
ImageLib 3.0

Delphi Users' Guide

Installation Instructions

What is ImageLib VCL/DLL

PMultiImage Component

PDBMultiImage Component

PDBMultiMedia Component

PDBMediaPlayer Component

License Agreement

ImageLib DLL/VCL version 3.0 (c) Copyright 1995 by:

SkyLine Tools

SkyLine Tools

Kevin Adams (CIS) 74742,1444

Jan Dekkers (CIS) 72130,353

Jillian Pinsker (CIS) 72130,353

Technical support for C, C++, VB applications:

Kevin Adams: compuserve 74742,1444 or
Internet : 74742,1444@compuserve.com

Technical support for Delphi, Pascal and VB applications:

Jan Dekkers compuserve 72130,353 or
Internet : 72130,353@compuserve.com

Address:
SkyLine Tools

Attn: Jan Dekkers
11956 Riverside Drive 206

North Hollywood CA 91607
Phone 818 766-3900
Fax: 818 766-9027

ImageLib DLL/VCL

What is ImageLib DLL/VCL?

The ImageLib VCLs\DLL is an inexpensive way to implement JPEG, GIF, PCX, PNG,
WMF, ICO, SCM.BMP, ICO and CMS into your applications. ImageLib gives you royalty
free VCL components with code included.

When ImageLib is being compiled into an executable application with the extension exe.,
then there are no licensing fees or royalties. Should any part of ImageLib ,either the VCL or
the DLL be used in a non-compiled application, such as: a value added VCL, VBX, OCX,
royalties apply. See our License Agreement for more information.

Other image and multimedia development tools are far more expensive than ImageLib.
When users compared ImageLIb's color resolution with other imaging tools, they found that
ImageLib's was superior to most. In fact, the JPEG is so professional looking that
museums are using it to catalogue their art.

International developers are able to display strings in the DLL as a resource file thereby
enabling the translation into foreign languages.

Also, ImageLib adds PDBMultiImage and PDBMultiMedia to store and display JPEG, BMP,
GIF, PNG, CMS, SCM, PCX , AVI, MOV, MID, WAV and RMI multimedia files in/from a
TBlobField.

SkyLine Tools stands behind its product with its highly responsive technical support.

ImageLib is an enhanced TImage and TDBImage VCL/DLL with the following
added features:

· Corrected Palette and Stretching of the Image Canvas (Delphi bug fix)

· Enables the reading and writing of JPEG, PNG, PCX, GIF and BMP formats to/from a file or
a Tblobfield.

· Enables the reading and writing of ICO and WMF formats to/from a file or Tblobfield (Delphi
inherited)

· Enables the reading and writing of Horizontal and Vertical Scrolling message images
to/from a file or a Tblobfield.

· Enables the reading and writing of AVI, MOV, WAV, RMI, and MID formats to/from a
Tblobfield.

· No code necessary (VCL) to display all image formats from a TBlobfield;

· Loads/Saves all Tblobfield images to/from JPG, BMP, GIF, PCX, or PNG image files

· Includes a sophisticated color quantization engine with dithering to read and write images in
4, 8, or 24 bit formats independent of the current windows mode and the format of the

origional image.

· Set quality and smoothing factors (0 to 100%) when saving JPEG images.
     

· Our components support CUT/COPY and Paste to/from the clipboard and store as a JPEG,
BMP, GIF, PCX, or PNG file/blob

· Our components have full Print Support with 1 line of code

· Internal scrolling message editor

· DLL Callback function, to show a progress bar and to process Messages

· Foreign error strings. DLL strings are stored in the DLL resource

· Full VCL source code provided without extra charge

· Access to lower level function calls for the advance developer, including support for the DIB
and DDB bitmap formats

Installation Instructions

Installation Instructions
BACKUP YOUR \DELPHI\BIN\COMPLIB.DCL Better safe than sorry.

Copy the IMGLIB30.DLL to a directory on your path or to the windows\system directory.
IMGLIB30.DLL is a DISTRIBUTABLE FILE and needs to be included with your application.

Unzip the EXAMPLS.ZIP into a new directory. Copy the following files into a directory
containing your 3rd party added VCL's: (If you don't have a directory yet please, make one).

WHEN EVALUATING
PMREG.PAS, PMREG.DCR, TMULTIP.PAS, TDMULTIP.PAS, DLL30.DCU, SETSR30.DFM,
SETSR30.PAS, SETCR30.DFM and SETCR30.PAS

WHEN PURCHASED
PMREG.PAS, PMREG.DCR, TMULTIP.PAS, TDMULTIP.PAS, DLL30.PAS, SETSR30.DFM,
SETSR30.PAS, SETCR30.DFM and SETCR30.PAS

Execute Delphi. In Delphi select Options\Install components\ Add and browse your 3rd party
added VCLs directory. Select PMREG.PAS and press the OK button.

Installation Instructions for the Examples
In delphi select Open\Project and open one of the projects in the newly created directory.
Select rebuild. Run the program.

Other Topics

    Troubleshooting

 Previous Versions

After the library is rebuilt, you will notice 4 new icons on your Delphi toolbar under images
called:

PMultiImage PDBMultiImage

PDBMultiMedia PDBMediaPlayer

TroubleShooting Installation

Troubleshooting
The Delphi Library searchpath is very short (127 characters). The more VCL components you
add, the larger your searchpath. Should you get a message PMREG.PAS or PMREG.DCU
not found, then your path is being truncated, the solution is to copy several 3rd party VCLs
into one directory and delete the freed directories from your searchpath. If Complib cannot
find IMGLIB30.DLL you will notice that all Icons are gone from your delphi toolbar and you
get a message COMPLIB.DCL not found. No Panic, Just copy IMGLIB30.DLL to a directory
on your path or to the windows\system directory and restore your backed up complib.

Previous Versions of ImageLib

IF YOU INSTALLED THE OLD MULTIIMAGE or DBMULTIIMAGE

What to do with your existing programs using the old MultiImage VCL:

In case of OLD MULTIIMAGE:
Change the uses clause of your programs from REG_IMAG or REG_IM20 or TMULTI to
TMULTIP, which is the replacement for REG_IMAG or REG_IM20 or TMULTI.

In case of OLD TDBMULTIIMAGE:
Change the uses clause of your programs from REG_IM20 or TDBMULTI to TDMULTIP
which is the replacement for REG_IMAG or REG_IM20 or TDBMULTI.

(Only for update from version 1.0 to version 2.0)
When you startup your existing programs using the MultiImage VCL you might notice a
complain (Property JPegSaveSmooh doesn't exist or Property JPegSaveFileName doesn't
exist).

Property JPegSaveSmooh is renamed to JPegSaveSmooTh (watch the T).
To fix this, Load the FORM (the *.DFM) file complaining about this and replace
JPegSaveSmooh with JPegSaveSmooTh (add the T).

Property JPegSaveFileName is renamed to DefSaveFileName.
To fix this, Load the FORM (the *.DFM) file complaining about this and replace
JPegSaveFileName with DefSaveFileName

TPMultiImage Component

TPMULTIIMAGE: JPEG, BMP, GIF, PNG, WMF, SCM, CMS, ICO and PCX.

Sample projects:
im_cvrt.dpr Converting images example
scrollim.dpr Scrolling messages example
simple.dpr A few lines of code example
viewph.dpr Extensive example

PMutltimage has the same properties as Delphi's TImage with the following additions:

Topics

 Credit Messages DLL Image CallBack Procedure

 Scrolling Messages Printing PMultiImage Images

 Saving a BMP Image Reading and Displaying a BMP Image

Procedures

 SaveAsPCX SaveAsPNG

 PrintMultiImage CopyToClipboard

 CutToClipboard Trigger

      NewCreditMessage SaveAsGIF

 PasteFromClipboard SaveAsBMP

 SaveCurrentMessage SaveAsJpg

 CreateCreditMessage FreeMsg

 CreateMessage

Functions

 GetInfoAndType

Properties

 ImageName DefSaveFileName

 ImageDither ImageReadRes

 ImageWriteRes JPegSaveQuality

 JPegSaveSmooth

TPDMultiImage Component

TPDBMULTIIMAGE: Sample project Blob.dpr

Displays and stores JPEG, BMP, GIF, PNG, SCM, CMS and PCX from/to a TBLOBField.

TPDBMutltimage is the data-aware version of TPMultiImage. PDBMutltimage is derived
from TCustomControl. It has the same properties as Delphi's TDBImage with the following
additions:

Topics

 Printing PDBMultiImage Images Credit TBlobField Messages

 Scrolling TBobField Messages DLL Image CallBack Procedure

Procedures

 SaveToFileAsBMP SaveToFileAsGIF

 SaveToFileAsPCX SaveToFileAsPNG

 SaveToFile SaveToFileAsJpg

 PrintMultiImage PasteFromClipboard

 CopyToClipboard CutToClipboard

 Trigger NewCreditMessage

 FreeMsg CreateMessage

Functions

 GetInfoAndType CreateCreditMessage

Properties

 JPegSaveQuality JPegSaveSmooth

 ImageDither ImageReadRes

 ImageWriteRes UpdateAsJPG

 UpdateAsBMP UpdateAsGIF

 UpdateAsPCX UpdateAsPNG

TPDMultiMedia and TPDBMediaPlayer Components

TPDBMULTIMEDIA and TPDBMEDIAPLAYER: Sample project: MMBLOB.dpr

 TPDBMultiMedia Functions

 GetMultiMediaExtensions

 TPBDMultiMedia Properties

 PathForTempFile TempMOV

 TempAVI TempWAV

 TempMID TempRMI

 AutoPlayMultiMedia AutoRePlayMultiMedia

 AutoHideMediaPlayer MediaPlayer

 TPDBMediaPlayer Properties

 Display DisplayRect

Overview
PDBMultiMedia has all the same properties and functions as PDBMultiImage. However,
besides the storing and displaying of JPEG, BMP, GIF, PNG, CMS, SCM and PCX from a
TBLOBField ,it also stores and plays AVI, MOV, MID, WAV and RMI multimedia files.
PDBMediaPlayer is a derived Delphi MediaPlayer and has exactly all the same functions and
properties. When using the PDBMediaPlayer you don't need to assign anything to
PDBMediaPlayer directly, PDBMultiMedia will take care of it.

TPDBMULTIMEDIA will automatically enable/disable the playback of:

 AVI: If video for windows isn't installed;
 MOV: If quicktime for windows isn't installed;
 WAV: If no sound support is installed;
 RMI: If no midi playback drivers are installed;
 MID: If no midi playback drivers are installed.

Thus you don't need to be afraid of your program crashing when no sound card is installed or
Video for windows isn't present.

Advanced Support

PASCAL AND DELPHI DLL Calls and Scrolling messages File/Stream calls
You might never have a need to make calls directly to the DLL. But in case you have a need
for it, we listed all the pascal interface calls with the DLL. You can find all the calls in
DLL30.INT or DLL30.PAS

In addition to our normal DLL calls used by our VCL components, which support the Device
Dependent Bitmap format, the DLL also supports direct calls with Device Independent
Bitmaps for the advance developers. Please contact SkyLine Tools for availability and
location of examples using DIB calls.

ImageName Property

      TPMULTIIMAGE

property ImageName
Visual property

Value
Filename of the image which needs to be displayed.

Purpose
JPEG, BMP, GIF, PNG, WMF, SCM, CMS, ICO and PCX. images are loaded with one single
line of code.

Example
PMultiImage1.Imagename:=C:\ CLOWN.JPG';

JpegSaveQuality Property

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

property JPegSaveQuality
Visual property

Value
 0...100

Purpose
 0 is poor and 100 excellent. We normally use 25 to have a reasonable quality with 1/10
savings in size.

Example
PMultiImage1.JPegSaveQuality:=25;

JpegSaveSmooth Property

    TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

property JPegSaveSmooth
Visual property

Value
      0...100

Purpose
0 is no smoothing and 100 is full smoothing. Because of the lossy compression of Jpegs,
an image might be too hard; smoothing can give it a better look.

Example
PMultiImage1.JPegSaveSmooth:=5;

SaveAsJPG Procedure

      TPMULTIIMAGE

procedure SaveAsJpg(FN : TFilename);

Value
Filename of the file saved to

Purpose
Save the displayed image to a jpeg file.

Remark
An active image needs to be displayed on the form. If
no filename is passed it will use the DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
 if SaveDialog1.execute then begin

PMultiImage1.JPegSaveSmooth:=5;
PMultiImage1.JPegSaveQuality:=25;

 PMultiImage1.SaveAsJpg(SaveDialog1.FileName);
 end;
end;

DefSaveFileName Property

      TPMULTIIMAGE

property DefSaveFileName
visual property
(Changed from JPGSaveFileName in version 2.0)

Value
Filename of the BMP, JPG, GIF, PCX, PNG which needs to be saved.

Purpose
It can come in handy to store a filename long before the file is actually
saved. You can use this as a filename scratchpad.

 Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
if SaveDialog1.execute then begin
 PMultiImage1.JPegSaveQuality:=25;
 PMultiImage1.JPegSaveSmooth:=5;
 PMultiImage1.DefSaveFileName:=SaveDialog1.FileName;
 PMultiImage1.SaveAsJpg('');
 end;
end;

ImageDither Property

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

property ImageDither
Visual property

Value
True or False

Purpose
Dithering is used in conjunction with the ImageReadRes. If
ImageReadRes = ColorTrue then ImageDither is not used
ImageReadRes = Color256 then ImageDither False or True for dither option
ImageReadRes = Color16 then ImageDither False or True for dither option

In all cases dithering is only used if it has to change resolutions of the input image. If a
resolution of Color256 is specified and the input image is already 256 colors then the
dithering will do nothing. If the input is ColorTrue and VGA resolution is 256 colors then the
image will be dithered if set to true.

Example
procedure TForm1.DoImage;
begin
PMultiImage1. ImageDither:=True;

PMultiImage1. ImageReadRes:= Color256;
PMultiImage1.imagename:=’c:\frog.jpg’;

 end;
end;

ImageReadRes Property

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

property ImageReadRes
Visual property

Value
ColorTrue, Color256 or Color16

Purpose
To force an image to be read in a specific resolution. Lets assume that the VGA display of a
particular computer is 16 colors but the Image is a 256 color image. This image needs to be
color reduced to be shown on the 16 color PC.

Example
procedure TForm1.OpenFileClick(Sender: TObject);
begin
 if OpenDialog1.execute then begin

PMultiImage1. ImageDither:=True;
PMultiImage1. ImageReadRes:= Color256;
PMultiImage1.imagename:=OpenDialog1.filename;

 end;
end;

ImageWriteRes Property

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

property ImageWriteRes
Visual property

Value
ColorTrue, Color256 or Color16

Purpose
 To force an image to be written in a specific resolution (Upscale or Downscale)
Note:    JPEG images will only be written in ColorTrue (24 bit).    ColorTrue is an invalid value

      for GIF images.

Example
procedure TForm1.SaveFileClick(Sender: TObject);
begin
 if SaveDialog1.execute then begin

PMultiImage1. ImageWriteRes:= Color16;
PMultiImage1.SaveAsBMP(SaveDialog1.FileName);

 end;
end;

Reading/Displaying a BMP Image

      TPMULTIIMAGE

To read/display a BMP image you can use either Imagelib or Delphi

Example using the Delphi way.
This example uses two picture components. When the form first appears, two bitmaps are
loaded into the picture components and stretched to fit the size of the components. To try this
code, substitute names of bitmaps you have available.

The following code will load BMP, WMF and ICO Images

procedure TForm1.FormCreate(Sender: TObject);
begin
 PMultiImage1.Stretch := True;
 PMultiImage2.Stretch := True;
 PMultiImage 1.Picture.LoadFromFile('BITMAP1.BMP');
 PMultiImage 2.Picture.LoadFromFile('BITMAP2.BMP');
end;

Example using the ImageLib way.
This example uses two picture components. When the form first appears, two bitmaps are
loaded into the picture components and stretched to fit the size of the components. To try this
code, substitute names of bitmaps you have available.

The following code will load JPEG, BMP, SCM, GIF, WMF, ICO and PCX Images

procedure TForm1.FormCreate(Sender: TObject);
begin
 PMultiImage1.Stretch := True;
 PMultiImage2.Stretch := True;
 PMultiImage 1.ImageName:='BITMAP1.BMP';
 PMultiImage 2.ImageName:='BITMAP2.BMP';
end;

Saving A BMP Image
SaveAsBMP Procedure

      TPMULTIIMAGE

To Save a BMP image you can use either Imagelib or Delphi

Example using the Delphi way.
This example uses two picture components.

begin
PMultiImage1.Picture.SaveToFile('BITMAP1.BMP');
PMultiImage2.Picture.SaveToFile('BITMAP2.BMP');

end;

Saving BMP's the ImageLib way.

procedure SaveAsBMP(FN : TFilename);

Value
Filename of the file to which it is being saved.

Purpose
Save the displayed image to a bmp file.

Remark
An active image needs to be displayed on the form. If no filename is passed it will use the
DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
if SaveDialog1.execute then begin
 PMultiImage1.DefSaveFileName:=SaveDialog1.FileName;
 PMultiImage1.SaveAsBMP('');
 end;
end;

Or

procedure TForm1.SaveButtonClick(Sender: TObject);
begin
if SaveDialog1.execute then
 PMultiImage1.SaveAsBMP(SaveDialog1.FileName);
end;

SaveAsGIF Procedure

      TPMULTIIMAGE

procedure SaveAsGIF(FN : TFilename);

Value
Filename of the file to which it is being saved.

Purpose
Save the displayed image to a GIF file.

Remark
An active image need to be displayed on the form. If no filename is passed it will use the
DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
 if SaveDialog1.execute then
 PMultiImage1.SaveAsGIF(SaveDialog1.FileName);
end;

SaveAsPCX Procedure

      TPMULTIIMAGE

procedure SaveAsPCX(FN : TFilename);

Value
Filename of the file to which it is being saved.

Purpose
Save the displayed image to a PCX file.

Remark
An active image needs to be displayed on the form. If no filename is passed it will use the
DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
 if SaveDialog1.execute then
 PMultiImage1.SaveAsPCX(SaveDialog1.FileName);
end;

SaveAsPNG Procedure

TPMULTIIMAGE

procedure SaveAsPNG(FN : TFilename);

Value
Filename of the file to which it is being saved.

Purpose
Save the displayed image to a PNG file.

Remark
An active image needs to be displayed on the form. If no filename is passed it will use the
DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
 if SaveDialog1.execute then
 PMultiImage1.SaveAsPNG(SaveDialog1.FileName);
end;

Credit Messages

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

Credit Messages File read and write

Overview
Credit messages are TPMultiImages created by the VCL on the fly. The average filesize of a
Credit message (CMS) is only 200 bytes. The maximum size is 64Kb. Stored in the CMS file
are:

MessageFont : TFont; the message's font
MessageSpeed : Integer; the scrolling speed 1 is fast 10 is slow
MessageColor : TColor; the background color

      CreditBoxList : TStringList; the credit messages in a stringlist
     

The VCL does NOT have its own moving engine. You "the programmer" must trigger the
movements. The reason for this is that an application can have only one Application.OnIdle
event. This event then needs to be shared by other events which may need a trigger. Note that
other VCLs could also use a Trigger. Make sure that their OnIdle proc. doesn't destroy
PMultiImage's trigger.

In your application you need to add a procedure to the private clauses called, for instance,
Trigger:

type
 TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public
end;

In the form create you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure Form1.Trigger(Sender : TObject; Var Done : Boolean);
begin

PMultiImage3.Trigger;
 PMultiImage2.Trigger;
 PMultiImage1.Trigger;
end;

For an extensive example load the project Scrollim.dpr

Trigger Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

Procedure Trigger;

Value
None

Purpose
Trigger the scrolling message movements.

Example
Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

PMultiImage1.Trigger;
end;

CreateCreditMessage Procedure

      TPMULTIIMAGE

procedure CreateCreditMessage(MessagePath : String; AutoLoad : boolean);

Value
MessagePath The initial path displayed in the save dialog.
AutoLoad True or False. If true, message is displayed after saving it.

Purpose
CreateCreditMessage will open the Message editor. The user can create his own Credit
message and save this message to a file with a CMS extension as default.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
 PMultiImage1.CreateCreditMessage(ExtractFilePath(Application.Exename), True);
end;

    TDBMULTIMEDIA, TPDBMULTIIMAGE

Function CreateCreditMessage : Boolean;

Return
      True of False indicating the success.

Purpose
CreateCreditMessage will open the Message editor. The user can create his own Credit
message and save this message to a file with a CMS extension as default.

Example
 procedure TMMBlobForm.BitBtn7Click(Sender: TObject);
 begin
 Table1.Append;
 If DBMultiMedia1.CreateCreditMessage then
 Table1.Post
 else
 Table1.Cancel;
 end;

SaveCurrentCreditMessage Procedure

procedure SaveCurrentCreditMessage(MessageName : TFileName);

Value
MessageName The filename to which the message is being saved.

Purpose
Save the message with values of: (These are the values of the current message being
displayed).
PMultiImage1.CreditBoxList : TStringList; The credit messages in a stringlist
PMultiImage1.MessageFont: Tfont; The message font
PMultiImage1.MessageColor : Tcolor; Background color
PMultiImage1.MessageSpeed : Integer; Scrolling Speed

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
 PMultiImage1.FreeMsg;
 PMultiImage1.CreditBoxList.Clear;
 PMultiImage1.CreditBoxList.Add(' ImageLib');
 PMultiImage1.CreditBoxList.Add(' Another fine product of');
 PMultiImage1.CreditBoxList.Add(' SKYLINE TOOLS');
 PMultiImage1.CreditBoxList.Add(' Programming : Kevin Adams');
 PMultiImage1.CreditBoxList.Add(' Programming : Jan Dekkers');
 PMultiImage1.CreditBoxList.Add(' Artwork & PR: Jillian Pinsker');

                  PMultiImage1.MessageFont.Name:='Arial';
 PMultiImage1.MessageFont.Size:=-40;
 PMultiImage1.MessageFont.Style:=[fsitalic, fsbold];
 PMultiImage1.MessageFont.Color:=clWhite;
 PMultiImage1.MessageColor:=clNavy;
 PMultiImage1.MessageSpeed:=1;
 if SaveDialog1.Execute then

 PMultiImage1.SaveCurrentCreditMessage(SaveDialog1.FileName);
end;

Remark
MessageFont.Name, MessageFont.Size, MessageFont.Style and MessageFont.Color could
also be defined using a fontdialog box :

Example
PMultiImage1. MessageFont:= FontDialog1.Font;

NewCreditMessage Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

procedure NewCreditMessage;

Value
None

Purpose
Initiate a new message. Ideal to show messages created on the fly.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
 PMultiImage1.FreeMsg;
          PMultiImage1.CreditBoxList.Clear;
          PMultiImage1.CreditBoxList.Add(' ImageLib');
 PMultiImage1.CreditBoxList.Add(' Another fine product of');
 PMultiImage1.CreditBoxList.Add(' SKYLINE TOOLS');
 PMultiImage1.CreditBoxList.Add(' Programming : Kevin Adams');
 PMultiImage1.CreditBoxList.Add(' Programming : Jan Dekkers');
 PMultiImage1.CreditBoxList.Add(' Artwork & PR: Jillian Pinsker');
 PMultiImage1.MessageFont.Name:='Arial';
 PMultiImage1.MessageFont.Size:=-40;
 PMultiImage1.MessageFont.Style:=[fsitalic, fsbold];
 PMultiImage1.MessageFont.Color:=clWhite;
 PMultiImage1.MessageColor:=clNavy;
 PMultiImage1.MessageSpeed:=1;
 PMultiImage1.NewCreditMessage;
end;

FreeMessage Procedure

TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

Procedure FreeMsg;

Value
None

Purpose
Disposes the current message and assigns the Picture to Nil

Example
procedure TForm1.BitBtn5Click(Sender: TObject);
begin

PMultiImage1.FreeMsg;
end;

Scrolling Messages

TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

Scrolling Messages File read and write

Overview
Scrolling messages are TPMultiImages created by the VCL on the fly. The average file size of
a Scrolling message (SCM) is only 200 bytes. Stored in the SCM file are:

MessageText : String; The message text.
MessageFont : Tfont; The message font.
MessageColor : Tcolor; Background color.
MessageSpeed : Integer; Scrolling Speed.

The VCL does NOT have its own moving engine. You "the programmer" must trigger the
movements. The reason for this is that an application can have only one Application.OnIdle
event. This event then needs to be subdivided to other events which may need an Idle event.
Note that other VCLs could also use a Trigger. Make sure that their OnIdle proc. doesn't
destroy PMultiImage's trigger.

In your application you need to add a procedure to the private clauses called,
for instance, Trigger:

type
 TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public

end;

In the form create you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure Form1.Trigger(Sender : TObject; Var Done : Boolean);
begin

PMultiImage3.Trigger;
 PMultiImage2.Trigger;
 PMultiImage1.Trigger;
end;

For an extensive example load the project Scrollim.dpr.

CreateMessage Procedure

TPMULTIIMAGE

procedure CreateMessage(MessagePath : String; AutoLoad : Boolean);

Value
MessagePath The initial path displayed in the save dialog.
AutoLoad True or False. If true, message is displayed after saving it.

Purpose
CreateMessage will open the Message editor. The user can create his own scrolling
message and save this message to a file with an SCM extension as default.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

PMultiImage1.CreateMessage(ExtractFilePath(Application.Exename), True);
end;

TDBMULTIMEDIA, TPDBMULTIIMAGE

Function CreateMessage : Boolean;

Return
      True of False indicating the success.

Purpose
CreateMessage will open the Message editor. The user can create his own scrolling
message and save this message to a file with an SCM extension as default.

Example
 procedure TMMBlobForm.BitBtn7Click(Sender: TObject);
 begin
 Table1.Append;
 If DBMultiMedia1.CreateCreditMessage then
 Table1.Post
 else
 Table1.Cancel;
 end;

SaveCurrentMessage Procedure

      TPMULTIIMAGE

procedure SaveCurrentMessage(MessageName : TFileName);

Value
MessageName The filename to which the scrolling message is being saved.

Purpose
Save the message with values of: (These are the values of the current scrolling message
being displayed).
PMultiImage1.MessageText : String; The message text.
PMultiImage1.MessageFont : Tfont; The message font
PMultiImage1.MessageColor : Tcolor; Background color
PMultiImage1.MessageSpeed : Integer; Scrolling Speed

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin
PMultiImage1.MessageText:='ImageLib A great tool ‘;

PMultiImage1.MessageFont.Name:='Arial';
PMultiImage1.MessageFont.Size:=-40;
PMultiImage1.MessageFont.Style:=[fsitalic, fsbold];
PMultiImage1.MessageFont.Color:=clWhite;
PMultiImage1.MessageColor:=clNavy;
PMultiImage1.MessageSpeed:=1;
if SaveDialog1.Execute then
 PMultiImage1.SaveCurrentMessage(SaveDialog1.FileName);

end;

Remark
MessageFont.Name, MessageFont.Size, MessageFont.Style and MessageFont.Color could
also be defined using a Fontdialog box.

Example
PMultiImage1. MessageFont:= FontDialog1.Font;

NewMessage Procedure

procedure NewMessage;

Value
None

Purpose
Initiate a new message. This is ideal to show messages created on the fly.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

PMultiImage1.MessageText:='ImageLib 3.0 A great tool ’;
PMultiImage1.MessageFont.Name:='Arial';
PMultiImage1.MessageFont.Size:=-40;
PMultiImage1.MessageFont.Style:=[fsitalic, fsbold];
PMultiImage1.MessageFont.Color:=clWhite;
PMultiImage1.MessageColor:=clNavy;
PMultiImage1.MessageSpeed:=1;
PMultiImage1.NewMessage;

end;

CopyToClipboard Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

procedure CopyToClipboard;

Value
None

Purpose
Copy the current displayed image to the clipboard

Example
procedure TForm1.Copy1Click(Sender: TObject);
begin

PMultiImage1.CopyToClipboard;
end;

CutToClipboard Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

procedure CutToClipboard;

Value
None

Purpose
Copy the current displayed image to the clipboard and erase it from the canvas.

Example
procedure TForm1.Cut1Click(Sender: TObject);
begin

PMultiImage1.CutToClipboard
end;

PastFromClipboard Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

procedure PasteFromClipboard;

Value
None

Purpose
Paste an image from the clipboard into the PMultiImage, PDBMultiImage, or PDBMultiMedia.

Example
procedure TForm1. Paste1Click(Sender: TObject);
begin

PMultiImage1.PasteFromClipboard;
end;

Printing PMultiImage Images

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

Purpose
TPMultiImage, TPDBMultiImage, and TPDBMultiMedia has full printing support to print JPEG,
GIF, PNG, BMP, PCX, WMF and ICO. It does this with one procedure call: PrintMultiImage

       

PrintMultiImage Procedure

      TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

procedure PrintMultiImage(X, Y, pWidth, pHeight: Integer);

Value
The Left position of the image on the paper
The Top position of the image on the paper

pWidth The Right position of the image on the paper
pHeight The Bottom position of the image on the paper

Purpose
PrintMultiImage will Stretch the image on the Printer.Canvas and print it.

Remark
Icons can't be stretched and will be printed in their original size.
If pWidth and/or pHeight are 0, then the image will be printed in its original size.

Example
procedure TForm1.Print1Click(Sender: TObject);
begin
 if PrintDialog1.execute then

PMultiImage1.PrintMultiImage(0, 0, 0, 0);
end;

DLL ImageLib CallBack Function

    TPMULTIIMAGE , TDBMULTIMEDIA, TPDBMULTIIMAGE

DLL Image CallBack Function
(Changed in version 2.2 from a procedure to a function).
(Changed in version 2.2.1 from to use a C calling convention).

Overview
The callback procedure is generated by the DLL and has 3 main goals:

1: To show a progress bar to the user
2: To process windows messages to give other windows programs the
 chance to do what they have to do.
3: To inform the DLL that either everything is OK or to cancel the operation

It's up to you, the application developer, to process the application's messageloop. You can do
this by adding APPLICATION.PROCESSMESSAGES in the callback procedure.

The Dll expects the following type of callback function to be registered:

TCallBackFunction = function (I : Integer) : cdecl Integer;

Value
You need to pass a 1 if O.K. or a 0 if you want to cancel

Returns
A value between 1 and 100 which identifies the progress of the image being loaded.

Remarks and Example
There are two things you MUST do to add a callback to your app:

1: You need to declare a function of the type above with the EXPORT and cdecl clause:

Function ImageLibCallBack(i : integer) : integer; cdecl; export;
begin
 if Application.Terminated then

Result:=0
 else begin

Application.ProcessMessages;
Form1.Gauge1.Progress:=i;
Result:=1;

 end;
end;

2: You need to register the callback to the VCL. The best place to do that

 is in the FormCreate function:

procedure TForm1.FormCreate(Sender: TObject);
begin
 TPMultiImageCallBack:= ImageLibCallBack;
end;

SaveToFileAsJPG Procedure

      TPDBMultiImage, TPDBMultiMedia

 procedure SaveToFileAsJPG(FN : TFilename);

Value
The filename of the Jpeg to which the image is being saved .

Purpose
To saves the image displayed as a Jpeg file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);

begin
PDBMultiImage1.JPegSaveQuality:=25;

 PDBMultiImage1.JPegSaveSmooth:=5;
 If SaveDialog2.Execute then
PDBMultiImage1.SaveToFileAsJpeg(SaveDialog2.Filename);
end;

SaveToFileAsBMP Procedure

      TPDBMultiImage, TPDBMultiMedia

procedure SaveToFileAsBMP(FN : TFilename);

Value
The filename of the BMP to which the image is being saved.

Purpose
To save the Image displayed as a BMP file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);
begin

PDBMultiImage1.ImageWriteRes:= Color256;
If SaveDialog2.Execute then

PDBMultiImage1. SaveToFileAsBMP(SaveDialog2.Filename);
end;

SaveToFileAsGIF Procedure

      TPDBMultiImage, TPDBMultiMedia

procedure SaveToFileAsGIF(FN : TFilename);

Value
The filename of the GIF to which the image is being saved.

Purpose
To saves the Image displayed as a GIF file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);
begin

PDBMultiImage1.ImageWriteRes:= Color16;
If SaveDialog2.Execute then

PDBMultiImage1. SaveToFileAsGIF(SaveDialog2.Filename);
end;

SaveToFileAsPCX Procedure

      TPDBMultiImage, TPDBMultiMedia

procedure SaveToFileAsPCX(FN : TFilename);

Value
The filename of the PCX to which the image is being saved.

Purpose
To save the Image displayed as a PCX file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);
begin

PDBMultiImage1.ImageWriteRes:= ColorTrue;
If SaveDialog2.Execute then

PDBMultiImage1. SaveToFileAsPCX(SaveDialog2.Filename);
end;

SaveToFileAsPNG Procedure

      TPDBMultiImage, TPDBMultiMedia

procedure SaveToFileAsPNG(FN : TFilename);

Value
The filename of the PNG to which the image is being saved.

Purpose
To save the Image displayed as a PNG file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);
begin

PDBMultiImage1.ImageWriteRes:= Color256;
If SaveDialog2.Execute then

PDBMultiImage1. SaveToFileAsPNG(SaveDialog2.Filename);
end;

SaveToFile Procedure

      TPDBMultiImage, TPDBMultiMedia

procedure SaveToFile(filename : TFilename);

Value
The filename of the file to which it is being saved.

Purpose
Saves the current blob to a file AS Stored (No conversion)

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
 var temp : string;
begin
 temp:=PDBMultiImage1.GetInfoAndType;
 if temp = 'GIF' then begin

SaveDialog1.filter:='GIF files|*.GIF';
SaveDialog1.DefaultExt:='GIF';
 end else if temp = 'PCX' then begin

SaveDialog1.filter:='PCX files|*.PCX';
SaveDialog1.DefaultExt:='PCX';

end else if temp = 'PNG' then begin
SaveDialog1.filter:='PNG files|*.PNG';
SaveDialog1.DefaultExt:='PNG';

 end else if temp = 'JPG' then begin
SaveDialog1.filter:='Jpeg files|*.JPG';
SaveDialog1.DefaultExt:='JPG';

 end else if temp = 'BMP' then begin
SaveDialog1.filter:='BMP files|*.BMP';
SaveDialog1.DefaultExt:='BMP';

 end else if temp = SCM' then begin
SaveDialog1.filter:='SCM files|*. SCM';
SaveDialog1.DefaultExt:=' SCM ';

 end;

 If SaveDialog1.Execute Then
 PDBMultiImage1.SaveToFile(SaveDialog1.FileName);
end;

GetInfoAndType Function

TDBMULTIMEDIA, TPDBMULTIIMAGE

Function GetInfoAndType : String;

Value
None

      TPMULTIIMAGE

Function GetInfoAndType(FN:FileName) : String;
Value
Filename

Purpose
GetInfoAndType is a very fast function which retrieves image information
without actually loading the complete image.

Returns
Extension format of the file stored in the blobfield. GetInfoAndType will store the following
information:

For all filetypes:
 Bfiletype : String; Return: JPEG, BMP, GIF, PCX, ICO, WMF, SCM,CMS,PNG
 Bwidth : Integer; Return: Width of the image
 BHeight : Integer; Return: Height of the image
 BSize : Longint Return: File size in bytes
 Bcompression : String; Return: Compression method

For JPEG, BMP, GIF, PCX, PNG only (ICO, WMF, SCM, CMS will return 0)
 Bbitspixel : Integer; Return: Bits per Pixel
 Bplanes : Integer; Return: Planes
 Bnumcolors : Integer; Return: Number of colors

Remark
GetInfoAndType is called automatically by the VCL during an Image load (if autodisplay is
true). If no Image is displayed or autodisplay is false you can call this function manually.

Example
procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
 If not PDBMultiImage1.autodisplay then PDBMultiImage1.GetInfoAndType;
 Edit1.text:='This blob image is a '+TPDBMultiImage1.BFiletype;
 Edit2.text:=IntToStr(PDBMultiImage1.Bwidth);
 Edit3.text:=IntToStr(PDBMultiImage1.BHeight);
 Edit4.text:=IntToStr(PDBMultiImage1.Bbitspixel);
 Edit5.text:=IntToStr(PDBMultiImage1.Bplanes);
 Edit6.text:=IntToStr(PDBMultiImage1.Bnumcolors);
 Edit7.text:=TPDBMultiImage1.Bcompression;

 Edit8.text:=IntToStr(PDBMultiImage1.BSize);
end;

UpdateAs Properties

      TPDBMultiImage, TPDBMultiMedia

property UpdateAsJPG : Boolean
property UpdateAsBMP : Boolean
property UpdateAsGIF : Boolean
property UpdateAsPCX : Boolean
property UpdateAsPNG : Boolean
Visual properties

Value
True or False

Purpose
To store a new image or to update the displayed image. If True then the Blob Image will be
updated to a Blob in one of the formats above which is set to true.

Remark
Image must be displayed

Example
procedure TForm1.UpdateAsJpeg(Sender: TObject);
begin
 PDBMultiImage1.UpdateAsJpeg:=True;
 PDBMultiImage1.PastefromClipboard;
 Table1.Post;
end;

Credit TBlobField Messages

Overview
Credit messages are TPDBMultiImages created by the VCL on the fly. Stored in the blob are:

MessageFont : TFont; the message's font
MessageSpeed : Integer the scrolling speed 1 is fast 10 is slow
MessageColor : TColor; the background color
CreditBoxList : TStringList; the credit messages in a stringlist

The VCL does NOT have its own moving engine. You "the programmer" must trigger the
movements. The reason for this is that an application can have only one Application.OnIdle
event.This event needs to be shared with other events which may need an OnIdle event.
Note that other VCLs could also use a Trigger. Make sure that their OnIdle proc. doesn't
destroy MultiImage's trigger.

Example
In your application you need to add a procedure to the private clauses called e.g. Trigger:

type
 TForm1 = class(TForm)
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public

In the form create you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

PDBMultiImage1.Trigger;
end;

Scrolling TBlobField Messages

Overview
Scrolling messages are TPDBMultiImages created by the VCL on the fly. The average blob of
a Scrolling message is only 200 bytes. Stored in the blob are:

MessageText : String; The message text.
MessageFont : Tfont; The message font
MessageColor : Tcolor; Background color
MessageSpeed : Integer; Scrolling Speed

The VCL does NOT have its own moving engine. You "the programmer" must trigger the
movements. The reason is that an application can have only one Application.OnIdle event.
This event then needs to be shared with other events which may need an application. Note
that other VCLs could also use a Trigger. Make sure that their OnIdle proc. doesn't destroy
MultiImage's trigger.

Example
In your application you need to add a procedure to the private clauses called e.g. Trigger:

type
 TForm1 = class(TForm)
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public

In the FormCreate you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

PDBMultiImage1.Trigger;
end;

GetMultiMediaExtensions Function

      TDBMULTIMEDIA

function GetMultiMediaExtensions : String;

Value
None

Purpose
This function will return all multimedia extensions from the computer running your application
and those supported by PDBMultiMedia in the filter format used by the filedialog.

Remark
Run the example file MMBLOB.DPR. You will notice that the Append MM dialogbox contains
all the Multimedia supported by the VCL and your PC.

Example
procedure TBtnBottomDlg.BitBtn1Click(Sender: TObject);
begin
 OpenDialog1.filter:=PDBMultiMedia1.GetMultiMediaExtensions;

if OpenDialog1.Execute then begin
 Table1.Append;

 PDBMultiMedia1.LoadfromFile(OpenDialog1.FileName);
 Table1.Post;

 end;
end;

PathForTempFile Property

      TDBMULTIMEDIA

property PathForTempFile : string
Visual Property

Value
PathName

Purpose
TPDBMULTIMEDIA saves its AVI, MOV, WAV, MID and RMI blobs to a temporary file before it
is played and then deletes the temporary file. The reason for this is that average multimedia
blobs are too large in size to be played from memory. Your application might be distributed and
executed from a CD. In order to write a temporary file you need to supply a directory and drive.

Remark
CMS, SCM, JPG, PCX, GIF, PNG and BMP Blobs are not written to a temporary file but
expanded directly into memory. If directory or drive doesn't exist it defaults to C:\

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 PDBMultiMedia1.PathForTempFile:='C:\TEMP';
end;

TempMOV Property

      TDBMULTIMEDIA

property TempMov : String
Visual Property

Value
Filename

Default
$$$.MOV

Purpose
TPDBMULTIMEDIA saves its MOV blobs first to a temporary file before it is played and then
deletes the temporary file. This property holds the name of the temporary file.

Example
 PDBMultiMedia1.TempMov:=’$TEMP$.MOV’;

Remark
Since the Delphi MultiMediaPlayer is extension sensitive the extension can’t be changed.

TempAVI Property

      TDBMULTIMEDIA

property TempAVI : String
Visual Property

Value
Filename

Default
$$$.AVI

Purpose
TPDBMULTIMEDIA saves its AVI blobs first to a temporary file before it is played and then
deletes the temporary file. This property holds the name of the temporary file.

Example
 PDBMultiMedia1.TempAvi:=’$TEMP$.AVI’;

Remark
Since the Delphi MultiMediaPlayer is extension sensitive the extension can’t be changed.

TempWAV Property

      TDBMULTIMEDIA

property TempWAV : String
Visual Property

Value
Filename

Default
$$$.WAV

Purpose
 TPDBMULTIMEDIA saves its WAV blobs first to a temporary file before it is played and then
deletes the temporary file. This property holds the name of the temporary file.

Example
 PDBMultiMedia1.TempWav:=’$TEMP$.WAV’;

Remark
Since the Delphi MultiMediaPlayer is extension sensitive the extension can’t be changed.

TempMID Property

      TDBMULTIMEDIA

property TempMID : String
Visual Property

Value
Filename

Default
$$$.MID

Purpose
TPDBMULTIMEDIA saves its MID blobs first to a temporary file before it is played and then
deletes the temporary file. This property holds the name of the temporary file.

Example
 PDBMULTIMEDIA1.TempMID:=’$TEMP$.MID’;

Remark
Since the Delphi MultiMediaPlayer is extension sensitive the extension can’t be changed.

TempRMI Property

      TDBMULTIMEDIA

property TempRMI : String
Visual Property

Value
Filename

Default
$$$.RMI

Purpose
TPDBMULTIMEDIA saves its RMI blobs first to a temporary file before it is played and then
deletes the temporary file. This property holds the name of the temporary file.

Example
     PDBMULTIMEDIA1.TempRmi:=’$TEMP$.RMI’;

Remark
Since the Delphi MultiMediaPlayer is extension sensitive the extension can’t be changed.

AutoPlayMultiMedia Property

TDBMULTIMEDIA

 property AutoPlayMultiMedia : Boolean;

Visual Property

Value
True or False

Purpose
If AutoPlayMultiMedia and AutoDisplay are True, the control automatically displays new data
when the underlying BLOB field changes (such as when moving to a new record).If
AutoPlayMultiMedia and AutoDisplay are False, the control will clear whenever the underlying
BLOB field changes. To display the data, the user can double-click on the control or select it
and press Enter.

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 PDBMultiMedia1.AutoPlayMultiMedia:=true;
end;

AutoRePlayMultiMedia Property

property AutoRePlayMultiMedia : Boolean
Visual Property

Value
True or False

Purpose
If AutoDisplay and AutoPlayMultiMedia are true,then the multimedia is replayed automatically;

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 PDBMultiMedia1.AutoRePlayMultiMedia:=true;
end;

AutoHideMediaPlayer Property

      TDBMULTIMEDIA

property AutoHideMediaPlayer : Boolean;
Visual Property

Value
True or False

Purpose
If the blobfield doesn't contain multimedia it will hide the attached MediaPlayer automatically.

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 PDBMultiMedia1.AutoHideMediaPlayer:=true;

MediaPlayer Property

      TDBMULTIMEDIA

property MediaPlayer:
Visual Property

Value
PDBMediaPlayer

Purpose
ImageLib comes with its own PDBMediaPlayer directly derived from Tmediaplayer. You need
to drop one on your form and set the property MediaPlayer to, for instance: PDBMediaPlayer1.

Remark
There is no need to attach a filename to PDBMediaPlayer. AutoOpen must be false since
PDBMultiMedia will take care of opening and closing the PDBMediaPlayer.

Example
procedure TForm1.FormCreate(Sender: TObject);
begin

PDBMultiMedia1.MediaPlayer:=PDBMediaPlayer1;
end;

Display and DisplayRect Property

    DBMEDIAPLAYER

Remark
In order to display the video in the exact rectangle of your PDBMultiMedia you'll need to supply
a display and rect to the PDBMediaPlayer.

Example
 procedure TBtnBottomDlg.DataSource1DataChange(Sender: TObject; Field: TField);
 begin

PDBMediaPlayer1.DisplayRect:=Rect(0,0,PDBMultiMedia1.Width,
 PDBMultiMedia1.Height);

PDBMediaPlayer1.Display:=PDBMultiMedia1;
end;

TurboPower

We would just like to say a few words about Turbopower. We've used Turbopowers'
products for over 4 years now and are very impressed with their "state of the art"
development libraries. Their technical support is the best we've ever experienced. They
provide a good example for us of how to do business and how to treat customers.

Turbopower's products:

Async Professional,
B-Tree Filer,
Object Professional,
TSRs and more,
Turbo Analyst,
Turbo Professional,
Data Entry Workshop,
Win/Sys Library, and their latest great Delphi product,
Orpheus.

on CompuServe, Go PCVENB to download their free trial libraries.

Contacting TurboPower Sales

Telephone : 800-333-4160 (sales in the U.S. & Canada)
 719-260-9136 (international sales)
 719-260-7151 (fax)
 CompuServe : 76004,2611
 Internet : 76004.2611@compuserve.com

 Postal mail : TurboPower Software
 P.O. Box 49009
 Colorado Springs, CO 80949-9009

License Agreement

Rights and Limitations
The software which accompanies this license ("ImageLib") is the property of SkyLine Tools or
its licensors and is protected by copyright law. By using ImageLib you agree to the terms of
this agreement. You may install one copy of the ImageLib product on a single computer.
One copy of ImageLib may be only used by a single developer at a time. When ImageLib is
being compiled into an executable application with the extension exe., then there are no
licensing fees or royalties for distribution of the executable and the DLL. Should any part of
ImageLib ,either the VCL or the DLL be used in a non-compiled application, such as: a
value added VCL, VBX, OCX, royalties apply.

Limited Warranty
SkyLine Tools warrents that ImageLib will perform substantially in accordance with the
accompanying documentation for a period of (90) days from the date of receipt.

Liabilities
SkyLine Tools and its licensors entire liability and your exclusive remedy shall be, at SkyLine
Tools option, either return of the price paid, or repair or replacement of the ImageLib product.
   
Gif and Tiff uses LZW compression which is patented by Unisys. On CompuServe GO
PICS to obtain information about the Unisys patents. By using ImageLib’s GIF Read and
Write features you acknowledge that SkyLine has notified you about the LZW patend
and hold SkyLine harmless from any legal actions.

 For other fine Delphi Products we recommend TurboPower products.

The "JPEG file I/O and compression/decompression" is based in part on the work of the
Independent JPEG Group.

