
Formula Graphics Multimedia System 3.1
© 1990-1995 Harrow Software Pty Ltd
All rights reserved

Introduction
Multimedia Presentation System
Multimedia Elements
Programming Language
Instruction Reference
Instruction Summary

Introduction
Description
Multimedia production
Bits, bitmaps and palettes
Graphics window
Mouse Cursor
Loading a bitmap
Bitmap file formats
Optimizing a palette
Animations
Animation file formats
Animation Playback
Converting an animation

Multimedia Presentation System
Presentations
Starting a presentation
Screens and elements
Element positions
Displaying, undisplaying and removing
Palette management
Condition codes
Action Boxes
Screen options
Presentation options
Archiving
Distribution

Multimedia Elements

Background
Picture
Animation
Sound
MCI
Rectangle
Text
Picture Button
Text Button
Hot Area
Hot Color
Input
Control
Remove
Debug
Hypertext
Edit Box
List Box
Graph

Programming Language
Basics
Floating point variables
Condition statements
Loops
Arrays
Strings
Global strings
Call statements
Scripts
Lists
Data types
Operators, functions and constants
The graphics window
Sprites

Instruction Reference
Condition statements
Loop instructions
Array instructions
Text handling instructions
List handling instructions
Scripts and procedures
Windows message handling
Input/output instructions
File management
Operating system
Presentation system
Bitmap instructions
Palette instructions
Sprite instructions
Graphics window
Bounding instructions
Sound instructions

Formula Graphics Multimedia System 3.1

Description

Formula Graphics Multimedia System will bring your artwork, sounds and animations together to create
highly interactive multimedia titles. The system was designed to simplify the task of authoring on a
production level, to allow the creative content of a presentation to be as rich as possible, and to make it
possible to achieve an unlimited amount of interactivity.

Formula Graphics Multimedia System takes the finished artwork and animations from graphics packages
such as Photoshop and Animator, or from image libraries and sound recordings, and it presents this
content in ways which give the best possible result for any Windows PC.

Formula Graphics Multimedia System is very quick and easy to use. It can be used by anyone in the
home, office or classroom to create very professional looking presentations and games.

Features

Presentation system: Formula Graphics Multimedia System can be used to produce any type of
multimedia presentation. Presentations can be 256 color, 16 bit or 24 bit color. Using simple techniques,
very high levels of interactivity can be achieved.

High speed, high performance graphics: Formula Graphics Multimedia System uses all of the latest
technology such as WinG and Video for Windows. It knows how to get the best performance out of any
video hardware.

Dynamic palette management: Formula Graphics Multimedia System dynamically manages palette
colors during 256 color presentations. Any number of backgrounds, pictures and animations with different
palettes can be displayed at the same time.

Object oriented language: Formula Graphics Multimedia System high performance object oriented
language has the power to explore the limits of mutimedia.

Applications

* CDROM titles - everything you need to produce top quality multimedia titles.

* Multimedia training - teach your staff with hypertext and animated graphics.

* Sales presentations - build a slick, animated demonstration to sell your product.

* Action and adventure games - take advantage of the sprite based games engine.

Multimedia production

The following steps will give you some guidelines on using Formula Graphics Multimedia System to
create a multimedia presentation.

1. Design the presentation. A storyboard should be developed which outlines the contents of the
presentation on a screen by screen basis. Each screen would usually contain a heading, some text, a
picture or two and maybe an animation.

2. Use a graphics package such as Photoshop to create the artwork. Start by designing some
backgrounds which suit the theme of the presentation. Then design each screen of the presentation by
laying out pictures and text over the screen's background.

3. Use Formula Graphics Multimedia System to process the artwork. Screen layouts can be loaded into
the graphics window, the background can be removed by subtracting, and the remains can be cut out as
picture elements. As each picture is added to the presentation, it can be reduced in colors and the
subtracted area can be made transparent.

4. An animation package can be used to create 2D and 3D animations for the presentation. Animations
are a great way to enhance a presentation and are particularly good for product demonstrations. Formula
Graphics can be used to filter, reduce the number of colors, and convert the animations into the desired
format before adding them to the presentation.

5. Sound and motion video can be recorded or captured from tape and included in the presentation.
Background music, voice overs and video sequences are an important part of any presentation.

6. Other types of elements can also be included in the presentation. It is easy to compile a list of elements
for each screen. The order of the elements can be changed using the up and down cursor keys. Most
elements can be selected by double clicking them, then they can be resized or dragged around the
screen.

7. A high degree of interactivity can be given to the presentation by using hot elements such as picture
buttons, text buttons, hot areas, hot colors and hypertext. These elements can be made to carry out a list
of actions when they are clicked. A simple system of logic can be used to relate elements and events.

8. Formula Graphics Multimedia System contains a high performance, object oriented language. This
language may be used to process artwork for the presentation in an unlimited number of ways. It may
also be included in the presentation to provide limitless interactivity. It can even be used to write game
action sequences with animated sprites.

9. The final presentation can then be archived so that all of the artwork is stored in only one easily
distributable file. Formula Graphics Multimedia System can then be used as a presentation player by
specifying the presentation name on the command line.

Bits

The way a computer works is by using bits. A bit can be either zero or one. Groups of bits can be used to
represent numbers. Bits are usually grouped together in multiples of 8. With all the possible combinations
of zeros and ones, 8 bits can be used to represent any number between 0 and 255.

Bitmaps

A bitmap is a way of storing an image. The image is divided up into tiny units of color called pixels. The
size of a bitmap can be given as X pixels wide and Y pixels high. The color resolution of the bitmap refers
to the number of bits used to store each pixel color.

A 256 color bitmap uses 8 bits per pixel and has a corresponding table of colors called a palette. Each
pixel can have a value between 0 and 255, and each value refers to the position of a color in the palette.
Each color in the palette has 8 bits of red, 8 bits of green and 8 bits of blue.

A 16 bit color bitmap does not use a palette, the red, green and blue color components of each pixel are
stored using 16 bits. There are two variations: RGB555 uses 5 bits of red, 5 bits of green and 5 bits of
blue (32768 colors). RGB565 uses 5 bits of red, 6 bits of green and 5 bits of blue (65536 colors).

A 24 bit color bitmap has 8 bits of red, 8 bits of green and 8 bits of blue for each pixel. There are 16
million possible color variations and the smallest differences between them can barely be distinguished by
the eye.

Palettes

A palette is a table of colors. There are 256 colors in a palette, and each color has 8 bits of red, 8 bits of
green and 8 bits of blue. Palettes are only used with 256 color bitmaps or 256 color video modes. 256
color bitmaps are the most common types of bitmaps, and most video cards have 256 color modes.

Microsoft Windows maintains a palette called the system palette. When Windows is running in a 256 color
video mode, the system palette is used by the video card. Windows reserves 20 colors in the system
palette for visual elements such as windows and icons, this leaves only 236 colors which can be modified.

When Formula Graphics Multimedia System is the active application, it takes control of the system
palette. When a 256 color bitmap is displayed, first the colors in the bitmap's palette will be copied to the
system palette, then the bitmap will be displayed using those colors.

Graphics window

Formula Graphics Multimedia System has a window called the graphics window, which can be used to
display bitmaps and palettes. The size and color resolution of the graphics window can be set by
choosing Options from the Graphics menu. The size can be specified in horizontal and vertical pixels.
The color resolution can be 256 colors, 16 bits or 24 bits.

The graphics window uses memory to store the color bits of all of its pixels. The amount of memory
required depends on the width, height and color resolution of the window. A window of any size may be
opened, but the operating system must have enough available memory.

When a bitmap is displayed, its bits of color will first be copied to the memory of the graphics window,
then the video display driver will be used to copy these bits of color to the video card. By using the
graphics window memory as a buffer, Formula Graphics Multimedia System presentations can be
designed independently of the video hardware they run on.

After choosing a suitable resolution, select Open Window from the Graphics menu and the graphics
window will appear. There are a several different types of Graphics Window. Formula Graphics
Multimedia System will choose the one which gives the best performance for the selected color resolution
and video mode:

WinG: If the Microsoft WinG drivers are installed, then this type of 256 color window will give high
performance on most video modes.

Fast 16 and 256: This type of window is very fast for a 256 color window on a 256 color video mode or a
16 bit color (RGB565) window on a 65536 color video mode. This type of window can only be enabled
using a switch in the "formula.ini" file.

VFW 256, 16 and 24: If the Microsoft Video for Windows drivers are available, then this type of window
will provide color reduction and dithering for 256 colors on a 16 color video mode, or 16 bit (RGB555) or
24 bit colors on a 16 or 256 color video mode.

DIB 256 and 24: If no other alternatives are available, then this type of window will be used.

Mouse Cursor

The position of any pixel in the graphics window can be given by the term X,Y. The X value is the pixel
position across the screen and the Y value is the pixel position down the screen. The position of the pixel
in the top left corner on the screen is 0,0.

As the mouse cursor moves across the graphics window, its position will be displayed on the status bar. If
the left mouse button is clicked on a pixel, then the red, green, and blue components of the selected pixel
color will be displayed on the status bar.

If the left mouse button is held down while the cursor is dragged across the graphics window, then a
capture rectangle will appear over the selected area. The capture rectangle can be resized or moved
around the graphics window. The capture rectangle will disappear when the left mouse button is clicked
again.

A grid width value can be specified in the Graphics Options. As a capture rectangle is dragged, resized or
moved, it will snap to a position in the grid. A grid width value of zero will disable this feature.

A capture rectangle can also be moved around the screen by pressing the up, down, left and right arrow
cursor keys.

Loading a bitmap

After selecting Load Bitmap from the Graphics menu, a Load Bitmap dialog box will open. A bitmap file
can be chosen. This bitmap will be displayed in the graphics window. If the color resolution of the bitmap
differs from the color resolution of the graphics window, then the bitmap will be converted before it is
displayed.

The Subtract Bitmap function can be used to remove a background image from a bitmap image. First
load the bitmap file into the graphics window. Then select Subtract Bitmap from the Graphics menu and
the background file can be selected from the Subtract Bitmap dialog box. The two images will be
compared and all corresponding pixels with the same color will be set to the specified subtract color.

An area of the graphics window can be selected with a capture rectangle before choosing Save Bitmap
from the Graphics menu. After choosing a bitmap file name, the selected area will be captured (converted
into a bitmap) and saved. If no area was selected, then the entire contents of the graphics window will be
captured and saved. If the color resolution of the chosen file format differs from the color resolution of the
graphics window, then the image will be converted after it is captured.

Bitmap file formats

Bitmap files come in a variety of formats. Some formats store the image as raw data, and other formats
use compression techniques to reduce the amount of space required to store the image.

The BMP format can either be 256 colors, 16 bit color (RGB 555) or 24 bit color. This format does not use
compression. It was developed by Microsoft and is ideal for exchanging bitmaps between different
applications.

GIF is a 256 color file format. It uses a technique called LZ compression which offers excellent reduction
for complex images. This is the recommended format for 256 color bitmaps.

JPEG is a 24 bit color format. The JPEG compression technique achieves a high compression ratio at the
cost of slow decompression and a slight loss in image quality.

Optimizing a palette

An area can be selected with a capture rectangle before choosing Optimize Palette from the Graphics
menu. After choosing the appropriate options and pressing the Optimize button, the selected area of the
graphics window will be analyzed and a new palette will be constructed using the most popular colors. If
no area was selected, then the entire contents of the graphics window will be analyzed.

The number of colors to be used in the new palette can be specified, all other colors will be set to black. If
the Foreground bias option is set, then the new palette will contain a wider spectrum of colors.

A bias color can be specified. Preference will be given to colors that are nearest to the bias color. The
default settings in the color optimization dialog box will usually produce the best results.

Animations

An animation is a series of bitmaps. When the bitmaps of an animation are displayed one after the other,
they give the appearance of movement. Each bitmap in an animation is called a frame, and a typical
frame rate for an animation is 12 frames per second. Any slower and the motion becomes jerky, any
faster and the system resources will be strained for no reason. Formula Graphics Multimedia System
uses four styles of animation:

The first of these are Simple animations, which has one complete image for each frame.

Delta animations have a complete image for the first frame, then for each frame thereafter, only the
changes between this frame and the last frame are saved. This is the traditional method of storing
animations.

An Overlay animation is the same as a Delta animation except that the first frame of the animation
contains only the changes between the first frame and some specified background image. This method
can be used to save disk space by not storing the initial background.

In a Sprite animation, every frame contains only the changes between that frame and some specified
background. As the animation is played, the background is restored before each new frame is displayed.
A sprite animation can be played over any background. This method can be used to store an animation
which is totally independent of any background.

The performance of an animation will be a compromise between image quality and playback speed. The
playback speed will depend on the compression ratio of the file format. The bottleneck will be the rate at
which the animation can be read from the disk.

Animation file formats

The AVI format can have any color resolution, can use any compression technique, and it can also
contain a sound track. This format is supported by the MCI (Media Control Interface) component of the
Windows operating system and is the recommended file format for video.

FLC is a 256 color animation format. It uses a technique called RLL which produces moderate
compression ratios and fast decompression times.

MPEG is a 24 bit color animation format. The MPEG compression technique achieves a high
compression ratio at the cost of slow decompression and a slight loss in image quality.

VDO is a custom 256 color animation file format. This format uses both RLL and LZH compression. It is
fully supported by the presentation system and is the recommended file format for 256 color animations.

WDO is a custom 16 bit color (RGB565) animation file format. This format uses both RLL and LZH
compression. It is fully supported by the presentation system and is the recommended file format for RGB
animations.

Animation Playback

After selecting Animation Play from the Graphics menu, an Animation Playback dialog box will open.
After pressing the browse button, a Load Animation dialog box will open and an animation file can be
chosen. The rate at which the animation plays back can be specified.

Using single frame steps, each time the left mouse button is clicked, another frame of the animation will
be played. When the right mouse button is held down, the animation will be played continuously.

The maximum frame rate will be the most number of frames per second that can be read from disk,
decompressed, and displayed.

Converting an animation

After selecting Animation Convert from the Graphics menu, a Convert Animation dialog box will open.
The Convert button will convert an animation from any file format to any other file format. The Source
File(s) can either specify an animation, or a multiple selection of single bitmap files.

If the Palette button is pressed, the palette of the source animation will be loaded and displayed. The
destination animation will be created using whatever palette is currently in display.

If the Optimize button is pressed, a color Optimization dialog box will open. After the appropriate options
have been selected, each frame of the source animation will be analyzed, and a new palette will be
constructed using the most popular colors.

Each frame of the source animation will be displayed at the specified display position. Each frame of the
destination animation will be captured from the specified capture position with the specified capture size.
A starting frame, finishing frame and frame step can be specified for the source file(s).

Two Image filters are available, zero values will disable these filters. The delta filter will test for similar
colors between frames.

The antidither filter will test for runs of horizontal pixels with similar colors, these pixels will then be set to
the same color. Antidither can be used to greatly increase the compression ratio of RLL animations. It is
highly recommended that all animations be processed with some degree of antidither.

Multimedia Presentation System

Presentations

A new presentation can be opened by selecting New from the Presentation menu. A presentation window
will open and you will be asked to save the new presentation to establish a presentation name and
directory.

Presentations are divided up into screens. The names of all the screens in a presentation will be listed in
the presentation window. A new screen can be added to the presentation by selecting New Screen from
the presentation menu. As each new screen is added to the presentation, its name will be added to the
screen list.

Screens are made up of elements. When a screen is open, a list of its elements will appear in the
presentation window. Elements are things like pictures, animations and sounds. As each new element is
added to the screen, its name will be added to the element list.

A presentation can be shown by selecting Show Presentation from the Presentation menu. When a
presentation is being shown, the screens in the screen list will be presented one after the other until they
are finished. As each screen is presented, the screen's elements will be played or displayed one at a time
in the order they are listed.

Starting a presentation

To begin a presentation select New from the Presentation menu and a presentation window will open. To
open our first screen select New Screen. After entering a screen name, a graphics window will open. The
size and color resolution of the graphics window will be those specified in the presentation options. A
screen window will also open and the screen name will be added to the presentation window's screen list.

As our first element, choose Background from the Element menu. A Load Background dialog box will
open. The background bitmap we select will be displayed in the graphics window. A Background Element
window will open, and the background name will be added to the presentation window's element list.

Now we can add a picture by choosing Picture from the Element menu. A Load Picture dialog box will
open. The picture bitmap we select will be displayed in the graphics window. A picture element window
will open, and the picture name will be added to the presentation window's element list.

The picture can be selected at any time by double clicking on it in the graphics window. The selected
picture can be repositioned by dragging it with the mouse.

We can add a sound by choosing Sound from the Element menu. After selecting a sound from the Load
Sound dialog box, a sound element window will open and the sound name will be added to the
presentation window's element list. We can test the sound by pressing the Play button in the element
window.

Finally, we can add an input by choosing Input from the Element menu. After entering an element name,
an input element window will open and the input name will be added to the presentation window's
element list. Select the "key press / mouse click" option in the input element window.

Now that we have put together our first screen, we can test it by selecting Test Screen from the
Presentation menu. First the background will be displayed, then the picture, and then the sound will play.
When the presentation gets to the input, it will stop and wait for the user to either click on a mouse button
or press any key on the keyboard.

Screens and elements

Screens and elements can be arranged in any particular order by selecting them with the mouse and
moving them up or down with the cursor keys.

By double clicking on a screen name, the selected screen window will open and its elements will be
displayed in the graphics window.

By double clicking on an element name, the selected element window will open. Most elements can also
be selected by double clicking the element's position on the screen.

Screens and elements can be removed from the presentation by selecting them with the mouse and
pressing the delete key.

Element positions

Most elements can be resized and movedby dragging them into a new position. As an element is being
dragged, its position will be displayed on the status bar. The position of the element can be finely adjusted
by pressing the up, down, left and right cursor keys.

Choosing Position from the Element menu will open a position dialog box. The position of the currently
selected element will be displayed. The element can be moved by changing its position values and
pressing the Move button. A new position can also be entered by selecting an area with the capture
rectangle before choosing Position from the Element menu.

Any changes to the position of an element can be undone by choosing Undo from the Element menu.

Displaying, undisplaying and removing

Elements can be displayed and undisplayed. When a picture element is displayed, the area of the screen
under the picture is preserved. When the picture is undisplayed, the area under that picture is restored. It
is important that elements are undisplayed in the reverse order that they were displayed, otherwise they
may leave artifacts.

Elements can also be removed. When a picture element is removed, the preserved area under the picture
will be discarded without being restored. When a background element is displayed over the top of other
elements, these elements must be removed rather than undisplayed so that the background image is not
disturbed.

After a screen is finished, the elements on the screen will be undisplayed according to the options given
in the screen window.

Palette management

The presentation system dynamically manages the system palette during 256 color presentations. Before
an element with a palette is displayed, any colors used by the element are allocated to free color positions
in the system palette. If two elements use the same color, they will share that palette position. If no free
positions are available, the nearest color will be found.

As the element is displayed, its colors will be remapped to the system palette. In the case of bitmaps, only
colors that are actually used in the image are allocated positions. In the case of animations, any colors
that are not used in the animation should be set to black. After a bitmap is undisplayed or removed, its
palette positions will be freed.

Care should be taken to ensure that there are no more than 236 colors being used on the screen at one
time. Formula Graphics Multimedia System provides excellent color optimization to reduce the number of
colors in each element to the minimum possible number.

Condition codes

There are 1000 condition codes and each one can be represented by a number between 1 and 1000.
Each condition code has only two states, it can either be true or false. By using elements to set condition
codes to true or false, and by testing these codes, a high level of interactivity can be programmed into a
presentation.

Each screen and each element has a test option in which one or more condition codes can be specified. If
a single condition code is specified, then that screen or element will only be presented if the condition
code is true. If the condition code is a negative number, then that screen or element will only be presented
if the condition code is false.

For example, if an element has "20" specified as its test option, then when the presentation reaches that
element, it will only display the element if condition code 20 is set to true. If "-20" is specified as its test
option, then it will only display the element if condition code 20 is set to false.

Several condition codes separated by & (and operator) and | (or operator) can also be specified. The
screen or element will only be presented if the overall condition is true. As an example the condition "20 &
-30" will only be true if both 20 is true and 30 is false.

A condition code can be set to true by using a "set" command in an action box. For example, "set 20" will
set condition code 20 to true. Two or more condition codes can be set by separating the codes with
commas. For example, "set 20,30" will set both 20 and 30 to true. A range of condition codes can be set
to true by specifying the lower and upper codes separated by a forward slash. For example, "set 20/30"
will set all codes between 20 and 30 inclusive to true.

A condition code can be set to false using a "set" command with a negative code value. For example,
"set -20" will set 20 to false. A range of condition codes can be set to false by specifying a negative lower
code. For example, "set -20/30" will set all codes between 20 and 30 to false.

Condition codes 1 to 12 are reserved for use by function keys, for example when the F10 key is pressed,
condition code 10 will be set to true. Before a presentation begins, all condition codes will be set to false.

Action Boxes

Some elements have an action box. An action box may be used to specify commands. If there is more
than one command then each command can be separated by either a space, a comma, or a semi colon.
In most cases the commands in an action box will only be carried out after a certain event, such as the
pressing of a button element or the clicking of a hot area.

The set command may be used to set a condition code, a number of condition codes, or a range of
condition codes. As an example, set 20.

The screen command can be used to jump to another screen. If the screen name is more than one word
then the screen name should be enclosed in inverted commas.
As an example, call "screen one".

The call command can be used to execute a procedure in the presentation's script. The procedure name
must be specified. As an example, call initialize.

The undisplay command can be used to undisplay an element from the screen. If the element name has
an extension or uses more than one word then it should be enclosed in inverted commas. As an example,
undisplay "picture.gif".

The undisplay all command will undisplay all elements on the screen.

The continue command can be used to continue past an "activate hot elements" input element.

The goto command can be used to jump to a specified element in the list. If the element name has an
extension or uses more than one word then it should be enclosed in inverted commas.

The backscreen command can be used to jump back to the previous screen.

The break command can be used to end the current screen.

The exit command can be used to end the presentation.

As an example of multiple commands, set 20 call initialize undisplay "picture.gif" exit.

Screen options

The FnKey option on the screen window can be used to specify a function key. If the specified function
key is pressed while any other screen is being shown, then that screen will finish and the presentation will
jump to this screen. The default value of zero will disable this function.

The Test option may be used to specify a condition. The Next Screen option may be used to specify the
name of the next screen to be displayed after this screen.

If the "Retain elements" option is set, then when the screen finishes it will not undisplay any elements. If
the "Undisplay changes" option is set then all elements will be undisplayed except for those elements that
appear on the next screen using the same name. If the "Undisplay elements" option is set then all
elements will be undisplayed when the screen is finished.

If the "Right mouse advance" option is set, then the right mouse button can be clicked to advance past an
input control. If the "Keyboard advance" option is set, then any key on the keyboard can be pressed to
advance past an input control.

Presentation options

Selecting Options from the Presentation menu, a presentation dialog box will open.

When a presentation is being shown, the Presentation Title will appear on the presentation window's title
bar. If the size of the presentation window is the same size as the video screen, then the presentation will
be played on a full screen window with no title bar.

An optional password may be specified. You will not be able to edit the presentation without specifying the
password. No password will be required to show the presentation.

A program may be written for a presentation. The program will be opened before the presentation begins
and closed after it is finished. At any stage of the presentation, any procedure in the program may be
executed using a call command.

"Prompt before save" will prompt the user before saving a presentation.

"Forward cursor key" enables the user to advance one screen by pressing the forward cursor key.
"Backward cursor key" enables the user to go back to the previous screen. The "Escape key to exit"
option enables the escape key to exit the presentation.

If the "Read file archives" option is set, files will be loaded from the presentation's archive rather than from
the presentation's directory.

The Graphics Window options can be used to set the size and colour resolution of a presentation.

Archiving

Choosing Archive from the Presentation menu will open an Archive Files dialog box. If the "New archive"
button is pressed, an archive file will be created. This archive file will contain a copy of every file used in
the presentation. The purpose of archiving is to minimize the number of files and provide a secure method
of distributing the presentation.

After archiving, the entire contents of the presentation will be contained in only two files. The first file will
be the presentation database file with the extension "dbx". The second will be the newly created archive
file with the extension "db0".

A presentation may need to be changed after being archived. As an alternative to rearchiving the whole
presentation, a supplementary archive file can be created containing only the changes. The
"Supplementary" button can be used to create up to nine supplementary archive files. These archive files
will have the extensions db1, db2, db3, etc.

Only files whose names appear in element window details will be archived. File types such as AVI and
FLC which require MCI playback will not be archived and will need to be distributed separately. Any other
files that are used only by the presentation script can also be archived by listing their names in the
"Additional files" box.

Once a presentation has been archived, it cannot be shown without its current archive file. If the archive
file is no longer desired, or if it becomes corrupted, it can be cleared from the presentation by pressing the
"Clear archives" button.

Distribution

An archived presentation can be played outside the authoring environment by specifiying its name on the
command line, for example "formula.exe example". A graphics window will open in the centre of the
screen, the presentation will be shown until it is finished and then the multimedia system will close.

The "demo.exe" file included with Formula Graphics is a chameleon batch file. The name of this file can
be changed to the same name as your presentation, for example, "example.exe". Running this file will be
the same as running "formula.exe example".

The final presentation can be distributed by including the following files:
 formula.exe - used as a command line player
 formsync.dll - used for timing and synchronization
 formula.hlp - this file must be distributed without modification
 msvideo.dll - driver for high quality graphics on any video card.
        presentation.exe - batch file to start the presentation
 presentation.dbx - presentation database file (remember to use a password)
 presentation.db0 - presentation archive file

Files such as AVI or FLC which require MCI playback must also be included separately along with any
drivers that may be required. The Formula Graphics Multimedia System can also be used to create a
setup utility to decompress and install all of your files, drivers and icons.

The "msvideo.dll" file is a distributable component of Microsoft Video for Windows which allows a 256
color presentation to be shown on a 16 color video card, or a 24 bit color presentation to be shown on a
16 or 256 color video card, using high speed dithering.

Multimedia Elements

Background

After selecting Background from the element menu, a Load Background dialog box will open and a bitmap
file can be selected as a background. The background will appear in the graphics window and a
background element window will open with some options.

When a background is displayed, in most cases it will be displayed over the top of other elements on the
screen. If the Remove All option is activated, then all other elements on the screen will be removed after
the background has been displayed. In some cases, the background will not cover the entire screen and
you will not wish to remove all other elements. Any background that was previously displayed will always
be removed.

A rectangle element can also be used as a background.

To prepare a background

If the number of colors in the background needs to be reduced, then display the background in the
graphics window using Load Bitmap, reduce the number colors using Optimize Palette, and save the
bitmap as the background file. Then load the background file as a new background element.

Picture

After selecting Picture from the element menu, a Load Picture dialog box will open and a bitmap file can
be selected. The picture will appear in the graphics window and a picture element window will open with
some options.

If an area was selected with a capture rectangle before choosing Picture, then a Capture Picture dialog
box will open. After specifying a file name, the selected area of the graphics window will be captured and
saved. This new bitmap will become our picture element.

After pressing the Transparency Choose button, the left mouse button can be clicked on any part of the
graphics window to select a transparency color. We can cancel our selection by clicking the right mouse
button. We can keep selecting colors until a suitable transparency has been found. The transparency
function can be enabled and disabled.

To prepare a picture

Design a screen layout using a paint program. This layout would usually consist of pictures and text
placed over the top of a background. Display the screen layout in the graphics window using Load
Bitmap. Use Subtract Bitmap to subtract the background, choose a subtract color which is different to any
other color in the layout. The number of colors in the layout can be reduced if necessary.

The individual images in the layout can now be added to the presentation as picture elements. Place a
capture rectangle over each image and select Picture from the Element menu. The selected area will be
saved as the picture bitmap.

After all the pictures have been captured select Display All from the Presentation menu. Then for each
picture element choose a transparency to hide the subtract color.

Animation

After selecting Animation from the Element menu, a Load Animation dialog box will open and an
animation file can be selected. The first frame of the animation will appear in the graphics window and an
animation element window will open with some options.

We can set the playback rate of the animation, the default rate is 12 frames per second. If the playback
rate is set to zero then the animation will be played at the maximum possible rate.

If the Skip option is set then the animation will skip frames if necessary, to achieve the specified frame
rate. Frame skipping does not look good with delta animations.

If an non zero value is specified in the Series option, and two animations are played on the same screen
with the same series value, then the first animation will removed from the screen before the second
animation plays. The transition will not be noticeable.

The Key Frames option can be used to set key frames during the playing of an animation. After each key
frame is played, the next element in the element list will be activated. Up to 32 key frames can be
specified.

For example, if the key frames "10,20,30,40" are specified, then after tenth frame the first element after
the animation will be activated, after the twentieth frame the second element after the animation will be
activated, and so on until the fortieth frame. If the continue option is set then the animation will always
play until it is finished.

If any key frame number is greater than the frames in the animation, then the animation will be repeated
until the specified number of frames have been played. If the Repeat option is enabled then the animation
will continue to repeat until a key is pressed on the keyboard.

To prepare an animation

For the best performance, the animation should first be converted to either the VDO for 256 colors or the
WDO file format for 16 and 24 bit color. This can be done by selecting Convert Animation from the
graphics menu.

If the destination file format is 256 colors then a palette will need to be established. Either use the Palette
button in the Animation Conversion window to load the source palette or use the Optimize button to
analyse the source animation and create the optimum palette.

The destination animation can be saved as a simple, delta, overlay or sprite animation. The mode chosen
will depend on how the animation is used. As the animation is converted, it can be hammered with the
antidither filter to increase the compression ratio. The final destination animation can then be added to the
presentation.

Sound

After selecting Sound from the element menu, a Load Sound dialog box will open and a sound file can be
selected. A sound element window will open with some options.

If the Play button is pressed the sound will play until either the Stop button is pressed or the sound
finishes. While the sound is playing the Set button can be pressed to capture moments in time.

The Timing box can be used to set moments in time during the playing of a sound. As each moment
passes, the next element in the element list will be displayed. Up to 32 moments in time can be specified.

For example, if the timings "2,4,6,8" are specified, then after two seconds of sound the first element after
the sound will be activated, after four seconds the second element after the sound will be activated, and
so on until after the eighth second the remaining elements on the list will be activated.

A negative value can also be included in the list of moments. A negative value will indicate a number of
elements to display without any delay. After displaying this number of elements, the next element will only
be displayed at the next specified moment of time.

If the Wait option is enabled then the sound will finish playing before the next element is displayed.

MCI

MCI (Media Control Interface) is a component of the Microsoft Windows operating system which allows
easy control of multimedia devices such as sound and video players. For more information on MCI please
refer to the Microsoft Windows multimedia documention.

if an area is selected with a capture rectangle before choosing MCI from the element menu, then a Load
Video dialog box will open and a video file can be selected. The first frame of the video will appear at the
selected position in the graphics window and an MCI element window will open.

The video file must be an AVI, FLC or other format for which the MCI drivers are installed. A video file can
contain a sound track which will be played synchronously with the animation. Some types of video file can
be played full screen at 320x240 resolution.

Because of operating system limitations, only one MCI video can be shown at a time. If your animation file
does not contain sound, then for the best performance, convert it to the VDO or WDO format and use an
Animation element.

If no area was selected then an MCI element window will open and the Command string option will be
selected. A list of MCI commands can be entered in the given box. When the element is played, the
specified list of commands will be carried out.

If the MIDI option is chosen, then the name of the element must be same as that of a MIDI file in the
presentation directory. When the element is played, the MIDI file will be played by the MCI system. If no
MIDI player exists then the element will be ignored. If the Wait option is set then the presentation will wait
until the MIDI has finished playing.

A Formula Graphics script can be written to install an MCI driver. The driver must be copied to the
Windows system directory, the MCI sections of the "win.ini" and "system.ini" files must be changed, and
then Windows must be restarted for the changes to take effect.

Rectangle

An area can be selected with a capture rectangle before choosing Rectangle from the element menu.
After specifying an element name, a Rectangle dialog box will open with several options.

If the Filled rectangle option is set, then the area of the rectangle will be filled with the rectangles colors. If
the Horizontal gradient option is set, then the rectangle will be filled with a range of colors from Color 1 at
the top to Color 2 at the bottom. If the 50% translucent option is set, then only every second pixel of the
rectangles area will be filled.

If no area was selected before choosing Rectangle, then the Background option will be set and the
element will be assumed to be a background. When the element is displayed, any other elements which
were on the screen before it will be removed.

If the border option is set, then the rectangle will have a border. If only the border option is set, then only
an empty border will be drawn, and this border can be used to surround another element. The border can
have any pixel width and can be chosen to appear as a raised bevel or a sunk bevel.

Text

An area should be selected with a capture rectangle before choosing Text from the element menu. After
specifying an element name, a Text dialog box will open. Up 256 characters of text can be entered. The
font type and color can be chosen. An optional drop shadow can also be specified with a shadow color
and a pixel offset.

The text may be selected again by double clicking its position on the screen. It can then be resized or
dragged to a new position. Press the Display button to display the text.

The characters which are displayed by the element can be changed during a presentation using a "set
textbox" instruction in the presentation script.

Picture Button

After selecting Picture Button from the element menu, first select an up state bitmap from the Load Button
dialog box, then select a down state bitmap from the Load Down State dialog box. The down state
bitmap is optional and can be disabled by pressing the cancel button. The button will appear in the
graphics window and a button element window will open with some options.

If an area was selected with a capture rectangle before choosing Picture Button from the element menu,
then a Capture Button dialog box will open. After specifying a file name, the selected area of the graphics
window will be captured and saved. This new bitmap will become the up state of the button element. By
pressing Capture in the button element window, a down state bitmap can be captured from the same
coordinates.

If a non zero value is specified in the Bank option, and other button elements have the same bank value,
then these buttons will be grouped together. If one of these buttons is pressed then it will stay in the down
state until another button in the same group is pressed. Only one of these buttons can be in the down
state at any one time.

If a condition code value is specified alongside the bank value, and if the condition is true when the button
is displayed, then the button will be displayed in the down state. When the button is pressed, this
condition code will be set to true, and the condition codes of all other buttons in the same bank will be set
to false.

As an example, a project displays a bank of buttons and one button is selected, then the button bank is
undisplayed. If the bank of buttons is displayed again, then the down state of the selected button will be
preserved by the condition code.

When the button is pressed, the commands given in the action box will be carried out.

To prepare buttons

Design two screen layouts. The first with all the buttons in the up state and the second with all the buttons
in the down state. Display the first screen layout in the graphics window. Then one by one place capture
rectangles over the individual buttons and select Picture Button. As each button element is added to the
presentation, its selected area will be captured and saved as the button up state bitmap.

Display the down state layout in the graphics window. Then for each button element press the down state
capture button. The down state bitmaps will be captured from the same coordinates as the up states.

For each button enter an appropriate command in the action box. As an example, we have two buttons
and a picture, when one button is pressed the picture will be displayed, when the other button is pressed
the picture will be undisplayed. For our example we will use condition code 20. In the action box of the
first button type "set 20", in the action box of the second button type "set -20". In the test box of the
picture element type "20".

Text Button

An area should be selected with a capture rectangle before choosing Text Button from the element menu.
After specifying an element name a Text Button dialog box will open. Text can be specified to be
displayed on the top of the button. The font and font color can be chosen. The Bank and Code options are
the same as those described in a Button element.

The text button may be resized or dragged to a new position on the screen. When the text button is
pressed using the left mouse button then the commands given in the action box will be carried out.

Hot Area

An area should be selected with a capture rectangle before choosing Hot Area from the element menu.
After specifying an element name a Hot Area dialog box will open. A different cursor can be chosen for
when the mouse is over the hot area. When the left mouse button is clicked over this hot area then the
commands given in the action box will be carried out.

Hot Color

After selecting Hot Color from the element menu and specifying a name, a Hot Color element window will
open. After pressing the Choose button, any color on the screen may be chosen. When the left mouse
button is clicked over this hot color then the commands given in the action box will be carried out.

Input

After selecting Input from the element menu and specifying a name, an Input Element window will open.
The default type of input is a "Key press or mouse click".

When an "Activate hot elements" input is activated, the presentation system will stop and wait for some
response from the user. If the left mouse button is pressed over a hot element (button, text button, hot
area, or hot color), then the action specified in that element's action box will be carried out.

If the action results in a change in the condition codes, the presentation system will search back up to the
top of the element list, removing any element whose test condition is no longer valid. The presentation
system will then search from the top of the element list down to the input element, activating any element
whose test conditon has just become valid.

If the right mouse button is pressed and the "Right mouse advance" option is set in the screen window, or
if a keyboard key is pressed and the "Keyboard advance" option is set,
then the presentation system will advance to the next element.

If a "Key press or mouse click" input is activated then regardless of any options, the presentation system
will wait until a keyboard key or mouse button is pressed before advancing to the next element.

If a "Wait for sound to finish" input is activated then the presentation system will wait until the currently
playing sound is finished before advancing to the next element.

If the input is set to "Wait ... 1/100 second" then the presentation system will wait until the specified
number of hundredths of a second have passed before advancing to the next element.

If a "Call ..." input is activated then the presentation system will perform an "activate hot elements" while
simultaneously executing a procedure in the presentation script. The system will continue to test the state
of the hot elements and execute the script until either the right mouse button is pressed, a key on the
keyboard is pressed, or the script returns a zero value.

The procedure will be passed 4 values which must be taken by four variables. These values represent
message information used by Microsoft Windows. For more details on these values, see the
"peekmessage" command in the programming language section.

Control

A control element can accept any number of condition codes in its Test option. The condition codes can
be separated by either AND (&) or OR (|) operators. For example, "20 & 30" will only enable the element if
both condition codes 20 and 30 are true. "20 | 30" will enable the element if either condition codes 20 or
30 is true. AND has a higher order of precedence than OR.

If no test condition was specified, or if the result of the specified condition is true then the commands
given in the action box will be carried out.

Remove

After selecting Remove from the element menu and specifying a name, a Remove Element window will
open. The remove element has four different options. The "Remove" option will remove all of the listed
elements from the screen without undisplaying them (without restoring the image beneath them). The
"Undisplay" option will undisplay all of the listed elements.

Any number of element names can be listed, one element on each line. The '*' character can be used as
a wildcard, for example, if the name "ex*" is specified, then all elements whose names begin with the
letters "ex" will be removed.

The "Remove all" option will remove all elements except for the current background without undisplaying
them. The "Undisplay all" option will undisplay all elements except for the current background.

Debug

After selecting Debug from the element menu and specifying a name, a Debug Element window will open.
When a Debug element is activated, a message box will display a number for each condition code that is
true.

The range option can be used to specify particular codes or ranges of codes. Only those true condition
codes in the combined range will be displayed.

Hypertext

An area should be selected with a capture rectangle before choosing Hypertext from the element menu. A
Load Hypertext dialog box will open and a Rich Text File (RTF) can be selected. The rich text will appear
in the graphics window and a hypertext element window will open.

The RTF file format is the industry standard for formatted text. Most word processors, including Word for
Windows, are compatible with the RTF format. Simply type your document into a word processor and
then save it as an RTF file.

All of the basic formatting features are supported, such as font type, font height, bold, italic, text color and
hard page breaks. A page number can be specified in the hypertext element options. To display a multiple
page document, use a different hypertext element for each page.

Hypertext has the ability to specify hot words which will carry out actions when they are clicked. To specify
a hot word, the selected word must first be highlighted using strikethrough characters. The action to be
carried out can then be specified directly after using hidden characters. This method is same as that used
by Windows Help files.

Edit Box

An area should be selected with a capture rectangle before choosing Edit Box from the element menu.
After specifying an element name, an edit box will be displayed and an Edit Box element window will open
with some options.

The text in the edit box may be "read only" or "upper case". It can contain multiple lines with optional word
wrap and a scroll bar. The font of the text is selectable. The contents of the edit box may be set using a
"set editbox" instruction in the presentation script and can be read using a "getedit" instruction.

List Box

An area should be selected with a capture rectangle before choosing List Box from the element menu.
After specifying an element name, a list box will be displayed and an List Box element window will open
with some options.

The text color, text font and background color can be chosen. The list box will have a border and a
scrollbar as defaults. The list box can have multiple columns and will take multiple selections. The
contents of the list box can be sorted in alphabetical order.

If the notify option is set and a procedure name is given, then the procedure will be called if any item in
the list box is selected. The procedure will be passed two values. If the first value is equal to
LBN_SELCHANGE then the item was clicked, if it is equal to LBN_DBLCLK then the item was double
clicked. The second value will be the index number of the item.

A new item can be added to a list box by using the "index = listbox name add item" instruction in the
presentation script. The selection state of an item can be found using the "state = listbox name position
index" in the script. The contents of a list box can be cleared using the "reset listbox name" instruction.

Graph

An area should be selected with a capture rectangle before choosing Graph from the element menu. After
specifying an element name, a Graph element window will open with some options.

The graph may be either line, bar, or pie. Graduations can be displayed in a selected font. Percentage
differences can be shown between series on a bar graph. Line and bar graphs can be drawn using
stacked series. The "Line width" option will not only set the width of lines, but will also set the distance
between bars.

The Call option must be used to specify the name of a procedure in the presentation script. When the
graph element is activated, the specified procedure will be called and will be expected to return a list of
parameters. This information will be used to draw the graph.

The first parameter must be an array. This can be a one dimensional array containing the data values for
each category of the graph. The size of the array will indicate the number of categories. Two dimensional
arrays can be used for multiple series line or bar graphs. The size of the second dimension will indicate
the number of series.

The second parameter will be a two dimensional array, containing the red, green and blue components of
the graph's colors. The first color will be used for graduations, the second color will be the color of the first
data series, the third color will be the color of the second data series and so on.

The third parameter will be the minimum value of the graph data, the fourth parameter will be the
maximum value of the graph data, and the fifth parameter will be the increment of the graduations
between the two.

4.0 Programming Language

Basics

The Formula Graphics programming language is similar to other programming languages like BASIC and
C. A wide variety of instructions are available and each instruction performs some particular operation. A
program can be written using a list of instruction statements. Only one instruction can be written on each
line. The instructions will be executed one at a time in the order they are listed. After the last instruction
has been executed, the program will end.

first instruction
second instruction
...
last instruction

There are a number of instructions available which can change the flow of execution. These include
condition statements, which only execute a branch of the program if a certain condition is true, loop
statements, which execute the same group of instructions again and again, and call statements, which
branch off and execute some other group of instructions before returning.

Indentation is used in Formula Graphics programs to indicate the possible paths of execution. Indentation
refers to the number of tabs or spaces at the beginning of a line. For example, an "if" statement can be
used to test if a certain condition is true. If the condition is true, then all following statements with a
greater level of indentation will be executed. If the condition is false, then those statements with greater
indentation will be skipped.

if condition is true
then execute these indented statements
...

in any case execute these
...

Comments can be added to a program. These are usually just a few words describing what the program
does. Anything written after a // specifier will be considered a comment and will be ignored by Formula
Graphics. Blank lines and comments can be included between indented lines without effecting the levels
of indentation.

// This is a comment

Floating point variables

Floating point numbers are used in Formula Graphics programs. A floating point number can be whole
number or a fraction or it can be positive or negative. When using a floating point number, fractions less
than one must have a zero before the decimal point. 0.05 and -1.414214 are examples of floating point
numbers:

A floating point number can also have a power of ten exponent which is specified with a lower case "e".
As an example, the value of 1e6 will be 1 times 10 to the power of 6 (or 1000000). The exponent may be
positive or negative.

Variables are used extensively in programming, in fact they are one of the most important ingredients in
any program. There are several different types of variables. Each variable has its own individual name. A
variable name can be made up of case sensitive letters, numbers and underscores. The first character
must be a letter.

The simplest form of variable is a floating point variable. A floating point variable is created when a
variable name is made equal to a floating point value. That variable name can then be used as a
substitute for the actual value anywhere else is the program.

variable name = floating point value

A floating point value can be just a floating point number, or it can be an expression containing numbers
and variables combined with operators like '+' and '-'. A wide range of mathematical operators and
functions are available for use in floating point expressions and spaces can be included where necessary.

As an example consider the instruction "x = 1". The variable "x" will be assigned with the value "1". The
variable "x" can then be used elsewhere in the program to represent the value "1". The value of the
variable "x" can be changed by reassigning it with another value. For instance "x = x + 1" will add one to
the value of "x".

Any number of variables can be assigned with values in the same instruction. The variables and values
must be separated by commas, as an example "x, y, z = 10, 20, 30". A variable assignment can be written
in the general form:

variable 1, variable 2, ... = expression 1, expression 2, ...

Condition statements

If the condition given in an "if" statement is true, then all following statements with a greater level of
indentation will be executed. If the condition is false, then those statements with greater indentation will
be skipped.

if condition

If an else statement follows an if statement, and the condition is false, then all statements following the
else statement with a greater level of indentation will be executed, otherwise they will be skipped. Any
number of else if statements can also follow an if statement.

else if condition
else

If more than one level of indentation is used, then each else statement will correspond to the if statement
above it that has the same level of indentation. Single variable assignments can also be carried using
combined condition statements:

if condition then variable = expression
else if condition then variable = expression
else variable = expression

The condition specified by an if statement can be any floating point expression. If the value of the
expression is not equal to zero, then the condition will be true. If value of the expression is equal to zero,
then the condition will be false. Several mathematical operators are available for comparing floating point
values.

The == (equal) operator will compare two values, and if they are equal the result will be one, otherwise
the result will be zero. Using the != (not equal) operator, if the two values are not equal the result will be
one, otherwise the result will be zero. The <, >, <= and >= (magnitude) operators can also be used to
compare two values.

The result of two or more comparisons can be combined using boolean logic. The && (and) operator will
compare two values, and only if they are both not equal to zero will the result be one, otherwise the result
will be zero. The || (or) operator will compare two values, and if either of them is not equal to zero then the
result will be one, otherwise the result will be zero.

if the ! (not) operator is applied to a zero value the result will be one, if it is applied to a non zero value the
result will be zero.

Loops

A "for" loop can be used to increment the value of a variable from a starting value to a finishing value. All
following statements with a greater level of indentation will be included in the loop.

for variable = starting value to finishing value { step increment }

The given variable will be assigned with the starting value, then all following statements with greater
indentation will be executed. The value of the variable is then incremented by the optional step value. If
no step value is specified, then the variable will be incremented by one.

As long as the value of the variable is less than or equal to the finishing value, then the variable will
continue to be incremented, and all following statements with greater indentation will continue to be
executed. As an example:

for n = 0 to 9
// These lines be executed 10 times
...

// The program will continue here
...

A negative step value may be specified, in which case the loop variable will continue to be decremented
for as long as its value is greater than or equal to the finishing value.

for var1, var2, ... = val1, val2, ... to val1, val2, ... { step inc1, inc2, ... }

Up to three variables can be specified in a single "for" statement. The variables will be incremented in
separate nested loops with the first variable being in the outer loop. Using more than one loop, an area or
a volume of values can be generated.

A "while" loop can be used to continuously execute all following statements with greater indentation for as
long as the value of the specified expression is true (not equal to zero).

while expression

The following example shows a while loop used to count to 10:

n = 0
while n < 10

n = n + 1

If a break statement is found during the execution of a loop, the loop will immediately finish, and
execution will jump to the first line after the loop.

If a continue statement is found during the execution of a loop, the current iteration of the loop will finish,
and the next iteration will begin again at the top of the loop.

There are some other, more specialized types of loops which will be discussed later.

Arrays

Arrays are used by many of the instructions in Formula Graphics. An array can be allocated with any
number of dimensions. Each dimension can have any number of elements. Each element in an array can
be used to store a value.

As well as arrays of floating point numbers, Formula Graphics also handles arrays of bytes and words. A
byte is an 8 bit unsigned value between 0 and 255. A word is a 16 bit signed value between -32768 and
32767. Byte arrays and word arrays can be used to store strings, bitmaps, palettes and sounds.

Each of the following instructions will allocate an array, the elements of the array will be set to zero, and
the array will be assigned to the variable:

variable = new byte [dim 1][dim 2] ...
variable = new word [dim 1][dim 2] ...
variable = new float [dim 1][dim 2] ...

The position of an element in an array can be specified using an index value for each dimension. An
element can be assigned with a value, and then the element can be used to represent that value in an
expression. Byte and word values are automatically converted to and from floating point values.

variable [index 1][index 2] ... = expression

The term variable [index 1][index 2] ... can also be used in any floating point expression to find out the
value of an element.

variable [index 1][index 2] ... = expression, expression, ...

Any number of consecutive array elements can be assigned with values in the same instruction.
Only the index values of the first element need to be specified. The following example allocates a floating
point array with three elements, and then assigns a value to each of the three elements:

array_one = new float[3]
array_one[0] = 1,2,3

The following example allocates a two dimensional floating point array. There are five elements in each
dimension giving a total of 25 elements. Each element is then assigned a value:

array_two = new float[5][5]
for n,m = 0,0 to 4,4
 array_two[n][m] = n+m

Bitmap arrays

A 256 color bitmap can be stored in a two dimensional byte array. The size of the first dimension will
equal the vertical height of the image in pixels. The size of the second dimension will equal the width of
the image.

bitmap8_array = new byte [height][width]

A 16 bit color bitmap can be stored as a two dimensional word array. The size of the first dimension will
equal the vertical height of the image in pixels. The size of the second dimension will equal the width of
the image.

bitmap16_array = new word [height][width]

A 24 bit color bitmap can be stored in a three dimensional byte array. The size of the first dimension will
equal the vertical height of the image in pixels. The size of the second dimension will equal the width of
the image. The third dimension will contain red, green and blue values.

bitmap24_array = new byte [height][width][3]

Instructions are available for loading, saving, capturing and displaying a bitmap as an array. Many other
instructions take bitmap arrays as parameters.

Palette arrays

A 256 color palette can be stored in a two dimensional byte array. The first dimension will specify the color
index, and the second dimension will contain the red, green and blue values.

palette_array = new byte [256][3]

Instructions are available for capturing and displaying a palette as an array. Many instructions can take
optional palette arrays with bitmap arrays. Instructions are also available for optimizing a palette for a
bitmap, and remapping the palette indexes of a bitmap.

Sound arrays

A mono 8 bit sound can be stored in a byte array. A stereo 8 bit sound can be stored in a two dimensional
byte array. The first dimension specifies the sample number and the second dimension gives the left and
right channels. Each element of an 8 bit sound array will be an unsigned sample value with 128
indicating zero output.

mono8_array = new byte [sample length]
stereo8_array = new byte [sample length][2]

A mono 16 bit sound can be stored in a word array. A stereo 16 bit sound can be stored in a two
dimensional word array. Each element of an 16 bit sound array will be a signed sample value with 0
indicating zero output.

mono16_array = new word [sample length]
stereo16_array = new word [sample length][2]

Instructions are available for loading, saving and playing a sound as an array.

Array operators

A number of operators are available for finding out the characteristics of an array. These may be used in
any floating point expression.

variable.type gives the type of the array (BYTE, WORD, FLOAT).
variable.size gives the number of dimensions in the array.
variable.dim [dim n] gives the number of elements in the specified dimension.

Strings

Formula Graphics can handle strings of characters. Each character in a string is represented by a byte
value. The value of each keyboard character was standardised across the computer industry many years
ago. The byte value of a character may be used by enclosing it in single quotation marks, for example 'A'
has the value 65.

A byte array can be used to store a string of characters. A byte array variable is used as a string variable
by preceding its name with a '$'. A string variable can be assigned with a string expression:

$string variable = string expression

A string expression may be a group of characters inside of quotation marks, it may be a string variable, a
global string variable, a floating point value, or any combination of these separated by commas. A floating
point value will be automatically converted into a string. Strings separated by commas will be combined to
form a single string.

When a string variable is assigned with a string expression, a byte array is allocated and assigned to the
variable. The size of the array will be equal to the length of the string expression plus one. The string
expression will be copied into the array and a zero value placed after it to indicate the end of the string.
The following are examples:

$string_one = "This is a string"
$string_two = $string_one, " and the first character value is ", string_one[0]

In the above examples, a byte array called "string_one" will be allocated with 17 elements, then the string
will be copied into it. A second array called "string_two" will then be allocated with enough bytes to store
the first string plus the rest of the sentence. The letters "84" will be appended to represent the character
value of 'T'.

Multidimensional string arrays

If a byte array is allocated with more than one dimension, it can be used to store multiple strings.
The last dimension of the array will be used to store each string and must have enough bytes to store the
longest string plus one for the zero value. When a string in a multidimensional array is referred to, no
index value needs to be given for the last dimension.

$string variable [index 1] ... [index m-1] = string expression

Any number of strings can be copied into a multidimensional array using the same instruction. Only the
index values of the first string need to be specified, all other strings will be copied into consecutive
positions. Semicolons are used as separators.

$string variable [index 1] ... = string expression; string expression; ...

The following example allocates a two dimensional byte array which can be used to store five strings of
up to 9 characters each. Five specified strings will then be copied into the array.

string_array = byte[5][10]
$string_array[0] = "string 1"; "string 2"; "string 3"; "string 4"; "string 5"

String operators

A number of operators are available to manipulate strings. The following five operators can be included in
any floating point expression. The string parameters used by these operators can be any string
expressions.

strlen "example" (returns the length of the string ie. 7)
strval "1.41421" (returns the floating point value of the string)
strcmp $a; $b (compares two strings, returns TRUE or FALSE)
stricmp $a; $b (compares two case insensitive strings)
strstr $a; $b (returns offset of first occurrence of $b in $a, else returns ERROR)

The following three operators can be used in any string expression. The parameters taken by these
operators can be any string or floating point expressions.

"example" stroff 2 (takes from the given offset in the string ie. "ample")
"example" strcnt 4 (takes the given number of bytes from the string ie. "exam")
"example" stroff 2 strcnt 3 (ie. "amp")

Using strings

A message statement can be used to display a string expression. If the program is being run from the
Formula Graphics shell, then the string will be displayed in the result window. If it is running with the
command line player, the message will be displayed in a Windows message box. Each message will be
displayed on a new line.

message string expression

The following example shows how the value of a floating point variable could be displayed:

message "The value of x is ", x

CRLF is a predefined string containing the carriage return and line feed control characters. It can be
appended to a string to mark the end of a line. For example "first line", CRLF, "second line".

Global strings

Global string variables are similar to string variables, but they do not use byte arrays and their names are
preceded by a "%". When a global string variable is assigned with a string, the string will be copied to the
program's initialization file in the Windows directory. A global string variable can be permanent.

%global string variable = string expression

A global string variable can be used in a string expression at any time, from any part of a program. An
unassigned global string variable will return an empty string.

%account = "Acme"
%region = "North America"
%rate = north_american_rate

The above examples use a global string variables to store configuration information.

Call statements

The best way to write a large program is to break it down into a number of smaller procedures.
A procedure can be defined by specifying a procedure name. All statements following that name with a
greater level of indentation are included in the procedure. A call statement can be used to jump into a
procedure from any place in the program. After the procedure has finished executing, the program will go
back to the line following the "call" statement.

A procedure name can be made up of case sensitive letters, numbers and underscores, the first character
must be a letter and the name must be followed by a colon. The procedure will begin running at the line
following the procedure name. It will run until either the last line has been executed, or a return statement
is found.

call procedure:

procedure:
the procedure starts here
after it finishes it returns

A procedure can be passed any number of parameters. These parameters can be listed at the end of the
"call" statement. An equal number of variable names must be listed after the procedure name to take the
passed parameters. Parameters may be floating point numbers, arrays, or any other type of data that can
be stored using a variable. If the parameter is not a number then it must be preceded by an '@' sign.

call procedure: parameter 1, @parameter 2, ...

procedure: variable 1, variable 2, ...

A procedure can return any number of parameters. These parameters can be listed in a "return"
statement. An equal number of variable names must be listed at the beginning of the "call" statement to
take the returned parameters. If the parameter is not a number then it must be preceded by an '@' sign.

variable 1, variable 2, ... = call procedure:

procedure:
return parameter 1, @parameter 2, ...

Once a variable has been declared, its data will be available throughout the program, including all
procedures. That includes variables declared inside procedures and in procedure parameter lists.

Scripts

A script is an SXT or other text file containing a list of instruction statements. A script can be executed
directly from the menu, or it can be run as part of a presentation. When a script is opened for execution, it
is first checked for syntax errors, then it is compiled into a format which can be executed quickly by the
computer.

The following instruction can be used to open an instance of a new script from the current script. The new
script will be opened, checked and compiled. A handle to the script will then be assigned to the specified
script variable.

script variable = new script filename

Any number of scripts can be opened. Each script will have its own independent variables. One script's
variables cannot be touched by, or cannot affect any other script's variables. The variables in each script
will remain valid for the life of that script.

Using a script variable, any of the procedures in the specified script can be called from the current script.
The calling statement can pass any list of parameters and return any list of parameters.

script variable call procedure:
var 1, var 2, ... = script variable call procedure: par 1, @par 2, ...

Object orientation

More than one script variable can be assigned with an instance of the same script filename. Even though
the procedures in each instance of the script will be the same, the variables will still be independent of
each other. The technique of opening multiple instances of the same script can be called object oriented
programming.

As an example of this technique, consider a script written to describe a moving object. The object's script
contains one procedure to initialize the object, one to change its position and one to draw the object at its
current position. The position and velocity are stored in variables.

Any number of these objects could be created and maintained by allocating an instance for each one, and
storing the instances on a list. To update the position of each object, get its instance from the list and call
the object's "change position" procedure and its "draw" procedure.

Opening a second script using the same filename will be faster than the first because the instructions will
already be checked and compiled.

Lists

A list can be used to store any number of items. Items can be added, inserted, removed, or retrieved from
a list. The following instruction can be used to create a new list and assign it to a variable. Initially, the list
will have zero items.

list variable = new list

Arrays, scripts, or almost any other type of data that can be assigned to a variable can be placed on a list.
Floating point values are the exception, they cannot be placed on a list. Lists can be added to other lists
to form trees of data.

list variable add data variable
data variable = list variable get position
list variable insert data variable at position
list variable remove position

These instructions can be used to manage a list. Items are added to the top of the list. When an item is
inserted at a position in the list, any items above that position are shifted up one to make a space. When
an item is removed, the items above a shifted down. The current number of items on a list can be
obtained using the list variable.size operator.

List identification strings

When a list is created, it may also be given an identification string. If that list is then stored in another list,
or in a list of lists, then it can be directly retrieved using only its identification string. The following
instruction will search through every branch of a list tree, and return the first list with the specified
identification string.

list variable = new list identification string

list variable = base list variable get list string identifier

A list identification string can be used in a string expression by preceding the list variable name with a "$".
A list without an identification string will return an empty string.

List loops

A list loop can be used to count through every item in a list, getting a handle to each item as it goes. All
following statements with a greater level of indentation will be included in the loop.

data variable = list variable loop count variable { type type }{ mode mode }

The first item on the list will be assigned to the data variable and the count variable will be assigned with
zero, then all following statements with greater indentation will be executed.
Then the next item on the list will be assigned to the data variable and the count variable will be
incremented by one. The loop will continue until every item on the list has been counted.

An optional variable type may be specified. If a type value is specified, then only variables of that type will
be included in the loop. An optional mode value may be specified. The default mode is ROOT, for which
only the root list in a list tree will be included the loop. The other mode is TREE for which every item in
every branch of a list tree will be included in the loop.

Data types

When a variable is assigned with any type of data, then that variable becomes a handle to the data. When
a variable is added to a list, then the list becomes a second handle to same piece of data. Any number of
handles can exist for the same piece of data. A second handle can also be created by direct assignment.

second variable = first variable

The following statement can be used to copy a piece of data. A separate but identical piece of data will be
created and assigned to the new variable. Currently this statement can only be used to duplicate arrays.

copy new variable = old variable

Once a variable has been assigned a floating point value, then it can be reassigned any number of times
with another value, but it can only ever be used again for floating point. If a variable is used for any other
type of data, then it can only ever be reassigned with data of the same type.

If a variable has been assigned any other type of data than floating point, then it can be unassigned using
a free statement. After a variable has been freed, it can then be reassigned with any other type of data.

free variable

If a variable is freed or reassigned, and if the data that was referred to by the variable has no other
handles (if no other variables refer to it and if it is not contained in any list or referred to in other script),
then it is no longer in use and it will be destroyed by Formula Graphics.

The variable.type operator can be used to find out what type of data has been assigned to a variable. Its
value will be equal to one of the following defined constants:

VARIABLE floating point variable
CONSTANT floating point constant
BYTE_ARRAY byte array
WORD_ARRAY word array
FLOAT_ARRAY floating point array
SCRIPT script variable
LIST list variable
SPLINE spline function
SPRITE sprite variable

Operators, functions and constants

Floating point numbers use 32 bits: 1 for the sign, 8 for the exponent, and 23 for the numerical value.
Their range is between +3.4e38 and -3.4e38 with at least 7 digits of precision.

A wide range of arithmetic and logical operators are available for use in floating point expressions. Most of
these operators are identical to those available in the C language. They are listed here in their order of
precedence:

Parenthesis ()
Unary minus -
Boolean not ! (returns zero if not zero, or one if zero)
Power operator ^
Round up with significance ~ (value ~ order of significance)
Round down with significance _ (value _ order of significance)
Functions
Multiplication and Division * /
Floating point remainder %
Addition and subtraction + -

Binary shift << >> (value >> shift bits)
Binary AND &
Binary OR |

Equal and not equal == !=
Magnitude operators < > <= >=
Boolean AND and OR && ||

A wide range of arithmetic, trigonometric and logical functions are also available. Once again, most of
these are identical to those available in the C language:

abs positive value
mod gives 1 for +ve, 0 for 0, -1 for -ve
frac fractional component
ceil round up
floor round down
deg degrees to radians
rnd random number in a specified range

sin sine
cos cosine
tan tangent
asin inverse sine
acos inverse cosine
atan inverse tangent
sqrt square root
log log base ten
ln natural log

isdigit returns TRUE for characters '0' to '9'
isalpha returns TRUE for characters 'a' to 'z' or 'A' to 'Z'
tolower converts a character to lower case
toupper converts a character to upper case

These common contants have also been defined and can be used in any floating point expression:

ON 1
OFF 0
TRUE 1
FALSE 0
ERROR -1
PI 3.141592
PI_2 1.570796

The graphics window

The size and color resolution of the graphics window are specified in the graphics options. If the window
is opened by the presentation system then the size and color resolution are specified in the presentation
options. Information about the graphics window and video mode are stored in the following constants:

GRAPHICS_XMAX width of the graphics window
GRAPHICS_XMAX height of the graphics window
GRAPHICS_WINDOW the graphics window handle    (Microsoft Windows)
GRAPHICS_WINDOW_BITS graphics window color resolution (8, 16 or 24)
GRAPHICS_DEVICE the graphics window device context (Microsoft Windows)
GRAPHICS_DEVICE_BITS video mode color resolution (bits of color)

When a bitmap is displayed, its pixels are first copied to the memory buffer of the graphics window. Then,
depending on the graphics window update mode, the contents of this buffer will be copied to the video
card using the Windows display drivers. The bitmap will not actually appear on the video screen until it is
copied to the video card.

If the graphics window update mode is set to OFF then the pixels will not be copied to the video card. If
the mode is INVALIDATE then the pixel area will be invalidated, but will not be copied to the video card.
After any number of areas have been invalidated, the combined area can all be copied to the video card
using the update window instruction.

If the mode is set to REFRESH, then the pixels will always be copied to the video card. This is the default
mode.

Sprites

A sprite is an object which has a bitmap, a position, and an optional transparency color. If a sprite is
displayed at a position in the graphics window, and if it is later displayed again at another position, the old
image will be removed as the new image appears. A sprite can be used to produce a smoothly animated
image.

More than one sprite can be animated in the graphics window at one time. If two or more sprites are
displayed over the same area of the window they will be displayed in order if their specified depths. The
collision of two sprites can also be detected. The following statement will create a new sprite and assign it
to the specified sprite variable.

sprite variable = new sprite

Before a sprite can be displayed, it must be given a bitmap and a position. If the bitmap is 256 colors and
does not use the currently displayed palette then a different palette can be specified. Specifying a palette
is not recommended because the remapping process is computationally expensive.

sprite sprite variable bitmap array { palette array }{ trans 0,0,0 } at 0,0 (depth 0)

An optional transparency color can be given. If the bitmap is 256 colors then the index whose color is
nearest to the given red, green and blue components will be transparent. The default depth value is zero,
the higher the depth value, the closer the image will be to the top.

Once all the sprites have been declared and assigned bitmaps and positions, they can be displayed using
the update sprites statement. Every existing sprite will be displayed simultaneously.

Sprites can be tested for collisions. The following statement can be used to test if a sprite has collided
with any other existing sprites, the values TRUE or FALSE will be assigned to the result variable. If a
second sprite is specified then only those two sprites will be tested against each other.

variable = collision mode sprite sprite 1 { sprite sprite 2 }

There are two modes for testing collision. The INTERNAL mode can be used to test if the area of one
sprite is entirely engulfed by another. The EXTERNAL mode will test whether the two sprites overlap at
all.

Instruction Summary
{ } option
() option with default
< > repeatable option
0 any value

Conditional statements
if condition { then variable = expression }
else if condition { then variable = expression }
else { variable = expression }
switch value <, value >
case value <, value >
switch "string" <; "string" >
case "string" <; "string" >

Loop instructions
while condition
for variable <,variable> = 0<,0> to 0<,0> { step 0<,0> }
continue
break

Array instructions
array = new byte [i]<[j]>
array = new word [i]<[j]>
array = new float [i]<[j]>
set array[i]<[j]> = value size 0<,0>
set array[i]<[j]> + value size 0<,0>
set array[i]<[j]> * value size 0<,0>
set array[i]<[j]> = array[i]<[j]> size 0<,0>
set array[i]<[j]> + array[i]<[j]> size 0<,0>
set array[i]<[j]> * array[i]<[j]> size 0<,0>
array[i]<[j]> = value <, value >
$array <[j]> = "string" <; "string" >
copy array = array
free array <,array>

Text handling instructions
load "filename" byte array
save "filename" byte array
save "filename" string "string"
variable = parse array[i]<[j]> for "string"
variable = parse array[i]<[j]> to $array<[i]>

List handling instructions
list = new list { "name" }
list add variable
variable = list get pos
variable = list get list "name"
variable = list loop count (type ALL)(mode ROOT)
list insert variable at pos
list remove pos

Scripts and procedures
procedure: { variable <, variable >}
script = new script "filename"
{ variable <, variable > = } call procedure {: parameter list }
{ variable <, variable > = } script call procedure {: parameter list }
return { parameter list }
exit

Windows message handling
peekmessage variable, variable, variable, variable

Interface instructions
dialog "filename" save $array<[j]>
dialog "filename" load $array<[j]>
dialog "filename" string $array<[j]>
mouse position 0,0
mouse mode 0
message "string"
error "string"

File management
$array<[j]> = get directory
new directory "dirname"
copy "filename" to "filename"
delete "filename"
variable = get diskspace "dirname"
variable = get filesize "filename"

Operating system
MCI "string"
DDE "name" string "string"
set profile string "filename"; "string"; "string" = "string"
$array<[j]> = get profile string "filename"; "string"; "string"
restart system
execute "filename"
delay value

Presentation system
set textbox "name" = "string"
set editbox "name" = "string"
index = listbox "name" add "string"
variable = listbox "name" test index
reset listbox "name"
set graph "name": parameter list
set condition "string"
screen "name"
getedit
getrange
testcode

Bitmap instructions
load "file"name"" bitmap array { palette array }(frame 0)
save "filename" bitmap array { palette array }(mode 0){ background array }
display bitmap array { palette array }{ trans 0,0,0 }(at 0,0)

subtract bitmap array { palette array } color 0,0,0 (at 0,0)
capture bitmap array { palette array }(area 0,0,0,0)(mode 0)
remap bitmap array palette array
flip 0 bitmap array
antidither value (area 0,0,0,0)

Palette instructions
display palette array
capture palette array
compose palette array
compose color 0,0,0
analyse (area 0,0,0,0){ bias 0 color 0,0,0 }
optimize 0 (foreground 0)

Sprite instructions
sprite = new sprite
sprite sprite bitmap array { palette array }{ trans 0,0,0 } at 0,0 (depth 0)
variable = collision 0 sprite sprite { sprite sprite }
update sprites

Graphics window
update mode 0
update area 0,0,0,0
update window
set window (area 0,0,0,0)(color 0,0,0)
MCGA mode 0
set pixel 0,0 { to 0,0 } color 0,0,0
polygon 0,0 <;0,0> color 0,0,0
polygon 0,0 ;0,0 ;0,0 ;0,0 bitmap array { palette array }
variable, variable, variable = get pixel color 0,0
variable, variable = get pixel position 0,0,0

Bounding instructions
{ variable = } bound variable <, variable > to 0,0<;0,0> (mode CLIP)
bitmap array at variable, variable area 0,0,0,0 at 0,0 (mode TEST)

Sound instructions
load "filename" sound array rate variable
save "filename" sound array rate 0
play sound array rate 0
wait sound
stop sound

Instruction Reference

Condition statements

if condition { then variable = expression }

If the value of condition is not equal to zero then all following statements with greater indentation will be
executed. If the value is equal to zero then those statements with greater indentation will be skipped. An
optional variable assignment may be specified instead of using indented statements.

else if condition { then variable = expression }

If the result of the previous condition statement with the same indentation was false, then an alternative
condition can be specified.

else { variable = expression }

If the result of the previous condition statement with the same indentation was false, then alternative
statements with greater indentation or an optional variable assignment can be executed.

switch value <, value >
case value <, value >

A "switch" instruction can be used to specify a one or more floating point values. Following this statement
will be a number of indented "case" statements, each "case" statement must specify the same number of
floating point values. When the "switch" statement is executed, each "case" statement will be tested to
find one with equal values. If such a case is found then all statements with greater indentation following
this will be executed. If no such case is found and if a default case has been declared then all indented
statements following this will be executed. Every other "case" statement will be skipped.

switch val
case 0

execute these statements
case 1

execute these statements
...
default

execute these statements

A "switch" statement can also be used to specify one of more strings. Each case statement will be tested
to find one with case insensitive matching strings. If matching strings are found then all statements
following this with greater indentation will be executed.

switch "string" <; "string" >
case "string" <; "string" >

Loop instructions

A "while" loop will continue to execute all following statements with greater indentation for as long as the
value of the specified condition is not equal to zero.

while condition

A "for" loop will increment the value of each loop variable from its starting value to its finishing value. If
more than one variable is specified then the loops will be nested with the first variable in the outer loop. All
following statements with greater indentation will be executed by the loop.

for variable<,variable> = 0<,0> to 0<,0> { step 0<,0> }

If a "continue" statement is found during the execution of a loop, the current iteration of the loop will finish,
and the next iteration will begin at the top of the loop.

continue

If a "break" statement is found during the execution of a loop, the loop will immediately finish, and
execution will jump to the first line after the loop.

break

Array instructions

Each of the following instructions will allocate an array, the elements of the array will be set to zero, and
the array will be assigned to the variable: The array can be have any number of dimensions. Each
dimension can have any number of elements.

array = new byte [i]<[j]>
array = new word [i]<[j]>
array = new float [i]<[j]>

A section of any type of array can be set to a specified value. The section will begin at the given element
and extend as far as the given sizes in each dimension. Each element in the section can also be added or
multiplied by a specified value.

set array[i]<[j]> = value size 0<,0>
set array[i]<[j]> + value size 0<,0>
set array[i]<[j]> * value size 0<,0>

The following example will set the 3rd, 4th and 5th indexes of a string to space characters.

set my_string[3] = ' ' size 3

A section of any type of array can be copied to a section of the same or any other type of array. The
sections will begin at the given elements and extend as far as the given sizes in each dimension. The
elements in the first section may also have the elements in the second section added or multiplied to
them.

set array[i]<[j]> = array[i]<[j]> size 0<,0>
set array[i]<[j]> + array[i]<[j]> size 0<,0>
set array[i]<[j]> * array[i]<[j]> size 0<,0>

Using the "copy" instruction another handle can be assigned to the same array.

copy array = array

Using the "free" instruction, if there are no other existing handles to the specified array, then the array will
be deallocated. In any case the handle will be freed. More than one array can be freed by the same
instruction.

free array <,array>

Text handling instructions

The contents of any file can be loaded as a one dimensional byte array. The array will be allocated with
enough space for the entire file. The contents of the file will be loaded into the array and the array will be
assigned to the specified variable.

load "filename" byte array

The entire contents of a byte array can be saved to a file. The file name can be any string expression.

save "filename" byte array

A string can be added to the end of a text file. If the file does not exist it will be created. The string can be
any string expression.

save "filename" string "string"

A byte array can be searched for a given string. The search will begin at the specified array index and will
continue until either the string is found, or the end of the array is reached. If the string is found, the given
variable will be assigned with the first index of the string in the array. If the string is not found, the variable
will be assigned with the value ERROR.

variable = parse array[i]<[j]> for "string"

The text in a byte array can be broken down into terms. A term may be a floating point number, a symbol
(case sensitive letters, numbers and underscores, the first character must be a letter) or a quote (any
characters contained in quotation marks). Spaces and punctuation marks will be ignored.

variable = parse array[i]<[j]> to $term<[i]>

The instruction will begin searching at the specified index of the array. If a term is found, it will be copied
into the given destination string and the given variable will be assigned with the first index after the term.
When there are no more terms to be found, the variable will be assigned with the value ERROR.

List handling instructions

The following instruction can be used to create a new list and assign it to a variable. An optional
identification string can be specified for the list.

list = new list { identifier }

The data referred to by a variable can be added to the list.

list add variable

A variable can be assigned with data from a given position in the list.

variable = list get pos

All the branches of a parent list can be searched for the first occurrance of a child list with the given
identification string.

variable = list get list identifier

A list loop can be used to retrieve a handle to every item on a list. The loop will begin each iteration by
assigning an item to the given variable, then all following statements with greater indentation will be
executed. After each iteration, the counter variable will be incremented. The loop has two modes, the
ROOT mode is the default and will only include the items in the root of the given list. The TREE mode will
also include all items in all child lists of the given parent list.

variable = list loop counter (type ALL)(mode ROOT)

When an item is inserted at a position in the list, any items above that position are shifted up one.

list insert variable at pos

When an item is removed from a position in the list, any items below that position are shifted down one.

list remove pos

Scripts and procedures

A new procedure can be defined using a procedure name. All indented statements after the name will be
included in the procedure. Any number of variables can be listed after the name to take data that is
passed to the procedure.

procedure: { variable <, variable >}

A procedure can be called. If one or more pieces of data are passed to the procedure then they must be
separated from the procedure name using a colon. Any type of data that can be stored in a variable can
be passed to a procedure. If the data is not floating point, then the variable name must be preceded by an
'@' sign.

call procedure {: parameter list }

A "return" statement may be used to return from any place in a procedure. If no "return" statement is
found then the procedure will return after the last line anyway. One or more pieces of data can be
returned from a procedure by specifying them after the "return".

return { parameter list }

If one or more pieces of data are returned from the procedure then a list of variables must be given to
take the data.

{ variable <, variable > = } call procedure {: parameter list }

Using the following instruction, a new script can be opened from the current script. The given variable will
be assigned with the new instance of the script. More than one instance of the same script can be
opened. Each instance will have its own variable space. The file name can be specified as any string
expression.

script = new script "filename"

A procedure in another script can be called by specifiying the script variable.

{ variable <, variable > = } script call procedure {: parameter list }

A program can be ended at any place by using an exit instruction.

exit

Windows message handling

The following instruction can be used to get the next message from the Microsoft Windows message
queue. The message type will be assigned to the message variable. The word parameter, and the low
word and high word of the long parameter will also be assigned to variables. If no message is available,
the message variable will be assigned with zero. This instruction does not wait for a message.

peekmessage message, wparam, loword, hiword

The following message types have been defined as constants:

WM_KEYUP any key has been unpressed
WM_KEYDOWN any key has been pressed
WM_MOUSEMOVE the mouse has moved
WM_LBUTTONUP the left mouse button has been unclicked
WM_RBUTTONUP the right mouse button has been unclicked
WM_LBUTTONDOWN the left mouse button has been clicked
WM_RBUTTONDOWN the right mouse button has been clicked
WM_LBUTTONDBLCLK the left mouse button has been double clicked
WM_RBUTTONDBLCLK the right mouse button has been double clicked

If the message is WM_KEYUP or WM_KEYDOWN then the wparam can be used to determine which key
was pressed. Alphanumeric keys will return their standard character values. The following keys have also
been defined:

VK_SPACE
VK_RETURN
VK_ESCAPE
VK_CONTROL
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_PRINT
VK_PAUSE

If the message is WM_MOUSEMOVE or any other mouse message then the position of the mouse cursor
can be found in the loword and hiword variables. The following example illustrates how to detect
messages. For more information on Windows messages, see the Microsoft Windows 3.1 SDK
documentation.

peekmessage m, w, l, h
if m == WM_KEYDOWN
 if w == 'A'
 then the letter 'A' was pressed
if m == WM_KEYDOWN
 if w == VK_PAUSE
 then the pause was pressed
if m == WM_LBUTTONDOWN
 then the left mouse button was pressed
if m == WM_MOUSEMOVE
 x_position = l
 y_position = h

Interface instructions

A load file dialog box can be opened. A dialog box with the specified title string will allow the user to
browse the directories and choose a file name and path. The given byte array may be used to give a
default file name and path. The user selected file name and path will be copied back into the byte array. If
the cancel button is pressed, the array will be returned with an empty string.

dialog "title" load $array<[i]>

A save file dialog box can be opened. A dialog box with the specified title string will allow the user to
browse the directories and choose a file name and path. The given byte array may be used to give a
default file name and path. The user selected file name and path will be copied back into the byte array. If
the file name already exists the user will be prompted. If the cancel button is pressed, the array will be
returned with an empty string.

dialog "title" save $array<[j]>

An input dialog can be opened with a single line edit control. The string contents of the specified byte
array will be displayed in the edit control of a dialog box with the specified title string. The string can be
modified and returned to the byte array.

dialog "title" string $array<[j]>

The mouse cursor can be set to any position in the graphics window. The new horizontal and vertical pixel
position of the cursor hotspot is specified.

mouse position 0,0

The mouse cursor can be disabled. If the mode value is OFF then the mouse cursor will disappear from
the video display. If the mode value is ON then the mouse cursor will reappear.

mouse mode mode

A string expression can be displayed in the result window. If the program is being run from the Formula
Graphics shell, then the string will be displayed in the result window. If it is running with the command line
player, the message will be displayed in a Windows message box. Each message will be displayed on a
new line.

message "string"

An error report can be used to stop the execution of the program. The error string expression will either
be sent to the result window or displayed in a Windows message box.

error "string"

File management

The current operating directory can be found and copied into a specified string.

$array<[j]> = get directory

A new directory can be created. The following instruction will create a new directory with the given name.

new directory "name"

A file can be copied from a source to a destination. Both the source and destination strings can contain a
full path. If the file was compressed using the Microsoft "compress" utility it will decompressed as it is
copied.

copy "filename" to "filename"

The following instruction will delete the specified file. The filename may be given as any string expression.

delete "filename"

A disk drive can be checked for the amount of free space. Only the first character in the directory name
string will be used to determine which disk drive to look at.

variable = get diskspace "directory"

The size of any file can be determined. The size will be assigned to the given variable.

variable = get filesize "filename"

Operating system

Microsoft Windows MCI (Multimedia Control Interface) can be used to play sound and midi files as well as
control VCR machines and show animations. The following instruction can be used to execute an MCI
command.

MCI "string"

The following example uses the MCI to play an AVI animation with sound. For more details on MCI see
Microsoft multimedia documentation.

MCI "open EXAMPLE.AVI alias example parent ",HWND," style child"
MCI "window example state show"
MCI "play example wait"
MCI "close example"

Windows applications can communicate with one another using DDE strings. The following example
shows how the DDE instruction can be used to create a new program group in Program Manager and
install an icon. For more details on installing icons, see Microsoft Windows 3.1 SDK documentation.

DDE "name" string "string"

DDE "PROGMAN" string "[CreateGroup(",$title,")]" // Create the program group
DDE "PROGMAN" string "[ShowGroup(1)]" // Display the new group
DDE "PROGMAN" string "[AddItem(",$command,",",$title,",",$icon,")]" // Create the icon

The options in any Windows initialization file can be set or changed. The specified filename must be an
existing INI file in the Windows directory. This instruction may also be used on WIN.INI and SYSTEM.INI.

set profile string "filename"; topic; option = "string"

Any option in any Windows initialization file can be found and copied into a specified string.

$array<[j]> = get profile string "filename"; "string"; "string"

The following instruction will restart Windows. If any changes are made to WIN.INI or SYSTEM.INI then
Windows must be restarted before the changes can take effect.

restart system

Another application can be loaded into memory and executed by the following command. Only one copy
of Formula Graphics can be running in Windows at any one time.

execute "filename"

A time delay can be specified in hundredths of a second. The delay will be accurate to plus or minus one
hundredth of a second.

delay value

The TIME variable can be used to determine the number of hundredths of a second that have elapsed
since the program began executing.

Presentation system

The expression testcode code can be used in any floating point expression to return the state of the
given condition code. The result will be equal to TRUE or FALSE.

The expression getrange "range" can be used in any string expression to return a list of all TRUE
condition codes in the given range. The result will be a string which lists the condition codes separated by
commas. If the range string is empty then all true condition codes will be listed.

The expression getedit "name" can be used in a string expression to get the contents of the edit box with
the given name. The following instruction will copy the specified string into the edit box element with the
given name.

set editbox "name" = "string"

The text inside in a text element can be changed. The old string will be undisplayed and the new string
will be displayed.

set textbox "name" = "string"

A string can be added to a list box. The specified string will be added to the list box with the given name
and the position of the string in the list will be assigned to the index variable.

index = listbox "name" add "string"

The following instruction can be used to test the selection state of any striing in a list box. If the string at
the given position is selected then the given variable will be assigned TRUE, if not it will be assigned
FALSE.

variable = listbox "name" position index

The following instruction will reset the contents of the list box with the given name. The list box will
become empty.

reset listbox "name"

The following instruction can be used to update a graph element. Five paramaters must be passed to the
graph. The first parameter must be an array containing the data values. The second parameter will be an
array containing the graph's colors. The third parameter will be the minimum value, the fourth parameter
will be the maximum value and the fifth value will be the increment.

set graph "name": parameter list

The following instruction can be used to set a condition code, a number of condition codes, or a range of
condition codes.

set condition "string"

The following instruction will return to the presentation system. The presentation system will then jump
straight to the specified screen.

screen "name"

Bitmap instructions

A bitmap file of any format can be loaded into an array. An array will be allocated, the bitmap file will be
decoded and copied into the array, and the array will be assigned to the given variable. Depending on the
color resolution of the bitmap, the array will be a two or three dimensional byte or word array. An optional
palette array can be specified for a bitmap with a palette. If the specified file is an animation file, then a
frame number can be also be given.

load "filename" bitmap array { palette array }(frame 0)

A bitmap array can be saved as a bitmap file of any format. The color resolution of the bitmap array must
be compatible with the given file format. If the bitmap is 256 colors then a palette array must also be
specified. If an animation file is specified, then the array will be added as a frame to the end of the
animation file. The four available animation modes are SIMPLE, DELTA, OVERLAY or SPRITE. The last
two modes require a background bitmap array to be given.

save "filename" bitmap array { palette array }(mode SIMPLE){ background array }

A bitmap array can be displayed on the graphics window. If the color resolution of the bitmap array is
different from the color resolution of the graphics window, then the array will be converted before it is
displayed. If the bitmap is 256 colors and if its palette is different from the currently displayed palette, then
its palette array may be specified. If a palette is specified, then the color indexes of the bitmap array will
be remapped so that the colors in the specified palette array match the colors in the current palette as
closely as possible.

The red, green and blue components of a transparency color may also be speciifed. Any pixels in the
array with this color will not be displayed. If the bitmap array is 256 colors, then a transparent index will be
chosen that matches the red green and blue values of the transparency color as closely as possible.

display bitmap array { palette array }{ trans 0,0,0 }(at 0,0)

The image in the graphics window can have a bitmap array subtracted from it. All pixels in the graphics
window which are the same color as the pixels in the bitmap array will be set with the specified color. Only
pixels which are different in color will be unchanged.

subtract bitmap array { palette array } color 0,0,0 (at 0,0)

The contents of the graphics window can be captured into a bitmap array. An array will be allocated large
enough to store a bitmap of the specified area, then the array will be assigned to the given variable. The
area to capture can be specified as the X and Y position and the X and Y lengths. If no area is specified
then the whole graphics window will be captured. The currently displayed palette can also be captured
and assigned to the given palette array variable.

There are four modes of capture. If the mode is COPY then the captured bitmap will have the same color
resolution as the graphics window. If the mode is PAL then the captured bitmap will be converted to a two
dimensional byte array in a 256 color format. If the mode is RGB16 then the bitmap will be converted to a
two dimensional word array in 16 bit color. If the mode is RGB24 then the bitmap will be converted to a
three dimensional byte array in 24 bit color.

capture bitmap array { palette array }(area 0,0,0,0)(mode COPY)

A 256 color bitmap array can be remapped to the currently displayed palette. The closest matching colors
will be found for the colors in the given palette array, then the color indexes in the bitmap array will be
changed. After remapping, the bitmap array can be displayed directly without having to specify its palette.

remap bitmap array palette array

A bitmap can be flipped in either the HORIZONTAL or VERTICAL mode.

flip mode bitmap array

An area of the graphics window can be processed with an antidither filter. If no area is specified then the
entire window will be antidithered.

antidither value (area 0,0,0,0)

For more details on using arrays as bitmaps, read the discussion on arrays.

Palette instructions

A new palette can be displayed to the graphics window. In most cases all 256 colors in the specified
palette will be copied to the current graphics window palette.

If the graphics window is 256 colors and the video card is using a 256 color video mode, then only the first
236 colors in the palette array will be copied to the current system palette. These colors will be copied to
palette positions 10 to 245 leaving the 20 Windows system colors unchanged. If the palette array already
contains the Windows system colors then only the 236 colors starting at position 10 in the palette array
will need to be copied to the current system palette.

display palette array

The current graphics window palette can be captured and stored in a two dimensional byte array. In all
cases, all 256 colors will be copied into the array and the array will be assigned to the given variable.

capture palette array

The individual colors in a palette can be allocated by the palette management system. When the script
that allocated the palette is closed then the color will be deallocated.

compose palette array

A single color can be allocated by the palette management system. When the script that allocated the
color is closed then the color will be deallocated.

compose color 0,0,0

An area of the graphics window must be analysed before an optimum palette is found. If no area is
specified then the entire screen will be analysed. Bias can be given towards a particular color group. The
analysis data will accumulate each time this instruction is used. The data will be cleared when an
"optimize" instruction is executed.

analyse (area 0,0,0,0){ bias 0 color 0,0,0 }

The "optimize" instruction will use the last analysis data to find the optimum palette. The core of the new
palette will be made up of the most popular colors. A optional number of foreground colors can also be
included in the palette. Foreground colors are a wide spectrum of colors to ensure that all of the different
color groups were represented.

optimize colors (foreground 0)

Sprite instructions

A new sprite can be created with the following statement.

sprite = new sprite

A sprite variable can be assigned with a bitmap, palette, transparency color, a position and a depth value.
The sprite will not be displayed by this statement.

sprite sprite bitmap array { palette array }{ trans 0,0,0 } at 0,0 (depth 0)

If only one sprite variable is specified in the following statement then that sprite will be checked with every
other sprite on the screen to determine whether it is in a state of collision. If two sprite variables are
specified then only these two will be tested. If there is a collision then the given variable will be assigned
the value TRUE, otherwise it will be assigned the value FALSE. There are two modes of collision. The
INTERNAL mode can be used to test if the area of one sprite is entirely engulfed by another. The
EXTERNAL mode will test whether the two sprites overlap at all.

variable = collision mode sprite sprite { sprite sprite }

The following statement will display all of the existing sprite variables in one go..

update sprites

Graphics window

The graphics window update mode can be set to OFF, INVALIDATE or REFRESH. For more details on
the modes read the discussion of the graphics window.

update mode 0

An area of the graphics window can be invalidated. If the update mode is REFRESH then the invalid area
will be immediately updated to the video display.

update area 0,0,0,0

All invalid areas will be updated from the graphics window memory to the video display.

update window

The entire graphics window can be set to any color. An area may also be specified, all pixels in this area
will be set to the specified color. If no color is specified, the window will be set to black.

set window (area 0,0,0,0)(color 0,0,0)

The video mode can be changed to 320 x 200 in 256 colors. The Microsoft multimedia extensions file
"dispdib.dll" can be used to switch the video card into MCGA mode 13. All instructions will work the same
but the mouse cursor will not be visible. The mode value must be either ON or OFF.

MCGA mode 0

Any pixel in the graphics window can be set to any color. If the position of a second pixel is specified then
a line will be drawn between the to pixels. The red, green and blue components of the color must be
specified.

set pixel 0,0 { to 0,0 } color 0,0,0

A polygon can be drawn in the graphics window. Any number of pixel positions can be given as vertices.
The red, green and blue components of the color must be specified.

polygon 0,0 <;0,0> color 0,0,0

A bitmap array can be displayed using any four pixel positions as its corners.

polygon 0,0 ;0,0 ;0,0 ;0,0 bitmap array { palette array }

The color of any pixel in the graphics window can be found. The red, green and blue components of the
color will be assigned to the given variables.

variable, variable, variable = get pixel color 0,0

Bounding instructions

The value of a variable can be limited to set boundaries. One or more variables can be specified. Each
variable will be compared against its lower and upper limits. If the mode value is TEST then the result
variable will be TRUE if the variable is within its limits, and FALSE if it is not. If the mode is CLIP then the
values of the variables will not be allowed to pass the limits. If the mode is TILE and the value of the
variable passes the upper limit it will be set to the value of the lower limit and visa versa.

{ variable = } bound variable <, variable > to lower,upper <; lower,upper > (mode CLIP)

Any working area can be mapped to a bitmap. The specified coordinate in the specified area will be
mapped proportionally to the area of the bitmap and the corresponding pixel position will be assigned to
the given variables. If the mode is TEST then all values will be proportional. If the mode is CLIP then the
pixel position will be limited to the size of the bitmap. If the mode is TILE then the bitmap will be tiled
across the area and if it is FLIP then every second tile will be flipped either horizontaly or vertically.

bitmap array at variable, variable area 0,0,0,0 at 0,0 (mode TEST)

Sound instructions

A sound file of any format can be loaded into an array. An array will be allocated, the sound file will be
decoded and copied into the array, and the array will be assigned to the given variable. Depending on the
number of channels and the bits per sample, the array will be a one or two dimensional byte or word
array. The sample rate of the sound file will also be assigned to the given variable.

load "filename" sound array rate variable

A sound array can be saved as a sound file of any format. The sample rate of the sound must also be
specified.

save "filename" sound array rate 0

A sound array can be played by a sound device. If no sound device exists, the instruction will be ignored.
If any other sound is currently playing, it will be immediately stopped.

If the SOUND_DEVICE constant is TRUE, a sound device is present in the system, if it is FALSE then
there is no sound device.

play sound array rate 0

If a sound is currently playing, the SOUND_SAMPLE variable can be used to find the current sound
sample number. If no sound is playing, or the sound is finished then the value of this variable will be
ERROR.

The following command will halt the execution of the program until the currently playing sound is finished.

wait sound

The currently playing sound can be stopped.

stop sound

If the MIDI_DEVICE constant is TRUE, a midi device is present in the system, if it is FALSE then there is
no midi device. Midi devices can be operated using the MCI interface.

