
March 15, 1995 The Java Virtual Machine Specification 7

2 The Virtual Machine Instruction Set

Pushing Constants onto the Stack

bipush
Push one-byte signed integer

Stack: ... => ..., value

byte1 is interpreted as a signed 8-bit value. This value is expanded to an integer and pushed onto the
operand stack.

sipush
Push two-byte signed integer

Stack: ... => ..., item

byte1 and byte2 are assembled into a signed 16-bit value. This value is expanded to an integer and
pushed onto the operand stack.

ldc1
Push item from constant pool

Stack: ... => ..., item

indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is resolved and pushed onto the stack.

Syntax:

bipush = 16

byte1

Syntax:

sipush = 17

byte1

byte2

Syntax:

ldc1 = 18

indexbyte1

The Virtual Machine Instruction Set

8 The Java Virtual Machine Specification March 15, 1995

ldc2
Push item from constant pool

Stack: ... => ..., item

indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The item at that index is resolved and pushed onto the stack.

ldc2w
Push long or double from constant pool

Stack: ... => ..., constant-word1, constant-word2

indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The two-word constant at that index is resolved and pushed onto the stack.

aconst_null
Push null object

Stack: ... => ..., null

Push the null object onto the stack.

iconst_m1
Push integer constant -1

Stack: ... => ..., -1

Push the integer -1 onto the stack.

iconst_<n>
Push integer constant <n>

Stack: ... => ..., <n>

Forms: iconst_0 = 3, iconst_1 = 4, iconst_2 = 5, iconst_3 = 6, iconst_4 = 7, iconst_5 = 8

Push the integer <n> onto the stack.

Syntax:

ldc2 = 19

indexbyte1

indexbyte2

Syntax:

ldc2w = 20

indexbyte1

indexbyte2

Syntax:

aconst_null = 1

Syntax:

iconst_m1 = 2

Syntax:

iconst_<n>

March 15, 1995 The Java Virtual Machine Specification 9

The Virtual Machine Instruction Set

lconst_<l>
Push long integer constant

Stack: ... => ..., <l>-word1, <l>-word2

Forms: lconst_0 = 9, lconst_1 = 10

Push the long integer <l> onto the stack.

fconst_<f>
Push single float

Stack: ... => ..., <f>

Forms: fconst_0 = 11, fconst_1 = 12, fconst_2 = 13

Push the single precision floating point number <f> onto the stack.

dconst_<d>
Push double float

Stack: ... => ..., <d>-word1, <d>-word2

Forms: dconst_0 = 14, dconst_1 = 15

Push the double precision floating point number <d> onto the stack.

Loading Local Variables Onto the Stack

iload
Load integer from local variable

Stack: ... => ..., value

Local variable vindex in the current Java frame should contain an integer. The value of that variable is
pushed onto the operand stack.

Syntax:

lconst_<l>

Syntax:

fconst_<f>

Syntax:

dconst_<d>

Syntax:

iload = 21

vindex

The Virtual Machine Instruction Set

10 The Java Virtual Machine Specification March 15, 1995

iload_<n>
Load integer from local variable

Stack: ... => ..., value

Forms: iload_0 = 27, iload_1 = 27, iload_2 = 28, iload_3 = 29

Local variable <n>in the current Java frame should contain an integer. The value of that variable is
pushed onto the operand stack.

This instruction is the same as iload with a vindex of <n>, except that the operand <n> is implicit.

lload
Load long integer from local variable

Stack: ... => ..., value-word1, value-word2

Local variables vindex and vindex+1 in the current Java frame should together contain a long integer.
The value of contained in those variables is pushed onto the operand stack.

lload_<n>
Load long integer from local variable

Stack: ... => ..., value-word1, value-word2

Forms: lload_0 = 30, lload_1 = 31, lload_2 = 32, lload_3 = 33

Local variables <n> and <n>+1 in the current Java frame should together contain a long integer. The
value contained in those variables is pushed onto the operand stack.

This opcode is the same as lload with a vindex of <n>, except that the operand <n> is implicit.

fload
Load single float from local variable

Stack: ... => ..., value

Local variable vindex in the current Java frame should contain a single precision floating point number.
The value of that variable is pushed onto the operand stack.

Syntax:

iload_<n>

Syntax:

lload = 22

vindex

Syntax:

lload_<n>

Syntax:

fload = 23

vindex

March 15, 1995 The Java Virtual Machine Specification 11

The Virtual Machine Instruction Set

fload_<n>
Load single float from local variable

Stack: ... => ..., value

Forms: fload_0 = 34, fload_1 = 35, fload_2 = 36, fload_3 = 37

Local variable <n> in the current Java frame should contain a single precision floating point number.
The value of that variable is pushed onto the operand stack.

This opcode is the same as fload with a vindex of <n>, except that the operand <n> is implicit.

dload
Load double float from local variable

Stack: ... => ..., value-word1, value-word2

Local variables vindex and vindex+1 in the current Java frame should together contain a double
precision float point number. The value contained in those variables is pushed onto the operand stack.

dload_<n>
Load double float from local variable

Stack: ... => ..., value-word1, value-word2

Forms: dload_0 = 38, dload_1 = 39, dload_2 = 40, dload_3 = 41

Local variables <n> and <n>+1 in the current Java frame should together contain a double precision
floating point number. The value contained in those variables is pushed onto the operand stack.

This opcode is the same as dload with a vindex of <n>, except that the operand <n> is implicit.

aload
Load local object variable

Stack: ... => ..., value

Local variable vindex in the current Java frame should contain a handle to an object or to an array. The
value of that variable is pushed onto the operand stack.

Syntax:

fload_<n>

Syntax:

dload = 24

vindex

Syntax:

dload_<n>

Syntax:

aload = 25

vindex

The Virtual Machine Instruction Set

12 The Java Virtual Machine Specification March 15, 1995

aload_<n>
Load object reference from local variable

Stack: ... => ..., value

Forms: aload_0 = 42, aload_1 = 43, aload_2 = 44, aload_3 = 45

Local variable n in the current Java frame should contain a handle to an object or to an array. The value
of that variable is pushed onto the operand stack.

This opcode is the same as aload with a vindex of <n>, except that the operand <n> is implicit.

Storing Stack Values into Local Variables

istore
Store integer into local variable

Stack: ..., value => ...

value should be an integer. Local variable vindex in the current Java frame is set to value.

istore_<n>
Store integer into local variable

Stack: ..., value => ...

Forms: istore_0 = 59, istore_1 = 60, istore_2 = 61, istore_3 = 62

value should be an integer. Local variable <n> in the current Java frame is set to value.

This instruction is the same as istore with a vindex of <n>, except that the operand <n> is implicit.

lstore
Store long integer into local variable

Stack: ..., value-word1, value-word2 => ...

value should be a long integer. Local variables vindex and vindex+1 in the current Java frame are set to
value.

Syntax:

aload_<n>

Syntax:

istore = 54

vindex

Syntax:

istore_<n>

Syntax:

lstore = 55

vindex

March 15, 1995 The Java Virtual Machine Specification 13

The Virtual Machine Instruction Set

lstore_<n>
Store long integer into local variable

Stack: ..., value-word1, value-word2 => ...

Forms: lstore_0 = 63, lstore_1 = 64, lstore_2 = 65, lstore_3 = 66

value should be a long integer. Local variables <n> and <n>+1 in the current Java frame are set to value.

This instruction is the same as lstore with a vindex of <n>, except that the operand <n> is implicit.

fstore
Store single float into local variable

Stack: ..., value => ...

value should be a single precision floating point number. Local variable vindex in the current Java
frame is set to value.

fstore_<n>
Store single float into local variable

Stack: ..., value => ...

Possible Instructions:

fstore_0 = 67, fstore_1 = 68, fstore_2 = 69, fstore_3 = 70

value should be a single precision floating point number. Local variable <n> in the current Java frame
is set to value.

This instruction is the same as fstore with a vindex of <n>, except that the operand <n> is implicit.

dstore
Store double float into local variable

Stack: ..., value-word1, value-word2 => ...

value should be a double precision floating point number. Local variables vindex and vindex+1 in the
current Java frame are set to value.

Syntax:

lstore_<n>

Syntax:

fstore = 56

vindex

Syntax:

fstore_<n>

Syntax:

dstore = 57

vindex

The Virtual Machine Instruction Set

14 The Java Virtual Machine Specification March 15, 1995

dstore_<n>
Store double float into local variable

Stack: ..., value-word1, value-word2 => ...

Forms: dstore_0 = 71, dstore_1 = 72, dstore_2 = 73, dstore_3 = 74

value should be an double precision floating point number. Local variables <n> and <n>+1 in the
current Java frame are set to value.

This instruction is the same as dstore with a vindex of <n>, except that the operand <n> is implicit.

astore
Store object reference into local variable

Stack: ..., value => ...

value should be a handle to an array or to an object. Local variable vindex in the current Java frame is
set to value.

astore_<n>
Store object reference into local variable

Stack: ..., value => ...

Forms: astore_0 = 75, astore_1 = 76, astore_2 = 77, astore_3 = 78

value should be a handle to an array or to an object. Local variable <n> in the current Java frame is set
to value.

This instruction is the same as astore with a vindex of <n>, except that the operand <n> is implicit.

iinc
Increment local variable by constant

Stack: no change

Local variable vindex in the current Java frame should contain an integer. Its value is incremented by
the value const, where const is treated as a signed 8-bit quantity.

Syntax:

dstore_<n>

Syntax:

astore = 58

vindex

Syntax:

astore_<n>

Syntax:

iinc = 132

vindex

const

March 15, 1995 The Java Virtual Machine Specification 15

The Virtual Machine Instruction Set

Managing Arrays

newarray
Allocate new array

Stack: ..., size => result

size should be an integer. It represents the number of elements in the new array.

atype is an internal code that indicates the type of array to allocate. Possible values for atype are as
follows:

A new array of the indicated or computed atype, capable of holding size elements, is allocated.
Allocation of an array large enough to contain nelem items of atype is attempted. All elements of the
array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory
to allocate the array, an OutOfMemoryException is thrown.

Syntax:

newarray = 188

atype

T_ARRAY 1

T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11

The Virtual Machine Instruction Set

16 The Java Virtual Machine Specification March 15, 1995

anewarray
Allocate new array of objects

Stack: ..., size=> result

size should be an integer. It represents the number of elements in the new array.

indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The item at that index is resolved. The resulting entry should be a class.

A new array of the indicated class type and capable of holding size elements is allocated. Allocation of
an array large enough to contain size items of the given class type is attempted. All elements of the
array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory
to allocate the array, an OutOfMemoryException is thrown.

anewarray is used to create a single dimension of an array of objects. For example, to create

new Thread[7]

the following code is used:

bipush 7
anewarray <Class “java.lang.Thread”>

anewarray can also be used to create the outermost dimension of a multi-dimensional array. For
example, the following array declaration:

new int[6][]

is created with the following code:

bipush 6
anewarray <Class “[I”>

See CONSTANT_Class in the Class File Format chapter for information on array class names.

multianewarray
Allocate new multi-dimensional array

Stack: ..., size1 size2...sizen => result

Each size should be an integer. Each represents the number of elements in a dimension of the array.

indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The item at that index is resolved. The resulting entry should be a class.

dimensions has the following aspects:

• It should be an integer ≥ 1.

• It represents the number of dimensions being created. It must be ≤ the number of dimensions of
the array class.

• It represents the number of elements that are popped off the stack. All must be integers greater
than or equal to zero. These are used as the sizes of the dimension. For example, to create:

Syntax:

anewarray = 189

indexbyte1

indexbyte2

Syntax:

anewarray = 198

indexbyte1

indexbyte2

dimensions

March 15, 1995 The Java Virtual Machine Specification 17

The Virtual Machine Instruction Set

new int[6][3][]

the following code is used:

bipush 6
bipush 3
multianewarray <Class “[[[I”> 2

If any of the size arguments on the stack is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryException is thrown.

Note: It is more efficient to use newarray or anewarray when creating a single dimension.

See CONSTANT_Class in the Class File Format chapter for information on array class names.

arraylength
Get length of array

Stack: ..., handle => ..., length

handle should be the handle of an array. The length of the array is determined and replaces handle on the
top of the stack.

If the handle is null, a NullPointerException is thrown.

iaload
Load integer from array

Stack: ..., array, index => ..., value

array should be an array of integers. index should be an integer. The integer value at position number
index in array is retrieved and pushed onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

laload
Load long integer from array

Stack: ..., array, index => ..., value-word1, value-word2

array should be an array of long integers. index should be an integer. The long integer value at position
number index in array is retrieved and pushed onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

Syntax:

arraylength = 190

Syntax:

iaload = 46

Syntax:

laload = 47

The Virtual Machine Instruction Set

18 The Java Virtual Machine Specification March 15, 1995

faload
Load single float from array

Stack: ..., array, index => ..., value

array should be an array of single precision floating point numbers. index should be an integer. The
single precision floating point number value at position number index in array is retrieved and pushed
onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

daload
Load double float from array

Stack: ..., array, index => ..., value-word1, value-word2

array should be an array of double precision floating point numbers. index should be an integer. The
double precision floating point number value at position number index in array is retrieved and pushed
onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

aaload
Load object reference from array

Stack: ..., array, index => ..., value

array should be an array of handles to objects or arrays. index should be an integer. The object or array
value at position number index in array is retrieved and pushed onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

baload
Load signed byte from array

Stack: ..., array, index => ..., value

array should be an array of signed bytes. index should be an integer. The signed byte value at position
number index in array is retrieved, expanded to an integer, and pushed onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

Syntax:

faload = 48

Syntax:

daload = 49

Syntax:

aaload = 50

Syntax:

baload = 51

March 15, 1995 The Java Virtual Machine Specification 19

The Virtual Machine Instruction Set

caload
Load character from array

Stack: ..., array, index => ..., value

array should be an array of characters. index should be an integer. The character value at position
number index in array is retrieved, expanded to an integer, and pushed onto the top of the stack.

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

saload
Load short from array

Stack: ..., array, index => ..., value

array should be an array of (signed) short integers. index should be an integer. The short integer value
at position number index in array is retrieved, expanded to an integer, and pushed onto the top of the
stack.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

iastore
Store into integer array

Stack: ..., array, index, value => ...

array should be an array of integers, index should be an integer, and value an integer. The integer value
is stored at position index in array.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

lastore
Store into long integer array

Stack: ..., array, index, value-word1, value-word2 => ...

array should be an array of long integers, index should be an integer, and value a long integer. The long
integer value is stored at position index in array.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

Syntax:

caload = 52

Syntax:

saload = 53

Syntax:

iastore = 79

Syntax:

lastore = 80

The Virtual Machine Instruction Set

20 The Java Virtual Machine Specification March 15, 1995

fastore
Store into single float array

Stack: ..., array, index, value => ...

array should be an array of single precision floating point numbers, index should be an integer, and
value a single precision floating point number. The single float value is stored at position index in array.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

dastore
Store into double float array

Stack: ..., array, index, value-word1, value-word2 => ...

array should be an array of double precision floating point numbers, index should be an integer, and
value a double precision floating point number. The double float value is stored at position index in
array.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

aastore
Store into object reference array

Stack: ..., array, index, value => ...

array should be an array of handles to objects or to arrays, index should be an integer, and value a
handle to an object or array. The handle value is stored at position index in array.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

The actual type of value should be conformable with the actual type of the elements of the array. For
example, it is legal to store and instance of class Thread in an array of class Object, but not vice versa.
An IncompatibleTypeException is thrown if an attempt is made to store an incompatible object
reference.

bastore
Store into signed byte array

Stack: ..., array, index, value => ...

array should be an array of signed bytes, index should be an integer, and value an integer. The integer
value is stored at position index in array. If value is too large to be a signed byte, it is truncated.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

Syntax:

fastore = 81

Syntax:

dastore = 82

Syntax:

aastore = 83

Syntax:

bastore = 84

March 15, 1995 The Java Virtual Machine Specification 21

The Virtual Machine Instruction Set

castore
Store into character array

Stack: ..., array, index, value => ...

array should be an array of characters, index should be an integer, and value an integer. The integer
value is stored at position index in array. If value is too large to be a character, it is truncated.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.

sastore
Store into short array

Stack: ..., array, index, value => ...

array should be an array of shorts , index should be an integer, and value an integer. The integer value is
stored at position index in array. If value is too large to be an short, it is truncated.

If array is null, a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.

Stack Instructions

nop
Do nothing.

Stack: no change

Do nothing.

pop
Pop top stack word

Stack: ..., any => ...

Pop the top word from the stack.

Syntax:

castore = 85

Syntax:

sastore = 86

Syntax:

nop = 0

Syntax:

pop = 87

The Virtual Machine Instruction Set

22 The Java Virtual Machine Specification March 15, 1995

pop2
Pop top two stack words

Stack: ..., any2, any1 => ...

Pop the top two words from the stack.

dup
Duplicate top stack word

Stack: ..., any => ..., any, any

Duplicate the top word on the stack.

dup2
Duplicate top two stack words

Stack: ..., any2, any1 => ..., any2, any1, any2, any1

Duplicate the top two words on the stack.

dup_x1
Duplicate top stack word and put two down

Stack: ..., any2, any1 => ..., any1, any2, any1

Duplicate the top word on the stack and insert the copy two words down in the stack.

dup2_x1
Duplicate top two stack words and put two down

Stack: ..., any3, any2, any1 => ..., any2,, any1, any3, any2, any1

Duplicate the top two words on the stack and insert the copies two words down in the stack.

Syntax:

pop2 = 88

Syntax:

dup = 89

Syntax:

dup2 = 92

Syntax:

dup_x1 = 90

Syntax:

dup2_x1 = 93

March 15, 1995 The Java Virtual Machine Specification 23

The Virtual Machine Instruction Set

dup_x2
Duplicate top stack word and put three down.

Stack: ..., any3, any2, any1 => ..., any1, any3, any2, any1

Duplicate the top word on the stack and insert the copy three words down in the stack.

dup2_x2
Duplicate top two stack words and put three down

Stack: ..., any4, any3, any2, any1 => ..., any2, any1, any4, any3, any2, any1

Duplicate the top two words on the stack and insert the copies three words down in the stack.

swap
Swap top two stack words

Stack: ..., any2, any1 => ..., any2, any1

Swap the top two elements on the stack.

Arithmetic Instructions

iadd
Integer add

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. The values are added and are replaced on the stack by their
integer sum.

ladd
Long integer add

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be long integers. The values are added and are replaced on the stack by their
long integer sum.

Syntax:

dup_x2 = 91

Syntax:

dup2_x2 = 94

Syntax:

swap = 95

Syntax:

iadd = 96

Syntax:

ladd = 97

The Virtual Machine Instruction Set

24 The Java Virtual Machine Specification March 15, 1995

fadd
Single float add

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. The values are added and are
replaced on the stack by their single precision floating point sum.

dadd
Double float add

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be double precision floating point numbers. The values are added and are
replaced on the stack by their double precision floating point sum.

isub
Integer subtract

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. value2 is subtracted from value1, and both values are replaced on
the stack by their integer difference.

lsub
Long integer subtract

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be long integers. value2 is subtracted from value1, and both values are
replaced on the stack by their long integer difference.

fsub
Single float subtract

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their single precision floating point difference.

Syntax:

fadd = 98

Syntax:

dadd = 99

Syntax:

isub = 100

Syntax:

lsub = 101

Syntax:

fsub = 102

March 15, 1995 The Java Virtual Machine Specification 25

The Virtual Machine Instruction Set

dsub
Double float subtract

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be double precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their double precision floating point difference.

imul
Integer multiply

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. Both values are replaced on the stack by their integer product.

lmul
Long integer multiply

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be long integers. Both values are replaced on the stack by their long integer
product.

fmul
Single float multiply

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. Both values are replaced on the
stack by their single precision floating point product.

dmul
Double float multiply

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be double precision floating point numbers. Both values are replaced on the
stack by their double precision floating point product.

Syntax:

dsub = 103

Syntax:

imul = 104

Syntax:

imul = 105

Syntax:

fmul = 106

Syntax:

dmul = 107

The Virtual Machine Instruction Set

26 The Java Virtual Machine Specification March 15, 1995

idiv
Integer divide

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. value1 is divided by value2, and both values are replaced on the
stack by their integer quotient.

The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero
results in a “/ by zero” ArithmeticException being thrown.

ldiv
Long integer divide

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be long integers. value1 is divided by value2, and both values are replaced on
the stack by their long integer quotient.

The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero
results in a “/ by zero” ArithmeticException being thrown.

fdiv
Single float divide

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their single precision floating point quotient.

Divide by zero results in the quotient being NaN.

ddiv
Double float divide

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should be double precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their double precision floating point quotient.

Divide by zero results in the quotient being NaN.

Syntax:

idiv = 108

Syntax:

ldiv = 109

Syntax:

fdiv = 110

Syntax:

ddiv = 111

March 15, 1995 The Java Virtual Machine Specification 27

The Virtual Machine Instruction Set

imod
Integer mod

Stack: ..., value1, value2 => ..., result

value1 and value2 should both be integers. value1 is divided by value2, and both values are replaced on
the stack by their integer remainder.

An attempt to divide by zero results in a “/ by zero” ArithmeticException being thrown.

lmod
Long integer mod

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should both be long integers. value1 is divided by value2, and both values are
replaced on the stack by their long integer remainder.

An attempt to divide by zero results in a “/ by zero” ArithmeticException being thrown.

fmod
Single float mod

Stack: ..., value1, value2 => ..., result

value1 and value2 should both be single precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted
from value1.The result, as a single precision floating point number, replaces both values on the stack.
That is, result = value1 - ((int)(value1/value2)) * value2.

An attempt to divide by zero results in NaN.

dmod
Double float mod

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should both be double precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted
from value1.The result, as a double precision floating point number, replaces both values on the stack.
That is, result = value1 - ((int)(value1/value2)) * value2.

An attempt to divide by zero results in NaN.

Syntax:

imod = 112

Syntax:

lmod = 113

Syntax:

fmod = 114

Syntax:

dmod = 115

The Virtual Machine Instruction Set

28 The Java Virtual Machine Specification March 15, 1995

ineg
Integer negate

Stack: ..., value => ..., result

value should be an integer. It is replaced on the stack by its arithmetic negation.

lneg
Long integer negate

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value should be a long integer. It is replaced on the stack by its arithmetic negation.

fneg
Single float negate

Stack: ..., value => ..., result

value should be a single precision floating point number. It is replaced on the stack by its arithmetic
negation.

dneg
Double float negate

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value should be a double precision floating point number. It is replaced on the stack by its arithmetic
negation.

Logical Instructions

ishl
Integer shift left

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. value1 is shifted left by the amount indicated by the low five bits
of value2. The integer result replaces both values on the stack.

Syntax:

ineg = 116

Syntax:

lneg = 117

Syntax:

fneg = 118

Syntax:

dneg = 119

Syntax:

ishl = 120

March 15, 1995 The Java Virtual Machine Specification 29

The Virtual Machine Instruction Set

ishr
Integer arithmetic shift right

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. value1 is shifted right arithmetically (with sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.

iushr
Integer logical shift right

Stack: ..., value1, value2 => ..., result

value1 and value2 should be integers. value1 is shifted right logically (with no sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.

lshl
Long integer shift left

Stack: ..., value1-word1, value1-word2, value2 => ..., result-word1, result-word2

value1 should be a long integer and value2 should be an integer. value1 is shifted left by the amount
indicated by the low six bits of value2. The long integer result replaces both values on the stack.

lshr
Long integer arithmetic shift right

Stack: ..., value1-word1, value1-word2, value2 => ..., result-word1, result-word2

value1 should be a long integer and value2 should be an integer. value1 is shifted right arithmetically
(with sign extension) by the amount indicated by the low six bits of value2. The long integer result
replaces both values on the stack.

lushr
Long integer logical shift right

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 should be a long integer and value2 should be an integer. value1 is shifted right logically (with
no sign extension) by the amount indicated by the low six bits of value2. The long integer result
replaces both values on the stack.

Syntax:

ishr = 122

Syntax:

iushr = 124

Syntax:

lshl = 121

Syntax:

lshr = 123

Syntax:

lushr = 125

The Virtual Machine Instruction Set

30 The Java Virtual Machine Specification March 15, 1995

iand
Integer boolean and

Stack: ..., value1, value2 => ..., result

value1 and value2 should both be integers. They are replaced on the stack by their bitwise conjunction
(AND).

land
Long integer boolean and

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should both be long integers. They are replaced on the stack by their bitwise
conjunction (AND).

ior
Integer boolean or

Stack: ..., value1, value2 => ..., result

value1 and value2 should both be integers. They are replaced on the stack by their bitwise disjunction
(OR).

lor
Long integer boolean or

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should both be long integers. They are replaced on the stack by their bitwise
disjunction (OR).

ixor
Integer boolean xor

Stack: ..., value1, value2 => ..., result

value1 and value2 should both be integers. They are replaced on the stack by their bitwise exclusive
disjunction (XOR).

Syntax:

iand = 126

Syntax:

land = 127

Syntax:

ior = 128

Syntax:

lor = 129

Syntax:

ixor = 130

March 15, 1995 The Java Virtual Machine Specification 31

The Virtual Machine Instruction Set

lxor
Long integer boolean xor

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 should both be long integers. They are replaced on the stack by their bitwise
exclusive disjunction (XOR).

Conversion Operations

i2l
Integer to long integer conversion

Stack: ..., value => ..., result-word1, result-word2

value should be an integer. It is converted to a long integer. The result replaces value on the stack.

i2f
Integer to single float

Stack: ..., value => ..., result

value should be an integer. It is converted to a single precision floating point number. The result
replaces value on the stack.

i2d
Integer to double float

Stack: ..., value => ..., result-word1, result-word2

value should be an integer. It is converted to a double precision floating point number. The result
replaces value on the stack.

l2i
Long integer to integer

Stack: ..., value-word1, value-word2 => ..., result

value should be a long integer. It is converted to a integer. The result replaces value on the stack.

Syntax:

lxor = 131

Syntax:

i2l = 132

Syntax:

i2f = 133

Syntax:

i2d = 134

Syntax:

l2i = 136

The Virtual Machine Instruction Set

32 The Java Virtual Machine Specification March 15, 1995

l2f
Long integer to single float

Stack: ..., value-word1, value-word2 => ..., result

value should be a long integer. It is converted to a single precision floating point number. The result
replaces value on the stack.

l2d
Long integer to double float

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value should be a long integer. It is converted to a double precision floating point number. The result
replaces value on the stack.

f2i
Single float to integer

Stack: ..., value => ..., result

value should be a single precision floating point number. It is converted to an integer. The result
replaces value on the stack.

f2l
Single float to long integer

Stack: ..., value => ..., result-word1, result-word2

value should be a single precision floating point number. It is converted to a long integer. The result
replaces value on the stack.

f2d
Single float to double float

Stack: ..., value => ..., result-word1, result-word2

value should be a single precision floating point number. It is converted to a double precision floating
point number. The result replaces value on the stack.

Syntax:

l2f = 137

Syntax:

l2d = 138

Syntax:

f2i = 139

Syntax:

f2l = 140

Syntax:

f2d = 141

March 15, 1995 The Java Virtual Machine Specification 33

The Virtual Machine Instruction Set

d2i
Double float to integer

Stack: ..., value-word1, value-word2 => ..., result

value should be a double precision floating point number. It is converted to an integer. The result
replaces value on the stack.

d2l
Double float to long integer

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value should be a double precision floating point number. It is converted to a long integer. The result
replaces value on the stack.

d2f
Double float to single float

Stack: ..., value-word1, value-word2 => ..., result

value should be a double precision floating point number. It is converted to a single precision floating
point number. The result replaces value on the stack.

int2byte
Integer to signed byte

Stack: ..., value => ..., result-word1, result-word2

value should be an integer. It is truncated to a signed 8-bit result, then sign extended to an integer. The
result replaces value on the stack.

int2char
Integer to char

Stack: ..., <int> => ..., <result>

value should be an integer. It is truncated to an unsigned 16-bit result, then sign extended to an integer.
The result replaces value on the stack.

Syntax:

d2i = 142

Syntax:

d2l = 143

Syntax:

d2f = 144

Syntax:

int2byte = 145

Syntax:

int2char = 146

The Virtual Machine Instruction Set

34 The Java Virtual Machine Specification March 15, 1995

int2short
Integer to char

Stack: ..., <int> => ..., <result>

value should be an integer. It is truncated to a signed 16-bit result, then sign extended to an integer. The
result replaces value on the stack.

Control Transfer Instructions

ifeq
Branch if equal to 0

Stack: ..., value => ...

value should be an integer or a handle to an object or to an array. It is popped from the stack. If value is
equal to zero, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the ifeq.

iflt
Branch if less than 0

Stack: ..., value => ...

value should be an integer. It is popped from the stack. If value is less than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the pc.
Otherwise execution proceeds at the instruction following the iflt.

ifle
Branch if less than or equal to 0

Stack: ..., value => ...

value should be an integer. It is popped from the stack. If value is less than or equal to zero, branchbyte1
and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
pc. Otherwise execution proceeds at the instruction following the ifle.

Syntax:

int2short = 147

Syntax:

ifeq = 153

branchbyte1

branchbyte2

Syntax:

iflt = 155

branchbyte1

branchbyte2

Syntax:

ifle = 158

branchbyte1

branchbyte2

March 15, 1995 The Java Virtual Machine Specification 35

The Virtual Machine Instruction Set

ifne
Branch if not equal to 0

Stack: ..., value => ...

value should be an integer or a handle to an object or to an array. It is popped from the stack. If value is
not equal to zero, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the ifne.

ifgt
Branch if greater than 0

Stack: ..., value => ...

value should be an integer. It is popped from the stack. If value is greater than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the pc.
Otherwise execution proceeds at the instruction following the ifgt.

ifge
Branch if greater than or equal to 0

Stack: ..., value => ...

value should be an integer. It is popped from the stack. If value is greater than or equal to zero,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc. Otherwise execution proceeds at the instruction following the ifge.

if_icmpeq
Branch if integers equal

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is equal to value2,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc. Otherwise execution proceeds at the instruction following the if_icmpeq.

Syntax:

ifne = 154

branchbyte1

branchbyte2

Syntax:

ifgt = 157

branchbyte1

branchbyte2

Syntax:

ifge = 156

branchbyte1

branchbyte2

Syntax:

if_icmpeq = 159

branchbyte1

branchbyte2

The Virtual Machine Instruction Set

36 The Java Virtual Machine Specification March 15, 1995

if_icmpne
Branch if integers not equal

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is not equal to
value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the pc. Otherwise execution proceeds at the instruction following the if_icmpne.

if_icmplt
Branch if integer less than

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is less than value2,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc. Otherwise execution proceeds at the instruction following the if_icmplt.

if_icmpgt
Branch if integer greater than

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is greater than
value2 (C’s >), branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmpgt.

if_icmple
Branch if integer less than or equal to

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is less than or
equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmple.

Syntax:

if_icmpne = 160

branchbyte1

branchbyte2

Syntax:

if_icmplt = 161

branchbyte1

branchbyte2

Syntax:

if_icmpgt = 163

branchbyte1

branchbyte2

Syntax:

if_icmple = 164

branchbyte1

branchbyte2

March 15, 1995 The Java Virtual Machine Specification 37

The Virtual Machine Instruction Set

if_icmpge
Branch if integer greater than or equal to

Stack: ..., value1, value2 => ...

value1 and value2 should be integers. They are both popped from the stack. If value1 is greater than or
equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmpge.

lcmp
Long integer compare

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 should be long integers. They are both popped from the stack and compared. If
value1 is greater than value2, the integer value 1 is pushed onto the stack. If value1 is equal to value2, the
value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is pushed onto the stack.

fcmpl
Single float compare (-1 on incomparable)

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value -1 is pushed onto the stack.

fcmpg
Single float compare (1 on incomparable)

Stack: ..., value1, value2 => ..., result

value1 and value2 should be single precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.

Syntax:

if_icmpge = 162

branchbyte1

branchbyte2

Syntax:

lcmp = 148

Syntax:

fcmpl = 149

Syntax:

fcmpg = 150

The Virtual Machine Instruction Set

38 The Java Virtual Machine Specification March 15, 1995

dcmpl
Double float compare (-1 on incomparable)

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 should be double precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value -1 is pushed onto the stack.

dcmpg
Double float compare (1 on incomparable)

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 should be double precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.

if_acmpeq
Branch if objects same

Stack: ..., value1, value2 => ...

value1 and value2 should be handles to objects or arrays. They are both popped from the stack. If value1
is equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_acmpeq.

if_acmpne
Branch if objects not same

Stack: ..., value1, value2 => ...

value1 and value2 should be handles to objects or arrays. They are both popped from the stack. If value1
is not equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the pc. Otherwise execution proceeds at the instruction
following the if_acmpne.

Syntax:

dcmpl = 151

Syntax:

dcmpg = 152

Syntax:

if_acmpeq = 165

branchbyte1

branchbyte2

Syntax:

if_acmpne = 166

branchbyte1

branchbyte2

March 15, 1995 The Java Virtual Machine Specification 39

The Virtual Machine Instruction Set

goto
Branch always

Stack: no change

branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc.

jsr
Jump subroutine

Stack: ... => ..., return-address

branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. The address of the instruction
immediately following the jsr is pushed onto the stack. Execution proceeds at the offset from the
current pc.

The jsr instruction is used in the implementation of Java’s finally keyword.

ret
Return from subroutine

Stack: no change

Local variable vindex in the current Java frame should contain a return address. The contents of the
local variable are written into the pc.

Note that jsr pushes the address onto the stack, and ret gets it out of a local variable. This asymmetry is
intentional.

The ret instruction is used in the implementation of Java’s finally keyword.

Syntax:

goto = 167

branchbyte1

branchbyte2

Syntax:

jsr = 168

branchbyte1

branchbyte2

Syntax:

ret = 169

vindex

The Virtual Machine Instruction Set

40 The Java Virtual Machine Specification March 15, 1995

Function Return

ireturn
Return integer from function

Stack: ..., value => [empty]

value should be an integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns
control to its caller.

[Note: this may be confusing to people expecting that the stack is like the C stack. However, the
operand stack should be seen as consisting of a number of discontiguous segments, each
corresponding to a method invocation. A return instruction empties the Java operand stack segment
corresponding to the activity of the returning invocation, but does not affect the segment of any parent
invocations.]]

lreturn
Return long integer from function

Stack: ..., value-word1, value-word2 => [empty]

value should be a long integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns
control to its caller.

freturn
Return single float from function

Stack: ..., value => [empty]

value should be a single precision floating point number. The value value is pushed onto the stack of
the previous execution environment. Any other values on the operand stack are discarded. The
interpreter then returns control to its caller.

dreturn
Return double float from function

Stack: ..., value-word1, value-word2 => [empty]

value should be a double precision floating point number. The value value is pushed onto the stack of
the previous execution environment. Any other values on the operand stack are discarded. The
interpreter then returns control to its caller.

Syntax:

ireturn = 172

Syntax:

lreturn = 173

Syntax:

freturn = 174

Syntax:

dreturn = 175

March 15, 1995 The Java Virtual Machine Specification 41

The Virtual Machine Instruction Set

areturn
Return object reference from function

Stack: ..., value => [empty]

value should be a handle to an object or an array. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.

return
Return (void) from procedure

Stack: ... => [empty]

All values on the operand stack are discarded. The interpreter then returns control to its caller.

Table Jumping

tableswitch
Access jump table by index and jump

Stack: ..., index => ...

tableswitch is a variable length instruction. Immediately after the tableswitch opcode, between zero and
three 0’s are inserted as padding so that the next byte begins at an address that is a multiple of four.
After the padding follow a series of signed 4-byte quantities: default-offset, low, high, and then high-
low+1 further signed 4-byte offsets. The high-low+1 signed 4-byte offsets are treated as a 0-based jump
table.

The index should be an integer. If index is less than low or index is greater than high, then default-offset is
added to the pc. Otherwise, low is subtracted from index, and the index-low’th element of the jump table
is extracted, and added to the pc.

Syntax:

areturn = 176

Syntax:

return = 177

Syntax:

tableswitch = 170

...0-3 byte pad...

default-offset1

default-offset2

default-offset3

default-offset4

low1

low2

low3

low4

high1

high2

high3

high4

...jump offsets...

The Virtual Machine Instruction Set

42 The Java Virtual Machine Specification March 15, 1995

lookupswitch
Access jump table by key match and jump

Stack: ..., key => ...

lookupswitch is a variable length instruction. Immediately after the lookupswitch opcode, between zero
and three 0’s are inserted as padding so that the next byte begins at an address that is a multiple of
four.

Immediately after the padding are a series of pairs of signed 4-byte quantities. The first pair is special.
The first item of that pair is the default offset, and the second item of that pair gives the number of
pairs that follow. Each subsequent pair consists of a match and an offset.

The key should be an integer. The integer key on the stack is compared against each of the matches. If it
is equal to one of them, the offset is added to the pc. If the key does not match any of the matches, the
default offset is added to the pc.

Manipulating Object Fields

putfield
Set field in object

Stack: ..., handle, value => ...

OR

Stack: ..., handle, value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).

The field at that offset from the start of the instance pointed to by handle will be set to the value on the
top of the stack.

This instruction handles both 32-bit and 64-bit wide fields.

If handle is null, a NullPointerException exception is generated.

If the specified field is a static field, a DynamicRefOfStaticField exception is generated.

Syntax:

lookupswitch = 171

...0-3 byte pad...

default-offset1

default-offset2

default-offset3

default-offset4

npairs1

npairs2

npairs3

npairs4

..match-offset pairs..

Syntax:

putfield = 181

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 43

The Virtual Machine Instruction Set

getfield
Fetch field from object

Stack: ..., handle => ..., value

OR

Stack: ..., handle => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).

handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.

This instruction handles both 32-bit and 64-bit wide fields.

If the specified field is a static field, a DynamicRefOfStaticField exception is generated.

putstatic
Set static field in class

Stack: ..., value => ...

OR

Stack: ..., value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field will be set to have the
value on the top of the stack.

This instruction works for both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, a StaticRefOfDynamicFieldException is generated.

Syntax:

getfield = 180

indexbyte1

indexbyte2

Syntax:

putstatic = 179

indexbyte1

indexbyte2

The Virtual Machine Instruction Set

44 The Java Virtual Machine Specification March 15, 1995

getstatic
Get static field from class

Stack: ..., => ..., value

OR

Stack: ..., => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field will replace
handle on the stack.

This instruction handles both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, a StaticRefOfDynamicFieldException is generated.

Syntax:

getstatic = 178

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 45

The Virtual Machine Instruction Set

Method Invocation

There are four instructions that implement different flavors of method invocation. At first glance their
descriptions look very similar but they are all slightly different.

invokevirtual Searches for a non-static method through an object instance, taking into account the
runtime type of the object being referenced. It’s behavior is similar to that of virtual
methods in C++.

invokenonvirtual Searches for a non-static method beginning in a particular class. Behaves like non-
virtual methods in C++.

invokestatic Searches for a static method in a particular class.

invokeinterface Begins searching with the most derived class of the object, like invokemethod, but it does
not presume to know which slot the method will be found in. It’s behavior is similar to
mutiply-inherited virtual methods in C++.

invokevirtual
Invoke class method

Stack: ..., object, [arg1, [arg2 ...]], ... => ...

The operand stack is assumed to contain a handle to an object or to an array and some number of
arguments. indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the
current class. The item at that index in the constant pool contains the complete method signature. A
pointer to the object's method table is retrieved from the object handle. The method signature is looked
up in the the method table. The method signature is guaranteed to exactly match one of the method
signatures in the table.

The result of the lookup is an index into the method table of the named class, where a pointer to the
method block for the matched method is found. The method block indicates the type of method
(native, synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with handle is entered. The exact
behavior of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

Syntax:

invokevirtual = 182

indexbyte1

indexbyte2

The Virtual Machine Instruction Set

46 The Java Virtual Machine Specification March 15, 1995

invokenonvirtual
Invoke non-virtual method

Stack: ..., object, nargs, ... => ...

The operand stack is assumed to contain a handle to an object and some number of arguments.
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains the complete method signature. A pointer to the
object's method table is retrieved from the object handle. The method signature is looked up in the the
method table. The method signature is guaranteed to exactly match one of the method signatures in
the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

invokestatic
Invoke a static method

Stack: ..., , nargs, ... => ...

The operand stack is assumed to contain some number of arguments. indexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current class. The item at that index in the
constant pool contains the complete method signature and class. The method signature is looked up in
the the method table of the class indicated. The method signature is guaranteed to exactly match one
of the method signatures in the class’s method table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the class is entered. The exact
behavior of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to the first argument on
the stack, making the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If during the method invocation a stack overflow is detected, a StackOverflowException is thrown.

Syntax:

invokenonvirtual = 183

indexbyte1

indexbyte2

Syntax:

invokestatic = 184

indexbyte1

indexbyte2

March 15, 1995 The Java Virtual Machine Specification 47

The Virtual Machine Instruction Set

invokeinterface
Invoke interface method

Stack: ..., object, [arg1, [arg2 ...]], ... => ...

The operand stack is assumed to contain a handle to an object and nargs-1 arguments. indexbyte1 and
indexbyte2 are used to construct an index into the constant pool of the current class. The item at that
index in the constant pool contains the complete method signature. A pointer to the object's method
table is retrieved from the object handle. The method signature is looked up in the method table. The
method signature is guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) but unlike invokemethod and invokesuper, the number of available arguments
(nargs) is taken from the bytecode.

If the method is marked synchronized the monitor associated with handle is entered. The exact
behavior of monitors and their interactions with threads is a runtime issue.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowException is thrown.

Syntax:

invokeinterface = 185

indexbyte1

indexbyte2

nargs

reserved

The Virtual Machine Instruction Set

48 The Java Virtual Machine Specification March 15, 1995

Exception Handling

The virtual machine support for exceptions documented here is likely to change in the near future but reflects
the current Java implementation. The instructions here also assume that asynchronous exceptions are not sup-
ported.

athrow
Throw exception

Stack: ..., handle => [undefined]

handle should be a handle to an object. The handle should be of an exception object, which is thrown.
The current Java stack frame is searched for the most recent catch clause that handles this exception. A
catch clause can handle an exception if the object in the constant pool at for that entry is a superclass of
the thrown object.) If a matching catch list entry is found, the pc is reset to the address indicated by the
catch-list pointer, and execution continues there.

If no appropriate catch clause is found in the current stack frame, that frame is popped and the
exception is rethrown. If one is found, it contains the location of the code for this exception. The pc is
reset to that location and execution continues. If no appropriate catch is found in the current stack
frame, that frame is popped and the exception is rethrown.

If handle is null, then a NullPointerException is thrown instead.

Miscellaneous Object Operations

new
Create new object

Stack: ... => ..., handle

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index should be a class name that can be resolved to a class pointer, class. A new instance
of that class is then created and a handle for it is pushed on the stack.

newfromname
Create new object from name

Stack: ..., handle => ..., new-handle

handle should be a handle to a character array. The class whose name is the string represented by the
character array is determined. A new object of that class is created, and a handle new-handle for that
object replaces the character array handle on the top of the stack.

If the handle is null, a NullPointerException is thrown. If no such class can be found, a
NoClassDefFoundException is thrown.

Syntax:

athrow = 191

Syntax:

new = 187

indexbyte1

indexbyte2

Syntax:

newfromname = 186

March 15, 1995 The Java Virtual Machine Specification 49

The Virtual Machine Instruction Set

checkcast
Make sure object is of given type

Stack: ..., handle => ..., [handle|...]

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. handle should be a handle to an object.

checkcast determines whether handle can be cast to an object of class class. A null handle can be cast to
any class. Otherwise handle must be an instance of class or one of its superclasses. If handle can be cast
to class execution proceeds at the next instruction, and the handle for handle remains on the stack.

If handle cannot be cast to class, a ClassCastException is thrown.

instanceof
Determine if object is of given type

Stack: ..., handle => ..., result

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. handle should be a handle to an object.

instanceof determines whether handle can be cast to an object of the class class. This instruction will
overwrite handle with 1 if handle is null or if it is an instance of class or one of its superclasses.
Otherwise, handle is overwritten by 0.

verifystack
Verify stack empty

Stack: ... => [empty stack]

This instruction is only generated if the code was compiled using a debugging version of the compiler.
This instruction indicates that the compiler expects the operand stack to be empty at this point.

If the stack is not currently empty, it will be set to empty. In addition, if running a debugging version
of the interpreter, an error message is printed out warning that something is seriously wrong.

Syntax:

checkcast = 192

indexbyte1

indexbyte2

Syntax:

instanceof = 193

indexbyte1

indexbyte2

Syntax:

verifystack = 196

The Virtual Machine Instruction Set

50 The Java Virtual Machine Specification March 15, 1995

Monitors

monitorenter
Enter monitored region of code

Stack: ..., handle => ...

handle should be a handle to an object.

The interpreter attempts to obtain exclusive access via a lock mechanism to handle. If another process
already has handle locked, than the current process waits until the handle is unlocked. If the current
process already has handle locked, then continue execution. If handle has no lock on it, then obtain an
exclusive lock.

monitorexit
Exit monitored region of code

Stack: ..., handle => ...

handle should be a handle to an object.

The lock on handle is released. If this is the last lock that this process has on that handle (one process is
allowed to have multiple locks on a single handle), then other processes that are waiting for handle to
be free are allowed to proceed.

Debugging

breakpoint
Call breakpoint handler

The breakpoint instruction is used to temporarily overwrite an instruction causing a break to the
debugger prior to the effect of the overwritten instruction. The original instruction’s operands (if any)
are not overwritten, and the original instruction can be restored when the breakpoint instruction is
removed.

Syntax:

monitorenter = 194

Syntax:

monitorexit = 195

Syntax:

breakpoint = 197

