
 May 11, 1995

The Java Language Specification
Release 1.0 Alpha3

Please

Recycle

 1993, 1994, 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This ALPHA quality release and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this release or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this release is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, WebRunner, Java, FirstPerson and the FirstPerson logo and agent are trademarks or registered trademarks
of Sun Microsystems, Inc. The "Duke" character is a trademark of Sun Microsystems, Inc. and Copyright (c) 1992-1995 Sun
Microsystems, Inc. All Rights Reserved. UNIX® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Comapny, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

May 11, 1995 Java Language Specification iii

Contents

Java Language Specification. 1

1 Program Structure . 1

2 Lexical Issues . 1
 2.1 Comments . 2
 2.2 Identifiers . 2
 2.3 Keywords . 2
 2.4 Literals . 3
 2.5 Operators and Miscellaneous Separators . 4

3 Types . 4
 3.1 Numeric Types . 5
 3.2 Boolean Types . 6
 3.3 Arrays . 6

4 Classes. 7
 4.1 Casting Between Class Types . 8
 4.2 Methods . 9
 4.3 Overriding Methods. 11
 4.4 Overload Resolution. 11
 4.5 Constructors . 12
 4.6 Object Creation—the new Operator . 14
 4.7 Static Methods, Variables, and Initializers . 15
 4.8 Access Specifiers . 17
 4.9 Variable Scoping Rules . 17
 4.10 Modifiers . 18

5 Interfaces. 20
 5.1 Interfaces as Types . 21
 5.2 Methods in Interfaces . 21
 5.3 Variables in Interfaces . 21
 5.4 Combining Interfaces . 21

6 Packages . 21
 6.1 Specifying a Compilation Unit’s Package . 22
 6.2 Using Classes and Interfaces from Other Packages. 22

7 Expressions. 22
 7.1 Operators . 23
 7.2 Casts and Conversions. 26

iv Java Language Specification May 11, 1995

8 Statements . 26
 8.1 Declarations . 26
 8.2 Expressions . 26
 8.3 Control Flow . 27
 8.4 Exceptions . 27

A Appendix: Floating Point. 33
 A.1 Special Values . 33
 A.2 Binary Format Conversion . 33
 A.3 Ordering. 34
 A.4 Summary of IEEE-754 Differences . 34

B Appendix: Java Language Grammar . 35

May 11 1995 Java Language Specification 1

Java Language Specification

This document is a preliminary specification of the Java™ language. Both the
specification and the language are subject to change. When a feature that exists in
both Java and ANSI C isn’t explained fully in this specification, the feature should
be assumed to work as it does in ANSI C. Send comments on the Java Language
and specification to java@java.Sun.COM. See also http://java.sun.com/mail.html
for a list of Java-related mailing lists.

1 Program Structure

The source code for an Java program consists of one or more compilation units.
Each compilation unit can contain only the following (in addition to white space
and comments):

• a package statement (see “Packages” on page 21)

• import statements (see “Packages” on page 21)

• class declarations (see “Classes” on page 7)

• interface declarations (see “Interfaces” on page 20)

Although each Java compilation unit can contain multiple classes or interfaces, at
most one class or interface per compilation unit can be public (see “Classes” on
page 7).

When Java source code is compiled, the result is Java bytecode. Java bytecode
consists of machine-independent instructions that can be interpreted efficiently
by the Java runtime system. The Java runtime system operates like a virtual
machine, for information see The Java Virtual Machine Specification.

Implementation Note: In the current Java implementation, each compilation
unit is a file with a “.java” suffix.

2 Lexical Issues

During compilation, the characters in Java source code are reduced to a series of
tokens. The Java compiler recognizes five kinds of tokens: identifiers, keywords,
literals, operators, and miscellaneous separators. Comments and white space such
as blanks, tabs, line feeds, and are not tokens, but they often are used to separate
tokens.

Java programs are written using the Unicode character set or some character set
that is converted to Unicode before being compiled.

2 Lexical Issues

2 Java Language Specification May 11 1995

 2.1 Comments

The Java language has three styles of comments:

// text All characters from // to the end of the line are
ignored.

/* text */ All characters from /* to */ are ignored.

/** text */ These comments are treated specially when they
occur immediately before any declaration. They
should not be used any other place in the code. These
comments indicate that the enclosed text should be
included in automatically generated documentation
as a description of the declared item.

 2.2 Identifiers

Identifiers must start with a letter, underscore (“_”), or dollar sign (“$”);
subsequent characters can also contain digits (0-9). Java uses the Unicode
character set. For the purposes of determining what is a legal identifier the
following are considered "letters:"

• The characters "A" through "Z"

• The characters "a" through "z"

• All Unicode characters with a character number above hex 00C0

Other characters valid after the first letter of an identifier include every character
except those in the segment of Unicode reserved for special characters.

Thus, “garçon” and “Mjølner” are legal identifiers, but strings containing
characters such as “¶” are not.

For more information on the Unicode standard, see The Unicode Standard,
Worldwide Character Encoding, Version 1.0, Volumes 1&2. The FTP address for
Unicode, Inc. (formerly the Unicode Consortium) is unicode.org.

 2.3 Keywords

The following identifiers are reserved for use as keywords. They cannot be used
in any other way.

a. Reserved but currently unused.

abstract
boolean
break
byte
byvaluea

case
catch
char
class
consta

continue

default
do
double
else
extends
false
final
finally
float
for

gotoa

if
implements
import
instanceof
int
interface
long
native
new

null
package
private
protected
public
return
short
static
super
switch

synchronized
this
threadsafe
throw
transient
true
try
void
while

May 11 1995 Java Language Specification 3

2 Lexical Issues

 2.4 Literals

Literals are the basic representation of any integer, floating point, boolean,
character, or string value.

2.4.1 Integer Literals

Integers can be expressed in decimal (base 10), hexadecimal (base 16), or octal
(base 8) format. A decimal integer literal consists of a sequence of digits
(optionally suffixed as described below) without a leading 0 (zero). An integer can
be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an
integer literal means it is in octal; a leading 0x (or 0X) means hexadecimal.
Hexadecimal integers can include digits (0-9) and the letters a-f and A-F. Octal
integers can include only the digits 0-7.

Integer literals are of type int unless they are larger than 32-bits, in which case
they are of type long (see “Integer Types” on page 5). A literal can be forced to be
long by appending an L or l to its value.

The following are all legal integer literals:

 2, 2L 0777 0xDeadBeef

2.4.2 Floating Point Literals

A floating point literal can have the following parts: a decimal integer, a decimal
point (“.”), a fraction (another decimal number), an exponent, and a type suffix.
The exponent part is an e or E followed by an integer, which can be signed. A
floating point literal must have at least one digit, plus either a decimal point or e
(or E). Some examples of floating point literals are:

 3.1415 3.1E12 .1e12 2E12

As described in “Floating Point Types” on page 5, the Java language has two
floating point types: float (IEEE 754 single precision) and double (IEEE 754
double precision). You specify the type of a floating point literal as follows:

 2.0d or 2.0D double
 2.0f or 2.0F or 2.0 float

2.4.3 Boolean Literals

The boolean type has two literal values: true and false. See “Boolean Types” on
page 6 for more information on boolean values.

2.4.4 Character Literals

A character literal is a character (or group of characters representing a single
character) enclosed in single quotes. Characters have type char and are drawn
from the Unicode character set (see “Character Types” on page 5). The following

3 Types

4 Java Language Specification May 11 1995

escape sequences allow for the representation of some non-graphic characters as
well as the single quote, "‘" and the backslash "\", in Java code:

2.4.5 String Literals

A string literal is zero or more characters enclosed in double quotes. Each string
literal is implemented as a String object (not as an array of characters). For
example, “abc” creates an new instance of class String. The following are all legal
string literals:

 "" \\ the empty string
 "\""
 "This is a string"
 "This is a \
 two-line string"

 2.5 Operators and Miscellaneous Separators

The following characters are used in source code as operators or separators:

 + – ! % ^ & * | ~ / > <

 () { } [] ; ? : , . =

In addition, the following character combinations are used as operators:

 ++ –– == <= >= != << >>

 >>> += –= *= /= &= |=

 ^= %= <<= >>= >>>= || &&

For more information see “Operators” on page 23.

3 Types

Every variable and every expression has a type. Type determines the allowable
range of values a variable can hold, allowable operations on those values, and the

continuation <newline> \

new-line NL (LF) \n

horizontal tab HT \t

back space BS \b

carriage return CR \r

form feed FF \f

backslash \ \\

single quote ‘ \’

double quote " \"

octal bit pattern 0ddd \ddd

hex bit pattern 0xdd \xdd

unicode char 0xdddd \udddd

May 11 1995 Java Language Specification 5

3 Types

meanings of the operations. Built-in types are provided by the Java language.
Programmers can compose new types using the class and interface mechanisms
(see “Classes” on page 7 and “Interfaces” on page 20).

The Java language has two kinds of types: simple and composite. Simple types
are those that cannot be broken down; they are atomic. The integer, floating point,
boolean, and character types are all simple types. Composite types are built on
simple types. The language has three kinds of composite types: arrays, classes,
and interfaces. Simple types and arrays are discussed in this section.

 3.1 Numeric Types

3.1.1 Integer Types

Integers are similar to those in C and C++, with two exceptions: all integer types
are machine independent, and some of the traditional definitions have been
changed to reflect changes in the world since C was introduced. The four integer
types have widths of 8, 16, 32, and 64 bits and are signed.

A variable’s type does not directly affect its storage allocation. Type only
determines a variable’s arithmetic properties and legal range of values. If a value
is assigned to a variable that is outside the legal range of the variable, the value is
reduced modulo the range.

3.1.2 Floating Point Types

The float keyword denotes single precision (32 bit); double denotes double
precision (64 bit). The result of a binary operator on two float operands is a float.
If either operand is a double, the result is a double.

Floating point arithmetic and data formats are defined by IEEE 754. See
“Appendix: Floating Point” on page 33 for details on the floating point
implementation.

3.1.3 Character Types

The language uses the Unicode character set throughout. Consequently the char
data type is defined as a 16-bit unsigned integer.

Width Name

8 byte

16 short

32 int

64 long

3 Types

6 Java Language Specification May 11 1995

 3.2 Boolean Types

The boolean type is used for variables that can be either true or false, and for
methods that return true and false values. It’s also the type that is returned by the
relational operators (e.g., ">=").

Boolean values are not numbers and cannot be converted into numbers by
casting.

 3.3 Arrays

Arrays in the language are first class objects. They replace pointer arithmetic. All
objects (including arrays) are referred to by pointers that cannot be damaged by
being manipulated as numbers. Arrays are created using the new operator:

 char s[] = new char[30];

The first element of an array is at index 0 (zero). Specifying dimensions in the
declarations is not allowed. Every allocation of an array must be explicit—use
new every time:

 int i[] = new int[3];

The language does not support multi-dimensional arrays. Instead, programmers
can create arrays of arrays:

 int i[][] = new int[3][4];

At least one dimension must be specified but other dimensions can be explicitly
allocated by a program at a later time. For example:

 int i[][] = new int[3][];

is a legal declaration.

In addition to the C-style array declaration, where brackets follow the name of the
variable or method, Java allows brackets following the array element type. The
following two lines are equivalent:

int iarray[];
int[] iarray;

as are the following method declarations:

byte f(int n)[];
byte[] f(int n);

Subscripts are checked to make sure they’re valid:

 int a[] = new int[10];
 a[5] = 1;
 a[1] = a[0] + a[2];
 a[-1] = 4; // Throws an ArrayIndexOutOfBoundsException
 // at runtime
 a[10] = 2; // Throws an ArrayIndexOutOfBoundsException
 // at runtime

Array dimensions must be integer expressions:

 int n;
 ...

May 11 1995 Java Language Specification 7

4 Classes

 float arr[] = new float[n + 1];

The length of any array can be found by using .length:

 int a[][] = new int[10][3];
 println(a.length); // prints 10
 println(a[0].length); // prints 3

3.3.1 Array Detail

Arrays are instances of subclasses of class Object. In the class hierarchy there is a
class named Array, which has one instance variable, "length". For each primitive
type there is a corresponding subclass of Array. Similarly, for all classes a
corresponding subclass of Array implicitly exists. For example:

 new Thread[n]

creates an instance of Thread[]. If class A is a superclass of class B (i.e., B extends
A) then A[] is a superclass of B[] (see the diagram below).

Hence, you can assign an array to an Object:

 Object o;
 int a[] = new int[10];
 o = a;

and you can cast an Object to an array:

 a = (int[])o;

Array classes cannot be explicitly subclassed.

4 Classes

Classes represent the classical object oriented programming model. They support
data abstraction and implementations tied to data. In Java, each new class creates
a new type.

To make a new class, the programmer must base it on an existing class. The new
class is said to be derived from the existing class. The derived class is also called a
subclass of the other, which is known as a superclass. Class derivation is transitive:
if B is a subclass of A, and C is a subclass of B, then C is a subclass of A.

Object

Array A

Bint[] float[] A[]

B[]

4 Classes

8 Java Language Specification May 11 1995

The immediate superclass of a class and the interfaces (see “Interfaces” on page
20) that the class implements (if any) are indicated in the class declaration by the
keywords extends and implements, respectively:

 [Doc comment] [Modifiers] class Classname
extends Superclassname]
implements Interface{, Interface}] {

ClassBody
}

For example:

 /** 2 dimensional point */
 public class Point {
 float x, y;
 ...
 }

 /** Printable point */
 class PrintablePoint extends Points implements Printable {
 ...
 public void print() {
 ...
 }
 }

All classes are derived from a single root class: Object. Every class except Object
has exactly one immediate superclass. If a class is declared without specifying an
immediate superclass, Object is assumed. For example, the following:

 class Point {
 float x, y;
 }

is the same as:

 class Point extends Object {
 float x, y;
 }

The language supports only single inheritance. Through a feature known as
interfaces, it supports some features that in other languages are supported through
multiple inheritance (see “Interfaces” on page 20).

 4.1 Casting Between Class Types

The language supports casting between types and because each class is a new
type, Java supports casting between class types. If B is a subclass of A, then an
instance of B can be used as an instance of A. No explicit cast is required, but an
explicit cast is legal—this is called widening. If an instance of A needs to be used as
if it were an instance of B, the programmer can write a type conversion or cast—
this is called narrowing. Casts from a class to a subclass are always checked at
runtime to make sure that the object is actually an instance of the subclass (or one
of its subclasses). Casting between sibling classes is a compile-time error. The
syntax of a class cast is:

 (classname)ref

where (classname) is the object being cast to and ref is the object being cast.

May 11 1995 Java Language Specification 9

4 Classes

Casting affects only the reference to the object, not the object itself. However,
access to instance variables is affected by the type of the object reference. Casting
an object from one type to another may result in a different instance variable
being accessed even though the same variable name is used.

 class ClassA {
 String name = "ClassA";
 }

 class ClassB extends ClassA { // ClassB is a subclass of ClassA
 String name= “ClassB”;
 }

 class AccessTest {
 void test() {
 ClassB b = new ClassB();
 println(b.name); // print: ClassB

 ClassA a;
 a = (ClassA)b;
 println(a.name); // print: ClassA
 }
 }

 4.2 Methods

Methods are the operations that can be performed on an object or class. They can
be declared in either classes or interfaces, but they can be implemented only in
classes. (All user-defined operations in the language are implemented with
methods.)

A method declaration in a class has the following form (native and abstract
methods have no method body):

[Doc comment] [Modifiers] returnType methodName (parameterList) {
[methodBody]

}

Methods:

• Have a return type unless they’re constructors, in which case they have no
return type. If a non-constructor method does not return any value, it must
have a void return type.

• Have a parameter list consisting of comma-separated pairs of types and
parameter names. The parameter list should be empty if the method has no
parameters.

Variables declared in methods (local variables) can’t hide other local variables or
parameters in the same method. For example, if a method is implemented with a
parameter named i, it’s a compile-time error for the method to declare a local
variable named i. In the following example:

 class Rectangle {
 void vertex(int i, int j) {
 for (int i = 0; i <= 100; i++) {// ERROR
 ...
 }
 }
 }

4 Classes

10 Java Language Specification May 11 1995

the declaration of "i" in the for loop of the method body of "vertex" is a compile-
time error.

The language allows polymorphic method naming—declaring a method with a
name that has already been used in the class or its superclass—for overriding and
overloading methods. Overriding means providing a different implementation of
an inherited method. Overloading means declaring a method that has the same
name as another method, but a different parameter list.

Note: Return types are not used to distinguish methods. Within a class scope,
methods that have the same name and parameter list, i.e., the same number,
position, and types of parameters, must return the same type. It is a compile-time
error to declare such a method with a different return type.

4.2.1 Instance Variables

All variables in a class declared outside the scope of a method and not marked
static (see “Static Methods, Variables, and Initializers” on page 15) are instance
variables. (Variables declared inside the scope of a method are considered local
variables.) Instance variables can have modifiers (see “Modifiers” on page 18).

Instance variables can be of any type and can have initializers. If an instance
variable does not have an initializer, it is initialized to zero; boolean variables are
initialized to false; and objects are initialized to null. An example of an initializer
for an instance variable named j is:

 class A {
 int j = 23;
 ...
 }

4.2.2 The this and super Variables

Inside the scope of a non-static method, the name this represents the current
object. For example, an object may need to pass itself as an argument to another
object’s method:

 class MyClass {
 void aMethod(OtherClass obj) {
 ...
 obj.Method(this);
 ...
 }
 }

Any time a method refers to its own instance variables or methods, an implicit
“this.” is in front of each reference:

 class Foo {
 int a, b, c;
 ...
 void myPrint(){
 print(a + "\n"); // a == "this.a"
 }
 ...
 }

The super variable is similar to the this variable. The this variable contains a
reference to the current object; its type is the class containing the currently

May 11 1995 Java Language Specification 11

4 Classes

executing method. The super variable contains a reference which has the type of
the superclass.

4.2.3 Setting Local Variables

Methods are rigorously checked to be sure that all local variables (variables
declared inside a method) are set before they are referenced. Using a local variable
before it is initialized is a compile-time error.

 4.3 Overriding Methods

To override a method, a subclass of the class that originally declared the method
must declare a method with the same name, return type (or a subclass), and
parameter list. When the method is invoked on an instance of the subclass, the
new method is called rather than the original method. The overridden method
can be invoked using the super variable such that:

 setThermostat(...) // refers to the overriding method
 super.setThermostat(...) // refers to the overridden method

 4.4 Overload Resolution

Overloaded methods have the same name as an existing method, but differ in the
number and/or the types of arguments. Overload resolution involves
determining which overloaded method to invoke. The return type is not
considered when resolving overloaded methods. Methods may be overloaded
within the same class. The order of method declaration within a class is not
significant.

Methods may be overloaded by varying both the number and the type of
arguments. The compiler determines which matching method has the lowest type
conversion cost. Only methods with the same name and number of arguments are
considered for matching. The cost of matching a method is the maximum cost of
converting any one of its arguments. There are two types of arguments to
consider:, object types and base types.

The cost of converting among object types is the number of links in the class tree
between the actual parameter’s class and the prototype parameter’s class. Only
widening conversions are considered. (See “Casting Between Class Types” on
page 8 for more information on object conversion.) No conversion is necessary for
argument types that match exactly, making their cost 0.

4 Classes

12 Java Language Specification May 11 1995

The cost of converting base types is calculated from the table below. Exact
matches cost 0.

Note: Cost >= 10 causes data loss.

Once a conversion cost is assigned to each matching method, the compiler
chooses the method which has the lowest conversion cost. If there is more than
one potential method with the same lowest cost the match is ambiguous and a
compile-time error occurs.

For example:

 class A {
 int method(Object o, Thread t);
 int method(Thread t, Object o);

 void g(Object o, Thread t) {
 method(o, t); // calls the first method.
 method(t, o); // calls the second method.
 method(t,t); // ambiguous - compile-time error
 }
 }

Note: The names of parameters are not significant. Only the number, type, and
order are.

 4.5 Constructors

Constructors are special methods provided for initialization. They are
distinguished by having the same name as their class and by not having any
return type. Constructors are automatically called upon the creation of an object.
They cannot be called explicitly through an object. If you want to be able to call
the constructor outside the package, make the constructor public (see “Access
Specifiers” on page 17 for more information).

Constructors can be overloaded by varying the number and types of parameters,
just as any other method can be overloaded.

 class Foo {
 int x;
 float y;
 Foo() {
 x = 0;
 y = 0.0;
 }

To
byte short char int long float double

F
ro

m

byte 0 1 2 3 4 6 7

short 10 0 10 1 2 4 5

char 11 10 0 1 2 4 5

int 12 11 11 0 1 5 4

long 12 11 11 10 0 6 5

float 15 14 13 12 11 0 1

double 16 15 14 13 12 10 0

May 11 1995 Java Language Specification 13

4 Classes

 Foo(int a) {
 x = a;
 y = 0.0;
 }
 Foo(float a) {
 x = 0;
 y = a;
 }
 Foo(int a, float b) {
 x = a;
 y = b;
 }
 static void myFoo() {
 Foo obj1 = new Foo(); //calls Foo();
 Foo obj2 = new Foo(4); //calls Foo(int a);
 Foo obj3 = new Foo(4.0); //calls Foo(float a);
 Foo obj4 = new Foo(4, 4.0); //calls Foo(int a, float b);
 }
 }

The instance variables of superclasses are initialized by calling either a
constructor for the immediate superclass or a constructor for the current class. If
neither is specified in the code, the superclass constructor that has no parameters
is invoked. If a constructor calls another constructor in this class or a constructor
in the immediate super class, that call must be the first thing in the constructor
body. Instance variables can’t be referenced before calling the constructor.

Invoking a constructor of the immediate superclass is done as follows:

 class MyClass extends OtherClass {
 MyClass(someParameters) {
 /* Call immediate superclass constructor */
 super(otherParameters);
 ...
 }
 ...
 }

Invoking a constructor in the current class is done as follows:

 class MyClass extends OtherClass {
 MyClass(someParameters) {
 ...
 }
 MyClass(otherParameters) {
 /* Call the constructor in this class that has the
 specified parameter list. */
 this(someParameters);
 ...
 }
 ...
 }

The Foo and FooSub methods below are examples of constructors.

 class Foo extends Bar {
 int a;
 Foo(int a) {
 // implicit call to Bar()
 this.a = a;
 }
 Foo() {
 this(42); // calls Foo(42) instead of Bar()
 }
 }

 class FooSub extends Foo {
 int b;

4 Classes

14 Java Language Specification May 11 1995

 FooSub(int b) {
 super(13); // calls Foo(13); without this line,
 // would have called Foo()
 this.b = b;
 }
 }

If a class declares no constructors, the compiler automatically generates one of the
following form:

 class MyClass extends OtherClass {
 MyClass() { // automatically generated
 super();
 }
 }

 4.6 Object Creation—the new Operator

A class is a template used to define the state and behavior of an object. An object is
an instance of a class. All instances of classes are allocated in a garbage collected
heap. Declaring a reference to an object does not allocate any storage for that
object. The programmer must explicitly allocate the storage for objects, but no
explicit deallocation is required; the garbage collector automatically reclaims the
memory when it is no longer needed.

To allocate storage for an object, use the new operator. In addition to allocating
storage, new initializes the instance variables and then calls the instance’s
constructor. The constructor is a method that initializes an object (see
“Constructors” on page 12). The following syntax allocates and initializes a new
instance of a class named ClassA:

 a = new ClassA();

This constructor syntax provides arguments to the constructor:

b = new ClassA(3,2);

A third form of allocator allows the class name to be provided as a String
expression. The String is evaluated at runtime, and new returns an object of type
Object, which must be cast to the desired type.

b = new ("Class"+"A");

In this case, the constructor without arguments is called.

4.6.1 Garbage Collection

The garbage collector makes most aspects of storage management simple and
robust. Programs never need to explicitly free storage: it is done for them
automatically. The garbage collector never frees pieces of memory that are still
referenced, and it always frees pieces that are not. This makes both dangling
pointer bugs and storage leaks impossible. It also frees designers from having to
figure out which parts of a system have to be responsible for managing storage.

4.6.2 Finalization

The Java language includes the concept of object finalization. Java finalization is
generalization of garbage collection that allows a program to free arbitrary

May 11 1995 Java Language Specification 15

4 Classes

resources (e.g., file descriptors or graphics contexts) owned by objects that cannot
be accessed by any Java program. Reclaiming an object's memory by garbage
collection does not guarantee that these resources will be reclaimed1.

4.6.3 The null Reference

The keyword null is a predefined constant that represents “no instance.” null can
be used anywhere an instance is expected and can be cast to any class type.

 4.7 Static Methods, Variables, and Initializers

Variables and methods declared in a class can be declared static, which makes
them apply to the class itself, rather than to an instance of the class. In addition, a
block of code within a class definition can be declared static. Such a block of code
is called a static initializer.

Static variables can have initializers, just as instance variables can. See “Order of
Initialization” on page 16 for more information. A static variable exists only once
per class, no matter how many instances of the class exist. Both static variables
and static methods are accessed using the class name. For convenience, they can
also be accessed using an instance of the class.

 class Ahem {
 int i; // Instance variable
 static int j; // Static variable
 static int arr[] = new int[12];
 static { // static initializer:
 // initialize the array
 for (int i = 0; i < arr.length; i++) {
 arr[i] = i;
 }
 }

 void seti(int i) { // Instance method
 this.i = i;
 }
 static void setj(int j) { // Static method
 Ahem.j = j;

}
 static void clearThroat() {
 Ahem a = new Ahem();
 Ahem.j = 2; // valid; static var via class
 a.j = 3; // valid; static var via instance
 Ahem.setj(2); // valid; static method via class
 a.setj(3); // valid; static method via instance
 a.i = 4; // valid; instance var via instance
 Ahem.i = 5; // ERROR; instance var via class
 a.seti(4); // valid; instance method via instance
 Ahem.seti(5); // ERROR; instance method via class
 }
 }

1. When a user defines the void finalize() method in a class definition, finalization is enabled for
objects of that class. Finalization of an object consists of the system calling the object’s finalize()
method. Finalization normally occurs asynchronously at some time after the garbage collection
mechanism identifies an object as inaccessible. Users can invoke their finalize() method
explicitly but this doesn’t guarantee that the system will not call it again at a later time. If a finalized
object references another finalized object, the objects are finalized in the reverse order of their
creation. Java does not guarantee when or if a given finalized object will have its finalize()
method called. Thus, finalization should not be relied on for program correctness. Rather,
finalization should be thought of as an optimization.

4 Classes

16 Java Language Specification May 11 1995

4.7.1 Order of Declarations

The order of declaration of classes and the methods and instance variables within
them is irrelevant. However, it is possible for cycles to exist during initialization.
For information on cycles during initialization see “Order of Initialization” on
page 16. Methods are free to make forward references to other methods and
instance variables. The following is legal:

 class A {
 void a() {
 f.set(42);
 }
 B f;
 }
 class B {
 void set(long n) {
 this.n = n; }
 long n;
 }

4.7.2 Order of Initialization

When a class is loaded, all of its static initialization code is executed. Static
initializers are executed at the same time that static variables are initialized. The
initializations occur in lexical order. For example, a class C is declared as follows:

 class C {
 static int a = 1;
 static {
 a++;
 b = 7;
 }
 static int b = 2;
 }

When class C is loaded, the following occurs in order:

• a is set to 1

• the static initializer is executed, setting a to 2 and b to 7

• b is set to 2

If any static initialization code has a reference to some other, unloaded class, that
class is loaded and its static initialization code is executed first. Each unloaded
class referenced during static initialization is loaded and initialized before the
class that referenced it. If at any time during this initialization sequence a
reference is made to an uninitialized class that is earlier in the sequence, a cycle is
created. A cycle causes a NoClassDefFoundException to be thrown.

For example, if ClassA is loaded, its static initialization code is executed.
However, ClassA’s static initialization code can have a reference to another
unloaded class, for example, ClassB. In that case, ClassB is loaded and its static
initialization occurs before ClassA’s. Then, ClassA’s static initializations are
executed. A cycle is created if ClassB has a reference to ClassA in its static
initialization code.

It is an compile-time error for instance or static variable initializations to have a
forward dependency. For example, the following code:

 int i = j + 2;
 int j = 4;

May 11 1995 Java Language Specification 17

4 Classes

results in a compile-time error.

An instance variable’s initialization can have an apparent forward dependency on
a static variable. For example in the following code fragment:

 int i = j + 2; // Instance variable
 static int j = 4; // Static variable

it appears that i has a forward dependency on j. However, i is initialized to 6
and j is initialized to 4. This initialization occurs because j is a static variable and
is initalized before the instance variable. Thus, j is initialized to 4 before i is
initialized.

Static methods cannot refer to instance variables; they can only use static
variables and static methods.

 4.8 Access Specifiers

Access specifiers are modifiers that allow programmers to control access to
methods and variables. The keywords used to control access are public, private,
and protected. Methods marked as public can be accessed from anywhere by
anyone. Methods marked as private can be accessed only from within the class in
which they are declared. Since private methods are not visible outside the class,
they are effectively final and cannot be overridden (see “Final Classes, Methods,
and Variables” on page 18 for more information). Moreover, you cannot override
a non-private method and give it private access. The protected access specifier
makes a variable or method accessible to subclasses, but not to any other classes.

Public access can be applied to classes, methods, and variables. Classes, methods,
and variables marked as public can be accessed from anywhere by any other class
or method. The access of a public method cannot be changed by overriding it.

Classes, methods, and variables that do not have either private or public access
specified can be accessed only from within the package where they are declared
(see “Packages” on page 21).

 4.9 Variable Scoping Rules

Within a package, when a class is defined as a subclass of another, declarations
made in the superclass are visible in the subclass. When a variable is referenced
inside a method definition, the following scoping rules are used:

1. The current block is searched first, and then all enclosing blocks, up to
and including the current method. This is considered the local scope.

After the local scope, the search continues in the class scope:

2. The variables of the current class are searched.

4 Classes

18 Java Language Specification May 11 1995

3. If the variable is not found, variables of all superclasses are searched,
starting with the immediate superclass, and continuing up through class
Object until the variable is found. If the variable is not found, imported
classes and package names are searched. If it is not found, it is a compile-
time error.

Multiple variables with the same name within the same class are not allowed and
result in a compile-time error.

 4.10 Modifiers

4.10.1 Threadsafe Variables

An instance or static variable can be marked threadsafe to indicate that the
variable will never be changed by some other thread while one thread is using it,
i.e., the variable never changes asynchronously. The purpose of marking a
variable as threadsafe is to allow the compiler to perform some optimizations that
may mask the occurrence of asynchronous changes. The primary optimization
enabled by the use of threadsafe is the caching of instance variables in registers.

4.10.2 Transient Variables

The transient flag is available to the interpreter and is intended to be used for
persistent objects. Variables marked transient are treated specially when
instances of the class are written out as persistent objects.

4.10.3 Final Classes, Methods, and Variables

The final keyword is a modifier that marks a class as never having subclasses, a
method as never being overridden, or a variable as having a constant value. It is a
compile-time error to override a final method, subclass a final class, or change the
value of a final variable. Variables marked as final behave like constants.

Using final lets the compiler perform a variety of optimizations. One such
optimization is inline expansion of method bodies, which may be done for small,
final methods (where the meaning of small is implementation dependent).

Examples of the various final declarations are:

 class Foo {
 final int value = 3; // final variable
 final int foo(int a, int b) { // final method
 ...
 }
 }

4.10.4 Native Methods

Methods marked as native are implemented in a platform-dependent language,
e.g., C, not Java Native methods do not have a method body, instead the
declaration is terminated with a semicolon. Constructors cannot be marked as
native. Though implemented in a platform-dependent language, native methods

May 11 1995 Java Language Specification 19

4 Classes

behave exactly as non-native methods do, for example, it is possible to override
them. An example of a native method declaration is:

 native long timeOfDay();

4.10.5 Abstract Methods

Abstract methods provide the means for a superclass or interface to define a
protocol that subclasses must implement. Methods marked as abstract must be
defined in a subclass of the class in which they are declared. An abstract method
does not have a method body; instead the declaration is terminated with a semi-
colon.

The following rules apply to the use of the abstract keyword:

• Constructors cannot be marked as abstract.

• Static methods cannot be abstract.

• Private methods cannot be abstract.

• Abstract methods must be defined in some subclass of the class in which
they are declared.

• A method that overrides a superclass method cannot be abstract.

• Classes that contains abstract methods and classes that inherit abstract
methods without overriding them are considered abstract classes.

• It is a compile-time error to instantiate an abstract class or attempt to call an
abstract method directly.

4.10.6 Synchronized Methods and Blocks

The synchronized keyword is a modifier that marks a method or block of code as
being required to acquire a lock. The lock is necessary so that the synchronized
code does not run at the same time as other code that needs access to the same
resource. Each object has exactly one lock associated with it; each class also has
exactly one lock. Synchronized methods are reentrant.

When a synchronized method is invoked, it waits until it can acquire the lock for
the current instance (or class, if it’s a static method). After acquiring the lock, it
executes its code and then releases the lock.

Synchronized blocks of code behave similarly to synchronized methods. The
difference is that instead of using the lock for the current instance or class, they
use the lock associated with the object or class specified in the block’s
synchronized statement.

Synchronized blocks are declared as follows:

 /* ...preceding code in the method... */
 synchronized(<object or class name>) { //sync. block

/* code that requires synchronized access */
 }
 /* ...remaining code in the method... */

An example of the declaration of a synchronized method is:

 class Point {
 float x, y;
 synchronized void scale(float f) {

5 Interfaces

20 Java Language Specification May 11 1995

 x *= f;
 y *= f;
 }
 }

An example of a synchronized block is:

 class Rectangle {
 Point topLeft;
 ...
 void print() {
 synchronized (topLeft) {
 println("topLeft.x = " + topLeft.x);
 println("topLeft.y = " + topLeft.y);
 }
 ...
 }
 }

5 Interfaces

An interface specifies a collection of methods without implementing their bodies.
Interfaces provide encapsulation of method protocols without restricting the
implementation to one inheritance tree. When a class implements an interface, it
generally must implement the bodies of all the methods described in the interface.
(If the implementing class is abstract—never implemented—it can leave the
implementation of some or all of the interface methods to its subclasses.)

Interfaces solve some of the same problems that multiple inheritance does
without as much overhead at runtime. However, because interfaces involve
dynamic method binding, there is a small performance penalty to using them.

Using interfaces allows several classes to share a programming interface without
having to be fully aware of each other’s implementation. The following example
shows an interface declaration (with the interface keyword) and a class that
implements the interface:

public interface Storing {
 void freezeDry(Stream s);
 void reconstitute(Stream s);
 }
 public class Image implements Storing, Painting {
 ...
 void freezeDry(Stream s) {
 // JPEG compress image before storing
 ...
 }
 void reconstitute (Stream s) {
 // JPEG decompress image before reading
 ...
 }
 }

Like classes, interfaces are either private (the default) or public. The scope of
public and private interfaces is the same as that of public and private classes,
respectively. Methods in an interface are always public. Variables are public,
static, and final.

May 11 1995 Java Language Specification 21

6 Packages

 5.1 Interfaces as Types

The declaration syntax interfaceName variableName declares a variable or
parameter to be an instance of some class that implements interfaceName.
Interfaces behave exactly as classes when used as a type. This lets the
programmer specify that an object must implement a given interface, without
having to know the exact type or inheritance of that object. Using interfaces
makes it unnecessary to force related classes to share a common abstract
superclass or to add methods to Object.

The following pseudocode illustrates the interfaceName variableName syntax:

 class StorageManager {
 Stream stream;
 ...
 // Storing is the interface name
 void pickle(Storing obj) {
 obj.freezeDry(stream);
 }
 }

 5.2 Methods in Interfaces

Methods in interfaces are declared as follows:

 returnType methodName (parameterList);

The declaration contains no modifiers. All methods specified in an interface are
public and abstract and no other modifiers may be applied.

See “Abstract Methods” on page 19 for more information on abstract methods.

 5.3 Variables in Interfaces

Variables declared in interfaces are final, public, and static. No modifiers can be
applied. Variables in interfaces must be initialized.

 5.4 Combining Interfaces

Interfaces can incorporate one or more other interfaces, using the extends
keyword as follows:

 interface DoesItAll extends Storing, Painting {
 void doesSomethingElse();
 }

6 Packages

Packages are groups of classes and interfaces. They are a tool for managing a large
namespace and avoiding conflicts. Every class and interface name is contained in
some package. By convention, package names consist of period-separated words,
with the first name representing the organization that developed the package.

7 Expressions

22 Java Language Specification May 11 1995

 6.1 Specifying a Compilation Unit’s Package

The package that a compilation unit is in is specified by a package statement.
When this statement is present, it must be the first non-comment, non-white space
line in the compilation unit. It has the following format:

package packageName;

When a compilation unit has no package statement, the unit is placed in a default
package, which has no name.

 6.2 Using Classes and Interfaces from Other Packages

The language provides a mechanism for making the definitions and
implementations of classes and interfaces available across packages. The import
keyword is used to mark classes as being imported into the current package. A
compilation unit automatically imports every class and interface in its own
package.

Code in one package can specify classes or interfaces from another package in one
of two ways:

• By prefacing each reference to the class or interface name with the name of
its package:

 // prefacing with a package
 acme.project.FooBar obj = new acme.project.FooBar();

• By importing the class or interface or the package that contains it, using an
import statement. Importing a class or interface makes the name of the class
or interface available in the current namespace. Importing a package makes
the names of all of its public classes and interfaces available. The construct:

 // import all classes from acme.project
 import acme.project.*;

means that every public class from acme.project is imported.

The following construct imports a single class, Employee_List, from the
acme.project package:

 // import Employee_List from acme.project
 import acme.project.Employee_List;
 Employee_List obj = new Employee_List();

It is illegal to specify an ambiguous class name and doing so always generates a
compile-time error. Class names may be disambiguated through the use of a fully
qualified class name, i.e., one that includes the name of the class’s package.

7 Expressions

Expressions in the language are much like expressions in C.

May 11 1995 Java Language Specification 23

7 Expressions

 7.1 Operators

The operators, from highest to lowest precedence, are:

. [] ()
++ -- ! ~ instanceof
* / %
+ -
<< >> >>>
< > <= >=
== !=
&
^
|
&&
||
?:
= op=
,

7.1.1 Operators on Integers

For operators with integer results, if any operand is long, the result type is long.
Otherwise the result type is int—never byte, short, or char. Thus, if a variable i is
declared a short or a byte, i+1 would be an int. When a result outside an
operator’s range would be produced, the result is reduced modulo the range of
the result type.

The unary integer operators are:

The ++ operator is used to express incrementing directly. Incrementing can also
be expressed indirectly using addition and assignment. ++lvalue means
lvalue+=1. ++lvalue also means lvalue=lvalue+1 (as long as lvalue has no side
effects). The -- operator is used to express decrementing. The ++ and -- operators
can be used as both prefix and postfix operators.

Operator Operation

– unary negation

~ bitwise complement

++ Increment

–– Decrement

7 Expressions

24 Java Language Specification May 11 1995

The binary integer operators are:

Integer division rounds toward zero. Division and modulus obey the identity
(a/b)*b + (a%b) == a.

The only exceptions for integer arithmetic are caused by a divide or modulus by
zero, which throw the ArithmeticException. An underflow generates zero. An
overflow leads to wrap-around, i.e., adding 1 to the maximum integer wraps
around to the minimum integer.

An op= assignment operator corresponds to each of the binary operators in the
above table.

The integer relational operators <, >, <=, >=, ==, and != produce boolean results.

7.1.2 Operators on Boolean Values

Variables or expressions that are boolean can be combined to yield other boolean
values. The unary operator ! is boolean negation. The binary operators &, |, and ^
are the logical AND, OR, and XOR operators; they force evaluation of both
operands. To avoid evaluation of right-hand operands, you can use the short-cut
evaluation operators && and ||. You can also use == and !=. The assignment
operators also work: &=, |=, ^=. The ternary conditional operator ?: works as it
does in C.

7.1.3 Operators on Floating Point Values

Floating point values can be combined using the usual operators: unary –; binary
+, –, *, and /; and the assignment operators +=, –=, *=, and /=. The ++ and --
operators also work on floating point values (they add or subtract 1.0). In
addition, % and %= work on floating point values, i.e.,

 a % b

a. integer op integer => integer

Operator Operationa

+ addition

– subtraction

* multiplication

/ division

% modulus

& bitwise AND

| bitwise OR

^ bitwise XOR

<< left shift

>>
sign-propagating
right shift

>>> zero-fill right shift

May 11 1995 Java Language Specification 25

7 Expressions

is the same as:

 a - ((int)(a / b) * b)

This means that a%b is the floating point equivalent of the remainder after
division.

Floating point expressions involving only single-precision operands are
evaluated using single-precision operations and produce single-precision results.
Floating point expressions that involve at least one double-precision operand are
evaluated using double-precision operations and produce double-precision
results.

The language has no arithmetic exceptions for floating point arithmetic.
Following the IEEE 754 floating point specification, the distinguished values Inf
and NaN are used instead. Overflow generates Inf. Underflow generates 0.
Divide by zero generates Inf.

The usual relational operators are also available and produce boolean results: >,
<, >=, <=, ==, !=. Because of the properties of NaN, floating point values are not
fully ordered, so care must be taken in comparison. For instance, if a<b is not true,
it does not follow that a>=b. Likewise, a!=b does not imply that a>b || a<b. In
fact, there may no ordering at all.

Floating point arithmetic and data formats are defined by IEEE 754, “Standard for
Floating Point Arithmetic.” See “Appendix: Floating Point” on page 33 for details
on the language’s floating point implementation.

7.1.4 Operators on Arrays

The following:

 <expression>[<expression>]

gets the value of an element of an array. Legal ranges for the expression are from 0
to the length of the array minus 1. The range is checked only at runtime.

7.1.5 Operators on Strings

Strings are implemented as String objects (see “String Literals” on page 4 for more
information). The operator + concatenates Strings, automatically converting
operands into Strings if necessary. If the operand is an object it can define a
method call toString() that returns a String in the class of the object.

 // Examples of the + operator used with strings
 float a = 1.0;
 print("The value of a is " + a + "\n");
 String s = "a = " + a;

The += operator works on Strings. Note, that the left hand side (s1 in the
following example) is evaluated only once.

 s1 += a; //s1 = s1 + a; // a is converted to String if necessary

8 Statements

26 Java Language Specification May 11 1995

7.1.6 Operators on Objects

The binary operator instanceof tests whether the specified object is an instance of
the specified class or one of its subclasses. For example:

 if (thermostat instanceof MeasuringDevice) {
 MeasuringDevice dev = (MeasuringDevice)thermostat;
 ...
 }

determines whether thermostat is a MeasuringDevice object (an instance of
MeasuringDevice or one of its subclasses).

 7.2 Casts and Conversions

The Java language and runtime system restrict casts and conversions to help
prevent the possibility of corrupting the system. Integers and floating point
numbers can be cast back and forth, but integers cannot be cast to arrays or
objects. Objects cannot be cast to base types. An instance can be cast to a
superclass with no penalty, but casting to a subclass generates a runtime check. If
the object being cast to a subclass is not an instance of the subclass (or one of its
subclasses), the runtime system throws a ClassCastException.

8 Statements

 8.1 Declarations

Declarations can appear anywhere that a statement is allowed. The scope of the
declaration ends at the end of the enclosing block.

In addition, declarations are allowed at the head of for statements, as shown
below:

 for (int i = 0; i < 10; i++) {
 ...
 }

Items declared in this way are valid only within the scope of the for statement.
For example, the preceding code sample is equivalent to the following:

 {
 int i = 0;
 for (; i < 10; i++) {
 ...
 }
 }

 8.2 Expressions

Expressions are statements:

 a = 3;
 print(23);
 foo.bar();

May 11 1995 Java Language Specification 27

8 Statements

 8.3 Control Flow

The following is a summary of control flow:

if(boolean) statement
else statement
switch(e1) {

case e2: statements
default: statements

}
break [label];
continue [label];
return e1;
for([e1]; [e2]; [e3]) statement
while(boolean) statement
do statement while(boolean);
label:statement

The language supports labeled loops and labeled breaks, for example:

 outer: // the label
 for (int i = 0; i < 10; i++) {
 for (int j= 0; j< 10; j++) {
 if (...) {
 break outer;
 }
 if (...) {
 }
 }
 }

The use of labels in loops and breaks has the following rules:

• Any statement can have a label.

• If a break statement has a label it must be the label of an enclosing
statement.

• If a continue statement has a label it must be the label of an enclosing loop.

 8.4 Exceptions

When an error occurs in an Java program—for example, when an argument has
an invalid value—the code that detects the error can throw an exception1. By
default, exceptions result in the thread terminating after printing an error
message. However, programs can have exception handlers that catch the exception
and recover from the error.

Some exceptions are thrown by the Java runtime system. However, any class can
define its own exceptions and cause them to occur using throw statements. A
throw statement consists of the throw keyword followed by an object. By
convention, the object should be an instance of Exception or one of its subclasses.
The throw statement causes execution to switch to the appropriate exception
handler. When a throw statement is executed, any code following it is not
executed, and no value is returned by its enclosing method. The following
example shows how to create a subclass of Exception and throw an exception.

 class MyException extends Exception {
 }

1. Java exception handling closely follows the proposal in the second edition of The C++ Programming
Language, by Bjarne Stroustrup.

8 Statements

28 Java Language Specification May 11 1995

 class MyClass {
 void oops() {
 if (/* no error occurred */) {

...
 } else { /* error occurred */
 throw new MyException();
 }
 }
 }

To define an exception handler, the program must first surround the code that can
cause the exception with a try statement. After the try statement come one or
more catch statements—one per exception class that the program can handle at
that point. In each catch statement is exception handling code. For example:

 try {
 p.a = 10;
 } catch (NullPointerException e) {
 println("p was null");
 } catch (Exception e) {
 println("other error occurred");
 } catch (Object obj) {
 println("Who threw that object?");
 }

A catch statement is like a method definition with exactly one parameter and no
return type. The parameter can be either a class or an interface. When an
exception occurs, the nested try/catch statements are searched for a parameter
that matches the exception class. The parameter is said to match the exception if
it:

• is the same class as the exception; or

• is a superclass of the exception; or

• if the parameter is an interface, the exception class implements the
interface.

The first try/catch statement that has a parameter that matches the exception has
its catch statement executed. After the catch statement executes, execution
resumes after the try/catch statement. It is not possible for an exception handler
to resume execution at the point that the exception occurred. For example, this
code fragment:

 print("now ");
 try {
 print("is ");
 throw new MyException();
 print("a ");
 } catch(MyException e) {
 print("the ");
 }
 print("time\n");

prints “now is the time”. As this example shows, exceptions don’t have to be used
only for error handling, but any other use is likely to result in code that’s hard to
understand.

Exception handlers can be nested, allowing exception handling to happen in more
than one place. Nested exception handling is often used when the first handler
can’t recover completely from the error, yet needs to execute some cleanup code
(as shown in the following code example). To pass exception handling up to the
next higher handler, use the throw keyword using the same object that was

May 11 1995 Java Language Specification 29

8 Statements

caught. Note that the method that rethrows the exception stops executing after
the throw statement; it never returns.

 try {
 f.open();
 } catch(Exception e) {
 f.close();
 throw e;
 }

8.4.1 The finally Statement

The following example shows the use of a finally statement that is useful for
guaranteeing that some code gets executed whether or not an exception occurs.
For example, the following code example:

 try {
 // do something
 } finally {
 // clean up after it
 }

is similar to:

 try {
 // do something
 } catch(Object e){
 // clean up after it

throw e;
 }
 // clean up after it

The finally statement is executed even if the try block contains a return, break,
continue, or throw statement. For example, the following code example always
results in “finally” being printed, but “after try” is printed only if a != 10.

 try {
 if (a == 10) {
 return;
 }
 } finally {
 print("finally\n");
 }
 print("after try\n");

8.4.2 Runtime Exceptions

This section contains a list of the exceptions that the Java runtime throws when it
encounters various errors.

ArithmeticException

Attempting to divide an integer by zero or take a modulus by zero throw the
ArithmeticException—no other arithmetic operation in Java throws an exception.
For information on how Java handles other arithmetic errors see “Operators on
Integers” on page 23 and “Operators on Floating Point Values” on page 24.

For example, the following code causes an ArithmeticException to be thrown:

 class Arith {
 public static void main(String args[]) {
 int j = 0;
 j = j / j;

8 Statements

30 Java Language Specification May 11 1995

 }
 }

NullPointerException

An attempt to access a variable or method in a null object or a element in a null
array throws a NullPointerException. For example, the accesses o.length and a[0]
in the following class declaration throws a NullPointerException at runtime.

 class Null {
 public static void main(String args[]) {
 String o = null;
 int a[] = null;
 o.length();
 a[0] = 0;
 }
 }

It is interesting to note that if you throw a null object you actually throw a
NullPointerException.

IncompatibleClassChangeException

In general the IncompatibleClassChangeException is thrown whenever one
class’s definition changes but other classes that reference the first class aren’t
recompiled. Four specific changes that throw a
IncompatibleClassChangeException at rutime are:

• A variable’s declaration is changed from static to non-static in one class but
other classes that access the changed variable aren’t recompiled.

• A variable’s declaration is changed from non-static to static in one class but
other classes that access the changed variable aren’t recompiled.

• A field that is declared in one class is deleted but other classes that access
the field aren’t recompiled.

• A method that is declared in one class is deleted but other classes that
access the method aren’t recompiled.

ClassCastException

A ClassCastException is thrown if an attempt is made to cast an object O into a
class C and O is neither C nor a subclass of C. For more information on casting see
“Casting Between Class Types” on page 8.

The following class declaration results in a ClassCastException at runtime:

 class ClassCast {
 public static void main(String args[]) {
 Object o = new Object();
 String s = (String)o; // the cast attempt
 s.length();
 }
 }

NegativeArraySizeException

A NegativeArraySizeException is thrown if an array is created with a negative
size. For example, the following class definition throws a
NegativeArraySizeException at runtime:

May 11 1995 Java Language Specification 31

8 Statements

 class NegArray {
 public static void main(String args[]) {
 int a[] = new int[-1];
 a[0] = 0;
 }
 }

OutOfMemoryException

An OutOfMemoryException is thrown when the system can no longer suppy the
application with memory. The OutOfMemoryException can only occur during the
creation of an object, i.e., when new is called. For example, the following code
results in an OutOfMemoryException at runtime:

 class Link {
 int a[] = new int[1000000];
 Link l;
 }
 class OutOfMem {
 public static void main(String args[]) {
 Link root = new Link();
 Link cur = root;
 while(true) {
 cur.l = new Link();
 cur = cur.l;
 }
 }
 }

NoClassDefFoundException

A NoClassDefFoundException is thrown if a class is referenced but the runtime
system cannot find the referenced class.

For example, class NoClass is declared:

 class NoClass {
 public static void main(String args[]) {
 C c = new C();
 }
 }

When NoClass is run, if the runtime system can’t find C.class it throws the
NoClassDefFoundException.

Note: C.class must have existed at the time NoClass is compiled.

IncompatibleTypeException

An IncompatibleTypeException is thrown if an attempt is made to instantiate an
interface. For example, the following code causes an IncompatibleTypeException
to be thrown.

 interface I {
 }

 class IncompType {
 public static void main(String args[]) {
 I r = (I)new("I");
 }
 }

8 Statements

32 Java Language Specification May 11 1995

ArrayIndexOutOfBoundsException

An attempt to access an invalid element in an array throws an
ArrayIndexOutOfBoundsException. For example:

 class ArrayOut {
 public static void main(String args[]) {
 int a[] = new int[0];
 a[0] = 0;
 }
 }

UnsatisfiedLinkException

An UnsatisfiedLinkException is thrown if a method is declared native and the
method cannot be linked to a routine in the runtime.

 class NoLink {
 static native void foo();

 public static void main(String args[]) {
 foo();
 }
 }

InternalException

An InternalException should never be thrown. It's only thrown if some
consistency check in the runtime fails. Please send mail to
java@java.Sun.COM if you have a reproducible case that throws this exception.

May 11, 1995 Java Language Specification 33

A Appendix: Floating Point

A Appendix: Floating Point

This appendix discusses properties of Java floating point arithmetic: general
precision notes and special values, binary format conversion, ordering. At the end
is a section summarizing the differences between Java arithmetic and the IEEE
754 standard. For more information on the IEEE 754 standard, see “IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.”

Operations involving only single-precision float and integer values are
performed using at least single-precision arithmetic and produce a single-
precision result. Other operations are performed in double precision and produce
a double precision result. Java floating-point arithmetic produces no exceptions.

Underflow is gradual.

 A.1 Special Values

There is both a positive zero and a negative zero. The latter can be produced in a
number of special circumstances: the total underflow of a * or / of terms of
different sign; the addition of -0 to itself or subtraction of positive zero from it; the
square root of -0. Converting -0 to a string results in a leading ‘-’. Apart from this,
the two zeros are indistinguishable.

Calculations which would produce a value beyond the range of the arithmetic
being used deliver a signed infinite result. An infinity (Inf) has a larger
magnitude than any value with the same sign. Infinities of the same sign cannot
be distinguished. Thus, for instance (1./0.) + (1./0.) == (1./0.). Division
of a finite value by infinity yields a 0 result.

Calculations which cannot produce any meaningful numeric result deliver a
distinguished result called Not A Number (NaN). Any operation having a NaN as
an operand produces a NaN as the result. NaN is not signed and not ordered (see
“Ordering”). Division of infinity by infinity yields NaN, as does subtraction of
one infinity from another of the same sign.

 A.2 Binary Format Conversion

Converting a floating-point value to an integer format results in a value with the
same sign as the argument value and having the largest magnitude less than or
equal to that of the argument. In other words, conversion rounds towards zero.
Converting infinity or any value beyond the range of the target integer type gives
a result having the same sign as the argument and the maximum magnitude of
that sign. Converting NaN results in 0.

Converting an integer to a floating format results in the closest possible value in
the target format. Ties are broken in favor of the most even value (having 0 as the
least-significant bit).

A Appendix: Floating Point

34 Java Language Specification May 11, 1995

 A.3 Ordering

The usual relational operators can be applied to floating-point values. With the
exception of NaN, all floating values are ordered, with -Inf < all finite values <
Inf.

-Inf == -Inf, +Inf == +Inf, -0. == 0. The ordering relations are transitive.
Equality and inequality are reflexive.

NaN is unordered. Thus the result of any order relation between NaN and any
other value is false and produces 0. The one exception is that “NaN != anything”
is true.

Note that, because NaN is unordered, Java’s logical inversion operator, !, does not
distribute over floating point relationals as it can over integers.

 A.4 Summary of IEEE-754 Differences

Java arithmetic is a subset of the IEEE-754 standard. Here is a summary of the key
differences.

• Nonstop Arithmetic—The Java system will not throw exceptions, traps, or
otherwise signal the IEEE exceptional conditions: invalid operation,
division by zero, overflow, underflow, or inexact. Java has no signaling
NaN.

• Rounding—Java rounds inexact results to the nearest representable value,
with ties going to the value with a 0 least-significant bit. This is the IEEE
default mode. But, Java rounds towards zero when converting a floating
value to an integer. Java does not provide the user-selectable rounding
modes for floating-point computations: up, down, or towards zero.

• Relational set—Java has no relational predicates which include the
unordered condition, except for !=. However, all cases but one can be
constructed by the programmer, using the existing relations and logical
inversion. The exception case is ordered but unequal. There is no specific
IEEE requirement here.

• Extended formats—Java does not support any extended formats, except
that double will serve as single-extended. Other extended formats are not a
requirement of the standard.

May 16, 1995 Java Language Specification 35

B Appendix: Java Language Grammar

B Appendix: Java Language Grammar

This is a short grammar for a Java compilation unit. A Java program consists of
one or more compilation units.

The grammar has undefined terminal symbols DocComment, Identifier, Number,
String, and Character. Quoted text signifies literal terminals.

Each rule is of the form nonterminal = meta-expression ; Other meta-
notation is: | for alternation, (...) for grouping, postfix ? for 0 or 1 occurrences,
postfix + for 1 or more occurrence, and postfix * for 0 or more occurrences.

CompilationUnit =
PackageStatement? ImportStatement* TypeDeclaration*

;

PackageStatement =
‘package’ PackageName ‘;’

;

ImportStatement =
‘import’ PackageName ‘.’ ‘*’ ‘;’

| ‘import’ (ClassName | InterfaceName)‘;’
;

TypeDeclaration =
ClassDeclaration

| InterfaceDeclaration
| ‘;’
;

ClassDeclaration =
Modifier* ‘class’ Identifier
(‘extends’ ClassName)?
(‘implements’ InterfaceName (‘,’ InterfaceName)*)?
‘{’ FieldDeclaration* ‘}’

;

InterfaceDeclaration =
Modifier* ‘interface’ Identifier
(‘extends’ InterfaceName (‘,’ InterfaceName)*)?
‘{’ FieldDeclaration* ‘}’

;

FieldDeclaration =
DocComment? MethodDeclaration

| DocComment? ConstructorDeclaration
| DocComment? VariableDeclaration
| StaticInitializer
| ‘;’
;

MethodDeclaration =
Modifier* Type Identifier ‘(’ ParameterList? ‘)’ (‘[’ ‘]’)*
(‘{’ Statement* ‘}’ | ‘;’)

;

ConstructorDeclaration =
Modifier* Identifier ‘(’ ParameterList? ‘)’
‘{’ Statement* ‘}’

;

VariableDeclaration =
Modifier* Type VariableDeclarator (‘,’ VariableDeclarator)* ‘;’

;

B Appendix: Java Language Grammar

36 Java Language Specification May 16, 1995

VariableDeclarator =
Identifier (‘[’ ‘]’)* (‘=’ VariableInitializer)?

;

VariableInitializer =
Expression

| ‘{’ (VariableInitializer (‘,’ VariableInitializer)* ‘,’?)? ‘}’
;

StaticInitializer =
‘static’ ‘{’ Statement* ‘}’

;

ParameterList =
Parameter (‘,’ Parameter)*

;

Parameter =
TypeSpecifier Identifier (‘[’ ‘]’)*

;

Statement =
VariableDeclaration

| Expression ‘;’
| ‘{’ Statement* ‘}’
| ‘if’ ‘(’ Expression ‘)’ Statement (‘else’ Statement)?
| ‘while’ ‘(’ Expression ‘)’ Statement
| ‘do’ Statement ‘while’ ‘(’ Expression ‘)’ ‘;’
| ‘try’ Statement (‘catch’ ‘(’ Parameter ‘)’ Statement)*

(‘finally’ Statement)?
| ‘switch’ ‘(’ Expression ‘)’ ‘{’ Statement* ‘}’
| ‘synchronized’ ‘(’ Expression ‘)’ Statement
| ‘return’ Expression? ‘;’
| ‘throw’ Expression ‘;’
| ‘case’ Expression ‘:’
| ‘default’ ‘:’
| Identifier ‘:’ Statement
| ‘break’ Identifier? ‘;’
| ‘continue’ Identifier? ‘;’
| ‘;’
;

Expression =
Expression ‘+’ Expression

| Expression ‘-’ Expression
| Expression ‘*’ Expression
| Expression ‘/’ Expression
| Expression ‘%’ Expression
| Expression ‘^’ Expression
| Expression ‘&’ Expression
| Expression ‘|’ Expression
| Expression ‘&&’ Expression
| Expression ‘||’ Expression
| Expression ‘<<‘ Expression
| Expression ‘>>’ Expression
| Expression ‘>>>’ Expression
| Expression ‘=’ Expression
| Expression ‘+=’ Expression
| Expression ‘-=’ Expression
| Expression ‘*=’ Expression
| Expression ‘/=’ Expression
| Expression ‘%=’ Expression
| Expression ‘^=’ Expression
| Expression ‘&=’ Expression
| Expression ‘|=’ Expression
| Expression ‘<<=’ Expression
| Expression ‘>>=’ Expression
| Expression ‘>>>=’ Expression

May 16, 1995 Java Language Specification 37

B Appendix: Java Language Grammar

| Expression ‘<‘ Expression
| Expression ‘>’ Expression
| Expression ‘<=’ Expression
| Expression ‘>=’ Expression
| Expression ‘==’ Expression
| Expression ‘!=’ Expression
| Expression ‘.’ Expression
| Expression ‘,’ Expression
| Expression ‘instanceof’ (ClassName | InterfaceName)
| Expression ‘?’ Expression ‘:’ Expression
| Expression ‘[’ Expression ‘]’
| ‘++’ Expression
| ‘--’ Expression
| Expression ‘++’
| Expression ‘--’
| ‘-’ Expression
| ‘!’ Expression
| ‘~’ Expression
| ‘(’ Expression ‘)’
| ‘(’ Type ‘)’ Expression
| Expression ‘(’ ArgList? ‘)’
| ‘new’ ClassName ‘(’ ArgList?‘)’
| ‘new’ TypeSpecifier (‘[’ Expression ‘]’)+ (‘[’ ‘]’)*
| ‘new’ ‘(’ Expression ‘)’
| ‘true’
| ‘false’
| ‘null’
| ‘super’
| ‘this’
| Identifier
| Number
| String
| Character
;

ArgList =
Expression (‘,’ Expression)*

;

Type =
TypeSpecifier (‘[’ ‘]’)*

;

TypeSpecifier =
‘boolean’

| ‘byte’
| ‘char’
| ‘short’
| ‘int’
| ‘float’
| ‘long’
| ‘double’
| ClassName
| InterfaceName
;

Modifier =
‘public’

| ‘private’
| ‘protected’
| ‘static’
| ‘final’
| ‘native’
| ‘synchronized’
| ‘abstract’
| ‘threadsafe’

B Appendix: Java Language Grammar

38 Java Language Specification May 16, 1995

| ‘transient’
;

PackageName =
Identifier

| PackageName ‘.’ Identifier
;

ClassName =
Identifier

| PackageName ‘.’ Identifier
;

InterfaceName =
Identifier

| PackageName ‘.’ Identifier
;

May 11, 1995 Java Language Specification 39

Index

Symbols
!, 24

–, 24

!=, 24, 25

%, 24

&, 24

&&, 24

&=, 24

*, 24

*=, 24

+, 24, 25

+=, 24

-, unary, 23

–, unary, 24

/, 24

/=, 24

<, 24, 25

<<, 24

<=, 24, 25

–=, 24

==, 24, 25

>, 24, 25

>=, 24, 25

>>, 24

>>>, 24

^, 24

^=, 24

|, 24

|=, 24

||, 24

~, 23

B
boolean, 3

boolean expressions, 27

break, 27

byte, 5

C
case, 27

casting, 8, 26

catch, 28

char, 5

classes, 5, 7, 21, 26

comments, 2

constructors, 12

continue, 27

D
declaration order, 16

default, 27

do, 27

double, 5

double precision, 3, 5, 24

E
else, 27

exceptions, 27

extends, 8

F
final, 18

finally, 29

float, 5

floating point, 3, 5, 24

floating point, ordering of values, 25

for, 26, 27

I
if, 27

implements, 8

import, 22

instanceof, 26

int, 5

integers, 5, 23

interface, 20

40 Java Language Specification May 11, 1995

interfaces, 8, 20

L
length

length of an array, 7

literals, 3

long, 5

M
methods, 9

O
object storage, 14

(See also memory management)

objects, 14

OR, logical, 24

P
package, 22

packages, 21

R
return, 27

S
short, 5

static, 15

static initializer, 15

String, 4, 25

strings, 4, 6, 25

super, 13

switch, 27

synchronize, 19

synchronized, 19

T
this, 10

throw, 27

transient, 18

try, 28

U
Unicode, 1

characters, 5

V
void, 9

W
while, 27

X
XOR, logical, 24

