
March 15, 1995 The Java Virtual Machine Specification 51

3 Class File Format

Important Note

This chapter documents the Java class file format. An important objective of Java as used in WebRunner is that
alternative implementations of Java can exist and interact by sharing class files. For this to be possible, these
Java implementations must precisely implement the design given here. Elements of the design not covered by
this document are not crucial to class file sharing and may be implemented as you choose.

Please contact us directly with any questions about which design elements are essential to a modified or
original Java implementation, or for help validating an Java implementation.

Overview

Class files are used to hold compiled versions of both Java classes and Java Interfaces. Compliant Java
interpreters must be capable of dealing with all class files that conform to the following specification.

An Java .class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading
in two or four 8-bit bytes, respectively. The bytes are joined together in big-endian order.

The class file format is described in terms similar to a C structure. However, unlike a C structure,

• There is no “padding” or “alignment” between pieces of the structure.

• Each field of the structure may be of variable size.

• An array may be of variable size. In this case, some field prior to the array will give the array’s
dimension.

We use the types u1, u2, and u4 to mean an unsigned one-, two-, or four-byte quantity, respectively.

Attributes are used at several different places in the class format. All attributes have the following format:

GenericAttribute_info {
u2 attribute_name;
u4 attribute_length;
u1 info[attribute_length];

}

The attribute_name is a 16-bit index into the class’s constant pool; the value of
constant_pool[attribute_name] will be a string giving the name of the attribute. The field
attribute_length gives the length of the subsequent information in bytes. This length does not include the
four bytes of the attribute_name and attribute_length.

In the following text, whenever we allow attributes, we give the name of the attributes that are currently
understood. In the future, more attributes will be added. Class file readers are expected to skip over and ignore
the information in any attributes that they do not understand.

Class File Format

52 The Java Virtual Machine Specification March 15, 19954

Format

The following pseudo-structure gives a top-level description of the format of a class file:

ClassFile {
u4 magic;
u4 version;
u2 constant_pool_count;
cp_infoconstant_pool[constant_pool_count - 1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_infofields[fields_count];
u2 methods_count;
method_infomethods[methods_count];
u2 attributes_count;
attribute_info attributes[attribute_count];

}

magic

This field must have the value 0xCAFEBABE.

version

This field contains the version number of the Java compiler that produced this class file.
Different version numbers indicate incompatible changes to either the format of the class file
or to the bytecodes.

The current Java version number is 45.

constant_pool_count

This field indicates the number of entries in the constant pool table.

constant_pool

The constant pool is an array of values. These values are the various string constants, class
names, field names, and others that are referred to by the class structure or by the code.

constant_pool[0] is always unused. The values of constant_pool entries 1 through
constant_pool_count-1 are described by the bytes that follow. These bytes are explained
more fully in the section “The Constant Pool.”

March 15, 1995 The Java Virtual Machine Specification 53

Class File Format

access_flags

This field is a set of sixteen flags used by classes, methods, and fields to describe various
properties of the field, method, or class. The flags are also used to show how they can be
accessed by methods in other classes. Below is a table of all the access flags. The flags that are
used by classes are ACC_PUBLIC, ACC_FINAL, and ACC_INTERFACE.

this_class

This value is an index into the constant pool. constant_pool[this_class] must be a
class, and gives the index of this class in the constant pool.

super_class

This value is an index into the constant pool. If the value of super_class is non-zero, then
constant_pool[super_class] must be a class, and gives the index of this class’s
superclass in the constant pool.

If the value of super_class is zero, then the class being defined must be Object, and it has
no superclass.

interfaces_count

This field gives the number of interfaces that this class implements.

interfaces

Each value in the array is an index into the constant pool. If an array value is non-zero, then
constant_pool[interfaces[i]], for 0 <= i < interfaces_count, must be a
class, and gives the index of an interface that this class implements.

fields_count

This value gives the number of instance variables, both static and dynamic, defined by this
class. This array only includes those variables that are defined explicitly by this class. It does
not include those instance variables that are accessible from this class but are inherited from
super classes.

Flag Name Value Meaning Used By

ACC_PUBLIC 0x0001 Visible to everyone Class, Method, Variable

ACC_PRIVATE 0x0002 Visible only to the defining class Method, Variable

ACC_PROTECTED 0x0004 Visible to subclasses Method, Variable

ACC_STATIC 0x0008 Variable or method is static Method, Variable

ACC_FINAL 0x0010 No further subclassing, overriding Class, Method, Variable

ACC_SYNCHRONIZED 0x0020 Wrap method call in monitor lock Method

ACC_THREADSAFE 0x0040 Can cache in registers Variable

ACC_TRANSIENT 0x0080 Not written or read by the persis-
tent object manager

Variable

ACC_NATIVE 0x0100 Implemented in C Method

ACC_INTERFACE 0x0200 Is an interface Class

ACC_ABSTRACT 0x0400 No definition provided Method

Access Flags

Class File Format

54 The Java Virtual Machine Specification March 15, 19954

fields

Each value is a more complete description of a field in the class. See the section “Fields” for
more information on the field_info structure.

methods_count

This value gives the number of methods, both static and dynamic, defined by this class. This
array only includes those methods that are explicitly defined by this class. It does not include
inherited methods.

methods

Each value is a more complete description of a method in the class. See the section “Methods”
for more information on the method_info structure.

attributes_count

This value gives the number of additional attributes about this class.

attributes

A class can have any number of optional attributes associated with it. Currently, the only class
attribute recognized is the “SourceFile” attribute, which gives the name of the source file from
which this class file was compiled.

Source File Attribute

The “SourceFile” attribute has the following format:

SourceFile_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 sourcefile_index;

}

attribute_name_index

constant_pool[attribute_name_index] is the string “SourceFile.”

attribute_length

The length of a SourceFile_attribute must be 2.

sourcefile_index

constant_pool[sourcefile_index] is a string giving the source file from which this
class file was compiled.

March 15, 1995 The Java Virtual Machine Specification 55

Class File Format

Fields

The information for each field immediately follows the field_count field in the class file. Each field is described
by a variable length field_info structure. The format of this structure is as follows:

field_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_infoattributes[attribute_count];

}

access_flags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 53 which gives the meaning of the bits in this field.

The possible fields that can be set for a field are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_THREADSAFE, and ACC_TRANSIENT.

At most one of ACC_PUBLIC and ACC_PRIVATE can be set for any method.

name_index

constant_pool[name_index] is a string which is the name of the field.

signature_index

constant_pool[signature_index] is a string which is the signature of the field. See the
section “Signatures” for more information on signatures.

attributes_count

This value gives the number of additional attributes about this field.

attributes

A field can have any number of optional attributes associated with it. Currently, the only field
attribute recognized is the “ConstantValue” attribute, which indicates that this field is a static
numeric constant, and gives the constant value of that field.

Any other attributes are skipped.

Constant Value Attribute

The “ConstantValue” attribute has the following format:

ConstantValue_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 constantvalue_index;

}

attribute_name_index

constant_pool[attribute_name_index] is the string “SourceFile.”

attribute_length

The length of a SourceFile_attribute must be 2.

Class File Format

56 The Java Virtual Machine Specification March 15, 19954

constantvalue_index

constant_pool[constantvalue_index]gives the constant value for this field.

The constant pool entry must be of a type appropriate to the field, as shown by the following
table:

Methods

The information for each method immediately follows the method_count field in the class file. Each method
is described by a variable length method_info structure. The structure has the following format:

method_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_info attributes[attribute_count];

}

access_flags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 53 which gives the various bits in this field.

The possible fields that can be set for a method are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_SYNCHRONIZED, ACC_NATIVE, and
ACC_ABSTRACT.

At most one of ACC_PUBLIC and ACC_PRIVATE can be set for any method.

name_index

constant_pool[name_index] is a string giving the name of the method.

signature_index

constant_pool[signature_index]is a string giving the signature of the field. See the
section “Signatures” for more information on signatures.

attributes_count

This value gives the number of additional attributes about this field.

attributes

A field can have any number of optional attributes associated with it. Each attribute has a
name, and other additional information. Currently, the only field attribute recognized is the
“Code” attribute, which describes the virtual bytecode that can be executed to perform this
method.

Any other attributes are skipped.

long CONSTANT_Long

float CONSTANT_Float

double CONSTANT_Double

int, short, char, byte, boolean CONSTANT_Integer

March 15, 1995 The Java Virtual Machine Specification 57

Class File Format

Code Attribute

The “Code” attribute has the following format:

Code_attribute {
u2 attribute_name_index;
u2 attribute_length;
u1 max_stack;
u1 max_locals;
u2 code_length;
u1 code[code_length];
u2 exception_table_length;
{ u2 start_pc;

u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attributes_count;
attribute_infoattributes[attribute_count];

}

attribute_name_index

constant_pool[attribute_name_index] is the string “Code.”

attribute_length

This field gives the total length of the “Code” attribute, excluding the initial four bytes.

max_stack

Maximum number of entries on the operand stack that will be used during execution of this
method. See the other chapters in this spec for more information on the operand stack.

max_locals

Number of local variable slots used by this method. See the other chapters in this spec for
more information on the local variables.

code_length

The number of bytes in the virtual machine code for this method.

code

These are the actual bytes of the virtual machine code that implement the method. When read
into memory, the first byte of code must be aligned onto a multiple-of-four boundary. See the
definitions of the the opcodes “tableswitch” and “tablelookup” for more information on
alignment requirements.

exception_table_length

The number of entries in the following exception table.

exception_table

Each entry in the exception table describes one exception handler in the code.

start_pc, end_pc

The two fields start_pc and end_pc give the ranges in the code at which the exception
handler is active. The values of both fields are offsets from the start of the code. start_pc is
inclusive. end_pc is exclusive.

Class File Format

58 The Java Virtual Machine Specification March 15, 19954

handler_pc

This field gives the starting address of the exception handler. The value of the field is an offset
from the start of the code.

catch_type

If catch_type is non-zero, then constant_pool[catch_type] will be the class of
exceptions that this exception handler is designated to catch. This exception handler should
only be called if the thrown exception is an instance of the given class.

If catch_type is zero, this exception handler should be called for all exceptions.

attributes_count

This value gives the number of additional attributes about code. The “Code” attribute can
itself have attributes.

attributes

A “Code” attribute can have any number of optional attributes associated with it. Each
attribute has a name, and other additional information. Currently, the only code attributes
recognized are the “LineNumberTable” and “LocalVariableTable,” both of which contain
debugging information.

Any other attributes are skipped.

Line Number Table Attribute

The Line Number Table is used by debuggers and the exception handler to determine which part of the virtual
machine code corresponds to a given location in the source. The LineNumberTable_attribute has the following
format:

LineNumberTable_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 line_number_table_length;
{ u2 start_pc;

u2 line_number;
} line_number_table[line_number_table_length];

}

attribute_name_index

constant_pool[attribute_name_index] will be the string “LineNumberTable.”

attribute_length

This field gives the total length of the LineNumberTable_attribute, excluding the initial four
bytes.

line_number_table_length

This field gives the number of entries in the following line number table.

line_number_table

Each entry in the line number table indicates that the line number in the source file changes at
a given point in the code.

start_pc

This field indicates the place in the code at which the code for a new line in the source begins.
source_pc is an offset from the beginning of the code.

March 15, 1995 The Java Virtual Machine Specification 59

Class File Format

line_number

The line number that begins at the given location in the file.

Local Variable Table Attribute

The Local Variable Table is used by debuggers to determine the value of a given local variable during the
dynamic execution of a method. The format of the LocalVariableTable_attribute is as follows:

LocalVariableTable_attribute {
u2 attribute_name_index;
u2 attribute_length;
u2 local_variable_table_length;
{ u2 start_pc;

u2 length;
u2 name_index;
u2 signature_index;
u2 slot;

} local_variable_table[local_variable_table_length];
}

attribute_name_index

constant_pool[attribute_name_index] will be the string “LocalVariableTable.”

attribute_length

This field gives the total length of the LineNumberTable_attribute, excluding the initial four
bytes.

local_variable_table_length

This field gives the number of entries in the following local variable table.

line_number_table

Each entry in the line number table indicates a code range during which a local variable has a
value. It also indicates where on the stack the value of that variable can be found.

start_pc, length

The given local variable will have a value at the code between start_pc and start_pc +
length. The two values are both offsets from the beginning of the code.

name_index, signature_index

constant_pool[name_index]and constant_pool[signature_index] are strings
giving the name and signature of the local variable.

slot

The given variable will be the slot
th local variable in the method’s frame.

Class File Format

60 The Java Virtual Machine Specification March 15, 19954

Constant Pool

Each item in the constant pool begins with a 1-byte tag:. The table below lists the valid tags and their values.

Each tag byte is then followed by one or more bytes giving more information about the specific constant.

Strings

CONSTANT_Asciz and CONSTANT_Unicode are used to represent constant string values.

CONSTANT_Asciz_info {
u1 tag;
u2 length;
u1 bytes[length];

}

CONSTANT_Unicode_info {
u1 tag;
u2 length;
u2 bytes[length];

}

tag

The tag will have the value CONSTANT_Asciz or CONSTANT_Unicode.

length

The number of bytes in the string. This length does not include the implicit null termination.

bytes

The actual bytes in the string. The null termination is not included.

Classes and Interfaces

CONSTANT_Class is used to represent a class or an interface.

CONSTANT_Class_info {
u1 tag;
u2 name_index;

}

Constant Type Value

CONSTANT_Class
CONSTANT_Fieldref
CONSTANT_Methodref
CONSTANT_String
CONSTANT_Integer
CONSTANT_Float
CONSTANT_Long
CONSTANT_Double
CONSTANT_InterfaceMethodref
CONSTANT_NameandType
CONSTANT_Asciz

7
9

10
8
3
4
5
6

11
12
1

March 15, 1995 The Java Virtual Machine Specification 61

Class File Format

tag

The tag will have the value CONSTANT_Class

name_index

constant_pool[name_index] is a string giving the name of the class.

Because arrays are objects, the opcodes anewarray and multianewarray can reference array “classes” via
CONSTANT_Class items in the constant pool. In this case, the name of the class is its signature. For example,
the class name for

int[][]
is

[[I

The class name for

Thread[]
is

“[Ljava.lang.Thread;”

Fields and Methods

Fields, methods, and interface methods are represented by similar structures.

CONSTANT_Fieldref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_InterfaceMethodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

tag

The tag will have the value CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref.

class_index

constant_pool[class_index] will be an entry of type CONSTANT_Class giving the
name of the class or interface containing the field or method.

For CONSTANT_Fieldref and CONSTANT_Methodref, the CONSTANT_Class item must be
an actual class. For CONSTANT_InterfaceMethodref, the item must be an interface which
purports to implement the given method.

name_and_type_index

constant_pool[name_and_type_index] will be an entry of type
CONSTANT_NameAndType. This constant pool entry gives the name and signature of the
field or method.

Class File Format

62 The Java Virtual Machine Specification March 15, 19954

Abstract Fields and Methods

CONSTANT_NameAndType is used to represent a field or method, detached from any particular class or
implementation.

CONSTANT_NameAndType_info {
u1 tag;
u2 name_index;
u2 signature_index;

}

tag

The tag will have the value CONSTANT_NameAndType

name_index

constant_pool[name_index] is a string giving the name of the field or method.

signature_index

constant_pool[signature_index] is a string giving the signature of the field or
method.

String Objects

CONSTANT_String is used to represent constant objects of the built-in type String.

CONSTANT_String_info {
u1 tag;
u2 string_index;

}

tag

The tag will have the value CONSTANT_String

name_index

constant_pool[string_index] is a string giving the value to which the String object is
initialized.

The string at constant_pool[string_index] is “encoded” so that strings containing only
ASCIZ characters, can be represented using only one byte per character, but characters of up
to 16 bits can be represented. The format we use is a modified UTF1 format.

All characters in the range 0x0001 to 0x007F are represented by a single byte:

+-+-+-+-+-+-+-+-+
|0|7bits of data|
+-+-+-+-+-+-+-+-+

The null character (0x0000) and characters in the range 0x0080 to 0x03FF are represented by a
pair of two bytes:

1. There are two differences between this format and the “standard” UTF format. First, the null byte (0x00) is en-

coded as two bytes rather than as one byte, so that strings never have embedded nulls. Second, only the one-byte,

two-byte, and three-byte formats are used. We do not recognize the longer formats.

March 15, 1995 The Java Virtual Machine Specification 63

Class File Format

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|1|1|0| 5 bits† | |1|0| 6 bits |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Characters in the range 0x0400 to 0xFFFF are represented by three bytes:

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|1|1|1|0|4 bits | |1|0| 6 bits | |1|0| 6 bits |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Numeric Constants

Four-Byte Constants

CONSTANT_Integer and CONSTANT_Float represent four-byte constants.

CONSTANT_Integer_info {
u1 tag;
u4 bytes;

}

CONSTANT_Float_info {
u1 tag;
u4 bytes;

}

tag

The tag will have the value CONSTANT_Integer or CONSTANT_Float

bytes

For integers, the four bytes are in the integer. For floats, the four bytes represent the standard
IEEE representation of the floating point number.

Eight-Byte Constants

CONSTANT_Long and CONSTANT_Double represent eight-byte constants.

CONSTANT_Long_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

CONSTANT_Double_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

All eight-byte constants take up two spots in the constant pool. If this is the nth item in the constant pool, then
the next item will be numbered n+2.

tag

The tag will have the value CONSANT_Long or CONSTANT_Double.

Class File Format

64 The Java Virtual Machine Specification March 15, 19954

high_bytes, low_bytes

For CONSTANT_Long, the 64-bit value is (high_bytes << 32) + low_bytes.

For CONSTANT_Double, the 64-bit value, high_bytes and low_bytes together represent
the standard IEEE representation of the double-precision floating point number.

Signatures

A signature is a string representing the type of a method or field.

The field signature represents the value of an argument to a function or the value of a variable. It is a series of
bytes in the following grammar:

<field signature> := <field_type>

<field type> := <base_type>|<object_type>|<array_type>

<base_type> := B|C|D|F|I|J|S|Z

<object_type> := L<fullclassname>;

<array_type> := [<optional-size><field_type>

<optional_size> := [0-9]*

The meaning of the base types is as follows:

B signed byte
C character
D double precision floating point number
F single precision floating point number
I integer
J long integer
L<fullclassname>; an object of the given class
S nsigned short
Z boolean
[<length><field sig> array

A return-type signature represents the return value from a method. It is a series of bytes in the following
grammar:

<return signature> := <field type> | V

The character V indicates that the method returns no value. Otherwise, the signature indicates the type of the
return value.

An argument signature represents an argument passed to a method:

<argument signature> := <field type>

A method signature represents the arguments that the method expects, and the value that it returns.

<method_signature> := (<arguments signature>) <return signature>

<arguments signature>:= <argument signature>*

