitionDelay property
{button ,AL(`H_PAGETRANSITIONDELAY_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
(Read-write) Get or set the default delay for each page in the presentation when running a screen show.

Data type
Integer

Syntax
secondsdelay = documentobject.PageTransitionDelay
documentobject.PageTransitionDelay = secondsdelay

Legal values
Any positive integer.

Freelance Graphics: PageTransitionEffect property
{button ,AL(`H_PAGETRANSITIONEFFECT_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
(Read-write) Get or set the screen show page transition effect for each page in the presentation.

Data type
Variant

Syntax
pagetransitioneffect = documentobject.PageTransitionEffect
documentobject.PageTransitionEffect = pagetransitioneffect

Legal values
Value Description
$SSPageReplace Instant replacement
$SSPageBottom From bottom
$SSPageLeft From left
$SSPageRight From right
$SSPageBlinds Blinds opening
$SSPageLouvers Louvers opening
$SSPageBlocks Block replacement
$SSPageCenter From center out
$SSPageBoxIn From outer box in
$SSPageZigZag Zigzag replacement
$SSPageHorzln Horizontal lines
$SSPageHVertln Vertical lines
$SSPageTop From top
$SSPageBoxOut From inner box out
$SSPageHorizOut Slide out horizontally
$SSPageVertOut Slide out vertically
$SSPageFade Fade to new
$SSPageDiagL Diagonal left
$SSPageDiagR Diagonal right
$SSPagePanL Pan left
$SSPagePanR Pan right
$SSPageScrollT Scroll from the top
$SSPageScrollB Scroll from the bottom
$SSPageDraw Draw new page
$SSPageRain Rain new page
$SSPagePBrush Paintbrush new page
$SSPageShade Shade new page
$SSPageCurtain Open curtain
$SSPageBMPCol Bitmap by colors

Freelance Graphics: Page property
{button ,AL(`H_PAGE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the page on which the drawing object exists.

Data type
Page

Syntax
set pageobject = drawobject.Page

Legal values
Any instance of the Page class.

Freelance Graphics: ParaIndent property
{button ,AL(`H_PARAINDENT_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the Paragraph indent property for the text (the number of twips to indent the paragraph).

Data type
Integer

Syntax
indentation = textobject.ParaIndent
textobject.ParaIndent = indentation

Legal values
Any integer.

Usage
Use the FirstIndent property to set the amount of space you want first line of the paragraph indented.

Freelance Graphics: Paralead property
{button ,AL(`;H_TEXTPROPERTIES_CLASS',0)} See list of classes
(Read-Write) Defines the spacing between paragraphs in a textblock as a percentage of a single-spaced line.

Data type
Integer

Syntax
value = textpropertyobject.Paralead
textpropertyobject.Paralead = value

Legal values
Percentage of a single-space line. For example, 100 indicates double-space, 0 indicates single space, and 50
indicates single spacing plus a half a space, that is, a space and a half. Legal values are from 0 to 900.

Usage
This property does in script what the user interface provides in the Paragraph value of the "Space between Lines,
Paragraphs" area of the infobox when a text block is selected (but not being edited). The values for the parameter are
related to those shown in the infobox by the formula: Infoboxvalue = (Paralead + 100) / 100.

Freelance Graphics: Parent property
{button ,AL(`H_PARENT_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;H_BASEO

BJECT_CLASS;',0)} See list of classes
(Read-only) Identify the parent application from which the current application or document was launched; or return
the string "CurrentApplication" if the object is not a member of the Application or Document class.

Data type
Application
Document

Syntax
set parent = object.Parent

Legal values
Any instance of the Application or Document class, or the string "CurrentApplication."

Freelance Graphics: Path property
{button ,AL(`H_PATH_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;',0)} See list of

classes
(Read-only) Get the path of the application or document.

Data type
String

Syntax
path = applicationobject.Path

Legal values
Any legal path.

Freelance Graphics: Pattern property
{button ,AL(`H_PATTERN_PROPERTY_MEMDEF_RT;H_BACKGROUND_CLASS;H_BORDER_CLASS;H_LINESTY

LE_CLASS;',0)} See list of classes
(Read-write) Get or set a background, border, or line style pattern.

Data type
Variant

Syntax
pattern = object.Pattern
object.Pattern = pattern

Legal values
There are separate values for each class. You can view the patterns in the Properties box of the Freelance Graphics
user interface for the appropriate object type, and match them with the names below.

Border class
Value Description
$ltsBorderPatternNone
$ltsBorderPatternSolid
$ltsBorderPatternDashDot
$ltsBorderPatternDashDotDot
$ltsBorderPatternLongDash
$ltsBorderPatternDashed same as $ltsBorderPatternDot
$ltsBorderPatternDot same as $ltsBorderPatternDashed

LineStyle class
Value Description
$ltsLineStyleNone
$ltsLineStyleSolid
$ltsLineStyleDashDot
$ltsLineStyleDashDotDot
$ltsLineStyleLongDash
$ltsLineStyleMediumDash same as $ltsLineStyleDot
$ltsLineStyleDot same as $ltsLineStyleMediumDash

Background values
Value Description
$ltsFillNone
$ltsFillSolid
$ltsFillGray1
$ltsFillGray2
$ltsFillGray3
$ltsFillGray4
$ltsFillGray5
$ltsFillGray6
$ltsFillGray7
$ltsFillGray8
$ltsFillGray9 same as $ltsFillGray10
$ltsFillGray10 same as $ltsFillGray9

$ltsFillLeftDiagonal
$ltsFillRightDiagonal
$ltsFillDiagonalHatch
$ltsFillHorizontal
$ltsFillVertical
$ltsFillRegularHatch
$ltsFillLeftRightGrad
$ltsFillBottomTopGrad
$ltsFillNeToSwGrad
$ltsFillNwToSeGrad
$ltsFillCenterBoxGrad
$ltsFillLowBoxGrad
$ltsFillCenterCircleGrad
$ltsFillLowCircleGrad
$ltsFillNeToSwDiagonalStripGrad
$ltsFillNwToSeDiagonalStripGrad

Examples
MyRect.Border.Pattern = $ltsBorderPatternDashed
MyRect.Background.Pattern = $ltsFillGray8
MyLine.LineStyle.Pattern = $ltsLineStyleDashDot

Freelance Graphics: PlacementBlock property
{button ,AL(`H_PLACEMENTBLOCK_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the "Click here..." block properties for a drawing object. These properties are valid only when
drawobject.isPlacementBlock is TRUE (non-0).

Data type
PlacementBlock

Syntax
set placementblock = placementblockobject.PlacementBlock

Legal values
Any instance of the PlacementBlock class.

Freelance Graphics: PlayPriority property
{button ,AL(`H_PLAYPRIORITY_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the priority with which the object transitions onto the page during a screen show.

Data type
Integer

Syntax
playpriority = drawobject.PlayPriority
drawobject.PlayPriority = playpriority

Legal values
1=first object, 2=second, and so on

Freelance Graphics: Preferences property
{button ,AL(`H_PREFERENCES_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-write) Get or set the preferences for the application.

Data type
Preferences

Syntax
set preferences = applicationobject.Preferences
set applicationobject.Preferences.individualproperty = preference

Legal values
Any instance of the Preferences class.

Usage
You can get the set of preferences in a Preferences object, or you can get or set the individual properties (AutoSave,
AutoSaveInterval, BackupDir, and so on) of the Preferences class.

Examples
CurrentApplication.Preferences.AutoSave = True

Freelance Graphics: Priority property
{button ,AL(`H_PRIORITY_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get or set the drawing priority of a drawing object.
Note You can set the priority of a DrawObject that is a placement block only if you are editing a .MAS or .SMC file,
otherwise it is read only.

Data type
Integer

Syntax
priority = drawobject.Priority
drawobject.Priority = priority

Legal values
1=first, 2=second, and so on

Usage
If there are empty placement blocks on the page, they are alway lowest in priority (that is, a priority of one), so that an
empty placement block is always behind another drawing object. If you try to put something other than an empty
placement block at a priority equal to or lower than the placement block's priority, then you get a message explaining
that it cannot be done.
Note Also, the priority of a DrawObject of any kind can never be set higher than the total number of DrawObjects on
the page. Also a DrawObject, other than a PlacementBlock, can not be lower in priority than a PlacementBlock.

Freelance Graphics: PromptText property
{button ,AL(`H_PROMPTTEXT_PROPERTY_MEMDEF_RT;H_PLACEMENTBLOCK_CLASS;',0)} See list of classes
(Read-write) Get or set the prompt text for a "Click here..." block.

Data type
String

Syntax
prompttext = placementblockobject.PromptText
placementblockobject.PromptText = prompttext

Legal values
Any string value.

Freelance Graphics: ReadOnly property
{button ,AL(`H_READONLY_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Determine if the presentation is read-only.

Data type
Integer (Boolean)

Syntax
value = documentobject.ReadOnly

Legal values
Value Description
TRUE (non-0) Read-only
FALSE (0) Read-write

Freelance Graphics: Red property
{button ,AL(`H_RED_PROPERTY_MEMDEF_RT;H_COLOR_CLASS;',0)} See list of classes
(Read-only) Get the amount of red in a Color object.

Data type
Integer

Syntax
redamount = colorobject.Red

Legal values
0 (no red) to 255 (maximum red).

Examples
Dim AmountOfRed as Integer
AmountOfRed = MyRect.Background.Color.Red

Freelance Graphics: RemoveMedia property
{button ,AL(`H_REMOVEMEDIA_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine if the object is on removable media.

Data type
Integer (Boolean)

Syntax
removablemedia = drawobject.RemoveMedia

Legal values
Value Description
TRUE (non-0) On removable media
FALSE (0) Not on removable media

Freelance Graphics: RightIndent property
{button ,AL(`H_RIGHTINDENT_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the Right indent property for the text (the number of twips to indent the text).

Data type
Integer

Syntax
indentation = textobject.RightIndent
textobject.RightIndent = indentation

Legal values
Any integer.

Freelance Graphics: RowCount property
{button ,AL(`H_ROWCOUNT_PROPERTY_MEMDEF_RT;H_TABLE_CLASS;',0)} See list of classes
(Read-only) Get the number of rows in a table.

Data type
Integer

Syntax
rows = tableobject.RowCount

Legal values
Any positive integer.

Freelance Graphics: ScanSpeed property
{button ,AL(`H_SCANSPEED_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Scan speed preference (the number of seconds delay between displaying images when
scanning in the browser).

Data type
Long

Syntax
secondsdelay = preferencesobject.ScanSpeed
preferencesobject.ScanSpeed = secondsdelay

Legal values
Any value between .1 and 100.0.

Examples
CurrentApplication.Preferences.ScanSpeed = 36.5

Freelance Graphics: SelectedObjects property
{button ,AL(`H_SELECTEDOBJECTS_PROPERTY_MEMDEF_RT;H_SELECTION_CLASS;',0)} See list of classes
(Read-write) Get or set the collection of currently selected objects.

Data type
Objects

Syntax
set selection = objectsobject.SelectedObjects
set objectsobject.SelectedObjects = selection

Legal values
Any selection of objects.

Usage
This property is useful for saving and then restoring a selection.

Examples
Dim MySelection as Objects 'clears and restores selection
Set MySelection = Selection.SelectedObjects
Selection.ClearSelection
Set Selection.SelectedObjects = MySelection

Freelance Graphics: SelectionCount property
{button ,AL(`H_SELECTIONCOUNT_PROPERTY_MEMDEF_RT;H_PAGESELECTION_CLASS;H_SELECTION_CL

ASS;',0)} See list of classes
(Read-only) Get the number of selected pages or objects.

Data type
Integer

Syntax
selectioncount = object.SelectionCount

Legal values
Any integer.

Examples
Dim num as Integer
num = Selection.SelectionCount
Print "There are " + str$(num) + " selected objects."

Freelance Graphics: Selection property
{button ,AL(`H_SELECTION_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;H_DOCUMENT_CLASS;H_PAG

E_CLASS;',0)} See list of classes
(Read-only) Get a selection of objects in the application or document, or on the currently active page.

Data type
Selection

Syntax
set selection = object.Selection

Legal values
Any selection of objects.

Examples
Dim MySelection as Selection
Set MySelection = CurrentPage.Selection
MySelection.Group

Freelance Graphics: ShadowColor property
{button ,AL(`H_SHADOWCOLOR_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;H_TEXTPROPE

RTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the Shadow color for a bullet or text.

Data type
Color

Syntax
set color = shadowobject.ShadowColor
set shadowobject.ShadowColor = color

Legal values
Any instance of the Color class.

Freelance Graphics: ShadowDepth property
{button ,AL(`H_SHADOWDEPTH_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;H_TEXTPROPER

TIES_CLASS;',0)} See list of classes
(Read-write) Get or set the Shadow depth for a bullet or text.

Data type
Variant (Enumerated)

Syntax
shadowdepth = shadowobject.ShadowDepth
shadowobject.ShadowDepth = shadowdepth

Legal values
Value Description
$ltsShadowDepthShallow Short shadow
$ltsShadowDepthNormal Normal shadow
$ltsShadowDepthDeep Long shadow

Freelance Graphics: ShadowDirection property
{button ,AL(`H_SHADOWDIRECTION_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;H_TEXTPRO

PERTIES_CLASS;',0)} See list of classes
(Read-write) Get or set the Shadow direction for a bullet or text.

Data type
Variant (Enumerated)

Syntax
shadowdirection = shadowobject.ShadowDirection
shadowobject.ShadowDirection = shadowdirection

Legal values
Value Description
$ltsShadowNone No shadow
$ltsShadowBottomRight Shadow on bottom right
$ltsShadowBottomLeft Shadow on bottom left
$ltsShadowTopRight Shadow on top right
$ltsShadowTopLeft Shadow on top left

Freelance Graphics: Shadow property
{button ,AL(`H_SHADOW_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of classes
(Read-write) Determine if the text has a shadow.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
flag = textobject.Shadow
textobject.Shadow = flag

Legal values
Value Description
TRUE (non-0) Text shadow
FALSE (0) No text shadow

Freelance Graphics: Size property
{button ,AL(`H_SIZE_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;H_FONT_CLASS;',0)} See list

of classes
(Read-write) Determine the font or bullet size (in points).

Data type
Double

Syntax
points = object.Size
object.Size = points

Legal values
Any positive integer.

Freelance Graphics: SkipWelcome property
{button ,AL(`H_SKIPWELCOME_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Skip welcome preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.SkipWelcome
preferencesobject.SkipWelcome = flag

Legal values
Value Description
TRUE (non-
0)

Skip Welcome on entry

FALSE (0) Display Welcome on entry

Examples
CurrentApplication.Preferences.SkipWelcome = True

Freelance Graphics: SmallCaps property
{button ,AL(`H_SMALLCAPS_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine if the font displays as Small caps (smaller point size, but all uppercase).
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
value = fontobject.SmallCaps
fontobject.SmallCaps = value

Legal values
Value Description
TRUE (non-0) Small caps
FALSE (0) No small caps

Freelance Graphics: SmartLook property
{button ,AL(`H_SMARTLOOK_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-write) Get or set the SmartMaster look for the current presentation.

Data type
String

Syntax
smartlook = documentobject.SmartLook
documentobject.SmartLook = smartlook

Legal values
Any existing SmartMaster look.
Note You can use the LotusScript Dir command to list the *.MAS files in the \SMASTERS\FLG directory.

Freelance Graphics: SnapToGrid property
{button ,AL(`H_SNAPTOGRID_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Snap to grid preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.SnapToGrid
preferencesobject.SnapToGrid = flag

Legal values
Value Description
TRUE (non-
0)

Snap objects to grid

FALSE (0) Do not snap objects to grid

Examples
CurrentApplication.Preferences.SnapToGrid = True

Freelance Graphics: Sound property
{button ,AL(`H_SOUND_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) Get or set the file name for a sound associated with the page.

Data type
String

Syntax
soundfilename = pageobject.Sound
pageobject.Sound = soundfilename

Legal values
Any existing sound file name.

Freelance Graphics: SpeakerNoteText property
{button ,AL(`H_SPEAKERNOTETEXT_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-write) Get or set the speaker note text displayed on the page.

Data type
String

Syntax
speakernotetext = pageobject.SpeakerNoteText
pageobject.SpeakerNoteText = speakernotetext

Legal values
Any string value.

Freelance Graphics: StartNumber property
{button ,AL(`H_STARTNUMBER_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;',0)} See list of

classes
(Read-write) Get or set the starting number for numbered bullets.

Data type
Integer

Syntax
startnumber = bulletobject.StartNumber
bulletobject.StartNumber = startnumber

Legal values
Any integer.

Freelance Graphics: StartupView property
{button ,AL(`H_STARTUPVIEW_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Startup view preference.

Data type
Variant (Enumerated)

Syntax
startupview = preferencesobject.StartupView
preferencesobject.StartupView = startupview

Legal values
Value Description
$ViewDraw Current Page view
$ViewOutliner Outliner view
$ViewSorter Page Sorter view
$ViewSlideShow Screen Show view

Examples
CurrentApplication.Preferences.StartupView = $ViewSorter

Freelance Graphics: StrikeThrough property
{button ,AL(`H_STRIKETHROUGH_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the strikethrough attribute for the font. Strikethrough is a horizontal line that prints through the
middle of existing characters.

Data type
Integer (Boolean)

Syntax
value = fontobject.StrikeThrough
fontobject.StrikeThrough = value

Legal values
Value Description
TRUE (non-
0)

Strikethrough on (for example)

FALSE (0) Strikethrough off

Examples
MyTextObject.TextBlock.Font.StrikeThrough = True

Freelance Graphics: Style property
{button ,AL(`H_STYLE_PROPERTY_MEMDEF_RT;H_BULLET_PROPERTIES_CLASS;',0)} See list of classes
(Read-write) Determine the Bullet style.

Data type
Variant (Enumerated)

Syntax
bulletstyle = bulletpropertiesobject.Style
bulletpropertiesobject.Style = bulletstyle

Legal values
Value Description
$ltsBulletNone None
$ltsBulletSmallLetters
$ltsBulletCapLetters
$ltsBulletRomanNums
$ltsBulletDecimalNums
$ltsBulletSmallDot
$ltsBulletLargeDot
$ltsBulletSmallSquare
$ltsBulletLargeSquare
$flwBulletDash
$ltsBulletArrowhead
$ltsBulletCheck
$ltsBulletX
$ltsBulletStar
$ltsBulletPlus
$flwBulletCurvedArrowhead
$ltsbulletRndSquare
$ltsBulletSmallDiamond
$ltsBulletLargeDiamond
$ltsBulletSmallArrowhead

Freelance Graphics: SubScript property
{button ,AL(`H_SUBSCRIPT_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the subscript attribute for the font. Subscripted characters are placed just below the
surrounding text.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
value = fontobject.SubScript
fontobject.SubScript = value

Legal values
Value Description
TRUE (non-
0)

Subscript on

FALSE (0) Subscript off

Freelance Graphics: SuperScript property
{button ,AL(`H_SUPERSCRIPT_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the superscript attribute for the font. Superscripted characters are placed just above the
surrounding text.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
value = fontobject.SuperScript
fontobject.SuperScript = value

Legal values
Value Description
TRUE (non-
0)

Superscript on

FALSE (0) Superscript off

Freelance Graphics: Table property
{button ,AL(`H_TABLE_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Get table properties for a drawing object. These properties are valid only when drawobject.IsTable is
TRUE (non-0).

Data type
Table

Syntax
set table = drawobject.Table

Legal values
Any instance of the Table class.

Freelance Graphics: TemplateDir property
{button ,AL(`H_TEMPLATEDIR_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the content topic directory preference.

Data type
String

Syntax
templatedirectory = preferencesobject.TemplateDir
preferencesobject.TemplateDir = templatedirectory

Legal values
Any directory.

Examples
CurrentApplication.Preferences.TemplateDir = "c:\lotus\smasters\flg"

Freelance Graphics: TemplatePageCount property
{button ,AL(`H_TEMPLATEPAGECOUNT_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of

classes
(Read-only) Get the content topic page count.

Data type
Integer

Syntax
pagecount = documentobject.TemplatePageCount

Legal values
Any integer.

Freelance Graphics: TextBlock property
{button ,AL(`H_TEXTBLOCK_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the text block properties for a drawing object. These properties are valid only if drawobject.isText is
TRUE (non-0).

Data type
TextBlock

Syntax
set textblock = drawobject.TextBlock

Legal values
Any instance of the TextBlock class.

Freelance Graphics: TextProperties property
{button ,AL(`H_TEXTPROPERTIES_PROPERTY_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
(Read-only) Get the text properties for a text block.

Data type
TextProperties

Syntax
set textproperties = textblockobject.TextProperties

Legal values
Any instance of the TextProperties class.

Usage
You can get a set of TextProperties, or you can get or set the individual properties (FirstIndent, Font,
HorizontalAlignment, and so on) of the TextProperties class.

Freelance Graphics: TextTightness property
{button ,AL(`H_TEXTTIGHTNESS_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Text tightness for the font.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer

Syntax
tightness = fontobject.TextTightness
fontobject.TextTightness = tightness

Legal values
Any integer (always returns zero).

Freelance Graphics: Text property
{button ,AL(`H_TEXT_PROPERTY_MEMDEF_RT;H_TEXTBLOCK_CLASS;',0)} See list of classes
(Read-write) Get or set the text contained in a text block.

Data type
String

Syntax
text = textblockobject.Text
textblockobject.Text = text

Legal values
Any string value.

Examples
MyTextObject.TextBlock.Text = "This text will appear in the text block"

Freelance Graphics: Title property
{button ,AL(`H_TITLE_PROPERTY_MEMDEF_RT;H_PAGE_CLASS;',0)} See list of classes
(Read-only) Get the title text block on a page.

Data type
DrawObject

Syntax
set titleobject = pageobject.Title

Legal values
Any instance of a page title text block.

Usage
You cannot set this property directly, but you can change the page title by changing the underlying Text object
(pageobject.Title.Textblock.Text).

Freelance Graphics: Top property
{button ,AL(`H_TOP_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-only) Get the top edge of an object, in twips.

Data type
Long

Syntax
toptwip = DrawObject.Top

Legal values
Any positive value.

Freelance Graphics: TransitionEffect property
{button ,AL(`H_TRANSITIONEFFECT_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;H_PAGE_CLASS;',0)}

See list of classes
(Read-write) Get or set the transition effect for an object or page during a screen show.

Data type
Variant

Syntax
transitioneffect = object.TransitionEffect
object.TransitionEffect = transitioneffect

Legal values
The legal values vary by class.

Legal values for the Page class
Value Description
$SSPageReplace Instant replacement
$SSPageBottom From bottom
$SSPageLeft From left
$SSPageRight From right
$SSPageBlinds Blinds opening
$SSPageLouvers Louvers opening
$SSPageBlocks Block replacement
$SSPageCenter From center out
$SSPageBoxIn From outer box in
$SSPageZigZag Zigzag replacement
$SSPageHorzln Horizontal lines
$SSPageHVertln Vertical lines
$SSPageTop From top
$SSPageBoxOut From inner box out
$SSPageHorizOut Slide out horizontally
$SSPageVertOut Slide out vertically
$SSPageFade Fade to new
$SSPageDiagL Diagonal left
$SSPageDiagR Diagonal right
$SSPagePanL Pan left
$SSPagePanR Pan right
$SSPageScrollT Scroll from the top
$SSPageScrollB Scroll from the bottom
$SSPageDraw Draw new page
$SSPageRain Rain new page
$SSPagePBrush Paintbrush new page
$SSPageShade Shade new page
$SSPageCurtain Open curtain
$SSPageBMPCol Bitmap by colors

Legal values for the DrawObject class

Value Description
$SSObjReplace Instant replacement
$SSObjBottom From bottom
$SSObjLeft From left
$SSObjRight From right
$SSObjBlinds Blinds opening
$SSObjLouvers Louvers opening
$SSObjBlocks Block replacement
$SSObjCenter From center out
$SSObjBoxIn From outer box in
$SSObjZigZag Zigzag replacement
$SSObjHorzln Horizontal lines
$SSObjVertln Vertical lines
$SSObjTop From top
$SSObjBoxOut From inner box out
$SSObjHorzOut Slide out horizontally
$SSObjVertOut Slide out vertically
$SSObjFade Fade to new
$SSObjDiagL Diagonal left
$SSObjDiagR Diagonal right
$SSObjRain Rain new page
$SSObjFlyL Fly to the left
$SSObjFlyR Fly to the right
$SSObjFlyU Fly up
$SSObjFlyD Fly down
$SSObjFlyLD Fly to the left and down
$SSObjFlyRD Fly to the right and down
$SSObjFlyLU Fly to the left and up
$SSObjFlyRU Fly to the right and up
$SSObjFlashS Flash slow
$SSObjFlashM Flash medium
$SSObjFlashF Flash fast

Freelance Graphics: Type property
{button ,AL(`H_TYPE_PROPERTY_MEMDEF_RT;H_PLACEMENTBLOCK_CLASS;',0)} See list of classes
(Read-write) Get or set the "Click here..." block type.

Data type
Variant

Syntax
type = placementblockobject.Type
placementblockobject.Type = type

Legal values
Value Description
pbTypeText Click here to enter text
pbTypeSymbol Click here to add a symbol
pbTypeChart Click here to create a chart
pbTypeOrgChart Click here to create an organization chart
pbTypeTable Click here to create a table
pbTypeButton Click here to add a button

Freelance Graphics: Underline property
{button ,AL(`H_UNDERLINE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Underline attribute for the font. This underline style is a solid line under both words and
spaces.

Data type
Integer (Boolean)

Syntax
value = fontobject.Underline
fontobject.Underline = value

Legal values
Value Description
TRUE (non-
0)

Underline on

FALSE (0) Underline off

Examples
MyText.TextBlock.Font.Underline = True

Freelance Graphics: UndoEnabled property
{button ,AL(`H_UNDOENABLED_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Undo enabled preference.

Data type
Integer (Boolean)

Syntax
flag = preferencesobject.UndoEnabled
preferencesobject.UndoEnabled = flag

Legal values
Value Description
TRUE (non-
0)

Undo command enabled

FALSE (0) Undo command disabled

Examples
CurrentApplication.Preferences.UndoEnabled = True

Freelance Graphics: UnitOfMeasure property
{button ,AL(`H_UNITOFMEASURE_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-write) Get or set the unit of measure used in the application. In Freelance Graphics, this is always twips.

Data type
Variant

Syntax
unitofmeasure = applicationobject.UnitOfMeasure
applicationobject.UnitOfMeasure = unitofmeasure

Legal values
The only legal value is $ltsScaleModeTwip.

Examples
CurrentApplication.UnitofMeasure = $ltsScaleModeTwip

Freelance Graphics: UserClassNameApplication property
{button ,AL(`;H_OLEOBJECT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
(Read-only) The Windows registry name of the application that corresponds to the OLE object.

Data type
String

Syntax
set MyOLEName = OLEObject.UserClassNameApplication

Legal values
The string value of the following Windows registry key: \CLSID\<{class id}>\AuxuserType\3. To use WordPro as an
example, the string value would be: "Lotus WordPro 97".

Usage
Use this property to find the name of the application corresponding to the OLE object that you have found.

Example
' This script searches through the current page for an OLE object,
' then determines if the object is a WordPro document.
' If it is, it puts up a message box.
ForAll Obj in CurrentPage.Objects
 If Obj.IsOLEObject then
 If Obj.UserClassNameApplication = "Lotus WordPro 97" then
 MessageBox "This is a WordPro document."
 End If
 End If
End ForAll

Freelance Graphics: UserClassNameFull property
{button ,AL(`;H_OLEOBJECT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
(Read-only) The full name of the OLE object as registered in the Windows registry.

Data type
String.

Syntax
set MyOLEName = OLEObject.UserClassNameFull

Legal values
The string value of either of the following Windows registry keys: \CLSID\<{class id}>; or \<Prog Id>. To use WordPro
as an example, the returned string would be: "WordPro.Document".

Usage
Use this property to find the full name of the OLE object as registered by the Windows registry.

Example
' This example searches through the current page for an OLE object,
' then puts the registry name up in a message box.
ForAll Obj in CurrentPage.Objects
 If Obj.IsOLEObject then
 Messagebox "This is the full registry name: " + Obj.UserClassNameFull
 End If
End ForAll

Freelance Graphics: UserClassNameShort property
{button ,AL(`;H_OLEOBJECT_CLASS',0)} See list of classes
Available only in Freelance Graphics 97.
(Read-only) The short name of the OLE object as registered in the Windows registry.

Data type
String.

Syntax
set MyOLEName = OLEObject..UserClassNameShort

Legal Values
Returns the string that is in the Windows registry under the following key: \CLSID\<{class id}>\AuxUserType\2. To use
WordPro as an example, the returned string would be: "Document."

Usage
Use this property to discover or verify the type of embedded object you have found.

Example
' This script searches through the current page for an OLE object,
' a WordPro document. If there is one, then it
' uses the native automation interface of the OLE object (WordPro, in this
' example) to make use of the script language of the OLE object.
ForAll Obj in CurrentPage.Objects
 If Obj.IsOLEObject then
 If Obj.UserClassNameShort = "Document" then
 Obj.Object.DocInfo
 End If
 End If
End ForAll

Freelance Graphics: VersionID property
{button ,AL(`H_VERSIONID_PROPERTY_MEMDEF_RT;H_BASEOBJECT_CLASS;',0)} See list of classes
(Read-only) Determine the version of the code implementing an object. The version number changes for any release
that is not 100% compatible with the previous release.

Data type
Long

Syntax
value = object.VersionID

Legal values
 Any numeric value.

Freelance Graphics: VerticalAlignment property
{button ,AL(`H_VERTICALALIGNMENT_PROPERTY_MEMDEF_RT;H_TEXTPROPERTIES_CLASS;',0)} See list of

classes
(Read-write) Get or set the vertical alignment property for the text.

Data type
Variant (Enumerated)

Syntax
verticalalignment = textobject.VerticalAlignment
textobject.VerticalAlignment = verticalalignment

Legal values
Value Description
$ltsAlignmentTop Align at top
$ltsAlignmentVertCenter Center
$ltsAlignmentBottom Align at bottom

Examples
MyText.TextBlock.TextProperties.VerticalAlignment = $ltsAlignmentTop

Freelance Graphics: ViewMode property
{button ,AL(`H_VIEWMODE_PROPERTY_MEMDEF_RT;H_DOCUMENT_CLASS;',0)} See list of classes
(Read-write) Get or set the view mode.

Data type
Variant (Enumerated)

Syntax
viewmode = documentobject.ViewMode
documentobject.ViewMode = viewmode

Legal values
Value Description
$ViewDraw Page view
$ViewOutliner Outliner view
$ViewSorter Page Sorter view
$ViewSlideShow Screen Show view

Freelance Graphics: Visible property
{button ,AL(`H_VISIBLE_PROPERTY_MEMDEF_RT;H_APPLICATION_CLASS;',0)} See list of classes
(Read-write) Get or set the visible attribute for the application.
Note For this release, this is effectively read-only, and always TRUE; sets are ignored.

Data type
Integer (Boolean)

Syntax
value = applicationobject.Visible

Legal values
Value Description
TRUE (non-
0)

Visible

FALSE (0) Not visible

Freelance Graphics: WaitForClick property
{button ,AL(`H_WAITFORCLICK_PROPERTY_MEMDEF_RT;H_DRAWOBJECT_CLASS;',0)} See list of classes
(Read-write) Determine if the object needs a mouse click in order to draw the object on the page during a screen
show.

Data type
Integer (Boolean)

Syntax
value = drawobject.WaitForClick
drawobject.WaitForClick = value

Legal values
Value Description
TRUE (non-
0)

Wait for click to draw the object

FALSE (0) Do not wait for click to draw the object

Freelance Graphics: Width property
{button ,AL(`H_WIDTH_PROPERTY_MEMDEF_RT;H_APPLICATIONWINDOW_CLASS;H_DOCWINDOW_CLASS;

H_DRAWOBJECT_CLASS;H_LINESTYLE_CLASS;',0)} See list of classes
(Read-write) Get or set the width of a border or line.
(Read-only) Get the width of the application window, document window, or drawing object.

Data type
Integer (ApplicationWindow and DocWindow classes)
Variant (Border and LineStyle classes)
Long (DrawObject classes)

Syntax
width = object.Width
object.Width = width

Legal values
ApplicationWindow, DocWindow, and DrawObject classes: any positive value representing the width in twips.
Border and LineStyle classes:

Value Description
$ltsBorderWidthNone Thinnest
$ltsBorderWidthVeryThin
$ltsBorderWidthThin
$ltsBorderWidthModeratelyThin
$ltsBorderWidthMedium
$ltsBorderWidthModeratelyThick
$ltsBorderWidthThick
$ltsBorderWidthVeryThick
$ltsBorderWidthExtremelyThick Thickest

Examples
MyRect.Border.Width = $ltsBorderWidthThin

Freelance Graphics: WordDoubleUnderline property
{button ,AL(`H_WORDDOUBLEUNDERLINE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Word double underline attribute for the font. This is a double line under words but not
spaces.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
flag = fontobject.WordDoubleUnderline
fontobject.WordDoubleUnderline = flag

Legal values
Value Description
TRUE (non-0) WordDoubleUnderline on
FALSE (0) WordDoubleUnderline off

Freelance Graphics: WordUnderline property
{button ,AL(`H_WORDUNDERLINE_PROPERTY_MEMDEF_RT;H_FONT_CLASS;',0)} See list of classes
(Read-write) Determine the Word underline attribute for the font. This is a single line under words but not spaces.
Note This property is ignored by Freelance Graphics, and is provided for compatibility with other Lotus products.

Data type
Integer (Boolean)

Syntax
flag = fontobject.WordUnderline
fontobject.WordUnderline = flag

Legal values
Value Description
TRUE (non-0) WordUnderline on
FALSE (0) WordUnderline off

Freelance Graphics: WorkDir property
{button ,AL(`H_WORKDIR_PROPERTY_MEMDEF_RT;H_PREFERENCES_CLASS;',0)} See list of classes
(Read-write) Get or set the Work directory preference.

Data type
String

Syntax
worddirectory = preferencesobject.WorkDir
preferencesobject.WorkDir = workdirectory

Legal values
Any directory.

Examples
CurrentApplication.Preferences.WorkDir = "c:\lotus\work\flg"

Freelance Graphics: Application class
Controls a Freelance Graphics session.

Base classes
BaseObject

Contained by
Class Property
Document Application

Usage
You can use the CurrentApplication predefined variable to reference the properties and methods of the current
Application object.

Freelance Graphics: Application class members
Properties

ActiveDocument
ActiveDocWindow
Application AS Application class
ApplicationWindow
Colors AS Colors class
CurrentPrinter
DefaultFilePath
Documents AS Documents class
FontUnit
FullName
Interactive
Location
PageSelection AS PageSelection class
Parent
Path
Preferences AS Preferences class
Selection AS Selection class
UnitOfMeasure
Visible

Methods
CloseWindow
GetEnum
NearestColorFromRGB
NewDocument
OpenDocument
OpenDocumentFromInternet
OpenDocumentFromNotes
Quit
SetInternetOptions

Functions
None

Events
None

Freelance Graphics: ApplicationWindow class members
Properties

Height
Width

Methods
Cascade
Close
GotoNotes
Maximize
Minimize
Restore
Tile

Functions
None

Events
None

Freelance Graphics: ApplicationWindow class
The application's main window.

Base classes
BaseObject

Contained by
None

Usage
You can use the CurrentApplicationWindow predefined variable to reference the properties and methods of the
currently selected ApplicationWindow object.

Freelance Graphics: Background class
Properties (color, fill pattern, etc.) of an object's background.

Base classes
BaseObject

Contained by
Class Property
DrawObject Background

Freelance Graphics: Background class members
Properties

BackColor
Color AS Color class
Pattern

Methods
RevertToStyle

Functions
None

Events
None

Freelance Graphics: BaseObject class
Abstract class used as the base class for all Freelance Graphics objects - no instances of this class ever exist.

Base classes
None

Contained by
All Freelance Graphics LotusScript classes. See Freelance Graphics LotusScript Classes A-Z.

Freelance Graphics: BaseObject class members
The BaseObject class is an abstract class used as the base class for all Freelance Graphics objects - no instances of
this class ever exist. It contains the following properties.

Properties
Application
Description
IsDraggable
IsSelectable
IsValid
Name
Parent
VersionID

Methods
None

Functions
None

Events
None

Freelance Graphics: Border class
Properties of an object's edges.

Base classes
BaseObject

Contained by
Class Property
DrawObject Border

Freelance Graphics: Border class members
Properties

Color AS Color class
Pattern
Width

Methods
RevertToStyle

Functions
None

Events
None

Freelance Graphics: BulletProperties class members
Properties

Color AS Color class
ShadowColor
ShadowDepth
ShadowDirection
Size
StartNumber
Style

Methods
None

Functions
None

Events
None

Freelance Graphics: BulletProperties class
Level-specific bullet properties.

Base classes
BaseObject

Contained by
Class Property
TextBlock BulletProperties

Freelance Graphics: Chart class
A chart of any type. The Freelance Graphics Chart class is derived from the DrawObject class and contains all
methods and properties of the ChartBase class. You create a chart using the CreateChart method of the Page class.
Note For more information about the LotusChart ChartBase class, see the Help contents under LotusScript,
LotusChart LotusScript Reference, By Category, Classes.

Base classes
ChartBase

Contained by
Class Property
DrawObject Chart

Freelance Graphics: Chart class members
Properties

Application
Background
Border
BuildBullets
Chart
Delay
Description
ExeName
Height
IsChart
IsDraggable
IsGroup
IsImage
IsMedia
IsOleObj
IsPlacementBlock
IsSelectable
IsTable
IsText
IsValid
Left
LineLead
LineStyle
Media
Name
OleObj
Page
Parent
PlacementBlock
PlayPriority
Priority
Table
TextBlock
Top
TransitionEffect
VersionID
WaitForClick
Width

Methods
AddPoint
ConvertTo
Copy
Cut
Flip
GetObjectData
Item
Move
PutIntoPlacementBlock
Remove
Rotate
SetObjectData
Stretch
Ungroup

Functions

None

Events
None

Freelance Graphics: Color class members
Properties

Blue
Green
Red

Methods
GetNearestIndex
GetRGB
SameColor

Functions
None

Events
None

Freelance Graphics: Color class
A color. You can specify a color using either the Item or RGBToColor methods of the Colors class.

Base classes
BaseObject

Contained by
Class Property
Background Color, BackColor
Border Color
BulletProperties Color
LineStyle Color
Font FontColor
TextProperties ShadowColor

Freelance Graphics: Colors class members
Properties

Count

Methods
ColorToRGB
GetIndex
GetNearestColor
IsEmpty
Item
RGBtoColor

Functions
None

Events
None

Freelance Graphics: Colors class
The color library.

Base classes
BaseObject

Contained by
Class Property
Application Colors

coordinates (defined)
The Freelance Graphics coordinate system has its origin (0,0) at the bottom left corner of the page. Coordinates are
measured in twips (1/1440 of an inch, or 1/567 of a centimeter). In LotusScript syntax, the horizontal coordinate is
usually referred to as x, and the vertical coordinate as y.

Freelance Graphics: Document class members
Properties

Active
ActivePage
Application AS Application class
Author
Changed
Description
DocName
DocWindow AS DocWindow class
Embedded
FullName
IsOpen
Location
Pages AS Pages class
PageSelection AS PageSelection class
PageTransitionDelay
PageTransitionEffect
Parent
Path
ReadOnly
Selection AS Selection class
SmartLook
TemplatePageCount
ViewMode

Methods
Activate
AddToPageSelection
AddToSelection
Close
CopySelection
CreatePage
CreatePageFromTemplate
CutSelection
DeletePage
DeleteReviewer
Deselect
DistributeForComment
FindObject
GotoPage
OpenPresForCopy
Paste
PastePage
PasteSelectedPages
PublishToWeb
Print
PrintOut
RemoveFromSelection
RunDialog
Save
SaveAs
SaveAsToInternet
SaveAsToNotes
Select
SelectPageForCopy
SetViewMode
Show

StartGuidedTemplate
StopGuidedTemplate

Functions
None

Events
Activated
Created
Opened
PageCreated
PreClose
SaveAs
SavedAs
Saved
Save
SMCStarted

Freelance Graphics: Document class
Models a Freelance Graphics presentation. You can create an object of the Document class using the NewDocument
method of the Application class.

Base classes
BaseObject

Contained by
Class Property
Page Document
Application ActiveDocument

Usage
You can use the CurrentDocument predefined variable to reference the properties and methods of the currently
selected Document object.

Freelance Graphics: Documents class members
Properties

Count

Methods
GetIndex
IsEmpty
Item

Functions
None

Events
None

Freelance Graphics: Documents class
A collection of Documents.

Base classes
BaseObject

Contained by
Class Property
Application Documents

Freelance Graphics: DocWindow class
A document window.

Base classes
BaseObject

Contained by
Class Property
Document DocWindow

Usage
You can use the CurrentDocWindow predefined variable to reference the properties and methods of the currently
selected DocWindow object.

Freelance Graphics: DocWindow class members
Properties

Height
Width

Methods
Cascade
Close
Maximize
Minimize
Restore
Tile

Functions
None

Events
None

Freelance Graphics: DrawObject class
Any selectable object on a page in a presentation.

Base classes
BaseObject

Contained by
Class Property
Page Title

Usage
You can use the Selection or CurrentSelection predefined variable to reference the properties and methods of the
currently selected DrawObject object.

Freelance Graphics: DrawObject class members
Properties

Background AS Background class
Border AS Border class
BuildBullets
Chart AS Chart class
Delay
DimPrevious
ExeName
Height
IsChart
IsGroup
IsImage
IsMedia
IsOleObj
IsPlacementBlock
IsTable
IsText
Left
LineStyle AS LineStyle class
Media AS Media class
Name
OleObj
Page AS Page class
PlacementBlock AS PlacementBlock class
PlayPriority
Priority
Table AS Table class
TextBlock AS TextBlock class
Top
TransitionEffect
WaitForClick
Width

Methods
AddPoint
ConvertTo
Copy
Cut
Delete
Flip
GetObjectData
Move
PutIntoPlacementBlock
Remove
Replicate
Rotate
SetObjectData
Stretch
Ungroup

Functions
None

Events
None

Freelance Graphics: Font class members
Properties

Bold
Case
DoubleUnderline
FontColor
FontName
Italic
Overstrike
Size
SmallCaps
StrikeThrough
SubScript
SuperScript
Underline
WordDoubleUnderline
WordUnderline

Methods
RevertToStyle

Functions
None

Events
None

Freelance Graphics: Font class
The style of a selection or block of text.

Base classes
BaseObject

Contained by
Class Property
TextBlock Font
TextProperties Font

Freelance Graphics: LineStyle class members
Properties

Color AS Color class
Pattern
Width

Methods
RevertToStyle

Functions
None

Events
None

Freelance Graphics: LineStyle class
The style of a line, arrow, or connector.

Base classes
BaseObject

Contained by
Class Property
DrawObject LineStyle

Freelance Graphics: Media class members
Properties

FileName

Methods
Play
StopPlay

Functions
None

Events
None

Freelance Graphics: Media class
Derived from DrawObject - a movie or animation. To create a Media object, use the CreateMovie method of the Page
class.

Base classes
BaseObject

Contained by
Class Property
DrawObject Media

Freelance Graphics: Objects class members
Properties

Count

Methods
GetIndex
IsEmpty
Item

Functions
None

Events
None

Freelance Graphics: Objects class
A collection of DrawObjects.

Base classes
BaseObject

Contained by
Class Property
Page Objects

Freelance Graphics: OLEObject class
Available only in Freelance Graphics 97.
Controls an OLE object.

Base classes
DrawObject.

Contained by
Class Property
DrawObject Varient

Usage
Use this class to manipulate the OLE object, to find out its name, to find out its type, to convert it, and to put it into a
placement block.

Freelance Graphics: OLEObject class members
Properties

Object
UserClassNameApplication
UserClassNameFull
UserClassNameShort

Methods
Activate
DoVerb

Functions
None

Events
None

Freelance Graphics: Page class
One page or slide in a presentation. To create a Page object, you can use either the CreatePage method or the
CreatePageFromTemplate method of the Document class.

Base classes
BaseObject

Contained by
Class Property
DrawObject Page
Document ActivePage

Usage
You can use the CurrentPage predefined variable to reference the properties and methods of the currently selected
Page object.

Freelance Graphics: Page class members
Properties

AutoTime
Delay
Document AS Document class
Exclude
Layout
Name
Number
Objects AS Objects class
Selection AS Selection class
Sound
SpeakerNoteText
Title
TransitionEffect

Methods
CopyPage
CreateArrow
CreateChart
CreateComment
CreateLine
CreateMovie
CreateObject
CreateOval
CreatePlacementBlock
CreateRect
CreateSymbol
CreateTable
CreateText
CutPage
DeleteSpeakerNote
FindNextObject
FindObject
GetSpeakerNoteMarkup
Move
Paste
PasteSpecial
Remove
Replicate

Functions
None

Events
Activated
Created

Freelance Graphics: Pages class members
Properties

Count

Methods
GetIndex
IsEmpty
Item

Functions
None

Events
None

Freelance Graphics: Pages class
A collection of Pages.

Base classes
BaseObject

Contained by
Class Property
Document Pages

Freelance Graphics: PageSelection class
The currently selected pages; derives methods and properties from Page.

Base classes
Page

Contained by
Class Property
Application PageSelection
Document PageSelection

Freelance Graphics: PageSelection class members
Properties

SelectionCount

Methods
AddToSelection
ClearSelection
GetSelection
RemoveFromSelection
Select

Functions
None

Events
None

Freelance Graphics: PlacementBlock class members
Properties

ID
PromptText
Type

Methods
Activate
BrowseDiagrams
BrowseSymbols
Insert

Functions
None

Events
Clicked

Freelance Graphics: PlacementBlock class
Derived from DrawObject - a "Click here..." block. To create a "Click here..." block, use the CreatePlacementBlock
method of the Page class.

Base classes
BaseObject

Contained by
Class Property
DrawObject PlacementBlock

Freelance Graphics: Preferences class
Freelance Graphics preferences.

Base classes
BaseObject

Contained by
Class Property
Application Preferences

Freelance Graphics: Preferences class members
Properties

AutoSave
AutoSaveInterval
BackupDir
BlackWhitePal
BorderDisplay
DisplayCoords
DisplayDrawRuler
DisplayGrid
DisplayTextRuler
OffsetReplicate
ScanSpeed
SkipWelcome
SnapToGrid
StartupView
TemplateDir
UndoEnabled
WorkDir

Methods
None

Functions
None

Events
None

RGB value (defined)
A type Long number specifying the amount of red, green, and blue tint in a 24-bit color. The high-order byte is 0 and
is unused. The three low-order bytes each contain a binary value from 0 (no tint) to 255 (maximum tint), with the
lowest-order byte representing blue, the next byte green, and the next byte red.

Freelance Graphics: Selection class members
Properties

SelectedObjects
SelectionCount

Methods
AddToSelection
Align
ClearSelection
Connect
GetSelection
Group
RemoveFromSelection
Select

Functions
None

Events
None

Freelance Graphics: Selection class
The currently selected draw objects; derives methods and properties from DrawObject.

Base classes
BaseObject

Contained by
Class Property
Application Selection
Page Selection

Freelance Graphics: Table class
Derived from DrawObject - a Freelance Graphics table. To create a Table object, use the CreateTable method of the
Page class.

Base classes
BaseObject

Contained by
Class Property
DrawObject Table

Freelance Graphics: Table class members
Properties

ColCount
RowCount

Methods
DeleteCol
DeleteRow
GetCell
InsertCol
InsertRow

Functions
None

Events
None

Freelance Graphics: TextBlock class
Derived from DrawObject - a text block or text shape.

Base classes
DrawObject

Contained by
Class Property
DrawObject TextBlock

Freelance Graphics: TextBlock class members
Properties

BulletProperties AS BulletProperties class
Font AS Font class
Text
TextProperties AS TextProperties class

Methods
ApplyStyle
CreateStyle
EnterEditMode
GetBulletCount
GetMarkup
GetNthBullet
LeaveEditMode
RevertToStyle

Functions
None

Events
None

Freelance Graphics: TextProperties class
Level-specific text properties.

Base classes
BaseObject

Contained by
Class Property
TextBlock TextProperties

Freelance Graphics: TextProperties class members
Properties

FirstIndent
Font AS Font class
HorizontalAlignment
LineLead
ParaIndent
Paralead
RightIndent
ShadowColor AS Color class
ShadowDepth
ShadowDirection
VerticalAlignment

Methods
None

Functions
None

Events
None

twips (defined)
A twip is a screen-independent unit of measurement (unlike a pixel, which is screen-dependent). There are 1440
twips to an inch and 567 twips to a centimeter. In LotusScript, all Freelance Graphics coordinates and sizes are
specified in twips.

Freelance Graphics LotusScript Classes A-Z

A
Application class
ApplicationWindow class

B
Background class
BaseObject class
Border class
BulletProperties class

C
Chart class
Color class
Colors class

D
Document class
Documentsclass
DocWindow class
DrawObject class

E
(None)

F
Font class

G, H, I, J, K
(None)

L
LineStyle class

M
Media class

N
(None)

O
Objects class
OLEObject

P
Page class
Pages class
PageSelection class
PlacementBlock class
Preferences

Q, R
(None)

S
Selection class

T
Table class
TextBlock class
TextProperties class

U, V, W, X, Y, Z
(None)

Overview: Scripting in Freelance Graphics
The Application Programming Interface (API) for Freelance Graphics functionality. It is an extension of LotusScript--a
cross-product Basic scripting language
You can use LotusScript to automate tasks the user does on a regular basis in Freelance Graphics. For example,
you can use LotusScript and the Freelance API to create applications that make it easy to edit a frequently used
presentation (by attaching scripts to a SmartMaster). You can also write scripts that:

• Attach to a page, a "Click here..." block, or SmartIcons
• Operate on documents, pages, and objects
• Make presentations using information gathered from various Lotus products, such as 1-2-3.

With the Freelance Graphics API, you can create "scripts" that execute when you click a button, an icon, or a "Click
here..." block. You can also execute a script when you choose Edit - Script - Run.
You use the Script Editor and Debugger to create, edit, and debug scripts.
For more information, scroll down or click one of the following:

Sources of information
The structure of LotusScript

• Classes
• Collection classes
• Class containment heirarchy
• Properties
• Methods
• Events

Freelance Graphics API rules
• Using names
• Predefined global variables

Running a script

Sources of information
There is information in the Help system about the Freelance Graphics API (look under Help - Help Topics -
LotusScript). There is also context sensitive Help for the Script Editor and Debugger and for the overall LotusScript
language.
For more information about programming in LotusScript, use the coupon enclosed with Freelance Graphics to receive
the LotusScript Programmer's Guide.

The structure of LotusScript
The API and LotusScript use the principles of object-oriented programming. For information about object-oriented
programming and LotusScript in Lotus applications, see the LotusScript Programmer's Guide.

Classes
The Freelance Graphics API consists of approximately 27 classes (custom LotusScript data types). Each class
definition includes a set of properties and methods. A small number of classes also have events.
When you use the Freelance Graphics LotusScript API, a document, for example, is an instance of the Document
class. Individual elements on a page, such as a rectangle or a text block, are instances of the DrawObject class. For
a list of classes, as well as reference information, see Freelance Graphics LotusScript Classes.
Most Freelance Graphics classes are derived from the BaseObject class. Since the BaseObject class is an abstract
class, you never create instances, or objects, of that class.
Some classes are derrived from the DrawObject class and inherit properties and methods from it, such as the
Selection class and the PlacementBlock class.

Collection classes
The collection classes in Freelance Graphics (Documents, Pages, Objects, and Colors) inherit from the BaseObject
class. They are collections of objects.
The following table shows what indexes the collection classes use.

Class Indexable by

Documents class Number
Pages class Number and name
Objects class Number
Colors class Name

You can get the index of any object by using the GetIndex property. The index number is by priority. Note that, the
current document is always one. For information about collection classes, see the LotusScript Programmer's Guide.
Note In Freelance Graphics script syntax, the index of the first item in a collection or table is one. In other Lotus
applications (WordPro and Approach, for example) the index of the first item is zero. In the future, script indexing may
be standardized across all Lotus applications. If zero becomes the standard for the first collection or table item, you
will need to adjust all existing Freelance Graphics script statements containing collection or table references. You can
use OPTION BASE to change the indexing base, see the LotusScript Reference for more information.

Class containment heirarchy
At the top of the heirarchy is the Freelance Graphics application. It contains the Documents class, a collection class
representing all of the documents currently open in the application, and a Document class, representing individual
presentations (.PRZ). Each Document class contains a Pages class, a collection class representing all of the pages
in a document, and a Page class, representing an individual page. The Page class contains the DrawObject class,
representing an element on the page, such as "Click here..." blocks, charts, and OLE objects.

Properties
Properties define the appearance and behavior of objects. Many object classes have properties defining visual
attributes, such as background color, size, and location. Some properties apply to only one object class. For example,
the Title property is unique to the Page class. On the other hand, the Width property is a property of the AppWindow,
Border, DocWindow, and DrawObject classes.
Some classes may also act as a property for another class. For example, an instance of the Color class can be a
property for an instance of the Font class. When a class is a property, the property description tells you.
For a list of properties, see Freelance Graphics LotusScript Properties.

Methods
Methods are subprograms you use to manipulate objects. For example, you can use the Move method to move an
instance of the DrawObject class (a rectangle, for example), or you can use the Copy method to copy an instance of
the DrawObject class.
For a list of methods, see Freelance Graphics LotusScript Methods.

Events
Events are scriptable actions that are associated with certain classes. For example, you can use the PlacementBlock
class Cllick event to run a script when a placement block is clicked.
For a list of events, see Freelance Graphics LotusScript Events.

Freelance Graphics API rules
Using names
Names offer a convenient way of manipulating object and elements in the Freelance Graphics API. In Freelance
Graphics every object of Application class, Document class, Page class, and DrawObject class has a default name
(however, objects of the Font, Background, Border, and LineStyle classes, and the chart classes do not have default
names).
A Document object's name is the file name and is read-only. A DrawObject object has a default descriptive name
(such as, PlacementBlock1 or Rectangle1) which can be changed through a script. The name of the page is shown in
the Infobox or the IDE; it can be changed by editing the name in the InfoBox or by writing a script. Page 1 is the
default name of the first page created in a presentation, Page 2 is the name of the next page, and so on.
The names of all objects with events are listed in the IDE. However, the actual names of the elements (default or
otherwise) are not listed in the IDE. To find out the names of all the elements on a page that you can manipulate with
a script, run the following script:
'Find the names of all objects on this page.
ForAll Objs in CurrentPage.Objects
 Print Obj.Name
End ForAll
Note Print output appears in the Output window of the IDE.

So, for example, if you have several elements on a page (a text block, a rectangle and an elipse), and you want to
manipulate the rectangle, you would use the script described above and learn that the rectangle's name is
Rectange1. Once you know the name of an element, you can manipulate it. If you want to move the rectangle, write a
script such as the following:
Set Rect = CurrentPage.FindObject("Rectangle1")
Rect.move 1000, 1000
You can even change the element's name. For example:
Rect.name = "Euclid"
Note Once you change the name of an element, you must refer to it by the new name. In the above example, once
you renamed "Rectangle1" to "Euclid," you would have to refer to the rectangle as "Euclid," the next time you used
the FindObject method, unless, of course, you change the name again.
Freelance Graphics stores the names given to pages and elements in the presentation so that they are available in
future script sessions. You can find a draw object if you know its name by using the FindObject method, as
demonstrated above, also see FindObject method.
You can use Bind to bind to an instance of the Document, Page, and DrawObject classes. For example:
Dim p as Page
Set p = Bind("Page 1")
Print p.number
Predefined global variables
Predefined variables let you operate on Freelance Graphics objects:

• CurrentApplication--the current session of Freelance Graphics. Uses the properties and methods of the
Application class.

• CurrentApplicationWindow--the application window of the current session of Freelance Graphics. Uses the
properties and methods of the ApplicationWindow class.

• CurrentDocument--the current Freelance Graphics document. Uses the properties and methods of the Document
class.

• CurrentDocWindow--the current Freelance Graphics document window. Uses the properties and methods of the
DocWindow class.

• CurrentPage--the current page. Uses the properties and methods of the Page class.
• Selection--the currently selected object(s). Uses the properties and methods of the DrawObject class.

For examples of how to use Global variables, see Using LotusScript predefined variables.

Running a script
You can attach scripts to a document, a page, a "Click here..." block, or SmartIcons, and that run when the user
performs some action. Or, you can write scripts that run when you choose Edit - Script - Run, or are attached to an
icon. These are different processes.
To attach (or assign) a script to a page or a "Click here..." block, you must be in a content topic (see To open a
content topic). If the script is attached to a "Click here..." block or a page, it is saved in the content topic itself. The
script runs automatically when the user performs some action, such as opening the page or clicking the "Click
here..." block. The action depends on which event you choose to use to trigger running the script.
See Attaching a script to a "Click here" block, Attaching a script to a content page, or Creating a script button.
When you want to run a script by choosing Edit - Script - Run, you you first must have saved the script as an LSS or
LSO file (a compiled LSS file). You run the script by choosing Edit - Script - Run, and typing the LSS (or LSO) file
name.
For information about attaching scripts to SmartIcons, see Attaching a script to an icon.
For information about creating, editing, and debugging a script, see Overview: Creating, editing, and debugging a
script.

{button ,AL(`H_FLW_SCRIPT_RUN_STEPS;H_FLW_SCRIPT_CR_ED_DEB_OVER',0)} See related topics

Overview: Creating, editing, and debugging a script
The Script Editor and Debugger in which you write, run, and debug a script has Help. Press F1 when you want
information. To launch the Integrated Development Environment (IDE) in Freelance Graphics, choose Edit - Script -
Show Script Editor. For more information about working in the Script Editor and Debugger, look under Script Editor or
Script Debugger in the Freelance Graphics Help index.
Tip You can also review the list of available Freelance Graphics classes, properties, methods, and events by using
the browser in the IDE. You can get help on a highlighted item by pressing F1.
For more information, scroll down or click one of the following:

Creating objects and assigning object references
Using LotusScript predefined product variables

• Using global product variables to assign object variables
• Creating objects

Running a script from the command line
Attaching scripts in SmartMaster content files

• Using events
• Placement blocks or "Click here..." blocks

Attaching scripts to icons
Sample scripts

Creating objects and assigning object references
You can access Freelance Graphics objects, including draw objects, pages, and whole presentations, by assigning a
reference to that object. References can be assigned to existing objects or to objects that are created within a script.
To assign an existing Freelance Graphics object a reference variable, use the Set statement. Set must be used any
time a reference variable is assigned to an instance of a class. For instance:
Dim MyPage as Page
Dim MyRect as DrawObject
' Set MyPage equal to the third Page in the presentation and MyRect
' equal to the second item on MyPage.
Set MyPage = CurrentDocument.Pages.Item(3)
Set MyRect = MyPage.Objects.Item(2)
' Set MyRect equal to the object named My Rectangle.
Set MyRect = CurrentPage.FindObject("My Rectangle")
To create a Freelance Graphics object, you must use the appropriate method. In general, to create an object follow
the method available to the class. For example, the methods for creating draw objects belong to the Page class. To
create a rectangle:
Dim MyRect as DrawObject
Set MyRect = CurrentPage.CreateRect (2000, 3000, 3000, 4000)
The method for creating a page belongs to the Document class:
Dim MyPage as Page
Set MyPage = CurrentDocument.CreatePage("Title of Page", 2)
The method for creating a document, NewDocument, belongs to the Application class. For example,
Set MyDoc = CurrentApplication.NewDocument("test.prz")

Using LotusScript predefined product variables
You can use the predefined global variables to write scripts that operate on the currently selected element, page,
document, document window, application window, or application.
Selection is a global variable that represents the currently selected element or elements on a page. To change the
pattern of the currently selected element or elements on the page:
Sub Main
 Selection.Background.Pattern=$LtsFillGray2
End Sub
CurrentPage represents the current page and uses the properties and methods of the Page class. To delay a page
transition on the current page by ten seconds:

Sub Main
 CurrentPage.PageTransitionDelay=10
End Sub
Using global product variables to assign object variables
Use global product variables as a convenient way to access all other objects. Freelance Graphics always maintains
valid values for you.
The Set statement must be used any time an object variable is assigned to an instance of a class. Also, the Pages
and Objects classes are collections that can be indexed (as in an array). For example:
Dim MyRect As DrawObject
Dim MyPage As Page
' Set MyPage equal to the third page in the presentation,
' and MyRect to the second item on MyPage.
Set MyPage = CurrentDocument.Pages(3)
Set MyRect = MyPage.Objects(2)
Notice that in the example the predefined global variable, CurrentDocument, is used to refer to the current document
and that the collection property, Pages, is used to refer to the third page of the document. Once you use the global
variable, CurrentDocument, to assign the object variable, MyPage, the example shows how to use MyPage to refer to
an explict element on a page.
You can access Freelance Graphics elements, including pages and whole presentations, by assigning a reference
to that element, page, or presentation. For example, you can assign references to elements that are created within a
script or to already existing elements. In the example that follows, note the use of the global variable CurrentPage in
combination with the CreateRect method, to assign the object variable, Rect1:
Dim Rect1 As DrawObject
' Create a rectangle of default size, then name it MyRect1.
Set Rect1 = CurrentPage.CreateRect
Rect1.Name = "MyRect1"
Later in a script you could use the name, MyRect1, that you gave to the rectangle in the above code example, to find
the rectangle so that you can manipulate it in some way. You can find an existing named element (for example,
MyRect1) on the current page by using the global variable CurrentPage and the FindObject method (a Page Class
method that CurrentPage can use). For example:
Dim Obj1 As DrawObject
' Find a rectangle named MyRect1.
Set Obj1 = CurrentPage.FindObject("MyRect1")
To continue with this example, suppose you wanted to move the rectangle once you found it, use the following line of
code. The code makes use of the object variable Obj1 that was set above and the Move method (a method of the
DrawObject class, Obj1 is an instance of DrawObject).
Obj1.Move 1000,1000
Creating objects
To create a Freelance Graphics element, you must use the appropriate method. In general, you create an element by
using a method of the appropriate class. You have already seen some examples of creating in the previous section,
Using global variables to assign object variables. In this section, Creating objects, you will find more examples.
The methods for creating elements on a page belong to the Page class. For instance, to create a rectangle:
Dim MyRect As DrawObject
Set MyRect = CurrentPage.CreateRect (2000, 3000, 3000, 4000)
In this example, you create a rectangle, MyRect, by using the global variable CurrentPage (it uses the methods and
properties of the Page class) and the CreateRect method (a Page class method) to create the rectangle. The
numbers in parenthesis give the location and size and width of the rectangle on the page. See Freelance Graphics
Reference Help for more information about how to use the CreateRect method.

The method for creating a page belongs to the Document class and so you can use it with the golbal variable
CurrentDocument. In the following example the method, CreatePage, takes two parameters, the title of the page and
the SmartLook (or template) that the page will be based on.
Dim MyPage As Page
Set MyPage = CurrentDocument.CreatePage("Title of Page", 2)
As part of the creation process elements and pages are given names by default. These names can be changed by
scripts. Freelance Graphics stores the names given to pages and elements in the presentation, so that they are

available in future script sessions. You can assign a variable that references an existing page in the following way:
Dim Pg as Page
Set Pg = CurrentDocument.Pages("Page 1")
Note "Page 1" is the default name of the first page created in the presentation, "Page 2" is the name of the next
page, and so on.
To change the name of a page using a script, do the following (continuing with the above example):
Pg.Name = "Agenda"
The NewDocument method for creating a document, belongs to the Application class. The following script creates a
new document.
CurrentApplication.NewDocument
Note You must save a document to name it.
Also, the OpenDocument method opens an existing document (in that sense it "creates" a Document object). For
example, to open an exisitng presentation (PROPOSAL.PRZ) do the following:
Set MyDoc = CurrentApplication.OpenDocument("proposal.prz")
You use these methods to open or create presentations.

Running a script from the command line
You can run a script by typing
C:\Freelancepath\F32main /r lsscript.lss filename.prz
from the command line.
(lsscript.lss is the name of the script you want to run, and filename is the name of the presentation you want to run
the script in.)

• In Windows 95, click Start in the taskbar, choose Run, and type the command.
• In Windows NT, Press CTRL+ESC to display the task list, type the command in the New Task edit box, then click

the Run button.

Attaching scripts in SmartMaster content files
The advantage of attaching scripts in an .SMC file is that .SMC files are the "templates" for presentation files (.PRZ).
Scripts attached to .SMC files can be used each time you create a presentation using the .SMC file. However, scripts
attached to a .PRZ file, can only be used in that .PRZ file. Generally speaking you attach scripts to events. For more
information on content topics, see Overview: What is a content topic and Overview: Ways to create your own content
topics.

Using Events
An event is an action associated with a given class, such as the Click event for the PlacementBlock class. You attach
a script to an event. When the event occures, the script runs. There are events associated with the Document class,
the Page class, and the Placement block class. For example, the Page class has two events: Activated and Created.
The PlacementBlock class event is Click. Placement blocks, that is, "Click here..." blocks, can, therefore, run a script
when the user clicks the placement block.

Placement blocks or "Click here..." blocks
A "Click here..." block, also known in scripting as a placement block, can be either a TextPlacementBlock, a Button, a
SymbolPlacementBlock, a ChartPlacementBlock, an OrgChartPlacementBlock, a TablePlacementBlock, or a
DiagramPlacementBlock. Once created, all of these placement blocks can have scripts attached to them. You can
create placement blocks only while:

• Editing SmartMaster content files (.SMC files)
• Editing SmartMaster look files (.MAS files)
• Editing a page layout or backdrop in a .PRZ file

For information about creating and attaching a script to a "Click here" block, see Attaching a script to a "Click here"
block.

Attaching scripts to icons
You can attach scripts to icons. For more information on icons, see Attaching a script to an icon.

Sample scripts

For examples of working code and of the object-oriented syntax used in the Freelance Graphics API, review the
scripts that are used by SmartMaster content (SMC) files in Freelance Graphics. Scripts in these files refer to the
source code contained in the file GTSCRPT.LSS, located in the \LOTUS\SMASTERS\FLG directory.
Caution Modifying script code in this file may cause problems with Freelance Graphics content topics. Make a copy
of the file to experiment with.

{button ,AL(`;H_AV_ATTACHING_A_SCRIPT_TO_AN_ICON_STEPS;H_FLW_SCRIPT_IDE_STEPS;H_FLW_SCRIP
T_OVER;H_FLW_SCRIPT_RUN_STEPS;H_SMDESIGN_SCRIPT_BUTTON_STEPS',0)} See related topics

Opening the Script Dialog Editor
Available only in Freelance Graphics 97.
To open the Script Dialog Editor, choose Edit - Script - Show Dialog Editor.

Opening the Script Editor and Debugger
To open the Script Editor and Debugger, choose Edit - Script - Show Script Editor.

{button ,AL(`H_FLW_SCRIPT_OVER;H_FLW_SCRIPT_RUN_STEPS',0)} See related topics

Running a script
Follow these steps to run a script that is not attached to a page or a "Click here..." block.
1. Choose Edit - Script - Run.
2. Type the script file name in the File name box.
3. Click Open.
Note To see error messages and output, open the Output window; choose Edit - Script - Show Output Window.

{button ,AL(`H_FLW_SCRIPT_IDE_STEPS;H_FLW_SCRIPT_OVER',0)} See related topics

Script information for upgraders
Information for upgraders
This topic describes the difference between scripting in Freelance Graphics 96 and Freelance Graphics 97.
For more information, scroll down or click one of the following:

Backward compatability
Attaching scripts in .PRZ files
Events
Objects listed in the IDE
Default object names
Indexing collections
The dialog box editor
The transcript window is now the output window
Printing from the IDE

Backward compatability
Scripts that were created in Freelance Graphics 96 will run in Freelance Graphics 97. However, scripts written in
Freelance Graphics 97 and saved in .PRZ files or .SMC files will not run and cannot be edited in Freelance Graphics
96. If you run an .LSS file created in Freelance Graphics 97 by choosing Edit - Script - Run, the script will work in
Freelance Graphics 96 if it does not use any of the new scripting features.
In addition, if you open a Freelance Graphics 97 file containing scripts in Freelance Graphics 96 and then save it, the
scripts stored in the file will be lost.
If you open a Freelance Graphics 96 presentation in Freelance Graphics 97, open the IDE, and resave the script, the
96 script format will be converted to the 97 format and these scripts will no longer be recognized by Freelance
Graphics 96.
A Freelance Graphics 96 .LSO file will run in Freelance Graphics 97. However, a Freelance Graphics 97 .LSO may
fail in Freelance Graphics 96.

Attaching scripts in .PRZ files
In Freelance Graphics 97 you can attach scripts to objects in .PRZ files (presentation files) as well as .SMC files
(SmartMaster with content files). In Freelance Graphics 96 you could only attach scripts to .SMC files. However, as a
general rule, .SMC files are the most useful files to put scripts in.

Events
Freelance Graphics now has events for the following classes:

Class Events
Document class Activated, Created, Opened, PageCreated,

PreClose, Save, SaveAs, Saved, SavedAs,
SMCStarted

Page class Activated, Created
PlacementBlock class Clicked

For more information about these events, see Freelance Graphics LotusScript Events A-Z.

Objects listed in the IDE
On the current page, you can see the list of objects that have event handlers in the Object drop-down box of the IDE.
You can use the drop-down box description in a script as a reference to the object it represents, but you must put
square brackets around it. For example:
[SymbolPlacementBlock1].Insert(MyCircle1)
Using the name of an object as listed in the IDE is a simple way of manipulating the object in a script.

Default object names
In Freelance Graphics 97 all instances of the DrawObject class have default names (not just the page and the
document as in Freelance Graphics 96). For information about using names in a script see, Using names.

Indexing collections
The following table shows what indexes the collection classes use.

Class Indexable by

Documents class Number
Pages class Number and name
Objects class Number
Colors class Name

In Freelance Graphics, the numerical index value of the first item in a collection is one. In other Lotus products (Word
Pro and Approach, for example) the index of the first item is zero.
Note You can use the Option Base statement to change the indexing base, see the LotusScript Language Reference
for more information.

The dialog box editor
Freelance Graphics 97 has a dialog box editor. The editor offers more flexibility than the RunDialog method, however,
the RunDialog method is still available. For more information about the dialog editor; open the editor, by choosing
Edit - Scipt - Show Dialog Editor, then choose Help.

The transcript window is now the output window
The Transcript window was used in Freelance Graphics 96 to show error messages and output. However, in
Freelance Graphics 97, error messages (generated by Event handlers and scripts run through the IDE) appear in the
error message box of the IDE.
In Freelance Graphics 97 the Transcript window is now refered to as the Output window. It automatically comes up
when a script error happens outside of the IDE, for example, when you run a script by choosing Edit - Script - Run or
when you run a script from an icon. In addition, when you run presentations containing scripts that were created in
Freelance Graphics 96, the only way you can see error messages is by opening the Output window, that is, by
choosing Edit - Script - Show Output Window.

Printing from the IDE
You can print a script from the IDE in Freelance Graphics 97; from the IDE menu choose File - Print Script.

Frequently-asked questions
Here are some tips and scripts for Freelance Graphics covering common tasks , general issues , and troubleshooting.
For more information, scroll down or click one of the following:

How do I create a presentation using a script?
Create a presentation

How do I create a placement block (or a button) and attach a script to it?
Create a placement block
How do I attach a script to a placement block

How do I create or add presentation elements in a script?
Add pages
Add a text block
Add clip art

How do I edit elements on a page using a script?
Add multiple lines as a text block
Copy and paste an object
Change the look of a presentation
Search and replace
Access text in a text block

How do I work with views in a script?
Rearrange pages
Change the view

How do I print using a script?
Print a page

How do I run a presentation as a ScreeShow in a script?
Run a screen show

How do I learn about Freelance Graphics classes, properties, methods, and events?
List of classes, properties, methods, and events

How do I trouble shoot?
Why doesn't my attached script run?
Can I create multiple buttons?

Common Tasks
How do I create a placement block (that is, a button or a "Click here..." block)?
You must be editing a SmartMaster with content file (that is, an .SMC file), a SmartLook file (a .MAS file), or a page
layout or backdrop in a .PRZ file. To create a button or a "Click here..." block choose Create - "Click here" Block. You
can then attach scripts to the "Click here..." block by making use of the placement block Click event.
Note There are several instances of the PlacementBlock class in Freelance Graphics: TextPlacementBlock,
SymbolPlacementBlock, ChartPlacementBlock, OrgChartPlacementBlock, TablePlacementBlock,
DiagramPlacementBlock, and Button. You can specify the type when you create the placement block;
TextPlacementBlock is the default. Do not confuse the TextPlacementBlock with the TextBlock, they are different. A
TextBlock does not have an event associated with it, and a script cannot be attached to it.

How do I attach a script to a placement block (that is, a button or a "Click here..." block)?
You must be editing a SmartMaster with content (that is, an .SMC file) or a presentation file (.PRZ) that already has
"Click here..." blocks or buttons. Open the IDE choosing Edit - Script - Open Editor or, if you are editing a .SMC file,
you can open the InfoBox for the button or "Click here..." block, click the Basics panel and open the IDE from there,
using the Edit/Create button. Then you use the placement block Click event to write a script that runs when the user
clicks the "Click here..." block.
In short, you can attach a script any element that has an Event associated with it: a placement block, a page, or a
document.

How do I create a new presentation?
You can use the NewDocument method to create a new Freelance Graphics presentation. The following example
creates a new presentation in a separate window, leaving the current presentation still open in its own window.

CurrentApplication.NewDocument "MyPresentation", , "buttons.mas"
How do I copy and paste an object?
You can use the Replicate method or the Copy and Paste method to create a duplicate of an element.
Sub MakeReplicate

Dim MyRectangle as DrawObject
Dim NewCopy as DrawObject
' Assign object variables, create a rectangle and make a replicate of it.
MyRectangle = CurrentPage.CreateRect
Set NewCopy = MyRectangle.Replicate

End Sub
You can use the Copy and Paste methods with any object or group of objects on the page. For example:
Sub ClipboardDemo

Dim MyRectangle as DrawObject
' Make a new rectangle
MyRectangle = CurrentPage.CreateRect
' Copy the rectangle to the clipboard
MyRectangle.Copy
' Pastes clipboard contents onto the page
Set NewObj = CurrentPage.Paste

End Sub
How do I change the view?
You can change between Current Page view, Outline view, or the Sorter view:
CurrentDocument.ViewMode = $ViewOutliner
CurrentDocument.ViewMode = $ViewSorter
CurrentDocument.ViewMode = $ViewDraw
Most product commands are available from Current Page view, and Current Page view should be used for most
scripts.
Note Many script commands do not alter the appearance of the screen. So, while a script runs, you may not see any
action taking place.

How do I add pages?
You can use the CreatePage or CreatePageFromTemplate (when there is an active Content SmartMaster)
commands to add new pages. Either of the following examples will work.
Example 1:

' Add a title page
CurrentDocument.CreatePage "My title page", 1

' Or, you can add a title page from the current content Smart Master.
CurrentDocument.CreatePageFromTemplate "A Content SmartMaster " +_
 "title page", 1

Example 2:
In this example, the object variable, MyPage, is identified with the page that is created.

' Add a title page and assign an object variable to the new page.
Set MyPage = CurrentDocument.CreatePage ("My title page", 1)

' Or, you can add a title page from the current content Smart Master
Set MyPage = CurrentDocument.CreatePageFromTemplate _
 ("A Content SmartMaster page", 1)

How do I change the look of a presentation?
You can change the look of the current presentation by setting the SmartLook property:
' Change the look to the Buttons SmartMaster set.
CurrentDocument.SmartLook = "buttons.mas"

How do I add a block of text to a page?
As in the user interface, there are two ways to add text to a presentation page with LotusScript.

• Create a new text object on the page
• Fill in an existing text block.

To create a new text object on the current page, use the CreateText command as follows:
Set MyTextBlock = CurrentPage.CreateText
MyTextBlock.Text = "Here's a line of text"
There are three ways to access an element iin a presentation. In what follows, the examples use each of these three
ways to access an existing text block:
1. You can assign a DrawObject variable to the text block. For example:

Set MyClickHere = Bind DrawObject("Text2")
' Use the variable and the Text method to put text into the object.
MyClickHere.Text = "Here is a line of text"

2. If the desired text block is selected, you can access it through the current selection:
Selection.Textblock.Text = "Here is a line of text."

3. You can iterate over the objects on the current page and find a "Click here..." block (that is, a placement block)
and then put text in it. Note, when you put text in a placement block, it becomes a text block and it is no longer
recognized as a placement block.
ForAll obj in CurrentPage.Objects
 If obj.IsPlacementBlock Then
 If obj.Type = $pbTypeText then
 obj.Text = "Here's a line of text."
 End If
 End If
End ForAll

How do I add clip art?
You can use the CreateSymbol command to add existing clip art or diagrams to the current page.
' Add the 3rd animal clip art drawing
CreateSymbol "animals", 3
or
Set MySymbol = CreateSymbol ("animals", 3)
To place a symbol in an existing placement block, you can iterate through all of the elements on the current page
until you find a placement block object.
ForAll obj in CurrentPage.Objects
 If obj.IsPlacementBlock Then
 If obj.PromptText = "Click here to add clip art" Then
 obj.insert CreateSymbol ("animals", 3)
 End If
 End If
End ForAll
How do I rearrange the pages of a presentation?
You can move pages by setting their page number.
ThisPage = CurrentPage.Number
CurrentPage.Number = ThisPage + 2
How do I print a presentation?
The Print method prints the active presentation to the current printer.
CurrentDocument.Print
How do I run a presentation as a screen show?
Under LotusScript, a screen show is another view mode. You can start a presentation as a screen show from script
by changing the ViewMode property.
CurrentDocument.ViewMode = $ViewSlideShow

General issues

Is there a list of all classes, properties, methods, and events I can access in a presentation?
For a complete list of classes, properties, methods, and events see Freelance Graphics LotusScript A-Z. You can also
see a list of properties, methods, and events for each class in the IDE.

How do I access text in a TextBlock
Here are two examples of how to access a text block.:
1. You can assign a DrawObject variable to the text block then alter the text.
Set MyClickHere = Bind DrawObject("Subtitle")
MyClickHere.TextBlock.Text = "Here's a line of text"
Note You can use Bind to bind to instances of the Document, Page, and DrawObject classes.
2. If the desired text block is selected, you can access it by using the current selection:
Set MyClickHere = Selection.Textblock
How do I add multiple lines of text to a text block?
To convert lines of text from another source to a text block, you first convert the text to Freelance Graphics markup
format, which uses the characters "<=" in place of carriage return and line feed characters.
The following function converts a Notes-formatted string to a markup-formatted string:
Function ConvStrForFLG (Str1 As String) As String

' Converts a Notes string to a string that FLG can use --
' i.e. converts the carriage return / line feed
' (chr(13) / chr(10)) to equivalent markup characters ("<=").
' Inputs: Str1 - string to convert
' Outputs: none
' Returns: converted string in markup form

Dim pStr1, pStr2 As Integer

ConvStrForFLG$ = ""
pStr1 = 1
pStr2 = Instr (Str1, Chr$(13))

' Convert embedded CR/LF
Do While pStr2 <> 0
 ConvStrForFLG$ = ConvStrForFLG$ + _
 Mid$ (Str1, pStr1, pStr2 - pStr1) + "<="
 pStr1 = pStr2 + 2
 pStr2 = Instr(pStr1, str1, Chr$(13))
Loop

' Handle last part of string
If Len (Mid$(Str1, pStr1)) <> 0 Then
 ConvStrForFLG$ = ConvStrForFLG$ + Mid$(Str1, pStr1)
End If

End Function
How do I search and replace text?
LotusScript in Freelance Graphics provides no direct methods for searching and replacing text in this release.
However, search and replace functions are available to the user under the Freelance Graphics Edit menu.
You can write a script that searches the document for text blocks, then extracts text strings, and then does compares
with each string member.

Troubleshooting
Why doesn't my attached script run when I click the button?
There are two possibilities:
1. If a placement block has been filled in with text, a chart, and so on, then it is no longer identified as a placement

block. Any script that operates on that placement block will no longer recognize it as a placement block and the
script will fail to execute. For example, if you are searching for a placement block, but all there is on the page is
a "Click here..." block that is now filled in with text, then using IsPlacementBlock will not recognize any placement

block on the page. On the other hand, IsTextBlock will recognize the block.
Note If you delete the text that was entered into a "Click here..." block, then it is recognized as a placement block
again.

2. If a placement block is renamed in the course of a script's execution or by user intervention, then the changed
name will cause a script that looks for that placement block using the old name to fail. For example, if
"TextPlacementblock1" gets renamed "My block," the script that works on that placement block would have to
take the name change into account, or else the script will fail.

Can I create multiple buttons with attached scripts on a page?
Yes, multiple buttons are accessible from a SmartMaster content (.SMC) file and from a SmartMaster look (.MAS) file.

Freelance Graphics LotusScript Methods A-Z

A
Activate method
AddPoint method
AddToPageSelection method
AddToSelection method
Align method
ApplyStyle method

B
BrowseDiagrams method
BrowseSymbols method

C
Cascade method
ClearSelection method
Close method
CloseWindow method
ColorToRGB method
Connect method
ConvertTo method
Copy method
CopyPage method
CopySelection method
CreateArrow method
CreateChart method
CreateComment method
CreateLine method
CreateMovie method
CreateObject
CreateOval method
CreatePage method

CreatePageFromTemplate method
CreatePlacementBlock method
CreateRect method
CreateStyle method
CreateSymbol method
CreateTable method
CreateText method
Cut method
CutPage method
CutSelection method

D
DeleteCol method
DeletePage method
DeleteReviewer method
DeleteRow method
DeleteSpeakerNote method
Deselect method
DistributeForComment method
DoVerb method

E
EnterEditMode method

F
FindNextObject method
FindObject method
Flip method

G
GetBulletCount method
GetCell method
GetEnum method
GetIndex method
GetMarkup method
GetNearestColor method
GetNearestIndex method
GetNthBullet method
GetObjectData method
GetRGB method
GetSelection method
GetSpeakerNoteMarkup method
GotoNotes method
GotoPage method
Group method

H
(None)

I
Import method
Insert method
InsertCol method
InsertRow method
IsEmpty method
Item method

J, K
(None)

L
LeaveEditMode method

M
Maximize method
Minimize method
Move method

N
NearestColorFromRGB method
NewDocument method

O
OpenDocument method
OpenDocumentFromInternet
OpenDocumentFromNotes
OpenPresForCopy method

P
Paste method
PastePage method
PasteSelectedPages method
PasteSpecial method
Play method
Print method
PrintOut method
PublishToWeb
PutIntoPlacementBlock method

Q
Quit method

R
Remove method
RemoveFromSelection method
Replicate method
Restore method
RevertToStyle method
RGBToColor method
Rotate method
RunDialog method

S
SameColor method
Save method
SaveAs method
SaveAsToInternet
SaveAsToNotes
Select method
SelectPageForCopy method
SetInternetOptions
SetObjectData method
SetViewMode method
Show method
StartGuidedTemplate method
StopGuidedTemplate method
StopPlay method
Stretch method

T
Tile method

U
Ungroup method

V, W, X, Y, Z
(None)

Freelance Graphics LotusScript Properties A-Z

A
Active property
ActiveDocument property
ActiveDocWindow property
ActivePage property
Application property
ApplicationWindow property
Author property
AutoSave property
AutoSaveInterval property
AutoTime property

B
BackColor property
Background property
BackupDir property
BlackWhitePal property
Blue property
Bold property
Border property
BorderDisplay property
BuildBullets property
BulletProperties property

C
Case property
Changed property
Chart property
CodePage property
ColCount property
Color property

Colors property
Count property
CurrentPrinter property

D
DefaultFilePath property
Delay property
Description property
DimPrevious property
DisplayCoords property
DisplayDrawRuler property
DisplayGrid property
DisplayTextRuler property
DocName property
Document property
Documents property
DocWindow property
DoubleUnderline property

E
Embedded property
Exclude property
ExeName property

F
FirstIndent property
Font property
FontColor property
FontName property
FontUnit property
FullName property

G
Green property

H
Height property
HorizontalAlignment property

I
ID property
Interactive property
IsChart property
IsDraggable property
IsGroup property
IsImage property
IsMedia property
IsOleObj property
IsOpen property
IsPlacementBlock property
IsSelectable property
IsTable property
IsText property
IsValid property
Italic property

J, K
(None)

L
Layout property
Left property
LineLead property
LineStyle property
Location property

M
Media property

N
Name property
Number property

O
Object
Objects property
OffsetReplicate property
OleObj property
Overstrike property

P
Page property
Pages property
PageSelection property
PageTransitionDelay property
PageTransitionEffect property
ParaIndent property
Paralead property
Parent property
Path property
Pattern property
PlacementBlock property
PlayPriority property
Preferences property
Priority property
PromptText property

Q
(None)

R
ReadOnly property
Red property
RemoveMedia property
RightIndent property
RowCount property

S
ScanSpeed property
SelectedObjects property
Selection property
SelectionCount property
ShadowColor property
ShadowDepth property
ShadowDirection property
Size property
SkipWelcome property
SmallCaps property

SmartLook property
SnapToGrid property
Sound property
SpeakerNoteText property
StartNumber property
StartupView property
StrikeThrough property
Style property
SubScript property
SuperScript property

T
Table property
TemplateDir property
TemplatePageCount property
Text property
TextBlock property
TextProperties property
TextTightness property
Title property
Top property
TransitionEffect property
Type property

U
Underline property
UndoEnabled property
UnitOfMeasure property
UserClassNameApplication
UserClassNameFull
UserClassNameShort

V
VersionID property
VerticalAlignment property
ViewMode property
Visible property

W
WaitForClick property
Width property
WordDoubleUnderline property
WordUnderline property
WorkDir property

X, Y, Z
(None)

Freelance Graphics LotusScript A-Z

A
Activate method
Activated event (Document)
Activated event (Page)
Active property
ActiveDocument property
ActiveDocWindow property
ActivePage property
AddPoint method
AddToPageSelection method
AddToSelection method
Align method
Application class
Application property
ApplicationWindow class
ApplicationWindow property
ApplyStyle method
Author property
AutoSave property
AutoSaveInterval property
AutoTime property

B
BackColor property
Background class
Background property
BackupDir property
BaseObject class
BlackWhitePal property
Blue property
Bold property

Border class
Border property
BorderDisplay property
BrowseDiagrams method
BrowseSymbols method
BuildBullets property
BulletProperties class
BulletProperties property

C
Cascade method
Case property
Changed property
Chart property
ClearSelection method
Clicked event
Close method
CloseWindow method
CodePage property
ColCount property
Color class
Color property
Colors class
Colors property
ColorToRGB method
Connect method
ConvertTo method
Copy method
CopyPage method
CopySelection method
Count property
CreateArrow method
CreateChart method
CreateComment method
CreateLine method
CreateMovie method
CreateObject method
CreateOval method
CreatePage method
CreatePageFromTemplate method
CreatePlacementBlock method
CreateRect method
CreateStyle method
CreateSymbol method
CreateTable method
CreateText method
Created event (Document)
Created event (Page)
CurrentPrinter property
Cut method
CutPage method
CutSelection method

D
DefaultFilePath property
Delay property
DeleteCol method
DeletePage method

DeleteReviewer method
DeleteRow method
DeleteSpeakerNote method
Description property
Deselect method
DimPrevious property
DisplayCoords property
DisplayDrawRuler property
DisplayGrid property
DisplayTextRuler property
DistributeForComment method
DocName property
Document class
Document property
Documents class
Documents property
DocWindow class
DocWindow property
DoubleUnderline property
DoVerb method
DrawObject class

E
Embedded property
EnterEditMode method
Exclude property
ExeName property

F
FindNextObject method
FindObject method
FirstIndent property
Flip method
Font class
Font property
FontColor property
FontName property
FontUnit property
FullName property

G
GetBulletCount method
GetCell method
GetEnum method
GetIndex method
GetMarkup method
GetNearestColor method
GetNearestIndex method
GetNthBullet method
GetObjectData method
GetRGB method
GetSelection method
GetSelection method
GetSpeakerNoteMarkup method
GotoNotes method
GotoPage method
Green property
Group method

H
Height property
HorizontalAlignment property

I
ID property
Import method
Insert method
InsertCol method
InsertRow method
Interactive property
IsChart property
IsDraggable property
IsEmpty method
IsGroup property
IsImage property
IsMedia property
IsOleObj property
IsOpen property
IsPlacementBlock property
IsSelectable property
IsTable property
IsText property
IsValid property
Italic property
Item method

J, K
(None)

L
Layout property
LeaveEditMode method
Left property
LineLead property
LineStyle class
LineStyle property
Location property

M
Maximize method
Media class
Media property
Minimize method
Move method

N
Name property
NearestColorFromRGB method
NewDocument method
Number property

O
Object property
Objects class
Objects property
OffsetReplicate property
OleObj property
OLEObject class

OpenDocument method
OpenDocumentFromInternet method
OpenDocumentFromNotes method
Opened event
OpenPresForCopy method
Overstrike property

P
Page class
PageCreated event
Page property
Pages class
Pages property
PageSelection class
PageSelection property
PageTransitionDelay property
PageTransitionEffect property
ParaIndent property
Parent property
Paste method
PastePage method
PasteSelectedPages method
PasteSpecial method
Paralead property
Path property
Pattern property
PlacementBlock class
PlacementBlock property
Play method
PlayPriority property
PreClose event
Preferences class
Preferences property
Print method
PrintOut method
Priority property
PromptText property
PublishToWeb method
PutIntoPlacementBlock method

Q
Quit method

R
ReadOnly property
Red property
Remove method
RemoveFromSelection method
RemoveMedia property
Replicate method
Restore method
RevertToStyle method
RGBToColor method
RightIndent property
Rotate method
RowCount property
RunDialog method

S

SameColor method
Save event
Save method
SaveAs event
SaveAs method
Saved event
SavedAs event
SaveAsToInternet method
SaveAsToNotes method
ScanSpeed property
Select method
SelectedObjects property
Selection class
Selection property
SelectionCount property
SelectPageForCopy method
SetInternetOptions method
SetObjectData method
SetViewMode method
Shadow property
ShadowColor property
ShadowDepth property
ShadowDirection property
Size property
SkipWelcome property
SmallCaps property
SmartLook property
SMCStarted event
SnapToGrid property
Sound property
SpeakerNoteText property
StartGuidedTemplate method
StartNumber property
StartupView property
StopGuidedTemplate method
StopPlay method
Stretch method
StrikeThrough property
Style property
SubScript property
SuperScript property

T
Table class
Table property
TemplateDir property
TemplatePageCount property
Text property
TextBlock class
TextBlock property
TextProperties class
TextProperties property
TextTightness property
Tile method
Title property
Top property
TransitionEffect property
Type property

U
Underline property
UndoEnabled property
Ungroup method
UnitOfMeasure property
UserClassNameApplication property
UserClassNameFull property
UserClassNameShort property

V
VersionID property
VerticalAlignment property
ViewMode property
Visible property

W
WaitForClick property
Width property
WordDoubleUnderline property
WordUnderline property
WorkDir property

X, Y, Z
(None)

' Example: Activated event (Document)
'// In this example, a message box comes up when the user activates the document
or //
'// opens the document. //
Sub Activated(Source As Document)
 MessageBox "The document has just been opened or activated."
End Sub

' Example: Activated event (Page)
'// In this example, a message box comes up when the user activates the page.//
Sub Activated(Source As Page)
 MessageBox "The page has just been activated."
End Sub

' Example: Clicked event
'// In this example, a message box comes up when the placement block that this //
'// script is attached to has been clicked. //
Sub Clicked(Source As PlacementBlock)
 MessageBox " The 'Click here...' block has just been clicked. "
End Sub

' Example: PreClose event
'// In this example, a message box comes up when Freelance Graphics receives an //
'// instruction to close the document. //
Sub PreClose(Source As Document)
 MessageBox " The document is about to close. "
End Sub

' Example: Created event (Document)
'// In this example, a message box comes up when a new document has been created.//
Sub Created(Source As Document)
 MessageBox " A new document has been created. "
End Sub

' Example: Created event (Page)
'// In this example, a message box comes up when a new page has been created.//
Sub Created(Source As Page)
 MessageBox " A new page has been created. "
End Sub

' Example: DocumentCreated event
'// In this example, a message box comes up when a new document has been created.//
Sub DocumentCreated(Source As Application)
 MessageBox " A new document has been created. "
End Sub

' Example: DocumentOpened event
'// In this example, a message box comes up when a document has been opened.//
Sub DocumentOpened(Source As Application)
 MessageBox " A document has been opened. "
End Sub

' Example: DocumentOpen event
'// In this example, a message box comes up when Freelance Graphics receives a command
to open a '// document, but before the document has actually opened.//
Sub DocumentOpen(Source As Application)
 MessageBox " A document is about to be opened. "
End Sub

' Example: SMCStarted event
'// In this example, a message box comes up when a SmartMaster with content is //
'// chosen as a basis for creating a presentation page. It can be used to explain what
a //
'// SmartMaster with content can be used for.//
Sub SMCStarted(Source As Document)
 MessageBox " You are about to use a SmartMaster with content as the basis" +_
 "for your presentation page. "
End Sub

' Example: Opened event
'// In this example, a message box comes up when Freelance Graphics has just opened //
'// a presentation (.prz) file.//
Sub Opened(Source As Document)
 MessageBox " The presentation is now open. "
End Sub

' Example: PageCreated event
'// In this example, a message box comes up when Freelance Graphics has created a new
page.//
Sub PageCreated(Source As Page)
 MessageBox " A new page has just been created. "
End Sub

' Example: Quit event
'// In this example, a message box comes up Freelance Graphics receives a //
'// command to shut down.//
Sub Quit(Source As Application)
 MessageBox " Freelance Graphics is about to shut down. "
End Sub

' Example: SaveAs event
'// In this example, a message box comes up when Freelance Graphics receives a
command//
'// to save a presentation as a .PRZ file or as another file type.//
Sub SaveAs(Source As Document)
 MessageBox " Freelance Graphics is about to save the presentation " +_
 "as a file type of your choice. "
End Sub

' Example: SavedAs event
'// In this example, a message box comes up when Freelance Graphics has saved //
'// a presentation as a .PRZ file or as another file type.//
Sub SavedAs(Source As Document)
 MessageBox " The presentation has been saved as the file type you chose. "
End Sub

' Example: Saved event
'// In this example, a message box comes up when Freelance Graphics has saved //
'// a presentation.//
Sub Saved(Source As Document)
 MessageBox " The presentation has been saved. "
End Sub

' Example: Save event
'// In this example, a message box comes up when Freelance Graphics receives a
command//
'// to save a presentation.//
Sub Save(Source As Document)
 MessageBox " Freelance Graphics is about to save this file. "
End Sub

Freelance Graphics: Activated event (Document)
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_ACTIVATED_DOCUMENT_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished activating a presentation.

Syntax
Activated(Source As Document)

Parameters
Source As Document

Represents the active presentation as a Document object.

Usage
Use this event to run a script when Freelance Graphics has completed activating a presentation file (.PRZ).

Freelance Graphics: Activated event (Page)
{button ,AL(`;H_PAGE_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_ACTIVATED_PAGE_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished activating a page.

Syntax
Activated(Source As Page)

Parameters
Source As Page

Represents the activated page as a Page object.

Usage
Use this event to run a script when Freelance Graphics has completed activating a page. That page is now the
current page.

Freelance Graphics: Clicked event
{button ,AL(`;H_PLACEMENTBLOCK_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_CLICKED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics detects that a given placement block has been clicked.

Syntax
Clicked(Source As PlacementBlock)

Parameters
Source As PlacementBlock

Represents the clicked placement block as a PlacementBlock object.

Usage
Use this event to run a script whether a placement block has been clicked.

Freelance Graphics: PreClose event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_CLOSE_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics receives an instruction to close the document (.PRZ file).

Syntax
PreClose(Source As Document)

Parameters
Source As Document

Represents the document to be closed as a Document object.

Usage
Use this event to run a script when Freelance Graphics receives a command to close a document.

Freelance Graphics: Created event (Document)
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_CREATED_DOCUMENT_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished creating a new presentation document (.PRZ file).

Syntax
Created(NewDocument As Document)

Parameters
NewDocument As Document

Represents the newly created presentation as a Document object.

Usage
Use this event to run a script when Freelance Graphics has created a document (presentation file). Note that
although Freelance Graphics has created the document, it has not yet been named or saved.
Because a presentation (.PRZ) file inherits scripts from SmartMaster content files (.SMC), the most effective use of
the Created event is when it is employed in a SmartMaster content (.SMC) file, it is meaningless in a .PRZ file.

Freelance Graphics: Created event (Page)
{button ,AL(`;H_PAGE_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_CREATED_PAGE_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished creating a page.

Syntax
Created(Source As Page)

Parameters
Source As Page

Represents the newly created page as a Page object.

Usage
Use this event to run a script when Freelance Graphics has created a page.
Because a presentation (.PRZ) file inherits scripts from SmartMaster content files (.SMC), the most effective use of
the Created event is when it is employed in a SmartMaster content (.SMC) file, it is meaningless in a .PRZ file.

Freelance Graphics: DocumentCreated event
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_DOCUMENTCREATED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished creating a new document (presentation file).

Syntax
DocumentCreated(Source As Application, Pathname As String, NewDocument As Document)

Parameters
Source As Application

Represents the current application as an Application object.
Pathname As String

A string representing the path name of the new document. This parameter is always ignored because the
document has not been named or saved yet, and therefore has no pathname.

NewDocument As Document
Represents the newly created document as a Document object.

Usage
Use this event to run a script when Freelacne Graphics has created a document (presentation file). Note that
although the document has (presentation file) been created, it has not yet been named or saved.

Freelance Graphics: DocumentOpened event
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_DOCUMENTOPENED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished opening an existing document (presentation file).

Syntax
DocumentOpened(Source As Application)

Parameters
Source As Application

Represents the current session of Freelance Graphics as an Application object.
CurrentDocument As Document

Represents the presentaiton file just opened as a Document object.

Usage
Use this event to run a script when Freelance Graphics has opened an existing presentation file.

Freelance Graphics: DocumentOpen event
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_DOCUMENTOPEN_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics receives an instruction to open an existing document.

Syntax
DocumentOpen(Source As Application, Pathname As String)

Parameters
Source As Application

Represents the current session of Freelance Graphics as an Application object.
Pathname As String

A string representing the full name (including path) of the document about to be opened.

Usage
Use this event to run a script when Freelance Graphics receives a command to open an existing document.

Freelance Graphics: SMCStarted event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_GTSTARTED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics uses a SmartMaster content topic as the basis for a presentation page.

Syntax
SMCStarted(Source as Document)

Parameters
Source As Document

Represents the active document as a Document object.

Usage
Use this event to run a script when Freelance Graphics receives a command to use a content topic for a presentation.
This event is triggered when the user chooses File - New and selects a SmartMaster with content, or when the user
switches over from not using a SmartMaster content topic to using a SmartMaster content topic by choosing
Presentation - SmartMaster Content - Select a Topic.

Freelance Graphics: Opened event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_OPENED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished opening an existing presentation file.

Syntax
Open(Source As Document)

Parameters
Source As Document

Represents the just opened presentation file as a Document object.

Usage
Use this event to run a script when Freelance Graphics has opened a presentation.

Freelance Graphics: PageCreated event
{button ,AL(`;H_PAGE_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_PAGECREATED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics has finished creating a page.

Syntax
PageCreated(Source As Page)

Parameters
Source As page

Represents the newly created page as a Page object.

Usage
Use this event to run a script when Freelance Graphics has created a page.

Freelance Graphics: Quit event
{button ,AL(`;H_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_QUIT_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raises each time Freelance Graphics receives an instruction to end the current Freelance Graphics application
session.

Syntax
Quit(Source As Application)

Parameters
Source As Application

Represents the about to be closed Freelance Graphics session as an Application object.

Usage
Use this event to run a script when Freelance Graphics receives a command to exit, that is, shut down.

Freelance Graphics: SaveAs event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_SAVEAS_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised just before Freelance Graphics writes to another file type (such as a .BMP file) or as a presentation (.PRZ)
file.

Syntax
SaveAs(Source As Document)

Parameters
Source as Document

Represents the presentation to be saved as a Document object.

Usage
Use this event to run a script when the user chooses File - Save As and saves the presentation as a .PRZ file or as
as another file type (such as a .BMP file). The event is raised just before Freelance Graphics actually writes the file.

Freelance Graphics: SavedAs event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_SAVEDAS_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freeelance Graphics has finished saving a presentation as a presentation (.PRZ) file or as another
file type.

Syntax
SavedAs(Source As Document)

Parameters
Source As Document

Represents the presentation just saved as a Document object.

Usage
Use this event to run a script when the user chooses File - Save As and saves the presentation as a .PRZ file or as
as another file type (such as a .BMP file). The event is raised when Freelance Graphics has finished writing to a file.

Freelance Graphics: Saved event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_SAVED_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised when Freelance Graphics has finished saving a presentation (.PRZ) file.

Syntax
Saved(Source As Document)

Parameters
Source As Document

Represents the presentation that has just been saved as a Document object.

Usage
Use this event to run a script when the user chooses File - Save. The event is raised after Freelance Graphics has
finished writing the file.

Freelance Graphics: Save event
{button ,AL(`;H_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_EXAMPLE_FLG_SAVE_EVENT_MEMDEF',1)} See example
Available only in Freelance Graphics 97.
Raised each time Freelance Graphics receives an instruction to save a presentation and just before Freelance
Graphics actually writes to the file.

Syntax
Save(Source As Document)

Parameters
Source As Document

Represents the presentation about to be saved as a Document object.

Usage
Use this event to run a script when the user chooses File - Save. The event is raised just before Freelance Graphics
writes to the file.

Freelance Graphics LotusScript Events A-Z

A
Activated event (Document)
Activated event (Page)

B
(None)

C
Clicked event
Created event (Document)
Created event (Page)

D, E, F,G,H, I, J, K, L, M, N
(None)

O
Opened event

P
PageCreated event
PreClose event

Q, R
(None)

S
SaveAs event
SavedAs event
Saved event
Save event
SMCStarted event

T, U, V, W, X, Y, Z
(None)

Developing SmartSuite Applications
Developing SmartSuite Applications Using LotusScript is available in the SmartSuite CD
package as an online book. To install Developing SmartSuite Applications Using LotusScript, see
the SmartSuite installation instructions.
To order a printed version of Developing SmartSuite Applications Using LotusScript and other
LotusScript user assistance in the SmartSuite 97 Application Developer's Documentation Set,
complete the order form and return it to Lotus.

Order Form for the SmartSuite 97 Application Developer's Documentation Set
The SmartSuite Application Developer's Documentation Set provides the following LotusScript
programming manuals:

• Developing SmartSuite Applications Using LotusScript is a comprehensive introduction to developing applications
for SmartSuite 97. It offers chapters on key programming concepts, using LotusScript programming tools,
programming individual SmartSuite products, developing cross-product scripts, and integrating scripts with Notes.
Note These manuals are available only in English.

• LotusScript Language Reference provides a comprehensive summary of conventions and basic commands for
the LotusScript language. LotusScript Language Reference provides the foundation for programming any product
that supports the LotusScript programming language.

• The LotusScript Programmer's Guide describes the basic building blocks for LotusScript applications and
provides many working examples.

These books are available in the CD-ROM version of your SmartSuite package as Online Books
and available for viewing on Lotus' World Wide Web site (http://www.lotus.com). Should you
want to order printed versions, simply fill out this form and send it to the appropriate office.
Please send me (1) free copy of the SmartSuite 97 Application Developer's Documentation Set. I
understand that I must pay a shipping and handling fee. Please allow 4 - 6 weeks for delivery.
Name __
Company __
Address 1 (no PO boxes please) ___
Address 2 ___
City __________________________ State/Province _______________________________
Zip/Postal Code ____________ Phone (____) _____ - _________ ext. ______
Payment Method: Visa / Mastercard / Amex / Check (circle one)

Card Number ________________________ Exp Date ________ / _____
Signature ___

If paying by check, please mail this card with your check, payable to Lotus Development
Corporation, in a sealed envelope.
See the Lotus World Wide Web home page or the back cover of Getting the Most Out of
LotusScript in SmartSuite 97 for details on mailing addresses and shipping and handling charges.

LotusScript Documentation as Online Books
If you have purchased the CD-ROM version SmartSuite 97, you can use SmartSuite Install to
install the following Online Books about LotusScript:

• Getting the Most Out of LotusScript in SmartSuite 97
• Developing SmartSuite Applications Using LotusScript
• LotusScript Language Reference
• LotusScript Programmer's Guide

For more information about installing Online Books, see your SmartSuite 97 installation
documentation.

LotusScript Documentation on the Web
You can view updated versions of LotusScript documentation or download updated sample
applications or Help files from the LotusScript home page.
If you have configured Windows to launch your Web browser automatically when you click a
URL on your desktop, you can click the following button to go to the LotusScript home page.

 Click to access the LotusScript home page
If you have not configured Windows to launch your Web browser automatically, enter the
following URL in the location field in your browser and press ENTER:
http://www.lotus.com/smartsuite/sslotusscript.htm

Overview: Designing SmartSuite Applications
LotusScript provides a variety of tools and services to support you in developing applications for
SmartSuite. Getting productive in a new programming environment often involves understanding
how all the pieces work together -- the tools, the language conventions, the object dependencies,
and so on. Understanding how to approach the problem and where to enter your script code is
half the challenge in learning.

Choosing a place to begin
Lotus Notes, 1-2-3, Approach, Freelance Graphics, and Word Pro all use the same underlying
LotusScript language. Each product implements LotusObjects on top of the LotusScript
language. To determine which product best supports the goals for your script application,
consider using each of the SmartSuite products and reviewing its features. Read Developing
SmartSuite Applications Using LotusScript for overviews of what each product can bring to your
programming effort. Implement a couple of simple procedures in each of the products to get a
feel for its features and objects. In the long run, you'll be better able to determine which product
provides strengths where you need them most and how you can develop cross-product
applications that take advantage of the strengths of each product.

Working the basics
LotusScript applications share the following common features.

• You need a Lotus product to run script applications.
• You need a Lotus product to store scripts in a product document such as a 1-2-3 workbook or Word Pro

document.
• You need to run the Lotus Integrated Development Environment (IDE) to edit and debug scripts stored in a

product document.
• You need to open an IDE window for each product document containing scripts that you want to modify.

To write a basic script application, therefore, you must run a Lotus product and load a document
in that product. You can then write scripts for the product objects that you have created in your
product.
Writing scripts in the Integrated Development Environment (IDE)
Your primary tool for developing script applications is the Lotus Integrated Development
Environment (IDE). Beyond providing the basic tools such as an editor, a debugger, a browser,
and a dialog editor, the IDE provides a high degree of integration with each Lotus product. It is
easy to move between tasks that you perform in a product and those that you perform in the IDE.
Writing global scripts
Global scripts make declarations, options, and procedures available to all scripts in your
document. For example, to write global scripts for a 1-2-3 document named LSAPP2.123, you
must first run 1-2-3, load the document LSAPP2.123, and then open an IDE window for that
document. Choose Edit - Scripts & Macros - Show Script Editor in the 1-2-3 menu to activate an
IDE window for your current document.
The IDE lists objects that you can script in the Object list and scripts for each of those objects in
the Script list. You can add statements to predefined scripts in (Globals) such as (Options),
(Declarations), Initialize, or Terminate or you can create your own named procedures. You do not
need to modify predefined scripts to write a basic script application.
The following illustration shows how to select a particular script for (Globals).
Click any item in the following list to learn more about it.

 Product document Initialize and Terminate subs

 (Options) scripts
 (Declarations) scripts

 User-defined procedures

Writing scripts for product objects
You can also write scripts for product objects in your document. As with (Globals), you can add
statements in the predefined scripts for an object or create new procedures for that object. Unlike
scripts that you write in (Globals), the declarations, options statements, and procedures that you
write for a product object are not generally available to scripts attached to a different product
object.
The predefined scripts for product objects include object event procedures. Script statements in
an object event procedure are executed when an object such as a button receives a particular
event in your product such as its being clicked, double-clicked, or moved. For example, if you
have added a button named Button 5 to the 1-2-3 document LSAPP2.123 and you want it to run
some script when you click it, you must add script statements to the Click procedure for Button
5. To select this event procedure, choose the Button 5 object in the IDE Object list and choose
Click in the Script list.
The following illustration shows how to select a predefined or user-defined script for a 1-2-3
product object named Button 5.

Click any item in the following list to learn more about it.
 User-defined procedures
 (Options) scripts
 (Declarations) scripts

 Event procedures
 Initialize and Terminate subs

Working with external script files
In many cases, the one-application-per-document approach is sufficient for working with objects
and data in isolated documents. To develop more sophisticated applications that reuse important
scripts or use multiple products, you should consider using the following types of external script
files:
LotusScript Script (LSS) files
LotusScript Object (LSO) files
LotusScript Extension (LSX) files
OLE Custom Control (OCX) files
Dynamic-link Library (DLL) files

Dynamic-link Library (DLL) files
If you have developed useful functions in C and compiled them in a Dynamic-link Library
(DLL), you can call them from your LotusScript application. For example, the following
procedure declares and calls a LotusScript function named SendDLL corresponding to a C
function named _SendExportedRoutine in the DLL file named MYEXPORTS.DLL.
Declare Function SendDLL Lib _
 "C:\LOTUS\ADDINS\MYEXPORTS.DLL" _
 Alias "_SendExportedRoutine" (i1 As Long, i2 As Long)
SendDLL(5, 10)
For more information on using Dynamic-link Libraries, see LotusScript Language Reference.

(Declarations) scripts in (Globals)
The (Declarations) script is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts in your document
• Public, Private, Type, Class, and Declare Lib statements (external C calls)
• Const statements for those constants that you want to be available to all scripts in your document and are not

needed for Use or UseLSX statements in (Options)

By default the (Declarations) script is initially empty.
If you enter Type, Class, or Declare Lib statements in any other script in (Globals), the IDE
moves them to (Declarations) automatically. If you enter Dim, Public, Private, or Const
statements outside the scope of a procedure in another script, the IDE moves them to
(Declarations) automatically. Const statements in (Options) are the exception to this rule.

Initialize and Terminate subs in (Globals)
Initialize script
Use the Initialize sub in (Globals) to initialize variables that you have declared in (Declarations).
The Initialize sub executes before any of these variables are accessed and before any other
scripts in (Globals) are executed. By default, the Initialize script is empty.
Terminate script
Use the Terminate sub in (Globals) to clean up variables that you have declared in (Declarations)
when you close your document or when you modify a script and execute it again. For example,
you might use an Open statement to open a file containing data in Initialize and use a Close
statement in Terminate to close it. By default, the Terminate script is empty.

(Options) scripts in (Globals)
The (Options) script in (Globals) is designed to contain these the following statements:

• Option statements
Note (Options) contains the statement Option Public by default. This makes Const, Dim, Type, Class, Sub,
Function, and Property statements public by default. You can use the Public form of these statements to make
them public explicitly or the Private form to make them unavailable to other scripts outside (Globals).

• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

If you enter any of these statements, except for Const, in any other script in (Globals), the IDE
automatically moves them to (Options).
Option and Deftype statements that you enter in (Options) apply only to scripts for the current object. To make certain
that an option is applied consistently throughout your document, enter the appropriate statement in the (Options)
script for every object for which you are writing scripts.

User-defined procedures in (Globals)
While you are working in (Globals), you can add procedures to make them available throughout
your document. There are three ways to add procedures to (Globals) in the IDE:

• Using the IDE menu: Choose Create - New Sub or Create - New Function in the IDE menu to create new subs
and functions in (Globals). The IDE automatically adds the name of the new procedure to the Script list.

• Entering statements: Enter a Sub, Function, or Property statement anywhere in (Globals) except within a class.
The IDE automatically adds the name of the new procedure to the Script list for (Globals).

• Importing procedures from a file: Use File - Import Script in the IDE menu to import scripts when you are working
in (Globals). These imported scripts will be available to all scripts in your document. The IDE automatically adds
the name of any new procedures contained in the imported script to the Script list.

LotusScript User Assistance for SmartSuite 97
To help you learn how to develop LotusScript applications for SmartSuite 97, Lotus provides a
complete library of user assistance.

Getting the Most Out of LotusScript in SmartSuite 97
This publication explains how SmartSuite 97 products use the LotusScript programming
language and how your business can take advantage of LotusScript in developing applications
for SmartSuite.
Getting the Most Out of LotusScript in SmartSuite 97 is available in hardcopy, Adobe Acrobat, or
HTML formats in your SmartSuite 97 package, in the SmartSuite Application Developer's
Documentation Set, or on the Worldwide Web.

Developing SmartSuite Applications Using LotusScript
This publication provides comprehensive information on key concepts and techniques for
developing LotusScript applications. Developing SmartSuite Applications Using LotusScript
focuses on programming tools, cross-application programming, Notes integration, and product-
specific application development.
Developing SmartSuite Applications Using LotusScript is available in hardcopy, Adobe Acrobat,
or HTML formats in your SmartSuite 97 package, in the SmartSuite Application Developer's
Documentation Set, or on the Worldwide Web.

LotusScript Language Reference
This publication provides a comprehensive summary of conventions and basic commands for the
LotusScript language. LotusScript Language Reference provides the foundation for programming
any product that supports the LotusScript programming language.
LotusScript Language Reference is available in hardcopy, Adobe Acrobat, Help, or HTML
formats in your SmartSuite 97 package, in the SmartSuite Application Developer's
Documentation Set, or on the Worldwide Web.

LotusScript Programmer's Guide
This publication is a general introduction to LotusScript that describes basic building blocks in
the language and explains how to use them to create powerful applications.
LotusScript Programmer's Guide is available in hardcopy, Adobe Acrobat, or HTML formats in
your SmartSuite 97 package, in the SmartSuite Application Developer's Documentation Set, or
on the Worldwide Web.

Class Reference Help and Frequently-asked Questions
Each product provides comprehensive Help on product classes, frequently-asked questions about
programming, and code examples. All this is delivered in an innovative Help system designed to
enhance your work as a programmer.
Class reference Help and frequently-asked questions are available in Help format in your
SmartSuite package or in HTML format on the Worldwide Web.

Example code and sample applications
Most products also provide working code to illustrate important programming techniques. You
can reuse and modify this code as you develop your own applications.
Example code is available in the SmartSuite package and on the Worldwide Web.

LotusScript Object (LSO) files
LotusScript Object (LSO) files contain public definitions that you can use in your script
applications. If you develop a library of commonly-used declarations or procedures that you
want to reuse across multiple script applications, you can collect them in a product document and
use the File - Export Globals as LSO menu command to create a compiled LotusScript Object
file. If this file were named WKREPORT.LSO, you would make these public definitions
available to your script application by entering the following statement in the appropriate
(Options) script:
Use "C:\LOTUS\ADDINS\WKREPORT.LSO"
For more information on using LotusScript Object files, see LotusScript Language Reference.

LotusScript Script (LSS) files
LotusScript Script (LSS) files are text files that contain LotusScript statements. You can create
LSS files in any text editor. Use the %Include directive anywhere in a script to reference the
contents of an LSS file. For example, to include the contents of a LotusScript Script file named
STDSETUP.LSS in your application, enter the following statement:
%Include "C:\MYSCRIPTS\STDSETUP.LSS"
By default, LotusScript assumes that the LotusScript Script files that you reference have an LSS
file extension. You can actually use any extension for your text file or no extension at all.
For more information on using LotusScript Script files, see LotusScript Language Reference.

LotusScript Extension (LSX) files
LotusScript Extension (LSX) files are Dynamic-link Libraries (DLLs) that contain public class
definitions. LSX files are developed using with the Lotus LSX Toolkit. To obtain a version of the
LSX Toolkit for your operating system, connect to the Lotus home page on the WorldWide Web.
Lotus ships LSX files for Notes and Approach; other LSX files are being developed for
SmartSuite products by Lotus and by third-party developers. These extension files expand the
range of classes that you can use in your LotusScript applications.
Tip You can enter a UseLSX statement in any script; the IDE automatically moves it to (Options).

Loading and using class definitions in LSX files
There are two ways to load and use the public class definitions in an LSX file.

• If the LSX file that you want to load is not registered in the Windows Registry, you must refer to the LSX file
directly in your UseLSX statement.
UseLSX "C:\MYSCRIPTS\LSX4DB2.DLL"

• If an LSX is registered and you want to reference a class definition directly, you can enter the name of the class
definition.
UseLSX "ObjectName"

In this example, LotusScript searches all entries under "LotusScriptExtensions" in the Windows Registry for the
specified class definition and loads that definition.
Note If the LSX file you want to load is registered in the Windows Registry, you can reference its Registry name
and have Windows provide the appropriate DLL name and file path. SmartSuite 97 registers an LSX file that
contains Notes public class definitions. To use these Notes class definitions in your cross-product script
applications, enter the following statement:
UseLSX "*Notes"

Viewing class definitions
Once you have run a script containing a UseLSX statement and loaded an LSX file, you can
browse its class definitions in the IDE Browser panel.
For more information on using LotusScript Extension files, see LotusScript Language Reference.

(Declaration) scripts in object scripts
The (Declarations) script for an object is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts for the current object
• Const statements for those constants that you want to be available to all scripts for the current object and that are

not needed for Use or UseLSX statements in (Options)

By default the (Declarations) script is initially empty.

Event procedures in object scripts
If you are writing a script for an object, the Script list displays default event procedures for the
selected object. In the IDE you cannot create new event procedures for an existing product object
because valid events for that object are defined by the product.

Initialize and Terminate subs in object scripts
Initialize sub
Use the Initialize sub to set up variables declared in the object's (Declarations) script. The
Initialize sub for an object executes before any of its event procedures. By default, the Initialize
script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Initialize subs.

Terminate sub
Use the Terminate sub to clean up variables that you have declared in the object's (Declarations)
script. By default the Terminate script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Terminate subs.

(Options) scripts in object scripts
The (Options) script for an object is designed to contain these the following statements:

• Option statements
• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

User-defined procedures in object scripts
You can create other named subs, functions, and properties for objects in addition to the
predefined scripts or event procedures. Because these procedures are not in (Globals), they can
be called only from other scripts for the object.
There are three ways to create object scripts in the IDE:

• Using the IDE menu: Use Create - New Sub and Create - New Function to create new subs and functions for an
object. The IDE automatically adds the name of the new procedure to the Script list for that object.

• Entering statements: Enter a Sub, Function, or Property statement anywhere in a script for the current object. The
IDE automatically adds the name of the new procedure to the Script list for that object.

• Importing procedures from a file: Use File - Import Script when you are working with object scripts to import
scripts for that object. The IDE automatically adds the name of any new procedures contained in the imported
script to the Script list.

OLE Custom Control (OCX) files
OLE Custom Controls extend the number of objects that you can script in Lotus products. For
example, the Lotus dialog controls listed under product classes in the IDE Browser panel are
OCX controls that you can add to the Lotus Dialog Editor.

Once you have added an OCX control to your product, you can script its properties, methods,
and events in the IDE Script Editor.
The following illustration shows how the properties, methods, and events of an Lotus
CommandButton OCX named Command4 are available to you in the IDE.

Tip You can add OCX controls registered on your system to the Lotus Dialog Editor Toolbox by choosing File -
Toolbox Setup in the Lotus Dialog Editor menu.

Product Document
To edit scripts in the IDE or to execute them in one or more products, you must create or use a
document in your product that contains the scripts. Lotus products supporting LotusScript use the
following document extensions:
Lotus Product Document extension(s)
1-2-3 123
Approach APR
Freelance Graphics SMC
Notes NSF
Word Pro LWP

Using LotusScript Examples
Code examples provide working models for the scripts that you write. Whether the example is
listed in a Help example or available as a product document on disk, you can copy statements or
entire scripts from the examples and use them in your own script applications.
There are three types of LotusScript examples, each designed to illustrate a different aspect of
the LotusScript language or the classes available for each SmartSuite product.

Examples in reference Help
Most examples appear in reference Help for the LotusScript language and for product classes.
These brief examples focus on individual elements in the language or members of a product
class. They illustrate how to use correct syntax for a working example, how to enter appropriate
values for parameters, and how dependencies between elements operate.
Note Although you can copy examples from reference Help and paste them into your scripts, they are not designed
primarily to be self-contained. Sometimes there are dependencies between a piece of example code and the larger
sample application from which it is derived.

Examples in Frequently-asked Questions (FAQs) Help
Frequently-asked questions (FAQs) illustrate how to complete common programming tasks using
LotusScript. Examples in FAQs not only illustrate how individual statements work, but they also
illustrate how these statements form a complete application or procedure. Most examples in
FAQs are designed to be self-sufficient; you can copy one or more procedures from Help, paste
them into your own scripts in the Script Editor, and execute them.
Note When there are dependencies in an example that would require you to modify the example to make it run,
these dependencies are documented in the Help topic or at the beginning of the first script in the example.

Sample applications
The Developing SmartSuite Applications Using LotusScript book includes numerous sample
applications for SmartSuite and for individual products. These examples are designed to illustrate
more sophisticated tasks for an individual product or tasks that utilize more than one product.
They illustrate how to develop script applications that take advantage of embedded OLE objects,
OLE automation, Notes, Visual Basic, the Worldwide Web, and custom Dynamic-link libraries
(DLLs). Lotus develops new sample applications for SmartSuite on an ongoing basis; these new
samples and updated versions of the ones in Developing SmartSuite Applications Using
LotusScript are available on the Worldwide Web.
To copy scripts from these sample applications and paste them into your own script applications,
you must first open the sample application document and then display its scripts by opening the
IDE window for that document.
Note All sample applications in Developing SmartSuite Applications Using LotusScript are designed to run without
modification.

Using LotusScript Help
The design for LotusScript Help supports three of the most frequent activities that you perform
as a programmer:

• Searching for objects and elements to use in your scripts
• Writing scripts
• Debugging scripts

LotusScript Help uses different types of windows to display different types of information, so it
is important to know what each type of window contains and how to navigate between them.

Using Help to search for objects and elements
There are areas in Help designed to help you search for objects and language elements to use in
your scripts:
LotusScript Help Contents
You can use Contents in Help to examine the overall structure of Help and to browse for Help
topics relevant to your current script.

LotusScript Index
Indexes are one of the most popular ways that programmers search for information. Topics in
LotusScript Help are indexed alphabetically so you can enter key phrases or keywords and
navigate to the corresponding Help topics.

LotusScript A - Z lists
LotusScript Help for each product provides A - Z lists of its classes, properties, methods, and
events, including a comprehensive list of all the elements in the product.

IDE Browser Help
The Browser panel in the Integrated Development Environment (IDE) displays lists of
LotusScript language elements and classes for products. You can expand and collapse entries in
the Browser to view the associated properties, methods, and events for objects.

Highlight an element in the Browser panel and press F1 (HELP) to get context-sensitive Help on that
element.

Using Help to write scripts
Help focuses on objects. As you are writing scripts, you explore the relationships between
product classes and the behaviors of objects in that product.
Types of Help windows
To support this exploration, Help separates information about classes into four types of windows:

• Class definition windows define what a class does in a product and how it works in the product's containment
hierarchy. The class definition topic for the 1-2-3 Range object describes what ranges do in 1-2-3, how they are
contained by larger objects, and how they contain smaller objects.

• Class member list windows list all the properties, methods, and events that are members of a particular class.
• Class member windows focus on particular properties, methods, or events.
• Example windows contain one or more scripts for a particular property, method, or event. You can copy and paste

script statements from these example windows into the IDE Script Editor.

Displaying Help windows
To display different types of LotusScript Help windows, use buttons in Help topics and in the
Help window that are labeled by the type of Help window. The following illustration shows how
to use buttons to display class member, class member list, and example windows in Help.

The following illustration shows how to display class definition and class member list windows
in Help.

Help for editing and debugging scripts
You can also get context-sensitive Help about keywords and messages when you are editing or
debugging your scripts in the IDE.
Context-sensitive Help in the Script Editor and Script Debugger
If you need help on a keyword while you are writing or debugging a script in the Script Editor
and Script Debugger, place the insertion point on the keyword and press F1 (HELP) to get context-
sensitive Help on that keyword.
Context-sensitive Help on messages
You can also get context-sensitive Help on two types of messages in the IDE. In the Script
Editor, you can get context-sensitive Help on syntax errors. Navigate to the statement that caused
the error and press F1 (HELP). When you are debugging your scripts and the IDE reports a run-time
error, press F1 (HELP) to display information about that error and suggestions about fixing it.

