
dBASE ODBC Driver
Note    This driver is licensed for use only with Lotus applications.   
Introduction
Configuring dBASE Data Sources
dBASE IV Driver Communication and Security
Supported Character Sets
Data Types
ROWID Pseudo Column
Index Files
Maintaining Index Files
Defining Index Attributes
Pack Statement
File Locking
Supported SQL Statements
Performance

Introduction
The Lotus ODBC dBASE driver supports

· Lotus applications only

· dBASE III and IV files

· Clipper files

· FoxPro and FoxBASE files

The dBASE driver executes the SQL statements directly on dBASE, Clipper, FoxPro, and FoxBASE files.
You do not need to own the dBASE product to access these files.

The dBASE driver provides the following features:

· Transaction support for dBASE-compatible files.

· Read committed isolation level.

· File Locking.

Configuring dBASE Data Sources
Note    This driver is licensed for use only with Lotus applications.   
A data source definition identifies a dBASE database. All data source definitions include:

· A data source name that uniquely identifies the connection.    For example, "My Accounting
Database" or "dBASE files in directory C:\DBF."

· The database directory and path. For example, C:\DBF.

Lotus applications automatically create ODBC data sources when you specify a directory and path. You
can manually configure a dBASE data source by using the ODBC administrator tool and by defining
options in the dBASE ODBC Setup dialog box. The Setup dialog box allows you to include additional
information about the data connection.

To configure a dBASE data source:

1. Double-click the ODBC icon in the Windows Control Panel.

A list of data sources appears.

2. If you are configuring a new data source, click Add.

A list of installed drivers appears.

3. Select Lotus Q+E dBASE, and click OK.

4. If you are configuring an existing data source, select the data source name and click Setup.

5. The Setup dialog box appears. In the dBASE ODBC Setup dialog box, enter information to set up the
data source.

6. Click OK to exit the Setup dialog box. The driver writes these values to the ODBC.INI file. These
values are now the defaults whenever you connect to the data source. You can change the default
values stored in the ODBC.INI file by configuring your data source again.

dBASE IV Driver Communication and Security
Keep in mind the following points concerning security and communication as you work with the dBASE
IV driver:

· The dBASE IV driver works directly with dBASE IV table.    Users do not have to use dBASE IV to
access tables.

· No standard protection scheme exists for databases. The dBASE IV driver does not support
passwords or user IDs.    To use a dBASE IV table, you must be able to access the table without
using a password or user ID. The dBASE IV driver does not support encrypted files.

· When a user deletes a table, the dBASE IV driver deletes .MDX files named the same as the table
being deleted, but does not delete associated forms, reports, or index files.

· When sharing files on a network, with the default setting of Locking=File, you can write to a table only
if no one else is modifying the table.   

· If a dBASE IV table has read-only access, users can read the data in the table but cannot write to the
table, delete records in the table, or delete the table.

· You can use standard operating system commands or network security mechanisms to control user
access to dBASE IV tables.

dBASE IV Supported Character Sets
The dBASE IV driver supports the following character sets: United States (code page 437), Multilingual
(code page 850), Portuguese (code page 860), French-Canadian (code page 863), and Nordic (code
page 865). The default character set is United States.

dBASE IV Data Types
The following list defines the dBASE IV data types and shows how they are mapped to the standard
ODBC data types. These dBASE IV data types can be used in a CREATE TABLE statement.

dBASE IV Data Type: Logical
ODBC Data Type: SQL_BIT

Used for true/false or yes/no information. The possible values in the dBASE file are the letters T,
F, Y, or N.    At the application and ODBC API level the possible values are 1 or 0.

dBASE IV Data Type: Char
ODBC Data Type: SQL_CHAR

Values may contain letters, numbers, or any of the punctuation keys on your keyboard. A length
parameter is required, giving the maximum length of a character value that can be stored. The
length limit is 254 characters. For example, CHAR(12).

dBASE IV Data Type: Memo
ODBC Data Type: SQL_LONGVARCHAR

Values contain long, multi-line textual data.

dBASE IV Data Type: Float
ODBC Data Type: SQL_DECIMAL

Values are stored the same as numeric. Float has the same parameters as numeric. For
example, FLOAT(10,2) is the same as NUMERIC(10,2).

dBASE IV Data Type: Numeric
ODBC Data Type: SQL_DECIMAL

Values may contain only numbers, and may include a decimal point and a leading minus sign.
Two parameters give the maximum number of digits in the number and, optionally, the number of
digits right of the decimal point. There is a limit of 19 total digits. Example: NUMERIC(10,2)
declares a 10-digit number, 8 digits to the left of the decimal point and 2 digits to the right.
NUMERIC(8) is equivalent to NUMERIC(8,0) and declares an 8-digit number with no digits to the
right of the decimal point.

dBASE IV Data Type: Date
ODBC Data Type: SQL_DATE

Values contain date values. The time of day is not included. For example, DATE.

dBASE III and Clipper Data Types
The following list defines the dBASE III and Clipper data types and shows how they are mapped to the
standard ODBC data types. These data types can be used in a CREATE TABLE statement.

dBASE III or Clipper Data Type:    Logical
ODBC Data Type: SQL_BIT

Used for true/false or yes/no information. The possible values in the dBASE file are the letters T,
F, Y, or N.    At the application and ODBC API level the possible values are 1 or 0.

dBASE III or Clipper Data Type: Char
ODBC Data Type: SQL_CHAR

Values may contain letters, numbers, or any of the punctuation keys on your keyboard. A length
parameter is required, giving the maximum length of a character value that can be stored. The
length limit is 254 characters for dBASE III and 1024 characters for Clipper. For example,
CHAR(12).

dBASE III or Clipper Data Type: Memo
ODBC Data Type: SQL_LONGVARCHAR

Values contain long, multi-line textual data.

dBASE III or Clipper Data Type: Numeric
ODBC Data Type: SQL_DECIMAL

Values may contain only numbers, and may include a decimal point and a leading minus sign.
Two parameters give the maximum number of digits in the number and, optionally, the number of
digits right of the decimal point. There is a limit of 19 total digits. Example: NUMERIC(10,2)
declares a 10-digit number, 8 digits to the left of the decimal point and 2 digits to the right.
NUMERIC(8) is equivalent to NUMERIC(8,0) and declares an 8-digit number with no digits to the
right of the decimal point.

dBASE III or Clipper Data Type: Date
ODBC Data Type: SQL_DATE

Values contain date values. The time of day is not included. Example: DATE.

FoxPro and FoxBASE Data Types
The following list defines the FoxPro and FoxBASE data types and shows how they are mapped to the
standard ODBC data types. These data types can be used in a CREATE TABLE statement.

FoxPro or FoxBASE Data Type:    Logical
ODBC Data Type: SQL_BIT

Used for true/false or yes/no information. The possible values in the dBASE file are the letters T,
F, Y, or N.    At the application and ODBC API level the possible values are 1 or 0.

FoxPro or FoxBASE Data Type: Char
ODBC Data Type: SQL_CHAR

Values may contain letters, numbers, or any of the punctuation keys on your keyboard. A length
parameter is required, giving the maximum length of a character value that can be stored. The
length limit is 254 characters.

FoxPro or FoxBASE Data Type: Memo
ODBC Data Type: SQL_LONGVARCHAR

Values contain long, multi-line textual data.

FoxPro or FoxBASE Data Type: Numeric
ODBC Data Type: SQL_DECIMAL

Values may contain only numbers, and may include a decimal point and a leading minus sign.
Two parameters give the maximum number of digits in the number and, optionally, the number of
digits right of the decimal point. There is a limit of 19 total digits. Example: NUMERIC(10,2)
declares a 10-digit number, 8 digits to the left of the decimal point and 2 digits to the right.
NUMERIC (8) is equivalent to NUMERIC(8,0) and declares an 8-digit number with no digits to the
right of the decimal point. .

FoxPro or FoxBASE Data Type: Date
ODBC Data Type: SQL_DATE

Values contain date values. The time of day is not included. Example: DATE.

FoxPro or FoxBASE Data Type: Picture
ODBC Data Type: SQL_LONGVARBINARY

Values contain graphical pictures.

FoxPro 2.5 Data Type: General
ODBC Data Type: SQL_LONGVARBINARY

Values contain binary data, such as OLE objects. Note that graphical picture data is not stored
under this data type. This data type is valid only for FoxPro 2.5.

ROWID Pseudo-Column
Each record contains a special field named ROWID. This field contains a unique number that indicates
the record's sequence in the database. For example, a table that contains 50 records has ROWID values
from 1 to 50 (if no records are marked deleted). You can use ROWID in WHERE and SELECT clauses.

The fastest way of updating a single row is to use a WHERE clause with the ROWID. However, you
cannot update the ROWID column.

Options in the FROM Clause
The FROM clause provides a number of options that you can use with table names. These options
provide compatibility with earlier versions of Q+E products and enable you to override the default values
set when you connected to the driver. However, if you use these options, your application will not be
portable because this is not ANSI syntax.

The format of the FROM clause is

FROM tablename [options] [table_alias]

Options control which File Open options are used, whether deleted records are to be returned, and which
index files are to be opened and used for sorting. The options specification is:

([COMPATIBILITY= {ANSI | DBASE},]

[CHARSET= {ANSI | IBMPC},]

[RECORDS= {DELETED | UNDELETED},]
[LOCKING= {NONE | RECORD | FILE},]

[index_spec])

COMPATIBILITY    Provided only for compatibility with earlier Q+E Software products.

CHARSET    Tells the driver whether the data is stored in the ANSI or IBM PC character set. You can set
the default character set in the Setup dialog box.

RECORDS    Determines whether to return undeleted records or deleted records. The default is to return
undeleted records.

LOCKING    Determines the level of record locking for the database file. You can set the default locking
level in the Setup dialog box.

Index_spec controls the use of index files.

For .NTX, .NDX, and .IDX files, the form is:

index_file[/USE], ...

For .CDX and .MDX files, index_spec is:

[index_file] [/tag], ...

You specify the list of index files to be opened. The driver automatically opens the production or
structured index file, if it exists.

Tag is the name of the index within the index file to be used to sort the records.

The following example specifies that the table 'emp' is stored in the IBM PC character set

SELECT * FROM emp (CHARSET=IBMPC, /emphire)

Index Files
An index is a database structure that you can use to improve the performance of database queries. A
database file can have one or more indexes associated with it. To optimize queries and to maintain the
indexes, the driver must be aware of all the indexes associated with a table. This association is done
automatically for production (.CDX and .MDX) indexes and for any indexes listed in the QEDBF.INI file.
Nonproduction indexes (.NDX, .NTX, and .IDX), which are not specified in the QEDBF.INI file, must be
explicitly mentioned in the FROM clause to be recognized. The driver tries to choose the best index to
use among the indexes available. You can force the driver to use a particular index by specifying the
/USE switch.   

.CDX and .MDX Files

.CDX and .MDX files may contain more than one index. Each index has a tag to identify the index. By
default, the index file has the same name as the database file, with the .MDX or .CDX extension. If you
know which is the better index to use, specify the tag after the database file name in the SELECT
statement. For example using dBASE IV indexes,

SELECT * FROM emp (/emp_id) WHERE ...

If you specify the tag and do not specify an ORDER BY clause, the driver returns the records ordered by
the index. In the above example, it returns the employees ordered by their employee ID values.

The driver automatically opens the dBASE IV index file having the same name as the database file. If the
index filename is different from the database filename and you are not maintaining indexes with
QEDBF.INI, include in the SQL statement the name of the index to use. For example,

SELECT * FROM emp (EMP2.MDX)

.NTX, .NDX, and .IDX Files
Each .NTX, .NDX, and .IDX index file contains only one index.

If you are not maintaining indexes with QEDBF.INI, you can include in the SQL statement the name of
the index to use. You can have several index files open for the same database file. For example,

SELECT * FROM emp (EMPHIRE.NDX, EMPDEPT.NDX /USE)

Maintaining Index Files
There are two ways to maintain index files: automatically, through the QEDBF.INI file, or manually, by
specifying them when necessary in the INSERT and UPDATE statements. Maintaining index files
through QEDBF.INI is more efficient, because the driver automatically updates the indexes for you, which
ensures that they match the records in the database file.

All production and structured indexes are maintained automatically.

Maintaining Indexes Automatically

When you maintain indexes automatically, the dBASE driver uses the QEDBF.INI file to maintain
information about dBASE files on that directory. The driver maintains the following information for a
dBASE file:

· Charset (CS), which tells the driver whether the data is stored in the IBM PC character set or the
ANSI character set.

· Index files that need to be maintained when the dBASE file is modified

· ANSI unique indexes maintained for the index file.

To maintain indexes automatically, you must define the index attributes when you run Setup. The
program prompts you for the names of the index files that you wish to maintain automatically and creates
the QEDBF.INI file. QEDBF.INI is updated when you execute a CREATE or DROP INDEX statement, and
you need not include an index name when you execute an INSERT or UPDATE statement.

Maintaining Indexes Manually

However, if you are maintaining the indexes manually, you must include an index name in the INSERT or
UPDATE statements. Otherwise, the index files will not match the records in the database file.

INSERT Statement Format

INSERT INTO file_name [(index_file,...)] [(col_name,...)] VALUES (expr,...)

UPDATE Statement Format

UPDATE file_name [(index_file,...)] SET col_name = (expr,...) [WHERE conditions]

· For .NTX, .NDX, and .IDX files, list every index file for file_name.

· If .CDX and .MDX files have a different name than the database file (excluding the extension), specify
the index file name. If the names are the same, you do not have to specify the index file, because the
driver opens it automatically.

Defining Index Attributes
Since dBASE lets you create index files that have different names than their corresponding
data files, the driver provides a method to define what indexes should be maintained when a
data file is modified, and what indexes should be treated as unique indexes. When you
maintain indexes automatically, the system updates the indexes for you, which ensures that
they match the records in the database file. The system also makes indexes available for
optimizing queries. It is not necessary to mark production .MDX files or structured .CDX files
as maintained, as the driver maintains them for you. However, you may wish to use this
method to mark a tag as unique.
To maintain indexes automatically:
1. Click Define in the ODBC dBASE Driver Setup dialog box.

The Define File dialog box appears.

2. Select the .DBF file and click OK to define the special indexes.

3. The upper section of the dialog box displays the name and directory that contains the data file. If this
file is stored in the IBM PC character set, select OEM to ANSI Translation.

4. The lower section of the dialog box displays the index information for the data file. The Index File
combo box lets you select any index file in the database directory. If the index file is in a different
directory, you must provide the full pathname.

To specify that an index file is unique, select the index name in the combo box and then select Unique
to the right of the name. Similarly, select Maintain if the index should be maintained. The topic
Maintaining Index Files discusses index file maintenance.

5. If the selected index has an MDX or CDX extension, you cannot mark it as unique. Instead, you may
mark the tags within the index as unique. To do so, select the tag name within the Tag combo box and
select Unique to the right of the name.

6. Click OK to save this information or click Cancel to abort the dialog box.

CREATE INDEX Statement
The type of index you create is determined by the value of the CreateType attribute, which you set in the
Setup dialog box. The index can be a

· dBASE III (.NDX) index

· dBASE IV (.MDX) index

· Clipper (.NTX) index

· FoxBASE (.IDX) index

· FoxPro (.CDX) index

dBASE IV command:

USE file1

INDEX ON <expression> [TO <index file>] / [TAG <index tag>]

SQL Statement:

CREATE [UNIQUE] INDEX index_name ON base_table_name (field_name [ASC | DESC]
[,field_name [ASC | DESC]] ...)

UNIQUE means that the driver creates an ANSI-style unique index over the column and
ensures uniqueness of the keys. Use of unique indexes improves performance. ANSI-style
unique indexes are different from dBASE-style unique indexes. With ANSI-style unique
indexes, you receive an error message when you try to insert a duplicate value into an
indexed field. With dBASE-style unique indexes, you do not see an error message when you
insert a duplicate value into an indexed field. This is because only one key is inserted in the
index file.
Index_name is the name of the index file. For FoxPro 2.5 and dBASE IV, this is a tag, which is required
to identify the indexes in an index file. Each index for a table must have a unique name.

Base_table_name is the name of the database file whose index is to be created. The .DBF extension is
not required, the driver automatically adds it if it is not present. By default, dBASE IV index files are
named base_table_name.MDX and FoxPro 2.5 indexes are named base_table_name.CDX.

Field_name is a name of a column in the dBASE file.

ASC tells dBASE to create the index in ascending order. DESC tells dBASE to create the index in
descending order. By default, indexes are created in ascending order.

You can substitute a valid dBASE-style index expression for the list of field names.

DROP INDEX Statement
The DROP INDEX statement deletes an index from the current database.

dBASE IV command:

ERASE [<index file>] or DELETE TAG <tag name>

SQL Statement:

DROP INDEX {table_name.index_name}

Table_name is the name of the .DBF file without the extension.

For FoxPro 2.5 and dBASE IV, index_name is the tag. Otherwise, index_name is the name of the index
file without the extension.

To drop the index emphire.ndx, issue the following statement:

DROP INDEX emp.emphire

Pack Statement
When records are deleted from a dBASE file, they are not removed from the file. Instead, they are
marked as having been deleted. Also, when memo fields are updated, space may be wasted in the files.
To remove the deleted records and to free the unused space from updated memo fields, you must pack
the database.

To reuse space in a dBASE file, use the Pack statement. It has the following form:

PACK file_name

File_name is the name of the dBASE file to be packed. The .DBF extension is not required; the driver
automatically adds the extension if it is not present. For example,

PACK emp

You cannot pack a file that is open by another user and you cannot use the Pack statement in manual
commit mode.

For the file listed, the Pack statement does the following:

· Removes all deleted records from the file.

· Removes all deleted records from .CDX and .MDX files having the same name as the file.

· Removes all deleted records from .NTX, .NDX, and .IDX files specified in QEDBF.INI.

· Compresses unused space in the memo (.DBT or .FPT) file.

File Locking
With the dBASE driver, you can build and run applications that share dBASE files on a network.
Whenever more than one user is running an application that accesses a shared database file, it is
important that the applications lock the records that are being changed. Locking a record prevents other
users from locking, updating, or deleting the record.

Levels of Locking
The dBASE driver supports three levels of database locking: NONE, RECORD, and FILE. You can set
these levels in

· The Setup dialog box

· At the statement level, in the FROM clause. For example:

SELECT * FROM emp (locking=none). If you use this method, however, your application will not be
portable.

No locking offers the best performance but is intended only for single-user environments.

With record or file locking, the system locks the database files during INSERT, UPDATE, DELETE, or
SELECT...FOR UPDATE statements. The locks are released when the user commits the transaction. The
locks prevent other users from modifying the locked objects, but they do not lock out readers.

With record locking, only records affected by the statement are locked. Record locking provides better
concurrency with other users who also want to modify the table.

With file locking, the entire file is locked. File locking has lower overhead and may work better if records
are modified infrequently, if records are modified primarily by one user, or if a large number of records
are modified.

Using Locks on Local Files
If you use database locking and are accessing files locally (not on a network), run the DOS utility
SHARE.EXE before running Windows. If you add SHARE.EXE to your AUTOEXEC.BAT file, it runs
automatically each time you boot your computer.

Limit on Number of Locks
There is a limit on the number of locks that can be placed on a file. If you are accessing a dBASE file
from a server, the number of locks depends on the server (see your server documentation). If you are
accessing a dBASE file locally, the limitation depends on the buffer space allocated when SHARE.EXE
was loaded (for more information, see your DOS documentation). If you are exceeding the number of
locks available, you may want to switch to file locking.

Locking Compatibility
The dBASE driver supports several different locking schemes.

All applications that share tables must share the same locking scheme. For example, if you intend to
share your tables with Clipper applications, choose Clipper locking.

Q+EVIRTUAL works just like Q+E's original locking style; however, files are no longer locked exclusively.
With the original Q+E style locking, although other Q+E applications could read and write to the
database, all third party non-Q+E applications were locked out of the file completely (even to read other
records).

Use DBASE, CLIPPER, and FOX lock settings if you are using a Q+E application with a dBASE, Clipper,
or FoxPro application and you want the locking mechanisms to be compatible.

An advantage to using a Q+E style locking scheme over the DBASE style locking is the fact that Q+E
only locks individual tags in an index, whereas DBASE requires locking the entire index on Inserts and

Updates.

How transactions affect record locks
When an UPDATE or DELETE statement is executed, the driver locks the records that are affected by
that statement. The locks are released after the driver commits the changes to the database. Under
manual commit mode, this means that the locks are held until the application commits the transaction.
Under autocommit mode, this means that the locks are held until the statement is executed.

On a SELECT...FOR UPDATE statement, the driver locks the record only when it is fetched. If the record
is updated, the driver holds the lock until the changes are committed to the database. Otherwise, the lock
is released when the next record is fetched.

Supported SQL Statements
This help topic discusses the following SQL statements in the form supported by the dBASE database
driver.

SELECT Statement

CREATE TABLE Statement

CREATE INDEX Statement

DROP INDEX Statement

DROP TABLE Statement

INSERT Statement

UPDATE Statement

DELETE Statement

SELECT Statement
The SELECT statement selects rows and columns from tables either for display or as input to other SQL
statements.

dBASE IV command:

USE emp

DISPLAY ALL lastname, firstname for salary > 1000

SQL Statement:

SELECT [DISTINCT] {* | column_expression, ...}

FROM filespec, ...

[WHERE conditions]

[GROUP BY {column_expression, ...}]
[HAVING {conditions}]

[UNION [ALL] (SELECT...)]

[ORDER BY {sort_expression [DESC | ASC]}, ...]

[FOR UPDATE OF {column_expression, ...}]

Follow the SELECT keyword with a list of column_expressions that you want to retrieve or an asterisk (*)
to retrieve all fields.

The most common expression is simply a field name (for example, LAST_NAME). More complex
expressions may include mathematical operations or string manipulation (for example, SALARY * 1.05).

Separate more than one column_expression by commas (for example, LAST_NAME, FIRST_NAME,
HIRE_DATE).

Field names may be prefixed with the table name or alias For example, EMP.LAST_NAME or
E.LAST_NAME where E is the alias for table EMP.

Distinct
The Distinct operator can precede the first column expression. This operator eliminates duplicate rows
from the result of a query. For example,

SELECT DISTINCT last_name FROM emp

FROM Clause
Follow FROM with a list of file specifications (filespec). File specifications have the form:

FROM tablename [options] [table_alias]

Tablename can be a simple table name in the current working directory or a complete pathname (C:\
ODBC\EMP).

Options are database dependent. For example, for dBASE, one option is the level of record locking used.

Table_alias is a name used to refer to this table in the rest of the SELECT statement. Database field
names may be prefixed by the table alias. Given the table specification

FROM emp E

you may refer to the LAST_NAME field as E.LAST_NAME. Table aliases must be used if the SELECT
statement joins a table to itself. For example,

SELECT * FROM emp E, emp F
WHERE E.mgr_id = F.emp_id

WHERE Clause
The WHERE clause specifies the conditions that records must meet to be retrieved.

dBASE IV command:

... FOR <expression>

SQL Statement:

WHERE expr1 rel_operator expr2

Expr1 and expr2 may be field names, constant values, or expressions. Rel_operator is the relational
operator that links the two expressions.

For example, the following SELECT statement retrieves the names of employees that make at least
$20,000:

SELECT last_name,first_name FROM emp
WHERE salary >= 20000

GROUP BY Clause
The GROUP BY clause specifies the names of one or more fields by which the returned values should
be grouped. This clause is used to return a set of aggregate values.

dBASE IV command:

REPORT ... Summary

SQL Statement:

GROUP BY column_expressions

Column_expressions can be one or more field names of the database table, separated by a comma (,) or
one or more expressions, separated by a comma (,).

The following example sums the salaries in each department.

SELECT dept_id, sum(salary)
FROM emp
GROUP BY dept_id

This statement returns one row for each distinct department ID. Each row contains the department ID
and the sum of the salaries of the employees in the department.

HAVING Clause
The HAVING clause enables you to specify conditions for groups of records (for example, display only
the departments that have salaries totaling more than $200,000). This clause is valid only if you have
already defined a GROUP BY clause.

dBASE IV command:

REPORT... Summary

SQL Statement:

HAVING expr1 rel_operator expr2

Expr1 and expr2 can be field names, constant values, or expressions. Rel_operator is the relational
operator that links the two expressions.

The following example returns only the departments whose sums of salaries are greater than $200,000.

SELECT dept_id, sum(salary)
FROM emp
GROUP BY dept_id
HAVING sum(salary) > 200000

UNION Operator
The UNION operator combines the results of two SELECT statements into a single result. The single
result is all of the returned records from both SELECT statements. By default, duplicate records are not
returned. To return duplicate records, use the All keyword (UNION ALL). The form is

SELECT statement
UNION [ALL]
SELECT statement

When using the UNION operator, the select lists for the SELECT statements must have the same
number of column expressions with the same data types and in the same order. For example,

SELECT last_name, salary, hire_date
FROM emp
UNION
SELECT name, pay, birth_date
FROM person

This example has the same number of column expressions, and each column expression, in order, has
the same data type.

The following example is not valid because the data types of the column expressions are different
(SALARY from EMP has a different data type than LAST_NAME from RAISES). This example does have
the same number of column expressions in each SELECT statement but the expressions are not in the
same order by data type.

SELECT last_name, salary
FROM emp
UNION
SELECT salary, last_name
FROM raises

ORDER BY Clause
The ORDER BY clause indicates how the records are to be sorted.

dBASE IV command:

USE emp INDEX empid

DISPLAY empid,lastname

SQL Statement:

ORDER BY {sort_expression [DESC | ASC]}, ...

Sort_expression can be field names, expressions, or the positional number of the column expression to
use. As an example, to sort by LAST_NAME, you could use either of the following SELECT statements:

SELECT emp_id, last_name, first_name FROM emp
ORDER BY last_name

or

SELECT emp_id, last_name, first_name FROM emp
ORDER BY 2

In the second example, LAST_NAME is the second column expression following SELECT, so ORDER
BY 2 sorts by LAST_NAME.

FOR UPDATE Of Clause
The FOR UPDATE Of clause locks the records of the database file that are selected by the SELECT
statement. The form is

FOR UPDATE OF column_expressions

Column_expressions is a list of field names in the database file that you intend to update, separated by a
comma (,).

The following example returns all records of the employee database that have a SALARY field value of
more than $20,000. When each record is fetched, it is locked. The lock is released when you do a
positioned update or delete using a "current of cursor" statement and COMMIT the update or delete. If
the record is not updated or deleted, the lock is released when you fetch the next record.

SELECT *
FROM emp
WHERE salary > 20000
FOR UPDATE OF last_name, first_name, salary

CREATE TABLE Statement
dBASE IV command:

CREATE tablename

SQL Statement:

CREATE TABLE file_name (col_definition, col_definition ...)

The file_name can be a simple file name (EMP) or a full pathname (C:\ODBC\EMP).

Col_definition is the column name followed by the data type. Valid values for column names are
database specific.

Data type is the specification of a column's data type.

Note:    The first number in the definitions of NUMERIC and FLOAT fields is the number of integer
digits. The second number is the number of decimal places. This is not an overall length with
decimal specification as in dBASE. If no decimal places are involved, a length of 20
may be specified for NUMERIC and FLOAT fields. If there are decimal places, the
combined number of integer and decimal places may not exceed 19.

A sample CREATE TABLE statement to create an employee database file is

CREATE TABLE emp (last_name CHAR(20), first_name CHAR(12), salary NUMERIC (10,2), hire_date
DATE)

DROP TABLE Statement
The DROP TABLE statement deletes a table from the current database.

dBASE IV command:

ERASE tablename

SQL Statement:

DROP TABLE file_name

The file_name may be a simple file name (EMP) or a full pathname (C:\ODBC\EMP).

A sample DROP TABLE statement to delete the employee database file is

DROP TABLE emp

INSERT Statement
The SQL INSERT statement is used to add new records to a database file.

dBASE IV command:

USE file1

APPEND

SQL Statement:

INSERT INTO file_name [options] [(col_name,...)] VALUES (expr, ...)

The list of indexes and the column names are optional.

The file_name may be a simple file name (EMP) or a full pathname (C:\ODBC\EMP).

Options are database specific.

The col_name list is an optional list of column names giving the name and order of the columns whose
values are specified in the Values clause. If you omit col_name, the value expressions (expr) must
values for all of the columns defined in the file and must be in the same order that the columns are
defined for the file.

The expr list is the list of expressions giving the values for the columns of the new record. Usually, the
expressions are constant values for the columns. Character string values must be enclosed with single or
double quote characters, date values must be enclosed by braces {}, and logical values must be
enclosed by periods (for example, .T. or .F.).

An example of an INSERT statement on the employee file is

INSERT INTO emp (last_name, first_name, emp_id, salary, hire_date)
VALUES ('Smith', 'John', 'E22345', 27500, {4/6/91})

Each INSERT statement adds one record to the database file. In this case a record has been added to
the employee database file, EMP. Values are specified for five columns. The remaining columns in the
file are assigned a blank value, meaning Null. Note that character values must be enclosed in quotation
marks and dates must be enclosed in braces {}.

UPDATE Statement
The SQL UPDATE statement is used to change records in a database file.

dBASE IV command:

USE file1

REPLACE <field> with <expression> [,...] FOR <condition>

SQL Statement:

UPDATE file_name [options] SET col_name = [expr, ...   ]
[WHERE { conditions | CURRENT OF cursor_name }]

File_name may be a simple file name (EMP) or a full pathname (C:\ODBC\EMP) of the file to be
updated.

Options are database specific.

Col_name is the name of a column whose value is to be changed. Several columns can be changed in
one statement.

Expr is the new value for the column. The expression can be a constant value or a subquery. Character
string values must be enclosed with single or double quotation marks, date values must be enclosed by
braces {}, and logical values must be enclosed by periods (for example, .T. or .F.). Subqueries must be
enclosed in parentheses.

The WHERE clause determines which records are to be updated.

The WHERE CURRENT OF cursor_name clause can be used only by developers coding directly to the
ODBC API. It causes the row at which cursor_name is positioned to be updated. This is called a
positioned update. You must first execute a SELECT...FOR UPDATE statement with a named cursor and
fetch the row to be updated.

An example of an UPDATE statement on the employee file is

UPDATE emp SET salary=32000, exempt=.T. WHERE emp_id = 'E10001'

The UPDATE statement changes every record that meets the conditions in the WHERE clause. In this
case the salary and exempt status is changed for all employees having the employee ID E10001. Since
employee IDs are unique in the employee file, one record is updated.

An example using a subquery is

UPDATE emp SET salary = (select avg(salary) from emp) where emp_id = 'E10001'

In this case, the salary is changed to the average salary in the company for the employee having
employee ID E10001.

DELETE Statement
The SQL DELETE statement is used to delete records from a database file.

dBASE IV command:

USE file1

DELETE ... FOR <condition>

SQL Statement:

DELETE FROM file_name [options]
[WHERE {conditions | CURRENT OF cursor_name }]

File_name is the name of the database file whose records are to be deleted. The filename may be a
simple file name (EMP) or a full pathname (C:\ODBC\EMP).

Options are database specific.

The WHERE clause determines which records are to be deleted.

The WHERE CURRENT OF cursor_name clause can be used only by developers coding directly to the
ODBC API. It causes the row at which cursor_name is positioned to be deleted. This is called a
positioned delete. You must first execute a SELECT...FOR UPDATE statement with a named cursor and
fetch the row to be deleted.

An example of a DELETE statement on the employee file is

DELETE FROM emp WHERE emp_id = 'E10001'

Each DELETE statement removes every record that meets the conditions in the WHERE clause. In this
case every record having the employee id E10001 is deleted. Since employee IDs are unique in the
employee file, one record is deleted.

Performance
This section discusses the ways in which you can improve the performance of database queries. It
includes the following topics:

Index Files

Improving Record Selection Performance

Indexing Multiple Fields

Improving Join Performance

Index Files
A database driver can use indexes to find records quickly. An index on the EMP_ID field, for example,
greatly reduces the time that the driver spends searching for a particular employee ID value. Consider
the following WHERE clause:

WHERE emp_id = 'E10001'

Without an index, the driver must search the entire database table to find those records having an
employee ID of E10001. By using an index on the EMP_ID field, however, the driver can quickly find
those records using the index references.

Index files may improve the performance of SELECT statements. You may not notice this improvement
with small files but it can be significant for large files. However, there are disadvantages to having too
many indexes. Indexes slow down the performance of record inserts, updates, and deletes since the
driver has to maintain the indexes as well as the database files. Also, indexes take additional disk space.

Improving Record Selection Performance
For indexes to improve the performance of selections, the index expression must match the selection
condition exactly. For example, if you have created an index whose expression is LAST_NAME, the
following SELECT statement uses the index:

SELECT * FROM emp WHERE last_name = 'Smith'

This SELECT statement does not use the index:

SELECT * FROM emp WHERE UPPER(last_name) = 'SMITH'

The second statement does not use the index because the WHERE clause contains UPPER(last_name),
which does not match the index expression LAST_NAME. If you plan to use the UPPER function in all
your SELECT statements and your database supports indexes on expressions, then you should define
an index whose expression is UPPER(last_name).

Indexing Multiple Fields
If you often use WHERE clauses that involve more than one field, you may want to build an index
containing multiple fields. Consider the following WHERE clause:

WHERE last_name = 'Smith' and first_name =    'Thomas'

For this condition, the optimal index field expression is LAST_NAME,FIRST_NAME. This creates a
concatenated index.

Concatenated indexes can also be used for WHERE clauses that contain only the first of two
concatenated fields. The LAST_NAME, FIRST_NAME index also improves the performance of the
following WHERE clause (even though no first name value is specified):

last_name = 'Smith'

A driver uses only one index when processing WHERE clauses. If you have complex WHERE clauses
that involve a number of conditions for different fields and have indexes on more than one of the fields,
the driver chooses an index to use. The driver will first use indexes on conditions that have the equal
sign (=) as the relational operator. Assume you have an index on the emp_id field as well as the
last_name field and the following WHERE clause:

WHERE emp_id >= 'E10001' AND last_name = 'Smith'

The driver selects the index on the last_name field.

If no conditions have the equal sign, the driver first attempts to use an index on a condition that has a
lower and upper bound, and then attempts to use an index on a condition that has a lower or upper
bound. The driver always attempts to use the most restrictive index that will satisfy the WHERE clause.

In most cases, the driver does not use an index if the WHERE clause contains an OR comparison
operator. For example, the driver does not use an index for the following WHERE clause:

WHERE emp_id >= 'E10001' OR last_name = 'Smith'

Improving Join Performance
When joining database files, index files can greatly improve performance. Unless the proper indexes are
available, queries that use joins can take a long time.

Assume you have the following SELECT statement:

SELECT * FROM dept, emp WHERE dept.dept_id = emp.dept

In this example, the dept and emp database files are being joined using the department ID field. When
the driver executes a query that contains a join, it processes the tables from left to right and uses an
index on the second table's join field (the DEPT field of the EMP file).

To improve join performance, you need an index on the join field of the second file in the FROM clause. If
there is a third file in the FROM clause, the driver also uses an index on the field in the third file that joins
it to any previous file. For example,

SELECT * FROM dept, emp, addr
WHERE dept.dept_id = emp.dept AND emp.loc = addr.loc

In this case, you should have an index on the EMP.DEPT field and the ADDR.LOC field.

dBASE Data Types
dBASE IV Data Types

dBASE III and Clipper Data Types

FoxPro and FoxBASE Data Types

dBASE ODBC Driver Setup Dialog Box
Note    This driver is licensed for use only with Lotus applications.   

Data Source Name
Identifies a single connection to a dBASE database. This can be any string. Examples include
"Accounting" or "dBASE Files."

Description
An optional long description of a data source name. For example, "My Accounting Database" or "dBASE
files in directory C:\DBF."

Database Directory
The directory in which the dBASE files are stored. If none is specified, the current working directory is
used.

Create Type
Identifies what dBASE format the driver should use to create new tables. Select dBASE II, dBASE III,
dBASE IV, Clipper, FoxBase, FoxPro1, or FoxPro25.

Lock Compatibility
Determines the physical locking for the database file. Select DBASE, Q+E, Q+EVIRTUAL, CLIPPER, or
FOX.

Locking
Determines the level of locking for the database files (NONE, RECORD, or FILE). LCK=NONE offers the
best performance but is intended only for single-user environments. With LCK=RECORD, only the
records affected by the statement are locked. LCK=FILE locks the entire file.

File Open Cache
Determines the maximum number of unused file opens to cache. For example when FOC=4, and a user
opens and closes 4 files, the files are not actually closed. The driver keeps them open so that if another
query uses one of these files, the driver does not have to perform another open, which is expensive. The
advantage of FOC is increased performance. The disadvantage is that a user who tries to open the file
exclusively may get a locking conflict even though no one appears to have the file open.

Cache Size
Determines the number of 64K blocks that the driver uses to cache database records. The higher the
number of blocks, the better the performance. The default is 4 blocks. The maximum number of blocks
you can set depends on the system memory available. If CacheSize is >0, when browsing backwards,
you cannot see updates made by other users until you reexecute the SELECT statement.

International Sort
Determines the order that records are retrieved when you issue a SELECT statement. Select
International Sort to use international sort order as defined by Windows. The sort is case-insensitive (a
precedes B); the sorting of accented characters is also affected (For more information see your Windows
documentation.).Do not select International Sort if you want to use ASCII sort order, where uppercase
letters precede lowercase letters (B precedes a).

Perform OEM to ANSI Translation
Determines whether the database file uses the ANSI or IBM PC character set. The two character sets

are generally the same unless you are using international characters. The ANSI character set has better
support for international characters than the IBM PC character set.

Define...:
Choose Define to associate index files with your dBASE files.

Defining Index Attributes
The top section of the dialog box displays the name and directory where the dBASE file is
located. If this file uses the IBMPC character set, then select OEM to ANSI Translation.
The bottom section of the dialog box displays all the index files in this directory. Select
each index file that you want to associate with the dBASE file and select Maintain. If the
index file is unique, check the Unique check box to the right of the file name.
If the selected index has an .MDX or .CDX extension, you cannot mark the index file as
unique. However, you can mark the tags within the index as unique. To mark a tag
unique, select the tag name within the Tag combo box and check the Unique box to the
right of the name.

