
PART ONE:
Getting started with Windows ISQL
This section of the tutorial introduces you to some fundamental database concepts and
shows you how to apply them using the Windows ISQL (WISQL) tool.
As you apply the lessons you'll build the foundation for a personnel database for employee
records, similar to the sample database provided with InterBase.
Basic concepts covered in this section include:

How to create a database.
How to create tables.
How to add data to tables and modify the data.
How to retrieve data from tables.

Starting the Windows ISQL session
The first step is to start Windows ISQL. Normally, you do this by clicking the Windows ISQL
icon in the InterBase Windows Client program group. To get you started, however, you can
use this shortcut:

 Click here to open WISQL.
The main WISQL interface is made up of a menu bar, several buttons and two windows-one
for entering SQL statements and one for viewing the output generated by those statements.
Before entering any SQL statements, however, you must first connect to a database. We'll
get to that after a quick overview of SQL.

An overview of SQL
SQL statements are divided into two major categories:

Data definition language (DDL) statements.
Data manipulation language (DML) statements.

DDL statements are used to define, change, and delete a database. Collectively, the objects
defined with DDL statements are known as metadata.
Basic DDL statements that create metadata begin with the keyword CREATE. Statements
that modify metadata begin with the keyword ALTER. Statements that delete metadata
begin with the keyword DROP.
So, for example, you would use CREATE TABLE to define a table, ALTER TABLE to modify the
table, and DROP TABLE to delete it.
DML statements are used to manipulate data within the data structures defined with DDL
statements.
The three basic DDL statements are INSERT, UPDATE, and DELETE.
INSERT adds data to a table, UPDATE modifies data, and DELETE removes data.
DML also includes the SELECT statement, which you'll use often to retrieve or query
information from a database.

Creating a database
InterBase is a relational database. A relational database is a collection of tables, which are
two-dimensional structures composed of rows (also called records) and columns (also called
fields).
InterBase databases are stored in files, and customarily bear the extension GDB.
To create a database, you must have a valid user name and password in the security
database, ISC4.GDB. For instructions on how to access the security database using
InterBase's Server Manager, see the description of Server Manager's File | Login menu item.
Initially, the information you need to supply to create a database is the pathname of the
database.
Create a database now by choosing File | Create Database.... The Create Database dialog
box opens.
Press Tab to move the cursor from one field to the next. Make sure the User Name field
shows your user name. Enter your InterBase password in the Password text field.
In the Database field, type the name of the database to create, including the directory path
and file specification. For example:

C:\PROGRAM FILES\BORLAND\INTRBASE\TUTORIAL\EXAMPLES\MYDB.GDB
Note: Be sure to create the database in a directory where you have the necessary file

permissions.
If you create the database in your own directory area, then you can give it any name you
want. If you create it in a common directory such as IBLOCAL\EXAMPLES, you should give the
database a unique name to avoid conflicts with other users. For example, if your name is
Fred, you could name the database FRED.GDB. You do not have to use the .GDB file name
extension, but it is an InterBase convention. Leave the Database Options area empty,
because you are creating a simple database.
Click OK to create the database.
After a short pause, a message appears in the status area at the bottom of the window:

Database: C:\PROGRAM FILES\BORLAND\INTRBASE\TUTORIAL\EXAMPLES\MYDB.GDB
This message lets you know you are connected to your new database.

Conceptual database design
Before getting into the details of building a database, you should step back and determine
exactly what you want to do with the database. In this "conceptual design" phase, you
should basically define the objects you want to model with the database, their
characteristics, and their relationships. Try to map out the details as much as possible before
actually doing any SQL data definition. Sometimes it is useful to create diagrams on paper to
help visualize the database.
Because this section of the tutorial is intended to introduce basic database concepts, you
are going to build a very simple database, containing only two tables. In the real world,
databases will rarely be this simple. But imagine that you only need to keep track of
employees and the corporate department to which they belong. The best way to do this is to
have a table for the employees, and a table for the departments.
The employee table should contain a row for each employee, and a column for each item of
information related to the employee. For this simple example, let's assume that we only
need to keep track of the employee's name (first and last), employee number, and
department. Each department has a unique department number and a department name.
A conceptual diagram of this database might look like this:

The box on the left represents the table for employees, and the box on the right represents
the table for departments. The columns of each table are listed inside each box, and an
asterisk indicates that the value of the column uniquely identifies a row (this is known as a
primary key, and will be explained later). The arrow indicates that each department number
entered in the employee table references a department number in the department table
(this is known as a foreign key, and will be explained later).

Creating tables
A table is a data structure consisting of an unordered set of rows, each containing a specific
number of columns. Conceptually, a database table is like an ordinary table. Much of the
power of relational databases comes from defining the relationships among the tables.
For example, in this simple personnel database, the table for employees could be called
EMPLOYEE, with columns as defined previously. Each row represents an individual employee.
Here is an illustration of what such an EMPLOYEE table might look like this:
EMPNO LAST_NAME FIRST_NAME DEPT_NO
10335 Smith John 180
21347 Carter Catherine 620
13314 Jones Sarah 100
5441 Lewis Stephen 180
The table containing information on departments could be called DEPARTMENT, and look like
this:
DEPTNO DEPARTMENT
180 Marketing
620 Software Products Div.
100 Sales
600 Engineering
The DEPARTMENT table is simple, so it makes a good starting point. To create a table with
Windows ISQL, use the CREATE TABLE statement. The full syntax of this statement, as shown
in the Language Reference is quite complex, but the basic form is simple: the keywords
CREATE TABLE, followed by the name of the table, and then in parentheses a list of the
columns in the table, separated by commas. Each column in the list specifies the name of
the column, the data type, and attributes of the column such as NOT NULL and UNIQUE.
To create the DEPARTMENT table, type the following in the SQL Statement area:

CREATE TABLE DEPARTMENT
(DEPT_NO CHAR(3) NOT NULL UNIQUE, DEPARTMENT VARCHAR(25) NOT NULL);

SQL is not case-sensitive, so you can enter statements in uppercase or lowercase. You could
enter the statement all on one line, but it is easier to read if spread across several lines. The
semicolon at the end of the statement is optional.
Type the above statement and click on Run. If you did not make any typing mistakes, then
the statement will be echoed in the WISQL Output area. If you made a mistake, an error
message will be displayed.
Note: From now on in this section of the tutorial, it will be assumed that you know how to

type SQL statements in the SQL Statement area, and click on the Run button when
you are done.

This statement creates a table called "DEPARTMENT" with two columns: DEPT_NO for the
department number and DEPARTMENT for the department name. The department number is
defined as a three-character string, and department name is defined as a string with up to
25 characters. The keywords NOT NULL signify that each row must contain data in that
column. UNIQUE means that the data in the column must be unique. So each department
must have a name and department number and each department number must be unique.
To view your new table definition, choose View | Metadata Information.... The View
Information dialog box opens.
Display a drop-down list of types of metadata objects by clicking on the arrow to the right of
the top field, then select "Table" and type the name of the table, DEPARTMENT in the Object
Name field. Click on OK. The table definition is displayed in the WISQL Output area.
At any point during this tutorial, you can view metadata by choosing View | Metadata
Information... and selecting the type of metadata. If you do not enter anything in the Object
Name field, then WISQL will display the names of all the metadata objects of the selected

type. If you enter a name, then WISQL will display all the details about that object.
Next, you will create the EMPLOYEE table. But first, you have to understand some new
concepts.

Primary keys and foreign keys
A primary key is a column or set of columns that uniquely identifies a row. In practice, every
table should have a primary key. In the employee table, EMP_NO should be a primary key for
EMPLOYEE because the employee number uniquely identifies an employee and DEPT_NO
should be the primary key for DEPARTMENT because it uniquely identifies a department.
A foreign key is a column in one table that is the primary key column for another table.
Primary key and foreign key constraints are defined with the PRIMARY KEY and FOREIGN KEY
keywords in a CREATE TABLE statement.
Now define a new table with a primary key and a foreign key. Type the following in the SQL
Statement area:

CREATE TABLE EMPLOYEE
(EMP_NO SMALLINT NOT NULL,
LAST_NAME VARCHAR(25) NOT NULL,
FIRST_NAME VARCHAR(20) NOT NULL,
DEPT_NO CHAR(3) NOT NULL,
PRIMARY KEY (EMP_NO),
FOREIGN KEY (DEPT_NO)
REFERENCES DEPARTMENT (DEPT_NO));

This statement creates a table called "EMPLOYEE" with four columns: EMP_NO for each
employee's employee number, FIRST_NAME and LAST_NAME, for each employee's first and
last names, and DEPT_NO for the employee's department number. NOT NULL after each
column name signifies that data is required in the column when a row is added to the
database.
After the list of columns, the keywords PRIMARY KEY define the table's primary key to be the
EMP_NO column. The keywords FOREIGN KEY indicate that DEPT_NO references a column in
another table, and the data in this column must match the data in the other table.
Make sure the table definition is entered in the database by choosing View | Metadata
Information..., selecting Tables, and typing EMPLOYEE as the table name. You should see the
table definition in the WISQL Output area.

Adding data to tables
Creating a table with CREATE TABLE simply defines the data structure. To create a useful
database, you must then add data to the table. The easiest way to add data to a table in
SQL is with the INSERT statement. The simplest form of the INSERT statement specifies
values to insert into all the columns in a single row of a table, as follows:

INSERT INTO table_name VALUES (val1, val2, ...);
where table_name is the name of the table, and val1, val2, and so on, are the values to
insert.
To use this syntax, you must know the default order of the columns. Because you just
created the table with the DEPTNO column first and then DEPARTMENT, you know to give the
department number first and then the name. If you try to insert values in a different order,
you will get an error.
Now type the following:

INSERT INTO DEPARTMENT VALUES (180, "Marketing");
INSERT INTO DEPARTMENT VALUES (100, "Sales");

Note: Windows ISQL itself does not require a semicolon at the end of each statement. The
semicolon (or another terminator character) is required only in statements in WISQL
script files. It is a good idea to get in the habit of ending your SQL statements with
semicolons, however, so you will not forget to do so when creating script files.

There is a more general form of the INSERT statement that enables you to enter values for
specific columns, even if you do not know the default order:

INSERT INTO table_name (col1, col2, ...) VALUES (val1, val2, ...);
where col1 is the name of the column into which to insert value val1, col2 is the name of the
column into which to insert val2, and so on. To insert the next row of the DEPARTMENT table,
type:

INSERT INTO DEPARTMENT (DEPARTMENT, DEPT_NO)
VALUES ("Software Products Div.", 620);

This form of the INSERT statement is useful if you want to insert values into a subset of the
columns, or you do not remember the default column order.
Now, using either form of the INSERT statement, insert one more row into the DEPARTMENT
table for a department named "Engineering" with department number 600.
Type the following to insert the values in the EMPLOYEE table. Be sure to enter the
statements one at a time and click on Run after each.

INSERT INTO EMPLOYEE VALUES (10335, "Smith", "John", 180);
INSERT INTO EMPLOYEE VALUES (21347, "Carter", "Catherine", 620);
INSERT INTO EMPLOYEE VALUES (13314,"Jones", "Sarah", 100);
INSERT INTO EMPLOYEE VALUES (5441, "Lewis", "Stephen", 180);

Tip: After you run the first of these statements, you can save some typing by choosing the
Previous button to recall it to the SQL Statement area, highlighting the data following
the VALUES keyword, and typing just the new values instead of the entire statement.

Testing referential integrity
InterBase databases include a feature called referential integrity. Referential integrity in its
simplest form are constraints placed upon data by primary and foreign key definitions. When
you defined the EMPLOYEE table, you made EMP_NO its primary key and DEPT_NO its foreign
key, referencing the DEPARTMENT table. What this means is that each row in the EMPLOYEE
table must have a unique value for the EMP_NO column and the value of the DEPT_NO
column must match a value in the DEPARTMENT table. These referential integrity constraints
are translations of real-world rules: each employee must have a unique employee number
and each employee must be assigned to an existing department.
Test out the referential integrity rules for yourself to see how InterBase handles them. First,
try to add an employee with the same employee number as another employee. Enter the
following:

INSERT INTO EMPLOYEE VALUES (21347, "Lesh", "Phil", 620);
A small error dialog box will appear stating: "Statement failed, SQLCODE = -803". Choose
the Detail button to get more information.
You will see the error message: "Violation of PRIMARY or UNIQUE KEY constraint INTEG_8".
The constraint name shown may be something other than INTEG_8, because InterBase
automatically gives names to integrity constraints if you do not explicitly name them in your
CREATE TABLE statement, and the name it gives them depends on other DDL done
previously.
Now try to add an employee with a non-existent department number. Enter:

INSERT INTO EMPLOYEE VALUES (7742, "West", "August", 999);
The error dialog will appear with the message: "Statement failed, SQLCODE = -530". Choose
the Detail button, and you will see "Violation of FOREIGN KEY constraint: INTEG_9". The
referential integrity rules will not let you enter an employee with a department number that
is not in the DEPARTMENT table.
Committing Work
By default, data definition statements are automatically committed by Windows ISQL. DML
statements, such as INSERT, UPDATE, and DELETE, are not committed unless you explicitly
do so by choosing File | Commit Work. This means that you can undo any DML statements
since the last time you committed.
Commit your work now by choosing File | Commit Work to make the changes to the database
permanent.

Viewing data
Now that you have put data into the tables, you need a way to view it. This requires one of
the most important statements in SQL: SELECT. Because SELECT is so powerful, it has a very
complex syntax, allowing a great deal of freedom in retrieving data from tables. The
simplest form of SELECT is easy, though:

SELECT * FROM table_name;
where table_name is the name of the table from which to retrieve data, and the asterisk (*)
means to select all columns from the table. Enter this statement for the DEPARTMENT table:

SELECT * FROM DEPARTMENT;
The statement will be echoed to the WISQL Output area, and you should also see the
following output:
DEPTNO DEPARTMENT
180 Marketing
100 Sales
620 Software Products Div.
600 Engineering
Enter the corresponding statement for the EMPLOYEE table to see the values you inserted.

SELECT * FROM EMPLOYEE;
Instead of selecting all columns from a table, you can specify certain columns, using this
form of SELECT:

SELECT col1, co2, ... FROM table_name;
where col1, col2, and so on, are the names of the columns to select from the table.
Experiment with this form to view subsets of the columns of the EMPLOYEE table.
The SELECT statement has a wealth of clauses that make it such a powerful statement. One
of the most useful is the WHERE clause, that enables you to specify conditions that rows
must meet. For example, enter the following:

SELECT * FROM EMPLOYEE WHERE DEPT_NO = 180;
This query selects rows with DEPT_NO equal to 180, in other words, only employees in
department 180.

Modifying data
Now that you have entered data into tables, and learned how to view it, how do you change
the data? The UPDATE statement enables you to modify existing rows, using the following
syntax:

UPDATE table_name SET col1 = val1, col2 = val2,
. . . WHERE condition;

where table_name is the name of the table being updated, col1, col2, and so on, are the
names of the columns being updated, and val1, val2, and so on, are the new values to
assign to the columns. The condition determines which rows are updated. Although
condition in its full form allows a great deal of flexibility in determining rows, its basic form
is:

column [= | > | < | >= | <=] value
In other words, a simple condition compares the value of a column with some fixed value.
So, for example, say Sarah Jones (employee number 13314) gets married and changes her
last name to Zabrinske. To change her record in the employee table, enter the following:

UPDATE EMPLOYEE SET LAST_NAME = "Zabrinske" WHERE EMP_NO = 13314;
Because EMP_NO is the primary key of the EMPLOYEE table, the condition is guaranteed to
identify exactly one row to update. Check that the record has been updated by entering a
SELECT statement.
The update statement can make sweeping changes to the database, so use caution when
entering it against a real database.
The other major DML statement in SQL is DELETE. This statement deletes rows from the
table, and should be used with caution to avoid losing valuable data.
The basic form of DELETE is:

DELETE FROM table_name WHERE condition;
where table_name is the name of the table from which rows are being deleted, and condition
is the condition that determines which rows are deleted. As in the UPDATE statement,
condition can be quite complex, but in its simplest form it compares the value of a column
with a fixed value.
Say Catherine Carter (employee number 21347) is leaving the company, and you want to
delete her record from the EMPLOYEE table. Then type:

DELETE FROM EMPLOYEE WHERE EMP_NO = 21347;
Confirm that the record has been deleted by entering

SELECT * from EMPLOYEE WHERE LAST_NAME = "Carter";
You won't get an error message, but no output (only the command you entered) is displayed
in the WISQL Output area.

Ending the WISQL session
Whenever you finish your work with WISQL, you should commit it to make it permanent.
To do that, choose File | Commit Work.
If you want to continue the tutorial, do not exit Windows ISQL-continue to the next set of
lessons.
If you've had enough for now, you can end your WISQL session by choosing File | Exit to
disconnect from the database and exit WISQL. If you want to keep Windows ISQL running,
you can choose File | Disconnect from Database to disconnect from the database only.
Now that you have gained some basic experience with SQL, you can move on to the next
series of lessons for more detailed tutorial examples.

Sorry. Windows ISQL (WISQL32.EXE) or one of its required library files (DLLs) can't be
located. WISQL32.EXE is normally found in the same folder as this Help file, but it may have
been relocated since installation. Please try to open WISQL32.EXE yourself by double-
clicking the Windows ISQL icon in the InterBase Windows Client program group. If the error
message says a DLL is missing, try to locate the missing library file on your hard disk or on
the installation disks and restore it to its installed location (DLLs are normally installed into
your Windows or Windows/System folder).

PART TWO:
Basic data definition
This series of lessons introduce several more basic database concepts and adds new
features to the simple database you created in Part One.

More conceptual design
In the previous section of the tutorial, you defined a database consisting of two tables:
EMPLOYEE and DEPARTMENT. Now you are going to move from this basic example to a
personnel and sales database that might actually be useful in a "real-world" application.
Obviously, you will need more than just two tables. You will also have to add more columns
and other attributes to the two existing tables.
Start by defining the goals of the database. Let's say that upper management has
determined that your company needs a database to keep track of:
 Personnel records
 Projects and budgets
 Sales
 Customers

Your company does business all over the world, so the database will have to account for
many different countries.
Personnel records include each employee's employee number and name (as before), salary,
job code, job grade, and country, and other associated details. The database also needs to
maintain information on the manager of each department, the department's budget and
location, and how it fits in the departmental hierarchy. Records must be maintained on each
job type, including job requirements, maximum and minimum salary, and language
requirements. Each employee's salary history must also be maintained.
Project records include the name, project ID, team leader, product type, description of each
project, and the project to which each employee is assigned. The department containing the
project, the project's budget, and quarterly head count are also important.
Sales records include important information from each purchase order, including PO number,
customer, salesperson, date shipped, and so on.
Customer records include a unique customer number, contact names, addresses, and phone
number, and other related information.
Designing a database means deciding which tables belong in the database, which columns
belong in each table, and the relationship between the tables. A database design in a
relational database affords flexibility because the logical structure of the database is
independent of the physical storage and structure of the database.
Two concepts, relationship modeling and normalization, are basic to designing a database.

Relationship modeling
Relationship modeling includes:
 Identifying the major groups of information to store in the database.
 Analyzing the type of information and its properties.
 Identifying relationships among sets of information.

For example, think of the groups of information as tables, with each table describing one
thing, such as a company or an employee. The type of information and its properties are
columns in the table, describing the employee's salary and the company address. Some
questions to ask then are, "Does the information work as a table?" Or "Do the columns need
to be moved from one group to another?"

Normalization
Normalization means splitting tables into two or more smaller related tables that can then
be joined back together. Initially in a database design, you will probably create tables that
contain data that are all related. As your design progresses, however, you will find that you
need tables that contain a narrower focus of data.
Normalization also applies to columns within tables. Each column in a row should contain
only one value that cannot be broken down into a smaller value. For example, one column
should contain an employee first name, another column contains the employee last name,
instead of having a single column for first and last name.
After studying the requirements, you determine that you need the following tables:
 EMPLOYEE for employees' records, and SALARY_HISTORY for each employee's salary

history.
 DEPARTMENT for records on each department.
 JOB for information about each job type.
 PROJECT, EMP_PROJECT, and PROJ_DEPT_BUDGET for project records.
 CUSTOMER for records on each customer.
 SALES for sales information.
 COUNTRY for maintaining the currency for each country.

Defining domains
A domain is a customized column definition used in creating tables. A domain allows you to
define a column with complex characteristics that you can incorporate in many tables simply
by referencing the domain name. This simplifies data definition. Conceptually, a domain is
like a user-defined data type.
For example, you could define a domain to use for all employee names in the database.
Then every time you need to define a column to contain a name in a table, you can simply
refer to the domain. This is a simple example, but you can attach CHECK constraints and
other advanced features to a domain definition. Referring to the domain is then much easier
than referring to the complex column definition.
Use the SQL statement CREATE DOMAIN to define a domain, including the name of the
domain, its data type, and optional characteristics like default value and CHECK constraints.
You can use the ALTER DOMAIN statement to change the domain definition, and it changes in
every table in which it is used. This simplifies maintenance and updating of the database.
Defining domains is often one of the first steps in data definition, because you can then use
the domains in creating tables. The syntax to define domains consists of the keywords
CREATE DOMAIN, followed by the name of the domain, then the keyword AS, followed by the
data type of the domain, and finally any of the optional characteristics of the domain.
Not every column needs to be defined as a domain, but if it is something that is likely to be
used many times in the database, it is a good candidate. For now, you will define domains
for employees' first and last names, employee number, and department number.
First, define domains for employees' first and last names and employee numbers. Type the
following statements in the SQL Statement area. Be sure to click on the Run button after
typing each statement.

CREATE DOMAIN LASTNAME AS VARCHAR(20);
CREATE DOMAIN FIRSTNAME AS VARCHAR(15);
CREATE DOMAIN EMPNO AS SMALLINT;

If you typed the statements correctly, then each one will be echoed in the ISQL Output area
after it is executed.
Next, define a domain for department number. It is defined as a three-character string. In
addition to the data type, this domain includes CHECK constraints to ensure that the
department number is either "000", alphabetically between "0" and "999", or NULL. Enter
the following and then click on Run.

CREATE DOMAIN DEPTNO AS CHAR(3) CHECK
(VALUE = "000" OR
(VALUE > "0" AND VALUE <= "999")
OR VALUE IS NULL);

You can enter the statement on one line or on several lines to make it easier to read.

Using data definition files
To define the rest of the domains in the database, you can use a data definition file. A data
definition file (also referred to as an ISQL script file) contains ISQL statements, and is created
with an editor (such as Windows Notepad) and run by Windows ISQL. Data definition files
can be very useful, because you can enter multiple SQL statements with all the tools that a
text editor provides, including cut, copy, and paste. This makes repetitive tasks much easier.
In practice, most data definition is performed using data definition files, because they enable
you to maintain a record of the DDL executed and allow you to work in a text editor instead
of command by command.
The data definition files you will need are included in the EXAMPLES\TUTORIAL subdirectory
of the InterBase directory. They all have file name extensions of .SQL.
The file, DOMAINS.SQL, contains domain definitions. View this file with Windows Notepad.
The first line in the file is a CONNECT statement followed by a dummy database name, user
name, and password:

CONNECT "server:\dir\mydb.gdb"
USER "USERNAME" PASSWORD "password";

Important: Every ISQL script file must begin with a CONNECT statement (or a CREATE
DATABASE statement) to connect to a database.

Edit the file and change the database name, user name, and password. Be sure to save the
changes before proceeding.
Note: You'll later make the same changes to the CONNECT statement at the beginning of all

script files used in this tutorial. To save time, you can cut and paste the information
from one file to another.

Now look at the rest of the file, DOMAINS.SQL. You will see that it contains a number of
CREATE DOMAIN statements:

CREATE DOMAIN ADDRESSLINE AS VARCHAR(30);
CREATE DOMAIN PROJNO

AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 1000);

. . .
To execute the statements in this file, choose File | Run ISQL Script....
A standard file locator dialog appears. Use the dialog to locate the file DOMAINS.SQL. When
you locate it, click Open. A message pops up to ask if you want to save the results to a file.
Click No (you want to see the results in the ISQL Output window instead).
As Windows ISQL reads the script file, it echos the statements to the ISQL Output area.
To confirm the domains have been created, choose View | Metadata information..., select
Domain from the dropdown list, then click OK. You should see all the domains defined for the
database displayed in the SQL Output area.
Starting over
In the previous series of lessons, you created some simple tables and populated them with
data. Now its time to delete those tables and the data they contain so you can create and
populate a more complex database.
Before you can remove the tables, though, you have to make sure that ISQL will release
them. Depending on what you have been doing with ISQL, there may be an active
transaction. Choose File | Commit Work (if it is not dimmed) to end any active transactions. If
the menu selection is dimmed, then there is no transaction to commit.
Now you can remove these tables from the database. To do this, you will use the DROP
statement, which is used to delete metadata. Enter the following:

DROP TABLE EMPLOYEE;
DROP TABLE DEPARTMENT;

Because DDL statements are automatically committed by default, you do not need to

commit these statements to make them permanent. Confirm that the tables are gone by
choosing View | Metadata Information... and selecting Tables. Now that you have deleted
these two tables and all their data, you can move on and create the EMPLOYEE sample
database.
Creating More Tables
Refresh your memory of CREATE TABLE syntax by entering the following statement:

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

This defines a two-column table to hold the names of countries and their currencies. Notice
the declaration of the COUNTRY column uses the COUNTRYNAME domain instead of a
standard data type.
Now you will move on to more complex tables using the domains you defined in the previous
section. The file, TABLES.SQL, contains statements to create the rest of the tables in the
database. Open the file with Notepad to view it.
Note: Don't forget to edit the CONNECT statement at the beginning of TABLES.SQL and put

in your database name, user name, and password, and to save the file after changing
the connection information.

The first table defined in the file is a more complex version of DEPARTMENT. The definition
looks like this:

CREATE TABLE DEPARTMENT
(DEPT_NO DEPTNO NOT NULL,
DEPARTMENT VARCHAR(25) NOT NULL UNIQUE,
HEAD_DEPT DEPTNO,
MNGR_NO EMPNO,
BUDGET BUDGET,
LOCATION VARCHAR(15),
PHONE_NO PHONENUMBER DEFAULT "555-1234",
PRIMARY KEY (DEPT_NO),
FOREIGN KEY (HEAD_DEPT) REFERENCES DEPARTMENT (DEPT_NO));

The second table defined in the file is named JOB, and defines job descriptions. The next
table is the complete EMPLOYEE table. The definition of this table is central to this database:

CREATE TABLE employee
(
emp_no EMPNO NOT NULL PRIMARY KEY,
first_name FIRSTNAME NOT NULL,
last_name LASTNAME NOT NULL,
phone_ext VARCHAR(4),
hire_date DATE DEFAULT 'NOW' NOT NULL,
dept_no DEPTNO NOT NULL,
job_code JOBCODE NOT NULL,
job_grade JOBGRADE NOT NULL,
job_country COUNTRYNAME NOT NULL,
salary SALARY NOT NULL,
full_name COMPUTED BY (last_name || ', ' || first_name),

FOREIGN KEY (dept_no)
REFERENCES department (dept_no),

FOREIGN KEY (job_code, job_grade, job_country)
REFERENCES job (job_code, job_grade, job_country),

CHECK (salary >= (SELECT min_salary FROM job WHERE
job.job_code = employee.job_code AND
job.job_grade = employee.job_grade AND
job.job_country = employee.job_country) AND

salary <= (SELECT max_salary FROM job WHERE
job.job_code = employee.job_code AND
job.job_grade = employee.job_grade AND
job.job_country = employee.job_country))

);
Notice the complex check constraint on SALARY. It states that the salary entered for an
employee has to be greater than the minimum salary for the employee's job (specified by
JOB_CODE, JOB_GRADE, and JOB_COUNTRY) and less than the corresponding maximum.
Skim the file, TABLES.SQL, and look at the rest of the table definitions. Make sure you
understand them. Notice that there is a CREATE INDEX statement after each table definition.
Indexes will be explained later in this part of the tutorial.
After editing the CONNECT statement at the beginning of the file, choose File | Run an ISQL
Script... and select TABLES.SQL.
Then confirm that the tables have been created by choosing View | Metadata Information...,
select Table, and choose OK. You will see a list of all the table names in the ISQL Output
area.

Creating indexes
Indexes are used to improve the speed of data access for a table. An index identifies
columns that can be used to efficiently retrieve and sort rows in the table. Because a
primary key uniquely identifies a row, it is often also defined as the index of the table. The
CREATE INDEX statement is used to define indexes in SQL.
An index is based on one or more columns in a table. Indexes can also enforce uniqueness
and referential integrity constraints. A unique index will prevent duplicate values in the
columns in the index.
An index is created with the CREATE INDEX statement. Here is the simplified syntax:

CREATE INDEX name ON table (columns)
For example, TABLES.SQL created an index called NAMEX for the EMPLOYEE table, as follows:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);
This statement defines an index called NAMEX for the LAST_NAME and FIRST_NAME columns
in the EMPLOYEE table.

Preventing duplicate row entries
To define an index that eliminates duplicate entries, include the UNIQUE keyword in CREATE
INDEX. After a unique index is defined, users cannot insert or update values in indexed
columns if the same values already exist there.
TABLES.SQL defined a unique index named PRODTYPEX, on the PROJECT table as follows:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);
Note: For unique indexes defined on multiple columns, like PRODTYPEX in the example

above, the same value may be entered within individual columns, but the combination
of values entered in all columns defined for the index must be unique.

Modifying indexes
You can modify an index definition to change the columns that are indexed, prevent insertion
of duplicate entries, or specify a different sort order.
To change the definition of an index, follow these steps:
1.Use ALTER INDEX to make the current index inactive.
2.Drop the current index.
3.Create a new index and give it the same name as the dropped index.

Choose View | Metadata Information... and select Index from the drop-down list of object
types. Enter NAMEX in the Object Name field. The ISQL Output area will display the definition
of the index:

NAMEX INDEX ON EMPLOYEE (LAST_NAME, FIRST_NAME)
For example, suppose you need to prevent duplicate entries in the NAMEX index you defined
for the EMPLOYEE table with a UNIQUE keyword. First, make the current index inactive, then
drop it. Enter:

ALTER INDEX NAMEX INACTIVE;
DROP INDEX NAMEX;

Then redefine NAMEX to include the UNIQUE keyword:
CREATE UNIQUE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

This index will now prevent entries in the EMPLOYEE table with the same first and last names
as an existing row.

Creating views
A view is a virtual table. Views are not physically stored in the database, but appear as "real"
tables. A view can contain data from one or more tables or other views and can store an
often-used query or set of queries in the database. The CREATE VIEW statement is used to
define views in SQL.
You are now going to create a view called PHONE_LIST that maintains a phone list of
employees from the EMPLOYEE and DEPARTMENT tables.
Enter the following statement:

CREATE VIEW PHONE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO

FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

This statement creates a view called PHONE_LIST from columns in the EMPLOYEE and
DEPARTMENT tables. After you populate these tables with data you will be able to query this
view just as you would a table.
You have created all the tables for the full EMPLOYEE database. In the next series of lessons,
you will populate (add data to) the database.

PART THREE:
Populating the database
This series of lessons lets you populate (add data to) the database created in the
introductory parts of the tutorial. It also introduces basic SQL statements, shows you how to
manipulate data using those statements, and lets you create a simple view from which you
can select data.
SQL statements covered in this section include:
 INSERT, for adding data.
 UPDATE, for modifying data.
 DELETE, for removing data.

Inserting data
You previously learned the basic form of the INSERT statement:

INSERT INTO table_name (col1, col2, ...) VALUES (val1, val2, ...);
Now, you will use this form again to insert data into the EMPLOYEE database.

Inserting data using column values
Open the file, INSERTS.SQL, with a text editor. It contains a number of INSERT statements to
add data to the database. The first group of statements inserts values into the COUNTRY
table, for example:

INSERT INTO COUNTRY (COUNTRY, CURRENCY) VALUES ("USA", "DOLLAR");
The next group inserts values into the DEPARTMENT table. For example:

INSERT INTO DEPARTMENT
(DEPT_NO, DEPARTMENT, HEAD_DEPT, BUDGET, LOCATION, PHONE_NO)

VALUES
("000", "CORPORATE HEADQUARTERS", NULL, 1000000, "MONTEREY",
"(408) 555-1234");

There are groups of statements to populate the JOB and EMPLOYEE tables also.
Make sure the CONNECT statement at the beginning of the file contains the correct database
name, user name, and password. Choose File | Run an ISQL Script... and then select
INSERTS.SQL to execute the script and insert the data into the tables.
To make the changes to the database permanent, you must commit your work by choosing
File | Commit Work.
Confirm that the data has been inserted correctly with SELECT, for example:

SELECT * FROM DEPARTMENT;
Try selecting from the COUNTRY, JOB, and EMPLOYEE tables, too. Notice that all the data in
the LANGUAGE_REQ column in the JOB table is NULL. This is because this column is an array,
and you cannot insert data into an array using ISQL.
The script file, INSERTS2.SQL, inserts data into the other tables in the database. View this
file and then run INSERTS2.SQL by choosing File | Run an ISQL Script.... Commit the changes
to the database, by choosing File | Commit Work.
SELECT from the PROJECT, CUSTOMER, and SALES tables to confirm that the data has been
successfully inserted. Notice that all the data in the PROJ_DESC column of the PROJECT table
is NULL. This is because this column is a BLOB, and you cannot insert data into a BLOB using
ISQL.

Inserting data from an external file
Note: This section covers an optional topic and may be skipped without losing any

continuity. However, it is an important topic not covered in detail elsewhere in the
documentation.

An external table is a special kind of table that stores its data in an ASCII file separate from
the database. It may occasionally want to import data from an ASCII file into a database (for
example, if the data was originally entered in another application or at a remote location).
You can populate a table with data from a formatted ASCII file by following these steps:
1.Create the table you want to populate. Often this table will already exist in the database.
2.Create an ASCII file on the server containing the data, formatted strictly to conform to the

column definitions of the table in step one. Depending on how the file originated (for
example, from a desktop application), you may have to edit the file manually with a text
editor to ensure that it is formatted correctly.

3.Create a temporary external table that has all the columns that will get data from the
external file. It is usually easiest to create all the fields as CHAR(n), even if they will
contain numeric data. The table must also have a CHAR(1) column (usually called EOL) to
take the end-of-line character.

4. Insert the data into the destination table using INSERT with a SELECT clause. InterBase's
automatic type conversion feature will ensure that the data in each column is
automatically converted from CHAR to the appropriate data type.

For example, suppose a salesman on the road has been keeping his sales records on his
laptop computer in a spreadsheet application. When he gets back to the office, one way he
could enter these records into the SALES table would be to export the information to a text
file and then import the data into the database through an external table. So, in this
example, you do not need to perform step one, because the SALES table already exists in
the database.
The next step is to create the data file. The sales data is in the file, SALES.DAT, in the
EXAMPLES\TUTORIAL directory. View this file now with the Notepad editor. It looks something
like this:

V92E0340 1004 11 shipped 15-OCT-1992 16-OCT-1992 17-OCT-1992
V92J1003 1010 61 shipped 26-JUL-1992 4-AUG-1992 15-SEP-1992
V93J2004 1010 118 shipped 30-OCT-1993 2-DEC-1993 15-NOV-1993

(To see the entire lines when viewing in Notepad, use the horizontal scroll bar.)
Each line in this file corresponds to a row of data (record) in the SALES table, and each item
of text on a line is a value to be inserted into a field in the row. The text is padded with
spaces where necessary to make each field have the specified number of characters, even
at the end of each line. The first item in each line (for example "V92E0340") is a value for
the PONUMBER column, the second (for example "1004") is a value for the CUST_NO
column, and so on. It is crucial that the items on each line always are in the same order.
For the server to be able to access this file, you must copy it to the server platform (to a disk
to which the server has direct access). Use the standard FTP utility or operating system copy
command to copy SALES.DAT to the directory on the server where your database resides.
That completes step two of the process.
The next step is to create a temporary external table in the database called SALES_EXT. Look
at the file, SALES_XT.SQL. It contains the following CREATE TABLE statement:

CREATE TABLE SALES_EXT EXTERNAL "/PATH/SALES.DAT"
(PO_NUMBER CHAR(10),

CUST_NO CHAR(12),
SALES_REP CHAR(10),
ORDER_STATUS CHAR(13),
ORDER_DATE CHAR(12),
SHIP_DATE CHAR(12),
DATE_NEEDED CHAR(12),
PAID CHAR(7),

QTY_ORDERED CHAR(12),
TOTAL_VALUE CHAR(12),
DISCOUNT CHAR(16),
ITEM_TYPE CHAR(8),
EOL CHAR(1));

Notice the keyword EXTERNAL at the top, followed by a file path in quotes. You must edit this
path to specify the location on the server to which you copied SALES.DAT in the previous
step. All the columns in SALES_EXT are defined as CHAR (character) values. Notice also the
EOL column. This is a dummy column to contain the carriage return at the end of each line
of data in SALES.DAT.
Input this definition by choosing File | Run an ISQL Script... and selecting SALES_XT.SQL in
the EXAMPLES\TUTORIAL directory. At this point, you have an external table which has data
stored in a file on the server. You can query data from this table as if it were an ordinary
table, but you cannot modify the data, because it does not actually reside in the database,
but in the file. Enter the following statement:

SELECT * FROM SALES_EXT;
You will see the data from the data file in the ISQL Output area. Now you have completed
step three of the procedure.
In the final step, you will migrate the data from the external table into the real SALES table.
Look at the file, MIGRATE.SQL. It contains the following INSERT statement:

INSERT INTO SALES
(PO_NUMBER, CUST_NO, SALES_REP, ORDER_STATUS, ORDER_DATE, SHIP_DATE,
DATE_NEEDED, PAID, QTY_ORDERED, TOTAL_VALUE, DISCOUNT, ITEM_TYPE)
SELECT
PO_NUMBER, CUST_NO, SALES_REP, ORDER_STATUS, ORDER_DATE, SHIP_DATE,

DATE_NEEDED, PAID, QTY_ORDERED, TOTAL_VALUE, DISCOUNT, ITEM_TYPE
FROM SALES_EXT;

This statement selects values from the SALES_EXT table (excluding the EOL delimiter) and
inserts them into rows in the SALES table, migrating the data from the file to the SALES
table.
Edit the CONNECT statement at the beginning of this file and specify the server and
database you are using. Then input this statement by choosing File | Run ISQL Script... and
choosing MIGRATE.SQL from the EXAMPLES\TUTORIAL directory.
Now enter:

SELECT * FROM SALES;
and you will see the data that was in the SALES.DAT file has been inserted into the SALES
table. Notice that the non-character columns have been converted to the appropriate data
type automatically.

Updating data
To change values for one or more rows of data, use the UPDATE statement. A simple update
has the following syntax:

UPDATE table
SET column = value
WHERE condition

The UPDATE statement changes values for columns specified in the SET clause; columns not
listed in the SET clause are not changed. To update more than one column, list each column
assignment in the SET clause, separated by a comma. The WHERE clause determines which
rows to update.
For example, increase the salary of salespeople by $2,000, by updating the EMPLOYEE table
as follows:

UPDATE EMPLOYEE
SET SALARY = SALARY + 2000
WHERE JOB_CODE = "Sales";

To make a more specific update, make the WHERE clause more restrictive. For example,
instead of increasing the salary for all salespeople, you could increase the salaries only of
salespeople hired before January 1, 1992:

UPDATE EMPLOYEE
SET SALARY = SALARY + 2000
WHERE JOB_CODE = "Sales" AND HIRE_DATE < "01-Jan-1992";

A WHERE clause is not required for an update. If the previous statements did not include a
WHERE clause, the update would increase the salary of all employees in the EMPLOYEE
table.
Be sure to commit your work to make it permanent by choosing File | Commit Work (if it
hasn't already been committed; if it has been, the item is grayed).
Updating with a script file
Open the file, UPDATES.SQL, with Notepad. As you can see, it contains a number of UPDATE
statements to update the DEPARTMENT, EMPLOYEE, SALARY_HISTORY, and CUSTOMER
tables.
Run this file by choosing File | Run ISQL Script.... Confirm that the updates have been made.
Updating using a subquery
The search condition of a WHERE clause can be a subquery. Suppose you want to change the
manager of all employees in the same department as Katherine Young. One way to do this is
to first determine Katherine Young's department number:

SELECT DEPT_NO FROM EMPLOYEE
WHERE FULL_NAME = "Young, Katherine";

This query returns "623" as the department. Then, using 623 as the search condition in an
UPDATE, you could change the manager number of all the employees in the department with
the following statement (do not enter this statement):

UPDATE DEPARTMENT
SET MNGR_NO = 107
WHERE DEPT_NO = "623";

Instead of doing this, a more efficient way is to combine the two statements together using
a subquery as follows. Enter this statement:

UPDATE DEPARTMENT
SET MNGR_NO = 107
WHERE DEPT_NO = (SELECT DEPT_NO FROM EMPLOYEE

WHERE FULL_NAME = "Young, Katherine");
Confirm the result by selecting from the department table, and then choose File | Commit
Work to make the update permanent.

Deleting data
To remove one or more rows of data from a table, use the DELETE statement. A simple
DELETE has the following syntax:

DELETE FROM table
WHERE condition

As with UPDATE, the WHERE clause specifies a search condition that determines the rows to
delete. Search conditions can be combined or can be formed using a subquery.
Caution: A WHERE clause is not required in a DELETE statement. If you fail to include a

WHERE clause, you will delete all rows in the table.
Enter the following statement to delete rows from the EMPLOYEE table for which the
JOB_CODE column is "MNGR." In other words, managers are removed from the table. Enter:

DELETE FROM EMPLOYEE
WHERE JOB_CODE = "Mngr";

You can restrict deletions further by combining search conditions. For example, enter the
following statement to delete records of all sales reps hired before 10 July 1993:

DELETE FROM EMPLOYEE
WHERE JOB_CODE = "SRep" AND HIRE_DATE < "10-Jul-1993";

Confirm that these statements deleted the appropriate records by entering the following
query

SELECT EMP_NO, JOB_CODE, HIRE_DATE FROM EMPLOYEE;
You should not see any records with a JOB_CODE of "Mngr" or any records with a JOB_CODE
of "SRep" and a hire date before 10 July 1993.
Because you really did not want to delete those records from the table, roll back the changes
to the database by choosing File | Rollback Work. Choose Previous to recall the previous
SELECT query and then Run to run it. You should now see the deleted records displayed.
Caution: If you do not roll back these deletes, you will not get the correct results when you

do the rest of the tutorial.

Deleting data using a subquery
The previous section used a subquery to update data. DELETE statements can also use
subqueries.
To remove all employees who are in the same department as Katherine Young, including
Katherine Young herself, you could first determine Katherine Young's department number:

SELECT DEPT_NO FROM EMPLOYEE
WHERE FULL_NAME = "Young, Katherine";

This query returns "623" as the department number. Then, using 623 as the search condition
in a DELETE, you would enter :

DELETE FROM EMPLOYEE
WHERE DEPT_NO = "623";

The other way to remove the desired rows is to combine the two previous statements using
a subquery. In this case, the DELETE statement becomes:

DELETE FROM EMPLOYEE
WHERE DEPT_NO = (SELECT DEPT_NO FROM EMPLOYEE
WHERE FULL_NAME = "Young, Katherine");

Try this and confirm that it deletes the appropriate rows. Roll back the deletions by choosing
File | Rollback Work.

PART FOUR:
Retrieving data
This portion of the tutorial provides further practice with the SQL SELECT statement.

Overview of SELECT
Part One of the tutorial presented the simplest form of the SELECT statement. The full
syntax is much more complex, but, as you'll see, its rich syntax is the source of much of its
power.
Here's a distilled version of the SELECT syntax:

SELECT [DISTINCT] columns
FROM tables
WHERE <search_conditions>
[GROUP BY column HAVING <search_condition>]
ORDER BY <sort_order>;

This distilled version has six main keywords. A keyword and its associated information is
called a clause.
The clauses are:
Clause Description
SELECT columns Lists columns to retrieve.
DISTINCT Optional keyword that eliminates duplicate rows.
FROM tables Identifies the tables to search for values.
WHERE <search_conditions> Specifies the search conditions used to limit

retrieved rows to a subset of all available rows.
GROUP BY column Groups rows retrieved according the value of the

specified column.
HAVING
<search_conditions>

Specifies search condition to use with GROUP BY
clause.

ORDER BY <sort_order> Specifies the sort order of rows returned by a
SELECT.

The order of the clauses in the SELECT statement is important, but SELECT and FROM are
the only required clauses.
You have already used some basic SELECT statements to retrieve data from single tables.
SELECT can also retrieve data from multiple tables, by listing the table names in the FROM
clause, separated by commas. For example, enter the following SQL statement:

SELECT DEPARTMENT, DEPT_NO, FULL_NAME, EMP_NO
FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT = "Engineering" AND MNGR_NO = EMP_NO;

This statement retrieves the specified fields for the employee who is the manager of the
Engineering department.
Sometimes a column name occurs in more than one table in the same query. If so, columns
must be distinguished from one another by preceding each column name with the table
name and a dot (.).

Selecting from a view
Recall the view named PHONE_LIST you created earlier in the tutorial. You can select from
this view just like a table. Try this by entering the statement:

SELECT * FROM PHONE_LIST;
You will see output like this:

EMP_NO FIRST_NAME LAST_NAME PHONE_EXT LOCATION PHONE_NO
====== ========== ========= ========= ============= =============
12 Terri Lee 256 Monterey (408) 555-1234
105 Oliver H. Bender 255 Monterey (408) 555-1234
85 Mary S. MacDonald 477 San Francisco (415) 555-1234
. . .

As you can see, the output looks just as if there were a table called PHONE_LIST containing
the pertinent information.

Removing duplicate rows with DISTINCT
Suppose you want to retrieve a list of all the valid job codes in the EMPLOYEE database.
Enter this query:

SELECT JOB_CODE FROM JOB;
As you can see, the results of this query are rather long, and some job codes are repeated a
number of times. What you really want is a list of job codes where each value returned is
distinct from the others. To eliminate duplicate values, use the DISTINCT keyword.
Revise the previous query by clicking on the Previous button and editing the command as
follows:

SELECT DISTINCT JOB_CODE FROM JOB;
As you can see, each job code is listed once in the results.
What happens if you specify another column when using DISTINCT? Enter the following
SELECT statement:

SELECT DISTINCT JOB_CODE, JOB_GRADE FROM JOB;
This query produces:

JOB_CODE JOB_GRADE
======== =========
Accnt 4
Admin 4
Admin 5
CEO 1
CFO 1
Dir 2
Doc 3
Doc 5
Eng 2
Eng 3
En 4
Eng 5
. . .

DISTINCT applies to all columns listed in a SELECT statement. In this case, duplicate job
codes are retrieved. However, DISTINCT treats the job code and job grade together, so the
combination of values is distinct.

Using the WHERE clause
The WHERE clause of the SELECT statement follows the SELECT and FROM clauses. If an
ORDER BY clause is used, the WHERE clause must precede it. The WHERE clause tests data
to see whether it meets certain conditions, and the SELECT statement only returns the rows
that meet the condition. For example, the statement:

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE LAST_NAME = "Green";

returns only rows for which LAST_NAME is "Green". The text following the WHERE keyword,
in this case:

LAST_NAME = "Green"
is called a search condition, because a SELECT statement searches for rows that meet the
condition. Search conditions have the following general form:

WHERE condition;
In this clause:

condition = column operator value [log_operator condition]
value = value arith_operator value

column is the column name in the table being queried, operator is a comparison operator
(described in the following table), value is a value or a range of values compared against the
column, described in the next table. A condition can be composed of two or more conditions
as operands of logical operators. A value can be composed of two or more values as
operands of arithmetic operators.
Search conditions use the following types of operators:
Operator Description
Comparison operators Used to compare data in a column to a value in the

search condition. Examples include <, >, <=, >=, =, and
<>. Other operators include BETWEEN, CONTAINING, IN,
IS NULL, LIKE, and STARTING WITH.

Arithmetic operators Used to calculate and evaluate search condition values.
The operators are +, -, *, and /.

Logical operators Used to combine search conditions or negate a condition.
The keywords NOT, AND, and OR.

Search conditions can use the following types of values:
Types of Values Description
Literal values Numbers and text strings whose value you want to test

literally (for example the number 1138 or the string
"Smith").

Derived values Functions and arithmetic expressions, for example:
SALARY * 2 or LAST_NAME || FIRST_NAME.

Subqueries A nested SELECT statement that returns one or more
values. The returned values are used in testing the search
condition.

When a row is compared to a search condition, one of three values is returned:
True: A row meets the conditions specified in the WHERE clause.
False: A row does not meet the conditions specified in the WHERE clause.
Unknown: A field in the WHERE clause contains an unknown value that could not be

evaluated because of a NULL value.

Comparison operators
InterBase uses all the standard comparison operators: greater than (>), less than (<), equal
to (=), and so on. These operators can be used to compare numeric or alphabetic (text)
values. Text literals must be quoted. Numeric literals must not be quoted.
Important: String comparisons are case sensitive.

A previous example had a WHERE clause that compared a column to a literal value:
SELECT LAST_NAME, FIRST_NAME, PHONE_EXT

FROM EMPLOYEE
WHERE LAST_NAME = "Green";

This query will retrieve records from the EMPLOYEE table for which the last name is "Green".
If you change the equal sign to a greater than (>) sign, it will retrieve rows for which the last
name is alphabetically greater than (after) "Green". Likewise, if you change it to less than
(<). Try these different queries to see how the results change.
You can negate any expression with the negation operators !, ^, and ~. These operators are
all synonyms for NOT. For example, to retrieve all rows except those for which the last name
is "Green", change the search condition to:

WHERE NOT LAST_NAME = "Green"
Try negating some of the previous queries to see how the results change.

Pattern matching
Besides comparing values, search conditions can also test character strings for a particular
pattern. If data is found that matches a given pattern, the row is retrieved.
There are a great many pattern matching operators. This section will only discuss some of
the most commonly used ones: LIKE, STARTING WITH, IS NULL, and BETWEEN.
LIKE Operator
The LIKE operator lets you use wildcard characters in matching text. Wildcard characters are
characters that have special meanings when used in a search condition. A percent sign (%)
will match zero or more characters. An underscore (_) will match any single character.
For example, enter this statement in the SQL Statement area:

SELECT LAST_NAME, FIRST_NAME, EMP_NO FROM EMPLOYEE
WHERE LAST_NAME LIKE "%an";

You should see the following results:
LAST_NAME FIRST_NAME EMP_NO
==================== =============== ======
Ramanathan Ashok 45
Steadman Walter 46

As you can see from the results, this statement retrieves rows for employees whose last
names end with "an", because the percent sign will match any characters. LIKE distinguishes
between uppercase and lowercase.
Now enter the following statement:

SELECT LAST_NAME, FIRST_NAME, EMP_NO FROM EMPLOYEE
WHERE LAST_NAME LIKE "_e%";

This statement retrieves rows for employees whose last name has "e" as the second letter.
The underscore will match any one character in the last name.
STARTING WITH Operator
The STARTING WITH operator tests whether a value starts with a particular character or
sequence of characters. As with the LIKE operator, STARTING WITH distinguishes between
uppercase and lowercase. STARTING WITH does not support wildcard characters.
The following statement retrieves employee last names that start with "Ke":

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE FIRST_NAME STARTING WITH "Ke";

The CONTAINING operator is similar to STARTING WITH, except it matches strings containing
the specified string, anywhere, within the string.
Testing for an Unknown Value
Another type of comparison tests for the absence or presence of a value. Use the IS NULL
operator to test whether a value is unknown (that is, absent). To test for the presence of any
value, use IS NOT NULL.
For example, to retrieve the names of employees who do not have phone extensions, enter:

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NULL;

You should see the following results:
LAST_NAME FIRST_NAME PHONE_EXT
==================== =========== =========
Sutherland Claudia <null>
Glon Jacques <null>
Osborne Pierre <null>

To retrieve the names of employees who do have phone extensions, enter:
SELECT LAST_NAME, FIRST_NAME, PHONE_EXT

FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL;

The results should be all the employee records except the three retrieved by the previous
query.
Comparing Against a Range or List of Values
The previous sections described operators to compare columns to a single value. The
BETWEEN and IN operators enable comparison against multiple values.
BETWEEN tests whether a value falls within a range. For example, to retrieve names of
employees whose salaries are between $100,000 and $250,000, inclusive, enter:

SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY BETWEEN 100000 AND 250000;

The IN operator searches for values matching one of the values in a list. For example, to
retrieve the names of all employees in departments 120, 600, and 623, enter:

SELECT DEPT_NO, LAST_NAME, FIRST_NAME, SALARY FROM EMPLOYEE
WHERE DEPT_NO IN (120, 600, 623);

The values in the list must be separated by commas, and the list must be enclosed in
parentheses. Use NOT IN to search for values that do not occur in a set.

Logical operators
Up until now, the examples presented have included only one search condition. However,
you can include any number of search conditions in a WHERE clause by combining them
with the logical operators AND or OR.
When AND appears between search conditions, both conditions must be true for a row to be
retrieved. For example, enter this query:

SELECT DEPT_NO, LAST_NAME, FIRST_NAME, HIRE_DATE
FROM EMPLOYEE
WHERE DEPT_NO = 623 AND HIRE_DATE > "01-Jan-1992";

The query returns information on employees in department 623 who were hired after 1
January 1992.
When OR appears between search conditions, either search condition can be true for a row
to be retrieved. Choose Previous to recall the previous query and change AND to OR. As you
can see, the results are quite different, because the query retrieves rows for employees who
are in department 623 or who were hired before 1 January 1992.
As another example of using OR in a search condition, enter this query:

SELECT CUSTOMER, CUST_NO, COUNTRY
FROM CUSTOMER

WHERE COUNTRY = "USA" OR COUNTRY = "Canada";
This query retrieves customer records for customers in the US or Canada.
Controlling the Order of Evaluation
When entering compound search conditions, you must be aware of the order of evaluation of
the conditions. Suppose you want to retrieve employees in department 623 or department
600 who have a hire date later than 1 January 1992. Try entering this query:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, DEPT_NO
FROM EMPLOYEE
WHERE DEPT_NO = 623 OR DEPT_NO = 600
AND HIRE_DATE > "01-JAN-1992";

As you can see, the results include employees hired earlier than you want:
LAST_NAME FIRST_NAME HIRE_DATE DEPT_NO
==================== =============== =========== =======
Young Katherine 14-JUN-1990 623
De Souza Roger 18-FEB-1991 623
Phong Leslie 3-JUN-1991 623
Brown Kelly 4-FEB-1993 600
Parker Bill 1-JUN-1993 623
Johnson Scott 13-SEP-1993 623

The WHERE clause was not interpreted the way you meant it because AND has higher
precedence than OR. This means that the expressions on either side of AND are tested
before those associated with OR. In the example as written, the search conditions are
interpreted as follows:

(WHERE DEPT_NO = 623)
OR

(WHERE DEPT_NO = 600 AND HIRE_DATE > "01-JAN-1992")
The restriction on the hire date applies only to the second department. Employees in
department 623 are listed regardless of hire date.
Use parentheses to override normal precedence. In the example, place parentheses around
the two departments so they are tested against the AND operator as a unit:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, DEPT_NO
FROM EMPLOYEE
WHERE (DEPT_NO = 623 OR DEPT_NO = 600)
AND HIRE_DATE > "01-JAN-1992";

This displays the results you want:
LAST_NAME FIRST_NAME HIRE_DATE DEPT_NO

==================== =============== =========== =======
Brown Kelly 4-FEB-1993 600
Parker Bill 1-JUN-1993 623
Johnson Scott 13-SEP-1993 623

Order of precedence is not just an issue for AND and OR. All operators are defined with a
precedence level that determines their order of interpretation.
Tip: To avoid confusion with operator precedence, always use parentheses to group

operations in complex search conditions.

Using subqueries
Suppose you want to retrieve a list of employees who work in the same country as a
particular employee whose ID is 144. You would first need to find out what country this
employee works in. Enter this query:

SELECT JOB_COUNTRY FROM EMPLOYEE
WHERE EMP_NO = 144;

This query returns "USA." With this information, you can form your next query:
SELECT EMP_NO, LAST_NAME FROM EMPLOYEE

WHERE JOB_COUNTRY = "USA";
This query returns a list of employees in the USA, the same country as employee number
144. You can obtain the same result by combining the two queries:

SELECT EMP_NO, LAST_NAME, JOB_COUNTRY FROM EMPLOYEE
WHERE JOB_COUNTRY =

(SELECT JOB_COUNTRY FROM EMPLOYEE
WHERE EMP_NO = 144);

This statement uses a subquery, a SELECT statement inside the WHERE clause of another
SELECT statement. A subquery works like a search condition to restrict the number of rows
returned by the outer, or parent, query.
In this case, the subquery retrieves a single value, "USA." The main query interprets "USA"
as a value to be tested by the WHERE clause. Because the WHERE clause is testing for a
single value, the subquery must return a single value; otherwise, the statement produces an
error. As long as a subquery retrieves a single value, you can use it in any search condition
that tests for a single value.
If a subquery returns more than one value, you must use an operator that tests against more
than one value. IN is such an operator. The following example retrieves all management-
level employees. It uses a subquery that returns any job grade lower than or equal to 2:

SELECT FIRST_NAME, LAST_NAME, JOB_GRADE
FROM EMPLOYEE
WHERE JOB_GRADE IN

(SELECT JOB_GRADE FROM JOB WHERE JOB_GRADE <= 2);
Conditions for Subqueries
The following table summarizes the operators that compare a value on the left of the
operator to the results of a subquery to the right of the operator:
Operator Purpose
ALL Returns true if a comparison is true for all values returned by a

subquery.
ANY or SOME Returns true if a comparison is true for at least one value

returned by a subquery.
EXISTS Determines if a value exists in at least one value returned by a

subquery.
SINGULAR Determines if a value exists in exactly one value returned by a

subquery.
Suppose you want to see how salaries compare to the salaries of employees in department
623. First you would need an expression that returns employee salaries for department 623.
The following query returns that information:

SELECT SALARY FROM EMPLOYEE
WHERE DEPT_NO = 623;

and produces this output:
 SALARY
======================
 60000.00
 62000.00
 50000.00

 35000.00
 60000.00

The previous query can now be used as a subquery in the next several examples. To see
which employees have the same salary as those in department 623, enter:

SELECT LAST_NAME, DEPT_NO FROM EMPLOYEE
WHERE SALARY IN
(SELECT SALARY FROM EMPLOYEE WHERE DEPT_NO = 623);

The IN operator tests whether a value equals one of the values in a list. In this case, the
value being tested is SALARY, and the list comes from a subquery. The statement yields this
output:

LAST_NAME DEPT_NO
==================== =======
Johnson 180
Hall 900
Young 623
De Souza 623
Stansbury 120
Phong 623
Bishop 621
Parker 623
Johnson 623
Montgomery 672

The output shows that two employees, Hall and Montgomery, earn the same as someone in
department 623.
Using ALL
The IN operator tests only against the equality of a list of values. What if you want to test
some relationship other than equality? For example, suppose you want to find out who earns
more than the people in department 623. Enter the following query:

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > ALL
(SELECT SALARY FROM EMPLOYEE WHERE DEPT_NO = 623);

to yield this output:
LAST_NAME SALARY
==================== ======================

Nelson 98000.00
Young 90000.00
Lambert 95000.00
Forest 72000.00
Weston 77000.00
Papadopoulos 80000.00
. . .

This example uses the ALL operator. The statement tests against all values in the subquery.
If the salary is greater, the row is retrieved. The manager of department 623 can use this
output to see which company employees earn more than his or her employees.
Using ANY, EXISTS, and SINGULAR
Instead of testing against all values returned by a subquery, you can rewrite the example to
test for at least one value. Enter this query:

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > ANY
(SELECT SALARY FROM EMPLOYEE WHERE DEPT_NO = 623);

This statement retrieves rows for which SALARY is greater than any of the values from the
subquery, so this statement retrieves records of employees whose salary is greater than any
salary in department 623. The ANY keyword has a synonym, SOME. The two are
interchangeable.

Two other subquery operators are EXISTS and SINGULAR. For a given value, EXISTS tests
whether at least one qualifying row meets the search condition specified in a subquery.
EXISTS returns either true or false, even when handling NULL values. For a given value,
SINGULAR tests whether exactly one qualifying row meets the search condition specified in a
subquery.

Using aggregate functions
SQL provides aggregate functions that calculate a single value from a group of values. A
group of values is all data in a particular column for a given set of rows, such as the job code
listed in all rows of the JOB table. Aggregate functions may be used in a SELECT clause, or
anywhere a value is used in a SELECT statement.
The following table lists the aggregate functions supported by InterBase:
Function What It Does
AVG(value) Returns the average value for a group of rows.
COUNT(value) Counts the number of rows that satisfy the WHERE clause.
MIN(value) Returns the minimum value in a group of rows.
MAX(value) Returns the maximum value in a group of rows.
SUM(value) Adds numeric values in a group of rows.
For example, suppose you want to know how many different job codes are in the JOB table.
Enter the following statement:

SELECT COUNT(JOB_CODE) FROM JOB;
The result is:

 COUNT
===========
 31

However, this is not what you want, because the query included duplicate job codes in the
count. To count only the unique job codes, use the DISTINCT keyword as follows:

SELECT COUNT(DISTINCT JOB_CODE) FROM JOB;
This produces the correct result:

 COUNT
===========
 14

Enter the following query to retrieve the average salary of employees from the EMPLOYEE
table:

SELECT AVG(SALARY) FROM EMPLOYEE;
A single SELECT can retrieve multiple aggregate functions. Enter this statement to retrieve
the number of employees, the earliest hire date, and the total salary paid to all employees:

SELECT COUNT(EMP_NO), MIN(HIRE_DATE), SUM(SALARY)
FROM EMPLOYEE;

The result is:
 COUNT MIN SUM
=========== =========== ======================
 42 28-DEC-1988 115390775.00

Sometimes, a value involved in an aggregate calculation is NULL or unknown. In this case,
the function ignores the entire row to prevent wrong results. For example, when calculating
an average over fifty rows, if ten rows contain a NULL value, then the average is taken over
forty values, not fifty.

Grouping query results
You can use the optional GROUP BY clause to organize data retrieved from aggregate
functions. Each column name that appears in a GROUP BY clause must also appear in the
SELECT clause. And each SELECT clause in a query can have only one GROUP BY clause.
Suppose you want to display the maximum allowable salary for each job code and job grade
in the United States. Enter this query:

SELECT JOB_CODE, JOB_GRADE, MAX_SALARY, JOB_COUNTRY
FROM JOB WHERE JOB_COUNTRY = "USA";

You should see these results (shown in part):
JOB_CODE JOB_GRADE MAX_SALARY JOB_COUNTRY
======== ========= ====================== ===============
CEO 1 250000.00 USA
CFO 1 140000.00 USA
VP 2 130000.00 USA
Dir 2 120000.00 USA
Mngr 3 100000.00 USA
Mngr 4 60000.00 USA
Admin 4 55000.00 USA
Admin 5 40000.00 USA
. . .

Now suppose you want to total the salaries for each group of job codes. In other words, find
the maximum total possible salary for all job codes, regardless of job grade. To do so, use
the SUM() function and group the results by job code. Enter the following query:

SELECT JOB_CODE, SUM(MAX_SALARY)
FROM JOB WHERE JOB_COUNTRY = "USA"
GROUP BY JOB_CODE;

to produce the desired output (shown in part):
JOB_CODE SUM
======== ======================
Accnt 55000.00
Admin 95000.00
CEO 250000.00
CFO 140000.00
Dir 120000.00
Doc 100000.00
Eng 300000.00
. . .

Note the difference in the results. The first query produces four entries for engineers (Eng).
The second query totals the salaries for these four entries and displays a single row as the
result.
As another example, the DEPARTMENT table lists budgets for each department in the
company. Each department also has a head department to which it reports. Suppose you
want to find out the total budget for each head department. To do so, you would need to add
the budgets for individual departments and group the results by each head department.
Enter the following query:

SELECT HEAD_DEPT, SUM(BUDGET)
FROM DEPARTMENT
GROUP BY HEAD_DEPT;

to produce these results:
HEAD_DEPT SUM
========= ======================
000 3500000.00
100 3800000.00
110 800000.00
120 1300000.00

600 2350000.00
620 1350000.00
670 1310000.00
<null> 1000000.00

Using the HAVING clause
Just as a WHERE clause reduces the number of rows returned by a SELECT clause, the
HAVING clause can be used to reduce the number of rows returned by a GROUP BY clause.
Like the WHERE clause, a HAVING clause has a search condition. In a HAVING clause, the
search condition typically corresponds to an aggregate function used in the SELECT clause.
For example, you can modify the previous query to display only the head departments
whose total budgets are greater than 2,000,000. Change the query as follows:

SELECT HEAD_DEPT, SUM(BUDGET)
FROM DEPARTMENT
GROUP BY HEAD_DEPT
HAVING SUM(BUDGET) > 2000000;

This query produces the following results:
HEAD_DEPT SUM
========= ===========
000 3500000.00
100 3800000.00
600 2350000.00

Using the ORDER BY clause
By default, a query retrieves rows in "natural order," the order it finds them in a table.
Because internal table storage is typically unordered, retrieval is unordered as well. The
ORDER BY clause sorts results according to a column you specify. Every column in the
ORDER BY clause must also appear in the SELECT clause of the statement.
For example, enter the statement:

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
ORDER BY LAST_NAME;

As you can see, this query sorts results by employee's last name.
By default, ORDER BY sorts in ascending order, in this case from A to Z. To sort in
descending order instead, use the DESC keyword. Enter:

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
ORDER BY LAST_NAME DESC;

In the previous two examples, the sort column contains characters, so ORDER BY performs
an alphanumeric sort. If a sort column contains numbers, results are sorted numerically.
ORDER BY can also sort results by more than one column. For example, if several employees
have the same last name, you can sort by both first name and last name using the following
SELECT statement:

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
ORDER BY LAST_NAME DESC, FIRST_NAME;

In this case, the results are initially sorted by last name, in descending order. For employees
with the same last name, data is further sorted by first name. The first name is also sorted in
descending order because once you specify a column's sort order, it applies to all
subsequent columns until you specify another sort order. To explicitly sort in ascending
order, use the ASC keyword.

Joining tables
Joins enable a SELECT statement to retrieve data from two or more tables in a database. The
tables are listed in the FROM clause. The optional ON clause can reduce the number of rows
returned, and the WHERE clause can further reduce the number of rows returned.
From the information in a SELECT that describes a join, InterBase builds a table that contains
the results of the join operation, the result table, sometimes also called a dynamic or virtual
table.
InterBase supports two basic types of joins: inner joins and outer joins.
Inner joins link rows in tables based on specified join conditions and return only those rows
that match the join conditions. If a joined column contains a NULL value for a given row, that
row is not included in the result table. Inner joins are the more common type because they
restrict the data returned and show a clear relationship between two or more tables.
Outer joins link rows in tables based on specified join conditions but return rows whether
they match the join conditions or not. Outer joins are useful for viewing joined rows against a
background of rows that do not meet the join conditions.

Inner joins
There are three types of inner joins:

Equi-joins link rows based on common values or equality relationships in the join
columns.

Joins that link rows based on comparisons other than equality in the join columns.
There is not an officially recognized name for these types of joins, but for simplicity's sake
they may be categorized as comparative joins, or non-equi-joins.

Reflexive or self-joins, compare values within a column of a single table.
To specify a SELECT statement as an inner join, list the tables to join in the FROM clause, and
list the columns to compare in the WHERE clause. The simplified syntax is:

SELECT <columns>
FROM <left_table> [INNER] JOIN <right_table>

[ON <searchcondition>]
[WHERE <searchcondition>];

Search conditions based on a column in the right table can be specified in an optional ON
clause following the right table reference.
For example, consider the following query including an inner join:

 SELECT D.DEPARTMENT, D.MNGR_NO, E.SALARY
FROM DEPARTMENT D JOIN EMPLOYEE E
ON D.MNGR_NO = E.EMP_NO

AND E.SALARY*2 > (SELECT SUM(S.SALARY) FROM EMPLOYEE S
WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;
Examine this statement in detail. The SELECT clause uses correlation names D for
DEPARTMENT and E for EMPLOYEE (as specified in the FROM clause) to select the
department name and manager number from DEPARTMENT and the manager's salary from
the EMPLOYEE table.
The ON clause states a compound join condition:

The MNGR_NO column in the DEPARTMENT table must match the EMP_NO column in
EMPLOYEE.

The manager's salary times two (E.SALARY*2) must be greater than the sum of all
employees' salaries in the department. In other words, the manager's salary must be greater
than half the sum of all salaries in the department.
Enter the above statement. You should see the following results:

DEPARTMENT MNGR_NO SALARY
========================= ======= ======================
Consumer Electronics Div. 107 111262.50
Corporate Headquarters 105 212850.00
Customer Services 94 54000.00
Engineering 2 98000.00
Field Office: Canada 72 96800.00
Field Office: France 134 390500.00
Field Office: Italy 121 99000000.00
Field Office: Japan 118 7480000.00
Field Office: Switzerland 141 110000.00
Finance 46 116100.00
Sales and Marketing 85 111262.50

Outer joins
Outer joins produce a result table containing columns from every row in one table and a
subset of rows from another table. Outer join syntax is very similar to that of inner joins:

SELECT col [, col ...] | *
FROM <left_table> {LEFT | RIGHT | FULL} [OUTER] JOIN

<right_table> [ON <searchcondition>]
[WHERE <searchcondition>];

However, with outer joins, you need to specify the type of join to perform. There are three
possibilities:

A left outer join retrieves all rows from the left table in a join, and retrieves any rows
from the right table that match the search condition specified in the ON clause.

A right outer join retrieves all rows from the right table in a join, and retrieves any
rows from the left table that match the search condition specified in the ON clause.

A full outer join retrieves all rows from both the left and right tables in a join
regardless of the search condition specified in the ON clause.
Outer joins are useful for comparing a subset of data to the background of all data from
which it is retrieved. For example, when listing the employees that are assigned to projects,
it may be interesting to see the employees that are not assigned to projects, too.
The following outer join retrieves employee names from the EMPLOYEE table and project IDs
from the EMPLOYEE_PROJECT table, for employees that are assigned to projects.

SELECT PROJ_ID, FULL_NAME
FROM EMPLOYEE LEFT OUTER JOIN EMPLOYEE_PROJECT
ON EMPLOYEE.EMP_NO = EMPLOYEE_PROJECT.EMP_NO;

All employee names in the EMPLOYEE table are retrieved, regardless of whether they are
assigned to a project, because EMPLOYEE is the left table in the join. Enter it to see what the
results look like.
Notice that some employees are not assigned to a project; the PROJ_ID column is empty for
them. Reverse the outer join, by changing the FROM clause to:

FROM EMPLOYEE_PROJECT LEFT OUTER JOIN EMPLOYEE
The results look different. Why?

Formatting data
This section describes three ways to change data formats:

Converting data types
Concatenating strings
Converting characters to uppercase

Using CAST() to convert data types
Normally, only similar data types can be compared in search conditions, but you can work
around this by using CAST(). Use the CAST function in search conditions to translate one
data type into another. The syntax for CAST() is:

CAST (<value> | NULL AS datatype)
For example, the following WHERE clause uses CAST() to translate a CHAR data type,
INTERVIEW_DATE, to a DATE data type. This conversion lets you compare INTERVIEW_DATE
to another DATE column, HIRE_DATE:

. . . WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);
You can use CAST() to compare columns in the same table or across tables. CAST() allows
the conversions listed in the following table:
From Data Type To Data Type
NUMERIC CHARACTER, DATE
CHARACTER NUMERIC, DATE
DATE CHARACTER, NUMERIC

Using the string operator in search conditions
The string operator, also referred to as a concatenation operator, ||, joins two or more
character strings into a single string. Character strings can be constants or values retrieved
from a column. For example, enter the following:

SELECT DEPARTMENT, LAST_NAME || " is the manager"
FROM DEPARTMENT, EMPLOYEE
WHERE MNGR_NO = EMP_NO;

to produce this result:
DEPARTMENT
========================= ===================================
Corporate Headquarters Bender is the manager
Sales and Marketing MacDonald is the manager
Engineering Nelson is the manager
Finance Steadman is the manager
Quality Assurance Forest is the manager
Customer Support Young is the manager
Consumer Electronics Div. Cook is the manager
Research and Development Papadopoulos is the manager
Customer Services Williams is the manager
Field Office: East Coast Weston is the manager
. . .

Converting to uppercase
The UPPER() function converts character values to uppercase. For example, when defining a
column in a table, you can use a CHECK constraint that ensures that all column values are
entered in uppercase. The following CREATE DOMAIN statement uses the UPPER() function in
defining the PROJNO domain:

CREATE DOMAIN PROJNO
AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

PART FIVE:
Advanced data definition
This final series of lessons introduces some advanced DDL features, including:
 Creating and using triggers.
 Creating and using stored procedures.

Triggers and stored procedures
A trigger is a self-contained routine associated with a table. Triggers automatically perform
an action when a row in a table is inserted, updated, or deleted.
A stored procedure is a program that can be called by applications or from WISQL.
Both stored procedures and triggers are part of a database's metadata and are written in
procedure and trigger language, an InterBase extension of SQL.
Procedure and trigger language includes SQL data manipulation statements and some
powerful extensions, including IF...THEN...ELSE, WHILE...DO, FOR SELECT...DO, exceptions,
and error handling.
Stored procedures can be invoked directly from applications, or can be substituted for a
table or view in a SELECT statement. They can receive input parameters from and return
values to the calling application.
A trigger is never called directly. Instead, when an application or user attempts to INSERT,
UPDATE, or DELETE a row in a table, any triggers associated with that table and operation
are automatically executed, or fired.

Triggers
Triggers have a wide variety of uses, but in general, they enable you to automate tasks that
would otherwise be done manually. They enable you to define actions that occur
automatically whenever data is inserted, updated or deleted in a particular table. Triggers
are a versatile tool, and their uses are virtually unlimited.
The triggers defined in the EMPLOYEE database:
 Generate and insert unique employee numbers in the EMPLOYEE table and customer

numbers in the CUSTOMER table.
 Maintain a record of employees' salary changes.
 Post an event when a new sale is made.

Generating unique column values with triggers
Recall the EMPLOYEE table in the example database. This table has a primary key column
named EMP_NO for each employee's employee number. Because it is a primary key, each
employee number must be unique. And, generally, employee numbers are sequential. So,
each time you insert a new employee record in this table, you would have to remember what
the last employee number issued was, and then give the new employee the next number.
This would be cumbersome and error-prone.
Triggers provide a simple way to automate this process, by using a handy database object
called a generator. A generator is a named variable that is called and incremented through
the GEN_ID() function. Each time GEN_ID() is called, it generates the next incremental value
of the generator. The value of the generator is initialized with SET GENERATOR.
Look at the SQL file, TRIGGERS.SQL. The beginning of the file has the following statements:

CREATE GENERATOR EMP_NO_GEN;
SET GENERATOR EMP_NO_GEN TO 145;

The first statement creates a generator named EMP_NO_GEN. The second statement
initializes the generator to 145 (recall that in the script file, INSERTS.SQL, records were
inserted into EMPLOYEE for employee numbers up to 145).
The next statements define a trigger named SET_EMP_NO that uses EMP_NO_GEN to
generate unique sequential employee numbers, and inserts them into the EMPLOYEE table.

/* Create trigger to add unique customer number */
SET TERM !! ;
CREATE TRIGGER SET_EMP_NO FOR EMPLOYEE
BEFORE INSERT
AS
BEGIN

NEW.EMP_NO = GEN_ID(EMP_NO_GEN, 1);
END !!
SET TERM ; !!

The statements above define the trigger. Because each statement in a trigger body must be
terminated by a semicolon, SET TERM is first used to define a different symbol to terminate
the CREATE TRIGGER statement as a whole.
The CREATE TRIGGER statement above specifies:
 The name of the trigger, SET_EMP_NO
 The table with which the trigger is associated, EMPLOYEE
 When and how the trigger is fired, in this case before every INSERT operation
 Following the AS keyword, the body of the trigger-what the trigger does when it fires,

bracketed by BEGIN and END. In this case, it uses a context variable, NEW.EMP_NO to insert
the next employee number into the EMP_NO column.
Context variables are unique to triggers. They allow you to specify NEW and OLD to
reference the values of columns being updated.
There are several other triggers defined in TRIGGERS.SQL, which you will examine later. But
first, you are going to see how the SET_EMP_NO trigger works. Read the file into ISQL by
choosing File | Run an ISQL Script.... Now, refresh your memory of the EMPLOYEE table by
typing the statement:

SELECT * from EMPLOYEE;
Notice that the last employee listed has employee number 145. Now enter a new employee
record, for instance:

INSERT INTO EMPLOYEE (FIRST_NAME, LAST_NAME, DEPT_NO, JOB_CODE, JOB_GRADE,
JOB_COUNTRY, HIRE_DATE, SALARY, PHONE_EXT) VALUES ("Reed", "Richards",
"671", "Eng", 5, "USA", "07/27/95", 34000, "444");

Retrieve the new record by entering
SELECT * from EMPLOYEE WHERE LAST_NAME = "Richards";

Notice that the employee number is 146. The trigger has automatically assigned the new
employee the next employee number.

TRIGGERS.SQL defines a similar trigger named SET_CUST_NO to assign unique customer
numbers. It also defines two other triggers--SAVE_SALARY_CHANGE and POST_NEW_ORDER.

Maintaining change records with a trigger
SAVE_SALARY_CHANGE maintains a record of changes to employees' salaries in the
SALARY_HISTORY table. Choose View | Metadata Information..., select Trigger, and then type
"SAVE_SALARY_CHANGE" to view the trigger. This will be displayed in the Output area:

SHOW TRIGGER SAVE_SALARY_CHANGE
Triggers on Table EMPLOYEE:
SAVE_SALARY_CHANGE, Sequence: 0, Type: AFTER UPDATE, Active
AS
BEGIN
 IF (OLD.SALARY <> NEW.SALARY) THEN
 INSERT INTO SALARY_HISTORY
 (EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
 VALUES (OLD.EMP_NO,

"NOW",
USER,
OLD.SALARY,

 (NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END

This trigger fires AFTER UPDATE of the EMPLOYEE table. It then compares the value of the
SALARY column before the update to SALARY after the update, and if they are different, it
enters a record in SALARY_HISTORY consisting of the employee number, date, previous
salary, and percentage change in the salary. Update an employee record and change the
salary to see how this trigger works.

Posting an event with a trigger
The trigger, POST_NEW_ORDER, posts an event named "new_order" whenever a record is
inserted into the SALES table.

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS
BEGIN

POST_EVENT "new_order";
END !!

An event is a message passed by a trigger or stored procedure to the InterBase event
manager to notify interested applications of the occurrence of a particular condition.
Applications which have registered interest in an event can pause execution and wait for the
specified event to occur.
The POST_NEW_ORDER trigger is fired after a new record is inserted into the SALES table, in
other words when a new sale is made. When this event occurs, interested applications may
take appropriate action, such as printing an invoice or notifying the shipping department.

Stored procedures
Stored procedures are programs stored with a database's metadata. Applications can call
stored procedures and you can also use stored procedures in ISQL.
There are two types of stored procedures:
 Select procedures that an application can use in place of a table or view in a SELECT

statement. A select procedure must be defined to return one or more values (output
parameters), or an error results.
 Executable procedures that an application can call directly with the EXECUTE

PROCEDURE statement. An executable procedure may or may not return values to the
calling program.
Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the
same syntax. The difference is in how the procedure is written and how it is intended to be
used. Select procedures can return more than one row, so that to the calling program they
appear as a table or view. Executable procedures are simply routines invoked by the calling
program which may or may not return values.
A CREATE PROCEDURE statement is composed of a header and a body. The header contains:
 The name of the stored procedure, which must be unique among procedure, view,

and table names in the database.
 An optional list of input parameters and their data types that a procedure receives

from the calling program.
 If the procedure returns values to the calling program, the RETURNS keyword

followed by a list of output parameters and their data types.
The procedure body contains:
 An optional list of local variables and their data types.
 A block of statements in InterBase procedure and trigger language, bracketed by

BEGIN and END. A block can itself include other blocks, so that there may be many levels of
nesting.
The stored procedures for the EMPLOYEE database are defined in the script file named
PROCS.SQL. Open up this file with a text editor to view them. You are going to experiment
with these procedures one at a time to learn about them.
Before that, though, you'll need to run PROCS.SQL. First, edit the file using Notepad (or any
other text editor) and change the database name, user name, and password to match the
current database. Be sure to save the changes. You can keep the file open in Notepad to
review the procedures as you move through the rest of this lesson.
To execute the statements in this file, choose File | Run ISQL Script....
A standard file locator dialog appears. Use the dialog to locate the file PROCS.SQL (it should
be in your local /Interbas/Examples/Tutorial directory). When you locate it, click Open.
Before running the script, Windows ISQL asks if you want to save the results to a file. Click
No (you want to see the results in the ISQL Output window instead).
As Windows ISQL reads the script file, it echos the statements to the ISQL Output area.

A simple select procedure
The first procedure defined in PROCS.SQL is named GET_EMP_PROJ:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

 SUSPEND;
END ^

This is a select procedure that takes an employee number as its input parameter (EMP_NO,
specified in parentheses after the procedure name) and returns all the projects to which the
employee is assigned (PROJ_ID, specified after RETURNS).
It uses a FOR SELECT . . . DO statement to retrieve multiple rows from the
EMPLOYEE_PROJECT table. This statement retrieves values just like a normal select
statement, but retrieves them one at a time into the variable listed after INTO, and then
performs the statements following DO. In this case, the only statement is SUSPEND, which
suspends execution of the procedure and sends values back to the calling application (in this
case, ISQL).
See how it works by entering the following query:

SELECT * FROM GET_EMP_PROJ(71);
As you can see, this query looks as if there is a table named GET_EMP_PROJ, except that you
provide the input parameter in parentheses following the procedure name. The results are:

PROJ_ID
=======
VBASE
MAPDB

These are the projects to which employee number 71 is assigned. Try it with some other
employee numbers.

A simple executable procedure
The next procedure defined in PROCS.SQL is an executable procedure named
ADD_EMP_PROJ. It is a simple example of an executable procedure and makes use of an
exception, a named error message, defined with CREATE EXCEPTION:

CREATE EXCEPTION UNKNOWN_EMP_ID
"Invalid employee number or project id.";

Once defined, this exception can be raised in a trigger or stored procedure with the
statement EXCEPTION UNKNOWN_EMP_ID. The associated error message is then returned to
the calling application.
The stored procedure, ADD_EMP_PROJ, is shown below:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN
 BEGIN
 INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
 VALUES (:emp_no, :proj_id);
 WHEN SQLCODE -530 DO
 EXCEPTION UNKNOWN_EMP_ID;
 END
 SUSPEND;
END ^

This procedure takes an employee number and project ID as input parameters and adds the
employee to the specified project using a simple INSERT statement. The error-handling
WHEN statement checks for SQLCODE -530, violation of FOREIGN KEY constraint, and then
raises the previously-defined exception when this occurs.
Use this procedure through the EXECUTE PROCEDURE statement, for example:

EXECUTE PROCEDURE ADD_EMP_PROJ(20, "DGPII");
Now try adding a non-existent employee to a project, for example:

EXECUTE PROCEDURE ADD_EMP_PROJ(999, "DGPII");
The statement fails and the exception message is displayed on the screen.

A recursive procedure
Stored procedures support recursion, that is, they can call themselves. This is a powerful
programming technique that is useful in performing repetitive tasks across hierarchical
structures such as corporate organizations or mechanical parts. Look at the stored
procedure, DEPT_BUDGET:

SHOW PROCEDURE DEPT_BUDGET;
Procedure text:
===
DECLARE VARIABLE sumb DECIMAL(12, 2);
DECLARE VARIABLE rdno CHAR(3);
DECLARE VARIABLE cnt INTEGER;
BEGIN

tot = 0;

SELECT BUDGET FROM DEPARTMENT WHERE DEPT_NO = :dno INTO :tot;

SELECT COUNT(BUDGET) FROM DEPARTMENT WHERE HEAD_DEPT = :dno INTO :cnt;

IF (cnt = 0) THEN
SUSPEND;

FOR SELECT DEPT_NO
FROM DEPARTMENT
WHERE HEAD_DEPT = :dno
INTO :rdno
DO
BEGIN
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

tot = tot + sumb;
END

SUSPEND;
END

===
Parameters:
DNO INPUT CHAR(3)
TOT OUTPUT NUMERIC(15, 2)

This procedure takes as its input parameter a department number and returns the budget of
the department and all departments under it in the corporate hierarchy. It uses local
variables declared with DECLARE VARIABLE statements. These variables are only used within
the context of the procedure.
First, the procedure retrieves from the DEPARTMENT table the budget of the department
given as the input parameter and stores it in the variable, tot. Then it retrieves the number
of departments reporting to that department using the COUNT() aggregate function. If there
are no reporting departments, then it returns the value of tot with SUSPEND.
Using a FOR SELECT . . . DO loop, the procedure then retrieves the department number of
each reporting department into the local variable, rdno, and then recursively calls itself with:

 EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;
This statement executes DEPT_BUDGET with input parameter, rdno, and puts the output
value in sumb. Notice that when using EXECUTE PROCEDURE within a procedure, the input
parameters are not put in parentheses, and the variable into which to put the resultant
output value is specified after the RETURNING_VALUES keyword. The value of sumb is then
added to tot, to keep a running total of the budget. The result is that the procedure returns
the total of the budgets of all the reporting departments given as the input parameter plus

the budget of the department itself. Try it:
EXECUTE PROCEDURE DEPT_BUDGET(620);

The result is:
 TOT
======================
 2550000.00

Notice that the procedure is defined to take a CHAR(3) as its input parameter, but that you
can get away with giving it an integer (without quotes). This is because of automatic type
conversion, a handy feature that will convert data types, where possible to the required data
type. So the integer 620 is automatically converted to the character string "620".
The automatic type conversion will not work for department number 000 because it will
convert it to the string "0", which is not a department number. Execute the procedure again
with:

EXECUTE PROCEDURE DEPT_BUDGET("000");
This should give the same answer as the query:

SELECT SUM(BUDGET) FROM DEPARTMENT;
Can you figure out why?
There are a number of other procedures, some quite complex, defined in PROCS.SQL for the
EMPLOYEE database. Now that you have a basic understanding of procedures, see if you can
understand and use them.

