
LotusScript Help is not available
The LotusScript Help files are not installed on your system. You can reinstall Approach and specify that LotusScript
Help should be installed.
1. Insert the CD-ROM in the appropriate drive and close the drive door.
2. Choose Run from the Start menu.
3. Type x:install, where x: is the appropriate drive.
4. Click OK. Follow the instructions in Install.
5. Choose "Customize features - Manual install" in the Install Options & Approach Folder dialog box.
6. Click Next.
7. Select "LotusScript Help for Approach" on the Approach tab.
8. Deselect all other features on all tabs.
You can obtain updates to these Help files through the Internet, CompuServe, or Lotus Customer Support.

Overview: Fulfillment Information
Refer to the following table when ordering the Application Developer's Documentation Set for SmartSuite 97.

• Identify the fulfillment center/centre for your country
• Copy the mailing address to the front of the fulfillment coupon
• Use the appropriate shipping and handling charge for your country

Currency Countries Charge Mailing address

Australian Dollar Australia A$35 Lotus Development Pty Ltd
Customer Service Department
Level 12, 321 Kent Street
Sydney NSW 2000
Australia

Canadian Dollar Canada C$15
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 670
Scarborough, Ontario M1K 5C5

Belgian Franc
French Franc
Lira
Guilder
Escudo
South African Rand
Peseta

Belgium
France
Italy
Netherlands
Portugal
South Africa
Spain

900BF
150F
L. 4500
F 50
4500 Esc.
R135
3500Pts

Lotus Assistance SARL
Parc Club Ariane
Bat. Neptune 5
Bld des Chenes, BP 219
78051 St. Quentin en Yvelines Cedex
FRANCE

Austrian Schilling
Deutchmark
Swiss Franc

Austria
Germany
Switzerland

300 OS
45 DM
SFr 35

Lotus Development Gmbh
Baierbrunnerstrasse 35
Postfach 70 12 20
81379 Muenchen GERMANY

New Zealand Dollar New Zealand NZ$40 Lotus Development New Zealand Ltd
Customer Service Dept
Level 20, ASB Bank Centre
Cnr Albert & Wellesley Sts
Auckland New Zealand

US Dollar United States $10 Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367 USA

Danish Krone
Markka
Punt
Norwegian Krone
Krona
Sterling

Denmark
Finland
Ireland
Norway
Sweden
United Kingdom

Dkr 175
130 mk
IR£15
Nkr 190
200 Skr
£15

Lotus Development European Corporation
Lotus Park
The Causeway
Staines Middlesex TW18 9AG
ENGLAND

US Dollar Others US$30.00 Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367 USA

Australia
Lotus Development Pty Ltd
Customer Service Department
Level 12, 321 Kent Street
Sydney NSW 2000
Australia

Canada
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 670
Scarborough, Ontario M1K 5C5

France
Lotus Assistance SARL
Parc Club Ariane
Bat. Neptune 5
Bld des Chenes, BP 219

78051 St. Quentin en Yvelines Cedex
FRANCE

Germany
Lotus Development Gmbh
Baierbrunnerstrasse 35
Postfach 70 12 20
81379 Muenchen
GERMANY

New Zealand
Lotus Development New Zealand Ltd
Customer Service Dept
Level 20, ASB Bank Centre
Cnr Albert & Wellesley Sts
Auckland New Zealand

United Kingdom (U.K.)
Lotus Development European Corporation
Lotus Park
The Causeway
Staines Middlesex TW18 9AG
ENGLAND

United States
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367

Country Currency SHCharge Center

Australia Australian Dollar A$30.00 Australia

Austria Austrian Schilling 30.00 ÖS Germany

Belgium Belgian Franc 30.00 BF France

Canada Canadian Dollar C$10.00 Canada

Denmark Danish Krone Dkr 30.00 U.K.

Eastern Europe US Dollar $30.00

Finland Markka 30.00 mk U.K.

France French Franc 30.00 F France

Germany Deutschmark 30.00 DM Germany

Ireland Punt IR£30.00 U.K.

Italy Lira L. 30 France

Luxembourg Luxembourg Franc 30.00 LF France

Netherlands Guilder F 30.00 France

New Zealand New Zealand Dollar NZ$30.00 New Zealand

Norway Norwegian Krone Nkr 30.00 U.K.

Portugal Escudo 30.00 Esc. France

South Africa South African Rand R30.00 France

Spain Peseta 30 Pts France

Sweden Krona 30.00 Skr U.K.

Switzerland Swiss Franc SFr 30.00 Germany

United States US Dollar $10.00 United States

U.K. Sterling £30.00 U.K.

Developing SmartSuite Applications
Developing SmartSuite Applications Using LotusScript is available in the SmartSuite CD package as an online book.
To install Developing SmartSuite Applications Using LotusScript, see the SmartSuite installation instructions.
To order a printed version of Developing SmartSuite Applications Using LotusScript and other LotusScript
documentation, complete the order form and return it to Lotus.

Ordering the LotusScript Documentation Set
To order the SmartSuite Application Developer's Kit, complete the following form and mail or fax it to Lotus. You will
receive the SmartSuite Application Developer's Kit within 21 days.

Ordering by US Mail
Mail the completed form to:

Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

Ordering by FAX
Fax the completed form to:
(617) 537-8500

Order Form
Name: ___
Title: ___
Mailing address: ___

E-mail address: ___
Product Registration Number: ___

LotusScript Documentation as Online Books
You can use the SmartSuite Custom Install to install the following online books about LotusScript:

• Getting the Most Out of LotusScript in SmartSuite 97
• Developing SmartSuite Applications Using LotusScript
• LotusScript Language Reference
• LotusScript Programmer's Guide

For more information about installing online books, see your SmartSuite installation documentation.

LotusScript Documentation on the Web
You can view updated versions of LotusScript documentation, or download updated sample applications or Help files
from the LotusScript home page.
Enter the following URL in the location field in your browser and press ENTER:
www.lotus.com/home.nsf/welcome/sswin

Script Design Basics
LotusScript provides a variety of tools and services to support you in developing applications for SmartSuite. Getting
productive in a new programming environment often involves understanding how all the pieces work together -- the
tools, the language conventions, the object dependencies, and so on. Understanding how to approach the problem
and where to enter your script code is half the challenge in learning.

Choosing a place to begin
Lotus Notes, 1-2-3, Approach, Freelance Graphics, and Word Pro all use the same underlying LotusScript language.
Each product implements LotusObjects on top of the LotusScript language. To determine what product best supports
the goals for your script application, consider using each of the SmartSuite products and reviewing its features. Read
Developing SmartSuite Applications Using LotusScript for overviews of what each product can bring to your
programming effort. Implement a few simple procedures in each product to get a feel for its features and objects. In
the long run, you'll be better able to determine what product provides strengths where you need them most, and how
you can develop cross-product applications that take advantage of the strengths of each product.

Working the basics
LotusScript applications share the following common features.

• You need a Lotus product to run script applications.
• You need a Lotus product to store scripts in a product document such as a 1-2-3 workbook or Word Pro

document.
• You need to run the Lotus Integrated Development Environment (IDE) to edit and debug scripts stored in a

product document.
• You need to open an IDE window for each product document containing scripts that you want to modify.

To write a basic script application, therefore, you must run a Lotus product and load a document in that product. You
can then write scripts for the product objects that you create in your product.

Writing scripts in the Integrated Development Environment (IDE)
Your primary tool for developing script applications is the Lotus Integrated Development Environment (IDE). Beyond
providing the basic tools such as an editor, a debugger, a browser, and a dialog editor, the IDE provides a high
degree of integration with each Lotus product. It is easy to move between tasks that you perform in a product and
those that you perform in the IDE.

Writing global scripts
Global scripts make declarations, options, and procedures available to all scripts in your document. For example, to
write global scripts for a 1-2-3 document named LSAPP2.123, you must first run 1-2-3, load the document
LSAPP2.123, and then open an IDE window for that document. Choose Edit - Scripts & Macros - Show Script Editor
in the 1-2-3 menu to activate an IDE window for your current document.
The IDE lists objects that you can script in the Object list and scripts for each of those objects in the Script list. You
can add statements to predefined scripts in (Globals), such as (Options), (Declarations), Initialize, or Terminate, or
you can create your own named procedures. You do not need to modify predefined scripts to write a basic script
application.
The following illustration shows how to select a particular script for (Globals).
Click any item in the following list to learn more about it.

 Product document

 (Options) scripts

 (Declarations) scripts

 Initialize and Terminate subs

 User-defined procedures

Writing scripts for product objects
You can also write scripts for product objects in your document. As with (Globals), you can add statements in the
predefined scripts for an object, or create new procedures for that object. Unlike scripts that you write in (Globals), the
declarations, options statements, and procedures that you write for a product object are not generally available to
scripts attached to a different product object.
The predefined scripts for product objects include object event procedures. Script statements in an object event
procedure are executed when an object, such as a button, receives a particular event in your product, such as being
clicked, double-clicked, or moved. For example, if you add a button named Button 5 to the 1-2-3 document
LSAPP2.123, and you want it to run some script when you click it, you must add script statements to the Click
procedure for Button 5. To select this event procedure, choose the Button 5 object in the IDE Object list and choose
Click in the Script list.
The following illustration shows how to select a predefined or user-defined script for a 1-2-3 product object named
Button 5.
Click any item in the following list to learn more about it.

 User-defined procedures

 (Options) scripts

 (Declarations) scripts

 Event procedures

 Initialize and Terminate subs

Working with external script files
In many cases, the one-application-per-document approach is sufficient for working with objects and data in isolated
documents. To develop more sophisticated applications that reuse important scripts or use multiple products,
consider using the following types of external script files:
LotusScript Script (LSS) files
LotusScript Object (LSO) files
LotusScript Extension (LSX) files
OLE Custom Control (OCX) files
Dynamic-link Library (DLL) files

Dynamic-link Library (DLL) files
If you develop useful functions in C and compiled them in a Dynamic-link Library (DLL), you can call them from your
LotusScript application. For example, the following procedure declares and calls a LotusScript function named
SendDLL, corresponding to a C function named _SendExportedRoutine in the DLL file named MYEXPORTS.DLL.
Declare Function SendDLL Lib _
 "C:\LOTUS\ADDINS\MYEXPORTS.DLL" _
 Alias "_SendExportedRoutine" (i1 As Long, i2 As Long)
SendDLL(5, 10)
For more information on using Dynamic-link Libraries, see LotusScript Language Reference.

(Declarations) scripts in (Globals)
The (Declarations) script is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts in your document
• Public, Private, Type, Class, and Declare Lib statements (external C calls)
• Const statements for those constants that you want to be available to all scripts in your document and are not

needed for Use or UseLSX statements in (Options)
By default, the (Declarations) script is initially empty.
If you enter Type, Class, or Declare Lib statements in any other script in (Globals), the IDE moves them to
(Declarations) automatically. If you enter Dim, Public, Private, or Const statements outside the scope of a procedure
in another script, the IDE moves them to (Declarations) automatically. Const statements in (Options) are the
exception to this rule.

Initialize and Terminate subs in (Globals)
Initialize script
Use the Initialize sub in (Globals) to initialize variables that you declared in (Declarations). The Initialize sub executes
before any of these variables are accessed and before any other scripts in (Globals) are executed. By default, the
Initialize script is empty.

Terminate script
Use the Terminate sub in (Globals) to clean up variables that you declared in (Declarations) when you close your
document, or when you modify a script and execute it again. For example, you can use an Open statement to open a
file containing data in Initialize, and use a Close statement in Terminate to close it. By default, the Terminate script is
empty.

(Options) scripts in (Globals)
The (Options) script in (Globals) is designed to contain these the following statements:

• Option statements
Note (Options) contains the statement, Option Public, by default. This makes Const, Dim, Type, Class, Sub,
Function, and Property statements public by default. You can use the Public form of these statements to make
them public explicitly, or the Private form to make them unavailable to other scripts outside (Globals).

• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

If you enter any of these statements, except for Const, in any other script in (Globals), the IDE automatically moves
them to (Options).
Option and Deftype statements that you enter in (Options) apply only to scripts for the current object. To make certain
that an option is applied consistently throughout your document, enter the appropriate statement in the (Options)
script for every object for which you are writing scripts.

User-defined procedures in (Globals)
While you are working in (Globals), you can add procedures to make them available throughout your document.
There are three ways to add procedures to (Globals) in the IDE:

• Using the IDE menu: Choose Create - New Sub or Create - New Function in the IDE menu to create new subs
and functions in (Globals). The IDE automatically adds the name of the new procedure to the Script list.

• Entering statements: Enter a Sub, Function, or Property statement anywhere in (Globals) except within a class.
The IDE automatically adds the name of the new procedure to the Script list for (Globals).

• Importing procedures from a file: Use File - Import Script in the IDE menu to import scripts when you are working
in (Globals). These imported scripts will be available to all scripts in your document. The IDE automatically adds
the name of any new procedures contained in the imported script to the Script list.

LotusScript User Assistance for SmartSuite
To help you learn how to develop LotusScript applications for SmartSuite, Lotus provides a complete library of user
assistance.

Getting the Most Out of LotusScript in SmartSuite 97
This publication explains how SmartSuite 97 products use the LotusScript programming language and how your
business can take advantage of LotusScript in developing applications for SmartSuite.
Getting the Most Out of LotusScript in SmartSuite 97 is available in hard copy, Adobe Acrobat, or HTML formats in
your SmartSuite 97 package, in the SmartSuite Application Developer's Kit, or on the Worldwide Web.

Developing SmartSuite Applications Using LotusScript
This publication provides comprehensive information on key concepts and techniques for developing LotusScript
applications. Developing SmartSuite Applications Using LotusScript focuses on programming tools, cross-application
programming, Lotus Notes integration, and product-specific application development.
Developing SmartSuite Applications Using LotusScript is available in hard copy, Adobe Acrobat, or HTML formats in
your SmartSuite 97 package, in the SmartSuite Application Developer's Kit, or on the Worldwide Web.

LotusScript Language Reference
This publication provides a comprehensive summary of conventions and basic commands for the LotusScript
language. LotusScript Language Reference provides the foundation for programming any product that supports the
LotusScript programming language.
LotusScript Language Reference is available in hard copy, Adobe Acrobat, Help, or HTML formats in your SmartSuite
package, in the SmartSuite Application Developer's Kit, or on the Worldwide Web.

LotusScript Programmer's Guide
This publication is a general introduction to LotusScript that describes basic building blocks in the language and
explains how to use them to create powerful applications.
LotusScript Programmer's Guide is available in hard copy, Adobe Acrobat, or HTML formats in your SmartSuite
package, in the SmartSuite Application Developer's Kit, or on the Worldwide Web.

Class Reference Help and Frequently-asked Questions
Each product provides comprehensive Help on product classes, frequently-asked questions about programming, and
code examples. All this is delivered in an innovative Help system designed to enhance your work as a programmer.
Class reference Help and frequently-asked questions are available in Help or HTML formats in your SmartSuite 97
package, in the SmartSuite Application Developer's Kit, or on the Worldwide Web.

Example code and sample applications
Most products also provide working code to illustrate important programming techniques. You can reuse and modify
this code as you develop your own applications.
Example code is available in the SmartSuite CD-ROM package, in the SmartSuite Application Developer's Kit, and on
the Worldwide Web.

LotusScript Object (LSO) files
LotusScript Object (LSO) files contain public definitions that you can use in your script applications. If you develop a
library of commonly-used declarations or procedures that you want to reuse across multiple script applications, you
can collect them in a product document, and use the File - Export Globals as LSO menu command to create a
compiled LotusScript Object file. If this file were named WKREPORT.LSO, you would make these public definitions
available to your script application by entering the following statement in the appropriate (Options) script:
Use "C:\LOTUS\ADDINS\WKREPORT.LSO"
For more information on using LotusScript Object files, see LotusScript Language Reference.

LotusScript Script (LSS) files
LotusScript Script (LSS) files are text files that contain LotusScript statements. You can create LSS files in any text
editor. Use the %Include directive anywhere in a script to reference the contents of an LSS file. For example, to
include the contents of a LotusScript Script file named STDSETUP.LSS in your application, enter the following
statement:

%Include "C:\MYSCRIPTS\STDSETUP.LSS"
By default, LotusScript assumes that the LotusScript Script files referenced have an LSS file extension. You can
actually use any extension for your text file or no extension at all.
For more information on using LotusScript Script files, see LotusScript Language Reference.

LotusScript Extension (LSX) files
LotusScript Extension (LSX) files are Dynamic-link Libraries (DLLs) that contain public class definitions. LSX files are
developed using the Lotus LSX Toolkit. To obtain a version of the LSX Toolkit for your operating system, connect to
the Lotus home page on the World Wide Web. Lotus ships LSX files for Lotus Notes and Approach; other LSX files
are being developed for SmartSuite products by Lotus and by third-party developers. These extension files expand
the range of classes that you can use in your LotusScript applications.
Tip You can enter a UseLSX statement in any script; the IDE automatically moves it to (Options).

Loading and using class definitions in LSX files
There are two ways to load and use the public class definitions in an LSX file.

• If the LSX file that you want to load is not registered in the Registry, you must refer to the LSX file directly in your
UseLSX statement.
UseLSX "C:\MYSCRIPTS\LSX4DB2.DLL"

• If an LSX is registered and you want to reference a class definition directly, you can enter the name of the class
definition.
UseLSX "ObjectName"
In this example, LotusScript searches all entries under "LotusScriptExtensions" in the Registry for the specified
class definition, and loads that definition.
Note If the LSX file you want to load is registered in the Windows Registry, you can reference its Registry name
and have Windows provide the appropriate DLL name and file path. SmartSuite 97 registers an LSX file that
contains Notes public class definitions. To use these Notes class definitions in your cross-product script
applications, enter the following statement:
UseLSX "*Notes"

Viewing class definitions
Once you run a script containing a UseLSX statement and loaded an LSX file, you can browse its class definitions in
the IDE Browser panel.
For more information on using LotusScript Extension files, see LotusScript Language Reference.

(Declaration) scripts in object scripts
The (Declarations) script for an object is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts for the current object
• Const statements for those constants that you want to be available to all scripts for the current object and that are

not needed for Use or UseLSX statements in (Options)
By default, the (Declarations) script is initially empty.

Event procedures in object scripts
If you are writing a script for an object, the Script list displays default event procedures for the selected object. In the
IDE, you cannot create new event procedures for an existing product object because valid events for that object are
defined by the product.

Initialize and Terminate subs in object scripts
Initialize sub
Use the Initialize sub to set up variables declared in the object's (Declarations) script. The Initialize sub for an object
executes before any of its event procedures. By default, the Initialize script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Initialize subs.

Terminate sub
Use the Terminate sub to clean up variables that you declared in the object's (Declarations) script. By default, the
Terminate script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Terminate subs.

(Options) scripts in object scripts
The (Options) script for an object is designed to contain these the following statements:

• Option statements
• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

User-defined procedures in object scripts
You can create other named subs, functions, and properties for objects, in addition to the predefined scripts or event
procedures. Because these procedures are not in (Globals), they can be called only from other scripts for the object.
There are three ways to create object scripts in the IDE:

• Using the IDE menu: Use Create - New Sub and Create - New Function to create new subs and functions for an
object. The IDE automatically adds the name of the new procedure to the Script list for that object.

• Entering statements: Enter a Sub, Function, or Property statement anywhere in a script for the current object. The
IDE automatically adds the name of the new procedure to the Script list for that object.

• Importing procedures from a file: Use File - Import Script when you are working with object scripts to import
scripts for that object. The IDE automatically adds the name of any new procedures contained in the imported
script to the Script list.

OLE Custom Control (OCX) files
OLE Custom Controls extend the number of objects that you can script in Lotus products. For example, the Lotus
dialog controls listed under product classes in the IDE Browser panel are OCX controls that you can add to the Lotus
Dialog Editor.

Once you add an OCX control to your product, you can script its properties, methods, and events in the IDE Script
Editor.
The following illustration shows how the properties, methods, and events of an Lotus CommandButton OCX named
Command4 are available to you in the IDE.

Tip You can add OCX controls registered on your system to the Lotus Dialog Editor Toolbox by choosing File -
Toolbox Setup in the Lotus Dialog Editor menu.

Product Document
To edit scripts in the IDE or to execute them in one or more products, you must create or use a document in your
product that contains the scripts. Lotus products supporting LotusScript use the following document extensions:

Lotus Product Document extension(s)
1-2-3 123
Approach APR
Freelance Graphics PRZ

SMC

Notes NSF
Word Pro LWP

Using LotusScript Examples
Code examples provide working models for the scripts that you write. Whether the example is listed in a Help
example or available as a product document on disk, you can copy statements or entire scripts from the examples
and use them in your own script applications.
There are three types of LotusScript examples, each designed to illustrate a different aspect of the LotusScript
language or the classes available for each SmartSuite product.

Examples in reference Help
Most examples appear in reference Help for the LotusScript language and for product classes. These brief examples
focus on individual elements in the language or members of a product class. They illustrate how to use correct syntax
for a working example, how to enter appropriate values for parameters, and how dependencies between elements
operate.
Note Although you can copy examples from reference Help and paste them into your scripts, they are not designed
primarily to be self-contained. Sometimes there are dependencies between a piece of example code and the larger
sample application from which it is derived.

Examples in Frequently Aasked Questions (FAQs) Help
Frequently Asked questions (FAQs) illustrate how to complete common programming tasks using LotusScript.
Examples in FAQs not only illustrate how individual statements work, but they also illustrate how these statements
form a complete application or procedure. Most examples in FAQs are designed to be self-sufficient; you can copy
one or more procedures from Help, paste them into your own scripts in the Script Editor, and execute them.
Note When there are dependencies in an example that would require you to modify the example to make it run,
these dependencies are documented in the Help topic or at the beginning of the first script in the example.

Sample applications
The Developing SmartSuite Applications Using LotusScript book includes numerous sample applications for
SmartSuite and for individual products. These examples are designed to illustrate more sophisticated tasks for an
individual product or tasks that utilize more than one product. They illustrate how to develop script applications that
take advantage of embedded OLE objects, OLE automation, Notes, Visual Basic, the Worldwide Web, and custom
Dynamic-link libraries (DLLs). Lotus develops new sample applications for SmartSuite on an ongoing basis; these
new samples and updated versions of the ones in Developing SmartSuite Applications Using LotusScript are
available on the World Wide Web.
To copy scripts from these sample applications and paste them into your own script applications, you must first open
the sample application document and then display its scripts by opening the IDE window for that document.
Note All sample applications in Developing SmartSuite Applications Using LotusScript are designed to run without
modification.

Using LotusScript Help
The design for LotusScript Help supports three of the most frequent activities that you perform as a programmer:

• Searching for objects and elements to use in your scripts
• Writing scripts
• Debugging scripts

LotusScript Help uses different types of windows to display different types of information, so it is important to know
what each type of window contains and how to navigate between them.

Using Help to search for objects and elements
There are areas in Help designed to help you search for objects and language elements to use in your scripts:

LotusScript Help Contents
You can use Contents in Help to examine the overall structure of Help and to browse for Help topics relevant to your
current script.

LotusScript Index
Indexes are one of the most popular ways that programmers search for information. Topics in LotusScript Help are
indexed alphabetically, so you can enter key phrases or keywords and navigate to the corresponding Help topics.

LotusScript A - Z lists
LotusScript Help for each product provides A - Z lists of its classes, properties, methods, and events, including a
comprehensive list of all the elements in the product.

IDE Browser Help
The Browser panel in the Integrated Development Environment (IDE) displays lists of LotusScript language elements
and classes for products. You can expand and collapse entries in the Browser to view the associated properties,
methods, and events for objects.

Highlight an element in the Browser panel and press F1 (HELP) to get context-sensitive Help on that element.

Using Help to write scripts
Help focuses on objects. As you are writing scripts, you explore the relationships between product classes and the
behaviors of objects in that product.

Types of Help windows
To support this exploration, Help separates information about classes into four types of windows:

• Class definition windows define what a class does in a product and how it works in the product's containment
hierarchy. The class definition topic for the 1-2-3 Range object describes what ranges do in 1-2-3, how they are
contained by larger objects, and how they contain smaller objects.

• Class member list windows list all the properties, methods, and events that are members of a particular class.
• Class member windows focus on particular properties, methods, or events.
• Example windows contain one or more scripts for a particular property, method, or event. You can copy and paste

script statements from these example windows into the IDE Script Editor.

Displaying Help windows
To display different types of LotusScript Help windows, use buttons in Help topics and in the Help window that are
labeled by the type of Help window. The following illustration shows how to use buttons to display class member,
class member list, and example windows in Help.

The following illustration shows how to display class definition and class member list windows in Help.

Help for editing and debugging scripts
You can also get context-sensitive Help about keywords and messages when you are editing or debugging your

scripts in the IDE.

Context-sensitive Help in the Script Editor and Script Debugger
If you need help on a keyword while you are writing or debugging a script in the Script Editor and Script Debugger,
place the insertion point on the keyword and press F1 (HELP) to get context-sensitive Help on that keyword.

Context-sensitive Help on messages
You can also get context-sensitive Help on two types of messages in the IDE. In the Script Editor, you can get
context-sensitive Help on syntax errors. Navigate to the statement that caused the error and press F1 (HELP). When
you are debugging your scripts and the IDE reports a run-time error, press F1 (HELP) to display information about that
error and suggestions about fixing it.

' ActionBarVisible property
Sub CleanScreen()

' This program performs the same function
' that the Clean Screen menu item on the Edit
' menu does.
CurrentWindow.Redraw=False ' Turn off redraw temporarily
' Turn off each bar.
CurrentWindow.ActionBarVisible=False
CurrentWindow.IconBarVisible=False
CurrentWindow.StatusBarVisible=False
CurrentWindow.ViewTabVisible=False
CurrentWindow.Redraw=True ' Turn it redraw back on
CurrentWindow.Repaint ' Now repaint the window.

End Sub

' Activate method
' Activate makes the specified document the active document and brings
' it to the foregound. In this example, we have 2 documents (.APR's),
' Customer and Accounts. The user is currently looking at the Customer
' document, that is, the Customer document is active. This simple global
' function is passed a document. The function will activate the document
' that is passed to it.

Sub MakeDocActive(Doc As Document)
Application.Doc.Activate

End Sub

' ActiveDocument property
' This script checks to see if the active document is the Customer document.
' If it isn't, it makes the Customer document active.

' Check if the active document is Customer.
If (CurrentApplication.ActiveDocument.Name <> "Customer") Then

' Make the Customer document active.
CurrentApplication.Customer.Activate

End If

' ActiveDocWindow property
' Retrieve the active document window.

Dim DocWin As DocWindow
Set DocWin = CurrentApplication.ActiveDocWindow

' ActiveView property
' This code example comes from the click event for the button btnToday
' in the Scheduler SmartMaster application. You can find it in the Start view.

Sub Click(Source As Button, X As Long, Y As Long)
Set CurrentWindow.ActiveView = CurrentDocument.Schedule~ Display
CurrentView.Body.fbxDateDisplay.Text = Format$(Now, "m/d/yy")
clearDisplay
readBlock CurrentView.Body.fbxDateDisplay.Text

End Sub

' AddColumn method
' Example 1
' Create a new worksheet and use the AddColumn method to add the
' field QTY to the new worksheet. Arguments to name the column and
' position the column are optional.
' Context for this example is a click event of a button
' on a form in the current document.

Dim Wrk As Worksheet
Set Wrk = New Worksheet(currendocument)
Set CurrentWindow.ActiveView=Wrk
Wrk.Name="Wrksheet"
Wrk.AddColumn("QTY")

' Example 2
' Add a new column to the current worksheet just to the left of the
' worksheet column named QTY2. Name the new column MyCol.
' The new column shows the values for the QTY field.

Dim AddCol As Integer
AddCol=CurrentView.AddColumn("QTY","MyCol","QTY2")

AddRow method
'This is the modifyRooms global function from the Schedule
'SmartMaster application.

Function ModifyRooms
Dim Con As New Connection
Dim Qry As New Query
Dim RS As New ResultSet

If Con.ConnectTo("dBASE IV") Then
Set Qry.Connection = Con
Qry.Tablename = CurrentDocument.Tables(0).Path & "rooms.dbf"
Set RS.Query = Qry
If (RS.Execute)Then

If (RS.NumRows) Then
RS.FirstRow
Do

RS.DeleteRow
Loop While (RS.NumRows)

End If
ModifyRooms = True
For i = 0 To Ubound(rooms)

RS.AddRow
RS.SetValue "room", rooms(i)
RS.UpdateRow

Next
End If

End If
Con.Disconnect

End Function

' Add method
' Create and run a find for distinct records without other conditions.
Sub DuplicateRecords
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")

 'Add another field to the FindDuplicate object definition.
 'Records must have the same value in both fields.
 Call DupFind.Add("FirstName")

 'Leave the first duplicated record out of the found set.
 Dim SuccessFlag As Integer
 SuccessFlag = DupFind.ExcludeFirst

 'Run the find.
 Call CurrentWindow.FindSort(DupFind)
End Sub

' Create a FindDuplicate object as part of a Find object.
Sub FindDups
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")

 'Add another field to the FindDuplicate object definition.
 'Records must have the same value in both fields.
 Call DupFind.Add("FirstName")

 'Leave the first duplicated record out of the found set.
 Dim SuccessFlag As Integer
 SuccessFlag = DupFind.ExcludeFirst

 'Create a Find object.
 Set MyFind = New Find()

 'Add a condition to find all records in Japan.
 Call MyFind.And("Country", "Japan")

 'Attach the FindDistinct object to the Find object.
 Set MyFind.FindSpecial = DupFind

 'Run the find.
 Call CurrentWindow.FindSort(MyFind)

End Sub

' Add method (Sort class)
' Create and run a sort using values from more than one field.
Sub SampleSort
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 'This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the
 'values in the OrderTotal field.
 Call CurrentWindow.FindAll
 Dim ssortAll As New sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' Alignment property
' Right-align the data in the current object.
Source.Alignment = $LtsAlignmentRight

' Or

' Retrieve the alignment of the data in the current object.
Dim align As Integer
align = Source.Alignment

' AllowDrawing property
' PicturePlus fields do not allow drawing by default,
' but you can allow drawing in a PicturePlus field.
' ObjPictPlus is the name of the PicturePlus field.

source.ObjPictPlus.AllowDrawing = True

' And method

Sub SampleFinds
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 Call CurrentWindow.FindAll

 'This script shows a correct way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneField As New Find
 Call sfindOneField.And("Country","Japan, USA")
 Call CurrentWindow.FindSort(sfindOneField)

 'This script shows an alternate way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneFieldAlternate As New Find
 Call sfindOneFieldAlternate.And("Country","Japan")
 Call sfindOneFieldAlternate.Or("Country","USA")
 Call CurrentWindow.FindSort(sfindOneFieldAlternate)

 'This script finds multiple values in multiple fields.
 'It finds records with either "Japan" or "USA" in the Country field with Order
Total >= 1000
 'and it also finds records with only "Japan" in the Country field with Order Total
<1000.
 'The two sets of results are returned as the found set.
 Dim sfindComplex As New Find
 Call sfindComplex.And("Country", "Japan, USA")
 Call sfindComplex.And("OrderTotal",">= 1000")
 Call sfindComplex.Or("Country", "Japan")
 Call sfindComplex.And("OrderTotal","<1000")
 Call CurrentWindow.FindSort(sfindComplex)

 'This script shows an INCORRECT way to finding multiple values in the same field.
 'Do not do this by mistake.
 Dim sfindBad As New Find
 Call sfindBad.And("Country","Japan")
 Call sfindBad.And("Country","USA") 'The value "USA" replaces the previous
value.
 Call CurrentWindow.FindSort(sfindBad)
 'The find returns only records with Country = "USA".

 ' This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the

 'values in the OrderTotal field.
 Call CurrentWindow.FindAll
 Dim ssortAll As New sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' ApplicationWindow property
' Retrieve the ApplicationWindow object.

Dim AppWin as ApplicationWindow
Set AppWin = CurrentApplication.ApplicationWindow

' Application property
' Retrieve the Application object.

Dim App As application
Set App = CurrentApplication.Application

' Author property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

' If the document has been modified...
If (CurrentDocument.Modified) Then

Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' Background property
' Set the background property of a panel to red.
Source.Background.Color.SetRGB(COLOR_RED)

' Set the background of panel1 to be the same as panel2.
Set Source.panel1.Background = Source.panel2.Background

' Baseline property
' Display a dashed line in the current field box.

Source.Border.Baseline = True

' Black property
' Find out how much black is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Black ' Determine the amount of black.
Print b ' Print the amount of black.

' Blue property
' Find out how much blue is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Blue ' Determine the amount of blue.
Print b ' Print the amount of blue.

' Border property
' Change the border of the current display element to blue.
Source.Border.Color.SetRGB(COLOR_BLUE)

' Bottom (Border) property
' This script comes from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application.
' Create a new text block with a 1 point left and right ultramarine border.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As textbox

t = 1635 & (330 * t)
Set tt = New textbox(currentview.Body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $ItsBorderThick
tt.Border.Color.SetRGB (color_ultramarine)

End Sub

' BringToFront method
' MyCompany is a field box on a form.
' Place the field box on top of any other display element that
' is in the same area of the form.
Source.MyCompany.BringToFront

Cascade method
' Cascade all of the open documents (.APR files).

CurrentApplication.ApplicationWindow.Cascade

' CheckedValue property
' Determine if a check box is checked, and then display a message
' that includes the checked or unchecked value.
' This script is placed in an event script for an object in the same
' view as the check box.
If (Source.ObjCheckBox.IsChecked) Then

MessageBox("The check box is checked and its value is " &
Source.ObjCheckBox.CheckedValue)
Else

MessageBox("The check box is not checked and its value is " &
Source.ObjCheckBox.UnCheckedValue)
End If

' ClickedValue property
' This script is called from the event of an object
' other than the RadioButton object.
' ObjRadio is the name of the radio button object.

Source.ObjRadio.ClickedValue = "VISA"

' Or

' Get the ClickedValue of the radio button.

Dim Val As String
Val = Source.ObjRadio.ClickedValue

' CloseWindow method
' This function lays the groundwork for an application that runs
' in the background. After opening a document, you can hide Approach.

Dim rval As Integer ' Return Value

' Minimize Approach (optional)
CurrentApplication.ApplicationWindow.Minimize

' Hide Approach from the user
CurrentApplication.Visible=False

' Have Approach open an application that runs automatically.
rval = CurrentApplication.OpenDocument("AutoApp", "C:\LOTUS\APPROACH")

' Run your program.

' Show Approach to the user
CurrentApplication.Visible=True

' Maximize Approach (optional)
'CurrentApplication.ApplicationWindow.Maximize

' Quit Approach
CurrentApplication.CloseWindow

' Close method
' Determine the contents of the date field, then close the current window.
Sub Click(Source As Button, X As Long, Y As Long)

Dim d As String

d = Source.fbxDate.Text
CurrentWindow.Close()

End Sub

' This script closes the view when users click the Cancel button.
Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)
' Click event for the btnCancel button object on the Enter Date view

CurrentWindow.Close
End Sub

' Close (ResultSet)
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim C As New Connection
Dim Q As New Query
Dim RS As New ResultSet

Dim tname As String
tname = currentdocument.tables(0).tablename

If C.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Q.Connection = C
Q.Tablename = currentdocument.tables(0).path & tname

Set RS.Query = Qry
If (RS.Execute)Then

If (RS.numrows) Then
RS.firstrow
Do

RS.deleteRow
Loop While (RS.numrows)

End If
End If

 RS.Close
c.disconnect

End If
End Sub

' Connection property
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Con.Disconnect
End If

'ConnectTo method
'Examples are provided for connecting from Approach to dBASE IV,
'DB2, SQL, Informix 5, Informix 7, Oracle 7, and Sybase 10 and 11.

'This code is from the 'deleteScheduledRemovedRooms' global
'function in the Meeting Room Scheduler SmartMaster application.
'It deletes all of the rows in the specified table.

Sub deleteScheduledRemovedRooms
 'Initialize variables for the connection.
 Dim Con As New Connection()
 Dim Qry As New Query()
 Dim ResSet As New ResultSet()
 'Create a shorter way to identify the table.
 Dim TName As Table
 'TName identifies the first (counting from zero) table attached
 'to this .APR file.
 Set TName = CurrentDocument.Tables(0)

 If Con.ConnectTo("dBASE IV") Then 'If the connection is successful, then.
 'Associate this Connection object with the new Query.
 Set Qry.Connection = Con
 Qry.TableName = TName.FullName
 'Associate this Query object with the new ResultSet.
 Set ResSet.Query = Qry
 If (ResSet.Execute)Then 'If the ResultSet is successful, then.
 If (ResSet.NumRows) Then 'If the ResultSet isn't empty, then.
 ResSet.FirstRow
 'Delete the rows in the table.
 Do
 ResSet.DeleteRow
 Loop While (ResSet.NumRows)
 End If
 End If
 'Close the connection.
 Con.Disconnect
 End If
End Sub
'This example describes two different methods for
'connecting to IBM DB2.

'The first method for connecting to DB2:

Dim Con As New Connection
Dim Qry As New Query
Dim RS As New Resultset

Dim strUserid, strPassword, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strDSname = "SAMPLE"
strUserid = "USERID"
strPassword = "password"

'Define the SQL statement.
strSelect = "Select * "
'The table name is case-sensitive in DB2.
'The format is Owner.Tablename.

'If the table name is in lowercase,
'the From clause should be defined as:
'strFrom = "From USERID.""employee"" "

strFrom = "From USERID.EMPLOYEE "

'If the field name is in lowercase,
'the WHERE clause should be defined as:
'strWhere = "Where ""firstname"" = 'MAUDE' or ""salary"" < 25000 "

strWhere = "Where FIRSTNME='MAUDE' or SALARY < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("IBM DB2", strUserid, strPassword, strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

'The second method for connecting to DB2:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, "!" &
strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

'This example describes two different methods for
'connecting to Informix5 SE Server.

 'The first method for connecting to Informix5 SE Server:

Dim Con As New Connection
Dim Qry As New Query
Dim RS As New Resultset
Dim strUserid, strPassword, strSrvName, strDBname, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strSrvName = "inf5_srv"
strDBname = "sample"
strDSname = "inf5"
strUserid = "userid"
strPassword = "password"

'Define the SQL statement.
strSelect = "Select * "

'The table name is converted to lowercase in Informix.

strFrom = "From janny1.employee "

'The field name is converted to lowercase in Informix.

strWhere = "Where firstnme='MAUDE' or salary < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("Informix 5", strUserid, strPassword, strSrvName & "!!

DB=" & strDBname) Then
Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

 'The second method for connecting to Informix5 SE Server:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, strSrvName &
"!!DB=" & strDBname & ";DSN=" & strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

'This example describes two different methods for
'connecting to Informix7 WorkGroup Server.

 'The first method for connecting to Informix7 WorkGroup Server:

Dim Con As New Connection
Dim Qry As New Query

Dim RS As New Resultset
Dim strUserid, strPassword, strSrvName, strDBname, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strSrvName = "inf7_srv"
strDBname = "sample"
strDSname = "inf7"
strUserid = "userid"
strPassword = "password"

'Define the SQL statement.
strSelect = "Select * "

'The table name is converted to lowercase in Informix.

strFrom = "From sample:janny1.employee "

'The field name is converted to lowercase in Informix.

strWhere = "Where firstnme='MAUDE' or salary < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("Informix 7", strUserid, strPassword, strSrvName & "!!

DB=" & strDBname) Then
Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

 'The second method for connecting to Informix7 WorkGroup Server:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, strSrvName &
"!!DB=" & strDBname & ";DSN=" & strDSname) Then

Qry.SQL = strSQL

Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

'This example describes two different methods for
'connecting to Oracle Server.

'The first method for connecting to Oracle Server:

Dim Con As New Connection
Dim Qry As New Query
Dim RS As New Resultset
Dim strUserid, strPassword, strSrvName, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strSrvName = "orasvr"
strDSname = "Oracle7 tables-Approach97"
strUserid = "USERID"
strPassword = "password"

'Define the SQL statement.
strSelect = "Select * "

'To maintain case-sensitivity of the table name
 'or field name when using Oracle, place double

'quotes around the table name or field name.

'If the table name is in lower case, the From
'clause should be defined as:
'strFrom = "From USERID.""employee"" "

strFrom = "From USERID.EMPLOYEE "

'If the field name is in lower case, the WHERE
'clause should be defined as:
'strWhere = "Where ""firstname"" = 'MAUDE' or ""salary"" < 25000 "

strWhere = "Where FIRSTNME='MAUDE' or SALARY < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("SQL Server", strUserid, strPassword, strSrvName) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

 'The second method for connecting to Oracle Server:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, strSrvName &
"!" & strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

'This example describes two different methods for
'connecting to Microsoft/Sybase SQL Server.

'The first method for connecting to SQL Server:

Dim Con As New Connection
Dim Qry As New Query
Dim RS As New Resultset
Dim strUserid, strPassword, strSrvName, strDBname, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strSrvName = "sqlsvr"
strDBname = "testing"
strDSname = "MS Sybase SQL Server-Approach97"
strUserid = "userid"
strPassword = "password"

'Define the SQL statement.
strSelect = "Select * "
'The table name is case-sensitive in SQL Server.
'The format is Database.Owner.Tablename.

'If the table name is in lower case, the From
'clause should be defined as:
'strFrom = "From testing.userid.employee "

strFrom = "From testing.userid.EMPLOYEE "

'If the field name is in lower case, the WHERE
'clause should be defined as:
'strWhere = "Where firstname = 'MAUDE' or salary < 25000 "

strWhere = "Where FIRSTNME='MAUDE' or SALARY < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("SQL Server", strUserid, strPassword, strSrvName) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If

End If
End If
Con.Disconnect

'The second method for connecting to SQL Server:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, strSrvName &
"!" & strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

'This example describes two different methods for
'connecting to Sybase System 10 Server.

 'The first method for connecting to Sybase System 10 Server:

Dim Con As New Connection
Dim Qry As New Query
Dim RS As New Resultset
Dim strUserid, strPassword, strSrvName, strDBname, strDSname As String
Dim strSQL, strSelect, strFrom, strWhere As String

'The second method requires additional connections,
'table names, and categories.

'Define the connection.
strSrvName = "sybsvr"
strDBname = "testing"
strDSname = "SYBNT"
strUserid = "userid"
strPassword = "password"

'Define the SQL statement.

strSelect = "Select * "
'The table name is case-sensitive in SQL Server.
'The format is Database.Owner.Tablename.

'If the table name is in lowercase, the From
'clause should be defined as:
'strFrom = "From testing.userid.employee "

strFrom = "From testing.userid.EMPLOYEE "

'If the field name is in lowercase, the WHERE
'clause should be defined as:
'strWhere = "Where firstname = 'MAUDE' or salary < 25000 "

strWhere = "Where FIRSTNME='MAUDE' or SALARY < 25000 "

strSQL = strSelect & strFrom & strWhere
If Con.Connectto("Sybase System 10 & 11", strUserid, strPassword,

strSrvName) Then
Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

 'The second method for connecting to Sybase System 10 Server:

If Con.Connectto("ODBC Data Sources", strUserid, strPassword, strSrvName &
"!" & strDSname) Then

Qry.SQL = strSQL
Set Qry.Connection = Con
Set RS.Query = Qry
If RS.Execute Then

If RS.Numrows <> 0 Then
Msgbox "Number of row(s) in the resultset = " & RS.NumRows
RS.Close

End If
End If

End If
Con.Disconnect

End Sub

' Count property
' Access the main table through the data object.

Dim MnTbl As String
Dim NumTbls As Integer
Dim Tbls As Variant
Dim t As Variant

MnTbl = CurrentView.MainTable ' Get the name of the main table.
Set Tbls = CurrentDocument.Tables ' Get the collection of tables.
NumTbls = Tbls.Count ' Find out how many tables there are.
For i = 1 To NumTbls Step 1

If (Tbls(i-1).TableName = MnTbl) Then ' If the right one, then
' data access code goes here.
j=1

End If
Next

' CreateDate property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

'If the document has been modified...
If (CurrentDocument.Modified) Then

 Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' CurrentPageNum property
' Determine the current page number for the
' current form or form letter.
Dim CrntPage As Integer
CrntPage = CurrentApplication.ActiveView.CurrentPageNum

' Or

' Change the page of the current form or form letter
' to page 2.
CurrentApplication.ActiveView.CurrentPageNum = 2

' CurrentRecord property
' Find the current record for the active view (form,
' report, worksheet, and so on.)
Dim CrntRec As Long
CrntRec = CurrentApplication.ActiveDocWindow.CurrentRecord

' Or

' Go to a specific record by setting the CurrentRecord property.
' Go to record 100.
CurrentApplication.ActiveDocWindow.CurrentRecord = 100

'CurrentRow property
'This script program demonstrates the basics of using the Approach
'Data Object (ADO). First, it connects to a SQL Server. If that
'succeeds, it then initializes a Query object.

Dim Conn As New connection 'Create a connection object.
Dim Qry As New query 'Create a Query object.
Dim RsltSet As New ResultSet 'Create a ResultSet object.
Dim Rval, Row, i As Integer
Dim Data As String

'Connect to Microsoft SQL Server
If (Conn.ConnectTo("SQL Server","userid","password","sqlsvr-nt")) Then
'If the connection succeeds, initialize the Query object named Qry.
 Qry.SQL = "SELECT test.authors.au_lname, test.authors.au_fname, test.titles.title,
test.titles.price _
 FROM test.authors, test.titleauthor, test.titles _
 WHERE (test.authors.au_id = test.titleauthor.au_id And test.titleauthor.title_id
= test.titles.title_id) _
 ORDER BY test.authors.au_lname"
'Set the connection property of the query object to use the connection object you
created.
 Set Qry.Connection = Conn
'Set the Query property of the ResultSet object to use the query object you created.
 Set RsltSet.Query = Qry
 If (RsltSet.Execute) Then 'Execute the query.
 NoCols = RsltSet.NumColumns 'If successful, find out how many rows there are.
 Print "====================="
 Do Until (RsltSet.CurrentRow = 10) 'For each row...
 Print "====================="
 Row = Ltrim(RsltSet.CurrentRow) 'Get rid of the spaces.
 Print "Row: " & Row 'Print the row number.
 For i = 1 To NoCols 'For each column.
'Print the field name and then the data.
 Data = Rtrim(Ltrim(RsltSet.FieldName(i))) & ": " &
Ltrim(RsltSet.GetValue(RsltSet.FieldName(i)))
 Print Data
 Next i
 RsltSet.NextRow 'Go to the next row.
 Print "====================="
 Loop
 Print "====================="
 End If
 Conn.Disconnect 'Disconnect from the server.
End If

' Cyan property
' Find out how much cyan is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Cyan ' Determine the amount of cyan.
Print b ' Print the amount of cyan.

' DataField property
' Retrieve the name of the table field that the field in the view represents.
Dim Fld As String
Fld = Source.DataField

' Or

' Set the table field that the field in the view represents.
' Note: Make sure the DataTable property contains the correct table.
Source.DataField = "LAST NAME"

' DataTable property
' Retrieve the name of the table containing the table field that the
' field in the view represents.
Dim Tbl As String
Tbl = Source.DataTable

' Or

' Set the table containing the table field that the field in the
' view represents.
' Customer is a table name.
Source.DataTable = "CUSTOMER"

' DeleteRow method
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Con.Disconnect
End If

End Sub

' Description property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

' If the document has been modified...
If (CurrentDocument.Modified) Then

Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

'Disconnect method
'This code is from the 'deleteScheduledRemovedRooms' global
'function in the Meeting Room Scheduler SmartMaster application.
'It deletes all of the rows in the specified table.

Sub deleteScheduledRemovedRooms
 'Initialize variables for the connection.
 Dim Con As New Connection()
 Dim Qry As New Query()
 Dim ResSet As New ResultSet()
 'Create a shorter way to identify the table.
 Dim TName As Table
 'TName identifies the first (counting from zero) table attached
 'to this .APR file.
 Set TName = CurrentDocument.Tables(0)

 If Con.ConnectTo("dBASE IV") Then 'If the connection is successful, then.
 'Associate this Connection object with the new Query.
 Set Qry.Connection = Con
 Qry.TableName = TName.FullName
 'Associate this Quesry object with the new ResultSet.
 Set ResSet.Query = Qry
 If (ResSet.Execute)Then 'If the ResultSet is successful, then.
 If (ResSet.NumRows) Then 'If the ResultSet isn't empty, then.
 ResSet.FirstRow
 'Delete the rows in the table.
 Do
 ResSet.DeleteRow
 Loop While (ResSet.NumRows)
 End If
 End If
 'Close the connection.
 Con.Disconnect 'Shortest correct syntax.
 'Call Con.Disconnect() is more formal syntax.
 'Success = Con.Disconnect() is also correct.
 End If
End Sub

' Dispatch property
' This script returns the methods and properties for the Microsoft Access
' month OCX object.

Dim myvar as Variant
Set myvar = currentview.Body.objoleobj.Dispatch
myvar.nextmonth

' Documents property
' Close the first document opened in the active Approach session,
' without knowing the document name.
' The first document is always 0 (zero).

Call CurrentApplication.Documents(0).Window.Close()

' Document property
' Each view has a document (.APR file) that is its parent.
' Retrieve the document in the current active document window.
' This script will print the name of the .APR file that
' contains the current view.

Print CurrentView.Document.Name

' DoMenuCommand method
' The script programmer has access to all of the menus in Approach.
' This is useful if you want a script that interacts with the user.
' For instance, you can put the user in Find mode.

CurrentApplication.ApplicationWindow.DoMenuCommand(IDM_FIND)

' DrillDownView property
' Specify the view that displays detailed data when the user drills down
' from a crosstab.

CurrentDocument.Crosstab~ 1.DrillDownView = CurrentDocument.Chart~ 1

' Enabled property
' This example comes from the list box lbxRooms in the Room Setup dialog box
' of the Meeting Room Scheduler SmartMaster application.
' If the user selects an item in the list box, the Remove button
' is enabled. If nothing is selected, the Remove button is disabled.

Sub Click(Source As Listbox, X As Long, Y As Long)
If source.text <> "" Then

Source.btnRemove.Enabled = True
Else

Source.btnRemove.Enabled = False
End If

End Sub

' ExcludeFirst property
' Create and run a find for duplicate records.
Sub FindDupes
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")
 'Leave the first duplicated record out of the found set.
 Dim SuccessFlag As Integer
 SuccessFlag = DupFind.ExcludeFirst

 'Create a Find object.
 Set MyFind = New Find()

 'Attach the FindDuplicate object to the Find object.
 Set MyFind.FindSpecial = DupFind

 'Run the find.
 Call CurrentDocument.Window.FindSort(MyFind)

End Sub

' Execute method
'This code is from the 'deleteScheduledRemovedRooms' global
'function in the Meeting Room Scheduler SmartMaster application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Con.Disconnect
End If

End Sub

' Expand property
' Expand the display element to print all its data.
Source.Expand = True

' Or

' Retrieve the current setting of the Expand property for
' the current display element.
Dim rvalExpnd As Integer
rvalExpnd = Source.Expand

' FieldNames property
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the table as a Table object.
Set Tbl=CurrentDocument.GetTableByName(TblName)
'Since this might be a SQL or Notes table, first
'find out if it is still connected to the document (.APR file).
If (Tbl.IsConnection) Then

'Print the tablename.
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so we need to start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End If

End Sub

'FieldName method
'This script prints the name of each column in a result set.
Dim Con As New Connection 'New Connection object
Dim Qry As New Query 'New Query object
Dim RS As New ResultSet 'New ResultSet object
Dim TName As String 'Table to open

'Build the parts of the Query and ResultSet objects.
TName = "orders.dbf"
Qry.TableName = "C:\94orders\" & TName
Set Qry.Connection = Con
Set RS.Query = Qry

'Open the connection.
If Con.ConnectTo("dBASE IV") Then
 'Create the result set.
 If RS.Execute Then
 'Loop through the columns in the result set.
 For i = 1 To RS.NumColumns
 Print RS.FieldName(i)
 Next
 End If
 Con.Disconnect
End If

' FileName property
Sub DocumentReport()

' This script prints a report of document information
' to the Output panel.

Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

' If the document has been modified
If (CurrentDocument.Modified) Then

Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables associated with the .APR: " &

Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' FillField method
' This script fills the EntryDate field in the Customer database
' with Today's date.

Dim rval As Integer ' Return value
rval = CurrentWindow.FillField("Customer.EntryDate", Today)

If (rval) Then
 MessageBox("Filled Field successfully.")
Else
 MessageBox("Fill Field failed.")
End If

' FindSort method

Sub SampleFinds
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 Call CurrentWindow.FindAll

 'This script shows a correct way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneField As New Find
 Call sfindOneField.And("Country","Japan, USA")
 Call CurrentWindow.FindSort(sfindOneField)

 'This script shows an alternate way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneFieldAlternate As New Find
 Call sfindOneFieldAlternate.And("Country","Japan")
 Call sfindOneFieldAlternate.Or("Country","USA")
 Call CurrentWindow.FindSort(sfindOneFieldAlternate)

 'This script finds multiple values in multiple fields.
 'It finds records with either "Japan" or "USA" in the Country field with Order
Total >= 1000
 'and it also finds records with only "Japan" in the Country field with Order Total
<1000.
 'The two sets of results are returned as the found set.
 Dim sfindComplex As New Find
 Call sfindComplex.And("Country", "Japan, USA")
 Call sfindComplex.And("OrderTotal",">= 1000")
 Call sfindComplex.Or("Country", "Japan")
 Call sfindComplex.And("OrderTotal","<1000")
 Call CurrentWindow.FindSort(sfindComplex)

 'This script shows an INCORRECT way to finding multiple values in the same field.
 'Do not do this by mistake.
 Dim sfindBad As New Find
 Call sfindBad.And("Country","Japan")
 Call sfindBad.And("Country","USA") 'The value "USA" replaces the previous
value.
 Call CurrentWindow.FindSort(sfindBad)
 'The find returns only records with Country = "USA".

 ' This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the

 'values in the OrderTotal field.
 Call CurrentWindow.FindAll
 Dim ssortAll As New sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' FindSpecial property
' Create and run a find for duplicate records.
Sub FindDupes
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")
 'Leave the first duplicated record out of the found set.
 Dim SuccessFlag As Integer
 SuccessFlag = DupFind.ExcludeFirst

 'Create a Find object.
 Set MyFind = New Find()

 'Attach the FindDuplicate object to the Find object.
 Set MyFind.FindSpecial = DupFind

 'Run the find.
 Call CurrentDocument.Window.FindSort(MyFind)

End Sub

' FirstRecord method
' Go to the first record.
CurrentApplication.ActiveDocWindow.FirstRecord()

' FirstRow method
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Con.Disconnect
End If

End Sub

' FontName property
' Retrieve the font name from the current display element.
Dim Fnt As String
Fnt = Source.Font.FontName

' Or

' Set the font for the current display element.
Source.Font.FontName = "Arial"

' Font property
' Return the size of the font on the Remove button.
Dim Size As Integer
Size = btnRemove.Font.Size

' Or

' Set the Remove button text to 10 points.
btnRemove.Font.Size = 10

' FullName property
Sub DocumentReport()

' This script prints a report of document information
' to the Output panel.

Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

' If the document has been modified
If (CurrentDocument.Modified) Then

Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables associated with the .APR: " &

Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

'GetAt method
'Retrieve a find or sort condition from a Find, FindDistinct, FindDuplicate,
FindTopLowest, or Sort object.

Sub FindYokoSmith
 'This sub finds a specific name in the Names database with
 'LastName, FirstName, and State fields.

 'Create a find object.
 'Declare the Find object with the first find condition.
 Dim FindA As New Find("Names.LastName","Smith")
 'Add a second find condition in an AND relationship with the first condition.
 Call FindA.And("Names.FirstName","Yoko")
 'Add a third find condition in an AND relationship with the first condition.
 Call FindA.And("Names.State","WA")

 'Print the find conditions.
 Dim Top As Integer 'Top bound of an array
 Dim i As Integer 'Index of an array
 Dim Outfield As String 'Temp name of field
 Dim Condition As String 'Temp condition expression
 Dim AndOr As Integer 'Temp ORNumber

 Top = FindA.GetCount 'Return the number of find conditions.
 Print "The find conditions are"
 Print "Field", "Condition", "Find Level"
 'Loop through the Find object to print each condition.
 For i = 0 To Top-1
 Call FindA.GetAt(i,Outfield,Condition,AndOr)
 Print Outfield, Condition, Str$(AndOr)

 'For a FindDistinct or FindDuplicate object, print each condition as follows:
 'Call FindA.GetAt(i,Outfield)
 'Print Outfield

 'For a FindTopLowest object, print each condition as follows:
 'Call FindA.GetAt(Outfield, NumRecordsSought, HowFound)
 'Print Outfield, NumRecordsSought, Str$(HowFound)

 'For a Sort object, print each condition as follows:
 'Call SortA.GetAt(i, Outfield, SortOrder)
 'Print Outfield, SortOrder

 Next

 'Run the find.
 Call CurrentDocument.Window.FindSort(FindA)

End Sub

' GetColorFromRGB method
' Change the background color of the current field based on the value.

If (Val(Source.Text) < 0) Then
' Create a color object using the GetColorFromRGB function.
' Pass in a long value representing a color. There are Approach constants
' defined for many colors that can be passed to the function.

Set Source.Background.Color = CurrentApplication.GetColorFromRGB(COLOR_RED)
Elseif (Val(Source.Text) = 0) Then

Set Source.Background.Color = CurrentApplication.GetColorFromRGB(COLOR_BLUE)
Elseif (Val(Source.Text) > 0) Then

Set Source.Background.Color = CurrentApplication.GetColorFromRGB(COLOR_GREEN)
Else

Set Source.Background.Color = CurrentApplication.GetColorFromRGB(COLOR_WHITE)
End If

'GetCount method
'Retrieve the number of find conditions in a Find object.

Sub FindYokoSmith
 'This sub finds a specific name in the Names database with
 'LastName, FirstName, and State fields.

 'Create a find object.
 'Declare the Find object with the first find condition.
 Dim FindA As New Find("Names.LastName","Smith")
 'Add a second find condition in an AND relationship with the first condition.
 Call FindA.And("Names.FirstName","Yoko")
 'Add a third find condition in an AND relationship with the first condition.
 Call FindA.And("Names.State","WA")

 'Print the find conditions.
 Dim Top As Integer 'Top bound of an array
 Dim i As Integer 'Index of an array
 Dim Outfield As String 'Temp name of field
 Dim Condition As String 'Temp condition expression
 Dim AndOr As Integer 'Temp ORNumber

 Top = FindA.GetCount 'Return the number of find conditions.
 Print "The find conditions are"
 Print "Field", "Condition", "Find Level"
 'Loop through the Find object to print each condition.
 For i = 0 To Top-1
 Call FindA.GetAt(i,Outfield,Condition,AndOr)
 Print Outfield, Condition, Str$(AndOr)
 Next

 'Run the find.
 Call CurrentDocument.Window.FindSort(FindA)
End Sub

' GetFieldFormula
Sub CalcTableReport

'This function prints a report to the Output panel on the
'table of calculated fields in the current document.
Dim Tbl As Table
Dim i As Variant

'Get the calculated field table as a Table object.
Set Tbl=CurrentDocument.CalcTable
Print "Calculated fields in " & CurrentDocument.Name
Print "# of Calculated Fields: " & Str(Tbl.NumFields)
Print "===================="
'The array is zero-based, so we need to start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Formula: " & Tbl.GetFieldFormula(Tbl.FieldNames(i))
Print "===================="

Next
End Sub

' GetFieldOptions method
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the Customer table as a Table object.
Set Tbl=CurrentDocument.GetTableByName("customer")

'Print the tablename
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is 0 based, so we need to start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End Sub

' GetFieldSize method
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the Customer table as a Table object.
Set Tbl=CurrentDocument.GetTableByName("customer")

'Print the tablename
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so we need to start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End Sub

' GetFieldType method
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the Customer table as a Table object.
Set Tbl=CurrentDocument.GetTableByName("customer")

'Print the tablename
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so we need to start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

End If
End Sub

' GetHandle method
' The GetHandle function retrieves the Windows handle for the
' DocWindow. This comes in handy when you are making API
' calls to Windows that require the WindowHandle.
Dim hWnd As Long
hWnd = CurrentWindow.GetHandle
' You can now call a Window API requiring a handle to a Window
' and pass it to hWnd.

' GetTableByName method
Sub TableReport(TblName As String)

' This script prints a report to the output window on the
' table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

' Get the Customer table as a table object.
Set Tbl=CurrentDocument.GetTableByName("customer")

'Print the tablename
Print "Tablename: " & Tbl.Tablename
Print "FileName: " & Tbl.Filename
Print "FullName: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
' The array is 0 based, so we need to start at 0
' and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End Sub

' GetText method
' Retrieve the value of the current row in the LastName field
' in the current view, which is a worksheet.
Dim Txt As String
Txt = CurrentApplication.ActiveView.GetText("LastName")

' GetValue method
' This example creates a result set with all of the fields and records
' from a table and prints the record values.
Dim Con As New Connection
Dim Qry As New Query
Dim RS As New ResultSet
Dim TName As String
Dim i As Integer
TName = CurrentDocument.Tables(0).TableName
Qry.TableName = CurrentDocument.Tables(0).Path & TName
Set Qry.Connection = Con
Set RS.Query = Qry
If Con.ConnectTo("dBASE IV") Then
 If RS.Execute Then
 Do
 For i = 1 To RS.NumColumns
 Print RS.FieldName(i) & " : " & RS.GetValue(i)
 Next
 Loop While RS.NextRow
 End If
End If

' Green property
' Find out how much green is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Green ' Determine the amount of green.
Print b ' Print the amount of green.

' GroupByDataField property
' This example creates a report, adds a summary panel to the report that is
' grouped by the field SALESREP in the INVOICE table, and sets the summary
' panel PageBreak property to true so that a new page is created for
' each distinct SALESREP value.

Dim Rpt As Report
Dim Spanel As SummaryPanel
Dim FB As FieldBox
Dim SumFB As FieldBox

Set Rpt = New Report (CurrentDocument, "INVOICE")
Rpt.Name="MyReport"
Set Spanel = New SummaryPanel(CurrentDocument.MyReport.Body)
Spanel.Height=360
Spanel.Background.Color.SetRGB(COLOR_VANILLA)
Spanel.GroupByDataTable="INVOICE"
Spanel.GroupByDataField="SALESREP"

Spanel.PageBreak=True

Spanel.Name="BySalesRep"
Set FB=New Fieldbox (CurrentDocument.MyReport.BySalesRep)
FB.Width=1440
FB.Height=360
FB.DataTable="INVOICE"
FB.DataField="SALESREP"
CurrentDocument.MyReport.Body.Height=0

Set SumFB= New FieldBox(CurrentDocument.MyReport.BySalesRep)
SumFB.Width=1440
SumFB.Height=360
SumFB.Left=2880
SumFB.DataTable="INVOICE"
SumFB.DataField="QtybyRep"

' GroupByDataTable property
' This example creates a report, adds a summary panel to the report that is
' grouped by the field SALESREP in the INVOICE table, and sets the
' summary panel PageBreak property to true so that a new page is
' created for each distinct SALESREP value.

Dim Rpt As Report
Dim Spanel As SummaryPanel
Dim FB As FieldBox
Dim SumFB As FieldBox

Set Rpt = New Report (CurrentDocument, "INVOICE")
Rpt.Name="MyReport"
Set Spanel = New SummaryPanel(CurrentDocument.MyReport.Body)
Spanel.Height=360
Spanel.Background.Color.SetRGB(COLOR_VANILLA)
Spanel.GroupByDataTable="INVOICE"
Spanel.GroupByDataField="SALESREP"

Spanel.PageBreak=True

Spanel.Name="BySalesRep"
Set FB=New Fieldbox (CurrentDocument.MyReport.BySalesRep)
FB.Width=1440
FB.Height=360
FB.DataTable="INVOICE"
FB.DataField="SALESREP"
CurrentDocument.MyReport.Body.Height=0

Set SumFB= New FieldBox(CurrentDocument.MyReport.BySalesRep)
SumFB.Width=1440
SumFB.Height=360
SumFB.Left=2880
SumFB.DataTable="INVOICE"
SumFB.DataField="QtybyRep"

' Height property
' Example from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' Called from readBlock
 ' txt Reservation owner
 ' start Reservation start time
 ' finish Reservation end time
 ' roomName Reserved room's name or number

' * RUNTIME DEPENDENCIES
' * Constants: Use constants defined by LotusScript in
' * LSCONST.LSS.
' * Globals: Use the global array Rooms() filled by the readBlock
' * sub.

' Declare variables
Dim tt As textbox ' New text block to hold the reservation

 ' owner's name in the view
Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in.
' Determine the vertical placement of the reservation in the view.

Dim matchedRoom As Integer

' Offset and multiplier for the vertical placement of the
' reservation.

Dim verticalPlacement As Integer

' Search through the global array Rooms to find the room passed
' in from the schedule database using the sub readBlock.
' Set matchedRoom to the index of the room passed in.

For i = 0 To Ubound(Rooms)
If Rooms(i) = roomName Then

matchedRoom = i
i = Ubound(Rooms)

End If ' If element matches the room passed in.
Next

' Set position and display for the reservation.

' Header in the view takes up 1635 twips. The height of each row in the table
' is 330 twips.

verticalPlacement = 1635 + (330 * matchedRoom)

' Create the text block to hold the reservation.
Set tt = New TextBox(Currentview.Body)

' Fill the text block with the reservation owner's name
' and spaces to center the text properly.

tt.Text = " " + txt + " "

' Set display properties for the text block to match the form.
tt.Font.Size = 8

 ' Use LotusScript constants for border style.
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False

 ' Use Approach constants for line width.
tt.Border.Width = $apr1point

 ' Use LotusScript constants for color.
Call tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
Call tt.Background.Color.SetRGB (COLOR_50_GRAY)

' Set the position of the text block to correspond to the
' correct room and time.

tt.Height = 325
tt.Top = verticalPlacement ' Current offset from top of

 ' form

' Convert reservation time (passed in) to the horizontal
' location and length on the form.

tt.Left = (((start - 8) * 750) + 945)
tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the clearDisplay
' function can delete the reservation.

tt.Name = "tt" + Str$(tt.Top) + Str$(tt.Left)

End Sub ' displayBlock

' HideMargins property
' Find out if the margins are hidden in the current view.
Dim rval As Integer
rval = CurrentApplication.ActiveView.HideMargins

' Or

' Make the margins for the current view visible.
CurrentApplication.ActiveView.HideMargins = False

' IconBarVisible property
Sub CleanScreen()

' This script performs the same function
' as the Clean Screen menu item on the Edit menu.
CurrentWindow.Redraw=False ' Turn off Redraw temporarily
' Turn off each bar.
CurrentWindow.ActionBarVisible=False
CurrentWindow.IconBarVisible=False
CurrentWindow.StatusBarVisible=False
CurrentWindow.ViewTabVisible=False
CurrentWindow.Redraw=True ' Turn Redraw back on
CurrentWindow.Repaint ' Now repaint the window.

End Sub

' IconSets property
' Find out what icon sets are available.
Dim IcnSets As Variant
Dim i as integer
' Store the icon set collection.
IcnSets = CurrentApplication.IconSets
' Loop through the collection and print the name of each icon set.
ForAll IconSets in IcnSets
 Print IcnSets(i) ' Icon set name appears in the Output panel of the IDE.
 i = i + 1
End ForAll

' InsertAfter method
' Insert the ObjButton button behind the LastName display element
' in the layer order.
' After this statement is executed, LastName displays on top of ObjButton.
Source.ObjButton.InsertAfter(Source.LastName)

' IsChecked property
' Determine if a check box is checked, and then display a message that
' includes the checked or unchecked value.
' This script is placed in an event script for an object in the same
' view as the check box.
If (Source.ObjCheckBox.IsChecked) Then

MessageBox("The check box is checked and its value is " &
Source.ObjCheckBox.CheckedValue)
Else

MessageBox("The check box is not checked and its value is " &
Source.ObjCheckBox.UnCheckedValue)
End If

' IsCommandChecked method
' Determine if the View - Show Tab Order menu item is checked.

Dim rval As Integer
rval = CurrentApplication.ApplicationWindow.IsCommandChecked(IDM_SHOWTABS)

' IsCommandEnabled method
' Determine if the File - Save menu item is enabled.

Dim rval As Integer
rval = CurrentApplication.ApplicationWindow.IsCommandEnabled(IDM_SAVE)

' IsEmpty method
' In this example, create a list box and fill
' the list box with the views available.
Dim LstBox As ListBox
Dim aryVws(20) As String
Dim NumVws As Integer

' Check to find out if the current view is a form.
If (CurrentView.Type = $aprForm) Then

' First find out if the collection of views is empty.
If (CurrentDocument.Views.IsEmpty=False) Then

NumVws = CurrentDocument.Views.Count ' Get the number of views.
For i = 0 To NumVws-1 ' Fill the array with the view names.

aryVws(i) = CurrentDocument.Views(i).Name
Next

End If
Else

Messagebox "You must be on a form."
End If

' Italic property
' Find out if the font in the current display element is italicized.
' If it is, display a message
If(Source.Font.Italic) Then
 Messagebox("The font is italic.")
Else
 Messagebox("The font is not italic")
End If

' Or

' Set the font of the current display element to italic.
Source.Font.Italic = True

' Keywords property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' LabelAlignment property
' Change the label so it is aligned with the center of the field.
Source.LabelAlignment = $LtsAlignmentHorizCenter

' Or

' Retrieve the current label alignment setting.
Dim LblAlign As Long
LblAlign = Source.LabelAlignment

' LabelFont property
' Change the font of the label for the current object to look like the font
' of the LASTNAME object.

Set Source.LabelFont = Source.LASTNAME.LabelFont

' Or

' Create your own font, set the properties, and use it to set the label font.
Dim Fnt as Font
Set Fnt = Source.Labelfont
Fnt.Bold = True 'Bold the font.
Fnt.FontName = "Arial" 'Set the font to Arial.
Fnt.Size = 10 'Set the size to 10 points.

' LabelPosition property
' Display the label below the object.
Source.LabelPosition = $LtsPositionBottom

' Or

' Retrieve the current position of the label for this object.
Dim LblPos As Long
LblPos = Source.LabelPosition

' LabelText property
' Set the label for the current field in the view to Last Name.
Source.LabelText = "Last Name"

' Or

' Retrieve the label for the field in the view.
Dim Lbl As String
Lbl = Source.LabelText

' LastModified property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' LastRecord method
' Go to the last record.
CurrentApplication.ActiveDocWindow.LastRecord()

' LastRow method
'This code is from the deleteScheduledRemovedRooms global
'function in the Meeting Room Scheduler SmartMaster application.
'It deletes all of the values from a table in a batch process using
'Connection, Query, and ResultSet objects.

Sub deleteScheduledRemovedRooms
 Dim Con As New Connection
 Dim Qry As New Query
 Dim RS As New ResultSet

 Dim TName As String
 TName = CurrentDocument.Tables(0).TableName

 If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
 Set Qry.Connection = Con
 Qry.TableName = CurrentDocument.Tables(0).Path & TName
 Set RS.Query = Qry
 If (RS.Execute) Then
 If (RS.NumRows) Then
 RS.LastRow 'Go to the last row.
 End If
 End If
 Con.Disconnect
 End If
End Sub

' LeftMargin property
'Find out what the current left margin is (in TWIPS) for the active view.
Dim LeftMrgn As Integer
LeftMrgn = CurrentApplication.ACTIVEVIEW.LeftMargin

'Or

'Set the left margin for the active view to a new value.
CurrentApplication.ACTIVEVIEW.LeftMargin = 1440

' Left (Border) property
' This script comes from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application.
' Create a new text block with a 1 point left and right ultramarine border.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As textbox

t = 1635 & (330 * t)
Set tt = New textbox(currentview.Body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $ItsBorderThick
tt.Border.Color.SetRGB (color_ultramarine)

End Sub

' Left property
' Example from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' Called from readBlock
 ' txt reservation owner
 ' start reservation start time
 ' finish reservation end time
 ' roomName name or number of reserved room

' * RUNTIME DEPENDENCIES
' * Constants: Uses constants defined by LotusScript defined in
' * LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the readBlock
' * sub.

' Declare variables
Dim tt As textbox ' New text block to hold the reservation

 ' owner's name in the view
Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in.
' Determine the vertical placement of the reservation in the view.

Dim matchedRoom As Integer

' Offset and multiplier for the vertical placement of the
' reservation.

Dim verticalPlacement As Integer

' Search through the global array Rooms to find the room passed
' in from the Schedule database using the sub readBlock.
 ' Set matchedRoom to the index of the room passed in.

For i = 0 To Ubound(Rooms)
If Rooms(i) = roomName Then

matchedRoom = i
i = Ubound(Rooms)

End If ' If element matches the room passed in.
Next

' Set position and display for the reservation.

' Header in the view takes up 1635 twips, each row in the table
' is 330 twips tall.

verticalPlacement = 1635 + (330 * matchedRoom)

' Create the text block to hold the reservation.
Set tt = New textbox(currentview.body)

' Fill the text block with the reservation owner's name
' and spaces to center the text properly.

tt.Text = " " + txt + " "

' Set display properties for the text block to match the form.
tt.Font.Size = 8

 ' Use LotusScript constants for border style.
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False

 ' Use Approach constants for line width.
tt.Border.Width = $apr1point

 ' Use LotusScript constants for color.
Call tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
Call tt.Background.Color.SetRGB (COLOR_50_GRAY)

' Set the position of the text block to correspond to the
' correct room and time.

tt.Height = 325
tt.Top = verticalPlacement ' Current offset from top of

 ' form

' Convert reservation time (passed in) to the horizontal
' location and length on the form.

tt.Left = (((start - 8) * 750) + 945)
tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the clearDisplay
' function can delete the reservation.

tt.Name = "tt" + Str$(tt.Top) + Str$(tt.Left)

End Sub ' displayBlock

' LineStyle property
' Reference the Pattern property of the line using the LineStyle property.
Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)
 Source.ObjLine.LineStyle.Pattern = $ltsLineStyleDot
End Sub

'ListDataSources method
'Prints the names of the data source types available from this machine.
Sub PrintDataSourceNames
 Dim Con As New connection 'A new connection object
 Dim ListOfData As Variant 'The resulting list
 Dim i As Integer 'Loop index

 'Create the array of data source types.
 ListOfData = Con.ListDataSources()
 'Print each item in the array to Output.
 For i = 0 To Ubound(ListOfData)-1
 Print ListOfData(i)
 Next
End Sub

'ListFields method
'Prints the names of the fields in a table of a data source type
'corresponding to a Connection object.
Sub PrintFieldList
 Dim Con As New Connection 'A new Connection object
 Dim FieldList As Variant 'Resulting list of fields
 Dim i As Integer 'Index for print loop

 'Connect to a data source.
 Call Con.ConnectTo("dBase IV")

 'Read fields from a table of the same data source.
 FieldList = Con.ListFields("orders.dbf")

 'Print each item in the array to Output.
 For i = 1 To Ubound(FieldList)
 Print FieldList(i)
 Next
End Sub

'ListTables method
'First of two examples:
'Prints the names of the tables available from this server.
Sub PrintTableNamesFromODBC
 Dim Con As New Connection 'A new connection object
 Dim ListOfTables As Variant 'The resulting list
 Dim i As Integer 'Loop index

 'Create a connection to the database Sample.
 Call Con.ConnectTo("ODBC Data Sources", "UserID", "Password", "!Sample")
 'Create the array of table names.
 ListOfTables = Con.ListTables()
 'Print each item in the array to Output.
 For i = 0 To Ubound(ListOfTables)-1
 Print ListOfTables(i)
 Next
 Con.Disconnect
End Sub

'Second of two examples:
'Prints the tables available from this directory.
Sub PrintTableNamesFromDirectory
 Dim Con As New Connection 'A new connection object
 Dim ListOfTables As Variant 'The resulting list
 Dim i As Integer 'Loop index

 'Create a connection to Paradox databases.
 Call Con.ConnectTo("Paradox")
 'Create the array of table names.
 ListOfTables = Con.ListTables("c:\lotus\work\approach\")
 'Print each item in the array to Output.
 For i = 0 To Ubound(ListOfTables)-1
 Print ListOfTables(i)
 Next
 Con.Disconnect
End Sub

' MacroClick property
' Set the Main Menu button to run a macro when it is clicked.
MainMenuButton.MacroClick = "Go To Main Menu"

' MacroDataChange property
' Run the Go To Customer Information macro when the data in the
' current field changes.
Source.MacroDataChange = "Go To Customer Information"

' Or

' Get the name of the macro that is set to run if the data changes in the
' current field.
Dim mstr As String
mstr = Source.MacroDataChange

' MacroTabIn property
' Run the macro Go To Customer Information when
' the user tabs into the current display element.
Source.MacroTabIn = "Go To Customer Information"

' Or

' Get the name of the macro that is currently set to
' run when the user tabs into the current display element.
Dim MyMacroName As String
MyMacroName = Source.MacroTabIn

' Or

' Assign the macro to another display element.
Source.Field2.MacroTabIn = Source.MacroTabIn

' MacroTabOut property
' Run the macro Go To Customer Information when the
' user tabs out of the current display element.
Source.MacroTabOut = "Go To Customer Information"

' Or

' Get the name of the macro that is currently set to
' run when the user tabs out of the current display element.
Dim MyMacroName As String
MyMacroName = Source.MacroTabOut

' Or

' Assign the macro to another display element.
Source.Field2.MacroTabOut = Source.MacroTabOut

' Magenta property
' Find out how much magenta is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Magenta ' Determine the amount of magenta.
Print b ' Print the amount of magenta.

' MainTable property
' Access the main table through the data object.
' The first step is to find out where the main table is.
Dim MnTbl As String
Dim NumTbls As Integer
Dim Tbls As Variant
Dim t As Variant

MnTbl = CurrentView.MainTable ' Get the name of the main table.
Set Tbls = CurrentDocument.Tables ' Get the collection of tables.
NumTbls = Tbls.Count ' Find out how many tables there are.
For i = 1 To NumTbls Step 1

If (Tbls(i-1).TableName = MnTbl) Then ' If we've found the right one.
j=1

End If
Next

' MakeNamedStyle method
' Create a named style called MyStyle based on the attributes
' of the current object.
Dim MyReturnValue As Integer
MyReturnValue = Source.MakeNamedStyle("MyStyle")

' Maximize method
' After opening a document, you can expand the window
' to use the full size of the screen, so no other applications are visible.

CurrentApplication.ApplicationWindow.Maximize()

' MenuBar property
' Change the menu for the current view to
' a custom menu named EasyMenu.

Dim Mnu As Variant
Dim NumMnus As Integer

Mnu = CurrentApplication.Menus ' Get the list of menus.

NumMnus = Ubound(Mnu) ' Find out how many custom menus there are.
' Arrays are 0 based.
For i = 0 To NumMnus Step 1

If (Mnu(i) = "EasyMenu") Then ' If the right menu is available.
CurrentView.MenuBar = Mnu(i) ' Change it.
i = NumMnus

Elseif (i = NumMnus) Then ' If the right menu isn't there.
Messagebox "EasyMenu is not available.",,"Menus"

End If
Next

' Menus
' Print the names of the menus available.
Sub PrintMenuNames
 Dim MenuNames As Variant ' The resulting list of menus
 Dim i As Integer ' Loop index

 'Create the array of menus.
 MenuNames = Document.Menus
 'Print each item in the array to Output.
 For i = 0 To Ubound(MenuNames)
 Print MenuNames(i)
 Next
End Sub

' Minimize method
' After opening a document, you can hide Approach so it runs in the
' background.

CurrentApplication.ApplicationWindow.Minimize()

' Modified property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

'If the document has been modified...
If (CurrentDocument.Modified) Then

Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)
& " times."

Else
Print "The document hasn't been modified."

End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' NamedFindSorts property
' Change the named find/sort to the "CA" named find/sort
Dim Finds As Variant
Dim NumFinds As Integer

Finds = CurrentDocument.NamedFindSorts

NumFinds = Ubound(Finds) ' Find out how many named finds there are.
' Arrays are 0 based.
For i = 0 To NumFinds Step 1

If (Finds(i) = "CA") Then ' If we've found the right named find/sort.
CurrentWindow.NamedFindSort = Finds(i) 'Change it.

Elseif (i = NumFinds) Then ' If the right named find/sort isn't there.
Messagebox "The CA named find/sort is not available.",,"Find/Sort"

End If
Next

' NamedFindSort property
' Change the named find/sort to the "CA" named find/sort
Dim Finds As Variant
Dim NumFinds As Integer

Finds = CurrentDocument.NamedFindSorts

NumFinds = Ubound(Finds) ' Find out how many named finds there are.
' Arrays are 0 based.
For i = 0 To NumFinds Step 1

If (Finds(i) = "CA") Then ' If we've found the right named find/sort.
CurrentWindow.NamedFindSort = Finds(i) ' Change it.

Elseif (i = NumFinds) Then ' If the right named find/sort isn't there.
Messagebox "The CA named find/sort is not available.",,"Find/Sort"

End If
Next

' NamedStyles property
' Change the named style for the current display element to
' the CompanyStyle named style.

Dim Styl As Variant
Dim NumStyls As Integer

Styl = CurrentDocument.NamedStyles ' Get the list of named styles.

NumStyls = Ubound(Styl) ' Find out how many named styles there are.
'Arrays are 0 based.
For i = 0 To NumStyls Step 1

If (Styl(i) = "CompanyStyle") Then ' If we've found the right named style.
Source.NamedStyle = Styl(i) ' Change it.
i = NumStyls

Elseif (i = NumStyls) Then ' If the right named style isn't there.
Messagebox "The company named style is not available.",,"Styles"

End If
Next

' NamedStyle property
' Change the named style for the current display element or panel
' to the CompanyStyle named style.

Dim Styl As Variant
Dim NumStyls As Integer

Styl = CurrentDocument.NamedStyles 'Get the list of named styles.

NumStyls = Ubound(Styl) 'Find out how many named styles there are.
' Arrays are 0 based.
For i = 0 To NumStyls Step 1

If (Styl(i) = "CompanyStyle") Then 'If you find the right one.
 Source.NamedStyle = Styl(i) 'Change it.
 i = NumStyls
Elseif (i = NumStyls) Then 'If the named style isn't there.
 Messagebox "The company named style is not available.",,"Styles"
End If

Next

' Name property
' Example from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' Called from readBlock
 ' txt reservation owner
 ' start reservation start time
 ' finish reservation end time
 ' roomName name or number of reserved room
' * RUNTIME DEPENDENCIES
' * Constants: Uses constants defined by LotusScript defined in
' * LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the readBlock
' * sub.

' Declare variables
Dim tt As textbox ' New text block to hold the reservation

 ' owner's name in the view
Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in.
' Determine the vertical placement of the reservation in the view.

Dim matchedRoom As Integer

' Offset and multiplier for the vertical placement of the
' reservation.

Dim verticalPlacement As Integer

' Search through the global array Rooms to find the room passed
' in from the Schedule database using the sub readBlock.
 ' Set matchedRoom to the index of the room passed in.

For i = 0 To Ubound(Rooms)
If Rooms(i) = roomName Then

matchedRoom = i
i = Ubound(Rooms)

End If ' If element matches the room passed in.
Next

' Set position and display for the reservation.

' Header in the view takes up 1635 twips, each row in the table
' is 330 twips tall.

verticalPlacement = 1635 + (330 * matchedRoom)

' Create the text block to hold the reservation.

Set tt = New textbox(currentview.body)

' Fill the text block with the reservation owner's name
' and spaces to center the text properly.

tt.Text = " " + txt + " "

' Set display properties for the text block to match the form.
tt.Font.Size = 8

 ' Use LotusScript constants for border style.
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False

 ' Use Approach constants for line width.
tt.Border.Width = $apr1point

 ' Use LotusScript constants for color.
Call tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
Call tt.Background.Color.SetRGB (COLOR_50_GRAY)

' Set the position of the text block to correspond to the
' correct room and time.

tt.Height = 325
tt.Top = verticalPlacement ' Current offset from top of

 ' form

' Convert reservation time (passed in) to the horizontal
' location and length on the form.

tt.Left = (((start - 8) * 750) + 945)
tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the clearDisplay
' function can delete the reservation.

tt.Name = "tt" + Str$(tt.Top) + Str$(tt.Left)

End Sub ' displayBlock

' NewPage method
' Add a new page to the current form.
CurrentApplication.ActiveView.NewPage

' NewRecord method
' Create a new record.

CurrentApplication.ActiveDocWindow.NewRecord()

' New (Button) method
' Create a new button.

Dim Btn As Button
' Create a new Click Here button in the current view.
Set Btn = New Button(CurrentApplication.ActiveView.Body,"Click Here")
Btn.Left = 2000 'Position the button, in twips.
Btn.Top = 2000
Btn.Width = 1750
Btn.Height = 640
Btn.NonPrinting = True 'Do not print this button.

 ' Set the attributes using a pre-existing named style.
Btn.NamedStyle = "Default"

' New (ChartView) method
' Create a new chart.
' In the example below, the Salesrep field is grouped on the x-axis;
' the Qty field is summed on the y-axis; and a legend label is created
' for each distinct value in the Category field. The x, y, and s
' arguments are arrays of strings.
' The enumeration constants - $aprCalcSum and $aprChartTypeBar - signify
' that the values represented by the y argument should be summed and that
' the chart is a bar chart. Precede each enumeration constant with a $.
' After you create the chart the script makes the new chart the active view
' and names it.
' The context for this example might be a button in an existing view.

Dim x(0) As String
Dim y(0) As String
Dim s(0) As String

x(0)= "Salesrep"
y(0) = "Qty"
s(0)= "Category"

Dim chrt As Chartview
Set chrt = New ChartView(currentDocument, x, y, s, $aprCalcSum, $aprChartTypeBar)

Set currentWindow.activeView=chrt
chrt.Name="MyCHRT"

' New (Checkbox) method
' This script creates a new check box.
' It assumes an existing table named Customer with a field
' named Type and an existing named style of MyStyle.
Dim ChkBox as CheckBox 'Declare the CheckBox object.
Set ChkBox = New CheckBox(CurrentView.Body) 'Create a new check box on the current
view on page 1 (default page).
' Define the settings for the check box.
ChkBox.Left = 400 ' In twips
ChkBox.Top = 400 ' In twips
' Set the attributes using a pre-existing named style.
ChkBox.NamedStyle = MyStyle
' Set the label for the check box.
ChkBox.LabelText = "Distributor"
' Assign the check box to the Customer table.
ChkBox.DataTable = "Customer"
' Assign the check box to the Type field.
ChkBox.DataField = "Type"
' Set the default value of the check box as checked.
ChkBox.SetState = True

' New (Collection) method
' Collections let you make a group of objects.
Dim rval As Integer ' Return value
Dim CustomerColl As Collection

Set CustomerColl = New Collection()

rval = CustomerColl.Add(Source.FirstName)
rval = CustomerColl.Add(Source.LastName)
rval = CustomerColl.Add(Source.Address)
rval = CustomerColl.Add(Source.City)
rval = CustomerColl.Add(Source.State)
rval = CustomerColl.Add(Source.Postal_Cod)
rval = CustomerColl.Add(Source.Company)

' Copy the Company field to the third object
' of the collection.
rval = CustomerColl.SetAt(3, Source.Company)

' The only fields needed are FirstName,
' LastName, and Company. Remove the remaining
' fields from the collection. Since the SetAt
' function copies the object to the specified location,
' two copies of the Company field exist in the collection.
' Start at the end of the collection and work
' backwards to get rid of the Company field at the
' end of the collection.
' Arrays are zero-based.
i = CustomerColl.Count - 1
Do While i >2

If (CustomerColl(i).Name = "COMPANY") Then
CustomerColl.Remove(i+1)
' Because the object was deleted, reduce
' the number of items in the collection by 1.
i = i - 1

End If
If (CustomerColl(i).Name = "ADDRESS") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "CITY") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "STATE") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "POSTAL_COD") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
Loop

' New (Color) method
' Create a new color

Dim MyRed As Color
Set MyRed = New Color(224, 31, 36)

' Set the background color to MyRed.
Source.Background.Color = MyRed

' New (Crosstab) method
' The example below creates a new crosstab using the fields
' Salesrep, Category, and Qty for the rows, columns, and body of the crosstab,
' respectively. The arguments represented by R, C, and B are arrays of
' strings.

' Enumeration constants ($aprCalcSum) designate the summary
' calculation type for the body cells, as well as for the row and column
' totals. Each enumeration constant is preceded by $ (dollar sign). String
' values (Total) label the grand summary row and column of the
' crosstab.
' The arguments for row, column, and body are arrays of strings. Thus,
' you can create multilevel summaries, and you can also add
' more than one field to the body.

Dim R(1) As String
Dim C(1) As String
Dim B(1) As String

R(1) = "Salesrep"
C(1) = "Category"
B(1) = "Qty"

Dim CR As Crosstab

Set CR = New Crosstab(CurrentDocument,R,C,B,$aprCalcSum,"Total",$aprCalcSum,"Total",
$aprCalcSum)

' New (Document) method
' Creates a new document.
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet
Dim Doc As Document

If Con.ConnectTo("dBASE IV") Then ' Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = "C:\LOTUS\APPROACH\CUSTOMER.DBF"
Set ResSet.Query = Qry
If (ResSet.Execute)Then

Set Doc = New Document(ResSet)
End If
Con.Disconnect

End If

' New (DropDownBox) method
' Create a drop-down box in the current view, on page 1.
Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)

Dim DropDnBox As DropDownBox
Set DropDnBox = New DropDownBox(Source.Parent,1)

End Sub

' New (FieldBox) method
' Create a new field box on the current form, on page 1. After you create
' the field box, bind it to a field in the database by specifying
' the DataTable and DataField properties.
Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)

Dim FldBox As FieldBox

Set FldBox = New FieldBox(Source.Parent,1)
FldBox.DataTable = "Customer"
FldBox.DataField = "Company"

End Sub

' New method (FindDistinct)
'Create and run a find for distinct records without other conditions.
Sub DistinctRecords
 'Create a FindDistinct object.
 Set DisFind = New FindDistinct("Country")

 'Run the find.
 Call CurrentWindow.FindSort(DisFind)
End Sub

' Create and run a find for distinct records as part of a Find object.
Sub PostalCodeFind
 'Create a FindDistinct object.
 Set DisFind = New FindDistinct("PostalCode")

 'Create a Find object.
 Set MyFind = New Find()

 'Add a condition to find all records in Japan.
 Call MyFind.And("Country", "Japan")

 'Attach the FindDistinct object to the Find object.
 Set MyFind.FindSpecial = DisFind

 'Run the find.
 Call CurrentWindow.FindSort(MyFind)

End Sub

' New method (FindDuplicate)
' Create and run a find for distinct records without other conditions.
Sub DuplicateRecords
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")

 'Run the find.
 Call CurrentWindow.FindSort(DupFind)
End Sub

' Create a FindDuplicate object as part of a Find object.
Sub FindDups
 'Create a FindDuplicate object.
 Set DupFind = New FindDuplicate("LastName")

 'Create a Find object.
 Set MyFind = New Find()

 'Add a condition to find all records in Japan.
 Call MyFind.And("Country", "Japan")

 'Attach the FindDistinct object to the Find object.
 Set MyFind.FindSpecial = DupFind

 'Run the find.
 Call CurrentWindow.FindSort(MyFind)

End Sub

' New method (Find)
Sub SampleFinds
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 Call CurrentWindow.FindAll

 'This script shows a correct way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneField As New Find
 Call sfindOneField.And("Country","Japan, USA")
 Call CurrentWindow.FindSort(sfindOneField)

 'This script shows an alternate way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneFieldAlternate As New Find
 Call sfindOneFieldAlternate.And("Country","Japan")
 Call sfindOneFieldAlternate.Or("Country","USA")
 Call CurrentWindow.FindSort(sfindOneFieldAlternate)

 'This script finds multiple values in multiple fields.
 'It finds records with either "Japan" or "USA" in the Country field with Order
Total >= 1000
 'and it also finds records with only "Japan" in the Country field with Order Total
<1000.
 'The two sets of results are returned as the found set.
 Dim sfindComplex As New Find
 Call sfindComplex.And("Country", "Japan, USA")
 Call sfindComplex.And("OrderTotal",">= 1000")
 Call sfindComplex.Or("Country", "Japan")
 Call sfindComplex.And("OrderTotal","<1000")
 Call CurrentWindow.FindSort(sfindComplex)

 'This script shows an INCORRECT way to finding multiple values in the same field.
 'Do not do this by mistake.
 Dim sfindBad As New Find
 Call sfindBad.And("Country","Japan")
 Call sfindBad.And("Country","USA") 'The value "USA" replaces the previous
value.
 Call CurrentWindow.FindSort(sfindBad)
 'The find returns only records with Country = "USA".

 ' This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the
 'values in the OrderTotal field.

 Call CurrentWindow.FindAll
 Dim ssortAll As New sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' New (Form) method
' This script creates a new form and adds a field box to the new form.
' The field box is then set to display the values from a field in the
' current table.

Dim Frm As Form
Dim FB As Fieldbox

Set Frm = New Form(CurrentDocument)
Set CurrentWindow.ActiveView=Frm
Frm.Name="MyForm"

Set FB=New Fieldbox (currentdocument.myform.body)
FB.width=1440
FB.height=360
FB.datatable="INVOICE"
FB.datafield="SALESREP"

' New (LineObject) method
' Create a new line on the current form on page #1.

Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)
Dim L As LineObject

Set L = New LineObject(Source.Parent,1)
L.Left = 1440
L.Top = 1440

End Sub

' New (ListBox)
' This script creates a list box and fills
' it with the names of available views.

Dim LstBox As ListBox
Dim aryVws(20) As String
Dim NumVws As Integer

' Find out if the current view is a form.
If (CurrentView.Type = $aprForm) Then

' Create a new list box in the current view.
Set LstBox = New ListBox(CurrentView.Body, 1)
NumVws = CurrentDocument.Views.Count ' Get the number of views.
For i = 0 To NumVws-1 ' Fill the array with the view names.

aryVws(i) = CurrentDocument.Views(i).Name
Next

Else
Messagebox "You must be on a form."

End If

' New (Picture) method
' This global function is taken from the Viewer
' SmartMaster application.

Function createPictures(f As form) As Integer
On Error Resume Next

Dim obj As Integer
Dim c As collection
Dim p As picture
Dim pnl As panel

Set pnl = f.body
Set c = f.objectlist
Forall o In c

If (o.type = $aprPicture) Then
Delete o

End If
End Forall

obj = 0
For i = 1 To ((Ubound(pictureList)/numPicColumns) + 1)

If i = 1 Then
t = t + 900 + 270 + 90

Else
t = t + 1440 + 270

End If
l = 0
For j = 1 To numPicColumns

If (j <= (Ubound(pictureList) + 1)/i) Then
If j = 1 Then

l = l + 720 + 270 + 90
Else

l = l + 1440 + 270
End If
Set p = New picture(pnl, pictureList(obj))
p.height = 1440
p.width = 1440
p.left = l
p.top = t
obj = obj + 1

End If
Next

Next
runapproachmacro("switchToViewer")

End Function

' New (RadioButton) method
' Create a new RadioButton object on the current form on page #1. This script
' is part of the Click event of a display element such as a field box.

Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)
Dim rb As RadioButton
Set rb = New RadioButton(Source.Parent,1)

End Sub

' New (Rectangle) method
' Create a new rectangle in the current view on page #1.

Dim Rect As Rectangle
Set Rect = New Rectangle(Source.Parent,1)

' New (Report) method
' Create a new report and designate INVOICE as the main table for that
' report. After you create the new report, make the new report the
' active view and name it. Then add a summary panel that groups records by
' SALESREP to the report and name it.
' Add the fields SALESREP and QtybyRep to the summary panel.
' Set the body height to zero so that only one row appears for each
' SALESREP with a subtotal of QTY for that SALESREP.
' Calculate the QTY subtotal by adding the previously
' defined summary calculation (SSUM of QTY) to the summary panel.

Dim Rpt As Report
Dim Spanel As SummaryPanel
Dim FB As FieldBox
Dim SumFB As FieldBox

Set Rpt = New Report (CurrentDocument, "INVOICE")
Rpt.name="MyReport"
Set Spanel = New SummaryPanel(CurrentDocument.MyReport.body)
Spanel.Height=360
Spanel.background.color.setrgb(COLOR_VANILLA)
Spanel.GROUPBYDATATABLE="INVOICE"
Spanel.GROUPBYDATAFIELD="SALESREP"
Spanel.name="BySalesRep"
Set FB=New Fieldbox (CurrentDocument.MyReport.BySalesRep)
FB.width=1440
FB.height=360
FB.datatable="INVOICE"
FB.datafield="SALESREP"
Set CurrentApplication.ActiveView = CurrentDocument.MyReport
CurrentDocument.MyReport.Body.Height=0

Set SumFB= New FieldBox(CurrentDocument.MyReport.BySalesRep)
SumFB.width=1440
SumFB.height=360
SumFB.LEFT=2880
SumFB.datatable="INVOICE"
SumFB.datafield="QtybyRep"

' New (RoundRect) method
' Create a new rounded rectangle in the current view on page #1.

Dim RoundRectangle As RoundRect
Set RoundRectangle = New RoundRect(Source.Parent,1)

' New method (Sort)
Sub SampleFinds
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 ' This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the
 'values in the OrderTotal field.
 Call CurrentWindow.FindAll
 Dim ssortAll As New Sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' New (SummaryPanel) method
' Create a new report and designate INVOICE as the main table for that
' report. After the new report is created, make the new report
' the active view and name it. Then add a summary panel that groups records by
' SALESREP to the report and name the summary panel.
' After the summary panel is added to the report, add the fields SALESREP and
' QtybyRep to the summary panel. Set the report body height to
' zero so that only one row appears for each SALESREP with a subtotal of QTY
' for that SALESREP. Calculate the QTY subtotal by adding the previously
' defined summary calculaltion (SSUM of QTY) to the summary panel.

Dim Rpt As Report
Dim Spanel As SummaryPanel
Dim FB As FieldBox
Dim SumFB As FieldBox

Set Rpt = New Report (CurrentDocument, "INVOICE")
Rpt.Name="MyReport"
Set Spanel = New SummaryPanel(CurrentDocument.MyReport.Body)
Spanel.Height=360
Spanel.Background.Color.SetRGB(COLOR_VANILLA)
Spanel.GroupByDataTable="INVOICE"
Spanel.GroupByDataField="SALESREP"

Spanel.PageBreak=True

Spanel.Name="BySalesRep"
Set FB=New Fieldbox (CurrentDocument.MyReport.BySalesRep)
FB.Width=1440
FB.Height=360
FB.DataTable="INVOICE"
FB.DataField="SALESREP"
CurrentDocument.MyReport.Body.Height=0

Set SumFB= New FieldBox(CurrentDocument.MyReport.BySalesRep)
SumFB.Width=1440
SumFB.Height=360
SumFB.Left=2880
SumFB.DataTable="INVOICE"
SumFB.DataField="QtybyRep"

' New (TextBox) method
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)

Dim tt As textbox

Dim h As Integer
Dim i As Integer

For i = 0 To Ubound(rooms)
If rooms(i) = roomName Then

t = i
i = Ubound(rooms)

End If
Next
t = 1635 + (330 * t)
Set tt = New textbox(currentview.body)
tt.text = " " & txt & " "
tt.font.size = 8
tt.border.style = $ltsBorderStyleNone
tt.border.left = True
tt.border.right = True
tt.border.top = False
tt.border.bottom = False
tt.border.width = $apr1point
tt.border.color.setrgb color_ultramarine
tt.background.color.setrgb color_50_gray
tt.height = 325
tt.top = t
tt.left = (((start - 8) * 750) + 960)
tt.width = (750 * (finish - start))

End Sub

' New (Worksheet) method
' Create a new worksheet and use the AddColumn method to add the
' field QTY to the new worksheet. Arguments to name the column and
' position the column are optional.
' Context for this example is a click event of a button
' on a form in the current document.

Dim Wrk As Worksheet
Set Wrk = New Worksheet(currendocument)
Set CurrentWindow.ActiveView=Wrk
Wrk.Name="Wrksheet"
Wrk.AddColumn("QTY")

' NextRecord method
' Go to the next record.

CurrentApplication.ActiveDocWindow.NextRecord()

' NextRow method
' This example makes a result set from a table associated with the current
' document and prints all of the values in the result set.

Dim RS As New ResultSet
Dim i As Integer
'Create the result set.
Set RS = Currentdocument.Tables(0).CreateResultSet
'Loop through all of the records and print each field name and corresponding value.
Do
 For i = 1 To RS.NumColumns
 Print RS.FieldName(i) & " : " & RS.GetValue(i)
 Next
Loop While RS.NextRow

' NonPrinting property
' Set the current display element not to print.
Source.NonPrinting = True

' Or

' Get the value of the property.
Dim MyReturnValue As Integer
MyReturnValue = Source.NonPrinting

' NumColumns method
Dim c As New connection
Dim qu As New query
Dim rs As New resultset
tname = currentdocument.tables(0).tablename
qu.Tablename = currentdocument.tables(0).path & tname
Set qu.connection = c
Set rs.query = qu
If c.connectto("dBASE IV") Then
 If rs.execute Then
 Do
 For i = 1 To RS.NUMCOLUMNS
 Print RS.FIELDNAME(i) & " : " & RS.GETVALUE(i)
 Next
 Loop While RS.NEXTROW
 End If
End If

' NumFields property
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the table as a Table object.
Set Tbl=CurrentDocument.GetTableByName(TblName)
'Since this might be a SQL or Notes table, first
'find out if it is still connected to the document (.APR file).
If (Tbl.IsConnection) Then

'Print the tablename
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End If

End Sub

' NumJoins property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' NumPages property
' Find the number of pages in the current view.

Dim NumPgs As Integer
NumPgs = CurrentApplication.ActiveView.NumPages

' NumRecordsFound property
' Implement a named find/sort, and then print the number of records found.

CurrentWindow.NamedFindSort="CA"
' Find out how many records were found.
Print CurrentWindow.NumRecordsFound

' NumRecords property
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the table as a table object.
Set Tbl=CurrentDocument.GetTableByName(TblName)
'Since this might be a SQL or Notes table, first
'find out if it is still connected to the document (.APR file).
If (Tbl.IsConnection) Then

'Print the tablename
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End If

End Sub

' NumRevisions property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' NumRows method
'This code is pulled from the deleteScheduledRemovedRooms global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Con.Disconnect
End If

End Sub

' NumTables property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' NumViews property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' OnSwitchFromMacro property
' Retrieve the name of the macro to be triggered when users switch from
' the view.
Dim FrmMacro As String
FrmMacro = CurrentApplication.ActiveView.OnSwitchFromMacro

' Or

' Set the macro to be executed when users switch from the view.
CurrentApplication.ActiveView.OnSwitchFromMacro = "MyMacro"

' OnSwitchToMacro property
' Retrieve the name of the macro to be triggered when users switch
' to the view.
Dim ToMacro As String
ToMacro = CurrentApplication.ActiveView.OnSwitchToMacro

' Or

' Set the macro to be executed when users switch to the view.
CurrentApplication.ActiveView.OnSwitchToMacro = "MyMacro"

' OpenDocument method
' This script lays the groundwork for an application that runs
' in the background. After opening a document, hide Approach.

Dim rval As Integer ' Return Value

' Minimize Approach (optional)
CurrentApplication.ApplicationWindow.Minimize

' Hide Approach from the user
CurrentApplication.Visible=False

' Open an application that runs automatically.
rval = CurrentApplication.OpenDocument("AutoApp", "C:\LOTUS\APPROACH")

' Run your program.

' Show Approach to the user
CurrentApplication.Visible=True

' Maximize Approach (optional)
CurrentApplication.ApplicationWindow.Maximize

' Quit Approach
CurrentApplication.CloseWindow

' Orientation property
' Change the orientation of the line. The Orientation property
' accepts Approach constants.
Source.ObjLine.Orientation = $ltsOrientationPosSlope

' Or method
Sub SampleFinds
 'This sub expects the main table for the current view to have the following fields:
 ' Country Text
 ' OrderTotal Numeric

 Call CurrentWindow.FindAll

 'This script shows a correct way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneField As New Find
 Call sfindOneField.And("Country","Japan, USA")
 Call CurrentWindow.FindSort(sfindOneField)

 'This script shows an alternate way to find multiple values in the same field.
 'It finds either "Japan" or "USA" in the Country field.
 Dim sfindOneFieldAlternate As New Find
 Call sfindOneFieldAlternate.And("Country","Japan")
 Call sfindOneFieldAlternate.Or("Country","USA")
 Call CurrentWindow.FindSort(sfindOneFieldAlternate)

 'This script finds multiple values in multiple fields.
 'It finds records with either "Japan" or "USA" in the Country field with Order
Total >= 1000
 'and it also finds records with only "Japan" in the Country field with Order Total
<1000.
 'The two sets of results are returned as the found set.
 Dim sfindComplex As New Find
 Call sfindComplex.And("Country", "Japan, USA")
 Call sfindComplex.And("OrderTotal",">= 1000")
 Call sfindComplex.Or("Country", "Japan")
 Call sfindComplex.And("OrderTotal","<1000")
 Call CurrentWindow.FindSort(sfindComplex)

 'This script shows an INCORRECT way to finding multiple values in the same field.
 'Do not do this by mistake.
 Dim sfindBad As New Find
 Call sfindBad.And("Country","Japan")
 Call sfindBad.And("Country","USA") 'The value "USA" replaces the previous
value.
 Call CurrentWindow.FindSort(sfindBad)
 'The find returns only records with Country = "USA".

 ' This script sorts records according to the values in two different fields.
 'If finds all records, then sorts them in ascending order alphabetically by the
values
 'in the Country field, and then sorts them in descending order numerically by the
 'values in the OrderTotal field.

 Call CurrentWindow.FindAll
 Dim ssortAll As New Sort
 Call ssortAll.Add("Country", LtsSortAscending)
 Call ssortAll.Add("OrderTotal", LtsSortDescending)
 Call CurrentWindow.FindSort(ssortAll)

End Sub

' PageBreak property
' This example creates a report, adds a summary panel to the report that is
' grouped by the field SALESREP in the INVOICE table, and sets the
' summary panel PageBreak property to true so that a new page is
' created for each distinct SALESREP value.

Dim Rpt As Report
Dim Spanel As SummaryPanel
Dim FB As FieldBox
Dim SumFB As FieldBox

Set Rpt = New Report (CurrentDocument, "INVOICE")
Rpt.Name="MyReport"
Set Spanel = New SummaryPanel(CurrentDocument.MyReport.Body)
Spanel.Height=360
Spanel.Background.Color.SetRGB(COLOR_VANILLA)
Spanel.GroupByDataTable="INVOICE"
Spanel.GroupByDataField="SALESREP"

Spanel.PageBreak=True

Spanel.Name="BySalesRep"
Set FB=New Fieldbox (CurrentDocument.MyReport.BySalesRep)
FB.Width=1440
FB.Height=360
FB.DataTable="INVOICE"
FB.DataField="SALESREP"
CurrentDocument.MyReport.Body.Height=0

Set SumFB= New FieldBox(CurrentDocument.MyReport.BySalesRep)
SumFB.Width=1440
SumFB.Height=360
SumFB.Left=2880
SumFB.DataTable="INVOICE"
SumFB.DataField="QtybyRep"

' Page property
' Return the number of the page containing the current display element.
Dim MyPageNumber As Integer
MyPageNumber = Source.Page

' Parent (Document Class) property
' Determine the path of the Approach executable running Orders.APR

Dim TempAppPath as String
TempAppPath = Orders.Parent.Path

' Parent property
' Print the name of the parent of this object to the Output panel of
' the IDE.
Print Source.Parent.Parent.Name
' If the current object is a button, the output is
' the name of the view containing the panel that the button is on.
' If the current object is a summary panel, the output is
' the name of the report that the panel is on.

'Password property
'Sets the password for a server connection (write-only)
Dim C As New Connection
C.UserID = "UserID"
C.Password = "UserPassword"
CkConnectTo = C.ConnectTo("SQL Server", C.UserID, C.Password, "sqlsvr_nt351")
C.Disconnect

' Path property
Sub DocumentReport()

' This script prints a report of document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables associated with the .APR: " &

Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' Pattern property
' Change the style of a line to solid. The Pattern property accepts
' Approach enumerators for the line styles.

Source.ObjLine.LineStyle.Pattern = $ltsLineStyleSolid

' PrevRecord method
' Go to the previous record.

CurrentWindow.PrevRecord()

' PrevRow Record
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim C As New Connection
Dim Q As New Query
Dim RS As New ResultSet

Dim tname As String
tname = currentdocument.tables(0).tablename

If C.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Q.Connection = C
Q.Tablename = currentdocument.tables(0).path & tname

Set RS.Query = Q
If (RS.Execute)Then

If (RS.numrows) Then
RS.lastrow
Do

RS.deleteRow
RS.PrevRow

Loop While (RS.numrows)
End If

End If
c.disconnect

End If
End Sub

' Query property
'This code is pulled from the 'deleteScheduledRemovedRooms' global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim C As New Connection
Dim Q As New Query
Dim RS As New ResultSet

Dim tname As String
tname = currentdocument.tables(0).tablename

If C.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Q.Connection = C
Q.Tablename = currentdocument.tables(0).path & tname

Set RS.Query = Q
If (RS.Execute)Then

If (RS.numrows) Then
RS.firstrow
Do

RS.deleteRow
Loop While (RS.numrows)

End If
End If

c.disconnect
End If

End Sub

' Quit property
' Close the current Approach executable.

CurrentApplication.Quit

' RadioButtonLabel property
'Retrieve the label for the radio button named ObjRadio.
Dim RBLabel As String
RBLabel = Source.ObjRadio.LabelText

'Or

'Set the label for the radio button named ObjRadio.
Source.ObjRadio.LabelText = "My Radiobutton Label"

' ReadOnly property
' Find out if the field named Address is read-only.
If (Source.Address.ReadOnly) Then
 Messagebox("The field is read-only")
Else
 Messagebox("The field is read-write")
Endif

' Or

' Set the Address display element to be read-only.
Source.Address.ReadOnly = True

' Redraw property
' This property lets you turn redraw off while you move and add objects
' to the form, then redraw the entire form when you are done.

Sub TidyScreen()
CurrentWindow.Redraw=False ' Turn off redraw temporarily
CurrentWindow.LastName.Left = 1440 ' Move the LastName field.
CurrentWindow.FirstName.Left = 2880 ' Move the FirstName field.
CurrentWindow.Address.Left = 1440 ' Move the Address field.
CurrentWindow.City.Left = 1440 ' Move the City field.
CurrentWindow.Redraw=True ' Turn redraw back on.
Call CurrentWindow.Repaint() ' Now repaint the window.

End Sub

' Reduce property
' Reduce the display element so it prints only as large as the
' data it contains.
Source.Reduce = True

' Or

' Retrieve the current setting of the Reduce property for
' the current display element.
Dim ExpndProp As Integer
ExpndProp = Source.Reduce

' Red property
' Find out how much red is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Red ' Determine the amount of red.
Print b ' Print the amount of red.

' Refresh method
' Resfreshes the document window.

CurrentApplication.ActiveDocWindow.Refresh()

' Relief property
' Change the check box so it has a raised effect.
Source.ObjCheckBox.Relief = $ltsReliefRaised

' Remove method
' Collections let you make a group of objects.
Dim rval As Integer ' Return value
Dim CustomerColl As Collection

Set CustomerColl = New Collection()

rval = CustomerColl.Add(Source.FirstName)
rval = CustomerColl.Add(Source.LastName)
rval = CustomerColl.Add(Source.Address)
rval = CustomerColl.Add(Source.City)
rval = CustomerColl.Add(Source.State)
rval = CustomerColl.Add(Source.Postal_Cod)
rval = CustomerColl.Add(Source.Company)

' Copy the Company field to the third object
' of the collection.
rval = CustomerColl.SetAt(3, Source.Company)

' The only fields needed are FirstName,
' LastName, and Company. Remove the remaining
' fields from the collection. Since the SetAt
' function copies the object to the specified location,
' two copies of the Company field exist in the collection.
' Start at the end of the collection and work
' backwards to get rid of the Company field at the
' end of the collection.
' Arrays are zero-based.
i = CustomerColl.Count - 1
Do While i >2

If (CustomerColl(i).Name = "COMPANY") Then
CustomerColl.Remove(i+1)
' Because the object was deleted, reduce
' the number of items in the collection by 1.
i = i - 1

End If
If (CustomerColl(i).Name = "ADDRESS") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "CITY") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "STATE") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "POSTAL_COD") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
Loop

' Repaint method
' This script performs the same function
' as the Clean Screen menu item on the Edit menu.

Sub CleanScreen()
CurrentWindow.Redraw=False ' Turn off redraw temporarily

' Turn off each bar.
CurrentWindow.ActionBarVisible=False
CurrentWindow.IconBarVisible=False
CurrentWindow.StatusBarVisible=False
CurrentWindow.ViewTabVisible=False
CurrentWindow.Redraw=True ' Turn it back on
Call CurrentWindow.Repaint() ' Now repaint the window.

End Sub

' ReplaceWithResultSet method
' This script creates a result set through a Connection object
' and uses the result set to replace a Table object associated with the current
document.

Sub UpdateData
 ' Declare variables to create a result set.
 Dim Con As New Connection
 Dim Qry As New Query
 Dim RS As New Resultset
 Dim RVal As Integer 'Return value flag
 'Declare an array to store a mapping between fields of the table and result set.
 Dim MyPairs(1 To 3,1 To 2) As String

 ' Build the map array.
 MyPairs(1,1)="TableField1"
 MyPairs(1,2)="RSField1"
 MyPairs(2,1)="TableField2"
 MyPairs(2,2)="RSField2"
 MyPairs(3,1)="TableField3"
 ' The result set has only two fields.
 MyPairs(3,2)=""

 If Con.ConnectTo("dBASE IV") Then 'If the connection is successful, then.
 'Associate this Connection object with the new Query.
 Set Qry.Connection = Con
 Qry.SQL="Select * From " & """c:\lotus\work\approach\NewData""" & "NewData"
 'Associate this Query object with the new ResultSet.
 Set Rs.Query = Qry
 If (Rs.Execute)Then 'If the ResultSet is successful, then.
 If (Rs.NumRows) Then 'If the ResultSet isn't empty, then.
 'Replace the existing table with the new result set.
 RVal = CurrentDocument.tables(0).ReplaceWithResultSet(RS, MyPairs)
 Print RVal
 End If
 End If
 'Close the connection.
 Con.Disconnect
 End If
End Sub

' Restore method
' Restores the document window.
CurrentApplication.ActiveDocWindow.Restore()

' Or

' Restore the Approach Window
CurrentApplication.ApplicationWindow.Restore()

' RightMargin property
'Find out what the current right margin setting is for the active view.
Dim RMargin As Long
RMargin = CurrentApplication.ActiveView.RightMargin

'Or

'Set the right margin for the active view.
CurrentApplication.ActiveView.RightMargin = 720

' Right (Border) property
' This script comes from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application.
' Create a new text block with a 1 point left and right ultramarine border.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As textbox

t = 1635 & (330 * t)
Set tt = New textbox(currentview.Body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $ItsBorderThick
tt.Border.Color.SetRGB (color_ultramarine)

End Sub

' RunApproachMacro method
'This code example comes from the click event of the CheckRadio object
'in the Data Entry Screen view in the Checkbook SmartMaster application.

Sub Click(Source As Radiobutton, X As Long, Y As Long)
source.checknumber.visible=True
source.depositnumber.visible=False
RunApproachMacro("SetCheckNumber")

End Sub

' RunProcedure method
' This script is written for a 1-2-3 application that calls Approach to run
' the global function TestPrc. This script will not run in Approach.
' The script assumes that there is an .APR file named TestFile.APR and
' a global sub in that document named TestPrc.

Sub OLETest
 ' Create an instance of Approach.
 Set appApproach = CreateObject("Approach.Application")

 ' Use appApproach as the source for the next statements.
 With appApproach ' "With" is a shorthand method in scripting

 ' Open the .APR file.
 Call .OpenDocument("TestFile.apr", "c:\lotus\work\approach")

 .visible = true ' Set the Document to appear on screen; the OLE automation
defaults to hidden.

 ' Execute the global function, passing a string as an argument.
 Call .RunProcedure("TestPrc", "Hello World")
 End With
End Sub

' SendToBack method
' Place the current object behind all other display elements
' that are in the same area of the form.
Source.SendToBack

' SetAt method
' Collections let you make a group of objects.
Dim rval As Integer ' Return value
Dim CustomerColl As Collection

Set CustomerColl = New Collection()

rval = CustomerColl.Add(Source.FirstName)
rval = CustomerColl.Add(Source.LastName)
rval = CustomerColl.Add(Source.Address)
rval = CustomerColl.Add(Source.City)
rval = CustomerColl.Add(Source.State)
rval = CustomerColl.Add(Source.Postal_Cod)
rval = CustomerColl.Add(Source.Company)

' Copy the Company field to the third object
' of the collection.
rval = CustomerColl.SetAt(3, Source.Company)

' The only fields needed are FirstName,
' LastName, and Company. Remove the remaining
' fields from the collection. Since the SetAt
' function copies the object to the specified location,
' two copies of the Company field exist in the collection.
' Start at the end of the collection and work
' backwards to get rid of the Company field at the
' end of the collection.
' Arrays are zero-based.
i = CustomerColl.Count - 1
Do While i >2

If (CustomerColl(i).Name = "COMPANY") Then
CustomerColl.Remove(i+1)
' Because the object was deleted, reduce
' the number of items in the collection by 1.
i = i - 1

End If
If (CustomerColl(i).Name = "ADDRESS") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "CITY") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "STATE") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
If (CustomerColl(i).Name = "POSTAL_COD") Then

CustomerColl.Remove(i+1)
i = i - 1

End If
Loop

' SetCellFocus method
' Select the current cell in the current worksheet in the column
' you specify by name: Company. You might attach the following
' script to the CellGetFocus event of a worksheet. It selects
' the current cell in the Company column and then prints the text of that
' cell.

Dim Cell As Integer
Cell=CurrentView.SetCellFocus("Company")
Print Current.View.GetText

' SetFocus method
' Example from the Enter Date dialog box in the Meeting Room
' Scheduler SmartMaster application.
' Clear the field of text and give it the focus
Sub Switchto(Source As Form, View As VIEW)

source.body.fbxDate.text = ""
source.body.fbxDate.setfocus

End Sub

' SetList method
' This global function, modifyRoomsArray, comes from the Meeting Room
' Scheduler SmartMaster sample application.

Sub modifyRoomsArray(modifyType As Integer)
Dim fbx As FieldBox
Dim lbx As ListBox
Dim btn As Button

Dim i As Integer
Dim ret As Integer
Dim roomExists As Integer
Dim newRoomName As String
Dim tempRooms() As String
Dim numRooms As Integer

If ((Ubound(rooms) + 1) = 20) And (modifyType > 0)Then
Messagebox "Cannot add anymore rooms. Maximum number of rooms is 20."

Else
Set fbx = Currentview.Body.fbxRoomName
Set lbx = Currentview.Body.lbxRooms
Set btn = Currentview.Body.btnDone
If (modifyType > 0) Then

roomExists = False
newRoomName = fbx.Text
For i = 0 To Ubound(rooms)

If (Ucase$(rooms(i)) = Ucase$(newRoomName)) Then
roomExists = True
i = Ubound(rooms) + 1

End If
Next
If (roomExists = False) Then

If (Ubound(rooms) = 0 And rooms(0) = "") Then
rooms(0) = newRoomName

Else
Redim Preserve rooms(Ubound(rooms) + 1)
rooms(Ubound(rooms)) = newRoomName

End If
lbx.Setlist rooms
fbx.Text = ""
btn.Enabled = True

Else
Messagebox "A room named """ & Ucase$(newRoomName) & """ already

exists"
End If

Else

ret = Messagebox("Are you sure you want to delete this room? Deleting
this room will also delete any scheduled conferences for this room.", 4, "Delete
Room")

If ret = 6 Then
deleteRoomName = lbx.Text
Redim Preserve deletedRooms(Ubound(deletedRooms) + 1)
deletedRooms(Ubound(deletedRooms)) = deleteRoomName
For i = 0 To Ubound(rooms)

If (Ucase$(rooms(i)) = Ucase$(deleteRoomName)) Then
numRooms = numRooms - 1
For j = i To (Ubound(rooms) - 1)

rooms(j) = rooms(j + 1)
Next
i = Ubound(rooms) + 1

End If
Next
If (Ubound(rooms)) Then

Redim Preserve rooms(Ubound(rooms) - 1)
Else

rooms(0) = ""
CurrentView.Body.btnRemove.Enabled = False

End If
End If

End If
lbx.Setlist rooms
btn.Enabled = True
string_sort rooms

End If

End Sub

' SetPicture method
' Show the image TILES.BMP in the Win95 directory
' in the Picture object.

Source.ObjPicture.SetPicture("c:\win95\tiles.bmp")

' SetRGB
' This script comes from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As Textbox

Dim t As Integer
Dim i As Integer

For i = 0 To Ubound(rooms)
If rooms(i) = roomName Then

t = i
i = Ubound(rooms)

End If
Next
t = 1635 + (330 * t)
Set tt = New Textbox(currentview.body)
tt.Text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $ItsBorderThick
tt.Border.Color.SetRGB (color_ultramarine)
tt.Background.Color.SetRGB (color_50_gray)
tt.Height = 325
tt.Top = t
tt.Left = (((start - 8) * 750) + 960)
tt.Width = (750 * (finish - start))
tt.Name = "tt" & Str$(tt.top) & Str$(tt.left)

End Sub

' SetState method
' This script creates a new check box and sets the default value as checked.
' It assumes an existing table named Customer with a field
' named Type and an existing named style of MyStyle.
Dim ChkBox as CheckBox 'Declare the Checkbox object.
Set ChkBox = New CheckBox(CurrentView.Body) 'Create a new check box on the current
view on page 1 (default page).
' Define the settings for the check box.
ChkBox.Left = 400 ' In Twips
ChkBox.Top = 400 ' In Twips
' Set the attributes using a pre-existing named style.
ChkBox.NamedStyle = MyStyle
' Set the label for the check box.
ChkBox.LabelText = "Distributor"
' Assign the check box to the Customer table.
ChkBox.DataTable = "Customer"
' Assign the check box to the Type field.
ChkBox.DataField = "Type"
' Set the default value of the check box as checked.
Call ChkBox.SetState(True)

' SetValue
'This is the modifyRooms global function from the Meeting Room Scheduler
'SmartMaster application.

Function modifyRooms
Dim Con As New Connection
Dim Qry As New Query
Dim RS As New ResultSet

modifyRooms = False

If Con.ConnectTo("dBASE IV") Then
Set Qry.Connection = Con
Qry.Tablename = CurrentDocument.Tables(0).Path & "rooms"
Set RS.Query = Qry
If (RS.Execute) Then

If (RS.NumRows) Then
RS.FirstRow
Do

RS.DeleteRow
Loop While (RS.NumRows)

End If
modifyRooms = True

 'Loop through the global array "rooms".
For i = 0 To Ubound(rooms)

RS.AddRow
RS.SetValue "room", rooms(i)
RS.UpdateRow

Next
End If

End If
Con.Disconnect

End Function

' ShadowColor property
' Create a color object named Red.
' Set the shadow color of the current display element to the color red.
Dim Red As New color(255,0,0)
Set Source.ShadowColor = Red

' ShowArrow property
' Displays an arrow on the dropdown box.
Sub Click(Source As Dropdownbox, X As Long, Y As Long)

Source.CustName.ShowArrow = True
End Sub

' ShowAsDialog property
' Find out if the form is displayed as a dialog box.
Dim rval As Integer
rval = CurrentApplication.ActiveView.ShowAsDialog

' Or

' Specify that the current form be displayed as a dialog box.
CurrentApplication.ActiveView.ShowAsDialog = True

' ShowInPreview property
' Set this display element not to show in Print Preview.
Source.ShowInPreview = False

' Or

' Find out if this display element is set to show in Print Preview.
Dim MyReturnValue As Integer
MyReturnValue = Source.ShowInPreview

' Size property
' Create a new text box and change the font to 8 points.
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)

Dim tt As Textbox

Dim t As Integer
Dim i As Integer

For i = 0 To Ubound(rooms)
If rooms(i) = roomName Then

t = i
i = Ubound(rooms)

End If
Next
t = 1635 + (330 * t)
Set tt = New Textbox(currentview.body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $apr1point
tt.Border.Color.SetRGB(color_ultramarine)
tt.Background.Color.SetRGB(color_50_gray)
tt.Height = 325
tt.Top = t
tt.Left = (((start - 8) * 750) + 960)
tt.Width = (750 * (finish - start))
tt.Name = "tt" & Str$(tt.top) & Str$(tt.left)

End Sub

' SlideLeft property
' Set this display element to slide to the left if there are extra
' spaces when printing.
Source.SlideLeft = True

' Or

' Find out if this display element is set to slide left when printing.
Dim MyReturnValue As Integer
MyreturnValue = Source.SlideLeft

' SlideUp property
' Set this display element to slide up if there are extra
' spaces when printing.
Source.SlideUp = True

' Or

' Find out if this display element is set to slide up when printing.
Dim MyReturnValue As Integer
MyReturnValue = Source.SlideUp

' SQL property
'This code is pulled from the deleteScheduledRemovedRooms global
'function in the Schedule application.

Sub deleteScheduledRemovedRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ResSet As New ResultSet

Dim TName As String
TName = CurrentDocument.Tables(0).TableName

If Con.ConnectTo("dBASE IV") Then 'Connect to dBASE.
Set Qry.Connection = Con
Qry.TableName = CurrentDocument.Tables(0).Path & TName
For i = 1 To Ubound(DeletedRooms)

Qry.SQL = "SELECT * FROM """ & Qry.TableName & """" & TName & " WHERE ("&
TName & ".""Room Name/Number"" = '" & DeletedRooms(i) & "')"

Set ResSet.Query = Qry
If (ResSet.Execute)Then

If (ResSet.NumRows) Then
ResSet.FirstRow
Do

ResSet.DeleteRow
Loop While (ResSet.NumRows)

End If
End If

Next
Con.Disconnect

End If
End Sub

' StatusBarVisible property
Sub CleanScreen()

' This script performs the same function
' as the Clean Screen menu item on the Edit menu.
CurrentWindow.Redraw=False ' Turn off redraw temporarily
' Turn off each bar.
CurrentWindow.ActionBarVisible=False
CurrentWindow.IconBarVisible=False
CurrentWindow.StatusBarVisible=False
CurrentWindow.ViewTabVisible=False
CurrentWindow.Redraw=True ' Turn redraw back on
CurrentWindow.Repaint ' Now repaint the window.

End Sub

' Strikethrough property
' Find out if the current display element has strikethrough text.
Dim rval As Integer
rval = Source.Font.StrikeThrough

' Or

' Set the current display element to have strikethrough text.
Source.Font.StrikeThrough = True

' Style property
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)

Dim tt As textbox

Dim t As Integer
Dim i As Integer

For i = 0 To Ubound(rooms)
If rooms(i) = roomName Then

t = i
i = Ubound(rooms)

End If
Next
t = 1635 + (330 * t)
Set tt = New textbox(currentview.body)
tt.text = " " & txt & " "
tt.font.size = 8
tt.border.style = $ltsBorderStyleNone
tt.border.left = True
tt.border.right = True
tt.border.top = False
tt.border.bottom = False
tt.border.width = $ItsBorderThick
tt.border.color.setrgb color_ultramarine
tt.background.color.setrgb color_50_gray
tt.height = 325
tt.top = t
tt.left = (((start - 8) * 750) + 960)
tt.width = (750 * (finish - start))
tt.name = "tt" & Str$(tt.top) & Str$(tt.left)

End Sub

'TableName method (Query class)
'This script prints the name of each column in a result set.
Dim Con As New Connection 'New Connection object
Dim Qry As New Query 'New Query object
Dim RS As New ResultSet 'New ResultSet object
Dim TName As String 'Table to open

'Build the parts of the Query and ResultSet objects.
TName = "orders.dbf"
Qry.TableName = "C:\94orders\" & TName
Set Qry.Connection = Con
Set RS.Query = Qry

'Open the connection.
If Con.ConnectTo("dBASE IV") Then
 'Create the result set.
 If RS.Execute Then
 'Loop through the columns in the result set.
 For i = 1 To RS.NumColumns
 Print RS.FieldName(i)
 Next
 End If
 Con.Disconnect
End If

' TableName property (Table class)
Sub TableReport(TblName As String)

'This function prints a report to the Output panel on the
'table whose name is passed in.
Dim Tbl As Table
Dim i As Variant

'Get the table as a Table object.
Set Tbl=CurrentDocument.GetTableByName(TblName)
'Since this might be a SQL or Notes table, first
'find out if it is still connected to the document (.APR file).
If (Tbl.IsConnection) Then

'Print the tablename.
Print "Table name: " & Tbl.TableName
Print "File name: " & Tbl.FileName
Print "Full name: " & Tbl.FullName
Print "Path: " & Tbl.Path
Print "# of Fields: " & Str(Tbl.NumFields)
Print "# of Records: " & Str(Tbl.NumRecords)
Print "===================="
'The array is zero-based, so start at 0
'and end at NumFields-1.
For i = 0 To Tbl.NumFields-1 Step 1

'The FieldNames array holds the names of the fields.
Print "Field: " & Tbl.FieldNames(i)
Print "Options: " & Tbl.GetFieldOptions(Tbl.FieldNames(i))
Print "Size: " & Str(Tbl.GetFieldSize(Tbl.FieldNames(i)))
Print "Type: " & Str(Tbl.GetFieldType(Tbl.FieldNames(i)))
Print "===================="

Next
End If

End Sub

' Tables property
' We need to access the main table through the data object.
' The first step is to find out the name of the main table.
Dim MnTbl As String
Dim NumTbls As Integer
Dim Tbls As Variant
Dim t As Variant

MnTbl = CurrentView.MainTable ' Get the name of the main table.
Set Tbls = CurrentDocument.Tables ' Get the collection of tables.
NumTbls = Tbls.Count ' Find out how many tables there are.
For i = 1 To NumTbls Step 1

If (Tbls(i-1).TableName = MnTbl) Then ' If we've found the right table.
' Data access code goes here
j=1

End If
Next

' TabNext
' Sets focus to the next field in the Tab Order.
CurrentWindow.TabNext()

' TabOrder property
' Set the tab order for this display element.
Source.TabOrder = 5

' Or

' Print the value of the tab order of this display element to the output window
' of the IDE.
Print Source.TabOrder

' TabPrev method
' Sets focus to the previous field in the Tab Order.
CurrentWindow.TabPrev()

' TabStop property
' Set this display element to allow tabbing.
Source.TabStop = True

' Or

' Return the value of this property.
Dim MyReturnValue As Integer
MyReturnValue = Source.TabStop

' Text (Button) property
' Find out what text displays on the button ObjButton.
Dim Txt As String
Txt = Source.ObjButton.Text

' Or

' Set the text to display on the button ObjButton.
Source.ObjButton.Text = "Push Me"

' Text property
' Create a new text box showing the name of each room.
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)

Dim tt As textbox

Dim t As Integer
Dim i As Integer

For i = 0 To Ubound(rooms)
If rooms(i) = roomName Then

t = i
i = Ubound(rooms)

End If
Next
t = 1635 + (330 * t)
Set tt = New textBox(CurrentView.Body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $apr1point
tt.Border.Color.SetRGB (color_ultramarine)
tt.Background.Color.SetRGB (color_50_gray)
tt.Height = 325
tt.Top = t
tt.Left = (((start - 8) * 750) + 960)
tt.Width = (750 * (finish - start))
tt.Name = "tt" & Str$(tt.Top) & Str$(tt.Left)

End Sub

' Tile method
' Tile the open document windows (.APR files).

CurrentApplication.ApplicationWindow.Tile()

' TimerInterval Property
' Find out what the timer interval for the current view is set to.
Dim Tmr As Long
Tmr = CurrentApplication.ActiveView.TimerInterval

' Or

' Set the timer interval for the current view to 15 seconds.
CurrentApplication.ActiveView.TimerInterval = 15000

' Top (Border) property
' This script comes from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application.
' Create a new text block with a 1 point left and right ultramarine border.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As textbox

t = 1635 & (330 * t)
Set tt = New textbox(currentview.Body)
tt.text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $apr1point
tt.Border.Color.SetRGB (color_ultramarine)

End Sub

' Top property
' Example from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' Called from readBlock
 ' txt reservation owner
 ' start reservation start time
 ' finish reservation end time
 ' roomName name or number of reserved room
' * RUNTIME DEPENDENCIES
' * Constants: Uses constants defined by LotusScript defined in
' * LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the readBlock
' * sub.

' Declare variables
Dim tt As textbox ' New text block to hold the reservation

 ' owner's name in the view
Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in.
' Determine the vertical placement of the reservation in the view.

Dim matchedRoom As Integer

' Offset and multiplier for the vertical placement of the
' reservation.

Dim verticalPlacement As Integer

' Search through the global array Rooms to find the room passed
' in from the Schedule database using the sub readBlock.
 ' Set matchedRoom to the index of the room passed in.

For i = 0 To Ubound(Rooms)
If Rooms(i) = roomName Then

matchedRoom = i
i = Ubound(Rooms)

End If ' If element matches the room passed in.
Next

' Set position and display for the reservation.

' Header in the view takes up 1635 twips, each row in the table
' is 330 twips tall.

verticalPlacement = 1635 + (330 * matchedRoom)

' Create the text block to hold the reservation.

Set tt = New textbox(currentview.body)

' Fill the text block with the reservation owner's name
' and spaces to center the text properly.

tt.Text = " " + txt + " "

' Set display properties for the text block to match the form.
tt.Font.Size = 8

 ' Use LotusScript constants for border style.
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False

 ' Use Approach constants for line width.
tt.Border.Width = $apr1point

 ' Use LotusScript constants for color.
Call tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
Call tt.Background.Color.SetRGB (COLOR_50_GRAY)

' Set the position of the text block to correspond to the
' correct room and time.

tt.Height = 325
tt.Top = verticalPlacement ' Current offset from top of

 ' form

' Convert reservation time (passed in) to the horizontal
' location and length on the form.

tt.Left = (((start - 8) * 750) + 945)
tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the clearDisplay
' function can delete the reservation.

tt.Name = "tt" + Str$(tt.Top) + Str$(tt.Left)

End Sub ' displayBlock

' Type property
' Create a list box and fill it with the names of the views available in
' the document (.APR file).
Dim MyListBox As ListBox
Dim MyViewsArray(20) As String
Dim MyNumberViews As Integer

' Check to find out if the current view is a form.
If (CurrentView.Type = $aprForm) Then

'Create a new list box in the current view.
Set MyListBox = New ListBox(CurrentView.Body, 1)
MyNumberViews = CurrentDocument.Views.Count ' Get the number of views.
For i = 0 To MyNumberViews-1 ' Fill the array with the view names.

MyViewsArray(i) = CurrentDocument.Views(i).Name
Next
MyListBox.SetList(MyViewsArray)' Fill the list box with the

 ' list of view names.
Else

Messagebox "You must be on a form."
End If

' UncheckedValue property
' Determine if a check box is checked, and then display a message that
' includes the checked or unchecked value.
' This script is placed in an event script for an object in the same
' view as the check box.
If (Source.ObjCheckBox.IsChecked) Then

MessageBox("The check box is checked and its value is " &
Source.ObjCheckBox.CheckedValue)
Else

MessageBox("The check box is not checked and its value is " &
Source.ObjCheckBox.UnCheckedValue)
End If

' Underline property
' Find out if the text in the LastName field is underlined.
Dim Underln As Integer
Underln = Source.LastName.Font.Underline

' Or

' Set the text in the LastName field to be underlined.
Source.LastName.Font.Underline = True

' UpdateRow
'This is the modifyRooms global function from the Schedule
'SmartMaster application.

Function modifyRooms
Dim Con As New Connection
Dim Qry As New Query
Dim ReSet As New ResultSet

modifyRooms = False

If Con.ConnectTo("dBASE IV") Then
Set Qry.Connection = Con
Qry.Tablename = currentdocument.tables(0).path & "rooms"
Set ReSet.Query = Qry
If (ReSet.Execute)Then

If (ReSet.numrows) Then
ReSet.firstrow
Do

ReSet.deleteRow
Loop While (ReSet.numrows)

End If
modifyRooms = True
For i = 0 To Ubound(rooms)

ReSet.addrow
ReSet.setvalue "room", rooms(i)
ReSet.updaterow

Next
End If

End If
con.disconnect

End Function

'UserID property
'Sets the user ID for a server connection.
Dim C As New Connection
C.UserID = "UserID"
C.Password = "UserPassword"
CkConnectTo = C.ConnectTo("SQL Server", C.UserID, C.Password, "sqlsvr_nt351")
C.Disconnect

' User property
Sub DocumentReport()

' This script prints a report of all of the document information
' to the output window.

' Print each of the items to the output window.
Print "Author: " & CurrentDocument.Author
Print "Description: " & CurrentDocument.Description
Print "Keywords: " & CurrentDocument.Keywords
Print "User: " & CurrentDocument.User

Print "FileName: " & CurrentDocument.Filename
Print "FullName: " & CurrentDocument.FullName
Print "Path of the .APR: " & CurrentDocument.Path

Print "Creation Date: " & CurrentDocument.CreateDate
Print "LastModified: " & CurrentDocument.LastModified

If (CurrentDocument.Modified) Then 'If the document has been modified...
Print "The document has been modified: " & Str(CurrentDocument.NumRevisions)

& " times."
Else

Print "The document hasn't been modified."
End If
Print "Number of joins: " & Str(CurrentDocument.NumJoins)
Print "Number of tables in the .APR: " & Str(CurrentDocument.NumTables)
Print "Number of views in the .APR: " & Str(CurrentDocument.NumViews)

End Sub

' Value property
' Determine the value of the current check box.
Dim ChkBoxVal as String
ChkBoxVal = Source.ObjCheckBox.Value

' Or
' Set the value of the current check box to 1.
Source.ObjCheckBox.Value = 1

' VarTable property
' Retrieve the Variable Table for the current document.
Dim Tbl As Table
Set Tbl = CurrentApplication.ActiveDocument.VarTable

' Views property
' In this script example we create a listbox and fill
' the listbox with the views available.
Dim LstBox As ListBox
Dim aryVws(20) As String
Dim NumVws As Integer

' Check to find out if the current view is a form.
If (CurrentView.Type = $aprForm) Then

' Create a new listbox on the current view
Set LstBox = New ListBox(CurrentView.Body, 1)
NumVws = CurrentDocument.Views.Count ' Get the number of views
For i = 0 To NumVws-1 ' Fill the array with the view names.

aryVws(i) = CurrentDocument.Views(i).Name
Next
LstBox.SetList(aryVws) ' Set the listbox with the list of views.

Else
Messagebox "You must be on a form."

End If

' ViewTabVisible property
Sub CleanScreen()

' This script performs the same function
' as the Clean Screen menu item on the Edit menu.
CurrentWindow.Redraw=False ' Turn off redraw temporarily
' Turn off each bar.
CurrentWindow.ActionBarVisible=False
CurrentWindow.IconBarVisible=False
CurrentWindow.StatusBarVisible=False
CurrentWindow.ViewTabVisible=False
CurrentWindow.Redraw=True ' Turn redraw back on
CurrentWindow.Repaint ' Now repaint the window.

End Sub

' Visible property
' Example from the SetDefaultButtonText global function in
' the Checkbook Register SmartMaster application

Sub SetDefaultButtonText
If currentview.Name="Data Entry Screen" Then

If currentview.Body.Commitflag.Text="1" Then
currentview.Body.Voidbutton.Text="Remove this transaction from the

balance"
startcheck

Else
currentview.Body.Voidbutton.Text="Apply this transaction to the balance"

End If
If currentview.Body.Transtype.Text="Check" Then

currentview.Body.Checknumber.Visible=True
currentview.Body.Depositnumber.Visible=False

Else
If currentview.Body.Transtype.Text="Deposit" Then

currentview.Body.Checknumber.Visible=False
currentview.Body.Depositnumber.Visible=True

Else
currentview.Body.Checknumber.Visible=False
currentview.Body.Depositnumber.Visible=False

End If
End If

End If
currentwindow.Repaint

End Sub

' Width (Border) property
' This script comes from the displayBlock global function
' in the Schedule SmartMaster application.

Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
Dim tt As textbox

Dim h As Integer
Dim i As Integer

t = 1635 + (330 * t)
Set tt = New Textbox(currentview.Body)
tt.Text = " " & txt & " "
tt.Font.Size = 8
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False
tt.Border.Width = $ItsBorderThick
tt.Border.Color.SetRGB (color_ultramarine)
tt.Background.Color.SetRGB (color_50_gray)
tt.Height = 325
tt.Top = t
tt.Left = (((start - 8) * 750) + 960)
tt.Width = (750 * (finish - start))

End Sub

' Width property
' Example from the displayBlock global function
' in the Meeting Room Scheduler SmartMaster application
Sub displayBlock(txt As String, start As Double, finish As Double, roomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' Called from readBlock
 ' txt reservation owner
 ' start reservation start time
 ' finish reservation end time
 ' roomName name or number of reserved room

' * RUNTIME DEPENDENCIES
' * Constants: Uses constants defined by LotusScript defined in
' * LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the readBlock
' * sub.

' Declare variables
Dim tt As textbox ' New text block to hold the reservation

 ' owner's name in the view
Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in.
' Determine the vertical placement of the reservation in the view.

Dim matchedRoom As Integer

' Offset and multiplier for the vertical placement of the
' reservation.

Dim verticalPlacement As Integer

' Search through the global array Rooms to find the room passed
' in from the Schedule database using the sub readBlock.
 ' Set matchedRoom to the index of the room passed in.

For i = 0 To Ubound(Rooms)
If Rooms(i) = roomName Then

matchedRoom = i
i = Ubound(Rooms)

End If ' If element matches the room passed in.
Next

' Set position and display for the reservation.

' Header in the view takes up 1635 twips. The height of each row in the table
' is 330 twips.

verticalPlacement = 1635 + (330 * matchedRoom)

' Create the text block to hold the reservation.
Set tt = New textbox(currentview.body)

' Fill the text block with the reservation owner's name
' and spaces to center the text properly.

tt.Text = " " + txt + " "

' Set display properties for the text block to match the form.
tt.Font.Size = 8

 ' Use LotusScript constants for border style.
tt.Border.Style = $ltsBorderStyleNone
tt.Border.Left = True
tt.Border.Right = True
tt.Border.Top = False
tt.Border.Bottom = False

 ' Use Approach constants for line width.
tt.Border.Width = $apr1point

 ' Use LotusScript constants for color.
Call tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
Call tt.Background.Color.SetRGB (COLOR_50_GRAY)

' Set the position of the text block to correspond to the
' correct room and time.

tt.Height = 325
tt.Top = verticalPlacement ' Current offset from top of

 ' form

' Convert reservation time (passed in) to the horizontal
' location and length on the form.

tt.Left = (((start - 8) * 750) + 945)
tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the clearDisplay
' function can delete the reservation.

tt.Name = "tt" + Str$(tt.Top) + Str$(tt.Left)

End Sub ' displayBlock

' Windows property
' Retrieve the collection of Windows on the Application.

Dim Wins As Variant
Set Wins = CurrentApplication.Windows

' Window property
' Turn redraw off while you move and add objects
' to a form, then redraw the entire form when your done.

CurrentView.Window.Redraw = False ' Turn off redraw off for the current document.
CurrentView.Body.LastName.Left = 1440 ' Move the LastName field.
CurrentView.Body.FirstName.Left = 2880 ' Move the FirstName field.
CurrentView.Body.Address.Left = 1440 ' Move the Address field.
CurrentView.Body.City.Left = 1440 ' Move the City field.
CurrentView.Window.Redraw = True ' Turn redraw back on.

' Yellow property
' Find out how much yellow is in the background color of the current object.

Dim b As Long ' Create a variable.

b = source.Background.Color.Yellow ' Determine the amount of yellow.
Print b ' Print the amount of yellow.

Approach: ActionBarVisible property
{button ,AL(`H_LAS_DOCWINDOW_CLASS',0)} See list of classes
{button ,AL(`H_las_ACTIONBARVISIBLE_EXSCRIPT',1)} See example
Sets or returns whether the action bar is visible.

Data type
Integer

Syntax
docwindowobject.ActionBarVisible = flag
flag = docwindowobject.ActionBarVisible

Legal values
Value Description
TRUE (Default) Display the action bar.
FALSE Do not display the action bar.

Usage
Hide the action bar when you do not want users to go to Design, create new records, or do a find.

Approach: ActiveDocument property
{button ,AL(`H_LAS_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_las_ACTIVEDOCUMENT_EXSCRIPT',1)} See example
(Read-only) Returns the name of the current document object (.APR file).

Data type
Document

Syntax
Set documentobject = applicationobject.ActiveDocument

Legal values
The current document.

Usage
Determine which document (.APR file) a user is currently viewing. If it is not the one you want them to use, you can
use the OpenDocument or Activate methods to switch to a different document.

Approach: ActiveDocWindow property
{button ,AL(`H_LAS_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_las_ACTIVEDOCWINDOW_EXSCRIPT',1)} See example
(Read only) Returns the active document window (.APR file).

Data type
DocWindow

Syntax
Set docwindowobject = applicationobject.ActiveDocWindow

Legal values
The active document window.

Usage
Determine which document window is active so you can manipulate records and change the view settings, such as
those for displaying a set of icons and other display options.

Approach: ActiveView property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_DOCWINDOW_CLASS',0)} See list of classes
{button ,AL(`H_las_ACTIVEVIEW_EXSCRIPT',1)} See example
Sets or returns the currently active view in the document (.APR file).

Data type
Variant

Syntax
Set applicationobject.ActiveView = existingviewobject
Set objectvariable = applicationobject.ActiveView
or
Set docwindowobject.ActiveView = existingviewobject
Set objectvariable = docwindowobject.ActiveView

Legal values
An existing view object.

Usage
Change to a different view in the document when you want users to perform an action specific to a view.
For example, switch to the view containing the data you want users to review.

Approach: Alignment property
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_

LAS_TEXTBOX_CLASS',0)} See list of classes
{button ,AL(`H_las_ALIGNMENT_EXSCRIPT',1)} See example
Sets or returns the alignment for fields and summary panels.

• For fields, the Alignment property aligns the text in the element to the left, right, or center.
• For summary panels, the Alignment property aligns the panel with the left edge, right edge, or center of the report.

Data type
Long

Syntax
objectname.Alignment = value
value = objectname.Alignment

Legal values
Value Description
$LtsAlignmentLeft (Default) Align the text or

panel to the left.
$LtsAlignmentHorizCenter Align the text or panel in

the center.
$LtsAlignmentRight Align the text or panel to

the right.

Usage
Align the text for a new display element, or align a new summary panel in a report.

Approach: AllowDrawing property
{button ,AL(`H_LAS_PICTUREPLUS_CLASS',0)} See list of classes
{button ,AL(`H_las_ALLOWDRAWING_EXSCRIPT',1)} See example
Sets or returns if you can draw with the mouse in PicturePlus fields.

Data type
Integer

Syntax
pictureplusobject.AllowDrawing = flag
flag = pictureplusobject.AllowDrawing

Legal values
Value Description
FALSE (Default) Users cannot draw

in the PicturePlus field.
TRUE Users can draw in the

PicturePlus field.

Approach: AlternateColors property
{button ,AL(`H_LAS_REPEATINGPANEL_CLASS',0)} See list of classes
Sets or returns whether the lines in a repeating panel are set to alternate colors. The alternating colors used are the
background color of the repeating panel and the background color of the form.

Data type
Integer

Syntax
repeatingpanel.AlternateColors = flag
flag = repeatingpanel.AlternateColors

Legal values
Value Description
FALSE (Default) Do not display

alternate colors.
TRUE Display alternate colors.

Usage
Display a repeating panel in alternate colors when you want to distinguish between the data in each row.

Approach: ApplicationWindow property
{button ,AL(`H_LAS_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_las_APPLICATIONWINDOW_EXSCRIPT',1)} See example
(Read-only) Returns the application window.

Data type
ApplicationWindow

Syntax
Set applicationwindowobject = applicationobject.ApplicationWindow

Legal values
The active application window.

Usage
Determine which application window is active so you can change the window settings or execute a menu command.

Approach: Application property (ApplicationWindow class)
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS',0)} See list of classes
(Read-only) Returns the Application object to which the window belongs.

Data type
Application

Syntax
Set applicationobject = applicationwindowobject.Application

Legal Values
Any Approach application.

Usage
If users are running several instances of Approach, you can determine which instance they are currently using, so
you can change the application-wide settings.

Approach: Application property (Application class)
{button ,AL(`H_LAS_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_las_APPLICATION_EXSCRIPT',1)} See example
(Read-only) Returns the instance of the application itself.

Data type
Application

Syntax
Set applicationobject = applicationobject.Application

Legal Values
The current active application.

Usage
Determine which application is active so you can determine application settings, such as its path and which
documents (.APR files) are open.

Approach: ApplyFoundSet property
{button ,AL(`H_LAS_CROSSTAB_CLASS',0)} See list of classes
Applies the current found set to a crosstab.

Data type
Integer

Syntax
crosstabobject.ApplyFoundSet = flag
flag = crosstabobject.ApplyFoundSet

Legal values
Value Description
TRUE (Default) Apply the found set

to a crosstab.
FALSE Do not apply the found set to a

crosstab.

Approach: Author property
{button ,AL(`H_LAS_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_las_AUTHOR_EXSCRIPT',1)} See example
(Read-only) Returns the name of the person who created the document, or the name of the person who last entered
their name as the author in the Approach File Properties dialog box.

Data type
String

Syntax
name = documentobject.Author

Legal values
Any string.
The default value for the Author property is the name of the person who created the document.

Approach: Background property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LA

S_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_HEADERFOOTERPANEL_CLASS;H_LAS_LINEOBJE
CT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_PANEL_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTU
RE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLAS
S;H_LAS_ROUNDRECT_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of
classes

{button ,AL(`H_las_BACKGROUND_EXSCRIPT',1)} See example
Sets or returns the background object for the current display element or panel.

Data type
Background

Syntax
set displayelementobject.Background = backgroundobject
set backgroundobject = displayelementobject.Background

Legal values
For panels, you can set this property to the background of another view. The panel will pick up the background color
of the other panel.
You can set this property to any color object as listed in the Color class.

Approach: Baseline property
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_BASELINE_EXSCRIPT',1)} See example
Displays a dashed line in a field for entering text.

Data type
Integer

Syntax
displayelementobject.Border.Baseline = flag
flag = displayelementobject.Border.Baseline
or
borderobject.Baseline = flag
flag = borderobject.Baseline

Legal values
Value Description
FALSE (Default) Do not display the

baseline.
TRUE Display the baseline.

Usage
Display a baseline in a field box to indicate where users can enter text.
You can use a baseline without any other borders. Data entered by users sits on the dashed line.

Approach: Black property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_BLACK_EXSCRIPT',1)} See example
(Read-only) Returns the black component of a CMYK value for a display element.

Data type
Integer

Syntax
value = colorobject.Black

Legal values
Any integer from 0 to 255.

Usage
0 represents no black and 255 represents the highest amount of black available.

Approach: Blue property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_BLUE_EXSCRIPT',1)} See example
(Read-only) Returns the blue component of an RGB value for a display element.

Data type
Integer

Syntax
value = colorobject.Blue

Legal values
Any integer from 0 to 255.

Usage
0 represents no blue and 255 represents the highest amount of blue available.
Use the SetRGB method to change the settings of the Red, Green, and Blue properties all at once.

Approach: Bold property
{button ,AL(`H_LAS_FONT_CLASS;',0)} See list of classes
Sets or returns if the text of the current display element is bold type.

Data type
Integer

Syntax
displayelementobject.Font.Bold = flag
flag = displayelementobject.Font.Bold
or
fontobject.Bold = flag
flag = fontobject.Bold

Legal values
Value Description
FALSE (Default) The font is not bold.
TRUE The font is bold.

Approach: Border property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FI

ELDBOX_CLASS;H_LAS_HEADERFOOTERPANEL_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_PANEL_CLASS;
H_LAS_PICTUREPLUS_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_RO
UNDRECT_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_BORDER_EXSCRIPT',1)} See example
Sets or returns the border object of the current display element or panel.

Data type
Border

Syntax
set displayelementobject.Border = borderobject
set borderobject= displayelementobject.Border

Legal values
Any border object as listed in the Border class.

Usage
Change the border of a new display element or panel so it is consistent with other display elements or panels.
For example, change a new field box to have a blue border.

Approach: Bottom property
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_BOTTOM_BORDER_EXSCRIPT',1)} See example
Sets or returns whether the bottom border of a display element is displayed.

Data type
Integer

Syntax
borderobject.Bottom = flag
flag = borderobject.Bottom

Legal values
Value Description
FALSE (Default) Do not display the

bottom border.
TRUE Display the bottom border.

Usage
The border of a display element is transparent until you set its color using the SetRGB method.

Approach: CheckedValue property
{button ,AL(`H_LAS_CHECKBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_CHECKEDVALUE_EXSCRIPT',1)} See example
Sets or returns the value associated with checked state of a check box.
Note This value does not reflect the current state of the check box.

Data type
String

Syntax
checkboxobject.CheckedValue = value
value = checkboxobject.CheckedValue

Legal values
Default value: Yes
You can set this property to any string up to 256 characters.

Usage
Determine the value of a checked check box, regardless of its current state.
For example, you can display a set of radio buttons below only those check boxes that would have a checked value
of Yes. The radio buttons are displayed whether or not the check boxes are checked.

Approach: ClickedValue property
{button ,AL(`H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_CLICKEDVALUE_EXSCRIPT',1)} See example
Sets or returns the value associated with the clicked state of a radio button .

Data type
String

Syntax
radiobuttonobject.ClickedValue = value
value = radiobuttonobject.ClickedValue

Legal values
Any string up to 256 characters.

Approach: Color property
{button ,AL(`H_LAS_BACKGROUND_CLASS;H_LAS_BORDER_CLASS;H_LAS_FONT_CLASS;H_LAS_LINESTYL

E_CLASS;',0)} See list of classes
Specifies the color object for the border, font, linestyle or background of a display element.

Data type
Color

Syntax
Object Syntax
Background displaylementobject.Background.Color = colorobject

colorobject = displayelemetobject.Background.Color

Border displayelementobject.Border.Color = colorobject
colorobject = displayelementobject.Border.Color

Font displayelementobject.Font.Color = colorobject
colorobject = displayelementobject.Font.Color

Linestyle displayelementobject.Linestyle.Color = colorobject
colorobject = displayelementobject.Linestyle.Color

Legal values
The default color for this property is white.
You can set this property to any color object as listed in the Color class.

Approach: Connection property
{button ,AL(`H_LAS_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_las_CONNECTION_EXSCRIPT',1)} See example
Sets or returns the Connection object used in the query.

Data type
Connection

Syntax
Set queryobject.Connection = connectionobject
Set connectionobject = queryobject.Connection

Legal values
Any existing Connection object.

Usage
You must set this property to a Connection object to execute a query or produce a result set.
The connection must be open when you call the Execute method.

Approach: Count property
{button ,AL(`H_LAS_BASECOLLECTION_CLASS;H_LAS_COLLECTION_CLASS;H_LAS_LISTBOX_CLASS;',0)}

See list of classes
{button ,AL(`H_las_COUNT_EXSCRIPT',1)} See example
(Read-only) Returns the number of objects in a BaseCollection, Collection, or ListBox object.

Data type
Integer

Syntax
value = basecollectionobject.Count
or
value = collectionobject.Count
or
value = listboxobject.Count

Legal values
The number of objects in the BaseCollection, Collection, or ListBox object.

Approach: CurrentPageNum property
{button ,AL(`H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;',0)} See list of classes
{button ,AL(`H_las_CURRENTPAGENUM_EXSCRIPT',1)} See example
Sets or returns the current page number of a form or form letter.

Data type
Integer

Syntax
formobject.CurrentPageNum = value
value = formobject.CurrentPageNum
or
formletterobject.CurrentPageNum = value
value = formletterobject.CurrentPageNum

Legal values
Any number between 1 and the number of pages on the form or form letter. To determine the number of pages in the
form or form letter, use the NumPages property.
The default value is the current page number of the form or form letter.

Approach: CurrentRow property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_CURRENTROW_EXSCRIPT',1)} See example
Sets or returns the current row (record) in a result set.

Data type
Long

Syntax
resultsetobject.CurrentRow = value
value = resultsetobject.CurrentRow

Legal values
Any number between 1 and the number of rows in the result set. Determine the number of rows using the NumRows
method. A value of zero indicates that there are no records in the result set.

Usage
Setting the current row prepares Approach to read or edit data from that row of the result set.

Approach: Cyan property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_CYAN_EXSCRIPT',1)} See example
(Read-only) Returns the cyan component of a CMYK value for a display element.

Data type
Integer

Syntax
value = colorobject.CYAN

Legal values
Any integer from 0 to 255.

Usage
0 represents no cyan and 255 represents the highest amount of cyan available.

Approach: DataField property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_RA

DIOBUTTON_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_DATAFIELD_EXSCRIPT',1)} See example
Sets or returns the name of the field in the table (database file) bound to the display element in the view, such as a
field box or PicturePlus object.

Data type
String

Syntax
displayelement object.DataField = tablefield
tablefield = displayelementobject.DataField

Legal values
Any field in the table.

Usage
After you create a new display element in a view, such as a field box, set this property to the table field you want the
display element to represent.

Approach: DataSourceName property
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
(Read-only) Returns the name of the data source type specified in the Connection object.

Data type
String

Syntax
string = connectionobject.DataSourceName

Legal values
Any data source type that Approach can read using built-in drivers or a driver you supply.
Use the ListDataSources method to produce a list of the available data source types.

Approach: DataTable property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_RA

DIOBUTTON_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS',0)} See list of classes
{button ,AL(`H_las_DATATABLE_EXSCRIPT',1)} See example
Sets or returns the name of the table (database file) bound to the display element in the view, such as a field box or
PicturePlus object.

Data type
String

Syntax
displayelementobject.DataTable = tablename
tablename = displayelementobject.DataTable

Legal values
Any of the tables associated with the document (.APR file).

Usage
After you create a new display element, such as a field box, set this property to the table that contains the field you
want the display element to represent.

Approach: Documents property
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_las_DOCUMENTS_EXSCRIPT',1)} See example
(Read-only) Returns a list of the documents (.APR files) open in an Approach application (.EXE file).

Data type
BaseCollection

Syntax
Set collectionobject = applicationobject.Documents

Usage
This property identifies the open document(s) without having to know them by name.
Identify a single document by specifying its index in the Documents BaseCollection.
For example, if you want to close the first document opened in the current Approach session, specify the first
document in Documents (the BaseCollection is numbered starting from zero).

Approach: Document property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_E

NVELOPE_CLASS;H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H
_LAS_REPORT_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_DOCUMENT_EXSCRIPT',1)} See example
(Read-only) Returns the document object (.APR file) displayed in the current window.

Data type
Document

Syntax
Set document = docwindowobject.Document

Legal values
Any document (.APR file).

Usage
If users have several documents open, determine which document they are currently viewing.

Approach: DrillDownView property
{button ,AL(`H_LAS_CROSSTAB_CLASS;',0)} See list of classes
{button ,AL(`H_las_DRILLDOWNVIEW_EXSCRIPT',1)} See example
Sets or returns the view that shows in detail the data summarized by the crosstab.

Data type
Variant

Syntax
crosstabobject.DrillDownView = viewobject
viewobject = crosstabobject.DrillDownView

Legal values
Any view in the document (.APR file).
To set a view as the drill-down view, supply the name of a view object. To unset the property, set it to zero.

Approach: Editable property
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;',0)} See list of classes
Sets or returns whether users can edit text or add a new item in a drop-down box.

Data type
Integer

Syntax
ddboxname.Editable = flag
flag = ddboxname.Editable

Legal values
Value Description
TRUE (Default) You can edit text or

create a new item in the
drop-down box.

FALSE You cannot edit text in the
drop-down box; you can
only select an item from the
list.

Usage
Enter all the valid values when you create a new drop-down box, and then change its property so users cannot add
any other values.

Approach: Enabled property
{button ,AL(`H_LAS_BUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_ENABLED_EXSCRIPT',1)} See example
Sets or returns if a button can be clicked. A button is dimmed when it is disabled.

Data type
Integer

Syntax
 buttonobject.Enabled = flag
 flag = buttonobject.Enabled

Legal values
Value Description
TRUE (Default) The button is

enabled.
FALSE The button is disabled; it

appears dimmed.

Usage
Disable buttons when you do not want users to run the attached macro or script. For example, you can choose not to
enable a Close button until users complete the dialog box.

Approach: EncloseLabel property
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
Sets or returns whether to enclose a label within the border of a field.

Data type
Integer

Syntax
borderobject.EncloseLabel = flag
flag = borderobject.EncloseLabel

Legal values
Value Description
FALSE (Default) Do not enclose the

label within the border.
TRUE Enclose the label within the

border.

Approach: Expand property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_SUMMARYPANEL_CLASS;',0)}

See list of classes
{button ,AL(`H_las_EXPAND_EXSCRIPT',1)} See example
Sets or returns whether a body panel, summary panel, or field box expands when printing.

Data type
Integer

Syntax
object.Expand = flag
flag = object.Expand

Legal values
Value Description
TRUE (Default) Expand the display

element when printing.
FALSE Do not expand the display

element when printing.

Usage
Expand a field or panel boundary if it contains more data than it can display.
For example, if a description field displays only 20 characters in the view, but contains more characters, expand the
field so users can see all the text when it is printed.

Approach: FontName property
{button ,AL(`H_LAS_FONT_CLASS',0)} See list of classes
{button ,AL(`H_las_FONTNAME_EXSCRIPT',1)} See example
Sets or returns the name of the font for the current display element.

Data type
String

Syntax
fontobject.FontName = string
string = fontobject.FontName
or
displayelementobject.Font.FontName = string
string = displayelemetobject.Font.FontName

Legal values
The default font is Arial. Any fonts currently installed on the computer are also legal values.

Usage
Change the font when you add new display elements and you want to make them consistent with other interface
elements. For example, you can change the font of a text block showing the title of a form from Arial to Times New
Roman.

Approach: Font property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LIS

TBOX_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_FONT_EXSCRIPT',1)} See example
Sets or returns the font object used to define the font attributes of display elements such as buttons and field boxes.

Data type
Font

Syntax
displayelementobject.Font = fontobject
fontobject = displayelementobject.Font

Legal values
Any font object as listed in the Font class.

Usage
Change the font of the display element to make it consistent with, or more noticeable than the other display elements
in a view. For example, you can set the text of an important button to blue, bold, 10-point type.

Approach: Green property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_GREEN_EXSCRIPT',1)} See example
(Read-only) Returns the green component of an RGB value for a display element.

Data type
Integer

Syntax
value = colorobject.Green

Legal values
0 represents no green and 255 represents the highest amount of green available.

Usage
Use the SetRGB method to change the settings of the Red, Green, and Blue properties all at once.

Approach: Height property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPL

AY_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_H
EADERFOOTERPANEL_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT
_CLASS;H_LAS_PANEL_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBU
TTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_ROUNDRECT_CLA
SS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_HEIGHT_EXSCRIPT',1)} See example
Sets or returns the height, in twips, of a display element or panel.

Data type
Long

Syntax
object.Height = value
value = object.Height

Legal values
The default value for HeaderFooterPanel is 0. You must change this to show a header or footer.
The maximum height of the display element or panel is the maximum page size allowed by your page setup.

Approach: HideMargins property
{button ,AL(`H_LAS_ENVELOPE_CLASS;H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILIN

GLABELS_CLASS;',0)} See list of classes
{button ,AL(`H_las_HIDEMARGINS_EXSCRIPT',1)} See example
Sets or returns whether the margins are displayed.

Data type
Integer

Syntax
viewobject.HideMargins = flag
flag = viewobject.HideMargins

Legal values
Value Description
FALSE (Default) Do not hide the

margins.
TRUE Hide the margins.

Approach: IsBeginOfData property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
(Read-only) Returns whether the current row is the first row in the result set.

Data type
Integer

Syntax
integer = resultsetobject.IsBeginOfData

Legal values
Value Description
TRUE The current row is the first row

of the result set.
FALSE The current row is not the first

row of the result set.

Approach: IsChecked property
{button ,AL(`H_LAS_CHECKBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_ISCHECKED_EXSCRIPT',1)} See example
(Read-only) Returns the state of a check box.
Note The SetState method sets the initial value of the check box to be checked or unchecked.

Data type
Integer

Syntax
flag = checkboxobject.IsChecked

Legal values
Value Description
FALSE The check box is not checked.
TRUE The check box is checked.

Usage
Determine if a check box is checked, and then perform another task based on the result. For example, if users turn
on the "Non smoking" check box, display only the list of available rooms that are designated "Non smoking".

Approach: IsConnected property
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
(Read-only) Returns the data connection status.

Data type
Integer

Syntax
integer = connectionobject.IsConnected

Legal values
Value Description
TRUE The connection is active.
FALSE The connection is not active.

Usage
Use this property to verify that your data connection is active to avoid sending error messages to users when your
script attempts an operation that requires a connection.

Approach: IsEndOfData property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
(Read-only) Returns whether the current row is the last row in the result set.

Data type
Integer

Syntax
integer = resultsetobject.IsEndOfData

Legal values
Value Description
TRUE The current row is the last row in

the result set.
FALSE The current row is not the last row

in the result set.

Approach: IsReadOnly property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
(Read-only) Returns whether a result set is read-only or read-write.
You cannot add, delete, or change records in a read-only result set.

Data type
Integer

Syntax
integer = resultsetobject.IsReadOnly

Legal values
Value Description
TRUE The result set is read-only.
FALSE The result set is read-write.

Approach: IsResultSetAvailable property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
(Read-only) Returns whether the result set is available.

Data type
Integer

Syntax
integer = resultsetobject.IsResultSetAvailable

Legal values
Value Description
TRUE The result set is available.
FALSE The result set is not available.

Usage
This property determines whether the source table for the result set still exists and is connected to Approach. For
example, check the value of IsResultSetAvailable before calling the Transactions or UpdateRow methods to make
sure that the edit of the result set will be successful.

Approach: Italic property
{button ,AL(`H_LAS_FONT_CLASS;',0)} See list of classes
{button ,AL(`H_las_ITALIC_EXSCRIPT',1)} See example
Sets or returns if the text of a display element is italicized.

Data type
Integer

Syntax
fontobject.Italic = flag
flag = fontobject.Italic
or
displaylementobject.Font.Italic= flag
flag = displayelemetobject.Font.Italic

Legal values
Value Description
FALSE (Default) The font is not italic.
TRUE The font is italic.

Approach: LabelAlignment property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_LABELALIGNMENT_EXSCRIPT',1)} See example
Sets or returns the alignment of a label with its field in the view.

Data type
Long

Syntax
displayelementobject.LabelAlignment = value
value = displayelementobject.LabelAlignment

Legal values
Value Description
$ltsAlignmentLeft (Default) Aligns the label with

the left edge of the display
element.

$ltsAlignmentHorizCenter Aligns the label with the center
of the display element.

$ltsAlignmentRight Aligns the label with the right
edge of the display element.

Usage
After you create a new field in a view, change the label alignment to a different position from the default.

Approach: LabelFont property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_LABELFONT_EXSCRIPT',1)} See example
Sets or returns the font for the label of a field in a view.

Data type
Font

Syntax
Set displayelementobject.LabelFont = value
Set value = displayelementobject.LabelFont

Legal values
Any font object as listed in the Font class.

Usage
After you create a new field in a view, you can change the label to a different font, for example Times New Roman.

Approach: LabelPosition property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_LABELPOSITION_EXSCRIPT',1)} See example
Sets or returns the position of the label relative to its associated field.

Data type
Long

Syntax
displayelementobject.LabelPosition = value
value = displayelementobject.LabelPosition

Legal values
Value Description: The label appears
$LtsPositionTop (Default)Above the display

element.
$LtsPositionBottom Below the display element.
$LtsPositionLeft To the left of the display element.
$LtsPositionRight To the right of the display element.
$LtsPositionNone The display element does not

have a label.

Usage
After you create a new field in a view, change the label to appear in a different position from the default.

Approach: LabelText property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_LABELTEXT_EXSCRIPT',1)} See example
Sets or returns the text for the label of a field in a view.

Data type
String

Syntax
displayelementobject.LabelText = stringexp
stringexp = displayelementobject.LabelText

Legal values
Any string up to 256 characters.

Usage
The name of a new field in a view and its label are the same unless you change the text of the label. You may want
a more descriptive or readable label for the field in the view.
For example, if the name of a radio button is FLD_RESERVE_CORP_RATE, you can change its label to Corporate
Rate.

Approach: Left property (Border class)
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_LEFT_BORDER_EXSCRIPT',1)} See example
Sets or returns whether to display a border along the left side of a display element.

Data type
Integer

Syntax
borderobject.Left = flag
flag = borderobject.Left

Legal values
Value Description
FALSE (Default) Do not display the left

border.
TRUE Display the left border.

Usage
The border of a display element is transparent until you set its color using the SetRGB method.

Approach: Left property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_ROUN
DRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_LEFT_EXSCRIPT',1)} See example
Sets or returns the distance, measured in twips, between the left edge of a display element or panel and the left edge
of its parent.

Data type
Long

Syntax
displayelementobject.Left = value
value = displayelementobject.Left

Legal values
If the Left property is a negative value, the display element or panel may be hidden.

Approach: LineSpacing property
{button ,AL(`H_LAS_TEXTBOX_CLASS;',0)} See list of classes
Sets or returns the amount of space between lines of text in a text block.

Data type
Long

Syntax
textboxobject.LineSpacing = value
value = textboxobject.LineSpacing

Legal values
Value Description
$LtsLineSpacingSingle (Default) Use single-line

spacing.
$LtsLineSpacingSingleAndHal
f

Use a line-and-a-half spacing.

$LtsLineSpacingDouble Use two-line spacing.

Usage
Use this property to increase or decrease the amount of space between the lines of text in a text block.
For example, if single line spacing is too hard to read, you can increase it by another half or full line.

Approach: LineStyle property
{button ,AL(`H_LAS_LINEOBJECT_CLASS;',0)} See list of classes
{button ,AL(`H_las_LINESTYLE_EXSCRIPT',1)} See example
Sets and returns the LineStyle object which specifies the style of a line; for example, the line color and pattern.

Data type
LineStyle

Syntax
Set lineobject.LineStyle = linestyleobject
Set linestyleobject = lineobject.LineStyle

Legal Values
Any LineStyle object.

Approach: MacroClick property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_OLEOBJE

CT_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_T
EXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_MACROCLICK_EXSCRIPT',1)} See example
Sets or returns the name of the macro to run when users click certain display elements, such as buttons, ellipses,
pictures, and so on.

Data type
String

Syntax
displayelementobject.MacroClick = macroname
macroname = displayelementobject.MacroClick

Legal values
A string expression whose value is the name of a macro in the document (.APR file).

Approach: MacroDataChange property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_MACRODATACHANGE_EXSCRIPT',1)} See example
Sets or returns the macro to run when the data in a field changes.

Data type
String

Syntax
displayelementobject.MacroDataChange = macroname
macroname = displayelementobject.MacroDataChange

Legal values
Any macro in the document (.APR file).

Usage
You can run a macro when users update information in a field. For example, when a user turns on a check box or
radio button, run a macro to display an appropriate report.

Approach: MacroTabIn property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_MACROTABIN_EXSCRIPT',1)} See example
Sets or returns the name of the macro to run when the user tabs into a display element.

Data type
String

Syntax
displayelementobject.MacroTabIn = macroname
macroname = objectname.MacroTabIn

Legal values
A string expression whose value is the name of a macro in the document (.APR file).

Approach: MacroTabOut property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_MACROTABOUT_EXSCRIPT',1)} See example
Sets or returns the name of the macro to run when the user tabs out of a display element.

Data type
String

Syntax
displayelementobject.MacroTabOut = macroname
macroname = displayelementobject.MacroTabOut

Legal values
A string expression whose value is the name of a macro in the document (.APR file).

Approach: Magenta property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_MAGENTA_EXSCRIPT',1)} See example
(Read-only) Returns the magenta component of a CMYK value for a display element.

Data type
Integer

Syntax
value = colorobject.Magenta

Legal values
Any integer from 0 to 255.

Usage
0 represents no magenta and 255 represents the highest amount of magenta available.

Approach: NamedStyle property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DROP

DOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_HEADERFOOTERPANEL_C
LASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_PANEL_CLASS;H_LAS_PICTUREPLUS
_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_RE
PEATINGPANEL_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX
_CLASS;',0)} See list of classes

{button ,AL(`H_las_NAMEDSTYLE_EXSCRIPT',1)} See example
Sets or returns a named style for a display element or panel.

Data type
String

Syntax
objectname.NamedStyle = namedstyle
namedstyle = objectname.NamedStyle

Legal values
A string expression whose value is a named style in the document (.APR file).

Approach: Name property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHARTVIEW_CLASS;H_LAS_CHE

CKBOX_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DOCUMENT_CLASS;H_LAS_
DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FIELDBOX_CLASS;
H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLAS
S;H_LAS_MAILINGLABELS_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PIC
TURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CL
ASS;H_LAS_REPORT_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEX
TBOX_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_NAME_EXSCRIPT',1)} See example
Sets or returns the name of a document (.APR file), display element, panel, view, or application.

Data type
String

Syntax
object.Name = namestring
namestring = object.Name

Legal values
A string whose value is the name of a document, display element, panel, view, or application.
All display elements on a panel, panels in a view, views in a document, and documents in a directory must have
unique names.

Usage
The name of an object is the identifier for the object that appears in the Object drop-down box in the Script Editor.
The Name property is read-only for Document objects.

Approach: NonPrinting property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_NONPRINTING_EXSCRIPT',1)} See example
Sets or returns if a display element will print.
For example, you can prevent buttons from printing.

Data type
Integer

Syntax
displayelementobject.NonPrinting = flag
flag = displayelementobject.NonPrinting

Legal values
Value Description
FALSE (Default) Print the display

element.
TRUE Do not print the display

element.

Approach: Orientation property
{button ,AL(`H_LAS_LINEOBJECT_CLASS;',0)} See list of classes
{button ,AL(`H_las_ORIENTATION_EXSCRIPT',1)} See example
Sets or returns the orientation of the line graphic.

Data type
Long

Syntax
lineobject.Orientation = long
long = lineobject.Orientation

Legal values
Value Description
$LtsOrientationPosSlope (Default) The line has a

positive slope.
$LtsOrientationNegSlope The line has a negative slope.

Usage
Slope is measured as the change in length of the line on the y-axis over the change in length on the x-axis. The
computer screen's coordinate system starts at the top left corner, and values on the y-axis increase as you move
down the screen.

Approach: Page property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_ROUN
DRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_PAGE_EXSCRIPT',1)} See example
(Read-only) Returns the page number on which a display element or panel appears on a form or report.

Data type
Integer

Syntax
value = displayelementobject.Page

Legal values
For forms, any integer 1 - 5.
For reports, any integer up to the number of pages in the report.

Approach: Parent property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_BODYPANEL_CLAS

S;H_LAS_BUTTON_CLASS;H_LAS_CHARTVIEW_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_CROSSTAB_C
LASS;H_LAS_DISPLAY_CLASS;H_LAS_DOCUMENT_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_DROPD
OWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_
FORM_CLASS;H_LAS_FORMLETTER_CLASS;H_LAS_HEADERFOOTERPANEL_CLASS;H_LAS_LINEOBJEC
T_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PANEL_CLASS;H_LAS_PICTURE_
CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS
_REPEATINGPANEL_CLASS;H_LAS_REPORT_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_SUMMARYPAN
EL_CLASS;H_LAS_TABLE_CLASS;H_LAS_TEXTBOX_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_C
LASS;H_LAS_MAILINGLABELS_CLASS;',0)} See list of classes

{button ,AL(`H_LAS_PARENT_EXSCRIPT',1)} See example
(Read-only) Returns the parent object.

Data type
If the object is Then the Parent data type is
Application, ApplicationWindow
or Document

Application

DocWindow, View, Table or any
Approach view

Document

A panel Variant (a view)
A display element Variant (a panel)

Syntax
Set parentobject = object.Parent

Legal values
An existing object.

Usage
For panel and display element objects, declare the object variable for the parent object as Variant or use the abstract
classes Panel and View .

Determine the parent application that contains the current application window or document, so you can change the
Approach application's settings.
Determine the path of the Approach executable running the current document.

Approach: Pattern property
{button ,AL(`H_LAS_BORDER_CLASS;H_LAS_LINESTYLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_PATTERN_EXSCRIPT',1)} See example
Sets or returns the style used for lines and display element borders.

Data type
Long

Syntax
displayelementobject.Linestyle.Pattern = value
value = displayelementobject.Linestyle.Pattern
or
displayelementobject.Border.Pattern = value
value = displayelementobject.Border.Pattern

Legal values
For lines, use the following values:

Value Description
$LtsLineStyleSolid (Default) Display a solid line.
$LtsLineStyleDouble Display a double solid line.
$LtsLineStyleDot Display a dotted line.
$LtsLineStyleLongDash Display a long dashed line.
$LtsLineStyleMediumDash Display a medium dashed line.
$LtsLineStyleMediumShortDash Display a medium and short

dashed line.
$LtsLineStyleMediumShortShortDash Display a medium and two

short dashed line.
$LtsLineStyleShortDash Display a short dashed line.
$LtsLineStyleDashDot Display an alternating dashed

and dotted line.
$LtsLineStyleDashDotDot Display an alternating dashed

and two dots line.
$LtsLineStyleNone Do not display a line.

For borders, use the following values:

Value Description
$LtsBorderPatternSolid (Default) Display a solid line.
$LtsBorderPatternDouble Display a double solid line.
$LtsBorderPatternDot Display a dotted line.
$LtsBorderPatternDashed Display a dashed line.
$LtsBorderPatternDashDot Display an alternating dashed

and dotted line.
$LtsBorderPatternDashDotDot Display an alternating dashed

and two dots line.
$LtsBorderPatternLongDash Display a long dashed line.
$LtsBorderPatternLowered Display a lowered three-

dimensional effect line.
$LtsBorderPatternNone Display no border.
$LtsBorderPatternRaised Display a raised three-

dimensional effect line.

Usage
Change the style of a line or border to indicate a difference in data.
For example, change the border of a field box from dashed to solid when it is a read-only field.
You can also use a line to divide a form into different areas that group fields containing related data.

Approach: Position property
{button ,AL(`H_LAS_PICTUREPLUS_CLASS;',0)} See list of classes
Sets or returns the position of a picture in a PicturePlus field relative to its frame. The frame is divided into a 3 x 3
grid, providing nine possible positions for the picture.

Data type
Long

Syntax
pictureplusobject.Position = value
value = pictureplusobject.Position

Legal values
Value Description
$LtsPositionTopLeft (Default) The picture is in the

top left position (1 in the 9 block
grid).

$LtsPositionTop The picture is in the top center
position (2 in the 9 block grid).

$LtsPositionTopRight The picture is in the top right
position (3 in the 9 block grid).

$LtsPositionLeft The picture is in the middle left
position (4 in the 9 block grid).

$LtsPositionCenter The picture is in the center
position (5 in the 9 block grid).

$LtsPositionRight The picture is in the middle right
position (6 in the 9 block grid).

$LtsPositionBottomLeft The picture is in the bottom left
position (7 in the 9 block grid).

$LtsPositionBottom The picture is in the bottom
center position (8 in the 9 block
grid).

$LtsPositionBottomRight The picture is in the bottom
right position (9 in the 9 block
grid).

Approach: Query property
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_QUERY_EXSCRIPT',1)} See example
Sets or returns the query used to create the result set.

Data type
Query

Syntax
Set resultsetobject.Query = queryobject
Set queryobject = resultsetobject.Query

Legal Values
Any existing query object.

Usage
You must set this property to a Query object to execute the ResultSet object.

Approach: ReadOnly property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_READONLY_EXSCRIPT',1)} See example
Sets or returns if a field is read-only.

Data type
Integer

Syntax
objectname.ReadOnly = flag
flag = objectname.ReadOnly

Legal values
Value Description
FALSE (Default) The object is read-

write.
TRUE The object is read-only.

Usage
If you want users to view the data in a field but not make any changes to the data, make the field read-only. For
example, users cannot change a read-only check box selection.
If you later want users to be able to update the information, you can change the field back to be read-write.

Approach: Reduce property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_SUMMARYPANEL_CLASS;',0)}

See list of classes
{button ,AL(`H_las_REDUCE_EXSCRIPT',1)} See example
Sets or returns whether to decrease the size of a body panel, summary panel, or field box when printing.

Data type
Integer

Syntax
displayelementobject.Reduce = flag
flag = displayelementobject.Reduce

Legal values
Value Description
FALSE (Default) Do not reduce the

display element when
printing.

TRUE Reduce the display
element when printing.

Usage
Reduce the size of a field box or panel if it contains a lot of blank space.
For example, if a description field can display 100 characters in the view, but contains only 20 characters, reduce the
size of the field box so it does not waste space when it is printed.
If the field box or panel is too small to display all the data, use the Expand property.

Approach: Red property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_RED_EXSCRIPT',1)} See example
(Read-only) Returns the red component of an RGB value for a display element.

Data type
Integer

Syntax
value = colorobject.Red

Legal values
Any integer from 0 to 255.

Usage
0 represents no red and 255 represents the highest amount of red available.

Approach: Relief property
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_FONT_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of

classes
{button ,AL(`H_las_RELIEF_EXSCRIPT',1)} See example
Sets or returns the style of a check box or radio button, or the appearance of field data, a field label or a text block.

Data type
Long

Syntax
displayelementobject.Relief = value
value = displayelementobject.Relief
or
displaylementobject.Font.Relief = value
value = displayelemetobject.Font.Relief

Legal values
Value Description
$LtsReliefNone (Default) The check box, radio

button, field data, field label or
text block appears normally.

$LtsReliefRaised The check box, radio button,
field data, field label or text
block has a 3D raised effect.

$LtsReliefLowered The check box, radio button,
field data, field label or text
block has a 3D, engraved
effect.

Usage
Change the appearance of a display element to create an attractive, consistent user interface. For example, if you
add a new radio button to a view, and existing radio buttons on the view have a 3D, raised effect, change the new
radio button to appear the same.

Approach: Right property (Border class)
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_RIGHT_BORDER_EXSCRIPT',1)} See example
Sets or returns whether to display a border along the right side of a display element.

Data type
Integer

Syntax
borderobject.Right = flag
flag = borderobject.Right

Legal values
Value Description
TRUE (Default) Display the right

border.
FALSE Do not display the right

border.

Approach: ShadowColor property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_EL

LIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_PI
CTURE_CLASS;H_LAS_PICTUREPLUS_CLASS;;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLA
SS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_SHADOWCOLOR_EXSCRIPT',1)} See example
Sets or returns the color for the shadow of a display element.

Data type
Color

Syntax
displayelementobject.ShadowColor = color
color = displayelementobject.ShadowColor

Legal values
The default color for the ShadowColor property is transparent--that is, the display element shows no shadow.
You can set this property to any color object as listed in the Color class.

Approach: ShowArrow property
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_SHOWARROW_EXSCRIPT',1)} See example
Sets or returns whether to display an arrow in a drop-down box.

Data type
Integer

Syntax
ddboxname.ShowArrow = flag
flag = ddboxname.ShowArrow

Legal values
Value Description
TRUE (Default) Show the

drop-down arrow.
FALSE Do not show the drop-

down arrow.

Usage
The arrow indicates that the box expands to show more items.

Approach: ShowAsDialog property
{button ,AL(`',0)} See list of classes
{button ,AL(`H_las_SHOWASDIALOG_EXSCRIPT',1)} See example
Sets or returns whether to display the form as a dialog box.

Data type
Integer

Syntax
formobject.ShowAsDialog = flag
flag = formobject.ShowAsDialog

Legal values
Value Description
FALSE (Default) Do not display the

form as a dialog box.
TRUE Display the form as a dialog

box.

Usage
Display a form as a dialog box when you want users to enter information, or when you want to get information from
users before continuing.
For example, when users click the See Schedule for button in the Meeting Room Scheduler SmartMaster application,
Approach displays a dialog box that was created as a form and then converted to a dialog box.

Approach: ShowInPreview property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_SHOWINPREVIEW_EXSCRIPT',1)} See example
Sets or returns if a non-printing display element appears when previewing a view.

Data type
Integer

Syntax
displayelementobject.ShowInPreview = flag
flag = displayelementobject.ShowInPreview

Legal values
Value Description
TRUE (Default) Show the object

while in Print Preview.
FALSE Do not show the object while

in Print Preview.

Usage
The ShowInPreview property is available only if the NonPrinting property for the display element is set to TRUE (the
display element will not print).

Approach: Size property
{button ,AL(`H_LAS_FONT_CLASS;',0)} See list of classes
{button ,AL(`H_las_SIZE_EXSCRIPT',1)} See example
Sets or returns the size of the font type of the current display element in points.

Data type
Single

Syntax
fontobject.Size = value
value = fontobject.Size
or
displaylementobject.Font.Size = value
value = displayelemetobject.Font.Size

Legal values
The default font size is 10 points. Other legal values depend on the font.

Usage
Change the font size when you add a display element to make it consistent with other interface elements. For
example, you can change the font size of a form title from 10 points to 14 points.

Approach: SlideLeft property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_SLIDELEFT_EXSCRIPT',1)} See example
Sets or returns if a display element is arranged when printing so that it closes the gap with the display element to the
left of it.

Data type
Integer

Syntax
displayelementobject.SlideLeft = flag
flag = displayelementobject.SlideLeft

Legal values
Value Description
FALSE (Default) Do not slide the

display element to the left
when printing.

TRUE Slide the display element to
the left when printing.

Usage
Slide a display element to the left if a display element to its left contains blank spaces that you do not want to appear
on the printed page.
For example, a mailing label has a field City that is 30 characters long. If a user enters a name that is only 10
characters long, there are twenty blank spaces between the city and the state when the user prints the view. If you
slide the State field to the left, the gap of 20 spaces is closed up.

Approach: SlideUp property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_SLIDEUP_EXSCRIPT',1)} See example
Sets or returns if a display element is arranged when printing so that it closes the gap with the display element above
it.

Data type
Integer

Syntax
displayelementobject.SlideUp = flag
flag = displayelementobject.SlideUp

Legal values
Value Description
FALSE (Default) Do not slide the

display element up when
printing.

TRUE Slide the display element up
when printing.

Usage
Slide a display element towards the top of the page if the display element above it contains blank spaces you do not
want to appear on the printed page.
For example, you may create a field box object that is 200 characters long and underneath it, a picture object. If the
user only enters 100 characters into the field box, there are 100 blank spaces between the text and the picture when
the user prints the view. If you slide the picture object up, the gap of 100 spaces is closed up.

Approach: SQL property
{button ,AL(`H_LAS_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_las_SQL_EXSCRIPT',1)} See example
Sets or returns the SQL statement associated with the Query object.

Data type
String

Syntax
queryobject.SQL = string
string = queryobject.SQL

Legal values
Any valid SQL statement, formatted as a string.

Usage
Supply an SQL statement to run using the Execute method. In most cases, you supply an SQL SELECT statement to
retrieve records from a table. Approach supports all SQL components of the SELECT statement. Some of the basic
components of the SELECT statement are as follows:

Phrase Description
SELECT columnname [,columnname]... (Required) Return values from

these columns.
FROM tablename [,tablename]... (Required) Look for the

columns in these tables.
WHERE (findcondition [,findcondition]...) Return values that match

these find conditions.
Approach requires the statement to be formatted as a string. If there are special characters in column or table names,
you must enclose those names in double quotation marks. To have a double quotation mark inside the string, it must
be preceded by another double quotation mark. For example, the following statement retrieves the Order Total
column from an DB2 table called Orders:
Qry.SQL = "SELECT ""Order Total"" FROM Orders"
The first double quotation mark opens the string; the second and third produce a double quotation mark inside the
string; the fourth and fifth also produce a double quotation mark in the string; and the sixth closes the string.
If the table name is stored in the variable MyTable, use a string concatenation character (&) to add the variable into
the string:
Qry.SQL = "SELECT ""Order Total"" FROM " & MyTable
If the table name is lower case (on Oracle servers) or includes special characters, such as a full path designation, you
must also include double quotation marks in the string to surround the table name. For example, if MyTable contained
the string "orders!", the SQL statement looks like the following:
Qry.SQL = "SELECT ""Order Total"" FROM """ & MyTable & """"
The statement has three double quotation marks before the table name (the first two to generate a single double
quotation mark and the third to close the string) and four double quotation marks after (the first to open the string, the
second two to generate a single double quotation mark, and the fourth to close the string).
Adding find conditions to the statement in a WHERE clause requires careful attention to the placement of quotation
marks. For example, the following statement returns Order records from after a date stored in the variable
CutOffDate:
Qry.SQL = "SELECT ""Order Total"" FROM " & MyTable & _
 " WHERE (" & MyTable & ".""Order Date"" > " & CutOffDate & ")"
The reference to the column Order Date is preceded by the table name and enclosed in double quotation marks.
If you indicate string values inside in the SQL string, enclose the string in single quotation marks.
This property is mutually exclusive of the TableName property. If an SQL statement is specified, Approach executes
the SQL statement, clearing the TableName property setting.

Approach: Stretch property
{button ,AL(`H_LAS_PICTUREPLUS_CLASS;',0)} See list of classes
Sets or returns whether the picture in a PicturePlus field stretches if it is too small for the frame.

Data type
Integer

Syntax
pictureplusobject.Stretch = flag
flag = pictureplusobject.Stretch

Legal values
Value Description
FALSE (Default) The picture is not

stretched to fit the PicturePlus
field.

TRUE The picture is stretched to fit
the PicturePlus field

Usage
If the image is too small for the PicturePlus field, stretch it to fit.

Approach: Strikethrough property
{button ,AL(`H_LAS_FONT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_STRIKETHRU_EXSCRIPT',1)} See example
Sets or returns the text attribute for the font of a display element to strikethrough.

Data type
Integer

Syntax
fontobject.Strikethrough = flag
flag = fontobject.Strikethrough
or
displaylementobject.Font.Strikethrough = flag
flag = displayelemetobject.Font.Strikethrough

Legal values
Value Description
FALSE (Default) Do not put a line

through the font.
TRUE Put a line through the font.

Approach: TabOrder property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_TABORDER_EXSCRIPT',1)} See example
Sets or returns the order in which display elements are selected when users press TAB to move around a form.

Data type
Integer

Syntax
displayelementobject.TabOrder = value
value = displayelementobject.TabOrder

Legal values
Set this property to any integer between 1 and the number of objects in the view.
The default tab order for most display elements is based on the order in which you add them to a view.
Display elements such as rectangles, text blocks, and so on, must be added to the tab order using this property.

Usage
Arrange the tab order so users can tab between elements in a logical order. For example, if you create a new field
box, and add it to a form, it is last in the tab order regardless of where you placed it on the form.

Approach: TabStop property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_TABSTOP_EXSCRIPT',1)} See example
Sets or returns if a display element can be selected by users pressing TAB.

Data type
Integer

Syntax
displayelementobject.TabStop = flag
flag = displayelementobject.TabStop

Legal values
Value Description
TRUE (Default, except for ellipse,

line, rectangle, rounded
rectangle, and text blocks.)
Allow tabbing to the object.

FALSE Do not allow tabbing to the
object.

Usage
Arrange display elements so they are or are not in the tab order.
For example, if you have a form with a picture field, and you do not want users to tab to the picture, turn off the
TabStop property for that picture field.

Approach: Text property (Button class)
{button ,AL(`H_LAS_BUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_TEXT_BUTTON_EXSCRIPT',1)} See example
Sets or returns the text displayed on a button.

Data type
String

Syntax
buttonobject.Text = stringexp
stringexp = buttonobject.Text

Legal values
Any string up to 256 characters long.

Approach: Text property
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_TE

XTBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_TEXT_EXSCRIPT',1)} See example
Sets or returns the text value of the data in drop-down boxes, field boxes, list boxes, field boxes and lists, and text
blocks.

Data type
String

Syntax
displayelementobject.Text = string
string = displayelementobjet.Text

Legal values
Any string up to 256 characters.

Usage
Determine the text in a display element so you can initiate another action.
For example, if users select CA in the State drop-down box, you can list only the Zip codes for California in the ZIP
drop-down box.

Approach: Top property (Border class)
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_TOP_BORDER_EXSCRIPT',1)} See example
Sets or returns whether to display a border along the top of a display element.

Data type
Integer

Syntax
borderobject.Top = flag
flag = borderobject.Top

Legal values
Value Description
TRUE (Default) Display the top

border.
FALSE Do not display the top border.

Approach: Top property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_ROUN
DRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_TOP_EXSCRIPT',1)} See example
Sets or returns the distance, measured in twips, between the top edge of a display element or panel and the top edge
of its parent.

Data type
Long

Syntax
displayelementobject.Top = value
value = displayelementobject.Top

Legal Values
If the Top property is a negative number, the display element or panel may not appear in the view.

Approach: Type property
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHARTVIEW_CLASS;H_LAS_CHEC

KBOX_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LA
S_ELLIPSE_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_FORMLETTER_CLASS;
H_LAS_FORM_CLASS;H_LAS_HEADERFOOTERPANEL_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTB
OX_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PANEL_CLASS;H_LAS_P
ICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLA
SS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_REPORT_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_SUM
MARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_CLASS',0)}
See list of classes

{button ,AL(`H_las_TYPE_EXSCRIPT',1)} See example
(Read-only) Returns the type of display element, panel, or view.

Data type
Long

Syntax
value = object.Type

Legal values
See the list of enumerators.

Usage
Determine the type of object.
For example, you may want to know if the current display element is a radio button or a check box.

Approach: UncheckedValue property
{button ,AL(`H_LAS_CHECKBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_UNCHECKEDVALUE_EXSCRIPT',1)} See example
Sets or returns the value associated with the unchecked state of a check box.
Note This value does not reflect the current state of the check box.

Data type
String

Syntax
checkboxobject.UncheckedValue = stringexp
stringexp = checkboxobject.UncheckedValue

Legal values
Any string up to 256 characters.

Usage
Determine the value of an unchecked check box, regardless of its current state. For example, you can display a set of
radio buttons below only those check boxes that have an unchecked value of Don't know.

Approach: Underline property
{button ,AL(`H_LAS_FONT_CLASS;',0)} See list of classes
{button ,AL(`H_las_UNDERLINE_EXSCRIPT',1)} See example
Sets or returns the text attribute of the font of a display element to underline.

Data type
Integer

Syntax
fontobject.Underline = flag
flag = fontobject.Underline
or
displaylementobject.Font.Underline = flag
flag = displayelemetobject.Font.Underline

Legal values
Value Description
FALSE (Default) Do not underline the

font.
TRUE Underline the font.

Approach: UserID property
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_USERID_EXSCRIPT',1)} See example
Sets or returns the user name used to log on to a database server.

Data type
String

Syntax
connectionobject.UserID = string
string = connectionobject.UserID

Legal values
Any string.

Approach: Value property (CheckBox class)
{button ,AL(`H_LAS_CHECKBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_VALUE_CHECKBOX_EXSCRIPT',1)} See example
Sets or returns the value in the field represented by the check box, when you first define the checkbox.

Data type
String

Syntax
checkboxobject.Value = stringexp
stringexp = checkboxobject.Value

Legal values
Any value that is legal for the field, determined by its properties.

Usage
Set the initial value of the check box when you create it. You cannot change it's value once you have defined it.
Determine the value of the check box, and then perform another task based on the value.
For example, a view has five check boxes, and each has a value of 1 when checked and 0 when unchecked. You can
add the total values together and run an appropriate macro based on the results.

Approach: Value property (RadioButton class)
{button ,AL(`H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
Sets or returns the value of the radio button based on whether it is turned on or off.

Data type
String

Syntax
radiobuttonobject.Value = stringexp
stringexp = radiobuttonobject.Value

Legal values
There is no default value for this property.
You can set this property to any value that is legal for the field, determined by its properties.

Usage
Set the on and off values of a new radio button, or when other data changes.
Determine the value of the radio button, then perform another task based on the value.
For example, a view has five radio buttons, and each has a value of one when turned on, and zero when turned off.
You can add the total values together and run an appropriate macro based on the results.

Approach: Visible property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHARTVIEW_CLASS;H_LAS_CHE

CKBOX_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS
_DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FIELDBOX_CLASS
;H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLA
SS;H_LAS_MAILINGLABELS_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PI
CTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPORT_CLASS;H_L
AS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0
)} See list of classes

{button ,AL(`H_las_VISIBLE_EXSCRIPT',1)} See example
Sets or returns whether a display element, panel, view, or application is visible.

Data type
Integer

Syntax
object.Visible = flag
flag = object.Visible

Legal values
Value Description
TRUE (Default) The object is visible.
FALSE The object is not visible.

Approach: Width property (Border class)
{button ,AL(`H_LAS_BORDER_CLASS;',0)} See list of classes
{button ,AL(`H_las_WIDTH_BORDER_EXSCRIPT',1)} See example
Sets or returns the width of a solid line.

Data type
Long

Syntax
borderobject.Width = value
value = borderobject.Width

Legal values
Value Description
$LtsBorderWidthNone There is no border.
$LtsBorderWidthThin The border is a thin line.
$LtsBorderThick The border is a thick line.
AprHalfPoint The border is 0.5 points wide.
Apr1Point The border is 1 point wide.
Apr2Point The border is 2 points wide.
Apr3Point The border is 3 points wide.
Apr6Point The border is 6 points wide.
Apr12Point The border is 12 points wide.

Approach: Width property
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
NESTYLE_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_
LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPA
NEL_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;',0)}
See list of classes

{button ,AL(`H_las_WIDTH_EXSCRIPT',1)} See example
Sets or returns the width, in twips, of a display element or panel.

Data type
Long

Syntax
displayelementobject.Width = value
value = displayelementobject.Width
or
panelobject.Width = value
value = panelobject.Width

Legal values
Maximum width: The maximum page size allowed by your page setup.

Approach: Yellow property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_YELLOW_EXSCRIPT',1)} See example
(Read-only) Returns the yellow component of a CMYK value for a display element.

Data type
Integer

Syntax
value = colorobject.Yellow

Legal values
Any integer from 0 to 255.

Usage
0 represents no yellow and 255 represents the highest amount of yellow available.

Approach: Activate method
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_ACTIVATE_EXSCRIPT',1)} See example
Makes the specified document (.APR file) active.

Syntax
Call documentobject.Activate()

Parameters
None

Return values
None

Usage
If you want users to access more than one document to complete a task, you can switch to the another document at
the appropriate step in the procedure.

Approach: AddColumn method
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
{button ,AL(`H_las_ADDCOLUMN_EXSCRIPT',1)} See example
Adds a column to a worksheet.

Syntax
integer = worksheetobject.AddColumn(fieldname, columnname, insertpos)

Parameters
fieldname

A string representing the name of a field.
columnlabel

(Optional) A string representing the text for the column header.
insertpos

(Optional) A string representing the position to insert the column in the worksheet. The string is the header of the
column to the left of the position for the new column.

Return values
Value Description
TRUE A new column was added to

the worksheet.
FALSE A new column was not added

to the worksheet.

Approach: AddListItem method
{button ,AL(`H_LAS_LISTBOX_CLASS;',0)} See list of classes
Adds a new value to a list box.

Syntax
integer = listboxobject.AddListItem(item, [index])

Parameters
item

A string representing the value you want to add to the list of values displayed by the list box. If the string is longer
than the length defined for the field associated with the list box, the string is truncated.

index
(Optional) An integer representing the location in the list that item is placed. If you do not specify an index, item is
placed at the end of the list.

Return values
Value Description
TRUE The item was successfully

added to the list.
FALSE The item failed to be added to

the list.

Usage
This method adds items to the list of choices available to the user.

Approach: AddRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_ADDROW_EXSCRIPT',1)} See example
Adds a new row (record) to a result set.

Syntax
Call resultsetobject.AddRow()
or
integer = resultsetobject.AddRow()

Parameters
None

Return values
Value Description
TRUE A new row was added to the

result set.
FALSE A new row was not added to the

result set.

Usage
Add data to fields in the new row using the SetValue method.
The row is not committed to the result set until you call the UpdateRow method.

Approach: Add method (Collection class)
{button ,AL(`H_LAS_COLLECTION_CLASS;',0)} See list of classes
Adds an object to the current collection.

Syntax
index = collectionobject.Add(object)

Parameters
object

An object added to the collection.

Return values
Value Description
Index An integer representing the

index for the new item added
to the collection

Approach: Add method
{button ,AL(`H_LAS_FINDDISTINCT_CLASS;H_LAS_FINDDUPLICATE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_ADD_EXSCRIPT',1)} See example
Adds a field to the find condition for a FindDistinct or FindDuplicate object.

Syntax
Call findspecialobject.Add(field)

Parameters
field

A string representing the name of the field.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

Return values
None

Usage
This method qualifies which fields are used to determine duplicate or distinct records. For example, create a
FindDuplicate object using the FirstName field to find all records with the same first names. Then use the Add method
to include the LastName field. The records found have duplicate first and last names.

Approach: Add method (Sort class)
{button ,AL(`H_LAS_SORT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_ADD_SORT_EXSCRIPT',1)} See example
Adds another field to the sort condition for a Sort object.

Syntax
Call sortobject.Add(field, order)

Parameters
field

A string representing the name of the field.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

order
A long representing the order to sort the values in field. Choose from the following values:

Value Description
LtsSortAscending Sorts the field values from lowest

to highest and from A to Z.
LtsSortDescending Sorts the field values from highest

to lowest and from Z to A.

Return values
None

Usage
This method adds fields to further refine the sort of the found set or the entire table. For example, create a Sort object
using the LastName field as the primary field by which to sort the records in a table. Then use the Add method to
include the FirstName field. The table is sorted by first and last name.

{button ,AL(`',1)} See example

Approach: And method
{button ,AL(`H_LAS_FIND_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_AND_EXSCRIPT',1)} See example
Adds a find condition to an existing Find object.
This new find condition is in an AND relationship with the previously added condition.

Syntax
Call findobject.And(field,criteria)

Parameters
field

A string representing the name of the field to use in this find condition.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

criteria
A string representing the find condition. For example, to search for records with values in field greater than 100,
criteria has the value ">100".
Build criteria with wildcards, functions, operators, constants, and field references as you would other formulas in
Approach.

Return values
None

Usage
This method adds a find condition to an existing Find object. The find conditions are in an AND relationship, which
means that both conditions must be met by a record for that record to be included in the found set.
The following script shows a typical example of using the And method:
Sub FindState
 Set MyFind = New Find ("CONTACT", "Yoko Tanaka")
 Call MyFind.And ("STATE", "CA")
 CurrentDocument.Window.FindSort (MyFind)
End Sub

Approach: BringToFront method
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_O
LEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLAS
S;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_CLASS;H_LAS_DISPLAY_
CLASS;',0)} See list of classes

{button ,AL(`H_las_BRINGTOFRONT_EXSCRIPT',1)} See example
Places a display element in front of all overlapping display elements.

Syntax
displayelementobject.BringToFront

Parameters
None

Return values
None

Usage
Arrange display elements so they do not interfere with entering data or hide other display elements.
For example, you can have a circle around a group of radio buttons. For users to be able to click the buttons,
however, the buttons must be in front of the circle.

Approach: Browse method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Switches Approach to Browse.

Syntax
integer = docwindowobject.Browse

Parameters
None

Return values
Value Description
TRUE Approach successfully

switched to Browse.
FALSE Approach failed to switch to

Browse.

Usage
Use this method to toggle the Approach environment between Print Preview and Browse.

Approach: Cascade method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;',0)} See list of classes
Cascades the windows. Using this LotusScript command is the same as choosing Window - Cascade.

Syntax
Call applicationwindowobject.Cascade()

Parameters
None

Return values
None

Approach: Close method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_WINDOW_CLASS;',

0)} See list of classes
{button ,AL(`H_las_CLOSE_EXSCRIPT',1)} See example
Closes the application or document window.
Using this LotusScript command is the same as clicking the Close button on the right of the application or document
title bar.

Syntax
Call applicationwindowobject.Close()

Parameters
None

Return values
None

Usage
Use the Close method to close a form displayed as a dialog box.
For example, attach a script to a Cancel button to close a form used to enter dates.

Approach: Close method (ResultSet class)
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_CLOSE_RESULTSET_EXSCRIPT',1)} See example
Closes a result set.

Syntax
Call resultsetobject.Close()
or
integer = resultsetobject.Close

Parameters
None

Return values
Value Description
TRUE The result set was successfully

closed.
FALSE The result set was not closed.

Usage
To commit changes made to a result set, use the UpdateRow method.

Approach: ConnectTo method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_CONNECTTO_EXSCRIPT',1)} See example
Connects to a data source.

Syntax
integer = connectionobject.ConnectTo(source, [userid], [password], server)

Parameters
source

A string identifying the file type to which you are connecting.
Choose from strings corresponding to the file types registered on your system. The strings are case-sensitive.
Call ListDataSources method to determine the possible values.
The following values are some of the possible values:

dBASE III+
dBASE IV
FoxPro
Query
Lotus Notes - Local
Lotus Notes - Server
Lotus Notes - Workspace
Paradox
QMF Query
QMF Procedure
Oracle
SQL Server
ODBC Data Sources
Delimited Text
Fixed Length Text
Excel
1-2-3

userid
(Optional) A string representing a user ID. If the connection requires userid and you do not supply it, Approach
prompts the user.

password
(Optional) A string representing a database server password corresponding to userid. If the connection requires
password and you do not supply it, Approach prompts the user.

server
A string representing the server, data source name, or the path location for the data source.

Return values
Value Description
TRUE Approach successfully

connected to the data
source.

FALSE Approach failed to connect
to the data source.

Usage
The userid and password are saved for this data source during this script session so that subsequent connection

attempts to the same data source are automatically performed.
Use the New method to create a Connection object before calling ConnectTo.
This method allows you to specify connection information that Approach passes through to a client-server database.
The requirements for each argument depend on the file type that you are connecting to. Some of these dependencies
are as follows:

File type
(source)

Data source name
(server)

Behavior when
connecting

ODBC Data
Sources

(Required) A specific data
source name, such as a
specific SQL Server or DB2
data source. You must
insert an exclamation point
(!) before the data source
name.

If more information is
required to complete the
connection or if the data
source name could not be
found, Approach prompts
the user.

IBM DB2 (Required) A specific data
source name.

If more information is
required to complete the
connection or if the data
source name could not be
found, Approach prompts
the user.

SQL Server (Required) A server name.
This argument is required
for the first connection on
each client workstation.
After the first connection,
the server argument is
required only if you change
which server you are
connecting to.

If a userid or password are
required for the connection
and you do not specify
them, Approach prompts the
user.

Oracle (Required) A server name.
This argument is required
for the first connection on
each client workstation.
After the first connection,
the server argument is
required only if you change
which server you are
connecting to.

If a userid or password are
required for the connection
and you do not specify
them, Approach prompts the
user.

All others (Optional) A path name.
This argument sets the
working directory for the
connection for non-SQL file
types. If you specify a path
using this argument, you do
not need to use a fully-
qualified table name when
defining a query associated
with this connection.

If a userid or password are
required for the connection
and you do not specify
them, Approach prompts the
user.

For example, to connect to the DB2 Sample database, the ConnectTo statement looks like the following:
Result = Con.ConnectTo("ODBC Data Sources","UserID","Password","!Sample")
Or
Result = Con.ConnectTo("IBM DB2", "UserID", "Password", "Sample")
The exclamation point is only required when ODBC Data Sources is used as the source argument.
For Oracle7 servers, the ConnectTo statement looks like the following, where ORASRV is an Oracle7 server name:
Result = Con.ConnectTo("Oracle","UserID", "Password", "ORASRV")
For QMF Query or QMF Procedure connections, the ConnectTo statements look like the following:

Result = Con.ConnectTo("QMF Query")
Result = Con.ConnectTo("QMF Procedure")

Approach: CopyView method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Copies the specified views to the clipboard.

Syntax
integer = docwindowobject.CopyView(views, [data])

Parameters
views

Long representing the views to copy. Choose from the following constants:

Value Description
aprCurrentView Copy only the current view.
aprAllViews Copy all views in the

document.

data
(Optional) Long representing what data, if any, is copied with the view. Choose from the following constants:

Value Description Valid for
aprAllDatabases Copy all data in the tables

(database files) associate with
the view.

All views

aprFoundSet Copy only data in the current
found set.

All views

aprCurrentRecord Copy only the data displayed
in the current record.

Form, Form
Letter, Mailing
Label, Envelope

aprEmptyTables Do not copy any data. All views

Return values
Value Description
TRUE The view is copied

successfully.
FALSE The view is not copied.

Usage
Use the CopyView method to paste an image of the view in another product, such as a word processor.

Approach: Copy method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Copies the selected text or picture to the Clipboard.

Syntax
Call docwindowobject.Copy()

Parameters
None

Return values
None

Usage
Use the Copy method with the Paste method.

CountRecords method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Returns the number of records in a found set or table.

Syntax
integer = docwindowobject.CountRecords([datasettype])

Parameters
datasettype

(Optional) Integer representing the set of records for which to find the number. Choose from the following
constants:

Constant Description
AprFoundRecords (Default) Returns the number

of records in the current found
set.

AprAllRecords Returns the number of records
in the main table of the current
view.

Return values
The number of records in the found set or table.

Usage
Use CountRecords when you are connecting to SQL tables, and the NumRecords or NumRecordsFound properties
return -1.

Approach: CreateCalcField method
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
Create a calculated field associated with a document (.APR file).

Syntax
integer = documentobject.CreateCalcField (fieldname, formula)

Parameters
fieldname

A string representing the name of the new calculated field.
formula

A string representing the formula used to produce values for the calculated field. Valid formulas are the same as
those you can create in the Field Definition dialog box.

Return values
Value Description
TRUE Approach successfully created

the calculated field.
FALSE Approach failed to create the

calculated field.

Usage
Use a calculated field to calculate values based on field data, especially for calculating summaries or totals for
grouped records.

Approach: CreateResultSet method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
Creates a ResultSet object from a table.

Syntax
Set resultsetobject = tableobject.CreateResultSet()

Parameters
None

Return values
Value Description
ResultSet A ResultSet object created

from the table

Usage
This method lets you access data in a table already associated with an .APR file without using the Approach user
interface. If the table is not already associated with an .APR file, use the Connection, Query, and ResultSet classes to
produce a ResultSet object.
This method ignores the found set and produces a result set with all records from the table.
If the table was produced using the SQL Assistant, the ResultSet object reflects the subset opened in Approach
through SQL, not the entire server table.

Approach: Cut Method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Copies the selected text or picture to the Clipboard and deletes the original text or picture.

Syntax
Call docwindowobject.Cut()

Parameters
None

Return values
None

Usage
Use the Cut method with the Paste method.

Approach: DeleteCalcField method
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
Deletes an existing calculated field in the document (.APR file).

Syntax
integer = documentobject.DeleteCalcField (fieldname)

Parameters
fieldname

A string representing the name of the calculated field to delete.

Return values
Value Description
TRUE Approach successfully deleted

the specified calculated field.
FALSE Approach failed to delete the

specified field, probably
because the field doesn't exist.

Usage
Use this method to clean up temporary or obsolete calculated fields.
This method fails if the specified field does not exist. If there are duplicate calculated field names, the first occurence
of the filed name is deleted.

Approach: DeleteFile method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Deletes the specified file.

Syntax
integer = docwindowobject.DeleteFile(filename , [nodialogs])

Parameters
filename

A string representing the full path name of the file to be deleted.
nodialogs

(Optional) An integer indicating whether Approach should display error or confirmation dialog boxes to the user.
Choose from the following values:

Value Description
FALSE (Default) Approach displays any error or

confirmation dialog boxes to the user in
response to deleting the file.

TRUE Approach suppresses all error or
confirmation dialog boxes that would
display in response to deleting the file.

Return values
Value Description
TRUE Approach deleted the file successfully.
FALSE Approach failed to delete the file.

Usage
Use this method to delete temporary files or files made obsolete by a script.
Note You cannot delete a file that is currently open.

Approach: DeleteFoundSet method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Deletes all records in the found set.

Syntax
Call docwindowobject.DeleteFoundSet([noconfirmation])

Parameters
noconfirmation

(Optional) An integer indicating whether or not Approach should display a confirmation dialog box to the user
before deleting the records. Choose from the following values:

Value Description
FALSE (Default) Approach displays a

confirmation dialog box to the
user before deleting the
records.

TRUE Approach suppresses the
display of a confirmation
dialog box when deleting the
records.

Return values
None

Usage
Use this method after creating a found set using a find request or by creating a Find, FindDistinct, or FindDuplicate
object.
To delete all records in a table, create a new find using the Find method, use the asterisk wildcard as the criteria, then
use the DeleteFoundSet method.

Approach: DeletePage method
{button ,AL(`H_LAS_FORM_CLASS;',0)} See list of classes
Removes a page from a form.

Syntax
integer = formobject.DeletePage(pagenumber)

Parameters
pagenumber

The page number to be deleted.

Return values
Value Description
TRUE The page was successfully

deleted.
FALSE The page was not successfully

deleted.

Approach: DeleteRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Deletes the current record.
If the current view contains fields from more than one table, records are deleted from all tables according to the
settings in the Relational Options dialog box, which were set when you joined the tables.

Syntax
Call docwindowobject.DeleteRecord([noconfirmation])

Parameters
noconfirmation

(Optional) An integer indicating whether to prompt the user to confirm that the record should be deleted. Choose
from the following:

Value Description
FALSE (Default) Prompt the user to

confirm the delete.
TRUE Do not prompt the user for

confirmation.

Approach: DeleteRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_DELETEROW_EXSCRIPT',1)} See example
Deletes the current row (record) in a result set.

Syntax
Call resultsetobject.DeleteRow()
integer = resultsetobject.DeleteRow()

Parameters
None

Return values
Value Description
TRUE The row in the result set was deleted.
FALSE The row in the result set was not

deleted.

Usage
This method fails under the following conditions:

• The result set is read-only.
• There is no valid result set to delete from.
• A result set is not cached.

Approach: Disconnect method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_DISCONNECT_EXSCRIPT',1)} See example
Closes a connection to a specified data source type.

Syntax
Call connectionobject.Disconnect()
or
integer = connectionobject.Disconnect()

Parameters
None

Return values
Value Description
TRUE Approach successfully disconnected

from the data source.
FALSE Approach failed to disconnect from the

data source.

Usage
Close the connection so other Connection objects can access the same data sources. If another connection is
opened for the same data source, the second connection is read-only.

Approach: DoMenuCommand method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_DOMENUCOMMAND_EXSCRIPT',1)} See example
Executes an existing command from a menu.

Syntax
Call applicationwindowobject.DoMenuCommand(command)

Parameters
command

An integer representing a menu command. The menu commands are defined as constants.

Return values
None

Usage
Execute any menu command available in the active application window. If a dialog box is associated with the menu
command, it is displayed for the user to complete.
For example, if a custom menu is in operation, this method can only execute the commands available on the custom
menu.

Approach: DoVerb method
{button ,AL(`H_LAS_OLEOBJECT_CLASS;',0)} See list of classes
Note DoVerb is not supported under OS/2.
Performs an OLE operation (verb) on an OLE object. The OLE server container determines the verbs available for
the object.

Syntax
integer = oleobject.DoVerb(verbnumber)

Parameters
verbnumber

A number representing the verb to perform. Zero (0) is the primary verb, corresponding to the action performed
when double-clicking the object. Click the object with the right mouse button to open a list of the available verbs.
The primary verb (0) is listed first. Use verbnumber = 1 to perform the second verb in the list, and so on.
If verbnumber does not correspond to a verb available for the object, the primary verb is performed.

Return values
Value Description
TRUE The verb was performed.
FALSE The verb was not performed.

Usage
Determine which OLE object verb to perform based on a specific action.
For example, you can perform an OLE object verb when users switch to a view. The primary verb for a wave sound
OLE object is "Play." You can play the sound "Welcome" when users view the main menu in a document.
You can also perform an OLE object verb when users enter text in a field, select an item in a scrolling list, or click a
button or graphic. The primary verb for a Freelance Graphics presentation is "Show." You can show a presentation
when users click a "Demo" button.

Approach: DuplicateRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Creates a new record and copies the data from the current record into the new record.

Syntax
Call docwindowobject.DuplicateRecord()

Parameters
None

Return values
None

Usage
This method creates a new record containing all the data from the copied record. You can then edit the fields that
require different data, or prompt the user for the new information.

Approach: Execute method
{button ,AL(`H_LAS_RESULTSET_CLASS;H_LAS_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_las_EXECUTE_EXSCRIPT',1)} See example
Executes a query.

Syntax
Call object.Execute()
or
integer = object.Execute()

Parameters
None

Return values
Value Description
TRUE The query or result set

executed successfully.
FALSE The query or result set failed

to execute.

Usage
To create or refresh a result set, call the Execute method from a ResultSet object.
To run an SQL statement that does not produce a result set, call the Execute method from a Query object.

Retrieve information about a failed Execute method using the GetError method.

Approach: FieldExpectedDataType method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Sets or returns the data type in which a result set value is presented in Approach.
This "expected" data type can be different from the "native" data type in which the data is stored in the source table.

Syntax
integer = resultsetobject.FieldExpectedDataType(column, [type])

Parameters
column

A string representing the name of a column (field) in a result set.
Alternatively, you can use an integer representing the ID value of the column, if the name is unknown.

type
(Optional) An integer representing the expected data type.
Specify this parameter to set the expected data type. Leave it blank to return the currently set expected data type.

Return values
Value Description
DB_BOOLEAN The data type is a Boolean.
DB_CHAR The data type is a string.
DB_DATE The data type is a date.
DB_DOUBLE The data type is a double.
DB_LONG The data type is a long.
DB_SHORT The data type is a short.
DB_TIME The data type is a time.
DB_UNDEFINED Resets the data type to the

native data type.

Usage
The expected data type creates a conversion between the native data type for a column value and the data type
expected by Approach.
Unless you specify an expected data type, Approach matches the native data type to the most appropriate equivalent
when reading data from a table.

To determine the native data type for a column, use the FieldNativeDataType method.

Approach: FieldID method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the column ID for a column in a result set, given the column name (field name).

Syntax
integer = resultsetobject.FieldID(columnname)

Parameters
columnname

A string representing the name of a column in the result set.

Return values
Value Description
Integer The position of the specified

column in the result set. For
example, the first column in
the result set has a column ID
of 1.

Approach: FieldName method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_FIELDNAME_EXSCRIPT',1)} See example
Returns the field name associated with a column (field) in a result set, given the column ID.

Syntax
string = resultsetobject.FieldName(columnid)

Parameters
columnid

An integer representing the ID of a field. The first column in a result set has the column ID of 1, the second
column has the value 2, and so on.

Return values
Value Description
String The name of the specified

column.

Usage
The order of the fields in the result set is the same as their order on the source table unless you specify a new order
in the SQL property of the query object that produced the result set.
Retrieve field names for an entire table using ListFields method from the Connection class.

Approach: FieldNativeDataType method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the native data type for the specified column (field) in a result set.
The native data type is the data type of the field as stored in the source table. The native data type can be different
from the "expected" data type, which is the data type Approach uses to present the result set value.

Syntax
integer = resultsetobject.FieldNativeDataType(column)

Parameters
column

A string representing the name of a column (field) in a result set.
Alternatively, you can use an integer representing the ID value of the column, if the name is unknown.

Return values
Value Description
SQL_BIT The data type is a Boolean.
SQL_CHAR The data type is a string.
SQL_DOUBLE The data type is a double.
SQL_TIME The data type is a time or

date.
SQL_VARBINARY The data type is a PicturePlus.
SQL_VARCHAR The data type is a memo.

Approach: FieldSize method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the size of a column (field) from a result set.

Syntax
long = resultsetobject.FieldSize(column)

Parameters
column

A string representing the name of a column (field) in a result set.
Alternatively, you can use an integer representing the ID value of the column, if the name is unknown.

Return values
Value Description
Long The maximum number of

characters allowed in the
column.

Usage
This method returns sizes for text fields only. All other field types return -1.

Approach: FillField method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_FILLFIELD_EXSCRIPT',1)} See example
Fills a field in each record of the found set with the value you specify.
Using this LotusScript method is the same as executing the Fill Field command from the context menu.

Syntax
integer = docwindowobject.FillField(fieldname, fillvalue)

Parameters
fieldname

A string representing the specified field.
If there is more than one table (database file) joined in the document (.APR file), precede the field name with the
table name. For example, the field Cost is in the table Products in an .APR file that also uses the table Orders.
You must specify the field name as follows:
"Products.Cost"

value
A string representing the value you want to use to update the field.

Return values
Value Description
TRUE The specified field was filled

with the specified value.
FALSE The specified field was not

filled with the specified value.

Approach: FindAll method
{button ,AL(`H_LAS_docwindow_class;',0)} See list of classes
Makes available all of the records in all of the tables associated with a document (.APR file).

Syntax
Call docwindowobject.FindAll()

Parameters
None

Return values
None

Usage
After you do a find and you finish working with the found set, this method makes all the records in the database
available to you.

Approach: FindSort method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_FINDSORT_EXSCRIPT',1)} See example
Executes the specified find or sort for the records in the DocWindow object.

Syntax
Call docwindowobject.FindSort (findorsort [,sort])

Parameters
findorsort

An existing Find, FindDistinct, FindDuplicate, FindTopLowest, or Sort object.
sort

(Optional) An existing Sort object.

Return values
None

Usage
After you define a Find, FindDistinct, FindDuplicate, FindTopLowest, or Sort object, use this method to execute the
find or sort. Because the find or sort is defined separately from a document, you can use the FindSort method to
associate any find or sort with any document, assuming that the find or sort makes sense for the document.
For example, use the New method for the FindDuplicate object to find records that have duplicate first, last, and
company names. Then call the FindSort method for any document window in which you have tables that contain
fields for first, last, and company names. The field names must be the same as those specified in the FindDuplicate
object.

Approach: FirstRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_FIRSTRECORD_EXSCRIPT',1)} See example
Makes the first record in the found set the current record.
Using this LotusScript method is the same as clicking the First Record icon.

Syntax
Call docwindowobject.FirstRecord()

Parameters
None

Return values
None

Approach: FirstRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_FIRSTROW_EXSCRIPT',1)} See example
Sets the first row (record) in a result set as the current row.

Syntax
Call resultsetobject.FirstRow()
or
integer = resultsetobject.FirstRow()

Parameters
None

Return values
Value Description
TRUE The first row in the result set was

set to be the current row.
FALSE The current row was not changed.

Approach: GetAt method (FindTopLowest class)
{button ,AL(`H_LAS_FINDTOPLOWEST_CLASS;',0)} See list of classes
Retrieves the find condition for a top or lowest value find.

Syntax
integer = findtoplowestobject.GetAt(field, countorpercent, [findtype])

Parameters
field

A string into which this method writes the field used in the find condition.
countorpercent

An integer indicating the number of records to be returned. The number is a count or a percent based on the
value of findtype.

findtype
(Optional) An integer representing the type of find performed. One of the following values is returned:

Value Description
AprFindTop (Default) The find returns the

specified number of records
representing the top values in
the field.

AprFindTopPercent The find returns the specified
percent of records
representing the top values in
the field.

AprFindLowest The find returns the specified
number of records
representing the lowest values
in the field.

AprFindLowestPercent The find returns the specified
percent of records
representing the lowest values
in the field.

Return values
Value Description
TRUE The condition is retrieved

successfully.
FALSE The condition cannot be

retrieved.

Approach: GetAt method (Find class)
{button ,AL(`H_LAS_FIND_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_GETAT_EXSCRIPT',1)} See example
Retrieves a find condition.

Syntax
integer = findobject.GetAt(index, field, criteria, [ORNumber])

Parameters
index

An integer indicating the find condition to be retrieved. The first condition has an index of zero.
field

A string into which this method writes the field used in the find condition.
criteria

A string into which this method writes the description of the find condition.
ORNumber

(Optional) An integer that this method returns to indicate how this find condition relates to the other find
conditions.
If there is only one find condition, ORNumber is zero. As other conditions are added to the find, this number is
incremented, depending on whether the conditions are related to the previous conditions in an AND or OR
relationship.

If 2 conditions have Then they are in an And to be part of the found set
The same ORNumber AND relationship A record must satisfy both

conditions.
Different ORNumbers OR relationship A record must satisfy at least one

condition.

Return values
Value Description
TRUE The find condition is retrieved

successfully.
FALSE The find condition cannot be

retrieved.

Usage
This method displays the conditions of a Find object. To show all of the find conditions, call GetAt in a loop. Use the
result from GetCount as the upper bound of the loop.
If you have a FindDistinct, FindDuplicate, or FindTopLowest object associated with the Find object through the
FindSpecial property, you must use the GetAt method for the FindDistinct, FindDuplicate, or FindTopLowest object to
list those find conditions.

Approach: GetAt method
{button ,AL(`H_LAS_FINDDISTINCT_CLASS;H_LAS_FINDDUPLICATE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_GETAT_EXSCRIPT',1)} See example
Retrieves a find condition.

Syntax
integer = findspecialobject.GetAt(index, field)

Parameters
index

An integer indicating the find condition to be retrieved. The first condition has an index of zero.
field

A string into which this method writes the field used in the find condition.

Return values
Value Description
TRUE The find condition is retrieved

successfully.
FALSE The find condition cannot be

retrieved.

Usage
This method displays the conditions of a FindDistinct or FindDuplicate object. To show all of the find conditions, call
GetAt in a loop. Use the result from GetCount as the upper bound of the loop.
For information about retrieving conditions for Find, Sort, or FindTopLowest objects, see the GetAt (Find class), GetAt
(Sort class), and GetAt (FindTopLowest) methods.

Approach: GetAt method (Sort class)
{button ,AL(`H_LAS_SORT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_GETAT_EXSCRIPT',1)} See example
Retrieves a sort condition.

Syntax
integer = sortobject.GetAt(index, field, order)

Parameters
index

An integer indicating the sort condition to be retrieved. The first condition has an index of zero.
field

A string into which this method writes the field used in the sort condition.
order

A long representing the order in which the field values are sorted. The following values are returned:

Value Description
LtsSortAscending Sorts the field values from lowest

to highest and from A to Z.
LtsSortDescending Sorts the field values from

highest to lowest and from Z to
A.

Return values
Value Description
TRUE The sort condition is retrieved

successfully.
FALSE The sort condition cannot be

retrieved.

Usage
This method displays the conditions of a Sort object. To show all of the conditions, call GetAt in a loop. Use the result
from GetCount as the upper bound of the loop.

Approach: GetColorFromRGB method
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETCOLORFROMRGB_EXSCRIPT',1)} See example
Assigns a color when given an RGB value.
Many of the RGB values are defined as constants.

Syntax
Set colorobject = applicationobject.GetColorFromRGB(rgbvalue)

Parameters
rgbvalue

A long representing an RGB value.

Return values
Value Description
Color Returns a color object.

Usage
Change the color of a display element by assigning it one of the application RGB colors.
For example, you can change the background color of a field depending on the importance of the information, such
as optional as opposed to required fields.

Approach: GetCount method
{button ,AL(`H_LAS_FIND_CLASS;H_LAS_FINDDISTINCT_CLASS;H_LAS_FINDDUPLICATE_CLASS;H_LAS_SO

RT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_GETCOUNT_EXSCRIPT',1)} See example
Retrieves the number of find conditions.

Syntax
integer = findobject.GetCount()

Parameters
None

Return values
An integer representing the number of find or sort conditions described by the specified Find, FindDistinct,
FindDuplicate, or Sort object.

Usage
A find consists of one or more find conditions, each corresponding to a field. The GetCount method retrieves the total
number of conditions in a given Find, FindDistinct, FindDuplicate, or Sort object. The GetAt method for each of these
classes retrieves the description of each condition.

Approach: GetErrorMessage method
{button ,AL(`H_LAS_CONNECTION_CLASS;H_LAS_QUERY_CLASS;H_LAS_RESULTSET_CLASS;',0)} See list of

classes
Returns a short text message associated with an error code.

Syntax
string = object.GetErrorMessage([errorvalue])

Parameters
errorvalue

(Optional) An integer representing the error code for which you want to get the text message.
If errorvalue is not specified, Approach returns the error message for the last error encountered.
The GetError method returns the most recent errorvalue for an object. The possible error codes are listed with the
Approach predefined constants.

Return values
Value Description
String The text for the specified error

code value

Usage
This method allows you to pass error messages to users. For example, if you are creating a ResultSet object from
user input, use the result of this method to prompt the user if the input fails to create a valid ResultSet object.

Approach: GetError method
{button ,AL(`H_LAS_CONNECTION_CLASS;H_LAS_QUERY_CLASS;H_LAS_RESULTSET_CLASS;',0)} See list of

classes
Returns the most recent error code, which indicates the reason for the failure to execute a Connection, Query, or
ResultSet object.

Syntax
integer = object.GetError()

Parameters
None

Return values
Any of the error codes listed with the Approach predefined constants.

Usage
Use the return value from this method as an input to the GetErrorMessage or GetExtendedErrorMessage methods.

Approach: GetExtendedErrorMessage method
{button ,AL(`H_LAS_CONNECTION_CLASS;H_LAS_QUERY_CLASS;H_LAS_RESULTSET_CLASS;',0)} See list of

classes
Returns a long text message associated with an error code.

Syntax
string = object.GetExtendedErrorMessage([errorvalue])

Parameters
errorvalue

(Optional) An integer representing the error code for which you want to get the text message.
If errorvalue is not specified, Approach returns the error message for the last error encountered.
The GetError method returns the most recent errorvalue for an object. The possible error codes are listed with the
Approach predefined constants.

Return values
Value Description
String The text for the specified error

code value.

Usage
This method passes error messages to users. For example, if you are creating a ResultSet object from user input,
use this method to prompt the user if the input fails to create a valid ResultSet object.

Approach: GetFieldFormula method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETFIELDFORMULA_EXSCRIPT',1)} See example
Returns the formula definition for a calculated field.

Syntax
string = calctableobject.GetFieldFormula(fieldname)

Parameters
fieldname

A string representing the name of a calculated field. The fieldname is not case-sensitive.

Return values
Value Description
String The formula defined for the

field in the Field Definition
dialog box.

Usage
This method returns the contents of a calculated field table identified by the CalcTable property of the Document
class.

Approach: GetFieldOptions method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETFIELDOPTIONS_EXSCRIPT',1)} See example
Returns the options used to define a field, for example, the default value and validation criteria.

Syntax
string = tableobject.GetFieldOptions(fieldname)

Parameters
fieldname

A string representing a field in the table.

Return values
Value Description
String The options specified in the

Formula/Options column for
the field in Field Definition
dialog box

Approach: GetFieldSize method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETFIELDSIZE_EXSCRIPT',1)} See example
Returns the size of a field.

Syntax
integer = tableobject.GetFieldSize(fieldname)

Parameters
fieldname

A string representing a field in the table.

Return values
Value Description
Integer The number of characters or digits

that the field can hold

Usage
This method returns a valid size for text fields only. All other data types return a value of -1.

Approach: GetFieldType method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETFIELDTYPE_EXSCRIPT',1)} See example
Returns the type of a field.

Syntax
long = tableobject.GetFieldType(fieldname)

Parameters
fieldname

A string representing a field in the table.

Return values
Value Description
AprFieldBool Boolean field
AprFieldCalculation Calculated field
AprFieldDate Date field
AprFieldMemo Memo field
AprFieldNumber Numeric field
AprFieldPicture PicturePlus field
AprFieldText Text field
AprFieldTime Time field
AprFieldVariable Variable field

Approach: GetFuriganaField method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: GetFuriganaMode method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: GetHandle method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_WINDOW_CLASS;',

0)} See list of classes
{button ,AL(`H_las_GETHANDLE_EXSCRIPT',1)} See example
Returns a window handle to the window.

Syntax
long = windowobject.GetHandle

Parameters
None

Return values
Value Description
Long Returns a window handle.

Usage
For more information on using this method, see your operating system application development reference
documentation.

Approach: GetIMEMode method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: GetIMEState method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: GetParameterName method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the name of an SQL parameter, given the parameter index.

Syntax
string = resultsetobject.GetParameterName(parameterindex)

Parameters
parameterindex

An integer representing the ordinal position of the parameter. The first parameter in the SQL statement has an
index of 1, the second has an index of 2, and so on.

Return values
Value Description
String The name of the specified

parameter, without the
enclosing question marks (?).

Usage
In SQL, a parameter is a variable that is used in an SQL statement. The parameter name appears in the SQL
statement surrounded by question marks (?). Use this method to return the parameter name.
The parameter names can be used to prompt a user for missing SQL information.

Approach: GetParameter method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the last value set for a specified SQL parameter.

Syntax
string = resultsetobject.GetParameter(parameter)

Parameters
parameter

A string representing the name of the parameter.
Alternatively, you can use an integer representing the ordinal position of the parameter, if the name is unknown.
The first parameter in the SQL statement has an index of 1, the second has an index of 2, and so on.

Return values
Value Description
String The value of the parameter

Usage
In SQL, a parameter is a variable that is used in an SQL statement. The parameter name appears in the SQL
statement surrounded by question marks (?). Use this method to return the current value of the parameter.
Change the value of a parameter using the SetParameter method.
Unlike ODBC and standard SQL, parameters used in Approach queries can appear anywhere in the SQL statement.
If the specified parameter name or index is invalid, Approach displays an error message and no value is returned.

Approach: GetRGB method
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
Returns the RGB value of the color.

Syntax
long = colorobject.GetRGB()

Parameters
None

Return values
Value Description
Long Returns the red, green and

blue values of the object color
object.

Usage
Determine the RGB value of a display element so you can set another display element to the same color using the
SetRGB method.

Approach: GetTableByName method
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETTABLEBYNAME_EXSCRIPT',1)} See example
(Read only) Returns the details of the current table in the document (.APR file).

Syntax
Set tableobject = documentobject.GetTableByName(tablename)

Parameters
tablename

A string representing the name of the selected table.

Return values
Value Description
Table Returns the selected table.

Usage
Determine details of the table, such as its file name, path, number of fields and records, and field names.

Approach: GetText method
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETTEXT_EXSCRIPT',1)} See example
Returns the text in the current row for the specified column. If there is no current row, then an empty string is
returned.

Syntax
string = worksheetobject.GetText([column])

Parameters
column

(Optional) A string representing the header of the column. The header, or label, may differ from the column's field
name.

Return values
Value Description
Data A string representing the text

returned from the current row.

Approach: GetValue method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_GETVALUE_EXSCRIPT',1)} See example
Returns the value in the current row (record) of the specified column (field) of the result set.

Syntax
variant = resultsetobject.GetValue(column)

Parameters
column

A string representing the name of a column (field) in a result set.
Alternatively, you can use an integer representing the ID value of the column, if the name is unknown.

Return values
Value Description
Variant The value in the specified

column of the current row

Usage
The current row of the result set and the specified column identify a cell in the source table.
The data type of the returned value is determined by the expected data type set for this column by the
FieldExpectedDataType method. For example, the expected value can be set to return a real value for an integer
numeric field.

Approach: GoToRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Makes the specified record the current record.

Syntax
integer = docwindowobject.GoToRecord(recordnumber)

Parameters
recordnumber

A long representing the record number to display.

Return values
Value Description
TRUE Approach successfully

changed to the record
specified.

FALSE Approach failed to change to
the record specified, probably
because that record does not
exist.

Usage
This method automates clicking the record number in the status bar to display the Go to Record dialog box.

Approach: HideRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Hides the current record.

Syntax
Call docwindowobject.HideRecord()

Parameters
None

Return values
None

Usage
This method temporarily removes the current record from the current found set, sorts, or calculations. The user
cannot print or delete a hidden record. Restore hidden records by doing a find, including a find that returns all
records.

Approach: InsertAfter method
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_INSERTAFTER_EXSCRIPT',1)} See example
Places a display element directly behind one you specify as the parameter.

Syntax
integer = displayelementobject.InsertAfter(object)

Parameters
object

A display element object to be in front.

Return values
Value Description
FALSE (Default) The display element is

not inserted after another.
TRUE The display element is inserted

after another.

Usage
Arrange display elements so they do not hide other display elements.
For example, there is a large rectangle with a circle in front of it. You just created a medium sized square and placed
it over the circle. You want to place the square behind the circle, but in front of the rectangle, so you would insert the
square after the circle.

Approach: IsCommandChecked method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_ISCOMMANDCHECKED_EXSCRIPT',1)} See example
Returns whether a menu command has a check mark next to it.

Syntax
integer = applicationwindowobject.IsCommandChecked(command)

Parameters
command

An integer representing the command you want to evaluate. The commands that can be checked are defined as
constants.

Return values
Value Description
TRUE The menu command is

checked.
FALSE The menu command is not

checked.

Usage
Use this method for any of the menu commands that users can check in the user interface.
For example, you can check to see if a user has "Show View Tabs" checked.

Approach: IsCommandEnabled method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_ISCOMMANDENABLED_EXSCRIPT',1)} See example
Returns whether a menu command is available (not dimmed).

Syntax
integer = applicationwindowobject.IsCommandEnabled(command)

Parameters
command

An integer representing the menu command you want to evaluate. The menu commands that can be enabled are
defined as constants.

Return values
Value Description
TRUE The menu command is

available.
FALSE The menu command is not

available.

Usage
Determine if a menu command is available so you can execute the menu command. For example, you cannot delete
a found set if users have not created one, so the menu command is not available.

Approach: IsEmpty method
{button ,AL(`H_LAS_BASECOLLECTION_CLASS;H_LAS_COLLECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_ISEMPTY_EXSCRIPT',1)} See example
Determines if a BaseCollection object or Collection object is empty.

Syntax
integer = basecollectionobject.IsEmpty()
or
integer = collectionobject.IsEmpty()

Parameters
None

Return values
Value Description
TRUE The collection was empty.
FALSE The collection was not empty.

Approach: LastRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_LASTRECORD_EXSCRIPT',1)} See example
Makes the last record in the found set the current record.
Using this LotusScript method is the same as clicking the Last Record icon.

Syntax
Call docwindowobject.LastRecord()

Parameters
None

Return values
None

Approach: LastRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_LASTROW_EXSCRIPT',1)} See example
Sets the last row (record) to be the current row in the result set.

Syntax
Call resultsetobject.LastRow()
or
integer = resultsetobject.LastRow()

Parameters
None

Return values
Value Description
TRUE The last row was set to be the

current row.
FALSE The current row did not change.

Approach: ListDataSources method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_LISTDATASOURCES_EXSCRIPT',1)} See example
Returns a list of all registered data source types.

Syntax
variant = connectionobject.ListDataSources()

Parameters
None

Return values
Value Description
Variant An array of strings listing the

registered data source types.

Usage
This method indicates the exact syntax required for the source parameter of the ConnectTo method.

Approach: ListFields method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_LISTFIELDS_EXSCRIPT',1)} See example
Returns a list of the field names in the specified table.

Syntax
variant = connectionobject.ListFields(source)

Parameters
source

A string representing the name of a table accessible through the Connection object.

Return values
Value Description
Variant An array of strings listing the

fields in a table

Usage
For non-SQL tables, you must use the complete path if the table is not in Approach's working directory. For example:
MyList = Con.ListFields("c:\projdata\testdb.dbf")

Approach: ListTables method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_LISTTABLES_EXSCRIPT',1)} See example
Returns the names of the available tables of a specified data source type.

Syntax
variant = connectionobject.ListTables([category])

Parameters
category

(Optional) A string representing the data source type.
For SQL data source types, use category to specify a data source type. The ListDataSources method returns
appropriate values for category. If you do not specify category, the method uses the data source type associated
with the Connection object.
For non-SQL data source types, use category to specify a directory from which to list the available tables. If you
do not specify category, the method returns a list of the tables from the current working directory.

Return values
Value Description
Variant An array of strings

representing the table names

Approach: MakeNamedStyle method
{button ,AL(`H_LAS_BODYPANEL_CLASS;H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPL

AY_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_H
EADERFOOTERPANEL_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT
_CLASS;H_LAS_PANEL_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBU
TTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_REPEATINGPANEL_CLASS;H_LAS_ROUNDRECT_CLA
SS;H_LAS_SUMMARYPANEL_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_MAKENAMEDSTYLE_EXSCRIPT',1)} See example
Creates a named style from the display element's attributes.

Syntax
integer = object.MakeNamedStyle(name)

Parameters
name

A string representing the name of the named style that you create.

Return values
Value Description
TRUE The named style is

created.
FALSE The named style is not

created.

Usage
Create a named style from the attributes of the current display element so that you can apply that element's attributes
to other display elements.
For example, if a text box has red, bold text, create a named style named RedBold.

Approach: Maximize method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_WINDOW_CLASS;',

0)} See list of classes
{button ,AL(`H_las_MAXIMIZE_EXSCRIPT',1)} See example
Maximizes the application or document window.
Using this LotusScript method is the same as clicking the Maximize button.

Syntax
Call applicationwindowobject.Maximize()
or
Call docwindowobject.Maximize()

Parameters
None

Return values
None

Approach: Merge method
{button ,AL(`H_LAS_COLLECTION_CLASS;',0)} See list of classes
Combines the list of objects from another collection with the current collection.

Syntax
integer = collectionobject.Merge(othercollection)

Parameters
othercollection

A base collection representing each element in the collection.

Return values
Value Description
integer The total number of items in

the collection

Usage
Use this method when you want to combine all the objects from two collections into one collection. The method
returns the size (count) of the updated collection. No attempt is made to ensure uniqueness. If both collections
contain the same object, it appears in the merged collection twice.
For example, if you have two forms, you can merge the collection of objects from each form to create one form. Each
object in the specified collection is added to the collection of the current form.

Approach: Minimize method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_WINDOW_CLASS;',

0)} See list of classes
{button ,AL(`H_las_MINIMIZE_EXSCRIPT',1)} See example
Minimizes the application or document window.
Using this LotusScript method is the same as clicking the Minimize button.

Syntax
Call applicationwindowobject.Minimize()
or
Call docwindowobject.Minimize()

Parameters
None

Return values
None

Approach: NewPage method
{button ,AL(`H_LAS_FORM_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEWPAGE_EXSCRIPT',1)} See example
Adds a new page to a form.

Syntax
formobject .NewPage()
value = formobject.NewPage()

Parameters
None

Return values
Value Description
TRUE A new page was added to the

form.
FALSE A new page was not added to

the form.

Usage
This method adds new pages to forms. You can add up to 5 pages.

Approach: NewRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEWRECORD_EXSCRIPT',1)} See example
Creates a new record.
Using this LotusScript method is the same as clicking the New Record icon.

Syntax
Call docwindowobject.NewRecord()

Parameters
None

Return values
None

Approach: New method (Button class)
{button ,AL(`H_LAS_BUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_BUTTON_EXSCRIPT',1)} See example
Creates a new button.

Syntax
Set buttonobject = New Button (parent, [text], [pagenum])

Parameters
parent

An object from the Panel class that specifies which panel is the button's parent, and so identifies where the button
displays.
For example, the button can be placed in a report header or footer, or in the body panel.

text
(Optional) The text you want to appear on the button.

pagenum
(Optional) An integer representing the page number of the view on which to place the button.

Return values
The new object is called ObjButton. A number is added to the name if a button with that name already exists on the
same panel.
For example, the name of the first button placed on the body of a form appears as follows:
ObjButton
The name of the second button appears as follows:
ObjButton1

Approach: New method (ChartView class)
{button ,AL(`H_LAS_CHARTVIEW_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_CHARTVIEW_EXSCRIPT',1)} See example
Creates a new ChartView object.

Syntax
Set chartviewobject = New ChartView(parent, xaxis, yaxis, series, calculation, [charttype], [maintable])

Parameters
parent

The Document object that contains the chart view.
xaxis

A string array representing the field used to plot the x-axis of the chart.
yaxis

A string array representing the field or fields used to plot the y-axis of the chart.
series

A string array representing the field or fields used to determine the chart legend.
calculation

A long representing the type of calculation. The calculation types are provided as enumerators.
charttype

(Optional) A long representing the chart type. The chart types are provided as enumerators.
If you don't specify charttype, Approach creates a bar chart.

maintable
(Optional) A string representing the name of the main table on which the chart is based.

Return values
Value Description
ChartView Returns a new chart

Usage
Create a chart when you want to generate the chart dynamically rather than storing pre-made chart variations.

Approach: New method (CheckBox class)
{button ,AL(`H_LAS_CHECKBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_CHECKBOX_EXSCRIPT',1)} See example
Creates a new check box.
Use CheckBox object properties to position the check box, create and style labels, and set the checked and
unchecked values of the check box.

Syntax
Set checkboxname = New CheckBox (parent, [pagenum])

Parameters
parent

The panel that contains the check box. A check box can be placed on the body of a form or in the footer, header,
summary, or body panel of a report.
Use dot notation to refer to the Panel object.

pagenum
(Optional) For forms only. An integer (1-5) representing the page that contains the check box.

Return values
The new object is called ObjCheckBox. A number is added to the name if a check box with that name already exists
on the same panel.
For example, the name of the first check box placed on the body of a form appears as follows:
ObjCheckBox
The name of the second check box appears as follows:
ObjCheckBox1

Approach: New method (Collection class)
{button ,AL(`H_LAS_COLLECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_COLLECTION_EXSCRIPT',1)} See example
Creates a new collection.

Syntax
Set collectionobject = New Collection()

Parameters
None

Return values
Value Description
Collection Returns a new collection

Approach: New method (Color class)
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_COLOR_EXSCRIPT',1)} See example
Creates a new Color object with the red, green, and blue values that you specify.

Syntax
Set color = New Color([red], [green], [blue], [transparent])

Parameters
red

(Optional) An integer representing the amount of red present in the new color. Values range from 0 to 255. The
default value is 0, representing no red.

green
(Optional) An integer representing the amount of green present in the new color. Values range from 0 to 255. The
default value is 0, representing no green.

blue
(Optional) An integer representing the amount of blue present in the new color. Values range from 0 to 255. The
default value is 0, representing no blue.

transparent
(Optional) An integer representing the amount of transparent color. Values range from 0 to 255. The default value
is 255, representing transparent color.

Return values
Value Description
Color A new color object with the

specified red, green, and blue
values.

Usage
If no values are specified, the values for red, blue, and green are set to 0 so the Color object is black.

Approach: New method (Connection class)
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
Creates a new instance of the Connection class.

Syntax
Set connectionobject = New Connection()

Parameters
None

Return values
Value Description
Connection object A new instance of the

Connection class.

Usage
After creating a Connection object, you can complete the following operations:

• Opening the connection using the ConnectTo method
• Determining the available data source types using ListDataSources method
• Setting commit behavior using the AutoCommit property and Transactions method

Approach: New method (Crosstab class)
{button ,AL(`H_LAS_CROSSTAB_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_CROSSTAB_EXSCRIPT',1)} See example
Creates a new Crosstab object with the rows, columns, labels, and calculations that you specify.

Syntax
Set crosstabobject = New Crosstab(parent, rowfields, colfields, bodyfields, bodycalc, rowtotallabel, rowtotalcalc,
coltotallabel, coltotalcalc, [maintable])

Parameters
parent

The document (.APR file) that contains the crosstab.
rowfields

A string array representing the row field(s) used to create the rows of the crosstab.
colfields

A string array representing the field(s) used to create columns of the crosstab.
bodyfields

A string array representing fields to be calculated in the body of the crosstab.
bodycalc

A long representing the calculation type for the body of the crosstab. Calculation types are provided as
enumerators.

rowtotallabel
A string representing the label for a summary row.

rowtotalcalc
A long representing the calculation type for a summary row. Calculation types are provided as enumerators.

coltotallabel
A string representing the label for a summary column.

coltotalcalc
A long representing the calculation type for a summary column. Calculation types are provided as enumerators.

maintable
(Optional) The main table for the crosstab.

Return values
Value Description
Crossta
b

Returns a new crosstab.

Approach: New method (Document class)
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_DOCUMENT_EXSCRIPT',1)} See example
Creates a new document (.APR file) based on a ResultSet object. The ResultSet becomes the main table for the
document.

Syntax
Set documentobject = New Document(resultset)

Parameters
resultset

An existing ResultSet object.

Return values
Value Description
Document A new Document object based

on a ResultSet object.

Usage
Use this method to create an .APR file from the results of a query. Create a ResultSet object using the Connection,
Query, and ResultSet classes.
Use Document object properties to add a description and enter keywords for the new document.

Approach: New method (DropDownBox class)
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_DROPDOWNBOX_EXSCRIPT',1)} See example
Creates a new drop-down box.

Syntax
Set dropdownboxname = New DropDownBox(parent, [pagenum])

Parameters
parent

A Panel object that contains the drop-down box. A drop-down box can be placed on a form or in the body panel of
a report.

pagenum
(Optional) An integer representing the page that contains the drop-down box.

Return values
The new drop-down box returns the name of the field to which it is bound.

Approach: New method (Ellipse class)
{button ,AL(`H_LAS_ELLIPSE_CLASS;',0)} See list of classes
Creates a new ellipse.
Use Ellipse object properties to set the color of the ellipse border, background, and shadow, and determine whether
or not the ellipse is in the tab order.

Syntax
Set ellipsename = New Ellipse(panel, [pagenum])

Parameters
panel

The panel that contains the ellipse. Place an ellipse on the body of a form, mailinig label, form letter, envelope, or
chart; or in the footer, header, summary, or body panel of a report.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the ellipse.

Return values
The new object is called ObjEllipse. A number is added to the name if an ellipse with that name already exists on the
same panel.
For example, the name of the first ellipse placed on the body of a form appears as follows:
ObjEllipse
The name of the second ellipse appears as follows:
ObjEllipse1

Approach: New method (FieldBox class)
{button ,AL(`H_LAS_FIELDBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_FIELDBOX_EXSCRIPT',1)} See example
Creates a new field box.

Syntax
Set fieldboxobject = New FieldBox(panel, [pagenum])

Parameters
panel

A Panel object that contains the field box. A field box can be placed on a form or in the body panel of a report.
pagenum

(Optional) An integer (1 - 5) representing the page that contains the field box.

Return values
The return value is the FieldBox object.

Approach: New method (FindDistinct class)
{button ,AL(`H_LAS_FINDDISTINCT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NEW_FINDDISTINCT_EXSCRIPT',1)} See example
Creates a FindDistinct object.

Syntax
Set finddistinctobject = New FindDistinct ([field])

Parameters
field

(Optional) A string representing the name of the field in which to find distinct values.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

Return values
Value Description
FindDistinct A new FindDistinct object

Usage
This method creates a FindDistinct object. When you execute the script containing the FindDistinct object, Approach
creates a found set of records that have distinct values in the field specified.
You can add more fields to the find by calling the Add method.

Approach: New method (FindDuplicate class)
{button ,AL(`H_LAS_FINDDuplicate_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NEW_FINDDUPLICATE_EXSCRIPT',1)} See example
Creates a FindDuplicate object.

Syntax
Set findduplicateobject = New FindDuplicate ([field])

Parameters
field

(Optional) A string representing the name of the field to find duplicate values in.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

Return values
Value Description
FindDuplicate A new FindDuplicate object

Usage
This method creates a FindDuplicate object. When you execute the script containing the FindDuplicate object,
Approach creates a found set of records that have the same values in the field specified.
You can qualify the find by adding more fields by calling the Add method.

Approach: New method (FindTopLowest class)
{button ,AL(`H_LAS_FINDtoplowest_CLASS;',0)} See list of classes
Creates a FindTopLowest object.

Syntax
Set findtoplowestobject = New FindTopLowest (field, countorpercent, [findtype])

Parameters
field

A string representing the name of the field to find top or lowest values in.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

countorpercent
An integer indicating the number of records to be returned. The number is a count or a percent based on the
value of findtype.

findtype
(Optional) An integer representing the type of find performed. If no findtype is specified, Approach performs a top-
value find by count. Choose from the following values:

Value Description
AprFindTop (Default) The find returns the

specified number of records
representing the top values in
the field.

AprFindTopPercent The find returns the specified
percent of records
representing the top values in
the field.

AprFindLowest The find returns the specified
number of records
representing the lowest values
in the field.

AprFindLowestPercent The find returns the specified
percent of records
representing the lowest values
in the field.

Return values
Value Description
FindTopLowest A new FindTopLowest object.

Usage
This method creates a FindTopLowest object. When you execute the script containing the FindTopLowest object,
Approach creates a found set of records that have the top or lowest values in the field, determined by count or
percent.

Approach: New method (Find class)
{button ,AL(`H_LAS_FIND_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NEW_FIND_EXSCRIPT',1)} See example
Creates a Find object.

Syntax
Set findobject = New Find ([field], [criteria])

Parameters
field

(Optional) A string representing the name of the field to use in this find condition.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

criteria
(Optional) A string representing the find condition. For example, to search for records with values in field greater
than 100, criteria has the value ">100".
Build criteria with wildcards, functions, operators, constants, and field references as you would other formulas in
Approach.

Return values
Value Description
Find A new Find object

Usage
This method creates a Find object. When you execute the script containing the Find object, Approach creates a found
set of records that match the find conditions specified in the Find object.
You can add find conditions to the Find object by calling the And and Or methods and by setting the FindSpecial
property.

Approach: New method (Form class)
{button ,AL(`H_LAS_FORM_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_FORM_EXSCRIPT',1)} See example
Creates a new form.

Syntax
Set formobject = New Form(parent, [maintable])

Parameters
parent

The Document object you want to contain the form.
maintable

(Optional) A string representing the main table for the form.

Return values
Value Description
Form Returns a new form.

Approach: New method (LineObject class)
{button ,AL(`H_LAS_LINEOBJECT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_LINE_EXSCRIPT',1)} See example
Creates a new line.
Use LineObject object properties to set the line color, style, and width.

Syntax
Set lineobject = New LineObject(panel, [page])

Parameters
panel

The panel that contains the line. A line can be placed on the body of a form or in the footer, header, summary, or
body panel of a report.

page
(Optional) For forms only. An integer (1 - 5) representing the page that contains the line.

Return values
The new object is called ObjLine. A number is added to the name if a line with that name already exists on the same
panel.
For example, the name of the first line placed on the body of a form appears as follows:
ObjLine
The name of the second line appears as follows:
ObjLine1

Approach: New method (ListBox class)
{button ,AL(`H_LAS_LISTBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_LISTBOX_EXSCRIPT',1)} See example
Creates a new list box.

Syntax
Set listboxname = New ListBox(parent, [pagenum])

Parameters
parent

The panel that contains the list box. Place a list box on a form or in the body panel of a report.
pagenum

(Optional) For forms only. An integer (1 - 5) representing the page that contains the list box.

Return values
The return value is the ListBox object.

Approach: New method (PicturePlus class)
{button ,AL(`H_LAS_PICTUREPLUS_CLASS;',0)} See list of classes
Creates a new PicturePlus field.
Use PicturePlus object properties to position the image within the field, or shrink, crop, or stretch the image to fit the
field.

Syntax
Set pictureplusobject = New PicturePlus(panel, datatable, datafield, [pagenum])

Parameters
panel

The panel that contains the PicturePlus field. Place a PicturePlus field a form or in the body panel of a report.
datatable

A string representing the data table.
datafield

A string representing the data field.
pagenum

(Optional) For forms only. An integer (1 - 5) representing the page that contains the PicturePlus field.

Return values
The new object is called ObjPictPlus. A number is added to the name if a PicturePlus field with that name already
exists on the same panel.
For example, the name of the first PicturePlus field placed on the body of a form appears as follows:
ObjPictPlus
The name of the second PicturePlus field appears as follows:
ObjPictPlus1

Approach: New method (Picture class)
{button ,AL(`H_LAS_PICTURE_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_PICTURE_EXSCRIPT',1)} See example
Creates a new picture.
Use Picture object properties to position the picture, determine which image to display, and set the shadow color.

Syntax
Set pictureobject = New Picture(panel, filename, [pagenum])

Parameters
panel

The panel that contains the picture. Place a picture on the body of a form, mailing label, form letter, envelope, or
chart; or in the footer, header, summary, or body panel of a report.

filename
A string representing the path and filename of the image to display.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the picture.

Return values
The new object is called ObjPicture. A number is added to the name if a picture with that name already exists on the
same panel.
For example, the name of the first picture placed on the body of a form appears as follows:
ObjPicture
The name of the second picture appears as follows:
ObjPicture1

Approach: New method (Query class)
{button ,AL(`H_LAS_QUERY_CLASS;',0)} See list of classes
Creates a new Query object.

Syntax
Set queryobject = New Query()

Parameters
None

Return values
Value Description
Query object A new instance of the Query

class

Usage
Defining a query involves the following operations:

• Associating the Query object with a Connection object using the Connection property
• Specifying the find conditions for the query using the SQL property
• Specifying an entire table to retrieve using the TableName property

Approach: New method (RadioButton class)
{button ,AL(`H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_RADIOBUTTON_EXSCRIPT',1)} See example
Creates a new radio button.
Use RadioButton object properties to determine the state of a radio button, create and style labels, and set the
clicked values of the radio button.

Syntax
Set radiobuttonname = New RadioButton(panel, [pagenum])

Parameters
panel

The panel that contains the radio button. Place a radio button on the body of a form or in the footer, header,
summary, or body panel of a report.
Use dot notation to refer to the Panel object.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the radio button.

Return values
The new object is called ObjRadio. A number is added to the name if a radio button with that name already exists on
the same panel.
For example, the name of the first radio button placed on the body of a form appears as follows:
ObjRadio
The name of the second radio button appears as follows:
ObjRadio1

Approach: New method (Rectangle class)
{button ,AL(`H_LAS_RECTANGLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_RECTANGLE_EXSCRIPT',1)} See example
Creates a new rectangle object.

Syntax
Set rectangleobject = New Rectangle(panel, [pagenum])

Parameters
panel

The panel that contains the rectangle. Place a rectangle on the body of a form, mailing label, form letter,
envelope, or chart. Rectangles can also be placed in the footer, header, summary, or body panel of a report.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the rectangle.

Return values
The new object is called ObjRect. A number is added to the name if a rectangle with that name already exists on the
same panel.
For example, the name of the first rectangle placed on the body of a form appears as follows:
ObjRect
The name of the second rectangle appears as follows:
ObjRect1

Approach: New method (RepeatingPanel class)
{button ,AL(`H_LAS_REPEATINGPANEL_CLASS;',0)} See list of classes
Creates a new repeating panel.

Syntax
Set repeatingpanelobject = New RepeatingPanel(parent, table [pagenum])

Parameters
parent

The Panel object that contains the repeating panel. For example, the repeating panel can be placed on the body
panel of a form.

table
A string representing the table that stores the data displayed in the repeating panel on the form.

pagenum
(Optional) An integer representing the page that contains the repeating panel.

Return values
The new repeating panel is called RepeatingPanel. A number is added to the name if a repeating panel with that
name already exists on the same form. For example, the name of the first repeating panel on the body of a form
appears as follows:
RepeatingPanel
The name of the second repeating panel appears as follows:
RepeatingPanel1

Approach: New method (Report class)
{button ,AL(`H_LAS_REPORT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_REPORT_EXSCRIPT',1)} See example
Creates a new report.

Syntax
Set reportobject = New Report(parent, [maintable])

Parameters
parent

An object from the Document class representing where the report is placed. Use to specify which document
(.APR file) is the report's parent.

maintable
(Optional) A string representing the table on which the view is based.

Return values
Value Description
Report Returns a new report

Approach: New method (ResultSet class)
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Creates a new ResultSet object.

Syntax
Set resultsetobject = New ResultSet()

Parameters
None

Return values
Value Description
ResultSet A new instance of the ResultSet

class

Usage
Defining a result set involves the following operations:

• Associating the ResultSet object with a Query object using the Query property
• Creating the result set with the Execute method

Approach: New method (RoundRect class)
{button ,AL(`H_LAS_ROUNDRECT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_ROUNDRECT_EXSCRIPT',1)} See example
Creates a new rounded rectangle object.

Syntax
Set roundrectangleobject = New RoundRect(panel, [pagenum])

Parameters
panel

The panel that contains the rounded rectangle. Place a rounded rectangle on the body of a form, mailing label,
form letter, envelope, or chart; or in the footer, header, summary, or body panel of a report.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the rounded rectangle.

Return values
The new object is called ObjRoundRect. A number is added to the name if a rounded rectangle with that name
already exists on the same panel.
For example, the name of the first rounded rectangle placed on the body of a form appears as follows:
ObjRoundRect
The name of the second rounded rectangle appears as follows:
ObRoundRect1

Approach: New method (Sort)
{button ,AL(`H_LAS_SORT_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NEW_SORT_EXSCRIPT',1)} See example
Creates a Sort object.

Syntax
Set sortobject = New Sort ([field], [order])

Parameters
field

(Optional) A string representing the name of the field to use in the Sort.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

order
(Optional) A long representing the order to sort the values in field. If you specify a value for field, you must specify
order. Choose from the following values:

Value Description
LtsSortAscending Sorts the field values from lowest

to highest and from A to Z.
LtsSortDescending Sorts the field values from highest

to lowest and from Z to A.

Return values
Value Description
Sort A new Sort object.

Usage
This method creates a Sort object. When you execute the script containing the Sort object, Approach sorts the found
set of records or all records in the table in the order specified in the Sort object.
You can further qualify the sort condition by calling the Add method.

Approach: New method (SummaryPanel class)
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_SUMMARYPANEL_EXSCRIPT',1)} See example
Creates a new summary panel in a report.

Syntax
Set summarypanelobject = New SummaryPanel(parent)

Parameters
parent

A BodyPanel object for the report view. A report view can contain a new summary panel.

Return values
The new object is called Summary. A number is added to the name of a summary if that name already exists for
another summary panel on the same report.
For example, the name of the first summary panel placed on the body panel of a report appears as follows:
Summary
The name of the second summary panel appears as follows:
Summary1

Approach: New method (TextBox class)
{button ,AL(`H_LAS_TEXTBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_TEXTBOX_EXSCRIPT',1)} See example
Creates a new text block.

Syntax
Set textboxobject = New TextBox(panel, [text], [pagenum])

Parameters
panel

The panel that contains the text block. Place a text block on the body of a form, mailing label, form letter,
envelope or chart; or in the footer, header, summary, or body panel of a report.

text
(Optional) A string representing text to be displayed in the text block.

pagenum
(Optional) For forms only. An integer (1 - 5) representing the page that contains the text block.

Return values
The new object is called ObjText. A number is added to the name if a text block with that name already exists on the
same panel.
For example, the name of the first text block placed on the body of a form appears as follows:
ObjText
The name of the second rounded rectangle appears as follows:
ObjText1

Approach: New method (Worksheet class)
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEW_WORKSHEET_EXSCRIPT',1)} See example
Creates a new worksheet.

Syntax
Set worksheet = New Worksheet(parent, [maintable])

Parameters
parent

The document (.APR file) that contains the worksheet.
maintable

(Optional) A string representing the table for the new worksheet.

Return values
Value Description
Worksheet Return a new worksheet.

Approach: NextRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEXTRECORD_EXSCRIPT',1)} See example
Makes the next record in the found set the current record. Using this LotusScript command is the same as clicking
the Next Record icon. If the current record is the last record, nothing happens.

Syntax
Call docwindowobject.NextRecord()

Parameters
None

Return values
None

Approach: NextRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_NEXTROW_EXSCRIPT',1)} See example
Sets the next row (record) as the current row in a result set.

Syntax
Call resultsetobject.NextRow()
or
integer = resultsetobject.NextRow()

Parameters
None

Return values
Value Description
TRUE The next row in the

result set was set to be
the current row.

FALSE The current row did not
change.

Usage
This method fails under the following conditions:

• There is no result set.
• The last row is already the active row in the result set.
• A result set is not cached.

Approach: NumColumns method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMCOLUMNS_EXSCRIPT',1)} See example
Returns the number of columns (fields) in the result set.

Syntax
integer = resultsetobject.NumColumns()

Parameters
None

Return values
Value Description
Integer The number of columns in the result

set

Approach: NumParameters method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Returns the number of parameters in an SQL statement.

Syntax
integer = resultsetobject.NumParameters()

Parameters
None

Return values
Value Description
Integer The number of parameters in

an SQL statement

Usage
In SQL, a parameter is a variable that is used in an SQL statement. The parameter name appears in the SQL
statement surrounded by question marks (?). Use this method to return the number of parameters found in the SQL
statement used to create the result set.

Approach: NumRows method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMROWS_EXSCRIPT',1)} See example
Returns the number of rows (records) in the result set.

Syntax
long = resultsetobject.NumRows()

Parameters
None

Return values
Value Description
Long The number of rows in the result set

Approach: OpenDocument method
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Opens the specified document (.APR file) or table (database file).

Syntax
document = applicationobject.OpenDocument(filename, filepath, [doctype], [password], [openro], [makevisible])

Parameters
filename

A string representing the file name of a document or table.
filepath

A variant representing the path of the file specified in filename.
doctype

(Optional) A string representing the file type of the document. Choose from the following values:

Value Description
Lotus Approach (*.APR,
*.VEW, *.APT)

Approach file for storing views,
or consolidated Approach data
and views

SmartMaster (*.MPR) Approach SmartMaster
Application

dBASE IV (*.DBF) Borland dBASE IV
dBASE IIII+ (*.DBF) Borland dBASE III+
Lotus Notes Workspace,
Server, Local (*)

Lotus Notes

FoxPro (*.DBF) FoxPro
Paradox (*.DB) Borland Paradox
Query (*.QRY) Approach query file, for SQL

tables
Text(*.TXT) Delimited or fixed-length text
Excel (*.XLS) Microsoft Excel
Lotus 1-2-3 (*.123, *.WK*) 1-2-3 workbook

password
(Optional) A string representing the password required to open the document.

openro
(Optional) An integer representing whether to open the document or table as read-only. Choose from the following
values:

Value Description
TRUE Approach opens the document

as read-only.
FALSE Approach opens the document

as read-write.
makevisible

(Optional) An integer representing whether to make the document current after it is open. Choose from the
following values:

Value Description
TRUE Approach opens the document

and immediately changes the
focus to the document.

FALSE Approach opens the document
but keeps the focus on
another document.

Return values
Value Description
Document The specified Document

object.

Usage
This method opens an existing .APR file or database file.
If you specify a database as the file to open, Approach creates a new file (.APR) with a default form and worksheet.
Caution If you select a file with a .DBF or .DB file extension, the program creates a new Approach file for it, even if
an Approach file associated with the .DBF or .DB file already exists. If you save this new Approach file, you will write
over the existing one.

Approach: Options method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Selects the record-locking behavior of the ResultSet object.

Syntax
integer = resultsetobject.Options(option)

Parameters
option

An integer indicating the record-locking behavior of the ResultSet object. Choose from the following options:

Value Description
DBOpt_OPTIMISTIC Allows all users to save their changes to

a record (optimistic record locking).
DBOpt_OVERRIDE Updates records regardless of locks. This

option requires support from the data
source.

DBOpt_PESSIMISTIC Allows only the first user to save changes
to a record (full record locking).

Return values

Value Description
TRUE The record-locking behavior

was successfully set to the
new mode.

FALSE The record-locking behavior
was not changed.

Approach: Or method
{button ,AL(`H_LAS_FIND_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_OR_EXSCRIPT',1)} See example
Adds a find condition to an existing Find object.
This new find condition is in an OR relationship with the previously added find condition.

Syntax
Call findobject.Or(field,criteria)

Parameters
field

A string representing the name of the field to use in this find condition.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

criteria
A string representing the find condition.
Build criteria with wildcards, functions, operators, constants, and field references as you would other formulas in
Approach.

Return values
None

Usage
This method adds a find condition to an existing Find object. The find conditions are in an OR relationship, which
means that only one of the conditions must be met by a record for that record to be included in the found set.

Approach: Paste method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Paste the contents of the Clipboard to the position you most recently selected.

Syntax
Call docwindowobject.Paste()

Parameters
None

Return values
None

Usage
Use the Paste method after using the Cut or Copy methods.

Approach: PrevRecord method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_PREVRECORD_EXSCRIPT',1)} See example
Makes the previous record in the found set the current record.
Using this LotusScript method is the same as clicking the Previous Record icon. If the current record is the first
record, nothing happens.

Syntax
Call docwindowobject.PrevRecord()

Parameters
None

Return values
None

Approach: PrevRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_PREVROW_EXSCRIPT',1)} See example
Sets the previous row (record) in the result set as the current row.

Syntax
integer = resultsetobject.PreviousRow

Parameters
None

Return values
Value Description
TRUE The previous row in the result set was

set to be the current row.
FALSE The current row did not change.

Usage
This method fails if the previous row is not accessible. This may happen under the following conditions:

• You are at the first row.
• There is no valid result set to scroll through.
• A result set is not cached.
• The cache is limited and the ODBC driver does not support cursor or result navigation.

Approach: PrintPreview method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Switches Approach into Print Preview .
Syntax
integer = docwindowobject.PrintPreview()
Parameters
None
Return values

Value Description
TRUE Approach successfully

switched to Print Preview.
FALSE Approach failed to switch to

Print Preview.
Usage
Use this method to toggle the Approach environment between Print Preview and Browse.

Approach: Print method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Sends the specified pages of the current view to the printer you specify.

Syntax
Call docwindowobject.Print([from], [to], [numcopies])

Parameters
from

(Optional) Long representing the number of the first page to print. The default value is page 1.
to

(Optional) Long representing the number of the last page to print. The default value is the last page of the view.
numcopies

(Optional) Integer representing the number of copies to print. The default value is 1 copy of each page.

Return values
None

Usage
Switch to the view you want to print using the ActiveView property; then call the Print method.

Approach: Quit method
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_las_QUIT_EXSCRIPT',1)} See example
Closes the current Approach executable (.EXE file).

Syntax
Call applicationobject.Quit([savechanges])

Parameters
savechanges

(Optional) A variant representing whether to save changes made to the document (.APR file).

Return values
Value Description
TRUE All documents (.APR files) are

saved.
FALSE The documents are not saved.

Approach: Refresh method
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DOCWIND

OW_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_
LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS
;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRE
CT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

{button ,AL(`H_las_REFRESH_EXSCRIPT',1)} See example
For DocWindow objects:

• Updates the data onscreen to match the source table (database)
• Enters changes to the database
• Displays new records in the found set or sort order, as appropriate

For display element objects, Refresh redraws the display element.

Syntax
Call docwindowobject.Refresh()
or
Call displayelementobject.Refresh()

Parameters
None

Return values
Value Description
TRUE The display element or

document window is updated.
FALSE The display element or

document window is not
updated.

Usage
If several users are making changes to a table at the same time, the changes do not always appear instantly on each
user's screen. Use Refresh from a DocWindow object to update a local copy of the data in the source table
(database).

Approach: RemoveColumn method
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Removes the specified column from the worksheet. If no column is specified, the current column is removed.

Syntax
integer = worksheetobject.RemoveColumn(column)

Parameters
column

A string representing the header of the column. The header, or label, may differ from the column's field name.

Return values
Value Description
TRUE The specified column was

removed from the worksheet.
FALSE The specified column was not

removed from the worksheet.

Approach: RemoveListItem method
{button ,AL(`H_LAS_LISTBOX_CLASS;',0)} See list of classes
Deletes the specified item from the list for a list box.

Syntax
integer = listboxobject.RemoveListItem(item)

Parameters
item

An integer representing an item in the list box.

Return values
Value Description
TRUE Approach deleted the item

successfully.
FALSE Approach failed to remove the

item, possibly because the
item specified was not in the
list.

Usage
Use this method to control the values allowed for data entry in a field. For example, you can delete items from a list
box in response to other data entered by the user.

Approach: Remove method
{button ,AL(`H_LAS_COLLECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_REMOVE_EXSCRIPT',1)} See example
Removes an object from the current collection at the specified position.

Syntax
object = collectionobject.Remove(position)

Parameters
position

An integer representing a specified position in the collection.

Return values
Value Description
Object Returns the object that was

removed from the collection.

Approach: Repaint method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_REPAINT_EXSCRIPT',1)} See example
Repaints the document window.

Syntax
Call docwindowobject.Repaint()

Parameters
None

Return values
None

Approach: ReplaceWithResultSet method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_REPLACEWITHRESULTSET_EXSCRIPT',1)} See example
Replaces a table associated with a document (.APR file) with a result set table.

Syntax
integer = tableobject.ReplaceWithResultSet(resultsetobject, [fieldpairs])

Parameters
resultsetobject

A ResultSet object that contains the data that replaces the original table associated with the .APR file.
fieldpairs

(Optional) An array describing the mapping of fields between the original table and the result set. If you do not
specify fieldpairs and the fields in the result set do not exactly match the fields in the original table, Approach
opens the Mapping dialog box to allow the user to match the fields between tables.
Construct the array in two dimensions with the first dimension as large as the number of fields in the original
table. List each field name from the original table in the first element of each pair in the array; list the field name
from the result set in the second element. For example, in the field pair array MyMap, define the mapping for the
field names as follows:
Dim MyMap(1 to 5, 1 to 2) As String
MyMap(1,1) = "First Name" ' Field from original table
MyMap(1,2) = "FIRST" ' Field from result set
MyMap(2,1) = "Last Name" ' Field from original table
MyMap(2,2) = "LAST" ' Field from result set
. . .
MyMap(5,1) = "Postal Code" ' Field from original table
MyMap(5,2) = "PCODE" ' Field from result set

Return values
Value Description
TRUE Approach successfully

replaced the specified Table
object with the ResultSet
object.

FALSE Approach failed to replace the
specified Table object with the
ResultSet object.

Usage
This method lets you replace a table associated with the document (.APR file). After calling ReplaceWithResultSet,
the document retrieves data as defined by the new table (the result set). The original table is not deleted or altered,
but is no longer associated with the document. The new table does not reflect subsequent changes to the Query
object associated with the result set.
Create a ResultSet object from a table not associated with the document using the Connection, Query, and ResultSet
classes. Create a ResultSet object from a table associated with the document using the CreateResultSet method.
Specify the Table object by using the Tables property of the Document object.

Approach: Replicate method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Updates copies of the same Notes table (database file) located on two different servers, or on a server and a local
machine.

Syntax
Call docwindowobject.Replicate(filename, server, [exchangereadmarks], [receivedocuments], [senddocuments],
[replicatetemplates])

Parameters
filename

A string representing the full path name of the Notes table on the server.
server

A string representing the server name.
exchangereadmarks

(Optional) An integer indicating whether the status of each record (Notes document) in the database should be
updated during replication. Read marks indicate whether a record has been opened. Choose from the following
values:

Value Description
TRUE Approach updates the read

marks during replication.
FALSE (Default) Approach does not

update the read marks.
receivedocuments

(Optional) An integer indicating whether data is copied from the server database to the local database. Choose
from the following values:

Value Description
TRUE Approach updates the local

database with data from the
server copy.

FALSE Approach does not update the
local database with data from
the server copy.

senddocuments
(Optional) An integer indicating whether data is copied from the local database to the server database. Choose
from the following values:

Value Description
TRUE Approach updates the server

database with data from the
local copy.

FALSE Approach does not update the
server database with data
from the local copy.

replicatetemplates
(Optional) An integer indicating whether the Notes template information is updated during the replication. Choose
from the following values:

Value Description
TRUE Approach updates the

template during replication.
FALSE Approach does not update the

template during replication.

Return values
None

Usage
This method automates Notes database replication.

Approach: Restore method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;H_LAS_DOCWINDOW_CLASS;H_LAS_WINDOW_CLASS;',

0)} See list of classes
{button ,AL(`H_las_RESTORE_EXSCRIPT',1)} See example
Restores a minimized or maximized application or document window, and makes it the active window.
Using this LotusScript method is the same as clicking the Restore icon.

Syntax
Call applicationwindowobject.Restore()
or
Call docwindowobject.Restore()

Parameters
None

Return values
None

Approach: RunProcedure method
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_RUNPROCEDURE_EXSCRIPT',1)} See example
Executes an existing sub.

Syntax
applicationobject.RunProcedure(procedurename, procedurearg)

Parameters
procedurename

A string representing the name of the global sub to be executed.
procedurearg

A string representing the argument of the sub.

Return values
Value Description
TRUE The sub was executed.
FALSE The sub was not executed.

Usage
This method allows you to run a global sub from another product through OLE automation. For example, you can run
an Approach script by creating an Approach application inside a 1-2-3 script, opening an existing Approach .APR file
(document), and then calling RunProcedure.
RunProcedure cannot execute a function or a sub with more than one argument.

Approach: SameColor method
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
Compares RGB values to see if they are the same. You can also compare colors from different products.

Syntax
value = colorobject.SameColor(othercolor)

Parameters
othercolor

The color object you want to compare to the current color object.

Return values
Value Description
TRUE The stored RGB values are the

same.
FALSE The stored RGB values are not

the same.

Approach: SaveChanges method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Saves all unsaved design modifications to the specified document (.APR file).

Syntax
Call docwindowobject.SaveChanges()

Parameters
None

Return values
None

Usage
This method saves changes to a document that has already been saved once, so it has a file name.

Approach: SaveViewAsHTML method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Creates an HTML file representing the current view.

Data type
String

Syntax
string = DocWindowobject.SaveViewAsHTML([outputfile])

Parameters
outputfile

(Optional) A string representing the full path name of the output HTML file.

Return values
Value Description
string Full path name of the resulting

HTML file.

Usage
Use this view to convert a view to HTML format. If the current view is a form, the resulting HTML form appears
without data, allowing viewers to enter data in the fields on the form. If the current view is another type of view, the
data are represented in the resulting HTML document.

Approach: SelectAll method
{button ,AL(`;H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Select all text in a field box or all cells in a worksheet.

Syntax
Call docwindowobject.SelectAll()

Parameters
None

Return values
None

Usage
This method automates the Edit - Select All menu command.
The Select All command has different functions in different contexts. For example, when the cursor is in a field box on
a form, Select All selects the contents of the field box.
In a worksheet, Select All selects all records in the found set.

Approach: SendToBack method
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_SENDTOBACK_EXSCRIPT',1)} See example
Places a display element behind all overlapping display elements.

Syntax
displayelement object.SendToBack

Parameters
None

Return values
None

Usage
Arrange display elements so they do not hide other display elements.
For example, you can have a circle around a group of radio buttons. For users to be able to click the buttons,
however, the circle must be behind the radio buttons.

Approach: SetAt method
{button ,AL(`H_LAS_COLLECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETAT_EXSCRIPT',1)} See example
Replaces the object at the specified position with a specified object.

Syntax
variant = collectionobject.SetAt(position, object)

Parameters
position

An integer representing an object in the collection.
object

A variant representing the object with which you want to replace the object in position.

Return values
Value Description
Variant Returns the object previously

at position.

Usage
This method signals a bounds error if position is less than one, or greater than Count (which indicates that the size of
the collection has not changed). SetAt is normally accessed via indexing.

Approach: SetCellFocus method
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETCELLFOCUS_EXSCRIPT',1)} See example
Selects the cell in the current row and specified column.

Syntax
integer = worksheetobject.SetCellFocus(columnname)

Parameters
columnname

A string representing the header of the column. The header, or label, may differ from the column's field name.

Return values
Value Description
TRUE The specified cell was

selected.
FALSE The specified cell was not

selected.

Approach: SetFieldList method
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;H_LAS_LISTBOX_CLASS;',0)} See list of classes
Determines the items displayed in a drop-down box, a field box and list, or a list box.

Syntax
integer = field.SetFieldList(fielddata, [fielddesc], [fieldfilterfrom],[fieldfilterto])

Parameters
fielddata

The name of the field that stores the items for the list.
If there is more than one table joined in the .APR file, precede the field name with the table name. For example,
the field Cost is in the table Products in an .APR file that also uses the table Orders. You must specify the field
name as follows:
"Products.Cost"
The field and table names are not case sensitive.

fielddesc
(Optional)The name of the field that stores the descriptions of the items in the list. If specified, the contents of this
field are displayed to users instead of the data in fielddata.
If there is more than one table joined in the .APR file, specify the table name as described above.

fieldfilterfrom
(Optional) The name of the field the items are filtered from.
If there is more than one table joined in the .APR file, specify the table name as described above.

fieldfilterto
(Optional) The name of the field the items are filtered to.
If there is more than one table joined in the .APR file, specify the table name as described above.

Return values
Value Description
TRUE The field list is set for the field.
FALSE The field list is not set for the field.

Approach: SetFocus method
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_DISPLAY_CLASS;H_LAS_DROPDOW

NBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LI
STBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_PICTURE_CLASS;H_L
AS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_
CLASS;',0)} See list of classes

{button ,AL(`H_las_SETFOCUS_EXSCRIPT',1)} See example
Selects the specified display element, as if a user had tabbed into or clicked the display element.

Syntax
displayelementobject.SetFocus

Parameters
None

Return values
None

Approach: SetFurigana method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: SetIME method
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
This method is not used in this version of Approach.

Approach: SetList method
{button ,AL(`H_LAS_DROPDOWNBOX_CLASS;H_LAS_LISTBOX_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETLIST_EXSCRIPT',1)} See example
Displays the items in a drop-down box, field box and list, or list box from the data in a specified array.

Syntax
integer = field.SetList(stringarray)

Parameters
stringarray

An array of strings that display as items in a drop-down box, field box and list, or list box.

Return values
Value Description
TRUE The items are set for the field.
FALSE The items are not set for the field.

Approach: SetParameter method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
Modifies a parameter value.

Syntax
integer = resultsetobject.SetParameter(parameter, value)

Parameters
parameter

A string representing the name of the parameter.
Alternatively, you can use an integer representing the ordinal position of the parameter, if the name is unknown.
The first parameter in the SQL statement has an index of 1, the second has an index of 2, and so on.

value
A string representing the new parameter value. Use single quotation marks in value when setting the value of
string parameters.

Return values
Value Description
TRUE The replacement value for the parameter

was set.
FALSE The replacement value for the parameter

was not set.

Usage
This method fails when the parameter name or index is not found.
A parameter is a variable used in an SQL statement. The parameter name appears in the SQL statement surrounded
by question marks (?). Use this method to change the value used in the SQL statement.

Approach: SetPicture method
{button ,AL(`H_LAS_PICTURE_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETPICTURE_EXSCRIPT',1)} See example
Determines the image to be displayed.

Syntax
integer = pictureobject.SetPicture(filename)

Parameters
filename

A string representing the location and filename for the image.

Return values
Value Description
TRUE The specified picture was placed in the

picture field.
FALSE The specified picture was not placed in the

picture field.

Approach: SetRGB method
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETRGB_EXSCRIPT',1)} See example
Sets one of the predefined color constants as the color to use for the Color object.

Syntax
integer = colorobject.SetRGB(rgbvalue)

Parameters
rgbvalue

A long representing an RGB value for a Color object. Choose from predefined color constants.

Return values
Value Description
TRUE The RGB components are set.
FALSE The RGB components are not

set.

Approach: SetState method
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETSTATE_EXSCRIPT',1)} See example
Sets the default state of a check box or radio button. A check box is either checked or unchecked. A radio button is
either on or off.

Syntax
integer = displayelementobject.SetState(value)

Parameters
value

An integer representing the state of the check box or radio button.

Return values
Value Description
TRUE Set the default value of the

check box or radio button to
on (checked).

FALSE Set the default value of the
check box or radio button to
off (unchecked).

Approach: SetText method
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Enters text in the cell of the current row of the specified column. If no column is specified, the current column is used.

Syntax
integer = worksheetobject.SetText(text, [columnname])

Parameters
text

A string representing the text to be entered in the current row of the specified column.
columnname

(Optional) A string representing the header of the column. The header, or label, may differ from the column's field
name.

Return values
Value Description
TRUE The text for the current row of

the specified column was set.
FALSE The text for the current row of

the specified column was not
set.

Approach: SetValue method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_SETVALUE_EXSCRIPT',1)} See example
Modifies the data in the current row (record) and specified column (field) of a result set.

Syntax
integer = resultsetobject.SetValue(column, value)

Parameters
column

A string representing the name of a column (field) in a result set.
Alternatively, you can use an integer representing the ID value of the column, if the name is unknown. The first
parameter in the SQL statement has an index of 1, the second has an index of 2, and so on.

value
A variant representing the value added to the current row and specified column of the result set.

Return values
Value Description
TRUE The new value was successfully

placed in the result set.
FALSE The new value failed to be placed in

the result set, probably because the
column or result set specified does not
exist.

Usage
The current row and specified column of the result set identify a cell in the source table.
You must call the UpdateRow method to save the change in the result set.
The new value is automatically converted to the native data type specified for the column.

Approach: TabNext method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_TABNEXT_EXSCRIPT',1)} See example
Tabs to the next display element in the tab order .
Using this LotusScript method is the same as pressing TAB.

Syntax
Call docwindowobject.TabNext()

Parameters
None

Return values
None

Usage
Use this method to move the cursor to the next display element.
To move to:

• the previous display element, use the TabPrev method
• a specific display element, use the TabTo method

Approach: TabPrev method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_TABPREV_EXSCRIPT',1)} See example
Tabs to the previous object in the tab order .
Using this LotusScript command is the same as pressing SHIFT+TAB.

Syntax
Call docwindowobject.TabPrev()

Parameters
None

Return values
None

Usage
Use this method to move the cursor to the previous display element.
To move to:

• the next display element, use the TabNext method
• a specific display element, use the TabTo method

Approach: TabTo method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Moves the focus to the specified display element in the current view.

Syntax
Call docwindowobject.TabTo (tabposition)

Parameters
tabposition

An integer representing the position in the tab order of the object you want to move to. The tabposition
corresponds to the value of the TabOrder property of the display element in the view.

Return values
None

Usage
This method allows you to control the order that users enter data.
For example, you can use values entered by the user to control what fields are filled in and in what order.
To move to:

• the previous display element, use the TabPrev method
• the next display element, use the TabNext method

Approach: Tile method
{button ,AL(`H_LAS_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_TILE_EXSCRIPT',1)} See example
Tiles all open windows. Using this LotusScript command is the same as if you chose Window - Tile.

Syntax
Call applicationwindowobject.Tile()

Parameters
None

Return values
None

Approach: Transactions method
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
Sets the data transaction mode for a connection when the AutoCommit property is FALSE.

Syntax
integer = connectionobject.Transactions(mode)

Parameters
mode

An integer representing the way Approach writes data to a table. Choose from the following values:

Value Description
AprTransactionCommit Any changes made to data since the

previous transaction are committed to
the table when you call UpdateRow.

AprTransactionRollback Any changes made to data since the
previous transaction are discarded.

Return values
Value Description
TRUE Approach successfully changed the

transaction mode.
FALSE The table does not support the specified

transaction mode.

Usage
Use the Transactions method to access SQL transaction controls on a server database.
When the AutoCommit property of the Connection object is enabled (set to TRUE), the Transactions method is
disabled.
After you rollback changes, call the Refresh method to update the data on the screen.

Approach: Unsort method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Returns the current found set to the default sort order specified in File - User Setup - Approach Preferences.

Syntax
Call docwindowobject.Unsort()

Parameters
None

Return values
None

Usage
To set the sort order for the records in which they appear by default in Browse , choose File - User Setup - Approach
Preferences.

Approach: UpdateRow method
{button ,AL(`H_LAS_RESULTSET_CLASS;',0)} See list of classes
{button ,AL(`H_las_UPDATEROW_EXSCRIPT',1)} See example
Updates the current row (record) in the result set with any changes.

Syntax
Call resultsetobject.UpdateRow()
or
integer = resultsetobject.UpdateRow()

Parameters
None

Return values
Value Description
TRUE The current row in the result set

was updated.
FALSE The current row in the result set

was not updated.

Usage
You must call this method to save changes you make to values in a result set.
Updating a table may also depend on the Connection object's settings for commiting records. See the Connection
class AutoCommit property.

Approach: Zoom method
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Enlarges or reduces the display of the current view in Print Preview.

Syntax
integer = docwindowobject.Zoom(percentage)

Parameters
percentage

An integer representing the new display as a percentage. Choose from 25, 50, 75, 85, 100 and 200.

Return values
Value Description
TRUE The view successfully zoomed

to the specified scale.
FALSE The view failed to zoom

successfully.

Usage
Use the Zoom method to change the display scale when the view is in PrintPreview.

Approach LotusScript A-Z

A
ActionBarVisible property
Activate method
ActiveDocument property
ActiveDocWindow property
ActiveView property
Add method
Add method (Collection class)
Add method (Sort class)
AddColumn method
AddListItem method
AddRow method
Alignment property
AllowDrawing property
AlternateColors property
And method
Application class
Application property (Application class)
Application property (ApplicationWindow class)
ApplicationWindow class
ApplicationWindow property
ApplyFoundSet
Author property
AutoCommit property

B
Background class
Background property
BaseCollection class
Baseline property
Black property

Blue property
BodyPanel class
Bold property
Border class
Border property
Bottom property
BringToFront method
Broadcast event
Browse method
Button class

C
CalcTable property
Cascade method
CellDataChange event
CellGetFocus event
CellLostFocus event
Change event
ChartView class
CheckBox class
CheckedValue property
Click event
ClickedValue property
Close method
Close method (ResultSet class)
CloseWindow event
Collection class
Color class
Color property
Connection class
Connection property
ConnectTo method
Copy method
CopyView method
Count property
CreateDate property
CreateCalcField method
CreateResultSet method
Crosstab class
CurrentFind property
CurrentPageNum property
CurrentRecord property
CurrentRow property
CurrentSelection property
CurrentSort property
Cut method
Cyan property

D
DataField property
DataSourceName property
DataTable property
DeleteCalcField method
DeleteFile method
DeleteFoundSet method
DeletePage method
DeleteRecord method
DeleteRow method

Description property
Disconnect method
Dispatch property
Display class
Display property
Document class
Document property
DocumentClose event
DocumentCreated event
DocumentOpened event
Documents property
DocWindow class
DoMenuCommand method
DoubleClick event
DoVerb method
DrillDownView property
DropdownBox class
DuplicateRecord method

E
Editable property
Ellipse class
Enabled property
EncloseLabel property
Envelope class
ExcludeFirst property
Execute method
Expand property

F
FieldBox class
FieldExpectedDataType method
FieldID method
FieldName method
FieldNames property
FieldNativeDataType method
FieldSize method
FileName property
FillField method
Find class
FindAll method
FindDistinct class
FindDuplicate class
FindSort method
FindSpecial property
FindTopLowest class
FirstRecord method
FirstRow method
Font class
Font property
FontName property
Form class
FormLetter class
FullName property

G
GetAt method
GetAt method (Find class)

GetAt method (FindTopLowest class)
GetAt method (Sort class)
GetColorFromRGB method
GetCount method
GetError method
GetErrorMessage method
GetExtendedErrorMessage method
GetFieldFormula method
GetFieldOptions method
GetFieldSize method
GetFieldType method
GetHandle method
GetParameter method
GetParameterName method
GetRGB method
GetTableByName method
GetText method
GetValue method
GotFocus event
GoToRecord method
Green property
GroupByDataField property
GroupByDataTable property
GroupByEvery property

H
HeaderFooterPanel class
Height property
HideMargins property
HideRecord method

I
IconBarVisible property
InsertAfter method
IsBeginOfData property
IsChecked property
IsClicked property
IsCommandChecked method
IsCommandEnabled method
IsConnected property
IsEmpty method
IsEndOfData property
IsReadOnly property
IsResultSetAvailable property
Italic property

J
(None)

K
KeepRecsTogether property
KeyDown event
KeyPress event
KeyUp event
Keywords property

L
LabelAlignment property
LabelFont property

LabelPosition property
LabelText property
Language property
LastModified property
LastRecord method
LastRow method
Left property
Left property (Border class)
LineObject class
LineSpacing property
LineStyle class
LineStyle property
ListBox class
ListDataSources method
ListFields method
ListTables method
Location property
LostFocus event
LPObject property

M
MacroClick property
MacroDataChange property
MacroTabIn property
MacroTabOut property
Magenta property
MailCheck event
MailingLabels class
MailSend event
MainTable property
MakeNamedStyle method
Maximize method
MenuBar property
Menus property
Merge method
Minimize method
Modified property
MouseDown event
MouseMove event
MouseUp event

N
Name property
NamedFindSort property
NamedFindSorts property
NamedStyle property
NamedStyles property
New method (Button class)
New method (ChartView class)
New method (CheckBox class)
New method (Collection class)
New method (Color class)
New method (Connection class)
New method (Crosstab class)
New method (Document class)
New method (DropdownBox class)
New method (Ellipse class)
New method (FieldBox class)

New method (Find class)
New method (FindDistinct class)
New method (FindDuplicate class)
New method (FindTopLowest class)
New method (Form class)
New method (LineObject class)
New method (ListBox class)
New method (Picture class)
New method (PicturePlus class)
New method (Query class)
New method (RadioButton class)
New method (Rectangle class)
New method (RepeatingPanel class)
New method (Report class)
New method (ResultSet class)
New method (RoundRect class)
New method (Sort class)
New method (SummaryPanel class)
New method (TextBox class)
New method (Worksheet class)
NewPage method
NewRecord event
NewRecord method
NextRecord method
NextRow method
NonPrinting property
NumColumns method
NumColumns property
NumFields property
NumJoins property
NumLines property
NumPages property
NumParameters method
NumRecords property
NumRecordsFound property
NumRevisions property
NumRows method
NumTables property
NumViews property

O
ObjectList property
OLEObject class
OnSwitchFromMacro property
OnSwitchToMacro property
OpenDocument method
OpenWindow event
Options method
Or method
Orientation property

P
Page property
PageBreak property
PageSwitch event
Panel class
Parent property
Password property

Paste method
Path property
Pattern property
Picture class
PicturePlus class
Position property
PrevRecord method
PrevRow method
Print method
PrintDate property
PrintPageNum property
PrintPreview method
PrintTitle property

Q
Query class
Query property
Quit event
Quit method

R
RadioButton class
ReadOnly property
RecordChange event
RecordCommit event
Rectangle class
Red property
Redraw property
Reduce property
Refresh method
Relief property
Remove method
RemoveColumn method
RemoveListItem method
Repaint method
RepeatingPanel class
ReplaceWithResultSet method
Replicate method
Report class
Restore method
ResultSet class
Right property (Border class)
RoundRect class
RunProcedure method

S
SameColor method
SaveChanges method
SaveViewAsHTML method
SelectAll method
SelectColumn event
Selection property
SelectionChange event
SendToBack method
SetAt method
SetCellFocus method
SetFieldList method
SetFocus method

SetList method
SetParameter method
SetPicture method
SetRGB method
SetState method
SetText method
SetValue method
ShadowColor property
ShowArrow property
ShowAsDialog property
ShowInPreview property
ShowRelated property
Size property
SlideLeft property
SlideUp property
Sort class
SQL property
StatusBarVisible property
Stretch property
Strikethrough property
SummaryPanel class
SwitchFrom event
SwitchTo event

T
Table class
TableName property (Query Class)
TableName property (Table Class)
Tables property
TabNext method
TabOrder property
TabPrev method
TabStop property
TabTo method
Text property
Text property (Button class)
TextBox class
Tile method
TimerInterval property
Title property
Top property
Top property (Border class)
Transactions method
Transparent property
Type property

U
UncheckedValue property
Underline property
Unsort method
UpdateRow method
User property
UserID property
UserTimer event

V
Value property (CheckBox class)
Value property (RadioButton class)

VarTable property
Vertical property
View class
Views property
ViewSwitch event
ViewTabVisible property
Visible property

W
Width property
Width property (Border class)
Window class
Window property
Windows property
Worksheet class

X
(None)

Y
Yellow property

Z
Zoom method

Approach LotusScript Classes A-Z

A
Application class
ApplicationWindow class

B
Background class
BaseCollection class
BodyPanel class
Border class
Button class

C
ChartView class
CheckBox class
Collection class
Color class
Connection class
Crosstab class

D
Display class
Document class
DocWindow class
DropdownBox class

E
Ellipse class
Envelope class

F
FieldBox class
Find class
FindDistinct class
FindDuplicate class
FindTopLowest class
Font class
Form class
FormLetter class

G
(None)

H
HeaderFooterPanel class

I
(None)

J
(None)

K
(None)

L
LineObject class
LineStyle class
ListBox class

M
MailingLabels class

N
(None)

O

OLEObject class

P
Panel class
Picture class
PicturePlus class

Q
Query class

R
RadioButton class

Rectangle class
RepeatingPanel class
Report class
ResultSet class
RoundRect class

S
Sort class
SummaryPanel class

T
Table class
TextBox class

U
(None)

V
View class

W
Window class
Worksheet class

X
(None)

Y
(None)

Z
(None)

Approach LotusScript Class Hierarchy
Understanding which classes are contained by other classes, and therefore which objects are contained by other
objects, helps you understand the syntax to use in a script when you try to access an object or change one of its
properties. One of the advantages of containment is that it lets you access any object by traversing the containment
hierarchy that connects objects with other objects.
The following diagram illustrates the containment relationships of classes and objects.

Approach provides some classes, called abstract classes, that exist only to create other classes, called derived
classes. You cannot create an instance (object) of an abstract class.
A derived class, also called a subclass, inherits the members (methods and properties) of the class it derives from,
called its base class.
The following diagrams show the Approach class hierarchy, including the abstract classes (in italics) and the derived
classes that inherit from them.

Approach LotusScript Constants
Approach scripts use the following constants to specify menu commands, colors, and database connection errors
available in Approach.

Menu command Constant
About Approach... IDM_ABOUT
Actual Size IDM_ACTUAL
Add Column IDM_ADDCOLUMN
Approach File Info... IDM_APRINFO
Ascending Sort IDM_SORTUP
Browse IDM_BROWSE
Chart Crosstab IDM_CHART
Clear IDM_CLEAR
Close IDM_CLOSE
Close and Disconnect from Server IDM_CLOSEANDDISC
Copy IDM_COPY
Copy to File... IDM_COPYTOFILE
Create Chart... IDM_NEWCHART
Create CrossTab... IDM_NEWXTAB
Create Form... IDM_NEWFORM
Create Form Letter... IDM_NEWLETTER
Create Mailing Labels... IDM_NEWLABELS
Create Object...
Note Create Object is not supported
under OS/2.

IDM_INSOBJECT

Create Control (OLE)...
Note Create Control is not supported
under OS/2.

IDM_INSCONTROL

Create Report... IDM_NEWREPORT
Create Worksheet... IDM_NEWWORKSHEET
Customize Menus... IDM_MENUS
Cut IDM_CUT
Define Sort... IDM_SORT
Delete File... IDM_DELETEFILE
Delete Found Set IDM_DELETEFOUND
Delete Record IDM_DELETERECORD
Descending Sort IDM_SORTDOWN
Design IDM_DESIGN
Duplicate Record IDM_DUPLICATE
Edit Column Label IDM_EDITLABEL
Edit OLE Object...
Note Edit OLE Object is not
supported under OS/2.

IDM_EDITOLE

Export Data... IDM_EXPORT
Exit IDM_EXIT
Fast Format IDM_FASTFORMAT
Field Definition... IDM_DEFINE

Fill Field... IDM_FILL
Find IDM_FIND
Find Assistant... IDM_FINDASSISTANT
Find Again IDM_FINDAGAIN
Find Assistant... (for finding duplicate
or distinct records)

IDM_FINDSPECIAL

First Record IDM_FIRST
Help Contents IDM_HELPINDEX
Help Customer Support IDM_HELPSUPPORT
Help Search... IDM_HELPSEARCH
Help Using Help IDM_HELPHELP
Hide Record IDM_HIDE
Import Data... IDM_IMPORT
Insert Today's Date IDM_DATE
Insert Current Time IDM_TIME
Insert Previous Value IDM_PREVDATA
Join... IDM_JOIN
Last Record IDM_LAST
Links...
Note Links is not supported under
OS/2.

IDM_LINKS

Macros... IDM_MACROS
Named Styles... IDM_STYLES
New... IDM_NEW
New Record IDM_NEWREC
Next Record IDM_NEXT
Notes New Notes Replica... IDM_NEWREPLICA
Notes Replicate with Notes Server... IDM_REPLICATE
Object Properties IDM_INFOBOX
Open... IDM_OPEN
Preferences... IDM_OPTIONS
Paste IDM_PASTE
Paste from File... IDM_PASTEFILE
Paste Special... IDM_PASTELINK
Preview IDM_PREVIEW
Previous Record IDM_PREV
Print... IDM_PRINT
Print Setup... IDM_PRINTSETUP
Refresh IDM_REFRESH
Replace IDM_REPLACE
Save As... IDM_SAVEAS
Save Approach File IDM_SAVE
Select All IDM_SELECTALL
Select Cells Only IDM_SELECTCELLS
Select Header Only IDM_SELECTLABEL
Send Mail... IDM_SENDMAIL

Show Action Bar IDM_SHOW_ACTION_BAR
Show All IDM_SHOWALL
Show Data IDM_SHOWDATA
Show Internet Tools IDM_SHOW_INTERNET_TOOLS
Show SmartIcons IDM_SHOWICONS
Show Status Bar IDM_SHOWSTATUS
Show View Tabs IDM_SHOWTABS
SmartIcons... IDM_SMARTICONS
Spell Check... IDM_SPELLCHECK
Summarize Columns IDM_ADDROW
Summarize Rows IDM_ADDCOLUMN
Tile Left-Right IDM_TILE_LEFT_RIGHT
Tile Top-Bottom IDM_TILE_TOP_BOTTOM
Undo IDM_UNDO
View Properties IDM_INFOBOX_VIEW
Zoom In IDM_ZOOMIN
Zoom Out IDM_ZOOMOUT

Color constants RGB contributions
COLOR_WHITE 0x02FFFFFFL
COLOR_VANILLA 0x02FFEFCEL
COLOR_PARCHMENT 0x02FFFFC2L
COLOR_IVORY 0x02FFFFD0L
COLOR_PALE_GREEN 0x02E0FFBFL
COLOR_SEA_MIST 0x02E0FFDFL
COLOR_ICE_BLUE 0x02E0FFFFL
COLOR_POWDER_BLUE 0x02C2EFFFL
COLOR_ARCTIC_BLUE 0x02E0F1FFL
COLOR_LILAC_MIST 0x02E0E0FFL
COLOR_PURPLE_WASH 0x02E8E0FFL
COLOR_VIOLET_FROST 0x02F1E0FFL
COLOR_SEASHELL 0x02FFE0FFL
COLOR_ROSE_PEARL 0x02FFE0F5L
COLOR_PALE_CHERRY 0x02FFE0E6L
COLOR_WHITE 0x02FFFFFFL
COLOR_BLUSH 0x02FFE1DCL
COLOR_SAND 0x02FFE1B0L
COLOR_LIGHT_YELLOW 0x02FFFF80L
COLOR_HONEYDEW 0x02F1F1B4L
COLOR_CELERY 0x02C2FF91L
COLOR_PALE_AQUA 0x02C1FFD5L
COLOR_PALE_BLUE 0x02C1FFFFL
COLOR_CRYSTAL_BLUE 0x02A1E2FFL
COLOR_LT_CORNFLOWER 0x02C0E1FFL
COLOR_PALE_LAVENDER 0x02BFBFFFL
COLOR_GRAPE_FIZZ 0x02D2BFFFL

COLOR_PALE_PLUM 0x02E1BFFFL
COLOR_PALE_PINK 0x02FFC1FDL
COLOR_PALE_ROSE 0x02FFC0E4L
COLOR_ROSE_QUARTZ 0x02FFC0CEL
COLOR_3_GRAY 0x02F7F7F7L
COLOR_RED_SAND 0x02FFC0B6L
COLOR_BUFF 0x02FFC281L
COLOR_LEMON 0x02FFFF35L
COLOR_PALE_LEMON_LIME 0x02F1F180L
COLOR_MINT_GREEN 0x0280FF80L
COLOR_PASTEL_GREEN 0x0282FFCAL
COLOR_PASTEL_BLUE 0x0280FFFFL
COLOR_SAPPHIRE 0x0282E0FFL
COLOR_CORNFLOWER 0x0282C0FFL
COLOR_LIGHT_LAVENDER 0x029F9FFFL
COLOR_PALE_PURPLE 0x02C29FFFL
COLOR_LIGHT_ORCHID 0x02E29FFFL
COLOR_PINK_ORCHID 0x02FF9FFFL
COLOR_APPLE_BLOSSOM 0x02FF9FCFL
COLOR_PINK_CORAL 0x02FF9FA9L
COLOR_6_GRAY 0x02EFEFEFL
COLOR_LIGHT_SALMON 0x02FF9F9FL
COLOR_LIGHT_PEACH 0x02FF9F71L
COLOR_YELLOW 0x02FFFF00L
COLOR_AVOCADO 0x02E0E074L
COLOR_LEAF_GREEN 0x0241FF32L
COLOR_LIGHT_AQUA 0x0242FFC7L
COLOR_LT_TURQUOISE 0x0242FFFFL
COLOR_LIGHT_CERULEAN 0x0200BFFFL
COLOR_AZURE 0x025291EFL
COLOR_LAVENDER 0x028080FFL
COLOR_LIGHT_PURPLE 0x02C082FFL
COLOR_DUSTY_VIOLET 0x02E081FFL
COLOR_PINK 0x02FF7FFFL
COLOR_PASTEL_PINK 0x02FF82C2L
COLOR_PASTEL_RED 0x02FF82A0L
COLOR_12_GRAY 0x02E1E1E1L
COLOR_SALMON 0x02FF8080L
COLOR_PEACH 0x02FF8141L
COLOR_MUSTARD 0x02FFE118L
COLOR_LEMON_LIME 0x02E1E140L
COLOR_NEON_GREEN 0x0200FF00L
COLOR_AQUA 0x0200FFB2L
COLOR_TURQUOISE 0x0200FFFFL
COLOR_CERULEAN 0x0200A1E0L

COLOR_WEDGEWOOD 0x022181FFL
COLOR_HEATHER 0x026181FFL
COLOR_PURPLE_HAZE 0x02A160FFL
COLOR_ORCHID 0x02C062FFL
COLOR_FLAMINGO 0x02FF5FFFL
COLOR_CHERRY_PINK 0x02FF60AFL
COLOR_RED_CORAL 0x02FF6088L
COLOR_18_GRAY 0x02D2D2D2L
COLOR_DARK_SALMON 0x02FF4040L
COLOR_DARK_PEACH 0x02FF421EL
COLOR_GOLD 0x02FFBF18L
COLOR_YELLOW_GREEN 0x02E1E100L
COLOR_LIGHT_GREEN 0x0200E100L
COLOR_CARIBBEAN 0x0200E1ADL
COLOR_DK_PASTEL_BLUE 0x0200E0E0L
COLOR_DARK_CERULEAN 0x020082BFL
COLOR_MANGANESE_BLUE 0x020080FFL
COLOR_LILAC 0x024181FFL
COLOR_PURPLE 0x028242FFL
COLOR_LT_RED_VIOLET 0x02C140FFL
COLOR_LIGHT_MAGENTA 0x02FF42F9L
COLOR_ROSE 0x02FF40A0L
COLOR_CARNATION_PINK 0x02FF4070L
COLOR_25_GRAY 0x02C0C0C0L
COLOR_WATERMELON 0x02FF1F35L
COLOR_TANGERINE 0x02FF1F10L
COLOR_ORANGE 0x02FF8100L
COLOR_CHARTREUSE 0x02BFBF00L
COLOR_GREEN 0x0200C200L
COLOR_TEAL 0x0200C196L
COLOR_DARK_TURQUOISE 0x0200C1C2L
COLOR_LT_SLATE_BLUE 0x024181C0L
COLOR_MEDIUM_BLUE 0x020062E1L
COLOR_DARK_LILAC 0x024141FFL
COLOR_ROYAL_PURPLE 0x024200FFL
COLOR_FUCHSIA 0x02C200FFL
COLOR_CONFETTI_PINK 0x02FF22FFL
COLOR_PALE_BURGANDY 0x02F52B97L
COLOR_STRAWBERRY 0x02FF2259L
COLOR_30_GRAY 0x02B2B2B2L
COLOR_ROUGE 0x02E01F25L
COLOR_BURNT_ORANGE 0x02E12000L
COLOR_DARK_ORANGE 0x02E26200L
COLOR_LIGHT_OLIVE 0x02A1A100L
COLOR_KELLY_GREEN 0x0200A000L

COLOR_SEA_GREEN 0x02009F82L
COLOR_AZTEC_BLUE 0x02008080L
COLOR_DUSTY_BLUE 0x020060A0L
COLOR_BLUEBERRY 0x020041C2L
COLOR_VIOLET 0x020021BFL
COLOR_DEEP_PURPLE 0x024100C2L
COLOR_RED_VIOLET 0x028100FFL
COLOR_HOT_PINK 0x02FF00FFL
COLOR_DARK_ROSE 0x02FF0080L
COLOR_POPPY_RED 0x02FF0041L
COLOR_36_GRAY 0x02A2A2A2L
COLOR_CRIMSON 0x02C20000L
COLOR_RED 0x02FF0000L
COLOR_LIGHT_BROWN 0x02BF4100L
COLOR_OLIVE 0x02808000L
COLOR_DARK_GREEN 0x02008000L
COLOR_DARK_TEAL 0x02008250L
COLOR_SPRUCE 0x02006062L
COLOR_SLATE_BLUE 0x02004080L
COLOR_NAVY_BLUE 0x02001FE2L
COLOR_BLUE_VIOLET 0x024040C2L
COLOR_AMETHYST 0x024000A2L
COLOR_DK_RED_VIOLET 0x026000A1L
COLOR_MAGENTA 0x02E000E0L
COLOR_LIGHT_BURGUNDY 0x02DF007FL
COLOR_CHERRY_RED 0x02C20041L
COLOR_44_GRAY 0x028F8F8FL
COLOR_DARK_CRIMSON 0x02A00000L
COLOR_DARK_RED 0x02E10000L
COLOR_HAZELNUT 0x02A13F00L
COLOR_DARK_OLIVE 0x02626200L
COLOR_EMERALD 0x02006000L
COLOR_MALACHITE 0x0200603CL
COLOR_DARK_SPRUCE 0x02004041L
COLOR_STEEL_BLUE 0x02002F80L
COLOR_BLUE 0x020000FFL
COLOR_IRIS 0x022020A0L
COLOR_GRAPE 0x022200A1L
COLOR_PLUM 0x02400080L
COLOR_DARK_MAGENTA 0x02A1009FL
COLOR_BURGANDY 0x02C0007FL
COLOR_CRANBERRY 0x029F000FL
COLOR_50_GRAY 0x02808080L
COLOR_MAHOGANY 0x02600000L
COLOR_BRICK 0x02C21212L

COLOR_DARK_BROWN 0x02824200L
COLOR_DEEP_OLIVE 0x02424200L
COLOR_DARK_EMERALD 0x02004200L
COLOR_EVERGREEN 0x02004023L
COLOR_BALTIC_BLUE 0x0200323FL
COLOR_BLUE_DENIM 0x02002060L
COLOR_COBALT_BLUE 0x020020C2L
COLOR_DARK_IRIS 0x022222C0L
COLOR_MIDNIGHT 0x02000080L
COLOR_DARK_PLUM 0x021F007FL
COLOR_PLUM_RED 0x02800080L
COLOR_DARK_BURGANDY 0x02820040L
COLOR_SCARLET 0x02800000L
COLOR_63_GRAY 0x025F5F5FL
COLOR_CHESTNUT 0x02400000L
COLOR_TERRA_COTTA 0x02A11F12L
COLOR_UMBER 0x02604200L
COLOR_AMAZON 0x02212100L
COLOR_PEACOCK_GREEN 0x02002100L
COLOR_PINE 0x0200201FL
COLOR_SEAL_BLUE 0x02002041L
COLOR_DK_SLATE_BLUE 0x0200204FL
COLOR_ROYAL_BLUE 0x020000E0L
COLOR_LAPIS 0x020000A1L
COLOR_DARK_GRAPE 0x02000061L
COLOR_AUBERGINE 0x021F0062L
COLOR_DARK_PLUM_RED 0x0240005FL
COLOR_RASPBERRY 0x02620042L
COLOR_DEEP_SCARLET 0x02620012L
COLOR_69_GRAY 0x024F4F4FL
COLOR_BURNT_SIENNA 0x02200000L
COLOR_MILK_CHOCOLATE 0x02622100L
COLOR_BURNT_UMBER 0x02412000L
COLOR_DEEP_AVOCADO 0x02101000L
COLOR_DEEP_FOREST 0x02001000L
COLOR_DARK_PINE 0x0200120CL
COLOR_DK_METALIC_BLUE 0x0200121FL
COLOR_AIR_FORCE_BLUE 0x02001040L
COLOR_ULTRAMARINE 0x020000C2L
COLOR_PRUSSIAN_BLUE 0x020000AFL
COLOR_RAISIN 0x0200004FL
COLOR_EGGPLANT 0x02000040L
COLOR_BOYSENBERRY 0x02200042L
COLOR_BORDEAUX 0x02400040L
COLOR_RUBY 0x02410012L

COLOR_75_GRAY 0x02404040L
COLOR_RED_GRAY 0x02D0B1A1L
COLOR_TAN 0x02E0A175L
COLOR_KHAKI 0x02D2B06AL
COLOR_PUTTY 0x02C0C27CL
COLOR_BAMBOO_GREEN 0x0282C168L
COLOR_GREEN_GRAY 0x0281C097L
COLOR_BALTIC_GRAY 0x027FC2BCL
COLOR_BLUE_GRAY 0x0271B2CFL
COLOR_RAIN_CLOUD 0x02B1B1D2L
COLOR_LILAC_GRAY 0x029F9FE0L
COLOR_LT_PURPLE_GRAY 0x02C0A1E0L
COLOR_LIGHT_MAUVE 0x02E29FDEL
COLOR_LT_PLUM_GRAY 0x02EF91EBL
COLOR_LT_BURGANDY_GRAY 0x02E29FC8L
COLOR_ROSE_GRAY 0x02F18FBCL
COLOR_82_GRAY 0x022F2F2FL
COLOR_DARK_RED_GRAY 0x027F604FL
COLOR_DARK_TAN 0x02A16252L
COLOR_SAFARI 0x02806210L
COLOR_OLIVE_GRAY 0x0282823FL
COLOR_JADE 0x023F621FL
COLOR_DK_GREEN_GRAY 0x023C613EL
COLOR_SPRUCE_GRAY 0x0237605EL
COLOR_DK_BLUE_GRAY 0x02104160L
COLOR_ATLANTIC_GRAY 0x02424282L
COLOR_DK_LILAC_GRAY 0x026260A1L
COLOR_PURPLE_GRAY 0x02624181L
COLOR_MAUVE 0x02603181L
COLOR_PLUM_GRAY 0x02602162L
COLOR_BURGUNDY_GRAY 0x02622152L
COLOR_DARK_ROSE_GRAY 0x02813F62L
COLOR_BLACK 0x02000000L
COLOR_TRANSPARENT 0xFFFFFFFFL

0xFFFFFFFFL

Database connection error codes
DBErr_Already_Connected
DBErr_Bad_Database_ID
DBErr_ConnectToFailed
DBErr_ConnListField
DBErr_ConnListTable
DBErr_Execute_Open
DBErr_Execute_Query
DBErr_GetValue_Convert

DBErr_Invalid_Column
DBErr_InvalidParam
DBErr_NoConnection
DBErr_NoConnSet
DBErr_NoDataSource
DBErr_NoDataSources
DBErr_NoQuery
DBErr_NoRows
DBErr_NotConnected
DBErr_Option_Unsupported
DBErr_Picture
DBErr_ReadMemo
DBErr_SetConvert
DBErr_Update
DBErr_Optimistic
DBErr_Override
DBErr_Pessimistic

Approach LotusScript Enumeration Values
Approach scripts use the following enumeration values to specify the various types of display objects available in
Approach.
Note When you use an enumeration value in a script, you MUST prepend a dollar sign ($) to the enumeration to
distinguish the enumerator from a variable.

Object positions LtsPositionTopLeft
LtsPositionTop
LtsPositionTopRight
LtsPositionLeft
LtsPositionCenter
LtsPositionRight
LtsPositionBottomLeft
LtsPositionBottom
LtsPositionBottomRight
LtsPositionNone

Border relief styles LtsReliefNone
LtsReliefRaised
LtsReliefLowered

Picture Display options LtsPictureDisplayCrop
LtsPictureDisplayShrink

Line object orientation LtsOrientationNegSlope
LtsOrientationPosSlope

Line styles LtsLineStyleNone
LtsLineStyleSolid
LtsLineStyleDot
LtsLineStyleShortDash
LtsLineStyleMediumDash
LtsLineStyleLineLongDash
LtsLineStyleMediumShortDash
LtsLineStyleMediumShortShortDash
LtsLineStyleDashDot
LtsLineStyleDashDotDot
LtsLineStyleDouble

Line spacing LtsLineSpacingSingle
LtsLineSpacingSingleAndHalf
LtsLineSpacingDouble

Display object alignment LtsAlignmentLeft
LtsAlignmentRight
LtsAlignmentHorizCenter
LtsAlignmentSmart
LtsAlignmentJustify
LtsAlignmentTop
LtsAlignmentVertCenter
LtsAlignmentBottom

Line widths AprHairline

AprHalfPoint
Apr1Point
Apr2Point
Apr3Point
Apr6Point
Apr12Point

Border patterns LtsBorderPatternNone
LtsBorderPatternSolid
LtsBorderPatternDashDot
LtsBorderPatternDashDotDot
LtsBorderPatternLongDash
LtsBorderPatternDashed
LtsBorderPatternDot
LtsBorderPatternRaised
LtsBorderPatternLowered
LtsBorderPatternDouble
LtsBorderStyleNone

View object types AprPicture
AprPicturePlus
AprButton
AprLineObject
AprEllipse
AprRectangle
AprRoundRect
AprOleObject
AprFieldBox
AprListBox
AprCheckBox
AprDropDownBox
AprRadioButton
AprTextBox

View types AprForm
AprReport
AprChart
AprCrosstab
AprWorksheet
AprEnvelope
AprMailingLabel
AprFormLetter

Panel types AprBodyPanel
AprHeaderFooter
AprRepeatingPanel
AprSummaryPanel
AprSummaryTrailing
AprSummaryLeading

AprListField
AprListUser

Field types AprFieldNumber
AprFieldText
AprFieldPicture
AprFieldDate
AprFieldTime
AprFieldBool
AprFieldMemo
AprFieldCalculation
AprFieldVariable

Summary calculations AprCalcAverage
AprCalcCount
AprCalcSum
AprCalcMin
AprCalcMax
AprCalcStDev
AprCalcVariance

Chart types AprChartTypeBar
AprChartTypeStackBar
AprChartType100PStackBar
AprChartTypeHorizBar
AprChartTypeHorizStackBar
AprChartType25DBar
AprChartType25DStackBar
AprChartType100P25DStackBar
AprChartType25DHorizBar
AprChartType25DHorizStackBar
AprChartTypeLine
AprChartTypeArea
AprChartTypeMixed
AprChartTypePie
AprChartTypeMultiplePie
AprChartType25DLine
AprChartType25DArea
AprChartType25DMixed
AprChartType3DPie
AprChartType3DMultiplePie
AprChartType3DBar
AprChartType3DLine
AprChartType3DArea
AprChartType3DMixed
AprChartTypeHLCO
AprChartTypeRadar
AprChartTypeXY

AprChartTypeTable
AprChartTypeGANTT
AprChartTypeOrg
AprChartType25DHorBar
AprChartType25DHorStackBar
AprChartTypeSurface
AprChartType3DStackBar
AprChartType100P3DStackBar
AprChartType100PHorizBar
AprChartType100P25DHorizBar
AprChartTypeHLCOJapan
AprChartTypeRadarArea

Approach LotusScript Events A-Z

A
(None)

B
Broadcast event

C
CellDataChange event
CellGetFocus event
CellLostFocus event
Change event
Click event
Closewindow event

D
DocumentClose event
DocumentCreated event

DocumentOpened event
DoubleClick event

E
(None)

F
(None)

G
GotFocus event

H
(None)

I
(None)

J
(None)

K
KeyDown event
KeyPress event
KeyUp event

L
LostFocus event

M
MailCheck event
MailSend event
MouseDown event
MouseMove event
MouseUp event

N
NewRecord event

O
OpenWindow event

P
PageSwitch event

Q
Quit event

R
RecordChange event
RecordCommit event

S
SelectionChange event
SelectColumn event
SwitchFrom event
SwitchTo event

T
(None)

U
UserTimer event

V
ViewSwitch event

W
(None)

X
(None)

Y
(None)

Z
(None)

Approach LotusScript Methods A-Z

A
Activate method
Add method
Add method (Collection class)
Add method (Sort class)
AddColumn method
AddRow method
AddListItem method
And method

B
BringToFront method
Browse method

C
Cascade method
Close method

Close method (ResultSet class)
ConnectTo method
Copy method
CopyView method
CountRecords method
CreateCalcField method
CreateResultSet method
Cut method

D
DeleteCalcField method
DeleteFile method
DeleteFoundSet method
DeletePage method
DeleteRecord method
DeleteRow method
Disconnect method
DoMenuCommand method
DoVerb method
DuplicateRecord method

E
Execute method

F
FieldExpectedDataType method
FieldID method
FieldName method
FieldNativeDataType method
FieldSize method
FillField method
FindAll method
FindSort
FirstRecord method
FirstRow method

G
GetAt method
GetAt method (Find class)
GetAt method (FindTopLowest class)
GetAt method (Sort class)
GetColorFromRGB method
GetCount method
GetError method
GetErrorMessage method
GetExtendedErrorMessage method
GetFieldFormula method
GetFieldOptions method
GetFieldSize method
GetFieldType method
GetHandle method
GetParameter method
GetParameterName method
GetRGB method
GetTableByName method
GetText method
GetValue method
GoToRecord method

H
HideRecord method

I
InsertAfter method
IsCommandChecked method
IsCommandEnabled method
IsEmpty method

J
(None)

K
(None)

L
LastRecord method
LastRow method
ListDataSources method
ListFields method
ListTables method

M
MakeNamedStyle method
Maximize method
Merge method
Minimize method

N
New method (Button class)
New method (ChartView class)
New method (CheckBox class)
New method (Collection class)
New method (Color class)
New method (Connection class)
New method (Crosstab class)
New method (Document class)
New method (DropdownBox class)
New method (Ellipse class)
New method (FieldBox class)
New method (Find class)
New method (FindDistinct class)
New method (FindDuplicate class)
New method (FindTopLowest class)
New method (Form class)
New method (LineObject class)
New method (ListBox class)
New method (Picture class)
New method (PicturePlus class)
New method (Query class)
New method (RadioButton class)
New method (Rectangle class)
New method (RepeatingPanel class)
New method (Report class)
New method (ResultSet class)
New method (RoundRect class)
New method (Sort class)
New method (SummaryPanel class)
New method (TextBox class)

New method (Worksheet class)
NewPage method
NewRecord method
NextRecord method
NextRow method
NumColumns method
NumParameters method
NumRows method

O
OpenDocument method
Options method
Or method

P
Paste method
PrevRecord method
PrevRow method
Print method
PrintPreview method

Q
Quit method

R
Refresh method
Remove method
RemoveColumn method
RemoveListItem method
Repaint method
ReplaceWithResultSet method
Replicate method
Restore method
RunProcedure method

S
SameColor method
SaveChanges method
SaveViewAsHTML method
SelectAll method
SendToBack method
SetAt method
SetCellFocus method
SetFieldList method
SetFocus method
SetList method
SetParameter method
SetPicture method
SetRGB method
SetState method
SetText method
SetValue method

T
TabNext method
TabPrev method
TabTo method
Tile method
Transactions method

U
Unsort method
UpdateRow method

V
(None)

W
(None)

X
(None)

Y
(None)

Z
Zoom method

Approach LotusScript Properties A-Z

A
ActionBarVisible property
ActiveDocument property
ActiveDocWindow property
ActiveView property
Alignment property
AllowDrawing property
AlternateColors property
Application property (Application class)
Application property (ApplicationWindow class)
ApplicationWindow property
ApplyFoundSet
Author property
AutoCommit property

B
Background property

Baseline property
Black property
Blue property
Bold property
Border property
Bottom property

C
CalcTable property
CheckedValue property
ClickedValue property
Color property
Connection property
Count property
CreateDate property
CurrentFind property
CurrentPageNum property
CurrentRecord property
CurrentRow property
CurrentSelection property
CurrentSort property
Cyan property

D
DataField property
DataSourceName property
DataTable property
Description property
Dispatch property
Display property
Document property
Documents property
DrillDownView property

E
Editable property
Enabled property
EncloseLabel property
ExcludeFirst property
Expand property

F
FieldNames property
FileName property
FindSpecial property
Font property
FontName property
FullName property

G
Green property
GroupByDataField property
GroupByDataTable property
GroupByEvery property

H
Height property
HideMargins property

I
IconBarVisible property
IsBeginOfData property
IsChecked property
IsClicked property
IsConnected property
IsEndOfData property
IsReadOnly property
IsResultSetAvailable property
Italic property

J
(None)

K
KeepRecsTogether property
Keywords property

L
LabelAlignment property
LabelFont property
LabelPosition property
LabelText property
Language property
LastModified property
Left property
Left property (Border class)
LineSpacing property
LineStyle property
Location property
LPObject property

M
MacroClick property
MacroDataChange property
MacroTabIn property
MacroTabOut property
Magenta property
MainTable property
MenuBar property
Menus property
Modified property

N
Name property
NamedFindSort property
NamedFindSorts property
NamedStyle property
NamedStyles property
NonPrinting property
NumColumns property
NumFields property
NumJoins property
NumLines property
NumPages property
NumRecords property
NumRecordsFound property
NumRevisions property
NumTables property

NumViews property

O
ObjectList property
OnSwitchFromMacro property
OnSwitchToMacro property
Orientation property

P
Page property
PageBreak property
Parent property
Password property
Path property
Pattern property
Position property
PrintDate property
PrintPageNum property
PrintTitle property

Q
Query property

R
ReadOnly property
Red property
Redraw property
Reduce property
Relief property
Right property (Border class)

S
Selection property
ShadowColor property
ShowArrow property
ShowAsDialog property
ShowInPreview property
ShowRelated property
Size property
SlideLeft property
SlideUp property
SQL property
StatusBarVisible property
Stretch property
StrikeThrough property

T
TableName property (Query Class)
TableName property (Table Class)
Tables property
TabOrder property
TabStop property
Text property
Text property (Button class)
TimerInterval property
Title property
Top property
Top property (Border class)
Transparent property

Type property

U
UncheckedValue property
Underline property
User property
UserID property

V
Value property (CheckBox class)
Value property (RadioButton class)
VarTable property
Vertical property
Views property
ViewTabVisible property
Visible property

W
Width property
Width property (Border class)
Window property
Windows property

X
(None)

Y
Yellow property

Z
(None)

Approach: ApplicationWindow class
The ApplicationWindow object describes the main Approach window for a running application. There is one
application window for each running Approach executable.

Contained by
Each instance of an ApplicationWindow object is identified from its parent through an expanded property. The
following classes can contain an ApplicationWindow object:

Class
Application

Usage
ApplicationWindow class is at the top of the window containment hierarchy for the application.
Use an ApplicationWindow to control menu and application window commands, such as the following:

• Perform menu commands
• Minimize, maximize, and close the application window

ApplicationWindow class members
Properties

Application AS Application class
Parent AS Application class

Methods
Cascade
Close
DoMenuCommand
GetHandle
IsCommandChecked
IsCommandEnabled
Maximize
Minimize
Restore
Tile

Events
None

Approach: Application class
The Application object maintains application-wide settings and user information for an Approach session. There is
only one application object per running application, that is, one application per Approach executable running. There is
a single application window associated with each application. The application window can contain multiple document
windows (.APR files).

Contained by
Class
None

Usage
Use the Application class to find information about the current Approach session, such as the following:

• Which document (.APR file) is active
• The application's path
• The active view

Application class members
Properties

ActiveDocument AS Document class
 AS DocWindow class
ActiveView AS View class
Application AS Application class
ApplicationWindow AS ApplicationWindow class
Documents AS BaseCollection class
FullName
Language
Name
Parent AS Application class
Path
Selection
Visible
Windows AS BaseCollection class

Methods
GetColorFromRGB
OpenDocument
Quit
RunProcedure

Events
Broadcast
DocumentClose
DocumentCreated
DocumentOpened
MailCheck
MailSend
Quit

Approach: Background class
The background style for display elements that have a background and use the Background property. You can modify
the color of the background.

Contained by
Each instance of a Background object is identified from its parent through an expanded property. The following
classes can contain a Background object:

Class
CheckBox
DropDownBox
Ellipse
FieldBox
ListBox
Panel
RadioButton
Rectangle
RoundRect
TextBox

Usage
This class modifies the backgrounds of display elements that have the Background property. You cannot display a
background object; it is used as the Background property of another object.

Background class members
Properties

Color AS Color class

Methods
None

Events
None

Approach: BaseCollection class
BaseCollection determines the number of objects in a collection and whether or not the collection is empty.

Contained by
Class
None

Usage
The BaseCollection class is an abstract class, so you cannot create an instance of BaseCollection.
You can, however, represent all its derived classes with the BaseCollection class. For example, you can write a
procedure that takes "Source As BaseCollection as a parameter. This allows you to use any instance of a derived
BaseCollection class in that procedure.
You can also use LotusScript functions to cycle through a Collection class.

BaseCollection class members
Properties

Count

Methods
IsEmpty

Events
None

Approach: BodyPanel class
The area of a form on which to display data from individual records.

Contained by
Each instance of a BodyPanel object is identified from its parent through an expanded property. The following classes
can contain a BodyPanel object:

Class
ChartView
Crosstab
Envelope
Form
FormLetter
MailingLabels
Report
Worksheet

Usage
Configure some important characteristics of body panel using the following properties:

• Set the color of the header and footer panels using the Background, and Border properties
• Determine the printing behavior, such as the expansion or reduction of the size of the panel to accommodate the

data, using the Expand and Reduce properties

BodyPanel class members
Properties

Background AS Background class
Border AS Border class
Expand
Height
NamedStyle
Parent AS View class
Reduce
Type

Methods
MakeNamedStyle

Events
None

Approach: Border class
The border style for displayable elements.

Contained by
Each instance of a Border object is identified from its parent through an expanded property. The following classes can
contain a Border object:

Class
BodyPanel
DropDownBox
Ellipse
FieldBox
HeaderFooterPanel
ListBox
Rectangle
RepeatingPanel
RoundRect
SummaryPanel
TextBox

Usage
Create and modify border objects. Once you have a border object, you can use it as the property of any object with a
border property.
You can also specify border characteristics by defining a named style and associating the named style with a display
element object.

Approach: Border class members
Properties

BaseLine
Bottom
Color AS Color class
EncloseLabel
Left
Pattern
Right
Top
Width

Methods
None

Events
None

Approach: Button class
A display element that, when users click it, can run an attached macro or script.

Contained by
Each instance of an Button object is identified from its parent through an expanded property. The following classes
can contain a Button object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Buttons with attached macros or scripts can help ensure users' successful use of your application by focusing their
activity on choices you set up for them, responding to their input, and guiding them on predetermined paths through
the application. For example, create a form with buttons arranged as a menu of choices. When users click a button,
the application responds by switching to another view designed to complete the task described by the menu item.
The coordinate system for display elements is measured in twips.
The coordinate system is measured from the top left corner of the panel in which you place the element. For
example, a button placed in the body panel of a report is based on the top left corner of the body panel, not the
report.
Configure some important characteristics of a button using the following properties:

• To set the macro to execute when a user clicks the button, use the MacroClick property.
• To make the button available to the user, use the Enabled property.

Approach: Button class members
Properties

Enabled
Font AS Font class
Height
Left
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Text
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: ChartView class
A ChartView object is an Approach chart.

Contained by
Each instance of a ChartView object is identified from its parent through an expanded property. The following classes
can contain a ChartView object:

Class
Document

Usage
Configure some important characteristics of a chart using the following properties:

• Determine the document containing the chart using the Document property.
• Determine the main table used in the chart using the MainTable property.
• Set the macros you want to run when users switch to or from the view using the OnSwitchFromMacro and

OnSwitchToMacro properties.

ChartView class members
Properties

Document AS Document class
MainTable
MenuBar
Name
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
TimerInterval
Type
Visible

Methods
New

Events
SwitchFrom
SwitchTo
UserTimer

Approach: CheckBox class
A display element indicating a yes/no or a true/false condition. A check box can be checked or unchecked.

Contained by
Each instance of a CheckBox object is identified from its parent through an expanded property. The following classes
can contain a CheckBox object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
A check box can serve any one of the following functions:

• Display a field value, allowing users to modify the value.
• Display a field value, without allowing users to modify the value (read-only).
• Provide a user-interface control whose true/false value is not connected to a database field.

Configure some important characteristics of a check box using the following properties and methods:
• Set the values written to a field for each check box state using the CheckedValue and UncheckedValue

properties.
• Set a default value for a new check box using the SetState method.
• Set the label for the check box using the LabelText property.

CheckBox class members
Properties

Background AS Background class
CheckedValue
DataField
DataTable
Height
IsChecked
LabelAlignment
LabelFont AS Font class
LabelPosition
LabelText
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ReadOnly
Relief
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
UncheckedValue
Value
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus
SetState

Events
Change
Click
DoubleClick
GotFocus
LostFocus
MouseDown
MouseMove
MouseUp

Approach: Collection class
The Collection class defines a list of objects and allows you to add, remove, and rearrange the objects in the list.

Contained by
Class
None

Usage
Use a Collection object to add, remove, rearrange, or merge objects in a form, report, form letter, mailing label, or
envelope. The Collection object is available through the ObjectList property of any of these views.
For example, to combine the objects that appear on Form1 and Form2 in the same document (.APR file), use the
Merge method of the Collection object.
In this script, the ObjectList property of the Form1 and Form2 objects identifies the Collection objects:
Dim TotalNumObjects As Integer
TotalNumObjects =
CurrentDocument.Form1.ObjectList.Merge(CurrentDocument.Form2.ObjectList)

Collection class members
Properties

Count

Methods
Add
IsEmpty
Merge
New
Remove
SetAt

Events
None

Approach: Color class
The Color class defines a color for objects that have Color as a property.

Contained by
Each instance of a Color object is identified from its parent through an expanded property. The following classes can
contain a Color object:

Class
Background
Border
Font
LineStyle

Usage
Determine the current levels of red, green, and blue (RGB) that contribute to a specific color.
You cannot change the individual RGB components of an existing color, you have to create a new color object and
base its RGB settings on the original color.
A color object cannot be displayed; it can only be the Color property of another object.

Color class members
Properties

Black
Blue
Cyan
Green
Magenta
Red
Transparent
Yellow

Methods
GetRGB
New
SameColor
SetRGB

Events
None

Approach: Connection class
Connecting to a database server.

Contained by
Each instance of a Connection object is identified from its parent through an expanded property. The following
classes can contain a Connection object:

Class
Query

Usage
The Connection class is one of three classes that together allow you to access data in a batch process, bypassing
the Approach user interface. Accessing data through this batch process can be very fast for the following operations:

• Examining or modifying many or all records in a very large database
• Performing calculations using data from a large number of records

Creating a Connection object requires the following operations:
• Declaring and initializing a variable as type Connection using the New method
• Executing the connection using the ConnectTo method
• If needed, specifying how Approach commits data changes to the table using the AutoCommit property and

Transactions method
You can use the same Connection object to access more than one table of the same data source type.
If you want to access data in a table that is already associated with your application, use the CreateResultSet method
from the Table class.

Connection class members
Properties

AutoCommit
DataSourceName
IsConnected
Password
UserID

Methods
ConnectTo
Disconnect
GetError
GetErrorMessage
GetExtendedErrorMessage
ListDataSources
ListFields
ListTables
New
Transactions

Events
None

Approach: Crosstab class
Crosstab object is an Approach crosstab.

Contained by
Each instance of a Crosstab object is identified from its parent through an expanded property. The following classes
can contain a Crosstab object:

Class
Document

Usage
Configure some important characteristics of a crosstab using the following properties:

• Determine the document that contains the crosstab using the Document property.
• Apply the current found set to the crosstab using the ApplyFoundSet property.
• Set the drill-down view for the crosstab using the DrillDownView property.

Crosstab class members
Properties

ApplyFoundSet
Document AS Document class
DrillDownView AS View class
MainTable
MenuBar
Name
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
PrintDate
PrintPageNum
PrintTitle
ShowRelated
TimerInterval
Title
Type
Visible

Methods
New

Events
SwitchFrom
SwitchTo
UserTimer

Approach: Display class
The base class of the derived classes you work with to construct a user interface, for example, buttons to start
scripts; controls like check boxes and list boxes; geometric shapes; and text blocks.
The following Approach classes inherit the members of the Display class:

Button LineObject RadioButton
CheckBox ListBox Rectangle
DropdownBox OLEObject RoundRect
Ellipse Picture TextBox
FieldBox PicturePlus

Contained by
Each instance of a Display object is identified from its parent through an expanded property. The following classes
can contain a Display object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
The Display class is an abstract class, so you cannot create an instance of Display.
You can, however, represent all its derived classes with the Display class. For example, you can write a procedure
that takes "Source As Display" as a parameter. This allows you to pass any instance of a derived Display class to that
procedure.
The coordinate system for display elements is measured in twips.
The coordinate system is based on the top left corner of the panel in which you place the element. For example, if
you have a picture in the header panel of a report, the picture's coordinates are based on the top left corner of the
header panel, not the report. Similarly, a check box placed in the body panel of the report is based on the top left
corner of the body panel, not the report.

Approach: Display class members
Properties

Height
Left
MacroTabIn
MacroTabOut
Name
NonPrinting
Page
Parent AS View class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
Refresh
SendToBack
SetFocus

Events
None

Approach: Document class
A Document object describes the basic top-level document (.APR file) for an Approach application.

Contained by
Each instance of a Document object is identified from its parent through an expanded property. The following classes
can contain a Document object:

Class
Application

Usage
A document contains information such as the following:

• File name and path of the document.
• The owner or author's name
• A description of the document
• Creation and modification dates of the document
• The databases associated with the document
• The macros and named find/sorts associated with the document
• Calculated fields in the document

Document class members
Properties

Author
CalcTable AS Table class
CreateDate
Description
FileName
FullName
Keywords
LastModified
Menus
Modified
Name
NamedFindSorts
NamedStyles
NumJoins
NumRevisions
NumTables
NumViews
Parent AS Application class
Path
Tables AS BaseCollection class
User
VarTable AS Table class
Views AS BaseCollection class
Window AS DocWindow class

Methods
Activate
CreateCalcField
DeleteCalcField
GetTableByName
New

Events
None

Approach: DocWindow class
A DocWindow object provides access to the current state of the document, including such information as the current
record and view, and the sets of icons or buttons that are available.

Contained by
Each instance of a DocWindow object is identified from its parent through an expanded property. The following
classes can contain a DocWindow object:

Class
Document

Usage
A DocWindow object is a view in which to perform database operations, such as the following tasks:

• Navigate between fields in a view.
• Navigate between records in the current found set.
• Enter data into fields.

DocWindow class members
Properties

ActionBarVisible
ActiveView AS View class
CurrentFind AS Find class
CurrentRecord
CurrentSort AS Sort class
Document AS Document class
IconBarVisible
NamedFindSort
NumRecordsFound
Parent AS Document class
Redraw
StatusBarVisible
ViewTabVisible
Visible

Methods
Browse
Close
Copy
CopyView
CountRecords
Cut
DeleteFile
DeleteFoundSet
DeleteRecord
DuplicateRecord
FillField
FindAll
FindSort
FirstRecord
GetHandle
GoToRecord
HideRecord
LastRecord
Maximize
Minimize
NewRecord
NextRecord
Paste
PrevRecord
Print
PrintPreview
Refresh
Repaint
Replicate
Restore
SaveChanges
SaveViewAsJDoc
SelectAll
TabNext
TabPrev
TabTo
Unsort
Zoom

Events

CloseWindow
NewRecord
OpenWindow
RecordChange
RecordCommit
ViewSwitch

Approach: DropDownBox class
A display element that displays a list of values in a drop-down box. Users can select only one item in the list.

Contained by
Each instance of a DropDownBox object is identified from its parent through an expanded property. The following
classes can contain a DropDownBox object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
A drop-down box displays a list of selections for a user. For example, a drop-down box can display the existing values
in a field to simplify data entry.
Configure some important characteristics of a drop-down box using the following properties and methods:

• Set the drop-down box so users cannot enter data that does not already exist in the list using the Editable
property.

• Set the list of items you want to display in the drop-down box using the SetFieldList or SetList methods.

DropDownBox members
Properties

Alignment
Background AS Background class
Border AS Border class
DataField
DataTable
Editable
Font AS Font class
Height
LabelAlignment
LabelFont AS Font class
LabelPosition
LabelText
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ReadOnly
ShadowColor AS Color class
ShowArrow
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Text
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFieldList
SetFocus
SetList

Events
Change
GotFocus
LostFocus

Approach: Ellipse class
A display element that you can add to a form, report, mailing label, form letter, envelope, or chart.
An ellipse with its height equal to its width is a circle.

Contained by
Each instance of an Ellipse object is identified from its parent through an expanded property. The following classes
can contain an Ellipse object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Ellipses can enhance views of data. For example, use an ellipse to draw attention to instructions in a text block.
Configure some important characteristics of an ellipse display element using the following properties and methods:

• Create a circle by setting the Height and Width properties of the ellipse display elements to the same
measurements.

• Set the background and shadow color of the ellipse display elements using the Background and ShadowColor
properties.

• Set the position of the ellipse display elements in a group of overlapping objects by using the BringToFront and
SendToBack methods.

Ellipse class members
Properties

Background AS Background class
Border AS Border class
Height
Left
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: Envelope class
An Envelope object is an Approach envelope.

Contained by
Each instance of an Envelope object is identified from its parent through an expanded property. The following classes
can contain an Envelope object:

Class
Document

Usage
Configure some important characteristics of an envelope using the following properties:

• Determine the document that contains the envelope using the Document property.
• Set whether to display margins in the envelope view using the HideMargins property.
• Determine the display elements that appear in the view using the ObjectList property.

Envelope class members
Properties

Document AS Document class
HideMargins
MainTable
MenuBar
Name
ObjectList AS Collection class
ObjectListAll AS Collection class
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
TimerInterval
Type
Visible

Methods
None

Events
SwitchFrom
SwitchTo
UserTimer

Approach: FieldBox class
A display element that displays data and allows users to enter data. A field box may or may not be bound to a field in
a table.

Contained by
Each instance of a FieldBox object is identified from its parent through an expanded property. The following classes
can contain a FieldBox object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
A field box is the basic data-entry type for viewing and entering data.

• A field box object is bound when you define it to display the data from a table field by assigning it to the DataField
property and if necessary, the DataTable property.

• A field box is unbound when it is not associated with a table field. You might use an "unbound" field box to
provide a value for a calculation. For example, a report might use a field box in which users enter a value that is
then used to determine which records are summarized in the report.

FieldBox class members
Properties

Alignment
Background AS Background class
Border AS Border class
DataField
DataTable
Expand
Font AS Font class
Height
LabelAlignment
LabelFont AS Font class
LabelPosition
LabelText
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ReadOnly
Reduce
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Text
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Change
Click
DoubleClick
GotFocus
KeyDown
KeyPress
KeyUp
LostFocus
MouseDown
MouseMove
MouseUp

Approach: FindDistinct class
The conditions used to find records with distinct values.

Contained by
Class Property
Find FindSpecial

Usage
A FindDistinct object consists of one or more find conditions that indicate in which fields to search for distinct values.
The found set includes one record with each value Approach finds in the field or fields specified.
Defining and running a find in LotusScript involves the following operations:

• Creating a FindDistinct object using the New method
• Adding conditions to the find using the Add method
• (Optional) Adding the FindDistinct object to an existing Find object using the FindSpecial property
• Executing the find using the DocWindow object FindSort method

If a found set exists when you run a FindDistinct operation, Approach finds the distinct records in the found set.

FindDistinct class members
Properties

None

Methods
Add
GetAt
GetCount
New

Events
None

Approach: FindDuplicate class
The conditions used to find records with duplicate values.

Contained by
Class Property
Find FindSpecial

Usage
A FindDuplicate object consists of one or more find conditions that indicate in which fields to search for duplicate
values. When you create a FindDuplicate object, you define one of these conditions.
Defining and running a find in LotusScript involves the following operations:

• Creating a FindDuplicate object using the New method
• Adding other conditions to the find using the Add method
• Indicating whether to include all records in the found set or leave one of each duplicated set out of the found set

using the ExcludeFirst property
• (Optional) Adding the FindDuplicate object to an existing Find object using the FindSpecial property
• Executing the find using the DocWindow object FindSort method

If a found set exists when you run a FindDuplicate operation, Approach finds the duplicate records in the found set.

FindDuplicate class members
Properties

ExcludeFirst

Methods
Add
GetAt
GetCount
New

Events
None

Approach: FindTopLowest class
The conditions used to find records with the top or lowest values in the table.

Contained by
Class Property
Find FindSpecial

Usage
A FindTopLowest object consists of one find conditions that indicates in which field to search for the top or lowest
number or percent of values.
Defining and running a find in LotusScript involves the following operations:

• Creating a FindTopLowest object using the New method
• (Optional) Adding the FindTopLowest object to an existing Find object using the FindSpecial property
• Executing the find using the DocWindow object FindSort method

If a found set exists when you run a FindTopLowest operation, Approach finds the top or lowest records in the found
set.

FindTopLowest class members
Properties

None

Methods
GetAt
New

Events
None

Approach: Find class
The conditions used to find records.

Contained by
Class
None

Usage
A Find object consists of one or more find conditions that indicate which fields and values to search for. When you
create a Find object, you define one of these conditions.
Defining and running a find in LotusScript involves the following operations:

• Creating a Find object using the New method
• Adding conditions to the find using the And and Or methods and FindSpecial property
• Executing the find using the DocWindow object FindSort method

When you build find conditions, the order the conditions are added to the find is important. Approach evaluates each
condition as it appears, independent of the conditions which follow.
For example, to find records in an Orders database that correspond to sales over $1000 in either Japan or the US,
build the Find object as follows:
Dim SalesFind As New Find
Call SalesFind.And (OrderTotal, "> 1000")
Call SalesFind.And (Country, "Japan")
Call SalesFind.Or (OrderTotal, "> 1000")
Call SalesFind.And (Country, "USA")
The OrderTotal condition must be repeated to find the proper set of records.
If you are unsure about how Approach will evaluate find conditions, build the find in a view while you are recording the
steps. Choose Edit - Record Transcript.
For more information, see the FindDistinct, FindDuplicate, FindTopLowest, and Sort classes.

Find class members
Properties

FindSpecial

Methods
And
GetAt
GetCount
New
Or

Events
None

Approach: Font class
A text style for display elements that have text and use the Font property. You can modify the color, size, and name of
the font.

Contained by
Each instance of a Font object is identified from its parent through an expanded property. The following classes can
contain a Font object:

Class
Button
DropDownBox
FieldBox
ListBox
TextBox

Usage
Use this class to modify text of display elements that have the Font property. A font object cannot be displayed; it is
used as the Font property of another object.

Font class members
Properties

Bold
Color AS Color class
FontName
Italic
Relief
Size
Strikethrough
Underline

Methods
None

Events
None

Approach: FormLetter class
A FormLetter object is an Approach form letter.

Contained by
Each instance of a FormLetter object is identified from its parent through an expanded property. The following classes
can contain a FormLetter object:

Class
Document

Usage
Configure some important characteristics of a form letter using the following properties:

• Determine the document that contains the form letter using the Document property.
• Determine which object is currently selected using the Selection property.
• Determine the display elements that appear in the view using the ObjectList property.

FormLetter class members
Properties

CurrentPageNum
Document AS Document class
HideMargins
MainTable
MenuBar
Name
ObjectList AS Collection class
ObjectListAll AS Collection class
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
Selection
TimerInterval
Type
Visible

Methods
None

Events
SwitchFrom
SwitchTo
UserTimer

Approach: Form class
A view that can contain display elements and panels, and displays the data of one record at a time. It is typically used
for entering data.

Contained by
Each instance of a Form object is identified from its parent through an expanded property. The following classes can
contain a Form object:

Class
Document

Usage
A form gives access to one or more fields in a record. After you create a form, you can add panels and display
elements such as field boxes, check boxes, rectangles, and lines, to the BodyPanel of the Form object. You can
identify the BodyPanel using the expanded property Body. For example, the following dot notation identifies the field
box fbxLastName on the form MyForm:
CurrentDocument.MyForm.Body.fbxLastName
Configure some important characteristics of a form view using the following properties and methods:

• Determine the document that contains the form using the Document property.
• Determine which page of the form users are viewing using the CurrentPageNum property.
• Change the number of pages in the view using the NewPage and DeletePage methods.
• Display the form as a dialog box using the ShowAsDialog property.

Form class members
Properties

CurrentPageNum
Document AS Document class
HideMargins
MainTable
MenuBar
Name
NumPages
ObjectList AS Collection class
ObjectListAll AS Collection class
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
Selection
TimerInterval
Type
Visible

Methods
DeletePage
New
NewPage

Events
PageSwitch
SwitchFrom
SwitchTo
UserTimer

Approach: HeaderFooterPanel class
A header or footer for an Approach report.

Contained by
Each instance of a HeaderFooterPanel object is identified from its parent through an expanded property. The
following classes can contain a HeaderFooterPanel object:

Class
Report

Usage
Configure some important characteristics of header and footer panels using the following properties:

• Set the color of the header and footer panels using the Background, and Border properties
• Determine the height (in twips) of the header or footer panel using the Height property.

A new report created in LotusScript contains two HeaderFooterPanel objects: a header panel and a footer panel.
These objects have height zero until you change their size.

HeaderFooterPanel class members
Properties

Background AS Background class
Border AS Border class
Height
NamedStyle
Parent AS View class
Type

Methods
MakeNamedStyle

Events
None

Approach: LineObject class
A horizontal, vertical, or diagonal line on a form, report, mailing label, form letter, envelope, or chart.

Contained by
Each instance of a LineObject object is identified from its parent through an expanded property. The following classes
can contain a LineObject object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Use a LineObject object to add lines to an Approach view. For example, use a LineObject to divide fields into groups.
Configure some important characteristics of a line using the following properties and methods:

• Determine the color and style of the line using the LineStyle property.
• Determine shadowcolor of the line using the ShadowColor property.
• Whether the line appears in Print Preview, or when you print the view containing the line using the Nonprinting

and ShowInPreview properties.
• The position in the layers of the view in relation to other display elements using the BringToFront and

SendToBack methods.

LineObject class members
Properties

Background AS Background class
Height
Left
LineStyle AS LineStyle class
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Orientation
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: LineStyle class
A line style for objects that have LineStyle as a property.

Contained by
Each instance of a LineStyle object is identified from its parent through an expanded property. The following classes
can contain a LineStyle object:

Class
LineObject

Usage
The LineStyle class creates and modifies line styles used for display objects. A LineStyle object cannot be displayed;
it is used as the LineStyle property of another object.

LineStyle class members
Properties

Color AS Color class
Pattern
Width

Methods
None

Events
None

Approach: ListBox class
A display element that displays a list of values. A list box is a sizeable scrolling list.

Contained by
Each instance of a ListBox object is identified from its parent through an expanded property. The following classes
can contain a ListBox object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
A list box can serve the following functions:

• Display a list of values that users cannot change.
• Display a field value, without allowing users to modify the value (read-only).
• Limit the values the user can enter in a database to the values you add to the list.

Configure some important characteristics of a list box using the following properties and methods:
• Set the values available in a list box using the AddListItem and RemoveListItem methods.
• Set a default value for a list box using the CurrentSelection property.
• Set the label for the list box using the LabelText property.

ListBox class members
Properties

Background AS Background class
Border AS Border class
Count
CurrentSelection
DataField
DataTable
Font AS Font class
Height
LabelAlignment
LabelFont AS Font class
LabelPosition
LabelText
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ReadOnly
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Text
Top
Type
Visible
Width

Methods
AddListItem
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
RemoveListItem
SendToBack
SetFieldList
SetFocus
SetList

Events
Change
Click
DoubleClick
GotFocus
LostFocus
SelectionChange

Approach: MailingLabels class
A mailing labels object in an Approach view that contains mailing labels.

Contained by
Each instance of a MailingLabels object is identified from its parent through an expanded property. The following
classes can contain a MailingLabels object:

Class
Document

Usage
Configure some important characteristics of mailing labels using the following properties:

• Determine the document that contains the mailing labels using the Document property.
• Set whether to display margins in the mailing label view using the HideMargins property.
• Determine the display elements that appear in the view using the ObjectList property.

MailingLabels class members
Properties

Document AS Document class
HideMargins
MainTable
MenuBar
Name
ObjectList AS Collection class
ObjectListAll AS Collection class
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
Selection
TimerInterval
Type
Visible

Methods
None

Events
SwitchFrom
SwitchTo
UserTimer

Approach: OLEObject class
Note OLEObject is not supported under OS/2.
An OLE object from any OLE-enabled application.

Contained by
Each instance of an OLEObject object is identified from its parent through an expanded property. The following
classes can contain an OLEObject object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
OLE objects bring in objects from other applications, such as a document from a word processor or a spreadsheet
from a spreadsheet program. An OLE object can be an entire file, such as a spreadsheet, or part of a file, such as a
chart from a spreadsheet.

OLEObject class members
Properties

Dispatch
Height
Left
LPObject
MacroClick
MacroTabIn
MacroTabOut
Name
NonPrinting
Page
Parent AS View class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
DoVerb
InsertAfter
MakeNamedStyle
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: Panel class
An abstract class that comprises the BodyPanel, RepeatingPanel, HeaderFooterPanel, and SummaryPanel classes.

Contained by
Each instance of a Panel object is identified from its parent through an expanded property. The following classes can
contain a Panel object:

Class
ChartView
Crosstab
Envelope
Form
FormLetter
MailingLabels
Report
Worksheet

Usage
The Panel class is an abstract class, so you cannot create an instance of a Panel. You can, however, represent all
the classes of the Panel class, such as the BodyPanel class, with the Panel class. For example, you can write a sub
that takes Panel as a parameter, so you can pass any instance of a Panel class to that sub.

Panel class members
Properties

Background AS Background class
Border AS Border class
Height
NamedStyle
Parent AS View class
Type

Methods
MakeNamedStyle

Events
None

Approach: PicturePlus class
A display element containing an image or an OLE object.
Note OLE objects are not supported under OS/2.

Contained by
Each instance of a PicturePlus object is identified from its parent through an expanded property. The following
classes can contain a PicturePlus object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
A PicturePlus display element can serve the following functions:

• Display or edit images.
• Display or edit OLE objects.

Configure some important characteristics of a PicturePlus display element using the following properties:
• Allow freehand drawing with the mouse on top of a graphic or OLE object using the AllowDrawing property.
• Crop the image to the dimension of the field, or shrink the whole picture to fit in the field using the Display

property.
• Stretch an image to fit the dimension of the field box using the Stretch property.

PicturePlus class members
Properties

AllowDrawing
Background AS Background class
Border AS Border class
DataField
DataTable
Display
Height
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
Position
ReadOnly
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
Stretch
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: Picture class
An image displayed on a form, report, mailing label, form letter, envelope, or chart. The picture is not part of any
record in the database; it is part of the view. The same picture appears for every record or page of records in the
view.
Note Use the PicturePlus class to store images as part of records.

Contained by
Each instance of a Picture object is identified from its parent through an expanded property. The following classes
can contain a Picture object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Pictures can enhance views of data.
Configure some important characteristics of a Picture display element using the following properties and methods:

• Specify the image you want to display using the SetPicture method.
• Set the background and shadow color of the Picture display element using the Background and ShadowColor

properties.
• Set the position of the Picture display elements in the view by using the Left and Top properties.

Picture class members
Properties

Background AS Background class
Height
Left
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus
SetPicture

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: Query class
An SQL statement or table name which defines the data to retrieve through a Connection object.

Contained by
Class Property
ResultSet Query

Usage
The Query class is one of three classes that together allow you to access data in a batch process, bypassing the
Approach user interface.
There are two strategies for defining a query:

• Retrieve an entire table using the TableName property.
• Retrieve a specific set of fields or records from a table by defining find conditions using the SQL property.

Using a Query object involves the following operations:
• Creating and opening a connection
• Creating a Query object using the New method
• Identifying the data to retrieve using the TableName or SQL properties
• Initializing and running a ResultSet object

If your query includes an SQL statement that does not produce a result set, call the Execute method from the Query
object without initializing a ResultSet object.

Query class members
Properties

Connection AS Connection class
SQL
TableName

Methods
Execute
GetError
GetErrorMessage
GetExtendedErrorMessage
New

Events
None

Approach: RadioButton class
A display element indicating a mutually exclusive selection. A radio button can be on or off.

Contained by
Each instance of a RadioButton object is identified from its parent through an expanded property. The following
classes can contain a RadioButton object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Radio buttons allow users to enter a value when you want them to enter only one of a limited set of values.
A RadioButton can be selected or not. If it is selected, the center is black.
Typically, radio buttons come in groups. When one radio button in the group is selected, the others become
deselected.
Note You cannot create radio button groups using LotusScript, but you can set or unset the attribute of a radio button
that is part of a group from Script.
Configure some important characteristics of a radio button using the following properties and methods:

• Set the values written to a field for each radio button state using the ClickedValue property.
• Set a default value for a new radio button using the SetState method.
• Set the label for the radio button using the LabelText property.

RadioButton class members
Properties

Background AS Background class
ClickedValue
DataField
DataTable
Height
IsClicked
LabelAlignment
LabelFont AS Font class
LabelPosition
LabelText
Left
MacroDataChange
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ReadOnly
Relief
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Value
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus
SetState

Events
Change
Click
DoubleClick
GotFocus
LostFocus
MouseDown
MouseMove
MouseUp

Approach: Rectangle class
A display element that you can add to a form, report, mailing label, form letter, envelope, or chart.

Contained by
Each instance of a Rectangle object is identified from its parent through an expanded property. The following classes
can contain a Rectangle object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Rectangles can enhance views of data. For example, use a rectangle to group fields in a form.
Configure some important characteristics of a rectangle display element using the following properties and methods:

• Set the background and shadow color of the rectangle display elements using the Background and ShadowColor
properties.

• Set the position of the rectangle display element in a group of overlapping objects by using the BringToFront and
SendToBack methods.

Rectangle class members
Properties

Background AS Background class
Border AS Border class
Height
Left
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: RepeatingPanel class
In an Approach file that has joined databases, a repeating panel shows data from multiple records of a detail
database, the records are all related to the current record of the main database.

Contained by
Each instance of a RepeatingPanel object is identified from its parent through an expanded property. The following
classes can contain a RepeatingPanel object:

Class
Form

Usage
A repeating panel shows a one-to-many relationship between the records in two databases. Both databases must be
joined in the Approach file (document). For example, create a repeating panel to show the relationship between a
department and the employees in the department.
Configure some important characteristics of a repeating panel using the following properties and methods:

• Set the color of the repeating panel using the Background, Border and AlternateColors properties
• Determine the position of the panel on the form, including hidden forms, using the Left and Top properties.

RepeatingPanel class members
Properties

AlternateColors
Background AS Background class
Border AS Border class
Height
Left
MainTable
Name
NamedStyle
NumLines
Page
Parent AS View class
Top
Type
Width

Methods
MakeNamedStyle
New

Events
None

Approach: Report class
A Report object is an Approach report view.

Contained by
Each instance of a Report object is identified from its parent through an expanded property. The following classes can
contain a Report object:

Class
Document

Usage
Configure some important characteristics of a report view using the following properties:

• Determine the document (.APR file) that contains the report using the Document property.
• Determine the number of columns that appear in the report using the NumColumns property.
• Keeps a record's fields on the same page when there is more than one line of fields in the record using the

KeepRecsTogether property.

Report class members
Properties

Document AS Document class
KeepRecsTogether
MainTable
MenuBar
Name
NumColumns
ObjectList AS Collection class
OnSwitchFromMacro
OnSwitchToMacro
Parent AS Document class
TimerInterval
Type
Visible

Methods
New

Events
SwitchFrom
SwitchTo
UserTimer

Approach: ResultSet class
A set of records accessible outside the Approach user interface.
Data in a ResultSet can be edited; the edits are reflected in the original table.

Contained by
Class
None

Usage
The ResultSet class is one of three classes that together allow you to access data in a batch process, bypassing the
Approach user interface. A result set acts just like a found set, but is available only through script.
You can create a result set in one of two ways:

• Convert a Table object already associated with an .APR file into a ResultSet object using the CreateResultSet
method from the Table class.

• Open a connection to an existing table and define a query to retrieve data from that table to populate the result
set.

Creating a result set though a connection involves the following operations:
• Creating and opening a connection
• Creating a query
• Initializing the ResultSet object using the New method
• Associating the ResultSet object using the Query property
• Creating the result set using the Execute method

A ResultSet object is a table that can be used whereever a Table object is used.
You can perform operations with the data such as the following:

• Determine the field size, name, and type.
• Navigate between fields, rows, or columns in a record or group of records.
• Edit values in fields.

Determine the commit behavior of the result set through the associated Connection object.
After making changes to data in a result set, use the UpdateRow method to commit the changes to the table.

ResultSet class members
Properties

CurrentRow
IsBeginOfData
IsEndOfData
IsReadOnly
IsResultSetAvailable
Query AS Query class

Methods
AddRow
Close
DeleteRow
Execute
FieldExpectedDataType
FieldID
FieldName
FieldNativeDataType
FieldSize
FirstRow
GetError
GetErrorMessage
GetExtendedErrorMessage
GetParameter
GetParameterName
GetValue
LastRow
New
NextRow
NumColumns
NumParameters
NumRows
Options
PrevRow
SetParameter
SetValue
UpdateRow

Events
None

Approach: RoundRect class
A display element that you can add to a form, report, mailing label, form letter, envelope, or chart. A rounded
rectangle has rounded corners instead of right-angled corners.

Contained by
Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Rounded rectangles can enhance views of data. For example, use a rounded rectangle to separate sections fields in
a form.
Configure some important characteristics of a rounded rectangle display element using the following properties and
methods:

• Set the background and shadow color of the rectangle object using the Background and ShadowColor
properties.

• Set the position of the rectangle display element in a group of overlapping objects by using the BringToFront and
SendToBack methods.

RoundRect class members
Properties

Background AS Background class
Border AS Border class
Height
Left
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColor AS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Top
Type
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: Sort class
The fields used to sort records.

Contained by
Class Property
DocWindow FindSort

Usage
A Sort object consists of one or more fields that indicate on which fields to sort the found set of records or an entire
table. The first field you add to the Sort object is the primary field by which to sort the records.
Defining and running a sort in LotusScript involves the following operations:

• Creating a Sort object using the New method
• Adding fields to the sort using the Add method
• Executing the sort using the DocWindow object FindSort method

Sort class members
Properties

None

Methods
Add
GetAt
GetCount
New

Events
None

Approach: SummaryPanel class
A summary panel displays fields or calculations for groups of records.

Contained by
Each instance of a SummaryPanel object is identified from its parent through an expanded property. The following
classes can contain a SummaryPanel object:

Class
ChartView
Report

Usage
A summary panel shows calculations involving more than one record, or distinguishes between record groupings.
Configure some important characteristics of a summary panel using the following properties:

• Set the color of the summary panel using the Background, and Border properties
• Determine the printing behavior, such as the expansion or reduction of the size of the panel to accommodate the

data, using the Expand and Reduce properties
• The records used in the group represented by the summary panel using the GroupByDataField and

GroupByDataTable properties

SummaryPanel class members
Properties

Alignment
Background AS Background class
Border AS Border class
Expand
GroupByDataField
GroupByDataTable
GroupByEvery
Height
Location
Name
NamedStyle
PageBreak
Parent AS View class
Reduce
Type
Width

Methods
MakeNamedStyle
New

Events
None

Approach: Table class
A table accessed through Approach.

Contained by
Each instance of a Table object is identified from its parent through an expanded property. The following classes can
contain a Table object:

Class
Document

Usage
Use a Table object to retrieve the following kinds of information about the table:

• The name and path of the database
• The database field names, sizes, and types
• The number of records in the database

Update a document with new data by converting a ResultSet object to a Table object using the ReplaceWithResultSet
method.
Access data from a Table object without going through display elements in the Approach user interface by converting
the table to a result set using the CreateResultSet method.
The Table object has uses in tables other than data tables. For example, access information about the calculated
fields in a document through the CalcTable property of the Document object. This property identifies a Table object.
The VarTable property of the Document object also identifies a Table object.

Table class members
Properties

FieldNames
FileName
FullName
NumFields
NumRecords
Parent!SaveMark(`MemList');AL(`H_LAS_PARENT_PROPERTY_MEMDEF',1); AS Document

classH_LAS_DOCUMENT_CLASS>CLASSDEF
Path
TableName

Methods
CreateResultSet
GetFieldFormula
GetFieldOptions
GetFieldSize
GetFieldType
GetFuriganaField
GetFuriganaMode
GetImeMode
GetImeState
ReplaceWithResultSet
SetFurigana
SetIme

Events
None

Approach: TextBox class
A TextBox object displays text in a text block in an Approach view.

Contained by
Each instance of a TextBox object is identified from its parent through an expanded property. The following classes
can contain a TextBox object:

Class
BodyPanel
HeaderFooterPanel
RepeatingPanel
SummaryPanel

Usage
Text blocks can enhance views or provide information to users. For example, use a text block to provide instructions
for making selections from check boxes or radio buttons on a form.
Configure some important characteristics of a text box using the following properties:

• Determine how the text is aligned within the text block using the Alignment property.
• Determine the font used to display the text using the Font property.
• Set the amount of space between the lines within the text block using the LineSpacing property.

TextBox class members
Properties

Alignment
Background AS Background class
Border AS Border class
Font AS Font class
Height
Left
LineSpacing
MacroClick
MacroTabIn
MacroTabOut
Name
NamedStyle
NonPrinting
Page
Parent AS View class
ShadowColorAS Color class
ShowInPreview
SlideLeft
SlideUp
TabOrder
TabStop
Text
Top
Type
Vertical
Visible
Width

Methods
BringToFront
InsertAfter
MakeNamedStyle
New
Refresh
SendToBack
SetFocus

Events
Click
DoubleClick
MouseDown
MouseMove
MouseUp

Approach: View class
The base class of the derived classes you work with to construct a user interface, for example, forms, reports,
worksheets, and charts.
The following Approach classes inherit the members of the View class:

ChartView Crosstab Envelope
Form FormLetter MailingLabel
Report Worksheet

Contained by
Each instance of a View object is identified from its parent through an expanded property. The following classes can
contain a View object:

Class
Document

Usage
The View class is an abstract class, so you cannot create an instance of View.
You can, however, represent all of its derived classes with the View class. For example, you can write a procedure
that takes "Source As View" as a parameter. This allows you to use any instance of a derived View class in that
procedure.
For example, you could have a procedure designed to adjust margins. You don't know what type of view will be
passed to the procedures, so you use View as a parameter. This way you can use any instance of a derived View
class in the procedure and the procedure will run.

View class members
Properties

Document AS Document class
MainTable
MenuBar
Name
OnSwitchFromMacro
OnSwitchToMacro
Parent AS View class
TimerInterval
Type
Visible

Methods
None

Events
SwitchFrom
SwitchTo
UserTimer

Approach: Window class
The window class is a base class for the creation of objects such as the ApplicationWindow and DocWindow.

Contained by
Each instance of a Window object is identified from its parent through an expanded property. The following classes
can contain a Window object:

Class
Application
Document

Usage
The Window class is an abstract class. That is, you cannot create an instance of Window. You can, however,
represent all of Window's subclasses with the Window class. For example, you can write a subroutine which takes
Window as a parameter. This allows you to pass any instance of a Window subclass to that subroutine.

Window class members
Properties

None

Methods
Close
GetHandle
Maximize
Minimize
Restore

Events
None

Approach: Worksheet class
A Worksheet object is an Approach worksheet.

Contained by
Each instance of a Worksheet object is identified from its parent through an expanded property. The following classes
can contain a Worksheet object:

Class
Document

Usage
Configure some important characteristics of a worksheet using the following properties and methods:

• Determine the document that contains the worksheet using the Document property.
• Determine the main table used in the worksheet using the MainTable property.
• Add and delete columns in the worksheet using the AddColumn and RemoveColumn methods.

Worksheet class members
Properties

Document AS Document class
MainTable
MenuBar
Name
OnSwitchFromMacro
OnSwitchToMacro
Parent AS View class
PrintDate
PrintPageNum
PrintTitle
TimerInterval
Title
Type
Visible

Methods
AddColumn
GetText
New
RemoveColumn
SetCellFocus
SetText

Events
CellDataChange
CellGetFocus
CellLostFocus
SelectColumn
SwitchFrom
SwitchTo
UserTimer

Approach: AutoCommit property
{button ,AL(`H_LAS_CONNECTION_CLASS',0)} See list of classes
Sets or returns the commit status of a SQL database connection.

Data type
Integer

Syntax
connectionobject.AutoCommit = integer
integer = connectionobject.AutoCommit

Parameters
None

Legal values
Value Description
TRUE (Default) Approach commits record

changes, additions, or deletions
directly to a table.

FALSE Approach does not automatically
commit changes, additions, or
deletions. Changes must be committed
manually, or AutoCommit must be set
to TRUE.

Usage
By default, Approach displays data directly from the tables associated with an Approach application. When you
change data through the user interface or in a ResultSet object, the changes are committed to the table after any of
the following operations:

• Pressing ENTER

• Changing views or environments
• Running a macro
• Calling UpdateRow method

To change Approach's behavior so that changes are not made automatically to the table, set the AutoCommit
property to FALSE. When you are ready to commit changes to the source database or rollback the changes, call the
Transactions method.
When you change from manual-commit mode to auto-commit mode, you commit any open edits.
Set AutoCommit after executing the connection with the ConnectTo method.

Approach: CalcTable property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Returns information for all calculated fields defined for the document (.APR file).

Data type
Table

Syntax
Set calctable = documentobject.CalcTable

Legal values
A Table object. If there are no calculated fields for a document, the table is empty.

Usage
You can add or remove calculated fields in the table using the CreateCalcField and DeleteCalcField methods.

Approach: CreateDate property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_CREATEDATE_EXSCRIPT',1)} See example
(Read-only) Returns the date and time the document (.APR file) was created.

Data type
Variant

Syntax
date/time = documentobject.CreateDate

Legal values
Any date or time.
The default values are the date and time the document was created.

Approach: CurrentFind property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
(Read-only) Returns the Find object most recently used in the document window.

Data type
Find object

Syntax
Set findobject = docwindowobject.CurrentFind

Parameters
None

Legal values
Any existing Find object.

Usage
Retrieve the object that defines the find conditions most recently used in a document (.APR file). To extract the
conditions from the Find object, use the GetAt and GetCount methods.

Approach: CurrentRecord property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_CURRENTRECORD_EXSCRIPT',1)} See example
Sets or returns the record number of the current record.

Data type
Long

Syntax
docwindowobject.CurrentRecord = recordnumber
recordnumber = docwindowobject.CurrentRecord

Legal values
Any integer between 1 and the total number of records in the database.

Approach: CurrentSelection property
{button ,AL(`H_LAS_LISTBOX_CLASS;',0)} See list of classes
Sets or returns the item selected in a list box.

Data type
Integer

Syntax
integer = listboxobject.CurrentSelection
listboxobject.CurrentSelection = integer

Parameters
None

Legal values
An integer indicating an item in the list box. The first item in the list is numbered zero.

Usage
This property presets the value shown in a list box.
When the list box object is not bound to a field, use this property to determine the value selected in the list box by the
user.
Determine the total number of items in the list using the Count property.

Approach: CurrentSort property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
(Read-only) Returns the Sort object most recently used in the document window.

Data type
Sort object

Syntax
Set sortobject = docwindowobject.CurrentSort

Parameters
None

Legal values
Any existing Sort object.

Usage
Retrieve the object that defines the sort conditions for a document (.APR file). To extract the conditions from the Sort
object, use the GetAt and GetCount methods.

Approach: Description property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_DESCRIPTION_EXSCRIPT',1)} See example
Sets or returns the description of the document (.APR file).

Data type
String

Syntax
documentobject.Description = string
string = documentobject.Description

Legal values
Any string up to 256 characters.
The default value for the Description property is Blank.

Usage
Use this property to read, enter, or modify the description listed for a document (.APR file). In the user interface, you
can view the description by choosing File - Approach File Properties.
Enter a description for the document when you create a new document, or update an existing document.

Approach: Dispatch property
{button ,AL(`H_LAS_OLEOBJECT_CLASS;',0)} See list of classes
Note Dispatch is not supported under OS/2.
(Read-only) Returns an OLE object, if the OLE object supports OLE Automation.
You can directly access the properties and methods for the OLE control through Approach.

Data type
Variant

Syntax
Set objectvariable = oleobject.Dispatch

Legal values
Any OLE object property or method.

Usage
For example, you might have a word processor document embedded in an Approach form. If the word processor
supports OLE Automation, you can pass text from Approach to the word processor's dictionary and thesaurus, and
receive appropriate spellings or synonyms.

Approach: Display property
{button ,AL(`H_LAS_PICTUREPLUS_CLASS;',0)} See list of classes
Sets or returns the display behavior of the image in PicturePlus fields.

Data type
Long

Syntax
pictureplusobject.Display = value
value = pictureplusobject.Display

Legal values
Value Description
$LtsPictureDisplayCrop (Default) Crop the

picture to the
dimension of the field.

$LtsPictureDisplayShrin
k

Shrink the whole
picture to fit in the field.

Usage
If the image is too large to fit within the field but you only want to display part of the image, crop it. If the image is too
large to fit within the field and you still want to display the whole image, shrink it to fit.

Approach: ExcludeFirst property
{button ,AL(`H_LAS_FINDDUPLICATE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_EXCLUDEFIRST_EXSCRIPT',1)} See example
Sets or returns whether all records found are returned in the found set when executing a FindDuplicate object.

Data type
Integer

Syntax
findduplicateobject.ExcludeFirst = integer
integer = findduplicateobject.ExcludeFirst

Parameters
None

Legal values
Value Description
TRUE The first record found by Approach in a

set of duplicated records is not
included in the found set.

FALSE All records found by Approach are
included in the found set.

Usage
Set this property to TRUE when you want to modify or delete duplicate records, but you want to leave the first
instance of the duplicate record untouched.

Approach: FieldNames property
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_FIELDNAMES_EXSCRIPT',1)} See example
(Read-only) Returns a list of the fields defined in the specified table.

Data type
Variant

Syntax
string = tableobject.FieldNames(n)

Usage
This property identifies a list of field names. Use the property to specify a field as an argument in the following
methods:

• GetFieldFormula
• GetFieldOptions
• GetFieldSize
• GetFieldType

To retrieve field names, step through the list by specifying an index to the list. For example, the following script prints
the names of all of the fields in a table:
Sub FieldList(TableObject As Table)
'Print a list of the fields of the Table object that is passed in.
 Dim I As Integer
 'Loop from 0 to the number of fields in the table.
 For I = 0 To TableObject.NumFields - 1
 Print "Field name: " & TableObject.FieldNames(I)
 Next
End Sub

Approach: FileName property
{button ,AL(`H_LAS_DOCUMENT_CLASS;H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_FILENAME_EXSCRIPT',1)} See example
(Read-only) Returns the file name of the specified document (.APR file) or table.

Data type
String

Syntax
string = documentobject.FileName
or
string = tableobject.FileName

Legal values
The file name (and extension if it applies) of the specified document or table.

Usage
This property returns the file name and extension only of document and table files. No extension is returned if the
table does not have one, such as a DB2 or Notes table.
To retrieve the full path name, use the FullName or Path properties.

Approach: FindSpecial property
{button ,AL(`H_LAS_FIND_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_FINDSPECIAL_EXSCRIPT',1)} See example
Sets or returns an existing FindDistinct, FindDuplicate, or FindTopLowest object used to define the Find object.

Data type
FindDistinct, FindDuplicate, or FindTopLowest object

Syntax
Set findobject.FindSpecial = findspecialobject
Set findspecialobject = findobject.FindSpecial

Parameters
None

Legal values
Any existing FindDistinct, FindDuplicate, or FindTopLowest object.

Usage
Use FindSpecial to append an existing FindDistinct, FindDuplicate, or FindTopLowest object as another condition of
the Find object. The find conditions defined by the FindDistinct, FindDuplicate, or FindTopLowest object are applied to
the results of the other find conditions specified in the Find object.

Approach: FullName property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_DOCUMENT_CLASS;H_LAS_TABLE_CLASS;',0)} See list of

classes
{button ,AL(`H_las_FULLNAME_EXSCRIPT',1)} See example
(Read-only) Returns the path of the current Approach executable (.EXE file), document (.APR file), or table.

Data type
String

Syntax
string = object.Fullname

Legal values
Object Value Description
Application object drive:\directory\filename.exe Drive and directory

where the Approach
executable file resides.

Document object drive:\directory\filename.apr Drive and directory
where the Approach
document file resides.

Table object drive:\directory\table.extension Drive and directory
where the table file
resides (non-SQL
tables).

Table object \owner\table Owner ID and table
name of a table
accessed through an
ODBC server.

Usage
This property determines the full path. If you need only the file name of the document or table, use the FileName
property.

Approach: GroupByDataField property
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
{button ,AL(`H_las_GROUPBYDATAFIELD_EXSCRIPT',1)} See example
Sets or returns the field that records are grouped by to summarize data in a report.

Data type
String

Syntax
summarypanel.GroupByDataField = stringexp
stringexp = summarypanel.GroupByDataField

Legal values
Any field in any table (database file) of the document (.APR file), including calculated fields.

Usage
Determine which field is used to summarize data so you can generate an appropriate report. For example, you can
create a report showing how many rooms were reserved on different dates by grouping on the Date Reserved field.
When you create a new report, you should also set the data table that contains the field you want to use.

Approach: GroupByDataTable property
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
{button ,AL(`H_las_GROUPBYDATATABLE_EXSCRIPT',1)} See example
Sets or returns the table that contains the field that records are grouped by to summarize data in a report.

Data type
String

Syntax
summarypanel.GroupByDataTable = stringexp
stringexp = summarypanel.GroupByDataTable

Legal values
Any table (database file) of the document (.APR file).

Usage
Determine the table that contains the field you want to use to summarize data so you can generate an appropriate
report. For example, you can create a report showing how many rooms were reserved on different dates by grouping
on the Date Reserved field in the Schedule table.

Approach: GroupByEvery property
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
Sets or returns the number of records you want to group in summary calculations.

Data type
Integer

Syntax
summarypanelobject.GroupByEvery = value
value = summarypanelobject.GroupByEvery

Legal values
Any number between 1 and the total number of records in the table (database file). To get the total number of records
in the table, use the NumRecords property.

Usage
If the field you group by displays many records in the report, you can summarize a fixed number of records so they fit
on a page.

Approach: IconBarVisible property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_ICONBARVISIBLE_EXSCRIPT',1)} See example
Sets or returns whether a set of SmartIcons is visible.

Data type
Integer

Syntax
docwindowobject.IconBarVisible = flag
flag = docwindowobject.IconBarVisible

Legal values
Value Description
TRUE (Default) A set of SmartIcons

is visible.
FALSE Not set of SmartIcons is

visible.

Approach: IsClicked property
{button ,AL(`H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
(Read-only) Returns the state of a radio button.
Note The SetState method turns the radio button on or off.

Data type
Integer

Syntax
flag = radiobuttonobject.IsClicked

Legal values
Value Description
TRUE The radio button is selected.
FALSE The radio button is not

selected.

Usage
This property determines the state of a radio button, especially when the radio button is an unbound control and does
not represent field values.
Determine if a radio button is clicked, and then perform another task based on the result. For example, if users click
the "Nonsmoking" radio button, display only the list of available rooms that are designated "Nonsmoking."

Approach: KeepRecsTogether property
{button ,AL(`H_LAS_REPORT_CLASS;',0)} See list of classes
Sets or returns the whether to keep a record's fields on the same page when there is more than one line of fields in
the record.

Data type
Integer

Syntax
flag = reportobject.KeepRecsTogether
reportobject.KeepRecsTogether = flag

Approach: Keywords property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_KEYWORDS_EXSCRIPT',1)} See example
Sets or returns the list of keywords that describe the document (.APR file).

Data type
String

Syntax
documentobject.Keywords = string
string = documentobject.Keywords

Legal values
Any string up to 256 characters.

Usage
Use this property to read, enter, or modify the keywords listed for a document (.APR file). In the user interface, you
can view these keywords by choosing File - Approach File Properties.

Approach: Language property
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Returns the language used in the current application as a 2-character code.
For example, English is EN, French is FR.

Data type
String

Syntax
string = applicationobject.Language

Legal values
All the 2-character language codes.

Usage
Determine which language is in use, so you can supply instructions or display views in the appropriate language.

Approach: LastModified property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_LASTMODIFIED_EXSCRIPT',1)} See example
(Read-only) Returns the date and time the document (.APR file) was last modified.

Data type
Variant

Syntax
variant = documentobject.LastModified

Legal values
The date and time the document was last modified.

Approach: Location property
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
Sets or returns whether the summary panel in a report is a leading or trailing summary panel.

Data type
Long

Syntax
panelname.Location = value
value = panelname.Location

Legal values
Value Description
aprSummaryLeading The summary is a leading

summary panel.
aprSummaryTrailing The summary is a trailing

summary panel

Usage
Display a leading summary panel when you want the summary to appear above the individual records you
summarized. For example, in the Meeting Room Scheduler Smartmaster report, the room number appears before its
associated reservation information.
Display a trailing summary panel when you want the summary to appear below the individual records you
summarized. For example, in the Order Management SmartMaster Inventory report, the total number of items sold
appears below its associated sale information.

Approach: LPObject property
{button ,AL(`H_LAS_OLEOBJECT_CLASS;',0)} See list of classes
Note LPObject is not supported under OS/2.
(Read only) Returns the value of the C pointer to the OleObject interface of the OLE object, or 0 if there is no
connection to the OLE object yet.

Data type
Long

Syntax
value = oleobject.LPObject

Usage
Determine the address of the OLE object, and pass it to Dynamic Link Libraries.
The lock on the OLE object is not incremented when this property is accessed (that is, AddRef has not been called).

Approach: MainTable property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPEATINGPANEL_CLA
SS;H_LAS_REPORT_CLASS;H_LAS_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_MAINTABLE_EXSCRIPT',1)} See example
Sets or returns the main table (database file) for the view or repeating panel.

Data type
String

Syntax
object.MainTable = string
string = object.MainTable

Legal values
Any table in the document (.APR file).

Usage
If you have joined tables in an Approach file, one of the tables must be the main table for the view. A view displays
each record from its main table. For example, an invoice view would use an invoice table as its main table.
A repeating panel must have a main table that provides the framework of records. The main table of the repeating
panel must be one of the detail databases of the form it is displayed on. Each line in a repeating panel displays a
record from its main table. For example, a repeating panel in a department form might list all the employees in the
department.

Approach: MenuBar property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_MENUBAR_EXSCRIPT',1)} See example
Sets or returns the type of menu displayed in the current view.

Data type
String

Syntax
viewobject.MenuBar = string
string = viewobject.MenuBar

Legal values
Any of the menus available for the document (.APR file), such as Default menu, Short menu, or the name of a custom
menu.

Approach: Menus property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_MENUS_EXSCRIPT',1)} See example
(Read-only) Returns an array of menu names for the document (.APR file).

Data type
Variant

Syntax
array = documentobject.Menus

Legal values
All the names of the user-defined custom menus.

Approach: Modified property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_MODIFIED_EXSCRIPT',1)} See example
Sets or returns whether the document (.APR file) has been modified.

Data type
Integer

Syntax
flag = documentobject.Modified

Legal values
Value Description
TRUE The document has been

modified.
FALSE The document has not been

modified.

Usage
Retrieve the value of the Modified property to determine if any changes have been made to a document after the last
time it was saved.
Setting the Modified property to FALSE does the following, until another change is made to the document:

• Disables the "Save Approach File" menu command.
• Disables the user prompt to save changes to the document.

If you quit the document before other changes are made, Approach discards all changes made to the document since
the last save.
When you make a change to the document, Approach resets Modified to TRUE.

Approach: NamedFindSorts property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NAMEDFINDSORTS_EXSCRIPT',1)} See example
(Read-only) Returns a list of the Named Find/Sorts in the document (.APR file).

Data type
Variant

Syntax
stringarray = documentobject.NamedFindSorts

Legal values
All the Named Find/Sorts in the document.

Approach: NamedFindSort property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_NAMEDFINDSORT_EXSCRIPT',1)} See example
Sets or returns the name of the current named find/sort.

Data type
String

Syntax
docwindowobject.NamedFindSort = stringexp
stringexp = docwindowobject.NamedFindSort

Legal values
Any of the named find/sorts in the document (.APR file).

Approach: NamedStyles property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NAMEDSTYLES_EXSCRIPT',1)} See example
(Read-only) Returns a list of the named styles in the document (.APR file).

Data type
Variant

Syntax
stringarray = documenrobject.NamedStyles

Legal values
All the named styles in the document.

Approach: NumColumns property
{button ,AL(`H_LAS_REPORT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMCOLUMNS_EXSCRIPT',1)} See example
Sets or returns the number of columns displayed in the current report.

Data type
Integer

Syntax
reportobject.NumColumns = value
value = reportobject.NumColumns

Usage
If the fields on the report don't take up much room left to right but run onto many pages, increase the number of
columns on the report to use fewer pages.

Approach: NumFields property
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NUMFIELDS_EXSCRIPT',1)} See example
(Read-only) Returns the number of fields in the table.

Data type
Integer

Syntax
integer = tableobject.NumFields

Usage
Use this method as the upper bound for a loop cycling through all of the fields in a table. The array of fields is zero-
based, so the loop starts at zero and ends at tableobject.NumFields - 1.

Approach: NumJoins property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMJOINS_EXSCRIPT',1)} See example
(Read-only) Returns the number of joins in the document (.APR file).

Data type
Integer

Syntax
value = documentobject.NumJoins

Legal Values
Any number from 1 through 256.

Approach: NumLines property
{button ,AL(`H_LAS_REPEATINGPANEL_CLASS;',0)} See list of classes
Sets or returns the number of lines in a repeating panel.

Data type
Integer

Syntax
repeatingpanel.NumLines = value
value = repeatingpanel.NumLines

Legal values
Any integer from 1 through 30.

Usage
Determine the number of lines in a new repeating panel, or add more lines to an existing repeating panel, so you can
display more data from the detailed database.

Approach: NumPages property
{button ,AL(`H_LAS_FORM_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMPAGES_EXSCRIPT',1)} See example
(Read-only) Returns the number of pages of a multi-page form or form letter.

Data type
Integer

Syntax
value = formobject.NumPages
or
value = formletterobject.NumPages

Legal values
The number of pages in the form or form letter.
To determine which page users are viewing, use the CurrentPageNum property.

Approach: NumRecordsFound property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMRECORDSFOUND_EXSCRIPT',1)} See example
(Read-only) Returns the number of records in a found set.

Data type
Long

Syntax
value = docwindowobject.NumRecordsFound

Legal values
Any number between 1 and the number of records in the main table (database file) for the view.
To avoid taking a long time to return the number of records, this method returns -1 if the table is from a SQL data
source type and the number of records is not already known to Approach. Use the CountRecords method to retrieve
the actual number.

Approach: NumRecords property
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_LAS_NUMRECORDS_EXSCRIPT',1)} See example
(Read-only) Returns the number of records in the table.

Data type
Long

Syntax
long = tableobject.NumRecords

Legal values
Any whole number.

Usage
To avoid taking a long time to return the number of records, this method returns -1 if the table is from a SQL data
source type and the number of records is not already known to Approach. Use the ResultSet class NumRows method
or the DocWindow class CountRecords method to retrieve the actual number.

Approach: NumRevisions property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMREVISIONS_EXSCRIPT',1)} See example
(Read-only) Returns the number of times the document (.APR file) has been updated.

Data type
Long

Syntax
value = documentobject.NumRevisions

Legal values
The number of times the document has been revised.

Usage
Use this property to determine how many times the document has changed since you last modified it.
In the user interface, you can view number of revisions by choosing File - Approach File Properties.

Approach: NumTables property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMTABLES_EXSCRIPT',1)} See example
(Read-only) Returns the number of tables (database files) in the document (.APR file).

Data type
Integer

Syntax
value = documentobject.NumTables

Legal values
The number of tables in the document.

Approach: NumViews property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_NUMVIEWS_EXSCRIPT',1)} See example
(Read-only) Returns the number of views in the document (.APR file).

Data type
Integer

Syntax
value = documentobject.NumViews

Legal values
The number of views in the document.

Approach: ObjectList property
{button ,AL(`H_LAS_ENVELOPE_CLASS;H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILIN

GLABELS_CLASS;H_LAS_REPORT_CLASS;',0)} See list of classes
(Read-only) Returns a collection of all the display elements in the view.

Data type
Collection

Syntax
Set collection = view.ObjectList

Legal values
The list of display elements in the document (.APR file).

Approach: OnSwitchFromMacro property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_ONSWITCHFROMMACRO_EXSCRIPT',1)} See example
Sets or returns the name of the macro to run when users switch from the current view.

Data type
String

Syntax
viewobject.OnSwitchFromMacro = string
string = viewobject.OnSwitchFromMacro

Legal values
A string whose value is the name of a macro in the document (.APR file).

Approach: OnSwitchToMacro property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_ONSWITCHTOMACRO_EXSCRIPT',1)} See example
Sets or returns the name of the macro to run when users switch to this view.

Data type
String

Syntax
viewobject.OnSwitchToMacro = string
string = viewobject.OnSwitchToMacro

Legal values
A string whose value is the name of a macro in the document (.APR file).

Approach: PageBreak property
{button ,AL(`H_LAS_SUMMARYPANEL_CLASS;',0)} See list of classes
{button ,AL(`H_las_PAGEBREAK_EXSCRIPT',1)} See example
Sets or returns a page break in a report after each summary group.

Data type
Integer

Syntax
summarypanel.PageBreak = flag
flag = summarypanel.PageBreak

Legal values
Value Description
TRUE Insert a page break.
FALSE Do not insert a page break.

Usage
Insert a page break when you want to start a new summary group on a new page. For example, in a report showing
product sales grouped by month, insert a page break so each month's data appears on a new page.

Approach: Password property
{button ,AL(`H_LAS_CONNECTION_CLASS;',0)} See list of classes
{button ,AL(`H_las_PASSWORD_EXSCRIPT',1)} See example
(Write-only) Sets a password used for connecting to a server.
If a password is required and you do not provide it, the Logon dialog appears.

Data type
String

Syntax
connectionobject.Password = string

Legal values
Any string.

Approach: Path property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_DOCUMENT_CLASS;H_LAS_TABLE_CLASS;',0)} See list of

classes
{button ,AL(`H_las_PATH_EXSCRIPT',1)} See example
(Read-only) Returns the drive and directory of the application executable file (.EXE file), document (.APR file), or
table.

Data type
String

Syntax
string = object.Path

Legal values
Object Value Description
Application object drive:\directory\ A drive and directory where

the Approach executable file
resides.

Document object drive:\directory\ A drive and directory where
the Approach document file
resides.

Table object drive:\directory\ A drive and directory where
the database file resides.

Table object owner\ Owner of a table accessed
through an ODBC server.

Usage
Returns the path only. If you want the path and file name use the FullName property. If you want the file name only,
use the FileName property.

Approach: PrintDate property
{button ,AL(`H_LAS_CROSSTAB_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Sets or returns whether to print the date on a printed copy of a worksheet or crosstab.

Data type
Integer

Syntax
viewobject.PrintDate = flag
flag = viewobject.PrintDate

Legal values
Value Description
TRUE Print the date.
FALS
E

Do not print the date.

Approach: PrintPageNum property
{button ,AL(`H_LAS_CROSSTAB_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Sets or returns whether to print the page number on a printed copy of a worksheet or crosstab.

Data type
Integer

Syntax
viewobject.PrintPageNum = flag
flag = viewobject.PrintPageNum

Legal values
Value Description
TRUE Print the page number.
FALS
E

Do not print the page number.

Approach: PrintTitle property
{button ,AL(`H_LAS_CROSSTAB_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Sets or returns whether to print the title on a printed copy of a worksheet or crosstab.

Data type
Integer

Syntax
viewobject.PrintTItle = flag
flag = viewobject.PrintTItle

Legal values
Value Description
TRUE Print the title.
FALS
E

Do not print the title.

Approach: Redraw property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_REDRAW_EXSCRIPT',1)} See example
Sets or returns whether the screen is redrawn each time a change occurs in the user interface.

Data type
Integer

Syntax
docwindowobject.Redraw = flag
flag = docwindowobject.Redraw

Legal values
Value Description
TRUE (Default) Redraw the screen.
FALSE Do not redraw the screen.

Usage
Suppose your script calls for the addition and removale of many objects in the user interface. To reduce onscreen
flickering, first set the Redraw property to FALSE; then add and remove the objects; reset the Redraw property to
TRUE; and finally, call the Repaint method.

Approach: Selection property
{button ,AL(`H_LAS_APPLICATION_CLASS;H_LAS_FORMLETTER_CLASS;H_LAS_FORM_CLASS;',0)} See list of

classes
(Read-only) Returns the currently selected display element object in the view.
For example, if the user clicks a field box, the Selection property returns the corresponding FieldBox display element.

Data type
Variant

Syntax
Set displayelementobject = viewobject.Selection

Approach: ShowRelated property
{button ,AL(`H_LAS_CROSSTAB_CLASS;',0)} See list of classes
Sets or returns whether related rows and columns appear in crosstabs.

Data type
Integer

Syntax
viewobject.ShowRelated = flag
flag = viewobject.ShowRelated

Legal values
Value Description
TRUE Show related rows and

columns in crosstabs.
FALSE Do not show related rows and

columns in crosstabs.

Usage
By default, a crosstab shows only subheaders with related records to the header. For example, nonzero values, by
default, do not appear under headers. Use this property to show all subheaders even if no record values correspond
to the header and subheader combination.

Approach: StatusBarVisible property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_STATUSBARVISIBLE_EXSCRIPT',1)} See example
Sets or returns whether the status bar is visible.

Data type
Integer

Syntax
docwindowobject.StatusBarVisible = flag
flag = docwindowobject.StatusBarVisible

Legal values
Value Description
TRUE (Default) The status bar is

visible.
FALSE The status bar is hidden.

Usage
Hide the status bar when you want to expand the size of a view, enhance its appearance, or prevent users from
switching manually to another view or environment.

Approach: TableName property (Query class)
{button ,AL(`H_LAS_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_las_TABLENAME_query_class_EXSCRIPT',1)} See example
Sets or returns the file name of the table specified by a Query object.

Data type
String

Syntax
queryobject.TableName = string
string = queryobject.TableName

Legal values
Any table name accessible from the connection specified by the Query's Connection property. The table name can
include the file extension and path.

Usage
This property is mutually exclusive of the SQL property. When you specify an SQL statement, Approach executes the
SQL statement and clears the TableName property setting.

Approach: TableName property (Table class)
{button ,AL(`H_LAS_TABLE_CLASS;',0)} See list of classes
{button ,AL(`H_las_TABLENAME_TABLE_CLASS_EXSCRIPT',1)} See example
Returns the name of the table specified by a Table object.

Data type
String

Syntax
tableobject.TableName = string
string = tableobject.TableName

Legal values
The name of a table associated with a document.
If a table alias is assoicated with the document, TableName reports the alias name as the table name with an
extension. For example, if the table Employees is joined to itself, TableName returns the names of the two instances
of the table as follows:
Employees:1
Employees:2
If there are tables joined in the document with the same name, TableName returns the names of the two tables as
follows:
Order_1
Order_2

Usage
For a Table object, retrieve the TableName for use as an input for other properties such as the GetTableByName
method of a Document object.
Use the FileName, FullName, and Path properties to retrieve other table information.

Approach: Tables property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_TABLES_EXSCRIPT',1)} See example
(Read-only) Returns the tables used in the document (.APR file).

Data type
BaseCollection

Syntax
basecollectionobject = documentobject.Tables

Legal values
All the tables in the document.

Approach: TimerInterval property
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

{button ,AL(`H_las_TIMERINTERVAL_EXSCRIPT',1)} See example
Sets or returns the time duration of the user timer, in milliseconds.

Data type
Long

Syntax
viewobject.TimerInterval = flag
flag = viewobject.TimerInterval

Legal values
Any integer greater than or equal to 200.

Usage
This property sets the length of a timer. When the timer expires, the UserTimer event starts, and the timer resets to
the TimerInterval value and counts down again. This cycle continues until you set the TimerInterval to zero.

Approach: Title property
{button ,AL(`H_LAS_CROSSTAB_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Sets or returns the title of the worksheet or crosstab.

Data type
String

Syntax
viewname.Title = stringexp
stringexp = viewname.Title

Legal values
You can set this property to any string up to 256 characters.

Approach: Transparent property
{button ,AL(`H_LAS_COLOR_CLASS;',0)} See list of classes
(Read-only) Returns whether the color is transparent.

Data type
Integer

Syntax
value = color.Transparent

Legal values
0 means the color is opaque and 255 means the color is transparent.

Usage
Whatever is beneath a transparent object shows through. This is useful, for example, for placing text inside a circle
instead of a rectangle.

Approach: User property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_USER_EXSCRIPT',1)} See example
(Read-only) Returns the current user or group name who is using the document (.APR file).

Data type
String

Syntax
stringexp = documentobject.User

Legal Values
Any user or group that has access to the document.

Usage
You can use the name of the user or group to personalize the document, or refer to them by name when you are
requesting input.

Approach: VarTable property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_VARTABLE_EXSCRIPT',1)} See example
(Read-only) Returns information for all variable fields defined in the document (.APR file).

Data type
Table

Syntax
Set vartableobject = documentobject.VarTable

Legal Values
The legal value for the VarTable property is VarTable.
The default value for the VarTable property is the variable table for the current document.

Approach: Vertical property
{button ,AL(`H_LAS_TEXTBOX_CLASS;',0)} See list of classes
This property is not used in this version of Approach.

Approach: Views property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_VIEWS_EXSCRIPT',1)} See example
(Read-only) Returns the names of all the views in the document (.APR file).

Data type
BaseCollection

Syntax
basecollection = documentobject.Views

Legal Values
The names of all the views in the current document.

Usage
Use this property to list all the views for a document (.APR file). In the user interface, you can see the list by choosing
File - Approach File Properties.

Approach: ViewTabVisible property
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_las_VIEWTABVISIBLE_EXSCRIPT',1)} See example
Sets or returns whether the view tabs are visible.

Data type
Integer

Syntax
docwindowobject.ViewTabVisible = flag
flag = docwindowobject.ViewTabVisible

Legal values
Value Description
TRUE (Default) Display the view

tabs.
FALSE Do not display the view tabs.

Usage
Hide view tabs to expand the size of a view, enhance its appearance, or prevent users from switching manually to
another view.

Approach: Windows property
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_las_WINDOWS_EXSCRIPT',1)} See example
(Read-only) Returns a list of all windows controlled by the current application (.EXE file).

Data type
BaseCollection

Syntax
Set collectionobject = applicationobject.Windows

Legal values
All windows controlled by the application.

Usage
Use this property to identify windows open in Approach without having to know them explicitly by name.
Identify a single window by specifying its index in the Windows BaseCollection.
For example, if you want to close the first window opened in the current Approach session, specify the first window in
Windows (the BaseCollection is numbered starting from zero):
Call CurrentApplication.Windows(0).Close()

Approach: Window property
{button ,AL(`H_LAS_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_las_WINDOW_EXSCRIPT',1)} See example
(Read-only) Returns the document window for this document (.APR file).

Data type
DocWindow

Syntax
documentwindow = documentobject.Window

Legal Values
Any of the document windows in the current document.

Usage
Determine which document window is in use so you can update the characteristics of the window, such as which tool
bars are visible.

Approach: Broadcast event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when you invoke the Approach application from one of the following:

• the operating system command line prompt
• an embedded Approach object
• another SmartSuite product script

Internal syntax
Broadcast(source, parameter)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

parameter
A long that is passed from the command line to the Broadcast event script.

Usage
This event is a mechanism for passing information to Approach from the command line.
For example, to specify a predetermined task, invoke Approach with the following command, where the task is
defined in the Broadcast event script for Test.APR:
Approach.exe "Test.APR" /BROADCAST=1

Approach: CellDataChange event
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Occurs when you change the data in a worksheet cell.

Internal syntax
CellDataChange(source, columnlabel)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

columnlabel
A string representing the header of the column. The header, or label, may differ from the column's field name.

Approach: CellGetFocus event
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Occurs when a worksheet cell is selected by being tabbed into, clicked, or selected using the keyboard.

Internal syntax
CellGetFocus(source, columnlabel)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

columnlabel
A string representing the header of the column. The header, or label, may differ from the column's field name.

Approach: CellLostFocus event
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Occurs when a worksheet cell is selected and then deselected by a user's tabbing out of it, clicking another cell or
selecting another cell using the keyboard.

Internal syntax
CellLostFocus(source, columnlabel)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

columnlabel
A string representing the header of the column. The header, or label, may differ from the column's field name.

Approach: Change event
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
Occurs when the value stored in a field changes. The change can be triggered in several ways:

• If the display element is a check box or radio button, clicking the object triggers the change event.
• If the user tabs to the display element and changes its value, the change event is triggered when the user

changes the focus to another display element (by tabbing or clicking in the view or by moving to another record)
or when the record is saved.

Internal syntax
Change(source)

Parameters
source

A LotusScript keyword representing the object that is associated with the event. Always use the word source as
the parameter and not the current object's name.

Usage
Determine when the value in a field changes, so you can initiate another action.
For example, when users enter data in the Number of Children field box and change the focus to another display
element, you can check the Family Rate check box.

Approach: Click event
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX

_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTU
REPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_
LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

Occurs when a display element is selected using the mouse, the keyboard, or a shortcut key.

Internal syntax
Click(source, x, y, flags)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the object's name.

x
A long that passes the horizontal coordinate of the click location, in twips, to the sub.

y
A long that passes the vertical coordinate of the click location, in twips, to the sub.

flags
A long representing which mouse button was clicked, the right or left.

Usage
Use when you want to initiate an action. For example, you can write a script to change the font color of a paragraph
of text when the user clicks a command button.

Approach: CloseWindow event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when a window in a document (.APR file) is closed.

Internal syntax
CloseWindow(source, document)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

document
The Document object.

Approach: DocumentClose event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when you close the active document window (.APR file).

Internal syntax
DocumentClosed(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Usage
When you or your users close a document, you can initiate another action, such as running a procedure or opening
another document.

Approach: DocumentCreated event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when a new document (.APR file) is created in the application.

Internal syntax
DocumentCreated(source, document)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

document
The Document object.

Usage
When you or your users create a new document, you can determine the settings for the document, such as which set
of icons is visible.

Approach: DocumentOpened event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when you or a user opens an existing document (.APR file).

Internal syntax
DocumentOpened(source, document)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

document
The Document object.

Usage
When you or your users open a document, you can initiate another action, such as moving the insertion point to a
particular field in a specific record.

Approach: DoubleClick event
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX

_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_LISTBOX_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTU
REPLUS_CLASS;H_LAS_PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_
LAS_ROUNDRECT_CLASS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

Occurs when a display element is double-clicked.

Internal syntax
DoubleClick(source, x, y, flags)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the object's name.

x
A long that passes the horizontal coordinate of the click location, in twips, to the sub.

y
A long that passes the vertical coordinate of the click location, in twips, to the sub.

flags
A long representing which mouse button was clicked, the right or left.

Usage
Use when you want to initiate an action. For example, you can write a script to resize a rectangle when the user
double-clicks it.

Approach: GotFocus event
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
Occurs when a display element is selected by being tabbed into, clicked, or selected using the keyboard. A display
element that is selected can appear bold, highlighted with a dashed border or dark border.

Internal syntax
GotFocus(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Usage
Determine when users select a display element, and then initiate another action.
For example, when users tab into a field box, you can enable a set of radio buttons.

Approach: KeyDown event
{button ,AL(`H_LAS_FIELDBOX_CLASS;',0)} See list of classes
Occurs when a key is pressed down. It determines the status of every key on the keyboard, including ALT, CTRL,
SHIFT, function keys, as well as a combination of keys.

Internal syntax
KeyDown(source, charcode, repeats, flags, overridedefault)

Parameters
source

A LotusScript keyword representing the display element that receives the event. Always use the word source as
the parameter and not the current display element's name.

charcode
An integer passing the character code of the key the user pressed, such as KEY_F1 or KEY_ALT, to the subroutine.
Use the ASCII character codes to determine which key is pressed.

repeats
An integer representing the number of times the keystroke is pressed.

flags
An integer representing the bit values for extended keys. For a list of valid flag values, see the following table.

Value Description
 0 -7 Scan code.

Value depends on the original
equipment manufacturer.

8 Extended key.
For example, the right-hand ALT
and CTRL keys of an enhanced
101- or 102-key keyboard.
1 = extended key.
0 = not an extended key.

9 -12 Reserved. Do not use.
13 Context code.

1 = user holds down ALT while
pressing the key.
0 = user presses the key without
holding down ALT.

14 Previous key state.
1 = key is pressed down before a
message is sent.
0 = key is released before
message is sent.

15 Transition state.
1 = key is being released.
0 = key is being pressed.

overridedefault
An integer representing whether the keystroke behaves according to its default setting or to another setting.

Usage
Initiates an action when a user presses a keystroke or combination of keystrokes.
For example, you can write a script that runs when the user presses the CTRL +C keys to copy a display element.

Approach: KeyPress event
{button ,AL(`H_LAS_FIELDBOX_CLASS;',0)} See list of classes
Occurs when a key is pressed on the keyboard. It only determines the status of printable characters such as A-Z, 0-9,
and so on, and a few other keys such as the TAB and ENTER keys.

Internal syntax
KeyPress(source, charcode, repeats, flags, overridedefault)

Parameters
source

A LotusScript keyword representing the display element that receives the event. Always use the word source as
the parameter and not the current display element's name.

charcode
An integer passing the character code of the key the user pressed, such as KEY_F1 or KEY_ALT, to the subroutine.
Use the ASCII character codes to determine which key is pressed.

repeats
An integer representing the number of times the keystroke is pressed without releasing the key.

flags
A short representing the bit values for extended keys. For a list of valid flag values, see the following table.

Value Description
0-7 Scan code.

Value depends on the original
equipment manufacturer.

8 Extended key.
For example, the right-hand ALT
and CTRL keys of an enhanced
101- or 102-key keyboard.
1 = extended key.
0 = not an extended key.

9-12 Reserved. Do not use.
13 Context code.

1 = user holds down ALT while
pressing the key.
0 = user presses the key without
holding down ALT.

14 Previous key state.
1 = key is pressed down before a
message is sent.
0 = key is released before
message is sent.

15 Transition state.
1 = key is being released.
0 = key is being pressed.

overridedefault
An integer representing whether the keystroke behaves according to its default setting or to another setting.

Usage
Initiates an action when a user presses a printable character key.
For example, you can write a script that determines what users are entering into a field box, and then send the text
directly to the printer.

Approach: KeyUp event
{button ,AL(`H_LAS_FIELDBOX_CLASS;',0)} See list of classes
Occurs when a key is released. It determines the status of every key on the keyboard, including ALT, CTRL, SHIFT,
function keys, as well as a combination of keys.

Internal syntax
KeyUp (source, charcode, repeats, flags, overridedefault)

Parameters
source

A LotusScript keyword representing the display element that receives the event. Always use the word source as
the parameter and not the current display element's name.

charcode
An integer passing the character code of the key the user pressed, such as KEY_F1 or KEY_ALT, to the subroutine.
Use the ASCII character codes to determine which key is pressed.

repeats
An integer representing the number of times the keystroke is pressed without releasing the key.

flags
A short representing the bit values for extended keys. For a list of valid flag values, see the following table.

Value Description
0-7 Scan code.

Value depends on the original
equipment manufacturer.

8 Extended key.
For example, the right-hand ALT
and CTRL keys of an enhanced
101- or 102-key keyboard.
1 = extended key.
0 = not an extended key.

9-12 Reserved. Do not use.
13 Context code.

1 = user holds down ALT while
pressing the key.
0 = user presses the key without
holding down ALT.

14 Previous key state.
1 = key is pressed down before a
message is sent.
0 = key is released before
message is sent.

15 Transition state.
1 = key is being released.
0 = key is being pressed.

overridedefault
An integer representing whether the keystroke behaves according to its default setting or to another setting.

Usage
Initiates an action when a user releases a keystroke or combination of keystrokes.
For example, you can write a script that runs when the user releases the CTRL +C keys when copying a display
element.

You can also detect when a key is released so you can cause something to happen until the key is released.
For example, if users hold down an arrow key to move a display element, use the KeyUp event to stop moving the
display element.

Approach: LostFocus event
{button ,AL(`H_LAS_CHECKBOX_CLASS;H_LAS_DROPDOWNBOX_CLASS;H_LAS_FIELDBOX_CLASS;H_LAS_

LISTBOX_CLASS;H_LAS_RADIOBUTTON_CLASS;',0)} See list of classes
Occurs when a selected display element loses focus when users tab out of it, click another display element, or select
another display element using the keyboard.

Internal syntax
LostFocus(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Usage
Determine when users have moved focus from a display element, and then initiate another action.
For example, when users tab out of a field box, you can enable a set of radio buttons.

Approach: MailCheck event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when the mail is checked from within Approach.

Internal syntax
MailCheck(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Approach: MailSend event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when mail is sent from within Approach.

Internal syntax
MailSend(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Approach: MouseDown event
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX

_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_
PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLA
SS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

Occurs when a mouse button is held down while the mouse pointer is on a display element.

Internal syntax
MouseDown(source, x, y, flags)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the object's name.

x
A long that passes the horizontal coordinate of the click location, in twips, to the sub.

y
A long that passes the vertical coordinate of the click location, in twips, to the sub.

flags
A long representing which mouse button was clicked, the right or left.

Usage
Combine this event with the MouseUp event to monitor when the user drags a display element to a different location.

Approach: MouseMove event
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX

_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_
PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLA
SS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

Occurs when the mouse is moved while the mouse button is held down on a display element.

Internal syntax
MouseMove(source, x, y, flags)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the object's name.

x
A long that passes the horizontal coordinate of the click location, in twips, to the sub.

y
A long that passes the vertical coordinate of the click location, in twips, to the sub.

flags
A long representing which mouse button was clicked, the right or left.

Usage
Combine this event with the MouseUp and MouseDown events to monitor when the user drags a display element to a
different location.

Approach: MouseUp event
{button ,AL(`H_LAS_BUTTON_CLASS;H_LAS_CHECKBOX_CLASS;H_LAS_ELLIPSE_CLASS;H_LAS_FIELDBOX

_CLASS;H_LAS_LINEOBJECT_CLASS;H_LAS_OLEOBJECT_CLASS;H_LAS_PICTUREPLUS_CLASS;H_LAS_
PICTURE_CLASS;H_LAS_RADIOBUTTON_CLASS;H_LAS_RECTANGLE_CLASS;H_LAS_ROUNDRECT_CLA
SS;H_LAS_TEXTBOX_CLASS;',0)} See list of classes

Occurs when a mouse button is released while the mouse pointer is on a display element.

Internal syntax
MouseUp(source, x, y, flags)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the object's name.

x
A long that passes the horizontal coordinate of the click location, in twips, to the sub.

y
A long that passes the vertical coordinate of the click location, in twips, to the sub.

flags
A long representing which mouse button was clicked, the right or left.

Usage
Combine this event with the MouseDown event to monitor when the user drags a display element to a different
location.

Approach: NewRecord event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when a new record is created.

Internal syntax
NewRecord(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Approach: OpenWindow event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when a window in a document (.APR file) opens.

Internal syntax
OpenWindow(source, document)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

document
The Document object.

Approach: PageSwitch event
{button ,AL(`H_LAS_FORM_CLASS;',0)} See list of classes
Occurs when users switch from one page to another in a form .

Internal syntax
PageSwitch(source, pagefrom, pageto)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

pagefrom
A long representing the page from which you switched.

pageto
A long representing the page to which you switched.

Approach: Quit event
{button ,AL(`H_LAS_APPLICATION_CLASS;',0)} See list of classes
Occurs when you exit Approach.

Internal syntax
Quit(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Usage
When you or your users close the application, you can intitiate another action, such as returning all user preferences
to the default settings.

Approach: RecordChange event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when users change from one record to another.

Internal syntax
RecordChange(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Approach: RecordCommit event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when a record is committed when users move to another record or add a new record.

Internal syntax
RecordCommit(source, table)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

table
A string representing the name of a table in the document (.APR file).

Approach: SelectColumn event
{button ,AL(`H_LAS_WORKSHEET_CLASS;',0)} See list of classes
Occurs when users select a worksheet column by tabbing into it, clicking it, or selecting it with the keyboard.

Internal syntax
SelectColumn(source, columnlabel)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

columnlabel
A string representing the header of the column. The header, or label, may differ from the column's field name.

Approach: SelectionChange event
{button ,AL(`H_LAS_LISTBOX_CLASS;',0)} See list of classes
Occurs when a user changes the item selected in a list box.

Internal syntax
SelectionChange(source)

Parameters
source

A LotusScript keyword representing the object that is associated with the event. Always use the word source as
the parameter and not the current object's name.

Usage
Determine when the value of a list box changes so you can initiate another action.

Approach: SwitchFrom event
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

Occurs when you switch from one view to another view.

Internal syntax
SwitchFrom(source, view)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

view
The View object from which you switched.

Approach: SwitchTo event
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

Occurs when you switch to one view from another view.

Internal syntax
SwitchTo(source, view)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

view
The View object to which you want to switch.

Approach: UserTimer event
{button ,AL(`H_LAS_CHARTVIEW_CLASS;H_LAS_CROSSTAB_CLASS;H_LAS_ENVELOPE_CLASS;H_LAS_FOR

MLETTER_CLASS;H_LAS_FORM_CLASS;H_LAS_MAILINGLABELS_CLASS;H_LAS_REPORT_CLASS;H_LAS
_VIEW_CLASS;H_LAS_WORKSHEET_CLASS;',0)} See list of classes

Occurs when the user timer expires.

Internal syntax
UserTimer(source)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

Usage
Set the length of the timer with the TimerInterval property. When the timer expires, the UserTimer event starts, and
the timer resets to the TimerInterval value and counts down again. This cycle continues until you set the TimerInterval
to zero.

Approach: ViewSwitch event
{button ,AL(`H_LAS_DOCWINDOW_CLASS;',0)} See list of classes
Occurs when users switch from one view to another view within a document (.APR file).

Internal syntax
ViewSwitch(source, fromview, toview)

Parameters
source

A LotusScript keyword representing the object that receives the event. Always use the word source as the
parameter and not the current object's name.

fromview
The View object from which the user switched.

toview
The View object to which the user switched.

action bar
A set of buttons located initially at the top of the Approach work area, below the SmartIcons. The set of buttons you
see most often lets you

• Switch to the Browse or Design environment
• Create a new record
• Create a find request in the current view or the Find Assistant
• Execute a named find

To hide or move the bar, use the right mouse button to click the bar in a space between buttons; then choose a
location from the menu.
You can also drag the action bar to a new location, or let it float.

alias
A virtual copy of a database file, for use in special types of joins. An alias is not a physical duplicate of a database,
but acts like it for the purposes of joining.
Use an alias to join a database to itself for advanced kinds of summaries and groupings, or to be able to join to a
single database in multiple ways.

Approach file
The Approach file does not store data; instead, it stores the views you create. Through these views, you can look at
and work with your data, which is stored in the database file(s) associated with the Approach file.

An Approach file can contain as many views (forms, reports, worksheets, and so on) as you need for your database
application. The Approach file also stores calculated fields, variable fields, macros, and scripts.
When you create or open a database file, Approach automatically creates an Approach file for it.
Approach file extension: .APR

Approach file password
A sequence of characters you must enter before you can work in an Approach file.

• Passwords can have up to 16 characters.
• They are not case-sensitive.

One file can have more than one password. Different passwords for the same file can give you different privileges in
that file.
For example, one password can give you complete access to edit and enter data in the associated databases as well
as change the design of the views. Another password for the same file might let you do nothing except look at data.
This is useful for files on networks; such files often must be available to many users, not all of whom should be able
to change the file.
To define a password for an Approach file, choose File - TeamSecurity.
You can also define passwords for dBASE and FoxPro database files associated with the Approach file.

scrolling list
Three kinds of data-entry types for fields offer a predefined list of values, from which users select one value. When
the predefined list is long enough, Approach adds a vertical scroll bar to the list. The following data-entry types are
scrolling lists:

• Drop-down box
• Field box and list
• List box

arithmetic expression
An expression that performs a basic calculation on numeric, date, or time values. For example:
ShipDate + 15 returns a date equal to 15 days from the date in the ShipDate field of the current record.
Operators used in arithmetic expressions:

+ Addition
- Subtraction
* Multiplication
/ Division

ascending order
The sort order that arranges records from

• A to Z, for text (usually case-insensitive)
• Smallest to largest, for numbers
• Earliest to latest, for dates and times

Boolean field
A field that stores a single value, either Yes or No. You can enter these values in a Boolean field:

For Yes For No
Yes, yes No, no
Y, y N, n
1 0

If you enter any other values (even, for example, False), Approach returns Yes.

A check box, which you define to have a checked and an unchecked value, is a good data-entry type to use with a
Boolean field.

Browse
The environment in Approach for entering, editing, and viewing data in a database.
To go to Browse, do one of the following:

• Click the Browse button in the action bar.
• Click the Environment button in the status bar and select Browse.
• From the View menu, choose Browse & Data Entry.
• Press CTRL+B.

Any changes you make to records or any new records you create are saved automatically by Approach.

calculated field
A field that stores a formula using data from a record.
Enter the formula as part of the field definition. Write the formula to calculate with data

• In one record at a time.
• Across a range of records, using a summary function. For example, SCount(Account_Name).

After you add the calculated field to a view, Approach displays the result of the formula for each record. If the formula
uses a summary function, go to Print Preview or Design to see the result.
Calculated fields are stored in the Approach file (.APR), not the database. They appear at the bottom of the Field
Definition list and, in italics, at the bottom of the Add Field list.

check box
A data-entry type for fields. In Browse, to enter data in the field, you must select the check box or deselect it.
Usually, a field is represented by only one check box. A check box is especially useful as a data-entry type for a
Boolean field, which accepts only Yes or No as values.
To make a field a check box: In Design, double-click the field to display the InfoBox. In the Basics tab, select Check
boxes as the data-entry type. Define one checked value, one unchecked value, and a label for each check box.
When you first add a new field to a view and make it a check box, it appears to be deselected (no check mark).
Actually, it has a null value--that is, the field has neither the checked value nor the unchecked value in it. In the
Default Value tab of the Field Definition dialog box, you can define the checked or unchecked value as default data.
This is called initializing the check box.

client
• In network terminology, a computer used to gain access to files or applications on a network.
• In OLE terminology, an application that receives data from a server application.

column gutter
The area at the top of worksheets and crosstabs.
To add fields to a worksheet or crosstab, drag them to the column gutter.

comparison expression
An expression that compares two values and evaluates to Yes or No. For example:
Total <= 100 evaluates to Yes if the value in the Total field of the current record is less than or equal to 100; to No if
the value is greater than 100.
Comparison expressions are useful when doing finds, creating calculated fields, and writing formulas used to validate
field data.
Operators used in comparison expressions:

< Less than
<= Less than or equal to
= Equal
<> Not equal
> Greater than
>= Greater than or equal to

compound document
A document that contains a linked or embedded OLE object.
For example, if you have an OLE object from another application in an Approach file, the Approach file is a compound
document.

constant
A value in a formula that is used exactly as you type it; it does not change from one record to another.
Constants can be numbers, dates, text, times, or Boolean values. Text, dates, and times must be enclosed in single
quotation marks, like this:
'Price'
'1/1/95'
'11:30:00'

container application
An application that contains an OLE object.
For example, if you have an OLE object from another application in an Approach file, Approach is the container
application.

context menu
The context menu always appears between Create and Window on the menu bar.

The context menu changes depending on the selected object or view. It provides commands appropriate for the
selected object or view.

crosstab
Also called a cross-tabulation worksheet: A view that categorizes and summarizes data from many records. For
example, here's a worksheet in a sales database. Notice that some records repeat the same data in the same field:

A crosstab lets you collapse the five sales records into two summaries, one for each sales rep:

current record
The active record in a view. In Browse, you can enter and edit data in the current record.
In a form, the record showing is the current record.
In a worksheet, columnar report, or mailing label, the current record is the record you click. If no record is selected,
the current record is the first record.
As you switch between views based on the same database, the current record stays the same.

database
A collection of data organized into fields and records.
An Approach file (.APR) is not itself a database, but it is associated with at least one database. When you choose File
- New Database, you create (1) a database, in which you store data (for example, names, addresses, and so on), and
(2) an Approach file, in which you create views that let you work with the data.
When you enter data, Approach immediately saves the data in the database.
You can join databases so that more than one database is associated with a single Approach file.
Approach works with many database file types, but you can work in Approach without having another database
product on your computer.
Other database products use the terms "table" or "data file" for a collection of data organized into fields and records;
unlike Approach, they reserve the term "database" for a collection of tables.

database password
A sequence of characters you must enter before you can access the data in a database.
The password grants you read-only or read-write access to the database(s) associated with an Approach file.
To define a password for a dBASE or FoxPro database, use File - User Setup - Approach Preferences and click the
Password tab.

data
The information entered in a field within a record and stored in a database. Typically, data is text, numbers, dates, or
times.
Approach automatically saves data as you enter and edit records.

date field
A field that can hold a single date. You can perform finds, sorts, and calculations on dates in a date field.
To format a date, in Design, double-click the field and use the InfoBox.
Regardless of the format of the date field, in Browse, you must enter a date month first, then day, then year.

default style
A collection of style and layout information that Approach uses to create new views, unless you select a SmartMaster
template or application.
To modify the default style, choose File - User Setup - Approach Preferences and choose Default Style in the Display
tab.

delimited text file
A text file that uses separators such as commas, spaces, or tabs to break up the text into discrete units. One row in a
delimited text file represents one record.
When you open a delimited text file as a database in Approach, the units of text become data in fields.

descending order
The sort order that arranges records from

• Z to A, for text (usually case-insensitive)
• Largest to smallest, for numbers
• Latest to earliest, for dates and times

Design
The environment in Approach for laying out and designing views. In Design, you do tasks such as adding fields to
views, adding color, changing label text, changing fonts, and creating text blocks.
To go to Design, do one of the following:

• Click the Design button in the action bar.
• Click the Environment button in the status bar and select Design.
• From the View menu, choose Design.
• Press CTRL+D.

You must save the work you do in Design by choosing Save Approach File from the File menu.

detail database
When an Approach file is associated with joined databases, each view not only can display the data of its main
database; it can also display supplementary information from the other databases, giving details about the records of
the view's main database.
When a database provides supplementary information, it's called a detail database.
If the main and detail databases have a one-to-many relationship, a repeating panel is a good way to display data
from the detail database. The panel displays the "many" details of "one" record of the main database
A view can have only one main database, but it can have many detail databases.

drop-down box
A data-entry type for fields. In Browse, it offers a predefined list of values. Because it limits the values users can
select and doesn't allow users to enter new values, this kind of field can help prevent the introduction of inaccurate
data into your database.
To make a field a drop-down box: In Design, double-click the field to display the InfoBox. In the Basics tab, select
Drop-down list as the data-entry type.

embed
To insert an OLE object in Approach. An embedded object gives you access to a server application when you are
working inside Approach. When you embed an object

• You edit the embedded object by opening the server application from within Approach.
• The data is stored with the database associated with the Approach file, not in the server application.
• There is no link to the server application.

When you embed an object
• In Browse, in a PicturePlus field, it becomes part of a record.
• In Design, it becomes part of the background of a view.

expression
A combination of operators, operands, and functions that yields a single result. In Approach, you can create
arithmetic, comparison, and logical expressions.
A formula can consist of one or more expressions.

field box
A data-entry type for fields. In Browse, type in the field box to enter data in the field.
The field box is the default data-entry type, so when you add a field to a view, Approach adds it as a field box. To
change to another data-entry type: In Design, double-click the field to display the InfoBox. In the Basics tab, select
another data-entry type.

field box and list
A data-entry type for fields. In Browse, it offers a predefined list of values and a field box that lets users enter a new
value. The new value becomes part of the list.
To make a field a field box and list: In Design, double-click the field to display the InfoBox. In the Basics tab, select
Field box & list as the data-entry type.

field
The smallest unit of data in a database. It's a good idea to break your information into as many meaningful fields as
you can, especially if you plan to do finds on the data in the field.
For example, in an address database, rather than have just two fields for name and address, break the information
into at least six separate fields: first name, last name, street, city, state, and postal code. You can then do finds for all
persons living in the same city, all persons with the same last name using the same postal code, and so on.

• To define a field for a database: From the Create menu, choose Field Definition.
• After you define a field, you can add it to a view: In Design, from the context menu, choose Add Field.

field definition
A set of attributes that includes the field name, the type of data the field can contain, a maximum field length for some
field types, and optional settings for controlling and validating data as it's entered in the field.
Every field in a database has a definition. Choose Create - Field Definition to define a field.

field mapping
Approach uses field mapping to ensure the accuracy of field definitions or the relationship between fields and data.
You may need to map fields when you

• Open an Approach file in which previous changes to field definitions have not been saved in the Approach file.
• Import data from one database into another. Field mapping defines which fields should receive the data being

imported.
• Import one Approach file (.APR) into another. Field mapping defines what kind of data, stored in fields that already

exist in the receiving file, should appear in the fields of the views being imported.

field name
A name for a field, stored in the database as part of the field definition.
Follow these guidelines when you name a field: Begin the name with a character; use only letters, numbers, and
underscores; use no more than 10 characters; avoid spaces and characters like $, &, @, and so on.
A field name is different from the label that identifies a field in a view:

Approach uses the field name as the label when you add the field. You can, however, change the label without
changing the field name, and vice versa.

field reference
In formulas, a reference to a field. When calculating the formula, Approach uses the value in the referenced field from
the current record.
For example, the calculated field Commission contains the formula
INVOICE.Amount * 0.05
The name INVOICE.Amount is a reference to the value in the Amount field of the INVOICE database. In one record,
Amount is 3500; in another, 2800; so the formula result varies according to the value in the referenced field.
You must add the name of the database to the field reference when the Approach file has joined databases. The
name of the database must be all uppercase letters, separated by a period (no spaces) from the field name.

field type
Also called "data type," the specification for the type of data you can enter in a field. Assign a field type to a field in
the Field Definition dialog box.
Possible field types: Boolean, calculated, date, memo, numeric, PicturePlus, text, time, variable.

file type
The specification for the way a program stores and organizes data in files. In Approach, you can use a variety of
database file types.

find condition
An instruction you give to Approach to find records in a database. A find consists of one or more find conditions.
A find condition can range from the simple, such as a single value you want to find, to the advanced, such as find
conditions that use operators (=, <>, >, <, and so on) or formulas or If statements. You can also combine find
conditions in a single find when you link the conditions with AND or OR.
The following is an example of a simple find condition expressed in English language format:
In database "Offices," find all records in field "City" that are exactly equal to "Tokyo"
When Approach finds records that match the find conditions, it displays only those records as the found set.

find
Also known as a search or query: To search for a set of records that satisfy one or more conditions you specify about
data in one or more fields. For example, you might want to find all records in which the field Country contains France.
In Browse, click Find in the action bar to start a find.

Approach then gives you two ways to do a find:
• Find request. Use the blank view to enter your find conditions.
• Find Assistant. The assistant is especially useful for finding duplicate records, distinct records, and top or lowest

values in a field.
The set of records that is the result of a find is called the found set. After a find, Approach keeps the found set as the
only data you work with until you show all the records in the database or do another find.
If you know that you'll do the same find often, name the find so you can use it again.

Find (environment)
The environment in Approach in which you specify find conditions. In Browse, click Find in the action bar to go to the
Find environment.

Then use the buttons that now appear in the action bar to create and execute the find.
When Approach finds records that match the find conditions, it returns you to Browse and displays only those records
as the found set.

find request
One of the two ways Approach gives you to do finds. (The other is the Find Assistant.)
A find request is a blank view that you use for entering find conditions.
To create a find request, in Browse, click Find in the action bar. Approach then displays the tools for doing a find using
a find request: a blank view in which to enter find conditions; buttons in the action bar to create, execute, and cancel
the find; and a set of SmartIcons representing the operators you can use in the find conditions.

fixed-length text file
A text file in which the text is broken into blocks of a specific length. If you open a fixed-length text file as a database
in Approach, the blocks of text become data in fields.

form
A kind of view that focuses on a single record. You can use the same form to see every record in the database, but
the form shows you only one record at a time.
Forms are useful for entering and editing data for a record.
Forms can have up to five pages. They can also be converted into dialog boxes for use in macros or scripts.
To create a form: From the Create menu, choose Form.

form letter
A view that combines text you type with names and addresses from a database record, so you can send copies of the
same letter addressed to many different people. You can also create envelopes printed with addresses for the form
letters.
To create a form letter, choose Create - Form Letter.

found set
The group of records that match your find conditions.
After a find, Approach keeps the found set as the only data you work with until you show all the records in the
database or do another find.

full record locking
A method of network data-sharing in which only one user at a time can edit a record, although more than one person
can look at a record at the same time; the opposite of optimistic record locking.
To turn on full record locking, choose File - User Setup - Approach Preferences. In the General tab, deselect
optimistic record locking.

function
A built-in formula that performs a specialized calculation automatically, often by using values that you supply. Such
values are called parameters.
Some functions perform simple calculations. Many, however, simplify your work by performing complex calculations;
for example, SNPV calculates the net present value of an investment based on a series of periodic cash flows and a
discount rate.

grid
A non-printing matrix of dotted lines that you can show in Design. The grid provides a background to help you lay out
objects in a view.

handles
In Design, squares at the edges of a selected object. To resize the object, drag one of its handles.

If you are enlarging a field that is in a report panel or repeating panel, be sure the resized field stays completely
inside the panel.

index
A file that contains a list of the values of a field, with pointers to the records in the database that contain those values.
Finds and sorts on a field go faster when the field is indexed.
Approach creates an index for a field (excluding memo fields) the first time you do a find or sort on that field. It
maintains the index as you enter data.
Approach index files have the file extension .ADX. Each .APR can have only one .ADX file associated with it.
Approach stores indexes for all the fields in the single .ADX file.
If you delete the .ADX file, Approach creates a new one with the next sort or find that you do. When you compress a
file, Approach rebuilds the index file.

InfoBox
A window that shows the properties of the selected object, such as its name, color, borders, alignment, and so on.
The InfoBox can display the properties of every object in a view, including the view itself. To display the InfoBox so
you can change those properties, go to Design and then do one of the following:

• Double-click the object whose properties you want to change. For a view, double-click the background, away from
any other object.

• From the context menu, choose the Properties command of the object.
• Select the object and click the InfoBox icon:

You can keep the InfoBox open as you work in Design.
The InfoBox displays the object's properties on one or more tabs. Click the tabs to see the properties.
Changes you make to a property happen either at once or as soon as you click elsewhere, so you can see the effects
of your changes immediately and decide whether you like the results.

join
To link two databases so that you can work with the data of all the databases from inside a single Approach file; show
relationships between the data of the joined databases; do finds; and so on.
You create a join by linking one or more fields that the databases have in common.
For example, the following illustration shows a diagram of two joined databases, one with data about authors, the
other with data about publishers. They're joined on the Publisher and Name fields because those fields contain data
that both databases have in common.
bmc join.bmp
Joined databases are a fundamental part of a relational database application like Approach. They reduce the amount
of data entry you have to do and increase the power and ease with which you can manipulate your data.
To join databases: From the Create menu, choose Join.

join field
A field in one database linked to a field in another database, thus joining the databases. Join fields don't have to have
the same name, nor do they have to be defined as the same data type; but they must contain the same kind of data.
Often, a join field is a numeric ID field created specifically for joining. In the following illustration, the employee
database contains personal data, such as first and last names, address and phone number. The department
database contains department information, such as manager, location, and cost center. The two databases are joined
on the Dept ID field because that is how the two databases are related: each employee is assigned to a department,
and every department comprises employees.

key field
One or more fields that can identify each record in a database as unique, for example, an invoice number or an ID
number.
When exporting data from Approach or saving a database file to a different file format, you must specify one or more
key fields. If you do not specify a key field that is unique, an error message displays indicating that you can't export or
save the file because a duplicate key exists.

label
Text used to identify a field in a view, stored in the Approach file (.APR) as part of the design of a view.
Approach uses the field name as the label when you add the field to the view. You can, however, change the label
without changing the field name, and vice versa.

link
To place a copy of an OLE object in Approach, with a connection to the original object in the server application. If the
original object changes, the copy also changes in Approach.
When you link an object

• In Browse, in a PicturePlus field, it becomes part of a record.
• In Design, it becomes part of the background of a view.

list box
A data-entry type for fields. In Browse, it offers a predefined list of values. Because it limits the values users can
select and doesn't allow users to enter new values, this kind of field can help prevent the introduction of inaccurate
data into your database.
Unlike a drop-down box or field box and list, however, you can size the list box to display as many of its values as you
like.
To make a field a list box: In Design, double-click the field to display the InfoBox. In the Basics tab, select List box as
the data-entry type.

logical expression
An expression that evaluates one or more comparison expressions and returns a result of Yes or No.
For example, suppose the field Orders contains 462 and the field ShipDate contains the date 1/15/95:

• (Orders >= 500) AND (ShipDate >= '1/1/95') returns No
• NOT (Orders >= 500) returns Yes

Operators used in logical expressions:

AND Returns Yes if both expressions are true
OR Returns Yes if either or both are true
NOT Evaluates a comparison expression and

returns Yes if it's false, No if it's true

lookup
An automatic display of data from a many-to-one or one-to-one relationship.

macro button
A control that you can add to a form, report, or other view. When you click the button, it executes an attached macro
or script.
To create a button, choose Create - Control - Button.
Attach a macro to the button in the Macros tab of the InfoBox for the button.

macro
A single command that executes a sequence of other commands. You define this sequence when you create the
macro.
Use macros to automate Approach tasks.
To create a macro, choose Edit - Macros - New.

mailing label
A view that displays database fields and text in a mailing address format. You can then print the addresses on
standard or custom mailing labels.

main database
Every view in an Approach file represents a database. The database represented by the view is called its main
database. The main database determines how many, and what kind of, records can be visible in the view.
When an Approach file is associated with joined databases, each view can have a different main database. A view
must have one main database, and it can have many detail databases.
To find out what the main database of a view is, in Design, select the view and then look in the Basics tab of the
InfoBox.
Example: Suppose a company has two joined databases, DEPT (departments) and EMP (employees). One view has
DEPT as its main database. The company has five departments, so that view can show a maximum of five records.
The company has 100 employees. A view that has EMP as its main database can show a maximum of 100 records.

many-to-many
A relationship in which two or more records in one database can be related to two or more records in a joined
database. For example, each order can include several products, and each product can appear on several orders.
In Approach, you can create a many-to-many relationship between databases, but it is better to design your
databases so that you can create one-to-many or many-to-one relationships.

many-to-one
A relationship in which two or more records in one database can be related to only one record in a joined database.
For example, several employees can be in the same department.

memo field
A field that can hold large amounts of text (maximum size: 64K). Define a field as memo instead of text if the field has
to store more than approximately 254 characters, for example, customer profiles or specifications of products.
Design your database so that you can avoid doing finds or sorts on memo fields.
Data of memo fields is not stored in the database file itself; rather, it is stored in a file with the extension .DBT (for
dBASE), .DBQ (for Paradox 3.5), or .MB (for Paradox 4.0).
Another way to store a large document as part of a record: Define a PicturePlus field and embed the document in it
as an OLE object.

named style
A set of layout and style properties, such as font and color, that you name and save as a group. You can then apply
the set of properties again, as a group, rather than applying individual properties one at a time.
You can apply a named style to a particular object or to a view as a whole; Approach uses only the properties that
pertain to the selected object.
To create or apply named styles, in Design, double-click the view or object and click the Named Style tab in the
InfoBox.

numeric field
A field that can hold numbers and can be formatted with numeric symbols, such as a currency symbol. You can
perform arithmetic calculations on data in a numeric field.
To format a number, in Design, double-click the field and use the InfoBox.

OLE object
An object you embed or link in Approach through OLE. The object can be

• Part of the layout of a view. In Design, choose Create - Object.
• Data in a PicturePlus field, if you define the field to accept an OLE object. In Browse, select the field to activate

the OLE server application.
Double-click an OLE object to edit it using the tools from the server application without leaving Approach.
Approach also lets you use OLE in the other direction--that is, you can embed an Approach OLE object inside
another application.

OLE (Object Linking & Embedding)
A method for data exchange, using links, and for the creation of compound documents, using embedded objects, that
lets you use one application from inside another.
For example, in Approach, you can use OLE to

• Add data to a record by embedding a Lotus WordPro document in a PicturePlus field.
• Use a SmartMaster background from Lotus Freelance Graphics as the background of an Approach view.

Approach also lets you use OLE in the other direction--that is, you can embed an Approach OLE object inside
another application.

one-to-many
A relationship in which a record in one database can be related to two or more records in a joined database. For
example, one department can have several employees. In a form, you use a repeating panel to represent the "many"
data from a one-to-many relationship.

one-to-one
A relationship in which a record in one database is related to only one record in a joined database. For example, a
vehicle number can be related to a license number for a single vehicle.

operand
A value in a formula, used in conjunction with one or more operators. Operands can be either constants (numbers,
dates, text, or times) or field references. In the following formula, INVOICE.Amount (a field reference) and 0.05 are
operands; * is the operator:
INVOICE.Amount * 0.05

operator
A symbol in a formula that defines the calculation or other evaluation to be performed. A plus sign (+) and a less-than
sign (<) are examples of operators.

optimistic record locking
A method of network data-sharing in which two users can edit a record at the same time; the opposite of full (or
pessimistic) record locking.
When the second user tries to enter changes, Approach warns that the second user's changes will write over those of
the first user.
Approach uses optimistic record locking unless you deselect this option in File - User Setup - Approach Preferences,
the General tab.
Approach runs faster with optimistic record locking on because it does not have to check whether to lock a record
when a user tries to view it. Use this method when no more than one user at a time is likely to try to edit a record.
.

panel
A report component, visible in Design, that determines how field data appears in the report.

parameter
A value to be operated on in a function. Parameters appear in parentheses after the function name and can be either
constants or field references. For example, the function Fill(text,number) could take the parameters
Fill('Baden',2)
to return BadenBaden.

PicturePlus field
A field that can contain graphics or OLE objects.
To allow freehand drawing with the mouse on top of a graphic or OLE object in a PicturePlus field: go to Design,
double-click the field to display its InfoBox, and then on the Basics tab, select Allow drawing.

PowerClick reporting
An Approach feature that allows you to modify an existing columnar report. Use PowerClick reporting to reorganize
and summarize data.
In Design, be sure View - Show Data is turned on.

Select the field to use for grouping records. Then, from the Column menu, choose Groups & Totals. Then choose a
leading or trailing summary option. You can also use these PowerClick icons:

Next, select the column to summarize. From the Column menu, choose Groups & Totals and choose a calculation
option. You can also use these PowerClick icons:

Sum (grand total): Maximum: Standard deviation:

Count:

Minimum: Variance:

Average:

Print Preview
The environment in Approach that shows views on the screen as they appear when printed.

radio button
A data-entry type for a field that accepts only one of a small number of predefined values.
In Browse, to enter data in the field, you must select one of the values offered.
To make a field a set of radio buttons: In Design, double-click the field to display the InfoBox. In the Basics tab, select
Radio buttons as the data-entry type. Define a clicked value and a label for each button.

read-only access
Permission to read data, but not to modify it.

• Make individual fields read-only. In Design, double-click the field to bring up the InfoBox and click the Basics tab.
• Assign a database password to your files to grant read-only permission to users who know the password. Choose

File - User Setup - Approach Preferences and click the Password tab.

read-write access
Permission to read and modify data in a database. You can assign a database password to your files to grant read-
write permission to users who know the password.
Assign a database password to your files to grant read-write permission to users who know the password. Choose
File - User Setup - Approach Preferences and click the Password tab.

record
One set of related information in a database. For example, in an employee database, the information on each
employee (name, address, date of birth, and so on) is a record.

relational database application
A database application that lets you bring together data from more than one database in a single form, report, or
other view. Approach is a relational database application.
The distribution of data among several databases, which you then join, is a basic concept of a relational database
application such as Approach. If you create multiple databases and join them rather than try to put all your data into a
single database, you save yourself work and increase the variety of ways you can view and manipulate your data.
Plan your databases and store your information so as to take advantage of the power and efficiency of joined
databases.

repeating panel
In an Approach file that has joined databases, a repeating panel is an object you add to a form to display the "many"
side of a one-to-many relationship between the main database of the form and one of its detail databases.
The repeating panel shows data from multiple records in a detail database that are related to the current record of the
main database.
For example, a repeating panel in a department form might list all the employees in the department.
To create a repeating panel: In Design, from the Create menu, choose Repeating Panel.

report
A view used for organizing, summarizing, and presenting data from many records. A report shows all the records in
the database or the current found set on one or more pages.

row gutter
The area at the left side of worksheets and crosstabs that holds row headers.
To convert a worksheet to a crosstab, drag a column header from a worksheet and drop it in the row gutter.

server application
An application used to create an OLE object.

server
One or more central computers that store files and applications to which users have access across a network.

SmartIcons
Buttons (icons) in the Approach window that let mouse users choose commonly used commands and macros.
To select SmartIcons, click them.
To see a short description of what an icon does, leave the mouse pointer on the icon for a few seconds.
To change the set of SmartIcons, choose File - User Setup - SmartIcons Setup.

SmartMaster application
An Approach file with one or more associated databases, designed to be a ready-to-use application for business or
personal use.
To create an application based on a SmartMaster application, choose File - New and select a SmartMaster
application.
To create a SmartMaster application, save an Approach file as an .MPR file to the SmartMaster directory. Define the
directory in the General tab of the Approach Preferences dialog box.

SmartMaster template
A predefined set of field definitions for a single database file. Approach provides SmartMaster templates for many
common business and personal uses, such as a customer database and an employee database.
To create a new database from a template rather than defining all of your fields from scratch, choose File - New and
select a SmartMaster template.
To start from the basis of an even more fully developed sample business application, select a SmartMaster
application.

sort
To organize records alphabetically, numerically, or chronologically by data in one or more fields. You also designate
whether to organize the records in ascending (for example, A - Z) or descending order (Z - A).
You can sort an entire database or a found set.

sort field
A text, numeric, date, or time field used for sorting records in a database.
The first field you select is the primary sort field. Subsequent fields you select resolve conflicts in the sort order that
arise when the same data appears in the primary sort field in different records.
For example, when sorting a database of names, select Last Name as the primary sort field and First Name as the
second sort field so that Smith, John and Smith, Alice appear in correct alphabetical order.

status bar
The bar at the bottom of the Approach work area.
The information available from the status bar changes depending on the current environment. You can always,
however, click the buttons on the far right to change to another view or environment.
In Browse, the status bar indicates whether you are working with all records of a database or a found set.

summary function
A function that applies to a group of records. For example, the SSum(Amount) summary function adds the values in
the Amount field in a range of records you specify.

summary panel
An area in a report that may contain a calculated field that summarizes data.

summary report
A report that omits record-by-record detail and displays only summary information.

tab order
The order in which you move through the fields in a view when you press TAB. Also referred to as data-entry order.
To change the tab order, in Design, choose View - Show Tab Order and then change the numbers that appear. Use
the buttons in the action bar to confirm your changes.
Calculated fields cannot be included in the tab order.

text field
A field that can hold any characters you can type, including letters, numbers, and symbols. The maximum length of a
text field is approximately 250 characters. If you need to hold larger amounts of text in a field, define the field as
memo.
You can search on a text field using any character in the field.

time field
A field that can hold a single time. You can perform finds, sorts, and calculations on times in a time field.
To format a time, in Design, double-click the field and use the InfoBox.

Tools palette
In Design, a set of buttons for drawing shapes and lines, creating text blocks, and adding fields.
To show the Tools palette, choose View - Show Tools palette.
To move the palette around in the work area, drag its title bar.

variable field
A field that temporarily stores a value, which can be text, a number, a date or time, or a Boolean value. When you
define a variable field, set its data type and initial value. The value is the same for every record in your database
application.
Use variable fields to store intermediate values in calculations and macros, and to pass values between Approach
and Notes using Notes/FX.
Variable fields are stored in the Approach file (.APR).

view
An interface that you create in an Approach file (.APR). Views let you look at and work with the data stored in the file's
associated database files. Views are stored in the Approach file.
When you create a new file, Approach provides a standard form and a worksheet. You can modify these views and
add as many other views as you need.
You can design each view. In Design, double-click the background and the objects to display the properties of
objects, including the view itself, in the InfoBox. To save design work: From the File menu, choose Save Approach
File.
Approach provides these kinds of views: form (for looking at one record at a time), report, form letter, mailing labels,
worksheet, crosstab, chart, and envelope.

view tab
The folder tab that appears at the top of the window for each view in the Approach file.

Click the tab to go to that view.
Go to Design to

• Double-click the tab to change the name. (Maximum number of characters: 79.)
• Drag the tab to move the view to another position.

worksheet
A view that presents data from many records in a grid of columns and rows. Each record occupies a single row in
the worksheet.
A worksheet shows all the records in the database or the current found set.

zoom
To change the magnification of a view on the screen. You can zoom in for a closer look or zoom out for the big
picture. Zooming does not affect the size of a view when you print it, only how it appears on the screen.

How do I access data from a database using a batch process?
There are two strategies for working with data using LotusScript in Approach:

• You can access values in records through the fields in a view
• You can bypass the user interface and access data directly from a database

LotusScript lets you automate the first type of data access by controlling elements of the Approach interface that you
are already familiar with: placing fields in a view and modifying the value entered in the field.
The second strategy accesses the data in a fast batch process without using the Approach user interface. This data
access process involves the following operations:

• Establishing a link to a database using a Connection object
• Selecting the records to access from the database using a Query object
• Storing the required information locally while it is in use using a ResultSet object

To understand more about when to use this method for accessing data, see Connection class.
The following example illustrates each of the steps for accessing data directly. It uses these objects:

• Document (referred to using the global product variable CurrentDocument)
• Connection
• Query
• ResultSet

Example - accessing database data directly
The following script comes from the Approach Meeting Room Scheduler SmartMaster application. To open this
SmartMaster, choose File - New Database and select the Meeting Room Scheduler. The script is a global sub.
Sub ReadBlock(DateReserved As String)
 ' DateReserved Date formatted as a string
 ' Declare objects for connecting to the reservation
 ' database.
 Dim C As New Connection
 Dim Q As New Query
 Dim RS As New ResultSet
 Dim s As Double ' Start time of existing reservation
 Dim f As Double ' End time of existing reservation
 Dim Row As String ' Room reserved
 Dim n As String ' Reservation owner
 Dim Tname As String ' A shorter reservation table name
 ' reference
 Dim FullTname As String ' Table name and path reference
 ' Collect the name of the first table associated with the
 ' document, numbered starting at zero.
 Tname = CurrentDocument.Tables(0).TableName
 ' Place the names of the current rooms in the view.
 Call DisplayRooms()
 ' Build the connection to retrieve the reservation
 ' information for the passed-in date. This is a standard
 ' data-access sequence. To reuse it, modify SQL SELECT
 ' statement as needed.
 ' Note that the database is dBASE IV in this case.
 If C.ConnectTo("dBASE IV") Then
 Set Q.Connection = C
 ' Table name for the query needs to have full path.

 FullTname = CurrentDocument.Tables(0).Path & Tname & _
 ".dbf"
 ' The query is set to retrieve values from all the table
 ' fields for records whose Date Reserved field matches
 ' the date.
 ' Note that the syntax for the SQL SELECT statement
 ' requires extra quotation marks to define the string
 ' concatenation.
 Q.SQL = "SELECT * FROM """+FullTname+""""+ Tname+ _
 " WHERE (("_
 + Tname+".""Date Reserved"" = ' "+DateReserved+"'))"
 ' Assign this query to the result set.
 Set RS.Query = Q
 ' Use the result set to fill in the reservation
 ' information in the view.
 ' If the result set was created successfully, then...
 If (RS.Execute) Then
 ' Confirm that there are reservations for this date.
 If (RS.NumRows) Then
 RS.FirstRow ' Go to the first record in the
 ' result set.
 ' Loop through all of the records in the result set
 ' and display the reservation information in the
 ' view.
 Do
 s = RS.GetValue("Start Time")
 f = RS.GetValue("End Time")
 Row = RS.GetValue("Room Name/Number")
 n = RS.GetValue("Reserved By")
 ' Build a text block in the view with the
 ' reservation information from this pass through
 ' the loop by calling the global function
 ' DisplayBlock.
 Call DisplayBlock(n, s, f, row)
 Loop While RS.NextRow
 End If ' NumRows not zero
 End If ' Result set successful
 End If ' Connection successful
 ' Close the connection to allow other connections to this
 ' database.
 C.Disconnect
End Sub

How do access data from a Notes database?
The Connection, Query, and ResultSet objects let you access Notes data from Approach. You might want to do this to
create Approach reports or to search for data in a Notes database.
To create a connection to a Notes database, you must know the following:

• The data-source type of the database: Is the database on a server, on your local hard disk, or on the workspace?
• The name of the table to search.
• The user name and password, if required to access the table.
• The fields that you want to use in the find.

Connecting to a Notes database on a server involves the following operations:
• Determining the exact server name. To do so, choose File - Open; in "Files of type," select Lotus Notes - Server;

and note the name of the server you are working with. The following is an example of a server name:
CN=Approach_OU=SJC_OU=A_O=Lotus

• Changing the underscores (_) in the server name to forward slashes (/). The example server name becomes the
following:
CN=Approach/OU=SJC/OU=A/O=Lotus

• Determining the database name, including path. An example database name is EXAMPLES\BUSCARD.NSF.
• Determining the user name and password, if necessary to access the database name.
• Building ConnectTo method arguments. The following table describes these arguments.

ConnectTo method argument Value
DataSourceType Lotus Notes - Server
UserId A string
Password A string
Database ServerName!DatabaseName

Example - connecting to a Notes database on a server
The following connection script shows how these pieces come together in the ConnectTo method statement:
Dim Con As Connection
Dim Qry As Query
' Make the connection.
' No UserId or Password is required to access this database.
If Con.ConnectTo("Lotus Notes - Server",,,_
 "CN=Approach/OU=SJC/OU=A/O=Lotus!Examples\Buscard.nsf") then
 Set Qry.Connection = Con
 ' Continue building query and result set.
 Con.Disconnect
End If

Example - connecting to a local Notes database
The following example illustrates a connection to a local Notes database. The text of this script is stored in C:\
<PATH>\Samples\dw08_s1.lss. It does the following:

• Determines the types of connections you can make and prints a list to the Output panel of the IDE.
• Makes a "Lotus Notes - Local" data source connection and connects to a database called NAMES.NSF.
• Lists all of the tables in NAMES.NSF and opens one called People.
• Searches that table in the First Name and Last Name fields and prints the names of the people in that table to the

IDE.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
' Declare objects for a Connection, Query, and ResultSet.
 Dim MyConnection As New Connection

 Dim MyQuery As New Query
 Dim MyResultSet As New ResultSet
' Declare a set of variables for an array, and for the
' arguments of the above objects.
Dim MyArray As Variant ' Array for temporary
 ' storage
Dim MyPath As String ' Data source path
Dim MyDatabaseSource As String ' Current data source type
Dim MyDatabase As String ' Database name
Dim MyTable As String ' Table name
Dim MyUserId As String ' User login name
Dim MyPassword As String ' User password
Dim i As Integer ' MyArray index
Dim LastName As String ' Data retrieved from table
Dim FirstName As String ' Data retrieved from table
' Print a list of data source types available in the output
' panel of the IDE. Use this list to determine the exact string
' required (in the ConnectTo method) to make the connection to ' the data source.
MyArray = MyConnection.ListDataSources()
' Use LotusScript functions LBound (lower bound) and Ubound
' (upper bound) to determine the limits of the data source
' types array.
For i = LBound(MyArray) To UBound(MyArray)
 ' Print the data source types to the Output panel of the
 ' IDE.
 Print "Data source("i") = "MyArray(i)
Next
' Set the arguments for the connection object.
' Tip: You could use an input box to get this information from
' the user and connect to whatever the user specifies.
MyDatabaseSource = "Lotus Notes - Local"
' Change this path to match your operating system.
MyPath = "C:\NOTES\DATA\"
MyDatabase = "NAMES.NSF"
' This table has no user or password requirements, so these
' strings are blank.
MyUserId = ""
MyPassword = ""
' Connect to the database.
If MyConnection.ConnectTo(MyDatabaseSource, MyUserId, _
 MyPassword, MyPath & MyDatabase) Then
 ' List the available tables in the database.
 MyArray = MyConnection.ListTables()
 For i = LBound(MyArray) To UBound(MyArray)
 ' Print the data source types to the IDE Output panel.
 Print "Table("i") = "MyArray(i)
 Next
 ' Specify the table that data will be extracted from.

 MyTable = "People"
 ' Set the Connection property of the Query object to
 ' the current connection.
 Set MyQuery.Connection = MyConnection
 ' Specify the table to be searched, including path.
 ' The ampersand (&) concatenates pieces of the string.
 MyQuery.TableName = MyPath & MyDatabase & "\" & MyTable
 ' Set the Query property of the ResultSet to the query.
 Set MyResultSet.Query = MyQuery
 ' Get the data from the table and put it in the result set. If
(MyResultSet.Execute) Then
 ' Make sure there is data in the table.
 If (MyResultSet.NumRows) Then
 ' Start at the first row.
 MyResultSet.FirstRow
 ' Loop through the records and get the values from
 ' the First_Name and Last_Name fields.
 Do
 LastName = MyResultSet.GetValue("Last_Name")
 FirstName = MyResultSet.GetValue("First_Name")
 ' Print the data to the Output panel of the IDE.
 Print "Person" & MyResultSet.CurrentRow & _
 "in the table is " & FirstName & " " & LastName
 ' Continue looping until there are no more rows.
 Loop While MyResultSet.NextRow
 Else
 ' If the table is empty, warn the user.
 Messagebox "The table is empty.", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Empty Table"
 End If ' If there is data in the table.
 Else
 ' If the result set was not successful, warn the user.
 Messagebox "The query did not succeed. Check the " & _
 "connection.", MB_OK + MB_ICONINFORMATION + _
 MB_APPLMODAL, "Unsuccessful Query"
 End If ' If the result set was successful.
Call MyConnection.Disconnect()
Else
 ' If the connection was not successful, warn the user.
 Messagebox "Connection failed", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Connection"
End If ' If the connection was successful.
End Sub

How do I change the summaries in a report?
This example uses the same report to display more than one type of summary information, according to user input.
Changing the summaries in an existing report involves the following operations:

• Prompting the user for a field to group records by.
• Grouping the panel on the input field.
• Displaying the report in Print Preview mode.

The following script illustrates these operations.

Example - displaying a different summary report
This example is part of the application stored in C:\<PATH>\Samples\dw08_s6.APR.
When the user switches to the report, this script prompts for how to group the report summaries. The original report
is columnar with summary groupings.
Sub SwitchTo(Source As Report, View As View)
' SwitchTo event for a report object
' * RUN-TIME DEPENDENCIES
' * Files: The report that the script is attached to is a
' * summary report with a group-by field.
 Dim MyGrp As String ' Store user input.
 Dim Flag As Integer ' Indicates successful field name
 ' entry.
 ' Go to the Browse environment.
 CurrentApplication.ApplicationWindow.DoMenuCommand(IDM_browse)
 ' Prompt the user for the field name by which the user wants
 ' to group records.
 Flag = 1
 While Flag = 1
 MyGrp = InputBox$("What do you want to group by?_
 (Date, Product, RepID)"&Chr(10)&Chr(13)&"Date"&_
 Chr(10)&"Product", "Grouping", "Date", 300, 300)
 If MyGrp <>"Product" And MyGrp<>"RepID" And _
 MyGrp<>"Date" Then
 Flag = 1
 Beep
 Messagebox "Invalid Group Field." & Chr(13) & _
 "Try Again.",0+48+0+0, "Invalid Entry"
 Else
 Flag = 0
 End If
 Wend
 ' Change the current summary panels (leading and trailing)
 ' to reflect the new grouping.
 Source.Summary.GROUPBYDATAFIELD = MyGrp
 Source.Summary.MyLPanelFld.Datafield = MyGrp
 Source.Summary.MyLPanelFld.LabelText = MyGrp
 ' Go to Print Preview so that the user is prompted to sort
 ' on the new grouping and can see the results.
CurrentApplication.ApplicationWindow.DoMenuCommand(IDM_Preview)
End Sub

How do I control how users enter data?
LotusScript gives you control over the flow of your application by allowing you to set the keyboard focus, prompt for
user input, determine which commands are available at a given time, and determine which actions happen by default.
The Meeting Room Scheduler SmartMaster application provides several examples of controlling the flow of an
application. One sequence in particular executes the following operations:

• Switching to a form displayed as a dialog box when the user clicks a button.
• Setting the focus on the form to indicate where user input is required.
• Displaying the room reservations using the date entered.
• Duplicating the dialog box closure so that both clicking the mouse and pressing ENTER complete the action.

These operations are illustrated in following scripts. They are part of the Approach Meeting Room Scheduler
SmartMaster application. To open this SmartMaster, choose File - New Database and select the Meeting Room
Scheduler.

Example - clearing data in a dialog box
The first sub is attached to the SwitchTo event for the Enter Date form. This form is already set in the InfoBox to
display as a dialog box.
Sub SwitchTo(Source As Form, View As VIEW)
' SwitchTo event for the Enter Date form
' This script clears any text from the field box for date entry
' on the form. The Enter Date form is set to display as a
' dialog box.
 Source.Body.fbxDate.Text = ""
End Sub

Example - button script to check for valid user input
The next sub processes input when the user clicks the OK button on the form.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
' Click event for the btnOK Button object on the Enter Date
' form. This script processes the date entered in the fbxDate
' field box.
 ' Display the schedule on the Schedule Display view.
 Call ProcessDate() ' Global sub that checks that the date
' is valid and displays the schedule for
 ' that date.
End Sub ' Click event for btnOK on the Enter Date form

Example - keyboard script to check for valid user input
The final script is almost the same as the previous one, except it runs when the user presses ENTER to close the
dialog box instead of clicking OK. The sub is attached to the KeyDown event for the user entry text block on the Enter
Date form. The ENTER key translates to a character code of 13.
Sub KeyDown(Source As Fieldbox, CharCode As Long, _
 Repeats As Integer, Flags As Integer, _
 OverrideDefault As Integer)
' KeyDown event for the fbxDate FieldBox object on the Enter
' Date form
' When the user presses ENTER while the focus is on this field ' box, this script
processes the date entered.
' If the KeyDown event returns an ENTER key (character code 13)
 If CharCode = 13 Then
 ' Display the schedule for that date.

 Call ProcessDate() ' Global sub that checks that the
 ' date is valid and displays the
 ' schedule for that date.
 End If ' If the ENTER key is used in fbxDate
End Sub ' KeyDown event for fbxDate on the Enter Date form

How do I create a document to display the result set?
When you create a result set, there are two ways to show the retrieved data in an Approach view:

• Use the result set as a table associated with a new Approach document. Use this technique if you are going to
use this subset of information for tasks that require user input, such as finding records with user input or building
reports.

• Display data from the result set in text blocks or other display elements. Use this technique if you are using the
information from the result set in addition to data already available in a view. For example, add text blocks
containing result set information to a report that already contains information from another database.
For more information, see How do I display data from a result set in a view .

Approach documents (.APR files) are instances of the Document object. To create a new document to display a result
set you must do the following:

• Create a connection to an existing table.
• Create a general query to extract records from that table.
• Create a result set to contain extracted records from the table on disk.
• Create a new .APR file using this result set.

The following example illustrates each of these steps. The text of this script is stored in C:\<PATH>\Samples\
dw08_s5.lss.

Example - displaying a result set in a new document
The CreateDocument sub creates a new document in Approach that displays the data from a result set. The result set
is the main table for the new document.
Sub CreateDocument
' * RUN-TIME DEPENDENCIES
' * Files and paths: This script depends on an existing
' * dBASE IV database in the directory:
' * C:\LOTUS\WORK\APPROACH\BLANK.DBF
' Declare the necessary variables.
Dim MyConnection As New Connection ' Connection to a table
Dim MyQuery As New Query ' Query used to extract
 ' data from the table
Dim MyResultSet As New ResultSet ' Result set to contain
 ' extracted data in the
 ' new document
Dim MyDoc As Document ' New Document object
' Specify the type of database (dBASE IV) to connect to as the
' source for the new document.
If MyConnection.ConnectTo("dBASE IV") Then
 ' Specify the name of the connection MyConnection that the
 ' query MyQuery uses to create the new document.
 Set MyQuery.Connection = MyConnection
 ' Specify the full path and table name to be used as source
 ' for the new document.
 MyQuery.TableName = "C:\LOTUS\WORK\APPROACH\BLANK.DBF"
 ' Add a statement to specify a subset of records to be
 ' returned in the result set here. "MyQuery.SQL = ..."
 ' Specify the result set in the new database to receive the
 ' new records from the query.
 Set MyResultSet.Query = MyQuery
 ' If the connection and query succeed, create the new
 ' document.

 If (MyResultSet.Execute)Then
 Set MyDoc = New Document(MyResultSet)
 End If ' If the result set was successful.
 ' Error handling for a failed result set would go here.
 ' Disconnect from the source table.
 MyConnection.Disconnect
End If ' If the connection was successful.
' Error handling for a failed connection would go here.

End Sub

How do I display data from a result set in a view?
When you create a result set, there are two ways to show the retrieved data in an Approach view:

• Display data from the result set in text blocks or other display elements. Use this technique if you are using the
information from the result set in addition to data already available in a view. For example, add text blocks
containing result set information to a report that already contains information from another database.

• Use the result set as a table associated with a new Approach document. Use this technique if you are going to
use this subset of information for tasks that require user input, such as finding records with user input or building
reports.
For more information, see How do I create a document to display the result set .

To display information from the result set in a view, create display elements and place them in a view. You can modify
display elements using these properties:

• Background
• Border
• Color
• Height, Width
• Top, Left
• Name

The script that accomplishes this task involves the following operations:
• Creating the text block (or other display element) to hold the information.
• Filling the text block with the correct value from the result set.
• Setting the display properties for the text block so it matches the view.
• Positioning the text block in the view.
• Naming the text block.

The following script illustrates this process. It is part of the Approach Meeting Room Scheduler SmartMaster
application. To open this SmartMaster, choose File - New Database and select the Meeting Room Scheduler.

Example - displaying found data in a view
The example sub, DisplayBlock, displays the owner of a room reservation in the correct time slot in a view that
displays the reservation information for a particular day. The sub is called from another sub that creates a result set
for the specified day and passes the reservation information to DisplayBlock.
Sub DisplayBlock(Txt As String, Start As Double, _
 Finish As Double, RoomName As String)
' Display the reservation owner in the correct time slot
' in the current view body.
' DisplayBlock is called from readBlock.
 ' Txt reservation owner
 ' Start reservation start time
 ' Finish reservation end time
 ' RoomName reserved room's name or number
' * RUN-TIME DEPENDENCIES
' * Constants: Uses constants defined by LotusScript defined in
' * LSCONST.LSS.
' * Globals: Uses the global array Rooms() filled by the
' * readBlock sub.
' Declare variables.
 Dim Tt As textbox ' New text block to hold the
 ' reservation owner's name in the view
 Dim i As Integer ' Index of array with the room names

' Index of the room that matches the roomName passed in. It is
' used to determine the vertical placement of the reservation
' in the view.
 Dim MatchedRoom As Integer
' Offset and multiplier for the vertical placement of the
' reservation.
 Dim VerticalPlacement As Integer
' Search through the global array Rooms to find the room passed
' in from the schedule database using the global sub readBlock,
' also part of this .APR file.
 ' Set MatchedRoom to the index of the room passed in.
 For i = 0 To UBound(Rooms)
 If Rooms(i) = roomName Then
 MatchedRoom = i
 i = UBound(Rooms)
 End If ' If element matches the room passed in.
 Next
' Set position and display for the reservation.
' Header in the view takes up 1635 twips, each row in the table
' is 330 twips tall.
 VerticalPlacement = 1635 + (330 * MatchedRoom)
' Create the text block to hold the reservation.
 Set Tt = New TextBox(CurrentView.Body)
' Fill the text block with the reservation owner's name
' and spaces to center the text properly.
 Tt.Text = " " + Txt + " "
' Set display properties for the text block to match the form.
 Tt.Font.Size = 8
 ' Use Approach LotusScript constants for border style.
 Tt.Border.Style = $ltsBorderStyleNone
 Tt.Border.Left = True
 Tt.Border.Right = True
 Tt.Border.Top = False
 Tt.Border.Bottom = False
 ' Use Approach constants for line width.
 Tt.Border.Width = $apr1point
 ' Use LotusScript constants for color.
 Call Tt.Border.Color.SetRGB(COLOR_ULTRAMARINE)
 Call Tt.Background.Color.SetRGB (COLOR_50_GRAY)
' Set the position of the text block to correspond to the
' correct room and time.
 Tt.Height = 325
 Tt.Top = VerticalPlacement ' Current offset from top of
 ' form
' Convert reservation time (passed in) to the horizontal
' location and length on the form.
 Tt.Left = (((start - 8) * 750) + 945)
 Tt.Width = (750 * (finish - start))

' Add a prefix to the name of the text block so the
' ClearDisplay function can delete the reservation.
 Tt.Name = "Tt" + Str$(Tt.Top) + Str$(Tt.Left)
End Sub

How do I find records using the Find object?
There are two ways to automate finding records:

• Create a found set from records in a main or detail table associated with the specified .APR file. Specify the first
find condition with the New method, and add more find conditions using the And or Or methods of the Find object.

• Create a result set by accessing data from any table through Connection, Query, and ResultSet objects. Specify
find conditions using the SQL property of the Query object. The retrieved data is manipulated without appearing in
the user interface.
For more information about creating a result set, see Accessing data from a database using a batch process.

Before you choose which way to find data, consider how you want to use the found records:
• If you create a found set, you can see the record data immediately in fields in the application views.
• If you create a result set, you must do one of the following with the data:

• Modify the data through LotusScript.
• Display data from the result set in text blocks or other display elements.
• Create a new .APR file based on the result set.

These techniques for working with a result set are described in How do I modify records using a result set.
Finding records using a Find object involves the following operations:

• Determining the find condition or conditions. To use input from the user for the find, display a form as a dialog box
or use the LotusScript InputBox function.

• Creating a Find object, specifying the field to search and the value to match.
• Adding other conditions to the Find object, using the And or Or methods.

Example - button script to find records that match user input
The following example prompts the user for a last name and a state name, and it creates and executes a find using
the input. The script is part of the sample application stored in C:\<PATH>\Samples\dw08_s2.APR. The script is
attached to the Click event for a button on a form.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
' Click event for the btnLast_St object
' Apply the Find and Sort objects to the DocWindow using the
' FindSort method.
' Prompt the user to enter an employee's last name and state.
' Start search after the user enters the information.
 ' Create a DocWindow object.
 Dim MyDocWin As DocWindow
 ' Retrieve the active DocWindow.
 Set MyDocWin = CurrentApplication.ActiveDocWindow
 ' Create a Table object.
 Dim MyTable As String
 ' Retrieve the name of the first table for the document.
 MyTable = CurrentDocument.Tables(0).TableName
' Prompt the user to enter find conditions for Last name and
' State.
 Dim MyLast As String ' User input for Last name
 Dim MyState As String ' User input for State
 ' Prompt user to enter employee's last name.
 MyLast = Inputbox$("Enter employee's last name", , ,300,300)
 ' Prompt user to enter postal code for the state.
 MyState = Inputbox$("Enter state abbreviation " & _
 "(For example, CA for California)", , ,300,300)

' Check that the user enters information or does not press
' Cancel.
If MyLast <> "" And MyState <> "" Then
' Find the records that match the user's input and
' sort them in ascending order by last name and first name.
 ' Create a new instance of Find object to search by last
 ' name entered by the user.
 Dim MyFind As New Find (MyTable & ".Last", MyLast)
 ' Also find by state.
 Call MyFind.AND (MyTable & ".ST", MyState)
 ' Create new instance of Sort object, sorted by last name.
 ' The constant LtsSortAscending indicates the sort
 ' direction.
 Dim MySort As New Sort (MyTable & ".Last", LTSSORTASCENDING)
 ' Also sort by first name in ascending order.
 Call MySort.ADD (MyTable & ".First", LTSSORTASCENDING)
 ' Start Find/Sort.
 ' Add error handling here to check for finds that return no
 ' records.
 ' Run the find.
 Call MyDocWin.FindSort (MyFind,MySort)
' Show the find results in a worksheet view.
 Set CurrentWindow.ActiveView = CurrentDocument.Worksheet~ 1
Else
 Exit Sub ' Exit if user pressed Cancel or did not enter
 ' values.
End Sub ' Click event for the btnLast_St object

How do I insert and use OLE controls?
Note This feature is not supported under OS/2.
If you have an OLE controls (OCX) embedded in an Approach form, you can access the object's methods and
properties through LotusScript as you would any other object. The following example opens an OCX Web browser,
called Sax Webster Control, in the Internet World Wide Web Sites SmartMaster application, and passes it a URL
string. The Webster OCX opens the Web page associated with that URL string, and the user is able to navigate
through the Web site. If the Webster browser is not loaded, an error message alerts the user and informs the user
how to install the OCX.
To use an OCX in Approach, you must first install the control. For more information, search on "Custom Controls" in
the Approach Help Index.

Example - displaying a web site using the Webster browser
Sub Click(Source As Textbox, X As Long, Y As Long, _
 Flags As Long)
' Click event for txtWebsterBrowser of the Found Set Report
' view to run the Webster browser
' * RUN-TIME DEPENDENCIES
' * Files: This script is part of the Internet World
' * Wide Web Sites SmartMaster application. It requires the SAX
' * Webster Control.
 Dim Rval As Integer ' Return value
' If there is no browser installed, print a message
' to the user (segment below).
 On Error 11026 GoTo NoWebster
 ' Set the global strURL to the current listing.
 StrURL = "http://" & source.URL.text
 ' If the First Viewed date is blank, add today's date.
 If (Source.fldFirstDate.Text = "") Then
 ' Enter today's date in the FirstDate field box.
 Source.fldFirstDate.ReadOnly = False
 Source.fldFirstDate.Text = Str(Today())
 Source.fldFirstDate.ReadOnly = True ' Set it back.
 End If
 ' Add today's date to the Last Viewed date.
 Source.fldLastDate.ReadOnly = False
 Source.fldLastDate.Text = Str(Today())
 Source.fldLastDate.ReadOnly = True
 ' Switch to the Webster Browser view.
 Set CurrentApplication.ActiveView = _
 CurrentDocument.Webster~ Browser
 ' Load the URL into the Webster OCX.
 Rval = CurrentView.Body.oleWebster.LoadPage(strURL, 0)
 ' Leave this sub.
 GoTo EndLoadPage
NoWebster:
 ' Warn the user that the Webster connection isn't working.
 Print Err
 Messagebox "You don't have the Webster browser " & _
 "installed. Go to Main Menu-Setup to install the " & _
 "Webster browser."

 Resume EndLoadPage
EndLoadPage:
End Sub

How do I modify records using a display element?
There are two ways to modify records in a database using LotusScript:

• using a display element
Change the text property of a field box, drop-down box, radio button, or other display object. This method handles
each field in each record individually. It is especially suited to entering specific user input into a database.

• using a result set
Create a result set and modify data in fields without exposing the data to the user. This method is especially
useful if you are modifying a large number of records or updating records with information that isn't unique to each
record or doesn't require user input.
For more information, see How do I modify records using a result set.

The technique demonstrated here assumes that the data you want to modify appears in a view.

Example - button script to modify field contents in a view
This script loops through each record in the current found set to make the modifications. The script is in the sample
application stored in C:\<PATH>\Samples\dw08_s4.APR.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
' Click event for the btnEnterComment button object
' Prompt the user for input.
' Append today's date to the user's comment.
' Append the comment to each record in the found set.
' * RUN-TIME DEPENDENCIES
' * Files: This script requires a field named Note in the main
' * table associated with the .APR file.
 ' Create a DocWindow object.
 Dim MyDocWin As DocWindow
 ' Retrieve the active DocWindow.
 Set MyDocWin = CurrentApplication.ActiveDocWindow
 Dim UserInput As String ' User input
 Dim NoteEntry As String ' The input with today's date
 Dim PreviousEntries As String ' Existing contents of Note
 Dim WholeNote As String ' All the data from Note
 Dim I As Integer ' Index of found set
 ' Get input from user.
 UserInput = Inputbox$("Enter your comments", , ,300,300)
 ' Check that the user entered a comment.
 If UserInput <> "" Then
 ' Append today's date to the user input.
 NoteEntry = Date$ & ": " & UserInput
 ' Loop through each record in the found set and
 ' update the Note field.
 MyDocWin.FirstRecord ' Go to first record.
 ' Loop through the number of records in the found set.
 For I = 1 To MyDocWin.NumRecordsFound
 ' Store the existing contents of the Note field.
 PreviousEntries = Source.Note.Text
 ' Append the new entry to the existing ones.
 WholeNote = PreviousEntries & " " & NoteEntry & "."
 ' Insert the new Note in the field.

 Source.Note.Text = WholeNote
 ' Go to the next record in the found set.
 MyDocWin.NextRecord
 Next
 End If ' If the user entered a comment.
End Sub ' Click event for btnEnterComment

How do I modify records using a result set?
There are two ways to modify records in a database using LotusScript:

• using a result set
Create a result set and modify data in fields without exposing the data to the user. This method is especially
useful if you are modifying a large number of records or updating records with information that isn't unique to each
record or doesn't require user input.

• using a display element
Change the text property of a field box, drop-down box, radio button, or other display object. This method handles
each field in each record individually. It is especially suited to entering specific user input into a database.
For more information, see How do I modify records using a display element .

The technique demonstrated here requires you to create a result set using Connection and Query objects as
described in Accessing data from a database using a batch process. After you create the result set, loop through the
records in the result set and make the changes.

Example - button script to modify field contents from a result set
The following example illustrates this process. The text of this script is stored in C:\<PATH>\Samples\dw08_s3.lss.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
' Click event for any button object
' * RUN-TIME DEPENDENCIES
' * Files: This script requires an ODBC database named Sample
' * in the same directory as the .APR file. The database
' * contains a table named USERID.CUSTOMER. The table contains
' * the fields State and SaleRep.
 Dim fName As String
 Dim Con As New Connection
 Dim Qry As New Query
 Dim Rs As New ResultSet
 Dim ChkSetV As Integer
 Dim MyVal As Variant
 Dim I As integer ' Index to table rows
 Dim TextToMatch As String
' Determine the find condition.
' Note: Here you can use some value in the current .APR to
' evaluate changes in the other file.
' For example, use "If MyVal = Val(Source.field1.text) Then"
TextToMatch = "CA"
' Open a connection to the table.
 If (Con.ConnectTo ("ODBC Data Sources","userid", _
 "password", "!Sample")<>False) Then
 ' Use this connection for the query.
 Set Qry.Connection = con
 ' Specify the table for the query.
 Qry.TableName = "USERID.CUSTOMER"
 ' Use this query to create the result set.
 Set Rs.Query = Qry
 ' Create the result set.
 ' If the query was successful, then...
 If ((Rs.Execute)<>False) Then
 ' Find the number of columns (fields) in the table.

 N = Rs.NumColumns
 ' Print the number of columns to the IDE Output panel.
 Print "Number of columns = ", N
 ' Print the names of each field in the table.
 For I= 1 To N
 fName = Rs.Fieldname (I)
 Print fName ' Output appears in the IDE.
 Next
 Else ' If the result set was not successful, warn the
 ' user.
 Messagebox "The query did not succeed.", _
 MB_OK + MB_ICONINFORMATION + MB_APPLMODAL, _
 "Unsuccessful Query"
 End If ' If the result set was successful.
 Else ' If the connection was not successful, warn the
 ' user.
 Messagebox "Connection failed", MB_OK + _
 MB_ICONINFORMATION + MB_APPLMODAL, "Connection"
 End If ' If the connection was successful.
' Read the value in a field and check if it matches the value.
' Continue while the variable i is less than or equal to the
' number of rows in the table.
 For I = 1 To Rs.NumRows
 Print I
 ' Get the value of the field State.
 MyVal = Rs.GetValue("State")
 Print MyVal
 ' If the value in the field matches the find condition,
 ' then set the value of another field.
 If MyVal = TextToMatch Then
 ' Set the field "SalesRep" to the value SF.
 Rs.SetValue "SalesRep", "SF"
 End If ' The field value matches.
 ' Update the current row and move to the next one.
 ' UpdateRow is required to commit the changes for each
 ' record.
 Rs.UpdateRow
 Rs.NextRow
 Next ' Until there are no more rows in the table
' Disconnect here to avoid trouble reconnecting later.
 Con.Disconnect
End Sub

How do I read information from the Registry?
The Registry stores information about your system, the software that you have installed, your user preferences, the
names of installed components, and your network services such as your Internet connections. Reading values in the
Registry and using them in your scripts can be quite useful.
The following scripts illustrate how to access the Registry to get the file path for an installed SmartSuite product. To
modify these scripts to get different infromation in the Registry, do the following:
1. Run the utility named REGEDIT.EXE.
2. Browse the Registry for the infromation that you want to extract. Note the precise specification of the Registry

entry, such as HKEY_LOCAL_MACHINE\Software\Lotus\SmartSuite\97.0 in the left pane, and the name of the
value to be extracted, such as "Path", in the right pane.

3. Use this specification to modify the values of the following in the sub GetLotusProductPath:
• KeyName$ variable
• ValueName$ variable
• First argument to the function RegOpenKeyExA

Example - global script
Copy these declarations to your global (Declarations) or !Declarations script in your document.
' (Declarations) or !Declarations
' Declarations for functions to read the Registry.
Declare Public Function RegOpenKeyExA Lib "advapi32" _
 Alias "RegOpenKeyExA" _
 (Byval HKEY As Long,Byval lpszSubKey As String, _
 Byval dwreserved As Integer,Byval samDesired As Long, _
 keyresult As Long) As Long
Declare Public Function RegQueryValueExA Lib "advapi32" _
 Alias "RegQueryValueExA" _
 (Byval HKEY As Long,Byval lpszValueName As String, _
 Byval dwreserved As Integer, lpdwtype As Long, _
 Byval lpData As String, readbytes As Long) As Long
Declare Public Function RegCloseKey Lib "advapi32" _
 Alias "RegCloseKey" (Byval HKEY As Long) As Long

Example - document script
Copy this sub to your document.
Sub CallingSub
 ' Declare a variable for the return value of the function GetProductPath.

Dim autoPath As String
 ' Get the value of GetLotusProductPath.

autoPath = GetLotusProductPath
MsgBox "The path for the product = " & autopath

End Sub

Example - document function
Copy this sub to your document.
Function GetLotusProductPath As String
 ' This function reads the 95 Registry and returns the
 ' file path for the specified SmartSuite product.
 ' Some variables needed by the functions calling the Registry.
 Dim happkey As Long

 Dim HKEY_LOCAL_MACHINE As Long
 Dim KEY_QUERY_VALUE As Long
 Dim KEY_READ As Long
 Dim KEY_ENUMERATE_SUBKEYS As Long
 Dim KEY_NOTIFY As Long
 Dim KeyName As String
 Dim ValueName As String
 Dim ValueType As Long
 Dim readbytes As Long
 Dim lstat As Long
 ' Some assignments for the functions.
 HKEY_LOCAL_MACHINE= &H80000002
 KEY_QUERY_VALUE=1
 KEY_ENUMERATE_SUBKEYS=8
 KEY_NOTIFY=16
 KEY_READ=KEY_QUERY_VALUE Or KEY_ENUMERATE_SUBKEYS Or KEY_NOTIFY

 ' A variable to store the base path to the Lotus Suite.
 Dim LotusProductPath As String
 LotusProductPath$=String(255,Chr$(32))

 ' The following key identifies the SmartSuite 97 product to look
 ' in the Registry.
 ' Uncomment the appropriate key.
 KeyName$="Software\Lotus\Approach\97.0"
' KeyName$="Software\Lotus\123\97.0"
' KeyName$="Software\Lotus\Freelance\97.0"
' KeyName$="Software\Lotus\WordPro\97.0"

 ' The following key identifies the name of the Registry value to look up.
 ' This is the same for all our products.
 ValueName$="Path"

 ' Reads the Registry and returns the path to the SmartSuite product
 ' as LotusProductPath$.
 lstat=RegOpenKeyExA(HKEY_LOCAL_MACHINE,KeyName$,0,KEY_READ,happkey)
 ReadBytes=255
 lstat=RegQueryValueExA(happkey,ValueName$,0, _
 valueType, LotusProductPath$,ReadBytes)
 regclosekey(happkey)

 ' Trim some trailing spaces.
 GetLotusProductPath=Left$(LotusProductPath$,ReadBytes-1)
End Function

How do I switch between views in a document?
One of the most common ways to control the flow of an application is to create a view for each task that a user may
perform in the application. Provide a menu view to guide users through the tasks. For each task, attach a script (or a
macro) to a button in the menu view that switches to a view that you have set up for the task.
You can easily automate switching views with a macro. If switching views is only one out of a series of actions being
automated, a script may be more suitable.
The following example comes from the Approach Meeting Room Scheduler SmartMaster application. To open this
SmartMaster, choose File - New Database and select the Meeting Room Scheduler. The script appears in the Click
event for the btnToday object on the Start view. When the user clicks this button, the script is executed and the
following occurs:

• The application switches to the Schedule Display view in order to show the rooms and times that are reserved for
a specific date.

• The current date (from the system) is formatted and appears in a text block at the top of the view.
• Schedule information in the view from previous uses is cleared.
• Today's schedule information appears in the view.

The following scripts accomplish this sequence of operations.

Example - button script calling a global function
This script appears in the Click event of the btnToday object on the Start view.
Sub Click(Source As Button, X As Long, Y As Long, _
 Flags As Long)
 ' Display the schedule for the current system date.
 Call DisplaySchedule(Format$(Now, "m/d/yy"))
End Sub

Example - global function for displaying a view
The function DisplaySchedule is a global function in the same .APR file. The tilde (~) precedes a space in the name
of a view.
Function DisplaySchedule(DateToDisplay As String)
 ' DateToDisplay Schedule date to display information for.
 ' Change to the Schedule Display view.
 Set CurrentWindow.ActiveView = _
 CurrentDocument.Schedule~ Display
 ' Display the passed-in date in fbxDateDisplay field box.
 CurrentView.Body.fbxDateDisplay.Text = DateToDisplay
 ' Clear schedule information from the view.
 Call ClearDisplay() ' Global sub
 ' Fill the schedule information for the date.
 Call ReadBlock(DateToDisplay) ' Global function
End Function

