
Connecting to Notes Databases
Connecting to a Notes database with many forms and views can be relatively slow. This is because the
Lotus Notes ODBC driver builds system catalogs derived from Notes form and view design documents in
the Notes database during SQLConnect.

Lotus Notes ODBC Setup Dialog Box
1. Enter a name that identifies the data source in the Data Source Name text box. For example, add

the name Employee to identify the ODBC connection to an employee database.

2. (Optional) Enter a description of the data source in the Description text box. For example, add the
description "Hire date, salary history, and current review of all employees" to describe the contents of
the employee database.

3. Enter the name of the Notes server that contains the Notes database you want to open in the Server
text box. Leave the text box blank if the Notes database is on a local disk.

4. Enter the path and name of the .NSF file you want to open in the Database text box. For example,

C:\PERSONNEL\EMPLOYEE.NSF

NotesSQL Options Setup
You can modify any of the following optional parameters. The values for these parameters affect run-
time memory allocation:

Max Length of Text Fields
This parameter specifies the maximum number of characters the Notes driver allows in a
string. This includes the limit on the number of characters returned from a Notes text field, as well
as the limit on the length of a string to be inserted into a Notes document.

The maximum value allowed is 10,240 (10K).
The default value is 512.

Note: Notes has long text fields called rich text fields. The body of a Notes document is
typically a single rich text field. If you want to retrieve all the data in such a field, be sure that
the maximum string length you specify is high enough.

Max Number of Tables
This parameter specifies the maximum number of tables in a single query.

The maximum value allowed is 100.
The default value is 20.

Max Number of Subqueries
This parameter specifies the maximum number of nested subqueries in an SQL statement.

The maximum value allowed is 100.
The default value is 20.

SQL Statement Length
This parameter specifies the maximum length of an SQL statement passed to
SQLPrepare/SQLExecDirect.

The maximum value allowed is 32,767 (32K).
The default value is 1,024.

Keep Temporary Indexes Until SQLDisconnect
This option button controls the saving of temporary indexes. Select the option to save temporary
indexes until SQLDisconnect. Leave the option unselected to delete indexes at the end of each
SELECT result.

See also

Hardware and Software Requirements
Adding, Modifying, and Deleting a Lotus Notes Data Source

Lotus Notes Data Source
A Lotus Notes data source specifies the Notes server and Notes database you want to open.

Using the Lotus Notes ODBC Driver
The following topics provide helpful information about using the Lotus Notes ODBC Driver:

Optimizing Lotus Notes ODBC Driver Performance

Mapping SQL Tables, Views, and Indexes To and From Notes

Notes View Column Definitions

Understanding the Universal Relation Table

Column Names

Connecting to Notes Databases

Using Reserved Words

Connecting to a Lotus Notes Data Source
If your Notes ID is password-protected, Notes prompts you for a password every time you try to connect
to a remote database using the Lotus Notes ODBC driver. The password is not database-specific, and is
not retained, so you will need to enter it more than once if you connect to more than one database.

Notes never prompts for your Notes ID. Your Notes ID is part of your workstation installation.

Adding, Modifying, and Deleting a Lotus Notes Data Source
Before you can query data with the Lotus Notes ODBC driver, you must add a data source for it. You can
change or delete a data source at any time.

To add a Lotus Notes data source

1. In the Main group in the Program Manager window, double-click the Control Panel icon.
2. In the Control Panel window, double-click the ODBC icon.

The Data Sources dialog box appears.
3. Choose Add.
 The Add Data Source dialog box appears.
4. Select Lotus Notes from the Installed ODBC Drivers list box.
5. Choose OK.
6. In the Lotus Notes ODBC Setup dialog box, enter information to set up the data source.

To modify a Lotus Notes data source

1. In the Main group in the Program Manager window, double-click the Control Panel icon.
2. In the Control Panel window, double-click the ODBC icon.

The Data Sources dialog box appears.
3. Select the data source in the Data Sources (Drivers) list box.
4. Choose Setup.
5. In the Lotus Notes ODBC Setup dialog box, modify the information about the data source.

To delete a Lotus Notes data source

1. In the Main group in the Program Manager window, double-click the Control Panel icon.
2. In the Control Panel window, double-click the ODBC icon.

The Data Sources dialog box appears.
3. Select the data source in the Data Sources (Drivers) list box.
4. Choose Delete, and then choose Yes to confirm the deletion.

See also
Installing the Lotus Notes ODBC Driver
Connecting to a Lotus Notes Data Source

Installing the Lotus Notes ODBC Driver

1. Double-click the Control Panel icon in the Main Group of the Program Manager window.
The Control Panel window appears.

2. Double-click the ODBC icon.
The Data Sources dialog box appears.

3. Choose Drivers.
The Drivers dialog box appears.

4. Choose Add.
The Add Drivers dialog box appears.

5. Enter the name of the drive and directory containing the Notes driver in the text box and choose OK;
or choose Browse to select a drive and directory name.
The Install Drivers dialog box appears.

6. In the Available ODBC Drivers list box, select Lotus Notes.
7. Choose OK.

The Notes driver is installed.

To delete the Lotus Notes ODBC driver

1. Double-click the Control Panel icon in the Main group of the Program Manager window.
2. Double-click the ODBC icon.

The Data Sources dialog box appears.
3. Choose Drivers.

The Drivers dialog box appears.
4. In the Installed ODBC Drivers list box, select Lotus Notes.
5. Choose Delete.

A message asks you to confirm that you want to remove the driver and all the data sources that use
the driver.

6. Choose Yes.

Lotus Notes ODBC Driver

For All Users
The following topics discuss the Notes driver and how to install it.

Overview

Hardware and Software Requirements

Installing the Lotus Notes ODBC Driver

Adding, Modifying, and Deleting a Lotus Notes Data Source

Connecting to a Lotus Notes Data Source

Using the Lotus Notes ODBC Driver

For Advanced Users
The following topics discuss how to use the Notes driver directly.

Connection Strings

SQL Statements

Data Types

Error Messages

For Programmers
The following topics provide programming information on the Notes driver. These topics provide helpful
information for application programmers who have knowledge of the Open Database Connectivity
(ODBC) application programming interface (API).

SQLGetInfo Return Values

ODBC API Functions

Hardware and Software Requirements
To query Notes data, you must have

· The Lotus Notes ODBC driver
· Notes database files
· A computer running MS-DOS 3.3 or later
· Microsoft Windows 3.1 or later
· The ODBC Driver Manager 1.0 (ODBC.DLL)

Notes version 3 Workstation software must be installed and be in the executable path.

Notes database files can reside on a server. You don't need to have local copies of these files, but you
must have at least Reader access to them through Notes.

To add, modify, or delete drivers or data sources, you should have the ODBC Control Panel option
installed on your computer.

For more information about Notes databases, refer to your Lotus Notes documentation.

See also
Installing the Lotus Notes ODBC Driver

Overview
The Lotus Notes ODBC driver allows you to open and query a Notes database through the Open
Database Connectivity (ODBC) interface.

The application/driver architecture is:

Application

|

ODBC Driver Manager

(ODBC.DLL)

|

Lotus Notes Driver

(NOTESSQL.DLL)

|

Lotus Notes Workstation Software

|

Lotus Notes Server or Local .NSF file

Note The Notes driver communicates exclusively with the Lotus Notes workstation software. Lotus Notes
handles all network traffic and security.

See also
Hardware and Software Requirements
Installing the Lotus Notes ODBC Driver
Adding, Modifying, and Deleting a Lotus Notes Data Source
Connecting to a Lotus Notes Data Source
Using the Lotus Notes ODBC Driver

ODBC
ODBC (Open Database Connectivity) is an interface that allows applications to get to data in database
management systems that use SQL. The interface allows a single application to connect to many
different types of databases through a standard protocol. ODBC is implemented as a Driver Manager
and multiple drivers. Each driver links the application to a specific database.

Using the Universal Relation Table
· A field name can exist in multiple forms with different data types in a Notes database. Therefore, you

must specify field names in a SELECT clause that references the Universal Relation table. For
example, you cannot enter SELECT *. You can only perform text operations on fields in the Universal
Relation table because the data type for all fields is Character.

· The Universal Relation table can participate in a self-join, but cannot participate in any other kind of
join.

· The Universal Relation table supports only SELECT and CREATE VIEW statements. You cannot
perform an INSERT, DELETE, or UPDATE statement in a Universal Relation table.

· You cannot delete the Universal Relation table with the DROP TABLE statement.

Understanding the Universal Relation Table
The Universal Relation table contains the fields from all the forms in the Notes database. SQL tables
created with the Notes driver are similar to SQL views rather than to traditional relational database
tables.

For example, with the Notes driver, you can create a Notes form with the CREATE TABLE statement.
However, the DROP TABLE statement deletes the Notes form, but does not delete any documents from
the database. Using DROP TABLE with the Lotus Notes driver is like deleting an SQL view. The data
remains in the database. You can view the data through other forms or views that use the same field
names, or by referencing the Universal Relation table.

Using the Notes driver, if you create a new table with the same name as a previously deleted table, and
use some of the field names from the deleted table, you could find data in the table before you insert any
data. This is because the table is actually a view of existing data in the Universal Relation table. Fields in
the Notes database contain a reference to the form used to create them. The Notes driver uses the form
name stored with the field to identify the field when selecting from a form.

Using the Universal Relation Table

Connecting to a Lotus Notes Data Source
If your Notes ID is password-protected, Notes prompts you for a password every time you try to connect
to a remote database using the Lotus Notes ODBC driver. The password is not database-specific, and is
not retained, so you will need to enter it more than once if you connect to more than one database.

Notes never prompts for your Notes ID. Your Notes ID is part of your workstation installation.

Example: Comparing the Use of Forms and Views
The Notes Name and Address Book is a good database to use as an example to compare the use of
forms or views in a database. The Name and Address Book database includes
· A form called Person
· A view called People with a sort key on LastName

The following statement is the most efficient way to find people in the Name and Address Book sorted by
LastName:

SELECT LastName

FROM People

ORDER BY LastName

People is a Notes view. This query is efficient because the Lotus Notes ODBC driver can use the index
already associated with the view People that lists LastName in the right order.

Now assume you want to list people sorted by their mailing addresses. You could use the following
statement:

SELECT LastName, Mail_Address

FROM People

ORDER BY Mail_Address

Since the view People is not sorted on Mail_Address, the Notes driver uses the People index, generates
a temporary database, and creates a temporary index on Mail_Address. This results in slower
performance. This has a significant impact on performance when the database is on the server and you
do not have designer access.

A more efficient way to achieve the same result is to issue the following statement:

SELECT LastName, Mail_Address

FROM Person

ORDER BY Mail_Address

Person is a Notes form. If there is no index on Mail_Address, the Notes driver generates a temporary
index on Mail_Address but does not need to generate a temporary database. This statement is faster
than the previous statement, which used ORDER BY on a view-based table. This statement is even
faster if the user creates an index using the CREATE INDEX statement in the Notes driver or creates an
index through Notes view creation.

Note You need Designer access to create a view if the database is on a server.

Reserved Words
Avoid using the reserved words listed in Appendix C of the Microsoft ODBC Programmers Reference as
identifiers (table or column names).

If you must use a reserved word, enclose it in quotation marks (" "). For example, to use the reserved
word DATE type "DATE".

Column Names
Do not use column names that contain characters other than alphabetic, numeric, dollar sign ($), or
underscores (_) in SQL statements. However, if you enclose the column name in quotation marks (" ")
any character is permitted.

Mapping SQL Tables, Views, and Indexes To and From Notes
· Each SQL table is derived from a Notes form.

· Each SQL index is derived from a Notes view in which all sorted columns map to fields in a single
form, and which selects documents only through that form.

· Each SQL view is derived from a Notes view that selects documents through just one form.

Copyright
Under copyright laws, neither the documentation nor the software may be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or part,
without the prior written consent of Lotus Development Corporation, except in manner described in the
documentation.

©Copyright 1990, 1994

Lotus Development Corporation

55 Cambridge Parkway

Cambridge, MA 02142

All rights reserved

Lotus and Lotus Notes are registered trademarks of Lotus Development Corporation.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

© Copyright 1994 Casahl Technology, Inc. All Rights Reserved.

Casahl is a registered trademark of Casahl Technology, Inc.

View Column Definitions
If a column in a view does not refer directly to a field, the Lotus Notes ODBC driver names the column in
the SQLColumns result set starting with the character $ followed by a number, for example $2.

If a view column definition contains one of the @functions listed below, the Notes driver returns no
results for that column. These columns will display data when viewed from Notes, but this data is not
available through an SQL query.

@All
@DeleteDocument
@DeleteFields
@DocChildren
@DocLevel
@DocNumber
@DocParentNumber
@DocSiblings
@Error
@IsCategory
@IsExpandable
@Unavailable

Optimizing Lotus Notes ODBC Driver Performance

Driver performance is affected by your hardware and software environment and other factors including:

· Access to the database

· The type of table you query

· The design of the Notes database

· The selection criteria you specify

Database Access
· Performance working with server based databases is affected by the type of network hardware and

software you use and the amount of activity on the network. A query executed on a server based
database that returns a small result set generally provides better performance than the same query
on a local database.

· If you have designer access to the server based database the Notes driver can create a temporary
view on the server to sort the data. If you don't have designer access and try to sort on a field without
an index the Notes driver copies data to a temporary local Notes database and creates the view on
the temporary copy.

Types of Notes Tables
The Notes driver can distinguish both Notes forms and views as tables. In addition the
driver recognizes the Notes Universal Relation Table. However, Notes forms and views have
very different properties that effect the performance of data access with the Lotus Notes
ODBC driver.

Note Notes documents created by a form with the Store form in document option selected in
Notes form attributes do not appear in views that select documents using that form.

Notes views are indexed, and queries on views can use the indexes to improve performance. You can
optimize performance by modifying existing Notes views or creating new Notes views (you need
Designer access to create or modify views on a server) to sort data in Notes rather than sorting the data
with the Lotus Notes driver.

Example

Comparing the Use of Forms and Views

Database Design Guidelines
Here are some guidelines for creating views in Notes to optimize performance from the Notes driver:

· Before you create an index you should consider the following information. An index on a table that is
small compared to the size of the entire database speeds up access. If there is a single table for the
database the index may slow down access time.

If a WHERE clause uses the index, and the index selects a subset (20% or less) of the documents in
the database, then the use of the index improves access time. An index on the whole database
(SELECT @ALL) slows access.

· Design the Notes view so that columns appear in the following order:

Categorized columns

Sorted, uncategorized columns

Non-sorted columns

· Avoid using the Store Form in Document option in Form Attributes. Documents created with this
option do not appear in the table derived from the form.

You can retrieve data from forms that use the Store Form in Document option by creating a view and
using either of the following formulas:

SELECT $TITLE = form name

SELECT@ALL

· Avoid creating more forms and views than necessary. Connection to a database with many forms and
views can be relatively slow.

· Avoid using complex formulas in forms because Notes evaluates these formulas when you execute
an INSERT or UPDATE statement.

· When you need to perform many inserts with the Notes driver change the Index Options in Design
View Attributes to manual. If the Index option is automatic Notes updates the index every time you
add or modify a document with an INSERT and UPDATE statement.

· The Notes driver is case sensitive. To avoid matching problems make form and view names
uppercase.

· To make it easier to identify views created specifically for SQL access you might consider creating a
coding scheme to identify them. For example, you could preface all the view names with the letters
"SQL".

Query Guidelines
The following are guidelines to consider when you create a query.

· Try to use selection criteria only on categorized and sorted columns.

· Avoid selecting a table based on a Notes view and specifying a different sort order. When you specify
a different sort order on an existing view Notes creates a copy of the data in a local database and a
view to sort the data.

· When you use a WHERE or ORDER BYclause in a SELECT statement the query is much faster if
there's an index on the columns specified in the WHERE or ORDER BYclause.

Using Notes Views as Indexes
The Notes driver is able to use Notes views as indexes that meet the following characteristics:

· The view selection formula is SELECT Form = "name". You can use SELECT @All but it is much
slower.

· Each column in the view is defined as a simple reference to a field in that form (no formulas)

· At least one column is sorted.

· Each view name used as an index must be unique.

SQLGetInfo Return Values (Programming)
The following table lists the C language #defines for the fInfoType argument and the corresponding
values returned by SQLGetInfo. You can retrieve this information by passing the C language #define to
SQLGetInfo in the fInfoType argument.

fInfoType Value (#define) Lotus Notes Driver Return Values
SQL_ACCESSIBLE_PROCEDURES No

SQL_ACCESSIBLE_TABLES No

SQL_ACTIVE_CONNECTIONS No Limit

SQL_ACTIVE_STATEMENTS No Limit

SQL_CONCAT_NULL_BEHAVIOR Result is NULL valued.

SQL_CONVERT_BIGINT None

SQL_CONVERT_BINARY None

SQL_CONVERT_BIT None

SQL_CONVERT_CHAR CHAR, VARCHAR, LONGVARCHAR,
DATE, TIME, or TIMESTAMP

SQL_CONVERT_DATE DATE, VARCHAR, LONGVARCHAR, or
TIMESTAMP

SQL_CONVERT_DECIMAL CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_DOUBLE CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_FLOAT CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_FUNCTIONS Not supported

SQL_CONVERT_INTEGER CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_LONGVARBINARY None

SQL_CONVERT_LONGVARCHAR CHAR, VARCHAR, LONGVARCHAR,
DATE, TIME, or TIMESTAMP

SQL_CONVERT_NUMERIC CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_REAL CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_SMALLINT CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE,
VARCHAR, or LONGVARCHAR

SQL_CONVERT_TIME CHAR, VARCHAR, LONGVARCHAR,

TIME, or TIMESTAMP

SQL_CONVERT_TIMESTAMP CHAR, VARCHAR, LONGVARCHAR,
DATE, TIME, or TIMESTAMP

SQL_CONVERT_TINYINT None

SQL_CONVERT_VARBINARY None

SQL_CONVERT_VARCHAR CHAR, VARCHAR, LONGVARCHAR,
DATE, TIME, or TIMESTAMP

SQL_CURSOR_COMMIT_BEHAVIOR Preserved

SQL_CURSOR_ROLLBACK_BEHAVIOR Close/Delete

SQL_DATA_SOURCE_NAME Data source name from SQLConnect

SQL_DATA_SOURCE_READ_ONLY NOTESSQL does not check the source to
see if it is read only.

SQL_DATABASE_NAME Database name found from SQLConnect

SQL_DBMS_NAME Lotus Notes

SQL_DBMS_VER Lotus Notes Version 3

SQL_DEFAULT_TXN_ISOLATION SQL_TXN_REPEATABLE_READ

SQL_DRIVER_NAME NOTESSQL.DLL

SQL_DRIVER_VER Returns the version of the installed driver.

SQL_EXPRESSIONS_IN_ORDERBY No

SQL_FETCH_DIRECTION NEXT

SQL_IDENTIFIER_CASE Names are case sensitive and can be
mixed case.

SQL_IDENTIFIER_QUOTE_CHAR Double quote (" ")

SQL_MAX_COLUMN_NAME_LEN 32

SQL_MAX_CURSOR_NAME_LEN 32

SQL_MAX_OWNER_NAME_LEN 0

SQL_MAX_PROCEDURE_NAME_LEN 0

SQL_MAX_QUALIFIER_NAME_LEN 0

SQL_MAX_TABLE_NAME_LEN 32

SQL_MULT_RESULT_SETS Not supported

SQL_MULTIPLE_ACTIVE_TXN Not supported

SQL_NUMERIC_FUNCTIONS Not supported

SQL_ODBC_API_CONFORMANCE Level1

SQL_ODBC_SAG_CLI_CONFORMANCE SAG-compliant

SQL_ODBC_SQL_CONFORMANCE Minimum

SQL_ODBC_SQL_OPT_IEF No

SQL_ODBC_VER Returns the version of the ODBC driver
manager being used.

SQL_OUTER_JOINS No

SQL_OWNER_TERM Not supported

SQL_PROCEDURE_TERM Not supported

SQL_PROCEDURES Not supported

SQL_QUALIFIER_NAME_SEPARATOR None

SQL_QUALIFIER_TERM None

SQL_ROW_UPDATES No

SQL_SCROLL_CONCURRENCY SQL_SCCO_OPT_VALUES

SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY

SQL_SEARCH_PATTERN_ESCAPE Backlash (\)

SQL_SERVER_NAME Server name found from SQLConnect

SQL_STRING_FUNCTIONS Not supported

SQL_SYSTEM_FUNCTIONS Not supported

SQL_TABLE_TERM FORM

SQL_TIMEDATE_FUNCTIONS Not supported

SQL_TXN_CAPABLE Transactions not supported

SQL_TXN_ISOLATION_OPTION Not supported

SQL_USER_NAME None

ODBC API Functions (Programming)
The Lotus Notes ODBC driver supports all Core and Level 1 functions with the following exceptions:

· SQLGetStmtOption
· SQLSetStmtOption
· SQLTransact

The following describes how particular functions are implemented with the Notes driver.

SQLCancel
The SQLSetStmtOption is not supported. The SQLCancel function (without the SQLSetStmtOption
ASYNC_ENABLE option) is useful for interrupting an SQLPutData function when the return of a long
data field requires additional SQLPutData functions.

Returns:

SQL_INVALID_HANDLE

SQLColumns
If a column in a view does not refer directly to a field, the Notes driver names the column in the result set
starting with the character $ followed by a number, for example $2. A call to SQLColumns returns only
the first 32 characters of the remarks field. The remarks field corresponds to the Help Description for a
field set in the form using the Field Definition dialog box.

SQLConnect
The Notes driver builds system catalogs for the database at SQLConnect. These catalogs are derived
from Notes form and view design documents. Therefore, connection to a database with many forms and
views will seem slow.

SQLSetConnectOption
This function allows the following settings:

SQL_AUTOCOMMIT = 1

SQL_ACCESS_MODE = SQL_MODE_READ_WRITE

All other settings return an error. The SQLSetConnectOption only verifies that you asked for one of the
settings shown above and does not affect the driver's state.

SQLTables
Valid table types are:

FORM

SYNONYM

TABLE

VIEW

UNIVERSAL

A Notes database contains a table that has the same name as the database referred to as the Universal
Relation table. The Universal Relation table contains all the fields in the Notes database. SQL tables
created with the Notes driver are similar to SQL views rather than to traditional relational database
tables.

SQLTransact
SQLTransact is supported in a limited way. Since Notes does not provide any transaction mechanism,
SQL_COMMIT is supported but SQL_ROLLBACK returns an error.

Summary of Supported ODBC SQL Grammar
The Lotus Notes ODBC driver supports the following ODBC SQL grammar:

Supported Statements

ALTER TABLE
CREATE INDEX
CREATE TABLE
CREATE VIEW
DELETE searched
DELETE positioned
DROP INDEX
DROP TABLE
DROP VIEW
INSERT
SELECT

FROM
WHERE
FOR UPDATE
GROUP BY
HAVING
ORDER BY

UPDATE searched
UPDATE positioned

Supported Expressions, Functions, and Operators

Numeric Operators
Predicate Operators
Column Functions

<subquery> is a SELECT statement with the restriction that only one column can be specified in the
SELECT clause.

FOR UPDATE
The FOR UPDATE clause specifies a list of column names.

Syntax
<FOR UPDATE clause> is FOR UPDATE OF <column list>

See Conventions

Example

ORDER BY
The ORDER BY clause specifies how to sort the records retrieved based on a query.

Syntax
<ORDER BY clause> is ORDER BY <column name> | <integer> [ASC | DESC] [, ...]

See Conventions

Example

HAVING
The HAVING clause specifies a search condition for a group.

Syntax
<HAVING clause> is HAVING <search condition>

See Conventions

The search condition must include a Column function.

Example

GROUP BY
The GROUP BY clause groups the data from source tables by one or more column names and produces
a single summary row for each column name specified.

Syntax
<GROUP BY clause> is GROUP BY <column list>

See Conventions

This list cannot include derived columns. All columns in the GROUP BY clause must also appear in the
SELECT clause.

Example

Numeric Operators
The Lotus Notes ODBC driver supports the following numeric operators in expressions.

Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

Predicate Operators
The Lotus Notes ODBC driver supports the following predicate operators.

Operator Meaning
< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

= Equal

<> Not Equal

BETWEEN Specifies a range of values between a
lower and upper boundary.

IN Specifies a member of a set of specified
values or a member of a subquery.

LIKE Use for matching a pattern. Wildcard
characters in LIKE predicate:
Use an underscore (_) to represent a
single character.
Use a percent symbol (%) to represent
any number of characters.
Use a backslash (\) as the escape
character.

NOT Use the NOT operator with another
operator to specify a search condition
that is false. For example: NOT IN, NOT
LIKE, or NOT BETWEEN.

ANY Use to compare a value to each value
returned by a subquery. Can be prefaced
by =, <>, >, >=, <, <=, =.

=ANY is equivalent to IN.

<>ANY is equivalent to NOT IN.

SOME SOME is an alternate keyword for ANY.

ALL Use to compare a value to each value
returned by a subquery. Can be prefaced
by =, <>, >, >=, <, <=

EXISTS "True" if a subquery returned at least one
record.

Column Functions
Column functions can be part of a SELECT clause. A column function takes an entire column of data as
its argument and produces a single data item that summarizes the column. For example, the AVG
column function takes a column of data and computes its average.

You can use a column function with a field name or in combination with a more complex expression. The
Lotus Notes ODBC driver supports the following Column functions.

Function Description
AVG Returns the average values in a

numeric field expression. For example,
AVG(SALES) returns the average of
all sales fields.

COUNT Returns the number of values in any
field expression.

MAX Returns the highest value in any field
expression. For example,
MAX(SALES) returns the highest
sales field value.

MIN Returns the lowest value in any field
expression. For example,
MIN(SALES) returns the lowest sales
field value.

SUM Returns the total of values in numeric
field expression. For example,
SUM(SALES) returns the sum of all
sales field values.

WHERE
The WHERE clause specifies the conditions that records must meet for retrieval.

Syntax
<WHERE clause> is WHERE [NOT] <search condition>[{ AND | OR } [NOT] <search
condition> ...]

See Conventions

Example

Arguments

<search condition> is one of the following:
· <comparison predicate> is:

<expression> <comparison operator> <expression>
· <between predicate> is:

<expression> [NOT] BETWEEN <expression> AND <expression>
· <in predicate> is:

<expression> [NOT] IN { <expression> | <value list> }
· <like predicate> is:

<column name> [NOT] LIKE <search pattern>
· <quantified comparison predicate> is:

 <expression> <comparison operator> { ANY | SOME } subquery
· <all condition> is:

<expression> <comparison operator> [NOT] ALL (<subquery>)
· <exists predicate> is:

WHERE [NOT] EXISTS (<subquery>)
· <IN comparison with subquery> is:

WHERE <expression> [NOT] IN (<subquery>)
· <EXISTS predicate> is:

WHERE [NOT] EXISTS (<subquery>)
· <join condition> is:

 <column expression> <comparison operator> <column expression>

These column expressions are generally qualified by table name or alias. Column expressions cannot
include asterisks (*).

Restrictions
The WHERE clause does not support Notes rich text fields. Notes does not allow formulas on rich text
fields. Since the Notes driver passes the search condition to Notes, and Notes is unable to evaluate the
formula, no rows are returned.

FROM
The FROM clause specifies the table names or views that are the source tables for a query.

Syntax
<FROM clause> is FROM {<table reference> [<alias>] } [, ...]

See Conventions

Example

Arguments

<table reference> is the name of a table name or view name.
<alias> is an alias for the table name or view name. The alias is defined only for this query.

UPDATE Positioned
The positioned Update statement updates the last row fetched.

Syntax
UPDATE <table name> SET <column name> = <value expression> [, ...] WHERE CURRENT
OF <cursor name>

See Conventions

Example

Arguments

<table name> is the name of the table to update.
<column name> is the name of a column in the table.
<value expression> is the new value for the column. This must be either a value expression or a
dynamic parameter.
<cursor name> is the name of the cursor pointing to the row to update.

UPDATE Searched
The searched UPDATE statement updates values in selected rows of a table.

Syntax
UPDATE <table name> [<alias>] SET <column name> = <expression> [, ...][<where clause>]

See Conventions

Example

Arguments

<table name> is the name of the table to update. Cannot be used if <alias> is used.
<alias> is an optional alias for the table. Cannot be used if <table name> is used.
<column name> is the name of a column in the table.
<expression> is an expression that evaluates to a new value for the column.
<where clause> identifies which rows will be updated (see SELECT).

INSERT
The INSERT statement adds a row to a table or view. You can specify values explicitly or obtain them
from a SELECT statement. The value you assign to a column must be compatible with the column's data
type. If you do not specify a value a default is assigned if one is available.

Syntax
INSERT INTO <table name>[(<column list>)]{ VALUES (<value list>) | <query specification>}

See Conventions

Example

Arguments

<table name> is the name of the table to insert into.
<column list> is an optional list of the columns to update. If you do not specify a column list, then
values are assigned to columns in the order in which they appear in the definition of the table. You
must separate column names with commas and enclose the entire list in parentheses.
<value list> is a list of values to insert into the table. You must separate values with commas and
enclose the entire list in parentheses. Each value must be one of the following:
· A quoted string constant
· A numeric constant
· A dynamic parameter
· NULL

The INSERT statement must contain either a VALUES clause or a SELECT clause.

Input Validation Functions
When the Notes driver inserts a new record into a table, it evaluates three functions in the form design
for every field (Notes does the same thing when you compose a document):

· Default value

· Input translation

· Input validation

The field definition can include any combination of these functions or none of them. These functions are
evaluated in the following order:

1. The default value formula (if it exists) is evaluated to supply a value when the INSERT statement
contains no data for the field.

2. The input translation formula is evaluated.

Note The input translation formula could change the value of the inserted data.

3. The input validation formula is evaluated.

When an INSERT statement involves multiple records, and one or more of the insertions fails an input
validation check, the return code from SQLExecute or SQLExecDirect is SQL_SUCCESS_WITH_INFO.
This tells the user what failed and allows valid insertions to continue.

DROP VIEW
The DROP VIEW statement deletes a view from the current database.

Syntax
DROP VIEW <view name>

See Conventions

Example

Arguments

<view name> is the name of the view to delete.

Restrictions
· RESTRICT and CASCADE are not supported.

· Dependent objects and documents are not dropped.

DROP TABLE
The DROP TABLE statement deletes a table from the current database.

Note: The DROP TABLE statement does not delete data from the database. For more information, see
Understanding the Universal Relation Table.

Syntax
DROP TABLE <base table name>

See Conventions

Example

Arguments

<base table name> is the name of the table to delete.

Restrictions
· RESTRICT and CASCADE are not supported.

· Dependent objects and documents are not dropped.

DROP INDEX
The DROP INDEX statement deletes an index from the current database.

Syntax
DROP INDEX <index name>

See Conventions

Example

Arguments

<base table name> is the (optional) name of the table on which the index was defined.
<index name> is the name of the index to delete.

Restrictions
· RESTRICT and CASCADE are not supported.

· Dependent objects and documents are not dropped.

DELETE Positioned
The positioned DELETE statement deletes the last row fetched (the current row).

Syntax
DELETE FROM <table name> WHERE CURRENT OF <cursor name>

See Conventions

Example

Arguments

<table name> is the name of the table or view from which to delete a row.
<cursor name> is the cursor pointing to the row being processed.

DELETE Searched
The searched DELETE statement deletes selected rows from a table.

Syntax
DELETE FROM <table name> [WHERE <where clause>]

See Conventions

Example

Arguments

<table name> is the name of the table where you want to delete data.
<where clause> specifies the rows to delete. If you do not specify a WHERE clause, all rows in the
table are deleted.

SELECT
The SELECT statement selects rows and columns from tables either for display or as input to other SQL
statements.

Syntax
SELECT <fullselect> [<ORDER BY clause> | <FOR UPDATE clause>]

See Conventions

Arguments

<fullselect> is one of the following:
· <SELECT clause>
· < FROM clause>
· [<WHERE clause>]
· [<GROUP BY clause>]
· [<HAVING clause>]
<SELECT clause> is SELECT {* | <expression list> }
<expression list> is a list of column names and other <expressions> whose values will appear in
the result table (result set).

Restrictions
· The UNION operation is not supported.

· The DISTINCT clause is not supported in a Column function

CREATE VIEW
The CREATE VIEW statement defines a new view in the current database.

Syntax
CREATE VIEW <view name> [(<column list>)] AS <query specification>

See Conventions

Example

Arguments

<view name> is the name of a new view.
<column list> is a comma-delimited list of column names.

Restrictions
· Only single base tables (no view on view) are supported.

· Select columns cannot be Column functions.

· No GROUP BY or HAVING clauses are supported in a query specification.

· No nested queries are supported in a view definition.

CREATE TABLE
The CREATE TABLE statement defines a new table in the current database.

Syntax
CREATE TABLE <base table name> (<column name> <datatype> [DEFAULT <default value>] [
CHECK <search condition>])

See Conventions

Example

Arguments

<base table name> is the name of the table to create.
<column name> is the name of a column.
<datatype> is one of the following:
· CHAR(n) or CHARACTER(n) where 1 <= n <= 254
· DECIMAL(p, s) where p (precision) is 1 <= p <= 15 and s (scale) is 0 <= s <= p
· NUMERIC(p, s) (same as DECIMAL)
· SMALLINT
· INTEGER
· REAL
· FLOAT
· DOUBLE PRECISION
· VARCHAR(n) or CHARACTER VARYING(n) (same as CHAR)
· DATE (format YYYY-MM-DD)
· TIME (format HH-MM-SS)
· TIMESTAMP (format YYYY-MM-DD HH:MM:SS)

Note The ODBC shorthand escape sequences {d 'yyyy-mm-dd'}, {t 'hh:mm:ss'} and {dt 'yyyy-mm-dd
hh:mm:ss'} are not supported.

Note The millisecond portion of the TIMESTAMP value is not supported.

Restrictions
· NULL and NOT NULL are not supported.

· UNIQUE and PRIMARY KEY are not supported.

· The REFERENCES clause is not supported.

· A table constraint definition is not supported.

CREATE INDEX
The CREATE INDEX statement defines an index for a table.

Syntax
CREATE INDEX <index name> ON <base table name>(<column name> [ASC | DESC] [,
<column name> [ASC | DESC]] ...)

See Conventions

Example

Arguments

<index name> is the name of the index to create.
<base table name> is the name of the table to index.
<column name> is the name of a column to include in the index. The entire list of column
specifications is enclosed in parentheses and items are separated by commas. The column data type
cannot be VARCHAR.
ASC | DESC specify the order of the index, either ascending (ASC) or descending (DESC).
Ascending is the default sort order.

Restrictions
No unique index.

Exceptions to ODBC SQL Grammar
The Lotus Notes ODBC driver supports most SQL statements and clauses in the ODBC Minimum and
Core grammar. The following table describes exceptions:

Grammar Limitation
ALTER TABLE The following keywords are not

supported:

NULL
NOT NULL
PRIMARY KEY
REFERENCES

No table constraint definition

CREATE INDEX The UNIQUE keyword is not
supported

CREATE TABLE The following keywords are not
supported:

NULL
NOT NULL
UNIQUE
PRIMARY KEY
REFERENCES

No table constraint definition

CREATE VIEW Only single base table (no view
on view)

SELECT columns cannot be
Column functions

No GROUP BY clause or
HAVING clause in a query
specification

No nested queries in a view
definition

RESTRICT or
CASCADE

Not supported in DROP INDEX,
DROP VIEW, and DROP TABLE
statements. Dependent objects
and document are not dropped.

GRANT and REVOKE Not Supported. All access control
is handled implicitly by Notes.

UNION Not supported in the SELECT
statement

DISTINCT Not supported in select clause or
in a Column function

DATE, TIME, and
TIMESTAMP ODBC
escape clauses

The ODBC shorthand escape
sequences {d 'yyyy-mm-dd'}, {t
'hh:mm:ss'} and {dt 'yyyy-mm-dd
hh:mm:ss'} are not supported.

Rich Text Fields
The Lotus Notes driver returns only the text part(s) of a rich text field. The Notes driver cannot create a
rich text field.

The WHERE clause does not support Notes rich text fields. Notes does not allow formulas on rich text
fields. Since the Notes driver passes the search condition to Notes, and Notes is unable to evaluate the
formula, no rows are returned.

List Fields (multi-valued fields)
The Lotus Notes driver supports multiple values in fields. The Notes driver contains information about
which fields can have multi-values and the underlying data type for these values.

The Notes driver does not support list fields in DDL statements (CREATE TABLE, DROP TABLE, ALTER
TABLE, CREATE INDEX, CREATE VIEW, or DROP VIEW).

Use the following notation in DML statements (SELECT, INSERT, UPDATE searched, UPDATE
positioned, DELETE searched, DELETE positioned) to specify a list of values:

'string;string;string'

Text fields
The Notes driver returns all the data in multi-valued fields composed of text as a single string, with items
separated by semicolons. For example:

'a;b;c'

Note: An extra semicolon can appear in the result if, when the information was entered in Notes, any
character other than a semicolon were used as the list separator and the list contains an item which
includes a semicolon.

The Notes driver accepts a semicolon-delimited list of strings for insertion in a multi-valued field
composed of text. For example:

'a;b;c'

This value creates a list in the Notes document if the field allows multiple values. If the field does not
allow multiple values, the value appears in Notes as a single string. Data retrieved through the Notes
driver produces the same result in either case.

Numeric and date fields
The Notes driver returns only the first value in the list if the multi-valued fields are numeric or date fields.

The Notes driver accepts only a single numeric value for insertion in a multi-valued field that is numeric.

SQL Statements
The Lotus Notes driver supports most ODBC Minimum and Core level SQL syntax. Restrictions and
exceptions are described for each statement.

Summary of Supported ODBC SQL Grammar

Exceptions to ODBC SQL Grammar

See also
Using the Lotus Notes ODBC Driver

Connection Strings
The following keywords are supported in an SQLDriverConnect call:

Keyword Description
DSN The name of the data source

Database The name of the Notes database, with
a path if necessary

Server The name of the Notes server where
the database is located

If the database is on the local
workstation leave the field blank.

For example, to connect to the Personnel data source in the directory C:\PERSONNEL on server HR_1,
use the following connection string:

DSN=Personnel; Database=C:\Personnel\employee.nsf; Server=HR_1

Data Types
The following table shows how Lotus Notes data types are mapped to ODBC SQL data types. In addition
to the SQL data types Notes supports two additional data types:

· List fields

· Rich text fields

SQL to Notes Data Type Mapping
ODBC SQL Data Type Lotus Notes Data Type
SQL_CHAR Text
SQL_VARCHAR Text
SQL_LONGVARCHAR Notes Rich Text
SQL_DECIMAL Number
SQL_NUMERIC Number
SQL_SMALLINT Number
SQL_INTEGER Number
SQL_REAL Number
SQL_FLOAT Number
SQL_DOUBLE Number
SQL_DATE Time
SQL_TIME Time
SQL_TIMESTAMP Time

Note SQLGetTypeInfo returns ODBC SQL data types. All conversions in Appendix D of the Microsoft
ODBC SDK Programmer's Reference are supported for the ODBC SQL data types listed above.

Notes to SQL data type mapping
Lotus Notes data type ODBC SQL data type
Number SQL_FLOAT

Time Depending on format this can be
SQL_TIME, SQL_DATE, or
SQL_TIMESTAMP

Text SQL_VARCHAR

Keyword SQL_VARCHAR

Multi-value list SQL_VARCHAR

Rich text field Text portion only, as
SQL_LONGVARCHAR

Section Not supported

Error Messages
Error messages can originate in one of three layers:

· The Driver Manager layer traps any incorrect sequence of ODBC API calls and other invalid values.

· The Lotus Notes ODBC and SQL engine layer traps any error for processing an SQL statement.

· The Lotus Notes internal layer traps error messages returned from a Notes API call.

Error messages have the following format:

[vendor][ODBC-component][data source]message-text

The prefixes in brackets ([]) identify the location of the error.

The following table shows the format of error messages returned by the Driver Manager, Lotus Notes
ODBC and SQL Engine layer, and Lotus Notes internal layer:

Error message Error location

[Microsoft][ODBC DLL]message-text Driver Manager (ODBC.DLL)

[Casahl/Lotus][ODBC Lotus
Notes]message-text

Lotus Notes Driver
(NOTESSQL.DLL)

[Casahl/Lotus][ODBC Lotus Notes][Lotus
Notes Server]Notes API error:message-
text

Notes API DLLs

Errors occurring in the Notes driver or the Driver Manager
The driver returns an error message with the SQLSTATE when the error occurs in the ODBC Lotus
Notes driver or the Driver Manager. When the error occurs in the ODBC Lotus Notes internal layer, the
[vendor] and [ODBC-component] prefixes identify the vendor and name of the ODBC component that
received the error from the data source.

Errors occuring in the data source
For errors that occur in the data source, the Notes driver returns an error message with SQLSTATE
S1000 returned by the Notes API Call. When the error occurs in the Driver Manager, the Notes driver, or
the SQL engine layer, the data source is not given.

ALTER TABLE
The ALTER TABLE statement adds one or more columns to a table.

Syntax
ALTER TABLE <base table name>{ ADD <column name> <data type>| ADD (<column name>
<data type> [, <column name><data type>]... }

See Conventions

Example

Arguments

<base table name> is the table to be altered.
<column name> is the name of the column to be added.
<datatype> is one of the following:
· CHAR(n) or CHARACTER(n) where 1 <= n <= 254
· DECIMAL(p, s) where p (precision) is 1 <= p <= 15 and s (scale) is 0 <= s <= p
· NUMERIC(p, s) (same as DECIMAL)
· SMALLINT
· INTEGER
· REAL
· FLOAT
· DOUBLE PRECISION
· VARCHAR(n) or CHARACTER VARYING(n) (same as CHAR)
· DATE (format YYYY-MM-DD)
· TIME (format HH-MM-SS)
· TIMESTAMP (format YYYY-MM-DD HH:MM:SS)

Note The ODBC shorthand escape sequences {d 'yyyy-mm-dd'}, {t 'hh:mm:ss'} and {dt 'yyyy-mm-dd
hh:mm:ss'} are not supported.

Note The millisecond portion of the TIMESTAMP value is not supported.

Restrictions
· NULL or NOT NULL is not supported.

· PRIMARY KEY is not supported.

· The REFERENCES clause is not supported.

· A table constraint definition is not supported.

The following table lists the conventions used to describe the syntax for SQL statements.

Convention Description
argument Information that the application must provide.

SQLTransact Syntax that must be entered exactly as shown,
including function names.

[] Optional items or, if in bold text, brackets that must be
included in the syntax.

| Separates two mutually exclusive choices in a syntax
line.

{ } Delimits mutually exclusive choices in a syntax line.

... Arguments that can be repeated several times.

user input In examples, indicates information that the user must
provide.

A table name can be up to 32 characters long and must not be the same as the name of another table or
view in the database. If you enclose the table name in quotation marks (" "), it can contain any
characters including blanks. Otherwise, table names can consist only of letters, digits, underscores (_)
and dollar signs ($), must begin with a letter, and cannot be the same as any SQL reserved word.

A column name can be up to 32 characters long and must not be the same as the name of another
column in the table. Column names can consist of letters, digits, underscores (_) and dollar signs ($),
and must begin with a letter. Don't use an SQL reserved word as a column name.

An index name can be up to 32 characters long and must not be the same as the name of another index
created by this user on this table. If you enclose the index name in quotation marks (" "), it can contain
any characters including blanks. Otherwise, index names can consist only of letters, digits, underscores (
_) and dollar signs ($), and must begin with a letter. Don't use an SQL reserved word as an index
name.

A view name can be up to 32 characters long and must not be the same as the name of another table or
view in the database. If you enclose the view name in quotation marks (" "), it can contain any
characters including blanks. Otherwise, view names can consist only of letters, digits, underscores (_)
and dollar signs ($), and must begin with a letter. Don't use an SQL reserved word as a view name.

<expression> is any combination of constants, Column functions, and column names.

<comparison operator> is one of the following:

Operator Meaning
< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

= Equal

<> Not Equal

<search pattern> is either a string constant, the keyword USER, or a dynamic parameter. String
constants must be enclosed in single (' ') or double (" ") quotation marks and can include wildcard
characters.

UPDATE INVENTORY SET QTY = 100.00 WHERE CURRENT OF SQL_CUR_0

UPDATE INVENTORY SET UNITCOST=UNITCOST * 1.2

UPDATE STAFF SET COMMISSION = (COMMISSION * 1.25) WHERE HIREDATE < '1982-07-05'

SELECT LOCATION, AVG(UNITCOST) FROM INVENTORY GROUP BY LOCATION ORDER BY
LOCATION DESC

SELECT LOCATION, AVG(UNITCOST) FROM INVENTORY GROUP BY LOCATION HAVING
AVG(UNITCOST) > 600

SELECT LOCATION, AVG(UNITCOST) FROM INVENTORY GROUP BY LOCATION

Select * FROM INVENTORY WHERE LOCATION='New York' FOR UPDATE OF ON_HAND

SELECT * FROM CUSTOMER WHERE CITY='New York

SELECT PART_NO, DESCRIPT, ON_HAND, LOCATION, UNITCOST FROM INVENTORY WHERE
ON_HAND > 50

SELECT PART_NO, DESCRIPT, LOCATION, ON_HAND, UNITCOST FROM INVENTORY WHERE
LOCATION = 'Los Angeles' OR LOCATION = 'New York' AND ON_HAND < 20 AND UNITCOST < 1000

SELECT * FROM CUSTOMER

INSERT INTO STAFF VALUES ('000001', 'Zambini', 'Rick', '1980-02-15', 'Los Angeles', '000000', 6000,
5.0)

INSERT INTO NEWSALTAB SELECT SALARY, LASTNAME FROM STAFF,SALES WHERE
STAFF.STAFF_NO = SALES.STAFF_NO AND SALARY BETWEEN 5500 AND 6000

DROP VIEW NYCUST

DROP TABLE NEWCUST

DROP INDEX CUSTNDX

DELETE FROM INVENTORY WHERE CURRENT OF SQL_CUR_0

DELETE FROM NYCUST WHERE COMPANY='Interior Designs'

CREATE VIEW NYCUST (COMPANY,ADDRESS) AS SELECT COMPANY,ADDRESS FROM
CUSTOMER WHERE STATE='NY'

CREATE TABLE STAFF

 (STAFF_NO CHAR(6),

 LASTNAME CHAR(15),

 FIRSTNAME CHAR(10),

 HIREDATE DATE,

 LOCATION CHAR(15),

 SUPERVISOR CHAR(6),

 SALARY FLOAT,

 COMMISSION FLOAT)

CREATE INDEX CUSTNDX ON CUSTOMER (LASTNAME ASC)

ALTER TABLE CUSTOMER ADD COUNTRY VARCHAR(20)

