
@Function Help for 1-2-3 Release 5
Note You are now in @Function Help.

To get Help for an individual @function, choose Search and specify the name of the @function,
without the @.
For example, to get Help for @SUM, type sum.

To return to main Help for 1-2-3 Release 5, click the Contents button, or choose Back or History to return
to another Help topic.

@Functions

@@
@@(location) lets you indirectly obtain the contents of the cell specified in location.

Arguments
location is the address or name of a cell that contains a cell address or name, or a formula that returns
the address or name of a cell.

location points to another cell, whose contents @@ displays in the cell that contains @@. If location is
not a valid cell address or range name, or is a multiple-cell range, @@ evaluates to ERR.

Notes
@@ is useful in building conditional formulas because its indirect reference can automatically alter its
own value. For example, the formula

@IF(D2="Y";"D8";@IF(D2="N";"D9";@ERR))

in cell A10, and the formula @@(A10) in cell E2, return the contents of cell D8 or D9, or ERR, in E2,
depending on whether D2 contains Y or N, or something else.

When location refers to a cell that contains a formula, press F9 (CALC) to update the @@ formula after
automatic recalculation. If you do not press F9 (CALC), the @@ formula evaluates to 0.

Examples
@@

Similar @functions
@HLOOKUP and @VLOOKUP return the contents of a specified cell in a horizontal or vertical lookup
table. @CHOOSE returns a value or label from list, and @INDEX returns the contents of a cell located at
the intersection of a specified column, row, and worksheet.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @@
In this simple sales commission chart, cell A10 contains the formula

@IF(C3="W";"C7";@IF(C3="G";"C8";@ERR))

that results in one of two cell addresses (C7 or C8), depending on which product code (W or G) you
enter in C3. @@(A10) entered in C4 returns the contents of the cell whose address is returned by the
formula in A10.

If you enter anything in C3 other than one of the two product codes, both the @IF and @@ functions will
evaluate to ERR.
A ----------- A ------------- B ---------- C -----
1 SALES COMMISSION CHART
2
3 Enter Product Code: W
4 Commission rate: 5%
5
6 Product Code Rate
7 Widgets W 5%
8 Grommets G 3%
9
10 C7

@ABS
@ABS(x) calculates the absolute (positive) value of x.

Arguments
x is any value.

Notes
Use -@ABS to force the result of the @function to be negative.

Examples
@ABS(A5) = 25 if cell A5 contains the value 25, -25, or a formula that results in 25 or -25.

-@ABS(A5) = -25 if cell A5 contains the value 25, -25, or a formula that results in 25 or -25.

@ABS(START-END) = 5.6, when START and END contain any combination of positive or negative
numbers that differ by 5.6 or -5.6.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ACCRUED
@ACCRUED(settlement;issue;first-interest;coupon;[par];[frequency];[basis]) calculates the accrued
interest for securities with periodic interest payments. @ACCRUED supports short, standard, and log
coupon periods.

Arguments
settlement is the security's settlement date. settlement is a date number. If settlement is less than issue,
@ACCRUED returns ERR.

issue is the security's issue or dated date. issue is a date number.

first-interest is the security's first interest date. first-interest is a date number. If first-interest is less than or
equal to issue, @ACCRUED returns ERR.

coupon is the security's annual coupon rate. coupon is any positive value or 0.

par is an optional argument that specifies the security's par value, that is, the principal to be paid at
maturity. par is a positive value. If you do not include the par argument, 1-2-3 uses 100.

frequency is an optional argument that specifies the number of coupon payments per year. frequency is a
value from the following table:

frequency Frequency of coupon payments

1 Annual

2 Semiannual; default if you omit the argument

4 Quarterly

12 Monthly

basis is an optional argument that specifies the type of day-count basis to use. basis is a value from the
following table:

basis Day count basis

0 30/360; default if you omit the argument

1 Actual/actual

2 Actual/360

3 Actual/365

You cannot use an optional argument without using the ones that precede it.

Examples
A bond has a July 1, 1993, settlement date, a December 1, 1992 issue date, and a June 1, 1993, first
interest date. The semiannual coupon rate is 5.50%. The bond has a $100 par value, and a 30/360 day-
count basis.

To determine the bond's accrued interest:

@ACCRUED(@DATE(93;7;1);@DATE(92;12;1);@DATE(93;6;1);0.055;100;2;0) = 0.458333

Similar @functions
@PRICE calculates the price per $100 face value for a bond. @YIELD calculates the yield for securities
that pay periodic interest. @DURATION calculates the annual duration and @MDURATION calculates

the annual modified duration for securities that pay periodic interest.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ACOS

@ACOS(x) calculates the arc (inverse) cosine using the cosine x of an angle. The result of @ACOS is
an angle, in radians, from 0 through p. This represents an angle between 0 and 180 degrees.

Arguments
x is the cosine of an angle and is a value from -1 through 1.

Examples

The cosine of an angle is 0.5. To determine the size of the angle, use @ACOS(0.5), which returns
1.0472 radians. To convert this to degrees, use @RADTODEG(1.0472). The result is 60 degrees.

Similar @functions
@COS calculates the cosine of an angle. @ACOSH calculates the arc hyperbolic cosine of a value.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide

Chapter 11, "Calculating with @Functions"

@ACOSH
@ACOSH(x) calculates the arc (inverse) hyperbolic cosine using the hyperbolic cosine x of an angle.

Arguments
x is the hyperbolic cosine of an angle and is a value greater than or equal to 1.

Examples

@ACOSH(2) = 1.316958

Similar @functions
@ACOS calculates the arc cosine of a value. @COSH calculates the hyperbolic cosine of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ACOT

@ACOT(x) calculates the arc (inverse) cotangent using the cotangent x of an angle. The result of
@ACOT is an angle, in radians, from 0 through p. This represents an angle between 0 and 180 degrees.

Arguments
x is the cotangent of an angle and can be any value.

Examples

The cotangent of angle x is 1.732051. To determine the size of angle x, use @ACOT(1.732051), which
returns 0.523599 radians. To convert this to degrees, use @RADTODEG(0.523599). The result is 30
degrees.

Similar @functions
@COT calculates the cotangent of an angle. @ATAN calculates the arc tangent of a value.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ACOTH

@ACOTH(x) calculates the arc (inverse) hyperbolic cotangent using the hyperbolic cotangent x of an
angle.

Arguments
x is the hyperbolic cotangent of an angle and is any value less than -1 or greater than 1.

Examples

@ACOTH(2) = 0.549306

Similar @functions
@ACOT calculates the arc cotangent of a value. @COTH calculates the hyperbolic cotangent of an
angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ACSC
@ACSC(x) calculates the arc (inverse) cosecant using the cosecant x of an angle. The result of @ACSC
is an angle, in radians, from -p /2 through p /2. This represents an angle between -90 and 90 degrees.

Arguments
x is the cosecant of an angle and is a value greater than or equal to 1, or less than or equal to -1.

Examples

The cosecant of angle x is 1.743447. To determine the size of angle x, use @ACSC(1.743447), which
returns 0.610865 radians. To convert this to degrees, use @RADTODEG(0.610865). The result is 35
degrees.

Similar @functions
@ACSCH calculates the arc hyperbolic cosecant of a value. @CSC calculates the cosecant of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide

Chapter 11, "Calculating with @Functions"

@ACSCH
@ACSCH(x) calculates the arc (inverse) hyperbolic cosecant using the hyperbolic cosecant x of an
angle.

Arguments
x is the hyperbolic cosecant of an angle and is a value other than 0.

Examples

@ACSCH(1.54) = 0.61068

Similar @functions
@ACSC calculates the arc cosecant of a value. @CSCH calculates the hyperbolic cosecant of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ASEC

@ASEC(x) calculates the arc (inverse) secant using the secant x of an angle. The result of @ASEC is an
angle, in radians, from 0 through p. This represents an angle between 0 and 180 degrees.

Arguments
x is the secant of an angle and is a value less than or equal to -1 or greater than or equal to 1.

Examples

In a right triangle, the secant of angle x is 2. To determine the size of angle x, use @ASEC(2), which
returns 1.047198 radians. To convert this to degrees, use @RADTODEG(1.047198). The result is 60
degrees.

Similar @functions
@SEC calculates the secant of an angle. @ASECH calculates the arc hyperbolic secant of a value.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ASECH
@ASECH(x) calculates the arc (inverse) hyperbolic secant using the hyperbolic secant x of an angle.

Arguments
x is the hyperbolic secant of an angle and is a value greater than 0 and less than or equal to 1.

Examples

@ASECH(0.5) = 1.316958

Similar @functions
@ASEC calculates the arc secant of an angle. @SECH calculates the hyperbolic secant of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@ASIN

@ASIN(x) calculates the arc (inverse) sine using the sine x of an angle. The result of @ASIN is an angle,
in radians, from -p /2 through p /2. This represents an angle between -90 and 90 degrees.

Arguments
x is the sine of an angle and is a value from -1 through 1.

Examples

The sine of angle x is 0.66. To determine the size of angle x, use @ASIN(0.66), which returns 0.72082
radians. To convert this to degrees, use @RADTODEG(0.72082). The result is 41.3 degrees.

Similar @functions
@SIN calculates the sine of an angle. @ASINH calculates the arc hyperbolic sine of a value.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide

Chapter 11, "Calculating with @Functions"

@ASINH

@ASINH(x) calculates the arc (inverse) hyperbolic sine using the hyperbolic sine x of an angle.

Arguments
x is the hyperbolic sine of an angle and is any value.

Examples

@ASINH(2) = 1.443635

Similar @functions
@SINH calculates the hyperbolic sine of an angle. @ASIN calculates the arc sine of a value.

See also

Help
@Functions
@RADTODEG to convert radians to degrees.

User's Guide

Chapter 11, "Calculating with @Functions"

@ATAN

@ATAN(x) calculates the arc (inverse) tangent using the tangent x of an angle. The result of @ATAN is
an angle, in radians, from -p /2 through p /2. This represents an angle between -90 and 90 degrees.

Arguments
x is the tangent of an angle and is any value.

Examples
The tangent of angle x is 2/1, or 2. To determine the size of angle x, use @ATAN(2), which returns
1.10715 radians. To convert this to degrees, use @RADTODEG(1.10715). The result is 63.4 degrees.

Similar @functions
@ATANH calculates the arc hyperbolic tangent of a value. @ATAN2 calculates the size of an angle
whose tangent is y/x. @TAN calculates the tangent of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide

Chapter 11, "Calculating with @Functions"

@ATAN2

@ATAN2(x;y) calculates the arc tangent using the tangent y/x of an angle. The result of @ATAN2 is an
angle, in radians, from -p through p. This represents an angle between -180 and 180 degrees, depending
on the sign of x and y (see the list below).

Arguments
x and y are values. If y is 0, @ATAN2 returns 0; if both x and y are 0, @ATAN2 returns ERR.

Notes
The list below gives the value ranges for @ATAN2.

· If x is positive and y is positive, then the result can be from 0 to p /2 (quadrant I).

· If x is negative and y is positive, then the result can be from p /2 to p (quadrant II).

· If x is negative and y is negative, then the result can be from -p    to -p /2 (quadrant III).

· If x is positive and y is negative, then the result can be from -p /2 to 0 (quadrant IV).

When x and y are both positive (quadrant I), and when x is positive and y is negative (quadrant IV), the
results are the same as for @ATAN.

Examples

In a right triangle, the two sides that form the right angle measure 1 and 2. To determine the size of the
larger of the two acute angles, use @ATAN2(1;2), which returns 1.10715 radians. To convert this to
degrees, use @RADTODEG(1.10715). The result is 63.4 degrees.

Similar @functions
@ATAN calculates the arc tangent using the tangent x of an angle. @TAN calculates the tangent of an
angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide

Chapter 11, "Calculating with @Functions"

@ATANH

@ATANH(x) calculates the arc (inverse) hyperbolic tangent using the hyperbolic tangent x.

Arguments
x is the hyperbolic tangent of an angle and is a value between -1 and 1.

Examples
@ATANH(0.544736) = 0.610865

Similar @functions
@ATAN calculates the arc tangent of a value. @ATAN2 calculates the size of an angle whose tangent is
y/x. @TANH calculates the hyperbolic tangent of an angle.

See also

Help
@Functions
@RADTODEG to convert radians to degrees

User's Guide
Chapter 11, "Calculating with @Functions"

@AVEDEV
@AVEDEV(list) calculates the average of the absolute deviations of the values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
@AVEDEV

Similar @functions
@STD and @PURESTD calculate the standard deviation of the values in a list. @DEVSQ calculates the
sum of squared deviations of the values in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @AVEDEV
This table lists house sales for the month of April. The ages (in years) of the houses are listed in a range
named AGE_LIST (C2..C8). You want to determine the average deviation of the ages of the houses in
the list:

@AVEDEV(AGE_LIST) = 15.18
A ---- A -------------- B --- C ---- D ----
1 ADDRESS LOT AGE COST
2 12 Bartholomew Sq 0.25 48 $290,000
3 40 Prospect St 0.40 22 $105,000
4 103 Cranberry La 0.50 21 $135,000
5 27 Kilburn St 1.00 70 $128,000
6 468 Henshaw St 0.50 52 $174,000
7 9 Pleasant St 0.25 42 $195,000
8 80 Beach St 0.25 23 $118,000

@AVG
@PUREAVG
@AVG(list) calculates the average of a list of values.

@PUREAVG(list) calculates the average of a list of values, ignoring all cells that contain labels.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
@AVG(A2..A5) = 252.75, when A2..A5 contains the values 160, 227, 397, and 227.

@AVG(A1..A5) = 202.20, when A1..A5 contains the values 160, 227, 397, and 227, and the label
January. (@AVG counts the label as zero and uses it in the calculation.)

@PUREAVG(A1..A5) = 252.75, because @PUREAVG ignores the label January.

Similar @functions
@DAVG finds the average of values in a field of a database table that meet criteria you specify.
@GEOMEAN calculates the geometric mean and @HARMEAN calculates the harmonic mean of the
values in a list. @MEDIAN finds the median value in a list of values.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@BESSELI
@BESSELJ
@BESSELK
@BESSELY
@BESSELI(x;n) calculates the modified Bessel function of integer order In(x).

@BESSELJ(x;n) calculates the Bessel function of integer order Jn(x).

@BESSELK(x;n) calculates the modified Bessel function of integer order Kn(x).

@BESSELY(x;n) calculates the Bessel function of integer order Yn(x), also known as the Neumann
function.

Arguments
x is the value at which to evaluate the function and is any value.

n is the order of the function and is any positive integer. For @BESSELI and @BESSELJ, n can also be
0.

Notes
@BESSELI, @BESSELJ, @BESSELK, and @BESSELY approximate their respective functions to within
± 5*10^-8.

Bessel functions are often used in problems with cylindrical symmetry, in connection with wave
propagation, fluid motion, elasticity, and diffusion.

Examples
@BESSELI(2;2) = 0.688948

@BESSELJ(1;0) = 0.765198

@BESSELK(3;0) = 0.03474

@BESSELY(1;1) = -0.781213

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@BETA
@BETA(z;w) calculates the beta function.

Arguments
z and w can be any values.

Notes
The result of @BETA is accurate to within at least six significant digits.

Examples
@BETA(0.5;0.5) = 3.141593

Similar @functions
@BETAI calculates the incomplete beta function. @GAMMA calculates the gamma function.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@BETAI
@BETAI(a;b;x) returns the incomplete beta function.

Arguments
a and b can be any values.

x is a value from 0 through 1.

Notes
The result of @BETAI is accurate to within at least six significant digits.

Examples
@BETAI(5;0.5;0.668271) = 0.050012

Similar @functions
@BETA calculates the beta function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@BINOMIAL
@BINOMIAL(trials;successes;probability;[type]) calculates the binomial probability mass function or the
cumulative binomial distribution.

Arguments
trials is the number of independent trials. trials is any positive integer.

successes is the number of successes in trials and is any positive integer or 0 and must be less than or
equal to trials.

If trials and successes are not integers, 1-2-3 truncates them to integers.

probability is the probability of success on each trial and is any value from 0 through 1.

type is an optional argument that specifies whether 1-2-3 calculates the probability mass function or the
cumulative binomial distribution.

type 1-2-3 calculates

0 The probability of exactly successes number of successes; default if you omit the
argument

1 The probability of at most successes number of successes

2 The probability of at least successes number of successes

Notes
@BINOMIAL approximates the cumulative binomial distribution to within ± 3*10^-7.

Examples
You randomly select ten cola drinkers to participate in a blind taste test. You give each subject a glass of
cola A and a glass of cola B. The glasses are identical in appearance, except for a code on the bottom to
identify the cola. Assuming there is no tendency among cola drinkers to prefer one brand of cola to
another, the probability that a test participant prefers cola A is 50%.

To determine the probability that exactly 7 out of 10 test participants prefer cola A:

@BINOMIAL(10;7;0.5) = 0.117188, or 11.72%.

To determine the probability that at least 7 out of 10 test participants prefer cola A:

@BINOMIAL(10;7;0.5;2) = 0.171875, or 17.19%.

Similar @functions
@CRITBINOMIAL calculates the largest value for which the cumulative binomial distribution is less than
or equal to a specific criterion. @COMBIN calculates the number of combinations for a specified number
of values. @PERMUT calculates the number of permutations for a list of values.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CELL
@CELLPOINTER

@CELL(attribute;location) returns information about the first cell in location.

@CELLPOINTER(attribute) returns information about the current cell.

Arguments
location is the address or name of a range.

attribute is any of the items listed below, enclosed in " " (quotation marks), or the address or name of a
cell that contains one of the items.

attribute Returns

across 1 if data in the cell is aligned across columns

0 if data in the cell is not aligned across columns

address The absolute address in abbreviated form (column letter and row number only)

backgroundcolor The background color, as an integer from 0 through 255 that specifies a color in the
color palette

bold 1 if the cell is formatted as bold

0 if the cell is not formatted as bold

bottomborder An integer from 0 (no border) through 8 that specifies a line style from the list of line
styles in the Style Lines & Color dialog box

bottombordercolor An integer from 0 through 15 that specifies a line color from the list of line colors in
the Style Lines & Color dialog box

col The column letter, as an integer from 1 through 256 (1 for column A; 2 for column B;
and so on)

color 1 if the cell is formatted for negative numbers in color

0 if the cell is not formatted for negative numbers in color

contents The contents of the cell

coord The absolute cell address in full form (worksheet letter; column letter; and row
number)

datatype The type of data in the cell:

b if the cell is blank

v if the cell contains a number or a numeric formula

l if the cell contains a label or text formula

e if the cell contains the value ERR

n if the cell contains the value NA

filedate A value that corresponds to the date and time the file that contains the cell was last
saved. This includes both a date number (integer portion) and a time number
(decimal portion).

filename The name of the file that contains the cell, including the path

fontface The typeface of the data in the cell

fontsize The point size of the data in the cell

format The cell format:

C0 to C15 if Currency, 0 through 15 decimal places

F0 to F15 if Fixed, 0 through 15 decimal places

G if General, a label, or a blank cell

P0 to P15 if Percent, 0 through 15 decimal places

S0 to S15 if Scientific, 0 through 15 decimal places

,0 to ,15 if , (Comma), 0 through 15 decimal places

+ if +/- format

D1 if Date format 31-Dec-92

D2 if Date format 31-Dec

D3 if Date format Dec-92

D4 if Date format 12/31/92

D5 if Date format 12/31

D6 if Time format 11:59:59 AM

D7 if Time format 11:59 AM

D8 if Time format 23:59:59

D9 if Time format 59:59

T if Text

H if Hidden

L if Label

A if Automatic

-- if Color for negative numbers

() if Parentheses

formulatype The type of formula in the cell:

b if the cell is blank

v if the cell contains a number

l if the cell contains a label

fv if the cell contains a numeric formula

fl if the cell contains a text formula

fe if the cell contains a formula that evaluates to ERR

fn if the cell contains a formula that evaluates to NA

halign The horizontal alignment of data in the cell:

0 if General (labels left-aligned; values right-aligned)

1 if Left

2 if Center

3 if Right

4 if Evenly spaced

height The row height, in points

italic 1 if the cell is formatted as italics

0 if the cell is not formatted as italics

leftborder An integer from 0 (no border) through 8 that specifies a line style from the list of line
styles in the Style Lines & Color dialog box

leftbordercolor An integer from 0 through 15 that specifies a line color from the list of line colors in
the Style Lines & Color dialog box

orientation The orientation for rotated text, as an integer from 0 through 4 that specifies an
orientation from the Style Alignment dialog box

parentheses 1 if the cell is formatted for parentheses

0 if the cell is not formatted for parentheses

pattern An integer from 0 through 63 that specifies a pattern from the list of patterns in the
Style Lines & Color dialog box

patterncolor The pattern color, as an integer from 0 through 255 that specifies a color in the color
palette

prefix ' for a left-aligned label

" for a right-aligned label

^ for a centered label

\ for a repeating label

| for a nonprinting label

Blank (no label prefix) if the cell is blank or contains a value

protect 1 if the cell is protected

0 if the cell is not protected

rightborder An integer from 0 (no border) through 8 that specifies a line style from the list of line
styles in the Style Lines & Color dialog box

rightbordercolor An integer from 0 through 15 that specifies a line color from the list of line colors in
the Style Lines & Color dialog box

rotation The rotation angle for rotated text, as an integer from 0 through 90 degrees

row The row number, from 1 through 8192

sheet The worksheet letter, as an integer from 1 through 256 (1 for worksheet A; 2 for
worksheet B; and so on)

sheetname The worksheet name, or, if the worksheet is not named, the worksheet letter

textcolor The color of the data in the cell, as an integer from 0 through 255 that specifies a
color in the color palette

topborder An integer from 0 (no border) through 8 that specifies a line style from the list of line
styles in the Style Lines & Color dialog box

topbordercolor An integer from 0 through 15 that specifies a line color from the list of line colors in
the Style Lines & Color dialog box

type The type of data in the cell:

b if the cell is blank

v if the cell contains a numeric value, a numeric formula, or a text formula

l if the cell contains a label

underline The style of underline, as an integer from 0 (no underline) through 3 that specifies
an underline style from the Style Font & Attributes dialog box

valign The vertical alignment of data in the cell:

0 if Bottom

1 if Center

2 if Top

width The column width

wrap 1 if data is wrapped within the cell

0 if data is not wrapped within the cell

Notes
Press F9 (CALC) to recalculate your work before you use @CELL or @CELLPOINTER to be sure the
results are correct.

@CELL and @CELLPOINTER are useful in macros and in combination with @IF. Use @CELL to check
input during a macro to guard against certain types of entries, and to direct macro execution using
subroutines based on a user's entry. @CELL can also allow an automated application to change cell
attributes based on a user's entries.

Use @CELLPOINTER to find the current location of the cell pointer or to evaluate a formula based on
the contents of the current cell. You can then direct processing depending on the cell's contents or type.

You can substitute the attribute name type2 for datatype and the attribute name type3 for formulatype.

Examples
The following example uses @CELL with @IF and @ERR to return an error (ERR) if the user does not
type a value in the cell named AMT, and to return the contents of AMT (a value) if the user types a value.

@IF(@CELL("type";AMT)="v",AMT,@ERR)

The following example uses @CELLPOINTER in a macro that tests for a blank cell in a list of items. In
the following example, if 1-2-3 encounters a blank cell, it beeps and branches to a subroutine.

{IF @CELLPOINTER("type")="b"}{BEEP}{BRANCH Step2}

Similar @functions
@INFO returns information about the current 1-2-3 session.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CHAR

@CHAR(x) returns the character of the Lotus Multibyte Character Set (LMBCS) that corresponds to the
number x.

Arguments
x is an integer. Values that do not correspond to LMBCS character codes return ERR. If x is not an
integer, 1-2-3 truncates it to an integer.

Notes
If your monitor cannot display the character that corresponds to x, 1-2-3 displays a character that
resembles the desired character, when possible. If no character approximates the character, 1-2-3
displays a solid rectangle, which represents an undisplayable character. Make sure your printer can print
the characters you enter.

Examples
@CHAR(156) = £ (British pound sign).

@CHAR(D9) = A, if cell D9 contains the value 65.

Similar @functions
@CODE returns the LMBCS code that corresponds to a character.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CHIDIST
@CHIDIST(x;degrees-freedom;[type]) calculates the chi-square distribution.

Arguments
x is the value at which to evaluate the chi-square distribution. The value you enter for x depends on the
value you enter for type.

If type is x is

0 The critical value or upper bound for the value of the chi-square cumulative distribution
random variable and is a value greater than or equal to 0; default if you omit the argument

1 A probability (significance level) and is a value from 0 through 1

degrees-freedom is the number of degrees of freedom for the sample. degrees-freedom is a positive
integer. If degrees-freedom is not an integer, 1-2-3 truncates it to an integer.

type is an optional argument that specifies how 1-2-3 calculates @CHIDIST.

type 1-2-3 calculates

0 The significance level corresponding to x; default if you omit the argument

1 The critical value that corresponds to the significance level x

Notes
@CHIDIST approximates the chi-square cumulative distribution to within ± 3*10^-7. If @CHIDIST cannot
approximate the result to within 0.0000001 after 100 calculation iterations, the result is ERR.

The chi-square distribution is a continuous, single-parameter distribution derived as a special case of the
gamma distribution.

Use @CHIDIST to test the validity of a hypothesis by comparing the values you observe with those you
expect.

Examples
@CHIDIST(12.592;6) = 0.05

@CHIDIST(0.05;6;1) = 12.59159

Similar @functions
@CHITEST calculates the probability associated with a chi-square test. @FDIST calculates the F-
distribution. @TDIST calculates the Student's t-distribution.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CHOOSE

@CHOOSE(x;list) returns a value or label, represented by x, from list.

Arguments

x is a value. x represents the offset number of an item's position in list.

list is a group of values or the addresses or names of cells that contain values and labels, separated by
argument separators. 1-2-3 numbers each entry in list, and then chooses the entry that corresponds to
the value of x.

Examples
A worksheet contains a list of labels in the range A1..A4 and a list of their offset numbers (0; 1; 2; 3) in
the range B1..B4.

@CHOOSE(B3;A1;A2;A3;A4) returns the label in A3, which is the item whose offset number is 2 (2 is the
value in B3) in list.

Similar @functions
@HLOOKUP and @VLOOKUP find entries in horizontal or vertical lookup tables. @INDEX and
@XINDEX return the contents of a cell located at the intersection of a specified column, row, and
worksheet. @MATCH returns the position of the cell in a range whose contents match data you specify.
@MAXLOOKUP returns an absolute reference to the cell that contains the largest value in a list of
ranges. @MINLOOKUP returns an absolute reference to the cell that contains the smallest value in a list
of ranges.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@CLEAN
@CLEAN(text) removes nonprinting characters from text.

Arguments
text is text enclosed in " " (quotation marks), the address or name of a cell that contains a label, or a
formula or @function that results in text.

Examples
You imported data into 1-2-3 from a word processing program. Cell A45 contains the label

®Second, we must act soon.¬

@CLEAN(A45) = Second, we must act soon.

Similar @functions
@CHAR returns the LMBCS character that corresponds to a code number. @TRIM removes leading,
trailing, and consecutive spaces from text.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CODE
@CODE(text) returns the Lotus Multibyte Character Set (LMBCS) code that corresponds to the first
character in text.

Arguments
text is text enclosed in " " (quotation marks), the address or name of a cell that contains a label, or a
formula or @function that results in text.

Examples
@CODE("A") = 65

@CODE(C5) = 77, if C5 contains the label Ms. Jones, because 77 is the LMBCS code for M.

Similar @functions
@CHAR returns the LMBCS character that corresponds to a code number.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@COLS

@COLS(range) counts the number of columns in range.

Arguments
range is a range address or range name.

Notes
Use @COLS with {FOR} in a macro that repeats the same action on a series of columns to determine
when the macro should stop.

Examples
@COLS(D9..J25) = 7, because range contains columns D through J (seven columns).

@COLS(SCORES) = 2, if SCORES is the name of the range B3..C45.

Similar @functions
@REFCONVERT converts the 1-2-3 column or worksheet letters A through IV to numbers from 1
through 256. @ROWS counts the rows, and @SHEETS counts the worksheets, in a range.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@COMBIN
@COMBIN(n;r) calculates the binomial coefficient for n and r. The binomial coefficient is the number of
ways that r can be selected from n, without regard for order.

Arguments
n is the number of values and is any positive integer or 0.

r is the number of values in each combination and is any positive integer or 0. r must be less than or
equal to n.

If n and r are not integers, 1-2-3 truncates them to integers.

Notes
@COMBIN approximates the binomial coefficient to within ± 3*10^-7.

Examples
A jar contains five marbles, each one a distinct color. You take out three marbles at random. The number
of combinations of colors you could have is

@COMBIN(5;3) = 10

Similar @functions
@BINOMIAL calculates the binomial probability mass function or the cumulative binomial distribution.
@CRITBINOMIAL calculates the smallest value for which the cumulative binomial distribution is less
than or equal to a specific criterion. @PERMUT calculates the number of permutations for a list of
values.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@COORD

@COORD(worksheet;column;row;absolute) creates a cell reference from values that correspond to
worksheet, column, and row.

Arguments
worksheet and column are any integers from 1 through 256. worksheet and column correspond to the
worksheet and column letters (1 for worksheet or column A; 2 for worksheet or column B; and so on).

row is any integer from 1 through 8192. row corresponds to the row number.

absolute is any integer from 1 through 8.

If worksheet, column, row, and absolute are not integers, 1-2-3 truncates them to integers.

Notes
@COORD creates a cell reference that is relative, absolute, or mixed, according to the value of absolute.
The following table shows the possible values of absolute and their effect on the cell address A1 in
worksheet A.

absolute Value of @COORD(1;1;1;absolute)

1 $A:$A$1

2 $A:A$1

3 $A:$A1

4 $A:A1

5 A:A1

6 A:A$1

7 A:$A1

8 A:A1

Use @COORD with @INDEX, @VLOOKUP, or @HLOOKUP to create cell addresses from tables of
values in the current file. Use @COORD with @@ to return the value in the cell address created by
@COORD.

Examples
@COORD(3;7;25;8) returns the relative cell address C:G25.

@@(@COORD(C1;D1;E4;8)) returns the value in cell A:A4 (C1 contains 1; D1 contains 1; and E4
contains 4).

Similar @functions
@REFCONVERT converts the 1-2-3 column or worksheet letters A through IV to numbers from 1
through 256.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CORREL
@CORREL(range1;range2) calculates the correlation coefficient of values in range1 and range2.

Arguments
range1 and range2 are range names or addresses. range1 and range2 must be the same size. If range1
and range 2 are not the same size, @CORREL returns ERR.

1-2-3 pairs cells in the two ranges by their order in the range. Ranges are ordered from top to bottom, left
to right, first sheet through last.

Notes
Correlation and covariance both measure the relationship between two sets of data. However, the
correlation statistic is independent of the unit of measure, while the covariance statistic is dependent on
the unit of measure.

Examples
@CORREL

Similar @functions
@COV calculates the covariance of the values in two ranges.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @CORREL
You want to determine if there is a relationship between height and weight among ten randomly selected
test subjects. You record the subjects' heights and weights in a worksheet.

@CORREL(A2..A11;B2..B11) = 0.384947
A --------- A --------- B --
1 HEIGHT (cm) WEIGHT (kg)
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@COS

@COS(x) calculates the cosine of angle x. The cosine is the ratio of the side adjacent an acute angle of
a right triangle to the hypotenuse. The result of @COS is a value from -1 through 1.

Arguments
x is an angle measured in radians. x is any value from -2^32*p through 2^32*p.

Examples

@COS(@DEGTORAD(30)) = 0.866, the cosine of a 30-degree angle.

Similar @functions
@ACOS calculates the arc cosine of a value. @COSH calculates the hyperbolic cosine of a value.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@COSH

@COSH(x) calculates the hyperbolic cosine of x. The result of @COSH is a value greater than or equal
to 1.

Arguments
x is any value from approximately 11355.1371 through 11355.1371.

Examples

@COSH(@DEGTORAD(30)) = 1.140238, the hyperbolic cosine of a 30-degree angle.

Similar @functions
@ACOS calculates the arc (inverse) cosine of a value. @COS calculates the cosine of an angle.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@COT

@COT(x) calculates the cotangent of angle x. The cotangent is the ratio of the side adjacent an acute
angle of a right triangle to the opposite side.

Arguments
x is an angle measured in radians. x is any value from -2^32*p through 2^32*p.

Examples

@COT(@DEGTORAD(30)) = 1.73205, the cotangent of a 30-degree angle.

Similar @functions
@ACOT calculates the arc cotangent of a value. @COTH calculates the hyperbolic cotangent of an
angle. @TAN calculates the tangent of an angle.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@COTH

@COTH(x) calculates the hyperbolic cotangent of x.

Arguments
x is any value from approximately 11355.1371 through 11355.1371 except 0.

Examples

@COTH(@DEGTORAD(30)) = 2.081283, the hyperbolic cotangent of a 30-degree angle.

Similar @functions
@ACOTH calculates the arc hyperbolic cotangent of a value. @COT calculates the cotangent of an
angle. @TANH calculates the hyperbolic tangent of an angle.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@COUNT
@PURECOUNT

@COUNT(list) counts the nonblank cells in a list of ranges.

@PURECOUNT(list) counts the cells in a list of ranges, excluding cells that contain labels.

Arguments

list is any combination of range addresses or names, separated by argument separators.

Notes
@COUNT counts every cell in list that contains an entry of any kind, including a label, a label-prefix
character, or the values ERR and NA.

@COUNT and @PURECOUNT are useful to stop (or divert) a macro that performs a task on a series of
ranges when the cell pointer reaches a range that has no entries.

Examples
@COUNT(A2..A3;A5) = 1, if A2..A3 is blank and whether or not A5 is blank, because A5 is a single-cell
address.

{IF @PURECOUNT(SEPTEMBER)=0}{BRANCH YTD} branches to a macro called YTD if the range
named SEPTEMBER is blank or contains a label, label prefix, or text formula.

Similar @functions
@DCOUNT and @DPURECOUNT count the nonblank cells in a field of a database table that meet
criteria you specify.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@COV
@COV(range1;range2;[type]) calculates either the population or sample covariance of the values in
range1 and range2.

Arguments
range1 and range2 are the names or addresses of ranges. range1 and range2 must be the same size. If
range1 or range 2 are not the same size, @COV returns ERR.

1-2-3 pairs cells in the two ranges by their same order in the range. Ranges are ordered from top to
bottom, left to right, first sheet through last.

type is an optional argument that specifies whether to calculate the population or sample covariance.

type 1-2-3 calculates

0 Population covariance; default if you omit the argument

1 Sample covariance

Notes
Covariance is the average of the products of deviations of corresponding values in lists.

Correlation and covariance both measure the relationship between two sets of data.The correlation
statistic, however, is independent of the unit of measure, and the covariance statistic is dependent on the
unit of measure.

Examples
@COV

Similar @functions
@VAR and @PUREVAR calculate the population variance, and @VARS and @PUREVARS calculate
the sample variance of values in a list. @CORREL calculates the correlation coefficient of corresponding
values in two ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @COV
You want to determine if there is a relationship between height and weight among ten randomly selected
test subjects. You record the subjects' heights and weights in a worksheet.

@COV(A2..A11;B2..B11) = 13.8872
A --------- A --------- B --
1 HEIGHT (cm) WEIGHT (kg)
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@CSC

@CSC(x) calculates the cosecant of angle x. The cosecant is the reciprocal of the sine. The result of
@CSC is a value greater than or equal to 1, or less than or equal to -1.

Arguments
x is an angle measured in radians. x is any value from -2^32*p through 2^32*p except 0 and multiples of
p.

Examples

@CSC(@DEGTORAD(30)) = 2, the cosecant of a 30-degree angle.

Similar @Functions
@ACSC calculates the arc cosecant of a value. @CSCH calculates the hyperbolic cosecant of an angle.
@SIN calculates the sine of an angle.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CSCH

@CSCH(x) calculates the hyperbolic cosecant of angle x. The hyperbolic cosecant is the reciprocal of
the hyperbolic sine.

Arguments
x is any value from approximately 11355.1371 through 11355.1371 except 0.

Examples

@CSCH(@DEGTORAD(30)) = 1.825306, the hyperbolic cosecant of a 30-degree angle.

Similar @Functions
@ACSCH calculates the arc hyperbolic cosecant of a value. @CSC calculates the cosecant of an angle.
@SINH calculates the hyperbolic sine of an angle.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@CTERM

@CTERM(interest;future-value;present-value) calculates the number of compounding periods required
for an investment (present-value) to grow to a future-value, earning a fixed interest rate per compounding
period.

Arguments
interest is any value greater than -1 except 0.

future-value and present-value are any values. Both future-value and present-value must be either
positive or negative.

Examples
You just deposited $10,000 in an account that pays an annual interest rate of 10% (.10), compounded
monthly. You want to determine how many years it will take to double your investment.

@CTERM(.10/12;20000;10000)/12 = 6.960312

In other words, it will take about seven years to double the original investment of $10,000.

Because @CTERM calculates the total number of compounding periods, you may need to include the
number of periods for which the interest rate is compounded in order to express the term and interest
rate in the same unit of time. In the example above, the annual interest rate of 10%, compounded
monthly, is entered as .10/12 (interest divided by the number of compounding periods).

Similar @functions
@TERM and @NPER determine the number of periods required for an investment of equal periodic
payments to reach a specified value.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@DATE

@DATE(year;month;day) calculates the date number for the specified year, month, and day.

Arguments
year is an integer from 0 (the year 1900) through 199 (the year 2099).

month is an integer from 1 through 12.

day is an integer from 1 through 31. The value you use for day must be a valid day for the month. For
example, you cannot use 31 as the day if you use 4 (April) as the month.

Notes
Even though February 29,1900, did not exist (it was not a leap year), 1-2-3 assigns a date number to this
day. This does not invalidate any of your date calculations unless you use dates from January 1, 1900,
through March 1, 1900. If you are using dates within that period, subtract 1 from any results within the
period.

If you want the results of an @DATE calculation to appear as an actual date, format the cell that contains
the @DATE function with one of the Style Number Format date formats.

Examples
@DATE(92;2;21) returns 33655, or 21-Feb-92, in a cell formatted as day-month-year.

@DATE(91;2;29) returns ERR, because 1991 was not a leap year.

Similar @functions
@DATEVALUE calculates the date number for a date entered as a label. @TIME calculates the time
number for a specified time. @NOW calculates the date-and-time number for the current date and time.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DATEDIF

@DATEDIF(start-date;end-date;format) calculates the number of years, months, or days between two
date numbers.

Arguments
start-date and end-date are date numbers.

format is a code from the following table, entered as text, that specifies the format you want the result of
@DATEDIF to have.

format Returns the number of

y Years

m Months

d Days

md Days, ignoring months and years

ym Months, ignoring years

yd Days, ignoring years

Examples
The following examples use the dates February 15, 1990, and September 15, 1993.

@DATEDIF(@DATE(90;2;15),@DATE(93;9;15),"m") returns 43, the number of months between
February 15, 1990, and September 15, 1993.

@DATEDIF(@DATE(90;2;15),@DATE(93;9;15),"md") returns 0, because the day of the month for both
start-date and end-date is the 15th.

@DATEDIF(@DATE(90;2;15),@DATE(93;9;15),"ym") returns 7, the number of months between
February and September.

Similar @functions
@D360 and @DAYS360 calculate the number of days between two dates, based on a 360-day year (12
months; each with 30 days). @DAYS calculates the number of days between two dates, based on a day-
count basis you specify.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DATEINFO
@DATEINFO(date;attribute) returns information about a date number.

Arguments
date is a date number.

attribute is any one of the integers listed in the following table:

attribute Returns

1 Day of the week as a label, in short format (Mon)

2 Day of the week as a label, long format (Monday)

3 Day of the week as an integer from 0 (Monday) through 6 (Sunday)

4 Week of the year as an integer from 1 to 53

5 Month of the year as a label, in short format (Jan)

6 Month of the year as a label, in long format (January)

7 Number of days in the month specified by date

8 Number of days left in the month specified by date

9 Last day of the month specified by date

10 The Quarter date is in, as an integer from 1 (Q1) through 4 (Q4)

11 1 if the year specified by date is a leap year; 0 if the year is not a leap year

12 Day of the year specified by date, as a number from 1 to 366

13 Days left in the year specified by date, as a number

Examples
@DATEINFO(23063;7) = 28, the number of days in February, 1963.

@DATEINFO(@DATE(92;10;5),10) = 4, because October is in the fourth quarter.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DATEVALUE

@DATEVALUE(text) calculates the date number for the date specified in text.

Arguments

text is text enclosed in " " (quotation marks), a formula that results in text, or the address or name of a
cell that contains a label or a formula that results in a label. text must be in one of the five 1-2-3 date
formats.

Notes
If you want the results of an @DATEVALUE calculation to appear as an actual date, format the cell that
contains the @DATEVALUE function with one of the Style Number Format date formats.

@DATEVALUE is useful with data imported from another program, such as a word processing program.

Examples
@DATEVALUE("21-Feb-91") returns the date number 33290.

@DATEVALUE(BIRTHDAY) returns the date number 20723, if the cell named BIRTHDAY contains the
label 25-Sep-56.

Similar @functions
@DATESTRING converts a date number to its equivalent date and displays it as a label. @DATE
calculates the date number for a specified date.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@DAY

@DAY(date-number) extracts the day of the month, a value from 1 through 31, from date-number.

Arguments
date-number is a value from 1 (January 1; 1900) through 73050 (December 31; 2099).

Notes
You can use one of the other date @functions to supply the value for date-number.

@DAY can supply the day argument for other date @functions that build on previously calculated dates.

Examples
@DAY(@NOW) = the current day of the month.

@DAY(D9) = 12, if cell D9 contains the date number 33250 (the date 12-Jan-91).

Similar @functions
@MONTH calculates the month, @YEAR calculates the year, and @WEEKDAY calculates the day of
the week, using a date number.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DAYS
@DAYS(start-date;end-date;[basis]) calculates the number of days between two dates using a specified
day-count basis.

Arguments
start-date and end-date are date numbers. If start-date is earlier than end-date, the result of @DAYS is
positive. If start-date is later than end-date, the result of @DAYS is negative. If start-date and end-date
are the same, the result of @DAYS is 0.

basis is an optional argument that specifies the type of day-count basis to use. basis is a value from the
following table:

basis Day-count basis

0 30/360; default if you omit the argument

1 Actual/actual

2 Actual/360

3 Actual/365

Examples
@DAYS(@DATE(93;4;16),@DATE(93;9;25)) = 159, the number of days between April 16, 1993, and
September 25, 1993, based on a 360-day year of twelve months, each with 30 days.

@DAYS(@DATE(93;4;16),@DATE(93;9;25),1) = 162,    the number of days between April 16, 1993, and
September 25, 1993, based on the actual number of days in the months April through September.

Similar @functions
@DATEDIF calculates the number of years, months, or days between two dates. @D360 and
@DAYS360 calculate the number of days between two dates, based on a 360-day year.
@NETWORKDAYS calculates the number of days between two dates, excluding weekends and
holidays.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@D360
@DAYS360

@D360(start-date;end-date) calculates the number of days between two dates, based on a 360-day year
(12 months; each with 30 days).

@DAYS360(start-date;end-date) calculates the number of days between two dates, based on a 360-day
year, according to the standards of the U.S. securities industry.

Arguments
start-date and end-date are date numbers.

Notes
The formula used to calculate @DAYS360 conforms to the 1990 modifications to the Securities Industry
Association's 1986 edition of Standard Security Calculation Methods.

@DAYS360 and @D360 typically return different answers for the same data when either start-date or
end-date is the last day of the month.

Examples
@DAYS360(@DATE(89;4;16),@DATE(89;9;25)) = 159

@D360(33290;33524) = 232, the number of days between February 21, 1991, and October 13, 1991,
based on a 360-day year.

Similar @functions
@DATEDIF calculates the number of years, months, or days between two dates. @DAYS calculates the
number of days between two dates, using a specified day-count basis. @NETWORKDAYS calculates
the number of days between two dates, excluding weekends and holidays. @WORKDAY calculates the
date that is a specified number of days before or after a specified date, excluding weekends and
holidays. @NEXTMONTH calculates the date that is a specified number of months before or after a
specified date.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DB
@DB(cost;salvage;life;period) calculates the depreciation allowance of an asset with an initial value of
cost, an expected useful life, and a final salvage value for a specified period of time, using the fixed-
declining balance method.

Arguments
cost is the amount paid for the asset. cost is any positive value or 0. If cost is 0, the result of @DB is 0.

salvage is the estimated value of the asset at the end of its useful life. salvage is any positive value or 0.
If salvage is greater than cost, the result of @DB is negative.

life is the number of periods the asset takes to depreciate to its salvage value. life is any value greater
than or equal to 1 and less than or equal to life.

period is the time period for which you want to find the depreciation allowance. period is any value
greater than or equal to 1.

You must express life and period in the same units, typically years.

Notes
The fixed-declining balance method slows the rate of depreciation in comparison to the double-declining
balance method, so more depreciation expense occurs (and can be written off) in later periods.
Depreciation stops when the book value of the asset -- that is, the total cost of the asset minus its total
depreciation over all prior periods -- reaches the salvage value.

Examples
You just purchased an office machine for $10,000. The useful life of this machine is eight years, and the
salvage value after eight years is $1,200. You want to calculate the depreciation expense for the fifth
year:

@DB(10000;1200;8;5) = $806.51

Similar @functions
@VDB calculates depreciation using the variable-rate declining balance method. @DDB uses the
double-declining balance method, @SLN uses the straight-line method, and @SYD uses the sum-of-the-
years'-digits method.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DDB

@DDB(cost;salvage;life;period) calculates the depreciation allowance of an asset with an initial value of
cost, an expected useful life, and a final salvage value for a specified period of time, using the double-
declining balance method.

Arguments
cost is the amount paid for the asset. cost is any value greater than or equal to salvage.

salvage is the estimated value of the asset at the end of its useful life. salvage is any value.

life is the number of periods the asset takes to depreciate to its salvage value. life is any value greater
than 2.

period is the time period for which you want to find the depreciation allowance. period is any value
greater than or equal to 1.

You must express life and period in the same units, typically years.

Notes
The double-declining balance method accelerates the rate of depreciation so that more depreciation
expense occurs (and can be written off) in earlier periods than in later ones. Depreciation stops when the
book value of the asset -- that is, the total cost of the asset minus its total depreciation over all prior
periods -- reaches the salvage value.

If the salvage value of an asset is relatively low, @DDB may not fully depreciate the asset by the end of
the estimated useful life. You may want to use @VDB, which always fully depreciates the asset within the
estimated life.

Examples
You just purchased an office machine for $10,000. The useful life of this machine is eight years, and the
salvage value after eight years is $1,200. You want to calculate the depreciation expense for the fifth
year, using the double-declining balance method:

@DDB(10000;1200;8;5) = $791.02

Similar @functions
@VDB calculates depreciation using the variable-rate declining balance method. @DB uses the fixed-
declining balance method, @SLN uses the straight-line method, and @SYD uses the sum-of-the-year's-
digits method.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DECIMAL
@DECIMAL(hexadecimal) converts a hexadecimal value to its signed decimal equivalent.

Arguments
hexadecimal is a value from 00000000 through FFFFFFFF, entered as text. hexadecimal can be up to
eight characters long and can contain only numbers from 0 through 9 and letters from A through F. The
letters can be either uppercase or lowercase.

Notes
Hexadecimal values from 00000000 through 7FFFFFFF correspond to 0 and positive decimal values.

Hexadecimal values from 80000000 through FFFFFFFF correspond to negative decimal values.

Examples
@DECIMAL("1A") = 26

@DECIMAL("FFFFFFFE") = -2

Similar @functions
@HEX converts decimal numbers to hexadecimal.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@DEGTORAD
@DEGTORAD(degrees) converts degrees to radians.

Arguments
degrees is a value.

Examples
@DEGTORAD(30) = 0.523599 radians

@COS(@DEGTORAD(45)) = 0.707107, the cosine of a 45-degree angle.

Similar @functions
@RADTODEG converts radians to degrees.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@DEVSQ
@DEVSQ(list) calculates the sum of squared deviations of the values in list from their mean.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
@DEVSQ(2;3;9;8;15;2;1) = 159.4286

Similar @functions
@STD and @PURESTD calculate the standard deviation of the values in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@ERF
@ERF(lower-limit;[upper-limit]) calculates the error function integrated between lower-limit and upper-
limit.

Arguments
lower-limit is the lower bound for integrating @ERF and can be any value.

upper-limit is an optional argument that specifies the upper bound for integrating @ERF. If you omit the
upper-limit argument, @ERF integrates between 0 and lower-limit.

Notes
@ERF approximates the error function to within ± 1.2 x 10^-7.

Examples
@ERF(0.7) = 0.677801

@ERF(0.8) = 0.742101

@ERF(0.7;0.8) = 0.0643, the difference between the previous examples.

Similar @functions
@ERFC calculates the complementary error function. @ERFD calculates the derivative of the error
function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ERFC
@ERFC(x) calculates the complementary error function, integrated between x and ¥.

Arguments
x can be any value.

Notes
@ERFC(x) is equal to 1-@ERF(x).

@ERFC approximates the complementary error function to within ± 3*10^-7.

Examples
@ERFC(0.7) = 0.322199

Similar @functions
@ERF calculates the error function integrated between specified upper and lower limits. @ERFD
calculates the derivative of the error function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ERFD
@ERFD(x) calculates the derivative of the error function.

Arguments

x is a value from approximately -106.560 to approximately 106.560.

Notes
If x is larger than approximately 106.560 or smaller than approximately -106.560, the calculation is too
large for 1-2-3 to store, and @ERFD returns ERR. If x is smaller than approximately -15.102 or larger
than approximately 15.102, 1-2-3 can calculate and store the value of @ERFD, but cannot display it.
(The cell displays a series of asterisks.)

Examples
@ERFD(0.7) = 0.691275

Similar @functions
@ERF calculates the error function integrated between specified upper and lower limits.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ERR

@ERR returns the value ERR.

Notes

@ERR is useful in flagging errors in calculations. It is seldom used by itself. For example, @ERR used
as an argument with @IF produces the value ERR when certain conditions exist, such as when a formula
results in an unacceptable value (such as a negative monthly payment).

Examples
@IF(B14>3;@ERR;B14) = ERR, if the value in cell B14 is greater than 3.

Similar @functions

@NA returns the value NA (not available). @ISERR tests for the value ERR.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@EVEN
@EVEN(x) rounds the value x away from 0 to the nearest even integer.

Arguments
x is any value. If x is an even integer, @EVEN returns x.

Examples
@EVEN(2.25) = 4

@EVEN(2) = 2

@EVEN(-2.25) = -4

Similar @functions
@ODD rounds a value away from 0 to the nearest odd integer. @ROUND, @ROUNDDOWN, and
@ROUNDUP round a value to a specified number of decimal places. @ROUNDM rounds a value to a
specified multiple. @INT truncates a value, discarding the decimal portions. @TRUNC truncates a value
to a specified decimal place.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@EXACT

@EXACT(text1;text2) compares two sets of characters. If the two sets match exactly, @EXACT returns 1
(true); if the two sets are not exactly the same, @EXACT returns 0 (false).

Arguments
text1 and text2 are text enclosed in " " (quotation marks), formulas that result in text, or the addresses or
names of cells that contain labels or formulas that result in labels.

Notes
@EXACT is more precise than = (the equal operator) in a formula. Unlike = (the equal operator),
@EXACT distinguishes between uppercase and lowercase letters and between letters with and without
accent marks.

You can use @EXACT to set passwords for macros by comparing what a user enters with a required
entry before continuing the macro.

Examples
@EXACT("ATHENS";"Athens") = 0 (false).

@EXACT("Overdue";B2) = 1 (true), if cell B2 contains the label Overdue.

@EXACT("400";400) = ERR, because text2 is a value.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@EXP

@EXP(x) calculates the value of the constant e (approximately 2.718282) raised to the power x.

Arguments

x is a value from approximately 11355.1371 to approximately 11356.5234.

Notes
If x is larger than approximately 11356.5234 or smaller than approximately -11355.1371, the calculation
is too large for 1-2-3 to store, and @EXP returns ERR. If x is smaller than approximately -227.956 or
larger than approximately 230.259, 1-2-3 can calculate and store the value of @EXP, but cannot display
it. (The cell displays a series of asterisks.)

Examples
@EXP(0.7) = 2.013753

Similar @functions
@EXP2 calculates the value of e raised to the power -x^2. @LN is the inverse of @EXP.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@EXP2

@EXP2(x) calculates the value of the constant e (approximately 2.718282) raised to the power (-x^2).

Arguments

x is a value from approximately -106.570 to approximately 106.570.

Notes
If x is larger than approximately 106.570 or smaller than approximately -106.570, the calculation is too
large for 1-2-3 to store, and @EXP2 returns ERR. If x is smaller than approximately 15.098 or larger than
approximately 15.098, 1-2-3 can calculate and store the value of @EXP2, but cannot display it. (The cell
displays a series of asterisks.)

Examples
@EXP2(0.7) = 0.612626

Similar @functions
@EXP calculates e raised to a specified power.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@FACT
@FACT(n) calculates the factorial of n.

Arguments
n is any positive integer or 0.

Notes
The factorial of n is equal to the product of all positive integers from 1 to n.

If n is greater than or equal to 1755, the calculation is too large for 1-2-3 to store, and @FACT returns
ERR. If n is greater than or equal to 70, 1-2-3 can calculate and store the value of @FACT, but cannot
display it. (The cell displays a series of asterisks.)

Examples
@FACT(0) = 1

@FACT(5) = 120, the result of 1*2*3*4*5.

Similar @functions
@FACTLN calculates the natural logarithm of the factorial of n. @PRODUCT multiplies the values in a
list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@FACTLN
@FACTLN(n) calculates the natural logarithm of the factorial of n.

Arguments
n is any positive integer or 0.

Notes
The factorial of n is equal to the product of all positive integers from 1 to n.

Examples
@FACTLN(0) = 0, the result of @LN(1).

@FACTLN(5) = 4.787492, the result of @LN(1*2*3*4*5).

Similar @functions
@FACT calculates the of the factorial of n. @LN calculates the natural logarithm of a value.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@FALSE

@FALSE returns the logical value 0 (false).

Notes
If a logical statement such as A1=B1 is true, its logical value is 1. If it is false, its logical value is 0.

Using @FALSE is the same as using the value 0 in formulas that evaluate logical conditions, but
@FALSE makes the formula easier to understand.

Use @FALSE with macros or @functions such as @IF and @CHOOSE that require a logical value of 0
(false). @FALSE is useful as the y argument for @IF, which is the value returned if the condition is not
met.

Examples
@IF(A6>500;@TRUE;@FALSE) = 0 when cell A6 contains a value less than or equal to 500.

Similar @functions
@TRUE returns the logical value 1.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@FDIST
@FDIST(x;degrees-freedom1;degrees-freedom2;[type]) calculates the F-distribution.

Arguments
x is the value at which you want to evaluate the F-distribution. The value you enter for x depends on the
value you enter for type.

If type is x is

0 The critical value or upper bound for the value of the cumulative F-distribution and is a
value greater than or equal to 0; default if you omit the argument

1 A probability and is a value from 0 to 1

degrees-freedom1 and degrees-freedom2 are the numbers of degrees of freedom for the first and
second samples, respectively. degrees-freedom1 and degrees-freedom2 are positive integers.

type is an optional argument that specifies how 1-2-3 calculates @FDIST.

type 1-2-3 calculates

0 The significance level that corresponds to the critical value x; default if you omit the
argument

1 The critical value that corresponds to the significance level x

Notes
@FDIST approximates the cumulative F-distribution to within ± 3*10^-7. If @FDIST cannot approximate
the result to within 0.0000001 after 100 calculation iterations, the result is ERR.

The F-distribution is a continuous distribution obtained from the ratio of two chi-square distributions, each
divided by its number of degrees of freedom.

Use @FDIST to determine the degree to which two samples vary.

Examples
@FDIST(3.07;8;10) = 0.05

@FDIST(0.05;8;10) = 3.07

Similar @functions
@FTEST calculates the probability associated with an F test. @CHIDIST calculates the chi-square
distribution. @TDIST calculates the Student's t-distribution.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@FIND

@FIND(search-text;text;start-number) calculates the position in text at which 1-2-3 finds the first
occurrence of search-text, beginning at the position indicated by start-number.

Arguments
search-text and text are text enclosed in " " (quotation marks), a formula that results in text or the
address or name of a cell that contains text or a formula that results in a label.

start-number is an offset number.

Notes
If 1-2-3 does not find search-text in text, @FIND returns ERR. @FIND also returns ERR if start-number
is greater than the number of characters in text, or if start-number is negative.

@FIND is case-sensitive and accent-sensitive; for example, @FIND will not find the search-text "e" in the
text "CAMBRIDGE."

@FIND is also useful when combined with @MID or @REPLACE to locate and extract or replace text.

Examples
@FIND("P";"Accounts Payable";0) = 9 because search-text P is at position 9 in text Accounts Payable.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@FV
@FVAL

@FV(payments;interest;term) calculates the future value of an investment, based on a series of equal
payments, earning a periodic interest rate, over the number of payment periods in term.

@FVAL(payments;interest;term;[type];[present-value]) calculates the future value of an investment with a
specified present-value, based on a series of equal payments, earning a periodic interest rate, over the
number of payment periods in term. @FVAL calculates for either an ordinary annuity or an annuity due,
depending on the value you specify for type.

Arguments
payments and term are values.

For @FVAL, term must be a positive value.

interest is a value greater than -1.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

present-value is an optional argument that specifies the present value of the series of future payments.
present-value can be any value. If you omit the present-value argument, 1-2-3 uses 0.

You cannot use an optional argument without using the ones that precede it.

Notes
The period used to calculate interest must be the same period used for term; for example, if you are
calculating a monthly payment, enter the interest and term in monthly increments. Usually, this means
you must divide the interest rate by 12 and multiply the number of years in term by 12.

Examples
You plan to deposit $2,000 each year for the next 20 years into an account to save for retirement. The
account pays 7.5% interest, compounded annually; interest is paid on the last day of each year. You want
to calculate the value of your account in 20 years. You make each year's contribution on the last day of
the year.

@FV(2000;0.075;20) = $86,609.36, the value of your account at the end of 20 years.

If you make each year's contribution on the first day of the year:

@FVAL(2000;0.075;20;1) = $93,105.06

Similar @functions
@PV and @PVAL determine the present value of an investment. @NPV computes the net present value
of an investment, discounting the future value to present value.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@GAMMA
@GAMMA(x) calculates the gamma function.

Arguments
x is any value except 0 and negative integers.

Notes
@GAMMA approximates the gamma distribution accurately to within six significant figures.

Examples
@GAMMA(0.5) = 1.772454

@GAMMA(5) = 24

Similar @functions
@BETA calculates the beta function. @GAMMAI calculates the incomplete gamma function.
@GAMMALN calculates the natural logarithm of the gamma function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@GAMMAI
@GAMMAI(a;x;[complement]) calculates the incomplete gamma function.

Arguments
a is a positive value.

x is a positive value or 0.

complement is an optional argument that specifies how 1-2-3 calculates @GAMMAI.

complement 1-2-3 calculates

0 P(a;x); default if you omit the argument

1 Q(a;x); this is equal to 1-P(a;x)

Notes
@GAMMAI approximates the incomplete gamma function accurately to within six significant figures.

Examples
@GAMMAI(7.5;12.497;1) = 0.050024

Similar @functions
@GAMMA calculates the gamma distribution function. @GAMMALN calculates the natural logarithm of
the gamma function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@GAMMALN
@GAMMALN(x) calculates the natural logarithm of the gamma function.

Arguments
x is any value other than 0 and negative integers.

Notes
@GAMMALN approximates the natural logarithm of the gamma function accurately to within six
significant figures.

Examples
@GAMMALN(0.5) = 0.572365

@GAMMALN(5) = 3.178054

Similar @functions
@GAMMA calculates the gamma distribution function. @GAMMAI calculates the incomplete gamma
function.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@GEOMEAN
@GEOMEAN(list) calculates the geometric mean of the values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas that evaluate to
numbers, and addresses or names of ranges that contain numbers or numeric formulas. Separate
elements of list with argument separators.

All values in list must be greater than 0.

Notes
The geometric mean of a list with n values is the nth root of the product of the values in list.

For the same list, the result of @GEOMEAN is less than the result of @AVG unless all values in list are
equal. If all values in list are equal, the results of @GEOMEAN and @AVG are equal.

Examples
@GEOMEAN(A1..A4) = 239.1886, when A1..A4 contains the values 160, 227, 397, and 227.

Similar @functions
@HARMEAN calculates the harmonic mean of the values in a list. @AVG and @PUREAVG calculate the
average of the values in a list. @MEDIAN calculates the median value in a list of values.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@HARMEAN
@HARMEAN(list) calculates the harmonic mean of the values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas that evaluate to
numbers, and addresses or names of ranges that contain numbers or numeric formulas. Separate
elements of list with argument separators.

All values in list must be greater than 0.

Notes
The harmonic mean of the values in list is the reciprocal of the arithmetic mean of the reciprocals of the
values in list. For example, the average of 1/2, 1/3, and 1/4 is 13/36; therefore, the harmonic mean of 2,
3, and 4 is 36/13.

For the same list, the result of @HARMEAN is always less than the result of @GEOMEAN.

Examples
@HARMEAN(25;50;75) = 40.90909

Similar @functions
@GEOMEAN calculates the geometric mean of the values in a list. @AVG and @PUREAVG calculate
the average of the values in a list. @MEDIAN calculates the median value in a list of values.

See also

Help
@Functions
Statistical @Functions Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@HEX
@HEX(x) converts a decimal number to its hexadecimal equivalent.

Arguments
x is an integer from -2,147,483,648 through 2,147,483,647. If x is not an integer, 1-2-3 truncates it to an
integer.

Notes
Hexadecimal values from 00000000 through 7FFFFFFF correspond to 0 and positive decimal values.

Hexadecimal values from 80000000 through FFFFFFFF correspond to negative decimal values.

Examples
@HEX(162) = A2

Similar @functions
@DECIMAL converts hexadecimal numbers to decimal numbers.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@HLOOKUP

@HLOOKUP(x;range;row-offset) finds the contents of the cell in a specified row of a horizontal lookup
table, a range with either value information in ascending order or labels in the first row.

Arguments
x is either a value or text, depending on the contents of the first row of the horizontal lookup table.

If the first row contains Then x can be

Values Any value greater than or equal to the first value in range. If x is smaller
than the first value in range, @HLOOKUP returns ERR. If x is larger than
the last value in the first row of range, @HLOOKUP stops at the last cell
in the row specified by row-offset and returns the contents of that cell as
the answer.

Labels Text enclosed in " " (quotation marks), a formula that results in text, or
the address or name of a cell that contains a label or a formula that
results in a label. If x does not exactly match the contents of a cell in the
first row of range, @HLOOKUP returns ERR.

range represents the location of the horizontal lookup table. range is any range address or range name.
If range is a 3D range, 1-2-3 uses only the first worksheet in range.

row-offset represents an offset number corresponding to the position the row occupies in range.

Notes
@HLOOKUP compares x to each cell in the first row of the table. When 1-2-3 locates a cell in the first
row that contains x (or if x is a value; the value closest to; but not larger than; x), it moves down that
column the number of rows specified by row-offset and returns the contents of that cell as the answer.

Examples
@HLOOKUP

Similar @functions
@VLOOKUP finds the contents of a cell in a vertical lookup table. @INDEX finds the contents of a cell
when you specify offset numbers for both the column and row. @CHOOSE replaces a lookup table that
requires only one row. @MATCH finds the relative position of a cell with specified contents. @XINDEX
finds the contents of a cell specified by column, row, and worksheet headings.    @MAXLOOKUP returns
an absolute reference to the cell that contains the largest value in a list of ranges. @MINLOOKUP
returns an absolute reference to the cell that contains the smallest value in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @HLOOKUP
A horizontal lookup table named RATES (A2..E7) lists rates for sending a parcel to several cities.

@HLOOKUP("Frankfurt";RATES;3), entered in a cell formatted as Currency with two decimal places,
returns $24.00, the rate for sending a type 3 parcel to Frankfurt.
A ---- A ---------- B -------- C ----- D -------- E ---
1 --------- PARCEL DESTINATION ---------
2 Parcel type London Paris Frankfurt New York
3 1 $18.36 $19.33 $20.12 $9.29
4 2 $20.32 $21.66 $22.03 $11.25
5 3 $22.44 $23.88 $24.00 $13.25
6 4 $24.14 $25.26 $25.75 $16.85
7 5 $28.32 $29.00 $29.80 $19.54

@HOUR

@HOUR(time-number) extracts the hour, a value between 0 (midnight) and 23 (23:00 or 11:00 PM), from
time-number.

Arguments
time-number is a value from .000000 (midnight) through .999988 (11:59:59 PM). Usually, another time
@function supplies time-number.

Notes
The hour portion is useful in calculations that involve whole hours, such as calculating hourly wages or
hours elapsed since you began working on a project, or time-stamping a worksheet.

Examples
@HOUR(.51565) = 12 because .51565 is the time number for 12:22:32 PM.

@HOUR(@TIME(13;45;18)) = 13 (1:00 PM), because 13 is the hour argument for @TIME(13;45;18).

Similar @functions
@MINUTE extracts the minutes, and @SECOND extracts the seconds, from a time number.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@IF

@IF(condition;x;y) evaluates condition and returns one of two values, depending on the result of the
evaluation. If condition is true, @IF returns x; if condition is false, @IF returns y.

Arguments
condition is usually a logical formula. However, you can use any formula, number, text enclosed in " "
(quotation marks), or name or address of a cell as condition. 1-2-3 evaluates any condition that does not
equal zero as true and any condition that does equal zero as false. Blank cells, text, and ERR and NA
values all equal zero when used as condition.

x and y are values, text enclosed in " " (quotation marks), or the addresses or names of cells that contain
values or labels.

Notes
@IF is useful when combined with @ERR and @NA to document errors or missing data in formulas. It is
also useful in preventing ERR, NA, and calculation errors in situations where data may be missing or
inaccurate, for example, to prevent division by zero.

You can nest @IF functions within one another to create a complex condition. For example,

@IF(TOT>10000;TOT*0.15;@IF(TOT>5000;TOT*0.10;TOT*0.02))

nests two @IF functions to determine a commission rate based on three levels of sales: total sales
greater than $10,000, total sales greater than $5,000, and total sales less than or equal to $5,000.

Examples
@IF(BALANCE>=0;BALANCE;"Overdrawn") returns the value in the cell named BALANCE when the
value in BALANCE is 0 or positive; or returns the label Overdrawn when the value in BALANCE is
negative.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@INDEX

@INDEX(range;column;row;[worksheet]) returns the contents of a cell located at the intersection of a
specified column, row, and (optionally) worksheet of a range.

Arguments
range is a range address or range name.

column is the offset number of the column that @INDEX uses.

row is the offset number of the row that @INDEX uses, or the address or name of a cell that contains 0
or a positive integer.

worksheet is an optional argument that is the offset number of the worksheet that @INDEX uses. If you
do not specify worksheet, @INDEX uses only the first worksheet in range.

Examples
@INDEX

Similar @functions
@HLOOKUP and @VLOOKUP find entries in horizontal and vertical lookup tables. @CHOOSE finds an
entry in a list. @MATCH finds the relative position of a cell with specified contents. @XINDEX finds the
contents of a cell specified by column, row, and worksheet headings.    @MAXLOOKUP returns an
absolute reference to the cell that contains the largest value in a list of ranges. @MINLOOKUP returns
an absolute reference to the cell that contains the smallest value in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @INDEX
A table named INCREASE (A3..E8) shows salary increases based on employee performance ratings.

@INDEX(INCREASE;2;3), entered in a cell formatted as percent, returns 5%, the salary increase for an
employee who has a rating of 3 and has a salary level of 2.

@INDEX(INCREASE;1;2), entered in a cell formatted as Percent, returns 7%, the salary increase for an
employee who has a rating of 2 and a salary level of 1.
A ----- A ------------ B --- C --- D --- E --
1
2 --- SALARY LEVEL ---
3 Rating 1 2 3 4
4 1 10% 9% 8% 7%
5 2 7% 6% 5% 4%
6 3 6% 5% 4% 3%
7 4 3% 2% 1% 0%
8 5 0% 0% 0% 0%

@INFO

@INFO(attribute) returns information for the current 1-2-3 session.

Arguments
attribute is one of the following items, entered as text.

attribute Returns

author The user name of the person who first saved the current file

creation-date A date number that corresponds to the date the current file was first saved

editing-time A time number that corresponds to the total number of hours and minutes the
current file has been open

dbreturncode The most recent error code returned by the DataLens driver

dbdrivermessage The most recent DataLens message

dbrecordcount The number of records extracted, modified, or inserted from the last query (in the
worksheet or in an external database)

directory The current path, including the drive letter

last-revision-by The user name of the person who last saved the current file

last-revision-date A date number that corresponds to the date the current file was last saved

macro-step Yes if Step mode is on; No if Step mode is off

macro-trace Yes if the Macro Trace window is open; No if it is not open

memavail The amount of available memory

mode The current mode:

0 Wait

1 Ready

2 Label

3 Menu

4 Value

5 Point

6 Edit

7 Error

8 Find

9 Files

10Help

11 Stat

13Names

99All other modes (for example, user-defined with {INDICATE})

numfile The number of currently open files

origin The absolute address of the top left cell in the current worksheet

osreturncode The value returned by the most recent operating system command

osversion The current operating system version

recalc The current recalculation mode as one of the two labels, automatic or manual

release The release number for the 1-2-3 for Windows product being used, consisting of
three parts: major release number, upgrade level, and version number

setup-user-name Your email or network user name

screen-height The height of the screen, in pixels

screen-width The width of the screen, in pixels

selection The address of the currently selected range, or the name of the currently selected
chart, drawn object, or query table

selection-part The name of the selected part of a range or object, for example, Title line 1 for the
first line of a title of a chart

selection-type The current selection type: Range, Draw, Query, or Chart

system The name of the operating system

totmem The total memory available (both the amount currently available and the amount
being used)

windir The path to the directory that contains Windows, including the drive letter

worksheet-number The number of worksheets in the current file

worksheet-size The size of the current file, in Kilobytes (KB)

Notes
In addition to the attributes listed here, attribute can be any of the Info components.

Recalculate your work before you use @INFO to be sure the results are correct.

@INFO is useful in macros when you need to provide information about the status of 1-2-3 to the user or
the macro (for example, to tell the user the current path in a macro that automates saving files; or to warn
that memory is low).

Use @INFO with @IF to check the status of 1-2-3 and to tell a macro what to do in certain conditions,
such as to change the path if necessary or to delete unnecessary data or close active files if memory is
low.

Examples
@INFO("numfile") = 2, if two files are active.

@INFO(B4) = 3, if B4 contains the label "mode" and 1-2-3 is in Menu mode.

Similar @functions
@CELL returns information about the first cell in a range. @CELLPOINTER returns information about
the current cell.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@INT

@INT(x) returns the integer portion of x.

Arguments
x is a value.

Notes

Select Fixed from Style Number Format or Style Worksheet Number Defaults Format to display values
with a specified number of decimal places if you want 1-2-3 to calculate the values to their full precision;
do not use @INT.

Examples
@INT(35.67) = 35

@INT(@NOW) = the date number for the current date and time, because the time portion is a decimal
value.

Similar @functions
@ROUND, @ROUNDUP, and @ROUNDDOWN round a value to the closest multiple of the specified
power of 10. @ROUNDM rounds a value to a specified multiple. @EVEN rounds a value away from 0 to
the nearest even integer. @ODD rounds a value away from 0 to the nearest odd integer. @TRUNC
truncates a value to a specified number of decimal places.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@IPAYMT
@PPAYMT
@IPAYMT(principal;interest;term;start-period;[end-period];[type];[future-value]) calculates the cumulative
interest portion of the periodic payment on a loan (principal) at a given interest rate for a specified
number of payment periods (term).

@PPAYMT(principal;interest;term;start-period;[end-period];[type];[future-value]) calculates the principal
portion of the periodic payment on a loan (principal) at a given interest rate for a specified number of
payment periods (term).

Arguments
principal and term are values. term can be any value except 0.

interest is a decimal or percentage value greater than -1.

start-period is the point in the loan's term when you want to begin calculating interest or principal. start-
period can be any value greater than or equal to 1, but cannot be greater than term.

end-period is the point in the loan's term when you want to stop calculating interest or principal. end-
period can be any value greater than start-period. If you omit the end-period argument, end-period
equals start-period.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

future-value is an optional argument that specifies the future value of the series of payments. future-
value can be any value. If you omit the future-value argument, 1-2-3 uses 0.

You cannot use an optional argument without using the ones that precede it.

Notes

The period used to calculate interest must be the same period used for term; for example, if you are
calculating a monthly payment, enter the interest and term in monthly increments. Usually, this means
you must divide the interest rate by 12 and multiply the number of years in term by 12.

Examples
You took out an $8,000 loan for 3 years at an annual interest rate of 10.5%, compounded monthly. Your
monthly payments are $260.02. To determine the interest portion of the last year's payments:

@IPAYMT(8000;0.105/12;36;25;36) = $170.45

To determine the principal portion of the last year's payments:

@PPAYMT(8000;0.105/12;36;25;36) = $2,949.79

Similar @Functions
@PMT calculates the periodic payment for a loan.

See also

Help

@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@IRATE

@IRATE(term;payment;present-value;[type];[future-value];[guess]) calculates the periodic interest rate
necessary for an annuity (present-value) to grow to a future-value over the number of compounding
periods in term.

Arguments
term is a positive integer.

payment and present-value are values.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

future-value is an optional argument that specifies the future value of the series of payments. future-
value can be any value. If you omit the future-value argument, 1-2-3 uses 0.

guess is an optional argument that represents your estimate of the interest rate. guess is a value from 0
through 1. If you omit the guess argument, 1-2-3 uses .10 (10%).

You cannot use an optional argument without using the ones that precede it.

Notes
@IRATE uses a series of approximations, starting with your guess value, to calculate the interest rate.
Start with a guess that you feel is reasonable for the interest rate. More than one solution may be
possible, so try another guess if the result is less than 0 or greater than 1.

If @IRATE cannot approximate the result to within 0.0000001 after 30 calculation iterations, the result is
ERR. If your guesses continue to return ERR, use @NPV to determine a better guess. If @NPV returns
a positive value, your guess is too low. If @NPV returns a negative value, your guess is too high. @NPV
returns 0 if your guess is accurate.

The period used to calculate guess must be the same period used for term; for example, if you are
calculating a monthly payment, enter the interest and term in monthly increments. Usually, this means
you must divide the interest rate and the number of years in term by 12.

Examples
You deposited $6,000 in an account and want to withdraw $100 per month for eight years. To determine
the interest you need to earn in order to make the withdrawals:

@IRATE(96;100;6000;0;0;0.01) = 0.010623, or 1.06% compounded monthly.

Similar @functions
@NPV calculates the net present value of a series of future cash flows. @PV and @PVAL calculate the
present value of an annuity based on a series of equal payments. @FV and @FVAL calculate the future
value of an annuity. @RATE returns the periodic interest rate necessary for an investment to grow to a
future value.

See also

Help

@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@IRR

@IRR(guess;range) calculates the internal rate of return (profit) for a series of cash-flow values
generated by an investment. The internal rate of return is the percentage rate that equates the present
value of an expected future series of cash flows to the initial investment.

Arguments
guess is a decimal or percentage value that represents your estimate of the internal rate of return. In
most cases, guess should be a percentage between 0 (0%) and 1 (100%). With very large cash flows,
make guess as accurate as possible.

range is the address or name of a range that contains the cash flows. 1-2-3 considers negative numbers
as cash outflows and positive numbers as cash inflows. Normally, the first cash-flow amount in the range
is a negative number (a cash outflow) that represents the investment. 1-2-3 assigns the value 0 to all
blank cells and labels in range and includes them in the calculation.

Notes
Use @IRR to determine the profitability of an investment. Combine @IRR with other financial
@functions, such as @NPV, to assess an investment.

1-2-3 assumes the cash flows are received at regular, equal intervals.

@IRR uses a series of approximations, starting with your guess value, to calculate the internal rate of
return. Start with a guess that you feel is reasonable for the internal rate of return. More than one solution
may be possible, so try another guess if the result is less than 0 or greater than 1.

If @IRR cannot approximate the result to within 0.0000001 after 30 calculation iterations, the result is
ERR. If your guesses continue to return ERR, use @NPV to determine a better guess. If @NPV returns
a positive value, your guess is too low. If @NPV returns a negative value, your guess is too high. @NPV
returns 0 if your guess is accurate.

Use @AVG to determine the internal rate of return if you calculate several rates.

Examples
A schedule calculates the internal rate of return of an initial investment of $10,000 that is followed by 12
monthly payments of $1,500. guess (12.00%) is entered in GUESS and the payments are listed in a
range named CASHFLOWS.

@IRR(GUESS;CASHFLOWS) = returns 10.45%, the internal rate of return.

Similar @functions
@NPV calculates the net present value of a series of future cash flows. @PV and @PVAL calculate the
present value of an annuity based on a series of equal payments. @FV and @FVAL calculate the future
value of an annuity. @RATE returns the periodic interest rate necessary for an investment to grow to a
future value. @MIRR calculates the modified internal rate of return.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISAAF
@ISAPP
@ISMACRO

@ISAAF(name) tests name for a defined add-in @function. If name is a defined add-in @function,
@ISAAF returns 1 (true); if name is not a defined add-in @function, @ISAAF returns 0 (false).

@ISAPP(name) tests name for an add-in application that is currently in memory. If name is an add-in
application that is currently in memory, @ISAPP returns 1 (true); if name is not an add-in application that
is currently in memory, @ISAPP returns 0 (false).

@ISMACRO(name) tests name for a defined add-in macro command. If name is a defined add-in macro
command, @ISMACRO returns 1 (true); if name is not a defined add-in macro command, @ISMACRO
returns 0 (false).

Arguments
name is the name of the add-in @function, application, or macro command you want to test, entered as
text.

If name is the name of an add-in @function, do not include the initial @ symbol.

If name is the name of an add-in macro command, do not include the { } (braces).

Notes
@ISAPP returns 1 (true) only for any add-in applications you load using Tools Add-in Load. For add-ins
that only define add-in @functions or macro commands, or any add-in installed in your DCF, @ISAPP
returns 0 (false).

Examples
@ISAAF("degrees") = 1 if @DEGREES is a defined add-in @function.

@ISAAF("dsum") = 0, because @DSUM is a 1-2-3 @function, not an add-in @function.

@ISAPP("finance") = 1 if an add-in application called FINANCE is currently in memory.

@ISMACRO("payroll") = 1 if {PAYROLL} is a defined add-in macro command.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISERR

@ISERR(x) tests x for the value ERR. If x is the value ERR, @ISERR returns 1 (true); if x is not the
value ERR, @ISERR returns 0 (false) .

Arguments
x is any value, location, text, or condition.

Notes
Use @ISERR to block errors that arise from division by zero. For example, the formula
@IF(@ISERR(A1/A2),0,A1/A2) tests the result of the division A1/A2 (the contents of cell A1 divided by
the contents of cell A2). If the result is the value ERR, the formula returns 0. If the result is any other
value, the formula returns that result.

Examples
The subroutine CHKQTY consists of three short subroutines that check entries in the cells named QTY
and PRICE. CHKQTY tests whether the entry in QTY is a value; if it is, processing transfers to the
subroutine CKERRNA. If QTY does not contain a value, NEWQTY requests a new entry and then
transfers to CHKQTY.

CKERRNA uses @ISERR to determine whether QTY contains the value ERR; if @ISERR returns 1
(true), it requests a new value. If QTY does not contain ERR and PRICE does not contain NA, the
subroutine multiplies the values in the two cells and enters the result in the cell named TOTAL.
...
CHKQTY {IF @ISNUMBER(QTY)}{BRANCH CKERRNA}
NEWQTY {GETNUMBER "Enter Quantity number: ";QTY}

{BRANCH CHKQTY}
CKERRNA {IF @ISERR(QTY)}{BRANCH NEWQTY}

{IF @ISNA(PRICE)}{GETNUMBER "Enter new price: ";PRICE}{BRANCH CHKQTY}
{GOTO}TOTAL~+QTY*Price~

...

Similar @functions
@ISNA tests for the value NA.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISNA

@ISNA(x) tests x for the value NA. If x is the value NA, @ISNA returns 1 (true); if x is not the value NA,
@ISNA returns 0 (false).

Arguments
x is any value, location, text, or condition.

Examples
The subroutine CHKQTY consists of three short subroutines that check entries in the cells named QTY
and PRICE. CHKQTY tests whether the entry in QTY is a value; if it is, processing transfers to the
subroutine CKERRNA. If QTY does not contain a value, NEWQTY requests a new entry and then
transfers to CHKQTY.

CKERRNA uses @ISNA to determine whether PRICE contains the value NA; if @ISNA returns 1 (true), it
requests a new value. If PRICE does not contain NA and QTY does not contain ERR, the subroutine
multiplies the values in the two cells and enters the result in the cell named TOTAL.
...
CHKQTY {IF @ISNUMBER(QTY)}{BRANCH CKERRNA}
NEWQTY {GETNUMBER "Enter Quantity number: ",QTY}

{BRANCH CHKQTY}
CKERRNA {IF @ISERR(QTY)}{BRANCH NEWQTY}

{IF @ISNA(PRICE)}{GETNUMBER "Enter new price: ",PRICE}{BRANCH CHKQTY}
{GOTO}TOTAL~+QTY*Price~

...

Similar @functions
@ISERR tests for the value ERR.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISNUMBER
@ISNUMBER(x) tests x for a value. If x is a value, NA, ERR, or a blank cell, @ISNUMBER returns 1
(true); if x is text or a cell that contains a label or a formula that results in a label, @ISNUMBER returns 0
(false).

Arguments
x is any value, location, text, or condition. If x is a multiple-cell range, @ISNUMBER returns 0 (false),
even if the first cell of the range contains a value.

Examples
The subroutine CHKQTY consists of three short subroutines that check entries in the cells named QTY
and PRICE.

CHKQTY uses @ISNUMBER to determine whether the entry in QTY is a value; if it is, processing
transfers to the CKERRNA subroutine. If QTY does not contain a value, NEWQTY requests a new entry.
...
CHKQTY {IF @ISNUMBER(QTY)}{BRANCH CKERRNA}
NEWQTY {GETNUMBER "Enter Quantity number: ",QTY}

{BRANCH CHKQTY}
CKERRNA {IF @ISERR(QTY)}{BRANCH NEWQTY}

{IF @ISNA(PRICE)}{GETNUMBER "Enter new price: ",PRICE}{BRANCH CHKQTY}
{GOTO}TOTAL~+QTY*Price~

...

Similar @functions
@ISSTRING tests for a label. @CELL and @CELLPOINTERcan also determine whether a cell contains
a value or a label.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISRANGE

@ISRANGE(range) tests range for a defined range name or valid range address (a range address with
worksheet and column letters from A through IV and row numbers from 1 through 8192). If range is a
defined range name or valid range address, @ISRANGE returns 1 (true); if range is not a defined range
name or valid range address, @ISRANGE returns 0 (false).

Arguments
range is any text or range address.

Notes
@ISRANGE is useful with @IF to determine if an entry is a valid range name for subroutine calls and
branching with {DISPATCH}.

You can use @ISRANGE only with files in memory.

Examples
@ISRANGE(A1) = 1 (true).

@ISRANGE(+A1) = 0 (false).

@ISRANGE(A1..C3) = 1(true).

@ISRANGE(SALES) = 1 (true), if SALES is a defined range name.

@ISRANGE(PRICE) = 0 (false), if PRICE is an undefined range name.

@ISRANGE(3) = 0 (false).

@ISRANGE("COMMISSION") = 0 (false) because the range name is enclosed in " " (quotation marks).

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISSTRING

@ISSTRING(x) tests x for text or a label. If x is text or a cell that contains a label or a formula that results
in a label, @ISSTRING returns 1 (true); if x is a value, ERR, NA, or blank cell, @ISSTRING returns 0
(false).

Arguments
x is any value, location, text, or condition.

Examples
The subroutine CHKSTR checks the contents of the cell named CUSTOMER. If CUSTOMER contains a
label (@ISSTRING(CUSTOMER) = 1), the subroutine branches to a new subroutine named
FILEORDER. If CUSTOMER does not contain a label, the subroutine requests a new entry.

...
CHKSTR {IF @ISSTRING(CUSTOMER)}{BRANCH FILEORDER}

{GETLABEL "Enter CUSTOMER name: ",CUSTOMER}
{CHKSTR}

...

Similar @functions
@ISNUMBER tests for a value. @CELL and @CELLPOINTERcan also determine whether a cell
contains a value or a label.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@KURTOSIS
@KURTOSIS(range;[type]) calculates the kurtosis of the values in range.

Arguments
range is the name or address of a range that contains values. If range contains fewer than four values,
@KURTOSIS returns the value ERR.

type is an optional argument that specifies whether to calculate for a population or a sample.

type 1-2-3 calculates

0 Population kurtosis; default if you omit the argument

1 Sample kurtosis

Notes
Kurtosis is a measure of the concentration of a distribution about its mean. Positive kurtosis indicates a
relatively peaked distribution; negative kurtosis indicates a relatively flat distribution.

Examples
The range DATA contains these values: 2, 5, 5, 9, 1, 2, 4.

@KURTOSIS(DATA;1) = 1.021488

@KURTOSIS(DATA) = -0.32438

Similar @functions
@SKEWNESS calculates the skewness of the values in a range.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@LARGE
@LARGE(range;n) finds the nth largest value in range.

Arguments

range is the name or address of a range that contains values.

n is any positive integer. If n is larger than the number of values in range, @LARGE returns ERR.

Examples
A range named SCORES contains these test scores: 87, 85, 90, 80, 82, 92, 79, 85, 95, 86.

@LARGE(SCORES;3) returns 90, the third-highest score.

Similar @functions
@SMALL finds the nth smallest value in a range. @MAX and @PUREMAX find the largest value in a
range. @MIN and @PUREMIN find the smallest value in a range.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@LEFT

@LEFT(text;n) returns the first n characters in text.

Arguments
text is text enclosed in " " (quotation marks), a formula that results in text, or the address or name of a
cell that contains a label or a formula that results in a label.

n can be a positive integer or 0. If n is 0, the result is an empty string. If n is greater than the length of
text, @RIGHT returns all of text.

Notes
@LEFT counts punctuation and spaces as characters.

@LEFT is useful for copying only part of a label into another cell, starting at the beginning of the label
(for example, for separating titles such as Dr. and Ms. from names).

In a macro, @LEFT can extract parts of labels the user enters to store them in a database, for subroutine
calls, or to alter the macro itself.

Use @LEFT with @FIND when you do not know the exact value for n, or when n may vary.

Examples
@LEFT(PHONE;3) = the area code for the telephone number in the cell PHONE.

@LEFT(A1;@FIND("*";A1;0)) = the first name in cell A1 (for example, Richard if cell A1 contains the
name Richard Smith). The * (asterisk) represents one space.

Similar @functions
@MID returns characters from within text. @RIGHT returns the last n characters in text.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@LENGTH

@LENGTH(text) counts the characters in text.

Arguments
text is text enclosed in " " (quotation marks), a formula that results in text, or the address or name of a
cell that contains a label or a formula that results in a label.

Notes
@LENGTH counts punctuation and spaces as characters.

Use @LENGTH with @TRIM to find the length of text without including leading, trailing, or consecutive
spaces.

@LENGTH is also useful in any application in which labels should be a certain length, such as ZIP codes
and purchase order numbers.

Examples
@LENGTH("fiscal") = 6.

@LENGTH(A5&G12) = the total number of characters in cells A5 and G12.

@LENGTH(@TRIM("      Mr.          Jones")) = 9.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@LN

@LN(x) calculates the natural logarithm (base e) of x.

Arguments
x is a value greater than 0.

Notes
A natural logarithm is one that uses the number e (approximately 2.718282) as a base.

Examples
@LN(2) = 0.693147

@LN(@EXP(1)) = 1, because @EXP(1) = 2.718282.

Similar @functions
@EXP is the inverse of @LN. @LOG calculates the common logarithm (base 10) of x.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@LOG

@LOG(x) calculates the common logarithm (base 10) of x .

Arguments
x is a value greater than 0.

Examples
10^(@LOG(8)/3) = 2, the cube root of 8.

@LOG(B3) = 0.60206, if cell B3 contains the value 4.

Similar @functions
@LN calculates the natural logarithm (base e) of a value.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@LOWER

@LOWER(text) converts all the letters in text to lowercase.

Arguments
text is text enclosed in " " (quotation marks), a formula that results in text, or the address or name of a
cell that contains a label or a formula that results in a label.

Notes
If you selected ASCII sort order during Install, capitalization affects the sort order of labels when you use
Range Sort or Query Sort; two otherwise identical labels may not appear together if their capitalization is
different.

Examples
@LOWER("Sales Forecast") = sales forecast.

Similar @functions
@UPPER converts all letters in text to uppercase. @PROPER converts the first letter of each word in
text to uppercase and converts the rest of the letters to lowercase.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@MAX
@PUREMAX
@MAX(list) finds the largest value in list.

@PUREMAX(list) finds the largest value in list, ignoring cells that contain labels.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
A range named TEST contains the following data: -5, -7, -9, -11, January.

@MAX(TEST) returns 0, the value of the label January, as the largest value in TEST.

@PUREMAX(TEST) ignores the label January and returns -5 as the largest value in TEST.

Similar @functions
@MIN and @PUREMIN find the smallest value in a list. @DMAX finds the largest value in the field of a
database table that meets criteria you specify. @LARGE returns the nth largest value in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@MEDIAN
@MEDIAN(list) returns the median value in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Notes
If list contains an odd number of values, @MEDIAN returns the middle value. If list contains an even
number of values, @MEDIAN returns the arithmetic average of the two middle values.

Examples
@MEDIAN(5;12;65;82;9) = 12

@MEDIAN(5;12;65;82;9;78) = 38.50

Similar @functions
@GEOMEAN calculates the geometric mean of the values in a list. @HARMEAN calculates the
harmonic mean of the values in a list. @AVG and @PUREAVG calculate the average of the values in a
list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@MID

@MID(text;start-number;n) copies n characters from text, beginning with the character at start-number.

Arguments
text is text enclosed in " " (quotation marks), a formula that results in text, or the address or name of a
cell that contains a label or a formula that results in a label.

start-number is an offset number. If start-number is larger than the length of text, the result of @MID is
an empty string.

n is any positive integer or 0. If n is 0, the result of @MID is an empty string. If n is larger than the length
of text, 1-2-3 returns all the characters from start-number to the end of text.

Notes
@MID counts punctuation and spaces as characters.

Use a large number for n if you do not know the length of text; 1-2-3 ignores the extra spaces and returns
all of text beginning with start-number.

To extract part of a label when you do not know its start-number, use @MID with @FIND.

@MID is useful in macros to store parts of labels the user enters, to create subroutine calls, or to alter
the macro itself.

Examples
@MID("Daily Account Balance";6;7) = Account.

Similar @functions
@LEFT returns the first n characters of text, and @RIGHT returns the last n characters in text.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@MIN
@PUREMIN

@MIN(list) finds the smallest value in list.

@PUREMIN(list) finds the smallest value in list, ignoring all cells that contain labels.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
A range named TEST contains the following entries: 5, 7, 9, 11, January.

@MIN(TEST) returns 0, the value of the label January, as the smallest value in TEST.

@PUREMIN(TEST) ignores the label January and returns 5 as the smallest value in TEST.

Similar @functions
@MAX and @PUREMAX find the largest value in list. @DMIN finds the smallest value in the field of a
database table that meets criteria you specify.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@MINUTE

@MINUTE(time-number) extracts the minutes, a value from 0 through 59, from time-number.

Arguments
time-number is a value from .000000 (midnight) through .999988 (11:59:59 PM). Usually, another time
@function supplies time-number.

Notes
The minutes portion is useful in calculations that involve only minutes, such as the time that has elapsed
since the start of an application.

Examples
@MINUTE(0.333) = 59 because 0.333 is the time number for 7:59:31.

@MINUTE(@TIME(11;15;45)) = 15 because 15 is the minutes argument for @TIME(11;15;45).

Similar @functions
@HOUR extracts the hour, and @SECOND extracts the seconds, from a time number.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@MIRR

@MIRR(range;finance-rate;reinvest-rate;[type]) calculates the modified internal rate of return (profit) for a
series of cash-flow values generated by an investment.

The internal rate of return is the percentage rate that equates the present value of an expected future
series of cash flows to the initial investment.

Arguments

range is the address or name of a range that contains the cash flows. 1-2-3 considers negative numbers
as cash outflows and positive numbers as cash inflows. range must contain at least one positive value
and one negative value.

Normally, the first cash-flow amount in the range is a negative number (a cash outflow) that represents
the investment. 1-2-3 assigns the value 0 to all blank cells and labels in range and includes them in the
calculation.

finance-rate is the interest rate paid on money used in cash flows.

reinvest-rate is the interest rate you receive on cash flows as you reinvest them.

finance-rate and reinvest-rate can be any values.

type specifies the timing of the cash flows. type is an integer from the following table:

type Cash flows occur

0 At the end of each period; default if you omit the argument

1 At the beginning of each period

Notes
Use @MIRR to determine the profitability of an investment. Combine @MIRR with other financial
@functions, such as @NPV, to assess an investment.

1-2-3 assumes the cash flows are received at regular, equal intervals.

Only Release 5 supports the optional type argument for @MIRR. If you save an @MIRR formula that
contains a type argument and then open the file in Release 4 or Release 4.01, the formula evaluates to
ERR.

Examples
You own an apartment building. Five and six years ago, you borrowed $100,000 at 9.5% annual interest
to purchase the building. The following list, stored in the range INCOME, contains your initial investments
and your subsequent rental income:

$-100,000
$-100,000
$      45,500
$      47,000
$      48,500
$      50,000
$      50,000

During these years, your reinvested profits earned 11% annually.

@MIRR(INCOME;0.095;0.11) = 7.96%

The rate of return is slightly less if you made the investments at the beginning of the year.

@MIRR(INCOME;0.095;0.11;1) = 7.70%

Similar @functions
@IRR calculates the internal rate of return.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@MOD
@MODULO
@MOD(x;y) and @MODULO(x;y) calculate the remainder (modulus) of x/y.

Arguments
x is a value. If x is 0, @MOD and @MODULO return 0.

y is a value other than 0.

Notes
The result of @MOD is x - y * @INT(x/y). The sign of the result (+ or -) is always the same as the sign of
x.

The result of @MODULO is x - y * @ROUNDDOWN(x/y). The sign of the result (+ or -) is always the
same as the sign of y.

Examples
@MOD(9;4) = 1

@MODULO(9;4) = 1

@MOD(-14;3) = -2

@MODULO(-14;3) = 1

Similar @functions
@QUOTIENT calculates the result of x/y, truncated to an integer.

See also

Help
@Functions
@INT
@ROUNDDOWN

User's Guide
Chapter 11, "Calculating with @Functions"

@MONTH

@MONTH(date-number) extracts the month, a value from 1 through 12, from date-number.

Arguments
date-number is a value from 1 (January 1; 1900) through 73050 (December 31; 2099).

Notes
You can use one of the other date @functions to supply the value for date-number.

Examples
@MONTH(@DATE(91;3;27)) = 3 because 3 is the month argument for @DATE(91;3;27).

@MONTH(20181) = 4 because the date number 20181 is the date 02-Apr-55.

@MONTH(@NOW) = the current month.

Similar @functions
@DAY calculates the day, using a date number. @YEAR calculates the year, using a date number.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@N

@N(range) returns the entry in the first cell of range as a value. If the cell contains a label, @N returns
the value 0.

Arguments
range is a cell or range address, or a range name.

Notes
@N is useful with any @function or formula when a cell may contain a label and the entry must be a
value. Use @N to prevent formulas from resulting in ERR.

@N is also useful in macros to check user entries.

Examples
+100+@N(B5..F5) = 885, if cell B5 contains the value 785.

@N(A5)+@N(B5) returns 785, if A5 contains a label and B5 contains the value 785.

Similar @Functions
@S returns the entry in the first cell of a range as a label. @ISNUMBER can determine whether a cell
contains a value.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@NA

@NA returns the value NA (not available).

Notes
@NA is useful when you are building a worksheet that will contain data that you have not yet determined.
Use @NA to flag cells where you will enter the data; formulas that refer to those cells result in the value
NA until you supply the correct data.

@NA is also useful to determine which formulas depend on a particular cell.

Examples
@IF(@CELL("type";B14)="b",@NA,B14) returns the value NA when B14 is blank.

Similar @Functions
@ERR returns the value ERR. @ISNA tests for the value NA.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@NOW

@NOW calculates the number that corresponds to the current date and time on your computer's clock.
This includes both a date number (integer portion) and a time number (decimal portion).

Notes
Use @NOW with F2 (EDIT) and F9 (CALC) to create a fixed record of a date and time for time-stamping
worksheets or in calculations of elapsed time.

Format the value of @NOW as any of the Date or Time formats. If you format @NOW as a date, 1-2-3
displays only the date (integer) portion of the date and time number. If you format @NOW as time, 1-2-3
displays only the time (decimal) portion of the date and time number. In both cases, 1-2-3 stores and
calculates with the entire date and time number.

1-2-3 recalculates @NOW each time you recalculate your work. If you use Tools User Setup
Recalculation Automatic, 1-2-3 recalculates @NOW whenever it recalculates another value.

Examples
@NOW = 31050.5 at noon on January 3, 1985.

@NOW = 33418.395 at 9:28 A.M. on June 29, 1991.

Similar @Functions
@TODAY calculates the date number that corresponds to the current date.

See also

Help
@Functions
Style Number Format

User's Guide
Chapter 11, "Calculating with @Functions"

@NPV

@NPV(interest;range;[type]) calculates the net present value of a series of future cash-flow values
(range), discounted at a fixed periodic interest rate.

Arguments
interest is a decimal or percentage value greater than -1.

range is the range that contains the cash flows.

type specifies the timing of the cash flows. type is an integer from the following table:

type Cash flows occur

0 At the end of each period; default if you omit the argument

1 At the beginning of each period

Notes
Use @NPV to evaluate an investment or to compare one investment with others. @NPV calculates the
initial investment necessary to achieve a certain cash outflow at a certain rate.

@NPV returns ERR if range contains more than one row or more than one column. For example, @NPV
returns ERR if range is A1..D25, but does not return ERR if range is A1..D1 (a single row) or A1..A25 (a
single column).

Only Release 5 supports the optional type argument for @NPV. If you save an @NPV formula that
contains a type argument and then open the file in a previous release of 1-2-3, the formula evaluates to
ERR.

Examples
This example uses @NPV to discount to today's dollars a series of irregular distributions invested at
11.5% annual percentage rate.

range is a list of cash flows, one a month for 12 months, in a range named DISTRIBUTIONS:

$ 0.00
$ 0.00
$      2,500.00
$      2,500.00
$      3,000.00
$      5,000.00
$      6,000.00
$      9,000.00
$      3,000.00
$      2,500.00
$ 0.00
$    7,500.00

To provide @NPV with the correct number of periods, months in which no distribution is made must be
included in range. The distributions are monthly, so @NPV requires interest (the discount rate), in a cell
named DISCOUNT, to be expressed as a monthly percentage:

0.115/12 = 0.96

@NPV(DISCOUNT;DISTRIBUTIONS) = $38,084.13

The result is different if the cash outflows occured at the beginning of each period.

@NPV(DISCOUNT;DISTRIBUTIONS;1) = $38,449.10

Similar @Functions
@PV calculates the present value of an annuity based on a series of equal payments. @FV calculates
the future value of an annuity.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ODD
@ODD(x) rounds the value x away from 0 to the nearest odd integer.

Arguments
x is any value. If x is an odd integer, @ODD returns x.

Examples
@ODD(3.25) = 5

@ODD(3) = 3

@ODD(-3.25) = -5

Similar @functions
@EVEN rounds a value away from 0 to the nearest even integer. @ROUND, @ROUNDDOWN, and
@ROUNDUP round a value to a specified number of decimal places. @ROUNDM rounds a value to a
specified multiple. @INT truncates a value, discarding the decimal portion. @TRUNC truncates a value
to a specified decimal place.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PERCENTILE
@PERCENTILE(x;range) calculates the xth sample percentile among the values in range.

Arguments
x is the percentile you want to find. x is a value from 0 to 1.

range is the name or address of the range that contains values.

1-2-3 assigns the value 0 to all labels in range and includes them in the @PERCENTILE calculation. 1-2-
3 ignores blank cells in range.

Examples
A range named SCORES contains these test scores: 87, 85, 90, 80, 82, 92, 79, 85, 95, 86. You want to
find out the score at the 90th percentile.

@PERCENTILE(0.9;SCORES) = 92.3

Similar @functions
@PRANK finds the percentile in a range associated with a value.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@PERMUT
@PERMUT(n;r) calculates the number of ordered sequences (permutations) of r objects that can be
selected from a total of n objects.

Arguments
n is any positive integer or 0.

r is any positive integer or 0. r cannot be greater than n.

If n and r are not integers, 1-2-3 truncates them to integers.

Examples
Tests scheduled for 9:00, 10:00, and 11:00 AM will be monitored by three of the five department
members. The following formula calculates the number of possible ways of assigning monitors.

@PERMUT(5;3) = 60

Similar @functions
@COMBIN calculates the number of ways that r can be selected from n, without regard for order.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@PI
@PI produces the value p (calculated at 3.14159265358979324). The value p is the ratio of the
circumference of a circle to its diameter.

Examples
@PI = 3.1415926536

@PI*4^2 = 50.26548, the area of a circle with a radius of 4.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PMT
@PAYMT
@PMTC

@PMT(principal;interest;term) calculates the payment on a loan (principal) at a given interest rate for a
specified number of payment periods (term).

@PAYMT(principal;interest;term;[type];[future-value]) calculates the payment on a loan (principal) at a
given interest rate for a specified number of payment periods (term). @PAYMT calculates for either an
ordinary annuity or an annuity due, depending on the value you specify for type.

@PMTC(principal;interest;term) is a special form of @PMT that supports Canadian mortgage
conventions.

Arguments
principal and term are values.

interest is a decimal or percentage value greater than -1.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

future-value is an optional argument that specifies the future value of the series of payments. future-
value can be any value. If you omit the future-value argument, 1-2-3 uses 0.

You cannot use an optional argument without using the ones that precede it.

Notes

For @PMT and @PAYMT, the period used to calculate interest must be the same period used for term;
for example, if you are calculating a monthly payment, enter the interest and term in monthly increments.
Usually, this means you must divide the interest rate by 12 and multiply the number of years in term by
12.

For @PMTC, the period used to calculate interest is years while the period for term is months.

Examples
You are considering taking out an $8,000 loan for 3 years at an annual interest rate of 10.5%,
compounded monthly. Payments are due on the last day of each month. You want to determine your
monthly payment:

@PMT(8000;0.105/12;36) = $260.02

If payments are due on the first day of each month:

@PAYMT(8000;0.105/12;36;1;-2500) = $198.90

If you calculate the monthly payment using @PMTC:

@PMTC(8000;0.105;36) = $259.18

Similar @functions
@IPAYMT calculates the cumulative interest portion of the periodic payment for an investment.
@PPAYMT calculates the principal portion of the periodic payment for an investment. @TERM calculates

the number of payment periods of an investment.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@POISSON
@POISSON(x;mean;[cumulative]) calculates the Poisson distribution.

Arguments
x is the number of observed events and is a positive integer or 0.

mean is the expected number of events and is a positive integer.

If x and mean are not integers, 1-2-3 truncates them to integers.

cumulative is an optional argument that specifies how 1-2-3 calculates @POISSON.

cumulative 1-2-3 calculates

0 The probability of exactly x events; default if you omit the argument

1 The probability of, at most, x events

Notes
@POISSON approximates the Poisson distribution to within ± 3*10^-7.

@POISSON is useful for predicting the number of events that occur during a specified period of time, for
example, the number of visitors who pass through the gates of an amusement park in one hour.

Examples
You expect six cars to pass through a toll booth in one hour. To determine the probability that at most four
cars will pass through the toll booth in one hour:

@POISSON(4;6;1) = 0.285057, or 28.51%

To determine the probability that exactly four cars will pass through the toll booth in one hour:

@POISSON(4;6) = 0.133853, or 13.39%

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PRANK
@PRANK(x;range;[places]) finds the percentile of x among the values in range.

Arguments
x is any value.

range is the name or address of a range that contains values.

places is an optional argument that specifies the number of decimal places to round the result of
@PRANK. places is a value from 0 to 100. If you omit the places argument, 1-2-3 uses 2.

Notes
If x is not a value in range, 1-2-3 assigns the 0th percentile position to the lowest value in range and
assigns the 100th percentile position to the highest value in range and interpolates.

Examples
A range named SCORES contains these test scores: 87, 85, 90, 80, 82, 92, 79, 85, 95, 86. You want to
determine the percentile for a score of 90.

@PRANK(90;SCORES) = 0.78, or 78%.

Similar @functions
@PERCENTILE calculates a sample percentile for the values in a list of values.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PRICE
@PRICE(settlement;maturity;coupon;yield;[redemption];[frequency];[basis]) calculates the price per $100
face value for securities that pay periodic interest.

Arguments
settlement is the security's settlement date. settlement is a date number.

maturity is the security's maturity date. maturity is a date number. If maturity is less than or equal to
settlement, @PRICE returns ERR.

coupon is the security's annual coupon rate. coupon is any positive value or 0.

yield is the annual yield. yield is any positive value.

redemption is an optional argument that specifies the security's redemption value per $100 face value.
redemption is any positive value or 0. If you omit the redemption argument, 1-2-3 uses 100.

frequency is an optional argument that specifies the number of coupon payments per year. frequency is a
value from the following table:

frequency Frequency of coupon payments

1 Annual

2 Semiannual; default if you omit the argument

4 Quarterly

12 Monthly

basis is an optional argument that specifies the type of day-count basis to use. basis is a value from the
following table:

basis Day count basis

0 30/360; default if you omit the argument

1 Actual/actual

2 Actual/360

3 Actual/365

You cannot use an optional argument without using the ones that precede it.

Examples
A bond has a July 1, 1993, settlement date and a December 1, 1998, maturity date. The semiannual
coupon rate is 5.50% and the annual yield is 5.61%. The bond has a 30/360 day-count basis.

To determine the bond's price:

@PRICE(@DATE(93;7;1),@DATE(98;12;1),0.055,0.0561,100,2,0) = $99.49

Similar @functions
@ACCRUED calculates the accrued interest for securities that pay periodic interest. @YIELD calculates
the yield for securities that pay periodic interest. @DURATION calculates the annual duration and
@MDURATION calculates the annual modified duration for securities that pay periodic interest.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PRODUCT
@PRODUCT(list) multiplies the values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
@PRODUCT(2; 4; 6; 8) = 384

Similar @functions
@FACT calculates the factorial of a value. @SUM adds the values in a list. @SUMPRODUCT calculates
the sum of the products of corresponding values in multiple ranges.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@PROPER

@PROPER(text) capitalizes the first letter of each word in text and converts the remaining letters to
lowercase.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label.

Notes
@PROPER is useful when you combine data from several sources and want labels to be consistent
throughout the file. Use @PROPER in a database to ensure consistent capitalization of names before
sorting the names or before using the names to create mailing labels.

If you selected ASCII sort order in Install, capitalization affects the sort order of labels when you use
Range Sort or Query Sort; two otherwise identical labels may not appear together if their capitalization is
different.

Examples
@PROPER(A7&"; "&G7) returns Morton Smith; Athens, Georgia if A7 contains the label MORTON
SMITH, and G7 contains the label athens, georgia. Note that the ; (semicolon) is in quotation marks and
is therefore treated as a literal text instead of an argument separator.

Similar @Functions
@LOWER converts all letters in text to lowercase. @UPPER converts all letters in text to uppercase.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@PV
@PVAL

@PV(payments;interest;term) calculates the present value of an investment, based on a series of equal
payments, discounted at a periodic interest rate over the number of periods in term.

@PVAL(payments;interest;term;[type];[future-value]) calculates the present value of an investment with a
specified future-value, based on a series of equal payments, discounted at a periodic interest rate over
the number of periods in term. @PVAL calculates for either an ordinary annuity or an annuity due,
depending on the value you specify for type.

Arguments
payments and term are values.

interest is a decimal or percentage value greater than -1.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

future-value is an optional argument that specifies the future value of the series of payments. future-
value can be any value. If you omit the future-value argument, 1-2-3 uses 0.

You cannot use an optional argument without using the ones that precede it.

Notes

The period used to calculate interest must be the same period used for term; for example, if you are
calculating a monthly payment, enter the interest and term in monthly increments. Usually, this means
you must divide the interest rate and the number of years in term by 12.

Use @PV to evaluate an investment or to compare one investment with others. @PV is useful in
comparing different types of investments, for example, comparing a single-payment investment from a
pension fund with a series of periodic payments. Use @PV with @PMT to create an amortization table.

@PV complements @PMT:@PV tells you how large a loan you can take out, given the constraint of the
size of the monthly payment you can afford. Conversely, @PMT tells you how large your monthly
payment will be, given the constraint of the size of the loan you want to take out.

Examples
You won $1,000,000. You can receive either 20 annual payments of $50,000 at the end of each year or a
single payment of $400,000 instead of the $1,000,000 annuity. You want to find out which option is worth
more in today's dollars.

If you were to accept the annual payments of $50,000, you assume that you would invest the money at a
rate of 8%, compounded annually.

@PV(50000;0.08;20) returns $490,907, which tells you that the $1,000,000 paid over 20 years is worth
$490,907 in today's dollars.

If you receive the payments at the beginning of each year:

@PVAL(50000;0.08;20;1) = $530,180

Similar @Functions

@FV and @FVAL calculate the future value of an investment based on a series of equal payments.
@NPV computes the net present value of an investment, discounting future value to present value.
@PMT and @PAYMT calculate the payment on a loan at a given interest rate for a specified number of
payment periods.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@QUOTIENT
@QUOTIENT(x;y) calculates the result of x/y, truncated to an integer.

Arguments
x is a value. If x is 0, @QUOTIENT returns 0.

y is a value other than 0.

Examples
@QUOTIENT(7;3) = 2

@QUOTIENT(12.25;3.5) = 3

@QUOTIENT(-7;3) = -2

Similar @functions
@MOD calculates the remainder (modulus) of x/y.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@RADTODEG
@RADTODEG(radians) converts radians to degrees.

Arguments
radians is a value.

Examples
@RADTODEG(0.523599) = 30 degrees

Similar @Functions
@DEGTORAD converts degrees to radians.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@RAND

@RAND generates a random value between 0 and 1. 1-2-3 calculates @RAND to 17 decimal places.
Each time 1-2-3 recalculates your work, @RAND generates a new random value.

Notes
To convert the value generated by @RAND to a fixed value, press F2 (EDIT) and then F9 (CALC).

To generate random values in different numeric intervals, multiply @RAND by the size of the interval.
Use @ROUND or @INT with the result to create random whole numbers.

Examples
@RAND = 0.419501, or any value between 0 and 1.

@RAND*10 = 6.933674, or any value between 0 and 10.

@INT(@RAND*50)+1 = 49, or any integer between 1 and 50.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@RANK
@RANK(item;range;[order]) calculates the relative size or position of a value in a range relative to other
values in the range.

Arguments
item is the value whose rank you want to determine.

range is the address or name of a range that contains values. range must include item.

order is an optional argument that specifies how to rank item. order is one of the following values:

order 1-2-3 treats values in range as if they are sorted in

0 Descending order (9 to 1) before ranking item; default if you omit the argument

1 Ascending order (1 to 9) before ranking item

Notes
1-2-3 assigns duplicate numbers in range the same rank. Duplicate numbers affect the rank of
subsequent numbers in range. For example, for the values 2, 4, 6, 8, 8, 10, 12, the number 8 appears
twice and has an ascending rank of 4 The number 10 has an ascending rank of 6; none of the numbers
has a rank of 5.

Examples
The range named SALES (A1..A5) contains the following values:

$5,000
$4,900
$5,150
$4,800
$4,900

@RANK(4900;SALES) = 3; $4,900 is the third highest value in the range SALES. No value would have
the rank of 4.

@RANK(4900;SALES;1) = 2; because SALES is sorted in ascending order, $4,900 is the second lowest
value in the range SALES. No value would have the rank of 3.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@RATE

@RATE(future-value;present-value;term) calculates the periodic interest rate necessary for an
investment (present-value) to grow to a future-value over the number of compounding periods in term.

Arguments

future-value, present-value, and term are values.

Examples
You invested $10,000 in a bond that matures in five years and has a maturity value of $18,000. Interest is
compounded monthly. You want to determine the periodic interest rate for this investment.

@RATE(18000;10000;60) returns 0.984%, the periodic (monthly) interest rate. To determine the annual
interest rate, use the formula ((1+@RATE(18000;10000;60))^12)-1. This yields an annual interest rate of
12.47%.

Similar @functions
@IRATE calculates the periodic interest rate necessary for an annuity to grow to a future value.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@REFCONVERT
@REFCONVERT(reference) converts the 1-2-3 column or worksheet letters A through IV to numbers
from 1 through 256, and numbers from 1 through 256 to their corresponding column or worksheet letters.

Arguments
reference specifies a 1-2-3 column or worksheet and can be either a letter from A through IV entered as
text, or an integer from 1 through 256.

@REFCONVERT is not case-sensitive; you can enter reference as either uppercase or lowercase
letters.

Examples
@REFCONVERT(10) = J

@REFCONVERT("J") = 10

Similar @functions
@COLS counts the columns in a range and @SHEETS counts the worksheets in a range. @COORD
creates a cell address from values you specify.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@REGRESSION
@REGRESSION(x-range;y-range;attribute;[compute]) performs multiple linear regression and returns
the specified statistic.

Arguments
x-range contains the independent variables. x-range is the name or address of a range that can contain
up to 75 columns and 8,192 rows.

y-range contains the set of values for the dependent variable. y-range is the name or address of a single-
column range with the same number of rows as x-range.

attribute specifies which regression output value to calculate. attribute is one of the following values:

attribute 1-2-3 calculates

1 Constant

2 Standard error of Y estimate

3 R squared

4 Number of observations

5 Degrees of freedom

101 to175 X coefficient (slope) for the independent variable specified by attribute

201 to 275 Standard error of coefficient for the independent variable specified by attribute

For the last two attributes, 1-2-3 numbers the independent variables in x-range, starting with the number
1, from top to bottom in a column and from left to right.

For example, if x-range is B2..D7, use the attribute 201 to find the standard error of coefficient for the
independent variable in column B; use the attribute 102 to find the X-coefficient for the independent
variable in column C.

compute is an optional argument that specifies the Y intercept.

compute 1-2-3

0 Uses 0 as the Y intercept

1 Calculates the Y intercept; default if you omit the argument

Notes
For the same data, @REGRESSION and Range Analyze Regression return the same result.

Examples
@REGRESSION

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @REGRESSION
You run an ice cream stand at a tourist location, and you want to predict roughly how many quarts of ice
cream you'll sell in the next day. You think your sales depend on three key factors: the number of hours
of sunshine, the midday temperature, and the number of buses in a nearby parking lot. You want to
determine the correlation between these factors and your sales. You collect data for a six-day period and
record your observations in a worksheet.
A ---------- A --------- B ---- C ------- D ----
1 Ice Cream Sales Sun Temp Buses in Lot
2 250 3 84 10
3 545 5 91 7
4 550 5 89 8
5 450 6 85 10
6 605 6 90 11
7 615 7 88 9

@REGRESSION(B2..D7;A2..A7;3) = 0.977225

Because R Squared is very close to 1, you know that a strong correlation exists between ice cream
sales, the weather, and the number of buses.

@REPEAT

@REPEAT(text;n) duplicates text the number of times specified by n.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label.

n can be any positive integer.

Notes
@REPEAT duplicates the text as many times as you specify; it is not limited by the current column width.
This differs from using the repeating label-prefix character \ (backslash), which repeats a label only as
many times as will fill the current column.

Examples
@REPEAT("Hello ";3) returns Hello Hello Hello.

@REPEAT("-";10) returns ----------.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@REPLACE

@REPLACE(original-text;start-number;n;new-text) replaces n characters in original-text with new-text,
beginning at start-number.

Arguments
original-text and new-text can be text enclosed in " " (quotation marks), formulas that result in text, or the
addresses or names of cells that contain labels or formulas that result in labels.

start-number is the offset number of a character in original-text. It can be any positive value or 0. If start-
number is greater than the length of original-text, @REPLACE appends new-text to original-text.

n can be any positive integer or 0. If n is 0, @REPLACE inserts new-text at start-number without deleting
any characters in original-text.

Notes
@REPLACE counts punctuation and spaces as characters. If you use @REPLACE to append or insert
text, remember to include the necessary spaces.

Use @FIND with @REPLACE to search for and replace a label or to calculate an unknown start-number.

@REPLACE is useful when you need to replace one set of characters with another, for example, to
change the area code in a database of telephone numbers.

Examples
@REPLACE(CELL;@FIND("-";CELL;0),1,"/") copies the label in Cell, 4-24, as 4/24.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@RIGHT

@RIGHT(text;n) returns the last n characters in text.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label.

n can be a positive integer or 0. If n is 0, the result is an empty string. If n is greater than the length of
text, @RIGHT returns all of text.

Notes
@RIGHT counts punctuation and spaces as characters.

@RIGHT is useful for copying only part of a label into another cell (for example, for extracting last names
from labels that include both first and last names).

In a macro, @RIGHT can extract parts of labels the user enters to store them in a database, for
subroutine calls, or to alter the macro itself.

Use @RIGHT with @FIND when you do not know the exact value for n, or when n may vary.

Examples
@RIGHT(B3;5) = Sales, if B3 contains the label January Sales.

Similar @Functions
@LEFT returns the first n characters in text. @MID returns characters from within text.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ROUND
@ROUNDDOWN
@ROUNDUP

@ROUND(x;n) rounds the value x to the nearest multiple of the power of 10 specified by n.

@ROUNDDOWN(x;[n];[direction]) rounds the value x down to the nearest multiple of the power of 10
specified by n.

@ROUNDUP(x;[n];[direction]) rounds the value x up to the nearest multiple of the power of 10 specified
by n.

Arguments
x is a value.

n is a value from -100 through 100. For @ROUNDDOWN and @ROUNDUP, if you omit the n argument,
1-2-3 uses 0.

If n is @ROUND

Positive Affects the decimal portion of the number (moving right from the decimal point). For
example, if n is 2, 1-2-3 rounds x to the nearest hundredth.

Negative Affects the integer portion of the number (moving left from the decimal point). For
example, if n is -2, 1-2-3 rounds x to the nearest hundred.

0 Rounds to the nearest integer.

direction is an optional argument that specifies how to round negative values. direction can be 0 or 1.

· For @ROUNDUP: If direction is 0, 1-2-3 rounds negative values up; if direction is 1, 1-2-3 rounds
negative values down.

· For @ROUNDDOWN: If direction is 0, 1-2-3 rounds negative values down; if direction is 1, 1-2-3
rounds negative values up.

If you omit direction, 1-2-3 uses 0. If x is positive, direction has no effect.

Notes

Select Fixed from Style Number Format or Style Worksheet Defaults Number Format to display values
with a specified number of decimal places if you want 1-2-3 to calculate the values to their full precision;
do not use @ROUND.

Examples
@ROUND(134.578;2) = 134.58
@ROUND(134.578;0) = 135
@ROUND(134.578;-2) = 100

@ROUNDDOWN(134.578;2) = 134.57
@ROUNDDOWN(134.578;0) = 134
@ROUNDDOWN(134.578;-2) = 100

@ROUNDUP(134.578;2) = 134.58
@ROUNDUP(134.578;0) = 135
@ROUNDUP(134.578;-2) = 200

Similar @Functions
@ROUNDM rounds a value to a specified multiple. @EVEN rounds a value away from 0 to the nearest

even integer. @ODD rounds a value away from 0 to the nearest odd integer. @INT truncates a value,
discarding the decimal portion. @TRUNC truncates a value to a specified decimal place.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ROUNDM
@ROUNDM(x;multiple;[direction]) rounds the value x to the nearest multiple.

Arguments
x and multiple are any values that have the same sign.

direction is an optional argument that specifies whether to round x up or down.

direction 1-2-3 rounds x

1 Up

0 To the nearest multiple; default if you omit the argument

-1 Down

Examples
@ROUNDM(25.37;0.05,1) = 25.40

@ROUNDM(25.37,.05,-1) = 25.35

Similar @functions
@INT truncates a value, discarding the decimal portion. @ROUND, @ROUNDDOWN, and
@ROUNDUP round a value to a specified number of decimal places. @EVEN rounds a value away from
0 to the nearest even integer. @ODD rounds a value away from 0 to the nearest odd integer. @TRUNC
truncates a value to a specified decimal place.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ROWS

@ROWS(range) counts the number of rows in range.

Arguments
range is a range address or range name.

Notes
Use @ROWS with {FOR} in a macro that repeats the same action on a series of rows to determine
when the macro should stop.

Examples
@ROWS(A3..B7) = 5 (rows 3 through 7).

@ROWS(SCORES) = 43, if SCORES is the range B3..B45.

Similar @Functions
@COLS counts the columns, and @SHEETS counts the worksheets, in a range.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@S

@S(range) returns the entry in the first cell in range as a label.

Arguments
range is a cell address or range name.

Notes
@S is useful with any text @function or text formula when a cell may contain a value and the entry must
be a label (for example, a cell that contains a ZIP code). Use @S to prevent text formulas from resulting
in ERR, for example, +A1&A2 returns ERR if either cell contains a value.

Examples
In the macro instructions

{IF @S(B6)=""}{BEEP}{INDICATE "ENTRY MUST BE A LABEL"}

@S returns an empty string if B6 contains a value or is a blank cell; 123 then beeps and changes the
mode indicator to ENTRY MUST BE A LABEL.

Similar @functions
@N returns the entry in the first cell of range as a value. @ISSTRING determines whether a cell contains
a label.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SEC

@SEC(x) calculates the secant of angle x. The secant is the ratio of the hypotenuse to the side adjacent
to an acute angle of a right triangle. Secant is the reciprocal of cosine.

Arguments
x is an angle measured in radians. x is any value from -2^32*p through 2^32*p.

Examples

@SEC(@DEGTORAD(30)) = 1.154701, the secant of a 30-degree angle.

Similar @functions
@ASEC calculates the arc secant of a value. @ASECH calculates the arc hyperbolic secant of a value.
@COS calculates the cosine of an angle. @SECH calculates the hyperbolic secant of a value.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SECH

@SECH(x) calculates the hyperbolic secant of angle x. The hyperbolic secant is the reciprocal of the
hyperbolic cosine. The result of @SECH is a value greater than 0 or less than or equal to 1.

Arguments
x is a value from approximately -1135.571 to approximately 1135.571.

Examples

@SECH(@DEGTORAD(30)) = 0.87701

Similar @functions
@ASECH calculates the arc hyperbolic secant of a value. @SEC calculates the secant of a value.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SECOND

@SECOND(time-number) extracts the seconds, an integer from 0 through 59, from time-number.

Arguments
time-number is a value from .000000 (midnight) through .999988 (11:59:59 PM).

Examples
@SECOND(0.333) = 31

@SECOND(@TIME(11;15;45)) = 45, because 45 is the seconds argument for @TIME(11;15;45).

Similar @functions
@HOUR extracts the hour, and @MINUTE extracts the minutes, from a time number.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SERIESSUM
@SERIESSUM(x;n;m;coefficients) calculates the sum of a power series.

Arguments
x is the power series' input value.

n is the initial power to which to raise x.

m is the increment by which to increase n for each term in the series.

x, n, and m are values.

coefficients is a range that contains the coefficients by which 123 multiplies each successive power of x.
The number of cells in coefficients determines the number of terms in the series. For example, if
coefficients contains ten cells, the power series contains ten terms.

Examples
The range DATA contains these coefficients: 0.2, 0.7, 1.3.

@SERIESSUM(3.5;2;1;DATA) = 227.5438

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SHEETS

@SHEETS(range) counts the number of worksheets in range.

Arguments
range is a range address or range name.

Notes
Use @SHEETS with {FOR} in a macro that repeats the same action in a series of worksheets to
determine when the macro should stop.

Examples
@SHEETS(Q_2) = 4 if Q_2 is the range B:B3..E:C45 (worksheets B; C; D; and E).

Similar @functions
@COLS counts the columns, and @ROWS counts the rows, in a range. @REFCONVERT converts the
123 column or worksheet letters A through IV to numbers from 1 through 256.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SIGN
@SIGN(x) returns 1 if x is a positive value, 0 if x is 0, and -1 if x is a negative value.

Arguments
x is any value.

Examples
@SIGN(15) = 1

@SIGN(15*0) = 0

@SIGN(-15) = -1

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SIN

@SIN(x) calculates the sine of angle x. The sine is the ratio of the side opposite an acute angle of a right
triangle to the hypotenuse.

Arguments
x is an angle measured in radians. x can be any value from -2^32*p through 2^32*p.

Examples
@SIN(@DEGTORAD(30)) = 0.5, the sine of a 30-degree angle.

Similar @functions
@ASIN calculates the arc sine of a value. @SINH calculates the hyperbolic sine of an angle.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SINH

@SINH(x) calculates the hyperbolic sine of angle x.

Arguments
x is a value from approximately -1135.571 to approximately 1135.571.

Examples
@SINH(@DEGTORAD(30)) = 0.547853

Similar @functions
@ASINH calculates the arc hyperbolic sine of a value. @SIN calculates the sine of an angle.

See also

Help
@DEGTORAD to convert degrees to radians
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SKEWNESS
@SKEWNESS(range;[type]) calculates the skewness of the values in range.

Arguments
range is the name or address of a range that contains values. If range contains fewer than three values,
@SKEWNESS returns ERR.

type is an optional argument that specifies whether to calculate the population or sample skewness.

type 1-2-3 calculates

0 Population skewness; default if you omit the argument

1 Sample skewness

Notes
Skewness measures the symmetry of a distribution around its mean. Positive skewness indicates a
drawn-out tail to the left; negative skewness indicates a drawn-out tail to the right.

Examples
The range DATA contains these values: 2, 5, 6, 9, 1, 2, 4.

@SKEWNESS(DATA) = 0.584816

Similar @functions
@KURTOSIS calculates the kurtosis of the values in a list. @STD and @PURESTD calculate population
standard deviation. @VAR and @PUREVAR calculate population variance.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SLN

@SLN(cost;salvage;life) calculates the straight-line depreciation allowance of an asset with an initial
value of cost, an expected useful life, and a final value of salvage, for one period.

Arguments
cost is the amount paid for the asset. cost can be any value.

salvage is the value of the asset at the end of its life. salvage can be any value.

life is the number of periods the asset takes to depreciate to its salvage value. life can be any value
except 0.

Notes
Straight-line depreciation divides the depreciable cost (the actual cost minus the salvage value) equally
into each period of the useful life of the asset. The useful life is the number of periods (typically years)
over which the asset is depreciated.

Examples
You have an office machine that cost $10,000. The useful life of this machine is 10 years, and the
salvage value in 10 years will be $1,200. You want to calculate yearly depreciation expense, using the
straight-line method.

@SLN(10000;1200;10) = $880

Similar @functions
@DB calculates depreciation using the declining balance method. @DDB calculates depreciation using
the double-declining balance method, @VDB calculates depreciation using the variable-rate declining
balance method, and @SYD calculates depreciation using the sum-of-the-years'-digits method.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SMALL
@SMALL(range;n) finds the nth smallest value in range.

Arguments

range is the name or address of a range that contains values.

n is any positive integer. If n is larger than the number of values in range, @SMALL returns NA.

Examples
A range named SCORES contains these test scores: 87, 85, 90, 80, 82, 92, 79, 85, 95, 86.

@SMALL(SCORES;3) returns 82, the third-lowest score.

Similar @functions
@LARGE finds the nth largest value in a range.    @MAX and @PUREMAX find the largest value in a
range. @MIN and @PUREMIN find the smallest value in a range.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SOLVER

@SOLVER(attribute) returns a value that gives information about the status of Solver.

Arguments
attribute is any of the words from the table below, as text.

attribute Returns

consistent 1 if all constraints are satisfied

2 if at least one constraint is not satisfied

ERR if Solver is not active or there is no answer in the worksheet

done 1 if Solver has finished solving

2 if Solver is currently solving

3 if Solver is active, but hasn't begun solving

ERR if Solver is not active

moreanswers 1 if Solver has found all the answers

2 if Solver might be able to find more answers

ERR if Solver is not active

needguess 1 if Solver needs no guesses to find an answer

2 if Solver needs guesses to find an answer

ERR if Solver is not active or there is no answer in the worksheet

numanswers n, where n is the number of answers or attempts Solver found

ERR if Solver is not active or has not solved the problem yet

optimal 1 for the optimal answer

2 for the best answer found

3 if the problem is unbounded

4 if no optimization requested or no answer found

ERR if Solver is not active

progress n, where n is the percentage of solving completed

ERR if Solver is not active or solving has not begun

result 1 if Solver found one or more answers

2 if no answers found but representative attempts are available

ERR if Solver is not active or has not solved the problem yet

Notes
@SOLVER is not recalculated whenever 1-2-3 performs a recalculation. Use {RECALC} or
{RECALCCOL} to recalculate cells containing @SOLVER.

Examples
The following lines are an excerpt from a longer macro that runs Solver. The macro uses @SOLVER to
determine if Solver has found all answers.

If it has found all answers, the macro enters the first answer in the worksheet and ends processing. If it
hasn't found all answers, the macro presses the Solve button to continue solving and then repeats {IF} to
see if more answers can be found.

The loop continues until Solver finishes finding all answers. When Solver has found all answers,
subroutine {A} puts the first answer in the worksheet, and {RETURN} ends the macro.
CHKSLV {IF @SOLVER("moreanswers")=1}{A}{RETURN}

{SOLVER-ANSWER "solve"}
{BRANCH CHKSLV}

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SQRT

@SQRT(x) returns the positive square root of x.

Arguments
x is a positive value.

Examples
@SQRT(B3) = 10, if B3 contains the value 100.

@SQRT(-2) = ERR, because x is negative.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SQRTPI
@SQRTPI(x) calculates the square root of x*p.

Arguments
x is any positive value or 0.

Examples
@SQRTPI(0.5) = 1.253314

@SQRTPI(2) = 2.506628

Similar @functions
@SQRT calculates the positive square root of a value. @PI produces the value p.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@STD
@STDS
@PURESTD
@PURESTDS

@STD(list) calculates the population standard deviation of the values in list.

@STDS(list) calculates the sample standard deviation of the values in list.

@PURESTD(list) calculates the population standard deviation of the values in list, ignoring cells that
contain labels.

@PURESTDS(list) calculates the sample standard deviation of the values in list, ignoring cells that
contain labels.

Notes
@STD and @PURESTD use the n, or population, method to calculate standard deviation of population
data. The n method assumes that the selected values are the entire population. If the values are only a
sample of the population, the standard deviation is biased because of errors introduced in taking the
sample.

@STDS and @PURESTDS use the n-1, or sample, method to calculate standard deviation of sample
population data. The n-1 method makes the standard deviation slightly larger than the n method to
compensate for errors in the sample. A larger standard deviation is unbiased by sampling errors, and
thus tends to be more accurate.

Standard deviation is the square root of the variance of all individual values from the mean.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and range
addresses or range names that contain numbers or formulas. Separate elements of list with argument
separators.

Examples
@STD and @STDS

Similar @functions
@DSTD and @DSTDS calculate the standard deviation of the values in a field of a database table.
@VAR and @PUREVAR calculate the population variance of values in a list. @VARS and @PUREVARS
calculate the sample variance of values in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @STD and @STDS
This table lists the heights and weights of ten randomly selected test subjects. You want to determine the
standard deviation of their heights.

@STD(A2..A11) = 5.793483

Assume the subjects represent a randomly selected sample of a larger group of test subjects.

@STDS(A2..A11) = 6.106868
A --------- A --------- B --
1 HEIGHT (cm) WEIGHT (kg)
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@STRING

@STRING(x;n) converts the value x to a label using the format specified by n.

Arguments
x is a value.

n is an integer from the following table:

If n is @STRING returns a label formatted as

0 through 116 Fixed, with n decimal places

1000 through 1116 Comma, with n-1000 decimal places

-18 through -1 Scientific, with @ABS(n) digits

10001 through 10512 General, up to n-10000 characters

Notes
@STRING ignores any formatting characters 1-2-3 uses to display the value x. This includes all currency
and other numeric formatting symbols, whether you enter them or 1-2-3 creates them after you select a
format from Style Number Format or Style Worksheet Defaults Number Format. For example, if cell A7
contains the formatted value $45.23, @STRING(A7;2) returns the label 45.23.

Examples
@STRING(203;3) = the label 203.000

@STRING(1.23587;0) = the label 1

@STRING(20500;1002) = the label 20,500.00

@STRING(@PI;-5) = the label 3.1416E+00
@STRING(123456.789;10008) = the label 1234567.8

Similar @functions
@VALUE converts a number entered as text to its corresponding value.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SUBTOTAL
@SUBTOTAL(list) adds the values in list. Use @SUBTOTAL to indicate which cells @GRANDTOTAL
should sum.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and range
addresses or range names that contain numbers or formulas. Separate elements of list with argument
separators.

Examples
@SUBTOTAL(B5..B9) returns the sum of the values in B5..B9.

@SUBTOTAL(SALES;M25..R25) returns the sum of the values in the range SALES and the range
M25..R25.

Similar @functions
@SUM adds the values in a list. @SUMNEGATIVE sums only the negative values in a list.
@SUMPOSITIVE sums only the positive values in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

@SUM

@SUM(list) adds the values in list .

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and range
addresses or range names that contain numbers or formulas. Separate elements of list with argument
separators.

Examples
@SUM(B5..B9) returns the sum of the values in B5..B9.

@SUM(SALES;M25..R25) returns the sum of the values in the range SALES and the range M25..R25.

Related SmartIcons

Sums values in the highlighted or adjacent range, if you include empty cells below or to the right
of the range.

Similar @functions
@DSUM calculates the sum of values that meet criteria you specify. @SUBTOTAL adds the values in a
list and indicates which values @GRANDTOTAL should sum.    @SUMNEGATIVE sums only the
negative values in a list. @SUMPOSITIVE sums only the positive values in a list.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@SUMPRODUCT
@SUMPRODUCT(list) multiplies the values in corresponding cells in multiple ranges and then sums the
products.

Arguments

list can be any combination of ranges that contain values and are the same size and shape. If the ranges
in list are not the same size and shape, @SUMPRODUCT returns ERR.

Notes
If the ranges in list are columns, @SUMPRODUCT multiplies by rows. If the ranges in list are rows,
@SUMPRODUCT multiplies by columns. If each range in list spans more than one column,
@SUMPRODUCT multiplies by rows.

Examples
This example, taken from a real estate database table, uses @SUMPRODUCT to calculate the total
commissions due to agents on house sales in February.

list contains two ranges: SOLD (D4..D6) contains the prices paid for three houses, and COMM (E4..E6)
contains the agent's commission percentage of the sale price:

SOLD COMM
$25,000 0.04
$34,580 0.05
$77,325 0.04

@SUMPRODUCT(SOLD;COMM) = $5,822, the total commissions ($1;000 + $1;729 + $3;093) due to
agents on the sale of three houses.

Similar @functions
@SUMSQ calculates the sum of the squares of the values in a list. SUMXMY2 calculates the sum of the
squared difference of values in corresponding cells in two ranges.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@SUMSQ
@SUMSQ(list) calculates the sum of the squares of the values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and range
addresses or range names that contain numbers or formulas. Separate elements of list with argument
separators.

Examples
@SUMSQ(2;4;6) = 56

Similar @functions
@SUM adds the values in a list. @SUMPRODUCT multiplies the values in corresponding cells in
multiple ranges and then sums the products.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@SUMXMY2
@SUMXMY2(range1;range2) subtracts the values in range2 from the corresponding cells in range1,
squares the differences, and then sums the results.

Arguments
range1 and range2 are ranges that contain values and are the same size and shape. If range1 and
range2 are not the same size and shape, @SUMX2MY2 returns ERR.

Notes
If range1 and range2 are single-column ranges, 1-2-3 subtracts by row. If range1 and range2 are multi-
column ranges, 1-2-3 subtracts by columns.

Examples
In the following example, range1 is named TUES and range2 is named WED:

TUES WED
5 3
4 4
7 8

@SUMXMY2(TUES;WED) = 5

Similar @functions
@SUMPRODUCT calculates the sum of the products of the values in corresponding cells in multiple
ranges. @SUMSQ calculates the sum of the squares of the values in a list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@SYD

@SYD(cost;salvage;life;period) calculates the sum-of-the-years'-digits depreciation allowance of an
asset with an initial value of cost, an expected useful life, and a final value of salvage, for a specified
period.

Arguments
cost is the amount paid for the asset. cost can be any value.

salvage is the value of the asset at the end of its life. salvage can be any value.

life is the number of periods the asset takes to depreciate to its salvage value. life can be any value
greater than or equal to 1.

period is the time for which you want to find the depreciation allowance. period can be any value greater
than or equal to 1.

Notes
The sum-of-the-years'-digits method accelerates the rate of depreciation so that more depreciation
expense occurs in earlier periods than in later ones (although not so much as when you use the double-
declining balance method). The depreciable cost is the actual cost minus the salvage value.

Use @SYD when you need a higher depreciation expense early in the life of an asset, such as in
preparing tax returns.

Examples
You have an office machine that cost $10,000. The useful life of the machine is 10 years, and the
salvage value in 10 years will be $1,200. You want to calculate depreciation expense for the fifth year,
using the sum-of-the-years'-digits method:

@SYD(10000;1200;10;5) = $960

Similar @functions
@DDB calculates depreciation using the double-declining balance method. @VDB uses the variable-rate
declining balance method, @DB uses the fixed-declining balance method, and @SLN uses the straight-
line method.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TAN

@TAN(x) calculates the tangent of angle x. The tangent is the ratio of the side opposite an acute angle of
a right triangle to the side adjacent the same acute angle.

Arguments
x is an angle measured in radians. x is a value from -2^32*p to 2^32*p.

Examples
@TAN(@DEGTORAD(35)) = 0.700208, the tangent of a 35-degree angle.

Similar @functions
@ATAN calculates the arc tangent of a value. @TANH calculates the hyperbolic tangent of an angle.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TANH

@TANH(x) calculates the hyperbolic tangent of angle x. The hyperbolic tangent is the ratio of hyperbolic
sine to the hyperbolic cosine. The result of @TANH is a value from -1 through 1.

Arguments
x is a value from approximately -11355.1371 to approximately 11355.1371.

Examples
@TANH(@DEGTORAD(30)) = 0.480473

Similar @functions
@ATANH calculates the arc hyperbolic tangent of a value. @TAN calculates the tangent of an angle.

See also

Help
@DEGTORAD to convert from degrees to radians
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TDIST
@TDIST(x;degrees-freedom;[type];[tails]) calculates the Student's t-distribution.

Arguments
The value you enter for x depends on the value you enter for type.

If type is x is

0 The critical value or upper bound for the value of the cumulative t-distribution random
variable and is any value; default if you omit the argument

1 A probability and is a value from 0 to 1

degrees-freedom is the number of degrees of freedom for the sample. degrees-freedom is a positive
integer.

type is an optional argument that specifies how 1-2-3 calculates @TDIST.

type 1-2-3 calculates

0 The significance level that corresponds to the critical value, x; default if you omit the
argument

1 The critical value that corresponds to the significance level, x

tails is an optional argument that specifies the direction of the t-test.

tails 1-2-3 performs

1 A one-tailed t-test

2 A two-tailed t-test; default if you omit the argument

You cannot use an optional argument without using the ones that precede it.

Notes
@TDIST approximates the cumulative t-distribution to within ± 3*10^-7. If @TDIST cannot approximate
the result to within 0.0000001 after 100 calculation iterations, the result is ERR.

The Student's t-distribution is the distribution of the ratio of a standardized normal distribution to the
square root of the quotient of a chi-square distribution by the number of its degrees of freedom.

Examples
@TDIST(2.228;10) = 0.05

@TDIST(0.05;10;1) = 2.228

Similar @functions
@CHIDIST calculates the chi-square distribution. @FDIST calculates the F-distribution. @TTEST
calculates the probability associated with a Student's t-test.

See also

Help

@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TERM
@NPER

@TERM(payments;interest;future-value) calculates the number of periods required for a series of equal
payments to accumulate a future-value at a periodic interest rate.

@NPER(payments;interest;future-value;[type];[present-value]) calculates the number of periods required
for a series of equal payments with a specified present-value to accumulate a future-value at a periodic
interest rate. @NPER calculates for either an ordinary annuity or an annuity due, depending on the value
you specify for type.

Arguments
payments is the value of the equal investments. payments can be any value except 0.

interest is the periodic interest rate. interest can be any value greater than -1.

future-value is the amount you want to accumulate. future-value can be any value.

type is an optional argument that specifies whether to calculate for an ordinary annuity or for an annuity
due.

type 1-2-3 calculates for

0 Ordinary annuity (payments due at the end of a period); default if you omit the argument

1 Annuity due (payment due at the beginning of a period)

present-value is an optional argument that specifies the present value of the series of future payments.
present-value can be any value. If you omit the present-value argument, 1-2-3 uses 0.

You cannot use an optional argument without using the ones that precede it.

Notes
You can calculate the term necessary to pay back a loan by using @TERM with a negative future-value.
For example, you want to know how long it will take to pay back a $10,000 loan at 10% yearly interest,
making payments of $1,174 per year. @ABS(@TERM(1174.6;0.1;-10000)) calculates 20 years to pay
back the loan.

Examples
You deposit $2,000 at the end of each year into a savings account. Your account earns 7.5% a year,
compounded annually. You want to determine how long it will take to accumulate $100,000:

@TERM(2000;0.075;100000) = 21.5 years

If you make payments at the beginning of each year:

@NPER(2000;0.075;100000;1) = 20.76 years

Similar @functions
@CTERM calculates the number of compounding periods for a single-deposit investment.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TIME

@TIME(hour;minutes;seconds) calculates the time number for the specified hour, minutes, and seconds.

Arguments
hour is an integer from 0 (midnight) through 23 (11:00 PM).

minutes is an integer from 0 through 59.

seconds is an integer from 0 through 59.

Notes
Style Number Format and Style Worksheet Defaults Number Format make the time number appear as
the time it represents.

Examples
The formula @TIME(13;0;0)-@TIME(9;15;0)*95*24 calculates the amount due to a consultant on a given
day by subtracting the start time from the stop time and multiplying the result by an hourly rate of $95.00.

Similar @functions
@TIMEVALUE converts labels to time numbers.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TIMEVALUE

@TIMEVALUE(text) calculates the time number for the time specified in text.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label. text must be in one of the four 1-2-3 Time
formats.

Notes
@TIMEVALUE is useful when you need to convert times entered as labels into time numbers for use in
calculations. @TIMEVALUE is especially useful with data that has been imported from another program,
such as a word processing program.

Use Style Number Format and Style Worksheet Defaults Number Format to make the time number
appear as the time it represents.

Examples
@TIMEVALUE("08:19:27 AM") = 0.34684

@TIMEVALUE("08:19:27 AM") = 0.34684, formatted as 08:19:27 AM, if the cell is formatted as 11:59:59
AM/PM.

Similar @functions
@TIME calculates the time number when you specify the hour, minutes, and seconds.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TODAY

@TODAY calculates the date number that corresponds to the current date on your computer.

Notes
1-2-3 recalculates @TODAY each time you recalculate your work. If you use Tools User Setup
Recalculation Automatic, 1-2-3 recalculates @TODAY whenever it recalculates another value.

Use Style Number Format and Style Worksheet Defaults Number Format to make the time number
appear as the time it represents.

Examples
@TODAY = 31048 on January 01, 1985.

@TODAY = 33418 on June 29, 1991.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@TRIM

@TRIM(text) removes leading, trailing, and consecutive space characters from text.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label.

Notes
Use @TRIM to ensure that database entries do not contain unnecessary spaces that would affect sort
order when you use Range Sort or Query Sort.

Examples
@TRIM(" 45    3/8") = 45 3/8, removing the leading space before 45 and one of the two spaces between
45 and 3/8.

@TRIM(" 500          South      St.") = 500 South St., removing the leading space before 500, two of the
three spaces between 500 and South, and one of the two spaces between South and St.

Similar @functions
@SETSTRING returns text aligned within a specified number of spaces.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@TRUE

@TRUE returns the logical value 1 (true).

Notes
If a logical statement such as A1=B1 is true, its logical value is 1. If it is false, its logical value is 0.

Using @TRUE is the same as using the value 1 in formulas that evaluate logical conditions, but @TRUE
makes the formula easier to understand.

Examples
@IF(A6>500;@TRUE;@FALSE) = 1 when cell A6 contains a value greater than 500.

Similar @functions
@FALSE returns the logical value 0.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@TRUNC
@TRUNC(x;[n]) truncates x to the number of decimal places specified by n.

Arguments
x is a value.

n is an optional argument and is a value from -100 through 100.

If n is @TRUNC

Positive Affects the decimal portion of the number (moving right from the decimal point). For
example, if n is 2, 1-2-3 truncates x to the nearest hundredth.

Negative Affects the integer portion of the number (moving left from the decimal point). For
example, if n is -2, 1-2-3 truncates x to the nearest hundred.

0 Truncates x to the nearest integer; default if you omit the argument

Notes

Select Fixed from Style Number Format or Style Worksheet Defaults Number Format to display values
with a specified number of decimal places if you want 1-2-3 to calculate the values to their full precision;
do not use @TRUNC.

Examples
@TRUNC(123.45) = 123

@TRUNC(-123.45) = -123

@TRUNC(123.45;-2) = 100

@TRUNC(123.45;1) = 123.4

@TRUNC(-123.45;-2) = -100

@TRUNC(-123.45;1) = -123.4

Similar @functions
@ROUND, @ROUNDDOWN, and @ROUNDUP round a value to a specified number of decimal places.
@ROUNDM rounds a value to a specified multiple. @EVEN rounds a value away from 0 to the nearest
even integer. @ODD rounds a value away from 0 to the nearest odd integer. @INT truncates a value,
discarding the decimal portion.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@UPPER

@UPPER(text) converts all the letters in text to uppercase.

Arguments
text can be text enclosed in " " (quotation marks), a formula that results in text, or the address or name of
a cell that contains a label or a formula that results in a label.

Notes
Capitalization affects the sort order of labels when you use Range Sort or Query Sort. Two otherwise
identical labels may not appear together if their capitalization is different.

Examples
@UPPER("Account Number") = ACCOUNT NUMBER

@UPPER(B2) = WARNING, if B2 contains the label warning.

Similar @functions
@LOWER converts all letters in text to lowercase. @PROPER capitalizes only the first letter of each
word in text.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@VALUE

@VALUE(text) converts a number entered as a text to its corresponding value.

Arguments
text can be text in " " (quotation marks) or a label that contains only numbers. text can resemble a
standard number (456.7), a number in scientific format (4.567E2), a mixed number (45 7/8), or a
formatted number ($45.67).

Notes
@VALUE ignores leading and trailing spaces; however, @VALUE returns ERR when text contains
spaces that separate symbols from the numbers (such as $ 32.85 or £    56.20).

@VALUE results in 0 when text is a blank cell or an empty string, and returns ERR when text contains
non-numeric characters.

Press F2 (EDIT) and then press F9 (CALC) to replace @VALUE with its value.

You cannot calculate within a text argument in @VALUE, but you can create a formula with several
@VALUE functions. For example, @VALUE("22"+"20") = 0, but @VALUE("22")+@VALUE("20") = 42.

Examples
@VALUE("543") = the value 543.

@VALUE(B3) = the value 49.75, if cell B3 contains the label 49 3/4.

@VALUE("85%") = the value .85.

Similar @functions
@STRING converts a value to a label.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@VAR
@VARS
@PUREVAR
@PUREVARS

@VAR(list) calculates the population variance in a list of values.

@VARS(list) calculates the sample population variance in a list of values.

@PUREVAR(list) calculates the population variance in a list of values, ignoring cells that contain labels.

@PUREVARS(list) calculates the sample population variance in a list of values, ignoring cells that
contain labels.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and range
addresses or range names that contain numbers or formulas. Separate elements of list with argument
separators.

Notes
The variance @functions are useful when you need to carry out ANOVA (analysis of variance) statistical
tests.

@VAR and @PUREVAR use the n, or population, method to calculate variance. The n method assumes
the selected values are the entire population. If the values are only a sample of the population, the
variance is biased because of errors introduced in taking a sample.

@VARS and @PUREVARS use the n-1, or sample, method to calculate variance. The n-1 method
produces a variance that is slightly larger than the n method to compensate for errors in the sample. A
larger variance is unbiased by sampling errors and thus tends to be more accurate.

Examples
@VAR and @VARS

Similar @functions
@DVAR and @DVARS calculate the population variance of values that meet criteria you specify.

See also

Help
@Functions
Statistical @Function Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @VAR and @VARS
This table lists the heights and weights of ten randomly selected test subjects. You want to determine the
variation of their weights.

@VAR(B2..B11) = 38.77462

Assume the subjects represent a randomly selected sample of a larger group of test subjects.

@VARS(B2..B11) = 43.08292
A --------- A --------- B --
1 HEIGHT (cm) WEIGHT (kg)
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@VDB

@VDB(cost;salvage;life;start-period;end-period;[depreciation-factor];[switch]) calculates the depreciation
allowance of an asset with an initial value of cost, an expected useful life, and a final value of salvage for
a period specified by start-period and end-period, using the variable-rate declining balance method.

Arguments
cost is the amount paid for the asset. cost can be any value greater than salvage.

salvage is the value of the asset at the end of its life. salvage can be any value.

life is the number of periods the asset takes to depreciate to its salvage value. life can be any value
greater than 0.

start-period is the point in the asset's life when you want to begin calculating depreciation. start-period
can be any value greater than or equal to 0, but cannot be greater than life.

end-period is the point in the asset's life when you want to stop calculating depreciation. end-period can
be any value greater than start-period.

start-period and end-period correspond to the asset's life, relative to the fiscal period. For example, if you
want to find the first year's depreciation of an asset purchased at the beginning of the second quarter of a
fiscal year, start-period would be 0 and end-period would be 0.75 (1 minus 0.25 of a year). You can use
@VDB for multiple-period depreciation calculations.

@VDB allows for the use of an initial-period option to calculate depreciation for the period the asset is
placed in service. @VDB uses the fractional part of start-period and end-period to determine the initial-
period option. If both start-period and end-period have fractional parts, then @VDB uses the fractional
part of start-period.

depreciation-factor is an optional argument that specifies the percentage of straight-line depreciation you
want to use as the depreciation rate. If you omit this argument, 1-2-3 uses 200%, which is the double-
declining balance rate. depreciation-factor can be any value greater than or equal to 0; commonly used
rates are 1.25, 1.50, 1.75, and 2.

switch is an optional argument that you include if you do not want @VDB to switch to straight-line
depreciation for the remaining useful life. Normally, declining-balance switches to such a straight-line
calculation when it is greater than the declining-balance calculation.

If switch is @VDB

0 Automatically switches to straight-line depreciation when that is greater than declining-
balance depreciation; default if you omit the argument

1 Never switches to straight-line depreciation

You cannot use an optional argument without using the ones that precede it.

Notes
The variable-rate declining balance method maintains a steady rate of depreciation until the salvage
value of an asset drops to less than the value of the following equation:

(book value*((1-(rate/life))life))

where book value = cost - salvage - prior depreciation.

At this point, 1-2-3 switches to straight-line depreciation for the balance of the life of the asset so that
there is no excess salvage value. By switching to straight-line depreciation, 1-2-3 adjusts the result of
@VDB when necessary to ensure that total depreciation taken over the life of the asset equals the
asset's cost minus its salvage value.

Examples
This example calculates depreciation for an office machine, purchased in the middle of the first quarter of
the fiscal year, that cost $10,000. The useful life of the machine is 10 years, and the salvage value after
10 years is $600. The following formulas calculate the depreciation expense for each of the 10 years,
using the variable-rate declining balance method, with a depreciation rate of 150%. Notice that the switch
to straight-line depreciation occurs in the sixth year.

@VDB(10000;600;10;0;0.875;1.5) = $1,312.50

@VDB(10000;600;10;0.875;1.875;1.5) = $1,303.13

@VDB(10000;600;10;1.875;2.875;1.5) = $1,107.66

@VDB(10000;600;10;2.875;3.875;1.5) = $        941.51

@VDB(10000;600;10;3.875;4.875;1.5) = $        800.28

@VDB(10000;600;10;4.875;5.875;1.5) = $        767.79

@VDB(10000;600;10;5.875;6.875;1.5) = $        767.79

@VDB(10000;600;10;6.875;7.875;1.5) = $        767.79

@VDB(10000;600;10;7.875;8.875;1.5) = $        767.79

@VDB(10000;600;10;8.875;9.875;1.5) = $        767.79

@VDB(10000;600;10;9.875;10;1.5) = $            95.97

        $9,400.00    Total depreciation (cost minus salvage)

Similar @functions
@DDB calculates depreciation using the double-declining balance method. @SLN uses the straight-line
method, and @SYD uses the sum-of-the-years'-digits method.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@VLOOKUP

@VLOOKUP(x;range;column-offset) finds the contents of the cell in a specified column of a vertical
lookup table.

Arguments
x can be either a value or text, depending of the contents of the first column of the vertical lookup table.

If the first column contains Then x can be

Values Any value greater than or equal to the first value in range. If x is smaller
than the first value in range, @VLOOKUP returns ERR. If x is larger than
the last value in the first column of range, @VLOOKUP stops at the last
cell in the column specified by column-offset and returns the contents of
that cell as the answer.

Labels text enclosed in " " (quotation marks), a formula that results in text, or the
address or name of a cell that contains a label or a formula that results in
a label. If x does not exactly match the contents of a cell in the first
column of range, @VLOOKUP returns ERR.

range represents the location of the vertical lookup table. range can be any range address or range
name. If range is a 3D range, 1-2-3 uses only the first worksheet in range.

column-offset represents an offset number corresponding to the position the column occupies in range.

Notes
@VLOOKUP compares x to each cell in the first column of the table. When 1-2-3 locates a cell in the first
column that contains x (or; if x is a value; the value closest to ; but not larger than; x), it moves across
that row the number of columns specified by column-offset and returns the contents of that cell as the
answer.

Examples
@VLOOKUP

Similar @functions
@HLOOKUP finds the contents of a cell in a horizontal lookup table. @INDEX finds the contents of a cell
when you specify offset numbers for both the column and row. @CHOOSE replaces a lookup table that
requires only one row. @MATCH finds the relative position of a cell with specified contents. @XINDEX
finds the contents of a cell specified by column, row, and worksheet headings.    @MAXLOOKUP returns
an absolute reference to the cell that contains the largest value in a list of ranges. @MINLOOKUP
returns an absolute reference to the cell that contains the smallest value in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @VLOOKUP
A vertical lookup table named TAXTABLE (A3..E11) lists tax amounts based on income and filing status.

@VLOOKUP(35329;TAXTABLE;1), entered in a cell formatted as Currency with no decimal places,
returns $9,351, the tax amount for the income figure that is closest to, but not greater than, $35,329.
A ----- A --------- B -------- C ---------- D -------- E --
1 ------- F I L I N G S T A T U S -------
2 Income >= 1 2 3 4
3 $35,000 $9,219 $7,265 $11,31 $8,531
4 $35,050 $9,241 $7,282 $11,340 $8,552
5 $35,100 $9,263 $7,299 $11,363 $8,573
6 $35,150 $9,285 $7,313 $11,386 $8,594
7 $35,200 $9,307 $7,330 $11,411 $8,615
8 $35,250 $9,329 $7,347 $11,436 $8,636
9 $35,300 $9,351 $7,361 $11,459 $8,657
10 $35,350 $9,373 $7,377 $11,483 $8,678
11 $35,400 $9,395 $7,393 $11,507 $8,699

@WEEKDAY
@WEEKDAY(date-number) extracts the day of the week from date, and displays it as an integer from 0
(Monday) through 6 (Sunday).

Arguments
date is a date number.

Examples
@WEEKDAY(@DATE(91;7;3)) = 2, Wednesday.

Similar @functions
@MONTH calculates the month, using a date number. @YEAR calculates the year, using a date
number.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@YEAR

@YEAR(date-number) extracts the year, an integer from 0 (1900) through 199 (2099), from date number.

Arguments
date-number is an integer, or the address or name of a cell that contains an integer, from 1 (January 1;
1900) through 73050 (December 31; 2099).

Notes
Add 1900 to @YEAR to convert it into a four-digit year. For example, @YEAR(20181)+1900 creates the
four-digit year 1955.

@YEAR can supply the year argument for other date @functions that build on previously calculated
dates.

Examples
@YEAR(20181) = 55, because the date number 20181 is the date 02-Apr-55.

@YEAR(@NOW) = the current year

@YEAR(@DATEVALUE("14-Feb-92")) = 92

Similar @functions
@DAY extracts the day of the month (1 to 31), and @MONTH extracts the month (1 to 12), from a date
number.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@YIELD
@YIELD(settlement;maturity;coupon;price;[redemption];[frequency];[basis]) returns the yield for
securities that pay periodic interest.

Arguments
settlement is the security's settlement date. settlement is a date number.

maturity is the security's maturity date. maturity is a date number. If maturity is less than or equal to
settlement, @YIELD evaluates to ERR.

coupon is the security's annual coupon rate. coupon is any positive value or 0.

price is the security's price per $100 face value. price is any positive value.

redemption is an optional argument that specifies the security's redemption value per $100 face value.
redemption is any positive value or 0. If you omit the redemption argument, 1-2-3 uses 100.

frequency is an optional argument that specifies the number of coupon payments per year.

frequency Frequency of coupon payments

1 Annual

2 Semiannual; default if you omit the argument

4 Quarterly

12 Monthly

basis is an optional argument that specifies the type of day-count basis to use.

basis Day-count basis

0 30/360; default if you omit the argument

1 Actual/actual

2 Actual/360

3 Actual/365

You cannot use an optional argument without using the ones that precede it.

Examples
A bond has a July 1, 1993, settlement date and a December 1, 1998, maturity date. The semiannual
coupon rate is 5.50%. The bond costs $99.50, has a $100 redemption value, and a 30/360 day-count
basis. You want to determine the bond's yield:

@YIELD(@DATE(93;7;1),@DATE(98;12;1),0.055,99.5,100,2,0) = 0.056072

Similar @functions
@ACCRUED calculates the accrued interest for securities that pay periodic interest. @PRICE calculates
the price per $100 face value for securities that pay periodic interest. @DURATION calculates the annual
duration for securities that pay periodic interest. @MDURATION calculates the annual modified duration
for securities that pay periodic interest.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@CHITEST
@CHITEST(range1;[range2]) performs a chi-square test for independence on the data in range1, or a
chi-square test for goodness of fit on the data in range1 and range2.

Arguments
range1 and range2 are ranges of the same size. If range1 and range2 are not the same size,
@CHITEST returns ERR.

Notes
@CHITEST approximates the probability associated with a chi-square test to within ± 3*10^-7.

Examples
@CHITEST: Test for independence
@CHITEST: Test for goodness of fit

Similar @functions
@CHIDIST calculates the chi-square distribution. @FTEST performs an F-test, @TTEST performs a
Student's t-test, and @ZTEST performs a z-test.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @CHITEST (Test for Goodness of Fit)
@CHITEST(A2..A9;B2..B9) = 0.996882
A ------ A -------- B ------
1 Observed Expected
2 25 23
3 34 35
4 87 91
5 91 88
6 34 34
7 23 22
8 56 60
9 70 68

Example: @CHITEST (Test for Independence)
@CHITEST(B3..C5) = 0.080809
A --- A ----- B ----- C --
1 Rough Smooth
2
3 High 42 51
4 Medium 25 37
5 Low 85 68

@CRITBINOMIAL
@CRITBINOMIAL(trials;probability;alpha) returns the largest integer for which the cumulative binomial
distribution is less than or equal to alpha.

Arguments
trials represents the number of Bernoulli trials and can be any positive integer or 0.

probability represents the probability of success for a single Bernoulli trial and is a value from 0 through
1.

alpha represents the criterion probability and is a value from 0 through 1.

Notes
@CRITBINOMIAL approximates the cumulative binomial distribution to within ± 3*10^-7.

Examples
You manage a small plant that manufactures oil filters. The filters are manufactured in lots of 100. There
is an 85% chance that each filter is free from defects. You want to be 99% confident that at least a given
number of filters are free from defects.

@CRITBINOMIAL(100;0.85;0.01) = 76, the number of filters free from defects

Similar @functions
@BINOMIAL calculates the binomial probability mass function or the cumulative binomial distribution.
@COMBIN calculates the binomial coefficient. @PERMUT calculates the number of permutations for a
list of values.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DAVG

@DAVG(input;field;[criteria]) calculates the average of the values in a field of a database table that meet
specified criteria.

Arguments
See Database @Function Arguments.

Examples
@DAVG

Similar @functions
@AVG and @PUREAVG average the values in a list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @DAVG
A database table named SALES lists house sales in Arlington, Belmont, and Cambridge in April and May.
The sale prices of the houses are listed in the field named SOLD. You want to determine the average
price of a house sold in Cambridge:

@DAVG(SALES;"SOLD";CITY="Cambridge") = $365,667
A ---- A --------------- B -------- C ----
1 ADDRESS CITY SOLD
2 467 Brattle Cambridge 720,000
3 183 Hillside Arlington 318,000
4 64 N. Gate Belmont 332,000
5 80 Mt. Auburn Cambridge 278,000
6 14 Charles Cambridge 160,000
7 1160 Memorial Cambridge 227,000
8 130 Crescent Arlington 397,000
9 12 Trenton Arlington 303,000
10 36 Barnes Cambridge 669,000
11 234 Third Cambridge 140,000

@DCOUNT
@DPURECOUNT

@DCOUNT(input;field;[criteria]) counts the nonblank cells in a field of a database table that meet
specified criteria.

@DPURECOUNT(input;field;criteria) counts the cells that contain values in a field of a database table
that meet specified criteria.

Arguments
See Database @Function Arguments.

Examples
@DCOUNT

Similar @functions
@COUNT and @PURECOUNT count cells in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @DCOUNT

A database table named APR_SALES lists house sales for the month of April. The types of heating
systems the houses have are listed in a field named HEAT. You want to find the number of houses
heated with gas:

@DCOUNT(APR_SALES;"HEAT";HEAT="Gas") = 4
A ---- A ----------- B ------- C ------- D -
1 ADDRESS BDRMS HEAT COST
2 671 Washington 5 Gas $290,000
3 131 Aslett 5 Oil $105,000
4 46 Carlton 2 Gas $135,000
5 76 Phillips 4 Elec $128,000
6 479 Marlborough 2 Gas $174,000
7 8844 Wonderland 3 Gas $195,000

@DGET

@DGET(input;field;[criteria]) retrieves a value or label from a field of a database table that meets
specified criteria.

Arguments
See Database @Function Arguments.

Notes
If more than one entry meets the criteria you specify, @DGET returns ERR.

@DGET is useful when you need to retrieve a value from a single record that meets specific criteria: the
employee number of a particular employee, for example. With @DGET, you can retrieve this kind of
information automatically for use in a macro, as an argument in an @function, or as a variable in a
formula.

Examples
@DGET

Similar @functions
@HLOOKUP and @VLOOKUP return the contents of a specified cell in a horizontal or vertical lookup
table. @CHOOSE finds an entry in a list. @INDEX returns the contents of a cell in a table based on
relative worksheet, column, and row locations. @XINDEX returns the contents of a cell in a table based
on worksheet, column, and row headings. @@ indirectly returns the contents of a specified cell.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @DGET
A database table named SALES lists house sales in three towns in April and May. Brokers' commissions
are listed in the field named COMM. You want to determine the broker's commission on the sale of the
house at 12 Trenton Street:

@DGET(SALES;"COMM";ADDRESS="12 Trenton") = $12,120
A ---- A ---------- B -------- C --------
1 ADDRESS BROKER COMM
2 467 Brattle Higle 28,800
3 183 Hillside Levine 12,720
4 64 N. Gate Higle 19,920
5 80 Mt. Auburn Smith 11,120
6 14 Charles Dunbar 9,600
7 1160 Memorial Levine 13,620
8 130 Crescent Dunbar 15,880
9 12 Trenton Higle 12,120

@DMAX

@DMAX(input;field;[criteria]) finds the largest value in a field of a database table that meets specified
criteria.

Arguments
See Database @Function Arguments.

Notes
You can use @DMAX to find the most recent date or time in a list of dates or times.

Examples
@DMAX

Similar @functions
@MAX and @PUREMAX find the largest value in a list.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @DMAX
A database table named SALES lists house sales in Arlington, Belmont, and Cambridge in April and May.
The sale prices of the houses are listed in the field named SOLD. You want to determine the highest
price paid for a house in Cambridge:

@DMAX(SALES;"SOLD";CITY="Cambridge") = $720,000
A ---- A --------------- B -------- C ----
1 ADDRESS CITY SOLD
2 467 Brattle Cambridge 720,000
3 183 Hillside Arlington 318,000
4 64 N. Gate Belmont 332,000
5 80 Mt. Auburn Cambridge 278,000
6 14 Charles Cambridge 160,000
7 1160 Memorial Cambridge 227,000
8 130 Crescent Arlington 397,000
9 12 Trenton Arlington 303,000
10 36 Barnes Cambridge 669,000
11 234 Third Cambridge 140,000

@DMIN

@DMIN(input;field;[criteria]) finds the smallest value in a field of a database table that meets specified
criteria.

Arguments
See Database @Function Arguments.

Notes

You can use @DMIN to find the earliest date or time in a list of dates or times.

Examples
@DMIN

Similar @functions
@MIN and @PUREMIN find the smallest value in a list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @DMIN
A database table named SALES lists house sales in Arlington, Belmont, and Cambridge in April and May.
The sale prices of the houses are listed in the field named SOLD. You want to determine the lowest price
paid for a house in Cambridge:

@DMIN(SALES;"SOLD";CITY="Cambridge") = $140,000
A ---- A --------------- B -------- C ----
1 ADDRESS CITY SOLD
2 467 Brattle Cambridge 720,000
3 183 Hillside Arlington 318,000
4 64 N. Gate Belmont 332,000
5 80 Mt. Auburn Cambridge 278,000
6 14 Charles Cambridge 160,000
7 1160 Memorial Cambridge 227,000
8 130 Crescent Arlington 397,000
9 12 Trenton Arlington 303,000
10 36 Barnes Cambridge 669,000
11 234 Third Cambridge 140,000

@DQUERY

@DQUERY(function;[ext-arguments]) sends a command to an external database.

Arguments
function is the name of the external database command that you want to execute.

ext-arguments is an optional argument that lists the arguments the external command requires,
separated by valid argument separators.

Notes
Use @DQUERY with another database @function to select specific records from an external database
table.

You cannot use @DQUERY with a database @function whose input range contains more than one
database table.

Consult the documentation that came with your external database driver to see if the driver supports
@DQUERY.

Examples
An external database management program has a function called LITERS that converts gallons to liters.
The function requires a single argument: the number of gallons to convert. To use the function in 1-2-3,
you would enter

+QUANTITY=@DQUERY("LITERS";10)

in a criteria range of a database @function to extract entries from the field QUANTITY of an external
table that match the quantity in liters equivalent to 10 gallons.

See also

Help
@Functions
Tools Database Connect to External

User's Guide

Chapter 11, "Calculating with @Functions"

@DSTD
@DSTDS

@DSTD(input;field;[criteria]) calculates the population standard deviation of the values in a field of a
database table that meet specified criteria.

@DSTDS(input;field;[criteria]) calculates the sample standard deviation of sample values in a field of a
database table that meet specified criteria.

Arguments
See Database @Function Arguments.

Notes
@DSTD uses the n, or population, method to calculate standard deviation of population data. The n
method assumes that the selected values are the entire population. If the values are only a sample of the
population, the standard deviation is biased because of errors introduced in taking the sample.

Standard deviation is the square root of the variance of all individual values from the mean.

Examples
@DSTD and @DSTDS

Similar @functions
@STD and @PURESTD calculate the standard deviation of the entire population of values in a range.
@STDS and @PURESTDS calculated the standard deviation of sample values. @DVAR calculates the
population variance of values that meet criteria you specify.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @DSTD and @DSTDS
This table lists the heights and weights of ten randomly selected test subjects. You want to determine the
standard deviation of the heights of subjects who weigh more than 75 kg.

@DSTD(A1..B11;"HEIGHT";WEIGHT>75) = 4.611954

Suppose the ten test subjects are a randomly selected sample of a larger group of test subjects.

@DSTDS(A1..B11;"HEIGHT";WEIGHT>75) = 5.325426
A --------- A --------- B --
1 HEIGHT WEIGHT
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@DSUM

@DSUM(input;field;[criteria]) calculates the sum of the values in a field of a database table that meet
specified criteria.

Arguments
See Database @Function Arguments.

Examples
@DSUM

Similar @functions
@SUM calculates the sum of the values in a list. @SUMNEGATIVE sums only the negative values in a
list. @SUMPOSITIVE sums only the positive values in a list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @DSUM
A database table named SALES lists house sales in Arlington, Belmont, and Cambridge in April and May.
The brokers' commissions on the sales are listed in the field named COMM. You want to determine the
total commission earned by the broker Dunbar:

@DSUM(SALES;"COMM";BROKER="Dunbar") = $25,480
A ---- A --------------- B -------- C ---
1 ADDRESS BROKER COMM
2 467 Brattle Higle 28,800
3 183 Hillside Levine 12,720
4 64 N. Gate Higle 19,920
5 80 Mt. Auburn Smith 11,120
6 14 Charles Dunbar 9,600
7 1160 Memorial Levine 13,620
8 130 Crescent Dunbar 15,880
9 12 Trenton Higle 12,120

@DVAR
@DVARS

@DVAR(input;field;[criteria]) calculates the population variance of the values in a field of a database
table that meet specified criteria.

@DVARS(input;field;[criteria]) calculates the variance of sample values in a field of a database table that
meet specified criteria.

Arguments
See Database @Function Arguments.

Notes
Variance measures the degree to which individual values in a list vary from the mean (average) of all the
values in the list. The lower the variance, the less individual values vary from the mean, and the more
reliable the mean. A variance of 0 indicates that all values in the list are equal. Variance is necessary in
several ANOVA (analysis of variance) statistical tests.

@DVAR uses the n, or population, method to calculate variance. The n method assumes the selected
values are the entire population. If the values are only a sample of the population, the variance is biased
because of errors introduced in taking a sample.

Variance is the square of standard deviation.

Examples
@DVAR and @DVARS

Similar @functions
@VAR and @PUREVAR calculates the population variance of values in a list. @DSTD calculates the
population standard deviation of values that meet criteria you specify.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @DVAR and @DVARS
This table lists the heights and weights of ten randomly selected test subjects. You want to determine the
variation of the weights of subjects who are taller than 180 cm.

@DVAR(A1..B11;"WEIGHT";HEIGHT>180) = 25.59654

Suppose the subjects are a randomly selected sample of a larger group of test subjects.

@DVARS(A1..B11;"WEIGHT";HEIGHT>180) = 28.36016
A --------- A --------- B --
1 HEIGHT WEIGHT
2 190.50 72.73
3 187.96 86.36
4 175.26 68.18
5 175.26 76.37
6 180.34 77.27
7 180.34 72.73
8 187.96 75.00
9 172.72 68.18
10 177.80 70.46
11 179.07 86.36

@FTEST
@FTEST(range1;range2) performs an F-test and returns the associated probability.

Arguments
range1 and range2 are ranges that contain the data you want to test. range1 and range2 do not have to
be the same size.

Notes
@FTEST approximates the probability associated with an F-test to within ± 3*10^-7.

Use @FTEST to determine if two samples have different variances.

Examples
@FTEST

Similar @functions
@FDIST calculates the F-distribution. @CHITEST performs a chi-square test, @TTEST performs a
Student's t-test, and @ZTEST performs a z-test.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @FTEST
@FTEST(A2..A13;B2..B15) = 0.157348
A ------ A -------- B ------
1 Sample1 Sample
2 84.5 1.65
3 80.7 4.58
4 34.5 42.6
5 54.6 4.37
6 50.5 30.8
7 33.7 97.7
8 46.8 87.2
9 47.6 40.7
10 22.8 38.4
11 15.5 10.6
12 60.6 56.3
13 80.5 70.5
14 9.04
15 97.3

@GRANDTOTAL
@GRANDTOTAL(list) calculates the sum of all cells in list that contain @SUBTOTAL in their formulas.

Arguments
list can be any combination of ranges. Separate elements of list with argument separators.

Examples
@GRANDTOTAL

Similar @functions
@SUM adds a list of values. @DSUM adds values in a database table that meet certain criteria.
@SUMNEGATIVE sums only the negative values in a list. @SUMPOSITIVE sums only the positive
values in a list.

See also

Help
@Functions
Statistical @Functions Arguments

User's Guide
Chapter 11, "Calculating with @Functions"

Example: @GRANDTOTAL

The @GRANDTOTAL formula in cell A10 calculates the sum of all cells in A1..A8 that contain
@SUBTOTAL in their formulas (A4 and A8).
A --- A ----- B -------------
1 10
2 15
3
4 25 @SUBTOTAL(A1..A2)
5
6 20
7 25
8 45 @SUBTOTAL(A6..A7)
9
10 70 @GRANDTOTAL(A1..A8)

@ISFILE
@ISFILE(file-name;[type]) tests file-name for a file in memory or on disk. If file-name is found, @ISFILE
returns 1 (true); if file-name is not found, @ISFILE returns 0 (false).

Arguments
file-name is the full name, including the extension, of the file you want to test for, entered as text. Unless
you want 1-2-3 to look for the file in the current directory, you must also specify the path as part of file-
name.

type specifies whether to look for file-name in memory or on disk. If type is 0, 1-2-3 looks for file-name in
memory; if type is 1, 1-2-3 looks for file-name on disk. If you omit type, 1-2-3 uses 0.

Examples
@ISFILE("C:\123W\BUDGET\COSTS_93.WK4";1) = 1, if the file COSTS_93.WK4 is stored in C:\123W\
BUDGET.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@MATCH
@MATCH(cell-contents;range;[type]) returns the position of the cell in range whose contents match cell-
contents. @MATCH returns the cell's position as an offset number.

Arguments
cell-contents can be either a value or text. If cell-contents is text, you can include wildcard characters.

range is a range name or address.

type is an optional argument that specifies how 1-2-3 compares cell-contents with the contents of the
cells in range.

type @MATCH returns the relative position of

0 The first cell whose contents match cell-contents

1 The cell that contains the largest value that is less than or equal to cell-contents; default if
you omit the argument. Sort range in ascending order.

2 The cell that contains the smallest value that is greater than or equal to cell-contents. Sort
range in descending order.

Notes
1-2-3 searches range from top to bottom in a column and from left to right. If you specify a multi-sheet
range, 1-2-3 searches the first worksheet in the range, continues on to the second worksheet, and so on
until 1-2-3 reaches a match or the end of the range.

If 1-2-3 cannot find a match for cell-contents @MATCH returns ERR.

If type is 1 and the first cell in range contains a value that is greater than cell-contents, @MATCH returns
ERR.

If type is 2 and the first cell in range contains a value that is less than cell-contents, @MATCH returns
ERR.

Examples
@MATCH

Similar @functions
@HLOOKUP and @VLOOKUP find the contents of cells in horizontal and vertical lookup tables.
@INDEX finds the contents of a cell when you specify offset numbers for both the column and row.
@CHOOSE replaces a lookup table that requires only one row. @MAXLOOKUP returns an absolute
reference to the cell that contains the largest value in a list of ranges. @MINLOOKUP returns an
absolute reference to the cell that contains the smallest value in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @MATCH
A medicine doseage is determined by body weight. A patient's weight, entered in a cell named
PATIENT_WEIGHT, is 125 lbs.

@INDEX(A2..C7;2;@MATCH(PATIENT_WEIGHT;A2..C7;1)) = 2
A ---- A --------- B -------- C ------------
1 Pounds Kilograms Number of Pills
2 50 22.5 1.5
3 100 45.5 2.0
4 150 68.0 2.5
5 200 90.5 3.0
6 250 113.5 3.5
7 300 136.0 4.0

@NORMAL
@NORMAL(x;[mean];[std];[type]) calculates the normal distribution function for x.

Arguments
x is the upper bound for the value of the cumulative normal distribution. x is any value; if x is negative,1-
2-3 converts it to its absolute (positive) value.

mean is an optional argument that specifies the mean of the distribution. mean is any positive value or 0.
If you omit mean, 1-2-3 uses 0.

std is an optional argument that specifies the standard deviation of the distribution. std is any positive
value or 0. If you omit std, 1-2-3 uses 1.

type is an optional argument that specifies what function you want @NORMAL to calculate.

type @NORMAL calculates

0 Cumulative distribution function; default if you omit the argument

1 Inverse cumulative distribution

2 Probability density function

You cannot use an optional argument without using the ones that precede it.

Notes
@NORMAL approximates the cumulative distribution function to within ± 7.5*10^-8 and the inverse
cumulative distribution to within ± 4.5*10^-4

Examples
@NORMAL(1.96) = 0.9750

@NORMAL(0.975;0;1;1) = 1.96

@NORMAL(1.96;0;1;2) = 0.58441

Similar @functions
@CHIDIST calculates the chi-square distribution. @FDIST calculates the F-distribution. @POISSON
calculates the Poisson distribution. @TDIST calculates the Student's t-distribution.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@RANGENAME
@RANGENAME(cell) returns the name of the range in which cell is located.

Argument
cell is a cell address or the name of a single-cell range.

Notes
If you specify a cell that is in several overlapping named ranges, 1-2-3 returns the first range name it
finds.

If cell is not in a named range, @RANGENAME returns ERR.

You can use @RANGENAME only with files in memory.

Examples
@RANGENAME(A:A2) returns SALES if A:A2 is in the range named SALES.

See also

Help
@Functions
Range Version

User's Guide

Chapter 11, "Calculating with @Functions"

@SCENARIOINFO
@VERSIONINFO
@SCENARIOINFO(option;name;[creator]) returns information about a scenario.

@VERSIONINFO(option;version-range;name[;creator]) returns information about a version.

Arguments
option is text that specifies what information you want 1-2-3 to return.

option 1-2-3 returns

creator The name of the person who created the version or scenario

modifier The name of the person who last modified the version or scenario

created The date and time the version or scenario was created, as a date and time number
modified The date and time the version or scenario was last modified, as a date and time number

comment The comment for the version or scenario; 1-2-3 truncates the comment if it is longer than
512 single-byte characters

hidden 0 (false) if the version or scenario is not hidden or 1 (true) if it is hidden

protected 0 (false) if the version or scenario is not protected or 1 (true) if it is protected

name is text that specifies the name of the version or scenario. If more than one version or scenario has
the same name, 1-2-3 uses the one most recently created.

creator is text that specifies the name of the user who created the version or scenario. 1-2-3 uses creator
to help determine which version or scenario to use.

version-range is the name of the range that contains the version. version-range must be an existing
named range.

Examples
@SCENARIOINFO("comment";"Best Case";"Kimberly Parker") returns the comment for the latest
scenario named Best Case created by Kimberly Parker.

@SCENARIOINFO("creator";"Sales") returns the name of the user who created the latest scenario
named Sales.

@VERSIONINFO("created";SALESRANGE;"Best Case";"Kimberly Parker") returns the date and time
that Kimberly Parker created her latest Best Case version for SALESRANGE.

@VERSIONINFO("modified";SALESRANGE;"Widgets") returns the date and time that the version
Widgets in SALESRANGE was last modified.

See also

Help
@Functions
Range Version

User's Guide

Chapter 11, "Calculating with @Functions"

@SCENARIOLAST
@SCENARIOLAST(file-name) returns the name of the last-displayed scenario in a file during the current
1-2-3 session.

Arguments
file-name is the full name, including the extension, of the file you want to test for, entered as text. Unless
you want 1-2-3 to look for the file in the current directory, you must also specify the path as part of file-
name.

Notes
If no scenarios have been displayed in file-name during the current 1-2-3 session, @SCENARIOLAST
returns ERR.

Examples
@SCENARIOLAST("d:\123r5\sheets\july.wk4") returns the name of the last-displayed scenario in the file
JULY.WK4, which is stored in D:\123R5\SHEETS.

See also

Help
@Functions
Range Version

User's Guide

Chapter 11, "Calculating with @Functions"

@SEMEAN
@SEMEAN(range) calculates the standard error of the sample mean for the values in range.

Arguments
range is a range name or address.

Examples
Suppose the range TEST contains the values 2, 6, 8, 5, 3, 9, 1, and 2.

@SEMEAN(TEST) = 1.052209

Similar @functions
@GEOMEAN calculates the geometric mean of the values in a list. @HARMEAN calculates the
harmonic mean of the values in a list. @STD and @PURESTD calculate the standard deviation of the
values in a list.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@TTEST
@TTEST(range1;range2;[type];[tails]) performs a Student's t-test on the data in range1 and range2 and
returns the associated probability.

Arguments
range1 and range2 are ranges that contain values.

type is an optional argument that specifies what type of t-test to perform.

type 1-2-3 performs

0 A t-test for samples drawn from populations with the same variance (homoscedastic);
range1 and range2 do not have to contain the same number of cells; default if you omit
the argument

1 A t-test for samples drawn from populations with unequal variances (heteroscedastic);
range1 and range2 do not have to contain the same number of cells

2 A paired t-test; range1 and range2 must contain the same number of cells

tails is an optional argument that specifies the direction of the t-test.

tails 1-2-3 performs

1 A one-tailed t-test

2 A two-tailed t-test; default if you omit the argument

You cannot use an optional argument without using the ones that it.

Notes
@TTEST approximates the probability associated with a t-test to within ± 3*10^-7.

Examples
@TTEST

Similar @functions
@TDIST calculates the Student's t-distribution. @CHITEST performs a chi-square test, @FTEST
performs an F-test, and @ZTEST performs a z-test.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @TTEST
@TTEST(A2..A13;B2..B13) = 0.050022
A ------ A -------- B ------
1 Sample1 Sample
2 84.5 65.1
3 80.7 85.4
4 34.5 62.4
5 54.6 73.4
6 50.5 80.3
7 33.7 66.7
8 46.8 87.2
9 47.6 70.4
10 22.8 30.2
11 15.5 60.1
12 60.6 56.3
13 80.5 70.5

@VERSIONCURRENT
@VERSIONCURRENT(range) returns the name of the current version in range.

Arguments
range is the name or address of the range you want to find the version name for.

Notes
If no version is current, @VERSIONCURRENT returns ERR.

Examples
@VERSIONCURRENT(PROFITS) returns the name of the current version in the range PROFITS.

See also

Help
@Functions
Range Version

User's Guide

Chapter 11, "Calculating with @Functions"

@VERSIONDATA
@VERSIONDATA(option;cell;version-range;name;[creator]) returns the contents of a specified cell in a
version.

Arguments
option is text that specifies how you want 1-2-3 to return the contents of cell.

option 1-2-3 returns

formula The formula in the cell, as a label, or ERR if the cell does not contain a formula

value The result of the formula if the cell contains a formula

The value or label if the cell contains a value or a label

An empty string if the cell is blank

cell is the name or address of the cell whose contents 1-2-3 returns. cell must be located in version-
range.

version-range is the name of the range that contains the version. version-range must be an existing
named range.

name is text that specifies the name of the version. If more than one version has the same name, 1-2-3
uses the one most recently created.

creator is text that specifies the name of the user who created the version. 1-2-3 uses creator to help
determine which version to use or delete. If creator created multiple versions with the same name, 1-2-3
uses the most recently created of those versions.

Examples
@VERSIONDATA("formula";A:B12;SALES;"Best Case") returns the formula located in cell A:B12 of the
most recently created version named Best Case in the range SALES.

@VERSIONDATA("value";A:B12;SALES;"Best Case";"Robin Levine") returns the value or label in cell
A:B12 of the version named Best Case most recently created by Robin Levine in the range SALES.

See also

Help
@Functions
Range Version

User's Guide

Chapter 11, "Calculating with @Functions"

@WEIGHTAVG
@WEIGHTAVG(data-range;weights-range;[type]) calculates the weighted average of values in data-
range.

Arguments

data-range and weights-range are the names or addresses of ranges that contain values and are the
same size and shape.

If data-range and weights-range are not the same size and shape, @WEIGHTAVG returns ERR.

type is a value that determines how 1-2-3 calculates the weighted average.

type 1-2-3 divides by

0 The sum of the values in weights-range; default if you omit the argument.

1 The number of values in data-range.

Examples
This example, taken from a real estate database table, uses @WEIGHTAVG to calculate the weighted
average commission due to an agent on house sales in February.

SOLD contains the prices paid for three houses, and COMM contains the agent's commission
percentage of the sale price:

SOLD COMM
$25,000 0.04
$34,580 0.05
$77,325 0.04

@WEIGHTAVG(SOLD;COMM) = $44,784.62, the weighted average commission due to an agent on the
sale of three houses.

Similar @functions
@SUMPRODUCT calculates the sum of the products of the corresponding cells in multiple ranges.

See also

Help
@Functions
Statistical @Functions Arguments

User's Guide

Chapter 11, "Calculating with @Functions"

@WORKDAY
@WORKDAY(start-date;days;[holidays-range];[weekends]) calculates the date number that corresponds
to the date that is a specified number of days before or after start-date, excluding weekends and,
optionally, holidays.

Arguments
start-date is a date number.

days is an integer. Use a positive integer to specify a number of days after start-date or a negative
integer to specify a number of days before start-date.

holidays-range is an optional argument that specifies holidays to exclude from the @WORKDAY
calculation. holidays-range is the name or address of a range that contains date numbers.

If you omit the holidays-range argument, 1-2-3 does not exclude any holidays from the @WORKDAY
calculation.

weekends is an optional argument that specifies which days of the week are weekend days. weekends is
text that uses the integers 0 (Monday) through 6 (Sunday) to represent the days you specify as weekend
days.

For example, "45" indicates that Friday and Saturday are weekend days. If you omit weekends, 1-2-3
uses "56", which indicates that Saturday and Sunday are weekend days. To specify no weekends, use 7.

Notes
If you want to use weekends but don't want to use holidays, specify a blank cell for holidays.

Examples
You want to determine the date 30 working days after Tuesday, November 1, 1994. You want to specify
November 24 and 25 as holidays so you enter date numbers for these dates in a range named
HOLIDAYS. You want to specify Saturday and Sunday as weekend days, so you omit the weekends
argument.

@WORKDAY(@DATE(94;11;1);30;HOLIDAYS) = 34683, or, Thursday, December 15, 1994

Similar @functions
@DAYS360 and @D360 calculate the number of days between two date numbers. @NETWORKDAYS
calculates the number of days between two dates, excluding weekends and holidays. @NEXTMONTH
calculates the date that is a specified number of months before or after a specified date.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@XINDEX

@XINDEX(range;column-heading;row-heading;[worksheet-heading]) returns the contents of a cell
located at the intersection specified by column-heading, row-heading, and (optionally) worksheet-
heading.

Arguments
range is a range address or range name.

column-heading is the contents of a cell in the first row of range.

row-heading is the contents of a cell in the first column of range.

worksheet-heading is an optional argument that is the contents of the first cell in range.

column-heading, row-heading, and worksheet-heading can be values or text.

Examples
@XINDEX

Similar @functions
@CHOOSE finds an entry in a list. @HLOOKUP and @VLOOKUP find entries in horizontal and vertical
lookup tables. @MATCH returns the relative position of a cell in a range. @MAXLOOKUP returns an
absolute reference to the cell that contains the largest value in a list of ranges. @MINLOOKUP returns
an absolute reference to the cell that contains the smallest value in a list of ranges.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Example: @XINDEX
A table named RATES (A2..E7) lists rates for sending a parcel to several cities.

@XINDEX(RATES;"New York";1) = $9.29, the rate for sending a type 1 parcel to New York.

@XINDEX(RATES;"Paris";5), = $29.00, the rate for sending a type 5 parcel to Paris.
A ---- A ---------- B -------- C ----- D --------- E --------
1 ------------ PARCEL DESTINATION ------------
2 Parcel type London Paris Frankfurt New York
3 1 $18.36 $19.33 $20.12 $ 9.29
4 2 $20.32 $21.66 $22.03 $11.25
5 3 $22.44 $23.88 $24.00 $13.25
6 4 $24.14 $25.26 $25.75 $16.85
7 5 $28.32 $29.00 $29.80 $19.54

@ZTEST
@ZTEST(range1;mean1;std1;[tails];[range2];[mean2];[std2]) performs a z-test on one or two populations
and returns the associated probability.

Arguments
range1 is a range that contains the first, or only, set of data to test.

mean1 is the known population mean of range1 and can be any value.

std1 is the known population standard deviation of range1. std1 is a value greater than 0.

tails is an optional argument that specifies the direction of the z-test.

tails 1-2-3 performs

1 A one-tailed z-test

2 A two-tailed z-test; default if you omit the argument

range2 is a range that contains the second set of data to test.

mean2 is the known population mean of range2 and can be any value. If you omit mean2, 1-2-3 uses 0.

std2 is the known population standard deviation of range2. std2 is a value greater than 0. If you omit
std2, 1-2-3 uses 1.

You cannot use an optional argument without using the ones that precede it.

Notes
@ZTEST approximates the probability associated with a z-test to within ± 7.5*10^-8.

Examples
The range A1..A8 contains the following values: 12, 19, 21, 22, 18, 16, 15, 17. If the population mean of
these values is 16, and the population standard deviation is 3.041381, then z = 1.394972.

@ZTEST(A1..A8;16;3.041381;1) = 0.081512

Similar @functions
@CHITEST performs a chi-square test, @FTEST performs an F-test, and @TTEST performs a t-test.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DDELINK
@DDELINK(app-name;topic-name;item-name;[format];[max-rows];[max-cols];[max-sheets]) creates a
DDE link in the current cell.

You can change the link by changing the @DDELINK arguments.

Arguments
app-name is text that specifies the name of an open Windows application that supports DDE as a server.

topic-name is text that specifies the name of the application file to link to. Use "system" to link to the
system topic.

item-name is text that specifies the name of the item in the server application to link to. This is the item in
the server application file to which you want to transfer data through the link.

format is text that specifies one of the Clipboard formats. format can be Text, WK1, or WK3.

If you omit format, 1-2-3 uses the Text Clipboard format.

max-rows, max-cols, and max-sheets specify the maximum number of rows, columns, and worksheets
for the destination range. If you omit max-rows, max-cols, or max-sheets, 1-2-3 uses as many rows,
columns, or worksheets as the destination range requires.

Notes
When you create an on-sheet or DDE link with Edit Links Create, @DDELINK appears in the first cell of
the link's destination range.

Examples
The following @DDELINK formula creates a DDE link named DDE_LINK3 to the Ami Pro file
LOAN.SAM.

@DDELINK("AmiPro";"D:\AMIPRO\DOCS\LOAN.SAM";"DDE_LINK3")

See also

Help
@Functions
Overview of DDE and OLE in 1-2-3

User's Guide

Chapter 11, "Calculating with @Functions"

@DATESTRING

@DATESTRING(date) converts a date number to its equivalent date and displays it as a label using the
default International Date format.

Arguments
date is a date number.

Notes
You can change the default International Date format with Tools User Setup International Format.

Examples
If the default International Date format is mm/dd/yy, @DATESTRING(34635) returns the label
10/28/94.

Similar @Functions
@DATEVALUE calculates the date number for a date entered as a label. @DATE calculates the date
number for a specified date.

See also

Help
@Functions

User's Guide
Chapter 11, "Calculating with @Functions"

@NETWORKDAYS

@NETWORKDAYS(start-date;end-date;[holidays-range];[weekends]) calculates the number of days from
start-date through end-date, excluding weekends and holidays.

Arguments
start-date and end-date are date numbers.

holidays-range is an optional argument that specifies holidays to exclude from the @NETWORKDAYS
calculation. holidays-range is the name or address of a range that contains date numbers.

weekends is an optional argument that specifies which days of the week are weekend days. weekends is
text that uses the integers 0 (Monday) through 6 (Sunday) to represent the days you specify as weekend
days.

For example, "45" indicates that Friday and Saturday are weekend days. If you omit weekends, 1-2-3
uses "56", which indicates that Saturday and Sunday are weekend days. To specify no weekends, use 7.

You cannot use an optional argument without using the ones that precede it.

Notes
@NETWORKDAYS includes both start-date and end-date in the result.

If you want to use weekends but don't want to use holidays, specify a blank cell for holidays.

Examples
You want to determine the number of working days between Tuesday, November 1, 1994, and Thursday,
December 1, 1994. You want to specify November 24 and 25 as holidays, so you enter date numbers for
these dates in a range named HOLIDAYS. You want to specify Saturday and Sunday as weekend days,
so you omit the weekends argument.

@NETWORKDAYS(@DATE(94;11;1);@DATE(94;12;1);HOLIDAYS) = 21

Similar @Functions
@DAYS360 and @D360 calculate the number of days between two date numbers. @DAYS calculates
the number of days between two dates, using a specified day-count basis. @WORKDAY calculates the
date that is a specified number of days before or after a specified date, excluding weekends and
holidays. @NEXTMONTH calculates the date that is a certain number of months before or after a
specified date.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@SUMNEGATIVE
@SUMPOSITIVE

@SUMNEGATIVE(list) sums only the negative values in list.

@SUMPOSITIVE(list) sums only the positive values in list.

Arguments
list can contain any of the following, in any combination: numbers, numeric formulas, and addresses or
names of ranges that contain numbers or numeric formulas. Separate elements of list with argument
separators.

Examples
@SUMNEGATIVE(-2;21;5;12;-2;-7) = -11

@SUMPOSITIVE(-2;21;5;12;-2;-7) = 38

Similar @Functions
@SUM adds a list of values. @DSUM adds values in a database table that meet certain criteria.
@SUBTOTAL adds the values in a list and tells @GRANDTOTAL which values to sum.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@MAXLOOKUP
@MINLOOKUP

@MAXLOOKUP(range-list) returns an absolute reference, including the file name, to the cell that
contains the largest value in a list of ranges.

@MINLOOKUP(range-list) returns an absolute reference, including the file name, to the cell that contains
the smallest value in a list of ranges.

Arguments
range-list can be any combination of ranges. Separate the range names or addresses in range-list with
argument separators.

If you want to include a single-cell range in range-list, make sure you enter it so it looks like a range
address. For example, do not use A1; instead, use A1..A1.

1-2-3 ignores labels and blank cells in range-list.

If none of the cells in range-list contain values, @MAXLOOKUP and @MINLOOKUP return NA.

Examples
Suppose your 1-2-3 directory contains the files BID1.WK4, BID2.WK4, and BID3.WK4. Each file contains
bid information from a different vendor. The files were all created from the same template, so in each file,
the total bid figure is in a cell named TOTAL.

The following formula returns the location, including the file name, of the highest bid:

@MAXLOOKUP(<<BID1.WK4>>TOTAL;<<BID2.WK4>>TOTAL;<<BID3.WK4>>TOTAL)

The following formula returns the location, including the file name, of the lowest bid:

@MINLOOKUP(<<BID1.WK4>>TOTAL;<<BID2.WK4>>TOTAL;<<BID3.WK4>>TOTAL)

Similar @Functions
@HLOOKUP and @VLOOKUP find entries in horizontal or vertical lookup tables. @INDEX finds the
contents of a cell when you specify offset numbers for both the column and row. @CHOOSE replaces a
lookup table that requires only one row. @MATCH finds the relative position of a cell with specified
contents. @XINDEX finds the contents of a cell specified by column, row, and worksheet headings.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@NEXTMONTH
@NEXTMONTH(start-date;months;[day-of-month];[basis]) calculates the date number for the date that is
a specified number of months before or after start-date.

Arguments
start-date is a date number.

months is an integer. Use a positive integer to specify a number of months after start-date or a negative
integer to specify a number of months before start-date.

day-of-month is an optional argument that specifies what day of the month you want the result of
@NEXTMONTH to fall on. day-of-month is a value from the following table:

day-of-month @NEXTMONTH returns

0 A date that falls on the same day of the month as start-date. If start-date falls on a
day of the month that does not exist for the new month (for example, if start-date is
January 30, 1994 and the new month is February, which has 28 days),
@NEXTMONTH returns a date that falls on the last day of the month. Default if you
omit the argument.

1 A date that falls on the first day of the month.

2 A date that falls on the last day of the month.

basis is an optional argument that specifies the type of day-count basis to use. basis is a value from the
following table:

basis Day-count basis

0 30/360

1 Actual/actual; default if you omit the argument

2 Actual/360

3 Actual/365

You cannot use an optional argument without using the ones that precede it.

Examples
You want to determine the date that falls on the last day of the month, one month after Thursday, April 7,
1994.

@NEXTMONTH(@DATE(94;4;7);1;2) = 34485, or Tuesday, May 31, 1994

Similar @Functions
@DAYS360 and @D360 calculate the number of days between two date numbers. @WORKDAY
calculates the date a specified number of days before or after a specified date, excluding weekends and
holidays. @NETWORKDAYS calculates the number of days between two dates, excluding weekends
and holidays.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@DURATION
@MDURATION

@DURATION(settlement;maturity;coupon;yield;[frequency];[basis]) calculates the annual duration for a
security that pays periodic interest.

@MDURATION(settlement;maturity;coupon;yield;[frequency];[basis]) calculates the modified annual
duration for a security that pays periodic interest.

Arguments
settlement is the security's settlement date. settlement is a date number.

maturity is the security's maturity date. maturity is a date number. If maturity is less than or equal to
settlement, @DURATION and @MDURATION evaluate to ERR.

coupon is the security's annual coupon rate. coupon is any positive value or 0.

yield is the annual yield. yield is any positive value or 0.

frequency is an optional argument that specifies the number of coupon payments per year. frequency is a
value from the following table:

frequency Frequency of coupon payments

1 Annual

2 Semiannual; default if you omit the argument

4 Quarterly

12 Monthly

basis is an optional argument that specifies the type of day-count basis to use. basis is a value from the
following table:

basis Day-count basis

0 30/360; default if you omit the argument

1 Actual/actual

2 Actual/360

3 Actual/365

You cannot use an optional argument without using the ones that precede it.

Notes
Duration is the weighted average term to maturity of a security's cash flows. The weights are the present
value of each cash flow as a fraction of the present value of all cash flows.

Examples
A security has a July 1, 1993, settlement date and a December 1, 1998, maturity date. The semiannual
coupon rate is 5.50% and the annual yield is 5.61%. The bond has a 30/360 day-count basis.

To determine the security's annual duration:

@DURATION(@DATE(93;7;1);@DATE(98;12;1);0.055;0.0561;2;0) = 4.734591

To determine the security's modified annual duration:

@MDURATION(@DATE(93;7;1);@DATE(98;12;1);0.055;0.0561;2;0) = 4.60541

Similar @Functions
@ACCRUED calculates the accrued interest for securities that pay periodic interest. @PRICE calculates
the price per $100 face value for securities that pay periodic interest. @YIELD calculates the yield for
securities that pay periodic interest.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

@ISEMPTY

@ISEMPTY(location) tests location for a blank cell. If location is a blank cell, @ISEMPTY returns 1
(true); if location is not a blank cell, @ISEMPTY returns 0 (false).

Arguments
location is the name or address of a single cell. If you specify a range for location, @ISEMPTY returns 0
(false).

Examples
@ISEMPTY(A1) = 1 if cell A1 is a blank cell

@ISEMPTY(A1) = 0 if cell A1 contains the value 1,963

@ISEMPTY(A1) = 0 if cell A1 contains the label Revenues

@ISEMPTY(A1) = 0 if cell A1 contains a label prefix character

See also

Help
@Functions
Logical @Functions for a list of other @functions that calculate logical formulas.

User's Guide

Chapter 11, "Calculating with @Functions"

@SETSTRING
@SETSTRING(text;length;[alignment]) returns a label that is length characters long. The label consists
of text and sufficient blank spaces to align text as specified by alignment.

Arguments
text can be any text.

length can be any integer from 1 through 512. If length is smaller than the number of characters in text,
@SETSTRING returns text.

alignment is an optional argument that specifies how to align text. alignment is a value from the following
table:

alignment 1-2-3 aligns text

0 To the left of the extra spaces in length; default if you omit the argument.

1 In the center of the extra spaces in length. If there is an odd number of extra spaces, 1-2-3
adds the one leftover space to the left of text.

2 To the right of the extra spaces in length.

Notes
Most of the fonts used with Windows are proportionally spaced fonts. Blank spaces generally use less
space than letters in proportionally spaced fonts.

Examples
In the following examples, each · represents a blank space.

@SETSTRING("Element Nine, Inc.";24) = Element Nine, Inc.······

@SETSTRING("Element Nine, Inc.";24;1) = ···Element Nine, Inc.···

@SETSTRING("Element Nine, Inc.";24;2) = ······Element Nine, Inc.

Similar @functions
@TRIM removes leading, trailing, and consecutive spaces from text.

See also

Help
@Functions

User's Guide

Chapter 11, "Calculating with @Functions"

Printing Sections of @Functions Help
Scroll through the list below and then, to print a section of @Functions Help, just click it.

A book containing detailed descriptions of all 1-2-3 @functions and macro commands is now
available from Lotus. Click "@Functions and Macros Book Coupon" to print the coupon for
ordering this book.

 @Functions and Macros Book Coupon

 Calendar @Functions

 Database @Functions

 Engineering @Functions

 Financial @Functions

 Information @Functions

 Logical @Functions

 Lookup @Functions

 Text @Functions

Mathematical @Functions:

 Conversion @Functions

 General @Functions

 Hyperbolic @Functions

 Rounding Values @Functions

 Trigonometric @Functions

Statistical @Functions:

 Forecasting @Functions

 General @Functions

 Probability @Functions

 Ranking @Functions

 Significant Tests @Functions

Online Coupon
Want a One-Stop Shop for All the Information on
@Functions and Macro Commands in 1-2-3?
We've developed a comprehensive resource guide that
contains detailed information about each @function and
macro command that is available in 1-2-3 Release 5 for
Windows. The information (which is also available on-line
under the 1-2-3 Help menu) is consolidated into a single
guide making it easy for you to find the information you
need — in a hurry.

Working with    @Functions Developing Powerful Macros
The @functions section provides
detailed information about each
@function including arguments,
notes, formula type and
examples.

The macro language section
provides detailed information
about each macro command,
including arguments, notes, and
examples.

Using this section, you will find
the descriptions for various
formats, learn how to enter
@functions and how    to
customize the @functions menu.

This section contains information
to help you plan, create, name,
run, debug, and save your 1-2-3
macros.

Order your 1-2-3 Release 5 for Windows
@Functions and Macro Commands Reference Guide

Call 1-800-872-3387 extension 9635
In Canada: 1-800-GO-LOTUS

Detach this card and place it in a stamped envelope.    Make checks payable to
 Lotus Development Corp.   

In Canada, make checks payable to Lotus Development Canada Limited

Please allow 4 - 6 weeks for delivery.
PLEASE PRINT
Company:
Name:
Address:
City: 
State/Province:
Zip Code/Postal Code:
Payment: AMEX      VISA      MC        C heck                          Card #:
Signature: 
Exp. Date:
UNITED STATES:    To order the reference guide:    Please call 1-
800-872-3387 ext. 9635.    Or simply complete this card, enclose
$14.95 plus any applicable sales tax*, and mail to:   

Lotus Development Corporation
Box 100, 440 Lincoln Street
Worcester, MA 01653-0100
Attn:    Guide to @Functions and Macros in 1-2-3 Release 5
*Include sales tax for the following states:    AZ, CA, CO, CT, FL,
GA, IL, IN, KS, LA, MD, MA, MI, MN, MO, NJ, NY, NC, OH, PA,
TN, TX, VA, WA
CANADA:    To order the reference guide:    Please call 1-800-GO-
LOTUS.    Or simply complete this card, enclose C$19.95 plus
applicable taxes, and mail to:
Lotus Development Canada Limited
P.O Box 679

Scarborough, Ontario    M1K 5C5
Attn: Guide to @Functions and Macros in 1-2-3 Release 5

Marks the start of the @Function section of 123CRTF.H

Marks the end of the @Function section of 123CRTF.H

Marks the start of the Macro section of 123CRTF.H

Marks the end of the Macro section of 123CRTF.H

Marks the start of the Main Help section of 123CRTF.H

Marks the end of the Main Help section of 123CRTF.H

Brought to you by the 1-2-3 for Windows Doc Team and their friends
Wendy Clarke, Stan Doherty, Maida Eisenberg, David Folk, Gisele Gauthier, Joseph Haungs, Kathy
Howard, John Hunt, Mark Jacober, Mike Lowry, Arthur Manzi, Lisa Mosley, Henry Nigro, Peter Rodman,
Laura Sohval, Debbie Stolper, Marie Tahir, Bob Voges, Darrell Williams, and of course, Tonya and Nancy.

