
Contents
Overview

Toolbar

Adding Tables to a Query

Add Table Dialog

Table Names in a Query

Selection Criteria for a Query

Query Options

Group Conditions in a Query

Sorting Query Results

Join Dialog

Options Dialog

Expression Dialog

SQL Window

Result Window

Overview

The Visual Query Builder (VQB) is a powerful tool for building queries. You can use it to build queries
visually, step-by-step. The advantage of building queries visually is that you can build and execute
complex queries without knowledge of SQL. Even if you are an expert in SQL, since VQB works on
different databases, you are insulated from learning the differences in their SQL syntax.

With VQB, you can build queries incrementally. This means that you can start with a simple query,
execute it, see the results and refine it. You can repeat this process until you get the query you want.
This process is known as 'drilling down' and is a common way of working with databases.

You can also use VQB as a tutorial for learning SQL. Since you can generate and display the SQL
statements for the queries you create visually, you can understand SQL a lot faster by working with VQB.

With VQB, you can do the following:

· Select one or more tables to be used in the query.

For more information, refer to the topic Adding Tables to a Query.

· Select columns to query using simple drag-and-drop.

· Reorder result columns or delete selected columns using drag-and-drop.
· Specify different types of join conditions between tables.

For more information, refer to the topic Join Dialog.

· Generate an expression to be included in the SELECT list.

For more information, refer to the topic Expression Dialog.

· Specify multiple selection criteria.

For more information, refer to the topic Selection Criteria for a Query.

· Specify grouping and group criteria.

For more information, refer to the topic Group Conditions in a Query.

· Specify how the results of a query can be sorted by one or more columns.

For more information, refer to the topic Sorting Query Results.

· View the SQL statement for the query.

For more information, refer to the topic SQL Window.

· Execute the query and browse the result.

For more information, refer to the topic Result Window.

· Save the query in a file.

Toolbar

The Visual Query Builder includes a Toolbar that can be used to select the operations to be performed.
The Toolbar icons and their functions are shown below.

Icon Function

Create a new query.

Open an existing query. You will be prompted to choose the
query file to open. The query files created by the Visual Query
Builder have a .QRY extension.

Save the query. This option saves the query under its original
name. If no name was specified when the query was saved the
first time, it is saved as UNTITLED.QRY.

Save the query with a new name. You will be prompted to
choose a file name. The extension .QRY is supplied by default.

Set query options. For more information, refer to the topic
Query Options.

Select tables to query. For more information, refer to the topic
Adding Tables to a Query.

Build a result column as an expression. For more information,
refer to the topic Expression Dialog.

Show SQL statement. For more information, refer to the topic
SQL Window.

Run the query. For more information, refer to the topic Result
Window.

Exit Visual Query Builder. You will be prompted to save the
current query if you made any changes.

Adding Tables to a Query

To add a table to a query, choose the Add Table icon from the Toolbar. The Add Table dialog will
be displayed.

The Add Table dialog lists the names of tables in the selected data source. You can add a table to the
query either by double-clicking on the table name or by selecting the table name and then choosing the
Add command button.
Table frames for each table included in the query are displayed in the Visual Query Builder workspace.

Add Table Dialog

See AlsoExample

You can add tables to a query using the Add Table dialog. Tables can be added when:

· You start building a query

· You modify an existing query.

The Add Table dialog is automatically displayed when you start the Visual Query Builder.

To display the Add Table dialog at any time, choose the Add Table icon from the
Toolbar.

The Add Table dialog lists the names of all tables in the current data source. If you want to see the
system tables as well, you can check Include System Tables.

1. To add a table to the query, do one of the following:

· Select the table name from the list of tables displayed and choose Add.

· Double-click on the table name.

2. After adding the required tables, choose Close.

The tables selected for the query will now be displayed in the Visual Query Builder workspace.

3. To add a column from one of the selected tables to the query, do one of the following:

· Select the column name from the list of column names displayed in the table frame. Drag the
column and drop it on the query grid at the bottom of the screen.

· Double-click on the column name.

The selected column will be displayed in the query grid.

4. You can create joins between the tables selected for the query. For more information, refer to
the topic Join Dialog.

Add a Table - Example

Query: List the title, ISBN and publisher id of each book (In all examples included in the help file, we assume that
the tables and columns exist as described).

To perform this query, you must first select the TITLES table (because that is where you know the
information exists) and then select the Title column, ISBN column and Publisher column. With VQB,
you perform the following steps:

1. Make sure that the Add Table dialog is displayed and double-click the TITLES table name.

Alternatively, select the table name from the list of tables and choose the Add command button.
A table frame is displayed in the query workspace.

2. Choose Close.

We need to select only one table for this query. The TITLES table frame will be displayed in the
Visual Query Builder workspace with the column names in the table.

3. Double-click the Title column in the table frame.

This adds the column name to the query grid. The Table Name row for the column shows
TITLES, signifying that the column belongs to the TITLES table. Option shows Show, signifying
that the column's value will be displayed in the query result.

4. Select the ISBN column and drop it on the query grid. This is an alternative way of adding a
column to a query. When you drag the column name across the query workspace, the mouse
pointer changes to , signifying that the column cannot be dropped anywhere in the workspace.
When you reach the query grid, the mouse pointer changes to

, signifying that it can be dropped in that position.
If you drop the new column on a column that is already on the query grid, the new column name
is inserted before the existing column. If you place the new column in the blank area to the right
of the query grid, it is appended as the last column of the query.

To select all columns from a table, double-click the table caption. The column names will be
highlighted. Hold the left mouse button down and drag the column names to the query grid.

5. Add the Publisher column to the query.

6. Choose Run from the Toolbar.

A result window is displayed with all records in the TITLES table with the field order you specified.
You can scroll through the result set using the vertical scroll bar. When you are finished looking
at the result set, double click on the system menu to close the result window and return to the
Visual Query Builder main window.

If you want to remove duplicate records from the result, select Option from the Toolbar.
In the Options dialog box displayed, check the Remove Duplicate Records check box
and choose OK.

7. Choose SQL from the Toolbar.

The SQL Statement window is displayed as shown. It shows the SELECT statement for the
query.

Note that the SELECT statement contains the three columns we selected. The SELECT
statement in this case is very simple. It contains the SELECT keyword, a list of column names

and the FROM keyword followed by the name of the table. As you learn how to use the Visual
Query Builder, you will see more complex SELECT statements.

The SQL Statement window is a non-modal window. You can, therefore, return to the Visual
Query Builder without closing the window. You can size the window suitably and position it on
the desktop so that the SQL statement is visible always. If you change the query or selection
criteria, the SQL statement will be updated immediately. If you are new to SQL, this is a good
way to learn SQL syntax.

8. Choose Save As from the Toolbar. In the Save Query dialog box, navigate to a directory where
you want to save the query and save it with the name titles. The .QRY extension is
automatically added by Visual Query Builder.

See Also

Adding Tables to a Query

Table Names in a Query

Join Dialog

Table Names in a Query

See Also

The Table Name row in the Visual Query Builder grid displays the name of the base table from which the
query column is derived. If you have multiple tables included in a query, the table name corresponding to
each column is displayed in the Table Name row. The column name itself is displayed right on top.

If you create an Expression column, the actual expression is displayed in the Table Name row. Each
base column included in the expression is qualified by the table name in this case.

See Also

Expression Dialog

Join Dialog

Selection Criteria for a Query

Example 1 Example 2

You can specify the selection criteria for a query in the Criteria row of the query grid. All selection
criteria allowed in the WHERE clause of a SQL SELECT statement are valid. This includes =, >, <, !=,
LIKE, BETWEEN, and IN clauses. To make query selections that have to be ANDed together, you specify
multiple conditions in the Criteria row. To specify selection criteria that have to be ORed, you specify the
selection conditions in the Criteria row and Or row.

You can enter up to 255 characters in a cell within the Criteria row. This means that the
selection criteria specified for a column should not exceed 255 characters.

Selection Criteria - Example 1

Query: List the title and ISBN of books whose titles include the pattern SQL (In all examples included in the
help file, we assume that the tables and columns exist as described).

1. Select the TITLES table using the Table command.

2. Select the Title and ISBN columns to query.

3. In the query grid, bring the Criteria row into view using the vertical scroll bars.

4. Position the cursor in the Title column in the Criteria row.

5. Type LIKE '%SQL%' in the cell. Include the single quotes.

This selection specifies that books whose titles include the pattern SQL anywhere in the title
should be listed.

6. Choose Run.

The result window displays the books whose titles contain the pattern SQL.

7. The SELECT statement for this query will be:

SELECT Title , ISBN

FROM TITLES

WHERE (Title LIKE '%SQL%')

8. Save the query with the name sqlbooks.

Selection Criteria - Example 2

Query: List the title, ISBN, publisher, price, and discount on books which are published by ADWE or
which cost more than $35 (In all examples included in the help file, we assume that the tables and columns exist as
described).

1. Select the TITLES table using the Table command.

2. Select the Title, ISBN and Publisher columns to query.

3. In the query grid, bring the Criteria and Or rows into view using the vertical scroll bars.

4. Position the cursor in the Publisher column in the Criteria row.

5. Type 'ADWE' in the cell. Include the single quotes.

6. Add the Price and Discount columns to the query.

7. In the Or row, type >35 in the Price column.

The selection criteria specify that books published by publisher ADWE or books costing more than $35
should be listed.

8. Run the query.

9. The SQL statement for this query will read as follows:

SELECT Title , ISBN , Publisher , Price , Discount

FROM TITLES

WHERE (Publisher = 'ADWE') OR (Price >35)

10. Save the query as pubprice.

Query Options

The Option row in the Visual Query Builder grid is used for the following:

· To hide or show a query column.

For more information, refer to the topic Hiding a Query Column.

· To specify column aggregates such as COUNT, SUM, MAX, MIN, and AVG.

For more information, refer to the topic Specifying Aggregates.

· To specify grouping criteria.

For more information, refer to the topic Specifying Grouping Criteria.

Hiding a Query Column

Example

While creating queries, you may want to select rows based on some selection criteria, but not want to
display the value of the selection criteria in the query result. For example, you may want to display the
last names and ids of all employees in the production department. We need the last name, id and
department columns to frame this query. However, we need not display the department column, since all
records in the query result will have the same value for that column.

To hide a query column, proceed as follows:

1. In the query grid, place the mouse pointer on the intersection of the column you want to hide and
the Option row.

2. Click the mouse button.

A popup menu appears with the Show menu item checked.

3. Click the mouse button to uncheck the menu item.

The Show keyword will no longer be displayed in the Option row. The selected column will not
be included in the query result. However, since the column is included in the query, you can still
specify selection criteria.

4. The Show option works as a toggle. To re-display a hidden column, therefore, follow the above
steps as they are. The Show popup menu item will now be checked and the Show keyword will
be displayed in the Option row.

Hide a Query Column - Example

Query: List the title, ISBN and price of books on sale (In all examples included in the help file, we assume that the
tables and columns exist as described).

This query is based on the TITLES table. The OnSale column in the table indicates whether a book is
on sale. If the column contains the value 'T', the book is on sale; if it contains the value 'F', it is not.
The OnSale column has Character data type and therefore, the value entered should be enclosed in
single quotes (').

The above query should, therefore, be phrased as:

Find the Title, ISBN and Price for Titles where OnSale = 'T'.

Described below are the steps for building this query.

1. Select the TITLES table using the Table command.

2. Select the Title, ISBN, Price and OnSale columns to query. Use the vertical scroll bars on the
table frame to bring the Price and OnSale columns into view.

3. In the query grid, bring the Criteria row into view using the vertical scroll bars. If necessary,
resize the VQB main window. We will not need the Group Condition or the associated Or
criteria in this query.

The Table Name, Option and Sort rows remain in view when you scroll vertically. These rows
display information that you may want to refer to always.

4. Position the cursor in the Criteria row and the OnSale column. You can change the active cell
either using the mouse or using the arrow / TAB keys.

5. Type 'T' in the cell. Include the single quotes.

6. Choose Run.

The result window displays only those titles which are on sale.

7. View the SELECT statement for the query. It includes the row selection criteria.

SELECT Title , ISBN , Price , OnSale

FROM TITLES

WHERE (OnSale = 'T')

8. Save the query with the name onsale.

All rows in this query result will contain the value 'T' in the OnSale column. We need not, therefore,
display that column. To remove the column from the SELECT list, proceed as follows:

9. Position the cursor in the OnSale column in the Option row.

10. Click the mouse button.

A popup menu appears with the Show menu item checked.

11. Click the mouse button to uncheck the menu item.

The Show keyword will no longer be displayed in the Option row.

12. Run the query.

The OnSale column does not appear in the query result.

13. The SQL statement for the query will now read as follows:

SELECT Title , ISBN , Price

FROM TITLES

WHERE (OnSale = 'T')

14. Using the Save command, save the query under its original name.

Specifying Aggregates

See Also Example

You can group column values by specifying a GROUP BY condition. To do so, position the cursor in the
column to group in the Option row and click the mouse button. A popup menu appears. From the
popup menu, select Group. The Visual Query Builder automatically assigns a group number for each
column. If you remove a column from the query on which a group condition is defined, the GROUP BY
condition on the column will be automatically deleted and the group numbers on other group columns
automatically re-assigned.

You can specify aggregate operations for non-grouped columns. These include SUM, COUNT, AVG,
MIN and MAX. Aggregate operations are also selected from the popup menu.

To define an aggregate of a numeric expression, you can do one of the following:

a) Create the expression using the Expression dialog and then define the aggregate in the query
grid.

b) Define the expression and the aggregate directly in the Expression dialog.

Specifying Grouping Criteria

See Also Example

You can group column values by specifying a GROUP BY condition. To do so, position the cursor in the
column to group in the Option row and click the mouse button. A popup menu appears. From the
popup menu, select Group. The Visual Query Builder automatically assigns a group number for each
column. If you remove a column from the query on which a group condition is defined, the GROUP BY
condition on the column will be automatically deleted and the group numbers on other group columns
automatically re-assigned.

You can specify aggregate operations for non-grouped columns. These include SUM, COUNT, AVG,
MIN and MAX. Aggregate operations are also selected from the popup menu.

To define an aggregate of a numeric expression, you can do one of the following:

a) Create the expression using the Expression dialog and then define the aggregate in the query
grid.

b) Define the expression and the aggregate directly in the Expression dialog.

Grouping and Aggregates - Example

Query: List the number of orders and total value of orders for each customer (In all examples included in the
help file, we assume that the tables and columns exist as described).

To answer this query, we need to join the CUSTOMER, ORDERS and DETAILS tables. To get the
number of orders for each customer, we will use the COUNT aggregate function. To get the total value of
orders for each customer, we will use the SUM aggregate function.

To build and test the query, perform the following steps:

1. Choose New to create a new query and choose the Add Table icon from the Toolbar.

The Add Table dialog box will be displayed.

2. Add the CUSTOMER, ORDERS and DETAILS tables to the query and close the Add Table
dialog. For more information on how to add tables to a query, refer to the topic Add Table Dialog.

3. Define a join between the CUSTOMER and ORDERS tables using the CustomerId column. For
more information on how to define joins, refer to the topic Join Dialog.

4. Define a join between the ORDERS and DETAILS tables using the OrderId column.

5. Add the CustomerId, FirstName and LastName columns from the CUSTOMER table to the
query grid. Also add the OrderId column from the ORDERS table. For more information on how
to add table columns to a query, refer to the topic Add Table Dialog.

6. Position the cursor in the CustomerId column in the Option row. Click the mouse button. From
the popup menu displayed, choose Group.

This step signifies that the query results will be grouped by the CustomerId column. The
Option row shows Grp(1), indicating that the CustomerId column is the first GROUP BY column.
If you have additional GROUP BY columns, they will be marked as Grp(2), Grp(3), ... etc.

7. In a similar way, define GROUP BY criteria for the FirstName and LastName columns.

Remember that SQL syntax requires a GROUP BY condition to include all columns not
involved in an aggregate operation. In our example, we need to define three GROUP
BY columns.

8. Position the cursor in the OrderId column in the Option row. Click the mouse button. From the
popup menu displayed, choose Count.
This step signifies that the number of orders should be counted for each group.

To get the total value of orders for each customer, we need to define an expression. To do so, proceed
as follows:

9. Choose Expr from the Toolbar.

The Expression dialog will be displayed.

10. Change Expression Name to Total_Order_Value.

11. Double-click sum(X) from the Functions list.

The Expression edit box will display sum(X) with X highlighted.

12. Select DETAILS from the Tables pulldown list.

The columns in the DETAILS table will be displayed in the Columns list.

13. Double-click the column name Quantity.

The column name replaces X in the Expression edit box.

14. Double-click the multiplication operator (*) in the Operators list.

The multiplication operator is appended to the sum expression.

15. Double-click the SalePrice column in the Columns list.

The column name is appended to the sum expression.

16. Choose Done.

You will be prompted to save the expression definition. Choose Yes.

You will return to the VQB main window. The Total_Order_Value expression will be included as
the last column in the query.

17. Run the query.

The number of orders and total order value for each customer will be displayed.

18. The SQL statement for this query will read as follows:

SELECT CUSTOMER.CustomerId , FirstName ,

LastName , count(ORDERS.OrderId) ,

(sum(DETAILS.Quantity * DETAILS.SalePrice)) as Total_Order_Value

FROM CUSTOMER , DETAILS , ORDERS

WHERE (CUSTOMER.CustomerId = ORDERS.CustomerId)

AND

(ORDERS.OrderId = DETAILS.OrderId)

GROUP BY CUSTOMER.CustomerId , FirstName , LastName

19. Save the query as totalord.

See Also

Expression Dialog

Group Conditions in a Query

See Also Example

In a query with GROUP BY conditions, you can perform selections on the aggregate columns. For
example, from an order database, you may want to create a list of salespersons whose total order
bookings for the year exceed $1,000,000. This requires grouping the orders by salesperson and then
selecting the salesperson records where the sum exceeds the specified target. To do so, we need to
define a SUM aggregate for order value and then apply a selection crierion to the aggregate. This is the
same as specifying a HAVING condition in a SQL SELECT statement with a GROUP BY clause.

The Visual Query Builder allows you to specify a HAVING condition on an aggregate column by typing in
the selection criteria in the Group Condition row. The HAVING keyword is automatically added and
need not, therefore, be specified.

Group Conditions (HAVING Clause) - Example

Query: List the number of orders and total order value for customers whose total orders exceed $500 (In
all examples included in the help file, we assume that the tables and columns exist as described).

To answer this query, we need to add a HAVING condition to query demonstrated in the topic Grouping
and Aggregates - Example. You can do this as follows:

1. Make sure that you have the totalord query in the Visual Query Builder workspace.

2. Position the cursor in the Total_Order_Value column in the Group Condition row.

3. Type >500.

This signifies that only those rows where the SUM of order value exceeds 500 should be listed.

4. Run the query.

You will see the list of customers whose total orders exceed $500.

5. The SQL statement for this query will read as follows:

SELECT CUSTOMER.CustomerId , FirstName ,

LastName , count(ORDERS.OrderId) ,

(sum(DETAILS.Quantity * DETAILS.SalePrice)) as Total_Order_Value

FROM CUSTOMER , DETAILS , ORDERS

WHERE (CUSTOMER.CustomerId = ORDERS.CustomerId)

AND

(ORDERS.OrderId = DETAILS.OrderId)

GROUP BY

CUSTOMER.CustomerId , FirstName , LastName

HAVING ((sum(DETAILS.Quantity * DETAILS.SalePrice)) >500)

6. Save the query as ordgt500.

See Also

Specifying Grouping Criteria

Sorting Query Results

Example

You can sort query results in ascending or descending order of selected columns. To do so, position the
cursor under the column name on the Sort row. Click the mouse button to get a popup menu. Select
Ascending or Descending from the popup menu. You can mix the Ascending and Descending
options in one query.

You can specify up to 8 sort columns in a query. The number of columns for sorting may, however, be
dependent on the database management system and the ODBC driver used.

Sorting - Example

Query: List customer names, number of orders and total order value for each customer in descending
order of total order value (In all examples included in the help file, we assume that the tables and columns exist as
described).

Some ODBC drivers and / or databases do not allow ordering on calculated column
values. This query will not work with those databases.

To answer this query, we need to make use of an ORDER BY condition. We will do this using the query
demonstrated in the topic Grouping and Aggregates - Example.

1. Make sure that you have the totalord query in the Visual Query Builder workspace.

2. Position the cursor in the Total_Order_Value column in the Sort row.

3. Click the mouse button and select Descending from the popup menu displayed.

This signifies that the result should be arranged in descending order of total order value.

4. Run the query.

You will see the list of customers, number of orders and total order value in the reverse order of
total order value.

5. The SQL statement for this query will read as follows:

SELECT CUSTOMER.CustomerId , FirstName , LastName , count(ORDERS.OrderId) ,

(sum(DETAILS.Quantity * DETAILS.SalePrice)) as Total_Order_Value

FROM CUSTOMER , DETAILS , ORDERS

WHERE (CUSTOMER.CustomerId = ORDERS.CustomerId)

AND

(ORDERS.OrderId = DETAILS.OrderId)

GROUP BY CUSTOMER.CustomerId , FirstName , LastName

ORDER BY 5 desc

6. Save the query as orddesc.

Join Dialog

Example

In many cases, you have to combine information from more than one table to perform a query. For
example, you may want to list all employees with their last name, employee id, and department name.
However, the department name may be stored in the department table instead of the employee table. To
perform queries of this type, we need to create table joins. The Visual Query Builder allows you to create
joins using a simple drag-and-drop interface.

You begin a join operation by dragging the column name you want to join from the first table frame and
dropping it on the target column name on the second table frame. When you drag the column name out
of the first table frame and into the query workspace, the mouse pointer changes to , signifying that the
column cannot be dropped inside the workspace. When you reach the target table frame, the mouse
pointer changes to

, signifying that it can be dropped in that position. When you complete the join, a line is drawn in the
query workspace linking the columns in the two table frames. If you move the table frames in the query
workspace, the line is automatically redrawn to indicate the join condition.

The join criteria can be reviewed and edited by double-clicking on the line indicating the join. By default,
the join is an inner join. If you want to change the join type to an outer join, for example, double-click on
the join line. The Join dialog is displayed.

The Table1 and Column1 values identify the first table / column in the join. The Table2 and Column2
values identify the second table / column in the join. In case of an inner join, the order of table columns
is not important, but it is important in case of outer joins.

Join Operator shows =. This specifies that the join is based on the equality of column values. You can
specify a different join operator by selecting the corresponding option. For more information on various
join operators, refer to the documentation of your database management system.

Join Type defaults to Inner Join. You can change it to other types of join supported by the database
manager.

Some ODBC drivers support only one type of join known as inner join. Others support
outer joins, but only one type of outer join known as left outer join. The Join Type
options in the Join dialog displayed by Visual Query Builder reflect the capability of the
driver to support different types of join. In case of dBASE, for example, only the Inner,
Left Outer and Right Outer options are enabled.

A table join can specify more than two tables, or a join between two columns in the same table. A join in
which columns from the same table are referred to is known as a self-join. In case of a self-join, the
Visual Query Builder adds a prefix such as __1, __2, etc., to identify multiple instances of the same table.
For example, if you create a listing of employees and their managers using the EmpId and MgrId columns
in the Employee table, the columns will be identified as Employee.EmpId and Employee__1.MgrId.

Instead of specifying an inner join (which is the default), you can perform an outer join between the tables
in a query. To create the outer join, you need to edit the join definition in the Join dialog. When you
create a join by connecting two table frames, an inner join is created as default. To change the join type
to outer join, double-click the line joining the table frames in the query workspace (or select the line by
mouse-click and press ENTER). The Join dialog will be displayed.

To define the outer join, select the appropriate option button for Join Type. Only the outer join options
supported by the ODBC driver are enabled and available for selection. After selecting the join type,
choose OK to define the join. If you do not want to make a change, choose Cancel.

Since some ODBC drivers restrict the number of outer joins in a SELECT statement to
one, you can define only one outer join condition in a query generated by the Visual
Query Builder. If one outer join is defined, for all other joins in the query, the outer join
option buttons will be disabled.

When you return to Visual Query Builder after defining an outer join, the line that connects the table
frames is shown in red color.

Join - Example

Query: List the subject, title, ISBN, author and publisher name of books on SQL (In all examples included in
the help file, we assume that the tables and columns exist as described).

In the sample database, the details of each book are maintained in the TITLES table. The information on
the subjects covered by each book is maintained in the SUBJECTS table. The ISBN column is used as
a link field between the two tables. To get the information required by this query, we would, therefore,
need to specify that the SUBJECTS table be joined with the TITLES table using the ISBN column.

To build and test this query, perform the following steps:

1. Choose the New icon on the Visual Query Builder Toolbar to create a new query.

The Add Table dialog box will be displayed.

2. Double-click the SUBJECTS table to add it to the query. Alternatively, select the table name
from the list of tables and choose the Add command button.

The fields in the table are displayed in the SUBJECTS table frame in the workspace.

3. Add the TITLES table to the query as described in Step 2.

The fields in the table are displayed in the TITLES table frame in the workspace.

4. Close the Add Table dialog using the Close command button.

5. Arrange the table frames in the workspace so that you can easily work with them.

6. Select the ISBN column in the SUBJECTS table by clicking on it. Then drag the column name
across the workspace and drop it on the ISBN column in the TITLES table frame.

When you drag the column name out of the SUBJECTS table frame and into the query
workspace, the mouse pointer changes to , signifying that the column cannot be dropped
inside the workspace. When you reach the TITLES table frame, the mouse pointer changes to

, signifying that it can be dropped in that position.
A line is drawn in the query workspace linking the ISBN columns in the two table frames. If you move the
table frames in the query workspace, the line is automatically redrawn to indicate the join condition.
7. To view the join criteria, double-click the line joining the two columns.

The Join dialog is displayed.

The Table1 and Column1 values identify the first table / column in the join. The Table2 and
Column2 values identify the second table / column in the join. In case of an inner join, the order
of table columns is not important, but it is important in case of outer joins.

Join Operator shows =. This specifies that the join is based on the equality of column values.
You can specify a different join operator by selecting the corresponding option. For more
information on various join operators, refer to the documentation of your database management
system.

Join Type defaults to Inner Join. You can change it to other types of join supported by the
database manager.

8. Choose OK in the Join dialog.

9. Choose the Subject column from the SUBJECTS table to query.

10. Choose the Title, ISBN, Author and Publisher columns from the TITLES table to query.

11. In the Criteria row in the Subject column, type 'SQL'. Include the single quotes.

12. Run the query.

13. The SQL statement for this query reads as follows:

SELECT Subject , Title , TITLES.ISBN , Author , Publisher

FROM SUBJECTS , TITLES

WHERE (SUBJECTS.ISBN = TITLES.ISBN)

AND

((Subject = 'SQL'))

Note that the ISBN column in the SELECT statement's column list is qualified using the table
name TITLES. Also note the use of the column qualifier for the ISBN column in the WHERE
clause. This is required because the same column name is present in the SUBJECTS and
TITLES tables. The Visual Query Builder automatically uses column qualifiers wherever
required to identify column names unambiguously.

14. Save the query as titlesub.

Options Dialog

The Options dialog is used to:

· Remove duplicate records from the result set. If you want to do this, check the Remove
Duplicate Records check box. This is the equivalent of adding the DISTINCT keyword to a
SQL SELECT statement.

· Delimit column and table names. This may be needed to work with databases that allow
embedded spaces in column and table names, or to use SQL reserved words in column and table
names. To enable the option, check the Always Quote Column and Table Names check box.

· Enable or disable the validation of table joins. To enable the option, check the Validate Joins
check box. If this option is enabled, the Visual Query Builder verifies if the columns to join have
compatible data types. If the columns have incompatible data types, you will receive an error
message.

· Enable or disable the validation of selection criteria. To enable the option, check the Validate
Criteria check box. If this option is enabled, the Visual Query Builder verifies that the selection criteria
specified are syntactically correct for a SQL SELECT statement.

Expression Dialog

Example

You can define expressions as part of a query. These can be arithmetic expressions that perform
calculations on numeric data values, or string expressions that concatenate strings or create substrings.
Note that string expressions are supported differently by different database management systems.

To define an expression, choose the icon from the Toolbar. The Expression dialog box is
displayed.

You should select at least one table before building an expression.

Visual Query Builder will assign a default name to each expression you define. You can change it by
typing a different name in the Expression Name edit box.

The query can contain more than one expression. You select an expression to edit from the pulldown
list.

The list of tables selected in the query will be shown in the Tables pulldown list. The columns of the
table name shown in the Tables edit box are displayed in the Columns list. You can include any of the
displayed columns as operands for the expression. To include columns from a different table, select the
table from the Tables pulldown list and choose the required column from the Columns list.

In addition to column names, you can also include literal and numeric constants in the expression.

You can include the Addition (+), Subtraction (-), Multiplication (*) and Division (/) operators in an
expression. You can change the precedence of these operators by including the operands in
parentheses. To use any of the operators or parentheses in the expression, just double-click the item in
the Operators list. It will be placed in the current cursor position in the Expression edit box.

The Expression edit box contains the definition of the expression. As you add more operands and
operators, the Expression edit box will be automatically updated. You can directly edit the expression if
you want to include literal or numeric constants.

You can also include the SQL aggregate functions in the expression: AVG, COUNT, MIN, MAX and
SUM. Just select the function name from the Functions list. An X is placed as a place holder argument
for the function. You have to replace it with the column name(s) on which the aggregate function is to be
calculated.

In addition to SQL aggregate expressions, a number of built-in functions can also be included in the
expression. Just pick the function name from the list displayed.

To save expression definitions and exit, choose Save. To exit without saving, choose Done. If you
made changes, you are prompted to confirm an exit without save.

We create a simple expression in the example demonstrated for this topic. A more complex expression
is demonstrated under the topic Specifying Grouping Criteria.

Expression - Example

Query: List the item number, ISBN, quantity, selling price and extended price of the books in order
number 10011 (In all examples included in the help file, we assume that the tables and columns exist as described).

In the sample database, the information on books ordered is maintained in the DETAILS table. For this
query, this table alone is needed.

To build and test the query, perform the following steps:

1. Choose the New icon from the Toolbar to create a new query.

The Add Table dialog will be displayed.

2. Add the DETAILS table to the query workspace. Close the Add Table dialog.

3. Add the OrderId, ItemNo, ISBN, Quantity and SalePrice columns to the query grid.

4. Choose the Expr command.

The Expression dialog box will be displayed.

5. Change the Expression Name to Extended_Price.

Extended_Price will be used as the name of the expression column in the query result.

6. Double-click the Quantity column in the Columns list.

The column name is automatically added to the Expression edit box.

7. Double-click the multiplication operator (*) in the Operators list.

The operator is appended to the Quantity column in the Expression edit box.

8. Double-click the SalePrice column in the Columns list.

The column name is appended to the multiplication operator in the Expression edit box.

9. Run the query.

You will see the list of books in order number 10011, along with the extended price of each order
item.

10. The SQL statement for this query will read as follows:

SELECT ItemNo , ISBN , Quantity , SalePrice ,

(DETAILS.Quantity * DETAILS.SalePrice) as Extended_Price

FROM DETAILS

WHERE (OrderId = 10011)

11. Save the query as extprice.

The queries you create using expressions may not be portable across all databases.

SQL Window

The SQL Window displays the SQL SELECT statement associated with the current query. To bring up

the SQL Window, choose the icon from the Toolbar. As you add or change query columns, selection
criteria, grouping, or sorting criteria, the SQL Window is automatically updated. Viewing the SQL
statement gives you immediate feedback about the query design and also helps learning the SQL syntax.

Result Window

You can run the query generated by the Visual Query Builer by choosing the icon from the Toolbar.
The query results are displayed in the Result Window. This helps you verify that query columns,
selection criteria, grouping, and sorting criteria have been correctly specified for the query.

