
Legal Information
Telephony Application Programming
Interface (TAPI) Programmer's
Reference
This document is provided for informational purposes only, and Microsoft Corporation makes no
warranties, either express or implied, in this document. The entire risk of the use or the results of the
use of this document remains with the user.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of
this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1995-1996 Microsoft Corporation. All rights reserved. Portions © 1992-1993 Intel Corporation. All rights
reserved.

Microsoft, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Intel is a registered trademark of Intel Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Using the TAPI Programmer's
Reference

The Microsoft Win32 Telephony application programming interface (TAPI) provides services that enable
an application developer to add telephone communications to applications developed for operating
systems that support the Microsoft® Win32® API, such as Microsoft® Windows NT® Workstation and
Microsoft® Windows® 95.

The TAPI Programmer's Reference is intended to help experienced programmers learn the API for
telephony for these operating systems, and to be used by developers familiar with the Win32
programming environment. Previous development experience with telecommunications or other telephony
applications is helpful but not necessary.

Document Overview
This document presents general information about how to develop telephonic applications and offers
specific information about the functions, messages, and data types of the Telephony API. The sections
include:

· Telephony Overview describes the Win32 Telephony API and explains how to use it in Win32
applications.

· The Telephony Programming Model explains the concepts programmers should know before they
begin development of telephonic applications. It includes sections that describe the uses of
Telephony's device classes, addresses, and other topics.

· TAPI Applications refers to the source code of a telephonic application (supplied with the Win32 SDK)
to illustrate how to create a functional Win32 application.

· Multiple-Application Programming details what developers need to know when programming more
than one application to work together or among other applications.

· Call States and Events describes the call states through which a call transitions as it is established or
disconnected.

· Supplementary Line Functions describes some of the more advanced functions used to create
telephonic applications, including media monitoring, media control, and call conferencing.

· Line Devices Overview explains the line device class and describes the operations that can be carried
out on line devices.

· Phone Devices Overview describes the phone device class and the functions TAPI provides to use
phone devices.

· Assisted Telephony Overview tells how to add basic telephonic functionality to applications that don't
require the flexibility or control provided by the full Telephony API. Readers whose development goals
do not include the creation of new applications with a variety of telephonic functions may need to read
no further than this section.

· Device Classes describes device classes, the related physical devices or device drivers through
which applications send and receive the information or data that makes up a call.

· Quick Function Reference lists the functions of TAPI, a brief description of each, and the nature of
each result: synchronous or asynchronous.

· Unicode Support identifies which TAPI functions have Unicode versions and identifies the parameters
and structure members that contain Unicode strings. This section also lists functions that do not have
Unicode versions.

· Reference contains detailed information about the line device, phone device and assisted telephony
functions, messages, structures and constants.

What's New for TAPI Version 2.0
To provide the best performance and support on the Windows NT platform and on future releases of the
Windows 95 platform, the Win32 Telephony API and its service providers and supporting components are
fully implemented as 32-bit components in Win32. In addition to full 32-bit implementation, Win32 TAPI
includes these many new features:

· Native 32-bit support. All core TAPI components are Win32, with full support for non-Intel processors
(running Windows NT), symmetrical multiprocessing, multithreaded applications, and preemptive
multitasking.

· 32-bit application portability. Existing Win32 full TAPI and assisted TAPI applications which
currently run on Windows 95 (using the TAPI 1.4 API) run on Windows NT on the Intel x86 family of
microprocessors without modification or recompilation.

· 16-bit application portability. Existing Win16 full TAPI and assisted TAPI applications which
currently run on Windows 95 and Windows® 3.1 operating system (using the TAPI 1.3 API) run on
Windows NT without modification or recompilation.

· Unicode support. Win32 applications can choose to call the existing ANSI TAPI functions or to call
Unicode versions of functions that pass or return strings (functions with a "W" suffix).

· Service processes. TAPI 2.0 adds mechanisms for notifying applications of telephony events that do
not require the application to have a window message queue, thereby enabling background service
processes to easily use TAPI services.

· NDISTAPI compatibility. The existing support in Windows NT 3.5 for ISDN WAN miniports under
Remote Access Service is preserved. NDIS WAN miniport drivers are supported under a kernel mode
service provider without modification.

· Registry support. All telephony parameters are stored in the registry. Telephony service providers
and all stored parameters can be updated across the LAN.

· Call Center support. TAPI supports functionality required in a call center environment, including the
modeling of predictive dialing ports and queues, ACD agent control, station set status control, and
centralized event timing.

· Quality of Service (QOS) support. Applications can request, negotiate, and renegotiate quality of
service (performance) parameters with the network, and receive indication of QOS on inbound calls
and when QOS is changed by the network. The QOS structures are binary-compatible with those
used in the Windows Sockets 2.0 specification.

· Enhanced device sharing. Applications can restrict handling of inbound calls on a device to a single
address, to support features such as distinctive ringing when used to indicate the expected media
mode of inbound calls. Applications making outbound calls can set the device configuration when
making a call.

· User mode components. The full TAPI system, including top-level service provider DLLs, runs in
user mode.

The following are additional enhancements to existing TAPI features:

· Applications now receive LINE_APPNEWCALL messages (instead of LINE_CALLSTATE) as the first
messages notifying the application of a new call.

· Applications now receive LINE_REMOVE and PHONE_REMOVE messages whenever a line or
phone device has been removed from the system.

· LINECONNECTEDMODE_ constants now indicate when a call has been placed in the onhold state
by the remote party. Also, an additional LINECONNECTEDMODE_ constant indicates to applications
when entry into the connected state was confirmed by the network, or if it is just being assumed
because confirmation from the network is impossible.

· Applications now receive notification that ringing has stopped on a line device by receiving a
LINE_LINEDEVSTATE message with the dwParam1 parameter set to LINEDEVSTATE_RINGING

and both dwParam2 and dwParam3 set to zero.
· The LINEDEVCAPS, LINEADDRESSCAPS, and PHONECAPS structures now include a listing of

device classes supported by the device, with each supported device class terminated by a zero byte
and the final class terminated by two zero bytes. A typical list for a voice modem might be:
"tapi/line\0comm\0comm/datamodem\0wave/in\0wave/out\0\0"

Applications can scan this list to see if a particular device supports device classes required for the
application to properly function.

· The LINEFEATURE_, LINEADDRFEATURE_, and LINECALLFEATURE_ sets of constants have
been extended to allow applications to detect when various "flavors" of a function are available for
use. For example, applications will be able to detect not only that a call can be transferred, but
whether it is permitted to resolve the transfer as a three-way conference.

· Applications can carry out a "one-step transfer" by using
LINECALLPARAMFLAGS_ONESTEPTRANSFER with the lineSetupTransfer function.

· Applications can carry out a "no hold conference" by using the
LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with the lineSetupConference function,
allowing another device, such as a supervisor or recording device, to be silently attached to the line.

· Applications can carry out a "transfer through hold" (on the systems with this capability) by using the
linePickup function with a NULL target address. Check for the LINEADDRFEATURE_PICKUPHELD
bit in LINEADDRESSCAPS and LINEADDRESSSTATUS for this capability.

· The PHONECAPS structure now includes an indication of which hookswitch states can be set for
each hookswitch device, and which can be detected and reported. Previously, applications could
detect only the existence of each device without being able to determine which characteristics could
be only monitored and not set.

· The PHONESTATUS structure now also includes a dwPhoneFeatures member that indicates which
phone operations can be performed at the particular moment in time that phoneGetStatus is called.

New TAPI Functions, Messages, Structures, and Constants for
Version 2.0
The Win32 Telephony API version 2.0 includes a number of functions, messages, structures, and
constants that are either new (not available in previous versions of TAPI), or that have changed in TAPI
version 2.0. The following tables lists these new or changed items.

Functions New/Changed
lineAgentSpecific New
lineGetAgentActivityList New
lineGetAgentCaps New
lineGetAgentGroupList New
lineGetAgentStatus New
lineGetIcon Changed
lineGetMessage New
lineInitialize Obsolete
lineInitializeEx New
lineOpen Changed
lineProxyMessage New
lineProxyResponse New
lineSetAgentActivity New
lineSetAgentGroup New
lineSetAgentState New
lineSetCallData New
lineSetCallQualityOfService New
lineSetCallTreatment New
lineSetLineDevStatus New
phoneGetIcon Changed
phoneGetMessage New
phoneInitialize Obsolete
phoneInitializeEx New

Messages New/Changed
LINE_AGENTSPECIFIC New
LINE_AGENTSTATUS New
LINE_APPNEWCALL New
LINE_GATHERDIGITS Changed
LINE_GENERATE Changed
LINE_MONITORDIGITS Changed
LINE_MONITORMEDIA Changed
LINE_MONITORTONE Changed
LINE_PROXYREQUEST New
LINE_REMOVE New
PHONE_REMOVE New

Structures New/Changed

LINEADDRESSCAPS Changed
LINEAGENTACTIVITYENTRY New
LINEAGENTACTIVITYLIST New
LINEAGENTCAPS New
LINEAGENTGROUPENTRY New
LINEAGENTGROUPLIST New
LINEAGENTSTATUS New
LINEAPPINFO New
LINECALLINFO Changed
LINECALLPARAMS Changed
LINECALLSTATUS Changed
LINECALLTREATMENTENTRY New
LINEDEVCAPS Changed
LINEDEVSTATUS Changed
LINEINITIALIZEEXPARAMS New
LINEMESSAGE New
LINEPROXYREQUEST New
PHONECAPS Changed
PHONEINITIALIZEEXPARAMS New
PHONEMESSAGE New
PHONESTATUS Changed

Constants New/Changed
LINEADDRCAPFLAGS_
Constants

Changed

LINEADDRFEATURE_
Constants

Changed

LINEAGENTFEATURE_
Constants

New

LINEAGENTSTATE_ Constants New
LINEAGENTSTATUS_ ConstantsNew
LINEBEARERMODE_ Constants Changed
LINECALLFEATURE_ Constants Changed
LINECALLFEATURE2_
Constants

New

LINECALLINFOSTATE_
Constants

Changed

LINECALLPARAMFLAGS_
Constants

Changed

LINECALLREASON_ Constants Changed
LINECALLTREATMENT_
Constants

New

LINECONNECTEDMODE_
Constants

Changed

LINEDISCONNECTMODE_
Constants

Changed

LINEERR_ Constants Changed

LINEFEATURE_ Constants Changed
LINEINITIALIZEEXOPTION_
Constants

New

LINEOPENOPTION_ Constants New
LINEPROXYREQUEST_
Constants

New

LINETRANSLATERESULT_
Constants

Changed

LINETSPIOPTION_ Constants New
PHONEFEATURE_ Constants New
PHONEINITIALIZEEXOPTION_
Constants

New

Document Conventions for TAPI Programmer's Reference
The type conventions used in the TAPI Programmer's Reference are as follows:

Bold text Bold letters indicate terms, such as
function and structure names, that you
must use exactly as shown.

ALL CAPS All capitals typically indicate terms, such
as message and constant names, that
must be used exactly as shown.

Italic text In introductory and explanatory text,
italicized words indicate that a key term or
concept is being introduced. In function
and message descriptions, italics
indicates a placeholder for which you are
expected to provide a value or the name
of a variable.

Monospaced text Monospaced type indicates code samples
and data-structure definitions.

Related Documentation on Telephony Services
Other documentation that may help you understand the Telephony services as they apply to Windows
includes:

· Microsoft Win32 Programmer's Reference.
· The Microsoft Win32 Telephony Service Provider Reference, which provides information on how to

write a Win32 Telephony service provider.

Overviews
This section contains overviews on telephony, the telephony programming model, TAPI applications,
multiple-application programming, call states and events, and supplementary line functions.

Telephony Overview
Telephony is a technology that integrates computers with the telephone network. With telephony, people
can use their computers to take advantage of a wide range of sophisticated communications features and
services over a telephone line.

The Telephony application programming interface (TAPI) lets programmers develop applications that
provide personal telephony to users. TAPI supports both speech and data transmission, allows for a
variety of terminal devices, and supports complex connection types and call-management techniques
such as conference calls, call waiting, and voice mail. TAPI allows all elements of telephone usage¾from
the simple dial-and-speak call to international e-mail¾to be controlled within applications developed for
the Microsoft® Win32® application programming interface.

Using Telephony in Applications
Telephony capabilities help people get the most from telecommunications systems, allowing them to more
efficiently manage their voice calls and control their data-transfer operations. You can use TAPI to bring
this efficiency to any application ¾ database manager, spreadsheet, word-processing application,
personal information manager¾any application that can benefit by sending and receiving data through the
telephone network.

TAPI gives you a consistent set of tools for incorporating these features into your applications:

· Connect directly to the telephone network rather than rely on a separate communications application
· Dial phone numbers automatically
· Transmit documents as files, faxes, or electronic mail
· Access data from news retrieval and other information services
· Set up and manage conference calls
· Receive, store, and sort voice mail
· Use caller-ID to automate the handling of incoming calls
· Control the operations of a remote computer
· Compute collaboratively over telephone lines

TAPI provides your application with access to the telephone network, you provide your users with access
to these features. This means you choose and create a user interface that is consistent with the rest of
your application. For example, if you use drag and drop extensively, you could let the user send files or
faxes through the telephone to a colleague by dragging the icon of the file to an icon representing the
colleague's destination. Similarly, you could let the user initiate conference calls by dragging three or four
names from an electronic directory into a "Conference box" and clicking a "Connect" command. You
choose the interface, and let TAPI carry out the work needed to make and manage the telephone
connections.

Telephone Network Services
TAPI provides access to a variety of telephone network services. Although these services may use
different technologies to establish calls and transmit voice and data, TAPI makes these service-specific
details transparent to applications. This means you can create applications that can take advantage of
any available service without including service-specific code in your application.

Historically, most telephone connections in the world have been of the type POTS, or Plain Old Telephone
Service. Most POTS calls are transmitted digitally except while in the local loop¾the part of the telephone
network between the telephone and the telephone company's central switching office. Within this loop,
human speech from a household telephone is usually transmitted in analog format and the digital data
from a computer must first be converted to analog by a modem. Digital networks are gradually replacing
analog in the local loop.

Using TAPI for POTS is straightforward because POTS is comparatively simple. It normally uses only one
type of information (such as data or voice) per call, supports one channel per line, and so on. The vast
majority of uses for TAPI are still POTS, and most telephony programmers will use TAPI only for POTS
applications.

But TAPI is not restricted to POTS. TAPI also lets you make connections over other types of networks.
More advanced kinds of data transmission methods are being developed, refined, and installed. For
example, one important digital service is Integrated Services Digital Network (ISDN), which is expected to
grow significantly in availability. ISDN networks have these advantages over POTS:

· All digital
· Less prone to error
· Faster data transmission, with speeds up to 128 kilobytes per second (Kbps) on basic service
· From 3 to 32 channels for simultaneous transmission of voice and data
· An international standard

On ISDN networks, error rates are lower than with analog transmission because data travels from one
end of the ISDN network to the other in digital format. Speeds of up to 128 Kbps are possible on Basic
Rate Interface (BRI-ISDN) standard lines and much higher on Primary Rate Interface (PRI-ISDN)
standard lines. By contrast, today's maximum dial-up modem data rates of 28.8 Kbps. When ISDN
connections become more widespread, users will be able to send data to the recipient simultaneously
with a voice call to that or another person. Each ISDN line, depending on its transmission rate, provides at
least three channels (two for voice or data and one strictly for data or signaling information) and as many
as 32 channels, for simultaneous, independently operated transmission of voice and data. BRI-ISDN lines
provide two 64-Kbps "B" channels (B channels carry voice or data) and one 16-Kbps "D" channel (D
channels carry signaling information or packet data). The PRI-ISDN lines for the U.S., Canada, and Japan
have twenty-three 64-Kbps B channels and one 64-Kbps D channel. The European PRI standard offers
thirty B channels and two D channels.

TAPI can also be used with other digital networks such as T1/E1 and Switched 56 service. With Switched
56, some local and long-distance telephone companies provide signaling at 56 Kbps over dial-up
telephone lines. Switched 56 is quickly becoming available throughout the U.S. and in many other
countries. It requires special equipment, and though its connection capabilities are limited to calls to other
specially-equipped facilities, its high speed and pricing make it a reasonable choice for many data
communications needs. Switched 56 is used for data calls only.

TAPI can also be used with other services such as CENTREX, which provides a set of centralized
network services (such as conferencing) without the need to install special equipment. With CENTREX,
you pay for the use of telephone-company equipment over regular telephone lines. In addition, TAPI can
be used with digital Private Branch Exchanges (PBXs) and key systems. Because TAPI is independent of
the underlying telephone network, programming a PBX application using TAPI is the same as

programming a POTS application using TAPI. An application that was originally programmed for a POTS
environment can be used within a PBX environment with no changes to the application's source code.

Telephony Components
Based on the Windows Open Services Architecture (WOSA) model, Windows Telephony consists of the
TAPI and TAPI32 dynamic-link libraries (which forward application requests to the Telephony Service for
processing), TAPISRV.EXE (which implements and manages the TAPI functions) and one or more
telephony service providers (drivers). TAPI provides a device-independent interface for carrying out
telephony tasks. Service providers are dynamic-link libraries that carry out low-level and possibly device-
specific actions needed to complete telephony tasks through hardware devices such as fax boards, ISDN
cards, telephones, and modems. Applications link to and call functions in the TAPI dynamic-link library
only; they never call the service providers directly.

When an application calls a TAPI function, the TAPI dynamic-link library validates and marshalls the
parameters of the function and forwards it to TAPISRV.EXE. TAPISRV (the Telephony Service) processes
the call and routes a request to the appropriate service provider. To receive requests from TAPISRV, the
service provider must implement the Telephony service provider interface (TSPI). A service provider can
provide different levels of the service provider interface: basic, supplementary, or extended. For example,
a simple service provider might provide basic telephony service, such as support for outgoing calls,
through a Hayes-compatible modem. A custom service provider, written by a third-party vendor, might
provide a full range of incoming and outgoing call support.

A user can install any number service providers on a computer as long as the service providers do not
attempt to access the same hardware device at the same time. The user associates the hardware and the
service provider when installing. Some service providers may be capable of accessing multiple devices.
In some cases, the user may need to install a device driver along with the service provider.

Applications use the TAPI functions to determine which services are available on the given computer.
TAPI determines what service providers are available and provides information about their capabilities to
the applications. In this way, any number of applications can request services from the same service
provider; TAPI manages all access to the service provider.

As long as an application does not depend on optional features, the applications can, without
modification, use any services to carry out telephony tasks, even services made available after the
application is developed. This is because the application always accesses the many different services
through TAPI which translates the requests the application makes into the actual protocols and interfaces
required.

The Telephony SPI is beyond the scope of this reference. For more information about the TSPI and
service providers, see the Microsoft Win32 Telephony Service Provider Reference.

Media Stream
The media stream consists of the information exchanged over a call. TAPI by itself provides control only
for line and phone devices and does not give access to the content of the media stream. To manage the
media stream, an application uses Win32 functions, such as the Communication, Wave Audio, or Media
Control Interface (MCI) functions. For example, an application that provides an interface for managing fax
or data transmission uses the TAPI functions to control and monitor the line over which bits are sent, but
uses the Communications functions to transmit the actual data.

In the same manner, the media stream in a speech call (where speech refers exclusively to human
speech) is produced and controlled not by TAPI, but by one human talking to another. However, the line
on which that call is established and monitored, and the call itself, remain in control of the TAPI
application. (Note that voice is considered to be any signal that can travel over a 3.1 kHz-bandwidth
channel.)

Special Hardware
Some of the more advanced capabilities of TAPI require that an application be able, for example, to
retrieve data from telephones. Most telephones cannot be connected directly to computers to control
speech calls and thus are currently incapable of supporting Telephony functions beyond the passive role
they play in POTS. In the future, users will install and configure telephone sets like other peripheral
devices. The sets will be accompanied by cards that will control the flow of information between the
computer and the telephone. Client/server configurations will also be possible that allow users to take
advantage of telephonic services by connecting over a LAN to a server that has such a board and
associated software installed.

Physical Connections
Lines and phones can be connected in a variety of ways to the desktop computer and the telephone
network. The following examples show a selection of configurations that could be supported by a service
provider. Note that some of the telephone hardware required to implement some of these example is not
yet widely available.

A phone-centric connection consists of a single POTS line in which the computer is connected to the
switch through the desktop phone set. Such phone sets typically connect to the computer through one of
its serial ports. When an application requests an action, the corresponding service provider sends
telephony commands, which are often based on the Hayes AT command set (ANSI/TIA/EIA-602), over
the serial connection to the telephone. This configuration is limited because it generally provides only line
control. The computer does not have access to the media stream.

A computer-centric connection uses a computer add-in card or external box that is connected to both the
telephone network and the phone set. The service provider can easily integrate modem and fax functions,
as well as the use of the telephone as an audio I/O device.

A BRI-ISDN connection is similar to the computer-centric connection but allows for using the two B-
channels in a variety of line configurations. A service provider can treat this connection in a number of
ways:

· A single line device with a pool of two channels, allowing both channels to be combined for
establishing 128 Kbps calls.

· Two separate line devices, each with exclusive use of a single B-channel.
· Two separate line devices, each drawing up to two channels from a shared pool of two B-channels.
· Three line devices: one for each of the two B-channels and one for the combination.

In the latter two models, channels may be assigned to different line devices at different times.

In client/server networks, a pool of telephone ports attached to a server may be shared among multiple
client computers using a local area network. The ports may be configured to assign a maximum number
of line devices (the quota) to each client workstation. It is not unusual for the sum of all quotas to exceed
the total number of lines.

Also, the assignment of lines through ports is dynamic. For example, a client computer with a quota of 2
may use ports 1 and 2 at one time and ports 7 and 11 at a later time.

The service provider for the pool may model this arrangement by giving each client workstation access to
two line devices. This implies that the device IDs (which are fixed) for each client are 0 and 1. If the
application later requests information for device 0 and again for device 1, it must assume that the device
capabilities for each device are constant, because that is the Windows device model. For server-based
devices that are pooled as described in the example above, this constancy holds only for line devices that
have identical device capabilities.

A LAN-based server might have multiple telephone-line connections to the switch. TAPI operations
invoked at any of the client computers are forwarded over the LAN to the server. The server uses third-
party call control between the server and the switch to implement the client's call-control requests.

This model offers a lower cost per computer for call control if the LAN is already in use, and it also offers
reduced cost for media stream access if shared devices such as voice digitizers, fax and/or data
modems, and interactive voice response cards are installed in the server. The digitized media streams
can be carried over the LAN, although real-time transfer of media may be problematic with some LAN
technologies due to inconsistent throughput.

A LAN-based host can be connected to the switch using a switch-to-host link. TAPI operations invoked at

any of the client computers are forwarded over the LAN to the host, which uses a third-party switch-to-
host link protocol to implement the client's call-control requests.

Note that it is also possible for a private branch exchange (PBX) to be directly connected to the LAN, and
for the server functions to be integrated into the PBX. Within this model, different sub-configurations are
possible:

· To provide personal telephony to each desktop, the service provider could model the PBX line
associated with the computer (on a desktop) as a single line device with one channel. Each client
computer would have one line device available.

· Each third-party station can be modeled as a separate line device to allow applications to control calls
on other stations. (In a PBX, a station is anything to which a wire leads from the PBX). This enables
the application to control calls on other stations. This solution requires that the application open each
line it wants to manipulate or monitor, which may be satisfactory if only a small number of lines is of
interest, but may generate excessive overhead if a large number of lines is involved.

· Model the set of all third-party stations as a single line device with one address (one phone number)
assigned to it per station. Only a single device is to be opened, providing monitoring and control of all
addresses (all stations) on the line. To originate a call on any of these stations, the application must
only specify the station's address to the function that makes the call. No extra line opening operations
are required. However, this modeling implies that all stations have the same line-device capabilities,
although their address capabilities could be different.

A potential advantage of this model is a lowered cost per computer if the LAN is already in use, but a
limitation would be a possible lack of media-stream access by the computers.

The computer in use need not be a desktop computer. It can also be a laptop or other portable computer
connected to the telephone network over a wireless connection.

In a shared telephony connection, the computer's connection may be shared by other telephony
equipment, such as the telephone set shown below. For an application to operate properly in this
arrangement, neither the application nor the service provider can assume that there are no other active
devices on the line.

The Telephony Programming Model
The Telephony application programming interface (TAPI) simplifies the development of telephonic
applications by hiding the complexities of low-level communications programming. TAPI accomplishes
this by abstracting telephony services to make them independent of the underlying telephone network and
of the way the computer is connected to the switch and phone set. Connections to the switch may be
established in a variety of arrangements including directly from the user's workstation or through a server
on a local area network. Regardless of their nature, telephony devices and connections are handled in a
single, consistent manner, allowing developers to apply the same programming techniques to a broad
range of communications functions.

Telephony API
Telephony services are divided into Assisted Telephony services and the services provided by the full
Telephony API. In general, the full Telephony API is used to implement powerful telephonic applications
and Assisted Telephony is used to add minimal but useful telephonic functionality to non-telephony
applications. Telephony's services are divided into the groups shown in the following illustration:

{ewc msdncd, EWGraphic, bsd23547 0 /a "SDK.WMF"}

Assisted Telephony
A valuable feature of Win32 Telephony is the small set of functions called Assisted Telephony. Assisted
Telephony is designed to make the establishment of voice calls and of media calls available to any
Win32-based application, not just those dedicated to telephonic functionality. In other words, Assisted
Telephony lets applications make telephone calls without needing to be aware of the details of the
services of the full Telephony API. It extends telephony to word processors, spreadsheets, databases,
personal information managers, and other non-Telephony applications. For example, adding the Assisted
Telephony function tapiRequestMakeCall to a spreadsheet lets users automatically dial telephone
numbers stored in the spreadsheet (or in a connected database).

The power of Assisted Telephony can be illustrated by the following example. A spreadsheet application
can incorporate functions that dial a telephone number for a speech call. As long as the application needs
none of the detailed call control provided by the full Telephony API, Assisted Telephony is the easiest and
most efficient way to give it telephonic functionality. Functionality beyond dialing such as the transmission
and reception of data would require additional data-transfer APIs, including the communications functions
of the Comm API.

{ewc msdncd, EWGraphic, bsd23547 1 /a "SDK.WMF"}

Because Assisted Telephony and the full Telephony API are used and implemented in different ways, it is
not advised to mix Assisted Telephony function calls and Telephony API function calls within a single
application.

For more information about the uses and functions of Assisted Telephony, see Assisted Telephony
Overview.

Service Levels
Applications whose telephony functionality goes beyond the most basic call control or are meant to
handle inbound calls must be built using the Telephony API (not Assisted Telephony). The Telephony API
defines three levels of service:

· The elementary level of service, called Basic Telephony, which provides a minimum set of functions
that corresponds to Plain Old Telephone Service (POTS). TAPI service providers are required to
support all Basic Telephony functions.

· The Supplementary Telephony level of service, which provides advanced switch features such as
hold, transfer, and so on. All supplementary services are optional; that is, the service provider is not
required to support them.

· The Extended Telephony level of service, in which the API provides well-defined API extension
mechanisms that enable application developers to access service provider-specific functions not
directly defined by the Telephony API.

Basic Telephony Services
Basic Telephony Services are a minimal subset of the Win32 Telephony specification. Because all service
providers must support the functions of Basic Telephony Services, applications that use only these
functions will work with any TAPI service provider. The functionality contained in Basic Telephony roughly
corresponds to the features of POTS.

Today, many programmers will use only the services provided by Basic Telephony. But others, such as
those writing code for PBX phone systems, will need the functions of Supplementary Telephony. Soon,
the demand for ISDN and other network services, along with advancements in telephone equipment, will
drive even greater usage of Supplementary Telephony.

For a list of the functions of Basic Telephony, see Quick Function Reference.

Because control of phone devices is not assumed to be offered by all service providers, phone-device
services are considered to be optional. That is, they are not a part of Basic Telephony. For a list of phone-
device services, see the following topic on Supplementary Telephony services, and for more information
on phone devices, see Device Classes.

Supplementary Telephony Services
Supplementary Telephony Services are the collection of all the services defined by the API other than
those included in the Basic Telephony subset. It includes all so-called supplementary features found on
modern PBXs, such as hold, transfer, conference, park, and so on. All supplementary features are
considered optional; that is, the service provider decides which of these services it does or does not
provide.

An application can query a line or phone device for the set of supplementary services it provides using
functions such as lineGetDevCaps or lineGetAddressCaps. Note that a single supplementary service
may consist of multiple function calls and messages. The Telephony API, and not the service provider
developer, defines the behavior of each of these supplementary features. A service provider should
provide a Supplementary Telephony service only if it can implement the exact meaning as defined by the
API. If not, the feature should be provided as an Extended Telephony Service.

As mentioned in Basic Telephony Services, phone-device services are considered optional. Therefore, all
phone-device services are part of Supplementary Telephony. For a list of the functions of Supplementary
Telephony, see Quick Function Reference.

Extended Telephony Services
The API contains a mechanism that allows service-provider vendors to extend the Telephony API using
device-specific extensions. Extended Telephony Services (or Device-Specific Services) include all
extensions to the API defined by a particular service provider. Because the API defines the extension
mechanism only, the definition of the Extended-Telephony Service behavior must be completely specified
by the service provider.

TAPI's extension mechanism allows service-provider vendors to define new values for some enumeration
types and bit flags and to add fields to most data structures. The interpretation of extensions is keyed off
the service provider's Extension ID, an identifier for the specification of the set of extensions supported,
which may cross several manufacturers. Special functions and messages such as lineDevSpecific and
phoneDevSpecific are provided in the API to allow an application to directly communicate with a service
provider. The parameters for each function are also defined by the service provider.

Vendors are not required to register in order to be assigned Extension IDs. Instead, a utility is provided
that allows the generation of Extension IDs locally. This unique ID is composed of an Ethernet-adapter
address, a random number, and the time of day. An ID is assigned to a set of extensions (before
distribution), not to each individual instance of an implementation of those extensions. A tool called
EXTIDGEN.EXE is provided within the Win32 SDK that allows service provider authors to generate these
IDs.

Extending Data Structures and Types
A range of values is reserved to accommodate future extensions to the Basic and Supplementary TAPI
function set. The Extensibility section in this reference tells the amount by which a data structure can be
extended. For a list of the functions used for extending Telephony, see Quick Function Reference.

Version Parameters
Every function that takes a dwAPIVersion or similar parameter must set this parameter to either the
highest API version supported by the application or the API version negotiated using the
lineNegotiateAPIVersion or phoneNegotiateAPIVersion function on a particular device. Use the
following table as a guide:

Function Meaning
lineGetAddressCaps Use version returned by

lineNegotiateAPIVersion
lineGetCountry Use highest version supported by

the application
lineGetDevCaps Use version returned by

lineNegotiateAPIVersion
lineGetProviderList Use highest version supported by

the application
lineGetTranslateCaps Use highest version supported by

the application
lineNegotiateAPIVersion Use highest version supported by

the application
lineNegotiateExtVersion Use version returned by

lineNegotiateAPIVersion
lineOpen Use version returned by

lineNegotiateAPIVersion
lineTranslateAddress Use highest version supported by

the application
lineTranslateDialog Use highest version supported by

the application
phoneGetDevCaps Use version returned by

phoneNegotiateAPIVersion
phoneNegotiateAPIVersion Use highest version supported by

the application
phoneNegotiateExtVersion Use version returned by

phoneNegotiateAPIVersion
phoneOpen Use version returned by

phoneNegotiateAPIVersion

Important When negotiating an API version, always set the high and low version numbers to the
range of versions that your application can support. For example, never use 0x00000000 for the low
version or 0xFFFFFFFF for the high since these values require that your application support all
versions of TAPI, both future and past.

Device Classes in TAPI
Device classes simplify development by letting programmers treat devices that have similar properties in
a similar manner. Real-world devices such as telephones, modems, and telephone lines belong to device
classes. Applications access devices belonging to a given class using the same functions.

An application never needs to know which service provider controls which device.

Device classes help make TAPI extensible by providing a framework from which to classify and support
new equipment.

Application developers should keep in mind the existence of other applications that share telephony
services, as explained in Multiple-Application Programming.

There are two device classes: line device and phone device.

It also defines two sets of functions and messages, one used for line devices and one used for phone
devices.

The line device class is a device-independent representation of a physical line device, such as a modem.
It can contain one or more identical communications channels (used for signaling and/or information)
between the application and the switch or network. Because channels belonging to a single line have
identical capabilities, they are interchangeable. In many cases (as with POTS), a service provider will
model a line as having only one channel. Other technologies, like ISDN, offer more channels, and the
service provider should treat them accordingly.

A service provider may allow an application to request that multiple channels be combined in a single call
(as, for example, when ISDN "B" channels are combined into "H" channels) to give the call wider
bandwidth, using a technique often referred to as inverse multiplexing. This added bandwidth enables the
call to transmit more information at the same time. For most current telephonic purposes, inverse
multiplexing is not necessary.

In POTS, it is normally necessary to assign one channel per line, but with ISDN, a line's channels are
dynamically allocated when an application makes or answers a call. Because these channels have
identical capabilities and are interchangeable, the application need not identify which channel is to be
used in a given function call. Channels are owned and assigned by the service provider for the line device
in a way that is transparent to applications. This channel management is a method of abstraction that
eliminates the need to introduce the naming of channels by TAPI.

Just as a line device class is an abstraction of a physical line device, the phone device class represents a
device-independent abstraction of a telephone set. TAPI treats line and phone devices as devices that are
independent of each other. In other words, you can use a phone (device) without using an associated line,
and you can use a line (device) without using a phone.

Service providers that fully implement this independence can offer uses for these devices not defined by
traditional telephony protocols. For example, a person can use the handset of the desktop's phone as a
waveform audio device for voice recording or playback, perhaps without the switch's knowledge that the
phone is in use. In such an implementation, lifting the local phone handset need not automatically send
an offhook signal to the switch.

This independence also allows an application to ring the local telephone in a manner that is independent
of inbound calls. The capabilities of service providers is limited by the capabilities of the hardware and
software used to interconnect the switch, the phone, and the computer. For detailed information about
specific device classes, see Device Classes.

Addresses to Lines Assignments
An address is the telephone number, complete with national or international codes, of a telephone, fax
machine, or other device that can receive calls. Addresses can be dialed by a human or stored in an
electronic directory for retrieval and use by a telephony application. For more complete information on
addresses assignments, channels, and lines, see Line Devices Overview.

The local assignment of an address to a line (that is controlled in TAPI) takes place in the setup operation
for the service provider. This can be done using the Control Panel to configure the service provider or by
calling the lineConfigDialog function from within the application. On the local side of the central office,
everything about a line is controlled by a service provider, such as whether there are multiple addresses
and what these addresses are.

Usually, there is exactly one address per line, with the following exceptions:

· Multiple Addresses with POTS. In POTS, multiple addresses work only with systems that support
distinctive ringing or are connected to a DID trunk. (DID¾direct inward dialing¾is an extra-fee service
provided by the phone company.) With DID in a multi-user voice mail system, the dialed number is
signaled to the system on the DID trunk before the call rings. This allows the system to play the called
party's pre-stored announcement message and to store any incoming messages in the correct voice
mail box.
On a residential line with distinctive ringing service, different ringing patterns correspond to multiple
numbers assigned to the same line.

· Multiple Addresses with ISDN. ISDN was designed to allow simultaneous multiple addresses by
providing multiple channels, each of which can have its own address. On an ISDN network, call
offering (which means a call-setup message has been sent from the switch) takes place before
ringing, so the call can be redirected before it is answered. The lineAccept function means start
ringing for ISDN. For POTS, it means that some application has accepted responsibility for the call
and has presented it to the user.

Call Control
The developer's view of telephony is one in which telephone lines and phone sets are logically connected
through TAPI. This logical connection also provides a point of termination for the telephone line. The
physical connection can be made at the desktop, or at a LAN-based host or server, where a LAN protocol
extends the connection of the phone lines or phone to the client application. TAPI uses a first-party call-
control model on the logically terminated line as well as control of the associated phone device, if any.

Applications access Telephony API services using a first-party call control model. This means that the
application controls telephone calls as if it is an endpoint (the initiator or the recipient) of the call. The
application can make calls, be notified about inbound calls, answer inbound calls, invoke switch features
such as hold, transfer, conference, pickup, and park, and can detect and generate DTMF tones for
signaling remote equipment. An application can also use TAPI functions to monitor call-related activities
occurring in the system.

In contrast, third-party call control means that the controlling application does not act as an endpoint of
the call. A third-party call-control model allows an application to establish or answer a call between any
two parties¾the application does not act as either of these parties.

A service provider may implement TAPI's line and phone functions by treating the set of all stations on the
switch as a single line device to which multiple phone numbers are assigned. Each phone number on the
line device maps to one of the stations on the switch¾that is, calls passing through the switch can reach a
local station by using its address (telephone number). The application can answer calls or make calls,
selecting any one of the addresses on the line device as the origination number. Although the application
appears to be the originating party, a call is actually established between the station whose address was
selected by its originating number and the other party. However, this implementation is a type of third-
party call control and is not a design goal of TAPI, which emphasizes first-party call control applications.

Media Access
The media mode is the form in which data is transmitted on a line. The four main types of media mode
are voice, speech, fax, and data. With TAPI, calls can be established independently of the call's media
mode.

The media stream is the actual stream of information that travels on the line. Phone devices and calls on
line devices are capable of carrying media streams. The Telephony-API line and phone device classes
provide a wide range of control operations for these devices, but access to the media stream itself is not
provided by TAPI. Instead, the application must use other APIs for the Win32 environments to access or
manage these media streams. These APIs include the Waveform API, the Comm API, and the MCI
(Media Control Interface). The Waveform API is used for multimedia programming, the MCI provides a
high-level generalized interface for controlling media devices, and the Comm API is the set of
communications functions provided by the Win32 SDK.

For example, for line devices, an application can use TAPI to establish a connection to another station.
Once the connection is established, the application can then use the Waveform API (or the MCI
Waveaudio API) on the associated device to play back (send) and record (receive) audio data over the
connection. Similarly, if the connection's media stream is from a modem, an application would use the
modem configuration extensions of the Comm API to control the media stream.

To provide TAPI and media-stream access to either a phone or a call on a line device, the service
provider must implement both the Telephony SPI and the appropriate media stream SPI or DDI (device-
driver interface). The service provider can support lines and phones simultaneously.

Because these device classes and media stream interfaces function independently of one another,
coordination of their usage must occur at the application level. Multiple applications that share calls and
media streams in nontrivial ways will likely need to coordinate their activities at the application level to
prevent conflicting usage of TAPI and the media stream API in use. For more information on preventing
conflicts, see Multiple-Application Programming.

TAPI reports changes in the type of media stream (voice, fax, data modem, and so on) to participating
applications. This process is sometimes referred to as call classification. The mechanism used to
determine the type of media stream is specific to the service provider. For example, a service provider
may filter the media stream for energy or tones that characterize the media type, or it may use distinctive
ringing, information exchanged in messages over the network, or knowledge about the caller or called ID
to make this determination.

TAPI also provides limited support for control of the media stream on a call, particularly in server-based
networks. The actual data does not pass through TAPI, but TAPI can be used to a limited extent to control
functions that control the media stream. This control is provided to avoid latency (delay) problems that
could arise in client/server configurations for which the application is forced to use the stream's media
API. An application can request actions on a call's media stream if these actions are to be triggered by
events normally reported by TAPI, such as the detection of a tone or DTMF digit, or the transition of a call
to a specified call state.

For example, an application can request that a call's media stream be suspended (with
lineSetMediaControl) when a # DTMF digit is detected on the call, and that the media stream be
resumed when a * DTMF digit is detected. Note that some implementations or configurations will be
unable to provide any media-control functions or media access to the phone or line. Providing media
control is optional to the service provider; it should provide performance benefits primarily for client/server
implementations. Because it is optional and because only limited control is provided, its usage is
generally discouraged. If possible, applications should use the media stream's control functions instead.

Application Notifications
The programming model for Win32 Telephony matches the standard programming model for the Win32
environment with regard to device naming, the use of sections and entries in the registry, and function
calling conventions. But it deviates from this model in one important way¾the synchronous/asynchronous
operational model, which is a callback scheme through which applications are notified of the success or
failure of function calls and other events.

Application Message Notification Mechanisms
TAPI 2.0 and above support three mechanisms for notifying applications of changes in the status of calls,
lines, and phones: a callback function, Win32 events, and completion ports. These are described in detail
in the documentation for lineInitializeEx and phoneInitializeEx.

Prior to TAPI version 0x0002000, only one such mechanism existed: the callback function. When the
callback mechanism is used, the application's callback function is invoked from within the application's
thread (at the time the application calls the GetMessage function), providing a normal, fully functional
execution environment in which all Win32 APIs can be safely invoked.

A LINE_REPLY or PHONE_REPLY (asynchronous completion) message sent to the application carries
the request ID and an error indication. Valid error indications for this reply are identical to those that are
returned synchronously for the associated request, or zero for success. Only the application that issued
the request will receive the reply message, but when the request causes changes in the state of the
device or call, other interested applications may also receive event-related messages.

TAPI guarantees that a reply message is made for every request that operates asynchronously, unless
the application shuts down TAPI (by calling lineShutdown or phoneShutdown) before the reply is
received.

Information Returned by Functions
An application receives two kinds of information as a result of a function call: the function's return value,
and values written to data locations specified by the function's arguments.

If the function's return value is zero, the application knows that the function has completed synchronously.
In this case, any values written as a result of the function call are reliable and can be used immediately.
However, if the return value is positive, the function has not yet completed but it will complete
asynchronously, at which time TAPI notifies the application by sending it an asynchronous reply message
for the function. Once the application receives this message (and the message indicates success), any
values returned by the function are considered to be reliable. However, before the message is received,
the application should consider these values suspect and should not use them. Also, because
asynchronous reply messages can take varying lengths of time to be sent, the application may not
receive them in the same order in which it called their functions. This is why an application must retain the
request IDs of its requests in progress so that it can identify and correctly respond to incoming
asynchronous reply messages.

Example Illustrating the Programming Model
Consider a Win32-based application that can make either voice or data (modem) calls. Although these
calls could be made simultaneously if a telephone line were in place for each device (the telephone and
the modem), assume that there is only one line, so calls are placed one at a time.

For this discussion, a line is defined as a physical telephone line leading from the wall to the telephone
company's switch, and a line device (such as a fax or modem) is a local device on the telephone line.
Also, this example is restricted to POTS; the telephone line is a standard, two-wire twisted-pair cable that
carries an analog signal and constitutes a single channel.

The line devices attached to the computer are visible to the application as instances of the line device
class, which is defined by TAPI. The physical telephone is visible to the application as an instance of the
phone device class. This application therefore must be able to execute two types of calls: voice and data.
One strength of the TAPI programming model is the way its abstraction into classes exploits the
similarities between these different types of calls.

For a more in-depth discussion of this process and related ones, see TAPI Applications.

Determining the Call Type (Media Mode)
Before an application uses any telephony services, it needs to interact with the user to know what kind of
call to make. To do this, the standard Win32 API functions are used to build the menus or dialogs needed
to gather the user input that tells your application what to do. In this example, the user specifies the
transmission of data, so the application will make a call that transmits a specified file to another user.

Initializing TAPI
Before placing a call, an application must establish a means of communication between itself and TAPI.
The application must select a telephony event notification mechanism, and specify this in a call to the
lineInitializeEx function (see the description of this function for details on the available notification
mechanisms). One of the values lineInitializeEx returns is the number of line devices available to the
application. In this example, that number is one, and the line's ID in Telephony's zero-based scheme is 0.
The application must establish this communication link (with lineInitializeEx) regardless of the type of call
to be placed or received.

Obtaining a Line
Next, the application needs to obtain a handle to a capable telephone line. The application opens the line
with lineOpen, but before doing this, it must make sure that the line can support the desired type of call.
Invoking the lineGetDevCaps function returns that information to the application in a data structure of
type LINEDEVCAPS. If data calls were not supported, this fact could be reported to the user in a dialog
box. The application does not need to use lineGetDevCaps before every call, because a line's
capabilities should remain static. If the local telephonic configuration (as expressed in .INI files) changes,
TAPI notifies applications, which can then call lineGetDevCaps to see what has changed.

One of the values returned by lineGetDevCaps (as a field in the LINEDEVCAPS structure) is the number
of addresses assigned to the specified line device. In this example, a single device has a single address.

Ownership of a call is a type of privilege. Applications obtain owner or monitor privilege to new incoming
calls by specifying the desired privilege as a parameter of lineOpen. The privilege with which a line is
opened remains in effect for subsequent calls used by that application on that line. An application always
has owner privileges on calls it creates. When the application opens a line to place calls (as opposed to
taking inbound calls) it invokes lineOpen with the privilege LINECALLPRIVILEGE_NONE, which
insulates the application from incoming calls while allowing outgoing calls. The other privileges used with
the lineOpen function are only for incoming calls.

The LINEOPENOPTION_SINGLEADDRESS option is available when using the lineOpen function to
allow the application to specify that handles for new calls (either monitor or owner handles) should be
delivered to the application only if the address on which the call appears matches the address provided
as a function parameter. This is extremely useful when different addresses on a line are designated for
calls of different media modes.

Placing the Call
Once the application has opened the line device, it places the call with lineMakeCall, specifying the
address (phone number and area code) in the lpszDestAddress parameter and the media mode
(datamodem, in this case) in the lpCallParams parameter. This function returns a positive "request ID" if
the function will be completed asynchronously, or a negative error number if an error has occurred.
Negative return values describe specific error states. LINEERR_CALLUNAVAIL, for example, means that
the line is probably in use (someone else already has an active call). If dialing completes successfully,
messages are sent to the application to inform it about the call's progress. Applications typically use these
messages to display status reports to the user.

Later, when the lineMakeCall function has successfully set up the call, the application receives a
LINE_REPLY message (the asynchronous reply to lineMakeCall). At this point there is not necessarily a
connection to the remote station, just an established call at the local end¾perhaps indicated by a dial
tone. This LINE_REPLY message informs the application that the call handle returned by lineMakeCall is
valid.

TAPI's programming model treats data calls similarly to voice calls, as shown by the fact that the same
function is used to make calls of both types. If LINEBEARERMODE_DATA is specified in a field of the
lpCallParams parameter of lineMakeCall, the call is set up to send data. Speech transmission can be
chosen by using a different value. And if NULL is specified, a default 3.1 kHz voice call is established,
which can support the speech, fax, and modem media modes.

Note TAPI should not be used for fax transmissions. Instead, use the functions available through
MAPI, the Microsoft Messaging API.

As the call is placed, it passes through a number of states, each of which results in a LINE_CALLSTATE
message sent to the application. These states include dialtone, dialing, ringback, and, if connection
succeeds, LINECALLSTATE_CONNECTED. (To see the complete list of call states, see the
LINECALLSTATUS structure.) After the message indicating the connected state is received, the
application can begin sending data.

Sending Data
If the line is available (not busy) and the connection is established, the data can be sent. The application
accomplishes this by giving control back to the user, who, using a dialog box, specifies the file to send
and initiates data transmission. Though TAPI functions continue to manage the opened line and the call in
progress, actual transmission is started and controlled by non-TAPI functions. In this case, for example,
the Comm API of the Win32 SDK could be used to control the media stream.

If the application were setting up a speech call, its actions would be similar. Once the call is established,
the duty of data transmission is transferred outside of TAPI to the people who wish to speak, although the
line and call continue to be monitored by the application using TAPI functions.

Ending the Call
When the modem transmission is finished, the application receives a LINE_CALLSTATE message, which
informs it that the state of a line device has changed. In this example, a remote disconnect has occurred.
The application disconnects the call at the local end (it "goes on-hook") with lineDrop. Alternatively, the
application itself may choose to end the call by invoking lineDrop before receiving the remote-disconnect
message.

Here are the steps that might be used to end a call, close the line, and leave TAPI:

1. The application calls lineDrop, which places the call in the IDLE state. The call still exists, and the
application still has its handle. Now the application can examine the call-information record, if desired.

2. The application calls lineDeallocateCall to release the call handle for the finished call. The call no
longer exists.

3. If the application expects no more calls on the line, it uses lineClose to close the line. At this point,
there will be no more incoming or outgoing calls on that line.

4. The application invokes lineShutdown to end the use of TAPI's functions for the current session.

Synchronous/Asynchronous Operation
The interactive nature of telephony requires that TAPI be a real-time operating environment. Many of
TAPI's functions are required to complete quickly and return their results to the application synchronously.
Other functions (such as dialing) may not be able to complete as quickly and therefore operate
asynchronously. Any given operation always completes either synchronously or asynchronously, and both
types of operation are explained in the following topics. A list of all TAPI functions, which states whether
each one completes synchronously or asynchronously, appears in Quick Function Reference.

Synchronous Functions
An operation that completes synchronously performs all of its processing in the function call made by the
application. The function returns different values depending on its success or failure:

· Synchronous Success. If the request or service corresponding to the function has been carried out
successfully, the function returns zero, indicating success. Any values written as a result of the
function call are reliable and can be used immediately.

· Synchronous Failure. If the function detects an error and the request is not carried out, a negative
error number is returned to identify the error.

Asynchronous Functions
An operation that completes asynchronously performs part of its processing in the function call made by
the application and the remainder of it in an independent execution thread after TAPI has returned from
the function call. To ensure completion of the call's processing, the service provider vectors the request to
another active entity in the system¾such as a LAN server, add-in hardware, a switch, or a network¾and
then returns to the application. At this time, either a negative error result or a positive request ID is
returned to the application.

At the time of asynchronous completion (the service provider has received an interrupt from the hardware,
meaning that a message must be delivered), the service provider calls TAPISRV.EXE and reports that
"Event X has just taken place. Deliver an appropriate message to all concerned applications." When
TAPISRV.EXE receives this message, it forwards the message the TAPI dynamic-link library, in the
application's process, which in turn posts a window message, signals an event handle, or posts to an IO
completion port, according to the message notification scheme selected by the application in
lineInitializeEx or phoneInitializeEx.

When the asynchronous portion of the operation completes, a LINE_REPLY (or PHONE_REPLY)
message is sent to the application. This message contains, as one of its parameters, the request ID
returned by the function call. This request ID allows the application to determine which original request
has completed. (Applications should remember the request IDs of all their requests in progress so that
reply messages can be properly handled.) A second parameter to the LINE_REPLY (or PHONE_REPLY)
message is the asynchronous return value. This is either a negative value (for an error) or zero if the
operation completed successfully. For asynchronous operations, any of the return values may be returned
as part of the function return or as the dwParam2 parameter in the _REPLY message. The value 0, which
indicates success, will only be returned in the LINE_REPLY message, and never as the function's return
value.

The initialize functions (lineInitializeEx and phoneInitializeEx) tell TAPI how to send these messages to
the application.

Note In some cases, if a multithreaded application calls an asynchronous function from a thread
other than the thread from which the application initialized the line or phone device, the application
may receive the LINE_REPLY or PHONE_REPLY message before the asynchronous function has
returned. In such cases, the application should save the message parameters and wait until the
asynchronous function returns and the request ID is known before processing the message.

The Meaning of SUCCESS
When an operation returns a SUCCESS indication (either synchronously upon function return for
synchronous operations, or asynchronously through a LINE_REPLY or PHONE_REPLY message for
asynchronous operations), the following is assumed to be true:

· The function has successfully progressed to a point that is defined by the API on a function-by-
function basis. After that point has been reached, either the operation is completely done, or it will be
in a state such that independent state messages will inform the application about subsequent
progress.
For example, a service provider's implementation of lineMakeCall should return SUCCESS no later
than when the call enters the proceeding call state. Ideally, the provider should indicate SUCCESS as
soon as possible, such as when the call enters the dial tone call state (if applicable). Once SUCCESS
has been returned to the application, LINE_CALLSTATE messages will inform the application about
the progress of the call. Service providers that delay returning the lineMakeCall SUCCESS
indication, say, until after dialing is complete, must be aware that this places that provider at a
disadvantage because the usability at the application level may be severely limited. For example, it
would not be possible for a user to cancel the call setup request in progress until after dialing is
complete and all digits had been sent to the switch.

· Functions that return information (such as lineGetCallInfo) return SUCCESS only when the
requested information is available to the application. Functions that return handles (to lines or calls),
can return SUCCESS only after the handle is valid. No messages should be sent about that line or
call prior to the SUCCESS indication of the function that caused its creation. The service provider is
responsible for suppressing such messages.

· Functions that enable certain permanent conditions (such as lineMonitorDigits) return SUCCESS
only after the condition is enabled, not when the condition is removed again (for example, not when
all digit monitoring has completed).

· Call-control functions (such as lineHold or lineSetupTransfer, but not lineMakeCall) return
SUCCESS when the operation is completed. Some telephone networks do not provide
acknowledgment (positive or negative) about the completion of certain requests made by service
providers. In such situations, the service provider must decide upon success or failure of the request.
Therefore, SUCCESS may indicate that the service provider has initiated actions to fulfill the request,
but not necessarily anything more. For example, the provider may receive no affirmative
acknowledgment to its request from the switch, although it has already sent a success message to
the application.

TAPI Applications
This section explains what you need to know to program basic telephonic functionality using the line
device class functions.

Establishing a Link
Before an application can call the functions of Win32 Telephony for using a line device, it must take the
following steps:

· Initialize the TAPI environment and TAPI's functions with an initialization function. Invoking this
function also informs the application of the number of line devices available.

· Negotiate the API version, and if necessary, negotiate the Extensions version.

An application must take the preceding steps for each line device it intends to use.

Applications should not invoke phoneInitializeEx without subsequently opening a phone (at least for
monitoring). If the application is not monitoring and not using any devices, it should call phoneShutdown
so that memory resources allocated by the TAPI dynamic-link library can be released if unneeded, and
library itself can be unloaded from memory while not needed.

Opening Lines
After having obtained the capabilities of a line, an application must open the line device before it can
access telephony functions on that line. (Because a line device is an abstraction of a line as defined by
Telephony, opening a line and opening a line device can be used interchangeably.) When a line device
has been opened successfully, the application receives a handle for it. The application can then use that
line to take inbound calls, make outbound calls, or monitor call activities on the line for logging purposes.

To open a line device for any purpose¾monitoring or control¾the application calls the function lineOpen.
(Later, when the application is finished with the line device, it can close it with lineClose.)

The function lineOpen can be invoked in one of two ways:

· A specific line device is selected by means of its line-device ID (the parameter dwDeviceID). The
lineOpen request will open the specified line device. Applications interested in handling inbound calls
typically use specific line devices because the application has been notified which line is carrying or is
expected to carry the inbound call. When a line device has been opened successfully, the application
is returned a handle representing the open line.

· The application can specify that it wants to use any line device that has certain properties. In this
case, the application uses the value LINEMAPPER instead of a specific line-device ID as a parameter
for lineOpen. The application also specifies which properties it needs on the call in parameters to
lineOpen. The function opens any available line device that supports the specified call parameters.
This attempt, of course, may fail. If successful, the caller can determine the line-device ID by calling
lineGetID, specifying the handle (lphLine) to the open line device returned by lineOpen.

An application that has successfully opened a line device can use it to make an outbound call except
when the line supports only inbound calls.

Selecting One or More Lines
An application can open one or more lines for various purposes. For example, it can open one line for
monitoring calls and another line for making outgoing calls. If several lines are available, the application
can choose to open any or all of them. To decide which of several line devices to use, determine the
capabilities of each one with lineGetDevCaps. This tells whether the line supports the functionality
needed by the calls to be made or received¾such as their required media mode. This function is also
used to get the name of the line.

Because opening a line merely means obtaining a handle to the line (hLine) with a given privilege, an
application can obtain more than one handle to the same line. In other words, an application can open the
same line many times, also called opening different instances of the line. For example, a line may
simultaneously be opened once for monitoring calls, a second time for accepting incoming calls as their
owner, and a third time for making outgoing calls.

After choosing a suitable line (or lines), the application uses lineOpen, either specifying a certain line or
using LINEMAPPER, as explained in the previous section.

Specifying Media Modes
The ability of an application to deal with inbound calls or to be the target of call handoffs on a line is
determined by the value used for the dwMediaModes parameter of the lineOpen function. With this
function, the application indicates its interest in monitoring calls or receiving ownership of inbound calls of
one or more specific media modes, or of any (unspecified) media mode, as described in the following
cases:

· An inbound call of a certain media mode is given to the application that has opened the line device for
that particular media mode. A single application may specify multiple flags simultaneously to handle
multiple media modes.

· An application that wants to handle calls for which the actual media mode present has not yet been
determined would turn on the unknown media bit as a parameter of lineOpen.

· An application that wants to handle calls of any media mode would indicate this capability by turning
on all of the media bits that are supported on the line (which can be obtained from LINEDEVCAPS).

All applications that have opened a line device in any mode are notified about certain general statuses
and events occurring on the line device or its addresses. These include the line being taken out of
service, the line going back into service, the line being under maintenance, an address coming in use or
going idle, and an open or close operation being executed on the line. An application that does not care
about a certain message can use the lineSetStatusMessages function to filter the message. Most such
status messages are disabled by default; an application would need to call lineSetStatusMessages to
enable them.

The media modes specified with lineOpen add to the default value for the provider's media mode
monitoring for initial inbound call type determination. This means that the dwMediaMode settings of all
applications with the line open are ORed together, and that union becomes the default media detection on
the line. The lineMonitorMedia function modifies the mask that controls LINE_MONITORMEDIA
messages but does not affect the default media detection enabled on new incoming calls. It is necessary
for an application using lineMonitorMedia to call it to establish media monitoring on every new call in
which it is interested.

Requesting Call Privileges
In addition to media mode, an application can specify the call privileges it wants for the calls provided to it.
With privileges, an application specifies whether it wants to monitor calls or own them. For an inbound
call, only one application is selected as the owner, although all applications with monitor interest in the call
are also notified about the incoming call. The usual privileges an application specifies are summarized in
the following list:

· If the application only wants to monitor calls, it specifies LINECALLPRIVILEGE_MONITOR. The
application will also receive monitor handles to outgoing calls placed by other applications (an
application receives owner handles for outgoing calls it places itself). It will also receive MONITOR
handles for calls it places itself on other instances of the same line.

· If the application wants to make outbound calls only, it specifies LINECALLPRIVILEGE_NONE. An
application that has NONE selected will not be automatically informed of incoming calls. However, it
can also become aware of calls on the line with LINE_ADDRESSSTATE(numCalls) or
LINE_LINEDEVSTATE(numCalls) messages. It can then call lineGetNewCalls..

· If the application wants to accept incoming calls of a specific media mode (or modes), it specifies
LINECALLPRIVILEGE_OWNER and one or more relevant LINEMEDIAMODE_ settings.

· If the application is willing to control unclassified calls (incoming calls of as-yet unknown media
mode), it specifies LINECALLPRIVILEGE_OWNER and LINEMEDIAMODE_UNKNOWN.

· In other cases, the application should specify the media mode it is interested in handling and set
dwPrivilege to LINECALLPRIVILEGE_OWNER.

An application that wants to be informed of all calls on the line regardless of whether it can become an
owner on the call can set both the LINECALLPRIVILEGE_OWNER and
LINECALLPRIVILEGE_MONITOR bits. It will get call handles with owner privileges for incoming calls for
which it is the highest priority application for the highest priority media mode on the call, and monitor
privileges for all other incoming and outgoing calls.

An application that has successfully opened a line device can always initiate calls using lineMakeCall,
lineUnpark, linePickup, lineSetupConference (with a NULL hCall parameter), as well as use
lineForward (assuming that doing so is allowed by the device capabilities, line state, and so on).

Application Priority
Conflicts can arise if multiple applications open the same line device for the same media mode. These
conflicts are resolved with a priority scheme by which the user assigns relative priorities to the
applications. This is usually done through a Control Panel utility or a Preferences menu in a telephonic
application. Note the following points about this mechanism:

· Only the highest priority application for a given media mode ever receives ownership (unsolicited) of a
call of that media mode.

· Although ownership is usually received when an inbound call first arrives or when a call is handed off,
any application (including a lower priority one) can later acquire ownership by using the function
lineGetNewCalls or lineGetConfRelatedCalls.

The user can assign relative priorities to the modules (the applications and the DLLs) that use TAPI. The
resulting configuration information is stored in the registry.

For in-depth information about the way applications receive calls in a multi-application environment, see
Multiple-Application Programming.

Using lineOpen
An application can open a number of lines as well as negotiate API and extension versions. The
application can call the lineOpen function with LINECALLPRIVILEGE_MONITOR privilege, meaning that
it will only monitor, not own, incoming calls on all the lines opened.

An application could open a line with the intent of owning incoming calls by specifying
LINECALLPRIVILEGE_OWNER as the privilege and a media mode other than NONE. The application
could actually specify a number of media modes in this parameter by OR-ing the bit flags for each of the
desired media modes. In that case, the application would be notified of incoming calls in any of the
specified media modes, and it receives those calls as their owner. (Actually, another application that is
also registered to receive calls of that media mode would receive the call instead, if it has a higher priority
as designated in the registry.) This notification arrives in a call-state message that specifies, among other
information, which line is carrying the incoming call. For example, by specifying
LINEMEDIAMODE_INTERACTIVEVOICE, the application would be notified of incoming calls of the
interactive voice media type (voice calls with a person on the local end of the line).

Receiving Information
An application receives information in two ways: solicited and unsolicited. Solicited information is
requested by the application through a function call such as lineGetDevCaps or lineGetAddressCaps.
Unsolicited information arrives in the form of messages¾most importantly call-state messages. Often, the
two mechanisms are used together, as when an application receives a LINE_CALLSTATE message, after
which it checks the information contained in the LINECALLINFO structure by calling lineGetCallInfo.

An application can call lineGetDevCaps to learn more about available lines. The application determines
the names of the lines and the number of addresses on those lines. (An important factor in the
configuration of lines and addresses is the way the service provider chooses to map lines and addresses.
Though the application has no control over this mapping, it can determine the details of the mapping by
calling functions such as lineGetDevCaps.) Later, using this information, the application could allow the
user to choose which line (and address) to use for an outgoing call, restricting the lines it displays (in a
dialog box, for example) to those that support a specific media mode. As an example, an application
designed to be used only for faxing may choose to let the user select only lines that support fax
transmission.

Call lineGetAddressCaps to obtain information for a given address. The application can use the names
of the addresses to let the user choose them in a popup menu, but other information is also reported,
such as whether caller-ID is supported, what kinds of call states can be produced, and how many active
calls can exist on that address.

Changes in the Status of a Line Device
The status of a line device can change for many reasons, some as a result of requests submitted by the
local application, and some as a result of actions performed by the switch or by the application (or person)
at the other end of the connection.

In either case, an application is notified about these changes with the LINE_LINEDEVSTATE message,
which indicates the status item (the attribute of the line device) that has changed. The application can
choose the line status items for which it wants to be notified using the function lineSetStatusMessages.
The messages controlled by invoking lineSetStatusMessages are LINE_LINEDEVSTATE and
LINE_ADDRESSSTATE.

In addition, an application can determine the current status of an address by calling
lineGetAddressStatus, which returns its information in a structure of the type LINEADDRESSSTATUS.
It can also see the complete status of the specified open line device by calling lineGetLineDevStatus,
which returns its information in a structure of the type LINEDEVSTATUS.

Receiving Calls
After an application has opened a line device and, while doing so, registered a privilege other than none,
and a media mode, it is notified when a call arrives on that line. Specifically, applications that have the line
open with LINECALLPRIVILEGE_MONITOR will receive a LINE_CALLSTATE message for every call that
arrives on the line. An application that has opened the line with LINECALLPRIVILEGE_OWNER receives
a LINE_CALLSTATE message only if it has become an owner of the call or is the target of a directed
handoff. In this notification, TAPI gives the application a handle to the incoming call, and the application
keeps this handle until the application deallocates the call.

Note To assist in object-oriented implementations of TAPI, in versions 0x00020000 and greater
TAPI initially sends a LINE_APPNEWCALL message (instead of a LINE_CALLSTATE message) to
the application to notify it of a new call handle.

Applications are informed of call arrivals and all other call-state events with the LINE_CALLSTATE
message. This message provides the call handle, the application's privilege to the call, and the call's new
state. For an unanswered inbound call, the call state is offering. An application can invoke
lineGetCallInfo to obtain information about an offering call before accepting it. This function call also
causes the call information in the LINECALLINFO data structure to be updated. By knowing the call state
and other information, the application can determine whether the call needs to be answered.

The call information stored in LINECALLINFO includes, among other things, the following items:

· bearer mode, rate This is the bearer mode (voice, data) and data rate (in bits per second) of the call,
for digital data calls.

· media mode The current media mode of the call. Unknown is the mode specified if this information is
unknown, and the other set bits indicate which media modes might possibly exist on the call. For
more information, see Multiple-Application Programming.

· call origin Indicates whether the call originated from an internal caller, an external caller, or an
unknown caller.

· reason for the call Describes why the call is occurring. Possible reasons are:
· Direct call
· Transferred from another number
· Busy¾forwarded from another number
· Unconditionally forwarded from another number
· The call was picked up from another number
· A call completion request
· A callback reminder

The reason for the call is given as unknown if this information is not known.
· caller-ID Identifies the originating party of the call. This can be in a variety of (name or number)

formats, determined by what the switch or network provides.
· called-ID Identifies the party originally dialed by the caller.
· connected-ID Identifies the party to which the call was actually connected. This may be different from

the called party if the call was diverted.
· redirection-ID Identifies to the caller the number towards which diversion was invoked.
· redirecting-ID Identifies to the diverted-to user the party from which diversion was invoked.
· user-to-user information User-to-user information sent by the remote station (ISDN).

The LINE_CALLSTATE message also notifies monitoring applications about the existence and state of
outbound (and inbound) calls established by other applications or established manually by the user¾for

example, on an attached phone device (if the telephony hardware and the service provider support
monitoring of actions on external equipment). The call state of such calls reflects the actual state of the
call as follows: An inbound call for which ownership is given to another application is indicated to the
monitor applications as initially being in the offering state. An outbound call placed by another application
would normally first appear to the monitoring applications in the dialtone state.

The fact that a call is offered does not necessarily imply that the user is being alerted. Once alerting
(ringing) has begun, a separate LINE_LINEDEVSTATE message is sent with a ringing indication to inform
the application. It may be necessary, in some telephony environments, for the application to accept the
call (with lineAccept) before ringing starts. The application can determine whether or not this is
necessary by checking the LINEADDRCAPFLAGS_ACCEPTTOALERT bit.

Depending on the telephony environment, not all the information about a call may be available at the time
the call is initially offered. For example, if caller ID is provided by the network between the first and
second ring, caller ID will be unknown at the time the call is first offered. When it becomes known shortly
thereafter, a LINE_CALLINFO message notifies the application about the change in party-ID information
of the call.

Incoming Calls and Line Privileges
An application cannot refuse ownership of a call for which it receives an owner handle. Whether the call is
delivered to the application with owner or monitor privileges is decided before the call arrives¾at the time
the application opens the line on which the call is established by the remote caller.

If the application opens the line with lineOpen with the parameter dwPrivilege set to
LINECALLPRIVILEGE_MONITOR, it automatically receives a handle with monitoring privileges for all
incoming calls on the line. It can then choose to become an owner by calling lineSetCallPrivilege. The
fact that it indicated MONITOR when it opened the line does not prevent it from later becoming an owner
with lineSetCallPrivilege or by originating a call with lineMakeCall (an application is always an owner of
calls it places regardless of the privilege specified with lineOpen).

When an incoming call has been offered to an application and the application is an owner of the call, the
application can answer the call with lineAnswer. Once the call has been answered, its call state typically
transitions to connected, at which time information can be exchanged over the call.

An application can receive handles to incoming calls only for monitoring. You can modify the application
(specifically, the parameters for lineOpen) to change the privileges with which it initially opens lines.

Securing a Call
If a new call arrives while another call exists on the line or address, similar notification and call information
may be supplied following the same mechanism as for any incoming call. If an application does not want
any interference by outside events for a call from the switch or phone network, it should secure the call.
Securing a call can be done at the time the call is made with a parameter to lineMakeCall, or later (when
the call already exists) with lineSecureCall. The call will be secure until the call is disconnected. Securing
a call may be useful, for example, when certain network tones (such as those for call waiting) could
disrupt a call's media stream, such as fax.

Logging Call Information
An application can call the function lineGetCallInfo to obtain information about a call. Although this
function fills the LINECALLINFO structure with a large amount of data, applications need to maintain
other items, such as the start and stop time of the call.

Developers of applications that log call information should note the following guidelines when designing
those applications:

· Free the call's handle (hCall) when the call goes idle¾that is, when a LINECALLSTATE_IDLE
message is received for the call. At any point in the call's existence prior to its deallocation, monitoring
applications can retrieve information about the call.

· To keep the call's log sheet complete, log the fact that the call has gone idle.
· Some applications may also need to update the user interface to show that important events have

occurred, such as the fact that a fax is being received.

For more information about call logging, see Multiple-Application Programming.

Establishing a Call
Once an application has determined that a given line offers the needed set of capabilities, and then opens
that line, it can access telephony functions for either incoming or outgoing calls on the line. The usual way
to place a call on that line is to invoke lineMakeCall, specifying the line handle and a dialable destination
address.

Address Translation
Applications can provide users with location independence and take advantage of calling-card information
managed by Win32 Telephony by storing telephone numbers in the Canonical address format. Before a
Canonical address can be used in placing a call, it must be converted (translated) into the Dialable
address format using the lineTranslateAddress function.

To do this, the lineTranslateAddress function starts by examining the settings in the registry to find the
user's location, including the country and area code. It then produces a valid dialing sequence by
removing unnecessary portions of the number (such as the country code or area code) and adding other
digits such as a long distance prefix or a digit used to dial out of a local PBX.

To avoid inadvertent misdialing, such as if the user has changed locations but has not yet informed Win32
Telephony of the change, an application may want to present the output of this function call to the user in
a dialog box. The user can then confirm the translated address or change it if it is incorrect.

Toll Lists
In some locations in North America, all calls placed to the local area code are local calls. In other
locations, some calls placed to the local area code are long distance, and need a "1" to be dialed. The
first three digits of the address (the prefix) determine whether or not a call within the local area code is a
toll call.

A toll list is a list of prefixes in the local area code whose addresses must be dialed as long distance
addresses, and are assessed long distance charges. With Win32 Telephony, a toll list can be built in one
of two ways:

1. The user can add or remove prefixes manually with the Telephony Control Panel.
2. The user can add or remove prefixes dynamically after a telephone call to that prefix fails for one of

these reasons: When the call was dialed, the "1" prefix was missing and necessary or present and
unnecessary. This dynamic process works as follows:
The application knows by the value of the LINETRANSLATERESULT_INTOLLLIST and
LINETRANSLATERESULT_NOTINTOLLLIST bits in the LINETRANSLATEOUTPUT structure
(returned by lineTranslateAddress) whether an address with the dialed prefix is already in the toll
list. The application can then let the user add or remove (whichever applies) this prefix from the toll
list. Adding and removing are both performed using the lineSetTollList function.

Dialing the Call
The lineMakeCall function first attempts to obtain a call appearance on an address on the line, then waits
for a dial tone, and finally dials the specified address. A call appearance is a connection to the switch over
which a call can be made. Once the connection is established, the call appearance exists, even if no call
is placed. After the call is established, the call appearance remains in existence until the call transitions to
the idle state. If calls controlled by other applications exist on the line, these calls would normally have to
be on hold, and would typically be forced to stay on hold until the application either drops its call or places
it on hold. If dialing is successful, a handle to a call with owner privileges is returned to the application.

Before invoking lineMakeCall, an application can set up parameters for the call and store them in the
data structure LINECALLPARAMS. A pointer to this structure is then used as a parameter of
lineMakeCall. In the fields of LINECALLPARAMS, the application can specify the quality of service
requested from the network as well as a variety of ISDN call setup parameters. If no LINECALLPARAMS
structure is supplied to lineMakeCall, a default POTS voice-grade call is requested with a set of default
values. However, it is a good idea to use LINECALLPARAMS so that monitoring applications can report
this call information (such as the identification of the called party) accurately.

The call's origination address also appears in LINECALLPARAMS. Using this field, the application can
specify the address on the line where it wants the call to originate. It can do so by specifying an address
ID, though in some configurations it is more practical to identify the originating address by its directory
number.

Note Do not mix function calls of the Telephony API with the functions of Assisted Telephony. The
actions requested by lineMakeCall would happen automatically with the Assisted Telephony function
calls tapiRequestMakeCall. But once an application has reached this state by using the calls of the
Telephony API, it makes no sense to revert to an Assisted Telephony function call (such as
tapiRequestMakeCall), because doing so would cause TAPI to repeat already performed actions. At
this stage, therefore, simply calling lineMakeCall causes less overhead.

Once dialing is complete and the call is being established, it passes through a number of different states.
These states (the progress of the call) are provided to the application with LINE_CALLSTATE messages.
This mechanism lets the application track whether the call is reaching the called party. It is important that
every telephony application base its behavior on the information received in these messages, and not on
any other assumptions about a call's state. An application must not assume that a requested state change
has occurred until notification of that state change arrives. Note that it can be helpful to display user-
friendly interpretations of call states as indicators of a call's progress, especially for calls expected to pass
through states slowly.

If special call setup parameters are to be taken into consideration, the application must supply them to
lineMakeCall. Call setup parameters are required for actions such as the following:

· Requesting a special bearer mode, bandwidth, or media mode for the call
· Sending user-to-user information (with ISDN)
· Securing the call
· Blocking sending of caller ID to the called party
· Taking the phone offhook automatically at the originator and/or the called party

Calling Card Information
The importance of a calling card rests in the different dialing procedures required by the various calling
cards. An application provides TAPI with the information it needs to display a dialog box, from which the
user can choose a calling card. (The calling card numbered 0 means "use the default dialing rules for the
country you are in.") The routine returns, among other information, the user's location (country and area
code), the number of calling cards registered for this user in the registry, and the preferred calling card for
that location. This calling card information is applied by the lineTranslateAddress function and does not
happen automatically through lineMakeCall.

Typically, an application would prepare a menu choice for the user, such as whether to make a call with
the default carrier, to override the default carrier and use a given calling code, or simply to use another
specific dialing sequence.

Using Multiple Addresses Simultaneously
The dialable number format (dialing formats are described in Line Devices Overview) allows multiple
destination addresses to be supplied at once. This ability can be useful if the service provider offers some
form of inverse multiplexing by setting up calls to each of the specified destinations and then managing
the information stream as a single high-bandwidth media stream. The application perceives this group of
calls as a single call because it receives only a single call handle representing the aggregate of the
individual phone calls.

It is also possible to support inverse multiplexing at the application level. To do this, the application would
set up a series of individual calls and synchronize their media streams.

Delayed Dialing
The application can also use lineMakeCall to allocate a call appearance or to dial just part of the full
number. Later, it can complete dialing using lineDial. When the number provided is incomplete, dialing
some of the digits may be delayed by placing a ";" (semicolon) at the end of the number. The lineDial
function is used in cases in which the application needs to send address information to the switch on an
existing call, such as dialing the address of a party to which the call will be transferred.

Note An application should make sure that incremental dialing (providing the number in small
pieces) is supported before attempting to use it. This support is indicated by the
LINEADDRCAPFLAGS_PARTIALDIAL bit in the dwAddrCapFlags field in the LINEADDRESSCAPS
structure, which is returned by lineGetAddressCaps.

The main reasons for an application to use delayed dialing are if the ? character appears in a dialable
address or if the service provider does not support one or more of the call progress detection control
characters. These characters, which can occur in a dialable address, are W (wait for dial tone); @ (wait
for quiet answer); and $ (wait for calling-card prompt tone). These and all other characters used in
address strings are discussed in greater detail in Line Devices Overview.

The provider indicates which "wait for" dial string modifiers it supports in the following bits in the
dwDevCapFlags field within the LINEDEVCAPS structure returned by lineGetDevCaps:

· LINEDEVCAPFLAGS_DIALBILLING
· LINEDEVCAPFLAGS_DIALQUIET
· LINEDEVCAPFLAGS_DIALDIALTONE

The ? can be placed in the string (either directly by the application or by the address translator with the
function lineTranslateAddress) if it is known that the user needs to listen for an undetectable tone before
dialing can proceed. Every provider should treat ? as requiring the dial string to be "rejected."

The lineTranslateAddress function returns bits, in the dwTranslateResults field of the
LINETRANSLATEOUTPUT structure, that indicate whether any of the four potentially offending modifiers
occur in the dialable string output from that translation operation. These bits give the application an idea
of whether the dialable string might need to be scanned for unsupported modifiers:

· LINETRANSLATERESULT_DIALBILLING
· LINETRANSLATERESULT_DIALQUIET
· LINETRANSLATERESULT_DIALDIALTONE
· LINETRANSLATERESULT_DIALPROMPT

If the application tries to send an unsupported modifier or a ? to the provider, it receives an error
indicating which offending modifier occurred first within the string:

· LINEERR_DIALBILLING
· LINEERR_DIALQUIET
· LINEERR_DIALDIALTONE
· LINEERR_DIALPROMPT

The application can choose to pre-scan dialable strings for unsupported characters. Or it can pass the
"raw" string from lineTranslateAddress directly to the provider as part of lineMakeCall (or lineDial or
any other function that passes a dialable address as a parameter) and then let the service provider
generate an error to tell it which unsupported modifier occurs first in the string.

When the application is told (or finds) that an unsupported dial modifier is in the dialable string, it must

take the following steps:

1. Locate the offending modifier in the string.
2. Isolate the characters occurring in the string to the left of the offending modifier.
3. Append a semicolon to the end of the partial string.
4. Reissue the dialing command using the partial string.
5. Prompt the user to listen for the audible tones indicating when it is OK to proceed with dialing.
6. Reissue the remainder of the dialable string (the portion following the offending modifier).

Note that in step 6 it is possible for another error to occur, because it is possible for multiple unsupported
characters to occur within a single dialable string. Therefore, the application should repeat this process to
dial the number in stages.

Tracking Asynchronous Requests
The function lineMakeCall is one of many functions that operate asynchronously. If an application
manages only one line, it can use one state record, a struct containing all the information needed to track
one outstanding asynchronous request. State records contain information such as the Request ID, the
type of request, and pointers to allocated data that may need to be freed later.

But some applications have to manage more than one line¾for example, to manage more than one
outgoing call at the same time. To do so, they need to track the different asynchronous requests possible
on each of those lines, and must therefore create an array of state records, one for each of the
outstanding asynchronous operations (such as multiple invocations of lineMakeCall).

When a reply arrives that shows an asynchronous function has completed, the application matches the
incoming Request ID with a Request ID in the array, and does whatever that specific call needs at that
point. You can design one function to handle the reply that indicates completion of the outstanding
asynchronous lineMakeCall request. The success or failure of the asynchronous request is recorded in
the requestResult field of the state struct.

Call Handle Manipulation
When an application makes a call, a handle to the call with owner privileges is returned to the application.
When the application is notified about an inbound call, it is given a handle to the call with either owner
privilege or monitor privilege, depending on the privilege previously requested with lineOpen. It can also
receive a handoff from another application, in which case it would receive owner privilege.

An application's call handle and associated privileges remain valid until the application takes an explicit
action to change them or if it receives a LINE_CLOSE message, which closes the line. In this case, all
handles to calls on the line instantly become invalid.

After a call reverts to the idle state, the application is still allowed to read the call's information structure
and status. When the application has no further use for the call (and its information), it should deallocate
the call handle by invoking lineDeallocateCall, which is discussed in following sections.

For more information about call logging and handing off calls to other applications, see Multiple-
Application Programming.

Dropping Calls
To terminate a call, the application uses lineDrop on the call. This has the effect of hanging up on
(disconnecting) the call, which makes it possible to make another call on the line. The lineDrop function
is also used to abandon a call attempt in progress. If the remote party disconnects a call, the local
application receives a LINE_CALLSTATE message with a call state of disconnected. If the local
application disconnects a call, the call becomes idle, but its handle is not automatically deallocated (the
application must call lineDeallocateCall). An application should check the dwCallFeatures field in
LINECALLSTATUS to determine whether or not it is legal to invoke lineDrop at a particular time.

Deallocating Call Handles
A call handle remains valid after the call has been dropped. This enables applications to use operations
such as lineGetCallInfo to retrieve call information for logging purposes. Once an application knows it
has all the information it needs about a call and it has received a
LINE_CALLSTATE(LINECALLSTATE_IDLE) message, it should call lineDeallocateCall to free system-
allocated memory related to the call. The application must itself free memory that it allocated for its own
purposes.

The way to free an idle call is to deallocate its handle with lineDeallocateCall. The application's duty to
free a call is independent of the reason the call went idle. That is, the handle must be deallocated whether
it was the local or the remote application that dropped it. If an application is the owner of the call, it can
deallocate the call's handle only if the call is in the idle state. If monitoring the call, it can deallocate the
call handle at any time.

It is better to process the LINE_CALLSTATE(LINECALLSTATE_IDLE) message (and all other call-state
notifications) consistently in one location regardless of its cause.

Reclaiming Memory Resources
The TAPI dynamic-link library allocates memory for each call for each application that has a handle to the
call. It is likely that service providers will allocate memory to hold call information as well. Deallocation of
an application's call handle allows the library and the service provider to reclaim these memory resources.
An application's handle for a call becomes void after a successful deallocation.

An application's attempt to deallocate the handle of a non-idle call for which it is the only owner will fail.
The application should either first hand off ownership and change its privilege to monitor, or simply try to
change its privilege to monitor (in case there are other owners) or clear the call by dropping it¾which
places the call into the idle state¾and then deallocate its handle.

Closing Line Devices
After an application is finished using a line device, it should close the device by calling lineClose on the
line-device handle. After the line has been closed, the application's handle for the line device is no longer
valid. A LINE_LINEDEVSTATE message is sent to other interested applications to inform them about the
state change on the line.

In certain environments, it may be desirable for a line device that is currently open by an application to be
forcibly reclaimed (possibly by the use of some control utility) from the application's control. This feature can
be used to prevent a single misbehaved application or user from monopolizing a line. It is also used when
the user wants to reconfigure the line parameters, and has told the service provider directly through its
Setup function in the Telephony Control Panel that the provider should forcibly close the line. When this
occurs, an application receives a LINE_CLOSE message for the open line device that was forcibly closed.

Exiting Telephony
The lineShutdown function disconnects the application from the Telephony API. If this function is called
when the application has lines open or calls active, the call handles are deleted and the equivalent of a
call to the lineClose function is automatically performed on each open line. (It is better for applications to
explicitly close all open lines before invoking lineShutdown.) If shutdown is performed while
asynchronous requests are outstanding, those requests are canceled.

An application that has registered as an Assisted Telephony request recipient should de-register itself by
calling lineRegisterRequestRecipient, using the value FALSE for the bEnable parameter.

Setting a Terminal for Phone Conversations
The user's desktop computer may have access to multiple devices that can be individually selected and
used to conduct interactive voice conversations. One of these devices is the telephone itself, complete
with lamps, buttons, display, ringer, and a voice I/O device (handset, speakerphone, or headset). The
user's computer may also have a separate voice I/O device (such as a headset, or microphone/speaker
combination attached to a sound card) for use with phone conversations. TAPI enables the user to select
where to route the information sent by the switch over the line, address, or call. The switch normally
expects this destination to be one of its phone sets, and sends ring requests, lamp events (for stimulus
phones), display data, and voice data as appropriate.

The phone in turn sends hookswitch events, button press events (for stimulus phones), and voice data
back to the switch. The line portion of TAPI makes lamp events, display events, and ring events available,
either as functional return codes to TAPI's various operations or as unsolicited functional call-status
messages sent to the application. TAPI's implementation is responsible for mapping the functional API
level to the underlying stimulus or functional messages used by the telephony network. In functional
telephony environments, TAPI's functions are mapped to the functional protocol.

Modes of Operation: Functional and Stimulus
The functional mode of operation differs from the stimulus mode in the way meaning is attributed to
events. For example, a given telephone has a button labeled "Transfer." When this button is pressed, one
of two things can happen: the phone can send a message to the switch stating that the Transfer button
was pressed, or it can send a message stating that "button number 18" was pressed. In the functional
model, the button's function is indicated. It allows more flexibility in the phone hardware, because the
switch doesn't need to know anything about the layout of the buttons, but the telephone will likely be more
expensive, because it has more intelligence.

The stimulus model means that the event is simply indicated in a more raw, hardware fashion, such as by
button number¾even down to separate button-up and button-down events. In a stimulus-based system,
telephones can cost less, but more intelligence is required in the switch so that it can recognize different
types of telephones and translate their buttons into features. The stimulus model can provide more
flexibility because different people can configure their phone buttons to mean different things through
switch programming rather than by changing the phone itself.

Event Routing
Although not described in Supplementary Line Functions, event routing is a part of the supplementary line
services and is not a basic function.

With the lineSetTerminal function, the application can control or suppress the routing of specified low-
level events (exchanged between the switch and the station) to a device. With lineSetTerminal, the
application specifies the terminal device to which these events (such as line, address, or call media-
stream events) are routed.

The routing of the different classes of events can be individually controlled, allowing separate terminals to
be specified for each event class. Event classes include lamps, buttons, display, ringer, hookswitch, and
media stream.

For example, the media stream of a call (voice, for example) can be sent to any transducer device if the
service provider and the hardware is capable of doing so. In general, a transducer means the same as
what is referred to as a hookswitch device in the Telephony Phone API¾something that has a microphone
and a speaker. Ring events from the switch to the phone can be mapped into a visual alert on the
computer's screen or they can be routed to a phone device. Lamp events and display events can be
ignored or routed to a phone device (which appears to behave as a normal phone set). Finally, button
presses at a phone device may or may not be passed to the line. In any case, this routing of low-level
signals from the line does not affect the operation of the line portion of TAPI, which always maps low-level
events to their functional equivalent. To determine the terminals a line device has available (and their
capabilities), consult the line device's capabilities with lineGetDevCaps.

Assume initially that the application has suppressed the routing of all events (with lineSetTerminal), and
the user selects a headset as the current I/O device. An incoming call sends a LINE_CALLSTATE
message, and a LINE_LINEDEVSTATE message with the ringing indication. Because routing of all events
is suppressed, ring events are not routed to the phone, so ringing is suppressed. Instead, the application
notifies the user with a pop-up dialog box and a system beep in the headset.

The user decides to answer the call. Because the user's current I/O device is the headset, the telephony
application invokes lineSetTerminal on the incoming call to route the call's media to the headset and
answer the call. The application may also invoke lineSetTerminal to route lamp and display information
events to the phone set so that it will behave as usual.

As a second example, assume that an incoming call is alerting at the user's computer. Instead of
selecting the answer option with the mouse, the user decides to just pick up the phone's handset to
answer the call. The offhook status at the phone sends a message to the application. The application can
interpret this status as a request by the user to select the phone handset to conduct the conversation. The
application then invokes lineSetTerminal to route the voice data on the call to the phone set.

Service Dependencies
Take care to ensure accurate listing of service dependencies among TAPI (specifically, the Telephony
Service¾TAPISRV.EXE), other service applications that use TAPI, and telephony service providers (TSP)
that use other services.

The installation program for the service application or telephony service provider must record these
dependencies with the Service Control Manager.

Note Failure to list TAPI as a dependency of the service application or failure to list another service
as a dependency of TAPI can result in the system hanging.

List "Telephony Service" as a dependency of any service application that initializes a TAPI line or phone
function. When TAPI is a dependency of a service application, the installation program must include
"Telephony Service" in the list of service names passed to the lpDependencies parameter of the
CreateService function.

When another service is activated by the TSP during the service provider startup (during
TSPI_providerEnumDevices, TSPI_lineNegotiateAPIVersion, or TSPI_providerInit), the service
started by the TSP must be listed as a dependency of the "Telephony Service." As a service that starts
dynamically, TAPI starts all TSPs during its startup, and it is critical for the Service Control Manager to
know when any service provider starts another service during TSP startup.

Call the QueryServiceConfig function to determine the existing configuration of "Telephony Service,"
including dependencies. If the service or services started by the TSP are not already included in the
dependencies of the "Telephony Service", add the necessary items to the dependency list and call
ChangeServiceConfig to update the dependencies.

For additional information about changing a service configuration, see Changing a Service Configuration
in the Microsoft Win32 Programmer's Reference.

Multiple-Application Programming
Win32 Telephony applications may be designed to cooperate with each other, or they may act
independently of one another. These TAPI applications will at times operate with non-TAPI applications
built to support TAPI functionality, such as media-stream control applications. All these applications must
be able to work together, or at least function independently in a cooperative way. To achieve this, TAPI
defines mechanisms that let applications coordinate their telephony and phone activities while maintaining
a high degree of flexibility.

The roles played by Telephony's major components are described in various topics of this section.
Application writers can not only learn about TAPI's functioning from these sections, but can apply that
knowledge directly when designing TAPI applications. For example, the Unknown application (defined in
the following section) performs specific duties in media-mode probing and call handoffs. It is important to
note and understand these duties before writing an Unknown application.

Event-Driven Environment
Like all Win32 applications, Win32 Telephony applications operate in the event-driven model. In
Telephony, the most important events are call-state transitions. The service provider and TAPI dynamic-
link library report call states to applications for particular calls. Interested applications, which know the
previous state of the call, could infer call-state transitions from call states.

All running applications receive information¾call-state messages¾about all the calls in which they are
interested. At times, several applications will have interest in the same call or calls, as monitors or owners
of those calls. Incoming call-state events often cause applications to take actions on calls, and because
those actions sometimes involve a shared call, one application must react to the knowledge that another
has taken a certain step. Examples include the case where one application shows interest in owning
(having control of) a call currently owned by your application, or drops a call co-owned by your
application.

The Telephony system was designed to minimize race situations¾in which the timing of competing
function calls from different applications makes a difference. Awareness of the principles and the
guidelines described in this section should help minimize possible competition.

Definitions
The following concepts are important for understanding the material presented in this section:

· Initial media modes. On a network other than ISDN, service providers usually do not know the
media mode of an arriving call. For such calls, the service provider indicates a number of initial media
modes, from which the correct one is eventually selected during the next step¾the probing process.
The initial media mode(s) identified by the service provider as being possible on the call will be
reflected in the dwMediaMode field of the LINECALLINFO data structure, which the application can
obtain by calling lineGetCallInfo after the initial LINE_CALLSTATE message announcing a new call
is received.

· Call control. Having control of a call means that the application has received a LINE_CALLSTATE
message stating that it has become an owner of the call. With this event, the application acquires a
handle to the call with owner privileges. A way for a monitoring application to obtain call control
(ownership) is to call lineSetCallPrivilege to set its call privilege to owner.

· Call monitor. An application that has a handle to a call with monitor privileges is a monitor of that call.
Such an application cannot control the existence or other aspects of the call, but it can record (log)
facts about the call. The application can also reset its call privilege to owner, thus becoming an owner
of the call, in the event that the application determines (by monitoring media modes or other events)
that it should take control.

· Call owner. An application that has control of a call is an owner of that call. An application can
become an owner of a call in several ways, all discussed in this section. A call can have several
owners simultaneously, although the usual situation is for only one application to be the owner of a
call.

· Probing. Probing is the sending of signals on the phone line as an attempt to determine an incoming
call's media mode. This search for the media mode is conducted only by applications. Some service
providers may also be configured to do some amount of probing automatically to narrow down the
initial media modes reported on a new call.

· The Unknown application. An application that has opened a line requesting ownership privilege for
calls of as-yet undetermined, or UNKNOWN media mode, is referred to as the unknown application.
(The LINEMEDIAMODE_UNKNOWN bit is set in the dwMediaMode field of the LINECALLINFO
structure, along with other bits indicating other modes that are potentially present on the call.) An
application that does this may actually be capable of handling calls of a number of different media
modes. Alternatively, it may simply act as a traffic director, passing calls on to other applications that
can use calls of the specific media modes.

Call Ownership
The mechanism with which applications control calls is based on the concept of ownership. At any given
time, one or more applications can own a call. While an application has ownership of a call, it is allowed to
manipulate the call in ways that affect the state of the call. An application that does not own a call (but has
a handle to it) is a monitor of the call and is prevented from manipulating it. It can only perform status- and
information-query operations on that call. While one or more applications are owners of a call, still other
applications can be monitoring the call.

Ownership of a call is assigned to applications according to the following rules:

· An application that makes an outgoing call is the initial sole owner of that call. Other applications
monitoring the line will be informed of the outgoing call at the time the first LINE_CALLSTATE
message is received. Usually, this notification occurs when dial tone is initially detected.

· Ownership of an incoming call is assigned to one application only. This assignment avoids the
situation in which, depending on timing, different applications may seize control at different times,
causing unpredictable results.

· An application that is currently an owner of a call can pass ("hand off") ownership to another
application that has the call's line open. While handing off ownership of a call, the original owner
application can specify the new media type of the call. When the handoff succeeds, the original
application remains an owner of the call, and it can then choose to either deallocate its handle (if it is
no longer interested in the call), change to being a monitor (using lineSetCallPrivilege), or remain an
owner (although doing so is discouraged). The original application's privilege is not automatically
changed by lineHandoff. More information on the two types of call handoffs (directed and media-
mode) can be found later in this chapter.

· If a target application for the handoff is found, and if it is already a co-owner of the call, it will see no
effect caused by the handoff, although it will receive a LINE_CALLSTATE message. This message
repeats the fact that it is an owner to alert it that another application has explicitly asked it to take
control of the call. The application initiating the handoff is informed about the success of the handoff.

· If there is no target application for the requested handoff and the call is active, an error is returned. No
handoff takes place.

· Handing off a call between applications never affects the state of the physical call as perceived by the
switch or the service provider.

· An application that does not have (but wants) ownership of a call may request ownership. The
application can select calls based on a number of criteria, ranging from all calls on a particular line or
address (a phone number assigned to the line, using lineGetNewCalls), to calls related to a specified
call (using lineGetConfRelatedCalls). An application that calls lineGetNewCalls or
lineGetConfRelatedCalls will always receive a monitor handle. If it wants to become an owner of a
call it receives, it must then call lineSetCallPrivilege. If it determines that it is not interested in one or
more of the calls to which it receives handles using lineGetNewCalls or lineGetConfRelatedCalls, it
must call lineDeallocateCall for each such handle to release the internal resources maintained to
track the call ownership.

· Any application that asks for ownership receives it; any application that is offered ownership cannot
refuse it. An application that becomes an owner through a handoff actually becomes a co-owner of
the call. When the call is initially presented by the provider, the initial owner is the sole owner of the
call.

· The originally owning applications are informed about the existence of every new owner. Monitoring
applications are informed as well.

Note that with co-owned calls (calls simultaneously owned by more than one application), no protection is
offered to prevent the applications from interfering with each other. For this reason, maintaining ownership
after a handoff or after ownership is taken by another application is discouraged.

Because media streams are not managed by the Telephony API, call handoff does not handle the handoff

of the call's media stream. Media-stream handoff must be carried out using commands from an
appropriate media-control API or directly coordinated between the applications involved.

Handling Incoming Calls
When multiple applications are running simultaneously, an appropriate one must be found to become the
initial owner of each incoming call. In general, incoming calls reach their destination, or target application,
in two or three steps: First, the service provider learns of the new call and passes it to the TAPI dynamic-
link library which gives the call to the appropriate application. Finally, applications conduct probing, if
necessary, which can cause the call to be handed off between applications one or more times. These
steps are described in the following topics. Sometimes applications perform further probing, a case which
is also covered in the following topics.

Duties of the Service Provider
The service provider determines the media modes.

Determining Initial Media Modes
When a service provider learns of the appearance of a call, its first task is to determine the call's media
mode to the best of its ability. (It has received ringing voltage on a POTS line or, in the case of EPBX or
ISDN, a protocol message indicating that a call is incoming.) It may be able to tell the single correct media
mode or it may only be able to narrow down the possibilities to a certain few. These first media mode
settings are called initial media modes, and the following are the considerations used for setting initial
media mode bits:

· Service provider setup The service provider has been configured to work with only a single media
mode or certain media modes.

· Hardware limitations Hardware limitations are usually reflected in the service provider's
configuration, but the media modes could be further restricted by a particular card in use.

· Call to lineOpen Possible media modes are limited by what applications have requested in their
invocation of the lineOpen function. TAPI combines all of the media modes requested by applications
and indicates the sum of them to the service provider in a call to
TSPI_lineSetDefaultMediaDetection. For example, a telephony device and its service provider may
be able to handle Group 3 fax calls, but if no application is running to handle such calls, the provider
would know not to bother with probing for fax or reporting fax calls to TAPI. (The TAPI dynamic-link
library does not automatically launch an application to handle a particular type of incoming call.)

· Caller ID and direct Inward Dialing With Direct Inward Dialing (DID) at the called address, the
switch supplies the service provider with the digits that were dialed (the called address). The service
provider can be configured to associate particular called addresses with particular media modes.
Likewise, it could associate calls from particular numbers as being associated with particular media
modes, although this is much less commonly used.

· Distinctive ringing The ring pattern of the incoming call may match a predetermined pattern (of
several possible at the called address) that is reserved for calls of a certain media mode. If, for
example, the incoming call is using ring pattern 2, the service provider knows it to be a fax call (based
on configuration information supplied by the user).

· ISDN On an ISDN network, the provider may analyze the call's protocol frames to determine the
media mode. If the call is indicated as a 3.1 kHz Voice call, it is still possible that the actual media
mode on the call is analog data modem, Group 3 fax, text telephone, or any of several other
voiceband modulated signals, in addition to human voice; it is only with digital data signals that the
media mode would necessarily be clearly defined¾for example as Group 4 fax¾at call setup time in
ISDN.

· Auto answer and probe Some providers give the user an option to let the service provider
autoanswer the call and do some of the probing itself. In this process, TAPI gives the call the correct
application with the correct media mode already identified.

These tools may be enough to make a final and accurate determination of the media mode. In any case,
when the service provider passes the new call to TAPI, it sends a LINE_CALLSTATE message and
includes in the message all that it knows about the call's media mode(s). The following topics give details
on the possible cases.

Known Media Mode
When the service provider knows the media of the call unambiguously, one flag is set in dwMediaMode
in LINECALLINFO. The media mode cannot be the single bit LINEMEDIAMODE_UNKNOWN, which is a
different scenario. TAPI gives ownership of the call to the highest priority application that has opened a
line for this media mode. It also gives call handles with monitor privileges to all other monitor applications
on the line.

Unknown Media Mode
Even when the service provider does not know the exact media mode of the call, it might still know which
media modes are possible. In this case, the service provider sets a combination of likely media mode bit
flags, including LINEMEDIAMODE_UNKNOWN and passes the call to TAPI. The service provider sets
these bits both in the dwMediaMode field of the LINECALLINFO record and in the dwParam3 parameter
of the first LINE_CALLSTATE message it sends to TAPI.

The service provider considers only the media modes for which applications have opened the line with
owner privileges (it becomes aware of these media modes through the TSPI_SetDefaultMediaDetection
call) and which it is capable of handling. TAPI informs the provider about the union of all the lines that
have been opened with a specified media mode. The provider can use this union to enable only the
appropriate media mode detections for which applications are interested. If no applications have opened
the line for ownership, the provider will not consider any media modes. Incoming calls are still delivered to
TAPI, but no initial owner is possible. In this case, monitoring applications will still be informed of the call,
and if none of them changes their privilege to owner and answers the call, the call will remain
unanswered.

Duties of the TAPI Dynamic-Link Library
The TAPI dynamic-link library does not perform probing; that is, it does not send signals on phone lines in
order to determine a call's media mode. TAPI does try to deliver the call to an application that can do
probing. The way in which TAPI gives calls to applications is determined by several factors, the most
important of which are the media mode bits that have been set and the running applications that can (or
cannot) handle calls of those media modes.

TAPI's behavior can be divided into two main scenarios: one media mode bit is set, and the UNKNOWN
bit is set. These cases are described in the following topics.

Only One Media Mode Bit Is Set
If only one media mode bit (not the UNKNOWN bit) has been set in the dwMediaMode field of the
LINECALLINFO data structure, TAPI distributes calls by following a consistent procedure based on the
current state of the system and on information saved by the user in the registry. These are the steps it
takes:

· The TAPI dynamic-link library is notified by the service provider that a call is arriving.
· The TAPI library uses the information in the HandoffPriorities section of the registry to know which

applications have been listed¾possibly through a Preferences option in the application's user
interface¾as being interested in calls having the incoming call's media mode.

· The first such application listed, reading left to right, is the highest priority application. If that
application is currently running and has the arriving call's line open for that media mode, it is given
ownership of the call. If it is not running or it does not have that line open, TAPI again uses the
information in the registry to find an interested application in the correct state, and it gives the call to
it.

· If none of the applications listed in the registry are in the proper state, TAPI looks for other
applications that are currently executing and have the line open for that media mode (though they are
not listed in the registry). The relative priority among these unlisted applications is arbitrary and not
necessarily associated with the sequence in which they were launched or opened the line.

· Every application that has the line open for monitoring also receives a handle to a call, and any of
them could step up, claim ownership (by calling lineSetCallPrivilege), and answer the call. However,
this behavior could result in race conditions and unpredictable call handling, and is therefore
discouraged.

· If no application becomes an owner of the call, the call is eventually dropped. Calls can be dropped
by TAPI only if no owner is found for the call and the call state is not idle or offering. The calling party
can also drop the call. (On an ISDN network, this event becomes known when a "call-disconnect"
frame is received.) If the call is not explicitly dropped, it can go idle after the expiration of a timeout
based on the absence of ringing. (The service provider would need to assume that the call has been
dropped by the calling party, and implement the timeout.) Because there were no applications that
could take the call successfully, this situation usually means that the incoming call reached a wrong
number.

The UNKNOWN Bit Is Set
If the LINEMEDIAMODE_UNKNOWN bit is on in param3 of the first LINE_CALLSTATE message
delivered by the service provider, the call is treated differently depending on whether an application
prepared to accept calls of unknown media type has opened the line. These two possible cases (an
Unknown application is running, or is not) are described in this section.

An Unknown Application Is Running
If at least one Unknown application has opened the line, the TAPI dynamic-link library gives an ownership
handle for the incoming call to the highest priority Unknown application. It also passes monitoring handles
to the other applications that have the line open for monitoring. The Unknown application receives a
LINE_CALLSTATE message with dwParam3 set to owner.

This Unknown application can then try to perform media determination itself, or use the assistance of the
other media applications, allowing them to perform probes for their media mode(s), if appropriate. The
Unknown application can pass the call to another media application using lineHandoff. The Unknown
application would examine dwMediaMode in LINECALLINFO to determine the possible remaining
candidate media. In doing so, it uses the highest priority media to determine the initial handoff target. It
calls lineHandoff, specifying the single highest priority destination media mode as the target.

The following is the default priority of media modes, listed in order from first tried to last tried when used
during media-type handoffs.

Order Media Mode
1 LINEMEDIAMODE_INTERACTIVEVOICE
2 LINEMEDIAMODE_DATAMODEM
3 LINEMEDIAMODE_G3FAX
4 LINEMEDIAMODE_TDD
5 LINEMEDIAMODE_G4FAX
6 LINEMEDIAMODE_DIGITALDATA
7 LINEMEDIAMODE_TELETEX
8 LINEMEDIAMODE_VIDEOTEX
9 LINEMEDIAMODE_TELEX
10 LINEMEDIAMODE_MIXED
11 LINEMEDIAMODE_ADSI

Automated voice is a media mode that has no meaningful distinction with interactivevoice at this level,
and is therefore not listed.

If the handoff fails, the Unknown application should clear that media mode flag in the dwMediaMode
member of LINECALLINFO. This action moves the probe for the call one step closer to a final
determination of the media mode. If the handoff indicates TARGETSELF, it means that the Unknown
application is the highest priority application for the media mode for which it was trying to hand off the call,
so it should go ahead and do the probing itself.

If the handoff indicates SUCCESS, it means that a different application is the highest priority application
for the media mode for which the call was being handed off. The Unknown application should deallocate
the call handle or change to being a monitor while the new owner has control and proceeds with probing.

The receiving application controls the call. If the probe is successful, it should set the correct media mode
bit. If the probe fails, the application should clear the failed media mode bit in LINECALLINFO and hand
the call off to the next highest priority application. If no more media mode bits are set, the handoff fails,
because no suitable owner application exists for the call.

Eventually, the media mode may be identified through monitoring or successful probing, though the
UNKNOWN bit still may be set in dwMediaMode in the data structure LINECALLINFO. In this case, the
application that has received the call cannot be sure that it is the highest priority application for the
identified media mode. It is now the duty of that application to ensure that the call goes to the highest
priority application. To do so, it follows these steps:

· It calls lineSetMediaMode, which writes into the dwMediaMode field of the call to turn off the
UNKNOWN bit and specify the newly identified media mode bit.

· It calls lineHandoff to return the call to TAPI. The TAPI dynamic-link library is not explicitly specified
in this command, but rather a media-type handoff is performed, through which the TAPI library knows
that it must look for other applications to find the highest priority application for that media mode.

· If this application is itself the highest priority application for this media mode, it receives a
LINEERR_TARGETSELF return value (for the lineHandoff function call). This error means "No, you
already are the highest priority application for that media mode." The application never loses control
of the call, and it continues handling the call normally. If the lineHandoff succeeds, then there was a
higher priority application for the identified media mode, and the application that called lineHandoff
should deallocate its handle or change to being a monitor while the highest-priority application
handles the call.

As long as the UNKNOWN bit is still on, the receiving application still does not know that the highest-
priority media mode is present on the call, so it still needs to probe for it. It only considers the media mode
to be present if the UNKNOWN bit is off¾only then can it use the call as a call of that media mode.

Using Media Priorities While Probing
Unknown applications should take care to use default priorities given in the table in the preceding topic,
An Unknown Application Is Running, when probing for applications to take calls of unknown media
modes. One reason to do this is to protect human callers from hearing unpleasant fax or modem signals.
If, for example, both the INTERACTIVEVOICE and the G3FAX bits are set in LINEMEDIAMODE_, a
human caller may still be on the other end of the line. The application should wait to start probing for a fax
(with a fax tone) until it is sure that the call is not a voice call. The way to be sure is to probe first for voice,
which occurs automatically if following the order stated in the default media-mode list.

However, while probing for high-priority media modes, it is a good idea to turn media monitoring on. This
feature, invoked by calling lineMonitorMedia, detects signals that indicate other media. For example, one
application may be playing an outgoing "leave a message" voice message while the incoming call starts
sending a fax "calling" tone and waits for a handshake. In order not to lose the fax call, the local
application needs to be monitoring for this tone while playing the voice message. Determining the lower-
priority media (the fax call) while actively probing for the higher-priority media (voice) is not only a safer
method¾it helps prevent the loss of a call¾it is efficient because it can shorten the probing process.

No Unknown Application is Running
If no Unknown application has the line open, the TAPI dynamic-link library itself assumes the role of a
simplistic Unknown application. The TAPI library first passes an owner handle for the call to the highest
priority application that is registered for the highest-priority media mode for which a media mode flag is
set in the dwMediaMode member of LINECALLINFO. If there is no such application, the media mode
flag is cleared, and TAPI tries the highest priority application for the next highest-priority media mode. If
there is such an application, it can try to make a determination for the highest priority media mode in
dwMediaMode in LINECALLINFO.

If no application is found to become the initial owner of a call, the call remains in the offering state until a
monitor application becomes an owner through lineSetCallPrivilege, or until the call is abandoned by the
calling party and is transitioned (by the service provider) to the idle state, at which time all monitoring
applications deallocate their handles to the call.

Duties of the Media Application
The media mode application that receives a call as a handoff target first checks the bit flags of
dwMediaMode in LINECALLINFO. If only a single media mode flag is set, the call is officially of that
media mode, and the application can act accordingly.

If the UNKNOWN and other media mode flags are set, the media mode of the call is officially UNKNOWN,
but is assumed to be one of the media modes for which a flag is set in LINECALLINFO. The application
should now probe for the highest priority media mode.

If more than one bit is set in LINECALLINFO and the call has not been answered, the application must
perform a lineAnswer to continue probing. If the call has already been answered, the application can
continue probing without having to first answer the call.

If the probe succeeds (either for the highest-priority media mode or for another one), the application
should set dwMediaMode in LINECALLINFO to the single media mode that was recognized. If the actual
media mode is this expected media mode, the application can act accordingly. Otherwise¾if it makes a
determination of another media mode¾it must first attempt to hand off the call in case it is not the highest
priority application for the detected media mode.

If the probe fails, the application should clear the flag for that media mode in dwMediaMode in
LINECALLINFO, and hand the call off to the Unknown application. It should also deallocate its call handle
or revert back to monitoring the call. At this point, the fate of the call is determined by the steps described
under the preceding topics of this section¾depending on whether or not an Unknown application is active.

If the attempt to hand off the call to the UNKNOWN application fails, this means that no unknown
application is running. It is then the responsibility of the application that currently owns the call to attempt
to hand it off to the next-highest-priority media mode (while leaving the UNKNOWN bit turned on in
dwMediaMode in LINECALLINFO). If that handoff fails, the application should turn off that media bit, and
attempt the next higher-priority bit, until the handoff succeeds or all of the bits are off except for the
UNKNOWN bit.

If none of the media modes were determined to be the actual one, only the UNKNOWN flag will remain
set in dwMediaMode in LINECALLINFO at the time the media application attempts to hand the call off to
UNKNOWN. The final lineHandoff invocation will fail if the application is the only remaining owner of the
call. This failure informs the application that it should drop the call and then deallocate the call's handle. At
this point, the call is abandoned.

Receiving Incoming Calls
Once the target application has been determined, it is given the call. The following topics discuss the
target application as it accepts and answers calls.

Accepting and Answering Calls
On a POTS network, the only reason for an application to call lineAccept is to inform other applications
that it has accepted responsibility to present the call to the user. Similarly, on an ISDN line, the effect of
accepting a call is to make other applications aware that some application has accepted responsibility for
handling the call.

On an ISDN network, accepting a call also informs the switch that the application will present the call to
the user (by alerting the user for example, by ringing or by popping up a dialog box). If the
LINEADDRCAPFLAGS_ACCEPTTOALERT bit is set, the application must perform a lineAccept on the
call or the call will not ring. If the application fails to call lineAccept quickly enough (the timeout may be
as short as three seconds on some ISDN networks), the network will assume that the station is powered
off or disconnected and act accordingly, such as by deflecting the call (if Forward on No Answer is
activated) or sending a disconnect message to the calling station.

Accepting a call is not the same as answering a call. Answering calls, in POTS, simply means to go
offhook. On an ISDN line, it means to tell the switch to place the call in a connected state. Before
answering, there is no physical connection for the call between the switch and the destination, though the
call is connected from the caller to the switch.

Sometimes a call has already been answered when a new application takes control of it. This can occur,
for example, when one application discovers that it is not the highest priority application for a call of a
given media mode, and it hands the call off. If the first application has already answered the call, the
receiving application takes control of an answered call. It should treat the call normally¾that is, as if it had
answered the call itself. Another example is when a user instructs an application to operate on an existing
call. In this case, the application seizes the call. Again, it should treat the call as if it had answered it.

Waiting a Minimum Number of Rings
The lineGetNumRings function can be used by any application to determine the number of times an
inbound call on the given address should ring before the call is to be answered. Waiting a certain number
of rings allows callers to be spared the charge of a call connection if it seems that the call will not be
answered by the desired party (usually a person). This feature is sometimes called toll-saver support.
Applications can use the functions lineGetNumRings and lineSetNumRings in combination to provide a
mechanism to support toll-saver features for multiple independent applications.

Any application that receives a handle for a call in the offering state and a LINE_LINEDEVSTATE ringing
message should wait a number of rings equal to the number returned by lineGetNumRings before
answering the call in order to honor the toll-saver settings across all applications. The function
lineGetNumRings returns the minimum number of rings any application has specified with the function
lineSetNumRings. Because this number may vary dynamically, an application should call
lineGetNumRings each time it has the option to answer a call¾that is, when it is the owner of a call still
in the offering state. A separate LINE_LINEDEVSTATE ringing message is sent to the application for each
ring cycle.

If the service provider is set to auto-answer calls, it answers after a certain number of rings. Service
providers do not have access to the minimum-ring information established by lineSetNumRings, and
therefore will make their own determination of when to automatically answer an incoming call. When a call
has been so answered by a service provider, it will be initially delivered to the owning application already
in the connected state, so the application will not need to be concerned with counting rings or with
answering the call.

Taking Ownership of a Call
In general, when one application learns that another application wants ownership of a call, it simply
relinquishes ownership of the call to that other application. Although there can be many co-owners of a
call, it should be a transitory state for there to be multiple owners.

In one specific case, it is valid for an application to actively take ownership of a call owned by another
application. This is when the application is instructed to do so by the user¾perhaps through a user
interface. For example, a fax application may be instructed by a user to break into that same user's
existing voice call and use the call to send a fax. In this case, the fax application takes ownership from the
previous owner, the application that was controlling the voice call.

An application can forcibly become owner of a call by taking the following steps:

· Obtain a handle to the call with monitor privilege. If the desired call is one for which the application
does not yet have a handle, it should request a handle with lineGetNewCalls. If the application is
already a co-owner of the call and wants to become sole owner, it should start by calling
lineSetCallPrivilege with the parameter dwCallPrivilege set to LINECALLPRIVILEGE_MONITOR.
This action, which relinquishes ownership of the call (temporarily, in this case), is seen by other
applications as the departure of an owner.

· Call lineSetCallPrivilege with the parameter dwCallPrivilege set to LINECALLPRIVILEGE_OWNER
for the call. Other applications see a new owner coming on line by receiving a LINE_CALLINFO
message stating that the number of owners has increased and the number of monitors has changed;
the bit LINECALLINFOSTATE_NUMOWNERINCR is on. These applications should yield the call to
the new owner but there is no guarantee that they will do so. If the other existing owners do relinquish
ownership, the new owner can proceed with what it intended to do on the call.

Note There is no way to shield a call from another application's attempt to become an owner of it,
nor is there any reason to do so. Once an application is informed that another application has become
an owner, it should draw its activities on the call to an orderly close, and then relinquish ownership,
because such changes in ownership are almost always done at the explicit direction of the user.

Relinquishing a Call
An application can relinquish ownership of a call by invoking lineSetCallPrivilege to change to a monitor
application, or simply by using lineDeallocateCall to indicate that it has no further interest in the call. If
the application is the sole owner of the call and cannot hand off ownership to another application, TAPI
will not permit it to change to being a monitor or to deallocate its call handle¾in this situation, the
application has no choice but to drop the call.

Control of the Media Stream
An application that has just obtained a call may not immediately receive control of the media stream, and
may need to wait until the previous owner application relinquishes it. Though this may take time, any
application with control of the media stream should transfer control when it sees that a new owner has
come on line (the number of owners has increased).

The procedures for transferring control of an active media stream differ for every media-control API. The
API may allow only one application to have a media-stream device (such as a COM port used for data
transfer) open. In this case, it is important that the current owner relinquish control of a media stream
device before handing off the call. But with some other types of media such as WAV audio, several
applications (and several devices) can have the media stream open at the same time. This makes it
unnecessary to close the media stream before the handoff, and perhaps not at all.

Call Handoffs
After an application has acquired ownership of the call, ownership can be transferred to another
application. Why would this be necessary? Normally, to allow the call's media mode to be changed. In this
case, the highest priority application for the new media mode should take and handle the call. Media
mode changing usually occurs because of one of the following causes.

User command. Through a user interface or through window messages, the application learns that the
local user wants to change media mode. For example, the user has told the new target application (which
is not yet an owner) to obtain an existing voice call for transmitting data. The target application must now
take control of the call. In this case, the current owner notices the number of owners increase, and then
relinquishes its control of the call. Alternatively, the user could instruct the current owner of the call to
hand it off to an application that can handle the new media mode.

Media mode change. The service provider can detect a media mode change with lineMonitorMedia. As
an example of this, the local application is playing a recorded voice message to the caller. During this
message, the caller spontaneously decides to transmit a fax calling tone, and the local application can
respond accordingly by changing the media mode to fax and, if necessary, handing the call off to a fax
application. Another way this can work is for a monitoring application to enable media mode monitoring,
and, when the media mode in which it is interested is detected on a call, it can request ownership of the
call. This mechanism makes it unnecessary for every application to monitor every call for every media
mode.

Remote party command. The remote party can interactively indicate a change in media modes during
an existing call. For example, the local application is using lineMonitorDigits to monitor DTMF input by
the remote caller. Through this monitoring, the caller indicates, for example, that a fax is about to be sent.
Other ways the caller can control local applications is with commands received on other data connections
and through ISDN user-user information messages.

A call handoff will have one of these outcomes:

· The call is given to another application (SUCCESS),
· The handing-off application is itself the target (TARGETSELF),
· The handoff fails (TARGETNOTFOUND).

If the application that is receiving the handed-off call already has a call handle to the call, this old call
handle is used. Otherwise a new call handle is created. In either case, the application ends up with owner
privileges to the call. Whenever the handing-off application is not the same as the target application, the
target is informed about the handoff in a LINE_CALLSTATE message with dwParam3 set to
LINECALLPRIVILEGE_OWNER, as if it were receiving a new call.

Note The LINE_CALLSTATE parameter dwParam3 is set to owner only if the LINE_CALLSTATE
message is being sent to an application that is the initial owner of a new call, is the target of a
handoff, or was previously a monitor or an owner of the call. The parameter dwParam3 can be set to
monitor only if the LINE_CALLSTATE message is sent to the application when it is presented a new
call for monitoring. In all other cases (such as when the application already has a handle to the call,
and its ownership state is not being changed), dwParam3 is set to 0.

If the current owner application is told to change modes, it does so by handing off the call to an
application used for the target media mode. The two types of call handoffs are described in the following
topics.

Directed Handoffs
A directed handoff takes place when the target application is known by name to the original application.
This situation would occur, for example, among a set of applications written by the same vendor. Control
of directed handoffs can usually be configured by the user. With such a handoff, the call is given to the
specified application if it has opened the line on which the call exists. The media mode specified at the
time the application opened the line is ignored. One common example is a voice call followed by fax
transmission in the same call. Directed handoff would most often be used by applications from the same
developer that are linked in other ways as well.

Directed handoff may also be used in future versions as part of the process of arbitrating multiple
applications waiting for incoming calls of the same media mode, with the selection of the application to
handle the call being based on data-link or higher level protocol detection rather than media mode. An
example of its use would be an incoming data modem line with applications such as remote takeover,
bulletin board, remote network access, and remote e-mail access all waiting for calls simultaneously.

Media Mode Handoffs
A media mode handoff takes place when there is a new, targeted media mode, usually when the owning
application determines that the media mode needed for the call is not present or is about to change. The
process for a media-dependent handoff can be a probing process if the UNKNOWN bit is on, and is
virtually the same as for the initial assignment of a call to an application. The difference is the fact that
lineHandoff can have only one media-mode bit set.

Because only a single media mode bit can be specified, the call is given to the highest priority application
for that media mode. However, it is possible that more than one media mode is to be considered for the
handoff. In this case, the handing-off application should specify the highest-priority of the possible media
modes as a parameter for lineHandoff. If an applications specifies the UNKNOWN bit when performing a
media-mode handoff and the handoff fails, this means that no Unknown application is currently running.
The handing-off application should then try to hand the call off to the highest priority application registered
for the next higher media mode.

The receiving application is now responsible for the call. It now probes for the call's actual media mode. If
the call's media mode matches that handled by the application, it must ensure that it is the highest-priority
application registered for that media mode. If so, it keeps the call and processes it normally. If not, it
hands the call off to another application registered for that media mode.

If, however, the probe for that media mode fails, the application probes again, attempting the remaining
media-mode possibilities. It determines these by examining the dwMediaMode field in the
LINECALLINFO structure. But first, using the lineSetMediaMode function, the owning application turns
off the bit for the current (disproved) media mode in the dwMediaMode field.

This process of probing and handing off continues, and the remaining media modes are eliminated one by
one. Along the way, one of the applications may see that the media mode it handles is on the call, and the
handoff is successful. The application should now perform a final lineSetMediaMode to set the correct
media mode and clear all other media-mode bits. This informs other interested applications of the correct
media mode. These other applications receive a LINE_CALLINFO message stating that the call's media
mode has changed. To determine the correct media mode, they invoke lineGetCallInfo and examine the
dwMediaMode member in the LINECALLINFO structure.

It is the responsibility of the owning application to cycle through media modes to find the highest-priority
application. TAPI does this cycling only on the initial incoming call to find the first owner. It does not do it
when lineHandoff is called.

To sum up the media-mode handoff process, TAPI does not check for other media bits during
lineHandoff. TAPI only attempts to hand off to the single media mode indicated in the parameter to
lineHandoff. It is up to the application to turn off the bit corresponding to the media mode that failed to
hand off, and to try other media modes until the handoff succeeds or all the possible media modes are
exhausted. If it gets to a point where all of the bits are off except for UNKNOWN, it must abandon the call
by calling lineDrop and then deallocating the handle.

Logging Calls
Logging a call simply means actively recording the actions and states of a monitored call into a file on a
disk. (An application that owns a call is also a monitor of that call.) Though limited call logging is
performed by the call manager provided with Win32 Telephony, any application can be programmed to log
a call that it is monitoring.

TAPI facilitates logging by allowing applications to monitor calls and by collecting information from other
applications that are controlling calls. TAPI writes the information it collects into the LINECALLINFO
structure, which can then be read by applications.

Sources of Log Information
Information useful to call logging (which is saved by TAPI) originates in the following sources, and is
placed in the LINECALLINFO data structure.

· In an application's call of the initialization function, lineInitializeEx, it provides information such as the
application's name. An application should ensure that the information it provides with the initialization
command is accurate so that its activities are reflected correctly in the call log.

· The LINECALLPARAMS data structure, used in the function lineMakeCall, stores information such
as the name of the called party, the originating address, and the destination address. This structure is
passed to TAPI by any application that originates a call.

· The service provider supplies many items that can be logged such as the caller's ID.
· The LINE_CALLSTATE messages that pertain to a given call are an important source of logging

information, indicating whether the call successfully connected or was abandoned because of a busy
signal, no answer, network congestion, or other causes.

The start time, end time, and duration of a call are not recorded by TAPI. A logging application that wants
to log this information must record the time by checking the system clock when certain LINE_CALLSTATE
messages (such as CONNECTED, DISCONNECTED, and IDLE) are received, and then derive the
related time log information.

Using the LINECALLINFO Data Structure
The LINECALLINFO structure stores a large amount of information about a call, and is thus an important
source of data. Generally, a logging application reads from LINECALLINFO and write this information into
its log file.

A separate LINECALLINFO structure exists for every inbound and outbound call. Information in this
structure is obtained by an application with lineGetCallInfo. An application typically reads the information
from LINECALLINFO at the following times:

· When the application first receives a handle for a call in the LINE_CALLSTATE message.
· Each time the application receives notification in a LINE_CALLINFO message that LINECALLINFO

has changed. Whenever any part of the structure changes, a LINE_CALLINFO message is sent to
the application indicating which information item has changed.

Both the LINE_CALLSTATE message and the LINE_CALLINFO message also supply the call's handle as
a parameter.

Much of the information held in LINECALLINFO remains fixed for the duration of the call. Information
about a call that changes dynamically, such as call progress status, is available in the LINECALLSTATUS
structure, which is returned with the function call lineGetCallStatus. Other information needed by logging
applications that is not stored in LINECALLINFO is call start time, call stop time, and the call's duration,
which it determines by checking the system time when the corresponding LINE_CALLSTATE messages
are received.

LINECALLINFO stays intact after the call is disconnected, so the logging application can later read it in
order to write additional information into the log. LINECALLINFO remains available only until the last
application that had a handle for the call (owner and monitor handles) deallocates its handle.

Deallocating a Call
If an application is finished with a call and another application wants the call, the call can be handed off.
But if no other applications want to take ownership, there is nothing to do but deallocate the call's handle.
This is done with lineDeallocateCall. A call handle is no longer valid after it has been deallocated.

In contrast, dropping (disconnecting) a call puts the call in the idle state, which means that the local end of
the connection is on hook. If the other end of the connection drops the call, the call transitions to the
disconnected state, not the idle state. Typically, once an application receives a call-state message
indicating the disconnected state, it immediately drops the call, causing it to become idle. Although the
call is in the idle state, any handles to it held by applications remain valid until they are deallocated. If the
call was never answered (the local end never went off hook), it may revert to the idle state without being
dropped.

An application cannot deallocate a call if it is the sole owner and the call's state is not idle. This is
because TAPI tries to ensure that there is always at least one owner for every active call. If the application
is the sole owner and the call is not idle, the error message LINEERR_INVALCALLSTATE is returned. If
an application needs to circumvent this restriction, it can do so by dropping the call first (with lineDrop)
and then deallocating its handle. This prevents an application from deallocating its handle which would
result in a call disconnect. By making the application do an explicit drop, it can inform the user (in a dialog
box) that the call is about to be disconnected.

If releasing the ownership handle results in the call's having no more handles, TAPI calls the service
provider function TSPI_lineCloseCall. When this function is invoked on a call that is not yet idle, it is up
to the service provider to drop the call.

Note An application that has monitor privileges for a call can always deallocate its handle for the
call. Deallocating a call does not affect the call state of the physical call, but it does release the
internal resources (memory) related to the call.

An application should deallocate the handle to a call it owns in these two cases:

· Idle call state. If an application receives a LINE_CALLSTATE message indicating that the call has
transitioned to the idle state, and has already gathered all the information it needs about the call, it
should deallocate the call handle immediately.

· Handoff. The application has handed off the call (or has otherwise relinquished call ownership to
another application) or has set its call privilege to monitor, and has no interest in monitoring or logging
the call.

Failure to deallocate call handles in a timely way can result in system failure and lost calls due to
unnecessary consumption of memory and other resources.

Closing Lines
An application should close a line it has open in the following cases:

· Before exiting. An application should always close all lines it has open before it becomes inactive.
· For non-TAPI applications. TAPI applications should cooperate with non-TAPI applications that use

media stream devices such as COM ports. If your TAPI device is a serial device accessed through a
COM port (such as a modem) and the line is open, the service provider needs to have the COM port
open. But with the COM port open, non-TAPI applications and console applications are prevented
from accessing the COM port. Therefore, a TAPI application should open the line (and keep it open)
only if it is waiting for incoming calls or it is actively engaged in placing an outgoing call.

· Non-Telephony communications applications may need to share resources with Telephony
applications.

The data structure LINEDEVCAPS contains a capabilities bit (LINEDEVCAPFLAGS_CLOSEDROP) that
tells whether closing a line while a call is still active causes calls on the line to be dropped. If TRUE, the
service provider drops (clears) all active calls on the line when the last application having that line open
closes it using the lineClose function. If the bit is set to FALSE, the service provider does not drop active
calls on the line; instead, it leaves these calls active and under the control of an external device or
devices, such as phones.

Therefore, an application can examine LINEDEVCAPS to detect in advance whether closing a line will
cause this active call to be dropped. The application should warn all appropriate users that the call is
about to be dropped, perhaps by displaying an OK/Cancel dialog box that lets the user keep the line
open.

For example, if a desktop computer and a phoneset are both connected directly to an analog line (in a
party-line configuration), the service provider should set the flag to FALSE, as the offhook phone would
automatically keep the call active even after the computer powers down.

As another example, a user is speaking on the phone on a call owned by an active application. The user
decides to leave the office for the day and shuts down the system. The operating system in turn shuts
down the active telephony application, which attempts to close the lines it has open. Whether the call is
automatically hung up depends on whether the LINEDEVCAPFLAGS_CLOSEDROP bit in
LINEDEVCAPS is set or not and whether the phone is offhook.

If other applications are monitoring the call, the service provider will not even be informed that one
application has closed the line. It is only when the last application that has a handle to the call closes the
line that the service provider is informed (with TSPI_lineClose). At that point, it is up to the service
provider to handle any remaining calls. If the service provider is required to drop the calls, it should do so
but it should first warn applications about this requirement with the LINEDEVCAPFLAGS_CLOSEDROP
flag.

Closing an application should ideally perform the following cleanup tasks:

· Dispose of all calls.
· Close all open lines and phones.
· Shut down the usage of the Telephony API.

Failure to do so may leave calls in indeterminate states.

Learning About Existing Calls at Application Startup
Applications can become aware of existing calls on the line at the time of application startup with
lineGetNewCalls. This function gives the application handles (with monitor privilege) to all the calls on
the line or address for which it did not already have handles.

An example of the usefulness of this mechanism is when a user starts a fax application during a voice
call, having decided to send a fax. The new fax application needs to discover the existing call (using
lineGetNewCalls) to request ownership of the call in order to send the fax.

Media Mode Updating
A call's media mode as stated in dwMediaMode in LINECALLINFO and a media mode message
(LINE_MONITORMEDIA) sent from the service provider to the application can and often will differ. An
application could use lineMonitorMedia to enable monitoring for particular media modes, and use any
resulting LINE_MONITORMEDIA messages as guidance in determining what the calling party might be
probing for or what the Unknown application should probe for first. LINE_MONITORMEDIA messages
report events on the line (such as probes being received from the remote station) and not "hard"
decisions about media modes. When an application determines that a call involves a particular media
mode, it calls lineSetMediaMode to update dwMediaMode in LINECALLINFO and inform other
applications of this update.

Communication Between Applications
Applications can communicate with each other by writing to and reading from a field in a specified call's
information record, the LINECALLINFO data structure. With lineSetAppSpecific, any owner application
can write to the application-specific field called dwAppSpecific. It is uninterpreted by the Telephony API
or any of its service providers. This field's usage is entirely controlled by applications.

The field can be read from the LINECALLINFO record returned by lineGetCallInfo. However,
lineSetAppSpecific must be used to set the field so that changes become visible to other applications.
When this field is changed, all other applications with call handles are sent a LINE_CALLINFO message
with an indication that the dwAppSpecific field has changed.

Special Cases in TAPI
The following topics describe situations that could occur in multiple-application environments.

A Call Without an Owner
What happens to an incoming call if no applications have the line open with owner privilege? First, TAPI
informs all monitoring applications on the line about the call. If no monitoring application switches to
owner privilege to answer the call, the service provider eventually drops the call.

The following steps describe what normally happens if a line has only monitoring applications, a call
comes in, and no applications answer the call. Assume that the service provider is not configured to
answer new calls by itself.

· The service provider passes the call handle to TAPI.
· TAPI passes monitor handles to the monitor applications.
· TAPI determines that the call is in the offering (not connected) state and lets the call "sit."
· The remote party eventually hangs up, and the call reverts to the idle call state because it was never

connected.
· The monitors are notified that the call is idle and deallocate their handles if they have not already

done so.
· The last deallocation causes a TSPI_lineCloseCall.

Although the call in this example was never answered, its appearance and disappearance may have been
significant to the applications monitoring the line. On a network that offers caller ID, a user may want to
screen incoming calls, recording who has called without necessarily answering every call. Monitoring
applications can help accomplish this without ever needing to answer a call.

The Call is Answered Elsewhere
This scenario is similar to a call without an owner, but the user answers the phone elsewhere on the line,
and this answer is detected by the provider through the hardware. The call is reported as being in the
connected state, though it is not connected to any application on the local computer. The call eventually
goes idle, at which point each application (monitor as well as all owner applications) must deallocate its
handle.

The following steps describe what occurs in a scenario in which a line has only monitoring applications,
the service provider is configured to not answer new calls by itself, and a call comes in:

· The service provider passes the call handle to TAPI.
· TAPI passes monitor handles to the monitor applications.
· TAPI determines that the call in the offering (not connected) state and lets the call "sit."
· The user picks up a ringing downline phone, and the call becomes connected.
· All monitoring applications are sent a corresponding LINE_CALLSTATE message.
· The user eventually hangs up the downline phone, and the call reverts to the idle state.
· The monitor applications are notified the call is idle and deallocate their handles, if they have not

already done so.
· The last deallocation causes a TSPI_lineCloseCall.

Auto-Answer by the Service Provider
In this scenario, the provider is set up to auto-answer a new call. The provider answers it and determines
the call's media mode. It then informs TAPI of the call. Because no applications decide to take ownership,
TAPI cannot pass the call to any application.

A line has only monitoring applications. The service provider is configured to auto-answer all new calls. At
this point, a call comes in.

These are the steps:

· The service provider passes the call handle to TAPI.
· TAPI passes monitor handles to the monitor applications (the call is in the connected state).
· TAPI realizes that the call is connected, but there are, so far, no potential owners.
· TAPI must do a TSPI_lineDrop to cause the call to revert to idle.
· The monitor applications are notified that the call is idle and deallocate their handles if they have not

already done so.
· The last deallocation causes a TSPI_lineCloseCall.

This example illustrates an important point for writers of monitoring applications. It is not a good idea to
wait monitor for incoming calls you later want to own. It is better to open the line as an owner, because
there might not be enough time to change your privilege from monitor to owner before TAPI drops the call.

Call States and Events
A connection is not fully established until both parties are communicating. To reach that point, the
establishment of the call goes through several stages, as does the clearing (termination) of the call. A
call's events cause it to transition through call states as it comes into existence, is used to exchange
information, and terminates. These call-state transitions result from both solicited and unsolicited events.
A solicited event is one caused by the application controlling the call (as when it invokes TAPI operations),
while unsolicited events are caused by the switch, the telephone network, the user pressing buttons on
the local phone, or the actions of the remote party. Some operations on line devices, addresses, and calls
may first require that the line, address, or call upon which they operate be in certain specific states.

Different call states indicate that connections exist to different parts of the switch. For example, a dial tone
is a particular state of a switch that means the computer is ready to receive digits.

Whenever a call changes state, TAPI reports the new state to the application in a message. This
programming model, therefore, is one in which the application reacts to the events reported to it, as
opposed to a rigid call-state model. In other words, call-state notification tells the application what the
call's new state is, instead of reporting the occurrence of specific events and assuming that the
application will be able to deduce the transitions between two states.

Call State Definitions
Some of the call states and events defined by TAPI are exclusive to inbound or outbound call processing,
while others occur in both cases. Several of these call states provide additional information that can be
used by the application. For example, the busy state signifies that a call cannot be completed because a
resource between the originator and the destination is unavailable, as when an intermediate switch has
reached its capacity and cannot handle an additional call. Information supplied with the busy state
includes station busy or trunk busy. Station busy means that the destination's station is busy (the phone is
offhook), while trunk busy means that a circuit in the switch or network is busy. The call states defined by
TAPI are listed below.

Call State Description
idle This corresponds to the "null" state: No

activity exists on the call, which means that
no call is currently active.

offering (inbound) When the switch informs the computer of
the arrival of a new incoming call, that call
is in the offering state. Note that offering is
not the same as causing a phone or
computer to ring. When a call is offered, the
computer is not necessarily instructed to
alert the user.
Example: An incoming call on a shared call
appearance is offered to all stations that
share the appearance, but typically only the
station that has the appearance as its
primary address is instructed to ring. If that
station does not answer after some amount
of time, the bridging stations may be
instructed to ring as well.

accepted (inbound) An application has taken responsibility for
an incoming call. In ISDN, the accepted
state is entered when the called party
equipment sends a message to the switch
indicating that it is willing to present the call
to the called person; this has the side effect
of alerting the users at both sides of the
call: the caller's and the called party's. An
incoming call can always be immediately
answered without first being separately
accepted.

dial tone (outbound) Indicates that the switch is ready to receive
a dialable number. In most telephony
environments, this state is entered when
audible dial tone is detected by the line
device. Additional information includes:

¾normal dial tone The "normal" or everyday dial tone, usually
a continuous tone.

¾special dial tone A special dial tone is often used to signal
certain conditions such as message-
waiting. This is usually an interrupted dial
tone.

dialing (outbound) The originator is dialing digits on the call.

The dialed digits are collected by the
switch.

proceeding (outbound) The call is proceeding through the network.
This occurs after dialing is complete and
before the call reaches the dialed party, as
indicated by ringback, busy, or answer.

special info (outbound) The call is receiving a special information
signal, which precedes a prerecorded
announcement indicating why a call cannot
be completed. Such announcements can
be of these types:

¾no circuit A no-circuit or emergency announcement.
¾customer irregularity This typically means that the dialed number

is not correct.
¾reorder A reorder or equipment-irregularity

announcement.
busy (outbound) The call is receiving a busy signal. Busy

indicates that some resource is not
available and the call cannot be normally
completed at this time. Additional
information consists of:

¾station busy The station at the other end is off-hook.
¾trunk busy The network is congested. This usually

produces a "fast busy" signal.
ringback (outbound) The station to be called has been reached,

and the destination's switch is generating a
ring tone back to the originator. A ringback
means that the destination address is being
alerted to the call.

connected (inbound and
outbound)

Information is being exchanged over the
call.

on hold (inbound and
outbound)

The call is currently held by the switch. This
frees the physical line, which allows
another call to use the line.

conferenced (inbound
and outbound)

The call is a member of a conference call
and is logically in the connected state (to
the conference bridge). A call in the
conferenced state refers to a conference
call (in the connected, onHold, ... state).

on hold pending
conference (inbound and
outbound)

The conference call is currently on hold and
waiting for the user to add another party.

on hold pending transfer
(inbound and outbound)

The call is on hold in preparation of being
transferred.

disconnected (inbound
and outbound)

The call has been disconnected by the
remote party.

unknown (inbound and
outbound)

The call exists, but its state is currently
unknown. This may be the result of poor
call progress detection by the service
provider. A call state message with the call
state set to unknown may also be
generated to inform the TAPI DLL about a

new call at a time that that the actual call
state of the call is not exactly known.

Although under normal circumstances an outbound call is likely to transition to connected through a
number of intermediate states (dial tone, dialing, proceeding, ringback), other paths are often possible.
For example, the ringback state may be skipped, as when a hot phone (or other non-dialed phone)
transitions directly to connected.

An application should always process call-state event notifications. Call-state transitions valid for one
switch or configuration may be invalid for another. For example, consider a line from the switch that (using
a simple Y-connector) physically terminates both at the computer and at a separate phone set, creating a
party line configuration between the computer and the phone set. The computer termination and,
therefore, the application using TAPI, may not know of the activities on the line handled by the phone set.
That is, the line may be in use without the service provider being aware of it. An application that wants to
make an outbound call will succeed in allocating a call appearance from the API, but this results in
sharing the active call on the line. In this case, blindly sending a DTMF dial string without first checking for
a dial tone may not result in intended (or polite) behavior.

Obtaining Call State Information
Using the function lineGetCallStatus, an application can receive complete call status information for the
specified call as a data structure of type LINECALLSTATUS. The function lineGetCallInfo returns mostly
constant information about a call as a data structure of the type LINECALLINFO. The message
LINE_CALLSTATE is sent unsolicited to an application to notify it about changes in a call's state.

The call-information data structure maintained for each call contains an application-specific field that
applications can read from and write to. This field is not interpreted by TAPI. Applications can use it to tag
calls in application-specific ways. Writing to this field so that the change is visible to other applications can
be done with the function lineSetAppSpecific.

Supplementary Line Functions
In Win32 Telephony, supplementary functions are functions whose form and functionality has been
defined by the API description, but which are not required in basic Telephony. They are functions that
developers of telephony applications and service providers may choose to implement to suit the design of
their custom products. That is, in contrast to Basic Telephony functions, Supplementary Telephony
functions are optional.

This section describes the Supplementary functions used with TAPI-defined line devices. For
convenience, they are grouped into general functional categories.

Bearer Mode and Rate
The notion of bearer mode corresponds to the quality of service requested from the network for
establishing a call. It is important to keep the concept of bearer mode separate from that of media mode.
The media mode of a call describes the type of information that is exchanged over a specific call of a
given bearer mode. As an example, the analog telephone network (PSTN) provides only 3.1 kHz voice-
grade quality of service¾this is its bearer mode. However, a call with this bearer mode can support a
variety of different media modes such as voice, fax, or data modem. In other words, media modes require
certain bearer modes. TAPI manages the bearer modes only by passing the bearer mode parameters on
to the network. Media modes are fully managed through the appropriate media stream APIs, although
some limited support is provided in TAPI.

The bearer mode of a call is specified when the call is set up, or is provided when the call is offered. With
line devices able to represent channel pools, it is possible for a service provider to allow calls to be
established with wider bandwidth. The rate (or bandwidth) of a call is specified separately from the bearer
mode, allowing an application to request arbitrary data rates.

The bearer modes defined in TAPI are:

· Voice, which is regular 3.1 kHz analog voice service; bit integrity is not assured.
· Speech, which is G.711 speech transmission on the call.
· Multiuse, as defined by ISDN.
· Data, which is unrestricted data transfer; the data rate is specified separately.
· Alternate speech and data, which is the alternate transfer of speech and unrestricted data on a call

(ISDN).
· Non-call-associated signaling, which provides a clear signaling path from the application to the

service provider.

Although support for changing a call's bearer mode or bandwidth is limited in networks today, TAPI
provides an operation to request a change in the bearer mode or the data-rate parameters of an existing
call. This function is lineSetCallParams.

Call Monitoring
Call monitoring includes media, digit, and tone monitoring, as described in the following topics.

Media Monitoring
When a call is in the connected state, information can be transported over the call. A call's media mode
provides an indication of the type of information (for example, its data type, or higher-level protocol) of this
media stream. TAPI allows applications to be provided with a notification about changes in a call's media
mode. The notification provides an indication of the call's new media mode. The service provider decides
how it wants to make this determination. For example, the service provider could use signal processing of
the media stream to determine the media mode, or it could rely on distinctive ringing patterns assigned to
different media streams, or on information elements passed in an out-of-band signaling protocol.
Independent of how the media mode determination is achieved, the application is simply informed about
media mode changes on an existing call.

The media modes defined by TAPI include:

· Unknown. The media mode of the call is not currently known¾the call is unclassified.
· Interactive voice. Voice energy was detected on the call, and the call is handled as an interactive

voice call with a person at the application's end.
· Automated voice. Voice energy was detected on the call, and the call is handled as a voice call but

with no person at the application's end, such as with an answering machine application.
· Data modem. A modem session on the call. Current modem protocols require the called station to

initiate the handshake. For an inbound data modem call, the application can typically make no
positive detection. How the service provider makes this determination is its choice. For example, a
period of silence just after answering an inbound call can be used as a heuristic to decide that this
might be a data modem call.

· G3 fax. A group 3 fax session on the call.
· G4 fax. A group 4 fax session on the call.
· TDD. The call's media stream uses the Telephony Devices for the Deaf protocol.
· Digital data. A digital data stream of unspecified format.
· Teletex, Videotex, Telex, Mixed. These correspond to the telematic services of the same names.
· ADSI. An Analog Display Services Interface session on the call. ADSI enhances voice calls with

alphanumeric information downloaded to the phone and the use of soft buttons on the phone.

An application can enable or disable media monitoring on a specified call with lineMonitorMedia. The
application specifies which media modes it is interested in monitoring, and when media monitoring is
enabled, the detection of a media mode change causes the application to be notified with the
LINE_MONITORMEDIA message. This message provides the call handle on which the media mode
change was detected as well as the new media mode.

There is a distinction between the media mode of a call as reported by lineGetCallInfo and the media
mode event reports by LINE_MONITORMEDIA messages. A call's media mode is determined exclusively
by owner applications of the call and is not automatically changed by media monitoring events. The one
exception is the initial media mode determination that can be performed by the TAPI dynamic-link library
to select the first owner of a call. One could argue that in this case, the library is the owner of the call.

Default media mode monitoring is performed for the media modes for which the line device has been
opened. This allows an inbound call's media mode to be determined before the call is handed to an
application based on what the application demands. The scope of the media monitoring of a call is bound
by the lifetime of the call. Media monitoring on a call ends as soon the call disconnects or goes idle.

An application can obtain device IDs for various device classes associated with an opened line by calling
lineGetID. This function takes a line handle, address, or call handle and a device class description. It
returns the device ID for the device of the given device class that is associated with the open line device,
address, or call. If the device class is "tapi/line," then the device ID of the line device is returned. If the
device class is "mci/wave," then the device ID of an mci waveaudio device is returned (if supported),

which allows activities such as the recording or playback of audio over the call on the line.

The application can use the returned device ID with the corresponding media API to query the device's
capabilities and subsequently open the media device. For example, if your application needs to use the
line as a waveform device, it must first call waveInGetDevCaps and/or waveOutGetDevCaps to
determine the waveform capabilities of the device. The typical waveform data format supported by
telephony in North America is 8-bit m-law at 8000 samples per second, although the wave device driver
can convert this sample rate and companding to other more common multimedia audio formats.

To subsequently open a line device for audio playback using the waveform API, an application calls
waveOutOpen. The implementation of waveOutOpen is device specific, and there are a variety of
options for implementing this function.

Digit Monitoring
Digit monitoring monitors the call for digits. TAPI allows digits to be signaled according to two methods
(digit modes):

· Pulse. Digits are signaled as pulse or rotary sequences. For detection, these pulses manifest
themselves as nothing more than sequences of audible clicks. Valid pulse digits are '0' through '9'.

· DTMF. Digits are signaled as DTMF (Dual Tone Multiple Frequency) tones. Valid DTMF digits are '0'
through '9', 'A'. 'B', 'C', 'D', '*', and '#'. Both the beginning and the down edge of DTMF digits can be
monitored.

An application can enable or disable digit monitoring on a specified call with lineMonitorDigits. When
digit monitoring is enabled, detected digits cause the application to be notified with the
LINE_MONITORDIGITS message. This message provides the call handle on which the digit was
detected as well as the digit value and the digit mode. The scope of digit monitoring is bound by the
lifetime of the call. Digit monitoring on a call ends as soon as the call disconnects or goes idle.

Tone Monitoring
Tone monitoring monitors the media stream of a call for specified tones. A tone is described by its
component frequencies and cadence. An implementation of the API may allow several different tones to
be monitored simultaneously. An application can tag each tone to be able to distinguish the different tones
for which it requests detection.

An application can enable or disable tone monitoring on a specified call with lineMonitorTones. With this
function, the application indicates which tones to detect on a specified call. When tone monitoring is
enabled, detected digits cause the application to be notified with the LINE_MONITORTONE message.
This message provides the call handle on which the tone was detected as well as the application's tag for
the tone.

The scope of tone monitoring is bound by the lifetime of the call. Tone monitoring on a call ends as soon
the call disconnects or goes idle.

Note The monitoring of tones, digits, or media modes often requires the use of resources of which
the service provider can only have a finite amount. A request for monitoring can be rejected if
resources are not available. For the same reason, an application should disable any unnecessary
monitoring.

Media Control
An application can request the execution of a limited set of media-control operations on the call's media
stream triggered by telephony events. Although an application is encouraged to use the media API
specifically defined for the media mode, media control can yield a significant performance improvement
for client/server implementations. The lineSetMediaControl function is used to set up a call's media
stream for media control by allowing an application to specify a list of tuples specifying a telephony event
and the associated media-control action. The telephony events that can trigger media-control activities
are:

· Detection of a digit. The application provides a list of specific digits and the media-control action that
each of them triggers.

· Detection of a media mode. The application provides a list of media modes and the media-control
actions that a transition into the media mode triggers.

· Detection of a specified tone. The application specifies a list of tones and the media-control action
that each tone detection triggers.

· Detection of a call state. The application specifies a list of call states and the media-control action
that each transition to the call state triggers.

The media-control actions listed below are defined generically for the different media modes. Not all
media streams can provide meaningful interpretations of the media-control actions. The operations should
map well to audio streams:

· Start starts the media stream.
· Reset resets the media stream.
· Pause stops or pauses the media stream.
· Resume starts or resumes the media stream.
· Rate up increases the rate (speed) of the media stream by an implementation-defined amount.
· Rate down decreases the rate of the media stream by an implementation-defined amount.
· Rate normal returns the rate to normal.
· Volume up increases the volume (amplitude) of the media stream.
· Volume down decreases the volume of the media stream.
· Volume normal returns the volume to normal.

The scope of media control is bound by the lifetime of the call. Media control on a call ends as soon the
call disconnects or goes idle. Only a single media-control request can be outstanding on a call across all
applications.

Digit Gathering
Besides enabling digit monitoring and being notified of digits one at a time, an application can also
request that multiple digits be collected in a buffer. Only when the buffer is full or when some other
termination condition is met is the application notified. Digit gathering is useful for functions such as credit
card number collection. It is performed when an application calls lineGatherDigits, specifying a buffer to
fill with digits. Digit gathering terminates when one of the following conditions is true:

· The requested number of digits has been collected.
· One of multiple termination digits is detected. The termination digits are specified to

lineGatherDigits, and the termination digit is placed in the buffer as well.
· One of two timeouts expires. The timeouts are a first digit timeout, specifying the maximum duration

before the first digit must be collected, and an inter-digit timeout, specifying the maximum duration
between successive digits.

· Digit gathering is canceled explicitly by lineGatherDigits again with either another set of parameters
to start a new gathering request or by using a NULL digit buffer parameter to cancel.

When terminated for any reason, a LINE_GATHERDIGITS message is sent to the application that
requested the digit gathering. Only a single digit gathering request can be outstanding on a call at any
given time across all applications that are owners of the call.

Digit gathering and digit monitoring can be enabled on the same call at the same time. In that case, the
application will receive a LINE_MONITORDIGITS message for each detected digit and a separate
LINE_GATHERDIGITS message when the buffer is sent back.

Generating Inband Digits and Tones
Once a call is in the connected state, information can be transmitted over it. Two functions are provided
that allow end-to-end inband signaling between the application and remote station equipment such as an
answering machine. One function is lineGenerateDigits, which generates inband digits on a call,
signaling them over the voice channel. Digits can be signaled as either rotary/pulse sequences or as
DTMF tones. The other function is lineGenerateTone, which enables the application to generate one of a
variety of multifrequency tones inband (over the media stream). This generates telephony tones, such as
ringback, beep, and busy, as well as arbitrary multi-frequency, multi-cadenced tones.

Only one digit or tone generation can be in progress on a call at any one time. When digit or tone
generation completes, a LINE_GENERATE message is sent to the application that requested the
generation. In the case where multiple digits are generated, only a single message is sent back after all
digits have been generated. Calling lineGenerateDigits or lineGenerateTone while digit or tone
generation is in progress will abort the generation currently in progress and send the LINE_GENERATE
message to the application whose generation was aborted with a cancel indication.

Call Operations
Call operations include acceptance, rejection, redirecting, holding, forwarding, parking, pickup, and
completion. These operations are described in the following topics.

Call Accept, Reject, and Redirect
In environments like ISDN, call offering is separate from alerting. In fact, after a call has been offered to
an application, a time window exists during which the application has a number of options:

· It can immediately answer the call using lineAnswer.
· It can accept the call using lineAccept, which initiates alerting to both the caller (as ringback) and the

called party (as ring).
· It can reject the offering call using lineDrop, which reverts the offering call to the idle state.
· It can redirect the call using lineRedirect, which deflects the offering call to another address. The call

reverts to the idle state.

Call Hold
Most PBXs can associate multiple calls with a single line. A call can be placed on hard hold, which frees
the user's line/address to make other calls. An application can place a call on hard hold by calling
lineHold. An application can retrieve a call on hard hold by calling lineUnhold.

Hard hold is different from a consultation hold. A call is automatically placed on consultation hold, for
example, when a call is prepared for transfer or conference.

Call Transfer
TAPI provides two mechanisms for call transfer: blind transfer and consultation transfer.

· In blind transfer (or single-step transfer), an existing call is transferred to a specified destination
address in one phase using lineBlindTransfer.

· In a consultation transfer, the existing call is first prepared for transfer to another address using
lineSetupTransfer. This places the existing call on consultation hold, and identifies the call as the
target for the next transfer-completion request. The lineSetupTransfer function also allocates a
consultation call that can be used to establish the consultation call with the party to which the call will
be transferred. The application can dial the extension of the destination party on the consultation call
(using lineDial), or it can drop and deallocate the consultation call and instead activate an existing
held call (using lineUnhold), if supported by the switch.

While the initial call is on consultation hold and the consultation call is active, the application can toggle
between these calls using lineSwapHold.

Finally, the application completes the transfer in one of two ways using lineCompleteTransfer:

· Transfer the call on transfer hold to the destination party. Both calls will revert to the idle state.
· Enter a three-way conference. A new call handle is created to represent the conference and this

handle is returned to the application.

In version 0x00020000 and greater, applications can use the "one step transfer" feature of many PBXs (a
single button press to establish a consultation transfer) using
LINECALLPARAMFLAGS_ONESTEPTRANSFER with lineSetupTransfer.

Call Conference
Conference calls are calls that include more than two parties simultaneously. They can be set up using
either a switch-based conference bridge or an external server-based bridge. Typically, only switch-based
conferencing will allow the level of conference control provided by the API. In server-based conference
calls all participating parties dial into the server which mixes all the media streams together and sends
each participant the mix; there may be no notion of individual parties in the conference call, only that of a
single call between the application and the bridge server.

A conference call can be established in a number of ways, depending on device capabilities:

· A conference call can begin as a regular two-party call, such as a call established with lineMakeCall.
Once the two-party call exists, additional parties can be added, one at a time. Calling
lineSetupConference prepares a given call for the addition of another party, and this action
establishes the conference call. This operation takes the original two-party call as input, allocates a
conference call, connects the original call to the conference, and allocates a consultation call whose
handle is returned to the application.

Note The capabilities of the addressed line device can limit the number of parties conferenced
in a single call and whether or not a conference starts out with a normal two-party call.

The application can then use lineDial on the consultation call to establish a connection to the next
party to be added. The lineDrop function can be used to abandon this call attempt. The third party is
added with the lineAddToConference function, which specifies both the conference call and the
consultation call.

· A three-way conference call can be established by resolving a transfer request for three-way
conference. In this scenario, a two-party call is established as either an inbound or outbound call.
Next the call is placed on transfer hold with the lineSetupTransfer function, which returns a
consultation call handle. After a period of consultation, the application may have the option to resolve
the transfer setup by selecting the three-way conference option which conferences all three parties
together in a conference call with lineCompleteTransfer with the conference option (instead of the
transfer option). Under this option, a conference call handle representing the conference call is
allocated and returned to the application.

· A conference call may need to be established with lineSetupConference without an existing two-
party call. This returns a handle for the conference call and allocates a consultation call. After a period
of consultation, the consultation call can be added with lineAddToConference. Additional parties are
added with linePrepareAddToConference followed by lineAddToConference.

To add parties to an existing conference call, the application uses linePrepareAddToConference. When
calling this function, the application supplies the handle of an existing conference call. The function
allocates a consultation call that can later be added to the conference call and returns a consultation call
handle to the application. This conference call is then placed on conference hold. Once the consultation
call exists, it can be added to the existing conference call with lineAddToConference.

Once a call becomes a member of a conference call, the member's call state reverts to conferenced. The
state of the conference call typically becomes connected. The call handle to the conference call and all
the added parties remain valid as individual calls. LINE_CALLSTATE events can be received about all
calls. For example, if one of the members disconnects by hanging up, an appropriate call-state message
can inform the application of this fact; such a call is no longer a member of the conference.

As is the case with call transfer, the application can toggle between the consultation call and the
conference call using lineSwapHold.

Use the call handle for the member calls to later remove the call from the conference. Do this by calling
lineRemoveFromConference on the call handle. This operation is not commonly available in its fully
general form. Some switches may not allow it at all, or only allow the most recently added party to be

removed. The line's device capabilities describe which type of lineRemoveFromConference is possible.

In version 0x00020000 and greater, applications can use the "no hold conference" feature of PBXs by
using the LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with lineSetupConference; this
feature allows another device, such as a supervisor or recording device, to be silently attached to the line.

Removing a Party
When canceling the consultation call to the third party for a conference call or when removing the third
party in a previously established conference call, the service provider (and switch) may release the
conference bridge and revert the call back to a normal two-party call. If this is the case, hConfCall will
transition to the idle state, and the only remaining participating call will transition to the connected state.

Call Park
Two forms of call parking are provided: directed call park and non-directed call park. In directed call park,
the application specifies the destination address where the call is to be parked. This roughly behaves like
a call transfer to the destination address, but it doesn't alert or time-out as a transfer would.

In non-directed call park, the switch returns to the application the address where it parked the call. In
either case, the function linePark is used to park a call. A parked call can later be retrieved with
lineUnpark. The application specifies the park address to lineUnpark which returns a call handle to the
unparked call. Appropriate LINE_CALLSTATE messages will be sent to the application as the call is
reconnected.

Call Forwarding
Forwarding affects the treatment by the switch or network of incoming calls destined for a given address.
The application can specify call forwarding conditions based on the origin of the call (internal, external,
selective based on caller ID); the status of the address (busy, no answer, unconditionally); and the
destination address where calls are to be forwarded. When the specified conditions are met for an
incoming call, the switch deflects the incoming call to the specified destination number. Because the
switch performs the forwarding action, the application will typically not know when a call has been
forwarded.

The lineForward function provides a combination of call forwarding (by setting call-forwarding requests)
and a do-not-disturb feature. The lineForward function can also cancel any or all of the forwarding
requests currently in effect. Some switches require that a call be established to the forwarding address for
call forwarding to be initiated. On such systems, lineForward allocates a consultation call and returns the
handle for it to the application. The consultation call can be used as any other call. After the connection is
established, forwarding confirmation is received from the switch, the call is dropped (using lineDrop), and
forwarding is in effect. A LINE_ADDRESSSTATE message with a forwarding indication informs the
application about changes in an address' forwarding status.

Note It may be impossible for a service provider to know at all times what forwarding is in effect for
an address. Forwarding can be canceled or changed in ways that make it impossible for a service
provider to be informed of this fact.

Call Pickup
Call pickup allows an application to answer a call that is alerting at another address. The application
invokes linePickup by identifying the target of the pickup and is returned a call handle for the picked-up
call. There are several ways to specify the target of the pickup request. First, specify the address
(extension) of the alerting party. Second, if no extension is specified and the switch allows it, the
application can pick up any ringing phone in its pickup group. Third, some switches require a group ID to
identify the group to which the ringing extensions belongs.

After the call has been picked up, it is diverted to the application and the application is sent appropriate
LINE_CALLSTATE messages for the call. An application can invoke lineGetCallInfo for information about
the picked-up call, if provided by the switch.

Some key telephone systems support a transfer through hold capability on bridged-exclusive call
appearances. In this scheme, a call is owned exclusively by a particular phone when it is active, but when
the call is on hold it can be picked up on any phone that has an appearance of the line. In versions
0x00020000 and greater, an application can use the linePickup function with a NULL target address for
this purpose, similar to how the function is used to pick up a call waiting call on an analog line.
LINEADDRFEATURE_PICKUPHELD indicates the existence of the capability (in LINEADDRESSCAPS)
and when it can be invoked (in LINEADDRESSSTATUS).

Call Completion
When making an outbound call, the unavailability of certain resources can prevent the call from reaching
the connected state, as when the destination party is busy or doesn't answer. Unavailable resources
include trunk circuits as well as the destination party's station. The lineCompleteCall function lets the
application specify how it wants to complete a call that cannot be completed normally¾this is called
"placing a call-completion request." The application has the following options:

· Camp on to queue the call until the call can be completed.
· Call back requests the called station to return the call when the station returns to idle. Answering the

call-back can automatically reinitiate (redial) the connection request.
· Intrude allows the application to barge in to the existing call.
· Message (also known as "leave word calling") allows the application to send one of a small number

of predefined messages to the destination. These messages can be text shown on the phone's
display, a voice message left for the user, and so forth.

A call completion request can be canceled with lineUncompleteCall. Multiple call completion requests
can potentially be outstanding for a given address at any one time. To identify individual requests, the
implementation returns a completion ID. When a call completion request completes and results in a new
call, the call completion ID is available in the LINECALLINFO data structure returned by lineGetCallInfo.
Canceling a call completion request in progress also uses this call completion ID.

In versions 0x0002000 and greater, the LINECALLREASON_CAMPEDON bit allows a service provider to
indicate when a new call was camped on to an address.

Extended Line Functions
Extended Line Services (or device-specific line services) include all service-provider defined extensions to
the API. The API defines a mechanism that enables service-provider vendors to extend TAPI using
device-specific extensions. The API only defines the extension mechanism, and by doing so provides
access to device-specific extensions, but the API does not define their behavior. Behavior is completely
defined by the service provider.

TAPI consists of scalar and bit-flag constant definitions, data structures, functions, and messages.
Procedures are defined that enable a vendor to extend most of these as follows.

For extensible scalar data constants, a service-provider vendor can define new values in a specified
range. As most data constants are DWORDs, typically the range 0x00000000 through 0x7FFFFFFF is
reserved for common future extensions, while 0x80000000 through 0xFFFFFFFF are available for
vendor-specific extensions. The assumption is that a vendor would define values that are natural
extensions of the data types defined by the API.

For extensible bit-flag data constants, a service-provider vendor can define new values for specified bits.
As most bit-flag constants are DWORDs, typically a specific number of the lower bits are reserved for
common extensions while the remaining upper bits are available for vendor-specific extensions. Common
bit flags are assigned from bit zero up; vendor-specific extensions should be assigned from bit 31 down.
This provides maximum flexibility in assigning bit positions to common extensions versus vendor-specific
extensions. A vendor is expected to define new values that are natural extensions of the bit flags defined
by the API.

Extensible data structures have a variably sized field that is reserved for device-specific use. Being
variably sized, the service provider decides the amount of information and the interpretation. A vendor that
defines a device-specific field is expected to make these natural extensions of the original data structure
defined by the API.

Two functions, lineDevSpecific and lineDevSpecificFeature, and two related messages,
LINE_DEVSPECIFIC and LINE_DEVSPECIFICFEATURE, provide a vendor-specific extension
mechanism. The lineDevSpecific function and associated LINE_DEVSPECIFIC message enable an
application to access device-specific line, address, or call features that are unavailable with the Basic or
Supplementary Telephony Services. The parameter profile of the lineDevSpecific function is generic in
that little interpretation of the parameters is made by the API. The interpretation of the parameters is
defined by the service provider and must be understood by an application that uses them. The
parameters are simply passed through TAPI from the application to the service provider. An application
that relies on device-specific extensions will not generally work with other service providers; however,
applications written to the Basic and Supplementary Telephony Services will work with the extended
service provider.

For convenience, a more specialized escape function is also provided. It is similar to lineDevSpecific, but
places interpretation on some of the parameters. This more specialized function is
lineDevSpecificFeature, a device-specific escape function to allow sending switch features to the switch.
The message LINE_DEVSPECIFICFEATURE is the device-specific message sent to the application as
an indication of features sent to the switch. This function and its associated message allow an application
to emulate button presses at the line's feature phone. As feature phones and the meanings of their
buttons are vendor-specific, feature invocation using lineDevSpecificFeature is also vendor specific.

As mentioned earlier, there is no central registry for manufacturer IDs. Instead, a unique ID generator
(EXTIDGEN) is made available.

Passthrough Mode
When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct access
to the attached hardware for control by the application. This mode is for use by applications desiring
temporary direct control over asynchronous modems, accessed through the Win32 Communication
functions, for the purpose of configuring or using special features not otherwise supported by the service
provider, such as facsimile (Class 1, 2, and so on). This bearer mode is supported by the Universal
Modem Driver (UNIMODEM) service provider.

Service providers that support LINEBEARERMODE_PASSTHROUGH indicate it in the dwBearerModes
member of the LINEDEVCAPS structure. When LINEBEARERMODE_PASSTHROUGH is indicated, the
Unimodem service provider will also include in the DevSpecific area of the LINEDEVCAPS structure the
registry key used to access information about the modem associated with the line device, in the following
format:

struct {
 DWORD dwContents; // Set to 1 (indicates containing key)
 DWORD dwKeyOffset; // Offset to key from start of this
 // structure (not from start of
 // LINEDEVCAPS structure). 8 in
 // our case.
 BYTE rgby[...]; // place containing null-terminated
 // registry key.
}

For example:

 00000001 00000008 74737953 435c6d65 System\C
 65727275 6f43746e 6f72746e 7465536c urrentControlSet
 7265535c 65636976 6c435c73 5c737361 urrentControlSet
 65646f4d 30305c6d xx003030 xxxxxxxx Modem\0000.

This registry key could then be opened using this function:

RegOpenKey(HKEY_LOCAL_MACHINE, pszDevSpecificRegKey, &phkResult)

Passthrough mode is invoked most often using the lineMakeCall function, by setting the
LINEBEARERMODE_PASSTHROUGH bit in the dwBearerMode member of the LINECALLPARAMS
structure pointed to by the lpCallParams parameter. When this is done, the service provider will open the
serial port to the modem and immediately place the call into LINECALLSTATE_CONNECTED. The
application can then use the lineGetID function with the device class "comm/datamodem" to obtain an
open Win32 file handle to read from and write to the comm port.

Passthrough mode can be invoked in response to an incoming call as well. Generally, applications will
invoke passthrough mode while the call is in LINECALLSTATE_OFFERING, before the call has been
answered. Instead of calling lineAnswer, the applications calls lineSetCallParams, passing
LINEBEARERMODE_PASSTHROUGH as the dwBearerMode parameter. When this is done, as with
lineMakeCall, the call will immediately be placed into LINECALLSTATE_CONNECTED by the service
provider, and the application can obtain a handle to the open port using lineGetID. lineSetCallParams
can be called when the call is in LINECALLSTATE_OFFERING, LINECALLSTATE_ACCEPTED, or
LINECALLSTATE_CONNECTED.

Passthrough mode is normally terminated by calling lineDrop on the call handle obtained from
lineMakeCall or the first LINE_CALLSTATE message (if the call was an incoming call). The service
provider will close the port, and restore the modem to its default state. The application must call
CloseHandle on the handle it received from lineGetID.

Passthrough mode can also be terminated by calling lineSetCallParams with the dwBearerMode
parameter set to LINEBEARERMODE_VOICE. The media mode set by lineSetMediaMode is presumed
to be in effect. If LINEMEDIAMODE_DATAMODEM is active, the service provider will take over the call as
though it was a data modem call already in progress; if lineDrop is subsequently called, the service
provider will issue the appropriate modem commands or interface state changes to drop a data call.

Quality of Service
As Asynchronous Transfer Mode (ATM) networking emerges into the mainstream of computing, and
support for ATM has been added to other parts of the Microsoft® Windows® operating system, TAPI also
supports key attributes of establishing calls on ATM facilities. The most important of these from an
application perspective is the ability to request, negotiate, renegotiate, and receive indications of Quality
of Service (QOS) parameters on inbound and outbound calls.

QOS information in TAPI is exchanged between applications and service providers in FLOWSPEC
structures which are defined in Windows Sockets 2.0.

Applications request QOS on outbound calls by setting values in the flowspec fields in the
LINECALLPARAMS structure. The service provider will endeavor to provide the specified QOS, and fail
the call if it cannot; the application can then adjust its parameters and try the call again. Once a call is
established, an application can use the lineSetCallQualityOfService function to request a change in the
QOS; a new bit, LINECALLFEATURE_SETQOS, lets applications determine when this function can be
called.

The QOS applicable to inbound or active calls can be obtained by using lineGetCallInfo and examining
the flowspec fields. A bit in the LINE_CALLINFO message, LINECALLINFOSTATE_QOS, lets
applications know when QOS information for a call has been updated.

Support for QOS is not restricted to ATM transports; any service provider can implement QOS features.

Call Center Control
You can use TAPI to manage call centers and other elements of telephony network infrastructure (such as
IVR and voice mail servers) through third-party call control. The following topics describe the TAPI
features that make this control easier.

Modeling of a Call Center
Service providers can expose each resource on the PBX as a line device and possibly an associated
phone device. Terminals which support multiple call appearances would do so through multiple
addresses, just as in first-party call control. In fact, the third-party view of a device is identical to the first-
party view; applications on the server can see and control all of the first-party devices, whereas an
individual client PC connected to the server would only be able to see those devices which are made
visible to it through access controls administered by TAPISRV.EXE on the server. Resources other than
terminals can also be modeled as line devices. For example, an ACD queue or route point would be
modeled as a line device that could have many active calls; an IVR server, voice mail server, or set of
predictive dialing ports could also be modeled as a line device that supports multiple calls.

Within this model, the status of the addressed device and calls associated with it can be monitored
though existing TAPI messages such as LINE_LINEDEVSTATE, LINE_ADDRESSSTATE,
LINE_CALLSTATE, and LINE_CALLINFO, and details obtained through functions such as
lineGetLineDevStatus, lineGetAddressStatus, lineGetCallStatus, and lineGetCallInfo. Whenever a
TAPI object is operated upon through a third-party application running on the server, the result is identical
to what would have occurred if the same object had been similarly operated on by a first-party application
running on a client PC associated with that device. Status indications sent by the server service provider
controlling the switching fabric (or switch) are delivered both to applications running on the server and to
those running on associated, authorized clients.

Stations
Station sets being monitored through a third-party link are modeled as a line device and possibly an
associated phone device. The line device can have multiple addresses, if the modeled terminal supports
more than one directory number (DN). Multiple call appearances on the same DN can be modeled as a
single address that supports multiple calls.

Calls between two stations on the switch have two call handles, one giving the call view from the first
station (on its line device), and the other giving the call view from the second station (on its line device).
For example, a third-party lineMakeCall placed by an application on the server would be directed to the
line device associated with the station from which the call is to be dialed; a call handle would be created
on that line, on the address specified in LINECALLPARAMS (thereby giving control over which DN is
used on a phone that supports multiple DNs). When the call is offered to the destination address, a new
call handle showing a call in offering state is created; applications would know that it was another view of
the same call by the dwCallID member in LINECALLINFO being equal for both calls. Both calls would go
idle when the call was dropped; a call could be dropped from the third-party application by doing a
lineDrop on either of the call handles.

Predictive Dialing
Predictive dialing is an application that typically runs on a call center telephony server. It uses a list of
phone numbers, often obtained from a database, to attempt outbound calls; when a call is completed, the
call is automatically assigned to an agent for handling. The application can make use of a predictive
dialing port on a switch, which is a device that can make outbound calls and has special abilities (through
DSP, and so on) to detect call progress tones and other audible indications of call state. When a call is
made on a predictive dialing port, it will typically be automatically transferred to another device on the
switch when the call reaches a particular state or upon detection of a particular media mode; this target
device might be a queue for agents handling outbound calls.

Applications identify a device as having predictive dialing capability by the
LINEADDRCAPFLAGS_PREDICTIVEDIALER bit in the dwAddrCapFlags member in
LINEADDRESSCAPS. The dwPredictiveAutoTransferStates member in LINEADDRESSCAPS
indicates the states upon which the predictive dialing port can be commanded to automatically transfer a
call; if this member is zero, it indicates that automatic transfer is not available, and that it is the
responsibility of the application to transfer calls explicitly upon detecting the appropriate call state (or
media mode or other criteria). Preferably, switch manufacturers will make available both automatic and
manual transfer, and allow applications to select the preferred mechanism, but service providers would
have to model the behavior of legacy equipment. A single predictive dialing port (line device/address) can
support making several outbound calls simultaneously, as indicated by the dwMaxNumActiveCalls
member in LINEADDRESSCAPS. Predictive dialing capability can also be made available on any device,
using a shared pool of predictive dialing signal processors, which are bridged onto the line being dialed
upon request.

When the lineMakeCall function is used on a line capable of predictive dialing (a port with the
LINEADDRCAPFLAGS_PREDICTIVEDIALER set) and predictive dialing is requested using
LINECALLPARAMFLAGS_PREDICTIVEDIAL, then the call is made in a predictive fashion with enhanced
audible call progress detection. Additional fields and constants are defined in the LINECALLPARAMS
structure passed in to lineMakeCall to control the behavior of the predictive dialing port. The
dwPredictiveAutoTransferStates member indicates the line call states which, upon entry of the call into
any of them, the predictive dialing port should automatically transfer the call to the designated target (the
bits must be a proper subset of the supported auto-transfer states indicated in LINEADDRESSCAPS);
the application can leave the field set to 0 if it desires to monitor call states itself and use
lineBlindTransfer to transfer the call when it reaches the desired condition. The application must specify
the desired address to which the call should be automatically transferred in the variable field defined by
the dwTargetAddressSize and dwTargetAddressOffset members in LINECALLPARAMS.

Applications can also set a timeout for outbound calls so that the service provider will automatically
transition them to a disconnected state if they are not answered. This is controlled using the
dwNoAnswerTimeout member in LINECALLPARAMS.

Call Queues and Route Points
A call queue or route point is a special address within the switch where calls are temporarily held pending
action. This characteristic is represented by the bits LINEADDRCAPFLAGS_QUEUE and
LINEADDRCAPFLAGS_ROUTEPOINT in the dwAddrCapFlags member in LINEADDRESSCAPS. All
calls appearing on such an address are awaiting action by the application, and there can be default
actions that take place (for example, transfer to an agent or trunk) if the application takes no action within
a defined period of time. The application must be configured by the system administrator so that it knows
what actions it should take regarding calls appearing on each queue or route point address, and the
amount of time available to decide on the action to take.

Applications can determine the number of calls pending in a queue or route point using
lineGetAddressStatus. The lineGetCallInfo function can be used to obtain information such as calling
ID, called ID, inbound or outbound origin, and so on, and used by the application to make decisions on
call handling; calls can be redirected, blind-transferred, dropped, and so on, or just allowed to
automatically pass out of the queue to a destination. A call goes to LINECALLSTATE_DISCONNECTED if
it is abandoned. Calls go idle when they leave the queue; lineGetCallInfo can be used to read the
redirection ID to determine where they were transferred.

Some switches allow calls in a queue or on hold to receive particular treatment such as silence, ringback,
busy signal, music, or listening to a recorded announcement. The lineSetCallTreatment function allows
the application to control the treatment. The structure delimited by the dwCallTreatmentListSize and
dwCallTreatmentListOffset members in LINEADDRESSCAPS allows applications to determine the
supported treatments. The dwCallTreatment member in LINECALLINFO indicates the current treatment,
and a LINE_CALLINFO message with LINECALLINFOSTATE_TREATMENT indicates when this
changes. The LINECALLFEATURE_SETTREATMENT bit in the dwCallFeatures member in
LINECALLSTATUS indicates when changing the treatment by the application is permitted. The
LINECALLTREATMENT_ set of constants defines a limited set of predefined call treatments; service
providers can define many more.

ACD Agent Monitoring and Control
Monitoring and control of ACD agent status on stations is supported through these functions:
lineGetAgentCaps, lineGetAgentStatus, lineGetAgentGroupList, lineGetAgentActivityList,
lineSetAgentGroup, lineSetAgentState, and lineSetAgentActivity. The LINE_AGENTSTATUS
message is used to indicate when agent information has changed.

These controls are associated with an address instead of a line because many ACD systems are
implemented with different ACD queues associated with buttons on the phone terminal (and separate call
appearances). Also, ACD agent phones can often have separate call appearances for personal calls.

Architecturally, ACD functionality should be implemented in a server-based application. The client
functions mentioned above, rather than mapping to the telephony service provider, are conveyed to a
server application which has registered (using an option of lineOpen) as a handler for such functions.
The LINE_PROXYREQUEST message is used to signal to the handler application when a request has
been made; it calls the lineProxyResponse function to return results and data. Handler applications can
also call lineProxyMessage to generate LINE_AGENTSTATUS messages when required. In the case of
a legacy PBX or stand-alone ACD which implements ACD functionality itself, the telephony service
provider for the switch must include a proxy server application that accepts the requests and routes them
(possibly using lineDevSpecific functions or a private interface) to the service provider, which routes
them to the switch.

Call Data
In a call center environment, applications may need to accumulate data about a call (such as IVR input of
account numbers) that is desirable to have available to all agents and applications that handle the call.
The variable-sized field, bounded by the dwCallDataSize and dwCallDataOffset members in the
LINECALLINFO structure, gives the telephony application a way to provide to the service provider data to
be passed along with a transferred call and made visible to other applications that are monitoring the call
(either on the same PC, or, through the server, on other PCs). The LINECALLINFOSTATE_CALLDATA
message indicates whenever this field changes. The lineSetCallData function allows an application that
owns the call to set this data; LINECALLFEATURE_SETCALLDATA indicates when changing the data is
permitted. The dwMaxCallData member in LINEADDRESSCAPS indicates the maximum number of
bytes permitted in this field. Initial call data to be attached to a call can be passed to the service provider
in LINECALLPARAMS.

Station Status Control
There are three major station status functions that need control: message waiting lights, forwarding, and
do not disturb. Forwarding and Do Not Disturb are controllable through the existing lineForward function
(which is address-specific), and queried using lineGetAddressStatus. The
LINEDEVSTATUSFLAGS_MSGWAIT bit in the dwDevStatusFlags member of LINEDEVSTATUS
indicates the status of the message waiting light on the device, and a LINEDEVSTATE_MSGWAITON or
LINEDEVSTATE_MSGWAITOFF message is sent to indicate when the state changes. The
lineSetLineDevStatus function allows the message waiting light to be controlled without having to
implement a TAPI phone device just for that purpose. The LINEFEATURE_SETDEVSTATUS bit (in the
dwLineFeatures member of LINEDEVCAPS and LINEDEVSTATUS) indicates when it can be called,
and the dwSettableDevStatus member of LINEDEVCAPS allows the application to detect which of the
device status settings can be controlled from the application. In addition to allowing the message waiting
feature to be controlled, it also allows the device's Connected, Inservice, and Locked status to be set, to
the extent that these are supported by the switch or other hardware. Calls to this function result in
appropriate LINE_LINEDEVSTATE messages being sent to reflect the new status.

Call State Timer
Currently, all timing of calls is left up to applications. This can be quite burdensome if the application is
monitoring a large number of calls, and if multiple applications were present, possibly on multiple servers,
it would be necessary for them to all maintain timers on the same calls. It therefore makes more sense for
call state timing to be handled by the server.

The tStateEntryTime member in LINECALLSTATUS allows timing of calls in states to be reported. The
member (of type SYSTIME) indicates the time at which the current state was entered.

Media Event Timers
Many applications depend on the timing relationship between media events (for example, DTMF digits
received) in order to determine the nature of a requested operation. For example, in a voice mail
application, two consecutive DTMF "1" digits may mean "back up two segments" or "replay from
beginning of message", depending on how much time elapsed between the two digits. In a client/server
environment, if the DTMF detection is being performed on a separate processor from the one on which
the application is running, latency in the local area network makes it very likely that the timing relationship
between media events will be skewed, with the result that these timing-based differences could be lost or
become unreliable.

To resolve this issue, several TAPI messages can be timestamped. Because it is the relative timing
between these events that is important, the "clock time" of the event is not important, and sub-second
timing is involved, these timestamps use the millisecond-resolution "time since Windows started" returned
by the GetTickCount function. Applications must be aware that this is the tick count on the server (or
machine where the service provider directly managing the hardware is running), and is not necessarily the
same machine on which the application is executing; thus, the timestamps in these TAPI messages can
only be compared to each other, and not to the value returned by GetTickCount on the processor on
which the application is running.

The TAPI messages which can be timestamped are: LINE_GATHERDIGITS, LINE_GENERATE,
LINE_MONITORDIGITS, LINE_MONITORMEDIA, and LINE_MONITORTONE. The tick count will be
inserted into dwParam3 of these messages. If timestamping is not supported by the service provider
(which is indicated by the service provider setting dwParam3 in these messages to 0), then TAPI itself will
insert the tick count into dwParam3 of all of these messages (it can be skewed somewhat, but less than if
the application did the same after the messages had traversed an interprocess communication scheme).

Line Devices Overview
A line device is a physical device such as a fax board, a modem, or an ISDN card that is connected to an
actual telephone line. Line devices support telephonic capabilities by allowing applications to send or
receive information to or from a telephone network. A line device is the logical representation of a physical
line device, one of the two device classes supported by TAPI. This section describes line devices and
explains how to use the line functions that access these devices.

What is a Line Device?
A line device is a physical device such as a fax board, a modem, or an ISDN card that is connected to an
actual telephone line (although the device may not be physically connected to the computer on which the
telephony application is running). Line devices support telephonic capabilities by allowing applications to
send or receive information to or from a telephone network. A line device contains a set of one or more
homogeneous channels that can be used to establish calls.

Within TAPI applications, a line device is the logical representation of a physical line device. Although
"line" often connotes something with two endpoints, it is possible to abstract a line device to a single point
because TAPI views it only as a point of entry to the line that leads to the switch.

{ewc msdncd, EWGraphic, bsd23548 0 /a "SDK.WMF"}

Although the three lines in the preceding illustration are composed of different hardware and used for
different functions, they are abstracted to the same device type and governed by the same rules. The
telephone represents not a phone device but a line device used for voice calls. When using this line
device for incoming or outgoing calls, the application would also need to open and control an instance of
the phone-device class, which is described in detail in later sections.

TAPI requires that every TAPI-capable line device support all of Basic Telephony. If an application needs
to use capabilities beyond those of Basic Telephony (namely Supplementary or Extended Telephony), it
must first determine the line device's capabilities, which can vary according to network configuration
(client versus client/server), hardware, service-provider software, and the telephone network. The
lineNegotiateAPIVersion function allows the application to identify the set of Extended capabilities
supported on a line device, and the lineNegotiateExtVersion function allows for different versions of that
set to be used. The function lineGetDevCaps returns the telephonic capabilities implemented through the
use of the Supplementary and Extended (if any) TAPI functions of a given line device in a data structure
of the type LINEDEVCAPS.

Lines, Channels, and Addresses
In POTS, exactly one channel exists on a line, and this is used exclusively for voice. With ISDN, at least
three (and as many as 30 or more) channels can exist on a line simultaneously. Currently, most TAPI
functionality involves POTS applications that handle a single line using its single channel because ISDN
hardware is not yet widespread. In POTS, an application that wants to transmit data would communicate
over one line, and a voice application would communicate over another line¾both of these applications
could use the same line, but if so, not at the same time.

In general, one line has exactly one address (telephone number). In cases where lines carry two or more
channels, each channel can have its own address, which means that a line has as many addresses as it
has channels. TAPI assigns Address IDs to these different addresses to make it easier to manipulate
them.

Multiple Addresses on a Single Channel
Some installations support the assignment of more than one address to a single channel. On POTS lines,
multiple addresses are made possible by various systems, such as DID (direct inward dialing) or
distinctive ringing, which are extra-fee services provided by the telephone company.

Many large corporations use DID for incoming calls. Before a call is connected, its destination extension
number is signaled to the PBX, which causes the extension to ring instead of the operator's phone. An
example of distinctive ringing in a private home would be if the parents used one address, the children
another, and a fax machine a third. Because only one line connects the house to the telephone network,
all phones ring when a call appears, but the ring pattern will be different depending on the number dialed
by the calling party. With distinctive ringing, the people know who the incoming call is meant for, and the
fax machine answers its calls by recognizing its own ringing style.

In ISDN, the various B channels might not have separate addresses. Because these B channels might be
on the same address, it is the service provider (and not the application or a person who has dialed the
number) that assigns calls to these channels.

ISDN Subaddresses
Subaddressing is a capability provided on ISDN lines that allows more information than just a single
telephone number to be used when dialing. This additional information can specify an individual
telephone extension to ring or, in a computing environment, a particular application to be alerted. Other
parameters that can be passed can describe the required aspects of a requested modem connection,
such as rate and timing.

Addresses and Address Identifiers
Each line device is assigned one or more addresses. An address corresponds to a telephone directory
number, and it is actually assigned twice: First, by the telephone company at the switch, and second, by
the user while configuring the local system. If a telephone number is changed at the switch, the user will
normally need to assign the new number at the local system, although some systems can be
sophisticated enough to perform the reassignment without human control.

After addresses have been assigned to lines, TAPI assigns address IDs to addresses. An address ID is a
number between 0 and the number of addresses on the line minus one. Because each address depends
on its line to exist, the address's ID is meaningful only in the context of the associated line device. For this
reason, an address name consists of not only the address ID, but also an identifier of the line. It serves as
a kind of shorthand, an easy way for programmers to identify addresses.

Address Configurations
The relationship of an address to a line (and to other local addresses) is known as its configuration. The
network or switch can configure address-to-line assignments in several ways. The main types of address
configurations recognized by TAPI are:

1. Private. The address is assigned to one line device only. An inbound call for this address is offered
(the switch informs the desktop computer of an incoming call) at one line device only.

2. Bridged. A bridged address is a single address assigned to more than one line device. (Different
switch vendors have different names for address bridging, such as multiple appearance directory
number (MADN), bridged appearance, or shared appearance.) An incoming call on a bridged address
will be offered on all lines associated with the address. The network of lines connected together is
known as the bridge. Different variations of bridged behavior are possible:
· Bridged-Exclusive. Connecting one of the bridged lines to a remote party causes the address to

appear "in use" to all other members of the bridge.
· Bridged-New. Connecting one of the bridged lines to a remote party does not preclude the other

lines from using the bridged address to answer or make calls. However, a new call appearance is
allocated to another of the connected lines.

· Bridged-Shared. If one line is connected to a remote party, other bridged lines that use the
address automatically enter into a multi-party conference call on the existing call.

3. Monitored. The line indicates the busy or idle status of the address, but the line cannot use the
address for answering or making calls.

Address-Related Functions and Messages
Different line devices can have different capabilities and so can their addresses. Additionally, switching
features and capabilities can be different for different addresses. An application calls the function
lineGetAddressCaps to determine the telephony capabilities of each address and then receives this
information in a data structure of the type LINEADDRESSCAPS. In a similar way, an application can call
lineGetDevCaps for a line device to determine the number of addresses assigned to the line, as well as
other information.

TAPI's device-query capability and status and event reporting mechanisms give an application the
information it needs to manage the different kinds of bridged-address arrangements. For example, the
application can determine whether a bridged station has answered a call by tracking the status changes
and call-state event changes on the address. (For more information about call states, see Call States and
Events.)

Normally, addresses on a line device are identified by their address IDs. However, TAPI lets applications
that make outgoing calls use alternate address types for the originating address, such as dialable format
(see the following section), or naming mechanisms specific to a given service provider. This can be
accomplished through API extensions that are based on switch-assigned station IDs. A useful function for
this purpose is lineGetAddressID, which retrieves the ID of an address specified in an alternate format.

Address Formats
Each address ID corresponds to a directory number through which incoming calls can be placed to the
address. Similarly, making outbound calls typically requires that a directory number¾the address¾be
supplied to identify the party being called.

Storing Numbers in Electronic Address Books
Many users choose to dial people, fax machines, bulletin boards, and other entities by selecting their
names from an address book. The actual number that is dialed depends on the geographic location of the
user and the way the line device to be used is connected. For example, a desktop computer can have
access to two lines, one connected to a PBX, the other to the telephone company's central office. When
making a call to the same party, different numbers can have to be used. (To dial through the PBX, for
example, the computer may need to dial '9' to "get out," or a different prefix may be needed for a call
made through the central office.) Or, a user may make calls from a portable computer and want to use a
single, static address book even when calling from different locations or telephony environments. TAPI's
address translation capabilities let the user inform the computer of the current location and the desired
line device for the call. TAPI then handles any dialing differences, requiring no changes to the user's
address book. An application uses the lineTranslateAddress function to convert an address from the
canonical address format to the dialable address format (see the next section).

A related topic is the handling of international call-progress monitoring, which is the process of listening
for audible tones such as dial tone, special information tones, busy signals, and ringback tones to
determine the state of a call (its progress through the network). Because the cadences and frequencies of
call-progress tones vary from country to country, the service provider must know what call progress to
follow when making an international outbound call. Therefore, applications specify the destination country
code when placing outgoing calls.

Canonical Addresses
The canonical address format is intended to be a universally constant directory number. For this reason,
numbers in address books are best stored using canonical format. A canonical address is an ASCII string
with the following structure:

+ CountryCode Space [(AreaCode) Space] SubscriberNumber | Subaddress ^ Name CRLF ...

The components of this structure are given in the following table.

Component Meaning
+ Equivalent to ASCII Hex (2B). Indicates that the

number that follows it uses the canonical format.
CountryCode A variably sized string containing one or more of

the digits 0-9. The CountryCode is delimited by
the following Space. It identifies the country in
which the address is located.

Space Exactly one ASCII space character (0x20). It is
used to delimit the end of the CountryCode part
of an address.

AreaCode A variably sized string containing zero or more
of the digits 0-9. AreaCode is the area code part
of the address and is optional. If the area code
is present, it must be preceded by exactly one
ASCII left parenthesis character (0x28), and be
followed by exactly one ASCII right parenthesis
character (0x29) and one ASCII Space
character (0x20).

SubscriberNumber A variably sized string containing one or more of
the digits 0-9. It may include other formatting
characters as well, including any of the dialing
control characters described in the Dialable
Address Format:
AaBbCcDdPpTtWw*#!,@$?
The subscriber number should not contain the
left parenthesis or right parenthesis character
(which are used only to delimit the area code),
nor should it contain the "|", "^", or CRLF
characters (which are used to begin following
fields). Most commonly, non-digit characters in
the subscriber number would include only
spaces, periods ("."), and dashes ("-"). Any
allowable non-digit characters which appear in
the subscriber number will be omitted from the
DialableString returned by the
lineTranslateAddress function, but will be
retained in the DisplayableString.

| ASCII Hex (7C). If this optional character is
present, the information following it up to the
next + | ^ CRLF, or the end of the canonical
address string is treated as subaddress
information, as for an ISDN subaddress.

Subaddress A variably sized string containing a subaddress.

The string is delimited by + | ^ CRLF or the end
of the address string. During dialing,
subaddress information is passed to the remote
party. It can be such things as an ISDN
subaddress or an e-mail address.

^ ASCII Hex (5E). If this optional character is
present, the information following it up to the
next CRLF or the end of the canonical address
string is treated as an ISDN name.

Name A variably sized string treated as name
information. Name is delimited by CRLF or the
end of the canonical address string and can
contain other delimiters. During dialing, name
information is passed to the remote party.

CRLF ASCII Hex (0D) followed by ASCII Hex (0A),
and is optional. If present, it indicates that
another canonical number is following this one.
It is used to separate multiple canonical
addresses as part of a single address string
(inverse multiplexing).
For example, the canonical representation of
the main switchboard telephone number at
Microsoft Corporation would be:
+1 (206) 882-8080

Dialable Addresses
The dialable address format describes a number that can be dialed on the given line. A dialable address
contains part addressing information and is part navigational in nature. Any input string which does not
begin with a "+" character is presumed to be not in canonical format and therefore in dialable address
format, and is returned to the application unmodified. A dialable address is an ASCII string with the
following structure:

DialableNumber | Subaddress ^ Name CRLF ...

The components of this structure are given in the following table.

Component Meaning
DialableNumber digits and modifiers 0-9 A-D * # , ! W w P p T t

@ $? ; delimited by | ^ CRLF or the end of
the dialable address string. The plus sign (+)
is a valid character in dialable strings. It
indicates that the phone number is a fully-
qualified international number.
Within the DialableNumber, note the following
definitions:
0-9 A-D * #
ASCII characters corresponding to the DTMF
and/or pulse digits.

! ASCII Hex (21). Indicates that a hookflash
(one-half second onhook, followed by one-half
second offhook before continuing) is to be
inserted in the dial string.

P p ASCII Hex (50) or Hex (70). Indicates that
pulse dialing is to be used for the digits
following it.

T t ASCII Hex (54) or Hex (74). Indicates that
tone (DTMF) dialing is to be used for the digits
following it.

, ASCII Hex (27). Indicates that dialing is to be
paused. The duration of a pause is device
specific and can be retrieved from the line's
device capabilities. Multiple commas can be
used to provide longer pauses.

W w ASCII Hex (57) or Hex (77). An uppercase or
lowercase W indicates that dialing should
proceed only after a dial tone has been
detected.

@ ASCII Hex (40). Indicates that dialing is to
"wait for quiet answer" before dialing the
remainder of the dialable address. This means
to wait for at least one ringback tone followed
by several seconds of silence.

$ ASCII Hex (24). Indicates that dialing the
billing information is to wait for a "billing
signal" (such as a credit card prompt tone).

? ASCII Hex (3F). Indicates that the user is to
be prompted before continuing with dialing.

The provider does not actually do the
prompting, but the presence of the "?" forces
the provider to reject the string as invalid,
alerting the application to the need to break it
into pieces and prompt the user in-between.

; ASCII Hex (3B). If placed at the end of a
partially specified dialable address string, it
indicates that the dialable number information
is incomplete and more address information
will be provided later. ";" is only allowed in the
DialableNumber portion of an address.

| ASCII Hex (7C), and is optional. If present,
the information following it up to the next + | ^
CRLF, or the end of the dialable address
string is treated as subaddress information (as
for an ISDN subaddress).

Subaddress A variably sized string containing a
subaddress. The string is delimited by the
next + | ^ CRLF or the end of the address
string. When dialing, subaddress information
is passed to the remote party. It can be for an
ISDN subaddress, an e-mail address, and so
on.

^ ASCII Hex (5E), and is optional. If present, the
information following it up to the next CRLF or
the end of the dialable address string is
treated as an ISDN name.

Name A variably sized string treated as name
information. Name is delimited by CRLF or the
end of the dialable address string. When
dialing, name information is passed to the
remote party.

CRLF ASCII Hex (0D) followed by ASCII Hex (0A). If
present, this optional character indicates that
another dialable number is following this one.
It is used to separate multiple dialable
addresses as part of a single address string
(for inverse multiplexing).

The lineTranslateAddress function and related support functions are used to translate an address from
canonical format to dialable format. An application might not use this function to dial a number but it might
use it to generate and display for verification a number that could be dialed. Also, it can compute the local
time at the destination address from the country code and area code.

The application uses lineTranslateAddress to specify both the line device upon which it intends to dial
the call and a canonical address, and the function returns the dialable number and the country code.
Because the line device can have specific dialing requirements, it is part of the context needed for an
accurate translation.

The user's location also plays a role in address translation. Information related to the current location,
such as the country code, area code, and outside line access codes is entered by the user through the
Telephony applet in the Control Panel. The Subaddress and Name fields, if present in the address, are
unmodified by the translation. Alphabetic characters in the number, such as in 1-800-FOR-TAPI, are not
translated by the lineTranslateAddress function due to the different standardizations in use in different
countries, but they may be translated by applications themselves.

Although an application can use dialable addresses returned by lineTranslateAddress, it is not limited to
them and can compose its own dialable numbers.

Initialization and Shutdown in TAPI
For an application to use any of TAPI's basic or supplementary line functions, it needs a connection to
TAPI through which it can receive messages. The application establishes this connection, using either the
lineInitializeEx or the phoneInitializeEx function. The parameters of these functions allow the
application to specify the message notification mechanism the application desires to use. Following are
specifics about the initialization process:

· The initialization functions are not device-related. When an application calls an initialization function,
TAPI does not act on a line or phone device or an abstraction thereof.

· The first time an initialization function is called in a telephony session, TAPI also sets up the
telephony environment. Among the tasks it performs are loading the TAPI dynamic-link library and
TAPISRV.EXE, and loading the device drivers (Telephony service providers and ancillary
components) specified in the registry. In addition, the communication link described above is
established between TAPI and the calling application.

· The INIFILECORRUPT error can be returned if TAPI determines that the registry contains an invalid
entry. When this error occurs (in lineInitializeEx and phoneInitializeEx, or another function), the
user should identify and resolve the problem. It may be necessary to rebuild the registry or a portion
of it, which can be done through the Telephony Control Panel.
For example, the LINEERR_NODRIVER ("the driver was not installed") error indicates either that a
service provider that was previously installed can no longer be found or that some subsidiary
component of a service provider (such as a VxD) cannot be found. When this error is encountered,
the application should advise the user to correct the problem with the Driver Setup function within the
Telephony Control Panel.

· Although each application needs only one associated with TAPI, it can call an initialization function
more than once to specify other message notification path.

· Both lineInitializeEx and lineShutdown (and the corresponding phone functions) operate
synchronously. That is, these functions return a success or failure indication, not an asynchronous
Request ID.

Upon completion, the lineInitializeEx function returns two pieces of information to the application: an
application handle and the number of available line devices.

· The application handle represents the application's usage of TAPI. That is, to TAPI, it represents the
application. TAPI functions that use line or call handles (explained later in this section) do not require
the application handle, because this handle is derived from the specified line, phone, or call handle.

· The lineInitializeEx function also returns the number of line devices available to the application
through TAPI. Line devices are identified by their device identifier (device ID). Valid device IDs range
from zero to one less than the number of line devices. For example, if lineInitializeEx reports that
there are two line devices in a system, the valid line-device IDs are 0 and 1.

Once an application is finished calling TAPI's line functions, it calls lineShutdown and passes its
application handle to terminate its usage of TAPI. This allows TAPI to free any resources assigned to the
application.

Calls
Unlike line devices and addresses, calls are dynamic. A call represents a connection between two (or
more) addresses. The originating address (the caller) is the address from which the call originates, and
the destination address (the called) identifies the remote end point or station with which the originator
wishes to communicate.

Zero, one, or more calls can exist on a single address at any given time. A familiar example of multiple
calls on a single address is call waiting: During a conversation with one party, a subscriber with call
waiting is alerted that another party is trying to call. The subscriber can flash the phone to answer the
second caller (which automatically places the first party on hold) and then toggle between the two parties
by flashing. In this example, the subscriber has two calls on one address on the line. Because the person
at the telephone handset can be talking to only one remote party at a time, only one call is active per line
at any point in time. The telephone switch keeps the other calls on hold. With a line able to encompass
more than one channel, different configurations can allow multiple active calls on a line at the same time.

Call Handles
TAPI identifies a specific call by means of the call's handle, and TAPI assigns call handles as required.
One call handle exists for every call owned or monitored by an application, and an application can obtain
call handles in a number of well defined ways. Certain TAPI functions create new calls. As they do so,
they return any new call's handle to the application. Sometimes, call handles are provided unsolicited in
message sent to the application from TAPI, as is the case with inbound calls or calls being handed off by
other applications.

For every call, one handle exists per application¾unique call handles are provided to each application by
TAPI. This means that different applications with handles to the same call use different handles for it,
which limits the scope of a call handle to a single application. In addition, the service provider can assign
a unique call ID to a call (unrelated to the call's handle), which is used to track the call across transfers.
Whether or not a service provider can assign call IDs to calls is a device capability.

The privileges of an application for a given call are maintained by TAPI and are not the property of an
application's handle for the call. (For information about call privileges, see TAPI Applications.) Resources
such as memory are allocated dynamically for each call for each application that is given a handle to the
call. These resources are not automatically deallocated when the call is dropped as the application may
still find it useful to extract information from the call (such as for logging purposes). Therefore,
applications must dispose of their call handle when they have finished using it by calling the
lineDeallocateCall function.

Version Negotiation
Over time, different versions may exist for TAPI, applications, and service providers for a line or phone.
New versions may define new features, new fields to data structures, and so on. Version numbers
therefore indicate how to interpret various data structures.

To allow optimal interoperability of different versions of applications, versions of TAPI itself, and versions
of service providers by different vendors, TAPI provides a simple, two-step version negotiation
mechanism for applications. Two different versions must be agreed on by the application, TAPI, and the
service provider for each line device. The first is the version number for Basic and Supplementary
Telephony and is referred to as the API version. The other is for provider-specific extensions, if any, and is
referred to as the extension version. The format of the data structures and data types used by TAPI's
basic and supplementary features is defined by the API version, while the extension version determines
the format of the data structures defined by the vendor-specific extensions.

Version negotiation proceeds in two phases. In the first phase, the API version number is negotiated and
the extension ID associated with any vendor-specific extensions supported on the device is obtained. In
the second phase, the extension version is negotiated. If the application does not use any API extensions,
it skips the second phase and extensions are not activated by the service provider. If the application does
want to use extensions, but the service provider's extensions (the extension ID) are not recognized by the
application, the application should skip the negotiation for extension version as well. Each vendor has its
own set of legal (recognized) versions for each set of extension specifications it distributes.

The lineNegotiateAPIVersion function is used to negotiate the API version number to use. It also
retrieves the extension ID supported by the line device, returning zeros if no extensions are supported.
With this function call, the application provides the API version range it is compatible with. TAPI in turn
negotiates with the line's service provider to determine which API version range it supports. TAPI next
selects a version number (typically, although not necessarily, the highest version number) in the
overlapping version range that the application, the DLL, and the service provider have supplied. This
number is returned to the application, along with the extension ID that defines the extensions available
from that line's service provider.

If the application wants to use the extensions defined by the returned extension ID, it must first call
lineNegotiateExtVersion to negotiate the extension version. In a similar negotiation phase, the
application specifies the already agreed-upon API version and the extension version range it supports.
TAPI passes this information to the service provider for the line. The service provider checks the API
version and the extension version range against its own, and selects the appropriate extension version
number, if one exists.

When the application later calls lineGetDevCaps, it returns a set of device capabilities for the line that
correspond to the results of version negotiation. These include the line's device capabilities consistent
with the API version and the line's device-specific capabilities consistent with the extension version. The
application must specify both of these version numbers when it opens a line. At that point, the application,
the DLL, and the service provider are committed to using the agreed-upon versions. If device-specific
extensions are not to be used, the extension version should be specified as zero.

In an environment where multiple applications open the same line device, the first application to open the
line device selects the versions for all future applications that want to use the line (service providers do
not support multiple versions simultaneously.) Similarly, an application that opens multiple line devices
may find it easier to operate all line devices under the same API version number.

Phone Devices Overview
A phone device is one of the two device classes supported by TAPI. This section describes phone devices
and explains how to use the TAPI phone functions to access these devices.

The Phone Device
A phone device is a device that supports the phone device class and that includes some or all of the
following elements:

· Hookswitch/transducer. This is a means for audio input and output. The Telephony API recognizes
that a phone device can have several transducers, which can be activated and deactivated (taken
offhook or placed onhook) under application or manual user control. TAPI identifies three types of
hookswitch devices common to many phone sets:
Handset The traditional mouth-and-ear piece combination that must be manually lifted from a cradle
and held against the user's ear.
Speakerphone Enables the user to conduct calls hands-free. The hookswitch state of a speakerphone
can usually be changed both manually and by the API. The speakerphone can be internal or external
to the phone device. The speaker part of a speakerphone allows multiple listeners.
Headset Enables the user to conduct calls hands-free. The hookswitch state of a headset can usually
be changed both manually and by the API.
A hookswitch must be offhook to allow audio data to be sent to and/or received by the corresponding
transducer.

· Volume Control/Gain Control/Mute. Each hookswitch device is the pairing of a speaker and a
microphone component. The API provides for volume control and muting of speaker components and
for gain control or muting of microphone components.

· Ringer. A means for alerting users, usually through a bell. A phone device can be able to ring in a
variety of modes or patterns.

· Display. A mechanism for visually presenting messages to the user. A phone display is characterized
by its number of rows and columns.

· Phone buttons. An array of buttons. Whenever the user presses a button on the phone set, the API
reports that the corresponding button was pressed. Button-lamp IDs identify a button and lamp pair.
Of course, it is possible to have button-lamp pairs with either no button or no lamp. Button-lamp IDs
are integer values that range from 0 to the maximum number of button-lamps available on the phone
device, minus one. Each button belongs to a button class. Classes include call appearance buttons,
feature buttons, keypad buttons, and local buttons.

· Lamps. An array of lamps (such as LEDs) individually controllable from the API. Lamps can be lit in
different modes by varying the on and off frequency. The button-lamp ID identifies the lamp.

· Data areas. Memory areas in the phone device where instruction code or data can be downloaded to
and/or uploaded from. The downloaded information would affect the behavior (or in other words,
program) the phone device.

TAPI allows an application to monitor and control elements of the phone device. The most useful
elements for an application are the hookswitch devices. The phone set can act as an audio I/O device (to
the computer) with volume control, gain control and mute, a ringer (for alerting the user), data areas (for
programming the phone), and perhaps a display, though the computer's display is more capable. The
application writer is discouraged from directly controlling or using phone lamps or phone buttons, because
lamp and button capabilities can vary widely among phone sets, and applications can quickly become
tailored to specific phone sets.

There is no guaranteed core set of services supported by all phone devices as there is for line devices
(the Basic Telephony Services). Therefore, before an application can use a phone device, the application
must first determine the exact capabilities of the phone device. Telephony capability varies with the
configuration (client versus client/server), the telephone hardware, and the service-provider software.
Applications should make no assumptions as to what telephony capabilities are available. An application
determines the device capabilities of a phone device by calling the phoneGetDevCaps function. A
phone's device capabilities indicate which of these elements exist for each phone device present in the
system and what their capabilities are. Although strongly oriented toward real-life telephone sets, this

abstraction can provide a meaningful implementation (or subset thereof) for other devices as well. Take
as an example a separate headset directly connected and controllable from the computer and operated
as a phone device. Hookswitch changes can be triggered by detection of voice energy (offhook) or a
period of silence (onhook); ringing can be emulated by the generation of an audible signal into the
headset; a display can be emulated through text-to-speech conversion.

A phone device need not be realized in hardware, but can instead be emulated in software using a
mouse- or keyboard-driven graphical command interface and the computer's speaker or sound system.
Such a "soft phone" can be an application that uses TAPI. It can also be a service provider, which can be
listed as a phone device available to other applications through the API, and as such is assigned a phone
device ID.

Depending on the environment and configuration, phone sets can be shared devices between the
application and the switch. Some minor provision is made in the API where the switch can temporarily
suspend the API's control of a phone device.

Initialization and Shutdown
For an application to use any of TAPI's 30 supplementary phone functions, it needs a connection to TAPI,
through which it can receive messages. The application establishes this connection using the
phoneInitializeEx function. In this function, the application specifies the notification mechanism by which
TAPI informs the application of changes in the state of the phone and of asynchronous completion of
phone functions.

The phoneInitializeEx function returns two pieces of information to the application: an application handle,
and the number of phone devices. The application handle represents the application's usage of TAPI. The
TAPI functions that use phone handles do not require the application handle, as this handle is derived
from the specified phone handle.

The second piece of information returned by phoneInitializeEx is the number of phone devices available
to the application through the Telephony API. Phone devices are identified by their device identifier
(device ID). Valid device IDs range from zero to the number of phone devices minus one. For example, if
phoneInitializeEx reports that there are two phone devices in a system, then valid phone device IDs are
0 and 1. Once an application is finished using the phone functions of TAPI, it invokes phoneShutdown,
passing its application handle to shut down its usage of TAPI. This allows TAPI to free any resources
assigned to the application.

Both phoneInitializeEx and phoneShutdown operate synchronously. That is, these functions either
return a success or failure indication, and never return an asynchronous Request ID.

Opening and Closing Phone Devices
After determining the capabilities of a phone device, an application must open the device before it can
access functions on that phone. After a phone device has been successfully opened, the application is
returned a handle representing the open phone. A phone device can be opened in different modes, thus
providing a structured way of sharing a phone device.

The function phoneOpen opens the specified phone device to give the application access to functions on
the phone. A phone device is identified to phoneOpen by means of its device ID, which is passed as the
dwDeviceID parameter.

Operating Modes and Privileges
The application can request one of two operating modes when opening a phone device. These modes
reflect the privileges the application requests for the device:

· Opening a phone for monitor privileges lets the application determine the status of the phone device.
Messages are sent to the application when status changes on the phone device are detected.

· An application that opens a phone device for owner privileges can use operations that modify the
state of the phone device. Owner privilege automatically includes full monitor privileges as well. At
any time, a given phone device can be open only once for owner privileges, but multiple times for
monitor privileges. All phoneSet operations require owner privileges, while all phoneGet operations
require only monitor privileges.

Device IDs
Other TAPI phone functions use a handle to an open phone device to identify the open phone device. The
only functions for phone devices that take a phone device ID parameter (as opposed to a phone handle)
are the phoneGetDevCaps and phoneOpen functions. An application can retrieve the phone's device ID
by using the function phoneGetID with the phone handle as a parameter.

An application can also obtain device IDs for various device classes associated with an opened phone by
invoking phoneGetID. See Device Classes for device class names.

This function takes a phone handle and a device class description. It returns the device ID for the device
of the given device class that is associated with the open phone device. If the device class is "tapi/phone,"
the device ID of the phone device is returned.

In contrast with line devices, for which the basic line services provide the equivalent of POTS, no
minimum guaranteed set of functions is defined for phone devices. While each phone device provides at
least the functions and messages described in this section, they do not offer any actual operations on the
physical phone device.

Closing the Phone Device
The phoneClose function closes the specified phone device. The phone device can also be forcibly
closed after the user has modified the configuration of that phone or its driver. If the user wants the
configuration changes to be effective immediately (as opposed to after the next system restart), and they
affect the application's current view of the device (such as a change in device capabilities), then a service
provider can forcibly close the phone device.

These messages can also be sent unsolicited as a result of the phone device being reclaimed in some
other manner. An application should therefore be prepared to handle unsolicited PHONE_CLOSE
messages. At the time the phone device is closed, any outstanding asynchronous replies pertaining to
that device are suppressed.

Hookswitch Devices
A phone device can have multiple hookswitch devices. A hookswitch is the switch that connects or
disconnects a device from the phone line. On a telephone, for example, this is the switch that is
automatically activated when a user lifts the receiver from the cradle to get a new dial tone. The
Telephony API defines three types of hookswitch devices for a phone: handset, speakerphone, and
headset. Each hookswitch device has a speaker and a microphone component, and operates in one of
four hookswitch modes:

· Onhook. The hookswitch device is onhook, and both its microphone and speaker are disabled.
· Microphone only. The hookswitch device is offhook, its microphone is enabled, and its speaker is

mute.
· Speaker only. The hookswitch device is offhook, its microphone is mute, and its speaker is enabled.
· Microphone and speaker. The hookswitch device is offhook, and both microphone and speaker are

enabled.

The phoneSetHookSwitch function is used to set the hookswitch mode of one or more of the hookswitch
devices of an open phone device. For example, to mute or unmute the microphone or speaker component
of a hookswitch device, use phoneSetHookSwitch with the appropriate hookswitch mode. The function
phoneGetHookSwitch can be used to query the hookswitch mode of a hookswitch device of an open
phone device.

When the mode of a phone's hookswitch device is changed manually, for example by lifting the handset
from its cradle, a PHONE_STATE message is sent to the application to notify the application about the
state change. Parameters to this message provide an indication of the change.

The volume of the speaker component of a hookswitch device can be set with phoneSetVolume. Volume
setting is different from mute in that muting a speaker and later unmuting it will preserve the volume
setting of the speaker. The phoneGetVolume function can be used to return the current volume setting of
a hookswitch device's speaker of an open phone device.

The microphone component of a hookswitch device can also be gain controlled. Gain setting is different
from mute in that muting a microphone and later unmuting it will preserve the gain setting of the
microphone. Use phoneSetGain to set the gain of a hookswitch device's microphone of an open phone
device, and phoneGetGain to return the gain setting of a hookswitch device's microphone of an opened
phone.

When the volume or gain of a phone's hookswitch device is changed, a PHONE_STATE message is sent
to the application function to notify the application about the state change. Parameters to this message
provide an indication of the change.

Display
The Telephony API provides access to a phone's display. The display is modeled as an alphanumeric
area with rows and columns. A phone's device capabilities indicate the size of a phone's display as the
number of rows and the number of columns. Both these numbers are zero if the phone device does not
have a display. Use phoneSetDisplay to write information to the display of an open phone device, and
phoneGetDisplay to retrieve the current contents of a phone's display.

When the display of a phone device is changed, a PHONE_STATE message is sent to the application
function to notify the application about the state change. Parameters to this message provide an
indication of the change.

Ring
A single phone may be able to ring with different ring modes. Given the wide variety of ring modes
available, ring modes are identified by means of their ring mode number. A ring mode number ranges
from zero to the number of available ring modes minus one.

The functions an application would use to control a phone device's ring modes are phoneSetRing, which
rings an open phone device according to a given ring mode, and phoneGetRing, which returns the
current ring mode of an opened phone device.

When the ring mode of a phone device is changed, a PHONE_STATE message is sent to the application
to notify the application about the state change. Parameters to this message provide an indication of the
change.

Phone Buttons
The Telephony API models a phone's buttons and lamps as button-lamp pairs. A button with no lamp next
to it or a lamp with no button is specified using a "dummy" indicator for the missing lamp or button. A
button with multiple lamps is modeled by using multiple button-lamp pairs.

Information associated with a phone button can be set and retrieved. When a button is pressed, a
PHONE_BUTTON message is sent to the application function. The parameters of this message are a
handle to the phone device and the button-lamp ID of the button that was pressed. The keypad buttons '0'
through '9', '*', and '#' are assigned the fixed button-lamp IDs 0 through 11.

The functions associated with buttons are phoneSetButtonInfo, which sets the information associated
with a button on a phone device, and phoneGetButtonInfo, which returns information associated with a
button on a phone device. The PHONE_BUTTON message is sent to an application when a button on the
phone is pressed.

The information associated with a button does not carry any semantic meaning as far as TAPI is
concerned. It is useful for device-specific applications that understand the meaning of this information for
a given phone device, or for display to the user, such as online help.

Lamps
The lamps on a phone device can be lit in a variety of different lighting modes. Unlike ringing patterns,
lamp modes are more uniform across phone sets of different vendors. A common set of lamp modes is
defined by the API. A lamp identified by its lamp-button ID can be lit in a given lamp mode. A lamp can
also be queried for its current lamp mode.

The TAPI functions used for lamps are phoneSetLamp, which lights a lamp on a specified open phone
device in a given lamp lighting mode, and phoneGetLamp, which returns the current lamp mode of the
specified lamp.

When a lamp of a phone device is changed, a PHONE_STATE message is sent to the application to
notify the application about the state change. Parameters to this message provide an indication of the
change.

Data Areas
Some phone sets support the notion of downloading data from or uploading data to the phone device,
which allows the phone set to be programmed in a variety of ways. The Telephony API models these
phone sets as having one or more download or upload areas. Each area is identified by a number that
ranges from zero to the number of data areas available on the phone minus one. Sizes of each area can
vary. The format of the data itself is device-specific.

The TAPI phoneSetData function downloads a buffer of data to a given data area in the phone device,
and the phoneGetData function uploads the contents of a given data area in the phone device to a buffer.

When a data area of a phone device is changed, a PHONE_STATE message is sent to the application to
notify the application about the state change. Parameters to this message provide an indication of the
change.

Status
Most of the get and set operations deal with one component of information only. The phoneGetStatus
function returns complete status information about a phone device to an application.

As mentioned earlier, whenever a status item changes on the phone device, a PHONE_STATE message
is sent to the application function. This message's parameters include a handle to the phone device and
an indication of the status item that changed.

An application can use phoneSetStatusMessages to select the specific status changes for which it
wants to be notified. Correspondingly, phoneGetStatusMessages returns the status changes for which
the application wants to be notified.

Extended Telephony Phone Functions
The Extended Phone Services (or Device-Specific Phone Services) include all extensions to the
Telephony API defined by the service provider. TAPI defines a mechanism that enables service-provider
vendors to extend TAPI using device-specific extensions. TAPI defines only the extension mechanism,
and by doing so provides access to device-specific extensions. The Telephony API does not define their
behavior, which is completely defined by the service provider.

TAPI consists of scalar and bit-flag data constant definitions, data structures, functions, and messages.
Procedures are defined that enable a vendor to extend most of these, as described in the following topics.

Scalar Data Constants
For extensible scalar data constants, a service-provider vendor can define new values in a specified
range. Because most data constants are DWORDs, the range 0x00000000 through 0x7FFFFFFF is
typically reserved for common future extensions, while 0x80000000 through 0xFFFFFFFF is available for
vendor-specific extensions. The assumption is that a vendor would define values that are natural
extensions of the data types defined by the API.

Bit-Flag Data Constants
For extensible bit-flag data constants, a service-provider vendor can define new values for specified bits.
Because most bit-flag constants are DWORDs, a specific number of the lower bits are usually reserved
for common extensions, while the remaining upper bits are available for vendor-specific extensions.
Common bit flags are assigned from bit zero up, and vendor-specific extensions should be assigned from
bit 31 down. This scheme provides maximum flexibility in assigning bit positions to common extensions,
as opposed to vendor-specific extensions. A vendor is expected to define new values that are natural
extensions of the bit flags defined by the API.

Extensible data structures have a variably sized field that is reserved for device-specific use. Because the
field is variably sized, the service provider decides the field's amount of information and interpretation. A
vendor that defines a device-specific field is expected to make these natural extensions of the original
data structure defined by the API.

Functions and Messages
The phoneDevSpecific function and its associated PHONE_DEVSPECIFIC message enable an
application to access device-specific phone features that are unavailable through the common Telephony
services for phones. In other words, phoneDevSpecific is the device-specific escape function that allows
vendor-dependent extensions, and PHONE_DEVSPECIFIC is the device-specific message that is sent to
the application.

The parameter profile of the phoneDevSpecific function is generic in that little interpretation of the
parameters is made by the Telephony API. Rather, the interpretation of the parameters is defined by the
service provider and must be understood by an application that uses them. The parameters are simply
passed through by TAPI from the application to the service provider. An application that relies on device-
specific extensions will usually not work with other service providers, but applications written to the
common telephony phone services will work with the extended service provider.

Assisted Telephony Overview
Assisted telephony provides very basic telephony functionality to primarily non-telephonic applications. If
your application needs extensive telephonic control or is meant to handle incoming calls, you can skip this
section.

Call Requests
Assisted Telephony provides telephony-enabled applications with an easy-to-use mechanism for making
phone calls without requiring the developer to become fully telephony literate.

The tapiRequestMakeCall function requests a voice call between the user and a remote party specified
by its phone number. The request is made to TAPI, which passes it to an application that is registered as
a recipient of such requests. This recipient is a call-manager application.

After the application has made the request, the call is controlled entirely from the call-manager application
because Assisted Telephony applications cannot manage calls. Because the more complex aspects of
telephony and all user-interface operations are handled by the call-manager application, telephony-
enabled applications need not be modified in any substantial way. In fact, applications that allow this
operation to be invoked from their built-in script language may not need to be modified at all.

The tapiGetLocationInfo function returns to the application the country code and city (area) code which
the user has set in the current location parameters in the Telephony control panel. The application can
use this information to assist the user in forming proper canonical telephone numbers, such as by offering
these as defaults when new numbers are entered in a phone book entry or database record.

Request Recipients
Two kinds of applications are needed to run Assisted Telephony. Assisted Telephony clients are
applications that use Assisted Telephony by calling the functions that have the prefix "tapi." An example of
such a client application would be a spreadsheet to which a Dial menu command or toolbar button is
added.

Assisted Telephony servers are applications that can execute Telephony API functions that result from
another application's call to a "tapi"-prefixed function. To make itself known as an Assisted Telephony
server, such an application registers as one using the function lineRegisterRequestRecipient.

The functions of Assisted Telephony (which begin with the prefix "tapi") are known as request functions.
Assisted Telephony applications that process these requests¾Assisted Telephony servers¾are called
request recipients.

Assisted Telephony Requests
Applications that use Assisted Telephony services only initiate requests that are temporarily queued by
TAPI. It is the request recipient application that retrieves these requests and executes them on behalf of
the Assisted Telephony application. The tapiRequestMakeCall function requests the establishment of a
voice call. The requesting application does not control the call.

TAPI allows the user to establish different or the same request recipient applications for each of these
services. An application becomes a request recipient by registering with lineRegisterRequestRecipient,
in which TRUE is specified as the value for the parameter bEnable. (Specifying FALSE deregisters the
application as a request recipient, which it should do when it has determined that its recipient duties are
through for the current session.) The application selects which services it wants to handle in the
dwRequestMode parameter of lineRegisterRequestRecipient. A possible value for a request is
LINEREQUESTMODE_MAKECALL, to show that the application will handle tapiRequestMakeCall
requests. If multiple applications register for the same services, a priority scheme is used to allow the user
to select which application is preferred for handling requests. This priority scheme is identical to that used
for call hand-off and the routing of incoming calls based on a list of filenames in the HandoffPriorities
section of the registry.

Processing Assisted Telephony Requests
The process with which requests are delivered and serviced is as follows:

1. When TAPI receives an Assisted Telephony request, it checks for a request recipient, that is, an
application currently registered to process that type of request. If there is a request recipient, the
request is queued, and the highest-priority application that has registered for that request's service is
sent a LINE_REQUEST message. The message notifies the request recipient that a new request has
arrived, and it carries an indication of the request's mode.

2. If TAPI cannot find a currently running application to process such a request, it tries to launch an
application that has been registered as capable of doing so. This registration information is recorded
in the HandoffPriorities section of the registry. TAPI tries to launch applications in the order in which
they are listed in the HandoffPriorities section. (See the following step.)
If no application is currently registered, TAPI examines the list of request-processing applications on
the associated entry in the HandoffPriorities section. If the associated line is missing from the file, if
there are no applications listed on it, or if none of the applications in the list can be launched, the
request is rejected with the error TAPIERR_NOREQUESTRECIPIENT.
When a request recipient is launched (whether or not it has been launched by TAPI) it is its duty to
call lineRegisterRequestRecipient during the startup process and register itself as a request
recipient.

3. If one or more applications are listed in the entry, TAPI begins with the first listed application (highest
priority), and attempts to launch it using the CreateProcess function. If the attempt to launch the
application fails, TAPI attempts to launch the next application in the list. When any application
launches successfully, TAPI simply queues the request and returns a success indication to the
application even though the request hasn't yet been signaled to the request recipient.
Once the request recipient application is launched, it calls lineRegisterRequestRecipient, which
causes a LINE_REQUEST message to be sent, signaling that the request is queued. If for some
reason the launched application never registers, the request remains queued and remains in the
queue indefinitely until an application registers for that type of request.

4. If TAPI finds such a registered application already running or successfully launches one, it queues the
request, sending a LINE_REQUEST message to the server application, and returns a success
indication for the function call to the Assisted Telephony application. This success message states
only that the request has been accepted and queued, not that it has been successfully executed.

When the server application is ready to process a request, it calls the function lineGetRequest. This lets
it receive any information it needs, such as an address to dial. It then processes the request, using the
Telephony API functions (such as lineMakeCall and lineDrop) that would otherwise be used to place the
call. Invoking lineGetRequest removes the request from TAPI, and the request parameters are copied in
an application-allocated request buffer. The size and interpretation of the contents of the buffer depend on
the request mode.

The server must ensure that it uses the correct parameters when executing requests. When doing so,
these steps are followed:

1. The request recipient first receives a LINE_REQUEST message informing it that requests can exist
for it in the request queue. This tells the application to call lineGetRequest and keep calling it until
the queue is drained (if the request is for making a new call), or to drop an existing call. This message
does not contain the parameters for the request, except in the case of a request to drop an existing
call.

2. If the request is to make a new call, the Assisted Telephony server uses the lineGetRequest function
to retrieve the full request, which includes the request's parameters. The server now has all the
information it needs, such as the number to dial or the identification of the maker of the request. First,
however, the server must allocate the memory needed to store this information.

3. Finally, the server executes the request by invoking the appropriate Telephony API function or set of

functions.

If TAPI cannot launch an application capable of serving as a request recipient, the Assisted Telephony call
fails and returns the error TAPIERR_NOREQUESTRECIPIENT.

Notes on Request Recipient Operations
The following information concerns systems on which Assisted Telephony requests are processed:

· The default registry should list a call manager application in the priority list for tapiRequestMakeCall.
It would be helpful, but not essential, for the call manager application to have a menu option that
allows users to set it to the highest priority.

· When an Assisted Telephony recipient application is launched automatically by TAPI and if it is the
only TAPI application in the system, this action initializes TAPI. If the Assisted Telephony recipient
application initializes and shuts down the line device before registering for Assisted Telephony
requests, TAPI is shut down as well, and the Assisted Telephony request is lost. Assisted Telephony
requests might also be lost when another TAPI application that is launched performs an initialize and
shutdown.

Using Assisted Telephony
You might use assisted telephony in a word-processing application. Consider a word-processing
application that has a button with a caption of "George." When the user selects a telephone number in a
document and clicks this button, the application sends a request (tapiRequestMakeCall) to the call-
control application, which dials the number and notifies the user of the call's status.

Device Classes
A device class is a group of related physical devices or device drivers through which applications send
and receive the information or data that makes up a call. Every device class has a device class name that
uniquely identifies the class, and provides information about the programming interface and commands
that can be used to open and communicate with the devices in the class.

The Telephony application programming interface (TAPI) associates devices from one or more device
classes to each line or phone device. You access one of these devices by retrieving the device identifier
for the device using the lineGetID or phoneGetID function. You supply the device class name, and the
function returns the specific port name, device name, device handle, or device identifier that you need to
open and access the device. The format of the information returned depends on the device class and is
described in subsequent topics of this section.

Note The device identifier definitions apply to 16-bit and 32-bit TAPI. In some cases, the data type
of a media handle in the device identifier definition may be different from that specified by the
Microsoft® Windows® operating system version 3.x or Microsoft® Win32® application programming
interface. For example, Windows version 3.x and Win32 define wave device identifiers with the UINT
type, but TAPI defines this device identifier with the DWORD type. In such cases, you should cast the
media handle to the appropriate data type when using it with the Windows version 3.x or Win32 API.

You also use device class names with the lineConfigDialog and phoneConfigDialog functions to enable
the user to set configuration options for the given device, with the lineGetIcon and phoneGetIcon
functions to retrieve an icon to represent the given device, and with the lineGetDevConfig and
lineSetDevConfig functions to directly retrieve and set configuration options for the given device.

By default, there are the following device class names.

Device Class Name Description
comm Communications port.
comm/datamodem Modem through a communications port.
comm/datamodem/
portname

Name of the device to which a modem is
connected.

wave/in Wave audio device (input only).
wave/out Wave audio device (output only).
midi/in Midi sequencer (input only).
midi/out Midi sequencer (output only).
tapi/line Line device.
tapi/phone Phone device.
ndis Network device.
tapi/terminal Terminal device.

Note These names are not case sensitive; you can use any combination of uppercase and
lowercase letters.

Additional device classes and device class names may be available on a given system. In general, if a
device does not belong to one of the default device classes, the manufacturer typically defines a new
device class and assigns a unique device class name. Check the documentation for the device to
determine what additional device classes are available for it. Note, however, that although the device
class and media mode are related, they are not the same. A media mode describes a format of

information on a call, and a device class defines the programming interface used to manage that
information. So, even if a manufacturer defines a new media mode, it is not necessarily true that the
manufacturer also needs to define a new device class to support the mode.

The format of the configuration data used with the lineSetDevConfig and lineGetDevConfig functions
also depends on the device class. In general, you use lineGetDevConfig to save a copy of the current
device configuration data and then later use lineSetDevConfig with the saved configuration data to
restore the device configuration to the previous state. This is a convenient way to temporarily change the
configuration without requiring the user to manually restore it to the previous state. Because the exact
format of the device configuration data may be different with each service provider, you should not use
lineSetDevConfig and lineGetDevConfig to manipulate the device configuration data directly. Some
formats are provided only for information.

comm
The comm device class consists of communications ports. You access these devices by using the Win32
file and communications functions.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_ASCII value and appending a null-terminated string that specifies the
name of the communication port (such as COM1). You use this port name in a call to the CreateFile
function to open the communication device for the line or phone.

comm/datamodem
The comm/datamodem device class consists of modem devices. You access these devices by using the
Win32 file and communications functions. Devices in this class are associated with line devices that
support the LINEMEDIAMODE_DATAMODEM media mode, which is specified in the dwMediaModes
member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting dwStringFormat to the
STRINGFORMAT_BINARY value and appending these additional members:

HANDLE hComm; // handle of open comm. device
CHAR szDeviceName[1]; // name of comm. device

The hComm member is the handle of the open communications port. This member is NULL if the port is
not yet open or if the dwSelect parameter of lineGetID is not the LINECALLSELECT_CALL value. If a call
is active, the service provider typically opens the port itself to get direct control of the communications
hardware, but is only required to return a valid handle if the line is connected. The service provider opens
the port using the FILE_FLAG_OVERLAPPED value and then configures the port using the settings
specified by the lineSetDevConfig function. You can set additional configuration options for the device by
using Win32 functions with the returned handle.

The szDeviceName member is a null-terminated ASCII string that specifies the name of the
communications port associated with the line, address, or call.

If hComm is a valid handle, you can use it in subsequent calls to Win32 file functions, such as ReadFile
and WriteFile, to send and receive data on the call. When you are finished using the communications
port and preferably before you use the lineDeallocateCall function to deallocate the call, you must close
the port by using the CloseHandle function.

When using the lineGetDevConfig and lineSetDevConfig functions, some service providers require that
the configuration data for this device class have the following format:

typedef struct tagDEVCFG {
 DEVCFGHDR dfgHdr;
 COMMCONFIG commconfig;
} DEVCFG, *PDEVCFG, FAR* LPDEVCFG;

// Device setting information
typedef struct tagDEVCFGDR {
 DWORD dwSize;
 DWORD dwVersion;
 WORD fwOptions;
 WORD wWaitBong;
} DEVCFGHDR;

The following is device configuration information for use with the lineGetDevConfig and
lineSetDevConfig functions.

dwSize
Sum of the size of the DEVCFGHDR structure and the actual size of COMMCONFIG structure.

dwVersion
Version number of the Unimodem DevConfig structure. This member can be MDMCFG_VERSION
(0x00010003).

dwOptions
Option flags that appear on the Unimodem Option page. This member can be a combination of these

values:
TERMINAL_PRE (1)

Displays the pre-terminal screen.
TERMINAL_POST (2)

Displays the post-terminal screen.
MANUAL_DIAL (4)

Dials the phone manually, if capable of doing so.
LAUNCH_LIGHTS (8)

Displays the modem tray icon.
Only the LAUNCH_LIGHTS value is set by default

WWaitBong
Number of seconds (in two seconds granularity) to replace the wait for credit tone ($).

Commconfig
COMMCONFIG structure that can be used with the Win32 communications and MCX functions.

comm/datamodem/portname
The comm/datamodem/portname device class consists of the device names to which modems are
attached. When this device name is specified in a call to the lineGetID function, the function fills the
VARSTRING structure with a null-terminated ANSI (not UNICODE) string specifying the name of the port
to which the specified modem is attached, such as "COM1\0". This is intended primarily for identification
purposes in the user interface, but could be used under some circumstances to open the device directly,
bypassing the service provider (if the service provider does not already have the device open itself). If
there is no port associated with the device, a null string ("\0") is returned in the VARSTRING structure
(with a string length of 1).

wave/in
The wave/in device class consists of audio devices for low-level wave audio input. You access these
devices by using the wave functions, which are described in the Microsoft Win32 Software Development
Kit (SDK). Devices in this class are associated with line devices that support the
LINEMEDIAMODE_AUTOMATEDVOICE media modem, which is specified in the dwMediaModes
member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of audio device

The DeviceId member is the identifier of a closed audio device. You use this identifier in a call to the
waveInOpen function to open the device for input. You can use the resulting device handle to record
digitized audio data from the line or phone device.

Although a "wave" device class also exists for low-level wave audio devices, you should always use the
wave/in device class for low-level wave input.

wave/out
The wave/out device class consists of audio devices for low-level wave audio output. You access these
devices by using the wave functions, which are described in the Win32 SDK. Devices in this class are
associated with line devices that support the LINEMEDIAMODE_AUTOMATEDVOICE media mode,
which is specified in the dwMediaModes member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of audio device

The DeviceId member is the identifier of a closed audio device. You use this identifier in a call to the
waveOutOpen function to open the device for output. You can use the resulting device handle to play
digitized audio data at the line or phone device.

Although a "wave" device class also exists for low-level wave audio devices, you should always use the
wave/out device class for low-level wave output.

midi/in
The midi/in device class consists of MIDI sequencers that are used for input. You access these devices by
using the MIDI functions, which are described in the Win32 SDK.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of MIDI device

The DeviceId member is the identifier of a closed MIDI device. You use this identifier in a call to the
midiInOpen function to open the device for input. You can use the resulting device handle to record MIDI
data from the line or phone device.

midi/out
The midi/out device class consists of MIDI sequencers that are used for output. You access these devices
by using the MIDI functions, which are described in the Win32 SDK.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of MIDI device

The DeviceId member is the identifier of a closed MIDI device. You use this identifier in a call to the
midiOutOpen function to open the device for output. You can use the resulting device handle to play
MIDI data at the line or phone device.

tapi/line
The tapi/line device class consists of all line devices. You access these devices using the TAPI line
functions.

The lineGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member.

DWORD dwDeviceI; // line device identifier

The dwDeviceId member is the identifier of the line device associated with the line handle given by
lineGetID.

The phoneGetID function also fills a VARSTRING structure, setting dwStringFormat to
STRINGFORMAT_BINARY and appending this additional member:

DWORD adwDeviceIds[]; // array of line device identifiers

The adwDeviceIds member is an array containing the device identifiers of all line devices that are
associated with the phone device. If there are no associated line devices, phoneGetID returns the
PHONEERR_INVALDEVICECLASS value.

tapi/phone
The tapi/phone device class consists of all phone devices. You access these devices by using the TAPI
phone functions.

The phoneGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD dwDeviceI; // phone device identifier

The dwDeviceId member is the identifier of the phone device associated with the phone handle given by
phoneGetID.

The lineGetID function also fills a VARSTRING structure, setting dwStringFormat to
STRINGFORMAT_BINARY and appending this additional member:

DWORD adwDeviceIds[]; // array of phone device identifiers

The adwDeviceIds member is an array containing the device identifiers of all phone devices that are
associated with the given line device. If there are no associated phone devices, lineGetID returns the
LINEERR_INVALDEVICECLASS value.

ndis
The ndis device class consists of devices that can be associated with network driver interface
specification (NDIS) media access control (MAC) drivers to support network communications. You access
these devices by using functions.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending these additional members:

HANDLE hDevice; // NDIS connection identifier
CHAR szDeviceType[1]; // name of device

The hDevice member is the identifier to pass to a MAC, such as the asynchronous MAC for dial-up
networking, to associate a network connection with the call/modem connection. The szDeviceType
member is a null-terminated ASCII string specifying the name of the device associated with the identifier.
For more information, see documentation about writing NDIS MAC drivers for use with dial-up networking.

tapi/terminal
The tapi/terminal device class consists of the phone devices associated with each terminal on a line or
the terminal on each line associated with a phone device. You access these devices by using the TAPI
line or phone functions.

The lineGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD adwDeviceId[]; // array of phone device identifiers

The adwDeviceId member is an array of phone device identifiers. There is one array element for each
terminal specified by the dwNumTerminals member in the LINEDEVCAPS structure for the given line
device. Each element specifies the identifier of the phone device associated with the corresponding
terminal on the line. If there is no phone device associated with a terminal, the element is set to -1
(0xFFFFFFFF).

The phoneGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD adwTerminalID[]; // array of terminal identifiers

The adwTerminalID member is an array of terminal identifiers. There is one array element for each line
device identifier specified by the lineInitialize or lineInitializeEx function. Each array element contains
the terminal identifier associated with the phone device for the given line device. If there is no phone
device, the element is set to -1 (0xFFFFFFFF). The terminal identifiers range in value from zero to one
less than the number specified by the dwNumTerminals member in the LINEDEVCAPS structure.

Quick Function Reference
The following is the quick function reference for basic telephony services, supplementary telephony
services, assisted telephony, and extended telephony services.

Basic Telephony Services Functions
The Basic Telephony functions are listed by category in the following tables. A function is identified as
asynchronous if it will indicate completion in a REPLY message to the application. If the function always
returns its result to the application immediately, the function is considered synchronous.

TAPI Initialization and Shutdown

lineInitializeEx Initializes the Telephony API line
abstraction for use by the invoking
application. Synchronous.

lineShutdown Shuts down the application's use of
the line Telephony API. Synchronous.

Line Version Negotiation

lineNegotiateAPIVersion Allows an application to negotiate an
API version to use. Synchronous.

Line Status and Capabilities

lineGetDevCaps Returns the capabilities of a given
line device. Synchronous.

lineGetDevConfig Returns configuration of a media
stream device. Synchronous.

lineGetLineDevStatus Returns current status of the
specified open line device.
Synchronous.

lineSetDevConfig Sets the configuration of the specified
media stream device. Synchronous.

lineSetStatusMessages Specifies the status changes for
which the application wants to be
notified. Synchronous.

lineGetStatusMessages Returns the application's current line
and address status message settings.
Synchronous.

lineGetID Retrieves a device ID associated with
the specified open line, address, or
call. Synchronous.

lineGetIcon Allows an application to retrieve an
icon for display to the user.
Synchronous.

lineConfigDialog Causes the provider of the specified
line device to display a dialog box
that allows the user to configure
parameters related to the line device.
Synchronous.

lineConfigDialogEdit Displays a dialog box allowing the
user to change configuration
information for a line device.
Synchronous. Version 0x00010004.

Addresses

lineGetAddressCaps Returns the telephony capabilities of
an address. Synchronous.

lineGetAddressStatus Returns current status of a specified
address. Synchronous.

lineGetAddressID Retrieves the address ID of an
address specified using an alternate
format. Synchronous.

Opening and Closing Line Devices

lineOpen Opens a specified line device for
providing subsequent monitoring
and/or control of the line.
Synchronous.

lineClose Closes a specified opened line
device. Synchronous.

Address Formats

lineTranslateAddress Translates between an address in
canonical format and an address in
dialable format. Synchronous.

lineSetCurrentLocation Sets the location used as the context
for address translation. Synchronous.

lineSetTollList Manipulates the toll list. Synchronous.
lineGetTranslateCaps Returns address translation

capabilities. Synchronous.

Call States and Events

lineGetCallInfo Returns mostly constant information
about a call. Synchronous.

lineGetCallStatus Returns complete call status
information for the specified call.
Synchronous.

lineSetAppSpecific Sets the application-specific field of a
call's information structure.
Synchronous.

Request Recipient Services

These functions are used only in support of assisted telephony.

LineRegisterRequestRecipie
nt

Registers or deregisters the
application as a request recipient for
the specified request mode.
Synchronous.

lineGetRequest Gets the next request from the
Telephony DLL. Synchronous.

Making Calls

lineMakeCall Makes an outbound call and returns a
call handle for it. Asynchronous.

lineDial Dials (parts of one or more) dialable

addresses. Asynchronous.

Answering Inbound Calls

lineAnswer Answers an inbound call.
Asynchronous.

Toll Saver Support

lineSetNumRings Indicates the number of rings after
which inbound calls are to be
answered. Synchronous.

lineGetNumRings Returns the minimum number of rings
requested with lineSetNumRings.
Synchronous.

Call Privilege Control

lineSetCallPrivilege Sets the application's privilege to the
privilege specified. Synchronous.

Call Drop

lineDrop Disconnects a call, or abandons a call
attempt in progress. Asynchronous.

lineDeallocateCall Deallocates the specified call handle.
Synchronous.

Call Handle Manipulation

lineHandoff Hands off call ownership and/or
changes an application's privileges to
a call. Synchronous.

lineGetNewCalls Returns call handles to calls on a
specified line or address for which the
application does not yet have
handles. Synchronous.

lineGetConfRelatedCalls Returns a list of call handles that are
part of the same conference call as
the call specified as a parameter.
Synchronous.

Location and Country Information

lineTranslateDialog Displays a dialog box allowing the
user to change location and calling
card information. Synchronous.
Version 0x00010004.

lineGetCountry Retrieves dialing rules and other
information about a given country.
Synchronous. Version 0x00010004.

Supplementary Telephony Services Functions
The supplementary telephony functions are listed by category in the following tables. Line services are
listed first, phone services next. A function is identified as asynchronous if it will indicate completion in a
REPLY message to the application. If the function always returns its result to the application immediately,
the function is considered synchronous.

Line Services
Bearer Mode and Rate

lineSetCallParams Requests a change in the call
parameters of an existing call.
Synchronous.

Media Monitoring

lineMonitorMedia Enables or disables media mode
notification on a specified call.
Synchronous.

Digit Monitoring and Gathering

lineMonitorDigits Enables or disables digit detection
notification on a specified call.
Synchronous.

lineGatherDigits Performs the buffered gathering of
digits on a call. Synchronous.

Tone Monitoring

lineMonitorTones Specifies which tones to detect on a
specified call. Synchronous.

Media Control

lineSetMediaControl Sets up a call's media stream for
media control. Synchronous.

lineSetMediaMode Sets the media mode(s) of the
specified call in its LINECALLINFO
structure. Synchronous.

Generating Inband Digits and Tones

lineGenerateDigits Generates inband digits on a call.
Synchronous.

lineGenerateTone Generates a given set of tones
inband on a call. Synchronous.

Call Accept and Redirect

lineAccept Accepts an offered call and starts
alerting both caller (ringback) and
called party (ring). Asynchronous.

lineRedirect Redirects an offering call to another
address. Asynchronous.

Call Reject

lineDrop See Call Drop table under Basic
Telephony Services. Asynchronous.

Call Hold

lineHold Places the specified call on hard
hold. Asynchronous.

lineUnhold Retrieves a held call. Asynchronous.

Making Calls

lineSecureCall Secures an existing call from
interference by other events such as
call-waiting beeps on data
connections. Asynchronous.

Call Transfer

lineSetupTransfer Prepares a specified call for transfer
to another address. Asynchronous.

lineCompleteTransfer Transfers a call that was set up for
transfer to another call, or enters a
three-way conference.
Asynchronous.

lineBlindTransfer Transfers a call to another party.
Asynchronous.

lineSwapHold Swaps the active call with the call
currently on consultation hold.
Asynchronous.

Call Conference

lineSetupConference Prepares a given call for the addition
of another party. Asynchronous.

LinePrepareAddToConferencePrepares to add a party to an
existing conference call by allocating
a consultation call that can later be
added to the conference call that is
placed on conference hold.
Asynchronous.

LineAddToConference Adds a consultation call to an
existing conference call.
Asynchronous.

LineRemoveFromConference Removes a party from a conference
call. Asynchronous.

Call Park

linePark Parks a given call at another
address. Asynchronous.

lineUnpark Retrieves a parked call.
Asynchronous.

Call Forwarding

lineForward Sets or cancels call forwarding
requests. Asynchronous.

Call Pickup

linePickup Picks up a call that is alerting at
another number. Picks up a call
alerting at another destination
address and returns a call handle for
the picked-up call (linePickup can
also be used for call waiting).
Asynchronous.

Sending Information to Remote Party

lineReleaseUserUserInfo Releases user-to-user information,
permitting the system to overwrite
this storage with new information.
Asynchronous. Version 0x00010004.

lineSendUserUserInfo Sends user-to-user information to
the remote party on the specified
call. Asynchronous.

Call Completion

lineCompleteCall Places a call completion request.
Asynchronous.

lineUncompleteCall Cancels a call completion request.
Asynchronous.

Setting a Terminal for Phone Conversations

lineSetTerminal Specifies the terminal device to
which the specified line, address
events, or call media stream events
are routed. Asynchronous.

Application Priority

lineGetAppPriority Retrieves handoff and/or Assisted
Telephony priority information for an
application. Synchronous. Version
0x00010004.

lineSetAppPriority Sets the handoff and/or Assisted
Telephony priority for an application.
Synchronous. Version 0x00010004.

Service Provider Management

lineAddProvider Installs a Telephony service provider.
Synchronous. Version 0x00010004.

lineConfigProvider Displays configuration dialog box of
a service provider. Synchronous.
Version 0x00010004.

lineRemoveProvider Removes an existing Telephony
service provider. Synchronous.
Version 0x00010004.

lineGetProviderList Retrieves a list of installed service
providers. Synchronous. Version
0x00010004.

Agents

lineAgentSpecific Allows the application to access
proprietary handler-specific functions
of the agent handler associated with
the address. Asynchronous. Version
0x00020000.

LineGetAgentActivityList Obtains the list of activities from
which an application selects the
functions an agent is performing.
Asynchronous. Version 0x00020000.

lineGetAgentCaps Obtains the agent-related
capabilities supported on the
specified line device. Asynchronous.
Version 0x00020000.

LineGetAgentGroupList Obtains the list of agent groups into
which an agent can log into on the
automatic call distributor.
Asynchronous. Version 0x00020000.

lineGetAgentStatus Obtains the agent-related status on
the specified address.
Asynchronous. Version 0x00020000.

lineSetAgentActivity Sets the agent activity code
associated with a particular address.
Asynchronous. Version 0x00020000.

lineSetAgentGroup Sets the agent groups into which the
agent is logged into on a particular
address. Asynchronous. Version
0x00020000.

lineSetAgentState Sets the agent state associated with
a particular address. Asynchronous.
Version 0x00020000.

Proxies

lineProxyMessage Used by a registered proxy request
handler to generate TAPI messages.
Synchronous. Version 0x00020000.

lineProxyResponse Indicates completion of a proxy
request by a registered proxy
handler. Synchronous. Version
0x00020000.

Quality of Service

lineSetCallQualityOfService Requests a change of the quality of
service parameters for an existing
call. Asynchronous. Version
0x00020000.

Miscellaneous

lineSetCallData Sets the CallData member of the
LINECALLINFO structure.
Asynchronous. Version 0x00020000.

lineSetCallTreatment Sets the sounds the user hears
when a call is unanswered or on
hold. Asynchronous. Version
0x00020000. lineSetLineDevStatus
Sets the line device status.
Asynchronous. Version 0x00020000.

Phone Services
TAPI Initialization and Shutdown

phoneInitializeEx Initializes the Telephony API phone
abstraction for use by the invoking
application. Synchronous.

phoneShutdown Shuts down the application's use of
the phone Telephony API.
Synchronous.

Phone Version Negotiation

phoneNegotiateAPIVersion Allows an application to negotiate an
API version to use. Synchronous.

Opening and Closing Phone Devices

phoneOpen Opens the specified phone device,
giving the application either owner or
monitor privileges. Synchronous.

phoneClose Closes a specified open phone
device. Synchronous.

Phone Status and Capabilities

phoneGetDevCaps Returns the capabilities of a given
phone device. Synchronous.

phoneGetID Returns a device ID for the given
device class associated with the
specified phone device.
Synchronous.

phoneGetIcon Allows an application to retrieve an
icon for display to the user.
Synchronous.

phoneConfigDialog Causes the provider of the specified
phone device to display a dialog box
that allows the user to configure
parameters related to the phone
device. Synchronous.

Hookswitch Devices

phoneSetHookSwitch Sets the hookswitch mode of one or
more of the hookswitch devices of an
open phone device. Asynchronous.

phoneGetHookSwitch Queries the hookswitch mode of a
hookswitch device of an open phone
device. Synchronous.

phoneSetVolume Sets the volume of a hookswitch
device's speaker of an open phone
device. Asynchronous.

phoneGetVolume Returns the volume setting of a
hookswitch device's speaker of an

open phone device. Synchronous.
phoneSetGain Sets the gain of a hookswitch

device's mic of an open phone
device. Asynchronous.

phoneGetGain Returns the gain setting of a
hookswitch device's mic of an opened
phone. Synchronous.

Display

phoneSetDisplay Writes information to the display of an
open phone device. Asynchronous.

phoneGetDisplay Returns the current contents of a
phone's display. Synchronous.

Ring

phoneSetRing Rings an open phone device
according to a given ring mode.
Asynchronous.

phoneGetRing Returns the current ring mode of an
opened phone device. Synchronous.

Buttons

phoneSetButtonInfo Sets the information associated with
a button on a phone device.
Asynchronous.

phoneGetButtonInfo Returns information associated with a
button on a phone device.
Synchronous.

Lamps

phoneSetLamp Lights a lamp on a specified open
phone device in a given lamp lighting
mode. Asynchronous.

phoneGetLamp Returns the current lamp mode of the
specified lamp. Synchronous.

Data Areas

phoneSetData Downloads a buffer of data to a given
data area in the phone device.
Asynchronous.

phoneGetData Uploads the contents of a given data
area in the phone device to a buffer.
Synchronous.

Status

phoneSetStatusMessages Specifies the status changes for
which the application wants to be
notified. Synchronous.

phoneGetStatusMessages Returns the status changes for which

the application wants to be notified.
Synchronous.

phoneGetStatus Returns the complete status of an
open phone device. Synchronous.

Assisted Telephony Services Functions
The Assisted Telephony Services functions are:

tapiRequestMakeCall Submits a request to place a voice
call.

tapiRequestMediaCall Obsolete. Do not use.
tapiRequestDrop Obsolete. Do not use.
tapiGetLocationInfo Returns country code and city/area

code information.

Extended Telephony Services Functions
The following tables list by category the extended telephony functions for both line and phone devices.

Extended Line Services

lineNegotiateExtVersion Allows an application to negotiate an
extension version to use with the
specified line device. Asynchronous.

lineDevSpecific Device-specific escape function.
Synchronous.

lineDevSpecificFeature Device-specific escape function to
allow sending switch features to the
switch. Asynchronous.

Extended Phone Services

phoneDevSpecific Device-specific escape function to
allow vendor-dependent extensions.
Asynchronous.

PhoneNegotiateExtVersion Allows an application to negotiate an
extension version to use with the
specified phone device.
Synchronous.

Unicode Support
The following section contains information about support for Unicode.

Functions with Unicode (W) Versions
The following TAPI functions are implemented in Unicode (W) and ANSI (A) versions. In general, the
implementation of the ANSI version calls the Unicode version and performs necessary conversions of
ANSI parameters and structure fields to and from Unicode; the following table indicates the parameters
that are converted.

Applications that explicitly call the generic (neither "W" or "A" suffix) version of a function will execute the
ANSI version, for backward compatibility with previous versions of TAPI.

Note The entire Telephony Service Provider Interface (TSPI) is Unicode for version 2.0.

In the following table, references to string fields in TAPI structures consist of a portion of the field names.
For example, the "Caller Address" in the LINEFORWARD structure is pointed to by a field named
dwCallerAddressOffset and delimited by a field named dwCallerAddressSize; in the table, this string is
identified simply as CallerAddress.

TAPI Function Parameters and Structure Fields
Converted in ANSI Version of
Function

lineAddProvider lpszProviderName
lineBlindTransfer lpszDestAddress
lineConfigDialog lpszDeviceClass
lineConfigDialogEdit lpszDeviceClass

Note Application must handle
conversion of strings in
lpDeviceConfigIn and
lpDeviceConfigOut, if these are
directly manipulated.

lineDial lpszDestAddress
lineForward lpForwardList

(LINEFORWARDLIST)
· ForwardList (LINEFORWARD)

· CallerAddress
· DestAddress

lpCallParams (LINECALLPARAMS)
· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress
· DeviceClass
· CallingPartyID

lineGatherDigits lpsDigits
lpszTerminationDigits

lineGenerateDigits lpszDigits
lineGetAddressCaps lpAddressCaps

(LINEADDRESSCAPS)

· Address
· CompletionMsgText
· DeviceClasses
· CallTreatmentList

(LINECALLTREATMENTENTR
Y)

· CallTreatmentName
lineGetAddressID lpsAddress
lineGetAddressStatus lpAddressStatus

(LINEADDRESSSTATUS)
· Forward (LINEFORWARD)
· CallerAddress
· DestAddress

lineGetAgentActivityList lpAgentActivityList
(LINEAGENTACTIVITYLIST)
· List

(LINEAGENTACTIVITYENTRY)
· Name

lineGetAgentCaps lpAgentCaps (LINEAGENTCAPS)
· AgentHandlerInfo

lineGetAgentGroupList lpAgentGroupListI(LINEAGENTGR
OUPLIST)
· List

(LINEAGENTGROUPENTRY)
· Name

lineGetAgentStatus lpAgentStatus
(LINEAGENTSTATUS)
· Activity
· GroupList

(LINEAGENTGROUPENTRY)
· Name

lineGetAppPriority lpszAppFilename
lpExtensionName

lineGetCallInfo lpCallInfo (LINECALLINFO)
· CallerID
· CallerIDName
· CalledID
· CalledIDName
· ConnectID
· ConnectedIDName
· RedirectionID
· RedirectionIDName
· RedirectingID
· RedirectingIDName
· AppName
· DisplayableAddress
· CalledParty

· Comment
lineGetCountry lpLineCountryList

(LINECOUNTRYLIST)
· CountryList

(LINECOUNTRYENTRY)
· CountryName
· SameAreaRule
· LongDistanceRule
· InternationalRule

lineGetDevCaps lpLineDevCaps (LINEDEVCAPS)
· ProviderInfo
· SwitchInfo
· LineName
· TerminalText
· DeviceClasses
Note dwStringFormat is
obsolete.

LineGetDevConfig lpszDeviceClass
Note Application must handle
conversion of strings in
lpDeviceConfig, if these are
directly manipulated.

LineGetIcon lpszDeviceClass
lineGetID lpszDeviceClass

Note Application must handle
conversion of strings in
lpDeviceID, if these are directly
manipulated.

LineGetLineDevStatus lpLineDevStatus
(LINEDEVSTATUS)
· AppInfo (LINEAPPINFO)
· MachineName
· UserName
· ModuleFilename
· FriendlyName

lineGetProviderList lpProviderList
(LINEPROVIDERLIST)
· ProviderList

(LINEPROVIDERENTRY)
· ProviderFilename

lineGetRequest lpRequestBuffer
(LINEREQMAKECALL
· szDestAddress
· szAppName
· szCalledParty
· szComment

lineGetTranslateCaps lpTranslateCaps
(LINETRANSLATECAPS)
· CardList (LINECARDENTRY)
· CardName
· SameAreaRule
· LongDistanceRule
· InternationalRule
· LocationList

(LINELOCATIONENTRY
· LocationName
· CityCode
· LocalAccessCode
· LongDistanceAccessCode
· TollPrefixList
· celCallWaiting

lineHandoff lpszFileName
lineInitializeEx lpszFriendlyAppName
lineMakeCall lpszDestAddress

lpCallParams (LINECALLPARAMS)
· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress
· DeviceClass
· CallingPartyID

lineOpen lpCallParams (LINECALLPARAMS)
· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress
· DeviceClass
· CallingPartyID

linePark lpszDirAddress
lpNonDirAddress (VARSTRING)
· String

linePickup lpszDestAddress
lpszGroupID

linePrepareAddToConference lpCallParams (LINECALLPARAMS)
· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress

· DeviceClass
· CallingPartyID

lineRedirect lpszDestAddress
lineSetAppPriority lpszAppFilename

lpszExtensionName
lineSetDevConfig lpszDeviceClass

Note Application must handle
conversion of strings in
lpDeviceConfig, if these are
directly manipulated.

lineSetTollList lpszAddressIn
lineSetupConference lpCallParams (LINECALLPARAMS)

· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress
· DeviceClass
· CallingPartyID

lineSetupTransfer lpCallParams (LINECALLPARAMS)
· OrigAddress
· DisplayableAddress
· CalledParty
· Comment
· TargetAddress
· DeviceClass
· CallingPartyID

lineTranslateAddress lpszAddressIn
lpTranslateOutput
(LINETRANSLATEOUTPUT)
· DialableString
· DisplayableString

lineTranslateDialog lpszAddressIn
lineUnpark lpszDestAddress
phoneConfigDialog lpszDeviceClass
phoneGetButtonInfo lpButtonInfo

(PHONEBUTTONINFO)
· ButtonText

phoneGetDevCaps lpPhoneCaps (PHONECAPS)
· ProviderInfo
· PhoneInfo
· PhoneName
· DeviceClasses
Note dwStringFormat is
obsolete.

phoneGetIcon lpszDeviceClass
phoneGetID lpszDeviceClass

Note Application must handle
conversion of strings in
lpDeviceID, if these are directly
manipulated.

phoneGetStatus lpPhoneStatus (PHONESTATUS)
· OwnerName

phoneInitializeEx lpszFriendlyAppName
phoneSetButtonInfo lpButtonInfo

(PHONEBUTTONINFO)
· ButtonTest

tapiGetLocationInfo lpszCountryCode
lpszCityCode

tapiRequestMakeCall lpszDestAddress
lpszAppName
lpszCalledParty
lpszComment

Functions without Unicode Versions
The following functions are provided only in a generic version without an "A" or "W" suffix.

TAPI Function Comments
lineAccept The memory pointed to by

lpsUserUserInfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

lineAddToConference ¾

lineAgentSpecific The memory pointed to by
lpParams is private between the
application and agent handler. The
application must provide data in the
form specified in the agent handler
extension definition.

lineAnswer The memory pointed to by
lpsUserUserInfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

lineClose ¾

lineCompleteCall ¾

lineCompleteTransfer ¾

lineConfigProvider ¾

lineDeallocateCall ¾

lineDevSpecific The memory pointed to by
lpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

lineDevSpecificFeature The memory pointed to by
lpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

lineDrop The memory pointed to by
lpsUserUserInfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

lineGenerateTone ¾

lineGetCallStatus ¾

lineGetConfRelatedCalls ¾

lineGetNewCalls ¾

lineGetMessage ¾

lineGetNumRings ¾

lineGetStatusMessages ¾

lineHold ¾

lineMonitorDigits ¾

lineMonitorMedia ¾

lineMonitorTones ¾

lineNegotiateAPIVersion ¾

lineNegotiateExtVersion ¾

lineProxyMessage ¾

lineProxyResponse The fields in the
LINEPROXYREQUEST structure
are always Unicode.

lineRegisterRequestRecipient ¾

lineReleaseUserUserInfo ¾

lineRemoveFromConference ¾

lineRemoveProvider ¾

lineSecureCall ¾

lineSendUserUserInfo The memory pointed to by
lpsUserUserInfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

lineSetAgentActivity ¾

lineSetAgentGroup Note Group names are
ignored.

lineSetAgentState ¾

lineSetAppSpecific ¾

lineSetCallData The memory pointed to by
lpCallData is in a format specified
by the application or a group of
cooperating applications. The
format of the data is beyond the
scope of TAPI and is not converted
by TAPI.

lineSetCallParams ¾

lineSetCallPrivilege ¾

lineSetCallQualityOfService The format of data in the provider-
specific portion of the QOS
structure is beyond the scope of
TAPI and is not converted by TAPI.

lineSetCallTreatment ¾

lineSetCurrentLocation ¾

lineSetLineDevStatus ¾

lineSetMediaControl ¾

lineSetMediaMode ¾

lineSetNumRings ¾

lineSetStatusMessages ¾

lineSetTerminal ¾

lineShutdown ¾

lineSwapHold ¾

lineUncompleteCall ¾

lineUnhold ¾

phoneClose ¾

phoneDevSpecific The memory pointed to by
lpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

phoneGetData The memory pointed to by lpData is
private between the application and
service provider. The application
must process data in the form
specified in the service provider
definition.

phoneGetDisplay The memory pointed to by lpDisplay
is private between the application
and service provider. The
application must process data in the
form specified in the service
provider definition.

phoneGetGain ¾

phoneGetHookSwitch ¾

phoneGetLamp ¾

phoneGetMessage ¾

phoneGetRing ¾

phoneGetStatusMessages ¾

phoneGetVolume ¾

phoneNegotiateAPIVersion ¾

phoneNegotiateExtVersion ¾

phoneOpen ¾

phoneSetData The memory pointed to by
lpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider definition.

phoneSetDisplay The memory pointed to by lpDisplay
is private between the application
and service provider. The
application must provide data in the
form specified in the service
provider definition.

phoneSetGain ¾

phoneSetHookSwitch ¾

phoneSetLamp ¾

phoneSetRing ¾

phoneSetStatusMessages ¾

phoneSetVolume ¾

phoneShutdown ¾

tapiRequestDrop This function is obsolete and
unavailable to Microsoft® Win32®
API applications.

tapiRequestMediaCall This function is obsolete and
unavailable to Microsoft Win32
applications.

Reference
This section includes the telephony API function, message, structure, and constant references for line
devices, phone devices, and assisted telephony.

Functions
This section contains an alphabetical list of the line device, phone device, and assisted telephony
functions in the Telephony applications programming interface (API).

The information for each function includes a list of the valid call states on entry of the function and typical
call state transitions when the request completes. Note that the actual states in which a function may be
performed may be further limited by the capabilities of the service provider. Applications must check the
dwCallFeatures field in the LINECALLSTATUS structure, the dwAddressFeatures field in the
LINEADDRESSSTATUS structure, and the dwLineFeatures field in the LINEDEVSTATUS structure to
determine whether or not a function is permitted at that point in time.

Line Device Functions
This section contains the functions for line devices.

lineAccept       

   

The lineAccept function accepts the specified offered call. It may optionally send the specified user-to-
user information to the calling party.

LONG lineAccept(

 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters
hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall
must be offering.

lpsUserUserInfo

A pointer to a string containing user-to-user information to be sent to the remote party as part of the
call accept. This pointer can be left NULL if no user-to-user information is to be sent. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-to-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_NOTOWNER, LINEERR_UNINITIALIZED,
LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED, LINEERR_NOMEM,
LINEERR_USERUSERINFOTOOBIG.

Remarks
The lineAccept function is used in telephony environments like Integrated Services Digital Network
(ISDN) that allow alerting associated with incoming calls to be separate from the initial offering of the call.
When a call comes in, it is first offered. For some small amount of time, the application may have the
option to reject the call using lineDrop, redirect the call to another station using lineRedirect, answer the
call using lineAnswer, or accept the call using lineAccept. After a call has been successfully accepted,
alerting at both the called and calling device begins. After a call has been accepted by an application, the
call state typically transitions to accepted.

Alerting is reported to the application by the LINE_LINEDEVSTATE message with the ringing indication.

The lineAccept function may also be supported by non-ISDN service providers. The call state transition
to accepted can be used by other applications as an indication that another application has claimed
responsibility for the call and has presented the call to the user.

The application has the option to send user-to-user information at the time of the accept. Even if user-to-
user information is sent, there is no guarantee that the network will deliver this information to the calling
party. An application should consult a line's device capabilities to determine whether call accept is
available.

For information about the listing of service dependencies, see Service Dependencies..

See Also
LINE_REPLY, lineAnswer, LINEDEVCAPS, lineDrop, lineRedirect

lineAddProvider       

   

The lineAddProvider function installs a new Telephony Service Provider into the Telephony system.

LONG lineAddPr ovider(

 LPCSTR lpszProviderFilename,
 HWND hwndOwner,
 LPDWORD lpdwPermanentProviderID
);

Parameters
lpszProviderFilename

A pointer to a NULL-terminated string containing the path of the service provider to be added.
hwndOwner

A handle to a window to which any dialogs which need to be displayed as part of the installation
process (for example, by the service provider's TSPI_providerInstall function) would be attached.
Can be NULL to indicate that any window created during the function should have no owner window.

lpdwPermanentProviderID

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider ID of
the newly installed service provider.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALPARAM,
LINEERR_NOMULTIPLEINSTANCE, LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED.

Remarks
During this function call, TAPI checks to ensure that it can access the service provider by calling its
TSPI_providerInstall function; if this is unsuccessful (if the DLL or function cannot be found, or if
TSPI_providerInstall returns an error), the function fails and the provider is not added to the telephony
system. If this is successful, and the Win32 Telephony system is active (one or more applications have
called lineInitialize or lineInitializeEx), TAPI does not attempt to launch the newly-added service
provider. Instead, in order to activate the new service provider, TAPI issues a message to restart
Windows. When the activation succeeds, applications will be informed of any new devices created by way
of LINE_CREATE or PHONE_CREATE messages, or by a LINE_LINEDEVSTATE message requesting
reinitialization (if the application does not support the CREATE messages).

This function copies no files¾not the service provider DLL itself nor any supporting files; it is the
responsibility of the application managing the addition of the provider to ensure that the provider is
installed in a directory where it can be found by TAPI (for example, \WINDOWS, \WINDOWS\SYSTEM, or
elsewhere on the path), and that all other files necessary for operation.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all

applications.

See Also
LINE_CREATE, LINE_LINEDEVSTATE, lineInitialize, lineInitializeEx, PHONE_CREATE

lineAddToConference       

   

The lineAddToConference function adds the call specified by hConsultCall to the conference call
specified by hConfCall.

LONG lineAddToConference(

 HCALL hConfCall,
 HCALL hConsultCall
);

Parameters
hConfCall

A handle to the conference call. The application must be an owner of this call. Any monitoring (media,
tones, digits) on a conference call applies only to the hConfCall, not to the individual participating
calls. Call state of hConfCall must be onHoldPendingConference or onHold.

hConsultCall

A handle to the call to be added to the conference call. The application must be an owner of this call.
This call cannot be a parent of another conference or a participant in any conference. Depending on
the device capabilities indicated in LINEADDRESSCAPS, the hConsultCall may not necessarily have
been established using lineSetupConference or linePrepareAddToConference. The call state of
hConsultCall must be connected, onHold, proceeding, or ringback. Many PBXs allow calls to be
added to conferences before they are actually answered.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_CONFERENCEFULL, LINEERR_NOTOWNER, LINEERR_INVALCONFCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

Remarks
If LINEERR_INVALCALLHANDLE is returned, the specified call handle for the added call is invalid,
hConsultCall is a parent of another conference or already a participant in a conference, hConsultCall
cannot be added for other reasons (such as, it must have been established using lineSetupConference
or linePrepareAddToConference), or hConsultCall and hConfCall are calls on different open lines.

The call handle of the added party remains valid after adding the call to a conference. Its state typically
changes to conferenced while the state of the conference call typically becomes connected. Using
lineGetConfRelatedCalls, you can obtain a list of call handles that are part of the same conference call
as the specified call. The specified call is either a conference call or a participant call in a conference call.
New handles are generated for those calls for which the application does not already have handles, and
the application is granted monitor privilege to those calls. The handle to an individual participating call can
be used later to remove that party from the conference call using lineRemoveFromConference.

Note that if lineGetConfRelatedCalls is called immediately after lineAddToConference, it may not
return a complete list of related calls because TAPI waits to receive a LINE_CALLSTATE message
indicating that the call has entered LINECALLSTATE_CONFERENCED before it considers the call to
actually be part of the conference (that is, the conferenced state is confirmed by the service provider).
Once the application has received the LINE_CALLSTATE message, lineGetConfRelatedCalls returns
complete information. Note that all calls that are part of a conference must exist on the same open line.

The call states of the calls participating in a conference are not independent. For example, when dropping
a conference call, all participating calls may automatically become idle. An application should consult the
line's device capabilities to determine what form of conference removal is available. The application
should track the LINE_CALLSTATE messages to determine what happened to the calls involved.

The conference call is established either by lineSetupConference or lineCompleteTransfer. The call
added to a conference is typically established using lineSetupConference or
linePrepareAddToConference. Some switches may allow adding arbitrary calls to the conference, and
such a call may have been set up using lineMakeCall and be on (hard) hold. The application may
examine the dwAddrCapFlags field of the LINEADDRESSCAPS structure to determine the permitted
operations.

See Also
LINE_CALLSTATE, LINEADDRESSCAPS, lineCompleteTransfer, lineGetConfRelatedCalls,
lineMakeCall, linePrepareAddToConference, lineSetupConference, lineRemoveFromConference

lineAgentSpecific       

   

The lineAgentSpecific function allows the application to access proprietary handler-specific functions of
the agent handler associated with the address. The meaning of the extensions are specific to the agent
handler. Each set of agent-related extensions is identified by a universally unique 128-bit extension ID
which must be obtained, along with the specification for the extension, from the promulgator of that
extension (usually the author of the agent handler software on the telephony server). The list of
extensions supported by the agent handler is obtained from the LINEAGENTCAPS structure returned by
lineGetAgentCaps.

LONG lineAgentSpecific(

 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwAgentExtensionIDIndex,
 LPVOID lpParams,
 DWORD dwSize
);

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the open line device.
dwAgentExtensionIDIndex

The position in the ExtensionIDList structure in LINEAGENTCAPS of the agent handler extension
being invoked.

lpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device specific and its contents are passed by TAPI to and from the agent handler application on the
telephony server. This parameter block must specify the function to be invoked and include sufficient
room for any data to be returned.

dwSize

The size in bytes of the parameter block area.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALAGENTID, LINEERR_INVALLINEHANDLE,
LINEERR_INVALPARAM, LINEERR_INVALPOINTER, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

Additional return values are specific to the agent handler.

Remarks
This operation is part of the Extended Telephony services. It provides access to an agent handler-specific
feature without defining its meaning.

This function provides a generic parameter profile. The interpretation of the parameter structure is handler
specific. Indications and replies sent back to the application that are handler specific should use the
LINE_AGENTSPECIFIC message.

An agent handler can provide access to handler-specific functions by defining parameters for use with this
function. Applications that want to make use of these extensions should consult the vendor-specific
documentation that describes what extensions are defined. An application that relies on these extensions
will typically not be able to work with other agent handler environments.

See Also
LINEAGENTCAPS, lineGetAgentCaps

lineAnswer       

   

The lineAnswer function answers the specified offering call.

LONG lineAnswer(

 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters
hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of
hCall must be offering or accepted.

lpsUserUserInfo

A pointer to a string containing user-to-user information to be sent to the remote party at the time of
answering the call. This pointer can be left NULL if no user-to-user information is to be sent. User-to-
user information is only sent if supported by the underlying network (see LINEDEVCAPS). The
protocol discriminator field for the user-to-user information, if required, should appear as the first byte
of the buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INUSE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM,
LINEERR_USERUSERINFOTOOBIG, LINEERR_NOTOWNER.

Remarks
When a new call arrives, applications with an interest in the call are sent a LINE_CALLSTATE message to
provide the new call handle and to inform the application about the call's state and the privileges to the
new call (such as monitor or owner). The application with owner privilege for the call can answer this call
using lineAnswer. After the call has been successfully answered, the call typically transitions to the
connected state. Initially, only one application is given owner privilege to the inbound call.

In some telephony environments (like ISDN), where user alerting is separate from call offering, the
application may have the option to accept a call prior to answering or to reject or redirect the offering call.

If a call comes in (is offered) at the time another call is already active, the new call is connected to by

invoking lineAnswer. The effect this has on the existing active call depends on the line's device
capabilities. The first call may be unaffected, it may automatically be dropped, or it may automatically be
placed on hold. The appropriate LINE_CALLSTATE messages report state transitions to the application
about both calls.

In a bridged situation, if a call is connected but in the LINECONNECTEDMODE_INACTIVE state, it may
be joined using the lineAnswer function.

The application has the option to send user-to-user information at the time of the answer. Even if user-to-
user information can be sent, there is no guarantee that the network will deliver this information to the
calling party. An application should consult a line's device capabilities to determine whether sending user-
to-user information upon answering the call is available.

See Also
LINE_CALLSTATE, LINE_REPLY, LINEDEVCAPS

lineBlindTransfer       

   

The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the
specified destination address.

LONG lineBlindTransfer(

 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters
hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string identifying where the call is to be transferred to. The destination
address uses the standard dialable number format.

dwCountryCode

The country code of the destination. This is used by the implementation to select the call progress
protocols for the destination address. If a value of zero is specified, a default call-progress protocol
defined by the service provider is used.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCOUNTRYCODE, LINEERR_INVALCALLSTATE,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL,
LINEERR_NOTOWNER, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESS,
LINEERR_UNINITIALIZED, LINEERR_ADDRESSBLOCKED, LINEERR_OPERATIONFAILED.

Remarks
If LINEERR_INVALADDRESS is returned, no dialing has occurred.

Blind transfer differs from a consultation transfer in that no consultation call is made visible to the
application. After the blind transfer successfully completes, the specified call is typically cleared from the
application's line, and it transitions to the idle state. Note that the application's call handle remains valid
after the transfer has completed. The application must deallocate its handle when it is no longer
interested in the transferred call. It uses lineDeallocateCall for this purpose.

See Also
LINE_REPLY, lineDeallocateCall

lineClose       

   

The lineClose function closes the specified open line device.

LONG lineClose(

 HLINE hLine
);

Parameters
hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle
is no longer valid.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks
If an application calls lineClose while it still has active calls on the opened line, the application's
ownership of these calls is revoked. If the application was the sole owner of these calls, the calls are
dropped as well. It is good programming practice for an application to dispose of the calls it owns on an
opened line by explicitly relinquishing ownership and/or by dropping these calls prior to closing the line.

If the close was successful, a LINE_LINEDEVSTATE message is sent to all applications that are
monitoring the line status of open/close changes. Outstanding asynchronous replies are suppressed.

Service providers may find it useful or necessary to forcibly reclaim line devices from an application that
has the line open. This may be useful to prevent a misbehaved application from monopolizing the line
device for too long. If this happens, a LINE_CLOSE message is sent to the application, specifying the line
handle of the line device that was closed.

The lineOpen function allocates resources to the invoking application, and applications may be prevented
from opening a line if resources are unavailable. Therefore, an application that only occasionally uses a
line device (such as for making outbound calls) should close the line to free resources and allow other
applications to open the line.

See Also
LINE_CLOSE, LINE_LINEDEVSTATE, lineOpen

lineCompleteCall       

   

The lineCompleteCall function specifies how a call that could not be connected normally should be
completed instead. The network or switch may not be able to complete a call because network resources
are busy or the remote station is busy or doesn't answer. The application can request that the call be
completed in one of a number of ways.

LONG lineCompleteCall(

 HCALL hCall,
 LPDWORD lpdwCompletionID,
 DWORD dwCompletionMode,
 DWORD dwMessageID
);

Parameters
hCall

A handle to the call whose completion is requested. The application must be an owner of the call. The
call state of hCall must be busy, ringback.

lpdwCompletionID

A pointer to a DWORD-sized memory location. The completion ID is used to identify individual
completion requests in progress. A completion ID becomes invalid and may be reused after the
request completes or after an outstanding request is canceled.

dwCompletionMode

The way in which the call is to be completed. Note that dwCompletionMode is allowed to have only a
single flag set. This parameter uses the following LINECALLCOMPLMODE_ constants:
LINECALLCOMPLMODE_CAMPON

Queues the call until the call can be completed. The call remains in the busy state while queued.
LINECALLCOMPLMODE_CALLBACK

Requests the called station to return the call when it returns to idle.
LINECALLCOMPLMODE_INTRUDE

Adds the application to the existing physical call at the called station (barge in).
LINECALLCOMPLMODE_MESSAGE

Leave a short predefined message for the called station ("Leave Word Calling"). The message to
be sent is specified by dwMessageID.

dwMessageID

The message that is to be sent when completing the call using LINECALLCOMPLMODE_MESSAGE.
This ID selects the message from a small number of predefined messages.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_COMPLETIONOVERRUN, LINEERR_NOMEM, LINEERR_INVALCALLCOMPLMODE,
LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALMESSAGEID,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED.

Remarks
This function is considered complete when the request has been accepted by the network or switch; not
when the request is fully completed in the way specified. After this function completes, the call typically
transitions to idle. When the called station or network enters a state where the call can be completed as
requested, the application will be notified by a LINE_CALLSTATE message with the call state equal to
offering. The call's LINECALLINFO record lists the reason for the call as CALLCOMPLETION and
provide the completion ID as well. It is possible to have multiple call completion requests outstanding at
any given time; the maximum number is device dependent. The completion ID is also used to refer to
each individual request so requests can be canceled by calling lineUncompleteCall.

See Also
LINE_CALLSTATE, LINE_REPLY, LINECALLINFO, lineUncompleteCall

lineCompleteTransfer       

   

The lineCompleteTransfer function completes the transfer of the specified call to the party connected in
the consultation call.

LONG lineCompleteTransfer(

 HCALL hCall,
 HCALL hConsultCall,
 LPHCALL lphConfCall,
 DWORD dwTransferMode
);

Parameters
hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application
must be an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

lphConfCall

A pointer to a memory location where an HCALL handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in
lphConfCall and the application becomes the sole owner of the conference call. Otherwise, this
parameter is ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_ constants:
LINETRANSFERMODE_TRANSFER

Resolve the initiated transfer by transferring the initial call to the consultation call.
LINETRANSFERMODE_CONFERENCE

Resolve the initiated transfer by conferencing all three parties into a three-way conference call. A
conference call is created and returned to the application.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCONSULTCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALTRANSFERMODE, LINEERR_RESOURCEUNAVAIL,

LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks
The LINE_REPLY message sent in response to a call to the lineCompleteTransfer function is based on
the status of the call specified by the hCall parameter.

This operation completes the transfer of the original call, hCall, to the party currently connected by
hConsultCall. The consultation call will typically have been dialed on the consultation call allocated as part
of lineSetupTransfer, but it may be any call to which the switch is capable of transferring hCall.

The transfer request can be resolved either as a transfer or as a three-way conference call. When
resolved as a transfer, the parties connected by hCall and hConsultCall are connected to each other, and
both hCall and hConsultCall are typically cleared from the application's line and transition to the idle state.
Note that the application's call handle remains valid after the transfer has completed. The application
must deallocate its handle with lineDeallocateCall when it is no longer interested in the transferred call.

When resolved as a conference, all three parties enter into a conference call. Both existing call handles
remain valid but will transition to the conferenced state. A conference call handle will be created and
returned, and it will transition to the connected state.

If lineGetConfRelatedCalls is called immediately after lineCompleteTransfer with the result that the
calls are conferenced, lineGetConfRelatedCalls may not return a complete list of related calls. This is
because TAPI waits to receive a LINE_CALLSTATE message indicating that the call has entered
LINECALLSTATE_CONFERENCED before it considers the call to actually be part of the conference. That
is, it waits for the service provider to confirm the conferenced state. Once the application has received the
LINE_CALLSTATE message, lineGetConfRelatedCalls returns complete information.

It may also be possible to perform a blind transfer of a call using lineBlindTransfer.

See Also
LINE_CALLSTATE, LINE_REPLY, lineBlindTransfer, lineDeallocateCall, lineGetConfRelatedCalls,
lineSetupTransfer

lineConfigDialog       

   

The lineConfigDialog function causes the provider of the specified line device to display a dialog
(attached to hwndOwner of the application) to allow the user to configure parameters related to the line
device.

LONG lineConfigDialog(

 DWORD dwDeviceID,
 HWND hwndOwner,
 LPCSTR lpszDeviceClass
);

Parameters
dwDeviceID

The line device to be configured.
hwndOwner

A handle to a window to which the dialog is to be attached. Can be NULL to indicate that any window
created during the function should have no owner window.

lpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific subscreen of configuration information applicable to that device class.
This parameter is optional and can be left NULL or empty, in which case the highest level
configuration is selected.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INUSE, LINEERR_OPERATIONFAILED,
LINEERR_INVALDEVICECLASS, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPARAM,
LINEERR_UNINITIALIZED, LINEERR_INVALPOINTER, LINEERR_OPERATIONUNAVAIL,
LINEERR_NODEVICE.

Remarks
The lineConfigDialog function causes the service provider to display a modal dialog (attached to
hwndOwner of the application) to allow the user to configure parameters related to the line specified by
dwDeviceID. The lpszDeviceClass parameter allows the application to select a specific subscreen of
configuration information applicable to the device class in which the user is interested; the permitted
strings are the same as for lineGetID. For example, if the line supports the Comm API, passing "COMM"
as lpszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at
least, start at the corresponding point in a multilevel configuration dialog chain, so the user doesn't have
to "dig" to find the parameters of interest).

The lpszDeviceClass parameter would be "tapi/line" , "", or NULL to cause the provider to display the
highest level configuration for the line.

See Also
lineGetID

lineConfigDialogEdit       

   

The lineConfigDialogEdit function causes the provider of the specified line device to display a dialog
(attached to hwndOwner of the application) to allow the user to configure parameters related to the line
device.

LONG lineConfigDialogEdit(

 DWORD dwDeviceID,
 HWND hwndOwner,
 LPCSTR lpszDeviceClass,
 LPVOID const lpDeviceConfigIn,
 DWORD dwSize,
 LPVARSTRING lpDeviceConfigOut
);

Parameters
dwDeviceID

The line device to be configured.
hwndOwner

A handle to a window to which the dialog is to be attached. Can be NULL to indicate that any window
created during the function should have no owner window.

lpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific subscreen of configuration information applicable to that device class.
This parameter is optional and can be left NULL or empty, in which case the highest level
configuration is selected.

lpDeviceConfigIn

A pointer to the opaque configuration data structure that was returned by lineGetDevConfig (or a
previous invocation of lineConfigDialogEdit) in the variable portion of the VARSTRING structure.

dwSize

The number of bytes in the structure pointed to by lpDeviceConfigIn. This value will have been
returned in the dwStringSize field in the VARSTRING structure returned by lineGetDevConfig or a
previous invocation of lineConfigDialogEdit.

lpDeviceConfigOut

A pointer to the memory location of type VARSTRING where the device configuration structure is
returned. Upon successful completion of the request, this location is filled with the device
configuration. The dwStringFormat field in the VARSTRING structure will be set to
STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig (or a future invocation of
lineConfigDialogEdit), the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible

return values are:

LINEERR_BADDEVICEID, LINEERR_OPERATIONFAILED, LINEERR_INVALDEVICECLASS,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPARAM, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NODRIVER,
LINEERR_OPERATIONUNAVAIL, LINEERR_NOMEM, LINEERR_NODEVICE.

Remarks
If LINEERR_STRUCTURETOOSMALL is returned, the dwTotalSize field of the VARSTRING structure
pointed to by lpDeviceConfigOut does not specify enough memory to contain the entire configuration
structure. The dwNeededSize field has been set to the amount required. To the extent that user entries
were reflected in information that could not be returned due to insufficient space, those edits are lost;
applications should therefore allocate the maximum amount of space that may be needed by the device
class to return its configuration structure (for more information, see documentation for the device class).

The lineConfigDialogEdit function causes the service provider to display a modal dialog (attached to
hwndOwner of the application) to allow the user to configure parameters related to the line specified by
dwDeviceID.

The lpszDeviceClass parameter allows the application to select a specific subscreen of configuration
information applicable to the device class in which the user is interested; the permitted strings are the
same as for lineGetID. For example, if the line supports the Comm API, passing "COMM" as
lpszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at least,
start at the corresponding point in a multilevel configuration dialog chain, so the user doesn't have to "dig"
to find the parameters of interest).

The lpszDeviceClass parameter would be "tapi/line" , "", or NULL to cause the provider to display the
highest level configuration for the line.

The difference between this function and lineConfigDialog is the source of the parameters to edit and
the result of the editing. In lineConfigDialog, the parameters edited are those currently in use on the
device (or set for use on the next call), and any changes made have (to the maximum extent possible) an
immediate impact on any active connection; also, the application must use lineGetDevConfig to fetch the
result of parameter changes from lineConfigDialog. With lineConfigDialogEdit, the parameters to edit
are passed in from the application, and the results are returned to the application, with no impact on
active connections; the results of the editing are returned with this function, and the application does not
need to call lineGetDevConfig. Thus, lineConfigDialogEdit permits an application to provide the ability
for the user to set up parameters for future calls without having an impact on any active call. Note,
however, the output of this function can be passed to lineSetDevConfig to affect the current call or next
call.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

See Also
lineConfigDialog, lineGetDevConfig, lineGetID, lineSetDevConfig, VARSTRING

lineConfigProvider       

   

The lineConfigProvider function causes a service provider to display its configuration dialog.

LONG lineConfigProvider(

 HWND hwndOwner,
 DWORD dwPermanentProviderID
);

Parameters
hwndOwner

A handle to a window to which the configuration dialog (displayed by TSPI_providerConfig) will be
attached. Can be NULL to indicate that any window created during the function should have no owner
window.

dwPermanentProviderID

The permanent provider ID of the service provider to be configured.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALPARAM,
LINEERR_OPERATIONFAILED.

Remarks
This is basically a straight pass-through to TSPI_providerConfig.

Although this is a new function that older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

lineDeallocateCall       

   

The lineDeallocateCall function deallocates the specified call handle.

LONG lineDeallocateCall(

 HCALL hCall
);

Parameters
hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle except when the application is the sole owner of the call and the call is not in the idle state.
The call handle is no longer valid after it has been deallocated.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSTATE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
The deallocation does not affect the call state of the physical call. It does, however, release internal
resources related to the call.

In API versions less than 0x00020000, if the application is the sole owner of a call and the call is not in the
idle state, LINEERR_INVALCALLSTATE is returned. In this case, the application can first drop the call
using lineDrop and deallocate its call handle afterwards. An application that has monitor privilege for a
call can always deallocate its handle for the call.

In API versions 0x0002000 and greater, the sole owner of the call can deallocate its handle even though
the call is not in the idle state. (This allows for distributed control of the call in a client/server environment.)
Be aware that leaving the call without an owner may result in the user being unable to terminate the call if
there are monitoring applications open preventing TAPI from calling TSPI_lineCloseCall. Use this feature
only if the application can determine that the call can be controlled externally by the user (see
LINEADDRCAPFLAGS_CLOSEDROP).

In API versions less than 0x00020000, when the lineDeallocateCall function deallocates a call handle, it
also suspends further processing of any outstanding LINE_REPLY messages for the call. An application
must be designed not to wait indefinitely for LINE_REPLY messages for each corresponding call to an
asynchronous function if it also uses the lineDeallocateCall function to deallocate handles.

In API versions 0x0002000 and greater, lineDeallocateCall does not suspend outstanding LINE_REPLY
messages; every asynchronous function that returns a dwRequestID to the application always results in
the delivery of the associated LINE_REPLY message unless the application calls lineShutdown.

See Also

LINE_REPLY, lineDrop, lineShutdown

lineDevSpecific       

   

The lineDevSpecific function enables service providers to provide access to features not offered by other
TAPI functions. The meaning of the extensions are device specific, and taking advantage of these
extensions requires the application to be fully aware of them.

LONG lineDevSpecific(

 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 LPVOID lpParams,
 DWORD dwSize
);

Parameters
hLine

A handle to a line device. This parameter is required.
dwAddressID

An address ID on the given line device.
hCall

A handle to a call. This parameter is optional, but if it is specified, the call it represents must belong to
the hLine line device. The call state of hCall is device specific.

lpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device specific and its contents are passed by TAPI to or from the service provider.

dwSize

The size in bytes of the parameter block area.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Additional return values are device specific.

Remarks
This operation is part of the Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully negotiated
a device-specific extension version.

This function provides a generic parameter profile. The interpretation of the parameter structure is device
specific. Whether dwAddressID and/or hCall are expected to be valid is device-specific. If specified, they
must belong to hLine. Indications and replies sent back the application that are device specific should use
the LINE_DEVSPECIFIC message.

A service provider can provide access to device-specific functions by defining parameters for use with this
function. Applications that want to make use of these device-specific extensions should consult the
device-specific (in this case, vendor-specific) documentation that describes what extensions are defined.
An application that relies on these device-specific extensions will typically not be able to work with other
service provider environments.

See Also
LINE_DEVSPECIFIC, LINE_REPLY

lineDevSpecificFeature       

   

The lineDevSpecificFeature function enables service providers to provide access to features not offered
by other TAPI functions. The meaning of these extensions are device specific, and taking advantage of
these extensions requires the application to be fully aware of them.

LONG lineDevSpecificFeature(

 HLINE hLine,
 DWORD dwFeature,
 LPVOID lpParams,
 DWORD dwSize
);

Parameters
hLine

A handle to the line device.
dwFeature

The feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_
constants.

lpParams

A pointer to a memory area used to hold a feature-dependent parameter block. The format of this
parameter block is device specific and its contents are passed through by TAPI to or from the service
provider.

dwSize

The size of the buffer in bytes.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALFEATURE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Additional return values are device specific.

Remarks
This operation is part of the Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully negotiated
a device-specific extension version.

This function provides the application with phone feature-button emulation capabilities. When an
application invokes this operation, it specifies the equivalent of a button-press event. This method of

invoking features is device dependent, as TAPI does not define their meaning. Note that an application
that relies on these device-specific extensions will typically not work with other service provider
environments.

Note also that the structure pointed to by lpParams should not contain any pointers because they would
not be properly translated (thunked) when running a 16-bit application in a 32-bit version of TAPI and vice
versa.

See Also
LINE_REPLY

lineDial       

   

The lineDial function dials the specified dialable number on the specified call.

LONG lineDial(

 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters
hCall

A handle to the call on which a number is to be dialed. The application must be an owner of the call.
The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed using the standard dialable number format.
dwCountryCode

The country code of the destination. This is used by the implementation to select the call progress
protocols for the destination address. If a value of zero is specified, a service provider-defined default
call progress protocol is used.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_ADDRESSBLOCKED, LINEERR_INVALPOINTER, LINEERR_DIALBILLING,
LINEERR_NOMEM, LINEERR_DIALDIALTONE, LINEERR_NOTOWNER, LINEERR_DIALPROMPT,
LINEERR_OPERATIONFAILED, LINEERR_DIALQUIET, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_UNINITIALIZED, LINEERR_INVALCOUNTRYCODE.

Remarks
If LINEERR_INVALADDRESS is returned, no dialing has been done. If LINEERR_DIALBILLING,
LINEERR_DIALQUIET, LINEERR_DIALDIALTONE, or LINEERR_DIALPROMPT is returned, none of the
actions otherwise performed by lineDial have occurred. For example, none of the dialable addresses
prior to the offending character has been dialed, no hookswitch state has changed, and so on.

The lineDial function is used for dialing on an existing call appearance. For example, after a call has
been set up for transfer or conference, a consultation call is automatically allocated, and the lineDial
function would be used to perform the dialing of this consultation call. Note that lineDial may be invoked
multiple times in the course of multistage dialing, if the line's device capabilities allow it. Also, multiple
addresses may be provided in a single dial string separated by CRLF. Service providers that provide
inverse multiplexing can establish individual physical calls with each of the addresses and can return a
single call handle to the aggregate of all calls to the application. All addresses would use the same

country code.

Dialing is considered complete after the address has been passed to the service provider; not after the
call is finally connected. Service providers that provide inverse multiplexing may allow multiple addresses
to be provided at once. The service provider sends LINE_CALLSTATE messages to the application to
inform it about the progress of the call. To abort a call attempt while a call is being established, the
invoking application should use lineDrop.

An application can set the lpszDestAddress parameter of the lineDial function to the address of an empty
string to indicate that dialing is complete, but only if the previous calls to the lineMakeCall and lineDial
functions have had the strings specified by lpszDestAddress terminated with semicolons.

See Also
LINE_CALLSTATE, LINE_REPLY, lineDrop, lineMakeCall

lineDrop       

   

The lineDrop function drops or disconnects the specified call. The application has the option to specify
user-to-user information to be transmitted as part of the call disconnect.

LONG lineDrop(

 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters
hCall

A handle to the call to be dropped. The application must be an owner of the call. The call state of
hCall can be any state except idle.

lpsUserUserInfo

A pointer to a string containing user-to-user information to be sent to the remote party as part of the
call disconnect. This pointer can be left NULL if no user-to-user information is to be sent. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-to-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_NOTOWNER, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_USERUSERINFOTOOBIG, LINEERR_INVALCALLSTATE,
LINEERR_UNINITIALIZED.

Remarks
When invoking lineDrop, related calls may sometimes be affected as well. For example, dropping a
conference call may drop all individual participating calls. LINE_CALLSTATE messages are sent to the
application for all calls whose call state is affected. A dropped call typically transitions to the idle state.
Invoking lineDrop on a call in the offering state rejects the call. Not all telephone networks provide this
capability.

A call in the onholdpending state will typically revert to the connected state. When dropping the
consultation call to the third party for a conference call or when removing the third party in a previously
established conference call, the provider (and switch) may release the conference bridge and revert the

call back to a normal two-party call. If this is the case, hConfCall transitions to the idle state, and the only
remaining participating call will transition to the connected state. Some switches automatically "unhold"
the other call.

The application has the option to send user-to-user information at the time of the drop. Even if user-to-
user information can be sent, there is no guarantee that the network will deliver this information to the
remote party.

Note that in various bridged or party-line configurations when multiple parties are on the call, lineDrop
may not actually clear the call. For example, in a bridged situation, a lineDrop operation may possibly not
actually drop the call because the status of other stations on the call may govern; instead, the call may
simply be changed to the LINECONNECTEDMODE_INACTIVE mode if it remains connected at other
stations.

See Also
LINE_CALLSTATE, LINE_REPLY, LINEDEVCAPS

lineForward       

   

The lineForward function forwards calls destined for the specified address on the specified line,
according to the specified forwarding instructions. When an originating address (dwAddressID) is
forwarded, the specified incoming calls for that address are deflected to the other number by the switch.
This function provides a combination of forward and do-not-disturb features. This function can also cancel
forwarding currently in effect.

LONG lineForward(

 HLINE hLine,
 DWORD bAllAddresses,
 DWORD dwAddressID,
 LPLINEFORWARDLIST const lpForwardList,
 DWORD dwNumRingsNoAnswer,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hLine

A handle to the line device.
bAllAddresses

Specifies whether all originating addresses on the line or just the one specified is to be forwarded. If
TRUE, all addresses on the line are forwarded and dwAddressID is ignored; if FALSE, only the
address specified as dwAddressID is forwarded.

dwAddressID

The address on the specified line whose incoming calls are to be forwarded. This parameter is
ignored if bAllAddresses is TRUE.

lpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions, of type
LINEFORWARDLIST.

dwNumRingsNoAnswer

The number of rings before a call is considered a "no answer." If dwNumRingsNoAnswer is out of
range, the actual value is set to the nearest value in the allowable range.

lphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a handle
to a consultation call that is used to consult the party that is being forwarded to, and the application
becomes the initial sole owner of this call. This pointer must be valid even in environments where call
forwarding does not require a consultation call. This handle will be set to NULL if no consultation call
is created.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer is ignored unless lineForward
requires the establishment of a call to the forwarding destination (and lphConsultCall is returned, in

which case lpCallParams is optional). If NULL, default call parameters are used. Otherwise, the
specified call parameters are used for establishing hConsultCall.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALLINEHANDLE, LINEERR_NOMEM, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED,
LINEERR_INVALCOUNTRYCODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPARAM, LINEERR_UNINITIALIZED.

Remarks
A successful forwarding indicates only that the request has been accepted by the service provider, not
that forwarding is set up at the switch. A LINE_ADDRESSSTATE (forwarding) message provides
confirmation for forwarding having been set up at the switch.

Forwarding of the address(es) remains in effect until this function is called again. The most recent
forwarding list replaces the old one. Forwarding can be canceled by specifying a NULL pointer as
lpForwardList. If a NULL destination address is specified for an entry in the forwarding list, the operation
acts as a do-not-disturb.

Forwarding status of an address may also be affected externally; for example, by administrative actions at
the switch or by a user from another station. It may not be possible for the service provider to be aware of
this state change, and it may not be able to keep in synchronization with the forwarding state known to
the switch.

Because a service provider may not know the forwarding state of the address "for sure" (that is, it may
have been forwarded or unforwarded in an unknown way), lineForward will succeed unless it fails to set
the new forwarding instructions. In other words, a request that all forwarding be canceled at a time that
there is no forwarding in effect will be successful. This is because there is no "unforwarding"¾you can
only change the previous set of forwarding instructions.

The success or failure of this operation does not depend on the previous set of forwarding instructions,
and the same is true when setting different forwarding instructions. The provider should "unforward
everything" prior to setting the new forwarding instructions. Because this may take time in analog
telephony environments, a provider may also want to compare the current forwarding with the new one,
and only issue instructions to the switch to get to the final state (leaving unchanged forwarding
unaffected).

Invoking lineForward when LINEFORWARDLIST has dwNumEntries set to zero has the same effect as
providing a NULL lpForwardList parameter. It cancels all forwarding currently in effect.

See Also
LINE_ADDRESSSTATE, LINE_REPLY, LINECALLPARAMS, LINEFORWARDLIST

lineGatherDigits       

   

The lineGatherDigits function initiates the buffered gathering of digits on the specified call. The
application specifies a buffer in which to place the digits and the maximum number of digits to be
collected.

LONG lineGatherDigits(

 HCALL hCall,
 DWORD dwDigitModes,
 LPSTR lpsDigits,
 DWORD dwNumDigits,
 LPCSTR lpszTerminationDigits,
 DWORD dwFirstDigitTimeout,
 DWORD dwInterDigitTimeout
);

Parameters
hCall

A handle to the call on which digits are to be gathered. The application must be an owner of the call.
The call state of hCall can be any state.

dwDigitModes

The digit mode(s) to be monitored. Note that dwDigitModes is allowed to have one or more flags set.
This parameter uses the following LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of the use of rotary pulse sequences. Valid digits
for pulse mode are '0' through '9'.

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF mode are '0' through '9', 'A', 'B', 'C', 'D', '*', '#'.

lpsDigits

A pointer to the buffer where detected digits are to be stored as ASCII characters. Digits may not
show up in the buffer one at a time as they are collected. Only after a LINE_GATHERDIGITS
message is received should the content of the buffer be assumed to be valid. If lpsDigits is NULL, the
digit gathering currently in progress on the call is terminated and dwNumDigits is ignored. Otherwise,
lpsDigits is assumed to have room for dwNumDigits digits.

dwNumDigits

The number of digits to be collected before a LINE_GATHERDIGITS message is sent to the
application. The dwNumDigits parameter is ignored when lpsDigits is NULL. This function fails if
dwNumDigits is zero.

lpszTerminationDigits

Specifies a NULL-terminated string of termination digits as ASCII characters. If one of the digits in the
string is detected, that termination digit is appended to the buffer, digit collection is terminated, and
the LINE_GATHERDIGITS message is sent to the application.

Valid characters for pulse mode are '0' through '9'. Valid characters for DTMF mode are '0' through '9',
'A', 'B', 'C', 'D', '*', '#'. If this pointer is NULL, or if it points to an empty string, the function behaves as
though no termination digits were supplied.

dwFirstDigitTimeout

The time duration in milliseconds in which the first digit is expected. If the first digit is not received in
this timeframe, digit collection is aborted and a LINE_GATHERDIGITS message is sent to the
application. The buffer only contains the NULL character, indicating that no digits were received and
the first digit timeout terminated digit gathering. The call's line-device capabilities specify the valid
range for this parameter or indicate that timeouts are not supported.

dwInterDigitTimeout

The maximum time duration in milliseconds between consecutive digits. If no digit is received in this
timeframe, digit collection is aborted and a LINE_GATHERDIGITS message is sent to the application.
The buffer only contains the digits collected up to this point followed by a NULL character, indicating
that an interdigit timeout terminated digit gathering. The call's line-device capabilities specify the valid
range for this parameter or indicate that timeouts are not supported.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOMEM, LINEERR_INVALCALLSTATE,
LINEERR_NOTOWNER, LINEERR_INVALDIGITMODE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALDIGITS, LINEERR_OPERATIONFAILED, LINEERR_INVALPARAM,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_INVALTIMEOUT.

Remarks
Digit collection is terminated when the requested number of digits has been collected. It is also terminated
when one of the digits detected matches a digit in szTerminationDigits before the specified number of
digits has been collected. The detected termination digit is also placed in the buffer and the partial buffer
is returned.

Another way of cancelling digit collection is when one of the timeouts expires. The dwFirstDigitTimeout
expires if the first digit is not received in this time period. The dwInterDigitTimout expires if the second,
third, (and so forth) digit is not received within that time period from the previously detected digit, and a
partial buffer is returned.

A fourth method for terminating digit detection is by calling this function again while collection is in
progress. The old collection session is terminated, any digits collected up to that point are copied to the
buffer supplied from the previous call to this function, and the buffer is delivered when the
LINE_GATHERDIGITS message is sent to the application. The mechanism for terminating digit gathering
without initiating another gathering of the digits is by invoking this function with lpsDigits equal to NULL.

This function is considered successful if digit collection has been correctly initiated, not when digit
collection has terminated. In all cases where a partial buffer is returned, valid digits (if any) are followed
by an ASCII NULL character.

Although this function can be invoked in any call state, digits can typically only be gathered while the call
is in the connected state.

The message LINE_GATHERDIGITS is sent only to the application that initiated the request. It is also
sent when partial buffers are returned because of timeouts or matching termination digits, or when the
request is canceled by another lineGatherDigits request on the call. Only one gather¾digits request can

be active on a call at any given time across all applications that are owners of the call. Given the
asynchronous behavior of the operation, an application that issues multiple lineGatherDigits in quick
succession may be able to do so and receive several LINE_GATHERDIGITS messages later. While this
would be unusual application behavior, the application will be able to count the number of these
messages to allow cancel messages to be matched with the earlier requests. In any case, only the most
recent request should be assumed to be valid.

An application can use lineMonitorDigits to enable or disable unbuffered digit detection. Each time a
digit is detected in this fashion, a LINE_MONITORDIGITS message is sent to the application. Both
buffered and unbuffered digit detection can be enabled for the same call simultaneously.

Gathering of digits on a conference call applies only to the hConfCall, not to the individual participating
calls.

If the lineGatherDigits function is used to cancel a previous request to gather digits, the function copies
any digits collected up to that point to the buffer specified in the original function call and sends a
LINE_GATHERDIGITS message to the application, regardless of whether the lpszDigits parameter in the
second call specifies a NULL or different address.

See Also
LINE_GATHERDIGITS, LINE_MONITORDIGITS, lineMonitorDigits

lineGenerateDigits       

   

The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
inband tones using the specified signaling mode. Invoking this function with a NULL value for lpszDigits
aborts any digit generation currently in progress. Invoking lineGenerateDigits or lineGenerateTone
while digit generation is in progress aborts the current digit generation or tone generation and initiates the
generation of the most recently specified digits or tone.

LONG lineGenerateDigits(

 HCALL hCall,
 DWORD dwDigitMode,
 LPCSTR lpszDigits,
 DWORD dwDuration
);

Parameters
hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any state.
dwDigitMode

The format to be used for signaling these digits. Note that dwDigitMode is allowed to have only a
single flag set. This parameter uses the following LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Uses pulse/rotary for digit signaling. Valid digits for pulse mode are '0' through '9'.
LINEDIGITMODE_DTMF

Uses DTMF tones for digit signaling. Valid digits for DTMF mode are '0' through '9', 'A', 'B', 'C', 'D',
'*', '#'.

lpszDigits

A pointer to a NULL-terminated character buffer that contains the digits to be generated. Valid
characters for pulse mode are '0' through '9' and ',' (comma). Valid characters for DTMF mode are '0'
through '9', 'A', 'B', 'C', 'D', '*', '#', and ',' (comma). A comma injects an extra delay between the
signaling of the previous and next digits it separates. The duration of this pause is configuration
defined, and the line's device capabilities indicate what this duration is. Multiple commas may be used
to inject longer pauses. Invalid digits are ignored during the generation, rather than being reported as
an error. The exclamation character (!) is a valid character in the string specifed by the lpszDigits
parameter for both DTMF and pulse mode. This character causes a "hookflash" operation, as
described for dialable addresses.

dwDuration

Both the duration in milliseconds of DTMF digits and pulse and DTMF inter-digit spacing. A value of
zero will use a default value. The dwDuration parameter must be within the range specified by
MinDialParams and MaxDialParams in LINEDEVCAPS. If out of range, the actual value is set to the
nearest value in the range.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALDIGITMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

Remarks
The lineGenerateDigits function is considered to have completed successfully when the digit generation
has been successfully initiated, not when all digits have been generated. In contrast to lineDial, which
dials digits in a network-dependent fashion, lineGenerateDigits guarantees to produce the digits as
inband tones over the voice channel using DTMF or hookswitch dial pulses when using pulse. The
lineGenerateDigits function is generally not suitable for making calls or dialing. It is intended for end-to-
end signaling over an established call.

After all digits in lpszDigits have been generated, or after digit generation has been aborted or canceled, a
LINE_GENERATE message is sent to the application.

Only one inband generation request (tone generation or digit generation) is allowed to be in progress per
call across all applications that are owners of the call. Digit generation on a call is canceled by initiating
either another digit generation request or a tone generation request. To cancel the current digit
generation, the application can invoke lineGenerateDigits and specify NULL for the lpszDigits parameter.

Depending on the service provider and hardware, the application may monitor the digits it generates itself.
If that is not desired, the application can disable digit monitoring while generating digits.

See Also
LINE_GENERATE, LINEDEVCAPS, lineDial, lineGenerateTone

lineGenerateTone       

   

The lineGenerateTone function generates the specified inband tone over the specified call. Invoking this
function with a zero for dwToneMode aborts the tone generation currently in progress on the specified
call. Invoking lineGenerateTone or lineGenerateDigits while tone generation is in progress aborts the
current tone generation or digit generation and initiates the generation of the newly specified tone or
digits.

LONG lineGenerateTone(

 HCALL hCall,
 DWORD dwToneMode,
 DWORD dwDuration,
 DWORD dwNumTones,
 LPLINEGENERATETONE const lpTones
);

Parameters
hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom. A custom tone is
composed of a set of arbitrary frequencies. A small number of standard tones are predefined. The
duration of the tone is specified with dwDuration for both standard and custom tones. Note that
dwToneMode can only have one bit set. If no bits are set (the value 0 is passed), tone generation is
canceled. This parameter uses the following LINETONEMODE_ constants:
LINETONEMODE_CUSTOM

The tone is a custom tone, defined by the specified frequencies.
LINETONEMODE_RINGBACK

The tone to be generated is ring tone. The exact ringback tone is service provider defined.
LINETONEMODE_BUSY

The tone is a standard (station) busy tone. The exact busy tone is service provider defined.
LINETONEMODE_BEEP

The tone is a beep, as used to announce the beginning of a recording. The exact beep tone is
service provider defined.

LINETONEMODE_BILLING

The tone is billing information tone such as a credit card prompt tone. The exact billing tone is
service provider defined.

A value of zero for dwToneMode cancels tone generation.

dwDuration

Duration in milliseconds during which the tone should be sustained. A value of zero for dwDuration
uses a default duration for the specified tone. Default values are:
CUSTOM: infinite
RINGBACK: infinite
BUSY: infinite
BEEP: infinite
BILLING: fixed (single cycle)

dwNumTones

The number of entries in the lpTones array. This field is ignored if dwToneMode is not equal to
CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the tone's components. This parameter is
ignored for non-custom tones. If lpTones is a multi-frequency tone, the various tones are played
simultaneously.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED,
LINEERR_INVALTONEMODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALTONE,
LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks
The lineGenerateTone function is considered to have completed successfully when the tone generation
has been successfully initiated, not when the generation of the tone is done. The function allows the
inband generation of several predefined tones, such as ring back, busy tones, and beep. It also allows for
the fabrication of custom tones by specifying their component frequencies, cadence, and volume.
Because these tones are generated as inband tones, the call would typically have to be in the connected
state for tone generation to be effective. When the generation of the tone is complete, or when tone
generation is canceled, a LINE_GENERATE message is sent to the application.

Only one inband generation request (tone generation or digit generation) is allowed to be in progress per
call across all applications that are owners of the call. This implies that if tone generation is currently in
progress on a call, invoking lineGenerateDigits cancels the tone generation.

If the LINEERR_INVALPOINTER error value is returned, the specified lpTones parameter is invalid or the
value specified by the dwNumTones parameter is too large.

See Also
LINE_GENERATE, lineGenerateDigits, LINEGENERATETONE

lineGetAddressCaps       

   

The lineGetAddressCaps function queries the specified address on the specified line device to
determine its telephony capabilities.

LONG lineGetAddressCaps(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEADDRESSCAPS lpAddressCaps
);

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDeviceID

The line device containing the address to be queried.
dwAddressID

The address on the given line device whose capabilities are to be queried.
dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version
number; the low-order word contains the minor version number. This number is obtained by
lineNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number can be left
zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the
major version number; and the low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion of
the request, this structure is filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESSID, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALAPPHANDLE, LINEERR_UNINITIALIZED, LINEERR_INVALPOINTER,

LINEERR_OPERATIONUNAVAIL, LINEERR_NODRIVER, LINEERR_NODEVICE.

Remarks
Valid address IDs range from zero to one less than the number of addresses returned by
lineGetDevCaps. The version number to be supplied is the version number that was returned as part of
the line's device capabilities by lineGetDevCaps.

See Also
LINEADDRESSCAPS, lineGetDevCaps, lineNegotiateAPIVersion

lineGetAddressID       

   

The lineGetAddressID function returns the address ID associated with an address in a different format
on the specified line.

LONG lineGetAddressID(

 HLINE hLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCSTR lpsAddress,
 DWORD dwSize
);

Parameters
hLine

A handle to the open line device.
lpdwAddressID

A pointer to a DWORD-sized memory location where the address ID is returned.
dwAddressMode

The address mode of the address contained in lpsAddress. The dwAddressMode parameter is
allowed to have only a single flag set. This parameter uses the following LINEADDRESSMODE_
constants:
LINEADDRESSMODE_DIALABLEADDR

The address is specified by its dialable address. The lpsAddress parameter is the dialable address
or canonical address format.

lpsAddress

A pointer to a data structure holding the address assigned to the specified line device. The format of
the address is determined by dwAddressMode. Because the only valid value is
LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format and
is NULL-terminated.

dwSize

The size of the address contained in lpsAddress.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESSMODE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALADDRESS, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks
The lineGetAddressID function is used to map a phone number (address) assigned to a line device back
to its dwAddressID in the range 0 to the number of addresses minus one returned in the line's device
capabilities. The lineMakeCall function allows the application to make a call by specifying a line handle
and an address on the line. The address can be specified as a dwAddressID, as a phone number, or as a
device-specific name or identifier. Using a phone number may be practical in environments where a single
line is assigned multiple addresses. Note that LINEADDRESSMODE_ADDRESSID may not be used with
lineGetAddressID.

See Also
lineMakeCall

lineGetAddressStatus       

   

The lineGetAddressStatus function allows an application to query the specified address for its current
status.

LONG lineGetAddressStatus(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEADDRESSSTATUS lpAddressStatus
);

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the given open line device. This is the address to be queried.
lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL, LINEERR_OPERATIONFAILED.

See Also
LINEADDRESSSTATUS

lineGetAgentActivityList       

   

The lineGetAgentActivityList function obtains the identities of activities which the application can select
using lineSetAgentActivity to indicate what function the agent is actually performing at the moment.

LONG lineGetAgentActivityList(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEAGENTACTIVITYLIST lpAgentActivityList
);

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
lpAgentAcvitityList

A pointer to a variably sized structure of type LINEAGENTACTIVITYLIST. Upon successful
completion of the request, this structure is filled with a list of the agent activity codes which can be
selected using lineSetAgentActivity. Prior to calling lineGetAgentActivityList, the application
should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI
for returning information.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALAGENTID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

See Also
LINEAGENTACTIVITYLIST, lineSetAgentActivity

lineGetAgentCaps       

   

The lineGetAgentCaps function obtains the agent-related capabilities supported on the specified line
device. If a specific agent is named, the capabilities will include a listing of ACD groups into which the
agent is permitted to log in.

LONG lineGetAgentCaps(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAppAPIVersion,
 LPLINEAGENTCAPS lpAgentCaps
);

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDeviceID

The line device containing the address to be queried.
dwAddressID

The address on the given line device whose capabilities are to be queried.
dwAppAPIVersion

The highest API version supported by the application. This should not be the value negotiated using
lineNegotiateAPIVersion on the device being queried.

lpAgentCaps

A pointer to a variably sized structure of type LINEAGENTCAPS. Upon successful completion of the
request, this structure is filled with agent capabilities information. Prior to calling lineGetAgentCaps,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INVALADDRESSID, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NODRIVER, LINEERR_UNINITIALIZED,
LINEERR_NODEVICE.

See Also
LINEAGENTCAPS, lineNegotiateAPIVersion

lineGetAgentGroupList       

   

The lineGetAgentGroupList function obtains the identities of agent groups (combination of queue,
supervisor, skill level, and so on) into which the agent currently logged in on the workstation is permitted
to log into on the automatic call distributor.

LONG lineGetAgentGroupList(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEAGENTGROUPLIST lpAgentGroupList
);

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
lpAgentGroupList

A pointer to a variably sized structure of type LINEAGENTGROUPLIST. Upon successful completion
of the request, this structure is filled with a list of the agent groups into which the agent may log in at
this time (which should include any groups into which the agent is already logged in, if any). Prior to
calling lineGetAgentGroupList, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALAGENTID, LINEERR_INVALLINEHANDLE,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

See Also
LINEAGENTGROUPLIST

lineGetAgentStatus       

   

The lineGetAgentStatus function obtains the agent-related status on the specified address.

LONG lineGetAgentStatus(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEAGENTSTATUS lpAgentStatus
);

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
lpAgentStatus

A pointer to a variably sized structure of type LINEAGENTSTATUS. Upon successful completion of
the request, this structure is filled with agent status information. Prior to calling lineGetAgentStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALLINEHANDLE, LINEERR_INVALPOINTER,
LINEERR_NOMEM, LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL,
LINEERR_RESOURCEUNAVAIL, LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

See Also
LINEAGENTSTATUS

lineGetAppPriority       

   

The lineGetAppPriority function allows an application to determine whether or not it is in the handoff
priority list for a particular media mode or Assisted Telephony request mode, and, if so, its position in the
priority list.

LONG lineGetAppPriority(

 LPCSTR lpszAppFilename,
 DWORD dwMediaMode,
 LPLINEEXTENSIONID const lpExtensionID,
 DWORD dwRequestMode,
 LPVARSTRING lpExtensionName,
 LPDWORD lpdwPriority
);

Parameters
lpszAppFilename

A pointer to a string containing the application executable module filename (without directory
information). In API versions 0x00020000 and greater, the parameter can be in either long or 8.3
filename format. In API versions less than 0x00020000, the parameter must specify a filename in the
8.3 format; long filenames cannot be used.

dwMediaMode

The media mode for which the priority information is to be obtained. The value may be one of the
LINEMEDIAMODE_ constants; only a single bit may be on. The value 0 should be used if checking
application priority for Assisted Telephony requests.

lpExtensionID

A pointer to structure of type LINEEXTENSIONID. This parameter is ignored.
dwRequestMode

If the dwMediaMode parameter is 0, this parameter specifies the Assisted Telephony request mode
for which priority is to be checked. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter is ignored if dwMediaMode is non-zero.

lpExtensionName

This parameter is ignored.
lpdwPriority

A pointer to a DWORD-size memory location into which TAPI will write the priority of the application
for the specified media or request mode. The value 0 will be returned if the application is not in the
stored priority list and does not currently have any line device open with ownership requested of the
specified media mode or having registered for the specified request mode.
In API versions less than 0x00020000, the value -1 (0xFFFFFFFF) is returned if the application has
the line open for the specified media mode or has registered for the specified requests, but the
application is not in the stored priority list (that is, it is in the temporary priority list only). In API
versions 0x00020000 and greater, the value 0 is returned to indicate this condition.
Otherwise, the value will indicate the application's position in the list (with 1 being highest priority, and
increasing values indicating decreasing priority).

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_INVALREQUESTMODE, LINEERR_INVALAPPNAME,
LINEERR_NOMEM, LINEERR_INVALMEDIAMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL.

Remarks
If LINEERR_INVALMEDIAMODE is returned, the value specified in dwMediaMode is not 0, not a valid
extended media mode, and not a LINEMEDIAMODE_ constant, or more than one bit is on in the
parameter value.

Also, long filenames are now permitted for lpszAppFilename; 8.3 names are acceptable, but no longer
required.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

See Also
LINEEXTENSIONID, VARSTRING

lineGetCallInfo       

   

The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

LONG lineGetCallInfo(

 HCALL hCall,
 LPLINECALLINFO lpCallInfo
);

Parameters
hCall

A handle to the call to be queried. The call state of hCall can be any state.
lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion of
the request, this structure is filled with call-related information. Prior to calling lineGetCallInfo, the
application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks
A separate LINECALLINFO structure exists for every inbound or outbound call. The structure contains
primarily fixed information about the call. An application would typically be interested in checking this
information when it receives its handle for a call by the LINE_CALLSTATE message, or each time it
receives notification by a LINE_CALLINFO message that parts of the call information structure have
changed. These messages supply the handle for the call as a parameter.

See Also
LINE_CALLINFO, LINE_CALLSTATE, LINECALLINFO

lineGetCallStatus       

   

The lineGetCallStatus function returns the current status of the specified call.

LONG lineGetCallStatus(

 HCALL hCall,
 LPLINECALLSTATUS lpCallStatus
);

Parameters
hCall

A handle to the call to be queried. The call state of hCall can be any state.
lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful completion
of the request, this structure is filled with call status information. Prior to calling lineGetCallStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks
The lineGetCallStatus function returns the dynamic status of a call, whereas lineGetCallInfo returns
primarily static information about a call. Call status information includes the current call state, detailed
mode information related to the call while in this state (if any), as well as a list of the available API
functions the application can invoke on the call while the call is in this state. An application would typically
be interested in requesting this information when it receives notification about a call state change by the
LINE_CALLSTATE message.

See Also
LINE_CALLSTATE, LINECALLSTATUS, lineGetCallInfo

lineGetConfRelatedCalls       

   

The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference
call as the specified call. The specified call is either a conference call or a participant call in a conference
call. New handles are generated for those calls for which the application does not already have handles,
and the application is granted monitor privilege to those calls.

LONG lineGetConfRelatedCalls(

 HCALL hCall,
 LPLINECALLLIST lpCallList
);

Parameters
hCall

A handle to a call. This is either a conference call or a participant call in a conference call. For a
conference parent call, the call state of hCall can be any state. For a conference participant call, it
must be in the conferenced state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of
the request, call handles to all calls in the conference call are returned in this structure. The first call in
the list is the conference call, the other calls are the participant calls. The application is granted
monitor privilege to those calls for which it does not already have handles; the privileges to calls in the
list for which the application already has handles is unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_NOCONFERENCE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
The specified call can either be a conference call handle or a handle to a participant call. For example, a
consultation call that has not yet been added to a conference call is not part of a conference. The first
entry in the list that is returned is the conference call handle, the other handles are all the participant calls.
The specified call is always one of the calls returned in the list. Calls in the list to which the application
does not already have a call handle are assigned monitor privilege; privileges to calls for which the
application already has handles are unchanged. The application can use lineSetCallPrivilege to change
the privilege of the call.

Note that if lineGetConfRelatedCalls is called immediately after a call is added to a conference using
lineCompleteTransfer, lineGetConfRelatedCalls may not return a complete list of related calls because
TAPI waits to receive a LINE_CALLSTATE message indicating that the call has entered
LINECALLSTATE_CONFERENCED before it considers the call to actually be part of the conference (that

is, the conferenced state is confirmed by the service provider). Once the application has received the
LINE_CALLSTATE message, lineGetConfRelatedCalls returns complete information.

The application can invoke lineGetCallInfo and lineGetCallStatus for each call in the list to determine
the call's information and status, respectively.

See Also
LINE_CALLSTATE, lineCompleteTransfer, lineGetCallInfo, lineGetCallStatus, lineSetCallPrivilege

lineGetCountry       

   

The lineGetCountry function fetches the stored dialing rules and other information related to a specified
country, the first country in the country list, or all countries.

LONG lineGetCountry(

 DWORD dwCountryID,
 DWORD dwAPIVersion,
 LPLINECOUNTRYLIST lpLineCountryList
);

Parameters
dwCountryID

The country ID (not the country code) of the country for which information is to be obtained. If the
value 1 is specified, information on the first country in the country list is obtained. If the value 0 is
specified, information on all countries is obtained (which may require a great deal of
memory¾20Kbytes or more).

dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

lpLineCountryList

A pointer to a location to which a LINECOUNTRYLIST structure will be loaded. Prior to calling
lineGetCountry, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALCOUNTRYCODE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER.

Remarks
Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
LINECOUNTRYLIST, lineNegotiateAPIVersion

lineGetDevCaps       

   

The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information is valid for all addresses on the line device.

LONG lineGetDevCaps(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEDEVCAPS lpLineDevCaps
);

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDeviceID

The line device to be queried.
dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version
number; the low-order word contains the minor version number. This number is obtained by
lineNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
by lineNegotiateExtVersion. It can be left zero if no device-specific extensions are to be used.
Otherwise, the high-order word contains the major version number; the low-order word contains the
minor version number.

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure is filled with line device capabilities information. Prior to calling
lineGetDevCaps, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALAPPHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NODRIVER,
LINEERR_OPERATIONUNAVAIL, LINEERR_NODEVICE.

Remarks

Before using lineGetDevCaps, the application must negotiate the API version number to use, and, if
desired, the extension version to use.

The API and extension version numbers are those under which TAPI and the service provider must
operate. If version ranges do not overlap, the application, API, or service-provider versions are
incompatible and an error is returned.

One of the fields in the LINEDEVCAPS structure returned by this function contains the number of
addresses assigned to the specified line device. The actual address IDs used to reference individual
addresses vary from zero to one less than the returned number. The capabilities of each address may be
different. Use lineGetAddressCaps for each available <dwDeviceID, dwAddressID> combination to
determine the exact capabilities of each address.

See Also
LINEDEVCAPS, lineGetAddressCaps, lineNegotiateAPIVersion, lineNegotiateExtVersion

lineGetDevConfig       

   

The lineGetDevConfig function returns an "opaque" data structure object, the contents of which are
specific to the line (service provider) and device class. The data structure object stores the current
configuration of a media-stream device associated with the line device.

LONG lineGetDevConfig(

 DWORD dwDeviceID,
 LPVARSTRING lpDeviceConfig,
 LPCSTR lpszDeviceClass
);

Parameters
dwDeviceID

The line device to be configured.
lpDeviceConfig

A pointer to the memory location of type VARSTRING where the device configuration structure is
returned. Upon successful completion of the request, this location is filled with the device
configuration. The dwStringFormat field in the VARSTRING structure will be set to
STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig, the application should set the
dwTotalSize field of this structure to indicate the amount of memory available to TAPI for returning
information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
configuration is requested. Valid device class lineGetID strings are the same as those specified for
the function.

Return Values
Returns zero if the function is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NODRIVER, LINEERR_INVALDEVICECLASS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_OPERATIONFAILED, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_NODEVICE.

Remarks
Call states are device specific.

The lineGetDevConfig function can be used to retrieve a data structure from TAPI that specifies the
configuration of a media stream device associated with a particular line device. For example, the contents
of this structure could specify data rate, character format, modulation schemes, and error control protocol
settings for a "datamodem" media device associated with the line.

Typically, an application will call lineGetID to identify the media stream device associated with a line, and
then call lineConfigDialog to allow the user to set up the device configuration. It could then call

lineGetDevConfig, and save the configuration information in a phone book (or other database)
associated with a particular call destination. When the user later wishes to call the same destination
again, lineSetDevConfig can be used to restore the configuration settings selected by the user. The
functions lineSetDevConfig, lineConfigDialog, and lineGetDevConfig can be used, in that order, to
allow the user to view and update the settings.

The exact format of the data contained within the structure is specific to the line and media stream API
(device class), is undocumented, and is undefined. The structure returned by this function cannot be
directly accessed or manipulated by the application, but can only be stored intact and later used in
lineSetDevConfig to restore the settings. The structure also cannot necessarily be passed to other
devices, even of the same device class (although this may work in some instances, it is not guaranteed).

See Also
lineConfigDialog, lineGetID, lineSetDevConfig, VARSTRING

lineGetIcon       

   

The lineGetIcon function allows an application to retrieve a service line device-specific (or provider-
specific) icon for display to the user.

LONG lineGetIcon(

 DWORD dwDeviceID,
 LPCSTR lpszDeviceClass,
 LPHICON lphIcon
);

Parameters
dwDeviceID

The line device whose icon is requested.
lpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific sub-icon applicable to that device class. This parameter is optional and
can be left NULL or empty, in which case the highest-level icon associated with the line device rather
than a specified media stream device would be selected.

lphIcon

A pointer to a memory location in which the handle to the icon is returned.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALDEVICECLASS, LINEERR_UNINITIALIZED,
LINEERR_NOMEM, LINEERR_NODEVICE.

Remarks
The lineGetIcon function causes the provider to return a handle (in lphIcon) to an icon resource (obtained
from LoadIcon) that is associated with the specified line. The icon handle is for a resource associated
with the provider. The application must use CopyIcon if it wishes to reference the icon after the provider
is unloaded, which is unlikely to happen as long as the application has the line open.

The lpszDeviceClass parameter allows the provider to return different icons based on the type of service
being referenced by the caller. The permitted strings are the same as for lineGetID. For example, if the
line supports the Comm API, passing "COMM" as lpszDeviceClass causes the provider to return an icon
related specifically to the Comm device functions of the service provider. The parameters "tapi/line", "", or
NULL may be used to request the icon for the line service.

For applications using an API version less than 0x00020000, if the provider does not return an icon
(whether because the given device class is invalid or the provider does not support icons), TAPI
substitutes a generic Win32 Telephony line device icon. For applications using API version 0x00020000 or
greater, TAPI substitutes the default line icon only if the lpszDeviceClass parameter is "tapi/line", "" or

NULL. For any other device class, if the given device class is not valid or the provider does not support
icons for the class, lineGetIcon returns LINEERR_INVALDEVICECLASS.

See Also
lineGetID

lineGetID       

   

The lineGetID function returns a device ID for the specified device class associated with the selected line,
address, or call.

LONG lineGetID(

 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);

Parameters
hLine

A handle to an open line device.
dwAddressID

An address on the given open line device.
hCall

A handle to a call.
dwSelect

Specifies whether the requested device ID is associated with the line, address or a single call. The
dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_ constants:
LINECALLSELECT_LINE

Selects the specified line device. The hLine parameter must be a valid line handle; hCall and
dwAddressID are ignored.

LINECALLSELECT_ADDRESS

Selects the specified address on the line. Both hLine and dwAddressID must be valid; hCall is
ignored.

LINECALLSELECT_CALL

Selects the specified call. hCall must be valid; hLine and dwAddressID are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device ID is returned. Upon
successful completion of the request, this location is filled with the device ID. The format of the
returned information depends on the method used by the device class API for naming devices. Prior
to calling lineGetID, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose ID is
requested. Valid device class strings are those used in the SYSTEM.INI section to identify device
classes.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_NOMEM, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSELECT, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NODEVICE, LINEERR_UNINITIALIZED.

Remarks
The lineGetID function can be used to retrieve a line-device ID when given a line handle. This is useful
after a line device has been opened using LINEMAPPER as a device ID in order to determine the real
line-device ID of the opened line. This function can also be used to obtain the device ID of a phone device
or media device (for device classes such as COM, wave, MIDI, phone, line, or NDIS) associated with a
call, address or line. This ID can then be used with the appropriate API (such as phone, midi, wave) to
select the corresponding media device associated with the specified call.

See Device Classes in TAPI for device class names.

A vendor that defines a device-specific media mode also needs to define the corresponding device-
specific (proprietary) API to manage devices of the media mode. To avoid collisions on device class
names assigned independently by different vendors, a vendor should select a name that uniquely
identifies both the vendor and, following it, the media type. For example: "intel/video".

See Also
VARSTRING

lineGetLineDevStatus       

   

The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

LONG lineGetLineDevStatus(

 HLINE hLine,
 LPLINEDEVSTATUS lpLineDevStatus
);

Parameters
hLine

A handle to the open line device to be queried.
lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion of
the request, this structure is filled with the line's device status. Prior to calling lineGetLineDevStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks
An application uses lineGetLineDevStatus to query the line device for its current line status. This status
information applies globally to all addresses on the line device. Use lineGetAddressStatus to determine
status information about a specific address on a line.

See Also
LINEDEVSTATUS, lineGetAddressStatus

lineGetMessage   

The lineGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see lineInitializeEx for further details).

LONG lineGetMessage(

 HLINEAPP hLineApp,
 LPLINEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters
hLineApp

The handle returned by lineInitializeEx. The application must have set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure will
contain the next message which had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns
immediately. If dwTimeout is INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_NOMEM.

Remarks
If the lineGetMessage function has been called with a non-zero timeout and the application calls
lineShutdown on another thread, this function will return immediately with
LINEERR_INVALAPPHANDLE.

If the timeout expires (or was zero) and no message could be fetched from the queue, the function returns
with the error LINEERR_OPERATIONFAILED.

See Also
lineInitializeEx, LINEINITIALIZEEXPARAMS, LINEMESSAGE, lineShutdown

lineGetNewCalls       

   

The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application is granted monitor privilege to these calls.

LONG lineGetNewCalls(

 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwSelect,
 LPLINECALLLIST lpCallList
);

Parameters
hLine

A handle to an open line device.
dwAddressID

An address on the given open line device.
dwSelect

The selection of calls that are requested. Note that dwSelect can only have one bit set. This
parameter uses the following LINECALLSELECT_ constants:
LINECALLSELECT_LINE

Selects calls on the specified line device. The hLine parameter must be a valid line handle;
dwAddressID is ignored.

LINECALLSELECT_ADDRESS

Selects calls on the specified address on the specified line device. Both hLine and dwAddressID
must be valid.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of
the request, call handles to all selected calls are returned in this structure. Prior to calling
lineGetNewCalls, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSELECT,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks

An application can use lineGetNewCalls to obtain handles to calls for which it currently has no handles.
The application can select the calls for which handles are to be returned by basing this selection on scope
(calls on a specified line, or calls on a specified address). For example, an application can request call
handles to all calls on a given address for which it currently has no handle. The application is always
given monitor privilege to the new call handles. Also, when opening a line, an application uses this
function to become aware of existing calls.

The application can invoke lineGetCallInfo and lineGetCallStatus for each call in the list to determine
the call's information and status, respectively. It can use lineSetCallPrivilege to change its privilege to
owner.

See Also
LINECALLLIST, lineGetCallInfo, lineGetCallStatus, lineSetCallPrivilege

lineGetNumRings       

   

The lineGetNumRings function determines the number of rings an inbound call on the given address
should ring prior to answering the call.

LONG lineGetNumRings(

 HLINE hLine,
 DWORD dwAddressID,
 LPDWORD lpdwNumRings
);

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the line device.
lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.

Remarks
The lineGetNumRings and lineSetNumRings functions, when used in combination, provide a
mechanism to support the implementation of toll-saver features across multiple independent applications.

An application that receives a handle for a call in the offering state and a LINE_LINEDEVSTATE ringing
message should wait a number of rings equal to the number returned by lineGetNumRings before
answering the call in order to honor the toll-saver settings across all applications. The lineGetNumRings
function returns the minimum of all application's number of rings specified by lineSetNumRings.
Because this number may vary dynamically, an application should invoke lineGetNumRings each time it
has the option to answer a call. If no application has called lineSetNumRings, the number or rings
returned is 0xFFFFFFFF. A separate LINE_LINEDEVSTATE ringing message is sent to the application for
each ring cycle.

If call classification is performed by TAPI of answering all calls of unknown media mode and filtering the
media stream, TAPI honors this number as well.

Note that this operation is purely informational and does not in itself affect the state of any calls on the line
device.

See Also
LINE_LINEDEVSTATE, lineSetNumRings

lineGetProviderList       

   

The lineGetProviderList function returns a list of service providers currently installed in the telephony
system.

LONG lineGetProviderList(

 DWORD dwAPIVersion,
 LPLINEPROVIDERLIST lpProviderList
);

Parameters
dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

lpProviderList

A pointer to a memory location where TAPI will return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL.

Remarks
Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
lineNegotiateAPIVersion, LINEPROVIDERLIST

lineGetRequest       

   

The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

LONG lineGetRequest(

 HLINEAPP hLineApp,
 DWORD dwRequestMode,
 LPVOID lpRequestBuffer
);

Parameters
hLineApp

The application's usage handle for the line portion of TAPI.
dwRequestMode

The type of request that is to be obtained. Note that dwRequestMode can only have one bit set. This
parameter uses the following LINEREQUESTMODE_ constants:
LINEREQUESTMODE_MAKECALL

A tapiRequestMakeCall request.

lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the
buffer and the interpretation of the information placed in the buffer depends on the request mode. The
application-allocated buffer is assumed to be of sufficient size to hold the request.
If dwRequestMode is LINEREQUESTMODE_MAKECALL, interpret the content of the request buffer
using the LINEREQMAKECALL structure.
If dwRequestMode is LINEREQUESTMODE_MEDIACALL, interpret the content of the request buffer
using the LINEREQMEDIACALL structure.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_NOTREGISTERED, LINEERR_INVALPOINTER,
LINEERR_OPERATIONFAILED, LINEERR_INVALREQUESTMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED, LINEERR_NOREQUEST.

Remarks
A telephony-enabled application can request that a call be placed on its behalf by invoking
tapiRequestMakeCall. These requests are queued by TAPI and the highest priority application that has
registered to handle the request is sent a LINE_REQUEST message with indication of the mode of the
request that is pending. Typically, this application is the user's call-control application. The
LINE_REQUEST message indicates that zero or more requests may be pending for the registered
application to process; after receiving LINE_REQUEST, it is the responsibility of the recipient application
to call lineGetRequest until LINEERR_NOREQUEST is returned, indicating that no more requests are

pending.

Next, the call-control application that receives this message invokes lineGetRequest, specifying the
request mode and a buffer that is large enough to hold the request. The call-control application then
interprets and executes the request.

After execution of lineGetRequest, TAPI purges the request from its internal queue, making room
available for a subsequent request. It is therefore possible for a new LINE_REQUEST message to be
received immediately upon execution of lineGetRequest, should the same or another application issue
another request. It is the responsibility of the request recipient application to handle this scenario by some
mechanism (for example, by making note of the additional LINE_REQUEST and deferring a subsequent
lineGetRequest until processing of the preceding request completes, by getting the subsequent request
and buffer as necessary, or by another appropriate means).

Note that the subsequent LINE_REQUEST should not be ignored because it will not be repeated by TAPI.

See Also
LINE_REQUEST, LINEREQMAKECALL, tapiRequestMakeCall

lineGetStatusMessages       

   

The lineGetStatusMessages function enables an application to query which notification messages the
application is set up to receive for events related to status changes for the specified line or any of its
addresses.

LONG lineGetStatusMessages(

 HLINE hLine,
 LPDWORD lpdwLineStates,
 LPDWORD lpdwAddressStates
);

Parameters
hLine

A handle to the line device.
lpdwLineStates

A bit array that identifies for which line device status changes a message is to be sent to the
application. If a flag is TRUE, that message is enabled; if FALSE, it is disabled. Note that multiple
flags can be set. This parameter uses the following LINEDEVSTATE_ constants:
LINEDEVSTATE_OTHER

Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING

The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending LINE_LINEDEVSTATE messages containing this constant. For example, in the United
States, service providers send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED

The line was previously disconnected and is now connected to TAPI.
LINEDEVSTATE_NUMCOMPLETIONS

The number of outstanding call completions on the line device has changed.
LINEDEVSTATE_DISCONNECTED

This line was previously connected and is now disconnected from TAPI.
LINEDEVSTATE_MSGWAITON

The "message waiting" indicator is turned on.
LINEDEVSTATE_MSGWAITOFF

The "message waiting" indicator is turned off.
LINEDEVSTATE_INSERVICE

The line is connected to TAPI. This happens when TAPI is first activated or when the line wire is
physically plugged in and in service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate
on the line device.

LINEDEVSTATE_MAINTENANCE

Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the
line device.

LINEDEVSTATE_OPEN

The line has been opened by some application.
LINEDEVSTATE_CLOSE

The line has been closed by some application.
LINEDEVSTATE_NUMCALLS

The number of calls on the line device has changed.
LINEDEVSTATE_TERMINALS

The terminal settings have changed.
LINEDEVSTATE_ROAMMODE

The roam mode of the line device has changed.
LINEDEVSTATE_BATTERY

The battery level has changed significantly (cellular).
LINEDEVSTATE_SIGNAL

The signal level has changed significantly (cellular).
LINEDEVSTATE_DEVSPECIFIC

The line's device-specific information has changed.
LINEDEVSTATE_REINIT

Items have changed in the configuration of line devices. To become aware of these changes (for
example, the appearance of new line devices) the application should reinitialize its use of TAPI.
The hDevice parameter of the LINE_LINEDEVSTATE message is left NULL for this state change
as it applies to any of the lines in the system.

LINEDEVSTATE_LOCK

The locked status of the line device has changed.
LINEDEVSTATE_REMOVED

The device is being removed from the system by the service provider (most likely through user
action, through a control panel or similar utility). A LINE_LINEDEVSTATE message with this value
will normally be immediately followed by a LINE_CLOSE message on the device. Subsequent
attempts to access the device prior to TAPI being reinitialized will result in LINEERR_NODEVICE
being returned to the application. If a service provider sends a LINE_LINEDEVSTATE message
containing this value to TAPI, TAPI will pass it along to applications which have negotiated TAPI
version 0x00010004 or above; applications negotiating a previous API version will not receive any
notification.

lpdwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, disabled. Multiple flags can be set. This

parameter uses the following LINEADDRESSSTATE_ constants:
LINEADDRESSSTATE_OTHER

Address-status items other than those listed below have changed. The application should check
the current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status has changed.
LINEADDRESSSTATE_INUSEZERO

The address has changed to idle (it is now in use by zero stations).
LINEADDRESSSTATE_INUSEONE

The address has changed from being idle or from being in use by many bridged stations to being in
use by just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address has changed from being in use by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This is the result of events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address has changed, including the number of rings for determining a
"no answer" condition. The application should check the address status to determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address have changed.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
TAPI defines a number of messages that notify applications about events occurring on lines and
addresses. An application may not be interested in receiving all address and line status change
messages. The lineSetStatusMessages function can be used to select which messages the application
wants to receive. By default, address status and line status reporting is disabled.

See Also
LINE_CLOSE, LINE_LINEDEVSTATE, lineSetStatusMessages

lineGetTranslateCaps       

   

The lineGetTranslateCaps function returns address translation capabilities.

LONG lineGetTranslateCaps(

 HLINEAPP hLineApp,
 DWORD dwAPIVersion,
 LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters
hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure will be loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NODRIVER.

See Also
lineInitializeEx, lineNegotiateAPIVersion, LINETRANSLATECAPS

lineHandoff       

   

The lineHandoff function gives ownership of the specified call to another application. The application can
be either specified directly by its filename or indirectly as the highest priority application that handles calls
of the specified media mode.

LONG lineHandoff(

 HCALL hCall,
 LPCSTR lpszFileName,
 DWORD dwMediaMode
);

Parameters
hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of
hCall can be any state.

lpszFileName

A pointer to a NULL-terminated ASCII string. If this pointer parameter is non-NULL, it contains the
filename of the application that is the target of the handoff. If NULL, the handoff target is the highest
priority application that has opened the line for owner privilege for the specified media mode. A valid
filename does not include the path of the file.

dwMediaMode

The media mode used to identify the target for the indirect handoff. The dwMediaMode parameter
indirectly identifies the target application that is to receive ownership of the call. This parameter is
ignored if lpszFileName is not NULL. Only a single flag may be set in the dwMediaMode parameter at
any one time. This parameter uses the following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

The target application is the one that handles calls of unknown media mode (unclassified calls).
LINEMEDIAMODE_INTERACTIVEVOICE

The target application is the one that handles calls with the interactive voice media mode (live
conversations).

LINEMEDIAMODE_AUTOMATEDVOICE

Voice energy is present on the call and the voice is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM

The target application is the one that handles calls with the data modem media mode.
LINEMEDIAMODE_G3FAX

The target application is the one that handles calls with the group 3 fax media mode.
LINEMEDIAMODE_TDD

The target application is the one that handles calls with the TDD (Telephony Devices for the Deaf)
media mode.

LINEMEDIAMODE_G4FAX

The target application is the one that handles calls with the group 4 fax media mode.
LINEMEDIAMODE_DIGITALDATA

The target application is the one that handles calls that are digital data calls.
LINEMEDIAMODE_TELETEX

The target application is the one that handles calls with the teletex media mode.
LINEMEDIAMODE_VIDEOTEX

The target application is the one that handles calls with the videotex media mode.
LINEMEDIAMODE_TELEX

The target application is the one that handles calls with the telex media mode.
LINEMEDIAMODE_MIXED

The target application is the one that handles calls with the ISDN mixed media mode.
LINEMEDIAMODE_ADSI

The target application is the one that handles calls with the ADSI (Analog Display Services
Interface) media mode.

LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALMEDIAMODE,
LINEERR_TARGETNOTFOUND, LINEERR_INVALPOINTER, LINEERR_TARGETSELF,
LINEERR_NOMEM, LINEERR_UNINITIALIZED, LINEERR_NOTOWNER.

Remarks
The lineHandoff function returns LINEERR_TARGETSELF if the calling application attempted an indirect
handoff (that is, set the lpszFileName parameter to NULL) and TAPI determined that the application is
itself the highest priority application for the given media mode. If LINEERR_TARGETNOTFOUND is
returned, a target for the call handoff was not found. This may occur if the named application did not open
the same line with the LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen. Or,
in the case of media-mode handoff, no application has opened the same line with the
LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen and with the media mode
specified in the dwMediaMode parameter having been specified in the dwMediaModes parameter of
lineOpen.

Call handoff allows ownership of a call to be passed among applications. There are two types of handoff.
In the first type, if the application knows the filename of the target application, it can simply specify the
filename of that application. If an instance of the target application has opened the line device, ownership
of the call will be passed to the other application; otherwise, the handoff will fail and an error is returned.
This form of handoff will succeed if the call handle is handed off to the same file name as the application
requesting the handoff.

The second type of handoff is based on media mode. In this case, the application indirectly specifies the
target application by means of a media mode. The highest priority application that has currently opened
the line device for that media mode is the target for the handoff. If there is no such application, the
handoff fails and an error is returned.

The lineHandoff function does not change the media mode of a call. To change the media mode of a call,
the application should use lineSetMediaMode on the call, specifying the new media mode. This changes
the call's media as stored in the call's LINECALLINFO structure.

If handoff is successful, the receiving application will receive a LINE_CALLSTATE message for the call.
This message indicates that the receiving application has owner privilege to the call (dwParam3). In
addition, the number of owners and/or monitors for the call may have changed. This is reported by the
LINE_CALLINFO message, and the receiving application can then invoke lineGetCallStatus and
lineGetCallInfo to retrieve more information about the received call.

The receiving application should first check the media mode in LINECALLINFO. If only a single media
mode flag is set, the call is officially of that media mode, and the application can act accordingly. If
UNKNOWN and other media mode flags are set, then the media mode of the call is officially UNKNOWN
but is assumed to be of one of the media modes for which a flag is set in LINECALLINFO. The
application should assume that it ought to probe for the highest priority media mode.

If the probe succeeds (either for that media mode or for another one), the application should set the
media mode field in LINECALLINFO to just the single media mode that was recognized. If the media
mode is for that media mode, the application can act accordingly; otherwise, if it makes a determination
for another media mode, it must first hand off the call to that media mode.

If the probe fails, the application should clear the corresponding media mode flag in LINECALLINFO and
hand off the call, specifying dwMediaMode as LINEMEDIAMODE_UNKNOWN. It should also deallocate
its call handle (or revert back to monitoring).

If none of the media modes succeeded in making a determination, only the UNKNOWN flag will remain
set in the media mode field of LINECALLINFO at the time the media application attempts to hand off the
call back to UNKNOWN. The final lineHandoff will fail if the application is the only remaining owner of the
call. This informs the application that it should drop the call and deallocate its handle, in which case the
call is abandoned. The privileges of the invoking application to the call are unchanged by this operation,
but the application can change its privileges to a call with lineSetCallPrivilege.

See Also
LINECALLINFO, lineGetCallStatus, lineOpen, lineSetCallPrivilege, lineSetMediaMode

lineHold       

   

The lineHold function places the specified call on hold.

LONG lineHold(

 HCALL hCall
);

Parameters
hCall

A handle to the call to be placed on hold. The application must be an owner of the call. The call state
of hCall must be connected.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

Remarks
The call on hold is temporarily disconnected allowing the application to use the line device for making or
answering other calls. The lineHold function performs a so-called "hard hold" of the specified call (as
opposed to a "consultation call"). A call on hard hold typically cannot be transferred or included in a
conference call, but a consultation call can. Consultation calls are initiated using lineSetupTransfer,
lineSetupConference, or linePrepareAddToConference.

After a call has been successfully placed on hold, the call state typically transitions to onHold. A held call
is retrieved by lineUnhold. While a call is on hold, the application may receive LINE_CALLSTATE
messages about state changes of the held call. For example, if the held party hangs up, the call state may
transition to disconnected.

In a bridged situation, a lineHold operation may possibly not actually place the call on hold, because the
status of other stations on the call may govern (for example, attempting to "hold" a call when other
stations are participating will not be possible); instead, the call may simply be changed to the
LINECONNECTEDMODE_INACTIVE mode if it remains connected at other stations.

See Also
LINE_CALLSTATE, linePrepareAddToConference, lineSetupConference, lineSetupTransfer,
lineUnhold

lineInitialize       

   

The lineInitialize function is obsolete. It continues to be exported by TAPI.DLL and TAPI32.DLL for
backward compatibility with applications using API versions 0x00010003 and 0x00010004.

Applications using API version 0x00020000 or greater must use lineInitializeEx instead.

For Windows 95 applications only
The lineInitialize function initializes the application's use of TAPI.DLL for subsequent use of the line
abstraction. It registers the application's specified notification mechanism and returns the number of line
devices available to the application. A line device is any device that provides an implementation for the
line-prefixed functions in the Telephony API.

LONG lineInitialize(

 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters
lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.
hInstance

The instance handle of the client application or DLL.
lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information see lineCallbackFunc.

lpszAppName

A pointer to a NULL-terminated ASCII string that contains only displayable ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly way, which application
originated, or originally accepted or answered the call. This information can be useful for call logging
purposes. If lpszAppName is NULL, the application's filename is used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is
filled with the number of line devices available to the application.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPNAME, LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_REINIT,
LINEERR_NODRIVER, LINEERR_NODEVICE, LINEERR_NOMEM,
LINEERR_NOMULTIPLEINSTANCE.

Remarks
If LINEERR_REINIT is returned and TAPI reinitialization has been requested (for example as a result of
adding or removing a Telephony service provider), then lineInitialize requests are rejected with this error
until the last application shuts down its usage of the API (using lineShutdown). At that time, the new
configuration becomes effective and applications are once again permitted to call lineInitialize. If the
LINEERR_INVALPARAM error value is returned, the specified hInstance parameter is invalid.

The application can refer to individual line devices by using line device IDs that range from zero to
dwNumDevs minus one. An application should not assume that these line devices are capable of
anything beyond what is specified by the Basic Telephony subset without first querying their device
capabilities using lineGetDevCaps and lineGetAddressCaps.

Applications should not invoke lineInitialize without subsequently opening a line (at least for monitoring).
If the application is not monitoring and not using any devices, it should call lineShutdown so that memory
resources allocated by TAPI.DLL can be released if unneeded, and TAPI.DLL itself can be unloaded from
memory while not needed.

Another reason for performing a lineShutdown is that if a user changes the device configuration (adds or
removes a line or phone), there is no way for TAPI to notify an application that has a line or phone handle
open at the time. Once a reconfiguration has taken place, causing a LINEDEVSTATE_REINIT message
to be sent, no applications can open a device until all applications have performed a lineShutdown. If
any service provider fails to initialize properly, this function fails and returns the error indicated by the
service provider.

On all TAPI platforms, lineInitialize is equivalent to lineInitializeEx() using the
LINEINITIALIZEEXOPTION_USEHIDDENWINDOW option.

lineInitializeEx   

The lineInitializeEx function initializes the application's use of TAPI for subsequent use of the line
abstraction. It registers the application's specified notification mechanism and returns the number of line
devices available to the application. A line device is any device that provides an implementation for the
line-prefixed functions in the Telephony API.

LONG lineInitializeEx(

 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);

Parameters
lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.
hInstance

The instance handle of the client application or DLL. The application or DLL may pass NULL for this
parameter, in which case TAPI will use the module handle of the root executable of the process (for
purposes of identifying call handoff targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information see lineCallbackFunc). This parameter is ignored and should be set to NULL
when the application chooses to use the "event handle" or "completion port" event notification
mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only displayable ASCII characters. If this
parameter is not NULL, it contains an application-supplied name of the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly way, which application
originated, or originally accepted or answered the call. This information can be useful for call logging
purposes. If lpszFriendlyAppName is NULL, the application's module filename is used instead (as
returned by the Windows API GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is
filled with the number of line devices available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this
function, to the highest API version it is designed to support (for example, the same value it would
pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Artificially high values must not
be used; the value must be accurately set (for this release, to 0x00020000). TAPI will translate any
newer messages or structures into values or formats supported by the application's version. Upon
successful completion of this request, this location is filled with the highest API version supported by

TAPI (for this release, 0x00020000), thereby allowing the application to detect and adapt to having
been installed on a system with an older version of TAPI.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS containing additional parameters used to
establish the association between the application and TAPI (specifically, the application's selected
event notification mechanism and associated parameters).

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPNAME, LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT,
LINEERR_INVALPOINTER, LINEERR_REINIT, LINEERR_NOMEM, LINEERR_INVALPARAM.

Remarks
Applications must select one of three mechanisms by which TAPI notifies the application of telephony
events: Hidden Window, Event Handle, or Completion Port.

The Hidden Window mechanism is selected by specifying
LINEINITIALIZEEXOPTION_USEHIDDENWINDOW in the dwOptions field in the
LINEINITIALIZEEXPARAMS structure. In this mechanism (which is the only mechanism available to TAPI
1.x applications), TAPI creates a window in the context of the application during the lineInitializeEx
function, and subclasses the window so that all messages posted to it are handled by a WNDPROC in
TAPI itself. When TAPI has a message to deliver to the application, TAPI posts a message to the hidden
window. When the message is received (which can happen only when the application calls the Windows
GetMessage API), Windows switches the process context to that of the application and invokes the
WNDPROC in TAPI. TAPI then delivers the message to the application by calling the LineCallbackProc,
a pointer to which the application provided as a parameter in its call to lineInitializeEx (or lineInitialize,
for TAPI 1.3 and 1.4 applications). This mechanism requires the application to have a message queue
(which is not desirable for service processes) and to service that queue regularly to avoid delaying
processing of telephony events. The hidden window is destroyed by TAPI during the lineShutdown
function.

The Event Handle mechanism is selected by specifying LINEINITIALIZEEXOPTION_USEEVENT in the
dwOptions field in the LINEINITIALIZEEXPARAMS structure. In this mechanism, TAPI creates an event
object on behalf of the application, and returns a handle to the object in the hEvent field in
LINEINITIALIZEEXPARAMS. The application must not manipulate this event in any manner (for
example, must not call SetEvent, ResetEvent, CloseHandle, and so on) or undefined behavior will
result; the application may only wait on this event using functions such as WaitForSingleObject or
MsgWaitForMultipleObjects. TAPI will signal this event whenever a telephony event notification is
pending for the application; the application must call lineGetMessage to fetch the contents of the
message. The event is reset by TAPI when no events are pending. The event handle is closed and the
event object destroyed by TAPI during the lineShutdown function. The application is not required to wait
on the event handle that is created; the application could choose instead to call lineGetMessage and
have it block waiting for a message to be queued.

The Completion Port mechanism is selected by specifying
LINEINITIALIZEEXOPTION_USECOMPLETION PORT in the dwOptions field in the
LINEINITIALIZEEXPARAMS structure. In this mechanism, whenever a telephony event needs to be sent
to the application, TAPI will send it to the application using PostQueuedCompletionStatus to the
completion port that the application specified in the hCompletionPort field in
LINEINITIALIZEEXPARAMS, tagged with the completion key that the application specified in the
dwCompletionKey field in LINEINITIALIZEEXPARAMS. The application must have previously created
the completion port using CreateIoCompletionPort. The application retrieves events using

GetQueuedCompletionStatus. Upon return from GetQueuedCompletionStatus, the application will
have the specified dwCompletionKey written to the DWORD pointed to by the lpCompletionKey
parameter, and a pointer to a LINEMESSAGE structure returned to the location pointed to by
lpOverlapped. After the application has processed the event, it is the application's responsibility to call
LocalFree to release the memory used to contain the LINEMESSAGE structure. Because the application
created the completion port (thereby allowing it to be shared for other purposes), the application must
close it; the application must not close the completion port until after calling lineShutdown.

When a multi-threaded application is using the Event Handle mechanism and more than one thread is
waiting on the handle, or the Completion Port notification mechanism and more than one thread is waiting
on the port, it is possible for telephony events to be processed out of sequence. This is not due to the
sequence of delivery of events from TAPI, but would be caused by the time slicing of threads or the
execution of threads on separate processors.

If LINEERR_REINIT is returned and TAPI reinitialization has been requested, for example as a result of
adding or removing a Telephony service provider, then lineInitializeEx requests are rejected with this
error until the last application shuts down its usage of the API (using lineShutdown), at which time the
new configuration becomes effective and applications are once again permitted to call lineInitializeEx.

If the LINEERR_INVALPARAM error value is returned, the specified hInstance parameter is invalid.

The application can refer to individual line devices by using line device IDs that range from zero to
dwNumDevs minus one. An application should not assume that these line devices are capable of any
particular TAPI function without first querying their device capabilities by lineGetDevCaps and
lineGetAddressCaps.

See Also
lineCallbackFunc, LINECALLINFO, lineGetAddressCaps, lineGetDevCaps, lineGetMessage,
lineInitialize, LINEINITIALIZEEXPARAMS, LINEMESSAGE, lineNegotiateAPIVersion, lineShutdown

lineCallbackFunc
The lineCallbackFunc function is a placeholder for the application-supplied function name.

VOID FAR PASCAL lineCallbackFunc(

 DWORD hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters
hDevice

A handle to either a line device or a call associated with the callback. The nature of this handle (line
handle or call handle) can be determined by the context provided by dwMsg. Applications must use
the DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.
dwCallbackInstance

Callback instance data passed back to the application in the callback. This DWORD is not interpreted
by TAPI.

dwParam1

A parameter for the message.
dwParam2

A parameter for the message.
dwParam3

A parameter for the message.

Remarks
For information about parameter values passed to this function, see Line Device Messages.

All callbacks occur in the application's context. The callback function must reside in a DLL or application
module.

lineMakeCall       

   

The lineMakeCall function places a call on the specified line to the specified destination address.
Optionally, call parameters can be specified if anything but default call setup parameters are requested.

LONG lineMakeCall(

 HLINE hLine,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hLine

A handle to the open line device on which a call is to be originated.
lphCall

A pointer to an HCALL handle. The handle is only valid after the LINE_REPLY message is received
by the application indicating that the lineMakeCall function successfully completed. Use this handle
to identify the call when invoking other telephony operations on the call. The application will initially be
the sole owner of this call. This handle is void if the function returns an error (synchronously or
asynchronously by the reply message).

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format. This pointer
can be NULL for non-dialed addresses (as with a hot phone) or when all dialing will be performed
using lineDial. In the latter case, lineMakeCall allocates an available call appearance that would
typically remain in the dialtone state until dialing begins. Service providers that have inverse
multiplexing capabilities may allow an application to specify multiple addresses at once.

dwCountryCode

The country code of the called party. If a value of zero is specified, a default is used by the
implementation.

lpCallParams

A pointer to a LINECALLPARAMS structure. This structure allows the application to specify how it
wants the call to be set up. If NULL is specified, a default 3.1 kHz voice call is established and an
arbitrary origination address on the line is selected. This structure allows the application to select
elements such as the call's bearer mode, data rate, expected media mode, origination address,
blocking of caller ID information, and dialing parameters.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_ADDRESSBLOCKED, LINEERR_INVALLINEHANDLE, LINEERR_BEARERMODEUNAVAIL,
LINEERR_INVALLINESTATE, LINEERR_CALLUNAVAIL, LINEERR_INVALMEDIAMODE,
LINEERR_DIALBILLING, LINEERR_INVALPARAM, LINEERR_DIALDIALTONE,
LINEERR_INVALPOINTER, LINEERR_DIALPROMPT, LINEERR_INVALRATE, LINEERR_DIALQUIET,
LINEERR_NOMEM, LINEERR_INUSE, LINEERR_OPERATIONFAILED, LINEERR_INVALADDRESS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESSID, LINEERR_RATEUNAVAIL,
LINEERR_INVALADDRESSMODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALBEARERMODE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALCALLPARAMS, LINEERR_UNINITIALIZED,
LINEERR_INVALCOUNTRYCODE, LINEERR_USERUSERINFOTOOBIG.

Remarks
If LINEERR_INVALLINESTATE is returned, the line is currently not in a state in which this operation can
be performed. A list of currently valid operations can be found in the dwLineFeatures field (of the type
LINEFEATURE_) in the LINEDEVSTATUS structure. Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS. If LINEERR_DIALBILLING, LINEERR_DIALQUIET,
LINEERR_DIALDIALTONE, or LINEERR_DIALPROMPT is returned, none of the actions otherwise
performed by lineMakeCall have occurred; for example, none of the dialable address prior to the
offending character has been dialed, no hookswitch state has changed, and so on.

After dialing has completed, several LINE_CALLSTATE messages are usually sent to the application to
notify it about the progress of the call. No generally valid sequence of call-state transitions is specified, as
no single fixed sequence of transitions can be guaranteed in practice. A typical sequence may cause a
call to transition from dialtone, dialing, proceeding, ringback, to connected. With non-dialed lines, the call
may typically transition directly to connected state.

An application has the option to specify an originating address on the specified line device. A service
provider that models all stations on a switch as addresses on a single line device allows the application to
originate calls from any of these stations using lineMakeCall.

The call parameters allow the application to make non-voice calls or request special call setup options
that are not available by default.

An application can partially dial using lineMakeCall and continue dialing using lineDial. To abandon a call
attempt, use lineDrop.

After lineMakeCall returns a success reply message to the application, a LINE_CALLSTATE message is
sent to the application to indicate the current state of the call. This state will not necessarily be
LINECALLSTATE_DIALTONE.

See Also
LINE_CALLSTATE, LINE_REPLY, LINECALLPARAMS, LINEDEVSTATUS, lineDial, lineDrop,
lineGetLineDevStatus

lineMonitorDigits       

   

The lineMonitorDigits function enables and disables the unbuffered detection of digits received on the
call. Each time a digit of the specified digit mode is detected, a message is sent to the application
indicating which digit has been detected.

LONG lineMonitorDigits(

 HCALL hCall,
 DWORD dwDigitModes
);

Parameters
hCall

A handle to the call on which digits are to be detected. The call state of hCall can be any state except
idle or disconnected.

dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero, digit monitoring is
canceled. This parameter can have multiple flags set, and uses the following LINEDIGITMODE_
constants:
LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of rotary pulse sequences. Valid digits for pulse
are '0' through '9'.

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF are '0' through '9', 'A', 'B', 'C', 'D', '*', and '#'.
LINEDIGITMODE_DTMFEND

Detect and provide application notification of DTMF down edges. Valid digits for DTMF are '0'
through '9', 'A', 'B', 'C', 'D', '*', and '#'.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_INVALDIGITMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
This function is considered successful if digit monitoring has been correctly initiated; not when digit
monitoring has terminated. Digit monitoring remains in effect until it is explicitly disabled by calling
lineMonitorDigits with dwDigitModes set to zero, until the call transitions to idle, or when the application
deallocates its call handle for the call. Although this function can be invoked in any call state, digits are
usually detected only while the call is in the connected state.

Each time a digit is detected, a LINE_MONITORDIGITS message is sent to the application passing the

detected digit as a parameter.

An application can use lineMonitorDigits to enable or disable unbuffered digit detection. It can use
lineGatherDigits for buffered digit detection. After buffered digit gathering is complete, a
LINE_GATHERDIGITS message is sent to the application. Both buffered and unbuffered digit detection
can be enabled on the same call simultaneously.

Monitoring of digits on a conference call applies only to the hConfCall, not to the individual participating
calls.

See Also
LINE_GATHERDIGITS, LINE_MONITORDIGITS, lineGatherDigits

lineMonitorMedia       

   

The lineMonitorMedia function enables and disables the detection of media modes on the specified call.
When a media mode is detected, a message is sent to the application.

LONG lineMonitorMedia(

 HCALL hCall,
 DWORD dwMediaModes
);

Parameters
hCall

A handle to the call. The call state of hCall can be any state except idle.
dwMediaModes

The media modes to be monitored. A value of zero for the dwMediaModes parameter cancels all
media mode detection. This parameter can have multiple flags set. This parameter uses the following
LINEMEDIAMODE_ constants:
LINEMEDIAMODE_INTERACTIVEVOICE

The application wants to handle calls of the interactive voice media type (it manages live voice
calls).

LINEMEDIAMODE_AUTOMATEDVOICE

Voice energy is present on the call and the voice is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM

The application wants to handle calls with the data modem media mode.
LINEMEDIAMODE_G3FAX

The application wants to handle calls of the group 3 fax media type.
LINEMEDIAMODE_TDD

The application wants to handle calls with the TDD (Telephony Devices for the Deaf) media mode.
LINEMEDIAMODE_G4FAX

The application wants to handle calls of the group 4 fax media type.
LINEMEDIAMODE_DIGITALDATA

The application wants to handle calls of the digital data media type
LINEMEDIAMODE_TELETEX

The application wants to handle calls with the teletex media mode.
LINEMEDIAMODE_VIDEOTEX

The application wants to handle calls with the videotex media mode.
LINEMEDIAMODE_TELEX

The application wants to handle calls with the telex media mode.

LINEMEDIAMODE_MIXED

The application wants to handle calls with the ISDN mixed media mode.
LINEMEDIAMODE_ADSI

The application wants to handle calls with the ADSI (Analog Display Services Interface) media
mode.

LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_INVALMEDIAMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
The media modes specified with lineOpen relate only to enabling the detection of these media modes by
the service provider for the purpose of handing off new incoming calls to the proper application. They do
not impact any of the media-mode notification messages that are expected because of a previous
invocation of lineMonitorMedia.

This function is considered successful if media-mode monitoring has been correctly initiated, not when
media mode monitoring has terminated. Media monitoring for a given media mode remains in effect until it
is explicitly disabled by calling lineMonitorMedia with a dwMediaModes parameter set to zero, until the
call transitions to idle, or when the application deallocates its call handle for the call. The
lineMonitorMedia function is primarily an event reporting mechanism. The media mode of call, as
indicated in LINECALLINFO, is not affected by the service provider's detection of the media mode. Only
the controlling application can change a call's media mode.

Default media monitoring performed by the service provider corresponds to the union of all media modes
specified on lineOpen.

Although this function can be invoked in any call state, a call's media mode can typically only be detected
while the call is in certain call states. These states may be device specific. For example, in ISDN, a
message may indicate the media mode of the media stream before the media stream exists. Similarly,
distinctive ringing or the called ID information about the call can be used to identify the media mode of a
call. Otherwise, the call may have to be answered (call in the connected state) to allow a service provider
to determine the call's media mode by filtering the media stream. Because filtering a call's media stream
implies a computational overhead, applications should disable media monitoring when not required. By
default, media monitoring is enabled for newly inbound calls, because a call's media mode selects the
application that should handle the call.

An outbound application that deals with voice media modes may want to monitor the call for silence (a
tone) to distinguish who or what is at the called end of a call. For example, a person at home may answer
calls with just a short "hello." A person in the office may provide a longer greeting, indicating name and
company name. An answering machine may typically have an even longer greeting.

Because media-mode detection enabled by lineMonitorMedia is implemented as a read-only operation
of the call's media stream, it is not disruptive.

Monitoring of media on a conference call applies only to the hConfCall, not to the individual participating

calls

See Also
LINECALLINFO, lineOpen

lineMonitorTones       

   

The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time
a specified tone is detected, a message is sent to the application.

LONG lineMonitorTones(

 HCALL hCall,
 LPLINEMONITORTONE const lpToneList,
 DWORD dwNumEntries
);

Parameters
hCall

A handle to the call on whose voice channel tones are to be monitored. The call state of hCall can be
any state except idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in this list has an application-
defined tag field that is used to identify individual tones in the list report a tone detection. Tone
monitoring in progress is canceled or changed by calling this operation with either NULL for
lpToneList or with another tone list.

dwNumEntries

The number of entries in lpToneList. This parameter is ignored if lpToneList is NULL.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCALLSTATE, LINEERR_INVALPOINTER,
LINEERR_INVALTONE, LINEERR_NOMEM, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

Remarks
This function is successful if tone monitoring has been correctly initiated, not when tone monitoring has
terminated. Tone monitoring will remain in effect until it is explicitly disabled by calling lineMonitorTones
with another tone list (or NULL), until the call transitions to idle, or when the application deallocates its call
handle for the call.

Although this function can be invoked in any call state, tones can typically only be detected while the call
is in the connected state. Tone detection typically requires computational resources. Depending on the
service provider and other activities that compete for such resources, the number of tones that can be
detected may vary over time. Also, an equivalent amount of resources may be consumed for monitoring a
single triple frequency tone versus three single frequency tones. If resources are overcommitted, the
LINEERR_RESOURCEUNAVAIL error is returned.

Note that lineMonitorTones is also used to detect silence. Silence is specified as a tone with all zero
frequencies.

Monitoring of tones on a conference call applies only to the hConfCall, not to the individual participating
calls

If the LINEERR_INVALPOINTER error value is returned, the specified lpToneList parameter is invalid or
the value specified by the dwNumEntries parameter is too large.

See Also
LINEMONITORTONE

lineNegotiateAPIVersion       

   

The lineNegotiateAPIVersion function allows an application to negotiate an API version to use.

LONG lineNegotiateAPIVersion(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDeviceID

The line device to be queried.
dwAPILowVersion

The least recent API version the application is compliant with. The high-order word is the major
version number; the low-order word is the minor version number.

dwAPIHighVersion

The most recent API version the application is compliant with. The high-order word is the major
version number; the low-order word is the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation is successful, this number will be in the range between dwAPILowVersion and
dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. If the service provider for the specified
dwDeviceID supports provider-specific extensions, then, upon a successful negotiation, this structure
is filled with the extension ID of these extensions. This structure contains all zeros if the line provides
no extensions. An application can ignore the returned parameter if it does not use extensions.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NODRIVER, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_, LINEERR_UNINITIALIZED, LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL,
LINEERR_NODEVICE.

Remarks
Use lineInitializeEx to determine the number of line devices present in the system. The device ID
specified by dwDeviceID varies from zero to one less than the number of line devices present.

The lineNegotiateAPIVersion function is used to negotiate the API version number to use. It also
retrieves the extension ID supported by the line device, and returns zeros if no extensions are supported.
If the application wants to use the extensions defined by the returned extension ID, it must call
lineNegotiateExtVersion to negotiate the extension version to use.

The API version number negotiated is that under which TAPI can operate. If version ranges do not
overlap, the application and API or service provider versions are incompatible and an error is returned.

See Also
LINEEXTENSIONID, lineInitializeEx, lineNegotiateExtVersion

lineNegotiateExtVersion       

   

The lineNegotiateExtVersion function allows an application to negotiate an extension version to use with
the specified line device. This operation need not be called if the application does not support extensions.

LONG lineNegotiateExtVersion(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtLowVersion,
 DWORD dwExtHighVersion,
 LPDWORD lpdwExtVersion
);

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDeviceID

The line device to be queried.
dwAPIVersion

The API version number that was negotiated for the specified line device using
lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension ID returned by lineNegotiateAPIVersion that the
application is compliant with. The high-order word is the major version number; the low-order word is
the minor version number.

dwExtHighVersion

The most recent extension version of the extension ID returned by lineNegotiateAPIVersion that the
application is compliant with. The high-order word is the major version number; the low-order word is
the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was negotiated.
If negotiation is successful, this number will be in the range between dwExtLowVersion and
dwExtHighVersion.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_NODRIVER, LINEERR_INCOMPATIBLEEXTVERSION, LINEERR_OPERATIONFAILED,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, LINEERR_NODEVICE, LINEERR_OPERATIONUNAVAIL.

Remarks
Use lineInitializeEx to determine the number of line devices present in the system. The device ID
specified by dwDeviceID varies from zero to one less than the number of line devices present.

The lineNegotiateAPIVersion function negotiates the API version number to use. It also retrieves the
extension ID supported by the line device, which is zeros if no extensions are provided. Version numbers
should be incremented by one for each release. Leaving gaps in release version numbering may cause
unexpected results.

If the application wants to use the extensions defined by the returned extension ID, it must call
lineNegotiateExtVersion to negotiate the extension version to use.

The extension version number negotiated is that under which the application and service provider must
both operate. If version ranges do not overlap, the application and service provider versions are
incompatible and an error is returned.

See Also
lineInitializeEx, lineNegotiateAPIVersion

lineOpen       

   

The lineOpen function opens the line device specified by its device ID and returns a line handle for the
corresponding opened line device. This line handle is used in subsequent operations on the line device.

LONG lineOpen(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPHLINE lphLine,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivileges,
 DWORD dwMediaModes,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hLineApp

A handle to the application's registration with TAPI.
dwDeviceID

Identifies the line device to be opened. It can either be a valid device ID or the value:
LINEMAPPER

This value is used to open a line device in the system that supports the properties specified in
lpCallParams. The application can use lineGetID to determine the ID of the line device that was
opened.

lphLine

A pointer to an HLINE handle, which is then loaded with the handle representing the opened line
device. Use this handle to identify the device when invoking other functions on the open line device.

dwAPIVersion

The API version number under which the application and Telephony API have agreed to operate. This
number is obtained with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. This number is obtained with
lineNegotiateExtVersion.

dwCallbackInstance

User-instance data passed back to the application with each message associated with this line or
addresses or calls on this line. This parameter is not interpreted by the Telephony API.

dwPrivileges

The privilege the application wants for the calls it is notified for. This parameter can be a combination

of the LINECALLPRIVILEGE_ constants. For applications using API version 0x00020000 or greater,
values for this parameter can also be combined with the LINEOPENOPTION_ constants:
LINECALLPRIVILEGE_NONE

The application wants to make only outbound calls.
LINECALLPRIVILEGE_MONITOR

The application only wants to monitor inbound and outbound calls.
LINECALLPRIVILEGE_OWNER

The application wants to own inbound calls of the types specified in dwMediaModes.
LINECALLPRIVILEGE_MONITOR + LINECALLPRIVILEGE_OWNER

The application wants to own inbound calls of the types specified in dwMediaModes, but if it cannot
be an owner of a call, it wants to be a monitor.

LINEOPENOPTION_SINGLEADDRESS

The application is interested only in new calls that appear on the address specified by the
dwAddressID field in the LINECALLPARAMS structure pointed to by the lpCallParams parameter
(which must be specified). If LINEOPENOPTION_SINGLEADDRESS is specified but either
lpCallParams is invalid or the included dwAddressID does not exist on the line, the open fails with
LINERR_INVALADDRESSID.
In addition to setting the dwAddressID member of the LINECALLPARAMS structure to the
desired address, the application must also set dwAddressMode in LINECALLPARAMS to
LINEADDRESSMODE_ADDRESSID.
The LINEOPENOPTION_SINGLEADDRESS option affects only TAPI's assignment of initial call
ownership of calls created by the service provider using a LINE_NEWCALL message. An
application that opens the line with LINECALLPRIVILEGE_MONITOR will continue to receive
monitoring handles to all calls created on the line. Furthermore, the application is not restricted in
any way from making calls or performing other operations that affect other addresses on the line
opened.

LINEOPENOPTION_PROXY

The application is willing to handle certain types of requests from other applications that have the
line open, as an adjunct to the service provider. Requests will be delivered to the application using
LINE_PROXYREQUEST messages; the application responds to them by calling
lineProxyResponse, and can also generate TAPI messages to other applications having the line
open by calling lineProxyMessage.
When this option is specified, the application must also specify which specific proxy requests it is
prepared to handle. It does so by passing, in the lpCallParams parameter, a pointer to a
LINECALLPARAMS structure in which the dwDevSpecificSize and dwDevSpecificOffset
members have been set to delimit an array of DWORDs. Each element of this array shall contain
one of the LINEPROXYREQUEST_ constants. For example, a proxy handler application that
supports all five of the Agent-related functions would pass in an array of five DWORDs
(dwDevSpecificSize would be 20 decimal) containing the five defined LINEPROXYREQUEST_
values.
The proxy request handler application can run on any machine that has authorization to control the
line device. However, requests will always be routed through the server on which the service
provider is executing that actually controls the line device. Thus, it is most efficient if the application
handling proxy requests (such as ACD agent control) executes directly on the server along with the
service provider.
Subsequent attempts, by the same application or other applications, to open the line device and
register to handle the same proxy requests as an application that is already registered fail with
LINEERR_NOTREGISTERED.

To stop handling requests on the line, the application simply calls lineClose.

Other flag combinations return the LINEERR_INVALPRIVSELECT error.
dwMediaModes

The media mode or modes of interest to the application. This parameter is used to register the
application as a potential target for inbound call and call handoff for the specified media mode. This
parameter is meaningful only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and
ignored if it is not). This parameter uses the following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

The application wants to handle calls of unknown media type (unclassified calls).
LINEMEDIAMODE_INTERACTIVEVOICE

The application wants to handle calls of the interactive voice media type. That is, it manages voice
calls with the human user on this end of the call.

LINEMEDIAMODE_AUTOMATEDVOICE

Voice energy is present on the call. The voice is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM

The application wants to handle calls with the data-modem media mode.
LINEMEDIAMODE_G3FAX

The application wants to handle calls of the group 3 fax media type.
LINEMEDIAMODE_TDD

The application wants to handle calls with the TDD (Telephony Devices for the Deaf) media mode.
LINEMEDIAMODE_G4FAX

The application wants to handle calls of the group 4 fax media type.
LINEMEDIAMODE_DIGITALDATA

The application wants to handle calls of the digital-data media type.
LINEMEDIAMODE_TELETEX

The application wants to handle calls with the teletex media mode.
LINEMEDIAMODE_VIDEOTEX

The application wants to handle calls with the videotex media mode.
LINEMEDIAMODE_TELEX

The application wants to handle calls with the telex media mode.
LINEMEDIAMODE_MIXED

The application wants to handle calls with the ISDN mixed media mode.
LINEMEDIAMODE_ADSI

The application wants to handle calls with the ADSI (Analog Display Services Interface) media
mode.

LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer is only used if LINEMAPPER is
used; otherwise lpCallParams is ignored. It describes the call parameter that the line device should be
able to provide.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_ALLOCATED, LINEERR_LINEMAPPERFAILED, LINEERR_BADDEVICEID,
LINEERR_NODRIVER, LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM,
LINEERR_INCOMPATIBLEEXTVERSION, LINEERR_OPERATIONFAILED,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALMEDIAMODE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_INVALPRIVSELECT, LINEERR_REINIT, LINEERR_NODEVICE,
LINEERR_OPERATIONUNAVAIL.

Remarks
If LINEERR_ALLOCATED is returned, the line cannot be opened due to a "persistent" condition, such as
that of a serial port being exclusively opened by another process. If LINEERR_RESOURCEUNAVAIL is
returned, the line cannot be opened due to a dynamic resource overcommitment such as in DSP
processor cycles or memory. This overcommitment may be transitory, caused by monitoring of media
mode or tones, and changes in these activities by other applications may make it possible to reopen the
line within a short time period. If LINEERR_REINIT is returned and TAPI reinitialization has been
requested, for example as a result of adding or removing a Telephony service provider, then lineOpen
requests are rejected with this error until the last application shuts down its usage of the API (using
lineShutdown), at which time the new configuration becomes effective and applications are once again
permitted to call lineInitializeEx.

Opening a line always entitles the application to make calls on any address available on the line. The
ability of the application to deal with inbound calls or to be the target of call handoffs on the line is
determined by the dwMediaModes parameter. The lineOpen function registers the application as having
an interest in monitoring calls or receiving ownership of calls that are of the specified media modes. If the
application just wants to monitor calls, then it can specify LINECALLPRIVILEGE_MONITOR. If the
application just wants to make outbound calls, it can specify LINECALLPRIVILEGE_NONE. If the
application is willing to control unclassified calls (calls of unknown media mode), it can specify
LINECALLPRIVILEGE_OWNER and LINEMEDIAMODE_UNKNOWN. Otherwise, the application should
specify the media mode it is interested in handling.

The media modes specified with lineOpen add to the default value for the provider's media mode
monitoring for initial inbound call type determination. The lineMonitorMedia function modifies the mask
that controls LINE_MONITORMEDIA messages. If a line device is opened with owner privilege and an
extension media mode is not registered, then the error LINEERR_INVALMEDIAMODE is returned.

An application that has successfully opened a line device can always initiate calls using lineMakeCall,
lineUnpark, linePickup, lineSetupConference (with a NULL hCall), as well as use lineForward
(assuming that doing so is allowed by the device capabilities, line state, and so on).

A single application may specify multiple flags simultaneously to handle multiple media modes. Conflicts
may arise if multiple applications open the same line device for the same media mode. These conflicts
are resolved by a priority scheme in which the user assigns relative priorities to the applications. Only the
highest priority application for a given media mode will ever receive ownership (unsolicited) of a call of
that media mode. Ownership can be received when an inbound call first arrives or when a call is handed
off.

Any application (including any lower priority application) can always acquire ownership with
lineGetNewCalls or lineGetConfRelatedCalls. If an application opens a line for monitoring at a time that
calls exist on the line, LINE_CALLSTATE messages for those existing calls are not automatically
generated to the new monitoring application. The application can query the number of current calls on the
line to determine how many calls exist, and, if it wants, it can call lineGetNewCalls to obtain handles to
these calls.

An application that handles automated voice should also select the interactive voice open mode and be
assigned the lowest priority for interactive voice. The reason for this is that service providers will report all
voice media modes as interactive voice. If media mode determination is not performed by the application
for the UNKNOWN media type, and no interactive voice application has opened the line device, voice
calls would be unable to reach the automated voice application, but be dropped instead.

The same application, or different instantiations of the same application, may open the same line multiple
times with the same or different parameters.

When an application opens a line device it must specify the negotiated API version and, if it wants to use
the line's extensions, it should specify the line's device-specific extension version. These version numbers
should have been obtained with lineNegotiateAPIVersion and lineNegotiateExtVersion. Version
numbering allows the mixing and matching of different application versions with different API versions and
service provider versions.

LINEMAPPER allows an application to select a line indirectly¾by means of the services it wants from it.
When opening a line device using LINEMAPPER, the following is true: All fields from beginning of the
LINECALLPARAMS data structure through dwAddressMode are relevant. If dwAddressMode is
LINEADDRESSMODE_ADDRESSID it means that any address on the line is acceptable, otherwise if
dwAddressMode is LINEADDRESSMODE_DIALABLEADDR, indicating that a specific originating
address (phone number) is searched for, or if it is a provider-specific extension, then
dwOrigAddressSize/Offset and the portion of the variable part they refer to are also relevant. If
dwAddressMode is a provider-specific extension additional information may be contained in the
dwDeviceSpecific variably sized field.

See Also
LINE_CALLSTATE, LINE_MONITORMEDIA, LINE_PROXYREQUEST, LINECALLPARAMS, lineClose,
lineForward, lineGetConfRelatedCalls, lineGetNewCalls, lineInitializeEx, lineMakeCall,
lineMonitorMedia, lineNegotiateAPIVersion, lineNegotiateExtVersion, linePickup,
lineProxyMessage, lineProxyResponse, lineSetupConference, lineShutdown, lineUnpark

linePark       

   

The linePark function parks the specified call according to the specified park mode.

LONG linePark(

 HCALL hCall,
 DWORD dwParkMode,
 LPCSTR lpszDirAddress,
 LPVARSTRING lpNonDirAddress
);

Parameters
hCall

A handle to the call to be parked. The application must be an owner of the call. The call state of hCall
must be connected.

dwParkMode

The park mode with which the call is to be parked. This parameter can have only a single flag set,
and it uses the following LINEPARKMODE_ constants:
LINEPARKMODE_DIRECTED

The application specifies at which address the call is to be parked in lpszDirAddress.
LINEPARKMODE_NONDIRECTED

This operation reports to the application where the call has been parked in lpNonDirAddress.

lpszDirAddress

A pointer to a NULL-terminated string that indicates the address where the call is to be parked when
using directed park. The address is in dialable number format. This parameter is ignored for
nondirected park.

lpNonDirAddress

A pointer to a structure of type VARSTRING. For nondirected park, the address where the call is
parked is returned in this structure. This parameter is ignored for directed park. Within the
VARSTRING structure, dwStringFormat must be set to STRINGFORMAT_ASCII (an ASCII string
buffer containing a NULL-terminated string), and the terminating NULL must be accounted for in the
dwStringSize. Prior to calling linePark, the application should set the dwTotalSize field of this
structure to indicate the amount of memory available to TAPI for returning information.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESS, LINEERR_NOTOWNER, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_OPERATIONFAILED,

LINEERR_INVALPARKMODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
With directed park, the application determines the address at which it wants to park the call. With
nondirected park, the switch determines the address and provides this to the application. In either case, a
parked call can be unparked by specifying this address.

The parked call typically enters the idle state after it has been successfully parked and the application
should then deallocate its handle to the call. If the application performs a lineUnpark on the parked call, a
new call handle will be created for the unparked call even if the application has not deallocated its old call
handle.

Some switches may remind the user after a call has been parked for some long amount of time. The
application will see an offering call with a call reason set to reminder.

On a nondirected park, if the dwTotalSize member in the VARSTRING structure does not specify a
sufficient amount of memory to receive the park address, the corresponding reply message returns a
LINEERR_STRUCTURETOOSMALL error value. In such cases, there is no way to retrieve the complete
park address. Note that when a LINEERR_STRUCTURETOOSMALL error value is returned, the
dwNeededSize field of the NonDirAddress structure does not contain a valid value. If a
LINEERR_STRUCTURETOOSMALL error value is received from a nondirected linePark, then increase
the size of the buffer and call linePark again until it returns either success or a different LINEERR_XXX
result.

See Also
LINE_REPLY, lineUnpark, VARSTRING

linePickup       

   

The linePickup function picks up a call alerting at the specified destination address and returns a call
handle for the picked-up call. If invoked with NULL for the lpszDestAddress parameter, a group pickup is
performed. If required by the device, lpszGroupID specifies the group ID to which the alerting station
belongs.

LONG linePickup(

 HLINE hLine,
 DWORD dwAddressID,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress,
 LPCSTR lpszGroupID
);

Parameters
hLine

A handle to the open line device on which a call is to be picked up.
dwAddressID

The address on hLine at which the pickup is to be originated.
lphCall

A pointer to a memory location where the handle to the picked up call will be returned. The application
will be the initial sole owner of the call.

lpszDestAddress

A pointer to a NULL-terminated character buffer that contains the address whose call is to be picked
up. The address is in standard dialable address format.

lpszGroupID

A pointer to a NULL-terminated character buffer containing the group ID to which the alerting station
belongs. This parameter is required on some switches to pick up calls outside of the current pickup
group.
Note that lpszGroupID can be specified by itself with a NULL pointer for lpszDestAddress.
Alternatively, lpszGroupID can be specified in addition to lpszDestAddress, if required by the device.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESS, LINEERR_NOMEM, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALGROUPID, LINEERR_OPERATIONFAILED,
LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED.

Remarks
When a call has been picked up successfully, the application is notified by the LINE_CALLSTATE
message about call state changes. The LINECALLINFO structure supplies information about the call that
was picked up. It will list the reason for the call as pickup. This structure is available using
lineGetCallInfo.

If LINEADDRCAPFLAGS_PICKUPCALLWAIT is TRUE, linePickup can be used to pick up a call for
which the user has audibly detected the call-waiting signal but for which the provider is unable to perform
the detection. This gives the user a mechanism to "answer" a waiting call even though the service
provider was unable to detect the call-waiting signal. Both lpszDestAddress and lpszGroupID pointer
parameters must be NULL to pick up a call-waiting call. The linePickup function will create a new call
handle for the waiting call and pass that handle to the user. dwAddressID will most often be zero
(particularly in single-line residential cases).

Once linePickup has been used to pick up the second call, lineSwapHold can be used to toggle
between them. The lineDrop function can be used to drop one (and toggle to the other), and so forth. If
the user wants to drop the current call and pick up the second call, they should call lineDrop when they
get the call-waiting beep, wait for the second call to ring, and then call lineAnswer on the new call
handle. The LINEADDRFEATURE_PICKUP flag in the dwAddressFeatures field in
LINEADDRESSSTATUS indicates when pickup is actually possible.

See Also
LINE_CALLSTATE, LINE_REPLY, LINEADDRESSSTATUS, lineAnswer, LINECALLINFO, lineDrop,
lineGetCallInfo, lineSwapHold

linePrepareAddToConference       

   

The linePrepareAddToConference function prepares an existing conference call for the addition of
another party.

LONG linePrepareAddToConference(

 HCALL hConfCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hConfCall

A handle to a conference call. The application must be an owner of this call. The call state of
hConfCall must be connected.

lphConsultCall

A pointer to an HCALL handle. This location is then loaded with a handle identifying the consultation
call to be added. Initially, the application will be the sole owner of this call.

lpCallParams

A pointer to call parameters to be used when establishing the consultation call. This parameter may
be set to NULL if no special call setup parameters are desired.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_BEARERMODEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_CALLUNAVAIL,
LINEERR_INVALRATE, LINEERR_CONFERENCEFULL, LINEERR_NOMEM, LINEERR_INUSE,
LINEERR_NOTOWNER, LINEERR_INVALADDRESSMODE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALBEARERMODE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLPARAMS,
LINEERR_RATEUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALCONFCALLHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALLINESTATE, LINEERR_USERUSERINFOTOOBIG, LINEERR_INVALMEDIAMODE,
LINEERR_UNINITIALIZED.

Remarks
If LINEERR_INVALLINESTATE is returned, the line is currently not in a state in which this operation can
be performed. A list of currently valid operations can be found in the dwLineFeatures field (of the type
LINEFEATURE_) in the LINEDEVSTATUS structure. (Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS.)

A conference call handle can be obtained with lineSetupConference or with lineCompleteTransfer that
is resolved as a three-way conference call. The function linePrepareAddToConference typically places
the existing conference call in the onHoldPendingConference state and creates a consultation call that

can be added later to the existing conference call with lineAddToConference.

The consultation call can be canceled using lineDrop. It may also be possible for an application to swap
between the consultation call and the held conference call with lineSwapHold.

See Also
LINE_REPLY, lineAddToConference, lineCompleteTransfer, LINEDEVSTATUS, lineDrop,
lineGetLineDevStatus, lineSetupConference, lineSwapHold

lineProxyMessage       

   

The lineProxyMessage function is used by a registered proxy request handler to generate TAPI
messages related to its role. For example, an ACD agent handler can use this function to generate
LINE_AGENTSTATUS messages that will be received by all applications that have the specified line
open. TAPI suppresses generation of the message on the hLine specified in the function parameters.

LONG lineProxyMessage(

 HLINE hLine,
 HCALL hCall,
 DWORD dwMsg,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters
hLine

A handle to the open line device. This will be converted by TAPI into the correct hLine for each
application that receives the message.

hCall

If the message is related to a specific call (which it is not, in the case of LINE_AGENTSTATUS),
specifies the proxy handler's handle to that call; shall be set to NULL for messages not related to a
specific call. This will be converted by TAPI into the correct hCall for each application that receives the
message.

dwMsg

The TAPI message to be generated. This must be a message that is permitted to be generated by
proxy handlers.

dwParam1

dwParam2

dwParam3

The parameters associated with the message to be sent.

Return Values
Returns zero if the function is successful or one of these negative error values:

LINEERR_INVALLINEHANDLE, LINEERR_INVALCALLHANDLE, LINEERR_INVALPARAM,
LINEERR_NOMEM, LINEERR_NOTREGISTERED, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

See Also
LINE_AGENTSTATUS

lineProxyResponse       

   

The lineProxyResponse function indicates completion of a proxy request by a registered proxy handler
such as an ACD agent handler on a server.

LONG lineProxyResponse(

 HLINE hLine,
 LPLINEPROXYREQUEST lpProxyRequest,
 DWORD dwResult
);

Parameters
hLine

A handle to the open line device.
lpProxyRequest

The pointer to the proxy request buffer that was given to the application by TAPI in a
LINE_PROXYREQUEST message. In the case of proxy requests that return data to the client
application, the proxy handler shall have filled in the necessary structure in this buffer before calling
this function. The dwNeededSize and dwUsedSize fields of the structure to be returned must have
been set appropriately.

dwResult

The function result that is to be returned to the calling application in a LINE_REPLY message
(generated automatically by TAPI). Must be 0 or one of the negative error values defined for the
function invoked.

Return Values
Returns zero if the function is successful or one of these negative error values:

LINEERR_INVALLINEHANDLE, LINEERR_INVALPARAM, LINEERR_INVALPOINTER,
LINEERR_NOMEM, LINEERR_NOTREGISTERED, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

lineRedirect       

   

The lineRedirect function redirects the specified offering call to the specified destination address.

LONG lineRedirect(

 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters
hCall

A handle to the call to be redirected. The application must be an owner of the call. The call state of
hCall must be offering.

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.
dwCountryCode

The country code of the party the call is redirected to. If a value of zero is specified, a default is used
by the implementation.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESS, LINEERR_NOTOWNER, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCOUNTRYCODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks
Call redirection allows an application to deflect an offering call to another address without first answering
the call. Call redirect differs from call forwarding in that call forwarding is performed by the switch without
the involvement of the application; redirection can be done on a call-by-call basis by the application, for
example, driven by caller ID information. It differs from call transfer in that transferring a call requires the
call first be answered.

After a call has been successfully redirected, the call typically transitions to idle.

Besides redirecting an incoming call, an application may have the option to accept the call using
lineAccept, reject the call using lineDrop, or answer the call using lineAnswer. The availability of these
operations is dependent on device capabilities.

See Also
LINE_REPLY, lineAccept, lineAnswer, lineDrop

lineRegisterRequestRecipient       

   

The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests
for the specified request mode.

LONG lineRegisterRequestRecipient(

 HLINEAPP hLineApp,
 DWORD dwRegistrationInstance,
 DWORD dwRequestMode,
 DWORD bEnable
);

Parameters
hLineApp

The application's usage handle for the line portion of TAPI.
dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST
message. This message notifies the application that a request is pending. This parameter is ignored if
bEnable is set to zero. This parameter is examined by TAPI only for registration, not for deregistration.
The dwRegistrationInstance value used while deregistering need not match the
dwRegistrationInstance used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. One or both bits may be set. This
parameter uses the following LINEREQUESTMODE_ constants:
LINEREQUESTMODE_MAKECALL

A tapiRequestMakeCall request.

bEnable

If TRUE, the application registers; if FALSE, the application deregisters for the specified request
modes.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALREQUESTMODE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
A telephony-enabled application can request that a call be placed on its behalf by invoking
tapiRequestMakeCall. Additionally, other applications can request that information be logged with a
given call. The tapiRequestMakeCall requests are queued by TAPI, and the highest priority application
that has registered to handle the request is sent a LINE_REQUEST message with an indication of the

mode of the request that is pending. This application is typically the user's call-control application.

Next, the call-control application that receives this message invokes lineGetRequest, specifying the
request mode and a buffer that is large enough to hold the request. The call-control application then
interprets and executes the request.

The recipient application is also automatically deregistered for all requests when it does a lineShutdown.

See Also
LINE_REQUEST, lineGetRequest, lineShutdown, tapiRequestMakeCall

lineReleaseUserUserInfo       

   

The lineReleaseUserUserInfo function informs the service provider that the application has processed
the user-to-user information contained in the LINECALLINFO structure, and that subsequently received
user-to-user information can now be written into that structure. The service provider will send a
LINE_CALLINFO message indicating LINECALLINFOSTATE_USERUSERINFO when new information is
available.

LONG lineReleaseUserUserInfo(

 HCALL hCall
);

Parameters
hCall

A handle to the call. The application must be an owner of the call. The call state of hCall can be any
state.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_NOMEM,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOTOWNER, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONUNAVAIL.

Remarks
The lineReleaseUserUserInfo function allows the application to control the flow of incoming user-user
information on an ISDN connection. When a new, complete user-user information message is received,
the service provider informs the application using a LINE_CALLINFO message (specifying
LINECALLINFOSTATE_USERUSERINFO). Any number of applications may examine the information
(using lineGetCallInfo), but the application owning the call controls when the information is released so
that subsequent information can be reported. The service provider will not overwrite previous user-user
information in LINECALLINFO with newer information until after lineReleaseUserUserInfo has been
called. It is the responsibility of the service provider to buffer subsequently received user-user information
until the previous information is released by the application owning the call.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
LINE_CALLINFO, LINE_REPLY, LINECALLINFO, lineGetCallInfo

lineRemoveFromConference       

   

The lineRemoveFromConference function removes the specified call from the conference call to which
it currently belongs. The remaining calls in the conference call are unaffected.

LONG lineRemoveFromConference(

 HCALL hCall
);

Parameters
hCall

A handle to the call to be removed from the conference. The application must be an owner of this call.
Call state of hCall must be conferenced.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

Remarks
This operation removes a party that currently belongs to a conference call. After the call has been
successfully removed, it may be possible to further manipulate it using its handle. The availability of this
operation and its result are likely to be limited in many implementations. For example, in many
implementations, only the most recently added party may be removed from a conference, and the
removed call may be automatically dropped (becomes idle). Consult the line's device capabilities to
determine the available effects of removing a call from a conference.

If the removal of a participant from a conference is supported, the participant call, after it is removed from
the conference, will enter the call-state listed in the dwRemoveFromConfState field in
LINEADDRESSCAPS.

See Also
LINE_REPLY, LINEADDRESSCAPS

lineRemoveProvider       

   

The lineRemoveProvider function removes an existing Telephony Service Provider from the Telephony
system.

LONG lineRemoveProvider(

 DWORD dwPermanentProviderID,
 HWND hwndOwner
);

Parameters
dwPermanentProviderID

The permanent provider ID of the service provider to be removed.
hwndOwner

A handle to a window to which any dialogs which need to be displayed as part of the removal process
(for example, a confirmation dialog by the service provider's TSPI_providerRemove function) would
be attached. Can be a NULL value to indicate that any window created during the function should
have no owner window.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALPARAM,
LINEERR_OPERATIONFAILED.

Remarks
If the call to TSPI_providerRemove is successful, and the telephony system is active at the time, TAPI
calls TSPI_lineShutdown and/or TSPI_phoneShutdown on the service provider (depending on which
device types are active). Any line or phone handles still held by applications on associated devices are
forcibly closed with LINE_CLOSE or PHONE_CLOSE messages (it is preferable for service providers
themselves to issue these messages as part of TSPI_providerRemove, after verification with the user).
The devices previously under the control of that provider are then marked as "unavailable", so that any
future attempts by applications to reference them by device ID result in LINEERR_NODRIVER.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
LINE_CLOSE, PHONE_CLOSE

lineSecureCall       

   

The lineSecureCall function secures the call from any interruptions or interference that may affect the
call's media stream.

LONG lineSecureCall(

 HCALL hCall
);

Parameters
hCall

A handle to the call to be secured. The application must be an owner of the call. The call state of
hCall can be any state.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

Remarks
A call can be secured to avoid interference. For example, in an analog environment, call-waiting tones
may destroy a fax or modem session on the original call. The lineSecureCall function allows an existing
call to be secured. The lineMakeCall function provides the option to secure the call from the time of call
setup. The securing of a call remains in effect for the duration of the call.

See Also
LINE_REPLY, lineMakeCall

lineSendUserUserInfo       

   

The lineSendUserUserInfo function sends user-to-user information to the remote party on the specified
call.

LONG lineSendUserUserInfo(

 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters
hCall

A handle to the call on which to send user-to-user information. The application must be an owner of
the call. The call state of hCall must be connected, offering, accepted, or ringback.

lpsUserUserInfo

A pointer to a string containing user-to-user information to be sent to the remote party. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_USERUSERINFOTOOBIG, LINEERR_NOTOWNER,
LINEERR_UNINITIALIZED.

Remarks
This function can be used to send user-to-user information at any time during a connected call. If the size
of the specified information to be sent is larger than what may fit into a single network message (as in
ISDN), the service provider is responsible for dividing the information into a sequence of chained network
messages (using "more data").

User-to-user information can also be sent as part of call accept, call reject, and call redirect, and when
making calls. User-to-user information can also be received. The received information is available through
the call's call-information record. Whenever user-to-user information arrives after call offering or prior to
call disconnect, a LINE_CALLINFO message with a UserUserInfo parameter will notify the application
that user-to-user information in the call-information record has changed. If multiple network messages are
chained, the information is assembled by the service provider and a single message is sent to the

application.

See Also
LINE_CALLINFO, LINE_REPLY, LINEDEVCAPS

lineSetAgentActivity       

   

The lineSetAgentActivity function sets the agent activity code associated with a particular address.

LONG lineSetAgentActivity(

 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwActivityID
);

Parameters
hLine

Handle of the line device.
dwAddressID

Identifier of the address for which the agent activity code is to be changed.
dwActivityID

The new agent activity. The meaning of all values of this parameter are specific to the application and
call center server.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALADDRESSSTATE, LINEERR_INVALAGENTACTIVITY,
LINEERR_INVALLINEHANDLE, LINEERR_INVALPOINTER, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_UNINITIALIZED.

lineSetAgentGroup       

   

The lineSetAgentGroup function sets the agent groups into which the agent is logged into on a particular
address.

LONG lineSetAgentGroup(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEAGENTGROUPLIST lpAgentGroupList
);

Parameters
hLine

Handle of the line device.
dwAddressID

Identifier of the address for which the agent information is to be changed.
lpAgentList

Pointer to a LINEAGENTGROUPLIST structure identifying the groups into which the current agent is
to be logged in on the address. If the pointer is NULL or the number of groups in the indicated
structure is 0, then the agent is logged out of any ACD groups into which the agent is then logged in.
Note that the "Name" fields in the LINEAGENTGROUPENTRY items in the list are ignored for
purposes of this function; the control of the logged-in groups is based on the group ID values only.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALADDRESSSTATE, LINEERR_INVALAGENTGROUP,
LINEERR_INVALAGENTID, LINEERR_INVALAGENTSKILL, LINEERR_INVALAGENTSUPERVISOR,
LINEERR_INVALLINEHANDLE, LINEERR_INVALPARAM, LINEERR_INVALPASSWORD,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

See Also
LINEAGENTGROUPENTRY, LINEAGENTGROUPLIST

lineSetAgentState       

   

The lineSetAgentState function sets the agent state associated with a particular address.

LONG lineSetAgentState(

 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwAgentState,
 DWORD dwNextAgentState
);

Parameters
hLine

Handle of the line device.
dwAddressID

Identifier of the address for which the agent information is to be changed.
dwAgentState

The new agent state. Must be one of the LINEAGENTSTATE_ constants, or 0 to leave the agent state
unchanged and modify only the next state.

dwNextAgentState

The agent state that should be automatically set when the current call on the address becomes idle.
For example, if it is known that after-call work must be performed, this field can be set to
LINEAGENTSTATE_WORKAFTERCALL so that a new call will not be assigned to the agent after the
current call. Must be one of the LINEAGENTSTATE_ constants, or 0 to use the default next state
configured for the agent.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALADDRESSSTATE, LINEERR_INVALAGENTSTATE,
LINEERR_INVALLINEHANDLE, LINEERR_INVALPARAM, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_UNINITIALIZED.

lineSetAppPriority       

   

The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular media mode or Assisted Telephony request mode or to remove itself from the priority list.

LONG lineSetAppPriority(

 LPCSTR lpszAppFilename,
 DWORD dwMediaMode,
 LPLINEEXTENSIONID const lpExtensionID,
 DWORD dwRequestMode,
 LPCSTR lpszExtensionName,
 DWORD dwPriority
);

Parameters
lpszAppFilename

A pointer to a string containing the application executable module filename (without directory
information). In API versions 0x00020000 and greater, the parameter can specify a filename in either
long or 8.3 filename format.

dwMediaMode

The media mode for which the priority of the application is to be set. The value may be one of the
LINEMEDIAMODE_ constants; only a single bit may be on. The value 0 should be used to set the
application priority for Assisted Telephony requests.

lpExtensionID

A pointer to structure of type LINEEXTENSIONID. This parameter is ignored.
dwRequestMode

If the dwMediaMode parameter is 0, this parameter specifies the Assisted Telephony request mode
for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter is ignored if dwMediaMode is non-zero.

lpszExtensionName

This parameter is ignored.
dwPriority

The new priority for the application. If the value 0 is passed, the application is removed from the
priority list for the specified media or request mode (if it was already not present, no error is
generated). If the value 1 is passed, the application is inserted as the highest-priority application for
the media or request mode (and removed from a lower-priority position, if it was already in the list).
Any other value generates an error.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_INVALREQUESTMODE, LINEERR_INVALAPPNAME,

LINEERR_NOMEM, LINEERR_INVALMEDIAMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPARAM, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER.

Remarks
If LINEERR_INVALMEDIAMODE is returned, the value specified in dwMediaMode is not 0 and not a
LINEMEDIAMODE_ constant, or more than one bit is on in the parameter value.

This function updates to stored priority list. If the telephony system is initialized, it also sets the current,
active priorities for applications then running; the new priority will be used on the next incoming call or
lineHandoff based on media mode.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
LINEEXTENSIONID, lineHandoff

lineSetAppSpecific       

   

The lineSetAppSpecific function enables an application to set the application-specific field of the
specified call's call-information record.

LONG lineSetAppSpecific(

 HCALL hCall,
 DWORD dwAppSpecific
);

Parameters
hCall

A handle to the call whose application-specific field needs to be set. The application must be an
owner of the call. The call state of hCall can be any state.

dwAppSpecific

The new content of the dwAppSpecific field for the call's LINECALLINFO structure. This value is not
interpreted by the Telephony API.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_NOTOWNER, LINEERR_OPERATIONUNAVAIL,
LINEERR_OPERATIONFAILED.

Remarks
The application-specific field in the LINECALLINFO data structure that exists for each call is not
interpreted by the Telephony API or any of its service providers. Its usage is entirely defined by the
applications. The field can be read from the LINECALLINFO record returned by lineGetCallInfo.
However, lineSetAppSpecific must be used to set the field so that changes become visible to other
applications. When this field is changed, all other applications with call handles are sent a
LINE_CALLINFO message with an indication that the dwAppSpecific field has changed.

See Also
LINE_CALLINFO, LINECALLINFO, lineGetCallInfo

lineSetCallData       

   

The lineSetCallData function sets the CallData member in LINECALLINFO. Depending on the service
provider implementation, the CallData member may be propagated to all applications having handles to
the call, including those on other machines (through the server), and may travel with the call when it is
transferred.

LONG lineSetCallData(

 HCALL hCall,
 LPVOID lpCallData,
 DWORD dwSize
);

Parameters
hCall

Handle to the call. The application must have OWNER privilege.
lpCallData

Address of the data to be copied to the CallData member in LINECALLINFO, replacing any existing
data.

dwSize

Number of bytes of data to be copied. A value of 0 causes any existing data to be removed.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCALLSTATE, LINEERR_INVALPARAM,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_NOTOWNER,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_UNINITIALIZED.

See Also
LINECALLINFO

lineSetCallParams       

   

The lineSetCallParams function allows an application to change bearer mode and/or the rate parameters
of an existing call.

LONG lineSetCallParams(

 HCALL hCall,
 DWORD dwBearerMode,
 DWORD dwMinRate,
 DWORD dwMaxRate,
 LPLINEDIALPARAMS const lpDialParams
);

Parameters
hCall

A handle to the call whose parameters are to be changed. The application must be an owner of the
call. The call state of hCall can be any state except idle and disconnected.

dwBearerMode

The new bearer mode for the call. This parameter can have only a single bit set, and it uses the
following LINEBEARERMODE_ constants:
LINEBEARERMODE_VOICE

A regular 3.1 kHz analog voice-grade bearer service. Bit integrity is not assured. Voice can support
fax and modem media modes.

LINEBEARERMODE_SPEECH

This corresponds to G.711 speech transmission on the call. The network may use processing
techniques such as analog transmission, echo cancellation, and compression/decompression. Bit
integrity is not assured. Speech is not intended to support fax and modem media modes.

LINEBEARERMODE_MULTIUSE

The multi-use mode defined by ISDN.
LINEBEARERMODE_DATA

The unrestricted data transfer on the call. The data rate is specified separately.
LINEBEARERMODE_ALTSPEECHDATA

The alternate transfer of speech or unrestricted data on the same call (ISDN).
LINEBEARERMODE_NONCALLSIGNALING

Corresponds to a non-call-associated signaling connection from the application to the service
provider or switch (treated as a media stream by the Telephony API).

LINEBEARERMODE_PASSTHROUGH

When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct
access to the attached hardware for control by the application. This mode is used primarily by
applications desiring temporary direct control over asynchronous modems, accessed through the
Win32 comm functions, for the purpose of configuring or using special features not otherwise

supported by the service provider.

dwMinRate

A lower bound for the call's new data rate. The application is willing to accept a new rate as low as
this one.

dwMaxRate

An upper bound for the call's new data rate. This is the maximum data rate the application can
accept. If an exact data rate is required, dwMinRate and dwMaxRate should be equal.

lpDialParams

A pointer to the new dial parameters for the call, of type LINEDIALPARAMS. This parameter can be
left NULL if the call's current dialing parameters are to be used.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_BEARERMODEUNAVAIL, LINEERR_NOTOWNER, LINEERR_INVALBEARERMODE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSTATE, LINEERR_RATEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALRATE, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.

Remarks
This operation is used to change the parameters of an existing call. Examples of its usage include
changing the bearer mode and/or the data rate of an existing call.

See Also
LINE_REPLY, LINEDIALPARAMS

lineSetCallPrivilege       

   

The lineSetCallPrivilege function sets the application's privilege to the specified privilege.

LONG lineSetCallPrivilege(

 HCALL hCall,
 DWORD dwCallPrivilege
);

Parameters
hCall

A handle to the call whose privilege is to be set. The call state of hCall can be any state.
dwCallPrivilege

The privilege the application wants to have for the specified call. Only a single flag can be set. This
parameter uses the following LINECALLPRIVILEGE_ constants:
LINECALLPRIVILEGE_MONITOR

The application requests monitor privilege to the call. These privileges allow the application to
monitor state changes and to query information and status about the call.

LINECALLPRIVILEGE_OWNER

The application requests owner privilege to the call. These privileges allow the application to
manipulate the call in ways that affect the state of the call.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSTATE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLPRIVILEGE, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.

Remarks
If the application is the sole owner of a non-idle call and wants to change its privilege to monitor, a
LINEERR_INVALCALLSTATE error is returned. If the application wants to, it can first drop the call using
lineDrop to make the call transition to the idle state and then change its privilege.

See Also
lineDrop

lineSetCallQualityOfService       

   

The lineSetCallQualityOfService function allows the application to attempt to change the quality of
service parameters (reserved capacity and performance guarantees) for an existing call. Except for basic
parameter validation, this is a straight pass-through to a service provider.

LONG lineSetCallQualityOfService(

 HCALL hCall,
 LPVOID lpSendingFlowspec,
 DWORD dwSendingFlowspecSize,
 LPVOID lpReceivingFlowspec,
 DWORD dwReceivingFlowspecSize
);

Parameters
hCall

Handle to the call. The application must have OWNER privilege.
lpSendingFlowspec

Pointer to memory containing a WinSock2 FLOWSPEC structure followed by provider-specific data.
The provider-specific portion following the FLOWSPEC structure must not contain pointers to other
blocks of memory in the application process, because TAPI will not know how to marshal the data
pointed to by the private pointer(s) and convey it through interprocess communication to the service
provider.

dwSendingFlowspecSize

The total size in bytes of the FLOWSPEC structure and accompanying provider-specific data,
equivalent to what would have been stored in SendingFlowspec.len in a WinSock2 QOS structure.

lpReceivingFlowspec

Pointer to memory containing a WinSock2 FLOWSPEC structure followed by provider-specific data.
The provider-specific portion following the FLOWSPEC structure must not contain pointers to other
blocks of memory in the application process, because TAPI will not know how to marshal the data
pointed to by the private pointer(s) and convey it through interprocess communication to the service
provider.

dwReceivingFlowspecSize

The total size in bytes of the FLOWSPEC and accompanying provider-specific data, equivalent to
what would have been stored in ReceivingFlowspec.len in a WinSock2 QOS structure.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCALLSTATE, LINEERR_INVALPARAM,
LINEERR_INVALPOINTER, LINEERR_INVALRATE, LINEERR_NOMEM, LINEERR_NOTOWNER,
LINEERR_OPERATIONUNAVAIL, LINEERR_OPERATIONFAILED, LINEERR_RATEUNAVAIL,
LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

lineSetCallTreatment       

   

The lineSetCallTreatment function sets what sounds a party on a call that is unanswered or on hold will
hear. Except for basic parameter validation, it is a straight pass-through by TAPI to the service provider.

LONG lineSetCallTreatment(

 HCALL hCall,
 DWORD dwCallTreatment
);

Parameters
hCall

Handle to the call. The application must have OWNER privilege.
dwCallTreatment

One of the call treatments supported on the address on which the call appears, as indicated by
LINEADDRESSCAPS. LINEERR_INVALPARAM is returned if the specified treatment is not
supported.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCALLSTATE, LINEERR_INVALPARAM,
LINEERR_NOMEM, LINEERR_NOTOWNER, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

Remarks
The use of call treatment functionality should be limited to controlling of legacy equipment. New
equipment is generally designed so that instead of call treatments being generated by external switching
equipment, calls would be connected to PC-based audio sources and signals generating using standard
Win32 functions such as the multimedia Wave API.

See Also
LINEADDRESSCAPS

lineSetCurrentLocation       

   

The lineSetCurentLocation function sets the location used as the context for address translation.

LONG lineSetCurrentLocation(

 HLINEAPP hLineApp,
 DWORD dwLocation
);

Parameters
hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwLocation

Specifies a new value for the CurrentLocation entry in the [Locations] section in the registry. It must
contain a valid permanent ID of a Location entry in the [Locations] section, as obtained from
lineGetTranslateCaps. If it is valid, the CurrentLocation entry is updated.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALAPPHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALLOCATION, LINEERR_RESOURCEUNAVAIL,
LINEERR_NODRIVER, LINEERR_UNINITIALIZED.

See Also
lineGetTranslateCaps, lineInitializeEx

lineSetDevConfig       

   

The lineSetDevConfig function allows the application to restore the configuration of a media stream
device on a line device to a setup previously obtained using lineGetDevConfig. For example, the
contents of this structure could specify data rate, character format, modulation schemes, and error control
protocol settings for a "datamodem" media device associated with the line.

LONG lineSetDevConfig(

 DWORD dwDeviceID,
 LPVOID const lpDeviceConfig,
 DWORD dwSize,
 LPCSTR lpszDeviceClass
);

Parameters
dwDeviceID

The line device to be configured.
lpDeviceConfig

A pointer to the opaque configuration data structure that was returned by lineGetDevConfig in the
variable portion of the VARSTRING structure.

dwSize

The number of bytes in the structure pointed to by lpDeviceConfig. This value will have been returned
in the dwStringSize field in the VARSTRING structure returned by lineGetDevConfig.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
configuration is to be set. Valid device class strings are the same as those specified for the lineGetID
function.

Return Values
Returns zero if the function is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NODRIVER, LINEERR_INVALDEVICECLASS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED,
LINEERR_INVALPARAM, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINESTATE,
LINEERR_UNINITIALIZED, LINEERR_NOMEM, LINEERR_NODEVICE.

Remarks
Call states are device specific.

Typically, an application will call lineGetID to identify the media stream device associated with a line, and
then call lineConfigDialog to allow the user to set up the device configuration. It could then call
lineGetDevConfig and save the configuration information in a phone book or other database associated
with a particular call destination. When the user wants to call the same destination again, this function
lineSetDevConfig can be used to restore the configuration settings selected by the user. The

lineSetDevConfig, lineConfigDialog, and lineGetDevConfig functions can be used, in that order, to
allow the user to view and update the settings.

The exact format of the data contained within the structure is specific to the line and media stream API
(device class), is undocumented, and is undefined. The application must treat it as "opaque" and not
manipulate the contents directly. Generally, the structure can be sent using this function only to the same
device from which it was obtained. Certain Telephony service providers may, however, permit structures
to be interchanged between identical devices (that is, multiple ports on the same multi-port modem card).
Such interchangeability is not guaranteed in any way, even for devices of the same device class.

Note that some service providers may permit the configuration to be set while a call is active, and others
may not.

See Also
lineConfigDialog, lineGetDevConfig, lineGetID, VARSTRING

lineSetLineDevStatus   

The lineSetLineDevStatus function sets the line device status. Except for basic parameter validation, it is
a straight pass-through to the service provider. The service provider will send a LINE_LINEDEVSTATUS
message to inform applications of the new state, when set; TAPI does not synthesize these messages.

LONG WINAPI lineSetLineDevStatus(

 DWORD hLine,
 DWORD dwStatusToChange,
 DWORD fStatus
);

Parameters
hLine

Handle to the line device.
dwStatusToChange

One or more of the LINEDEVSTATUSFLAGS_ values.
fStatus

TRUE (-1) to turn on the indicated status bit(s), FALSE (0) to turn off.

Return Values
Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALLINEHANDLE, LINEERR_INVALLINESTATE, LINEERR_INVALPARAM,
LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL, LINEERR_OPERATIONFAILED,
LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED.

lineSetMediaControl       

   

The lineSetMediaControl function enables and disables control actions on the media stream associated
with the specified line, address, or call. Media control actions can be triggered by the detection of
specified digits, media modes, custom tones, and call states.

LONG lineSetMediaControl(

 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPLINEMEDIACONTROLDIGIT const lpDigitList,
 DWORD dwDigitNumEntries,
 LPLINEMEDIACONTROLMEDIA const lpMediaList,
 DWORD dwMediaNumEntries,
 LPLINEMEDIACONTROLTONE const lpToneList,
 DWORD dwToneNumEntries,
 LPLINEMEDIACONTROLCALLSTATE const lpCallStateList,
 DWORD dwCallStateNumEntries
);

Parameters
hLine

SAa handle to an open line device.
dwAddressID

An address on the given open line device.
hCall

A handle to a call. The application must be an owner of the call. The call state of hCall can be any
state.

dwSelect

Specifies whether the media control requested is associated with a single call, is the default for all
calls on an address, or is the default for all calls on a line. This parameter can only have a single flag
set, and it uses the following LINECALLSELECT_ constants:
LINECALLSELECT_LINE

Selects the specified line device. The hLine parameter must be a valid line handle; hCall and
dwAddressID are ignored.

LINECALLSELECT_ADDRESS

Selects the specified address on the line. Both hLine and dwAddressID must be valid; hCall is
ignored.

LINECALLSELECT_CALL

Selects the specified call. hCall must be valid; hLine and dwAddressID are both ignored.

lpDigitList

A pointer to the array that contains the digits that are to trigger media control actions, of type
LINEMEDIACONTROLDIGIT. Each time a digit in the digit list is detected, the specified media control
action is carried out on the call's media stream.
Valid digits for pulse mode are '0' through '9'. Valid digits for DTMF mode are '0' through '9', 'A', 'B',
'C', 'D', '*', '#'.

dwDigitNumEntries

The number of entries in the lpDigitList.
lpMediaList

A pointer to an array with entries of type LINEMEDIACONTROLMEDIA. The array has
dwMediaNumEntries entries. Each entry contains a media mode to be monitored, media-type specific
information (such as duration), and a media control field. If a media mode in the list is detected, the
corresponding media control action is performed on the call's media stream.

dwMediaNumEntries

The number of entries in lpMediaList.
lpToneList

A pointer to an array with entries of type LINEMEDIACONTROLTONE. The array has
dwToneNumEntries entries. Each entry contains a description of a tone to be monitored, duration of
the tone, and a media-control field. If a tone in the list is detected, the corresponding media control
action is performed on the call's media stream.

dwToneNumEntries

The number of entries in lpToneList.
lpCallStateList

A pointer to an array with entries are of type LINEMEDIACONTROLCALLSTATE. The array has
dwCallStateNumEntries entries. Each entry contains a call state and a media control action.
Whenever the given call transitions into one of the call states in the list, the corresponding media
control action is invoked.

dwCallStateNumEntries

The number of entries in lpCallStateList.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_NOMEM, LINEERR_INVALCALLHANDLE,
LINEERR_NOTOWNER, LINEERR_INVALCALLSELECT, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLSTATELIST, LINEERR_OPERATIONFAILED, LINEERR_INVALDIGITLIST,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE, LINEERR_UNINITIALIZED,
LINEERR_INVALMEDIALIST, LINEERR_INVALPOINTER, LINEERR_INVALTONELIST.

Remarks
The lineSetMediaControl function is considered successful if media control has been correctly initiated,
not when any media control has taken effect. Media control in progress is changed or is canceled by
calling this function again with either different parameters or NULLs. If one or more of the parameters
lpDigitList, lpMediaList, lpToneList, and lpCallStateList are NULL, then the corresponding digit, media
mode, tone, or call state-triggered media control is disabled. To modify just a portion of the media control
parameters while leaving the remaining settings in effect, the application should invoke

lineSetMediaControl supplying the previous parameters for those portions that must remain in effect,
and new parameters for those parts that are to be modified.

If hCall is selected and the call terminates or the application deallocates its handle, media control on that
call is canceled.

All applications that are owners of the call are in principle allowed to make media control requests on the
call. Only a single media control request can be outstanding on a call across all applications that own the
call. Each time lineSetMediaControl is called, the new request overrides any media control then in effect
on the call, whether set by the calling application or any other owning application.

Depending on the service provider and other activities that compete for such resources, the amount of
simultaneous detections that can be made may vary over time. If service provider resources are
overcommitted, the LINEERR_RESOURCEUNAVAIL error is returned.

Whether or not media control is supported by the service provider is a device capability.

See Also
LINEMEDIACONTROLCALLSTATE, LINEMEDIACONTROLDIGIT, LINEMEDIACONTROLMEDIA,
LINEMEDIACONTROLTONE

lineSetMediaMode       

   

The lineSetMediaMode function sets the media mode(s) of the specified call in its LINECALLINFO
structure.

LONG lineSetMediaMode(

 HCALL hCall,
 DWORD dwMediaModes
);

Parameters
hCall

A handle to the call whose media mode is to be changed. The application must be an owner of the
call. The call state of hCall can be any state.

dwMediaModes

The new media mode(s) for the call. As long as the UNKNOWN media mode flag is set, other media
mode flags may be set as well. This is used to identify a call's media mode as not fully determined,
but narrowed down to one of a small set of specified media modes. If the UNKNOWN flag is not set,
only a single media mode can be specified. This parameter uses the following LINEMEDIAMODE_
constants:
LINEMEDIAMODE_UNKNOWN

The target application is the one that handles calls of unknown media mode (unclassified calls).
LINEMEDIAMODE_INTERACTIVEVOICE

The target application is the one that handles calls with the interactive voice media mode (live
conversations).

LINEMEDIAMODE_AUTOMATEDVOICE

Voice energy is present on the call, and the voice is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM

The target application is the one that handles calls with the data modem media mode.
LINEMEDIAMODE_G3FAX

The target application is the one that handles calls with the group 3 fax media mode.
LINEMEDIAMODE_TDD

The target application is the one that handles calls with the TDD (Telephony Devices for the Deaf)
media mode.

LINEMEDIAMODE_G4FAX

The target application is the one that handles calls with the group 4 fax media mode.
LINEMEDIAMODE_DIGITALDATA

The target application is the one that handles calls that are digital data calls.
LINEMEDIAMODE_TELETEX

The target application is the one that handles calls with the teletex media mode.
LINEMEDIAMODE_VIDEOTEX

The target application is the one that handles calls with the videotex media mode.
LINEMEDIAMODE_TELEX

The target application is the one that handles calls with the telex media mode.
LINEMEDIAMODE_MIXED

The target application is the one that handles calls with the ISDN mixed media mode.
LINEMEDIAMODE_ADSI

The target application is the one that handles calls with the ADSI (Analog Display Services
Interface) media mode.

LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALMEDIAMODE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONUNAVAIL.

Remarks
The lineSetMediaMode function changes the call's media mode in its LINECALLINFO structure. Typical
usage of this operation is either to set a call's media mode to a specific known media mode or to exclude
possible media modes as long as the call's media mode is officially unknown (the UNKNOWN media
mode flag is set).

See Also
LINECALLINFO

lineSetNumRings       

   

The lineSetNumRings function sets the number of rings that must occur before an incoming call is
answered. This function can be used to implement a toll-saver-style function. It allows multiple
independent applications to each register the number of rings. The function lineGetNumRings returns
the minimum number of all number of rings requested. It can be used by the application that answers
inbound calls to determine the number of rings it should wait before answering the call.

LONG lineSetNumRings(

 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwNumRings
);

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the line device.
dwNumRings

The number of rings before a call should be answered in order to honor the toll-saver requests from
all applications.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALADDRESSID,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks
The lineGetNumRings and lineSetNumRings functions, when used in combination, provide a
mechanism to support the implementation of toll-saver features across multiple independent applications.
If no application ever calls lineSetNumRings, lineGetNumRings will return 0xFFFFFFFF.

An application that is the owner of a call in the offering state and that received a LINE_LINEDEVSTATE
ringing message should wait a number of rings equal to the number returned by lineGetNumRings
before answering the call in order to honor the toll-saver settings across all applications. A separate
LINE_LINEDEVSTATE ringing message is sent to the application for each ring cycle, so the application
should count these messages. If this call disconnects before being answered, and another call comes in
shortly thereafter, the LINE_CALLSTATE message should allow the application to determine that ringing
is related to the second call.

If call classification is performed by TAPI by means of answering inbound calls of unknown media mode
and filtering the media stream, TAPI will honor this number as well.

Note that this operation is purely informational and does not affect the state of any calls on the line
device.

See Also
LINE_CALLSTATE, LINE_LINEDEVSTATE, lineGetNumRings

lineSetStatusMessages       

   

The lineSetStatusMessages enables an application to specify which notification messages the
application wants to receive for events related to status changes for the specified line or any of its
addresses.

LONG lineSetStatusMessages(

 HLINE hLine,
 DWORD dwLineStates,
 DWORD dwAddressStates
);

Parameters
hLine

A handle to the line device.
dwLineStates

A bit array that identifies for which line-device status changes a message is to be sent to the
application. This parameter uses the following LINEDEVSTATE_ constants:
LINEDEVSTATE_OTHER

Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING

The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending LINE_LINEDEVSTATE messages containing this constant. For example, in the United
States, service providers send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED

The line was previously disconnected and is now connected to TAPI.
LINEDEVSTATE_DISCONNECTED

This line was previously connected and is now disconnected from TAPI.
LINEDEVSTATE_MSGWAITON

The "message waiting" indicator is turned on.
LINEDEVSTATE_MSGWAITOFF

The "message waiting" indicator is turned off.
LINEDEVSTATE_INSERVICE

The line is connected to TAPI. This happens when TAPI is first activated, or when the line wire is
physically plugged in and in service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate
on the line device.

LINEDEVSTATE_MAINTENANCE

Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the
line device.

LINEDEVSTATE_OPEN

The line has been opened by some application.
LINEDEVSTATE_CLOSE

The line has been closed by some application.
LINEDEVSTATE_NUMCALLS

The number of calls on the line device has changed.
LINEDEVSTATE_NUMCOMPLETIONS

The number of outstanding call completions on the line device has changed.
LINEDEVSTATE_TERMINALS

The terminal settings have changed.
LINEDEVSTATE_ROAMMODE

The roam mode of the line device has changed.
LINEDEVSTATE_BATTERY

The battery level has changed significantly (cellular).
LINEDEVSTATE_SIGNAL

The signal level has changed significantly (cellular).
LINEDEVSTATE_DEVSPECIFIC

The line's device-specific information has changed.
LINEDEVSTATE_REINIT

Items have changed in the configuration of line devices. To become aware of these changes (as
with the appearance of new line devices) the application should reinitialize its use of TAPI. New
lineInitialize, lineInitializeEx and lineOpen requests are denied until applications have shut down
their usage of TAPI. The hDevice parameter of the LINE_LINEDEVSTATE message is left NULL for
this state change as it applies to any of the lines in the system. Because of the critical nature of
LINEDEVSTATE_REINIT, such messages cannot be masked, so the setting of this bit is ignored
and the messages are always delivered to the application.

LINEDEVSTATE_LOCK

The locked status of the line device has changed.
LINEDEVSTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, via a control panel or similar utility). A LINE_LINEDEVSTATE message with
this value will normally be immediately followed by a LINE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated API TAPI version 0x00010004 or above; applications
negotiating a previous API version will not receive any notification.

dwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
This parameter uses the following LINEADDRESSSTATE_ constants:
LINEADDRESSSTATE_OTHER

Address-status items other than those listed below have changed. The application should check
the current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status has changed.
LINEADDRESSSTATE_INUSEZERO

The address has changed to idle (it is now in use by zero stations).
LINEADDRESSSTATE_INUSEONE

The address has changed from idle or from being in use by many bridged stations to being in use
by just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address has changed from being in use by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This is the result of events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address has changed (including the number of rings for determining a
no-answer condition). The application should check the address status to determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address have changed.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSSTATE, LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINESTATE, LINEERR_UNINITIALIZED,
LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL.

Remarks
TAPI defines a number of messages that notify applications about events occurring on lines and
addresses. An application may not be interested in receiving all address and line status change
messages. The lineSetStatusMessages function can be used to select which messages the application
wants to receive. By default, address and line status reporting is disabled.

See Also
LINE_CLOSE, LINE_LINEDEVSTATE, lineInitialize, lineInitializeEx, lineOpen

lineSetTerminal       

   

The lineSetTerminal function enables an application to specify which terminal information related to the
specified line, address, or call is to be routed. The lineSetTerminal function can be used while calls are in
progress on the line to allow an application to route these events to different devices as required.

LONG lineSetTerminal(

 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 DWORD dwTerminalModes,
 DWORD dwTerminalID,
 DWORD bEnable
);

Parameters
hLine

A handle to an open line device.
dwAddressID

An address on the given open line device.
hCall

A handle to a call. The call state of hCall can be any state, if dwSelect is CALL.
dwSelect

Specifies whether the terminal setting is requested for the line, the address, or just the specified call.
If line or address is specified, events either apply to the line or address itself or serves as a default
initial setting for all new calls on the line or address. This parameter uses the following
LINECALLSELECT_ constants:
LINECALLSELECT_LINE

Selects the specified line device. The hLine parameter must be a valid line handle; hCall and
dwAddressID are ignored.

LINECALLSELECT_ADDRESS

Selects the specified address on the line. Both hLine and dwAddressID must be valid; hCall is
ignored.

LINECALLSELECT_CALL

Selects the specified call. hCall must be valid; hLine and dwAddressID are both ignored.

dwTerminalModes

The class or classes of low-level events to be routed to the given terminal. This parameter uses the
following LINETERMMODE_ constants:
LINETERMMODE_BUTTONS

The button presses from the terminal to the line.
LINETERMMODE_DISPLAY

The display events from the line to the terminal.
LINETERMMODE_LAMPS

The lamp lighting events from the line to the terminal.
LINETERMMODE_RINGER

The ring requests from the line to the terminal.
LINETERMMODE_HOOKSWITCH

The hookswitch events between the terminal and the line.
LINETERMMODE_MEDIATOLINE

This is the unidirectional media stream from the terminal to the line associated with a call on the
line. Use this value when routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIAFROMLINE

This is the unidirectional media stream from the line to the terminal associated with a call on the
line. Use this value when routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIABIDIRECT

This is the bidirectional media stream associated with a call on the line and the terminal. Use this
value when routing of both unidirectional channels of a call's media stream cannot be controlled
independently. Note that MEDIABIDIRECT is mutually exclusive with MEDIATOLINE and
MEDIAFROMLINE

dwTerminalID

The device ID of the terminal device where the given events are to be routed. Terminal IDs are small
integers in the range of 0 to one less than dwNumTerminals, where dwNumTerminals, and the
terminal modes each terminal is capable of handling, are returned by lineGetDevCaps. Note that
these terminal IDs have no relation to other device IDs and are defined by the service provider using
device capabilities.

bEnable

If TRUE, dwTerminalID is valid and the specified event classes are routed to or from that terminal. If
FALSE, these events are not routed to or from the terminal device with ID equal to dwTerminalID.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESSID, LINEERR_NOMEM, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSELECT, LINEERR_OPERATIONFAILED,
LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALTERMINALID,
LINEERR_UNINITIALIZED, LINEERR_INVALTERMINALMODE.

Remarks
An application can use this function to route certain classes of low-level line events to the specified
terminal device or to suppress the routing of these events. For example, voice may be routed to an audio
I/O device (headset); lamps and display events may be routed to the local phone device, and button
events and ringer events may be suppressed altogether.

This function can be called at any time, even when a call is active on the given line device. This allows a
user to switch from using the local phone set to another audio I/O device. This function may be called
multiple times to route the same events to multiple terminals simultaneously. To reroute events to a
different terminal, the application should first disable routing to the existing terminal and then route the
events to the new terminal.

Terminal ID assignments are made by the line's service provider. Device capabilities indicate only which
terminal IDs the service provider has available. Service providers that do not support this type of event
routing would indicate that they have no terminal devices (dwNumTerminals in LINEDEVCAPS would be
zero).

Invoking lineSetTerminal on a line or address affects all existing calls on that line or address, but does
not affect calls on other addresses. It also sets the default for future calls on that line or address. A line or
address that has multiple connected calls active at one time may have different routing in effect for each
call.

Disabling the routing of low-level events to a terminal when these events are not currently routed to or
from that terminal will not necessarily generate an error so long after the function succeeds (the specified
events are not routed to or from that terminal).

TAPI routes call progress tones and messages to the same location as set by the lineSetTerminal
function for "media". For example, if audio signals are going to the phone, then so will busy signals
(analog) or Q.931 messages indicating busy (digital).

See Also
LINE_REPLY, LINEDEVCAPS, lineGetDevCaps

lineSetTollList       

   

The lineSetTollList function manipulates the toll list.

LONG lineSetTollList(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPCSTR lpszAddressIn,
 DWORD dwTollListOption
);

Parameters
hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device ID for the line device upon which the call is intended to be dialed, so that variations in
dialing procedures on different lines can be applied to the translation process.

lpszAddressIn

A pointer to a NULL-terminated ASCII string containing the address from which the prefix information
is to be extracted for processing. This parameter must not be NULL, and it must be in the canonical
address format.

dwTollListOption

The toll list operation to be performed. Only a single flag can be set. This parameter uses the
following LINETOLLLISTOPTION_ constants:
LINETOLLLISTOPTION_ADD

Causes the prefix contained within the string pointed to by lpszAddressIn to be added to the toll list
for the current location.

LINETOLLLISTOPTION_REMOVE

Causes the prefix to be removed from the toll list of the current location. If toll lists are not used or
relevant to the country indicated in the current location, the operation has no affect.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NODRIVER, LINEERR_INVALAPPHANDLE, LINEERR_NOMEM,
LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED, LINEERR_INVALPARAM,
LINEERR_RESOURCEUNAVAIL, LINEERR_INIFILECORRUPT, LINEERR_UNINITIALIZED,
LINEERR_INVALLOCATION.

See Also
lineInitializeEx

lineSetupConference       

   

The lineSetupConference function sets up a conference call for the addition of the third party.

LONG lineSetupConference(

 HCALL hCall,
 HLINE hLine,
 LPHCALL lphConfCall,
 LPHCALL lphConsultCall,
 DWORD dwNumParties,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hCall

The initial call that identifies the first party of a conference call. In some environments (as described in
device capabilities), a call must exist to start a conference call, and the application must be an owner
of this call. In other telephony environments, no call initially exists, hCall must be left NULL, and hLine
must be specified to identify the line on which the conference call is to be initiated. The call state of
hCall must be connected.

hLine

A handle to the line. This handle is used to identify the line device on which to originate the
conference call if hCall is NULL. The hLine parameter is ignored if hCall is non-NULL.

lphConfCall

A pointer to an HCALL handle. This location is then loaded with a handle identifying the newly created
conference call. The application will be the initial sole owner of this call. The call state of hConfCall is
not applicable.

lphConsultCall

A pointer to an HCALL handle. When setting up a call for the addition of a new party, a new temporary
call (consultation call) is automatically allocated. Initially, the application will be the sole owner for this
call.

dwNumParties

The expected number of parties in the conference call. This number is passed to the service provider.
The service provider is free to do as it pleases with this number: ignore it, use it as a hint to allocate
the right size conference bridge inside the switch, and so on.

lpCallParams

A pointer to call parameters to be used when establishing the consultation call. This parameter may
be set to NULL if no special call setup parameters are desired.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values

are:

LINEERR_BEARERMODEUNAVAIL, LINEERR_UNINITIALIZED, LINEERR_CALLUNAVAIL,
LINEERR_INVALMEDIAMODE, LINEERR_CONFERENCEFULL, LINEERR_INVALPOINTER,
LINEERR_INUSE, LINEERR_INVALRATE, LINEERR_INVALADDRESSMODE, LINEERR_NOMEM,
LINEERR_INVALBEARERMODE, LINEERR_NOTOWNER, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLPARAMS, LINEERR_RATEUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINESTATE, LINEERR_STRUCTURETOOSMALL,
LINEERR_USERUSERINFOTOOBIG.

Remarks
If LINEERR_INVALLINESTATE is returned, the line is currently not in a state in which this operation can
be performed. A list of currently valid operations can be found in the dwLineFeatures field (of the type
LINEFEATURE) in the LINEDEVSTATUS structure. (Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS.) If LINEERR_INVALMEDIAMODE is returned, check for supported
media modes on the line in the dwMediaModes field in the LINEDEVCAPS structure.

The lineSetupConference function provides two ways to establish a new conference call, depending on
whether a normal two-party call is required to pre-exist or not. When setting up a conference call from an
existing two-party call, the hCall parameter is a valid call handle that is initially added to the conference
call by the lineSetupConference request; hLine is ignored. On switches where conference call setup
does not start with an existing call, hCall must be NULL and hLine must be specified to identify the line
device on which to initiate the conference call. In either case, a consultation call is allocated for
connecting to the party that is to be added to the call. The application can then use lineDial to dial the
address of the other party.

The conference call typically transitions into the onHoldPendingConference state, the consultation call
into the dialtone state, and the initial call (if there is one) into the conferenced state.

A conference call can also be set up by a lineCompleteTransfer that is resolved into a three-way
conference. The application may be able to toggle between the consultation call and the conference call
using lineSwapHold.

A consultation call can be canceled by invoking lineDroponit. When dropping a consultation call, the
existing conference call typically transitions back to the connected state. The application should observe
the LINE_CALLSTATE messages to determine exactly what happens to the calls. For example, if the
conference call reverts back to a regular two-party call, the conference call will become idle and the
original participant call may revert to connected.

If an application specifies the handle of the original call (hCall) in a call to the lineUnhold function, both
the conference call and the consultation call typically go to idle.

See Also
LINE_CALLSTATE, lineCompleteTransfer, LINEDEVCAPS, LINEDEVSTATUS, lineDial,
lineGetLineDevStatus, lineSwapHold, lineUnhold

lineSetupTransfer       

   

The lineSetupTransfer function initiates a transfer of the call specified by hCall. It establishes a
consultation call, lphConsultCall, on which the party can be dialed that can become the destination of the
transfer. The application acquires owner privilege to lphConsultCall.

LONG lineSetupTransfer(

 HCALL hCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters
hCall

The handle of the call to be transferred. The application must be an owner of the call. The call state of
hCall must be connected.

lphConsultCall

A pointer to an HCALL handle. This location is then loaded with a handle identifying the temporary
consultation call. When setting up a call for transfer, another call (a consultation call) is automatically
allocated to enable the application to dial the address (using lineDial) of the party to where the call is
to be transferred. The originating party can carry on a conversation over this consultation call prior to
completing the transfer. Call state of hConsultCall is not applicable.
This transfer procedure may not be valid for some line devices. The application may need to ignore
the new consultation call and unhold an existing held call (using lineUnhold) to identify the
destination of the transfer. On switches that support cross-address call transfer, the consultation call
may exist on a different address than the call to be transferred. It may also be necessary that the
consultation call be set up as an entirely new call, by lineMakeCall, to the destination of the transfer.
Which forms of transfer are available are specified in the call's address capabilities.

lpCallParams

A pointer to call parameters to be used when establishing the consultation call. This parameter may
be set to NULL if no special call setup parameters are desired.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_BEARERMODEUNAVAIL, LINEERR_INVALRATE, LINEERR_CALLUNAVAIL,
LINEERR_NOMEM, LINEERR_INUSE, LINEERR_NOTOWNER, LINEERR_INVALADDRESSMODE,
LINEERR_OPERATIONFAILED, LINEERR_INVALBEARERMODE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLHANDLE, LINEERR_RATEUNAVAIL, LINEERR_INVALCALLPARAMS,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALLINESTATE, LINEERR_UNINITIALIZED, LINEERR_INVALMEDIAMODE,
LINEERR_USERUSERINFOTOOBIG, LINEERR_INVALPOINTER.

Remarks
The lineSetupTransfer function sets up the transfer of the call specified by hCall. The setup phase of a
transfer establishes a consultation call that enables the application to send the address of the destination
(the party to be transferred to) to the switch, while the call to be transferred is kept on hold. This new call
is referred to as a consultation call (hConsultCall) and can be dropped or otherwise manipulated
independently of the original call.

When the consultation call has reached the dialtone call state, the application may proceed transferring
the call either by dialing the destination address and tracking its progress, or by unholding an existing call.
The transfer of the original call to the selected destination is completed using lineCompleteTransfer.

While the consultation call exists, the original call typically transitions to the onholdPendingTransfer state.
The application may be able to toggle between the consultation call and the original call by using
lineSwapHold. A consultation call can be canceled by invoking lineDrop on it. After dropping a
consultation call, the original call will typically transition back to the connected state. If the call state of the
original call is onHoldPendingTransfer, the lineUnhold function can be used to recover the call. In this
case, the call state of the consultation call is set to idle.

The application may also transfer calls in a single step, without having to deal with the intervening
consultation call by using lineBlindTransfer.

See Also
LINE_REPLY, lineBlindTransfer, lineCompleteTransfer, lineDial, lineDrop, lineMakeCall,
lineSwapHold, lineUnhold

lineShutdown       

   

The lineShutdown function shuts down the application's usage of the line abstraction of API.

LONG lineShutdown(

 HLINEAPP hLineApp
);

Parameters
hLineApp

The application's usage handle for the line API.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

Remarks
If this function is called when the application has lines open or calls active, the call handles are deleted
and TAPI automatically performs the equivalent of a lineClose on each open line. However, it is
recommended that applications explicitly close all open lines before invoking lineShutdown. If shutdown
is performed while asynchronous requests are outstanding, those requests will be canceled.

See Also
lineClose

lineSwapHold       

   

The lineSwapHold function swaps the specified active call with the specified call on consultation hold.

LONG lineSwapHold(

 HCALL hActiveCall,
 HCALL hHeldCall
);

Parameters
hActiveCall

The handle to the active call. The application must be an owner of the call. The call state of
hActiveCall must be connected.

hHeldCall

The handle to the consultation call. The application must be an owner of the call. The call state of
hHeldCall can be onHoldPendingTransfer, onHoldPendingConference, onHold .

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

Remarks
Swapping the active call with the call on consultation hold allows the application to alternate or toggle
between these two calls. This is typical in call waiting.

See Also
LINE_REPLY

lineTranslateAddress       

   

The lineTranslateAddress function translates the specified address into another format.

LONG lineTranslateAddress(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 LPCSTR lpszAddressIn,
 DWORD dwCard,
 DWORD dwTranslateOptions,
 LPLINETRANSLATEOUTPUT lpTranslateOutput
);

Parameters
hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device ID for the line device upon which the call is intended to be dialed, so that variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI supported by the application (not necessarily the value
negotiated by lineNegotiateAPIVersion on some particular line device).

lpszAddressIn

A pointer to a NULL-terminated ASCII string containing the address from which the information is to
be extracted for translation. Must be in either the canonical address format, or an arbitrary string of
dialable digits (non-canonical). This parameter must not be NULL. If the AddressIn contains a
subaddress or name field, or additional addresses separated from the first address by ASCII CR and
LF characters, only the first address is translated, and the remainder of the string is returned to the
application without modification.

dwCard

The credit card to be used for dialing. This field in only valid if the CARDOVERRIDE bit is set in
dwTranslateOptions. This field specifies the permanent ID of a Card entry in the [Cards] section in the
registry (as obtained from lineTranslateCaps) which should be used instead of the PreferredCardID
specified in the definition of the CurrentLocation. It does not cause the PreferredCardID parameter of
the current Location entry in the registry to be modified; the override applies only to the current
translation operation. This field is ignored if the CARDOVERRIDE bit is not set in dwTranslateOptions.

dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable
string. This parameter uses the following LINETRANSLATEOPTION_ constants:
LINETRANSLATEOPTION_CARDOVERRIDE

If this bit is set, dwCard specifies the permanent ID of a Card entry in the [Cards] section in the

registry (as obtained from lineTranslateCaps) which should be used instead of the
PreferredCardID specified in the definition of the CurrentLocation. It does not cause the
PreferredCardID parameter of the current Location entry in the registry to be modified; the override
applies only to the current translation operation. The dwCard field is ignored if the
CARDOVERRIDE bit is not set.

LINETRANSLATEOPTION_CANCELCALLWAITING

If a Cancel Call Waiting string is defined for the location, setting this bit will cause that string to be
inserted at the beginning of the dialable string. This is commonly used by data modem and fax
applications to prevent interruption of calls by call waiting beeps. If no Cancel Call Waiting string is
defined for the location, this bit has no affect. Note that applications using this bit are advised to
also set the LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags field of the
LINECALLPARAMS structure passed in to lineMakeCall through the lpCallParams parameter, so
that if the line device uses a mechanism other than dialable digits to suppress call interrupts that
that mechanism will be invoked.

LINETRANSLATEOPTION_FORCELOCAL

If the number is local but would have been translated as a long distance call
(LINETRANSLATERESULT_INTOLLLIST bit set in the LINETRANSLATEOUTPUT structure), this
option will force it to be translated as local. This is a temporary override of the toll list setting.

LINETRANSLATEOPTION_FORCELD

If the address could potentially have been a toll call, but would have been translated as a local call
(LINETRANSLATERESULT_NOTINTOLLLIST bit set in the LINETRANSLATEOUTPUT structure),
this option will force it to be translated as long distance. This is a temporary override of the toll list
setting.

lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the translation operation, of
type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should set
the dwTotalSize field of this structure to indicate the amount of memory available to TAPI for
returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_INVALPOINTER, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_NODRIVER, LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALADDRESS,
LINEERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALCARD, LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPARAM.

See Also
lineInitializeEx, LINECALLPARAMS, lineNegotiateAPIVersion, LINETRANSLATEOUTPUT

lineTranslateDialog       

   

The lineTranslateDialog function displays an application-modal dialog which allows the user to change
the current location, adjust location and calling card parameters, and see the effect on a phone number
about to be dialed.

LONG lineTranslateDialog(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 HWND hwndOwner,
 LPCSTR lpszAddressIn
);

Parameters
hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device ID for the line device upon which the call is intended to be dialed, so that variations in
dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI supported by the application (not necessarily the value
negotiated by lineNegotiateAPIVersion on the line device indicated by dwDeviceID).

hwndOwner

A handle to a window to which the dialog is to be attached. Can be a NULL value to indicate that any
window created during the function should have no owner window.

lpszAddressIn

A pointer to a NULL-terminated ASCII string containing a phone number which will be used, in the
lower portion of the dialog, to show the effect of the user's changes to the location parameters. The
number must be in canonical format; if non-canonical, the phone number portion of the dialog will not
be displayed. This pointer can be left NULL, in which case the phone number portion of the dialog will
not be displayed. If the AddressIn contains a subaddress or name field, or additional addresses
separated from the first address by ASCII CR and LF characters, only the first address is used in the
dialog.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_INVALPARAM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_INVALPOINTER, LINEERR_INIFILECORRUPT, LINEERR_NODRIVER, LINEERR_INUSE,
LINEERR_NOMEM, LINEERR_INVALADDRESS, LINEERR_INVALAPPHANDLE,
LINEERR_OPERATIONFAILED.

Remarks
In API versions 0x00020000 and greater, it is possible for multiple instances of this dialog to be opened.
In API versions less than 0x00020000, LINEERR_INUSE is returned if the dialog is already displayed by
another application (cannot be open more than once). In these versions, TAPI brings the existing dialog to
the front, and the error indicates that any particulars related to the address passed in by the current
application have not been handled, because that address was not processed by the function.

The application must call lineGetTranslateCaps after this function to obtain any changes the user made
to the telephony address translation parameters, and call lineTranslateAddress to obtain a dialable
string based on the user's new selections.

If any function related to address translation (for example, lineGetTranslateCaps or
lineTranslateAddress) returns LINEERR_INIFILECORRUPT, the application should call
lineTranslateDialog. The lineTranslateDialog function will detect the errors and correct them, and report
the action taken to the user. Note that LINEERR_INIFILECORRUPT will be returned the first time any of
these functions are used after installation of Windows 95, because the parameters will be uninitialized
(lineTranslateDialog will take care of initializing them, using the user-specified default country to select
the default country code).

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the full range of API versions supported by
TAPI (0x00010003 to 0x00010004) should work the same way.

See Also
lineGetTranslateCaps, lineInitializeEx, lineNegotiateAPIVersion, lineTranslateAddress

lineUncompleteCall       

   

The lineUncompleteCall function cancels the specified call completion request on the specified line.

LONG lineUncompleteCall(

 HLINE hLine,
 DWORD dwCompletionID
);

Parameters
hLine

A handle to the line device on which a call completion is to be canceled.
dwCompletionID

The completion ID for the request that is to be canceled.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCOMPLETIONID,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONUNAVAIL.

See Also
LINE_REPLY

lineUnhold       

   

The lineUnhold function retrieves the specified held call.

LONG lineUnhold(

 HCALL hCall
);

Parameters
hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

See Also
LINE_REPLY

lineUnpark       

   

The lineUnpark function retrieves the call parked at the specified address and returns a call handle for it.

LONG lineUnpark(

 HLINE hLine,
 DWORD dwAddressID,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress
);

Parameters
hLine

A handle to the open line device on which a call is to be unparked.
dwAddressID

The address on hLine at which the unpark is to be originated.
lphCall

A pointer to the location of type HCALL where the handle to the unparked call is returned. This handle
is unrelated to any other handle which might have been previously associated with the retrieved call,
such as the handle that might have been associated with the call when it was originally parked. The
application will be the initial sole owner of this call.

lpszDestAddress

A pointer to a NULL-terminated character buffer that contains the address where the call is parked.
The address is in standard dialable address format.

Return Values
Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALADDRESS, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

See Also
LINE_REPLY

Phone Device Functions
This section contains the telephony API phone device functions.

phoneClose       

   

The phoneClose function closes the specified open phone device.

LONG phoneClose(

 HPHONE hPhone
);

Parameters
hPhone

A handle to the open phone device to be closed. If the function is successful, the handle is no longer
valid.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_OPERATIONFAILED,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED.

Remarks
After the open phone device has been successfully closed, the implementation sends a PHONE_CLOSE
message to the application. Note that these messages can also be sent unsolicited as a result of the
phone device being reclaimed somehow. An application should therefore be prepared to handle these
unsolicited close messages. At the time the phone device is closed, any outstanding asynchronous
replies are suppressed.

See Also
PHONE_CLOSE

phoneConfigDialog       

   

The phoneConfigDialog function causes the provider of the specified phone device to display a modal
dialog (attached to the application's hwndOwner) that allows the user to configure parameters related to
the phone device specified by dwDeviceID.

LONG phoneConfigDialog(

 DWORD dwDeviceID,
 HWND hwndOwner,
 LPCSTR lpszDeviceClass
);

Parameters
dwDeviceID

The phone device to be configured.
hwndOwner

A handle to a window to which the dialog is to be attached. Can be a NULL value to indicate that any
window created during the function should have no owner window.

lpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific subscreen of configuration information applicable to that device class.
This parameter is optional and can be left NULL or empty, in which case the highest level
configuration is selected.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_BADDEVICEID, PHONEERR_NOMEM, PHONEERR_INUSE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALPARAM, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_INVALDEVICECLASS, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INVALPOINTER, PHONEERR_UNINITIALIZED, PHONEERR_NODEVICE.

Remarks
The lpszDeviceClass parameter allows the application to select a specific subscreen of configuration
information applicable to the device class in which the user is interested; the permitted strings are the
same as for phoneGetID. For example, if the phone supports the wave API, passing "wave/in" as
lpszDeviceClass would cause the provider to display the parameters related specifically to wave (or at
least to start at the corresponding point in a multilevel configuration dialog chain, eliminating the need to
search for relevant parameters).

The lpszDeviceClass parameter should be "tapi/phone", "", or NULL to cause the provider to display the
highest level configuration for the phone.

See Also
phoneGetID

phoneDevSpecific       

   

The phoneDevSpecific function Is used as a general extension mechanism to enable a Telephony API
implementation to provide features not described in the other TAPI functions. The meanings of these
extensions are device specific.

LONG phoneDevSpecific(

 HPHONE hPhone,
 LPVOID lpParams,
 DWORD dwSize
);

Parameters
hPhone

A handle to a phone device.
lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation is device specific. The
contents of the parameter block are passed unchanged to or from the service provider by TAPI.

dwSize

The size in bytes of the parameter block area.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED, PHONEERR_OPERATIONFAILED.

Additional return values are device specific.

Remarks
This operation provides a generic parameter profile. The interpretation of the parameter block is device
specific. Indications and replies that are device specific should use the PHONE_DEVSPECIFIC message.

A service provider can provide access to device-specific functions by defining parameters for use with this
operation. Applications that want to make use of these device-specific extensions should consult the
device-specific (vendor-specific) documentation that describes which extensions are defined. Note that an
application that relies on these device-specific extensions will typically not be portable to work with other
service-provider environments.

See Also
PHONE_DEVSPECIFIC, PHONE_REPLY

phoneGetButtonInfo       

   

The phoneGetButtonInfo function returns information about the specified button.

LONG phoneGetButtonInfo(

 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPPHONEBUTTONINFO lpButtonInfo
);

Parameters
hPhone

A handle to the open phone device.
dwButtonLampID

A button on the phone device.
lpButtonInfo

A pointer to a variably sized structure of type PHONEBUTTONINFO. This data structure describes
the mode, the function, and provides additional descriptive text corresponding to the button.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALBUTTONLAMPID,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPHONESTATE, PHONEERR_STRUCTURETOOSMALL,
PHONEERR_OPERATIONUNAVAIL, PHONEERR_UNINITIALIZED.

See Also
PHONEBUTTONINFO

phoneGetData       

   

The phoneGetData function uploads the information from the specified location in the open phone device
to the specified buffer.

LONG phoneGetData(

 HPHONE hPhone,
 DWORD dwDataID,
 LPVOID lpData,
 DWORD dwSize
);

Parameters
hPhone

A handle to the open phone device.
dwDataID

Where in the phone device the buffer is to be uploaded from.
lpData

A pointer to the memory buffer where the data is to be uploaded.
dwSize

The size of the data buffer in bytes.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALDATAID, PHONEERR_UNINITIALIZED,
PHONEERR_OPERATIONUNAVAIL.

Remarks
The function uploads a maximum of dwSize bytes from the phone device into the memory area pointed to
by lpData. If dwSize is zero, nothing is copied. The size of each data area is listed in the phone's device
capabilities.

phoneGetDevCaps       

   

The phoneGetDevCaps function queries a specified phone device to determine its telephony capabilities.

LONG phoneGetDevCaps(

 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPPHONECAPS lpPhoneCaps
);

Parameters
hPhoneApp

The handle to the application's registration with TAPI.
dwDeviceID

The phone device to be queried.
dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version
number; the low-order word contains the minor version number. This number is obtained with the
function phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
with the function phoneNegotiateExtVersion. It can be left zero if no device-specific extensions are
to be used. Otherwise, the high-order word contains the major version number; the low-order word
contains the minor version number.

lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the
request, this structure is filled with phone device capabilities information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPHANDLE, PHONEERR_INVALPOINTER, PHONEERR_BADDEVICEID,
PHONEERR_OPERATIONFAILED, PHONEERR_INCOMPATIBLEAPIVERSION,
PHONEERR_OPERATIONUNAVAIL, PHONEERR_INCOMPATIBLEEXTVERSION,
PHONEERR_NOMEM, PHONEERR_STRUCTURETOOSMALL, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_NODRIVER, PHONEERR_UNINITIALIZED, PHONEERR_NODEVICE.

Remarks
Before using phoneGetDevCaps, the application must negotiate the TAPI version number to use, and
optionally, the extension version to use.

TAPI and extension version numbers are those under which TAPI, Telephony DLL, and service provider
must operate. If version ranges do not overlap, the application and API or service-provider versions are
incompatible and an error is returned.

See Also
PHONECAPS, phoneNegotiateAPIVersion, phoneNegotiateExtVersion

phoneGetDisplay       

   

The phoneGetDisplay function returns the current contents of the specified phone display.

LONG phoneGetDisplay(

 HPHONE hPhone,
 LPVARSTRING lpDisplay
);

Parameters
hPhone

A handle to the open phone device.
lpDisplay

A pointer to the memory location where the display content is to be stored, of type VARSTRING.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INVALPOINTER, PHONEERR_OPERATIONFAILED, PHONEERR_INVALPHONESTATE,
PHONEERR_STRUCTURETOOSMALL, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED, PHONEERR_NOMEM.

Remarks
The lpDisplay memory area should be at least (dwDisplayNumRows * dwDisplayNumColumns)
elements in size to receive all of the display information. dwDisplayNumRows and
dwDisplayNumColumns are available in the PHONECAPS structure returned by phoneGetDevCaps.

See Also
PHONECAPS, phoneGetDevCaps, VARSTRING

phoneGetGain       

   

The phoneGetGain function returns the gain setting of the microphone of the specified phone's
hookswitch device.

LONG phoneGetGain(

 HPHONE hPhone,
 DWORD dwHookSwitchDev,
 LPDWORD lpdwGain
);

Parameters
hPhone

A handle to the open phone device.
dwHookSwitchDev

The hookswitch device whose gain level is queried. Note that dwHookSwitchDev can have only one
bit set. This parameter uses the following PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

The phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

The phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

The phone's headset.

lpdwGain

A pointer to a DWORD-sized location containing the current gain setting of the hookswitch
microphone component. The dwGain parameter specifies the volume level of the hookswitch device.
This is a number in the range 0x00000000 (silence) to 0x0000FFFF (maximum volume). The actual
granularity and quantization of gain settings in this range are service provider specific.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALHOOKSWITCHDEV,
PHONEERR_UNINITIALIZED, PHONEERR_OPERATIONUNAVAIL.

phoneGetHookSwitch       

   

The phoneGetHookSwitch function returns the current hookswitch mode of the specified open phone
device.

LONG phoneGetHookSwitch(

 HPHONE hPhone,
 LPDWORD lpdwHookSwitchDevs
);

Parameters
hPhone

A handle to the open phone device.
lpdwHookSwitchDevs

A pointer to a DWORD-sized location to be filled with the mode of the phone's hookswitch devices. If
a bit position is FALSE, the corresponding hookswitch device is on-hook; if TRUE, the microphone
and/or speaker part of the corresponding hookswitch device is offhook. To find out whether the
microphone and/or speaker are enabled, the application can use phoneGetStatus. This parameter
uses the following PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

The phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

The phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

The phone's headset.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_OPERATIONUNAVAIL, PHONEERR_UNINITIALIZED.

Remarks
After the hookswitch state of a device changes, and if hookswitch monitoring is enabled, the application is
sent a PHONE_STATE message.

See Also
PHONE_STATE, phoneGetStatus

phoneGetIcon       

   

The phoneGetIcon function allows an application to retrieve a service phone device-specific (or provider-
specific) icon that can be displayed to the user.

LONG phoneGetIcon(

 DWORD dwDeviceID,
 LPCSTR lpszDeviceClass,
 LPHICON lphIcon
);

Parameters
dwDeviceID

The phone device whose icon is requested.
lpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific sub-icon applicable to that device class. This parameter is optional and
can be left NULL or empty, in which case the highest-level icon associated with the phone device
rather than a specified media stream device would be selected.

lphIcon

A pointer to a memory location in which the handle to the icon is returned.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_BADDEVICEID, PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALDEVICECLASS, PHONEERR_UNINITIALIZED,
PHONEERR_NOMEM, PHONEERR_NODEVICE.

Remarks
The phoneGetIcon causes the provider to return a handle (in lphIcon) to an icon resource (obtained from
LoadIcon) associated with the specified phone. The icon handle will be for a resource associated with the
provider; the application must use CopyIcon if it wishes to reference the icon after the provider is
unloaded, which is unlikely to happen as long as the application has the phone open.

The lpszDeviceClass parameter allows the provider to return different icons based on the type of service
being referenced by the caller. The permitted strings are the same as for phoneGetID. For example, if the
phone supports the Comm API, passing "COMM" as lpszDeviceClass causes the provider to return an
icon related specifically to the Comm device functions of the service provider. The parameters
"tapi/phone", "", or NULL may be used to request the icon for the phone service.

For applications using an API version less than 0x00020000, if the provider does not return an icon
(whether because the given device class is invalid or the provider does not support icons), TAPI
substitutes a generic Win32 Telephony phone device icon. For applications using API version
0x00020000 or greater, TAPI substitutes the default phone icon only if the lpszDeviceClass parameter is

"tapi/phone", "" or NULL. For any other device class, if the given device class is not valid or the provider
does not support icons for the class, phoneGetIcon returns PHONEERR_INVALDEVICECLASS.

See Also
phoneGetID

phoneGetID       

   

The phoneGetID function returns a device ID for the given device class associated with the specified
phone device.

LONG phoneGetID(

 HPHONE hPhone,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);

Parameters
hPhone

A handle to an open phone device.
lpDeviceID

A pointer to a data structure of type VARSTRING where the device ID is returned. Upon successful
completion of the request, this location is filled with the device ID. The format of the returned
information depends on the method used by the device class (API) for naming devices.

lpszDeviceClass

A pointer to a NULL-terminated string that specifies the device class of the device whose ID is
requested. Valid device class strings are those used in the SYSTEM.INI section to identify device
classes.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALDEVICECLASS, PHONEERR_UNINITIALIZED,
PHONEERR_OPERATIONFAILED, PHONEERR_STRUCTURETOOSMALL,
PHONEERR_OPERATIONUNAVAIL.

Remarks
The phoneGetID function can be used to retrieve a phone device ID given a phone handle. It can also be
used to obtain the device ID of the media device (for device classes such as COM, wave, MIDI, phone,
line, or NDIS) associated with the opened phone device. The names of these device class are not case
sensitive. This ID can then be used with the appropriate media API to select the corresponding device.

See Device Classes in TAPI for device class names.

A vendor that defines a device-specific media mode also needs to define the corresponding device-
specific (proprietary) API to manage devices of the media mode. To avoid collisions on device class
names assigned independently by different vendors, a vendor should select a name that uniquely
identifies both the vendor and, following it, the media type. For example: "intel/video".

See Also

VARSTRING

phoneGetLamp       

   

The phoneGetLamp function returns the current lamp mode of the specified lamp.

LONG phoneGetLamp(

 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPDWORD lpdwLampMode
);

Parameters
hPhone

A handle to the open phone device.
dwButtonLampID

The ID of the lamp to be queried.
lpdwLampMode

A pointer to a memory location that will hold the lamp mode status of the given lamp. Note that
lpdwLampMode can have at most one bit set. This parameter uses the following
PHONELAMPMODE_ constants:
PHONELAMPMODE_BROKENFLUTTER

Broken flutter is the superposition of flash and flutter.
PHONELAMPMODE_FLASH

Flash means slow on and off.
PHONELAMPMODE_FLUTTER

Flutter means fast on and off.
PHONELAMPMODE_OFF

The lamp is off.
PHONELAMPMODE_STEADY

The lamp is continuously lit.
PHONELAMPMODE_WINK

The lamp is winking.
PHONELAMPMODE_UNKNOWN

The lamp mode is currently unknown.
PHONELAMPMODE_DUMMY

This value is used to describe a button/lamp position that has no corresponding lamp.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible

return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALBUTTONLAMPID,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPHONESTATE, PHONEERR_UNINITIALIZED, PHONEERR_OPERATIONUNAVAIL.

Remarks
Phone sets that have multiple lamps per button should be modeled using multiple button/lamps pairs.
Each extra button/lamp pair should use a DUMMY button.

phoneGetMessage   

The phoneGetMessage function returns the next TAPI message that is queued for delivery to an
application that is using the Event Handle notification mechanism (see phoneInitializeEx for further
details).

LONG phoneGetMessage(

 HPHONEAPP hPhoneApp,
 LPPHONEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters
hPhoneApp

The handle returned by phoneInitializeEx. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions field of the
PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this function, the structure
will contain the next message which had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns
immediately. If dwTimeout is INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED, PHONEERR_INVALPOINTER,
PHONEERR_NOMEM.

Remarks
If this function has been called with a non-zero timeout and the application calls phoneShutdown on
another thread, this function will return immediately with PHONEERR_INVALAPPHANDLE.

If the timeout expires (or was zero) and no message could be fetched from the queue, the function returns
with the error PHONEERR_OPERATIONFAILED.

See Also
PHONEINITIALIZEEXPARAMS, PHONEMESSAGE, phoneShutdown

phoneGetRing       

   

The phoneGetRing function enables an application to query the specified open phone device as to its
current ring mode.

LONG phoneGetRing(

 HPHONE hPhone,
 LPDWORD lpdwRingMode,
 LPDWORD lpdwVolume
);

Parameters
hPhone

A handle to the open phone device.
lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.
lpdwVolume

The volume level with which the phone is ringing. This is a number in the range 0x00000000 (silence)
to 0x0000FFFF (maximum volume). The actual granularity and quantization of volume settings in this
range are service-provider specific.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPHONESTATE,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER, PHONEERR_OPERATIONFAILED,
PHONEERR_OPERATIONUNAVAIL, PHONEERR_UNINITIALIZED.

Remarks
The service provider defines the actual audible ringing patterns corresponding to each of phone's ring
modes.

phoneGetStatus       

   

The phoneGetStatus function enables an application to query the specified open phone device for its
overall status.

LONG phoneGetStatus(

 HPHONE hPhone,
 LPPHONESTATUS lpPhoneStatus
);

Parameters
hPhone

A handle to the open phone device to be queried.
lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the returned
information about the phone's status.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED.

Remarks
An application can use this function to determine the current state of an open phone device. The status
information describes information about the phone device's hookswitch devices, ringer, volume, display,
and lamps of the open phone.

See Also
PHONESTATUS

phoneGetStatusMessages       

   

The phoneGetStatusMessages function returns which phone-state changes on the specified phone
device will generate a callback to the application.

LONG phoneGetStatusMessages(

 HPHONE hPhone,
 LPDWORD lpdwPhoneStates,
 LPDWORD lpdwButtonModes,
 LPDWORD lpdwButtonStates
);

Parameters
hPhone

A handle to the open phone device to be monitored.
lpdwPhoneStates

A pointer to a PHONESTATE_ constant. These flags specify the set of phone status changes and
events for which the application wishes to receive notification messages. The lpdwPhoneStates
parameter can return a value with zero, one, or multiple bits set. Monitoring can be individually
enabled and disabled for:
PHONESTATE_OTHER

Phone-status items other than those listed below have changed. The application should check the
current phone status to determine which items have changed.

PHONESTATE_CONNECTED

The connection between the phone device and TAPI was just made. This happens when TAPI is
first invoked or when the wire connecting the phone to the computer is plugged in while TAPI is
active.

PHONESTATE_DISCONNECTED

The connection between the phone device and TAPI was just broken. This happens when the wire
connecting the phone set to the computer is unplugged while TAPI is active.

PHONESTATE_OWNER

The number of owners for the phone device has changed.
PHONESTATE_MONITORS

The number of monitors for the phone device has changed.
PHONESTATE_DISPLAY

The display of the phone has changed.
PHONESTATE_LAMP

A lamp of the phone has changed.
PHONESTATE_RINGMODE

The ring mode of the phone has changed.

PHONESTATE_RINGVOLUME

The ring volume of the phone has changed.
PHONESTATE_HANDSETHOOKSWITCH

The handset hookswitch state has changed.
PHONESTATE_HANDSETVOLUME

The handset's speaker volume setting has changed.
PHONESTATE_HANDSETGAIN

The handset's microphone gain setting has changed.
PHONESTATE_SPEAKERHOOKSWITCH

The speakerphone's hookswitch state has changed.
PHONESTATE_SPEAKERVOLUME

The speakerphone's speaker volume setting has changed.
PHONESTATE_SPEAKERGAIN

The speakerphone's microphone gain setting state has changed.
PHONESTATE_HEADSETHOOKSWITCH

The headset's hookswitch state has changed.
PHONESTATE_HEADSETVOLUME

The headset's speaker volume setting has changed.
PHONESTATE_HEADSETGAIN

The headset's microphone gain setting has changed.
PHONESTATE_SUSPEND

The application's use of the phone is temporarily suspended.
PHONESTATE_RESUME

The application's use of the phone device is resumed after having been suspended for some time.
PHONESTATE_DEVSPECIFIC

The phone's device-specific information has changed.
PHONESTATE_REINIT

Items have changed in the configuration of phone devices. To become aware of these changes (as
with the appearance of new phone devices) the application should reinitialize its use of TAPI. The
hDevice parameter of the PHONE_STATE message is left NULL for this state change, as it applies
to any of the phones in the system.

PHONESTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the PHONECAPS structure have changed. The application should use
phoneGetDevCaps to read the updated structure. If a service provider sends a PHONE_STATE
message containing this value to TAPI, TAPI will pass it along to applications which have
negotiated TAPI version 0x00010004 or above; applications negotiating a previous API version will
receive PHONE_STATE messages specifying PHONESTATE_REINIT, requiring them to shutdown
and reinitialize their connection to TAPI in order to obtain the updated information.

PHONESTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, via a control panel or similar utility). A PHONE_STATE message with this
value will normally be immediately followed by a PHONE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will not receive any notification.

lpdwButtonModes

A pointer to a . These flags specify the set of phone-button modes for which the application wishes to
receive notification messages. The lpdwButtonModes parameter can return a value with zero, one, or
multiple bits set. This parameter uses the following PHONEBUTTONMODE_ constants:
PHONEBUTTONMODE_CALL

The button is assigned to a call appearance.
PHONEBUTTONMODE_FEATURE

The button is assigned to requesting features from the switch, such as hold, conference, and
transfer.

PHONEBUTTONMODE_KEYPAD

The button is one of the twelve keypad buttons, '0' through '9', '*', and '#'.
PHONEBUTTONMODE_LOCAL

The button is a local function button, such as mute or volume control.
PHONEBUTTONMODE_DISPLAY

The button is a "soft" button associated with the phone's display. A phone set can have zero or
more display buttons.

lpdwButtonStates

A pointer to a DWORD-sized location that contains flags specifying the set of phone button state
changes for which the application wishes to receive notification messages. The lpdwButtonStates
field can return a value with zero, one or multiple bits set. This parameter uses the following
PHONEBUTTONSTATE_ constants:
PHONEBUTTONSTATE_UP

The button is in the "up" state.
PHONEBUTTONSTATE_DOWN

The button is in the "down" state (pressed down).
PHONEBUTTONSTATE_UNKNOWN

Indicates that the up or down state of the button is not known at this time, but may become known
at a future time.

PHONEBUTTONSTATE_UNAVAIL

Indicates that the up or down state of the button is not known to the service provider, and will not
become known at a future time.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_OPERATIONFAILED, PHONEERR_UNINITIALIZED.

Remarks
An application can use phoneGetStatusMessages to query the generation of the corresponding
messages. Message generation can be controlled by phoneSetStatusMessages. All phone status
messages are disabled by default.

See Also
PHONE_CLOSE, PHONE_STATE, PHONECAPS, phoneGetDevCaps, phoneSetStatusMessages

phoneGetVolume       

   

The phoneGetVolume function returns the volume setting of the specified phone's hookswitch device.

LONG phoneGetVolume(

 HPHONE hPhone,
 DWORD dwHookSwitchDev,
 LPDWORD lpdwVolume
);

Parameters
hPhone

A handle to the open phone device.
dwHookSwitchDev

A single hookswitch device whose volume level is queried. This parameter uses the following
PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

This is the phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

This is the phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

This is the phone's headset.

lpdwVolume

A pointer to a DWORD-sized location containing the current volume setting of the hookswitch device.
dwVolume specifies the volume level of the hookswitch device. This is a number in the range
0x00000000 (silence) to 0x0000FFFF (maximum volume). The actual granularity and quantization of
volume settings in this range are service-provider specific.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPHONESTATE,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALHOOKSWITCHDEV, PHONEERR_UNINITIALIZED,
PHONEERR_OPERATIONUNAVAIL.

phoneInitialize       

   

The phoneInitialize function is obsolete. It continues to be exported by TAPI.DLL and TAPI32.DLL for
backward compatibility with applications using API versions 0x00010003 and 0x00010004.

Applications using API version 0x00020000 or greater must use phoneInitializeEx instead.

phoneInitializeEx   

The phoneInitializeEx function initializes the application's use of TAPI for subsequent use of the phone
abstraction. It registers the application's specified notification mechanism and returns the number of
phone devices available to the application. A phone device is any device that provides an implementation
for the phone-prefixed functions in the Telephony API.

LONG phoneInitializeEx(

 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams
);

Parameters
lphPhoneApp

A pointer to a location that is filled with the application's usage handle for TAPI.
hInstance

The instance handle of the client application or DLL. The application or DLL may pass NULL for this
parameter, in which case TAPI will use the module handle of the root executable of the process.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information see phoneCallbackFunc). This parameter is ignored and should be set to
NULL when the application chooses to use the "event handle" or "completion port" event notification
mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only displayable ASCII characters. If this
parameter is not NULL, it contains an application-supplied name of the application. This name is
provided in the PHONESTATUS structure to indicate, in a user-friendly way, which application has
ownership of the phone device. If lpszFriendlyAppName is NULL, the application's module file name
is used instead (as returned by the Windows API GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is
filled with the number of phone devices available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this
function, to the highest API version it is designed to support (for example, the same value it would
pass into dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Artificially high values must
not be used; the value must be accurately set (for this release, to 0x00020000). TAPI will translate
any newer messages or structures into values or formats supported by the application's version.
Upon successful completion of this request, this location is filled with the highest API version
supported by TAPI (for this release, 0x00020000), thereby allowing the application to detect and
adapt to having been installed on a system with an older version of TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS containing additional parameters used
to establish the association between the application and TAPI (specifically, the application's selected
event notification mechanism and associated parameters).

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPNAME, PHONEERR_OPERATIONFAILED, PHONEERR_INIFILECORRUPT,
PHONEERR_INVALPOINTER, PHONEERR_REINIT, PHONEERR_NOMEM,
PHONEERR_INVALPARAM.

Remarks
Applications must select one of three mechanisms by which TAPI notifies the application of telephony
events: Hidden Window, Event Handle, or Completion Port.

The Hidden Window mechanism is selected by specifying
PHONEINITIALIZEEXOPTION_USEHIDDENWINDOW in the dwOptions field in the
PHONEINITIALIZEEXPARAMS structure. In this mechanism (which is the only mechanism available to
TAPI 1.x applications), TAPI creates a window in the context of the application during the
phoneInitializeEx function, and subclasses the window so that all messages posted to it are handled by
a WNDPROC in TAPI itself. When TAPI has a message to deliver to the application, TAPI posts a
message to the hidden window. When the message is received (which can happen only when the
application calls the Windows GetMessage API), Windows switches the process context to that of the
application and invokes the WNDPROC in TAPI. TAPI then delivers the message to the application by
calling the PhoneCallbackProc, a pointer to which the application provided as a parameter in its call to
phoneInitializeEx (or phoneInitialize, for TAPI 1.3 and 1.4 applications). This mechanism requires the
application to have a message queue (which is not desirable for service processes) and to service that
queue regularly to avoid delaying processing of telephony events. The hidden window is destroyed by
TAPI during the phoneShutdown function.

The Event Handle mechanism is selected by specifying PHONEINITIALIZEEXOPTION_USEEVENT in
the dwOptions field in the PHONEINITIALIZEEXPARAMS structure. In this mechanism, TAPI creates an
event object on behalf of the application, and returns a handle to the object in the hEvent field in
PHONEINITIALIZEEXPARAMS. The application must not manipulate this event in any manner (for
example, must not call SetEvent, ResetEvent, CloseHandle, and so on) or undefined behavior will
result; the application may only wait on this event using functions such as WaitForSingleObject or
MsgWaitForMultipleObjects. TAPI will signal this event whenever a telephony event notification is
pending for the application; the application must call phoneGetMessage to fetch the contents of the
message. The event is reset by TAPI when no events are pending. The event handle is closed and the
event object destroyed by TAPI during the phoneShutdown function. The application is not required to
wait on the event handle that is created; the application could choose instead to call phoneGetMessage
and have it block waiting for a message to be queued.

The Completion Port mechanism is selected by specifying
PHONEINITIALIZEEXOPTION_USECOMPLETION PORT in the dwOptions field in the
PHONEINITIALIZEEXPARAMS structure. In this mechanism, whenever a telephony event needs to be
sent to the application, TAPI will send it to the application using PostQueuedCompletionStatus to the
completion port that the application specified in the hCompletionPort field in
PHONEINITIALIZEEXPARAMS, tagged with the completion key that the application specified in the
dwCompletionKey field in PHONEINITIALIZEEXPARAMS. The application must have previously
created the completion port using CreateIoCompletionPort. The applications retrieves events using
GetQueuedCompletionStatus. Upon return from GetQueuedCompletionStatus, the application will

have the specified dwCompletionKey written to the DWORD pointed to by the lpCompletionKey
parameter, and a pointer to a PHONEMESSAGE structure returned to the location pointed to by
lpOverlapped. After the application has processed the event, it is the application's responsibility to call
LocalFree to release the memory used to contain the PHONEMESSAGE structure. Because the
application created the completion port (thereby allowing it to be shared for other purposes), the
application must close it; the application must not close the completion port until after calling
phoneShutdown.

When a multithreaded application is using the Event Handle mechanism and more than one thread is
waiting on the handle, or the Completion Port notification mechanism and more than one thread is waiting
on the port, it is possible for telephony events to be processed out of sequence. This is not due to the
sequence of delivery of events from TAPI, but would be caused by the time slicing of threads or the
execution of threads on separate processors.

If PHONEERR_REINIT is returned and TAPI reinitialization has been requested, for example as a result
of adding or removing a Telephony service provider, then phoneInitializeEx requests are rejected with
this error until the last application shuts down its usage of the API (using phoneShutdown), at which time
the new configuration becomes effective and applications are once again permitted to call
phoneInitializeEx.

If the PHONEERR_INVALPARAM error value is returned, the specified hInstance parameter is invalid.

The application can refer to individual phone devices by using phone device IDs that range from zero to
dwNumDevs minus one. An application should not assume that these phone devices are capable of any
particular TAPI function without first querying their device capabilities by phoneGetDevCaps.

For information about the listing of service dependencies, see Service Dependencies.

See Also
phoneCallbackFunc, phoneGetDevCaps, phoneGetMessage, PHONEINITIALIZEEXPARAMS,
PHONEMESSAGE, phoneNegotiateAPIVersion, phoneShutdown, PHONESTATUS

phoneCallbackFunc
The phoneCallbackFunc function is a placeholder for the application-supplied function name.

VOID FAR PASCAL phoneCallbackFunc(

 HANDLE hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters
hDevice

A handle to a phone device associated with the callback.
dwMsg

A line or call device message.
dwCallbackInstance

Callback instance data passed back to the application in the callback. This DWORD is not interpreted
by TAPI.

dwParam1

A parameter for the message.
dwParam2

A parameter for the message.
dwParam3

A parameter for the message.

Remarks
For more information about the parameters passed to this callback function, see Messages later in this
section.

All callbacks occur in the application's context. The callback function must reside in a dynamic-link library
(DLL) or application module and be exported in the module-definition file.

phoneNegotiateAPIVersion       

   

The phoneNegotiateAPIVersion allows an application to negotiate an API version to use for the
specified phone device.

LONG phoneNegotiateAPIVersion(

 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPPHONEEXTENSIONID lpExtensionID
);

Parameters
hPhoneApp

The handle to the application's registration with TAPI.
dwDeviceID

The phone device to be queried.
dwAPILowVersion

The least recent API version the application is compliant with. The high-order word is the major
version number, the low-order word is the minor version number.

dwAPIHighVersion

The most recent API version the application is compliant with. The high-order word is the major
version number, the low-order word is the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation is successful, this number will be in the range dwAPILowVersion and dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDeviceID supports provider-specific extensions, this structure is filled with the extension ID of
these extensions when negotiation is successful. This structure contains all zeros if the line provides
no extensions. An application can ignore the returned parameter if it does not use extensions.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED, PHONEERR_BADDEVICEID,
PHONEERR_OPERATIONUNAVAIL, PHONEERR_NODRIVER, PHONEERR_NOMEM,
PHONEERR_INVALPOINTER, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INCOMPATIBLEAPIVERSION, PHONEERR_UNINITIALIZED, PHONEERR_NODEVICE.

Remarks
The phoneNegotiateAPIVersion function is used to negotiate the API version number to use with the
specified phone device. It returns the extension ID supported by the phone device; zeros if no extensions
are provided.

If the application wants to use the extensions defined by the returned Extension ID, it must call
phoneNegotiateExtVersion to negotiate the extension version to use.

Use phoneInitializeEx to determine the number of phone devices present in the system. The device ID
specified by dwDeviceID varies from zero to one less than the number of phone devices present.

The API version number negotiated is that under which TAPI can operate. If version ranges do not
overlap, the application, API, or service-provider versions are incompatible and an error is returned.

See Also
PHONEEXTENSIONID, phoneInitializeEx, phoneNegotiateExtVersion

phoneNegotiateExtVersion       

   

The phoneNegotiateExtVersion function allows an application to negotiate an extension version to use
with the specified phone device. This operation need not be called if the application does not support
extensions.

LONG phoneNegotiateExtVersion(

 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtLowVersion,
 DWORD dwExtHighVersion,
 LPDWORD lpdwExtVersion
);

Parameters
hPhoneApp

The handle to the application's registration with TAPI.
dwDeviceID

The phone device to be queried.
dwAPIVersion

The API version number that was negotiated for the specified phone device using
phoneNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the Extension ID returned by phoneNegotiateAPIVersion that
the application is compliant with. The high-order word is the major version number; the low-order
word is the minor version number.

dwExtHighVersion

The most recent extension version of the Extension ID returned by phoneNegotiateAPIVersion that
the application is compliant with. The high-order word is the major version number; the low-order
word is the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was negotiated.
If negotiation is successful, this number will be in the range dwExtLowVersion and dwExtHighVersion.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED, PHONEERR_BADDEVICEID,
PHONEERR_OPERATIONUNAVAIL, PHONEERR_NODRIVER, PHONEERR_NOMEM,
PHONEERR_INCOMPATIBLEAPIVERSION, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INCOMPATIBLEEXTVERSION, PHONEERR_UNINITIALIZED,

PHONEERR_INVALPOINTER, PHONEERR_NODEVICE.

Remarks
The function phoneNegotiateAPIVersion is used to negotiate the API version number to use. It returns
the extension ID supported by the phone device, or zeros if no extensions are provided.

If the application wants to use the extensions defined by the returned Extension ID, it must call
phoneNegotiateExtVersion to negotiate the extension version to use.

Use phoneInitializeEx to determine the number of phone devices present in the system. The device ID
specified by dwDeviceID varies from zero to one less than the number of phone devices present.

The extension version number negotiated is that under which the application and service provider must
both operate. If version ranges do not overlap, the application and service-provider versions are
incompatible and an error is returned.

See Also
phoneInitializeEx, phoneNegotiateAPIVersion

phoneOpen       

   

The phoneOpen function opens the specified phone device. A phone device can be opened using either
owner privilege or monitor privilege. An application that opens the phone with owner privilege can control
the phone's lamps, display, ringer, and hookswitch or hookswitches. An application that opens the phone
device with monitor privilege is notified only about events that occur at the phone, such as hookswitch
changes or button presses. Ownership of a phone device is exclusive. In other words, only one
application can have a phone device opened with owner privilege at a time. The phone device can,
however, be opened multiple times with monitor privilege.

LONG phoneOpen(

 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 LPHPHONE lphPhone,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivilege
);

Parameters
hPhoneApp

A handle to the application's registration with TAPI.
dwDeviceID

The phone device to be opened.
lphPhone

A pointer to an HPHONE handle, which identifies the open phone device. Use this handle to identify
the device when invoking other phone control functions.

dwAPIVersion

The API version number under which the application and Telephony API have agreed to operate. This
number is obtained from phoneNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. This number is obtained from
phoneNegotiateExtVersion.

dwCallbackInstance

User instance data passed back to the application with each message. This parameter is not
interpreted by the Telephony API.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses
the following PHONEPRIVILEGE_ constants:
PHONEPRIVILEGE_MONITOR

An application that opens a phone device with this privilege is informed about events and state
changes occurring on the phone. The application cannot invoke any operations on the phone
device that would change its state.

PHONEPRIVILEGE_OWNER

An application that opens a phone device in this mode is allowed to change the state of the lamps,
ringer, display, and hookswitch devices of the phone. Having owner privilege to a phone device
automatically includes monitor privilege as well.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_ALLOCATED, PHONEERR_NODRIVER, PHONEERR_BADDEVICEID,
PHONEERR_NOMEM, PHONEERR_INCOMPATIBLEAPIVERSION, PHONEERR_OPERATIONFAILED,
PHONEERR_INCOMPATIBLEEXTVERSION, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_INVALAPPHANDLE, PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPOINTER,
PHONEERR_UNINITIALIZED, PHONEERR_INVALPRIVILEGE, PHONEERR_REINIT,
PHONEERR_INUSE, PHONEERR_NODEVICE, PHONEERR_INIFILECORRUPT.

Remarks
When opening a phone device with monitor privileges, the application is sent messages when events
occur that change the status of the phone. Messages sent to the application include PHONE_BUTTON
and PHONE_STATE. The latter provides an indication of the phone's status item that has changed.

When opening a phone with owner privilege, the phone device can be manipulated in ways that affect the
state of the phone device. An application should only open a phone using owner privilege if it actively
wants to manipulate the phone device, and it should close the phone device when done to allow other
applications to control the phone.

When an application opens a phone device, it must specify the negotiated API version and, if it wants to
use the phone's extensions, the phone's device-specific extension version. This version number should
have been obtained with the function phoneNegotiateAPIVersion and phoneNegotiateExtVersion.
Version numbering allows the mix and match of different application versions with different API versions
and service-provider versions.

See Also
PHONE_BUTTON, PHONE_STATE, phoneNegotiateAPIVersion, phoneNegotiateExtVersion

phoneSetButtonInfo       

   

The phoneSetButtonInfo function sets information about the specified button on the specified phone.

LONG phoneSetButtonInfo(

 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPPHONEBUTTONINFO const lpButtonInfo
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone device.
dwButtonLampID

A button on the phone device.
lpButtonInfo

A pointer to a variably sized structure of type PHONEBUTTONINFO. This data structure describes
the mode, the function, and provides additional descriptive text about the button.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALBUTTONLAMPID, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPHONEHANDLE, PHONEERR_STRUCTURETOOSMALL,
PHONEERR_INVALPOINTER, PHONEERR_UNINITIALIZED, PHONEERR_NOTOWNER,
PHONEERR_NOMEM, PHONEERR_OPERATIONUNAVAIL, PHONEERR_RESOURCEUNAVAIL.

See Also
PHONE_REPLY, PHONEBUTTONINFO

phoneSetData       

   

The phoneSetData function downloads the information in the specified buffer to the opened phone
device at the selected data ID.

LONG phoneSetData(

 HPHONE hPhone,
 DWORD dwDataID,
 LPVOID const lpData,
 DWORD dwSize
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwDataID

Where in the phone device the buffer is to be downloaded.
lpData

A pointer to the memory location where the data is to be downloaded from.
dwSize

The size of the buffer in bytes.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_OPERATIONUNAVAIL, PHONEERR_NOTOWNER,
PHONEERR_NOMEM, PHONEERR_INVALDATAID, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INVALPHONESTATE, PHONEERR_OPERATIONFAILED, PHONEERR_INVALPOINTER,
PHONEERR_UNINITIALIZED.

Remarks
The phoneSetData function downloads a maximum of dwSize bytes from lpData to the phone device.
The format of the data, its meaning to the phone device, and the meaning of the data ID are service-
provider specific. The data in the buffer or the selection of a data ID may act as commands to the phone
device.

See Also
PHONE_REPLY

phoneSetDisplay       

   

The phoneSetDisplay function causes the specified string to be displayed on the specified open phone
device.

LONG phoneSetDisplay(

 HPHONE hPhone,
 DWORD dwRow,
 DWORD dwColumn,
 LPCSTR lpsDisplay,
 DWORD dwSize
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwRow

The row on the display where the new text is to be displayed.
dwColumn

The column position on the display where the new text is to be displayed.
lpsDisplay

A pointer to the memory location where the display content is stored. The display information must
have the format specified in the dwStringFormat field of the phone's device capabilities.

dwSize

The size in bytes of the information pointed to by lpsDisplay.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_OPERATIONUNAVAIL, PHONEERR_NOTOWNER,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALPHONESTATE, PHONEERR_UNINITIALIZED,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM, PHONEERR_INVALPARAM,
PHONEERR_RESOURCEUNAVAIL.

Remarks
The specified display information is written to the phone's display, starting at the specified positions. This
operation overwrites previously displayed information. If the amount of information exceeds the size of the
display, the information will be truncated. The amount of information that can be displayed is at most
(dwNumRows * dwNumColumns) elements in size. dwNumRows and dwNumColumns are available
in the PHONECAPS structure, which is returned by phoneGetDevCaps; they are zero-based.

See Also
PHONE_REPLY, PHONECAPS, phoneGetDevCaps

phoneSetGain       

   

The phoneSetGain function sets the gain of the microphone of the specified hookswitch device to the
specified gain level.

LONG phoneSetGain(

 HPHONE hPhone,
 DWORD dwHookSwitchDev,
 DWORD dwGain
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwHookSwitchDev

The hookswitch device whose microphone's gain is to be set. The dwHookswitchDev parameter can
only have a single bit set. This parameter uses the following PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

The phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

The phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

The phone's headset.
dwGain

A pointer to a DWORD-sized location containing the current gain setting of the device. The dwGain
parameter specifies the gain level of the hookswitch device. This is a number in the range
0x00000000 (silence) to 0x0000FFFF (maximum volume). The actual granularity and quantization of
gain settings in this range are service-provider specific. A value for dwGain that is out of range is set
to the nearest value in the range.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_NOTOWNER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALHOOKSWITCHDEV,
PHONEERR_UNINITIALIZED, PHONEERR_OPERATIONUNAVAIL.

See Also
PHONE_REPLY

phoneSetHookSwitch       

   

The phoneSetHookSwitch function sets the hook state of the specified open phone's hookswitch
devices to the specified mode. Only the hookswitch state of the hookswitch devices listed is affected.

LONG phoneSetHookSwitch(

 HPHONE hPhone,
 DWORD dwHookSwitchDevs,
 DWORD dwHookSwitchMode
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwHookSwitchDevs

The device or devices whose hookswitch mode is to be set. This parameter uses the following
PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

The phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

The phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

The phone's headset.

dwHookSwitchMode

The hookswitch mode to set. The dwHookSwitchMode parameter can have only a single bit set. This
parameter uses the following PHONEHOOKSWITCHMODE_ constants:
PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number

if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_OPERATIONUNAVAIL, PHONEERR_NOTOWNER,
PHONEERR_NOMEM, PHONEERR_INVALHOOKSWITCHDEV, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INVALHOOKSWITCHMODE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPHONESTATE, PHONEERR_UNINITIALIZED.

Remarks
The hookswitch mode is the same for all devices specified. If different settings are desired, this function
can be invoked multiple times with a different set of parameters. A PHONE_STATE message is sent to the
application after the hookswitch state has changed.

See Also
PHONE_REPLY, PHONE_STATE

phoneSetLamp       

   

The phoneSetLamp function causes the specified lamp to be lit on the specified open phone device in
the specified lamp mode.

LONG phoneSetLamp(

 HPHONE hPhone,
 DWORD dwButtonLampID,
 DWORD dwLampMode
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwButtonLampID

The button whose lamp is to be lit.
dwLampMode

How the lamp is to be lit. The dwLampMode parameter can have only a single bit set. This parameter
uses the following PHONELAMPMODE_ constants:
PHONELAMPMODE_BROKENFLUTTER

Broken flutter is the superposition of flash and flutter.
PHONELAMPMODE_FLASH

Flash means slow on and off.
PHONELAMPMODE_FLUTTER

Flutter means fast on and off.
PHONELAMPMODE_OFF

The lamp is off.
PHONELAMPMODE_STEADY

The lamp is continuously lit.
PHONELAMPMODE_WINK

The lamp is winking.
PHONELAMPMODE_DUMMY

This value is used to describe a button/lamp position that has no corresponding lamp.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_OPERATIONUNAVAIL, PHONEERR_NOTOWNER,
PHONEERR_NOMEM, PHONEERR_INVALBUTTONLAMPID, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_INVALPHONESTATE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALLAMPMODE, PHONEERR_UNINITIALIZED.

See Also
PHONE_REPLY

phoneSetRing       

   

The phoneSetRing function rings the specified open phone device using the specified ring mode and
volume.

LONG phoneSetRing(

 HPHONE hPhone,
 DWORD dwRingMode,
 DWORD dwVolume
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone device.
dwRingMode

The ringing pattern with which to ring the phone. This parameter must be within the range of 0 to the
value of the dwNumRingModes field in the PHONECAPS structure. If dwNumRingModes is 0, the
ring mode of the phone cannot be controlled; if dwNumRingModes is 1, a value of 0 for dwRingMode
indicates that the phone should not be rung (silence), and other values from 1 to dwNumRingModes
are valid ring modes for the phone device.

dwVolume

The volume level with which the phone is ringing. This is a number in the range 0x00000000 (silence)
to 0x0000FFFF (maximum volume). The actual granularity and quantization of volume settings in this
range are service-provider specific. A value for dwVolume that is out of range is set to the nearest
value in the range.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_NOTOWNER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALRINGMODE, PHONEERR_UNINITIALIZED,
PHONEERR_OPERATIONUNAVAIL.

Remarks
The service provider defines the actual audible ringing patterns corresponding to each of the phone's ring
modes.

See Also
PHONE_REPLY, PHONECAPS

phoneSetStatusMessages       

   

The phoneSetStatusMessages function enables an application to monitor the specified phone device for
selected status events.

LONG phoneSetStatusMessages(

 HPHONE hPhone,
 DWORD dwPhoneStates,
 DWORD dwButtonModes,
 DWORD dwButtonStates
);

Parameters
hPhone

A handle to the open phone device to be monitored.
dwPhoneStates

These flags specify the set of phone status changes and events for which the application wishes to
receive notification messages. This parameter can have zero, one, or more bits set. This parameter
uses the following PHONESTATE_ constants:
PHONESTATE_OTHER

Phone-status items other than those listed below have changed. The application should check the
current phone status to determine which items have changed.

PHONESTATE_CONNECTED

The connection between the phone device and TAPI was just made. This happens when TAPI is
first invoked or when the wire connecting the phone to the PC is plugged in while TAPI is active.

PHONESTATE_DISCONNECTED

The connection between the phone device and TAPI was just broken. This happens when the wire
connecting the phone set to the PC is unplugged while TAPI is active.

PHONESTATE_OWNER

The number of owners for the phone device has changed.
PHONESTATE_MONITORS

The number of monitors for the phone device has changed.
PHONESTATE_DISPLAY

The display of the phone has changed.
PHONESTATE_LAMP

A lamp of the phone has changed.
PHONESTATE_RINGMODE

The ring mode of the phone has changed.
PHONESTATE_RINGVOLUME

The ring volume of the phone has changed.
PHONESTATE_HANDSETHOOKSWITCH

The handset hookswitch state has changed.
PHONESTATE_HANDSETVOLUME

The handset's speaker volume setting has changed.
PHONESTATE_HANDSETGAIN

The handset's microphone gain setting has changed.
PHONESTATE_SPEAKERHOOKSWITCH

The speakerphone's hookswitch state has changed.
PHONESTATE_SPEAKERVOLUME

The speakerphone's speaker volume setting has changed.
PHONESTATE_SPEAKERGAIN

The speakerphone's microphone gain setting state has changed.
PHONESTATE_HEADSETHOOKSWITCH

The headset's hookswitch state has changed.
PHONESTATE_HEADSETVOLUME

The headset's speaker volume setting has changed.
PHONESTATE_HEADSETGAIN

The headset's microphone gain setting has changed.
PHONESTATE_SUSPEND

The application's use of the phone is temporarily suspended.
PHONESTATE_RESUME

The application's use of the phone device is resumed after having been suspended for some time.
PHONESTATE_DEVSPECIFIC

The phone's device-specific information has changed.
PHONESTATE_REINIT

Items have changed in the configuration of phone devices. To become aware of these changes (as
with the appearance of new phone devices) the application should reinitialize its use of TAPI. New
phoneInitialize, phoneInitializeEx and phoneOpen requests are denied until applications have
shut down their usage of TAPI. The hDevice parameter of the PHONE_STATE message is left
NULL for this state change, because it applies to any of the lines in the system. Because of the
critical nature of PHONESTATE_REINIT, such messages cannot be masked, so the setting of this
bit is ignored and the messages are always delivered to the application.

PHONESTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the PHONECAPS structure have changed. The application should use
phoneGetDevCaps to read the updated structure. If a service provider sends a PHONE_STATE
message containing this value to TAPI, TAPI will pass it along to applications which have
negotiated TAPI version 0x0001004 or above; applications negotiating a previous API version will
receive PHONE_STATE messages specifying PHONESTATE_REINIT, requiring them to shutdown
and reinitialize their connection to TAPI in order to obtain the updated information.

PHONESTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A PHONE_STATE message with this
value will normally be immediately followed by a PHONE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will not receive any notification.

dwButtonModes

The set of phone-button modes for which the application wishes to receive notification messages.
This parameter can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE_ constants:
PHONEBUTTONMODE_CALL

The button is assigned to a call appearance.
PHONEBUTTONMODE_FEATURE

The button is assigned to requesting features from the switch, such as hold, conference, and
transfer.

PHONEBUTTONMODE_KEYPAD

The button is one of the twelve keypad buttons, '0' through '9', '*', and '#'.
PHONEBUTTONMODE_LOCAL

The button is a local function button, such as mute or volume control.
PHONEBUTTONMODE_DISPLAY

The button is a "soft" button associated with the phone's display. A phone set can have zero or
more display buttons.

dwButtonStates

The set of phone-button state changes for which the application wants to receive notification
messages. If the dwButtonModes parameter is 0, dwButtonStates is ignored. If dwButtonModes has
one or more bits set, this parameter must also have at least one bit set. This parameter uses the
following PHONEBUTTONSTATE_ constants:
PHONEBUTTONSTATE_UP

The button is in the "up" state.
PHONEBUTTONSTATE_DOWN

The button is in the "down" state (pressed down).
PHONEBUTTONSTATE_UNKNOWN

Indicates that the up or down state of the button is not known at this time, but may become known
at a future time.

PHONEBUTTONSTATE_UNAVAIL

Indicates that the up or down state of the button is not known to the service provider, and will not
become known at a future time.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_INVALPHONESTATE,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALBUTTONMODE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALBUTTONSTATE, PHONEERR_UNINITIALIZED,
PHONEERR_OPERATIONUNAVAIL.

Remarks
An application can use the phoneSetStatusMessages function to enable or disable the generation of the
corresponding messages. All phone status messages are disabled by default.

See Also
PHONE_CLOSE, PHONE_STATE, PHONECAPS, phoneGetDevCaps, phoneInitialize,
phoneInitializeEx, phoneOpen

phoneSetVolume       

   

The phoneSetVolume sets the volume of the speaker component of the specified hookswitch device to
the specified level.

LONG phoneSetVolume(

 HPHONE hPhone,
 DWORD dwHookSwitchDev,
 DWORD dwVolume
);

Parameters
hPhone

A handle to the open phone device. The application must be the owner of the phone.
dwHookSwitchDev

The hookswitch device whose speaker's volume is to be set.
PHONEHOOKSWITCHDEV_HANDSET

The phone's handset.
PHONEHOOKSWITCHDEV_SPEAKER

The phone's speakerphone or adjunct.
PHONEHOOKSWITCHDEV_HEADSET

The phone's headset.

dwVolume

The current volume setting of the device. The dwVolume parameter specifies the volume level of the
hookswitch device. This is a number in the range 0x00000000 (silence) to 0x0000FFFF (maximum
volume). The actual granularity and quantization of volume settings in this range are service-provider
specific. A value for dwVolume that is out of range is set to the nearest value in the range.

Return Values
Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding PHONE_REPLY message is
zero if the function is successful or it is a negative error number if an error has occurred. Possible return
values are:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM, PHONEERR_NOTOWNER,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_INVALPHONESTATE,
PHONEERR_OPERATIONFAILED, PHONEERR_INVALHOOKSWITCHDEV,
PHONEERR_UNINITIALIZED, PHONEERR_OPERATIONUNAVAIL.

See Also
PHONE_REPLY

phoneShutdown       

   

The phoneShutdown function shuts down the application's usage of TAPI's phone abstraction.

LONG phoneShutdown(

 HPHONEAPP hPhoneApp
);

Parameters
hPhoneApp

The application's usage handle for TAPI.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

Remarks
If this function is called when the application has open phone devices. These devices will be closed.

Assisted Telephony Functions
The functions in this section are used by Assisted Telephony.

tapiRequestMakeCall       

   

The tapiRequestMakeCall function requests the establishment of a voice call. A call-manager application
is responsible for establishing the call on behalf of the requesting application, which is then controlled by
the user's call-manager application.

LONG tapiRequestMakeCall(

 LPCSTR lpszDestAddress,
 LPCSTR lpszAppName,
 LPCSTR lpszCalledParty,
 LPCSTR lpszComment
);

Parameters
lpszDestAddress

A pointer to a memory location where the NULL-terminated destination address of the call request is
located. The address can use the canonical address format (address formats are discussed in Line
Devices Overview) or the dialable address format. Validity of the specified address is not checked by
this operation. The maximum length of the address is TAPIMAXDESTADDRESSSIZE characters,
which includes the NULL terminator.

lpszAppName

A pointer to a memory location where the ASCII NULL-terminated user-friendly application name of
the call request is located. This pointer may be left NULL if the application does not wish to supply an
application name. The maximum length of the address is TAPIMAXAPPNAMESIZE characters, which
includes the NULL terminator. Longer strings are truncated.

lpszCalledParty

A pointer to a memory location where the ASCII NULL-terminated called party name for the called
party of the call is located. This pointer may be left NULL if the application does not wish to supply this
information. The maximum length of the string is TAPIMAXCALLEDPARTYSIZE characters, which
includes the NULL terminator. Longer strings are truncated.

lpszComment

A pointer to a memory location where the ASCII NULL-terminated comment about the call is located.
This pointer may be left NULL if the application does not wish to supply a comment. The maximum
length of the address is TAPIMAXCOMMENTSIZE characters, which includes the NULL terminator.
Longer strings are truncated.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
error return value are:

TAPIERR_NOREQUESTRECIPIENT, TAPIERR_INVALDESTADDRESS,
TAPIERR_REQUESTQUEUEFULL, TAPIERR_INVALPOINTER.

Remarks
A telephony-enabled application can request that a call be placed on its behalf by invoking

tapiRequestMakeCall, providing only the destination address for the call. This request is forwarded to
the user's call-control application, which places the call on behalf of the original application. A default call-
control application is provided as part of Win32 Telephony. Users can replace this with a call-control
application of their choice.

Invoking tapiRequestMakeCall when no call control application is running returns the
TAPIERR_NOREQUESTRECIPIENT error indication. If the call control application is not running, TAPI
will attempt to launch the highest-priority call control application (which is listed for RequestMakeCall in
the registry). Invoking this function when the Assisted TAPI request queue is full returns the
TAPIERR_REQUESTQUEUEFULL error.

tapiRequestMediaCall       

The tapiRequestMediaCall function is nonfunctional in Win32-based applications and obsolete for all
classes of Windows-based applications. It should not be used.

tapiGetLocationInfo       

   

The tapiGetLocationInfo function returns the country code and city (area) code which the user has set in
the current location parameters in the Telephony control panel. The application may use this information
to assist the user in forming proper canonical telephone numbers, such as by offering these as defaults
when new numbers are entered in a phone book entry or database record.

LONG tapiGetLocationInfo(

 LPCSTR lpszCountryCode,
 LPCSTR lpszCityCode
);

Parameters
lpszCountryCode

A pointer to a memory location where a NULL-terminated ASCII string specifying the country code for
the current location is to be returned. The application should allocate at least 8 bytes of storage at this
location to hold the string (TAPI will not return more than 8 bytes, including the terminating NULL). An
empty string (\0) will be returned if the country code has not been set for the current location.

lpszCityCode

A pointer to a memory location where a NULL-terminated ASCII string specifying the city (area) code
for the current location is to be returned. The application should allocate at least 8 bytes of storage at
this location to hold the string (TAPI will not return more than 8 bytes, including the terminating
NULL). An empty string (\0) will be returned if the city code has not been set for the current location.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are TAPIERR_REQUESTFAILED.

tapiRequestDrop       

The tapiRequestDrop function is nonfunctional in Win32 -based applications and obsolete for all classes
of Windows-based applications. It should not be used.

Messages
This section contains the reference for line device, phone device, and assisted telephony messages.

Line Device Messages
This section contains a list of the messages in the Telephony API. Messages are used to notify the
application of the occurrence of asynchronous events. All of these messages are sent to the application
via the message notification mechanism the applicaiton specified in lineInitializeEx.

The message always contains a handle to the relevant object (phone, line, or call). The application can
determine the type of the handle from the message type.

Certain messages are used to notify the application about a change in an object's status. These
messages provide the object handle and give an indication of which status item has changed. The
application can call the appropriate "get status" function of the object to obtain the object's full status.

When an event occurs, messages may be sent to zero, one, or more applications. The target applications
for a message are determined by a number of different factors including the meaning of the message, the
application's privilege to the object, whether or not the application initiated the request for which the
message is a direct result, and the message masking that has been set by the application. Note the
following points about messages:

· Asynchronous reply messages are only sent to the application that originated the request and cannot
be masked.

· Messages that signal the completion of digit or tone generation or the gathering of digits are only sent
to the application that requested the digit or tone generation.

· Messages that indicate line or address state changes are sent to all applications that have opened
the line, so long as the message has been enabled via lineSetStatusMessages.

· Messages that indicate call state and call information changes are sent to all applications that have a
handle to the call.

· Messages that signal a digit detection, tone detection, or media mode detection are sent to the
application(s) that requested monitoring of that event.

LINE_ADDRESSSTATE   

The LINE_ADDRESSSTATE message is sent when the status of an address changes on a line that is
currently open by the application. The application can invoke lineGetAddressStatus to determine the
current status of the address.

LINE_ADDRESSSTATE
 dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) idAddress;
 dwParam2 = (DWORD) AddressState;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

The address ID of the address that changed status.
dwParam2

The address state that changed. Can be a combination of these values:
LINEADDRESSSTATE_OTHER

Address-status items other than those listed below have changed. The application should check
the current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status has changed.
LINEADDRESSSTATE_INUSEZERO

The address has changed to idle (it is now in use by zero stations).
LINEADDRESSSTATE_INUSEONE

The address has changed from idle or from being used by many bridged stations to being used by
just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address has changed from being used by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This is the result of events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address has changed, including the number of rings for determining a
no answer condition. The application should check the address status to determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address have changed.
LINEADDRESSSTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINEADDRESSCAPS structure for the address have changed. The application
should use lineGetAddressCaps to read the updated structure. Applications which support API
versions less than 0x00010004 will receive a LINEDEVSTATE_REINIT message, requiring them to
shutdown and reinitialize their connection to TAPI in order to obtain the updated information.

dwParam3

Unused.

Return Values
No return value.

Remarks
The LINE_ADDRESSSTATE message is sent to any application that has opened the line device and that
has enabled this message. The sending of this message for the various status items can be controlled
and queried using lineGetStatusMessages and lineSetStatusMessages. By default, address status
reporting is disabled.

See Also
LINEADDRESSCAPS, lineGetAddressCaps, lineGetAddressStatus, lineGetStatusMessages,
lineSetStatusMessages

LINE_AGENTSPECIFIC   

The LINE_AGENTSPECIFIC message is sent when the status of an ACD agent changes on a line the
application currently has open. The application can invoke lineGetAgentStatus to determine the current
status of the agent.

LINE_AGENTSPECIFIC
 dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) dwInstanceData;
 dwParam1 = (DWORD) dwAgentExtensionIDIndex;
 dwParam2 = (DWORD) dwHandlerSpecific1;
 dwParam3 = (DWORD) dwHandlerSpecific2;

Parameters

dwDevice

The application's handle to the line device.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

The index into the array of handler extension IDs in LINEAGENTCAPS structure of the handler
extension with which the message is associated:

dwParam2

Specific to the handler extension. Generally, this value will be used to cause the application to invoke
a lineAgentSpecific function to fetch further details of the message.

dwParam3

Specific to the handler extension.

Return Values
No return value.

Remarks
The LINE_AGENTSPECIFIC message is not sent to applications which support older versions of TAPI.

See Also
LINEAGENTCAPS, lineAgentSpecific, lineGetAgentStatus

LINE_AGENTSTATUS   

The LINE_AGENTSTATUS message is sent when the status of an ACD agent changes on a line the
application currently has open. The application can invoke lineGetAgentStatus to determine the current
status of the agent.

LINE_AGENTSTATUS
dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) dwInstanceData;
 dwParam1 = (DWORD) dwAddressID;
 dwParam2 = (DWORD) AgentStatus;
 dwParam3 = (DWORD) AgentStatusDetail;

Parameters

dwDevice

The application's handle to the line device on which the agent status has changed.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

Identifier of the address on the line on which the agent status changed.
dwParam2

Specifies the agent status that has changed; can be a combination of LINEAGENTSTATUS_ constant
values:

dwParam3

If dwParam2 includes the LINEAGENTSTATUS_STATE bit, then dwParam3 indicates the new value
of dwState member in LINEAGENTSTATUS. Otherwise, this parameter is set to 0.

Return Values
No return value.

Remarks
The LINE_AGENTSTATUS message is not sent to applications which support older versions of TAPI.

See Also
LINEAGENTSTATUS, lineGetAgentStatus

LINE_APPNEWCALL   

The LINE_APPNEWCALL message is sent to inform an application when a new call handle has been
spontaneously created on its behalf (other than through an API call from the application, in which case the
handle would have been returned through a pointer parameter passed into the function).

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) dwInstanceData;
 dwParam1 = (DWORD) dwAddressID;
 dwParam2 = (DWORD) hCall;
 dwParam3 = (DWORD) dwPrivilege;

Parameters

dwDevice

The application's handle to the line device on which the call has been created.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

Identifier of the address on the line on which the call appears.
dwParam2

The application's handle to the new call.
dwParam3

The applications privilege to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

Return Values
No return value.

Comments and Backward Compatibility
Applications supporting TAPI version 0x00020000 or above are sent a LINE_APPNEWCALL message
whenever the application is spontaneously given a handle to a new call. Because the message includes
the hLine and dwAddressID on which the call exists, the application can readily create a new call object in
the correct context. The LINE_APPNEWCALL message will always be immediately followed by a
LINE_CALLSTATE message indicating the initial state of the call.

Older applications (which negotiated an API version prior to 0x00020000) are sent only a
LINE_CALLSTATE message, as documented in previous versions of the API. Such applications would
create a new call object upon receiving a LINE_CALLSTATE message which has dwParam3 set to a non-
zero value and containing a call handle not presently known by the application. The disadvantages are
that (a) the application must call lineGetCallInfo to determine the hLine and dwAddressID associated
with the call, (b) the application must scan all known call handles to determine that the call is a new call,
and (c) it is possible, under certain conditions, for the application to think it is receiving a new call handle
when in reality it has just deallocated its handle to the call (for example, the application has just
deallocated a call handle, but a LINE_CALLSTATE message giving the application ownership of the call
due to a lineHandoff from another application was already in the application's TAPI message queue).

See Also

LINE_CALLSTATE, lineGetCallInfo, lineHandoff

LINE_CALLINFO   

The LINE_CALLINFO message is sent when the call information about the specified call has changed.
The application can invoke lineGetCallInfo to determine the current call information.

LINE_CALLINFO
dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) CallInfoState;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

The call information item that has changed. Can be a combination of these values:
LINECALLINFOSTATE_OTHER

Information items other than those listed below have changed. The application should check the
current call information to determine which items have changed.

LINECALLINFOSTATE_DEVSPECIFIC

The device-specific field of the call-information record has changed.
LINECALLINFOSTATE_BEARERMODE

The bearer mode field of the call-information record has changed.
LINECALLINFOSTATE_RATE

The rate field of the call-information record has changed.
LINECALLINFOSTATE_MEDIAMODE

The media mode field of the call-information record has changed.
LINECALLINFOSTATE_APPSPECIFIC

The application-specific field of the call-information record has changed.
LINECALLINFOSTATE_CALLID

The call ID field of the call-information record has changed.
LINECALLINFOSTATE_RELATEDCALLID

The related call ID field of the call-information record has changed.
LINECALLINFOSTATE_ORIGIN

The origin field of the call-information record has changed.
LINECALLINFOSTATE_REASON

The reason field of the call-information record has changed.
LINECALLINFOSTATE_COMPLETIONID

The completion ID field of the call-information record has changed.
LINECALLINFOSTATE_NUMOWNERINCR

The number of owner fields in the call-information record was increased.
LINECALLINFOSTATE_NUMOWNERDECR

The number of owner fields in the call-information record was decreased.
LINECALLINFOSTATE_NUMMONITORS

The number of monitors fields in the call-information record has changed.
LINECALLINFOSTATE_TRUNK

The trunk field of the call information record has changed.
LINECALLINFOSTATE_CALLERID

One of the callerID-related fields of the call information record has changed.
LINECALLINFOSTATE_CALLEDID

One of the calledID-related fields of the call information record has changed.
LINECALLINFOSTATE_CONNECTEDID

One of the connectedID-related fields of the call information record has changed.
LINECALLINFOSTATE_REDIRECTIONID

One of the redirectionID-related fields of the call information record has changed.
LINECALLINFOSTATE_REDIRECTINGID

One of the redirectingID-related fields of the call information record has changed.
LINECALLINFOSTATE_DISPLAY

The display field of the call information record has changed.
LINECALLINFOSTATE_USERUSERINFO

The user-to-user information of the call information record has changed.
LINECALLINFOSTATE_HIGHLEVELCOMP

The high-level compatibility field of the call information record has changed.
LINECALLINFOSTATE_LOWLEVELCOMP

The low-level compatibility field of the call information record has changed.
LINECALLINFOSTATE_CHARGINGINFO

The charging information of the call information record has changed.
LINECALLINFOSTATE_TERMINAL

The terminal mode information of the call information record has changed.
LINECALLINFOSTATE_DIALPARAMS

The dial parameters of the call information record has changed.
LINECALLINFOSTATE_MONITORMODES

One or more of the digit, tone, or media monitoring fields in the call information record has
changed.

dwParam2

Unused.
dwParam3

Unused.

Return Values
No return value.

Remarks
A LINE_CALLINFO message with a NumOwnersIncr, NumOwnersDecr, and/or NumMonitorsChanged
indication is sent to applications that already have a handle for the call. This can be the result of another
application changing ownership or monitorship to a call with lineOpen, lineClose, lineShutdown,
lineSetCallPrivilege, lineGetNewCalls, and lineGetConfRelatedCalls.

These LINE_CALLINFO messages are not sent when a notification of a new call is provided in a
LINE_CALLSTATE message, because the call information already reflects the correct number of owners
and monitors at the time the LINE_CALLSTATE messages are sent. LINE_CALLINFO messages are also
suppressed in the case where a call is offered by TAPI to monitors through the
LINECALLSTATE_UNKNOWN mechanism.

Note The application which causes a change in the number of owners or monitors (for example, by
invoking lineDeallocateCall or lineSetCallPrivilege) will not itself receive a message indicating that
the change has been done.

No LINE_CALLINFO messages are sent for a call after the call has entered the idle state. Specifically,
changes in the number of owners and monitors are not reported as applications deallocate their handles
for the idle call.

See Also
lineClose, lineDeallocateCall, lineGetCallInfo, lineGetConfRelatedCalls, lineGetNewCalls,
lineOpen, lineSetCallPrivilege, lineShutdown

LINE_CALLSTATE   

The LINE_CALLSTATE message is sent when the status of the specified call has changed. Several such
messages will typically be received during the lifetime of a call. Applications are notified of new incoming
calls with this message; the new call will be in the offering state. The application can use
lineGetCallStatus to retrieve more detailed information about the current status of the call.

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) CallState;
 dwParam2 = (DWORD) CallStateDetail;
 dwParam3 = (DWORD) CallPrivilege;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

The new call state. This parameter must be one and only one of the following LINECALLSTATE_
values:
LINECALLSTATE_IDLE

The call is idle¾no call actually exists.
LINECALLSTATE_OFFERING

The call is being offered to the station, signaling the arrival of a new call. In some environments, a
call in the offering state does not automatically alert the user. Alerting is done by the switch
instructing the line to ring; it does not affect any call states.

LINECALLSTATE_ACCEPTED

The call was offering and has been accepted. This indicates to other (monitoring) applications that
the current owner application has claimed responsibility for answering the call. In ISDN, this also
indicates that alerting to both parties has started.

LINECALLSTATE_DIALTONE

The call is receiving a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is being sent to the switch over the call. Note
that lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call is receiving ringback from the called address. Ringback indicates that the other station has
been reached and is being alerted.

LINECALLSTATE_BUSY

The call is receiving a busy tone. Busy tone indicates that the call cannot be completed¾either a
circuit (trunk) or the remote party's station are in use.

LINECALLSTATE_SPECIALINFO

Special information is sent by the network. Special information is typically sent when the
destination cannot be reached.

LINECALLSTATE_CONNECTED

The call has been established and the connection is made. Information is able to flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing has completed and the call is proceeding through the switch or telephone network.
LINECALLSTATE_ONHOLD

The call is on hold by the switch.
LINECALLSTATE_CONFERENCED

The call is currently a member of a multiparty conference call.
LINECALLSTATE_ONHOLDPENDCONF

The call is currently on hold while it is being added to a conference.
LINECALLSTATE_ONHOLDPENTRANSFER

The call is currently on hold awaiting transfer to another number.
LINECALLSTATE_DISCONNECTED

The remote party has disconnected from the call.
LINECALLSTATE_UNKNOWN

The state of the call is not known. This may be due to limitations of the call-progress detection
implementation.

dwParam2

Call-state-dependent information.
If dwParam1 is LINECALLSTATE_BUSY, dwParam2 contains details about the busy mode. This
parameter uses the following LINEBUSYMODE_ constants:
LINEBUSYMODE_STATION

The busy signal indicates that the called party's station is busy. This is usually signaled by means
of a "normal" busy tone.

LINEBUSYMODE_TRUNK

The busy signal indicates that a trunk or circuit is busy. This is usually signaled with a "long" busy
tone.

LINEBUSYMODE_UNKNOWN

The busy signal's specific mode is currently unknown, but may become known later.
LINEBUSYMODE_UNAVAIL

The busy signal's specific mode is unavailable and will not become known.

If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains details about the connected
mode. This parameter uses the following LINECONNECTEDMODE_ constants:

LINECONNECTEDMODE_ACTIVE

Indicates that the call is connected at the current station (the current station is a participant in the
call).

LINECONNECTEDMODE_INACTIVE

Indicates that the call is active at one or more other stations, but the current station is not a
participant in the call.

If dwParam1 is LINECALLSTATE_DIALTONE, dwParam2 contains the details about the dial tone
mode. This parameter uses the following LINEDIALTONEMODE_ constants:
LINEDIALTONEMODE_NORMAL

This is a "normal" dial tone, which typically is a continuous tone.
LINEDIALTONEMODE_SPECIAL

This is a special dial tone indicating that a certain condition is currently in effect.
LINEDIALTONEMODE_INTERNAL

This is an internal dial tone, as within a PBX.
LINEDIALTONEMODE_EXTERNAL

This is an external (public network) dial tone.
LINEDIALTONEMODE_UNKNOWN

The dial tone mode is currently unknown, but may become known later.
LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and will not become known.

If dwParam1 is LINECALLSTATE_OFFERING, dwParam2 contains details about the connected
mode. This parameter uses the following LINEOFFERINGMODE_ constants:
LINEOFFERINGMODE_ACTIVE

Indicates that the call is alerting at the current station (will be accompanied by
LINEDEVSTATE_RINGING messages), and if any application is set up to automatically answer, it
may do so.

LINEOFFERINGMODE_INACTIVE

Indicates that the call is being offered at more than one station, but the current station is not
alerting (for example, it may be an attendant station where the offering status is advisory, such as
blinking a light).

If dwParam1 is LINECALLSTATE_SPECIALINFO, dwParam2 contains the details about the special
information mode. This parameter uses the following LINESPECIALINFO_ constants:
LINESPECIALINFO_NOCIRCUIT

This special information tone precedes a "no circuit" or emergency announcement (trunk blockage
category).

LINESPECIALINFO_CUSTIRREG

This special information tone precedes a vacant number, AIS, Centrex number change and
nonworking station, access code not dialed or dialed in error, or manual intercept operator

message (customer irregularity category).
LINESPECIALINFO_REORDER

This special information tone precedes a reorder announcement (equipment irregularity category).
LINESPECIALINFO_UNKNOWN

Specifics about the special information tone are currently unknown but may become known later.
LINESPECIALINFO_UNAVAIL

Specifics about the special information tone are unavailable and will not become known.

If dwParam1 is LINECALLSTATE_DISCONNECTED, dwParam2 contains details about the
disconnect mode. This parameter uses the following LINEDISCONNECTMODE_ constants:
LINEDISCONNECTMODE_NORMAL

This is a "normal" disconnect request by the remote party, the call was terminated normally.
LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request is unknown.
LINEDISCONNECTMODE_REJECT

The remote user has rejected the call.
LINEDISCONNECTMODE_PICKUP

The call was picked up from elsewhere.
LINEDISCONNECTMODE_FORWARDED

The call was forwarded by the switch.
LINEDISCONNECTMODE_BUSY

The remote user's station is busy.
LINEDISCONNECTMODE_NOANSWER

The remote user's station does not answer.
LINEDISCONNECTMODE_NODIALTONE

A dial tone was not detected within a service-provider defined timeout, at a point during dialing
when one was expected (such as at a "W" in the dialable string). This can also occur without a
service-provider-defined timeout period or without a value specified in the dwWaitForDialTone
member of the LINEDIALPARAMS structure.

LINEDISCONNECTMODE_BADADDRESS

The destination address in invalid.
LINEDISCONNECTMODE_UNREACHABLE

The remote user could not be reached.
LINEDISCONNECTMODE_CONGESTION

The network is congested.
LINEDISCONNECTMODE_INCOMPATIBLE

The remote user's station equipment is incompatible for the type of call requested.
LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect is unavailable and will not become known later.

If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 contains the hConfCall of the parent
call of the conference of which the subject hCall is a member. If the call specified in dwParam2 was
not previously considered by the application to be a parent conference call (hConfCall), the
application must do so as a result of this message. If the application does not have a handle to the
parent call of the conference (because it has previously called lineDeallocateCall on that handle)
dwParam2 will be set to null.

dwParam3

If zero, this parameter indicates that there has been no change in the application's privilege for the
call.
If non-zero, it specifies the application's privilege to the call. This will occur in the following situations:
(1) The first time that the application is given a handle to this call; (2) When the application is the
target of a call handoff (even if the application already was an owner of the call). This parameter uses
the following LINECALLPRIVILEGE_ constants:
LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.
LINECALLPRIVILEGE_OWNER

The application has owner privilege.

Return Values
No return value.

Remarks
This message is sent to any application that has a handle for the call. The LINE_CALLSTATE message
also notifies applications that monitor calls on a line about the existence and state of outbound calls
established by other applications or manually by the user (for example, on an attached phone device).
The call state of such calls reflects the actual state of the call, which will not be offering. By examining the
call state, the application can determine whether the call is an inbound call that needs to be answered or
not.

A LINE_CALLSTATE message with an unknown call state may be sent to a monitoring application as the
result of a successful lineMakeCall, lineForward, lineUnpark, lineSetupTransfer, linePickup,
lineSetupConference, or linePrepareAddToConference that has been requested by another
application. At the same time that the requesting application is sent a LINE_REPLY (success) for the
requested operation, any monitoring applications on the line will be sent the LINE_CALLSTATE
(unknown) message. A LINE_CALLSTATE indicating the "real" call state of the newly generated call will
be sent (using information provided by the service provider) to the requesting and monitoring applications
shortly thereafter.

A LINE_CALLSTATE (unknown) message is sent to monitoring applications only if lineCompleteTransfer
causes calls to be resolved into a three-way conference.

For backward compatibility, older applications will not be expecting any particular value in dwParam2 of a
LINECALLSTATE_CONFERENCED message. TAPI will therefore pass the parent call hConfCall in
dwParam2 regardless of the API version of the application receiving the message. In the case of a
conference call initiated by the service provider, the older application will not be aware that the parent call
has become a conference call unless it happens to spontaneously examine other information (for
example, call lineGetConfRelatedCalls)

This message cannot be disabled.

See Also
LINE_REPLY, lineCompleteTransfer, lineDeallocateCall, LINEDIALPARAMS, lineForward,
lineGenerateDigits, lineGetCallStatus, lineGetConfRelatedCalls, lineMakeCall, linePickup,
linePrepareAddToConference, lineSetupTransfer, lineUnpark

LINE_CLOSE   

The LINE_CLOSE message is sent when the specified line device has been forcibly closed. The line
device handle or any call handles for calls on the line are no longer valid once this message has been
sent.

LINE_CLOSE
dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) 0;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

Unused.
dwParam2

Unused.
dwParam3

Unused.

Return Values
No return value.

Remarks
The LINE_CLOSE message is only sent to any application after an open line has been forcibly closed.
This may be done to prevent a single application from monopolizing a line device for too long. Whether or
not the line can be reopened immediately after a forced close is device-specific.

A line device may also be forcibly closed after the user has modified the configuration of that line or its
driver. If the user wants the configuration changes to be effective immediately (as opposed to after the
next system restart), and they affect the application's current view of the device (such as a change in
device capabilities), then a service provider may forcibly close the line device.

LINE_CREATE   

The LINE_CREATE message is sent to inform the application of the creation of a new line device.

dwDevice = (DWORD) 0;
 dwCallbackInstance = (DWORD) 0;
 dwParam1 = (DWORD) idDevice;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

Unused.
dwCallbackInstance

Unused.
dwParam1

The dwDeviceID of the newly-created device.
dwParam2

Unused.
dwParam3

Unused.

Return Values
No return value.

Remarks
Older applications (which negotiated TAPI version 0x00010003) are sent a LINE_LINEDEVSTATE
message specifying LINEDEVSTATE_REINIT, which requires them to shut down their use of the API and
call lineInitialize again to obtain the new number of devices. Unlike previous versions of TAPI, however,
this version does not require all applications to shut down before allowing applications to reinitialize;
reinitialization can take place immediately when a new device is created (complete shutdown is still
required when a service provider is removed from the system).

Applications supporting TAPI version 0x00010004 or above are sent a LINE_CREATE message. This
informs them of the existence of the new device and its new device ID. The application can then choose
whether or not to attempt working with the new device at its leisure. This message will be sent to all
applications supporting this or subsequent versions of the API which have called lineInitialize or
lineInitalizeEx, including those that do not have any line devices open at the time.

See Also
LINE_LINEDEVSTATE, lineInitialize, lineInitializeEx

LINE_DEVSPECIFIC   

The LINE_DEVSPECIFIC message is sent to notify the application about device-specific events occurring
on a line, address, or call. The meaning of the message and the interpretation of the parameters are
device specific.

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) DeviceSpecific1;
 dwParam2 = (DWORD) DeviceSpecific2;
 dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

A handle to either a line device or call. This is device specific.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

Device specific.
dwParam2

Device specific.
dwParam3

Device specific.

Return Values
No return value.

Remarks
The LINE_DEVSPECIFIC message is used by a service provider in conjunction with the lineDevSpecific
function. Its meaning is device specific.

LINE_DEVSPECIFICFEATURE   

The LINE_DEVSPECIFICFEATURE message is sent to notify the application about device-specific
events occurring on a line, address, or call. The meaning of the message and the interpretation of the
parameters are device specific.

LINE_DEVSPECIFICFEATURE
dwDevice = (DWORD) hLineOrCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) DeviceSpecific1;
 dwParam2 = (DWORD) DeviceSpecific2;
 dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

A handle to either a line device or call. This is device specific.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

Device specific.
dwParam2

Device specific.
dwParam3

Device specific.

Return Values
No return value.

Remarks
The LINE_DEVSPECIFICFEATURE message is used by a service provider in conjunction with the
lineDevSpecificFeature function. Its meaning is device specific.

LINE_GATHERDIGITS   

The LINE_GATHERDIGITS message is sent when the current buffered digit-gathering request has
terminated or is canceled. The digit buffer may be examined after this message has been received by the
application.

LINE_GATHERDIGITS
dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) GatherTermination;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

The reason why digit gathering was terminated. This parameter must be one and only one of the
following LINEGATHERTERM_ constants:
LINEGATHERTERM_BUFFERFULL

The requested number of digits has been gathered. The buffer is full.
LINEGATHERTERM_TERMDIGIT

One of the termination digits matched a received digit. The matched termination digit is the last
digit in the buffer.

LINEGATHERTERM_FIRSTTIMEOUT

The first digit timeout expired. The buffer contains no digits.
LINEGATHERTERM_INTERTIMEOUT

The inter-digit timeout expired. The buffer contains at least one digit.
LINEGATHERTERM_CANCEL

The request was canceled by this application, by another application, or because the call
terminated.

dwParam2

Unused.
dwParam3

The "tick count" (number of milliseconds since Windows started) at which the digit gathering
completed. For API versions prior to 0x0002000, this parameter is unused.

Return Values
No return value.

Remarks
The LINE_GATHERDIGITS message is only sent to the application that initiated the digit gathering on the
call using lineGatherDigits.

If the lineGatherDigits function is used to cancel a previous request to gather digits, TAPI sends a
LINE_GATHERDIGITS message with dwParam1 set to LINEGATHERTERM_CANCEL to the application
indicating that the originally specified buffer contains the digits gathered up to the cancellation.

Because the timestamp specified by dwParam3 may have been generated on a computer other than the
one on which the application is executing, it is useful only for comparison to other similarly timestamped
messages generated on the same line device (LINE_GENERATE, LINE_MONITORDIGITS,
LINE_MONITORMEDIA, LINE_MONITORTONE), in order to determine their relative timing (separation
between events). The tick count can "wrap around" after approximately 49.7 days; applications must take
this into account when performing calculations.

If the service provider does not generate the timestamp (for example, if it was created using an earlier
version of TAPI), then TAPI will provide a timestamp at the point closest to the service provider generating
the event so that the synthesized timestamp is as accurate as possible.

See Also
LINE_GENERATE, LINE_MONITORDIGITS, LINE_MONITORMEDIA, LINE_MONITORTONE,
lineGatherDigits

LINE_GENERATE   

The LINE_GENERATE message is sent to notify the application that the current digit or tone generation
has terminated. Only one such generation request can be in progress an a given call at any time. This
message is also sent when digit or tone generation is canceled.

LINE_GENERATE
dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) GenerateTermination;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

The reason why digit or tone generation was terminated. This parameter must be one and only one of
the following LINEGENERATETERM_ constants:
LINEGENERATETERM_DONE

The requested number of digits have been generated, or the requested tones have been
generated for the requested duration.

LINEGENERATETERM_CANCEL

The digit or tone generation request was canceled by this application, by another application, or
because the call terminated.

dwParam2

Unused.
dwParam3

The "tick count" (number of milliseconds since Windows started) at which the digit or tone generation
completed. For API versions prior to 0x00020000, this parameter is unused.

Return Values
No return value.

Remarks
The LINE_GENERATE message is only sent to the application that requested the digit or tone generation.

Because the timestamp specified by dwParam3 may have been generated on a computer other than the
one on which the application is executing, it is useful only for comparison to other similarly timestamped
messages generated on the same line device (LINE_GATHERDIGITS, LINE_MONITORDIGITS,
LINE_MONITORMEDIA, LINE_MONITORTONE), in order to determine their relative timing (separation
between events). The tick count can "wrap around" after approximately 49.7 days; applications must take
this into account when performing calculations.

If the service provider does not generate the timestamp (for example, if it was created using an earlier
version of TAPI), then TAPI will provide a timestamp at the point closest to the service provider generating
the event so that the synthesized timestamp is as accurate as possible.

See Also
LINE_GATHERDIGITS, LINE_MONITORDIGITS, LINE_MONITORMEDIA, LINE_MONITORTONE

LINE_LINEDEVSTATE   

The LINE_LINEDEVSTATE message is sent when the state of a line device has changed. The application
can invoke lineGetLineDevStatus to determine the new status of the line.

LINE_LINEDEVSTATE
dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) DeviceState;
 dwParam2 = (DWORD) DeviceStateDetail1;
 dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

dwDevice

A handle to the line device. This parameter is NULL when dwParam1 is LINEDEVSTATE_REINIT.
dwCallbackInstance

The callback instance supplied when opening the line. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParam1

The line device status item that has changed. The parameter can be a combination of the following
LINEDEVSTATE_ constants:
LINEDEVSTATE_OTHER

Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING

The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending messages containing this constant. For example, in the United States, service providers
send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED

The line was previously disconnected and is now connected to TAPI.
LINEDEVSTATE_DISCONNECTED

This line was previously connected and is now disconnected from TAPI.
LINEDEVSTATE_MSGWAITON

The "message waiting" indicator is turned on.
LINEDEVSTATE_MSGWAITOFF

The "message waiting" indicator is turned off.
LINEDEVSTATE_NUMCOMPLETIONS

The number of outstanding call completions on the line device has changed.
LINEDEVSTATE_INSERVICE

The line is connected to TAPI. This happens when TAPI is first activated, or when the line wire is
physically plugged in and in service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate
on the line device.

LINEDEVSTATE_MAINTENANCE

Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the
line device.

LINEDEVSTATE_OPEN

The line has been opened by another application.
LINEDEVSTATE_CLOSE

The line has been closed by another application.
LINEDEVSTATE_NUMCALLS

The number of calls on the line device has changed.
LINEDEVSTATE_TERMINALS

The terminal settings have changed.
LINEDEVSTATE_ROAMMODE

The roaming state of the line device has changed.
LINEDEVSTATE_BATTERY

The battery level has changed significantly (cellular).
LINEDEVSTATE_SIGNAL

The signal level has changed significantly (cellular).
LINEDEVSTATE_DEVSPECIFIC

The line's device-specific information has changed.
LINEDEVSTATE_REINIT

Items have changed in the configuration of line devices. To become aware of these changes (as
with the appearance of new line devices), the application should reinitialize its use of TAPI. The
dwDevice parameter is left NULL for this state change as it applies to any of the lines in the
system.

LINEDEVSTATE_LOCK

The locked status of the line device has changed. (For more information, refer to the description of
the LINEDEVSTATUSFLAGS_LOCKED bit of the LINEDEVSTATUSFLAGS_ constants.)

LINEDEVSTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINEDEVCAPS structure for the address have changed. The application should
use lineGetDevCaps to read the updated structure.

LINEDEVSTATE_CONFIGCHANGE

Indicates that configuration changes have been made to one or more of the media devices
associated with the line device. The application, if it desires, may use lineGetDevConfig to read
the updated information.

LINEDEVSTATE_TRANSLATECHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINETRANSLATECAPS structure have changed. The application should use
lineGetTranslateCaps to read the updated structure.

LINEDEVSTATE_COMPLCANCEL

Indicates that the call completion identified by the completion ID contained in parameter dwParam2
of the LINE_LINEDEVSTATE message has been externally canceled and is no longer considered
valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the function
would fail with LINEERR_INVALCOMPLETIONID).

LINEDEVSTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A LINE_LINEDEVSTATE message
with this value will normally be immediately followed by a LINE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will not receive any notification.

dwParam2

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the line
to ring. Valid ring modes are numbers in the range one to dwNumRingModes, where
dwNumRingModes is a line device capability.
If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by TAPI as a result of
translation of a new API message into a REINIT message, then dwParam2 contains the dwMsg
parameter of the original message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If
dwParam2 is zero, this indicates that the REINIT message is a "real" REINIT message that requires
the application to call lineShutdown at its earliest convenience.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.
If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by TAPI as a result of
translation of a new API message into a REINIT message, then dwParam3 contains the dwParam1
parameter of the original message (for example, LINEDEVSTATE_TRANSLATECHANGE or some
other LINEDEVSTATE_ value, if dwParam2 is LINE_LINEDEVSTATE, or the new device ID, if
dwParam2 is LINE_CREATE).

Return Values
No return value.

Remarks
The sending of the LINE_LINEDEVSTATE message can be controlled with lineSetStatusMessages. An
application can indicate status item changes about which it wants to be notified. By default, all status
reporting will be disabled except for LINEDEVSTATE_REINIT, which cannot be disabled. This message is
sent to all applications that have a handle to the line, including those that called lineOpen with the
dwPrivileges parameter set to LINECALLPRIVILEGE_NONE, LINECALLPRIVILEGE_OWNER,
LINECALLPRIVILEGE_MONITOR, or permitted combinations of these.

See Also
LINE_CLOSE, LINE_CREATE, LINEDEVCAPS, lineGetDevCaps, lineGetDevConfig,
lineGetTranslateCaps, lineInitialize, lineOpen, lineSetStatusMessages, lineShutdown,

LINETRANSLATECAPS, lineUncompleteCall

LINE_MONITORDIGITS   

The LINE_MONITORDIGITS message is sent when a digit is detected. The sending of this message is
controlled with the lineMonitorDigits function.

LINE_MONITORDIGITS
 dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) Digit;
 dwParam2 = (DWORD) DigitMode;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

The low-order byte contains the last digit received in ASCII.
dwParam2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of rotary pulse sequences. Valid digits for pulse
are '0' through '9'.

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF are '0' through '9', 'A', 'B', 'C', 'D', '*', and '#'.
LINEDIGITMODE_DTMFEND

Detect and provide application notification of DTMF down edges. Valid digits for DTMF are '0'
through '9', 'A', 'B', 'C', 'D', '*', and '#'.

dwParam3

The "tick count" (number of milliseconds since Windows started) at which the specified digit was
detected. For API versions prior to 0x00020000, this parameter is unused.

Return Values
No return value.

Remarks
The LINE_MONITORDIGITS message is sent to the application that has enabled digit monitoring.

Because this timestamp may have been generated on a computer other than the one on which the
application is executing, it is useful only for comparison to other similarly timestamped messages
generated on the same line device (LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORMEDIA,
LINE_MONITORTONE), in order to determine their relative timing (separation between events). The tick
count can "wrap around" after approximately 49.7 days; applications must take this into account when

performing calculations.

If the service provider does not generate the timestamp (for example, if it was created using an earlier
version of TAPI), then TAPI will provide a timestamp at the point closest to the service provider generating
the event so that the synthesized timestamp is as accurate as possible.

See Also
LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORMEDIA, LINE_MONITORTONE,
lineMonitorDigits

LINE_MONITORMEDIA   

The LINE_MONITORMEDIA message is sent when a change in the call's media mode is detected. The
sending of this message is controlled with the lineMonitorMedia function.

LINE_MONITORMEDIA
 dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) MediaMode;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the line.
dwParam1

The new media mode. This parameter must be one and only one of the following LINEMEDIAMODE_
constants:
LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy has been detected and the call is treated as an interactive call with
humans on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy has been detected and the call is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM

A data modem session has been detected.
LINEMEDIAMODE_G3FAX

A group 3 fax has been detected.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session has been detected.
LINEMEDIAMODE_G4FAX

A group 4 fax has been detected.
LINEMEDIAMODE_DIGITALDATA

Digital data has been detected.
LINEMEDIAMODE_TELETEX

A teletex session has been detected. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session has been detected. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session has been detected. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session has been detected. Mixed is one the telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session has been detected.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
dwParam2

Unused.
dwParam3

The "tick count" (number of milliseconds since Windows started) at which the specified media was
detected. For API versions prior to 0x00020000, this parameter is unused.

Return Values
No return value.

Remarks
The LINE_MONITORMEDIA message is sent to the application that has enabled media monitoring for the
media mode detected.

Because this timestamp may have been generated on a computer other than the one on which the
application is executing, it is useful only for comparison to other similarly timestamped messages
generated on the same line device (LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORDIGITS,
LINE_MONITORTONE), in order to determine their relative timing (separation between events). The tick
count can "wrap around" after approximately 49.7 days; applications must take this into account when
performing calculations.

If the service provider does not generate the timestamp (for example, if it was created using an earlier
version of TAPI), then TAPI will provide a timestamp at the point closest to the service provider generating
the event so that the synthesized timestamp is as accurate as possible.

See Also
LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORDIGITS, LINE_MONITORTONE

LINE_MONITORTONE   

The LINE_MONITORTONE message is sent when a tone is detected. The sending of this message is
controlled with the lineMonitorTones function.

LINE_MONITORTONE
 dwDevice = (DWORD) hCall;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) dwAppSpecific;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

The application-specific dwAppSpecific field of the LINEMONITORTONE structure for the tone that
was detected.

dwParam2

Unused.
dwParam3

The "tick count" (number of milliseconds since Windows started) at which the tone was detected. For
API versions prior to 0x00020000, this parameter is unused.

Return Values
No return value.

Remarks
The LINE_MONITORTONE message is only sent to the application that has requested the tone be
monitored.

Because this timestamp may have been generated on a computer other than the one on which the
application is executing, it is useful only for comparison to other similarly timestamped messages
generated on the same line device (LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORDIGITS,
LINE_MONITORTONE), in order to determine their relative timing (separation between events). The tick
count can "wrap around" after approximately 49.7 days; applications must take this into account when
performing calculations.

If the service provider does not generate the timestamp (for example, if it was created using an earlier
version of TAPI), then TAPI will provide a timestamp at the point closest to the service provider generating
the event so that the synthesized timestamp is as accurate as possible.

See Also
LINE_GATHERDIGITS, LINE_GENERATE, LINE_MONITORDIGITS, LINE_MONITORTONE,
LINEMONITORTONE, lineMonitorTones

LINE_PROXYREQUEST   

The LINE_PROXYREQUEST message delivers a request to a registered proxy function handler.

LINE_PROXYREQUEST
 dwDevice = (DWORD) hLine;
 dwCallbackInstance = (DWORD) dwInstanceData;
 dwParam1 = (DWORD) lpProxyRequest;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

The application's handle to the line device on which the agent status has changed.
dwCallbackInstance

The callback instance supplied when opening the call's line.
dwParam1

Pointer to a LINEPROXYREQUEST structure containing the request to be processed by the proxy
handler application.

dwParam2

Reserved.
dwParam3

Reserved.

Return Values
No return value.

Remarks
The LINE_PROXYREQUEST message is sent only to the first application that registered to handle proxy
requests of the type being delivered.

The application should process the request contained in the proxy buffer and call lineProxyResponse to
return data or deliver results. Processing of the request should be done within the context of the
application's TAPI callback function only if it can be performed immediately, without waiting for response
from any other entity. If the application needs to communicate with other entities (for example, a service
provider to handle PBX-based ACD, or any other system service which might result in blocking), then the
request should be queued within the application and the callback function exited to avoid delaying the
receipt of further TAPI messages by the application.

At the time the LINE_PROXYREQUEST is delivered to the proxy handler, TAPI has already returned a
positive dwRequestID function result to the original application and unblocked the calling thread to
continue execution. The application is awaiting a LINE_REPLY message, which is automatically
generated when the proxy handler application calls lineProxyResponse.

The application shall not free the memory pointed to by lpProxyRequest. TAPI will free the memory during
the execution of lineProxyResponse. The application shall call lineProxyResponse exactly once for
each LINE_PROXYREQUEST message.

If the application receives a LINE_CLOSE message while it has pending proxy requests, it should call
lineProxyResponse for each pending request, passing in an appropriate dwResult value (such as
LINEERR_OPERATIONFAILED).

See Also
LINE_CLOSE, LINE_REPLY, LINEPROXYREQUEST, lineProxyResponse

LINE_REMOVE   

The LINE_REMOVE message is sent to inform an application of the removal (deletion from the system) of
a line device. Generally, this is not used for temporary removals, such as extraction of PCMCIA devices,
but only for permanent removals in which the device would no longer be reported by the service provider
if TAPI were reinitialized.

LINE_REMOVE
 dwDevice = (DWORD) 0;
 dwCallbackInstance = (DWORD) 0;
 dwParam1 = (DWORD) dwDeviceID;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

Reserved; set to 0.
dwCallbackInstance

Reserved; set to 0.
dwParam1

Identifier of the line device that was removed.
dwParam2

Reserved; set to 0.
dwParam3

Reserved; set to 0.

Return Values
No return value.

Comments and Backward Compatibility
Applications supporting TAPI version 0x00020000 or above are sent a LINE_REMOVE message. This
informs them that the device has been removed from the system. The LINE_REMOVE message will have
been preceded by a LINE_CLOSE message on each line handle, if the application had the line open. This
message will be sent to all applications supporting TAPI version 0x00020000 or above which have called
lineInitializeEx, including those that do not have any line devices open at the time.

Older applications are sent a LINE_LINEDEVSTATE message specifying LINEDEVSTATE_REMOVED,
followed by a LINE_CLOSE message. Unlike the LINE_REMOVE message, however, these older
applications can receive these messages only if they have the line open when it is removed. If they do not
have the line open, their only indication that the device was removed would be receiving a
LINEERR_NODEVICE when they attempt to access the device.

After a device has been removed, any attempt to access the device by its device ID will result in a
LINEERR_NODEVICE error. After all TAPI applications have shutdown so that TAPI can restart, when
TAPI is reinitialized, the removed device will no longer occupy a device ID.

Implementation Note It is TAPI that will return this LINEERR_NODEVICE; after a
LINE_REMOVE message is received from a service provider; no further calls will be made to that

service provider using that line device ID.

See Also
LINE_CLOSE, LINE_LINEDEVSTATE, lineInitializeEx

LINE_REPLY   

The LINE_REPLY message is sent to report the results of function calls that completed asynchronously.

LINE_REPLY
 dwDevice = (DWORD) 0;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) idRequest;
 dwParam2 = (DWORD) Status;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

Not used.
dwCallbackInstance

Returns the application's callback instance.
dwParam1

The request ID for which this is the reply.
dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero
indicates success; a negative number indicates an error.

dwParam3

Unused.

Return Values
No return value.

Remarks
Functions that operate asynchronously return a positive request ID value to the application. This request
ID is returned with the reply message to identify the request that was completed. The other parameter for
the LINE_REPLY message carries the success or failure indication. Possible errors are the same as
those defined by the corresponding function. This message cannot be disabled.

In some cases, an application may fail to receive the LINE_REPLY message corresponding to a call to an
asynchronous function. This occurs if the corresponding call handle is deallocated before the message
has been received.

LINE_REQUEST   

The LINE_REQUEST message is sent to report the arrival of a new request from another application.

LINE_REQUEST
 dwDevice = (DWORD) 0;
 dwCallbackInstance = (DWORD) hRegistration;
 dwParam1 = (DWORD) RequestMode;
 dwParam2 = (DWORD) RequestModeDetail1;
 dwParam3 = (DWORD) RequestModeDetail2;

Parameters

dwDevice

Not used.
dwCallbackInstance

The registration instance of the application specified on lineRegisterRequestRecipient.
dwParam1

The request mode of the newly pending request. This parameter uses the following
LINEREQUESTMODE_ constants:
LINEREQUESTMODE_MAKECALL

A tapiRequestMakeCall request.
dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the application
requesting the drop. Otherwise, dwParam2 is unused.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains the
wRequestID as specified by the application requesting the drop. Otherwise, dwParam3 is unused.

Return Values
No return value.

Remarks
The LINE_REQUEST message is sent to the highest priority application that has registered for the
corresponding request mode. This message indicates the arrival of an Assisted Telephony request of the
specified request mode. If dwParam1 is LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL, the application can invoke lineGetRequest using the
corresponding request mode to receive the request. If dwParam1 is LINEREQUESTMODE_DROP, the
message contains all of the information the request recipient needs in order to perform the request.

See Also
lineGetRequest, lineRegisterRequestRecipient, tapiRequestMakeCall

Phone Device Messages
The following section contains the reference for phone device messages.

PHONE_BUTTON   

The PHONE_BUTTON message is sent to notify the application that button press monitoring is enabled if
it has detected a button press on the local phone.

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) idButtonOrLamp;
 dwParam2 = (DWORD) ButtonMode;
 dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.
dwCallbackInstance

The application's callback instance provided when opening the phone device.
dwParam1

The button/lamp ID of the button that was pressed. Note that button IDs 0 through 11 are always the
KEYPAD buttons, with '0' being button ID 0, '1' being button ID 1 (and so on through button ID 9), and
with '*' being button ID 10, and '#' being button ID 11. Additional information about a button ID is
available with phoneGetDevCaps and phoneGetButtonInfo.

dwParam2

The button mode of the button. This parameter uses the following PHONEBUTTONMODE_
constants:
PHONEBUTTONMODE_CALL

The button is assigned to a call appearance.
PHONEBUTTONMODE_FEATURE

The button is assigned to requesting features from the switch, such as hold, conference, and
transfer.

PHONEBUTTONMODE_KEYPAD

The button is one of the twelve keypad buttons, '0' through '9', '*', and '#'.
PHONEBUTTONMODE_LOCAL

The button is a local function button, such as mute or volume control.
PHONEBUTTONMODE_DISPLAY

The button is a "soft" button associated with the phone's display. A phone set can have zero or
more display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This parameter uses the following
PHONEBUTTONSTATE_ constants:
PHONEBUTTONSTATE_UP

The button is in the "up" state.
PHONEBUTTONSTATE_DOWN

The button is in the "down" state (pressed down).
PHONEBUTTONSTATE_UNKNOWN

Indicates that the up or down state of the button is not known at this time, but may become known
at a future time.

PHONEBUTTONSTATE_UNAVAIL

Indicates that the up or down state of the button is not known to the service provider, and will not
become known at a future time.

Return Values
No return value.

Remarks
A PHONE_BUTTON message is sent whenever a button changes state. An application is guaranteed that
for each button down event, it will eventually be sent a corresponding button up event. A service provider
that is incapable of detecting the actual button up is required to generate the button up message shortly
after the button down message for each button press.

See Also
phoneGetButtonInfo, phoneGetDevCaps

PHONE_CLOSE   

The PHONE_CLOSE message is sent when an open phone device has been forcibly closed as part of
resource reclamation. The device handle is no longer valid once this message has been sent.

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) 0;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message
has been sent

dwCallbackInstance

The application's callback instance provided when opening the phone device.
dwParam1

Unused.
dwParam2

Unused.
dwParam3

Unused.

Return Values
No return value.

Remarks
The PHONE_CLOSE message is only sent to an application after an open phone has been forcibly
closed. This may be done to prevent a single application from monopolizing a phone device for too long.
Whether the phone can be reopened immediately after a forced close is device specific.

An open phone device may also be forcibly closed after the user has modified the configuration of that
phone or its driver. If the user wants the configuration changes to be effective immediately (as opposed to
after the next system restart), and these changes affect the application's current view of the device (such
as a change in device capabilities), then a service provider may forcibly close the phone device.

PHONE_CREATE   

The PHONE_CREATE message is sent to inform applications of the creation of a new phone device.

PHONE_CREATE
hPhone = (HPHONE) hPhoneDev;
 dwCallbackInstance = (DWORD) 0;
 dwParam1 = (DWORD) idDevice;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

hPhone

Unused.
dwCallbackInstance

Unused.
dwParam1

The dwDeviceID of the newly-created device.
dwParam2

Unused.
dwParam3

Unused.

Return Values
No return value.

Remarks
Applications that negotiated API versoin 0x00010003 are sent a PHONE_STATE message specifying
PHONESTATE_REINIT, which requires them to shut down their use of the API and call phoneInitialize
again to obtain the new number of devices. However, TAPI version 1.4 and above do not require all
applications to shut down before allowing applications to reinitialize; reinitialization can take place
immediately when a new device is created.

Applications supporting TAPI version 0x00010004 or above are sent a PHONE_CREATE message. This
informs them of the existence of the new device and its new device ID. The application can then choose
whether or not to attempt working with the new device at its leisure.

See Also
PHONE_STATE, phoneInitialize, phoneInitializeEx

PHONE_DEVSPECIFIC   

The implementation sends the PHONE_DEVSPECIFIC message to an application to notify the
application about device-specific events occurring at the phone. The meaning of the message and the
interpretation of the parameters is implementation-defined.

PHONE_DEVSPECIFIC
hPhone = (HPHONE) hPhoneDevice;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) DeviceSpecific1;
 dwParam2 = (DWORD) DeviceSpecific2;
 dwParam3 = (DWORD) DeviceSpecific3;

Parameters

hPhone

A handle to the phone device.
dwCallbackInstance

The application's callback instance provided when opening the phone device.
dwParam1

Device specific.
dwParam2

Device specific.
dwParam3

Device specific.

Return Values
No return value.

PHONE_REMOVE   

The PHONE_REMOVE message is sent to inform an application of the removal (deletion from the
system) of a phone device. Generally, this is not used for temporary removals, such as extraction of
PCMCIA devices, but only for permanent removals in which the device would no longer be reported by
the service provider if TAPI were reinitialized.

PHONE_REMOVE
 dwDevice = (DWORD) 0;
 dwCallbackInstance = (DWORD) 0;
 dwParam1 = (DWORD) dwDeviceID;
 dwParam2 = (DWORD) 0;
 dwParam3 = (DWORD) 0;

Parameters

dwDevice

Reserved; set to 0.
dwCallbackInstance

Reserved; set to 0.
dwParam1

Identifier of the phone device that was removed.
dwParam2

Reserved; set to 0.
dwParam3

Reserved; set to 0.

Return Values
No return value.

Comments and Backward Compatibility
Applications TAPI version 0x00020000 and above are sent a PHONE_REMOVE message. This informs
them that the device has been removed from the system. The PHONE_REMOVE message will have
been preceded by a PHONE_CLOSE message on each phone handle, if the application had the phone
open. This message will be sent to all applications supporting TAPI version 0x00020000 or above which
have called phoneInitializeEx, including those that do not have any phone devices open at the time.

Older applications (which negotiated TAPI version 0x00010004 or below) are sent a PHONE_STATE
message specifying PHONESTATE_REMOVED, followed by a PHONE_CLOSE message. Unlike the
PHONE_REMOVE message, however, these older applications can receive these messages only if they
have the phone open when it is removed. If they do not have the phone open, their only indication that the
device was removed would be receiving a PHONEERR_NODEVICE when they attempt to access the
device.

After a device has been removed, any attempt to access the device by its device ID will result in a
PHONEERR_NODEVICE error. After all TAPI applications have shutdown so that TAPI can restart, when
TAPI is reinitialized, the removed device will no longer occupy a device ID.

Implementation Note It is TAPI that will return this PHONEERR_NODEVICE after a

PHONE_REMOVE message is received from a service provider; no further calls will be made to that
service provider using that phone device ID.

See Also
PHONE_CLOSE, PHONE_STATE, phoneInitialize, phoneInitializeEx

PHONE_REPLY   

The PHONE_REPLY message is sent to an application' to report the results of function call that
completed asynchronously.

PHONE_REPLY
hPhone = (HPHONE) 0;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) idRequest;
 dwParam2 = (DWORD) Status;
 dwParam3 = (DWORD) 0;

Parameters

hDevice

Unused.
dwCallbackInstance

Returns the application's callback instance.
dwParam1

The request ID for which this is the reply.
dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero
indicates success; a negative number indicates an error.

dwParam3

Unused.

Return Values
No return value.

Remarks
Functions that operate asynchronously return a positive request ID value to the application. This request
ID is returned with the reply message to identify the request that was completed. The other parameter for
the PHONE_REPLY message carries the success or failure indication. Possible errors are the same as
those defined by the corresponding function. This message cannot be disabled.

PHONE_STATE   

TAPI sends the PHONE_STATE message to an application whenever the status of a phone device
changes.

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
 dwCallbackInstance = (DWORD) hCallback;
 dwParam1 = (DWORD) PhoneState;
 dwParam2 = (DWORD) PhoneStateDetails;
 dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the phone device.
dwCallbackInstance

The application's callback instance provided when opening the phone device.
dwParam1

The phone state that has changed. This parameter uses the following PHONESTATE_ constants:
PHONESTATE_OTHER

Phone-status items other than those listed below have changed. The application should check the
current phone status to determine which items have changed.

PHONESTATE_CONNECTED

The connection between the phone device and TAPI was just made. This happens when TAPI is
first invoked or when the wire connecting the phone to the computer is plugged in with TAPI active.

PHONESTATE_DISCONNECTED

The connection between the phone device and TAPI was just broken. This happens when the wire
connecting the phone set to the computer is unplugged while TAPI is active.

PHONESTATE_OWNER

The number of owners for the phone device has changed.
PHONESTATE_MONITORS

The number of monitors for the phone device has changed.
PHONESTATE_DISPLAY

The display of the phone has changed.
PHONESTATE_LAMP

A lamp of the phone has changed.
PHONESTATE_RINGMODE

The ring mode of the phone has changed.
PHONESTATE_RINGVOLUME

The ring volume of the phone has changed.
PHONESTATE_HANDSETHOOKSWITCH

The handset hookswitch state has changed.
PHONESTATE_HANDSETVOLUME

The handset's speaker volume setting has changed.
PHONESTATE_HANDSETGAIN

The handset's microphone gain setting has changed.
PHONESTATE_SPEAKERHOOKSWITCH

The speakerphone's hookswitch state has changed.
PHONESTATE_SPEAKERVOLUME

The speakerphone's speaker volume setting has changed.
PHONESTATE_SPEAKERGAIN

The speakerphone's microphone gain setting state has changed.
PHONESTATE_HEADSETHOOKSWITCH

The headset's hookswitch state has changed.
PHONESTATE_HEADSETVOLUME

The headset's speaker volume setting has changed.
PHONESTATE_HEADSETGAIN

The headset's microphone gain setting has changed.
PHONESTATE_SUSPEND

The application's use of the phone device is temporarily suspended.
PHONESTATE_RESUME

The application's use of the phone device is resumed after having been suspended for some time.
PHONESTATE_DEVSPECIFIC

The phone's device-specific information has changed.
PHONESTATE_REINIT

Items have changed in the configuration of phone devices. To become aware of these changes (as
with the appearance of new phone devices), the application should reinitialize its use of TAPI. The
hDevice parameter of the PHONE_STATE message is left NULL for this state change as it applies
to any of the phones in the system.

PHONESTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the PHONECAPS structure have changed. The application should use
phoneGetDevCaps to read the updated structure.

PHONESTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A PHONE_STATE message with this
value will normally be immediately followed by a PHONE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or higher; applications negotiating a previous API
version will not receive any notification.

dwParam2

Phone-state-dependent information detailing the status change. This field is not used if multiple flags
are set in dwParam1, because multiple status items have changed. The application should invoke
phoneGetStatus to obtain complete set of information.
If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new number of owners.
If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.
If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp ID of the lamp that has
changed.
If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new ring mode.
If dwParam1 is PHONESTATE_HANDSET, SPEAKER or HEADSET, dwParam2 contains the new
hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:
PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.
dwParam3

Unused.

Return Values
No return value.

Remarks
Sending the PHONE_STATE message to the application can be controlled and queried using
phoneSetStatusMessages and phoneGetStatusMessages. By default, this message is disabled for all
state changes except for PHONESTATE_REINIT, which cannot be disabled. This message is sent to all
applications that have a handle to the phone, including those that called phoneOpen with the
dwPrivileges parameter set to PHONEPRIVILEGE_OWNER or PHONEPRIVILEGE_MONITOR.

A PHONE_STATE message with an Owners and/or Monitors indication is sent to applications that already
have a handle for the phone. This can be the result of another application changing ownership or
monitorship of the phone device with phoneOpen, phoneClose or phoneShutdown.

See Also
PHONE_CLOSE, PHONECAPS, phoneClose, phoneGetDevCaps, phoneGetStatus,
phoneGetStatusMessages, phoneInitialize, phoneInitializeEx, phoneOpen,
phoneSetStatusMessages, phoneShutdown

Assisted Telephony Messages
The following messages are used by Assisted Telephony.

Formatted Error Messages
This section discusses the TAPIERROR_FORMATMESSAGE() macro. This macro generates an
identifier for standard TAPI error message text strings that can be obtained by Win32 applications using
the Win32 FormatMessage() function.

This mechanism should be used only for displaying information on errors for which the application has no
defined method of recovery (that is, unexpected or internal errors). In most cases (unlike the simplified
example below), it is desirable to include additional text informing the user of actions the application will
take (or the user should take) as a result of the unhandled error.

If the application gets an error result from any TAPI function, the error value can be passed through the
TAPIERROR_FORMATMESSAGE() macro, which in turn generates the real value to be passed to
FormatMessage(). FormatMessage() produces an error string corresponding to the error in a buffer. For
example:

lResult = lineClose(hLine);

if (lResult < 0)
{
 FormatMessage(FORMAT_MESSAGE_FROM_HMODULE,
 (LPCVOID)GetModuleHandle("TAPI32.DLL"),
 TAPIERROR_FORMATMESSAGE(lResult),
 0,
 (LPTSTR)pBuf,
 BUFSIZE,
 NULL);
 MessageBox(hWnd,pBuf,"TAPI ERROR",MB_OK);
}

TAPI_REPLY
The TAPI_REPLY message is nonfunctional in Win32 -based applications and obsolete for all classes of
Windows-based applications. It should not be used.

Structures
This section contains the reference for structures for line devices and phone devices.

Line Device Structures
The following topics describe the data structures used by the Telephony API. They are listed in
alphabetical order.

Memory Allocation
Memory for all data structures used by the API must be allocated by the application. The application
passes a pointer to the API function that returns the information, and the function fills the data structure
with the requested information. If the operation is asynchronous, then the information is not available until
the asynchronous reply message indicates success.

All data structures used to pass information between the application and the Telephony API are flattened.
This means that data structures do not contain pointers to substructures that contain variably sized
components of information. Instead, data structures that are used to pass variable amounts of information
back to the application have the following meta structure:

 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 <fixed size fields>
 DWORD dw<VarSizeField1>Size;
 DWORD dw<VarSizeField1>Offset;
 <fixed size fields>
 DWORD dw<VarSizeField2>Size;
 DWORD dw<VarSizeField2>Offset;
 <common extensions>
 <var sized field1>
 <var sized field2>

The dwTotalSize field is the size in bytes allocated to this data structure. It marks the end of the data
structure and is set by the application before it invokes the function that uses this data structure. The
function will not read or write beyond this size. An application must set the dwTotalSize field to indicate
the total number of bytes allocated for TAPI to return the contents of the structure.

The dwNeededSize field is filled in by TAPI. It indicates how many bytes are needed to return all the
information requested. The existence of variably sized fields often makes it impossible for the application
to estimate the data structure size it needs to allocate. This field simply returns the number of bytes
actually needed for the information. This number could be smaller than, equal to, or larger than
dwTotalSize, and it includes space for the dwTotalSize field itself. If larger, the returned structure is only
partially filled. If the fields the application is interested in are available in the partial structure, nothing else
must be done. Otherwise, the application should allocate a structure at least the size of dwNeededSize
and invoke the function again. Usually, enough space will be available this time to return all the
information, although it is possible the size could have increased again.

The dwUsedSize field is filled in by TAPI if it returns information to the application to indicate the actual
size in bytes of the portion of the data structure that contains useful information. If, for example, a
structure that was allocated was too small and the truncated field is a variably sized field, dwNeededSize
will be larger than dwTotalSize, and the truncated field will be left empty. The dwUsedSize field could
therefore be smaller than dwTotalSize. Partial field values are not returned.

Following this header is the fixed part of the data structure. It contains regular fields and size/offset pairs
that describe the actual variably sized fields. The offset field contains the offset in bytes of the variably
sized field from the beginning of the record. The size field contains the size in bytes of the variably sized
field. If a variably sized field is empty, then the size field is zero and the offset is set to zero. Variably sized
fields that would be truncated if the total structure size is insufficient are left empty. That is, their size field
is set to zero and the offset is set to zero. The variably sized fields follow the fixed fields.

Variably Sized Data Structures
When variably sized data structures are used to transmit information between TAPI and the application,
the application is responsible for allocating the necessary memory. The amount of memory allocated must
be at least large enough for the fixed portion of the data structure, and is set by the application in the
dwTotalSize field of the data structure. The dwUsedSize and dwNeededSize fields are filled in by TAPI.
If dwTotalSize is less than the size of the fixed portion, then LINEERR/
PHONEERR_STRUCTURETOOSMALL is returned. If a function returns success, then all the fields in the
fixed portion have been filled in. The dwUsedSize and dwNeededSize fields can be compared to
determine if all variable parts have been filled in, and how much space would be required to fill them all in.

If dwNeededSize is equal to dwUsedSize, then all fixed and variable parts have been filled in. If
dwNeededSize is larger than dwUsedSize, some variable parts may have been filled in, but exactly
which variably sized fields have been filled in is undefined. No variable part is ever truncated, and variable
parts that would have been truncated due to insufficient space are indicated by having both of their
corresponding "Offset" and "Size" parts set to zero. If these are not both zero (and no error was returned),
they indicate the offset and size of valid, nontruncated variable-part data.

An application can always guarantee that all variable parts are filled in by allocating and indicating
dwNeededSize bytes for the structure and calling the "Get" function again until the function returns
success and dwNeededSize "covers" dwUsedSize. This should happen on the second try except for
race conditions that cause changes in the size of variable parts between calls, which should be a rare
occurrence.

Note All ASCII, DBCS, and Unicode strings that occur in variable-sized structures should be NULL-
terminated according to normal C string handling conventions.

Extensibility
Provisions are made for extending constants and structures both in a device-independent way and in a
device-specific (vendor-specific) way. In constants that are scalar enumerations, a range of values is
reserved for future common extensions. The remainder of values are identified as device specific. A
vendor can define meanings for these values in any way desired. Their interpretation is keyed to the
extension ID provided in the LINEDEVCAPS data structure. For constants that are defined as bit flags, a
range of low-order bits are reserved, where the high-order bits can be extension specific. It is
recommended that extended values and bit arrays use bits from the highest value or high-order bit down.
This leaves the option to move the border between the common portion and extension portion if there is a
need to do so in the future. Extensions to data structures are assigned a variably sized field with
size/offset being part of the fixed part. TAPI describes for each data structure what device-specific
extensions are allowed.

In addition to recognizing a specific extension ID, the application must negotiate the extension version
number that the application and the service provider will operate under. This is done in the second version
negotiation phase of the lineGetDevCaps function.

An extension ID is a globally unique identifier. There is no central registry for extension IDs. Instead, they
are generated locally by the manufacturer by a utility that is available with the toolkit. The number is made
up of parts such as a unique LAN address, time of day, and random number, to guarantee global
uniqueness. Globally Unique Identifiers are designed to be distinguishable from HP/DEC universally
unique identifiers and are thus fully compatible with them.

LINEADDRESSCAPS   

The LINEADDRESSCAPS structure describes the capabilities of a specified address.

typedef struct lineaddresscaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwLineDeviceID;

 DWORD dwAddressSize;
 DWORD dwAddressOffset;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwAddressSharing;
 DWORD dwAddressStates;
 DWORD dwCallInfoStates;
 DWORD dwCallerIDFlags;
 DWORD dwCalledIDFlags;
 DWORD dwConnectedIDFlags;
 DWORD dwRedirectionIDFlags;
 DWORD dwRedirectingIDFlags;
 DWORD dwCallStates;
 DWORD dwDialToneModes;
 DWORD dwBusyModes;
 DWORD dwSpecialInfo;
 DWORD dwDisconnectModes;

 DWORD dwMaxNumActiveCalls;
 DWORD dwMaxNumOnHoldCalls;
 DWORD dwMaxNumOnHoldPendingCalls;
 DWORD dwMaxNumConference;
 DWORD dwMaxNumTransConf;

 DWORD dwAddrCapFlags;
 DWORD dwCallFeatures;
 DWORD dwRemoveFromConfCaps;
 DWORD dwRemoveFromConfState;
 DWORD dwTransferModes;
 DWORD dwParkModes;

 DWORD dwForwardModes;
 DWORD dwMaxForwardEntries;
 DWORD dwMaxSpecificEntries;
 DWORD dwMinFwdNumRings;
 DWORD dwMaxFwdNumRings;

 DWORD dwMaxCallCompletions;
 DWORD dwCallCompletionConds;
 DWORD dwCallCompletionModes;
 DWORD dwNumCompletionMessages;

 DWORD dwCompletionMsgTextEntrySize;
 DWORD dwCompletionMsgTextSize;
 DWORD dwCompletionMsgTextOffset;
 DWORD dwAddressFeatures;

 DWORD dwPredictiveAutoTransferStates;
 DWORD dwNumCallTreatments;
 DWORD dwCallTreatmentListSize;
 DWORD dwCallTreatmentListOffset;
 DWORD dwDeviceClassesSize;
 DWORD dwDeviceClassesOffset;
 DWORD dwMaxCallDataSize;
 DWORD dwCallFeatures2;
 DWORD dwMaxNoAnswerTimeout;
 DWORD dwConnectedModes;
 DWORD dwOfferingModes;
 DWORD dwAvailableMediaModes;
} LINEADDRESSCAPS, FAR *LPLINEADDRESSCAPS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwLineDeviceID

The device ID of the line device with which this address is associated.
dwAddressSize

dwAddressOffset

The size in bytes of the variably sized address field and the offset in bytes from the beginning of this
data structure.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field and the offset in bytes from the beginning
of this data structure.

dwAddressSharing

The sharing mode of the address. Values are:
LINEADDRESSSHARING_PRIVATE

An address with private sharing mode is only assigned to a single line or station.
LINEADDRESSSHARING_BRIDGEDEXCL

An address with a bridged-exclusive sharing mode is assigned to one or more other lines or
stations. The exclusive portion refers to the fact that only one of the bridged parties can be
connected with a remote party at any given time.

LINEADDRESSSHARING_BRIDGEDNEW

An address with a bridged-new sharing mode is assigned to one or more other lines or stations.
The new portion refers to the fact that activities by the different bridged parties result in the creation
of new calls on the address.

LINEADDRESSSHARING_BRIDGEDSHARED

An address with a bridged-shared sharing mode is also assigned to one or more other lines or
stations. The shared portion refers to the fact that if one of the bridged parties is connected with a
remote party, the remaining bridged parties can share in the conversation (as in a conference) by
activating that call appearance.

LINEADDRESSSHARING_MONITORED

An address with a monitored address mode simply monitors the status of that address. The status
is either idle or in use. The message LINE_ADDRESSSTATE notifies the application about these
changes.

dwAddressStates

This field contains the address states changes for which the application may get notified in the
LINE_ADDRESSSTATE message. It uses the following LINEADDRESSSTATE_ constants:
LINEADDRESSSTATE_OTHER

Address status items other than those listed below have changed. The application should check
the current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status has changed.
LINEADDRESSSTATE_INUSEZERO

The address has changed to idle (it is not in use by any stations).
LINEADDRESSSTATE_INUSEONE

The address has changed from being idle or from being in use by many bridged stations to being in
use by just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address has changed to being in use by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This is the result of events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address has changed, including the number of rings for determining a
"no answer" condition. The application should check the address status to retrieve details about the
address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address have changed.
LINEADDRESSSTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINEADDRESSCAPS structure for the address have changed. The application
should use lineGetAddressCaps to read the updated structure. If a service provider sends a

LINE_ADDRESSSTATE message containing this value to TAPI, TAPI will pass it along to
applications that have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will receive LINE_LINEDEVSTATE messages specifying
LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI in
order to obtain the updated information.

dwCallInfoStates

This field describes the call information elements that are meaningful for all calls on this address. An
application may get notified about changes in some of these states in LINE_CALLINFO messages. It
uses the following LINECALLINFOSTATE_ constants:
LINECALLINFOSTATE_OTHER

Call information items other than those listed below have changed. The application should check
the current call information to determine which items have changed.

LINECALLINFOSTATE_DEVSPECIFIC

The device-specific field of the call information.
LINECALLINFOSTATE_BEARERMODE

The bearer mode field of the call information record.
LINECALLINFOSTATE_RATE

The rate field of the call information record.
LINECALLINFOSTATE_MEDIAMODE

The media-mode field of the call information record.
LINECALLINFOSTATE_APPSPECIFIC

The application-specific field of the call information record.
LINECALLINFOSTATE_CALLID

The call ID field of the call information record.
LINECALLINFOSTATE_RELATEDCALLID

The related call ID field of the call information record.
LINECALLINFOSTATE_ORIGIN

The origin field of the call information record.
LINECALLINFOSTATE_REASON

The reason field of the call information record.
LINECALLINFOSTATE_COMPLETIONID

The completion ID field of the call information record.
LINECALLINFOSTATE_NUMOWNERINCR

The number of owner field in the call information record was increased.
LINECALLINFOSTATE_NUMOWNERDECR

The number of owner field in the call information record was decreased.
LINECALLINFOSTATE_NUMMONITORS

The number of monitors field in the call information record has changed.
LINECALLINFOSTATE_TRUNK

The trunk field of the call information record has changed.
LINECALLINFOSTATE_CALLERID

One of the callerID-related fields of the call information record has changed.
LINECALLINFOSTATE_CALLEDID

One of the calledID-related fields of the call information record has changed.
LINECALLINFOSTATE_CONNECTEDID

One of the connectedID-related fields of the call information record has changed.
LINECALLINFOSTATE_REDIRECTIONID

One of the redirectionID-related fields of the call information record has changed.
LINECALLINFOSTATE_REDIRECTINGID

One of the redirectingID-related fields of the call information record has changed.
LINECALLINFOSTATE_DISPLAY

The display field of the call information record.
LINECALLINFOSTATE_USERUSERINFO

The user-to-user information of the call information record.
LINECALLINFOSTATE_HIGHLEVELCOMP

The high-level compatibility field of the call information record.
LINECALLINFOSTATE_LOWLEVELCOMP

The low-level compatibility field of the call information record.
LINECALLINFOSTATE_CHARGINGINFO

The charging information of the call information record.
LINECALLINFOSTATE_TERMINAL

The terminal mode information of the call information record.
LINECALLINFOSTATE_DIALPARAMS

The dial parameters of the call information record.
LINECALLINFOSTATE_MONITORMODES

One or more of the digit, tone, or media monitoring fields in the call information record has
changed.

dwCallerIDFlags

dwCalledIDFlags

dwConnectedIDFlags

dwRedirectionIDFlags

dwRedirectingIDFlags

These fields describe the various party ID information types that may be provided for calls on this
address. It uses the following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Caller ID information for the call has been blocked by the caller but would otherwise have been
available.

LINECALLPARTYID_OUTOFAREA

Caller ID information for the call is not available because it is not propagated all the way by the
network.

LINECALLPARTYID_NAME

The caller ID information for the call is the caller's name (from a table maintained inside the
switch). It is provided in the caller ID name variably sized field.

LINECALLPARTYID_ADDRESS

The caller ID information for the call is the caller's number and is provided in the caller ID variably
sized field.

LINECALLPARTYID_PARTIAL

Caller ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Caller ID information is currently unknown; it may become known later.
LINECALLPARTYID_UNAVAIL

Caller ID information is unavailable and will not become known later.
dwCallStates

This field describes the various call states that can possibly be reported for calls on this address. This
parameter uses the following LINECALLSTATE_ constants:
LINECALLSTATE_IDLE

The call is idle¾no call exists.
LINECALLSTATE_OFFERING

The call is being offered to the station, signaling the arrival of a new call. In some environments, a
call in the offering state does not automatically alert the user; alerting is done by the switch
instructing the line to ring. It does not affect any call states.

LINECALLSTATE_ACCEPTED

The call was offering and has been accepted. This indicates to other (monitoring) applications that
the current owner application has claimed responsibility for answering the call. In ISDN, this also
initiates alerting to both parties.

LINECALLSTATE_DIALTONE

The call is receiving a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is being sent to the switch over the call. Note
that the operation lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call is receiving ringback from the called address. Ringback indicates that the other station has
been reached and is being alerted.

LINECALLSTATE_BUSY

The call is receiving a busy tone. Busy tone indicates that the call cannot be completed¾either a

circuit (trunk) or the remote party's station are in use.
LINECALLSTATE_SPECIALINFO

Special information is sent by the network. Special information is typically sent when the
destination cannot be reached.

LINECALLSTATE_CONNECTED

The call has been established and the connection is made. Information is able to flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing has completed and the call is proceeding through the switch or telephone network.
LINECALLSTATE_ONHOLD

The call is on hold by the switch.
LINECALLSTATE_CONFERENCED

The call is currently a member of a multiparty conference call.
LINECALLSTATE_ONHOLDPENDCONF

The call is currently on hold while it is being added to a conference.
LINECALLSTATE_ONHOLDPENDTRANSF

The call is currently on hold awaiting transfer to another number.
LINECALLSTATE_DISCONNECTED

The remote party has disconnected from the call.
LINECALLSTATE_UNKNOWN

The state of the call is not known. This may be due to limitations of the call progress detection
implementation.

dwDialToneModes

This field describes the various dial tone modes that can possibly be reported for calls made on this
address. This field is meaningful only if the dialtone call state can be reported. It uses the following
LINEDIALTONEMODE_ constants:
LINEDIALTONEMODE_NORMAL

This is a "normal" dial tone, which typically is a continuous tone.
LINEDIALTONEMODE_SPECIAL

This is a special dial tone indicating a certain condition is currently in effect.
LINEDIALTONEMODE_INTERNAL

This is an internal dial tone, as within a PBX.
LINEDIALTONEMODE_EXTERNAL

This is an external (public network) dial tone.
LINEDIALTONEMODE_UNKNOWN

The dial tone mode is currently unknown but may become known later.
LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and will not become known.

wBusyModes

This field describes the various busy modes that can possibly be reported for calls made on this
address. This field is meaningful only if the busy call state can be reported. It uses the following
LINEBUSYMODE_ constants:
LINEBUSYMODE_STATION

The busy signal indicates that the called party's station is busy. This is usually signaled with a
"normal" busy tone.

LINEBUSYMODE_TRUNK

The busy signal indicates that a trunk or circuit is busy. This is usually signaled with a "long" busy
tone.

LINEBUSYMODE_UNKNOWN

The busy signal's specific mode is currently unknown but may become known later.
LINEBUSYMODE_UNAVAIL

The busy signal's specific mode is unavailable and will not become known.
dwSpecialInfo

This field describes the various special information types that can possibly be reported for calls made
on this address. This field is meaningful only if the specialInfo call state can be reported. It uses the
following LINESPECIALINFO_ constants:
LINESPECIALINFO_NOCIRCUIT

This special information tone precedes a no-circuit or emergency announcement (trunk blockage
category).

LINESPECIALINFO_CUSTIRREG

This special information tone precedes a vacant number, AIS, Centrex number change and
nonworking station, access code not dialed or dialed in error, manual intercept operator message
(customer irregularity category).

LINESPECIALINFO_REORDER

This special information tone precedes a reorder announcement (equipment irregularity category).
LINESPECIALINFO_UNKNOWN

Specifics about the special information tone are currently unknown but may become known later.
LINESPECIALINFO_UNAVAIL

Specifics about the special information tone are unavailable and will not become known.
dwDisconnectModes

This field describes the various disconnect modes that can possibly be reported for calls made on this
address. This field is meaningful only if the disconnected call state can be reported. It uses the
following LINEDISCONNECTMODE_ constants:
LINEDISCONNECTMODE_NORMAL

This is a "normal" disconnect request by the remote party; the call was terminated normally.
LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request is unknown.
LINEDISCONNECTMODE_REJECT

The remote user has rejected the call.
LINEDISCONNECTMODE_PICKUP

The call was picked up from elsewhere.
LINEDISCONNECTMODE_FORWARDED

The call was forwarded by the switch.
LINEDISCONNECTMODE_BUSY

The remote user's station is busy.
LINEDISCONNECTMODE_NOANSWER

The remote user's station does not answer.
LINEDISCONNECTMODE_NODIALTONE

A dial tone was not detected within a service-provider defined timeout, at a point during dialing
when one was expected (such as at a "W" in the dialable string). This can also occur without a
service-provider-defined timeout period or without a value specified in the dwWaitForDialTone
member of the LINEDIALPARAMS structure.

LINEDISCONNECTMODE_BADADDRESS

The destination address in invalid.
LINEDISCONNECTMODE_UNREACHABLE

The remote user could not be reached.
LINEDISCONNECTMODE_CONGESTION

The network is congested.
LINEDISCONNECTMODE_INCOMPATIBLE

The remote user's station equipment is incompatible with the type of call requested.
LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect is unavailable and will not become known later.
dwMaxNumActiveCalls

This field contains the maximum number of active call appearances that the address can handle. This
number does not include calls on hold or calls on hold pending transfer or conference.

dwMaxNumOnHoldCalls

This field contains the maximum number of call appearances at the address that can be on hold.
dwMaxNumOnHoldPendingCalls

This field contains the maximum number of call appearances at the address that can be on hold
pending transfer or conference.

dwMaxNumConference

This field contains the maximum number of parties that can be conferenced in a single conference
call on this address.

dwMaxNumTransConf

This field specifies the number of parties (including "self") that can be added in a conference call that
is initiated as a generic consultation call using lineSetupTransfer.

dwAddrCapFlags

This field contains a series of packed bit flags that describe a variety of address capabilities. It uses
the following LINEADDRCAPFLAGS_ constants:
LINEADDRCAPFLAGS_FWDNUMRINGS

Specifies whether the number of rings for a "no answer" can be specified when forwarding calls on
no answer.

LINEADDRCAPFLAGS_PICKUPGROUPID

Specifies whether or not a group ID is required for call pickup.
LINEADDRCAPFLAGS_SECURE

Specifies whether or not calls on this address can be made secure at call-setup time.
LINEADDRCAPFLAGS_BLOCKIDDEFAULT

Specifies whether the network by default sends or blocks caller ID information when making a call
on this address. If TRUE, ID information is blocked by default; if FALSE, ID information is
transmitted by default.

LINEADDRCAPFLAGS_BLOCKIDOVERRIDE

Specifies whether the default setting for sending or blocking of caller ID information can be
overridden per call. If TRUE, override is possible; if FALSE, override is not possible.

LINEADDRCAPFLAGS_DIALED

Specifies whether a destination address can be dialed on this address for making a call. TRUE if a
destination address must be dialed; FALSE if the destination address is fixed (as with a "hot
phone").

LINEADDRCAPFLAGS_ORIGOFFHOOK

Specifies whether the originating party's phone can automatically be taken offhook when making
calls.

LINEADDRCAPFLAGS_DESTOFFHOOK

Specifies whether the called party's phone can automatically be forced offhook when making calls.
LINEADDRCAPFLAGS_FWDCONSULT

Specifies whether call forwarding involves the establishment of a consultation call.
LINEADDRCAPFLAGS_SETUPCONFNULL

Specifies whether setting up a conference call starts out with an initial call (FALSE) or with no initial
call (TRUE).

LINEADDRCAPFLAGS_AUTORECONNECT

Specifies whether dropping a consultation call automatically reconnects to the call on consultation
hold. TRUE if reconnect happens automatically; otherwise, FALSE.

LINEADDRCAPFLAGS_COMPLETIONID

Specifies whether the completion IDs returned by lineCompleteCall are useful and unique. TRUE
is useful; otherwise, FALSE.

LINEADDRCAPFLAGS_TRANSFERHELD

Specifies whether a (hard) held call can be transferred. Often, only calls on consultation hold may
be able to be transferred.

LINEADDRCAPFLAGS_CONFERENCEHELD

Specifies whether a (hard) held call can be conferenced to. Often, only calls on consultation hold

may be able to be added to as a conference call.
LINEADDRCAPFLAGS_ PARTIALDIAL

Specifies whether partial dialing is available.
LINEADDRCAPFLAGS_FWDSTATUSVALID

Specifies whether the forwarding status in the LINEADDRESSSTATUS structure for this address is
valid.

LINEADDRCAPFLAGS_ FWDINTEXTADDR

Specifies whether internal and external calls can be forwarded to different forwarding addresses.
This flag is meaningful only if forwarding of internal and external calls can be controlled separately.
It is TRUE if internal and external calls can be forwarded to different destination addresses;
otherwise, FALSE.

LINEADDRCAPFLAGS_ FWDBUSYNAADDR

Specifies whether call forwarding for busy and for no answer can use different forwarding
addresses. This flag is meaningful only if forwarding for busy and for no answer can be controlled
separately. It is TRUE if forwarding for busy and for no answer can use different destination
addresses; otherwise, FALSE.

LINEADDRCAPFLAGS_ACCEPTTOALERT

TRUE if an offering call must be accepted using lineAccept to start alerting the users at both ends
of the call; otherwise, FALSE. Typically, this is only used with ISDN.

LINEADDRCAPFLAGS_CONFDROP

TRUE if invoking lineDrop on a conference call parent also has the side effect of dropping
(disconnecting) the other parties involved in the conference call; FALSE if dropping a conference
call still allows the other parties to talk among themselves.

LINEADDRCAPFLAGS_ PICKUPCALLWAIT

TRUE if linePickup can be used to pick up a call detected by the user as a "call waiting" call;
otherwise FALSE.

dwCallFeatures

This field specifies the switching capabilities or features available for all calls on this address using
the LINECALLFEATURE_ constants. This member represents the call-related features which may
possibly be available on an address (static availability as opposed to dynamic availability). Invoking a
supported feature requires the call to be in the proper state and the underlying line device to be
opened in a compatible mode. A zero in a bit position indicates that the corresponding feature is never
available. A one indicates that the corresponding feature may be available if the application has the
right privileges to the call and the call is in the appropriate state for the operation to be meaningful.
This field allows an application to discover which call features can be (and which can never be)
supported by the address.

dwRemoveFromConfCaps

This field specifies the address's capabilities for removing calls from a conference call. It uses the
following LINEREMOVEFROMCONF_ constants:
LINEREMOVEFROMCONF_NONE

Parties cannot be removed from the conference call.
LINEREMOVEFROMCONF_LAST

Only the most recently added party can be removed from the conference call.
LINEREMOVEFROMCONF_ANY

Any participating party can be removed from the conference call.
dwRemoveFromConfState

This field uses the LINECALLSTATE_ constants to specify the state of the call after it has been
removed from a conference call.

dwTransferModes

This field specifies the address's capabilities for resolving transfer requests. It uses the following
LINETRANSFERMODE_ constants:
LINETRANSFERMODE_TRANSFER

Resolve the initiated transfer by transferring the initial call to the consultation call.
LINETRANSFERMODE_CONFERENCE

Resolve the initiated transfer by conferencing all three parties into a three-way conference call. A
conference call is created and returned to the application.

dwParkModes

This field specifies the different call park modes available at this address. It uses the
LINEPARKMODE_ constants:
LINEPARKMODE_DIRECTED

Specifies directed call park. The address where the call is to be parked must be supplied to the
switch.

LINEPARKMODE_NONDIRECTED

Specifies nondirected call park. The address where the call is parked is selected by the switch and
provided by the switch to the application.

dwForwardModes

This field specifies the different modes of forwarding available for this address. It uses the following
LINEFORWARDMODE_ constants:
LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their origin. Use this value when unconditional
forwarding for internal and external calls cannot be controlled separately. Unconditional forwarding
overrides forwarding on busy and/or no answer conditions.

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Forward all calls that originated at a specified address unconditionally (selective call forwarding).
LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use this value when forwarding for internal
and external calls on busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when forwarding for internal and external calls on

busy and on no answer can be controlled separately.
LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when forwarding for internal and external calls on
busy and on no answer can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC

Forward all calls that originated at a specified address on busy (selective call forwarding).
LINEFORWARDMODE_NOANSW

Forward all calls on no answer, irrespective of their origin. Use this value when call forwarding for
internal and external calls on no answer cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value when forwarding for internal and external
calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value when forwarding for internal and external
calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on no answer (selective call forwarding).
LINEFORWARDMODE_BUSYNA

Forward all calls on busy/no answer, irrespective of their origin. Use this value when forwarding for
internal and external calls on busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy/no answer. Use this value when call forwarding on busy and on
no answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy/no answer. Use this value when call forwarding on busy and on
no answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward all calls that originated at a specified address on busy/no answer (selective call
forwarding).

dwMaxForwardEntries

Specifies the maximum number of entries that can be passed to lineForward in the lpForwardList
parameter.

dwMaxSpecificEntries

Specifies the maximum number of entries in the lpForwardList parameter passed to lineForward that
can contain forwarding instructions based on a specific caller ID (selective call forwarding). This field
is zero if selective call forwarding is not supported.

dwMinFwdNumRings

Specifies the minimum number of rings that can be set to determine when a call is officially
considered "no answer."

dwMaxFwdNumRings

Specifies the maximum number of rings that can be set to determine when a call is officially

considered "no answer." If this number of rings cannot be set, then dwMinFwdNumRings and
dwMaxNumRings will be equal.

dwMaxCallCompletions

Specifies the maximum number of concurrent call completion requests that can be outstanding on this
line device. Zero implies that call completion is not available.

dwCallCompletionCond

Specifies the different call conditions under which call completion can be requested. This field uses
the following LINECALLCOMPLCOND_ constants:
LINECALLCOMPLCOND_BUSY

Complete the call under the busy condition.
LINECALLCOMPLCOND_NOANSWER

Complete the call under the ringback no answer condition.
dwCallCompletionModes

Specifies the way in which the call can be completed. This field uses the following
LINECALLCOMPLCOND_ constants:
LINECALLCOMPLMODE_CAMPON

Queues the call until the call can be completed.
LINECALLCOMPLMODE_CALLBACK

Requests the called station to return the call when it returns to idle.
LINECALLCOMPLMODE_INTRUDE

Adds the application to the existing call at the called station if busy (barge in).
LINECALLCOMPLMODE_MESSAGE

Leave a short predefined message for the called station (Leave Word Calling). A specific message
can be identified.

dwNumCompletionMessages

Specifies the number of call completion messages that can be selected from when using the
LINECALLCOMPLMODE_MESSAGE option. Individual messages are identified by values in the
range 0 through one less than dwNumCompletionMessages.

dwCompletionMsgTextEntrySize

Specifies the size in bytes of each of the call completion text descriptions pointed at by
dwCompletionMsgTextSize/Offset.

dwCompletionMsgTextSize

dwCompletionMsgTextOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
field containing descriptive text about each of the call completion messages. Each message is
dwCompletionMsgTextEntrySize bytes long. The string format of these textual descriptions is
indicated by dwStringFormat in the line's device capabilities.

dwAddressFeatures

This field specifies the features available for this address using the LINEADDRFEATURE_ constants.
Invoking a supported feature requires the address to be in the proper state and the underlying line
device to be opened in a compatible mode. A zero in a bit position indicates that the corresponding

feature is never available. A one indicates that the corresponding feature may be available if the
address is in the appropriate state for the operation to be meaningful. This field allows an application
to discover which address features can be (and which can never be) supported by the address.

dwPredictiveAutoTransferStates

The call state or states upon which a call made by a predictive dialer can be set to automatically
transfer the call to another address; one or more of the LINECALLSTATE_ constants. The value 0
indicates automatic transfer based on call state is unavailable.

dwNumCallTreatments

The number of entries in the array of LINECALLTREATMENTENTRY structures delimited by
dwCallTreatmentSize and dwCallTreatmentOffset.

dwCallTreatmentListSize

dwCallTreatmentListOffset

The total size in bytes and offset from the beginning of LINEADDRESSCAPS of an array of
LINECALLTREATMENTENTRY structures, indicating the call treatments supported on the address
(which can be selected using lineSetCallTreatment). The value will be dwNumCallTreatments
times SIZEOF (LINECALLTREATMENTENTRY).

dwDeviceClassesSize

dwDeviceClassesOffset

Length in bytes and offset from the beginning of LINEADDRESSCAPS of a string consisting of the
device class identifiers supported on this address for use with lineGetID, separated by nulls; the last
class indentifier is followed by two nulls.

dwMaxCallDataSize

The maximum number of bytes that an application can set in LINECALLINFO using lineSetCallData.
dwCallFeatures2

Specifies additional switching capabilities or features available for all calls on this address using the
LINECALLFEATURE2_ constants. It is an extension of the dwCallFeatures member.

dwMaxNoAnswerTimeout

The maximum value in seconds that can be set in the dwNoAnswerTimeout member in
LINECALLPARAMS when making a call. A value of 0 indicates that automatic abandonment of
unanswered calls is not supported by the service provider, or that the timeout value is not adjustable
by applications.

dwConnectedModes

Specifies the LINECONNECTEDMODE_ values that may appear in the dwCallStateMode member
of LINECALLSTATUS and in LINE_CALLSTATE messages for calls on this address.

dwOfferingModes

Specifies the LINEOFFERINGMODE_ values that may appear in the dwCallStateMode member of
LINECALLSTATUS and in LINE_CALLSTATE messages for calls on this address.

dwAvailableMediaModes

Indicates the media modes that can be invoked on new calls created on this address, when the
dwAddressFeatures member indicates that new calls are possible. If this field is zero, it indicates
that the service provider either does not know or cannot indicate which media modes are available, in
which case any or all of the media modes indicated in the dwMediaModes field in LINEDEVCAPS
may be available.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

Older applications will have been compiled without this field in the LINEADDRESSCAPS structure, and
using a SIZEOF LINEADDRESSCAPS smaller than the new size. The application passes in a
dwAPIVersion parameter with the lineGetAddressCaps function, which can be used for guidance by
TAPI in handling this situation. If the application passes in a dwTotalSize less than the size of the fixed
portion of the structure as defined in the dwAPIVersion specified, LINEERR_STRUCTURETOOSMALL
will be returned. If sufficient memory has been allocated by the application, before calling
TSPI_lineGetAddressCaps, TAPI will set the dwNeededSize and dwUsedSize fields to the fixed size of
the structure as it existed in the specified API version.

New service providers (which support the new API version) must examine the API version passed in. If
the API version is less than the highest version supported by the provider, the service provider must not
fill in fields not supported in older API versions, as these would fall in the variable portion of the older
structure.

New applications must be cognizant of the API version negotiated, and not examine the contents of fields
in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API
version.

The members dwPredictiveAutoTransferStates through dwAvailableMediaModes are available only to
applications that request an API version of 0x00020000 or greater when calling lineGetAddressCaps.

See Also
LINE_ADDRESSSTATE, LINE_CALLINFO, LINE_CALLSTATE, LINE_LINEDEVSTATE,
LINEADDRESSSTATUS, LINECALLINFO, LINECALLPARAMS, LINECALLSTATUS,
LINECALLTREATMENTENTRY, LINEDEVCAPS, LINEDIALPARAMS, lineCompleteCall, lineForward,
lineGenerateDigits, lineGetAddressCaps, lineGetID, lineSetCallData, lineSetCallTreatment

LINEADDRESSSTATUS   

The LINEADDRESSSTATUS structure describes the current status of an address.

typedef struct lineaddressstatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumInUse;
 DWORD dwNumActiveCalls;
 DWORD dwNumOnHoldCalls;
 DWORD dwNumOnHoldPendCalls;
 DWORD dwAddressFeatures;

 DWORD dwNumRingsNoAnswer;
 DWORD dwForwardNumEntries;
 DWORD dwForwardSize;
 DWORD dwForwardOffset;

 DWORD dwTerminalModesSize;
 DWORD dwTerminalModesOffset;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;
} LINEADDRESSSTATUS, FAR *LPLINEADDRESSSTATUS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwNumInUse

Specifies the number of stations that are currently using the address.
dwNumActiveCalls

The number of calls on the address that are in call states other than idle, onhold,
onholdpendingtransfer, and onholdpendingconference.

dwNumOnHoldCalls

The number of calls on the address in the onhold state.
dwNumOnHoldPendCalls

The number of calls on the address in the onholdpendingtransfer or onholdpendingconference state.
dwAddressFeatures

This field specifies the address-related API functions that can be invoked on the address in its current
state. It uses the following LINEADDRFEATURE_ constants:

LINEADDRFEATURE_FORWARD

The address can be forwarded.
LINEADDRFEATURE_MAKECALL

An outbound call can be placed on the address.
LINEADDRFEATURE_PICKUP

A call can be picked up at the address.
LINEADDRFEATURE_SETMEDIACONTROL

Media control can be set on this address.
LINEADDRFEATURE_SETTERMINAL

The terminal modes for this address can be set.
LINEADDRFEATURE_SETUPCONF

A conference call with a NULL initial call can be set up at this address.
LINEADDRFEATURE_UNCOMPLETECALL

Call completion requests can be canceled at this address.
LINEADDRFEATURE_UNPARK

Calls can be unparked using this address.
dwNumRingsNoAnswer

The number of rings set for this address before an unanswered call is considered as no answer.
dwForwardNumEntries

The number of entries in the array referred to by dwForwardSize and dwForwardOffset.
dwForwardSize

dwForwardOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
field that describes the address's forwarding information. This information is an array of
dwForwardNumEntries elements, of type LINEFORWARD. The offsets of the addresses in the array
are relative to the beginning of the LINEADDRESSSTATUS structure. The offsets
dwCallerAddressOffset and dwDestAddressOffset in the variably sized field of type
LINEFORWARD pointed to by dwForwardSize and dwForwardOffset are relative to the beginning
of the LINEADDRESSSTATUS data structure (the "root" container).

dwTerminalModesSize

dwTerminalModesOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
device field containing an array with DWORD-sized entries, that use the LINETERMMODE_
constants. This array is indexed by terminal IDs, in the range from zero to one less than
dwNumTerminals. Each entry in the array specifies the current terminal modes for the corresponding
terminal set with the lineSetTerminal function for this address. Values are:
LINETERMMODE_LAMPS

These are lamp events sent from the line to the terminal.
LINETERMMODE_BUTTONS

These are button-press events sent from the terminal to the line.
LINETERMMODE_DISPLAY

This is display information sent from the line to the terminal.
LINETERMMODE_RINGER

This is ringer-control information sent from the switch to the terminal.
LINETERMMODE_HOOKSWITCH

These are hookswitch events sent between the terminal and the line.
LINETERMMODE_MEDIATOLINE

This is the unidirectional media stream from the terminal to the line associated with a call on the
line. Use this value when the routing of both unidirectional channels of a call's media stream can
be controlled independently.

LINETERMMODE_MEDIAFROMLINE

This is the unidirectional media stream from the line to the terminal associated with a call on the
line. Use this value when the routing of both unidirectional channels of a call's media stream can
be controlled independently.

LINETERMMODE_MEDIABIDIRECT

This is the bidirectional media stream associated with a call on the line and the terminal. Use this
value when the routing of both unidirectional channels of a call's media stream cannot be
controlled independently.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
device-specific field.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

This data structure is returned by lineGetAddressStatus. When items in this data structure change as a
consequence of activities on the address, a LINE_ADDRESSSTATE message is sent to the application. A
parameter to this message is the address state, the constant LINEADDRESSSTATE_, which is an
indication that the status item in this record changed.

See Also
LINE_ADDRESSSTATE, LINEFORWARD, lineGetAddressStatus, lineSetTerminal

LINEAGENTACTIVITYENTRY   

typedef struct lineagentactivityentry_tag {
 DWORD dwID;
 DWORD dwNameSize;
 DWORD dwNameOffset;
} LINEAGENTACTIVITYENTRY, FAR *LPLINEAGENTACTIVITYENTRY;

Members

dwID

A unique identifier for a activity. It is the responsibility of the agent handler to generate and maintain
uniqueness of these IDs.

dwNameSize

dwNameOffset

Size in bytes and offset from the beginning of the containing structure of a null-terminated string
specifying the name and other identifying information of an activity which can be selected using
lineSetAgentActivity.

LINEAGENTACTIVITYLIST   

typedef struct lineagentactivitylist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumEntries;
 DWORD dwListSize;
 DWORD dwListOffset;
} LINEAGENTACTIVITYLIST, FAR *LPLINEAGENTACTIVITYLIST;

Members

dwNumEntries

The number of LINEAGENTACTIVITYENTRY structures that appear in the List array. The value is 0 if
no agent activity codes are available.

dwListSize

dwListOffset

Total size in bytes and offset from the beginning of LINEAGENTACTIVITYLIST of an array of
LINEAGENTACTIVITYENTRY elements indicating information about activity which could be specified
for the current logged-in agent. This will be dwNumEntries times SIZEOF
(LINEAGENTACTIVITYENTRY).

LINEAGENTCAPS   

typedef struct lineagentcaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwAgentHandlerInfoSize;
 DWORD dwAgentHandlerInfoOffset;
 DWORD dwCapsVersion;

 DWORD dwFeatures;
 DWORD dwStates;
 DWORD dwNextStates;
 DWORD dwMaxNumGroupEntries;
 DWORD dwAgentStatusMessages;
 DWORD dwNumAgentExtensionIDs;
 DWORD dwAgentExtensionIDListSize;
 DWORD dwAgentExtensionIDListOffset;
} LINEAGENTCAPS, FAR *LPLINEAGENTCAPS;

Members

dwAgentHandlerInfoSize

dwAgentHandlerInfoOffset

The size in bytes and offset from the beginning of LINEAGENTCAPS of a null-terminated string
specifying the name, version, or other identifying information of the server application that is handling
agent requests.

dwCapsVersion

The TAPI version that the agent handler application used in preparing the contents of this structure.
This will be no greater than the API version that the calling application passed in to
lineGetAgentCaps.

dwFeatures

The agent-related features available for this line using the LINEAGENTFEATURE_ constants.
Invoking a supported feature requires the line and address to be in the proper state. A zero in a bit
position indicates that the corresponding feature is never available. A one indicates that the
corresponding feature may be available if the line is in the appropriate state for the operation to be
meaningful. This field allows an application to discover which agent features can be (and which can
never be) supported by the device.

dwStates

The LINEAGENTSTATE_ values which may be used in the dwAgentState parameter of
lineSetAgentState. Setting a supported state requires the line and address to be in the proper state.
A zero in a bit position indicates that the corresponding state is never available. A one indicates that
the corresponding state may be available if the line is in the appropriate state for the state to be
meaningful. This field allows an application to discover which agent states can be (and which can
never be) supported on the device.

dwNextStates

The LINEAGENTSTATE_ values which may be used in the dwNextAgentState parameter of
lineSetAgentState. Setting a supported state requires the line and address to be in the proper state.

A zero in a bit position indicates that the corresponding state is never available. A one indicates that
the corresponding state may be available if the line is in the appropriate state for the state to be
meaningful. This field allows an application to discover which agent states can be (and which can
never be) supported on the device.

dwMaxNumGroupEntries

The maximum number of agent IDs that can be logged in on the address simultaneously. Determines
the highest value that can be passed in as the dwNumEntries field in the LINEAGENTGROUPLIST
structure to lineSetAgentGroup.

dwAgentStatusMessages

Indicates the LINEAGENTSTATUS_ constants that can be received by the application in dwParam2
of a LINE_AGENTSTATUS message.

dwNumExtensionIDs

The number of LINEEXTENSIONID structures that appear in the ExtensionIDList array. The value is 0
if agent-handler-specific extensions are supported on the address.

dwExtensionIDListSize

dwExtensionIDListOffset

Total size in bytes and offset from the beginning of LINEAGENTCAPS of an array of
LINEEXTENSIONID elements. The size will be dwNumExtensionIDs times SIZEOF
(LINEEXTENSIONID). The array lists the 128-bit universally unique identifiers for all agent-handler-
specific extensions supported by the agent handle for the address. The extension being used is
referenced in the lineAgentSpecific function and LINE_AGENTSPECIFIC message by its position in
this table, the first entry being entry 0, so it is important that the agent handler always present
extension IDs in this array in the same order.

See Also
LINE_AGENTSPECIFIC, LINE_AGENTSTATUS, LINEAGENTGROUPLIST, lineAgentSpecific,
LINEEXTENSIONID, lineGetAgentCaps, lineSetAgentGroup, lineSetAgentState

LINEAGENTGROUPENTRY   

typedef struct lineagentgroupentry_tag {
 struct {
 DWORD dwGroupID1;
 DWORD dwGroupID2;
 DWORD dwGroupID3;
 DWORD dwGroupID4;
 } GroupID;
 DWORD dwNameSize;
 DWORD dwNameOffset;
} LINEAGENTGROUPENTRY, FAR *LPLINEAGENTGROUPENTRY;

Members

GroupID

This set of four DWORDs is a universally unique identifier for a group. It is the responsibility of the
agent handler to generate and maintain uniqueness of these IDs.

dwNameSize

dwNameOffset

Size in bytes and offset from the beginning of the containing structure of a null-terminated string
specifying the name and other identifying information of an ACD group or queue into which the agent
can log in. This string can contain such information as supervisor and skill level, to assist the agent in
selecting the correct group from a list displayed on their workstation screen.

LINEAGENTGROUPLIST   

typedef struct lineagentgrouplist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumEntries;
 DWORD dwListSize;
 DWORD dwListOffset;
} LINEAGENTGROUPLIST, FAR *LPLINEAGENTGROUPLIST;

Members

dwNumEntries

The number of LINEAGENTGROUPENTRY structures that appear in the List array. The value is 0 if
no agent is to be logged in on the address.

dwListSize

dwListOffset

Total size in bytes and offset from the beginning of LINEAGENTGROUPLIST of an array of
LINEAGENTGROUPENTRY elements specifying information about each group into which the current
agent is to be logged in at the address. This will be dwNumEntries times SIZEOF
(LINEAGENTGROUPENTRY).

LINEAGENTSTATUS   

typedef struct lineagentstatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumEntries;
 DWORD dwGroupListSize;
 DWORD dwGroupListOffset;

 DWORD dwState;
 DWORD dwNextState;
 DWORD dwActivityID;
 DWORD dwActivitySize;
 DWORD dwActivityOffset;

 DWORD dwAgentFeatures;
 DWORD dwValidStates;
 DWORD dwValidNextStates;
} LINEAGENTSTATUS, FAR *LPLINEAGENTSTATUS;

Members

dwNumEntries

The number of LINEAGENTGROUPENTRY structures that appear in the GroupList array. The value
is 0 if no agent is logged in on the address.

dwGroupListSize

dwGroupListOffset

Total size in bytes and offset from the beginning of LINEAGENTSTATUS of an array of
LINEAGENTGROUPENTRY elements. The size will be dwNumEntries times SIZEOF
(LINEAGENTGROUPENTRY). The array contains groups into which the agent is currently logged in
on the address.

dwState

The current state of the agent. One of the LINEAGENTSTATE_ constants.
dwNextState

The state into which the agent will automatically be placed when the current call completes. One of
the LINEAGENTSTATE_ constants.

dwActivityID

The ID of the current agent activity.
dwActivitySize

dwActivityOffset

Size in bytes and offset from the beginning of LINEAGENTSTATUS of a null-terminated string
specifying the current agent activity.

dwAgentFeatures

The agent-related features available at the time the status was obtained, using the

LINEAGENTFEATURE_ constants.
dwValidStates

The agent states which could be selected, at this point in time, using lineSetAgentState. Consists of
one or more of the LINEAGENTSTATE_ constants.

dwValidNextStates

The next agent states which could be selected, at this point in time, using lineSetAgentState.
Consists of one or more of the LINEAGENTSTATE_ constants.

See Also
LINEAGENTGROUPENTRY, lineSetAgentState

LINEAPPINFO   

typedef struct lineappinfo_tag {
} LINEAPPINFO, FAR *LPLINEAPPINFO;
 DWORD dwMachineNameSize;
 DWORD dwMachineNameOffset;
 DWORD dwUserNameSize;
 DWORD dwUserNameOffset;
 DWORD dwModuleFilenameSize;
 DWORD dwModuleFilenameOffset;
 DWORD dwFriendlyNameSize;
 DWORD dwFriendlyNameOffset;
 DWORD dwMediaModes;
 DWORD dwAddressID;

Members

dwMachineNameSize

dwMachineNameOffset

Size in bytes and offset from the beginning of LINEDEVSTATUS of a string specifying the name of
the computer on which the application is executing.

dwUserNameSize

dwUserNameOffset

Size in bytes and offset from the beginning of LINEDEVSTATUS of a string specifying the username
under whose account the application is running.

dwModuleFilenameSize

dwModuleFilenameOffset

Size in bytes and offset from the beginning of LINEDEVSTATUS of a string specifying the module
filename of the application. This string may be used in a call to lineHandoff to perform a directed
handoff to the application.

dwFriendlyNameSize

dwFriendlyNameOffset

Size in bytes and offset from the beginning of LINEDEVSTATUS of the string provided by the
application to lineInitialize or lineInitializeEx, which should be used in any display of applications to
the user.

dwMediaModes

The media modes for which the application has requested ownership of new calls; 0 if when it opened
the line dwPrivileges did not include LINECALLPRIVILEGE_OWNER.

dwAddressID

If the line handle was opened using LINEOPENOPTION_SINGLEADDRESS, contains the address ID
specified; set to 0xFFFFFFFF if the single address option was not used.

LINECALLINFO   

The LINECALLINFO structure contains information about a call. This information remains relatively fixed
for the duration of the call and is obtained with lineGetCallInfo. If a part of the structure does change,
then a LINE_CALLINFO message is sent to the application indicating which information item has
changed. Dynamically changing information about a call, such as call progress status, is available in the
LINECALLSTATUS structure, returned with the function lineGetCallStatus.

typedef struct linecallinfo_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 HLINE hLine;
 DWORD dwLineDeviceID;
 DWORD dwAddressID;

 DWORD dwBearerMode;
 DWORD dwRate;
 DWORD dwMediaMode;

 DWORD dwAppSpecific;
 DWORD dwCallID;
 DWORD dwRelatedCallID;
 DWORD dwCallParamFlags;
 DWORD dwCallStates;

 DWORD dwMonitorDigitModes;
 DWORD dwMonitorMediaModes;
 LINEDIALPARAMS DialParams;

 DWORD dwOrigin;
 DWORD dwReason;
 DWORD dwCompletionID;
 DWORD dwNumOwners;
 DWORD dwNumMonitors;

 DWORD dwCountryCode;
 DWORD dwTrunk;

 DWORD dwCallerIDFlags;
 DWORD dwCallerIDSize;
 DWORD dwCallerIDOffset;
 DWORD dwCallerIDNameSize;
 DWORD dwCallerIDNameOffset;

 DWORD dwCalledIDFlags;
 DWORD dwCalledIDSize;
 DWORD dwCalledIDOffset;
 DWORD dwCalledIDNameSize;
 DWORD dwCalledIDNameOffset;

 DWORD dwConnectedIDFlags;
 DWORD dwConnectedIDSize;

 DWORD dwConnectedIDOffset;
 DWORD dwConnectedIDNameSize;
 DWORD dwConnectedIDNameOffset;

 DWORD dwRedirectionIDFlags;
 DWORD dwRedirectionIDSize;
 DWORD dwRedirectionIDOffset;
 DWORD dwRedirectionIDNameSize;
 DWORD dwRedirectionIDNameOffset;

 DWORD dwRedirectingIDFlags;
 DWORD dwRedirectingIDSize;
 DWORD dwRedirectingIDOffset;
 DWORD dwRedirectingIDNameSize;
 DWORD dwRedirectingIDNameOffset;

 DWORD dwAppNameSize;
 DWORD dwAppNameOffset;
 DWORD dwDisplayableAddressSize;
 DWORD dwDisplayableAddressOffset;

 DWORD dwCalledPartySize;
 DWORD dwCalledPartyOffset;

 DWORD dwCommentSize;
 DWORD dwCommentOffset;

 DWORD dwDisplaySize;
 DWORD dwDisplayOffset;

 DWORD dwUserUserInfoSize;
 DWORD dwUserUserInfoOffset;

 DWORD dwHighLevelCompSize;
 DWORD dwHighLevelCompOffset;

 DWORD dwLowLevelCompSize;
 DWORD dwLowLevelCompOffset;

 DWORD dwChargingInfoSize;
 DWORD dwChargingInfoOffset;

 DWORD dwTerminalModesSize;
 DWORD dwTerminalModesOffset;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwCallTreatment;
 DWORD dwCallDataSize;
 DWORD dwCallDataOffset;
 DWORD dwSendingFlowspecSize;
 DWORD dwSendingFlowspecOffset;
 DWORD dwReceivingFlowspecSize;
 DWORD dwReceivingFlowspecOffset;

} LINECALLINFO, FAR *LPLINECALLINFO;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
hLine

The handle for the line device with which this call is associated.
dwLineDeviceID

The device ID of the line device with which this call is associated.
dwAddressID

The address ID of the address on the line on which this call exists.
dwBearerMode

The current bearer mode of the call. This field uses the following LINEBEARERMODE_ constants:
LINEBEARERMODE_VOICE

This is a regular 3.1 kHz analog voice grade bearer service. Bit integrity is not assured. Voice can
support fax and modem media modes.

LINEBEARERMODE_SPEECH

This corresponds to G.711 speech transmission on the call. The network may use processing
techniques such as analog transmission, echo cancellation, and compression/decompression. Bit
integrity is not assured. Speech is not intended to support fax and modem media modes.

LINEBEARERMODE_MULTIUSE

The multiuse mode defined by ISDN.
LINEBEARERMODE_DATA

The unrestricted data transfer on the call. The data rate is specified separately.
LINEBEARERMODE_ALTSPEECHDATA

The alternate transfer of speech or unrestricted data on the same call (ISDN).
LINEBEARERMODE_NONCALLSIGNALING

A non-call-associated signaling connection from the application to the service provider or switch
(treated as a "media stream" by TAPI).

LINEBEARERMODE_PASSTHROUGH

When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct
access to the attached hardware for control by the application. This mode is used primarily by
applications desiring temporary direct control over asynchronous modems, accessed through the
Win32 comm functions, for the purpose of configuring or using special features not otherwise
supported by the service provider.

dwRate

The rate of the call's data stream in bps (bits per second).
dwMediaMode

Specifies the media mode of the information stream currently on the call. This is the media mode as
determined by the owner of the call, which is not necessarily the same as that of the last
LINE_MONITORMEDIA message. This field is not directly affected by the LINE_MONITORMEDIA
messages. It uses the following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

A media stream exists but its mode is not known. This corresponds to a call with an unclassified
media type. In typical analog telephony environments, an inbound call's media mode may be
unknown until after the call has been answered and the media stream has been filtered to make a
determination.

LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy is detected on the call and the call is treated as an interactive call
with humans on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy is detected on the call and the voice is locally handled by an
automated application.

LINEMEDIAMODE_DATAMODEM

A data modem session is detected on the call.
LINEMEDIAMODE_G3FAX

A group 3 fax is being sent or received on the call.
LINEMEDIAMODE_G4FAX

A group 4 fax is being sent or received over the call.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session on the call.
LINEMEDIAMODE_DIGITALDATA

Digital data being sent or received over the call.
LINEMEDIAMODE_TELETEX

A teletex session on the call. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session on the call. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session on the call. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session on the call. Mixed is one the ISDN telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session on the call.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
dwAppSpecific

This field is uninterpreted by the API implementation and service provider. It can be set by any owner
application of this call with the operation lineSetAppSpecific.

dwCallID

In some telephony environments, the switch or service provider may assign a unique identifier to each
call. This allows the call to be tracked across transfers, forwards, or other events. The domain of
these call IDs and their scope is service-provider defined. The dwCallID field makes this unique
identifier available to the applications.

dwRelatedCallID

Telephony environments that use the call ID often may find it necessary to relate one call to another.
The dwRelatedCallID field may be used by the service provider for this purpose.

dwCallParamFlags

A collection of call-related parameters when the call is outbound. These are same call parameters
specified in lineMakeCall, of type LINECALLPARAMFLAGS_. Values are:
LINECALLPARAMFLAGS_SECURE

The call is currently secure. This flag is also updated if the call is later secured through
lineSecureCall.

LINECALLPARAMFLAGS_IDLE

The call started out using an idle call.
LINECALLPARAMFLAGS_BLOCKID

The originator identity was concealed (block caller ID presentation to the remote party).
LINECALLPARAMFLAGS_ORIGOFFHOOK

The originator's phone was automatically taken offhook.
LINECALLPARAMFLAGS_DESTOFFHOOK

The called party's phone was automatically taken offhook.
dwCallStates

The call states for which the application may be notified on this call, of type LINECALLSTATE_. The
dwCallStates member is constant in LINECALLINFO and does not change depending on the call
state. Values are:
LINECALLSTATE_IDLE

The call is idle¾no call exists.
LINECALLSTATE_OFFERING

The call is being offered to the station signaling the arrival of a new call. In some environments, a
call in the offering state does not automatically alert the user; alerting is done by the switch
instructing the line to ring. It does not affect any call states.

LINECALLSTATE_ACCEPTED

The call was offering and has been accepted. This indicates to other (monitoring) applications that
the current owner application has claimed responsibility for answering the call. In ISDN, this also
initiates alerting to both parties.

LINECALLSTATE_DIALTONE

The call is receiving a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is being sent to the switch over the call. Note
that the operation lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call is receiving ringback from the called address. Ringback indicates that the other station has
been reached and is being alerted.

LINECALLSTATE_BUSY

The call is receiving a busy tone. Busy tone indicates that the call cannot be completed¾either a
circuit (trunk) or the remote party's station are in use.

LINECALLSTATE_SPECIALINFO

Special information is sent by the network. Special information is typically sent when the
destination cannot be reached.

LINECALLSTATE_CONNECTED

The call has been established, the connection is made. Information is able to flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing has completed and the call is proceeding through the switch or telephone network.
LINECALLSTATE_ONHOLD

The call is on hold by the switch.
LINECALLSTATE_CONFERENCED

The call is currently a member of a multiparty conference call.
LINECALLSTATE_ONHOLDPENDCONF

The call is currently on hold while it is being added to a conference.
LINECALLSTATE_ONHOLDPENDTRANSF

The call is currently on hold awaiting transfer to another number.
LINECALLSTATE_DISCONNECTED

The remote party has disconnected from the call.
LINECALLSTATE_UNKNOWN

The state of the call is not known. This may be due to limitations of the call progress detection
implementation.

dwMonitorDigitsModes

The various digit modes for which monitoring is currently enabled, of type LINEDIGITMODE_. Values
are:
LINEDIGITMODE_PULSE

Uses pulse/rotary for digit signaling.
LINEDIGITMODE_DTMF

Uses DTMF tones for digit signaling.

LINEDIGITMODE_DTMFEND

Uses DTMF tones for digit detection, and also detects the down edges.
dwMonitorMediaModes

The various media modes for which monitoring is currently enabled, of type LINEMEDIAMODE_.
Values are:
LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy on the call and the call is treated as an interactive call with humans
on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy on the call and the voice is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM

A data modem session on the call.
LINEMEDIAMODE_G3FAX

A group 3 fax is being sent or received over the call.
LINEMEDIAMODE_G4FAX

A group 4 fax is being sent or received over the call.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session on the call.
LINEMEDIAMODE_DIGITALDATA

Digital data is being sent or received over the call.
LINEMEDIAMODE_TELETEX

A teletex session on the call. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session on the call. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session on the call. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session on the call. Mixed is one the ISDN telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session on the call.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
DialParams

The dialing parameters currently in effect on the call, of type LINEDIALPARAMS. Unless these
parameters are set by either lineMakeCall or lineSetCallParams, their values will be the same as
the defaults used in the LINEDEVCAPS.

dwOrigin

Identifies where the call originated from. This field uses the following LINECALLORIGIN_ constants:
LINECALLORIGIN_OUTBOUND

The call is an outbound call.
LINECALLORIGIN_INTERNAL

The call is inbound and originated internally (on the same PBX, for example).
LINECALLORIGIN_EXTERNAL

The call is inbound and originated externally.
LINECALLORIGIN_UNKNOWN

The call is an inbound call and its origin is currently unknown but may become known later.
LINECALLORIGIN_UNAVAIL

The call is an inbound call. Its origin is not available and will never become known for this call.
LINECALLORIGIN_CONFERENCE

The call handle is for a conference call, that is, the application's connection to the conference
bridge in the switch.

dwReason

The reason why the call occurred. This field uses the following LINECALLREASON_ constants:
LINECALLREASON_DIRECT

This is a direct call.
LINECALLREASON_FWDBUSY

This call was forwarded from another extension that was busy at the time of the call.
LINECALLREASON_FWDNOANSWER

The call was forwarded from another extension that didn't answer the call after some number of
rings.

LINECALLREASON_FWDUNCOND

The call was forwarded unconditionally from another number.
LINECALLREASON_PICKUP

The call was picked up from another extension.
LINECALLREASON_UNPARK

The call was retrieved as a parked call.
LINECALLREASON_REDIRECT

The call was redirected to this station.
LINECALLREASON_CALLCOMPLETION

The call was the result of a call completion request.
LINECALLREASON_TRANSFER

The call has been transferred from another number. Party ID information may indicate who the
caller is and where the call was transferred from.

LINECALLREASON_REMINDER

The call is a reminder (or "recall") that the user has a call parked or on hold for potentially a long
time.

LINECALLREASON_UNKNOWN

The reason for the call is currently unknown but may become known later.
LINECALLREASON_UNAVAIL

The reason for the call is unavailable and will not become known later.
dwCompletionID

The completion ID for the incoming call if it is the result of a completion request that terminates. This
ID is meaningful only if dwReason is LINECALLREASON_CALLCOMPLETION.

dwNumOwners

The number of application modules with different call handles with owner privilege for the call.
dwNumMonitors

The number of application modules with different call handles with monitor privilege for the call.
dwCountryCode

The country code of the destination party. Zero if unknown.
dwTrunk

The number of the trunk over which the call is routed. This field is used for both inbound and outgoing
calls. The dwTrunk field should be set to 0xFFFFFFFF if it is unknown.

dwCallerIDFlags

Determines the validity and content of the caller party ID information. The caller is the originator of the
call. This field uses the following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Caller ID information for the call has been blocked by the caller but would otherwise have been
available.

LINECALLPARTYID_OUTOFAREA

Caller ID information for the call is not available because it is not propagated all the way by the
network.

LINECALLPARTYID_NAME

The caller ID information for the call is the caller's name (from a table maintained inside the
switch). It is provided in the caller ID name variably sized field.

LINECALLPARTYID_ADDRESS

The caller ID information for the call is the caller's number and is provided in the caller ID variably
sized field.

LINECALLPARTYID_PARTIAL

Caller ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Caller ID information is currently unknown but it may become known later.
LINECALLPARTYID_UNAVAIL

Caller ID information is unavailable and will not become known later.

dwCallerIDSize

dwCallerIDOffset

The size in bytes of the variably sized field containing the caller party ID number information, and the
offset in bytes from the beginning of this data structure.

dwCallerIDNameSize

dwCallerIDNameOffset

The size in bytes of the variably sized field containing the caller party ID name information, and the
offset in bytes from the beginning of this data structure.

dwCalledIDFlags

Determines the validity and content of the called-party ID information. The called party corresponds to
the originally addressed party. This field uses the following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Called ID information for the call has been blocked by the caller but would otherwise have been
available.

LINECALLPARTYID_OUTOFAREA

Caller ID information for the call is not available because it is not propagated all the way by the
network.

LINECALLPARTYID_NAME

The called ID information for the call is the caller's name (from a table maintained inside the
switch). It is provided in the called ID name variably sized field.

LINECALLPARTYID_ADDRESS

The called ID information for the call is the caller's number and is provided in the called ID variably
sized field.

LINECALLPARTYID_PARTIAL

Called ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Called ID information is currently unknown but it may become known later.
LINECALLPARTYID_UNAVAIL

Called ID information is unavailable and will not become known later.
dwCalledIDSize

dwCalledIDOffset

The size in bytes of the variably sized field containing the called-party ID number information, and the
offset in bytes from the beginning of this data structure.

dwCalledIDNameSize

dwCalledIDNameOffset

The size in bytes of the variably sized field containing the called-party ID name information, and the
offset in bytes from the beginning of this data structure.

dwConnectedFlags

Determines the validity and content of the connected party ID information. The connected party is the

party that was actually connected to. This may be different from the called-party ID if the call was
diverted. This field uses the following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Connected party ID information for the call has been blocked by the caller but would otherwise
have been available.

LINECALLPARTYID_OUTOFAREA

Connected ID information for the call is not available as it is not propagated all the way by the
network.

LINECALLPARTYID_NAME

The connected party ID information for the call is the caller's name (from a table maintained inside
the switch). It is provided in the connected ID name variably sized field.

LINECALLPARTYID_ADDRESS

The connected party ID information for the call is the caller's number and is provided in the
connected ID variably sized field.

LINECALLPARTYID_PARTIAL

Connected party ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Connected party ID information is currently unknown but it may become known later.
LINECALLPARTYID_UNAVAIL

Connected party ID information is unavailable and will not become known later.
dwConnectedIDSize

dwConnectedIDOffset

The size in bytes of the variably sized field containing the connected party ID number information, and
the offset in bytes from the beginning of this data structure.

dwConnectedIDNameSize

dwConnectedIDNameOffset

The size in bytes of the variably sized field containing the connected party ID name information, and
the offset in bytes from the beginning of this data structure.

dwRedirectionIDFlags

Determines the validity and content of the redirection party ID information. The redirection party
identifies to the calling user the number towards which diversion was invoked. This field uses the
following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Redirection party ID information for the call has been blocked by the caller but would otherwise
have been available.

LINECALLPARTYID_OUTOFAREA

Redirection ID information for the call is not available because it is not propagated all the way by
the network.

LINECALLPARTYID_NAME

The redirection party ID information for the call is the caller's name (from a table maintained inside

the switch). It is provided in the redirection ID name variably sized field.
LINECALLPARTYID_ADDRESS

The redirection party ID information for the call is the caller's number and is provided in the
redirection ID variably sized field.

LINECALLPARTYID_PARTIAL

Redirection party ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Redirection ID information is currently unknown but it may become known later.
LINECALLPARTYID_UNAVAIL

Redirection ID information is unavailable and will not become known later.
dwRedirectionIDSize

dwRedirectionIDOffset

The size in bytes of the variably sized field containing the redirection party ID number information,
and the offset in bytes from the beginning of this data structure.

dwRedirectionIDNameSize

dwRedirectionIDNameOffset

The size in bytes of the variably sized field containing the redirection party ID name information, and
the offset in bytes from the beginning of this data structure.

dwRedirectingIDFlags

Determines the validity and content of the redirecting party ID information. The redirecting party
identifies to the diverted-to user the party from which diversion was invoked. This field uses the
following LINECALLPARTYID_ constants:
LINECALLPARTYID_BLOCKED

Redirecting party ID information for the call has been blocked by the caller but would otherwise
have been available.

LINECALLPARTYID_OUTOFAREA

Redirecting ID information for the call is not available because it is not propagated all the way by
the network.

LINECALLPARTYID_NAME

The redirecting party ID information for the call is the caller's name (from a table maintained inside
the switch). It is provided in the redirecting ID name variably sized field.

LINECALLPARTYID_ADDRESS

The redirecting party ID information for the call is the caller's number and is provided in the
redirecting ID variably sized field.

LINECALLPARTYID_PARTIAL

Redirecting party ID information for the call is valid but is limited to partial number information.
LINECALLPARTYID_UNKNOWN

Redirecting ID information is currently unknown but it may become known later.
LINECALLPARTYID_UNAVAIL

Redirecting ID information is unavailable and will not become known later.
dwRedirectingIDSize

dwRedirectingIDOffset

The size in bytes of the variably sized field containing the redirecting party ID number information,
and the offset in bytes from the beginning of this data structure.

dwRedirectingIDNameSize

dwRedirectingIDNameOffset

The size in bytes of the variably sized field containing the redirecting party ID name information, and
the offset in bytes from the beginning of this data structure.

dwAppNameSize

dwAppNameOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
field holding the user-friendly application name of the application that first originated, accepted, or
answered the call. This is the name that an application can specify in lineInitializeEx. If the
application specifies no such name, then the application's module file name is used instead.

dwDisplayableAddressSize

dwDisplayableAddressOffset

The displayable string is used for logging purposes. The information is obtained from
LINECALLPARAMS for functions that initiate calls. The function lineTranslateAddress returns
appropriate information to be placed in this field in the dwDisplayableAddressSize and
dwDisplayableAddressOffset fields of the LINETRANSLATEOUTPUT structure.

dwCalledPartySize

dwCalledPartyOffset

The size in bytes of the variably sized field holding a user-friendly description of the called party, and
the offset in bytes from the beginning of this data structure. This information can be specified on
lineMakeCall and can be optionally specified in the lpCallParams whenever a new call is established.
It is useful for call logging purposes.

dwCommentSize

dwCommentOffset

The size in bytes of the variably sized field holding a comment about the call provided by the
application that originated the call using lineMakeCall, and the offset in bytes from the beginning of
this data structure. This information can be optionally specified in the lpCallParams whenever a new
call is established.

dwDisplaySize

dwDisplayOffset

The size in bytes of the variably sized field holding raw display information, and the offset in bytes
from the beginning of this data structure. Depending on the telephony environment, a service provider
may extract functional information from this for presentation in a more functional way.

dwUserUserInfoSize

dwUserUserInfoOffset

The size in bytes of the variably sized field holding user-to-user information, and the offset in bytes
from the beginning of this data structure The protocol discriminator field for the user-to-user
information, if used, appears as the first byte of the data pointed to by dwUserUserInfoOffset, and is
accounted for in dwUserUserInfoSize.

dwHighLevelCompSize

dwHighLevelCompOffset

The size in bytes of the variably sized field holding high-level compatibility information, and the offset
in bytes from the beginning of this data structure. The format of this information is specified by other
standards (ISDN Q.931).

dwLowLevelCompSize

dwLowLevelCompOffset

The size in bytes of the variably sized field holding low-level compatibility information, and the offset
in bytes from the beginning of this data structure The format of this information is specified by other
standards (ISDN Q.931).

dwChargingInfoSize

dwChargingInfoOffset

The size in bytes of the variably sized field holding charging information, and the offset in bytes from
the beginning of this data structure The format of this information is specified by other standards
(ISDN Q.931).

dwTerminalModesSize

dwTerminalModesOffset

The size in bytes of the variably sized device field containing an array with DWORD-sized entries,
and the offset in bytes from the beginning of this data structure. The set of LINETERMMODE_
constants is indexed by terminal IDs, in the range from zero to one less than dwNumTerminals.
Each entry in the array specifies the current terminal modes for the corresponding terminal set with
the lineSetTerminal operation for this call's media stream. Values are:
LINETERMMODE_LAMPS

Lamp events sent from the line to the terminal.
LINETERMMODE_BUTTONS

Button-press events sent from the terminal to the line.
LINETERMMODE_DISPLAY

Display information sent from the line to the terminal.
LINETERMMODE_RINGER

Ringer-control information sent from the switch to the terminal.
LINETERMMODE_HOOKSWITCH

Hookswitch event sent between the terminal and the line.
LINETERMMODE_MEDIATOLINE

The unidirectional media stream from the terminal to the line associated with a call on the line. Use
this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIAFROMLINE

The unidirectional media stream from the line to the terminal associated with a call on the line. Use
this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIABIDIRECT

The bidirectional media stream associated with a call on the line and the terminal. Use this value
when the routing of both the unidirectional channels of a call's media stream cannot be controlled
independently.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized field holding device-specific information., and the offset in bytes
from the beginning of this data structure.

dwCallTreatment

The call treatment currently being applied on the call or that will be applied when the call enters the
next applicable state. May be 0 if call treatments are not supported.

dwCallDataSize

dwCallDataOffset

The size in bytes and offset from the beginning of LINECALLINFO of the application-settable call
data.

dwSendingFlowspecSize

dwSendingFlowspecOffset

The total size in bytes and offset from the beginning of LINECALLINFO of a WinSock2 FLOWSPEC
structure followed by WinSock2 provider-specific data, equivalent to what would have been stored in
SendingFlowspec.len in a WinSock2 QOS structure. Specifies the quality of service current in effect
in the sending direction on the call. The provider-specific portion following the FLOWSPEC structure
must not contain pointers to other blocks of memory, because TAPI will not know how to marshal the
data pointed to by the private pointer(s) and convey it through interprocess communication to the
application.

dwReceivingFlowspecSize

dwReceivingFlowspecOffset

The total size in bytes and offset from the beginning of LINECALLINFO of a WinSock2 FLOWSPEC
structure followed by WinSock2 provider-specific data, equivalent to what would have been stored in
ReceivingFlowspec.len in a WinSock2 QOS structure. Specifies the quality of service current in effect
in the receiving direction on the call. The provider-specific portion following the FLOWSPEC structure
must not contain pointers to other blocks of memory, because TAPI will not know how to marshal the
data pointed to by the private pointer(s) and convey it through interprocess communication to the
application.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

The LINECALLINFO data structure contains relatively fixed information about a call. This structure is
returned with lineGetCallInfo. When information items in this data structure have changed, a
LINE_CALLINFO message is sent to the application. A parameter to this message is the information item
or field that changed.

The dwAppSpecific field can be used by applications to tag calls by using lineSetAppSpecific. This
field is uninterpreted by TAPI or service providers. It is initially set to zero.

The members dwCallTreatment through dwReceivingFlowspecOffset are available only to applications
that open the line device with an API version of 0x00020000 or greater.

Note The preferred format for specification of the contents of the callerID field and the other five
similar fields is the TAPI canonical number format. For example, a ICLID of "2068828080" received
from the switch should be converted to "+1 (206) 8828080" before being placed in the
LINECALLINFO structure. This standardized format facilitates searching of databases and callback
functions implemented in applications.

See Also
LINE_CALLINFO, LINE_MONITORMEDIA, LINECALLSTATUS, LINEDEVCAPS, LINEDIALPARAMS,
lineGenerateDigits, lineGetCallInfo, lineGetCallStatus, lineInitializeEx, lineMakeCall,
lineSecureCall, lineSetAppSpecific, lineSetCallParams, lineSetTerminal, lineTranslateAddress,
LINETRANSLATEOUTPUT

LINECALLLIST   

The LINECALLLIST structure describes a list of call handles. A structure of this type is returned by the
functions lineGetNewCalls and lineGetConfRelatedCalls.

typedef struct linecalllist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwCallsNumEntries;
 DWORD dwCallsSize;
 DWORD dwCallsOffset;
} LINECALLLIST, FAR *LPLINECALLLIST;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwCallsNumEntries

The number of handles in the hCalls array.
dwCallsSize

dwCallsOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
field (which is an array of HCALL-sized handles).

Remarks
No extensions.

See Also
lineGetConfRelatedCalls, lineGetNewCalls

LINECALLPARAMS   

The LINECALLPARAMS structure describes parameters supplied when making calls using
lineMakeCall. The LINECALLPARAMS structure is also used as a parameter in other operations. The
comments on the right indicate the default values used when this structure is not provided to
lineMakeCall.

typedef struct linecallparams_tag { // Defaults:
 DWORD dwTotalSize; // ---------

 DWORD dwBearerMode; // voice
 DWORD dwMinRate; // (3.1kHz)
 DWORD dwMaxRate; // (3.1kHz)
 DWORD dwMediaMode; // interactiveVoice

 DWORD dwCallParamFlags; // 0
 DWORD dwAddressMode; // addressID
 DWORD dwAddressID; // (any available)

 LINEDIALPARAMS DialParams; // (0, 0, 0, 0)

 DWORD dwOrigAddressSize; // 0
 DWORD dwOrigAddressOffset;

 DWORD dwDisplayableAddressSize; // 0
 DWORD dwDisplayableAddressOffset;

 DWORD dwCalledPartySize; // 0
 DWORD dwCalledPartyOffset;

 DWORD dwCommentSize; // 0
 DWORD dwCommentOffset;

 DWORD dwUserUserInfoSize; // 0
 DWORD dwUserUserInfoOffset;

 DWORD dwHighLevelCompSize; // 0
 DWORD dwHighLevelCompOffset;

 DWORD dwLowLevelCompSize; // 0
 DWORD dwLowLevelCompOffset;

 DWORD dwDevSpecificSize; // 0
 DWORD dwDevSpecificOffset;

 DWORD dwPredictiveAutoTransferStates;
 DWORD dwTargetAddressSize;
 DWORD dwTargetAddressOffset;
 DWORD dwSendingFlowspecSize;
 DWORD dwSendingFlowspecOffset;
 DWORD dwReceivingFlowspecSize;
 DWORD dwReceivingFlowspecOffset;
 DWORD dwDeviceClassSize;
 DWORD dwDeviceClassOffset;

 DWORD dwDeviceConfigSize;
 DWORD dwDeviceConfigOffset;
 DWORD dwCallDataSize;
 DWORD dwCallDataOffset;
 DWORD dwNoAnswerTimeout;
 DWORD dwCallingPartyIDSize;
 DWORD dwCallingPartyIDOffset;
} LINECALLPARAMS, FAR *LPLINECALLPARAMS;

Members

dwTotalSize

The total size in bytes allocated to this data structure. This size should be big enough to hold all the
fixed and variably sized portions of this data structure.

dwBearerMode

The bearer mode for the call. This field uses the following LINEBEARERMODE_ constants:
LINEBEARERMODE_VOICE

This is a regular 3.1 kHz analog voice grade bearer service. Bit integrity is not assured. Voice can
support fax and modem media modes.

LINEBEARERMODE_SPEECH

This corresponds to G.711 speech transmission on the call. The network may use processing
techniques such as analog transmission, echo cancellation, and compression/decompression. Bit
integrity is not assured. Speech is not intended to support fax and modem media modes.

LINEBEARERMODE_MULTIUSE

The multiuse mode defined by ISDN.
LINEBEARERMODE_DATA

The unrestricted data transfer on the call. The data rate is specified separately.
LINEBEARERMODE_ALTSPEECHDATA

The alternate transfer of speech or unrestricted data on the same call (ISDN).
LINEBEARERMODE_NONCALLSIGNALING

This corresponds to a non-call-associated signaling connection from the application to the service
provider or switch (treated as a "media stream" by the Telephony API).

LINEBEARERMODE_PASSTHROUGH

When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct
access to the attached hardware for control by the application. This mode is used primarily by
applications desiring temporary direct control over asynchronous modems, accessed via the Win32
comm functions, for the purpose of configuring or using special features not otherwise supported
by the service provider.

If dwBearerMode is 0, default value is LINEBEARERMODE_VOICE.
dwMinRate

dwMaxRate

The data rate range requested for the call's data stream in bps (bits per second). When making a call,
the service provider attempts to provide the highest available rate in the requested range. If a specific
data rate is required, both min and max should be set to that value. If an application works best with

one rate but is able to degrade to lower rates, the application should specify these as the max and
min rates respectively. If dwMaxRate is 0, the default value is as specified by the dwMaxRate
member of the LINEDEVCAPS structure. This is the maximum rate supported by device.

dwMediaMode

The expected media mode of the call. This field uses the following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

A media stream exists but its mode is not known. This would correspond to a call with an
unclassified media type. In typical analog telephony environments, an inbound call's media mode
may be unknown until after the call has been answered and the media stream has been filtered to
make a determination.

LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy on the call and the call is treated as an interactive call with humans
on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy on the call and the voice is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM

A data modem session on the call.
LINEMEDIAMODE_G3FAX

A group 3 fax is being sent or received over the call.
LINEMEDIAMODE_G4FAX

A group 4 fax is being sent or received over the call.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session on the call.
LINEMEDIAMODE_DIGITALDATA

Digital data is being sent or received over the call.
LINEMEDIAMODE_TELETEX

A teletex session on the call. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session on the call. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session on the call. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session on the call. Mixed is one the ISDN telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session on the call.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
If dwMediaMode is 0, the default value is LINEMEDIAMODE_INTERACTIVEVOICE.

dwCallParamFlags

These flags specify a collection of Boolean call-setup parameters. This field uses the following
LINECALLPARAMFLAGS_ constants:
LINECALLPARAMFLAGS_SECURE

The call should be set up as secure.
LINECALLPARAMFLAGS_IDLE

The call should get an idle call appearance.
LINECALLPARAMFLAGS_BLOCKID

The originator identity should be concealed (block caller ID).
LINECALLPARAMFLAGS_ORIGOFFHOOK

The originator's phone should be automatically taken offhook.
LINECALLPARAMFLAGS_DESTOFFHOOK

The called party's phone should be automatically taken offhook.
dwAddressMode

The mode by which the originating address is specified. The dwAddressMode field cannot be
LINEADDRESSMODE_ADDRESSID for the function call lineOpen. This field uses the following
LINEADDRESSMODE_ constants:
LINEADDRESSMODE_ADDRESSID

The address is specified with a small integer in the range 0 to dwNumAddresses minus one,
where dwNumAddresses is the value in the line's LINEDEVCAPS structure. The selected
address is specified in the dwAddressID field.

LINEADDRESSMODE_DIALABLEADDR

The address is specified with its dialable address. The address is contained in the
dwOrigAddressSize dwOrigAddressOffset variably sized field. If dwAddressMode is 0, the
default value is LINEADDRESSMODE_ADDRESSID.

dwAddressID

The address ID of the originating address if dwAddressMode is set to
LINEADDRESSMODE_ADDRESSID.

DialParams

Dial parameters to be used on this call, of type LINEDIALPARAMS. When a value of zero is specified
for this field, the default value for the field is used as indicated in the DefaultDialParams member of
the LINEDEVCAPS structure. If a non-zero value is specified for a field which is outside the range
specified by the corresponding fields in MinDialParams and MaxDialParams in the LINEDEVCAPS
structure, the nearest value within the valid range is used instead.

dwOrigAddressSize

dwOrigAddressOffset

The size in bytes of the variably sized field holding the originating address, and the offset in bytes
from the beginning of this data structure. The format of this address is dependent on the
dwAddressMode field.

dwDisplayableAddressSize

dwDisplayableAddressOffset

The displayable string is used for logging purposes. The content of these fields is recorded in the
dwDisplayableAddressOffset and dwDisplayableAddressSize fields of the call's LINECALLINFO
message. The lineTranslateAddress function returns appropriate information to be placed in this
field in the dwDisplayableAddressSize and dwDisplayableAddressOffset fields of the
LINETRANSLATEOUTPUT structure.

dwCalledPartySize

dwCalledPartyOffset

The size in bytes of the variably sized field holding called-party information, and the offset in bytes
from the beginning of this data structure. This information can be specified by the application that
makes the call and is made available in the call's information structure for logging purposes. The
format of this field is that of dwStringFormat, as specified in LINEDEVCAPS.

dwCommentSize

dwCommentOffset

The size in bytes of the variably sized field holding comments about the call, and the offset in bytes
from the beginning of this data structure. This information can be specified by the application that
makes the call and is made available in the call's information structure for logging purposes. The
format of this field is that of dwStringFormat, as specified in LINEDEVCAPS.

dwUserUserInfoSize

dwUserUserInfoOffset

The size in bytes of the variably sized field holding user-to-user information, and the offset in bytes
from the beginning of this data structure. The protocol discriminator field for the user-user information,
if required, should appear as the first byte of the data pointed to by dwUserUserInfoOffset, and must
be accounted for in dwUserUserInfoSize.

dwHighLevelCompSize

dwHighLevelCompOffset

The size in bytes of the variably sized field holding high-level compatibility information, and the offset
in bytes from the beginning of this data structure

dwLowLevelCompSize

dwLowLevelCompOffset

The size in bytes of the variably sized field holding low-level compatibility information, and the offset
in bytes from the beginning of this data structure.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized field holding device-specific information, and the offset in bytes
from the beginning of this data structure

dwPredictiveAutoTransferStates

The LINECALLSTATE_ values, entry into which cause the call to be blind-transferred to the specified
target address. Set to 0 if automatic transfer is not desired.

dwTargetAddressSize

dwTargetAddressOffset

The size in bytes and offset from the beginning of LINECALLPARAMS of a string specifying the

target dialable address (not dwAddressID); used in the case of certain automatic actions. In the case
of predictive dialing, specifies the address to which the call should be automatically transferred. This
is essentially the same string that would be passed to lineBlindTransfer if automatic transfer were
not being used. Set to 0 if automatic transfer is not desired. In the case of a No Hold Conference,
specifies the address that should be conferenced to the call. In the case of a One Step Transfer,
specifies the address to dial on the consultation call.

dwSendingFlowspecSize

dwSendingFlowspecOffset

The total size in bytes and offset from the beginning of LINECALLPARAMS of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent to what would have
been stored in SendingFlowspec.len in a WinSock2 QOS structure. Specifies the quality of service
desired in the sending direction on the call. The provider-specific portion following the FLOWSPEC
structure must not contain pointers to other blocks of memory, because TAPI will not know how to
marshal the data pointed to by the private pointer(s) and convey it through interprocess
communication to the application.

dwReceivingFlowspecSize

dwReceivingFlowspecOffset

The total size in bytes and offset from the beginning of LINECALLPARAMS of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent to what would have
been stored in ReceivingFlowspec.len in a WinSock2 QOS structure. Specifies the quality of service
desired in the receiving direction on the call. The provider-specific portion following the FLOWSPEC
structure must not contain pointers to other blocks of memory, because TAPI will not know how to
marshal the data pointed to by the private pointer(s) and convey it through interprocess
communication to the application.

dwDeviceClassSize

dwDeviceClassOffset

The size in bytes and offset from the beginning of LINECALLPARAMS of a NULL-terminated ASCII
string (the size includes the null) that indicates the device class of the device whose configuration is
specified in DeviceConfig. Valid device class strings are the same as those specified for the
lineGetID function.

dwDeviceConfigSize

dwDeviceConfigOffset

The number of bytes and offset from the beginning of LINECALLPARAMS of the opaque
configuration data structure pointed to by dwDevConfigOffset. This value will have been returned in
the dwStringSize member in the VARSTRING structure returned by lineGetDevConfig. If the size is
0, the default device configuration is used. This allows the application to set the device configuration
before the call is initiated.

dwCallDataSize

dwCallDataOffset

The size in bytes and offset from the beginning of LINECALLPARAMS of the application-settable call
data to be initially attached to the call.

dwNoAnswerTimeout

The number of seconds, after the completion of dialing, that the call should be allowed to wait in the
PROCEEDING or RINGBACK states, before it is automatically abandoned by the service provider
with a LINECALLSTATE_DISCONNECTED and LINEDISCONNECTMODE_NOANSWER. A value of

0 indicates that the application does not desire automatic call abandonment.
dwCallingPartyIDSize

dwCallingPartyIDOffset

The size in bytes and offset from the beginning of LINECALLPARAMS of a NULL-terminated ASCII
string (the size includes the null) that specifies the identity of the party placing the call. The service
provider will, if the content of the ID is acceptable and a path is available, pass the ID along to the
called party to indicate the identity of the calling party.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

This structure is used as a parameter to lineMakeCall when setting up a call. Its fields allow the
application to specify the quality of service requested from the network as well as a variety of ISDN call-
setup parameters. If no LINECALLPARAMS structure is supplied to lineMakeCall, a default POTS voice-
grade call is requested with the default values listed above.

Note The fields DialParams through dwDevSpecificOffset are ignored when an lpCallParams
parameter is specified with the function lineOpen.

The members dwPredictiveAutoTransferStates though dwCallingPartyIDOffset are available only to
applications that open the line device with an API version of 0x00020000 or greater.

See Also
lineBlindTransfer, LINEDEVCAPS, LINEDIALPARAMS, lineGetDevConfig, lineMakeCall, lineOpen,
lineTranslateAddress, LINETRANSLATEOUTPUT, VARSTRING

LINECALLSTATUS   

The LINECALLSTATUS structure describes the current status of a call. The information in this structure,
as returned with lineGetCallStatus, depends on the device capabilities of the address, the ownership of
the call by the invoking application, and the current state of the call being queried.

typedef struct linecallstatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwCallState;
 DWORD dwCallStateMode;
 DWORD dwCallPrivilege;
 DWORD dwCallFeatures;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwCallFeatures2;
 SYSTEMTIME tStateEntryTime;
} LINECALLSTATUS, FAR *LPLINECALLSTATUS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwCallState

dwCallStateMode

The dwCallState field specifies the current call state of the call. The interpretation of the
dwCallStateMode field is call-state-dependent. It specifies the current mode of the call while in its
current state (if that state defines a mode). This field uses the following LINECALLSTATE_ constants:
LINECALLSTATE_IDLE

The call state mode is unused.
LINECALLSTATE_OFFERING

The call state mode is of type LINEOFFERINGMODE_. Values are:
LINEOFFERINGMODE_ACTIVE

Indicates that the call is alerting at the current station (will be accompanied by
LINEDEVSTATE_RINGING messages), and if any application is set up to automatically answer, it
may do so.

LINEOFFERINGMODE_INACTIVE

Indicates that the call is being offered at more than one station, but the current station is not

alerting (for example, it may be an attendant station where the offering status is advisory, such as
blinking a light).

LINECALLSTATE_ACCEPTED

The call state mode is unused.
LINECALLSTATE_DIALTONE

The call state mode, of type LINEDIALTONEMODE_. Values are:
LINEDIALTONEMODE_NORMAL

This is a "normal" dial tone, which typically is a continuous tone.
LINEDIALTONEMODE_SPECIAL

This is a special dial tone indicating a certain condition is currently in effect.
LINEDIALTONEMODE_INTERNAL

This an internal dial tone, as within a PBX.
LINEDIALTONEMODE_EXTERNAL

This is an external (public network) dial tone.
LINEDIALTONEMODE_UNKNOWN

The dial tone mode is not currently known but may become known later.
LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and will not become known.
LINECALLSTATE_DIALING

Call state mode is unused.
LINECALLSTATE_RINGBACK

Call state mode is unused.
LINECALLSTATE_BUSY

The call state mode is of type LINEBUSYMODE_. Values are:
LINEBUSYMODE_STATION

The busy signal indicates that the called party's station is busy. This is usually signaled with a
"normal" busy tone.

LINEBUSYMODE_TRUNK

The busy signal indicates that a trunk or circuit is busy. This is usually signaled with a "long" busy
tone.

LINEBUSYMODE_UNKNOWN

The busy signal's specific mode is currently unknown but may become known later.
LINEBUSYMODE_UNAVAIL

The busy signal's specific mode is unavailable and will not become known.
LINECALLSTATE_SPECIALINFO

The call state mode is of type LINESPECIALINFO_. Values are:
LINESPECIALINFO_NOCIRCUIT

This special information tone precedes a no circuit or emergency announcement (trunk blockage
category).

LINESPECIALINFO_CUSTIRREG

This special information tone precedes a vacant number, AIS, Centrex number change and
nonworking station, access code not dialed or dialed in error, or manual intercept operator
message (customer irregularity category).

LINESPECIALINFO_REORDER

This special information tone precedes a reorder announcement (equipment irregularity category).
LINESPECIALINFO_UNKNOWN

Specifics about the special information tone are currently unknown but may become known later.
LINESPECIALINFO_UNAVAIL

Specifics about the special information tone are unavailable and will not become known.
LINECALLSTATE_CONNECTED

Call state mode is of type LINECONNECTEDMODE_. Values are:
LINECONNECTEDMODE_ACTIVE

Indicates that the call is connected at the current station (the current station is a participant in the
call).

LINECONNECTEDMODE_INACTIVE

Indicates that the call is active at one or more other stations, but the current station is not a
participant in the call.

LINECALLSTATE_PROCEEDING

Call state mode is unused.
LINECALLSTATE_ONHOLD

Call state mode is unused.
LINECALLSTATE_CONFERENCED

Call state mode is unused.
LINECALLSTATE_ONHOLDPENDCONF

Call state mode is unused.
LINECALLSTATE_ONHOLDPENDTRANSF

Call state mode is unused.
LINECALLSTATE_DISCONNECTED

Call state mode is of type LINEDISCONNECTMODE_. Values are:
LINEDISCONNECTMODE_NORMAL

This is a "normal" disconnect request by the remote party. The call was terminated normally.
LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request is unknown.
LINEDISCONNECTMODE_REJECT

The remote user has rejected the call.

LINEDISCONNECTMODE_PICKUP

The call was picked up from elsewhere.
LINEDISCONNECTMODE_FORWARDED

The call was forwarded by the switch.
LINEDISCONNECTMODE_BUSY

The remote user's station is busy.
LINEDISCONNECTMODE_NOANSWER

The remote user's station does not answer.
LINEDISCONNECTMODE_NODIALTONE

A dial tone was not detected within a service-provider defined timeout, at a point during dialing
when one was expected (such as at a "W" in the dialable string). This can also occur without a
service-provider-defined timeout period or without a value specified in the dwWaitForDialTone
member of the LINEDIALPARAMS structure.

LINEDISCONNECTMODE_BADADDRESS

The destination address in invalid.
LINEDISCONNECTMODE_UNREACHABLE

The remote user could not be reached.
LINEDISCONNECTMODE_CONGESTION

The network is congested.
LINEDISCONNECTMODE_INCOMPATIBLE

The remote user's station equipment is incompatible with the type of call requested.
LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect is unavailable and will not become known later.
LINECALLSTATE_UNKNOWN

Call state mode is unused.
dwCallPrivilege

The application's privilege for this call. This field uses the following LINECALLPRIVILEGE_ constants.
Values are:
LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.
LINECALLPRIVILEGE_OWNER

The application has owner privilege.
dwCallFeatures

These flags indicate which Telephony API functions can be invoked on the call, given the availability
of the feature in the device capabilities, the current call state, and call ownership of the invoking
application. A zero indicates the corresponding feature cannot be invoked by the application on the
call in its current state; a one indicates the feature can be invoked. This field uses
LINECALLFEATURE_ constants.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure.

dwCallFeatures2

Indicates additional functions can be invoked on the call, given the availability of the feature in the
device capabilities, the current call state, and call ownership of the invoking application. An extension
of the dwCallFeatures field. This field uses LINECALLFEATURE2_ constants.

tStateEntryTime

The Coordinated Universal Time at which the current call state was entered.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

The application is sent a LINE_CALLSTATE message whenever the call state of a call changes. This
message only provides the new call state of the call. Additional status about a call is available with
lineGetCallStatus.

The members dwCallFeatures2 and tStateEntryTime are available only to applications that open the
line device with an API version of 0x00020000 or greater.

See Also
LINE_CALLSTATE, LINEDIALPARAMS, lineGetCallStatus

LINECALLTREATMENTENTRY   

typedef struct linecalltreatmententry_tag {
 DWORD dwCallTreatmentID;
 DWORD dwCallTreatmentNameSize;
 DWORD dwCallTreatmentNameOffset;
} LINECALLTREATMENTENTRY, FAR *LPLINECALLTREATMENTENTRY;

Members

dwCallTreatmentID

One of the LINECALLTREATMENT_ constants (if the treatment is of a predefined type) or a service
provider-specific value.

dwCallTreatmentNameSize

dwCallTreatmentNameOffset

Size in bytes (including the terminating null) and offset from the beginning of LINEADDRESSCAPS of
a null-terminated string identifying the treatment. This would ordinarily describe the content of the
music or recorded announcement. If the treatment is of a predefined type, a meaningful name should
still be specified, for example, "Silence\0", "Busy Signal\0", "Ringback\0", or "Music\0".

LINECARDENTRY   

The LINECARDENTRY structure describes a calling card.

typedef struct linecardentry_tag {
 DWORD dwPermanentCardID;
 DWORD dwCardNameSize;
 DWORD dwCardNameOffset;
 DWORD dwCardNumberDigits;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
 DWORD dwOptions;
} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

dwPermanentCardID

The permanent ID that identifies the card.
dwCardNameSize

dwCardNameOffset

Contains a NULL-terminated ASCII string (size includes the NULL) that describes the card in a user-
friendly manner.

dwCardNumberDigits

The number of digits in the existing card number. The card number itself is not returned for security
reasons (it is stored in scrambled form by TAPI). The application can use this to insert filler bytes into
a text control in "password" mode to show that a number exists.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number
of bytes in the dialing rule defined for calls to numbers in the same area code. The rule is a null-
terminated ASCII string.

dwLongDistanceRuleSize

dwLongDistanceRuleOffset

The offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number
of bytes in the dialing rule defined for calls to numbers in the other areas in the same country. The
rule is a null-terminated ASCII string.

dwInternationalRuleSize

dwInternationalRuleOffset

The offset in bytes from the beginning of the LINETRANSLATECAPS structure and the total number
of bytes in the dialing rule defined for calls to numbers in other countries. The rule is a null-terminated
ASCII string.

dwOptions

Indicates other settings associated with this calling card, using the LINECARDOPTION_ set of
constants.

Remarks
Older applications will have been compiled without knowledge of these new fields, and using a SIZEOF
LINECARDENTRY smaller than the new size. Because this is an array in the variable portion of a
LINETRANSLATECAPS structure, it is imperative that older applications receive LINECARDENTRY
structures in the format they previously expected, or they will not be able to index properly through the
array. The application passes in a dwAPIVersion parameter with the lineGetTranslateCaps function,
which can be used for guidance by TAPI in handling this situation. lineGetTranslateCaps should use the
LINECARDENTRY fields and size that match the indicated API version, when building the
LINETRANSLATECAPS structure to be returned to the application.

No extensions.

See Also
lineGetTranslateCaps, LINETRANSLATECAPS

LINECOUNTRYENTRY   

The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of 1 or
more of these structures is returned as part of the LINECOUNTRYLIST structure returned by the function
lineGetCountry.

typedef struct linecountryentry_tag {
 DWORD dwCountryID;
 DWORD dwCountryCode;
 DWORD dwNextCountryID;
 DWORD dwCountryNameSize;
 DWORD dwCountryNameOffset;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members

dwCountryID

The country ID of the entry. The country ID is an internal identifier which allows multiple entries to
exist in the country list with the same country code (for example, all countries in North America and
the Caribbean share country code 1, but require separate entries in the list).

dwCountryCode

The actual country code of the country represented by the entry (that is, the digits that would be
dialed in an international call). Only this value should ever be displayed to users (country IDs should
never be displayed, as they would be confusing).

dwNextCountryID

The country ID of the next entry in the country list. Because country codes and IDs are not assigned
in any regular numeric sequence, the country list is a single linked list, with each entry pointing to the
next. The last country in the list has a dwNextCountryID value of 0. When the LINECOUNTRYLIST
structure is used to obtain the entire list, the entries in the list will be in sequence as linked by their
dwNextCountryID fields.

dwCountryNameSize

dwCountryNameOffset

The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a
null-terminated string giving the name of the country.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a
null-terminated ASCII string containing the dialing rule for direct-dialed calls to the same area code.

dwLongDistanceRuleSize

dwLongDistanceRuleOffset

The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a

null-terminated ASCII string containing the dialing rule for direct-dialed calls to other areas in the
same country.

dwInternationalRuleSize

dwInternationalRuleOffset

The size in bytes and the offset in bytes from the beginning of the LINECOUNTRYLIST structure of a
null-terminated ASCII string containing the dialing rule for direct-dialed calls to other countries.

Remarks
Not extensible.

Because this structure is returned by a new function, backward compatibility is not an issue at this time.

See Also
LINECOUNTRYLIST, lineGetCountry

LINECOUNTRYLIST   

The LINECOUNTRYLIST structure describes a list of countries. A structure of this type is returned by the
function lineGetCountry.

typedef struct linecountrylist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumCountries;
 DWORD dwCountryListSize;
 DWORD dwCountryListOffset;
} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwNumCountries

The number of LINECOUNTRYENTRY structures present in the array denominated by
dwCountryListSize and dwCountryListOffset.

dwCountryListSize

dwCountryListOffset

The size in bytes and the offset in bytes from the beginning of this data structure of an array of
LINECOUNTRYENTRY elements which provide the information on each country.

Remarks
Not extensible.

Because this structure is returned by a new function, backward compatibility is not an issue at this time.

See Also
LINECOUNTRYENTRY, lineGetCountry

LINEDEVCAPS   

The LINEDEVCAPS structure describes the capabilities of a line device.

typedef struct linedevcaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwProviderInfoSize;
 DWORD dwProviderInfoOffset;

 DWORD dwSwitchInfoSize;
 DWORD dwSwitchInfoOffset;

 DWORD dwPermanentLineID;
 DWORD dwLineNameSize;
 DWORD dwLineNameOffset;
 DWORD dwStringFormat;
 DWORD dwAddressModes;
 DWORD dwNumAddresses;
 DWORD dwBearerModes;
 DWORD dwMaxRate;
 DWORD dwMediaModes;

 DWORD dwGenerateToneModes;
 DWORD dwGenerateToneMaxNumFreq;
 DWORD dwGenerateDigitModes;
 DWORD dwMonitorToneMaxNumFreq;
 DWORD dwMonitorToneMaxNumEntries;
 DWORD dwMonitorDigitModes;
 DWORD dwGatherDigitsMinTimeout;
 DWORD dwGatherDigitsMaxTimeout;

 DWORD dwMedCtlDigitMaxListSize;
 DWORD dwMedCtlMediaMaxListSize;
 DWORD dwMedCtlToneMaxListSize;
 DWORD dwMedCtlCallStateMaxListSize;

 DWORD dwDevCapFlags;
 DWORD dwMaxNumActiveCalls;
 DWORD dwAnswerMode;
 DWORD dwRingModes;
 DWORD dwLineStates;

 DWORD dwUUIAcceptSize;
 DWORD dwUUIAnswerSize;
 DWORD dwUUIMakeCallSize;
 DWORD dwUUIDropSize;
 DWORD dwUUISendUserUserInfoSize;
 DWORD dwUUICallInfoSize;

 LINEDIALPARAMS MinDialParams;
 LINEDIALPARAMS MaxDialParams;

 LINEDIALPARAMS DefaultDialParams;

 DWORD dwNumTerminals;
 DWORD dwTerminalCapsSize;
 DWORD dwTerminalCapsOffset;
 DWORD dwTerminalTextEntrySize;
 DWORD dwTerminalTextSize;
 DWORD dwTerminalTextOffset;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwLineFeatures;

 DWORD dwSettableDevStatus;
 DWORD dwDeviceClassesSize;
 DWORD dwDeviceClassesOffset;
} LINEDEVCAPS, FAR *LPLINEDEVCAPS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwProviderInfoSize

dwProviderInfoOffset

The size in bytes of the variably sized field containing service provider information, and the offset in
bytes from the beginning of this data structure. The dwProviderInfoSize/Offset field is intended to
provide information about the provider hardware and/or software, such as the vendor name and
version numbers of hardware and software. This information can be useful when a user needs to call
customer service with problems regarding the provider.

dwSwitchInfoSize

dwSwitchInfoOffset

The size in bytes of the variably sized device field containing switch information, and the offset in
bytes from the beginning of this data structure. The dwSwitchInfoSize/Offset field is intended to
provide information about the switch to which the line device is connected, such as the switch
manufacturer, the model name, the software version, and so on. This information can be useful when
a user needs to call customer service with problems regarding the switch.

dwPermanentLineID

The permanent DWORD identifier by which the line device is known in the system's configuration. It is
a permanent name for the line device. This permanent name (as opposed to dwDevice ID) does not
change as lines are added or removed from the system. It can therefore be used to link line-specific
information in INI files (or other files) in a way that is not affected by adding or removing other lines.

dwLineNameSize

dwLineNameOffset

The size in bytes of the variably sized device field containing a user configurable name for this line
device, and the offset in bytes from the beginning of this data structure. This name can be configured
by the user when configuring the line device's service provider, and is provided for the user's
convenience.

dwStringFormat

The string format used with this line device. This field uses the following STRINGFORMAT_
constants:
STRINGFORMAT_ASCII

The ASCII string format using one byte per character.
STRINGFORMAT_DBCS

The DBCS string format using two bytes per character.
STRINGFORMAT_UNICODE

The Unicode string format using two bytes per character.
dwAddressModes

The mode by which the originating address is specified. This field uses the LINEADDRESSMODE_
constants.

dwNumAddresses

The number of addresses associated with this line device. Individual addresses are referred to by
address IDs. Address IDs range from zero to one less than the value indicated by
dwNumAddresses.

dwBearerModes

This flag array indicates the different bearer modes that the address is able to support. It uses the
following LINEBEARERMODE_ constants:
LINEBEARERMODE_VOICE

This is a regular 3.1 kHz analog voice-grade bearer service. Bit integrity is not assured. Voice can
support fax and modem media modes.

LINEBEARERMODE_SPEECH

This corresponds to G.711 speech transmission on the call. The network may use processing
techniques such as analog transmission, echo cancellation and compression/decompression. Bit
integrity is not assured. Speech is not intended to support fax and modem media modes.

LINEBEARERMODE_MULTIUSE

The multiuse mode defined by ISDN.
LINEBEARERMODE_DATA

The unrestricted data transfer on the call. The data rate is specified separately.
LINEBEARERMODE_ALTSPEECHDATA

The alternate transfer of speech or unrestricted data on the same call (ISDN).
LINEBEARERMODE_NONCALLSIGNALING

This corresponds to a non-call-associated signaling connection from the application to the service
provider or switch (treated as a "media stream" by the Telephony API).

LINEBEARERMODE_PASSTHROUGH

When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct
access to the attached hardware for control by the application. This mode is used primarily by
applications desiring temporary direct control over asynchronous modems, accessed through the
Win32 comm functions, for the purpose of configuring or using special features not otherwise
supported by the service provider.

dwMaxRate

This field contains the maximum data rate in bits per second for information exchange over the call.
dwMediaModes

This flag array indicates the different media modes the address is able to support. It uses the
following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

A media stream exists but its mode is not known. This corresponds to a call with an unclassified
media type. In typical analog telephony environments, an inbound call's media mode may be
unknown until after the call has been answered and the media stream filtered to make a
determination.

LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy on the call and the call is treated as an interactive call with humans
on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy on the call and the voice is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM

A data modem session on the call.
LINEMEDIAMODE_G3FAX

A group 3 fax is being sent or received over the call.
LINEMEDIAMODE_G4FAX

A group 4 fax is being sent or received over the call.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session on the call.
LINEMEDIAMODE_DIGITALDATA

Digital data being transmitted over the call.
LINEMEDIAMODE_TELETEX

A teletex session on the call. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session on the call. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session on the call. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session on the call. Mixed is one the ISDN telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session on the call.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
dwGenerateToneModes

The different kinds of tones that can be generated on this line. This field uses the following
LINETONEMODE_ constants:
LINETONEMODE_CUSTOM

The tone is a custom tone defined by the specified frequencies.
LINETONEMODE_RINGBACK

The tone to be generated is a ringback tone.
LINETONEMODE_BUSY

The tone is a standard (station) busy tone.
LINETONEMODE_BEEP

The tone is a beep, as used to announce the beginning of a recording.
LINETONEMODE_BILLING

The tone is billing information tone such as a credit card prompt tone.
dwGenerateToneMaxNumFreq

This field contains the maximum number of frequencies that can be specified in describing a general
tone using the LINEGENERATETONE data structure when generating a tone using
lineGenerateTone. A value of zero indicates that tone generation is not available.

dwGenerateDigitModes

This field specifies the digit modes than can be generated on this line. It uses the following
LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Generate digits as pulse/rotary pulse sequences.
LINEDIGITMODE_DTMF

Generate digits as DTMF tones.
dwMonitorToneMaxNumFreq

This field contains the maximum number of frequencies that can be specified in describing a general
tone using the LINEMONITORTONE data structure when monitoring a general tone using
lineMonitorTones. A value of zero indicates that tone monitor is not available.

dwMonitorToneMaxNumEntries

This field contains the maximum number of entries that can be specified in a tone list to
lineMonitorTones.

dwMonitorDigitModes

This field specifies the digit modes than can be detected on this line. It uses the following
LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of rotary pulse sequences.

LINEDIGITMODE_DTMF

Detect digits as DTMF tones.
LINEDIGITMODE_DTMFEND

Detect the down edges of digits detected as DTMF tones.
dwGatherDigitsMinTimeout

dwGatherDigitsMaxTimeout

These fields contain the minimum and maximum values in milliseconds that can be specified for both
the first digit and inter-digit timeout values used by lineGatherDigits. If both these field are zero,
timeouts are not supported.
dwMedCtlDigitMaxListSize

dwMedCtlMediaMaxListSize

dwMedCtlToneMaxListSize

dwMedCtlCallStateMaxListSize

These fields contain the maximum number of entries that can be specified in the digit list, the
media list, the tone list, and the call state list parameters of lineSetMediaControl respectively.

dwDevCapFlags

This field specifies various Boolean device capabilities. It uses the following LINEDEVCAPFLAGS_
constants:
LINEDEVCAPFLAGS_CROSSADDRCONF

Specifies whether calls on different addresses on this line can be conferenced.
LINEDEVCAPFLAGS_HIGHLEVCOMP

Specifies whether high-level compatibility information elements are supported on this line.
LINEDEVCAPFLAGS_LOWLEVCOMP

Specifies whether low-level compatibility information elements are supported on this line.
LINEDEVCAPFLAGS_MEDIACONTROL

Specifies whether media-control operations are available for calls at this line.
LINEDEVCAPFLAGS_MULTIPLEADDR

Specifies whether lineMakeCall or lineDial are able to deal with multiple addresses at once (such
as for inverse multiplexing).

LINEDEVCAPFLAGS_CLOSEDROP

Specifies what happens when an open line is closed while the application has calls active on the
line. If TRUE, the service provider drops (clears) all active calls on the line when the last
application that has opened the line closes it with lineClose. If FALSE, the service provider does
not drop active calls in such cases. Instead, the calls remain active and under control of external
device(s). A service provider typically sets this bit to FALSE if there is some other device that can
keep the call alive. For example, if an analog line has the computer and phoneset both connect
directly to them in a party-line configuration, the offhook phone will automatically keep the call
active even after the computer powers down.
Applications should check this flag to determine whether to warn the user (with an OK/Cancel
dialog box) that active calls will be lost.

LINEDEVCAPFLAGS_DIALBILLING

LINEDEVCAPFLAGS_DIALQUIET

LINEDEVCAPFLAGS_DIALDIALTONE

These flags indicate whether the "$", "@", or "W" dialable string modifier is supported for a given
line device. It is TRUE if the modifier is supported; otherwise, FALSE. The "?" (prompt user to
continue dialing) is never supported by a line device. These flags allow an application to determine
"up front" which modifiers would result in the generation of a LINEERR. The application has the
choice of pre-scanning dialable strings for unsupported characters, or passing the "raw" string from
lineTranslateAddress directly to the provider as part of lineMakeCall (lineDial, and so on) and let
the function generate an error to tell it which unsupported modifier occurs first in the string.

dwMaxNumActiveCalls

This field provides the maximum number of (minimum bandwidth) calls that can be active (connected)
on the line at any one time. The actual number of active calls may be lower if higher bandwidth calls
have been established on the line.

dwAnswerMode

This field specifies the effect on the active call when answering another offering call on a line device.
This field uses the following LINEANSWERMODE_ constants:
LINEANSWERMODE_NONE

Answering another call on the same line has no effect on the existing active call(s) on the line.
LINEANSWERMODE_DROP

The currently active call will be automatically dropped.
LINEANSWERMODE_HOLD

The currently active call will automatically be placed on hold.
dwRingModes

This field contains the number of different ring modes that can be reported in the
LINE_LINEDEVSTATE message with the ringing indication. Different ring modes range from one to
dwRingModes. Zero indicates no ring.

dwLineStates

This field specifies the different line status components for which the application may be notified in a
LINE_LINEDEVSTATE message on this line. It uses the following LINEDEVSTATE_ constants:
LINEDEVSTATE_OTHER

Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING

The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending LINE_LINEDEVSTATE messages containing this constant. For example, in the United
States, service providers send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED

The line was previously disconnected and is now connected to TAPI.
LINEDEVSTATE_DISCONNECTED

This line was previously connected and is now disconnected from TAPI.
LINEDEVSTATE_MSGWAITON

The "message waiting" indicator is turned on.
LINEDEVSTATE_MSGWAITOFF

The "message waiting" indicator is turned off.
LINEDEVSTATE_NUMCOMPLETIONS

The number of outstanding call completions on the line device has changed.
LINEDEVSTATE_INSERVICE

The line is connected to TAPI. This happens when TAPI is first activated or when the line wire is
physically plugged in and in service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate
on the line device.

LINEDEVSTATE_MAINTENANCE

Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the
line device.

LINEDEVSTATE_OPEN

The line has been opened.
LINEDEVSTATE_CLOSE

The line has been closed.
LINEDEVSTATE_NUMCALLS

The number of calls on the line device has changed.
LINEDEVSTATE_TERMINALS

The terminal settings have changed.
LINEDEVSTATE_ROAMMODE

The roam mode of the line device has changed.
LINEDEVSTATE_BATTERY

The battery level has changed significantly (cellular).
LINEDEVSTATE_SIGNAL

The signal level has changed significantly (cellular).
LINEDEVSTATE_DEVSPECIFIC

The line's device-specific information has changed.
LINEDEVSTATE_REINIT

Items have changed in the configuration of line devices. To become aware of these changes (such
as for the appearance of new line devices), the application should reinitialize its use of TAPI. The
hDevice parameter is left NULL for this state change as it applies to any of the lines in the system.

LINEDEVSTATE_LOCK

The locked status of the line device has changed.

LINEDEVSTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINEDEVCAPS structure for the address have changed. The application should
use lineGetDevCaps to read the updated structure. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will receive LINE_LINEDEVSTATE messages specifying
LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI in
order to obtain the updated information.

LINEDEVSTATE_CONFIGCHANGE

Indicates that configuration changes have been made to one or more of the media devices
associated with the line device. The application, if it desires, may use lineGetDevConfig to read
the updated information. If a service provider sends a LINE_LINEDEVSTATE message containing
this value to TAPI, TAPI will pass it along to applications which have negotiated TAPI version
0x00010004 or above; applications negotiating a previous API version will not receive any
notification.

LINEDEVSTATE_TRANSLATECHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the LINETRANSLATECAPS structure have changed. The application should use
lineGetTranslateCaps to read the updated structure. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will receive LINE_LINEDEVSTATE messages specifying
LINEDEVSTATE_REINIT, requiring them to shutdown and reinitialize their connection to TAPI in
order to obtain the updated information.

LINEDEVSTATE_COMPLCANCEL

Indicates that the call completion identified by the completion ID contained in parameter dwParam2
of the LINE_LINEDEVSTATE message has been externally canceled and is no longer considered
valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the function
would fail with LINEERR_INVALCOMPLETIONID). If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will not receive any notification.

LINEDEVSTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A LINE_LINEDEVSTATE message
with this value will normally be immediately followed by a LINE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to
applications which have negotiated TAPI version 0x00010004 or above; applications negotiating a
previous API version will not receive any notification.

dwUUIAcceptSize

This field specifies the maximum size of user-to-user information that can be sent during a call
accept.

dwUUIAnswerSize

This field specifies the maximum size of user-to-user information that can be sent during a call
answer.

dwUUIMakeCallSize

This field specifies the maximum size of user-to-user information that can be sent during a make call.
dwUUIDropSize

This field specifies the maximum size of user-to-user information that can be sent during a call drop.
dwUUISendUserUserInfoSize

This field specifies the maximum size of user-to-user information that can be sent separately any time
during a call with lineSendUserUserInfo.

dwUUICallInfoSize

This field specifies the maximum size of user-to-user information that can be received in the
LINECALLINFO structure.

MinDialParams

MaxDialParams

These fields contain the minimum and maximum values for the dial parameters in milliseconds that
can be set for calls on this line. Dialing parameters can be set to values in this range. The granularity
of the actual settings is service provider-specific.

DefaultDialParams

This field contains the default dial parameters used for calls on this line. These parameter values can
be overridden on a per-call basis.

dwNumTerminals

The number of terminals that can be set for this line device, its addresses, or its calls. Individual
terminals are referred to by terminal IDs and range from zero to one less than the value indicated by
dwNumTerminals.

dwTerminalCapsSize

dwTerminalCapsOffset

The size in bytes and the offset in bytes from the beginning of this data structure of the variably sized
device field containing an array with entries of type LINETERMCAPS. This array is indexed by
terminal IDs, in the range from zero to dwNumTerminals minus one. Each entry in the array specifies
the terminal device capabilities of the corresponding terminal.

dwTerminalTextEntrySize

The size in bytes of each of the terminal text descriptions pointed at by dwTerminalTextSize/Offset.
dwTerminalTextSize

dwTerminalTextOffset

The size in bytes of the variably sized field containing descriptive text about each of the line's
available terminals, and the offset in bytes from the beginning of this data structure. Each message is
dwTerminalTextEntrySize bytes long. The string format of these textual descriptions is indicated by
dwStringFormat in the line's device capabilities.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure

dwLineFeatures

This field specifies the features available for this line using the LINEFEATURE_ constants. Invoking a
supported feature requires the line to be in the proper state and the underlying line device to be
opened in a compatible mode. A zero in a bit position indicates that the corresponding feature is never
available. A one indicates that the corresponding feature may be available if the line is in the
appropriate state for the operation to be meaningful. This field allows an application to discover which
line features can be (and which can never be) supported by the device.

dwSettableDevStatus

The LINEDEVSTATUS_ values which can be modified using lineSetLineDevStatus.
dwDeviceClassesSize

dwDeviceClassesOffset

Length in bytes and offset from the beginning of LINEDEVCAPS of a string consisting of the device
class identifiers supported on one or more addresses on this line for use with lineGetID, separated by
nulls; the last identifier in the list is followed by two nulls.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

Older applications will have been compiled without new fields in the LINEDEVCAPS structure, and using
a SIZEOF LINEDEVCAPS smaller than the new size. The application passes in a dwAPIVersion
parameter with the lineGetDevCaps function, which can be used for guidance by TAPI in handling this
situation. If the application passes in a dwTotalSize less than the size of the fixed portion of the structure
as defined in the dwAPIVersion specified, LINEERR_STRUCTURETOOSMALL will be returned. If
sufficient memory has been allocated by the application, before calling TSPI_lineGetDevCaps, TAPI will
set the dwNeededSize and dwUsedSize fields to the fixed size of the structure as it existed in the
specified API version.

New applications must be cognizant of the API version negotiated, and not examine the contents of fields
in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API
version.

If the LINEBEARERMODE_DATA bit is set in dwBearerModes member, the dwMaxRate member
indicates the maximum rate of digital transmission on the bearer channel. The dwMaxRate member of
the LINEDEVCAPS structure can contain valid values even if the dwBearerModes member of the
LINEDEVCAPS structure is not set to LINEBEARERMODE_DATA.

If LINEBEARERMODE_DATA is not set in dwBearerModes, but the LINEBEARERMODE_VOICE value
is set and the LINEMEDIAMODE_DATAMODEM value is set in the dwMediaModes member, the
dwMaxRate member indicates the maximum SYNCHRONOUS (DCE) bit rate on the phone line for the
attached modem or functional equivalent. For example, if the modem's fastest modulation speed is
V.32bis at 14,400bps, dwMaxRate will equal 14400. This is not the fastest DTE port rate (which would
most likely be 38400, 57600, or 115200), but the fastest bit rate the modem supports on the phone line.

The application must be careful to check to see that LINEBEARERMODE_DATA is not set, to avoid
misinterpreting the dwMaxRate member. It is likely to be 64000 or higher if LINEBEARERMODE_DATA is
set.

It should also be noted that if the modem has not been specifically identified (for example, it is a "generic"
modem), the figure indicated is a "best guess" based on examination of the modem.

The members dwSettableDevStatus through dwDeviceClassesOffset are available only to applications
that open the line device with an API version of 0x00020000 or greater.

See Also
LINE_LINEDEVSTATE, LINECALLINFO, lineClose, lineDial, lineGatherDigits, LINEGENERATETONE,
lineGenerateTone, lineGetDevCaps, lineGetID, lineGetTranslateCaps, lineSendUserUserInfo,
lineMakeCall, LINEMONITORTONE, lineMonitorTones, lineSetMediaControl, LINETERMCAPS,
lineTranslateAddress, LINETRANSLATECAPS, lineUncompleteCall

LINEDEVSTATUS   

The LINEDEVSTATUS structure describes the current status of a line device.

typedef struct linedevstatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumOpens;
 DWORD dwOpenMediaModes;
 DWORD dwNumActiveCalls;
 DWORD dwNumOnHoldCalls;
 DWORD dwNumOnHoldPendCalls;
 DWORD dwLineFeatures;
 DWORD dwNumCallCompletions;
 DWORD dwRingMode;
 DWORD dwSignalLevel;
 DWORD dwBatteryLevel;
 DWORD dwRoamMode;

 DWORD dwDevStatusFlags;

 DWORD dwTerminalModesSize;
 DWORD dwTerminalModesOffset;

 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwAvailableMediaModes;
 DWORD dwAppInfoSize;
 DWORD dwAppInfoOffset;
} LINEDEVSTATUS, FAR *LPLINEDEVSTATUS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwNumOpens

The number of active opens on the line device.
dwOpenMediaModes

This bit array indicates for which media modes the line device is currently open.
dwNumActiveCalls

The number of calls on the line in call states other than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls

The number of calls on the line in the onhold state.
dwNumOnHoldPendingCalls

The number of calls on the line in the onholdpendingtransfer or onholdpendingconference states.
dwLineFeatures

This field specifies the line-related API functions that are currently available on this line. It uses the
following LINEFEATURE_ constants:
LINEFEATURE_DEVSPECIFIC

Device-specific operations can be used on the line.
LINEFEATURE_DEVSPECIFICFEAT

Device-specific features can be used on the line.
LINEFEATURE_FORWARD

Forwarding of all addresses can be used on the line.
LINEFEATURE_MAKECALL

An outbound call can be placed on this line using an unspecified address.
LINEFEATURE_SETMEDIACONTROL

Media control can be set on this line.
LINEFEATURE_SETTERMINAL

Terminal modes for this line can be set.
dwNumCallCompletions

The number of outstanding call completion requests on the line.
dwRingMode

The current ring mode on the line device.
dwBatteryLevel

The current battery level of the line device hardware. This is a value in the range 0x00000000 (battery
empty) to 0x0000FFFF (battery full).

dwSignalLevel

The current signal level of the connection on the line. This is a value in the range 0x00000000
(weakest signal) to 0x0000FFFF (strongest signal).

dwRoamMode

The current roam mode of the line device. It uses the following LINEROAMMODE_ constants:
LINEROAMMODE_UNKNOWN

The roam mode is currently unknown but may become known later.
LINEROAMMODE_UNAVAIL

The roam mode is unavailable and will not be known.
LINEROAMMODE_HOME

The line is connected to the home network node.

LINEROAMMODE_ROAMA

The line is connected to the Roam-A carrier and calls are charged accordingly.
LINEROAMMODE_ROAMB

The line is connected to the Roam-B carrier and calls are charged accordingly.
dwDevStatusFlags

The size in bytes of this data structure that contains useful information, of type
LINEDEVSTATUSFLAGS_.
LINEDEVSTATUSFLAGS_CONNECTED

Specifies whether the line is connected to TAPI. If TRUE, the line is connected and API is able to
operate on the line device. If FALSE, the line is disconnected and the application is unable to
control the line device using TAPI.

LINEDEVSTATUSFLAGS_LOCKED

This bit is most often used with line devices associated with cellular phones. Many cellular phones
have a security mechanism that requires the entry of a password to enable the phone to place
calls. This bit may be used to indicate to applications that the phone is locked and cannot place
calls until the password is entered on the user interface of the phone, so that the application can
present an appropriate alert to the user.

LINEDEVSTATUSFLAGS_MSGWAIT

This field indicates whether the line has a message waiting. If TRUE, a message is waiting; if
FALSE, no message is waiting.

LINEDEVSTATUSFLAGS_INSERVICE

This field indicates whether the line is in service. If TRUE, the line is in service; if FALSE, the line is
out of service.

dwTerminalModesSize

dwTerminalModesOffset

The size in bytes of the variably sized device field containing an array with DWORD-sized entries,
and the offset in bytes from the beginning of this data structure. This array is indexed by terminal IDs,
in the range from zero to dwNumTerminals minus one. Each entry in the array specifies the current
terminal modes for the corresponding terminal set using the lineSetTerminal operation for this line. It
uses the following LINETERMMODE_ constants:
LINETERMMODE_LAMPS

Lamp events sent from the line to the terminal.
LINETERMMODE_BUTTONS

Button-press events sent from the terminal to the line.
LINETERMMODE_DISPLAY

Display information sent from the line to the terminal.
LINETERMMODE_RINGER

Ringer-control information sent from the switch to the terminal.
LINETERMMODE_HOOKSWITCH

Hookswitch events sent between the terminal and the line.
LINETERMMODE_MEDIATOLINE

The unidirectional media stream from the terminal to the line associated with a call on the line. Use
this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIAFROMTERM

This is the unidirectional media stream from the line to the terminal associated with a call on the
line. Use this value when the routing of both unidirectional channels of a call's media stream can
be controlled independently.

LINETERMMODE_MEDIABIDIRECT

This is the bidirectional media stream associated with a call on the line and the terminal. Use this
value when the routing of both unidirectional channels of a call's media stream cannot be
controlled independently.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure.

dwAvailableMediaModes

Indicates the media modes that can be invoked on new calls created on this line device, when the
dwLineFeatures field indicates that new calls are possible. If this field is zero, it indicates that the
service provider either does not know or cannot indicate which media modes are available, in which
case any or all of the media modes indicated in the dwMediaModes field in LINEDEVCAPS may be
available.

dwAppInfoSize

dwAppInfoOffset

Length in bytes and offset from the beginning of LINEDEVSTATUS of an array of LINEAPPINFO
structures. The dwNumOpens member indicates the number of elements in the array. Each element
in the array identifies an application that has the line open.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

These members dwAvailableMediaModes through dwAppInfoOffset are available only to applications
that open the line device with an API version of 0x00020000 or greater.

See Also
LINEAPPINFO, LINEDEVCAPS, lineSetTerminal

LINEDIALPARAMS   

The LINEDIALPARAMS structure specifies a collection of dialing-related fields.

typedef struct linedialparams_tag {
 DWORD dwDialPause;
 DWORD dwDialSpeed;
 DWORD dwDigitDuration;
 DWORD dwWaitForDialtone;
} LINEDIALPARAMS, FAR *LPLINEDIALPARAMS;

Members

dwDialPause

The duration in milliseconds of a comma in the dialable address.
dwDialSpeed

The inter-digit time period in milliseconds between successive digits.
dwDigitDuration

The duration in milliseconds of a digit.
dwWaitForDialtone

The maximum amount of time that should be waited for dial tone when a 'W' is used in the dialable
address.

Remarks
No extensions.

When a value of zero is specified for a field, the default value for that field is used. If a non-zero value is
specified for a field which is outside the range specified by the corresponding fields in MinDialParams
and MaxDialParams in the LINEDEVCAPS structure, the nearest value within the valid range is used
instead.

The lineMakeCall function allows an application to adjust the dialing parameters to be used for the call.
The lineSetCallParams function can be used to adjust the dialing parameters of an existing call. The
LINECALLINFO structure lists the call's current dialing parameters.

See Also
LINECALLINFO, LINEDEVCAPS, lineMakeCall, lineSetCallParams

LINEEXTENSIONID   

The LINEEXTENSIONID structure describes an extension ID. Extension IDs are used to identify service
provider-specific extensions for line devices.

typedef struct lineextensionid_tag {
 DWORD dwExtensionID0;
 DWORD dwExtensionID1;
 DWORD dwExtensionID2;
 DWORD dwExtensionID3;
} LINEEXTENSIONID, FAR *LPLINEEXTENSIONID;

Members

dwExtensionID0

dwExtensionID1

dwExtensionID2

dwExtensionID3

These four DWORD-sized fields together specify a universally unique extension ID that identifies a
line device class extension.

Remarks
No extensions.

Extension IDs are generated using an SDK-provided generation utility.

LINEFORWARD   

The LINEFORWARD structure describes an entry of the forwarding instructions.

typedef struct lineforward_tag {
 DWORD dwForwardMode;

 DWORD dwCallerAddressSize;
 DWORD dwCallerAddressOffset;

 DWORD dwDestCountryCode;
 DWORD dwDestAddressSize;
 DWORD dwDestAddressOffset;
} LINEFORWARD, FAR *LPLINEFORWARD;

Members

dwForwardMode

The types of forwarding. The dwForwardMode field can have only a single bit set. This field uses the
following LINEFORWARDMODE_ constants:
LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their origin. Use this value when unconditional
forwarding for internal and external calls cannot be controlled separately. Unconditional forwarding
overrides forwarding on busy and/or no answer conditions.

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a specified address (selective call forwarding).
LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use this value when forwarding for internal
and external calls both on busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when forwarding for internal and external calls on
busy and on no answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when forwarding for internal and external calls on
busy and on no answer can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified address (selective call forwarding).
LINEFORWARDMODE_NOANSW

Forward all calls on no answer, irrespective of their origin. Use this value when call forwarding for

internal and external calls on no answer cannot be controlled separately.
LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value when forwarding for internal and external
calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value when forwarding for internal and external
calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on no answer (selective call forwarding).
LINEFORWARDMODE_BUSYNA

Forward all calls on busy/no answer, irrespective of their origin. Use this value when forwarding for
internal and external calls on both busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy/no answer. Use this value when call forwarding on busy and on
no answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy/no answer. Use this value when call forwarding on busy and on
no answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy/no answer all calls that originated at a specified address (selective call
forwarding).

LINEFORWARDMODE_UNKNOWN

Calls are forwarded, but the conditions under which forwarding will occur are not known at this
time. It is possible that the conditions may become known at a future time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which forwarding will occur are not known, and will
never be known by the service provider.

dwCallerAddressSize

dwCallerAddressOffset

The size in bytes of the variably sized address field containing the address of a caller to be forwarded,
and the offset in bytes from the beginning of the containing data structure. The
dwCallerAddressSize/Offset field is set to zero if dwForwardMode is not one of the following:
LINEFORWARDMODE_BUSYNASPECIFIC, LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or LINEFORWARDMODE_BUSYSPECIFIC.

dwDestCountryCode

The country code of the destination address to which the call is to be forwarded.
dwDestAddressSize

dwDestAddressOffset

The size in bytes of the variably sized address field containing the address of the address where calls
are to be forwarded, and the offset in bytes from the beginning of the containing data structure.

Remarks
No extensions.

Each entry in the LINEFORWARD structure specifies a forwarding request.

LINEFORWARDLIST   

The LINEFORWARDLIST structure describes a list of forwarding instructions.

typedef struct lineforwardlist_tag {
 DWORD dwTotalSize;

 DWORD dwNumEntries;
 LINEFORWARD ForwardList[1];
} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

Members

dwTotalSize

The total size in bytes of the data structure.
dwNumEntries

Number of entries in the array specified as ForwardList[].
ForwardList[]

An array of forwarding instruction. The array's entries are of type LINEFORWARD.

Remarks
No extensions.

The LINEFORWARDLIST structure defines the forwarding parameters requested for forwarding calls on
an address or on all addresses on a line.

LINEGENERATETONE   

The LINEGENERATETONE structure contains information about a tone to be generated.

typedef struct linegeneratetone_tag {
 DWORD dwFrequency;
 DWORD dwCadenceOn;
 DWORD dwCadenceOff;
 DWORD dwVolume;
} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

Members

dwFrequency

The frequency in Hertz of this tone component. A service provider may adjust (round up or down) the
frequency specified by the application to fit its resolution.

dwCadenceOn

The "on" duration in milliseconds of the cadence of the custom tone to be generated. Zero means no
tone is generated.

dwCadenceOff

The "off" duration in milliseconds of the cadence of the custom tone to be generated. Zero means no
off time, that is, a constant tone.

dwVolume

The volume level at which the tone is to be generated. A value of 0x0000FFFF represents full volume,
and a value of 0x00000000 is silence.

Remarks
No extensions.

This structure is only used for the generation of tones. It is not used for tone monitoring.

LINEINITIALIZEEXPARAMS   

typedef struct lineinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;

 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;

 DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members

dwOptions

One of the LINEINITIALIZEEXOPTION_ constants. Specifies the event notification mechanism the
applications desires to use.

hEvent

If dwOptions specifies LINEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event handle in
this field.

hCompletionPort

If dwOptions specifies LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application must
specify in this field the handle of an existing completion port opened using CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application must
specify in this field a value that will be returned through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message as a telephony message.

Remarks
See lineInitializeEx for further information on these options.

LINELOCATIONENTRY   

The LINELOCATIONENTRY structure describes a location used to provide an address translation
context.

typedef struct linelocationentry_tag {
 DWORD dwPermanentLocationID;
 DWORD dwLocationNameSize;
 DWORD dwLocationNameOffset;
 DWORD dwCountryCode;
 DWORD dwCityCodeSize;
 DWORD dwCityCodeOffset;
 DWORD dwPreferredCardID;
 DWORD dwLocalAccessCodeSize;
 DWORD dwLocalAccessCodeOffset;
 DWORD dwLongDistanceAccessCodeSize;
 DWORD dwLongDistanceAccessCodeOffset;
 DWORD dwTollPrefixListSize;
 DWORD dwTollPrefixListOffset;
 DWORD dwCountryID;
 DWORD dwOptions;
 DWORD dwCancelCallWaitingSize;
 DWORD dwCancelCallWaitingOffset;
} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members

dwPermanentLocationID

The permanent ID that identifies the location.
dwLocationNameSize

dwLocationNameOffset

Contains a NULL-terminated ASCII string (size includes the NULL) that describes the location in a
user-friendly manner.

dwCountryCode

The country code of the location.
dwPreferredCardID

The preferred calling card when dialing from this location.
dwCityCodeSize

dwCityCodeOffset

Contains a NULL-terminated ASCII string specifying the city/area code associated with the location
(the size includes the NULL). This information, along with the country code, can be used by
applications to "default" entry fields for the user when entering phone numbers, to encourage the
entry of proper canonical numbers.

dwLocalAccessCodeSize

dwLocalAccessCodeOffset

The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure
of a null-terminated ASCII string containing the access code to be dialed before calls to addresses in

the local calling area.
dwLongDistanceAccessCodeSize

dwLongDistanceAccessCodeOffset

The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure
of a null-terminated ASCII string containing the access code to be dialed before calls to addresses
outside the local calling area.

dwTollPrefixListSize

dwTollPrefixListOffset

The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure
of a null-terminated ASCII string containing the toll prefix list for the location. The string will contain
only prefixes consisting of the digits "0" through "9", separated from each other by a single ","
(comma) character.

dwCountryID

The country ID of the country selected for the location. This can be used with the lineGetCountry
function to obtain additional information about the specific country, such as the country name (the
dwCountryCode field cannot be used for this purpose because country codes are not unique).

dwOptions

Indicates options in effect for this location, with values taken from the LINELOCATIONOPTION_ set
of constants.

dwCancelCallWaitingSize

dwCancelCallWaitingOffset

The size in bytes and the offset in bytes from the beginning of the LINETRANSLATECAPS structure
of a null-terminated ASCII string containing the dial digits and modifier characters that should be
prefixed to the dialable string (after the pulse/tone character) when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit in the dwTranslateOptions parameter of
lineTranslateAddress. If no prefix is defined, this may be indicated by dwCancelCallWaitingSize
being set to 0, or by it being set to 1 and dwCancelCallWaitingOffset pointing to an empty string
(single null byte).

Remarks
No extensions.

Older applications will have been compiled without knowledge of these new fields, and using a SIZEOF
LINELOCATIONENTRY smaller than the new size. Because this is an array in the variable portion of a
LINETRANSLATECAPS structure, it is imperative that older applications receive LINELOCATIONENTRY
structures in the format they previously expected, or they will not be able to index through the array
properly. The application passes in a dwAPIVersion parameter with the lineGetTranslateCaps function,
which can be used for guidance by TAPI in handling this situation. lineGetTranslateCaps should use the
LINELOCATIONENTRY fields and size that match the indicated API version, when building the
LINETRANSLATECAPS structure to be returned to the application.

See Also
lineGetCountry, lineGetTranslateCaps, lineTranslateAddress, LINETRANSLATECAPS

LINEMEDIACONTROLCALLSTATE   

The LINEMEDIACONTROLCALLSTATE structure describes a media action to be executed when
detecting transitions into one or more call states.

typedef struct linemediacontrolcallstate_tag {
 DWORD dwCallStates;
 DWORD dwMediaControl;
} LINEMEDIACONTROLCALLSTATE, FAR *LPLINEMEDIACONTROLCALLSTATE;

Members

dwCallStates

Specifies one or more call states. This field uses the following LINECALLSTATE_ constants:
LINECALLSTATE_IDLE

The call is idle¾no call exists.
LINECALLSTATE_OFFERING

The call is being offered to the station, signaling the arrival of a new call. In some environments, a
call in the offering state does not automatically alert the user. Alerting is done by the switch
instructing the line to ring, and it does not affect any call states.

LINECALLSTATE_ACCEPTED

The call was offering and has been accepted. This indicates to other (monitoring) applications that
the current owner application has claimed responsibility for answering the call. In ISDN, this also
initiates alerting to both parties.

LINECALLSTATE_DIALTONE

The call is receiving a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is being sent to the switch over the call. Note
that the operation lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call is receiving ringback from the called address. Ringback indicates that the other station has
been reached and is being alerted.

LINECALLSTATE_BUSY

The call is receiving a busy tone. Busy tone indicates that the call cannot be completed because
either a circuit (trunk) or the remote party's station are in use.

LINECALLSTATE_SPECIALINFO

Special information is sent by the network. Special information is typically sent when the
destination cannot be reached.

LINECALLSTATE_CONNECTED

The call has been established, and the connection is made. Information is able to flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing has completed and the call is proceeding through the switch or telephone network.

LINECALLSTATE_ONHOLD

The call is on hold by the switch.
LINECALLSTATE_CONFERENCED

The call is currently a member of a multiparty conference call.
LINECALLSTATE_ONHOLDPENDCONF

The call is currently on hold while it is being added to a conference.
LINECALLSTATE_ONHOLDPENDTRANSF

The call is currently on hold awaiting transfer to another number.
LINECALLSTATE_DISCONNECTED

The remote party has disconnected from the call.
LINECALLSTATE_UNKNOWN

The state of the call is not known. This may be due to limitations of the call-progress detection
implementation.

dwMediaControl

The media-control action. This field uses the following LINEMEDIACONTROL_ constants:
LINEMEDIACONTROL_NONE

No change is to be made to the media stream.
LINEMEDIACONTROL_RESET

Reset the media stream. Equivalent to an end-of-input. All buffers are released.
LINEMEDIACONTROL_PAUSE

Temporarily pause the media stream.
LINEMEDIACONTROL_RESUME

Start or resume a paused media stream.
LINEMEDIACONTROL_RATEUP

The speed of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_RATEDOWN

The speed of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_RATENORMAL

The speed of the media stream is returned to normal.
LINEMEDIACONTROL_VOLUMEUP

The amplitude of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMEDOWN

The amplitude of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMENORMAL

The amplitude of the media stream is returned to normal.

Remarks
No extensions.

The LINEMEDIACONTROLCALLSTATE structure defines a triple <call state(s), media-control action>.
An array of these triples is passed to the lineSetMediaControl function to set the media-control actions
triggered by the transition to the call state of the given call. When a transition to a listed call state is
detected, the corresponding action on the media stream is invoked.

See Also
lineGenerateDigits, lineSetMediaControl

LINEMEDIACONTROLDIGIT   

The LINEMEDIACONTROLDIGIT structure describes a media action to be executed when detecting a
digit. It is used as an entry in an array.

typedef struct linemediacontroldigit_tag {
 DWORD dwDigit;
 DWORD dwDigitModes;
 DWORD dwMediaControl;
} LINEMEDIACONTROLDIGIT, FAR *LPLINEMEDIACONTROLDIGIT;

Members

dwDigit

The low-order byte of this DWORD specifies the digit in ASCII whose detection is to trigger a media
action. Valid digits depend on the media mode.

dwDigitModes

The digit mode(s) that are to be monitored. This field uses the following LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of rotary pulse sequences. Valid digits for pulse
are '0' through '9'.

LINEDIGITMODE_DTMF

Detect digits as DTMF tones. Valid digits for DTMF are '0' through '9', 'A', 'B', 'C', 'D', '*', and '#'.
LINEDIGITMODE_DTMFEND

Detect and provide application notification of DTMF down edges. Valid digits for DTMF are '0'
through '9', 'A', 'B', 'C', 'D', '*', and '#'.

dwMediaControl

The media-control action. This field uses the following LINEMEDIACONTROL_ constants:
LINEMEDIACONTROL_NONE

No change is to be made to the media stream.
LINEMEDIACONTROL_RESET

Reset the media stream. Equivalent to an end-of-input. All buffers are released.
LINEMEDIACONTROL_PAUSE

Temporarily pause the media stream.
LINEMEDIACONTROL_RESUME

Start or resume a paused media stream.
LINEMEDIACONTROL_RATEUP

The speed of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_RATEDOWN

The speed of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_RATENORMAL

The speed of the media stream is returned to normal.

LINEMEDIACONTROL_VOLUMEUP

The amplitude of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMEDOWN

The amplitude of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMENORMAL

The amplitude of the media stream is returned to normal.

Remarks
No extensions.

The LINEMEDIACONTROLMEDIA structure defines a triple <digit, digit mode(s), media-control action>.
An array of these triples is passed to the lineSetMediaControl function to set the media-control actions
triggered by digits detected on a given call. When a listed digit is detected, then the corresponding action
on the media stream is invoked.

See Also
LINEMEDIACONTROLMEDIA, lineSetMediaControl

LINEMEDIACONTROLMEDIA   

The LINEMEDIACONTROLMEDIA structure describes a media action to be executed when detecting a
media-mode change. It is used as an entry in an array.

typedef struct linemediacontrolmedia_tag {
 DWORD dwMediaModes;
 DWORD dwDuration;
 DWORD dwMediaControl;
} LINEMEDIACONTROLMEDIA, FAR *LPLINEMEDIACONTROLMEDIA;

Members

dwMediaModes

One or more media modes. This field uses the following LINEMEDIAMODE_ constants:
LINEMEDIAMODE_UNKNOWN

A media stream exists but its mode is not known. This would correspond to a call with an
unclassified media type. In typical analog telephony environments, an inbound call's media mode
may be unknown until after the call has been answered and the media stream filtered to make a
determination.

LINEMEDIAMODE_INTERACTIVEVOICE

The presence of voice energy on the call and the call is treated as an interactive call with humans
on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE

The presence of voice energy on the call and the voice is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM

A data modem session on the call.
LINEMEDIAMODE_G3FAX

A group 3 fax is being sent or received over the call.
LINEMEDIAMODE_G4FAX

A group 4 fax is being sent or received over the call.
LINEMEDIAMODE_TDD

A TDD (Telephony Devices for the Deaf) session on the call.
LINEMEDIAMODE_DIGITALDATA

Digital data is being sent or received over the call.
LINEMEDIAMODE_TELETEX

A teletex session on the call. Teletex is one of the telematic services.
LINEMEDIAMODE_VIDEOTEX

A videotex session on the call. Videotex is one the telematic services.
LINEMEDIAMODE_TELEX

A telex session on the call. Telex is one the telematic services.
LINEMEDIAMODE_MIXED

A mixed session on the call. Mixed is one the ISDN telematic services.
LINEMEDIAMODE_ADSI

An ADSI (Analog Display Services Interface) session on the call.
LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.
dwDuration

The duration in milliseconds during which the media mode should be present before the application
should be notified or media-control action should be taken.

dwMediaControl

The media-control action. This field uses the following LINEMEDIACONTROL_ constants:
LINEMEDIACONTROL_NONE

No change is to be made to the media stream.
LINEMEDIACONTROL_RESET

Reset the media stream. Equivalent to an end-of-input. All buffers are released.
LINEMEDIACONTROL_PAUSE

Temporarily pause the media stream.
LINEMEDIACONTROL_RESUME

Start or resume a paused media stream.
LINEMEDIACONTROL_RATEUP

The speed of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_RATEDOWN

The speed of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_RATENORMAL

The speed of the media stream is returned to normal.
LINEMEDIACONTROL_VOLUMEUP

The amplitude of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMEDOWN

The amplitude of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMENORMAL

The amplitude of the media stream is returned to normal.

Remarks
No extensions.

The LINEMEDIACONTROLMEDIA structure defines a triple <media mode(s), duration, media-control
action>. An array of these triples is passed to the lineSetMediaControl function to set the media-control
actions triggered by media-mode changes for a given call. When a change to a listed media mode is
detected, then the corresponding action on the media stream is invoked.

See Also
lineSetMediaControl

LINEMEDIACONTROLTONE   

The LINEMEDIACONTROLTONE structure describes a media action to be executed when a tone has
been detected. It is used as an entry in an array.

typedef struct linemediacontroltone_tag {
 DWORD dwAppSpecific;
 DWORD dwDuration;
 DWORD dwFrequency1;
 DWORD dwFrequency2;
 DWORD dwFrequency3;
 DWORD dwMediaControl;
} LINEMEDIACONTROLTONE, FAR *LPLINEMEDIACONTROLTONE;

Members

dwAppSpecific

This field is used by the application for tagging the tone. When this tone is detected, the value of the
dwAppSpecific field is passed back to the application.

dwDuration

The duration in milliseconds during which the tone should be present before a detection is made.
dwFrequency1

dwFrequency2

dwFrequency3

The frequency in Hertz of a component of the tone. If fewer than three frequencies are needed in the
tone, a value of zero should be used for the unused frequencies. A tone with all three frequencies set
to zero is interpreted as silence and can be use for silence detection.

dwMediaControl

The media-control action. This field uses the following LINEMEDIACONTROL_ constants:
LINEMEDIACONTROL_NONE

No change is to be made to the media stream.
LINEMEDIACONTROL_RESET

Reset the media stream. Equivalent to an end-of-input. All buffers are released.
LINEMEDIACONTROL_PAUSE

Temporarily pause the media stream.
LINEMEDIACONTROL_RESUME

Start or resume a paused media stream.
LINEMEDIACONTROL_RATEUP

The speed of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_RATEDOWN

The speed of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_RATENORMAL

The speed of the media stream is returned to normal.
LINEMEDIACONTROL_VOLUMEUP

The amplitude of the media stream is increased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMEDOWN

The amplitude of the media stream is decreased by some stream-defined quantity.
LINEMEDIACONTROL_VOLUMENORMAL

The amplitude of the media stream is returned to normal.

Remarks
No extensions.

The LINEMEDIACONTROLTONE structure defines a tuple <tone, media-control action>. An array of
these tuples is passed to the lineSetMediaControl function to set media-control actions triggered by
media-mode changes for a given call. When a change to a listed media mode is detected, the
corresponding action on the media stream is invoked.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call's
information stream for silence.

See Also
lineSetMediaControl

LINEMESSAGE   

typedef struct linemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD dwCallbackInstance;
 DWORD dwParam1;
 DWORD dwParam2;
 DWORD dwParam3;
} LINEMESSAGE, FAR *LPLINEMESSAGE;

Members
hDevice

A handle to either a line device or a call. The nature of this handle (line handle or call handle) can be
determined by the context provided by dwMessageID.

dwMessageID

A line or call device message.
dwCallbackInstance

Instance data passed back to the application, which was specified by the application in
lineInitializeEx. This DWORD is not interpreted by TAPI.

dwParam1

A parameter for the message.
dwParam2

A parameter for the message.
dwParam3

A parameter for the message.

Remarks
For information about parameter values passed in this structure, see Line Device Messages.

LINEMONITORTONE   

The LINEMONITORTONE structure describes a tone to be monitored. This is used as an entry in an
array.

typedef struct linemonitortone_tag {
 DWORD dwAppSpecific;
 DWORD dwDuration;
 DWORD dwFrequency1;
 DWORD dwFrequency2;
 DWORD dwFrequency3;
} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

Members

dwAppSpecific

This field is used by the application for tagging the tone. When this tone is detected, the value of the
dwAppSpecific field is passed back to the application.

dwDuration

The duration in milliseconds during which the tone should be present before a detection is made.
dwFrequency1

dwFrequency2

dwFrequency3

The frequency in Hertz of a component of the tone. If fewer than three frequencies are needed in the
tone, a value of zero should be used for the unused frequencies. A tone with all three frequencies set
to zero is interpreted as silence and can be used for silence detection.

Remarks
No extensions.

The LINEMONITORTONE structure defines a tone for the purpose of detection. An array of tones is
passed to the lineMonitorTones function which monitors these tones and sends a
LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call's
information stream for silence.

See Also
LINE_MONITORTONE, lineMonitorTones

LINEPROVIDERENTRY   

The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An
array of these structures is returned as part of the LINEPROVIDERLIST structure returned by the function
lineGetProviderList.

typedef struct lineproviderentry_tag {
 DWORD dwPermanentProviderID;
 DWORD dwProviderFilenameSize;
 DWORD dwProviderFilenameOffset;
} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

Members

dwPermanentProviderID

The permanent provider ID of the entry.
dwProviderFilenameSize

dwProviderFilenameOffset

The size in bytes and the offset in bytes from the beginning of the LINEPROVIDERLIST structure of a
null-terminated ASCII string containing the filename (path) of the service provider DLL (.TSP) file.

Remarks
Not extensible.

See Also
lineGetProviderList, LINEPROVIDERLIST

LINEPROVIDERLIST   

The LINEPROVIDERLIST structure describes a list of service providers. A structure of this type is
returned by the function lineGetProviderList.

typedef struct lineproviderlist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumProviders;
 DWORD dwProviderListSize;
 DWORD dwProviderListOffset;
} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwNumProviders

The number of LINEPROVIDERENTRY structures present in the array denominated by
dwProviderListSize and dwProviderListOffset.

dwProviderListSize

dwProviderListOffset

The size in bytes and the offset in bytes from the beginning of this data structure of an array of
LINEPROVIDERENTRY elements which provide the information on each service provider.

Remarks
Not extensible.

LINEPROXYREQUEST   

typedef struct lineproxyrequest_tag {
 DWORD dwSize;
 DWORD dwClientMachineNameSize;
 DWORD dwClientMachineNameOffset;
 DWORD dwClientUserNameSize;
 DWORD dwClientUserNameOffset;
 DWORD dwClientAppAPIVersion;
 DWORD dwRequestType;
 union {
 struct {
 DWORD dwAddressID;
 LINEAGENTGROUPLIST GroupList;
 } SetAgentGroup;
 struct {
 DWORD dwAddressID;
 DWORD dwAgentState;
 DWORD dwNextAgentState;
 } SetAgentState;
 struct {
 DWORD dwAddressID;
 DWORD dwActivityID;
 } SetAgentActivity;
 struct {
 DWORD dwAddressID;
 LINEAGENTCAPS AgentCaps;
 } GetAgentCaps;
 struct {
 DWORD dwAddressID;
 LINEAGENTSTATUS AgentStatus;
 } GetAgentStatus;
 struct {
 DWORD dwAddressID;
 DWORD dwAgentExtensionIDIndex;
 DWORD dwSize;
 BYTE Params[1];
 } AgentSpecific;
 struct {
 DWORD dwAddressID;
 LINEAGENTACTIVITYLIST ActivityList;
 } GetAgentActivityList;
 struct {
 DWORD dwAddressID;
 LINEAGENTGROUPLIST GroupList;
 } GetAgentGroupList;
 };
} LINEPROXYREQUEST, FAR *LPLINEPROXYREQUEST;

Members

dwSize

The total number of bytes allocated by TAPI to contain the LINEPROXYREQUEST structure. Note
that the dwTotalSize field of any structure contained within LINEPROXYREQUEST (for example,

LINEAGENTCAPS) reflects only the number of bytes allocated for that specific structure.
dwClientMachineNameSize

dwClientMachineNameOffset

Size in bytes (including the terminating null) and offset from the beginning of LINEPROXYREQUEST
of a null-terminated string identifying the client machine that made this request.

dwClientUserNameSize

dwClientUserNameOffset

Size in bytes (including the terminating null) and offset from the beginning of LINEPROXYREQUEST
of a null-terminated string identifying the user under whose account the application is running on the
client machine.

dwClientAppAPIVersion

The global (highest) API version supported by the application that made the request. The proxy
handler should restrict the contents of any data returned to the application to those fields and values
that were defined in this, or earlier, versions of TAPI.

dwRequestType

One of the LINEPROXYREQUEST_ constants. Identifies the type of function and the union
component that defines the remaining data in the structure.

SetAgentGroup

The union component used when dwRequestType is LINEPROXYREQUEST_SETAGENT.
dwAddressID

The identifier of the address for which the agent is to be set.
GroupList

A structure of type LINEAGENTGROUPLIST. Offsets within this structure are relative to the
beginning of SetAgentGroup.GroupList rather than the beginning of the LINEPROXYREQUEST
structure.

SetAgentState

The union component used when dwRequestType is LINEPROXYREQUEST_SETAGENTSTATE.
dwAddressID

The identifier of the address for which the agent state is to be set.
dwAgentState

The new agent state, or 0 to leave the agent state unchanged.
dwNextAgentState

The new next agent state, or 0 to use the default next state associated with the specified agent
state.

SetAgentActivity

The union component used when dwRequestType is LINEPROXYREQUEST_SETAGENTACTIVITY.
dwAddressID

The identifier of the address for which the agent activity is to be set.
dwActivityID

The identifier for the activity being selected.

GetAgentCaps

The union component used when dwRequestType is LINEPROXYREQUEST_GETAGENTCAPS.
dwAddressID

The identifier of the address for which the agent capabilities are to be retrieved.
AgentCaps

A structure of type LINEAGENTCAPS. Offsets within this structure are relative to the beginning of
GetAgentCaps.AgentCaps rather than the beginning of the LINEPROXYREQUEST structure.
The dwTotalSize field is set by TAPI and the remaining bytes set to 0. The proxy handler must fill
in dwNeededSize, dwUsedSize, and the remaining fields as appropriate, before calling
lineProxyResponse.

GetAgentStatus

The union component used when dwRequestType is LINEPROXYREQUEST_SETAGENTGROUP.
dwAddressID

The identifier of the address for which the agent status is to be retrieved.
AgentStatus

A structure of type LINEAGENTSTATUS. Offsets within this structure are relative to the beginning
of GetAgentStatus.AgentStatus rather than the beginning of the LINEPROXYREQUEST
structure. The dwTotalSize field is set by TAPI and the remaining bytes set to 0. The proxy handler
must fill in dwNeededSize, dwUsedSize, and the remaining fields as appropriate, before calling
lineProxyResponse.

AgentSpecific

The union component used when dwRequestType is LINEPROXYREQUEST_AGENTSPECIFIC.
dwAddressID

The identifier of the address for which the agent status is to be retrieved.
dwAgentExtensionIDIndex

The index of the handler extension being invoked; the ID's position within the array of extension
IDs returned in LINEAGENTCAPS.

dwSize

The total size in bytes of the Params parameter block.
Params

A block of memory which includes the contents passed to the handler from the application. If the
handler is to return data to the application, it must be written into this parameter block before
calling lineProxyResponse.

GetAgentActivityList

The union component used when dwRequestType is
LINEPROXYREQUEST_GETAGENTACTIVITYLIST.
dwAddressID

The identifier of the address for which the agent activity list is to be retrieved.
ActivityList

A structure of type LINEAGENTACTIVITYLIST. Offsets within this structure are relative to the
beginning of GetAgentActivityList.ActivityList rather than the beginning of the
LINEPROXYREQUEST structure. The dwTotalSize field is set by TAPI and the remaining bytes
set to 0. The proxy handler must fill in dwNeededSize, dwUsedSize, and the remaining fields as
appropriate, before calling lineProxyResponse.

GetAgentGroupList

The union component used when dwRequestType is
LINEPROXYREQUEST_GETAGENTGROUPLIST.
dwAddressID

The identifier of the address for which the agent group list is to be retrieved.
GroupList

A structure of type LINEAGENTGROUPLIST. Offsets within this structure are relative to the
beginning of GetAgentGroupList.GroupList rather than the beginning of the
LINEPROXYREQUEST structure. The dwTotalSize field is set by TAPI and the remaining bytes
set to 0. The proxy handler must fill in dwNeededSize, dwUsedSize, and the remaining fields as
appropriate, before calling lineProxyResponse.

See Also
lineProxyResponse

LINEREQMAKECALL   

The LINEREQMAKECALL structure describes a tapiRequestMakeCall request.

typedef struct linereqmakecall_tag {
 char szDestAddress[TAPIMAXDESTADDRESSSIZE];
 char szAppName[TAPIMAXAPPNAMESIZE];
 char szCalledParty[TAPIMAXCALLEDPARTYSIZE];
 char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

Members

szDestAddress[TAPIMAXADDRESSSIZE]

The NULL-terminated destination address of the make-call request. The address can use the
canonical address format or the dialable address format. The maximum length of the address is
TAPIMAXDESTADDRESSSIZE characters, which includes the NULL terminator. Longer strings are
truncated.

szAppName[TAPIMAXAPPNAMESIZE]

The ASCII NULL-terminated user-friendly application name or filename of the application that
originated the request. The maximum length of the address is TAPIMAXAPPNAMESIZE characters,
which includes the NULL terminator.

szCalledParty[TAPIMAXCALLEDPARTYSIZE]

The ASCII NULL-terminated user-friendly called-party name. The maximum length of the called-party
information is TAPIMAXCALLEDPARTYSIZE characters, which includes the NULL terminator.

szComment[TAPIMAXCOMMENTSIZE]

The ASCII NULL-terminated comment about the call request. The maximum length of the comment
string is TAPIMAXCOMMENTSIZE characters, which includes the NULL terminator.

Remarks
No extensions.

The szDestAddress field contains the address of the remote party; the other fields are useful for logging
purposes. An application must use this structure to interpret the request buffer it received from
lineGetRequest with the LINEREQUESTMODE_MAKECALL request mode.

See Also
lineGetRequest, tapiRequestMakeCall

LINETERMCAPS   

The LINETERMCAPS structure describes the capabilities of a line's terminal device.

typedef struct linetermcaps_tag {
 DWORD dwTermDev;
 DWORD dwTermModes;
 DWORD dwTermSharing;
} LINETERMCAPS, FAR *LPLINETERMCAPS;

Members

dwTermDev

The device type of the terminal. This field uses the following LINETERMDEV_ constants:
LINETERMDEV_PHONE

The terminal is a phone set.
LINETERMDEV_HEADSET

The terminal is a headset
LINETERMDEV_SPEAKER

The terminal is an external speaker and microphone.
dwTermModes

The terminal mode(s) the terminal device is able to deal with. This field uses the following
LINETERMMODE_ constants:
LINETERMMODE_BUTTONS

Button-press events sent from the terminal to the line.
LINETERMMODE_LAMPS

Lamp events sent from the line to the terminal.
LINETERMMODE_DISPLAY

Display information sent from the line to the terminal.
LINETERMMODE_RINGER

Ringer-control information sent from the switch to the terminal.
LINETERMMODE_HOOKSWITCH

Hookswitch events sent from the terminal to the line.
LINETERMMODE_MEDIATOLINE

The unidirectional media stream from the terminal to the line associated with a call on the line. Use
this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIAFROMLINE

The unidirectional media stream from the line to the terminal associated with a call on the line. Use
this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIABIDIRECT

This is the bidirectional media stream associated with a call on the line and the terminal. Use this
value when the routing of both unidirectional channels of a call's media stream cannot be
controlled independently.

dwTermSharing

Specifies how the terminal device is shared between line devices. This field uses the following
LINETERMSHARING_ constants:
LINETERMSHARING_PRIVATE

The terminal device is private to a single line device.
LINETERMSHARING_SHAREDEXCL

The terminal device can be used by multiple lines. The last line device to do a lineSetTerminal to
the terminal for a given terminal mode will have exclusive connection to the terminal for that mode.

LINETERMSHARING_SHAREDCONF

The terminal device can be used by multiple lines. The lineSetTerminal requests of the various
terminals end up being "merged" at the terminal.

Remarks
No extensions.

See Also
lineSetTerminal

LINETRANSLATECAPS   

The LINETRANSLATECAPS structure describes the address translation capabilities.

typedef struct linetranslatecaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwNumLocations;
 DWORD dwLocationListSize;
 DWORD dwLocationListOffset;

 DWORD dwCurrentLocationID;
 DWORD dwNumCards;
 DWORD dwCardListSize;
 DWORD dwCardListOffset;

 DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwNumLocations

The number of entries in the LocationList. It includes all locations defined, including 0 (default).
dwLocationListSize

dwLocationListOffset

List of locations known to address translation. The list consists of a sequence of
LINELOCATIONENTRY structures. The dwLocationListOffset field points to the first byte of the first
LINELOCATIONENTRY structure, and the dwLocationListSize field indicates the total number of
bytes in the entire list.

dwCurrentLocationID

This is the dwPermanentLocationID from the LINELOCATIONENTRY for the Current Location.
dwNumCards

The number of entries in the CardList.
dwCardListSize

dwCardListOffset

List of calling cards known to address translation. It includes only non-hidden card entries and always
includes card 0 (direct dial). The list consists of a sequence of LINECARDENTRY structures. The

dwCardListOffset field points to the first byte of the first LINECARDENTRY structure, and the
dwCardListSize field indicates the total number of bytes in the entire list.

dwCurrentPreferredCardID

This is the dwPreferredCardID from the LINELOCATIONENTRY for the Current Location.

Remarks
No extensions.

See Also
LINECARDENTRY, LINELOCATIONENTRY

LINETRANSLATEOUTPUT   

The LINETRANSLATEOUTPUT structure describes the result of an address translation.

typedef struct linetranslateoutput_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;

 DWORD dwDialableStringSize;
 DWORD dwDialableStringOffset;
 DWORD dwDisplayableStringSize;
 DWORD dwDisplayableStringOffset;

 DWORD dwCurrentCountry;
 DWORD dwDestCountry;
 DWORD dwTranslateResults;
} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwDialableStringSize

dwDialableStringOffset

Contains the translated output which can be passed to the lineMakeCall, lineDial, or other function
requiring a dialable string. The output is always a null-terminated ASCII string (null is accounted for in
Size). Ancillary fields such as name and subaddress are included in this output string if they were in
the input string. This string may contain private information such as calling card numbers. It should
not be displayed to the user, to prevent inadvertent visibility to unauthorized persons.

dwDisplayableStringSize

dwDisplayableStringOffset

Contains the translated output which can be displayed to the user for confirmation. It will be identical
to DialableString, except that calling card digits will be replaced with the "friendly name" of the card
enclosed within bracket characters (for example, "[AT&T Card]"), and ancillary fields such as name
and subaddress will be removed. It should normally be safe to display this string in call-status dialog
boxes without exposing private information to unauthorized persons. This information is also
appropriate to include in call logs.

dwCurrentCountry

Contains the country code configured in CurrentLocation. This value may be used to control the
display by the application of certain user interface elements, local call progress tone detection, and for
other purposes.

dwDestCountry

Contains the destination country code of the translated address. This value may be passed to the
dwCountryCode parameter of lineMakeCall and other dialing functions (so that the call progress
tones of the destination country such as a busy signal will be properly detected). This field is set to 0 if
the destination address passed to lineTranslateAddress is not in canonical format.

dwTranslateResults

Indicates the information derived from the translation process, which may assist the application in
presenting user-interface elements. This field uses the following LINETRANSLATERESULT_
constants:
LINETRANSLATERESULT_CANONICAL

Indicates that the input string was in valid canonical format.
LINETRANSLATERESULT_INTERNATIONAL

If this bit is on, the call is being treated as an international call (country code specified in the
destination address is the different from the country code specified for the CurrentLocation).

LINETRANSLATERESULT_LONGDISTANCE

If this bit is on, the call is being treated as a long distance call (country code specified in the
destination address is the same but area code is different from those specified for the
CurrentLocation).

LINETRANSLATERESULT_LOCAL

If this bit is on, the call is being treated as a local call (country code and area code specified in the
destination address are the same as those specified for the CurrentLocation).

LINETRANSLATERESULT_INTOLLLIST

If this bit is on, the local call is being dialed as long distance because the country has toll calling
and the prefix appears in the TollPrefixList of the CurrentLocation.

LINETRANSLATERESULT_NOTINTOLLLIST

If this bit is on, the country supports toll calling but the prefix does not appear in the TollPrefixList,
so the call is dialed as a local call. Note that if both INTOLLIST and NOTINTOLLIST are off, the
current country does not support toll prefixes, and user-interface elements related to toll prefixes
should not be presented to the user; if either such bit is on, the country does support toll lists, and
the related user-interface elements should be enabled.

LINETRANSLATERESULT_DIALBILLING

Indicates that the returned address contains a "$".
LINETRANSLATERESULT_DIALQUIET

Indicates that the returned address contains a "@".
LINETRANSLATERESULT_DIALDIALTONE

Indicates that the returned address contains a "W".
LINETRANSLATERESULT_DIALPROMPT

Indicates that the returned address contains a "?".

Remarks
No extensions.

See Also

lineDial, lineMakeCall, lineTranslateAddress

Phone Device Structures
The following is the reference for phone device structures.

PHONEBUTTONINFO   

The PHONEBUTTONINFO structure contains information about a button on a phone device.

typedef struct phonebuttoninfo_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwButtonMode;
 DWORD dwButtonFunction;
 DWORD dwButtonTextSize;
 DWORD dwButtonTextOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;
 DWORD dwButtonState;
} PHONEBUTTONINFO, FAR *LPPHONEBUTTONINFO;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwButtonMode

The mode or general usage class of the button. This parameter uses the following
PHONEBUTTONMODE_ constants:
PHONEBUTTONMODE_DUMMY

This value is used to describe a button/lamp position that has no corresponding button but has only
a lamp.

PHONEBUTTONMODE_CALL

The button is assigned to a call appearance.
PHONEBUTTONMODE_FEATURE

The button is assigned to requesting features from the switch, such as hold, conference, and
transfer.

PHONEBUTTONMODE_KEYPAD

The button is one of the twelve keypad buttons, '0' through '9', '*', and '#'.
PHONEBUTTONMODE_LOCAL

The button is a local function button, such as mute or volume control.
PHONEBUTTONMODE_DISPLAY

The button is a "soft" button associated with the phone's display. A phone set can have zero or
more display buttons.

dwButtonFunction

The function assigned to the button. This field uses the PHONEBUTTONFUNCTION_ constants.
dwButtonTextSize

dwButtonTextOffset

The size in bytes of the variably sized field containing descriptive text for this button., and the offset in
bytes from the beginning of this data structure. The format of this information is as specified in the
dwStringFormat field of the phone's device capabilities.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure.

dwButtonState

For the phoneGetButtonInfo function, this field indicates the current state of the button, using the
PHONEBUTTONSTATE_ constants. This field is ignored by the phoneSetButtonInfo function.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

Older applications will have been compiled without this field in the PHONEBUTTONINFO structure, and
using a SIZEOF PHONEBUTTONINFO smaller than the new size. The application passes in a
dwAPIVersion parameter with the phoneOpen function, which can be used for guidance by TAPI in
handling this situation. If the application passes in a dwTotalSize less than the size of the fixed portion of
the structure as defined in the dwAPIVersion specified, PHONEERR_STRUCTURETOOSMALL will be
returned. If sufficient memory has been allocated by the application, before calling
TSPI_phoneGetButtonInfo, TAPI will set the dwNeededSize and dwUsedSize fields to the fixed size of
the structure as it existed in the specified API version.

New service providers (which support the new API version) must examine the API version passed in. If
the API version is less than the highest version supported by the provider, the service provider must not
fill in fields not supported in older API versions, as these would fall in the variable portion of the older
structure.

New applications must be cognizant of the API version negotiated, and not examine the contents of fields
in the fixed portion beyond the original end of the fixed portion of the structure for the negotiated API
version.

See Also
phoneGetButtonInfo, phoneOpen

PHONECAPS   

The PHONECAPS structure describes the capabilities of a phone device.

typedef struct phonecaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwProviderInfoSize;
 DWORD dwProviderInfoOffset;
 DWORD dwPhoneInfoSize;
 DWORD dwPhoneInfoOffset;
 DWORD dwPermanentPhoneID;
 DWORD dwPhoneNameSize;
 DWORD dwPhoneNameOffset;
 DWORD dwStringFormat;
 DWORD dwPhoneStates;
 DWORD dwHookSwitchDevs;
 DWORD dwHandsetHookSwitchModes;
 DWORD dwSpeakerHookSwitchModes;
 DWORD dwHeadsetHookSwitchModes;
 DWORD dwVolumeFlags;
 DWORD dwGainFlags;
 DWORD dwDisplayNumRows;
 DWORD dwDisplayNumColumns;
 DWORD dwNumRingModes;
 DWORD dwNumButtonLamps;
 DWORD dwButtonModesSize;
 DWORD dwButtonModesOffset;
 DWORD dwButtonFunctionsSize;
 DWORD dwButtonFunctionsOffset;
 DWORD dwLampModesSize;
 DWORD dwLampModesOffset;
 DWORD dwNumSetData;
 DWORD dwSetDataSize;
 DWORD dwSetDataOffset;
 DWORD dwNumGetData
 DWORD dwGetDataSize;
 DWORD dwGetDataOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwDeviceClassesSize;
 DWORD dwDeviceClassesOffset;
 DWORD dwPhoneFeatures;
 DWORD dwSettableHandsetHookSwitchModes;
 DWORD dwSettableSpeakerHookSwitchModes;
 DWORD dwSettableHeadsetHookSwitchModes;
 DWORD dwMonitoredHandsetHookSwitchModes;
 DWORD dwMonitoredSpeakerHookSwitchModes;
 DWORD dwMonitoredHeadsetHookSwitchModes;
} PHONECAPS, FAR *LPPHONECAPS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwProviderInfoSize

dwProviderInfoOffset

The size in bytes of the variably sized field containing service provider-specific information, and the
offset in bytes from the beginning of this data structure.
The dwProviderInfoSize/Offset field is intended to provide information about the provider hardware
and/or software, such as the vendor name and version numbers of hardware and software. This
information can be useful when a user needs to call customer service with problems regarding the
provider.

dwPhoneInfoSize

dwPhoneInfoOffset

The size in bytes of the variably sized device field containing phone-specific information, and the
offset in bytes from the beginning of this data structure.
The dwPhoneInfoSize/Offset field is intended to provide information about the attached phone
device, such as the phone device manufacturer, the model name, the software version, and so on.
This information can be useful when a user needs to call customer service with problems regarding
the phone.

dwPermanentPhoneID

The permanent DWORD identifier by which the phone device is known in the system's configuration.
dwPhoneNameSize

dwPhoneNameOffset

The size in bytes of the variably sized device field containing a user configurable name for this phone
device, and the offset in bytes from the beginning of this data structure This name can be configured
by the user when configuring the phone device's service provider and is provided for the user's
convenience.

dwStringFormat

The string format to be used with this phone device. This parameter uses the following
STRINGFORMAT_ constants:
STRINGFORMAT_ASCII

ASCII string format using one byte per character.
STRINGFORMAT_DBCS

DBCS string format using two bytes per character.
STRINGFORMAT_UNICODE

Unicode string format using two bytes per character.
dwPhoneStates

The state changes for this phone device for which the application can be notified in a PHONE_STATE
message. This parameter uses the following PHONESTATE_ constants:
PHONESTATE_OTHER

Phone status items other than those listed below have changed. The application should check the
current phone status to determine which items have changed.

PHONESTATE_CONNECTED

The connection between the phone device and TAPI was just made. This happens when TAPI is
first invoked or when the wire connecting the phone to the PC is plugged in with TAPI active.

PHONESTATE_DISCONNECTED

The connection between the phone device and TAPI was just broken. This happens when the wire
connecting the phone set to the PC is unplugged while TAPI is active.

PHONESTATE_OWNER

The number of owners for the phone device has changed.
PHONESTATE_MONITORS

The number of monitors for the phone device has changed.
PHONESTATE_DISPLAY

The display of the phone has changed.
PHONESTATE_LAMP

A lamp of the phone has changed.
PHONESTATE_RINGMODE

The ring mode of the phone has changed.
PHONESTATE_RINGVOLUME

The ring volume of the phone has changed.
PHONESTATE_HANDSETHOOKSWITCH

The handset hookswitch state has changed.
PHONESTATE_HANDSETVOLUME

The handset's speaker volume setting has changed.
PHONESTATE_HANDSETGAIN

The handset's microphone gain setting has changed.
PHONESTATE_SPEAKERHOOKSWITCH

The speakerphone's hookswitch state has changed.
PHONESTATE_SPEAKERVOLUME

The speakerphone's speaker volume setting has changed.
PHONESTATE_SPEAKERGAIN

The speakerphone's microphone gain setting state has changed.
PHONESTATE_HEADSETHOOKSWITCH

The headset's hookswitch state has changed.
PHONESTATE_HEADSETVOLUME

The headset's speaker volume setting has changed.
PHONESTATE_HEADSETGAIN

The headset's microphone gain setting has changed.
PHONESTATE_SUSPEND

The application's use of the phone is temporarily suspended.
PHONESTATE_RESUME

The application's use of the phone device is resumed after having been suspended for some time.
PHONESTATE_DEVSPECIFIC

The phone's device-specific information has changed.
PHONESTATE_REINIT

Items have changed in the configuration of phone devices. To become aware of these changes (as
for the appearance of new phone devices) the application should reinitialize its use of TAPI.

PHONESTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more
of the fields in the PHONECAPS structure have changed. The application should use
phoneGetDevCaps to read the updated structure.

PHONESTATE_REMOVED

Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A PHONE_STATE message with this
value will normally be immediately followed by a PHONE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will not receive any notification.

dwHookSwitchDevs

This field specifies the phone's hookswitch devices. This parameter uses the following
PHONEHOOKSWITCHDEV_ constants:
PHONEHOOKSWITCHDEV_HANDSET

This is the ubiquitous, handheld, ear- and mouthpiece.
PHONEHOOKSWITCHDEV_SPEAKER

A built-in loudspeaker and microphone. This could also be an externally connected adjunct to the
telephone set.

PHONEHOOKSWITCHDEV_HEADSET

This is a headset connected to the phone set.
dwHandsetHookSwitchModes

dwSpeakerHookSwitchModes

dwHeadsetHookSwitchModes

This field specifies the phone's hookswitch mode capabilities of the handset, speaker, or headset,
respectively. The field is only meaningful if the hookswitch device is listed in dwHookSwitchDevs.
This parameter uses the following PHONEHOOKSWITCHMODE_ constants:

PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.
dwVolumeFlags

This field specifies the volume setting capabilities of the phone device's speaker components. If the
bit in position PHONEHOOKSWITCHDEV_ is TRUE, the volume of the corresponding hookswitch
device's speaker component can be adjusted with phoneSetVolume; otherwise FALSE.

dwGainFlags

This field specifies the gain setting capabilities of the phone device's microphone components. If the
bit position PHONEHOOKSWITCHDEV_ is TRUE, the volume of the corresponding hookswitch
device's microphone component can be adjusted with phoneSetGain; otherwise FALSE.

dwDisplayNumRows

This field specifies the display capabilities of the phone device by describing the number of rows in
the phone display. The dwDisplayNumRows and dwDisplayNumColumns fields are both zero for a
phone device without a display.

dwDisplayNumColumns

This field specifies the display capabilities of the phone device by describing the number of columns
in the phone display. dwDisplayNumRows and dwDisplayNumColumns are both zero for a phone
device without a display.

dwNumRingModes

The ring capabilities of the phone device. The phone is able to ring with dwNumRingModes different
ring patterns, identified as 1, 2, through dwNumRingModes minus one. If the value of this field is
zero, applications have no control over the ring mode of the phone. If the value of this field is greater
than zero, it indicates the number of ring modes in addition to silence that are supported by the
service provider. A value of 0 in the lpdwRingMode parameter of phoneGetRing or the dwRingMode
parameter of phoneSetRing indicates silence (the phone is not ringing or should not be rung), and
dwRingMode values of 1 to dwNumRingModes are valid ring modes for the phone device.

dwNumButtonLamps

This field specifies the number of button/lamps on the phone device that are detectable in TAPI.
Button/lamps are identified by their ID. Valid button/lamp IDs range from zero to
dwNumButtonLamps minus one. The keypad buttons '0', through '9', '*', and '#' are assigned the IDs
0 through 12.

dwButtonModesSize

dwButtonModesOffset

The size in bytes and the offset from the beginning of this data structure in bytes of the variably sized
field containing the button modes of the phone's buttons. The array is indexed by button/lamp ID. This
parameter uses the following PHONEBUTTONMODE_ constants:
PHONEBUTTONMODE_DUMMY

This value is used to describe a button/lamp position that has no corresponding button, but has
only a lamp. If the phone provides any non-DUMMY buttons, the PHONE_BUTTON message will
be sent to the application if a button is pressed at the phone device.

PHONEBUTTONMODE_CALL

The button is assigned to a call appearance.
PHONEBUTTONMODE_FEATURE

The button is assigned to requesting features from the switch, such as hold, conference, and
transfer.

PHONEBUTTONMODE_KEYPAD

The button is one of the twelve keypad buttons, '0' through '9', '*', and '#'.
PHONEBUTTONMODE_LOCAL

The button is a local function button, such as mute or volume control.
PHONEBUTTONMODE_DISPLAY

The button is a "soft" button associated with the phone's display. A phone set can have zero or
more display buttons.

dwButtonFunctionsSize

dwButtonFunctionsOffset

The size in bytes of the variably sized field containing the button modes of the phone's buttons, and
the offset in bytes from the beginning of this data structure. This field uses the values specified by the
PHONEBUTTONFUNCTION_ constants. The array is indexed by button/lamp ID.

dwLampModesSize

dwLampModesOffset

The size in bytes of the variably sized field containing the lamp modes of the phone's lamps, and the
offset in bytes from the beginning of this data structure. The array is indexed by button/lamp ID. This
parameter uses the following PHONELAMPMODE_ constants:
PHONELAMPMODE_BROKENFLUTTER

Broken flutter is the superposition of flash and flutter.
PHONELAMPMODE_FLASH

Flash means slow on and off.
PHONELAMPMODE_FLUTTER

Flutter means fast on and off.
PHONELAMPMODE_OFF

The lamp is off.
PHONELAMPMODE_STEADY

The lamp is continuously lit.
PHONELAMPMODE_WINK

The lamp is winking.
PHONELAMPMODE_DUMMY

This value is used to describe a button/lamp position that has no corresponding lamp.

dwNumSetData

The number of different download areas in the phone device. The different areas are referred to using
the data IDs 0, 1, , dwNumSetData minus one. If this field is zero, the phone does not support the
download capability.

dwSetDataSize

dwSetDataOffset

The size in bytes of the variably sized field containing the sizes (in bytes) of the phone's download
data areas, and the offset in bytes from the beginning of this data structure. This is an array with
DWORD-sized elements indexed by data ID.

dwNumGetData

The number of different upload areas in the phone device. The different areas are referred to using
the data IDs 0, 1, , dwNumGetData minus one. If this field is zero, the phone does not support the
upload capability.

dwGetDataSize

dwGetDataOffset

The size in bytes of the variably sized field containing the sizes (in bytes) of the phone's upload data
areas, and the offset in bytes from the beginning of this data structure. This is an array with DWORD-
sized elements indexed by data ID.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure

dwDeviceClassesSize

dwDeviceClassesOffset

Length in bytes and offset from the beginning of PHONECAPS of a string consisting of the device
class identifiers supported on this device for use with phoneGetID, separated by nulls; the last
identifier in the list is followed by two nulls.

dwPhoneFeatures

These flags indicate which Telephony API functions can be invoked on the phone. A zero indicates the
corresponding feature is not implemented and can never be invoked by the application on the phone;
a one indicates the feature may be invoked depending on the device state and other factors. This field
uses PHONEFEATURE_ constants.

dwSettableHandsetHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be set on the handset using
phoneSetHookSwitch.

dwSettableSpeakerHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be set on the speakerphone using
phoneSetHookSwitch.

dwSettableHeadsetHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be set on the headset using
phoneSetHookSwitch.

dwMonitoredHandsetHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be detected and reported for the handset in a
PHONE_STATE message and by phoneGetHookSwitch.

dwMonitoredSpeakerHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be detected and reported for the
speakerphone in a PHONE_STATE message and by phoneGetHookSwitch.

dwMonitoredHeadsetHookSwitchModes

The PHONEHOOKSWITCHMODE_ values which can be detected and reported for the headset in a
PHONE_STATE message and by phoneGetHookSwitch.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

The members dwDeviceClassesSize through dwMonitoredHeadsetHookSwitchModes are available
only to applications that open the phone device with an API version of 0x00020000 or greater.

See Also
PHONE_BUTTON, PHONE_CLOSE, PHONE_STATE, phoneGetDevCaps, phoneGetHookSwitch,
phoneGetRing, phoneSetGain, phoneSetHookSwitch, phoneSetRing, phoneSetVolume

PHONEEXTENSIONID   

The PHONEEXTENSIONID structure describes an extension ID. Extension IDs are used to identify
service provider-specific extensions for phone device classes.

typedef struct phoneextensionid_tag {
 DWORD dwExtensionID0;
 DWORD dwExtensionID1;
 DWORD dwExtensionID2;
 DWORD dwExtensionID3;
} PHONEEXTENSIONID, FAR *LPPHONEEXTENSIONID;

Members

dwExtensionID0

dwExtensionID1

dwExtensionID2

dwExtensionID3

These four DWORD-sized fields together specify a universally unique extension ID that identifies a
phone device class extension.

Remarks
No extensibility.

Extension IDs are generated using an SDK-provided generation utility.

PHONEINITIALIZEEXPARAMS   

typedef struct phoneinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;

 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;

 DWORD dwCompletionKey;

} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwOptions

One of the PHONEINITIALIZEEXOPTION_ constants. Specifies the event notification mechanism the
application desires to use.

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event handle in
this field.

hCompletionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field the handle of an existing completion port opened using
CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field a value that will be returned through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion message as a telephony message.

Remarks
See phoneInitializeEx for further information on these options.

PHONEMESSAGE   

typedef struct phonemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD dwCallbackInstance;
 DWORD dwParam1;
 DWORD dwParam2;
 DWORD dwParam3;
} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Members

hDevice

A handle to a phone device.
dwMessageID

A phone message.
dwCallbackInstance

Instance data passed back to the application, which was specified by the application in
phoneInitializeEx. This DWORD is not interpreted by TAPI.

dwParam1

A parameter for the message.
dwParam2

A parameter for the message.
dwParam3

A parameter for the message.

Remarks
For information about parameters values passed in this structure, see Phone Device Messages.

See Also
phoneInitializeEx

PHONESTATUS   

The PHONESTATUS structure describes the current status of a phone device.

typedef struct phonestatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStatusFlags;
 DWORD dwNumOwners;
 DWORD dwNumMonitors;
 DWORD dwRingMode;
 DWORD dwRingVolume;
 DWORD dwHandsetHookSwitchMode;
 DWORD dwHandsetVolume;
 DWORD dwHandsetGain;
 DWORD dwSpeakerHookSwitchMode;
 DWORD dwSpeakerVolume;
 DWORD dwSpeakerGain;
 DWORD dwHeadsetHookSwitchMode;
 DWORD dwHeadsetVolume;
 DWORD dwHeadsetGain;
 DWORD dwDisplaySize;
 DWORD dwDisplayOffset;
 DWORD dwLampModesSize;
 DWORD dwLampModesOffset;
 DWORD dwOwnerNameSize;
 DWORD dwOwnerNameOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

 DWORD dwPhoneFeatures;
} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwStatusFlags

This field provides a set of status flags for this phone device. This parameter uses the following
PHONESTATUSFLAGS_ constants:
PHONESTATUSFLAGS_CONNECTED

Specifies whether the phone is currently connected to TAPI. TRUE if connected; FALSE otherwise.
PHONESTATUSFLAGS_SUSPENDED

Specifies whether TAPI's manipulation of the phone device is suspended. TRUE if suspended;

FALSE otherwise. An application's use of a phone device may be temporarily suspended when the
switch wants to manipulate the phone in a way that cannot tolerate interference from the
application.

dwNumOwners

The number of application modules with owner privilege for the phone.
dwNumMonitors

The number of application modules with monitor privilege for the phone.
dwRingMode

The current ring mode of a phone device.
dwRingVolume

The current ring volume of a phone device. This is a value between 0x00000000 (silence) and
0x0000FFFF (maximum volume).

dwHandsetHookSwitchMode

The current hookswitch mode of the phone's handset. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:
PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.
dwHandsetVolume

The current speaker volume of the phone's handset device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum volume).

dwHandsetGain

The current microphone gain of the phone's handset device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum gain).

dwSpeakerHookSwitchMode

The current hookswitch mode of the phone's speakerphone. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:
PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.
dwSpeakerVolume

The current speaker volume of the phone's speaker device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum volume).

dwSpeakerGain

The current microphone gain of the phone's speaker device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum gain).

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:
PHONEHOOKSWITCHMODE_ONHOOK

The device's microphone and speaker are both onhook.
PHONEHOOKSWITCHMODE_MIC

The device's microphone is active, the speaker is mute.
PHONEHOOKSWITCHMODE_SPEAKER

The device's speaker is active, the microphone is mute.
PHONEHOOKSWITCHMODE_MICSPEAKER

The device's microphone and speaker are both active.
dwHeadsetVolume

The current speaker volume of the phone's headset device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum volume).

dwHeadsetGain

The current microphone gain of the phone's headset device. This is a value between 0x00000000
(silence) and 0x0000FFFF (maximum gain).

dwDisplaySize

dwDisplayOffset

The size in bytes of the variably sized field containing the phone's current display information, and the
offset in bytes, from the beginning of this data structure.

dwLampModesSize

dwLampModesOffset

The size in bytes of the variably sized field containing the phone's current lamp modes, and the offset
in bytes from the beginning of this data structure.

dwOwnerNameSize

dwOwnerNameOffset

The size in bytes of the variably sized field containing the name of the application that is the current
owner of the phone device, and the offset in bytes from the beginning of this data structure. The name
is the application name provided by the application when it invoked with phoneInitialize or
phoneInitializeEx . If no application name was supplied, the application's file name is used instead. If
the phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize

dwDevSpecificOffset

The size in bytes of the variably sized device-specific field, and the offset in bytes from the beginning
of this data structure

dwPhoneFeatures

These flags indicate which Telephony API functions can be invoked on the phone, considering the
availability of the feature in the device capabilities, the current device state, and device ownership of
the invoking application. A zero indicates the corresponding feature cannot be invoked by the
application on the phone in its current state; a one indicates the feature can be invoked. This field
uses PHONEFEATURE_ constants.

Remarks
Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

The dwPhoneFeatures member is available only to applications that open the phone device with an API
version of 0x00020000 or greater.

See Also
phoneInitialize, phoneInitializeEx

VARSTRING   

The VARSTRING structure is used for returning variably sized strings. It is used both by the line device
class and the phone device class.

typedef struct varstring_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStringFormat;
 DWORD dwStringSize;
 DWORD dwStringOffset;
} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size in bytes allocated to this data structure.
dwNeededSize

The size in bytes for this data structure that is needed to hold all the returned information.
dwUsedSize

The size in bytes of the portion of this data structure that contains useful information.
dwStringFormat

The format of the string. This parameter uses the following STRINGFORMAT_ constants:
STRINGFORMAT_ASCII

ASCII string format using one byte per character. The actual string is a NULL-terminated ASCII
string with the terminating NULL accounted for in the string size.

STRINGFORMAT_DBCS

DBCS string format using one or two bytes per character.
STRINGFORMAT_UNICODE

Unicode string format using two bytes per character.
STRINGFORMAT_BINARY

An array of unsigned characters that could be used for numeric values.
dwStringSize

dwStringOffset

The size in bytes of the variably sized device field containing the string information, and the offset in
bytes from the beginning of this data structure.

Remarks
No extensibility.

If a string cannot be returned in a variable structure, the dwStringSize and dwStringOffset members are
set in one of these ways:

· dwStringSize and dwStringOffset members are both set to zero.
· dwStringOffset is nonzero and dwStringSize is zero.
· dwStringOffset is nonzero, dwStringSize is 1, and the byte at the given offset is 0.

Constants
This section contains the reference for line device, phone device, and assisted telephony constants.

Line Device Constants
This section describes the constants used by the Telephony API. They are listed in alphabetical order.

LINEADDRCAPFLAGS_ Constants
The LINEADDRCAPFLAGS_ bit-flag constants are used in the dwAddrCapFlags field of the
LINEADDRESSCAPS data structure to describe various Boolean address capabilities.

LINEADDRCAPFLAGS_FWDNUMRINGS
Specifies whether the number of rings for a no-answer can be specified when forwarding calls on no
answer. If TRUE, the valid range is provided in LINEADDRESSCAPS.

LINEADDRCAPFLAGS_PICKUPGROUPID
Specifies whether a group ID is required for call pickup.

LINEADDRCAPFLAGS_SECURE
Specifies whether calls on this address can be made secure at call-setup time.

LINEADDRCAPFLAGS_BLOCKIDDEFAULT
Specifies whether the network by default sends or blocks caller ID information when making a call on
this address. If TRUE, ID information is blocked by default; if FALSE, ID information is transmitted by
default.

LINEADDRCAPFLAGS_BLOCKIDOVERRIDE
Specifies whether the default setting for sending or blocking of caller ID information can be overridden
per call. If TRUE, override is possible; if FALSE, override is not possible.

LINEADDRCAPFLAGS_DIALED
Specifies whether a destination address can be dialed on this address for making a call. TRUE if a
destination address must be dialed; FALSE if the destination address is fixed (as with a "hot phone").

LINEADDRCAPFLAGS_ORIGOFFHOOK
Specifies whether the originating party's phone can automatically be taken offhook when making
calls.

LINEADDRCAPFLAGS_DESTOFFHOOK
Specifies whether the called party's phone can automatically be forced offhook when making calls.

LINEADDRCAPFLAGS_FWDCONSULT
Specifies whether call forwarding involves the establishment of a consultation call.

LINEADDRCAPFLAGS_SETUPCONFNULL
Specifies whether setting up a conference call starts out with an initial call (FALSE) or with no initial
call (TRUE).

LINEADDRCAPFLAGS_AUTORECONNECT
Specifies whether dropping a consultation call automatically reconnects to the call on consultation
hold. TRUE if reconnect happens automatically; otherwise, FALSE.

LINEADDRCAPFLAGS_COMPLETIONID
Specifies whether the completion IDs returned by lineCompleteCall are useful and unique. TRUE if
useful; otherwise, FALSE.

LINEADDRCAPFLAGS_TRANSFERHELD
Specifies whether a hard-held call can be transferred. Often, only calls on consultation hold can be
transferred.

LINEADDRCAPFLAGS_TRANSFERMAKE
Specifies whether an entirely new call can be established for use as a consultation call on transfer.

LINEADDRCAPFLAGS_CONFERENCEHELD
Specifies whether a hard-held call can be conferenced to. Often, only calls on consultation hold can
be added to as a conference call.

LINEADDRCAPFLAGS_CONFERENCEMAKE
Specifies whether an entirely new call can be established for use as a consultation call (to add) on
conference.

LINEADDRCAPFLAGS_PARTIALDIAL
Specifies whether partial dialing is available.

LINEADDRCAPFLAGS_FWDSTATUSVALID

Specifies whether the forwarding status in the LINEADDRESSSTATUS structure for this address is
valid or is at most a "best estimate," given absence of accurate confirmation by the switch or network.

LINEADDRCAPFLAGS_FWDINTEXTADDR
Specifies whether internal and external calls can be forwarded to different forwarding addresses. This
flag is meaningful only if forwarding of internal and external calls can be controlled separately. This
flag is TRUE if internal and external calls can be forwarded to different destination addresses;
otherwise, it is FALSE.

LINEADDRCAPFLAGS_FWDBUSYNAADDR
Specifies whether call forwarding for busy and for no answer can use different forwarding addresses.
This flag is meaningful only if forwarding for busy and for no answer can be controlled separately.
This flag is TRUE if forwarding for busy and for no answer can use different destination addresses;
otherwise, it is FALSE.

LINEADDRCAPFLAGS_ACCEPTTOALERT
TRUE if an offering call must be accepted using lineAccept to start alerting the users at both ends of
the call; otherwise, FALSE. This is typically only used with ISDN.

LINEADDRCAPFLAGS_CONFDROP
TRUE if lineDrop on a conference call parent also has the side effect of dropping (that is,
disconnecting) the other parties involved in the conference call; FALSE if dropping a conference call
still allows the other parties to talk among themselves.

LINEADDRCAPFLAGS_PICKUPCALLWAIT
TRUE if linePickup can be used to pick up a call detected by the user as a call-waiting call;
otherwise, FALSE.

LINEADDRCAPFLAGS_PREDICTIVEDIALER
This address has enhanced call progress monitoring capabilities which can be applied to outbound
calls to determine call states such as ringback, busy, specialinfo, and connected, or the media mode
of the device answering the call. It may also have the ability to automatically transfer outbound calls to
another address when a call reaches any of a predefined set of states.

LINEADDRCAPFLAGS_QUEUE
This address is not associated with a particular station or physical device, but is a holding place
where calls wait for further processing. The calls placed in the queue may receive a particular
treatment. They may also be automatically transferred when a particular resource becomes available
(for example, if the queue is an ACD queue and calls are waiting for an available agent).

LINEADDRCAPFLAGS_ROUTEPOINT
This address is not associated with a particular station or physical device, but is a holding place
where calls wait for routing by the application (the application examines the called address, and can
redirect the call to another address). The call may also be automatically transferred if a routing
timeout expires (the switch usually assumes a default routing).

LINEADDRCAPFLAGS_HOLDMAKESNEW
When a call on this address is placed on hold (using lineHold or external action), a new call is
automatically created (most likely in LINECALLSTATE_DIALTONE).

LINEADDRCAPFLAGS_NOINTERNALCALLS
The address is associated with a direct CO line (trunk), and cannot be used to make internal calls on
a PBX. The application can use this indication to assist the user in selecting the correct call
appearance to use for making a call. When this bit is off, it does not necessarily indicate that the
address can be used to make internal calls, because the service provider may not be cognizant of the
line type.

LINEADDRCAPFLAGS_NOEXTERNALCALLS
The address is associated with an internal line on a PBX that is restricted in such a way that it cannot
be used to place calls to an address outside the switch (for example, it is an intercom). The
application can use this indication to assist the user in selecting the correct call appearance to use for
making a call. When this bit is off, it does not necessarily indicate that the address can be used to
make external calls, because the service provider may not be cognizant of the line type.

LINEADDRCAPFLAGS_SETCALLINGID

The application may choose to set the CallingPartyID member in LINECALLPARAMS when calling
lineMakeCall and other functions that accept a LINECALLPARAMS structure. The service provider
will, if the content of the ID is acceptable and a path is available, pass the ID along to the called party
to indicate the identity of the calling party.

No extensibility. All 32 bits are reserved.

LINEADDRESSMODE_ Constants
The LINEADDRESSMODE_ bit-flag constants describe various ways of identifying an address on a line
device.

LINEADDRESSMODE_ADDRESSID
The address is specified with a small integer in the range 0 to dwNumAddresses minus one, where
dwNumAddresses is the value in the line's device capabilities.

LINEADDRESSMODE_DIALABLEADDR
The address is specified through its phone number.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

This constant is used to select an address on a line on which to originate a call. The usual model would
select the address by means of its address ID. Address IDs are the mechanism used to identify
addresses throughout TAPI. However, in some environments, when making a call, it is often more
practical to identify a call's originating address by phone number rather than by address ID. One example
is in the possible modeling of large numbers of stations (third party) on the switch by means of one line
device with many addresses. The line represents the set of all stations, and each station is mapped to an
address with its own primary phone number and address ID.

LINEADDRESSSHARING_ Constants
The LINEADDRESSSHARING_ bit-flag constants describe various ways an address can be shared
between lines.

LINEADDRESSSHARING_PRIVATE
The address is private to the user's line; it is not assigned to any other station.

LINEADDRESSSHARING_BRIDGEDEXCL
The address is bridged to one or more other stations. The first line to activate a call on the line will
have exclusive access to the address and calls that may exist on it. Other lines will not be able to use
the bridged address while it is in use.

LINEADDRESSSHARING_BRIDGEDNEW
The address is bridged with one or more other stations. The first line to activate a call on the line will
have exclusive access to only the corresponding call. Other applications that use the address will
result in new and separate call appearances.

LINEADDRESSSHARING_BRIDGEDSHARED
The address is bridged with one or more other lines. All bridged parties can share in calls on the
address, which then functions as a conference.

LINEADDRESSSHARING_MONITORED
This is an address whose idle/busy status is made available to this line.

No extensibility. All 32 bits are reserved.

The way in which an address is shared across lines can affect the behavior of that address.
LINE_CALLSTATE and LINE_ADDRESSSTATE messages are sent to the application in response to
activities by the bridging stations. It is through these messages that an application can track the status of
the address.

LINEADDRESSSTATE_ Constants
The LINEADDRESSSTATE_ bit-flag constants describe various address status items.

LINEADDRESSSTATE_OTHER
Address-status items other than those listed below have changed. The application should check the
current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC
The device-specific item of the address status has changed.

LINEADDRESSSTATE_INUSEZERO
The address has changed to idle (it is not in use by any stations).

LINEADDRESSSTATE_INUSEONE
The address has changed from idle or in use by many bridged stations to being in use by just one
station.

LINEADDRESSSTATE_INUSEMANY
The monitored or bridged address has changed from being in use by one station to being in use by
more than one station.

LINEADDRESSSTATE_NUMCALLS
The number of calls on the address has changed. This is the result of events such as a new inbound
call, an outbound call on the address, or a call changing its hold status. This flag covers changes in
any of the fields dwNumActiveCalls, dwNumOnHoldCalls and dwNumOnHoldPendingCalls in the
LINEADDRESSSTATUS structure. The application should check all three of these fields when it
receives a LINE_ADDRESSSTATE (numCalls) message.

LINEADDRESSSTATE_FORWARD
The forwarding status of the address has changed, including possibly the number of rings for
determining a no-answer condition. The application should check the address status to determine
details about the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS
The terminal settings for the address have changed.

LINEADDRESSSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of
the fields in the LINEADDRESSCAPS structure for the address have changed. The application
should use lineGetAddressCaps to read the updated structure. If a service provider sends a
LINE_ADDRESSSTATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring
them to shutdown and reinitialize their connection to TAPI to obtain the updated information.

No extensibility. All 32 bits are reserved.

An application is notified about changes to these status items in the LINE_ADDRESSSTATE message.
The address's device capabilities indicate which address state changes can possibly be reported for this
address.

LINEADDRFEATURE_ Constants
The LINEADDRFEATURE_ constants list the operations that can be invoked on an address.

LINEADDRFEATURE_FORWARD
The address can be forwarded.

LINEADDRFEATURE_MAKECALL
An outbound call can be placed on the address.

LINEADDRFEATURE_PICKUP
A call can be picked up at the address.

LINEADDRFEATURE_SETMEDIACONTROL
Media control can be set on this address.

LINEADDRFEATURE_SETTERMINAL
The terminal modes for this address can be set.

LINEADDRFEATURE_SETUPCONF
A conference call with a NULL initial call can be set up at this address.

LINEADDRFEATURE_UNCOMPLETECALL
Call completion requests can be canceled at this address.

LINEADDRFEATURE_UNPARK
Calls can be unparked using this address.

LINEADDRFEATURE_PICKUPHELD
The linePickup function (with a null destination address) can be used to pick up a call that is held on
the address. This is normally used only in a bridged-exclusive arrangement.

LINEADDRFEATURE_PICKUPGROUP
The linePickup function can be used to pick up a call in the group.

LINEADDRFEATURE_PICKUPDIRECT
The linePickup function can be used to pick up a call on a specific address.

LINEADDRFEATURE_PICKUPWAITING
The linePickup function (with a null destination address) can be used to pick up a call waiting call.
Note that this does not necessarily indicate that a waiting call is actually present, because it is often
impossible for a telephony device to automatically detect such a call; it does, however, indicate that
the hook-flash function will be invoked to attempt to switch to such a call.

Note If none of the new modified "PICKUP" bits is set in the dwAddressFeatures member in
LINEADDRESSSTATUS but the LINEADDRFEATURE_PICKUP bit is set, then any of the pickup
modes may work; the service provider has simply not specified which ones.

LINEADDRFEATURE_FORWARDFWD
The lineForward function can be used to forward calls on the address to other numbers.
LINEADDRFEATURE_FORWARD will also be set.

LINEADDRFEATURE_FORWARDDND
The lineForward function (with an empty destination address) can be used to turn on the Do Not
Disturb feature on the address. LINEADDRFEATURE_FORWARD will also be set.

Note If neither of the new modified "FORWARD" bits is set in the dwAddressFeatures
member in LINEADDRESSSTATUS but the LINEADDRFEATURE_FORWARD bit is set, then
any of the forward modes may work; the service provider has simply not specified which ones.

No extensibility. All 32 bits are reserved.

This constant is used both in LINEADDRESSCAPS (returned by lineGetAddressCaps) and in
LINEADDRESSSTATUS (returned by lineGetAddressStatus). LINEADDRESSCAPS reports the

availability of the address features by the service provider (mainly the switch) for a given address. An
application would make this determination when it initializes. The LINEADDRESSSTATUS structure
reports, for a given address, which address features can actually be invoked while the address is in the
current state. An application would make this determination dynamically after address-state changes,
typically caused by call-related activities on the address.

LINEAGENTFEATURE_ Constants
The LINEAGENTFEATURE_ constants list features that are available for an agent on an address.

LINEAGENTFEATURE_SETAGENTGROUP
The lineSetAgentGroup function may be invoked on this address.

LINEAGENTFEATURE_SETAGENTSTATE
The lineSetAgentState function may be invoked on this address.

LINEAGENTFEATURE_SETAGENTACTIVITY
The lineSetAgentActivity function may be invoked on this address.

LINEAGENTFEATURE_AGENTSPECIFIC
The lineAgentSpecific function may be invoked on this address.

LINEAGENTFEATURE_GETAGENTACTIVITYLIST
The lineGetAgentActivityList function may be invoked on this address.

LINEAGENTFEATURE_GETAGENTGROUPLIST
The lineGetAgentGroupList function may be invoked on this address.

LINEAGENTSTATE_ Constants
The LINEAGENTSTATE_ constants list the state of an agent on an address.

LINEAGENTSTATE_LOGGEDOFF
No agent is logged in on the address.

LINEAGENTSTATE_NOTREADY
The agent is logged in, but occupied with a task other than serving a call (such as on a break). No
additional calls should be routed to the agent.

LINEAGENTSTATE_READY
The agent is ready to accept calls.

LINEAGENTSTATE_BUSYACD
The agent is busy handling a call routed from an ACD queue.

LINEAGENTSTATE_BUSYINCOMING
The agent is busy handling an inbound call that was not transferred to the agent from an ACD queue
in which the agent is logged in.

LINEAGENTSTATE_BUSYOUTBOUND
The agent is busy handling an outbound call, such as one routed from a predictive dialing queue.

LINEAGENTSTATE_BUSYOTHER
The agent is busy handling another type of call, such as an outbound personal call not transferred to
the agent by a predictive dialer. This value may also be used when the agent is known to be busy on
a call but the type of call is unknown.

LINEAGENTSTATE_WORKINGAFTERCALL
The agent has completed the preceding call, but is still occupied with work related to that call. The
agent should not receive additional calls.

LINEAGENTSTATE_UNKNOWN
The agent state is currently unknown, but may become known later. This may be a transitional state
when a line or address is first opened.

LINEAGENTSTATE_UNAVAIL
The agent state is unknown and will never become known. In LINEADDRESSSTATUS, this condition
may also be represented by the dwAgentState field being set to 0.

The upper 16-bits of this set of constants are reserved for device-specific extensions.

LINEAGENTSTATUS_ Constants
The LINEAGENTSTATUS_ constants list the update status of the members of the LINEAGENTSTATUS
for an agent.

LINEAGENTSTATE_GROUP
The Group List in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_STATE
The dwState member in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_NEXTSTATE
The dwNextState member in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_ACTIVITY
The ActivityID, ActivitySize, or ActivityOffset members in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_ACTIVITYLIST
The List member in LINEAGENTACTIVITYLIST has been updated. The application can call
lineGetAgentActivityList to get the updated list.

LINEAGENTSTATE_GROUPLIST
The List member in LINEAGENTGROUPLIST has been updated. The application can call
lineGetAgentGroupList to get the updated list.

LINEAGENTSTATE_CAPSCHANGE
The capabilities in LINEAGENTCAPS have been updated. The application can call
lineGetAgentCaps to get the updated list.

LINEAGENTSTATE_VALIDSTATES
The dwValidStates member in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_VALIDNEXTSTATES
The dwValidNextStates member in LINEAGENTSTATUS has been updated.

LINEANSWERMODE_ Constants
The LINEANSWERMODE_ bit-flag constants describe how an existing active call on a line device is
affected by answering another offering call on the same line.

LINEANSWERMODE_NONE
Answering another call on the same line has no effect on the existing active call on the line.

LINEANSWERMODE_DROP
The currently active call will automatically be dropped.

LINEANSWERMODE_HOLD
The currently active call will automatically be placed on hold.

No extensibility. All 32 bits are reserved.

If a call comes in (is offered) at the time another call is already active, the new call is connected to by
invoking lineAnswer. The effect this has on the existing active call depends on the line's device
capabilities. The first call may be unaffected, it may automatically be dropped, or it may automatically be
placed on hold.

LINEBEARERMODE_ Constants
The LINEBEARERMODE_ bit-flag constants describe different bearer modes of a call. When an
application makes a call, it can request a specific bearer mode. These modes are used to select a certain
quality of service for the requested connection from the underlying telephone network. Bearer modes
available on a given line are a device capability of the line.

LINEBEARERMODE_VOICE
This is a regular 3.1 kHz analog voice-grade bearer service. Bit integrity is not assured. Voice can
support fax and modem media modes.

LINEBEARERMODE_SPEECH
This corresponds to G.711 speech transmission on the call. The network may use processing
techniques such as analog transmission, echo cancellation, and compression/decompression. Bit
integrity is not assured. Speech is not intended to support fax and modem media modes.

LINEBEARERMODE_MULTIUSE
The multiuse mode defined by ISDN.

LINEBEARERMODE_DATA
The unrestricted data transfer on the call. The data rate is specified separately.

LINEBEARERMODE_ALTSPEECHDATA
The alternate transfer of speech or unrestricted data on the same call (ISDN).

LINEBEARERMODE_NONCALLSIGNALING
This corresponds to a non-call-associated signaling connection from the application to the service
provider or switch (treated as a media stream by TAPI).

LINEBEARERMODE_PASSTHROUGH
When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct
access to the attached hardware for control by the application. This mode is used primarily by
applications desiring temporary direct control over asynchronous modems, accessed through the
Win32 comm functions, for the purpose of configuring or using special features not otherwise
supported by the service provider.

LINEBEARERMODE_RESTRICTEDDATA
Bearer service for digital data in which only the low-order seven bits of each octet may contain user
data (for example, for Switched 56kbit/s service).

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

Note that bearer mode and media mode are different notions. The bearer mode of a call is an indication of
the quality of the telephone connection as provided primarily by the network. The media mode of a call is
an indication of the type of information stream that is exchanged over that call. Group 3 fax or data
modem are media modes that use a call with a 3.1 kHz voice bearer mode.

LINEBUSYMODE_ Constants
The LINEBUSYMODE_ bit-flag constants describe different busy signals that the switch or network may
generate. These busy signals typically indicate that a different resource that is required to make a call is
currently in use.

LINEBUSYMODE_STATION
The busy signal indicates that the called party's station is busy. This is usually signaled with a normal
busy tone.

LINEBUSYMODE_TRUNK
The busy signal indicates that a trunk or circuit is busy. This is usually signaled with a fast busy tone.

LINEBUSYMODE_UNKNOWN
The busy signal's specific mode is currently unknown but may become known later.

LINEBUSYMODE_UNAVAIL
The busy signal's specific mode is unavailable and will not become known.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

Note that busy signals may be sent as inband tones or out-of-band messages. TAPI makes no
assumption about the specific signaling mechanism.

LINECALLCOMPLCOND_ Constants
The LINECALLCOMPLCOND_ bit-flag constants describe the conditions under which a call can be
completed.

LINECALLCOMPLCOND_BUSY
Completion of the call under busy conditions.

LINECALLCOMPLCOND_NOANSWER
Completion of the call under ringback no answer conditions.

No extensibility. All 32 bits are reserved.

LINECALLCOMPLMODE_ Constants
The LINECALLCOMPLMODE_ bit-flag constants describe different ways in which a call can be
completed.

LINECALLCOMPLMODE_CAMPON
Queues the call until the call can be completed.

LINECALLCOMPLMODE_CALLBACK
Requests the called station to return the call when it returns to idle.

LINECALLCOMPLMODE_INTRUDE
Adds the application to the existing call at the called station (barge in).

LINECALLCOMPLMODE_MESSAGE
Leaves a short predefined message for the called station (Leave Word Calling). The message to be
sent is specified separately.

No extensibility. All 32 bits are reserved.

LINECALLFEATURE_ Constants
The LINECALLFEATURE_ constants list the operations that can be invoked on a call using this API.

Each of the LINECALLFEATURE_ values correspond to the TAPI operations with the same name. The list
is not repeated here.

No extensibility. All 32 bits are reserved.

This constant is used both in LINEADDRESSCAPS (returned by lineGetAddressCaps) and in
LINECALLSTATUS (returned by lineGetCallStatus). LINEADDRESSCAPS reports the availability of the
call features on the specified address. An application would use this information when it initializes to
determine what it may be able to do later when calls exist. For the specified call, LINECALLSTATUS
reports which call features can be invoked while the call is in the current call state. The latter takes call
privileges into account. An application would make this determination dynamically, after call state
changes.

The LINECALLFEATURE_RELEASEUSERUSER value is new. No backward compatibility
considerations. A service provider may elect to return this value in relevant fields (in
LINEADDRESSCAPS and LINECALLSTATUS) even when older API versions have been negotiated on
the line device.

The LINECALLFEATURE_SETTREATMENT, LINECALLFEATURE_SETQOS, and
LINECALLFEATURE_SETCALLDATA constants are available for API versions 0x00020000 and greater.

LINECALLFEATURE2_ Constants
The LINECALLFEATURE2_ constants list the supplemental features available for conferencing,
transferring, and parking calls.

LINECALLFEATURE2_NOHOLDCONFERENCE
If this bit is on, a "no hold conference" can be created by using the
LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with lineSetupConference. The
LINECALLFEATURE_SETUPCONF bit will also be on in the dwCallFeatures member.

LINECALLFEATURE2_ONESTEPTRANSFER
If this bit is on, "one step transfer" can be created by using the
LINECALLPARAMFLAGS_ONESTEPTRANSFER option with lineSetupTransfer. The
LINECALLFEATURE_SETUPTRANSFER bit will also be on in the dwCallFeatures member.

LINECALLFEATURE2_COMPLCAMPON
If this bit is on, the "camp on" feature can be invoked by using the LINECOMPLMODE_CAMPON
option with lineCompleteCall. The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLCALLBACK
If this bit is on, the "callback" feature can be invoked by using the LINECOMPLMODE_CALLBACK
option with lineCompleteCall. The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLINTRUDE
If this bit is on, the "intrude" feature can be invoked by using the LINECOMPLMODE_INTRUDE
option with lineCompleteCall. The LINECALLFEATURE_COMPLETECALL bit will also be on in the
dwCallFeatures member.

LINECALLFEATURE2_COMPLMESSAGE
If this bit is on, the "leave message" feature can be invoked by using the
LINECOMPLMODE_MESSAGE option with lineCompleteCall. The
LINECALLFEATURE_COMPLETECALL bit will also be on in the dwCallFeatures member.

Note If none of the "COMPL" bits is specified in the dwCallFeature2 member in
LINECALLSTATUS but LINECALLFEATURE_COMPLETECALL is specified, then it is possible
that any of them will work, but the service provider has not specified which.

LINECALLFEATURE2_TRANSFERNORM
If this bit is on, the lineCompleteTransfer function can be used to resolve the transfer as a normal
transfer. The LINECALLFEATURE_COMPLETETRANSF bit will also be on in the dwCallFeatures
member.

LINECALLFEATURE2_TRANSFERCONF
If this bit is on, the lineCompleteTransfer function can be used to resolve the transfer as a three-way
conference. The LINECALLFEATURE_COMPLETETRANSF bit will also be on in the
dwCallFeatures member.

Note If neither TRANSFERNORM nor TRANSFERCONF is specified in the dwCallFeature2
member in LINECALLSTATUS but LINECALLFEATURE_COMPLETETRANSF is specified, then
it is possible that either will work, but the service provider has not specified which.

LINECALLFEATURE2_PARKDIRECT
If this bit is on, the "directed park" feature can be invoked by using the LINEPARKMODE_DIRECTED
option with linePark. The LINECALLFEATURE_PARK bit will also be on in the dwCallFeatures
member.

LINECALLFEATURE2_PARKNONDIRECT
If this bit is on, the "non-directed park" feature can be invoked by using the

LINEPARKMODE_NONDIRECTED option with linePark. The LINECALLFEATURE_PARK bit will
also be on in the dwCallFeatures field.

Note If neither PARKDIRECT nor PARKNONDIRECT is specified in the dwCallFeature2
member in LINECALLSTATUS but LINECALLFEATURE_PARK is specified, then it is possible
that either will work, but the service provider has not specified which.

LINECALLINFOSTATE_ Constants
The LINECALLINFOSTATE_ bit-flag constants describe various call information items about which an
application may be notified in the LINE_CALLINFO message.

LINECALLINFOSTATE_OTHER
Call information items other than those listed below have changed. The application should check the
current call information to determine which items have changed.

LINECALLINFOSTATE_DEVSPECIFIC
The device-specific field of the call-information record.

LINECALLINFOSTATE_BEARERMODE
The bearer mode field of the call-information record.

LINECALLINFOSTATE_RATE
The rate field of the call-information record.

LINECALLINFOSTATE_MEDIAMODE
The media-mode field of the call-information record.

LINECALLINFOSTATE_APPSPECIFIC
The application-specific field of the call-information record.

LINECALLINFOSTATE_CALLID
The call ID field of the call-information record.

LINECALLINFOSTATE_RELATEDCALLID
The related call ID field of the call-information record.

LINECALLINFOSTATE_ORIGIN
The origin field of the call-information record.

LINECALLINFOSTATE_REASON
The reason field of the call-information record.

LINECALLINFOSTATE_COMPLETIONID
The completion ID field of the call-information record.

LINECALLINFOSTATE_NUMOWNERINCR
The number of owner field in the call-information record was increased.

LINECALLINFOSTATE_NUMOWNERDECR
The number of owner field in the call-information record was decreased.

LINECALLINFOSTATE_NUMMONITORS
The number of monitors field in the call-information record has changed.

LINECALLINFOSTATE_TRUNK
The trunk field of the call-information record.

LINECALLINFOSTATE_CALLERID
One of the callerID-related fields of the call-information record.

LINECALLINFOSTATE_CALLEDID
One of the calledID-related fields of the call-information record.

LINECALLINFOSTATE_CONNECTEDID
One of the cconnectedID-related fields of the call-information record.

LINECALLINFOSTATE_REDIRECTIONID
One of the redirectionID-related fields of the call-information record.

LINECALLINFOSTATE_REDIRECTINGID
One of the redirectingID-related fields of the call-information record.

LINECALLINFOSTATE_DISPLAY
The display field of the call-information record.

LINECALLINFOSTATE_USERUSERINFO
The user-to-user information of the call-information record.

LINECALLINFOSTATE_HIGHLEVELCOMP
The high level compatibility field of the call-information record.

LINECALLINFOSTATE_LOWLEVELCOMP
The low level compatibility field of the call-information record.

LINECALLINFOSTATE_CHARGINGINFO
The charging information of the call-information record.

LINECALLINFOSTATE_TERMINAL
The terminal mode information of the call-information record.

LINECALLINFOSTATE_DIALPARAMS
The dial parameters of the call-information record.

LINECALLINFOSTATE_MONITORMODES
One or more of the digit, tone, or media monitoring fields in the call-information record.

LINECALLINFOSTATE_TREATMENT
The CallTreatment member in LINECALLINFO has been updated. This may occur in response to a
lineSetCallTreatment function, a call state change, a call "vector" or other script controlling the call,
or upon completion of playback of a recorded message (ordinarily, indicating a change to "silence" or
"music").

LINECALLINFOSTATE_QOS
One or more of the QOS members in LINECALLINFO has been updated.

LINECALLINFOSTATE_CALLDATA
The CallData member in LINECALLINFO has been updated.

No extensibility. All 32 bits are reserved.

When changes occur in this data structure, a LINE_CALLINFO message is sent to the application. The
parameters to this message are a handle to the call and an indication of the information item that has
changed. The LINEADDRESSCAPS data structure also indicates which of these call information
elements are valid for every call on the address.

LINECALLORIGIN_ Constants
The LINECALLORIGIN_ constants describe the origin of a call.

LINECALLORIGIN_OUTBOUND
The call originated from this station as an outbound call.

LINECALLORIGIN_INTERNAL
The call originated as an inbound call at a station internal to the same switching environment.

LINECALLORIGIN_EXTERNAL
The call originated as an inbound call on an external line.

LINECALLORIGIN_UNKNOWN
The call origin is currently unknown but may become known later.

LINECALLORIGIN_UNAVAIL
The call origin is not available and will never become known for this call.

LINECALLORIGIN_CONFERENCE
The call handle is for a conference call, that is, it is the application's connection to the conference
bridge in the switch.

LINECALLORIGIN_INBOUND
The call originated as an inbound call, but the service provider is unable to determine whether it came
from another station on the same switch or from an external line.

No extensibility. All 32 bits are reserved.

The origin of a call is stored in the dwOrigin field of the call's LINECALLINFO structure.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use the LINECALLORIGIN_INBOUND value if it is not supported on the
negotiated version (LINECALLORIGIN_UNAVAIL may be substituted).

LINECALLPARAMFLAGS_ Constants
The LINECALLPARAMFLAGS_ constants describe various status flags about a call.

LINECALLPARAMFLAGS_SECURE
The call should be set up as secure.

LINECALLPARAMFLAGS_IDLE
The call should be originated on an idle call appearance and not join a call in progress. When using
the lineMakeCall function, if the LINECALLPARAMFLAGS_IDLE value is not set and there is an
existing call on the line, the function breaks into the existing call if necessary to make the new call. If
there is no existing call, the function makes the new call as specified.

LINECALLPARAMFLAGS_BLOCKID
The originator identity should be concealed (block caller ID).

LINECALLPARAMFLAGS_ORIGOFFHOOK
The originator's phone should be automatically taken offhook.

LINECALLPARAMFLAGS_DESTOFFHOOK
The called party's phone should be automatically taken offhook.

LINECALLPARAMFLAGS_NOHOLDCONFERENCE
This bit is used only in conjunction with lineSetupConference and linePrepareAddToConference.
The address to be conferenced with the current call is specified in the TargetAddress member in
LINECALLPARAMS. The consultation call does not physically draw dial tone from the switch, but will
progress through various call establishment states (for example, dialing, proceeding). When the
consultation call reaches the connected state, the conference is automatically established; the original
call, which had remained in the connected state, enters the conferenced state; the consultation call
enters the conferenced state; the hConfCall enters the connected state. If the consultation call fails
(enters the disconnected state followed by idle), the hConfCall also enters the idle state, and the
original call (which may have been an existing conference, in the case of
linePrepareAddToConference) remains in the connected state. The original party (or parties) never
perceive the call has having gone onhold. This feature is often used to add a supervisor to an ACD
agent call when necessary to monitor interactions with an irate caller.

LINECALLPARAMFLAGS_PREDICTIVEDIAL
This bit is used only when placing a call on an address with predictive dialing capability
(LINEADDRCAPFLAGS_PREDICTIVEDIALER is on in the dwAddrCapFlags member in
LINEADDRESSCAPS). The bit must be on to enable the enhanced call progress and/or media
device monitoring capabilities of the device. If this bit is not on, the call will be placed without
enhanced call progress or media mode monitoring, and no automatic transfer will be initiated based
on call state.

LINECALLPARAMFLAGS_ONESTEPTRANSFER
This bit is used only in conjunction with lineSetupTransfer. It combines the operation of
lineSetupTransfer followed by lineDial on the consultation call into a single step. The address to be
dialed is specified in the TargetAddress member in LINECALLPARAMS. The original call is placed
in onholdpendingtranfer state, just as if lineSetupTransfer were called normally, and the consultation
call is established normally. The application must still call lineCompleteTransfer to effect the transfer.
This feature is often used when invoking a transfer from a server over a third-party call control link,
because such links frequently do not support the normal two-step process.

No extensibility. All 32 bits are reserved.

LINECALLPARTYID_ Constants
The LINECALLPARTYID_ bit-flag constants describe the nature of the information available about the
parties involved in a call.

LINECALLPARTYID_BLOCKED
Party ID information is not available because it has been blocked by the remote party.

LINECALLPARTYID_OUTOFAREA
Caller ID information for the call is not available since it is not propagated all the way by the network.

LINECALLPARTYID_NAME
Party ID information consists of the party's name (as, for example, from a directory kept inside the
switch).

LINECALLPARTYID_ADDRESS
Party ID information consists of the party's address in either canonical address format or dialable
address format.

LINECALLPARTYID_PARTIAL
Party ID information is valid but it is limited to partial information only.

LINECALLPARTYID_UNKNOWN
Party ID information is currently unknown but may become known later.

LINECALLPARTYID_UNAVAIL
Party ID information is not available and will not become available later. Information may be
unavailable for unspecified reasons. For example, the information was not delivered by the network, it
was ignored by the service provider, and so forth.

No extensibility. All 32 bits are reserved.

For each of the possible parties involved in a call, the LINECALLPARTYID_ constants describe how the
party ID information is formatted. This information is supplied in the LINECALLINFO data structure.

LINECALLPRIVILEGE_ Constants
The LINECALLPRIVILEGE_ bit-flag constants describe the kinds of access rights or privileges an
application with a call handle may have to the corresponding call.

LINECALLPRIVILEGE_NONE
The application has no privileges to the call. The application's handle is void and should not be used.

LINECALLPRIVILEGE_MONITOR
The application has monitor privileges to the call. These privileges allow the application to monitor
state changes and query information and status about the call.

LINECALLPRIVILEGE_OWNER
The application has owner privileges to the call. These privileges allow the application to manipulate
the call in ways that affect the state of the call.

No extensibility. All 32 bits are reserved.

When a call handle is first provided to an application or whenever call privileges of that application are
modified, the LINE_CALLSTATE message is sent to the application. When an application hands off a call,
and if the receiving application does not already have a handle with owner privileges, then this message
informs the application about its new privileges to the call.

LINECALLREASON_ Constants
The LINECALLREASON_ bit-flag constants describe the reason for a call.

LINECALLREASON_DIRECT
This is a direct inbound or outbound call.

LINECALLREASON_FWDBUSY
This call was forwarded from another extension that was busy at the time of the call.

LINECALLREASON_FWDNOANSWER
The call was forwarded from another extension that didn't answer the call after some number of rings.

LINECALLREASON_FWDUNCOND
The call was forwarded unconditionally from another number.

LINECALLREASON_PICKUP
The call was picked up from another extension.

LINECALLREASON_UNPARK
The call was retrieved as a parked call.

LINECALLREASON_REDIRECT
The call was redirected to this station.

LINECALLREASON_CALLCOMPLETION
The call was the result of a call completion request.

LINECALLREASON_TRANSFER
The call has been transferred from another number.

LINECALLREASON_REMINDER
The call is a reminder (or "recall") that the user has a call parked or on hold for (potentially) a long
time.

LINECALLREASON_UNKNOWN
The reason for the call is currently unknown but may become known later.

LINECALLREASON_UNAVAIL
The reason for the call is unavailable and will not become known later.

LINECALLREASON_INTRUDE
The call intruded onto the line, either by a call completion action invoked by another station or by
operator action. Depending on switch implementation, the call may appear either in the connected
state, or conferenced with an existing active call on the line.

LINECALLREASON_PARKED
The call was parked on the address. Usually, it appears initially in the onhold state.

LINECALLREASON_CAMPEDON
The call was camped on the address. Usually, it appears initially in the onhold state, and can be
switched to using lineSwapHold. If an active call becomes idle, the camped-on call may change to
the offering state and the device start ringing.

LINECALLREASON_ROUTEREQUEST
The call appears on the address because the switch needs routing instructions from the application.
The application should examine the CalledID member in LINECALLINFO, and use the lineRedirect
function to provide a new dialable address for the call. If the call is to be blocked instead, the
application may call lineDrop. If the application fails to take action within a switch-defined timeout
period, a default action will be taken.

No extensibility. All 32 bits are reserved.

The LINECALLREASON_ constants are used in the dwReason field of the LINECALLINFO data
structure.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use these LINECALLREASON_ values if not supported on the negotiated

version (LINECALLREASON_UNAVAIL may be substituted).

LINECALLTREATMENT_ Constants
The LINECALLTREATMENT_ constants lists the manner in which calls of a certain state are treated and
the sounds the calling party hears.

LINECALLTREATMENT_BUSY
When the call is not actively connected to a device (offering or onhold), the party hears busy signal.

LINECALLTREATMENT_MUSIC
When the call is not actively connected to a device (offering or onhold), the party hears music.

LINECALLTREATMENT_RINGBACK
When the call is not actively connected to a device (offering or onhold), the party hears ringback tone.

LINECALLTREATMENT_SILENCE
When the call is not actively connected to a device (offering or onhold), the party hears silence.

The value 0x00000000 is reserved to indicate that the service provider does not support call treatments.
Values in the range 0x00000005 through 0x000000FF are reserved for future definition. Values in the
range 0x00000100 through 0xFFFFFFFF are reserved for assignment by service providers, and may
include identification of specific musical selections or recorded announcements.

LINECALLSELECT_ Constants
The LINECALLSELECT_ bit-flag constants describe which calls are to be selected.

LINECALLSELECT_LINE
Selects calls on the specified line device.

LINECALLSELECT_ADDRESS
Selects call on the specified address.

LINECALLSELECT_CALL
Selects related calls to the specified call. For example, the parties in a conference call.

No extensibility. All 32 bits are reserved.

This constant is used in lineGetNewCalls and to specify a selection (scope) of the calls that are
requested.

LINECALLSTATE_ Constants
The LINECALLSTATE_ bit-flag constants describe the call states a call can be in.

LINECALLSTATE_IDLE
The call is idle¾no call exists.

LINECALLSTATE_OFFERING
The call is being offered to the station, signaling the arrival of a new call. In some environments, a call
in the offering state does not automatically alert the user because alerting is done by the switch
instructing the line to ring. It does not affect any call states.

LINECALLSTATE_ACCEPTED
The call was offering and has been accepted. This indicates to other (monitoring) applications that the
current owner application has claimed responsibility for answering the call. In ISDN, this also initiates
alerting to both parties.

LINECALLSTATE_DIALTONE
The call is receiving a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING
Destination address information (a phone number) is being sent to the switch over the call. Note that
lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK
The call is receiving ringback from the called address. Ringback indicates that the other station has
been reached and is being alerted.

LINECALLSTATE_BUSY
The call is receiving a busy tone. A busy tone indicates that the call cannot be completed¾either a
circuit (trunk) or the remote party's station are in use.

LINECALLSTATE_SPECIALINFO
Special information is sent by the network. Special information is typically sent when the destination
cannot be reached.

LINECALLSTATE_CONNECTED
The call has been established and the connection is made. Information is able to flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING
Dialing has completed and the call is proceeding through the switch or telephone network.

LINECALLSTATE_ONHOLD
The call is on hold by the switch.

LINECALLSTATE_CONFERENCED
The call is currently a member of a multi-party conference call.

LINECALLSTATE_ONHOLDPENDCONF
The call is currently on hold while it is being added to a conference.

LINECALLSTATE_ONHOLDPENDTRANSFER
The call is currently on hold awaiting transfer to another number.

LINECALLSTATE_DISCONNECTED
The remote party has disconnected from the call.

LINECALLSTATE_UNKNOWN
The state of the call is not known. This may be due to limitations of the call-progress detection
implementation.

The high-order 8 bits can define a device-specific substate of any of the predefined states, provided that
one of the LINECALLSTATE_ bits defined above is also set. The low-order 24 bits are reserved for
predefined states.

The LINECALLSTATE_ constants are used as parameters by the LINE_CALLSTATE message sent to the
application. The message carries the new call state that the call transitioned to. These constants are also
used as fields in the LINECALLSTATUS structure returned by the lineGetCallStatus function.

LINECARDOPTION_ Constants
The LINECARDOPTION_ constants define values used in the dwOptions field of the LINECARDENTRY
structure returned as part of the LINETRANSLATECAPS structure returned by lineGetTranslateCaps.
The LINECARDOPTION_ constant has the following values:

LINECARDOPTION_PREDEFINED
This calling card is one of the predefined calling card definitions included by Microsoft with Win32
Telephony. It cannot be removed entirely using Dial Helper; if the user attempts to remove it, it will
become HIDDEN. It thus continues to be accessible for copying of dialing rules.

LINECARDOPTION_HIDDEN
This calling card has been hidden by the user. It is not shown by Dial Helper in the main listing of
available calling cards, but will be shown in the list of cards from which dialing rules can be copied.

Not extensible. All 32 bits are reserved.

LINECONNECTEDMODE_ Constants
The LINECONNECTEDMODE_ bit-flag constants describe different substates of a connected call. A
mode is available as call status to the application after the call state transitions to connected, and within
the LINE_CALLSTATE message indicating the call is in LINECALLSTATE_CONNECTED. These values
are used when the call is on an address that is shared (bridged) with other stations (see the
LINEADDRESSSHARING_ constants), primarily electronic key systems. The LINECONNECTEDMODE_
constants have the following values:

LINECONNECTEDMODE_ACTIVE
Indicates that the call is connected at the current station (the current station is a participant in the
call). If the call state mode is 0 (zero), the application should assume that the value is "active" (which
would be the situation on a non-bridged address). The mode may switch between ACTIVE and
INACTIVE during a call if the user joins and leaves the call through manual action. In such a bridged
situation, a lineDrop or lineHold operation may possibly not actually drop the call or place it on hold,
because the status of other stations on the call may govern (for example, attempting to "hold" a call
when other stations are participating won't be possible); instead, the call may simply be changed to
the INACTIVE mode if it remains CONNECTED at other stations.

LINECONNECTEDMODE_INACTIVE
Indicates that the call is active at one or more other stations, but the current station is not a participant
in the call. If the call state mode is ZERO, the application should assume that the value is "active"
(which would be the situation on a non-bridged address). A call in the INACTIVE state may be joined
using lineAnswer. Many operations that are valid in calls in the CONNECTED state may be
impossible in the INACTIVE mode, such as monitoring for tones and digits, because the station is not
actually participating in the call; monitoring is usually suspended (although not canceled) while the
call is in the INACTIVE mode.

LINECONNECTEDMODE_ACTIVEHELD
Indicates that the station is an active participant in the call, but that the remote party has placed the
call on hold (the other party considers the call to be in the onhold state). Normally, such information is
available only when both endpoints of the call fall within the same switching domain.

LINECONNECTEDMODE_INACTIVEHELD
Indicates that the station is not an active participant in the call, and that the remote party has placed
the call on hold.

LINECONNECTEDMODE_CONFIRMED
Indicates that the service provider received affirmative notification that the call has entered the
connected state (for example, through answer supervision or similar mechanisms).

Not extensible. All 32 bits are reserved.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use these LINECONNECTEDMODE_ values if not supported on the
negotiated version. It should be noted that applications which are not cognizant of
LINECONNECTEDMODE_ will most likely assume that a call that is in LINECALLSTATE_CONNECTED
is in LINECONNECTEDMODE_ACTIVE.

The LINECONNECTEDMODE_ACTIVE and LINECONNECTEDMODE_INACTIVE values are used when
the call is on an address that is shared with other stations (bridged; see LINEADDRESSSHARING_
constants), primarily electronic key systems. If the connected call state mode is "active," it means that the
call is connected at the current station (the current station is a participant in the call). If the call state mode
is "inactive," the call is active at one or more other stations, but the current station is not a participant in
the call. If the call state mode is ZERO, the application should assume that the value is "active" (which
would be the situation on a non-bridged address). The mode may switch between ACTIVE and INACTIVE
during a call if the user joins and leaves the call through manual action.

In such a bridged situation, a lineDrop or lineHold operation may possibly not actually drop the call or

place it on hold, because the status of other stations on the call may govern (for example, attempting to
"hold" a call when other stations are participating will not be possible); instead, the call may simply be
changed to the INACTIVE mode if it remains connected at other stations. A call in the INACTIVE state
may be joined using the lineAnswer.

Many operations that are valid in calls in the connected state may be impossible in the INACTIVE mode,
such as monitoring for tones and digits, because the station is not actually participating in the call;
monitoring is usually suspended (although not canceled) while the call is in the INACTIVE mode.

LINEDEVCAPFLAGS_ Constants
The LINEDEVCAPFLAGS_ bit-flag constants are a collection of Booleans describing various line device
capabilities.

LINEDEVCAPFLAGS_CROSSADDRCONF
Specifies whether calls on different addresses on this line can be conferenced.

LINEDEVCAPFLAGS_HIGHLEVCOMP
Specifies whether high-level compatibility information elements are supported on this line.

LINEDEVCAPFLAGS_LOWLEVCOMP
Specifies whether low-level compatibility information elements are supported on this line.

LINEDEVCAPFLAGS_MEDIACONTROL
Specifies whether media-control operations are available for calls at this line.

LINEDEVCAPFLAGS_MULTIPLEADDR
Specifies whether lineMakeCall or lineDial are able to deal with multiple addresses at once (as for
inverse multiplexing).

LINEDEVCAPFLAGS_CLOSEDROP
Specifies what happens when an open line is closed while the application has calls active on the line.
If TRUE, the service provider drops (clears) all active calls on the line when the last application that
has opened the line closes it with lineClose. If FALSE, the service provider does not drop active calls
in such cases. Instead, the calls remain active and under control of external devices. A service
provider typically sets this bit to FALSE if there is some other device that can keep the call alive, for
example, if an analog line has the computer and phoneset both connect directly to them in a party-line
configuration, the offhook phone will automatically keep the call active even after the computer
powers down.
Applications should check this flag to determine whether to warn the user (with an OK/Cancel dialog
box) that active calls will be lost.

LINEDEVCAPFLAGS_DIALBILLING

LINEDEVCAPFLAGS_DIALQUIET

LINEDEVCAPFLAGS_DIALDIALTONE
These flags indicate whether the "$", "@", or "W" dialable string modifier is supported for a given line
device. It is TRUE if the modifier is supported; otherwise, FALSE. The "?" (prompt user to continue
dialing) is never supported by a line device. These flags allow an application to determine up front
which modifiers would result in the generation of a LINEERR. The application has the choice of pre-
scanning dialable strings for unsupported characters or of passing the "raw" string from
lineTranslateAddress directly to the provider as part of functions such as lineMakeCall or lineDial
and let the function generate an error to tell it which unsupported modifier occurs first in the string.

No extensibility. All 32 bits are reserved.

LINEDEVSTATE_ Constants
The LINEDEVSTATE_ bit-flag constants describe various line status events.

LINEDEVSTATE_OTHER
Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING
The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending LINE_LINEDEVSTATE messages containing this constant. For example, in the United
States, service providers send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED
The line was previously disconnected and is now connected to TAPI.

LINEDEVSTATE_DISCONNECTED
This line was previously connected and is now disconnected from TAPI.

LINEDEVSTATE_MSGWAITON
The message waiting indicator is turned on.

LINEDEVSTATE_MSGWAITOFF
The message waiting indicator is turned off.

LINEDEVSTATE_INSERVICE
The line is connected to TAPI. This happens when TAPI is first activated or when the line wire is
physically plugged in and in-service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE
The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate on
the line device.

LINEDEVSTATE_MAINTENANCE
Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the line
device.

LINEDEVSTATE_OPEN
The line has been opened by another application.

LINEDEVSTATE_CLOSE
The line has been closed by another application.

LINEDEVSTATE_NUMCALLS
The number of calls on the line device has changed.

LINEDEVSTATE_NUMCOMPLETIONS
The number of outstanding call completions on the line device has changed.

LINEDEVSTATE_TERMINALS
The terminal settings have changed. This may happen, for example, if multiple line devices share
terminals among them (for example, two lines sharing a phone terminal).

LINEDEVSTATE_ROAMMODE
The roam mode of the line device has changed.

LINEDEVSTATE_BATTERY
The battery level has changed significantly (cellular).

LINEDEVSTATE_SIGNAL
The signal level has changed significantly (cellular).

LINEDEVSTATE_DEVSPECIFIC
The line's device-specific information has changed.

LINEDEVSTATE_REINIT
Items have changed in the configuration of line devices. To become aware of these changes (as for
the appearance of new line devices) the application should reinitialize its use of TAPI.

LINEDEVSTATE_LOCK

The locked status of the line device has changed. (For more information, see
LINEDEVSTATUSFLAGS_LOCKED in the following topic, LINEDEVSTATUSFLAGS_ Constants.)

LINEDEVSTATE_CAPSCHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of
the fields in the LINEDEVCAPS structure for the address have changed. The application should use
lineGetDevCaps to read the updated structure. If a service provider sends a LINE_LINEDEVSTATE
message containing this value to TAPI, TAPI will pass it along to applications that have negotiated
TAPI version 0x00010004 or above; applications negotiating a previous API version will receive
LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring them to shutdown
and reinitialize their connection to TAPI to obtain the updated information.

LINEDEVSTATE_CONFIGCHANGE
Indicates that configuration changes have been made to one or more of the media devices associated
with the line device. The application, if it desires, may use lineGetDevConfig to read the updated
information. If a service provider sends a LINE_LINEDEVSTATE message containing this value to
TAPI, TAPI will pass it along to applications that have negotiated TAPI version 0x00010004 or above;
applications negotiating a previous API version will not receive any notification.

LINEDEVSTATE_TRANSLATECHANGE
Indicates that, due to configuration changes made by the user or other circumstances, one or more of
the fields in the LINETRANSLATECAPS structure have changed. The application should use
lineGetTranslateCaps to read the updated structure. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to applications
that have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will receive LINE_LINEDEVSTATE messages specifying LINEDEVSTATE_REINIT, requiring
them to shutdown and reinitialize their connection to TAPI to obtain the updated information.

LINEDEVSTATE_COMPLCANCEL
Indicates that the call completion identified by the completion ID contained in the dwParam2
parameter of the LINE_LINEDEVSTATE message has been externally canceled and is no longer
considered valid (if that value were to be passed in a subsequent call to lineUncompleteCall, the
function would fail with LINEERR_INVALCOMPLETIONID). If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to applications
which have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will not receive any notification.

LINEDEVSTATE_REMOVED
Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A LINE_LINEDEVSTATE message with
this value will normally be immediately followed by a LINE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
LINEERR_NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it along to applications
that have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API
version will not receive any notification.

No extensibility. All 32 bits are reserved.

LINEDEVSTATUSFLAGS_ Constants
The LINEDEVSTATUSFLAGS_ bit-flag constants describe a collection of Boolean line device status
items.

LINEDEVSTATUSFLAGS_CONNECTED
Specifies whether the line is connected to TAPI. If TRUE, the line is connected and TAPI is able to
operate on the line device. If FALSE, the line is disconnected and the application is unable to control
the line device through TAPI.

LINEDEVSTATUSFLAGS_MSGWAIT
Indicates whether the line has a message waiting. If TRUE, a message is waiting; if FALSE, no
message is waiting.

LINEDEVSTATUSFLAGS_INSERVICE
Indicates whether the line is in service. If TRUE, the line is in service; if FALSE, the line is out of
service.

LINEDEVSTATUSFLAGS_LOCKED
Indicates whether the line is locked or unlocked. This bit is most often used with line devices
associated with cellular phones. Many cellular phones have a security mechanism that requires the
entry of a password to enable the phone to place calls. This bit may be used to indicate to
applications that the phone is locked and cannot place calls until the password is entered on the user
interface of the phone so that the application can present an appropriate alert to the user.

No extensibility. All 32 bits are reserved.

LINEDEVSTATUSFLAGS_ constants are used within the dwDevStatusFlags field of the
LINEDEVSTATUS data structure.

LINEDIALTONEMODE_ Constants
The LINEDIALTONEMODE_ bit-flag constants describe different types of dial tones. A special dial tone
typically carries a special meaning (as with message waiting).

LINEDIALTONEMODE_NORMAL
This is a normal dial tone, which typically is a continuous tone.

LINEDIALTONEMODE_SPECIAL
This is a special dial tone indicating that a certain condition (known by the switch or network) is
currently in effect. Special dial tones typically use an interrupted tone. As with a normal dial tone, this
indicates that the switch is ready to receive the number to be dialed.

LINEDIALTONEMODE_INTERNAL
This is an internal dial tone, as within a PBX.

LINEDIALTONEMODE_EXTERNAL
This is an external (public network) dial tone.

LINEDIALTONEMODE_UNKNOWN
The dial tone mode is not currently known but may become known later.

LINEDIALTONEMODE_UNAVAIL
The dial tone mode is unavailable and will not become known.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

The LINEDIALTONEMODE_ constants are used within the LINECALLSTATUS data structure for a call in
the dialtone state.

LINEDIGITMODE_ Constants
The LINEDIGITMODE_ constants describe different types of inband digit generation.

LINEDIGITMODE_PULSE
Uses rotary pulse sequences to signal digits. Valid digits are 0 through 9.

LINEDIGITMODE_DTMF
Uses DTMF tones to signal digits. Valid digits are 0 through 9, '*', '#', 'A', 'B', 'C', and 'D'.

LINEDIGITMODE_DTMFEND
Uses DTMF tones to signal digits and detect the down edges. Valid digits are 0 through 9, '*', '#', 'A',
'B', 'C', and 'D'.

No extensibility. All 32 bits are reserved.

A digit mode can be specified when generating or detecting digits. Note that pulse digits are generated by
making and breaking the local loop circuit. These pulses are absorbed by the switch. The remote end
merely observes this as a series of inband audio clicks. Detecting digits sent as pulses must therefore be
able to detect these sequences of 1 to 10 audible clicks.

LINEDISCONNECTMODE_ Constants
The LINEDISCONNECTMODE_ bit-flag constants describe different reasons for a remote disconnect
request. A disconnect mode is available as call status to the application after the call state transitions to
disconnected.

LINEDISCONNECTMODE_NORMAL
This is a normal disconnect request by the remote party. The call was terminated normally.

LINEDISCONNECTMODE_UNKNOWN
The reason for the disconnect request is unknown but may become known later.

LINEDISCONNECTMODE_REJECT
The remote user has rejected the call.

LINEDISCONNECTMODE_PICKUP
The call was picked up from elsewhere.

LINEDISCONNECTMODE_FORWARDED
The call was forwarded by the switch.

LINEDISCONNECTMODE_BUSY
The remote user's station is busy.

LINEDISCONNECTMODE_NOANSWER
The remote user's station does not answer.

LINEDISCONNECTMODE_BADADDRESS
The destination address is invalid.

LINEDISCONNECTMODE_UNREACHABLE
The remote user could not be reached.

LINEDISCONNECTMODE_CONGESTION
The network is congested.

LINEDISCONNECTMODE_INCOMPATIBLE
The remote user's station equipment is incompatible with the type of call requested.

LINEDISCONNECTMODE_UNAVAIL
The reason for the disconnect is unavailable and will not become known later.

LINEDISCONNECTMODE_NODIALTONE
A dial tone was not detected within a service-provider defined timeout, at a point during dialing when
one was expected (such as at a "W" in the dialable string). This can also occur without a service-
provider-defined timeout period or without a value specified in the dwWaitForDialTone member of
the LINEDIALPARAMS structure.

LINEDISCONNECTMODE_NUMBERCHANGED
The call could not be connected because the destination number has been changed, but automatic
redirection to the new number is not provided.

LINEDISCONNECTMODE_OUTOFORDER
The call could not be connected or was disconnected because the destination device is out of order
(hardware failure).

LINEDISCONNECTMODE_TEMPFAILURE
The call could not be connected or was disconnected because of a temporary failure in the network;
the call can be reattempted later and will eventually complete.

LINEDISCONNECTMODE_QOSUNAVAIL
The call could not be connected or was disconnected because the minimum quality of service could
not be obtained or sustained. This differs from LINEDISCONNECTMODE_INCOMPATIBLE in that the
lack of resources may be a temporary condition at the destination.

LINEDISCONNECTMODE_BLOCKED
The call could not be connected because calls from the origination address are not being accepted at
the destination address. This differs from LINEDISCONNECTMODE_REJECT in that blocking is
implemented in the network (a passive reject) while a rejection is implemented in the destination

equipment (an active reject). The blocking may be due to a specific exclusion of the origination
address, or because the destination accepts calls from only a selected set of origination address
(closed user group).

LINEDISCONNECTMODE_DONOTDISTURB
The call could not be connected because the destination has invoked the Do Not Disturb feature.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

A remote disconnect request for a given call results in the call state transitioning to the disconnected state
and a LINE_CALLSTATE message is sent to the application. The LINEDISCONNECTMODE_ information
provides details about the remote disconnect request. It is available in the call's LINECALLSTATUS
structure when the call is in the disconnected state. While a call is in this state, the application is still
allowed to query the call's information and status. For example, user-to-user information that is received
as part of the remote disconnect is available then. The application can clear a disconnected call by
dropping the call.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use this LINEDISCONNECTMODE_ value if it is not supported on the
negotiated version (LINEDISCONNECTMODE_NORMAL or _UNKNOWN could be used instead).

LINEERR_ Constants
This is the list of error codes that TAPI may return when invoking operations on lines, addresses, or calls.
Consult the individual function descriptions to determine which of these error codes a particular function
may return.

LINEERR_ADDRESSBLOCKED
The specified address is blocked from being dialed on the specified call.

LINEERR_ALLOCATED
The line cannot be opened due to a persistent condition, such as that of a serial port being exclusively
opened by another process.

LINEERR_BADDEVICEID
The specified device ID or line device ID (such as in a dwDeviceID parameter) is invalid or out of
range.

LINEERR_BEARERMODEUNAVAIL
The call's bearer mode cannot be changed to the specified bearer mode.

LINEERR_CALLUNAVAIL
All call appearances on the specified address are currently in use.

LINEERR_COMPLETIONOVERRUN
The maximum number of outstanding call completions has been exceeded.

LINEERR_CONFERENCEFULL
The maximum number of parties for a conference has been reached, or the requested number of
parties cannot be satisfied.

LINEERR_DIALBILLING
The dialable address parameter contains dialing control characters that are not processed by the
service provider.

LINEERR_DIALQUIET
The dialable address parameter contains dialing control characters that are not processed by the
service provider.

LINEERR_DIALDIALTONE
The dialable address parameter contains dialing control characters that are not processed by the
service provider.

LINEERR_DIALPROMPT
The dialable address parameter contains dialing control characters that are not processed by the
service provider.

LINEERR_INCOMPATIBLEAPIVERSION
The application requested an API version or version range that is either incompatible or cannot be
supported by the Telephony API implementation and/or corresponding service provider.

LINEERR_INCOMPATIBLEEXTVERSION
The application requested an extension version range that is either invalid or cannot be supported by
the corresponding service provider.

LINEERR_INIFILECORRUPT
The TELEPHON.INI file cannot be read or understood properly by TAPI because of internal
inconsistencies or formatting problems. For example, the [Locations], [Cards], or [Countries] section
of the TELEPHON.INI file may be corrupted or inconsistent.

LINEERR_INUSE
The line device is in use and cannot currently be configured, allow a party to be added, allow a call to
be answered, allow a call to be placed, or allow a call to be transferred.

LINEERR_INVALADDRESS
A specified address is either invalid or not allowed. If invalid, the address contains invalid characters
or digits, or the destination address contains dialing control characters (W, @, $, or ?) that are not
supported by the service provider. If not allowed, the specified address is either not assigned to the

specified line or is not valid for address redirection.
LINEERR_INVALADDRESSID

The specified address ID is either invalid or out of range.
LINEERR_INVALADDRESSMODE

The specified address mode is invalid.
LINEERR_INVALADDRESSSTATE

dwAddressStates contains one or more bits that are not LINEADDRESSSTATE_ constants.
LINEERR_INVALAGENTACTIVITY

The specified agent activity is not valid.
LINEERR_INVALAGENTGROUP

The specified agent group information is not valid or contains errors. The requested action has not
been carried out.

LINEERR_INVALAGENTID
The specified agent identifier is not valid.

LINEERR_INVALAGENTSKILL
The specified agent skill information is not valid.

LINEERR_INVALAGENTSTATE
The specified agent state is not valid or contains errors. No changes have been made to the agent
state of the specified address.

LINEERR_INVALAGENTSUPERVISOR
The specified agent supervisor information is not valid.

LINEERR_INVALAPPHANDLE
The application handle (such as specified by a hLineApp parameter) or the appliction registration
handle is invalid.

LINEERR_INVALAPPNAME
The specified application name is invalid. If an application name is specified by the application, it is
assumed that the string does not contain any non-displayable characters, and is zero-terminated.

LINEERR_INVALBEARERMODE
The specified bearer mode is invalid.

LINEERR_INVALCALLCOMPLMODE
The specified completion is invalid.

LINEERR_INVALCALLHANDLE
The specified call handle is not valid. For example, the handle is not NULL but does not belong to the
given line. In some cases, the specified call device handle is invalid.

LINEERR_INVALCALLPARAMS
The specified call parameters are invalid.

LINEERR_INVALCALLPRIVILEGE
The specified call privilege parameter is invalid.

LINEERR_INVALCALLSELECT
The specified select parameter is invalid.

LINEERR_INVALCALLSTATE
The current state of a call is not in a valid state for the requested operation.

LINEERR_INVALCALLSTATELIST
The specified call state list is invalid.

LINEERR_INVALCARD
The permanent card ID specified in dwCard could not be found in any entry in the [Cards] section in
the registry.

LINEERR_INVALCOMPLETIONID
The completion ID is invalid.

LINEERR_INVALCONFCALLHANDLE
The specified call handle for the conference call is invalid or is not a handle for a conference call.

LINEERR_INVALCONSULTCALLHANDLE
The specified consultation call handle is invalid.

LINEERR_INVALCOUNTRYCODE
The specified country code is invalid.

LINEERR_INVALDEVICECLASS
The line device has no associated device for the given device class, or the specified line does not
support the indicated device class.

LINEERR_INVALDIGITLIST
The specified digit list is invalid.

LINEERR_INVALDIGITMODE
The specified digit mode is invalid.

LINEERR_INVALDIGITS
The specified termination digits are not valid.

LINEERR_INVALFEATURE
The dwFeature parameter is invalid.

LINEERR_INVALGROUPID
The specified group ID is invalid.

LINEERR_INVALLINEHANDLE
The specified call, device, line device, or line handle is invalid.

LINEERR_INVALLINESTATE
The device configuration may not be changed in the current line state. The line may be in use by
another application or a dwLineStates parameter contains one or more bits that are not
LINEDEVSTATE_ constants. The LINEERR_INVALLINESTATE value can also indicate that the
device is DISCONNECTED or OUTOFSERVICE. These states are indicated by setting the bits
corresponding to the LINEDEVSTATUSFLAGS_CONNECTED and
LINEDEVSTATUSFLAGS_INSERVICE values to 0 in the dwDevStatusFlags member of the
LINEDEVSTATUS structure returned by the lineGetLineDevStatus function.

LINEERR_INVALLOCATION
The permanent location ID specified in dwLocation could not be found in any entry in the [Locations]
section in the registry.

LINEERR_INVALMEDIALIST
The specified media list is invalid.

LINEERR_INVALMEDIAMODE
The list of media types to be monitored contains invalid information, the specified media mode
parameter is invalid, or the service provider does not support the specified media mode. The media
modes supported on the line are listed in the dwMediaModes field in the LINEDEVCAPS structure.

LINEERR_INVALMESSAGEID
The number given in dwMessageID is outside the range specified by the
dwNumCompletionMessages field in the LINEADDRESSCAPS structure.

LINEERR_INVALPARAM
A parameter (such as dwTollListOption, dwTranslateOptions, dwNumDigits, or a structure pointed to
by lpDeviceConfig) contains invalid values, a country code is invalid, a window handle is invalid, or
the specified forward list parameter contains invalid information.

LINEERR_INVALPARKMODE
The specified park mode is invalid.

LINEERR_INVALPASSWORD
The specified password is not correct and the requested action has not been carried out.

LINEERR_INVALPOINTER
One or more of the specified pointer parameters (such as lpCallList, lpdwAPIVersion, lpExtensionID,
lpdwExtVersion, lphIcon, lpLineDevCaps, and lpToneList) are invalid, or a required pointer to an
output parameter is NULL.

LINEERR_INVALPRIVSELECT

An invalid flag or combination of flags was set for the dwPrivileges parameter.
LINEERR_INVALRATE

The specified bearer mode is invalid.
LINEERR_INVALREQUESTMODE

The specified request mode is invalid.
LINEERR_INVALTERMINALID

The specified terminal mode parameter is invalid.
LINEERR_INVALTERMINALMODE

The specified terminal modes parameter is invalid.
LINEERR_INVALTIMEOUT

Timeouts are not supported or the values of either or both of the parameters dwFirstDigitTimeout or
dwInterDigitTimeout fall outside the valid range specified by the call's line-device capabilities.

LINEERR_INVALTONE
The specified custom tone does not represent a valid tone or is made up of too many frequencies or
the specified tone structure does not describe a valid tone.

LINEERR_INVALTONELIST
The specified tone list is invalid.

LINEERR_INVALTONEMODE
The specified tone mode parameter is invalid.

LINEERR_INVALTRANSFERMODE
The specified transfer mode parameter is invalid.

LINEERR_LINEMAPPERFAILED
LINEMAPPER was the value passed in the dwDeviceID parameter, but no lines were found that
match the requirements specified in the lpCallParams parameter.

LINEERR_NOCONFERENCE
The specified call is not a conference call handle or a participant call.

LINEERR_NODEVICE
The specified device ID, which was previously valid, is no longer accepted because the associated
device has been removed from the system since TAPI was last initialized. Alternately, the line device
has no associated device for the given device class.

LINEERR_NODRIVER
Either TAPIADDR.DLL could not be located or the telephone service provider for the specified device
found that one of its components is missing or corrupt in a way that was not detected at initialization
time. The user should be advised to use the Telephony Control Panel to correct the problem.

LINEERR_NOMEM
Insufficient memory to perform the operation, or unable to lock memory.

LINEERR_NOMULTIPLEINSTANCE
A Telephony Service Provider which does not support multiple instances is listed more than once in
the [Providers] section in the registry. The application should advise the user to use the Telephony
Control Panel to remove the duplicated driver.

LINEERR_NOREQUEST
There currently is no request pending of the indicated mode, or the application is no longer the
highest-priority application for the specified request mode.

LINEERR_NOTOWNER
The application does not have owner privilege to the specified call.

LINEERR_NOTREGISTERED
The application is not registered as a request recipient for the indicated request mode.

LINEERR_OPERATIONFAILED
The operation failed for an unspecified or unknown reason.

LINEERR_OPERATIONUNAVAIL
The operation is not available, such as for the given device or specified line.

LINEERR_RATEUNAVAIL
The service provider currently does not have enough bandwidth available for the specified rate.

LINEERR_REINIT
If TAPI reinitialization has been requested, for example as a result of adding or removing a Telephony
service provider, then lineInitialize, lineInitializeEx, or lineOpen requests are rejected with this error
until the last application shuts down its usage of the API (using lineShutdown), at which time the new
configuration becomes effective and applications are once again permitted to call lineInitialize or
lineInitializeEx.

LINEERR_RESOURCEUNAVAIL
Insufficient resources to complete the operation. For example, a line cannot be opened due to a
dynamic resource overcommitment.

LINEERR_STRUCTURETOOSMALL
The dwTotalSize field indicates insufficient space to contain the fixed portion of the specified
structure.

LINEERR_TARGETNOTFOUND
A target for the call handoff was not found. This may occur if the named application did not open the
same line with the LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen. Or,
in the case of media-mode handoff, no application has opened the same line with the
LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen and with the media
mode specified in the dwMediaMode parameter having been specified in the dwMediaModes
parameter of lineOpen.

LINEERR_TARGETSELF
The application invoking this operation is the target of the indirect handoff. That is, TAPI has
determined that the calling application is also the highest priority application for the given media
mode.

LINEERR_UNINITIALIZED
The operation was invoked before any application called lineInitialize , lineInitializeEx.

LINEERR_USERUSERINFOTOOBIG
The string containing user-to-user information exceeds the maximum number of bytes specified in the
dwUUIAcceptSize, dwUUIAnswerSize, dwUUIDropSize, dwUUIMakeCallSize, or
dwUUISendUserUserInfoSize field of LINEDEVCAPS, or the string containing user-to-user
information is too long.

The values 0xC0000000 through 0xFFFFFFFF are available for device-specific extensions. The values
0x80000000 through 0xBFFFFFFF are reserved, while 0x00000000 through 0x7FFFFFFF are used as
request IDs.

If an application gets an error return that it does not specifically handle (such as an error defined by a
device-specific extension), it should treat the error as a LINEERR_OPERATIONFAILED (for an
unspecified reason).

LINEFEATURE_ Constants
The LINEFEATURE_ constants list the operations that can be invoked on a line using this API.

LINEFEATURE_DEVSPECIFIC
Device-specific operations can be used on the line.

LINEFEATURE_DEVSPECIFICFEAT
Device-specific features can be used on the line.

LINEFEATURE_FORWARD
Forwarding of all addresses can be used on the line.

LINEFEATURE_MAKECALL
An outbound call can be placed on this line using an unspecified address.

LINEFEATURE_SETMEDIACONTROL
Media control can be set on this line.

LINEFEATURE_SETTERMINAL
Terminal modes for this line can be set.

LINEFEATURE_SETDEVSTATUS
The lineSetLineDevStatus function may be invoked on the line device.

LINEFEATURE_FORWARDFWD
The lineForward function can be used to forward calls on all address on the line to other numbers.
LINEFEATURE_FORWARD will also be set.

LINEFEATURE_FORWARDDND
The lineForward function (with an empty destination address) can be used to turn on the Do Not
Disturb feature on all addresses on the line. LINEFEATURE_FORWARD will also be set.

Note If neither of the new modified "FORWARD" bits is set in the dwLineFeatures member in
LINEDEVSTATUS but the LINEFEATURE_FORWARD bit is set, then any of the forward modes
may work; the service provider has simply not specified which ones.

No extensibility. All 32 bits are reserved.

The LINEFEATURE_ constants are used in LINEDEVSTATUS (returned by lineGetLineDevStatus).
LINEDEVSTATUS reports, for a given line, which line features can actually be invoked while the line is in
the current state. An application would make this determination dynamically after line state changes,
typically caused by address or call-related activities on the line.

LINEFORWARDMODE_ Constants
The LINEFORWARDMODE_ bit-flag constants describe the conditions under which calls to an address
can be forwarded.

LINEFORWARDMODE_UNCOND
Forward all calls unconditionally, irrespective of their origin. Use this value when unconditional
forwarding for internal and external calls cannot be controlled separately. Unconditional forwarding
overrides forwarding on busy and/or no answer conditions.

LINEFORWARDMODE_UNCONDINTERNAL
Forward all internal calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL
Forward all external calls unconditionally. Use this value when unconditional forwarding for internal
and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC
Unconditionally forward all calls that originated at a specified address (selective call forwarding).

LINEFORWARDMODE_BUSY
Forward all calls on busy, irrespective of their origin. Use this value when forwarding for internal and
external calls on busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYINTERNAL
Forward all internal calls on busy. Use this value when forwarding for internal and external calls on
busy and on no answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL
Forward all external calls on busy. Use this value when forwarding for internal and external calls on
busy and on no answer can be controlled separately.

LINEFORWARDMODE_BUSYSPECIFIC
Forward on busy all calls that originated at a specified address (selective call forwarding).

LINEFORWARDMODE_NOANSW
Forward all calls on no answer, irrespective of their origin. Use this value when call forwarding for
internal and external calls on no answer cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL
Forward all internal calls on no answer. Use this value when forwarding for internal and external calls
on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL
Forward all external calls on no answer. Use this value when forwarding for internal and external calls
on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC
Forward on no answer all calls that originated at a specified address (selective call forwarding).

LINEFORWARDMODE_BUSYNA
Forward all calls on busy/no answer, irrespective of their origin. Use this value when forwarding for
internal and external calls on busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL
Forward all internal calls on busy/no answer. Use this value when call forwarding on busy and on no
answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL
Forward all external calls on busy/no answer. Use this value when call forwarding on busy and on no
answer cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC
Forward on busy/no answer all calls that originated at a specified address (selective call forwarding).

LINEFORWARDMODE_UNKNOWN
Calls are forwarded, but the conditions under which forwarding will occur are not known at this time. It

is possible that the conditions may become known at a future time.
LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which forwarding will occur are not known, and will
never be known by the service provider.

No extensibility. All 32 bits are reserved.

The bit flags defined by LINEFORWARDMODE_ are not orthogonal. Unconditional forwarding ignores
any specific condition such as busy or no answer. If unconditional forwarding is not in effect, then
forwarding on busy and on no answer can be controlled separately or not separately. If controlled
separately, the LINEFORWARDMODE_BUSY and LINEFORWARDMODE_NOANSW flags can be used
separately. If not controlled separately, the flag LINEFORWARDMODE_BUSYNA must be used. Similarly,
if forwarding of internal and external calls can be controlled separately, then
LINEFORWARDMODE_INTERNAL and LINEFORWARDMODE_EXTERNAL flags can be used
separately; otherwise the combination is used.

Address capabilities indicate which forwarding modes are available for each address assigned to a line.
An application can use lineForward to set forwarding conditions at the switch.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use these LINEFORWARDMODE_ values if i not supported on the
negotiated version.

LINEGATHERTERM_ Constants
The LINEGATHERTERM_ bit-flag constants describe the conditions under which buffered digit gathering
is terminated.

LINEGATHERTERM_BUFFERFULL
The requested number of digits has been gathered. The buffer is full.

LINEGATHERTERM_TERMDIGIT
One of the termination digits matched a received digit. The matched termination digit is the last digit in
the buffer.

LINEGATHERTERM_FIRSTTIMEOUT
The first digit timeout expired. The buffer contains no digits.

LINEGATHERTERM_INTERTIMEOUT
The inter-digit timeout expired. The buffer contains at least one digit.

LINEGATHERTERM_CANCEL
The request was canceled by this application, by another application, or because the call terminated.

No extensibility. All 32 bits are reserved.

LINEGENERATETERM_ Constants
The LINEGENERATETERM_ bit-flag constants describe the conditions under which digit or tone
generation is terminated.

LINEGENERATETERM_DONE
The requested number of digits or requested tones have been generated for the requested duration.

LINEGENERATETERM_CANCEL
The digit or tone generation request was canceled by this application, by another application, or
because the call terminated. This value may also be returned when digit or tone generation cannot be
completed due to internal failure of the service provider.

No extensibility. All 32 bits are reserved.

LINELOCATIONOPTION_ Constants
The LINELOCATIONOPTION_ constants define values used in the dwOptions field of the
LINELOCATIONENTRY structure returned as part of the LINETRANSLATECAPS structure returned by
lineGetTranslateCaps.

LINELOCATIONOPTION_PULSEDIAL
The default dialing mode at this location is pulse dialing. If this bit is set, lineTranslateAddress will
insert a "P" dial modifier at the beginning of the dialable string returned when this location is selected.
If this bit is not set, lineTranslateAddress will insert a "T" dial modifier at the beginning of the
dialable string.

Not extensible. All 32 bits are reserved.

LINEINITIALIZEEXOPTION_ Constants
The LINEINITIALIZEEXOPTION_ constants specify which event notification mechanism to use when
initializing a session.

LINEINITIALIZEEXOPTION_USECOMPLETIONPORT
The application desires to use the Completion Port event notification mechanism.

LINEINITIALIZEEXOPTION_USEEVENT
The application desires to use the Event Handle event notification mechanism.

LINEINITIALIZEEXOPTION_USEHIDDENWINDOW
The application desires to use the Hidden Window event notification mechanism.

See lineInitializeEx for further details on the operation of these options.

LINEMEDIACONTROL_ Constants
The LINEMEDIACONTROL_ bit-flag constants describe a set of generic operations on media streams.
The interpretations are determined by the media stream. The line device must have the media-control
capability for any media-control operation to be effective.

LINEMEDIACONTROL_NONE
No change is to be made to the media stream.

LINEMEDIACONTROL_START
Start the media stream.

LINEMEDIACONTROL_RESET
Reset the media stream. Equivalent to an end-of-input. All buffers are released.

LINEMEDIACONTROL_PAUSE
Temporarily pause the media stream.

LINEMEDIACONTROL_RESUME
Resume a paused media stream.

LINEMEDIACONTROL_RATEUP
The speed of the media stream is increased by some stream-defined quantity.

LINEMEDIACONTROL_RATEDOWN
The speed of the media stream is decreased by some stream-defined quantity.

LINEMEDIACONTROL_RATENORMAL
The speed of the media stream is returned to normal.

LINEMEDIACONTROL_VOLUMEUP
The amplitude of the media stream is increased by some stream-defined quantity.

LINEMEDIACONTROL_VOLUMEDOWN
The amplitude of the media stream is decreased by some stream-defined quantity.

LINEMEDIACONTROL_VOLUMENORMAL
The amplitude of the media stream is returned to normal.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

Media control is provided to improve performance of actions on media streams in response to telephony-
related events. The application should normally manage a media stream through the media-specific API.
The media-control functionality provided here is not intended to replace the native media APIs.

Media-control actions can be associated with the detection of digits, the detection of tones, the transition
into a call state, and the detection of a media mode. Consult a line's device capabilities to determine
whether media control is available on the line.

LINEMEDIAMODE_ Constants
The LINEMEDIAMODE_ constants describe media modes (the data type of a media stream) on calls.

LINEMEDIAMODE_UNKNOWN
A media stream exists but its mode is not currently known and may become known later. This would
correspond to a call with an unclassified media type. In typical analog telephony environments, an
inbound call's media mode may be unknown until after the call has been answered and the media
stream has been filtered to make a determination.

If the unknown media-mode flag is set, other media flags may also be set. This is used to signify that
the media is unknown but that it is likely to be one of the other selected media modes.

LINEMEDIAMODE_INTERACTIVEVOICE
The presence of voice energy on the call, and the call is treated as an interactive call with humans on
both ends.

LINEMEDIAMODE_AUTOMATEDVOICE
The presence of voice energy on the call and the voice is locally handled by an automated
application.

LINEMEDIAMODE_DATAMODEM
A data modem session on the call.

LINEMEDIAMODE_G3FAX
A group 3 fax is being sent or received over the call.

LINEMEDIAMODE_TDD
A TDD (Telephony Devices for the Deaf) session on the call.

LINEMEDIAMODE_G4FAX
A group 4 fax is being sent or received over the call.

LINEMEDIAMODE_DIGITALDATA
Digital data is being sent or received over the call.

LINEMEDIAMODE_TELETEX
A teletex session on the call. Teletex is one of the telematic services.

LINEMEDIAMODE_VIDEOTEX
A videotex session on the call. Videotex is one the telematic services.

LINEMEDIAMODE_TELEX
A telex session on the call. Telex is one of the telematic services.

LINEMEDIAMODE_MIXED
A mixed session on the call. Mixed is one of the ISDN telematic services.

LINEMEDIAMODE_ADSI
An ADSI (Analog Display Services Interface) session on the call.

LINEMEDIAMODE_VOICEVIEW
The media mode of the call is VoiceView.

All 32 bits are reserved.

Note that bearer mode and media mode are different notions. The bearer mode of a call is an indication of
the quality of the telephone connection as provided primarily by the network. The media mode of a call is
an indication of the type of information stream that is exchanged over that call. Group 3 fax or data
modem are media modes that use a call with a 3.1 kHz voice bearer mode.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use this LINEMEDIAMODE_ value if not supported on the negotiated
version.

LINEOFFERINGMODE_ Constants
The LINEOFFERINGMODE_ bit-flag constants describe different substates of an offering call. A mode is
available as call status to the application after the call state transitions to offering, and within the
LINE_CALLSTATE message indicating the call is in LINECALLSTATE_OFFERING. These values are
used when the call is on an address that is shared (bridged) with other stations (see
LINEADDRESSSHARING_ Constants), primarily electronic key systems.

LINEOFFERINGMODE_ACTIVE
Indicates that the call is alerting at the current station (will be accompanied by
LINEDEVSTATE_RINGING messages), and if any application is set up to automatically answer, it
may do so. If the call state mode is ZERO, the application should assume that the value is active
(which would be the situation on a non-bridged address).

LINEOFFERINGMODE_INACTIVE
Indicates that the call is being offered at more than one station, but the current station is not alerting
(for example, it may be an attendant station where the offering status is advisory, such as blinking a
light); software at the station set for automatic answering should preferably not answer the call,
because this should be the prerogative at the primary (alerting) station, but lineAnswer may be used
to connect the call.

Not extensible. All 32 bits are reserved.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the line, and to not use these LINEOFFERINGMODE_ values if not supported on the
negotiated version. It should be noted that applications which are not cognizant of
LINEOFFERINGMODE_ will most likely assume that a call that is in LINECALLSTATE_OFFERING is in
LINEOFFERINGMODE_ACTIVE.

The LINEOFFERINGMODE_ACTIVE and LINEOFFERINGMODE_INACTIVE values are used when the
call is on an address that is shared with other stations (bridged; see LINEADDRESSSHARING_
Constants), primarily electronic key systems. If the offering call state mode is "active," it means that the
call is alerting at the current station (will be accompanied by LINEDEVSTATE_RINGING messages), and
if any application is set up to automatically answer, it may do so. If the call state mode is "inactive," the
call is being offered at more than one station, but the current station is not alerting (for example, it may be
an attendant station where the offering status is advisory, such as blinking a light); software at the station
set for automatic answering should preferably not answer the call, because this should be the prerogative
at the primary (alerting) station, but lineAnswer may be used to connect the call. If the call state mode is
ZERO, the application should assume that the value is active (which would be the situation on a non-
bridged address).

LINEOPENOPTION_ Constants
The LINEOPENOPTION_ constants list the available options for opening a line.

LINEOPENOPTION_SINGLEADDRESS
The application should be informed of new calls created on the line device only if those calls appear
on the address specified in the dwAddressID member in the LINECALLPARAMS structure pointed
to by the lpCallParams parameter.

LINEOPENOPTION_PROXY
The application is willing to handle requests from other applications that have the line open.

See lineOpen for further details on the operation of these options.

LINEPARKMODE_ Constants
The LINEPARKMODE_ bit-flag constants describe different ways of parking calls.

LINEPARKMODE_DIRECTED
Specifies directed call park. The address where the call is to be parked must be supplied to the
switch.

LINEPARKMODE_NONDIRECTED
Specifies nondirected call park. The address where the call is parked is selected by the switch and
provided by the switch to the application.

No extensibility. All 32 bits are reserved.

The LINEPARKMODE_ constants are used when parking a call. Consult a line's address device
capabilities to find out which park mode is available.

LINEPROXYREQUEST_ Constants
These constants are used in two contexts. First, they may be used in an array of DWORD values in the
LINECALLPARAMS structure passed in with lineOpen when the LINEOPENOPTION_PROXY option is
specified, to indicate which functions the application is willing to handle. Second, they are used in the
LINEPROXYBUFFER passed to the handler application by a LINE_PROXYREQUEST message to
indicate the type of request that is to be processed and the format of the data in the buffer.

LINEPROXYREQUEST_SETAGENTGROUP
Associated with lineSetAgentGroup.

LINEPROXYREQUEST_SETAGENTSTATE
Associated with lineSetAgentState.

LINEPROXYREQUEST_SETAGENTACTIVITY
Associated with lineSetAgentActivity.

LINEPROXYREQUEST_GETAGENTCAPS
Associated with lineGetAgentCaps.

LINEPROXYREQUEST_GETAGENTSTATUS
Associated with lineGetAgentStatus.

LINEPROXYREQUEST_AGENTSPECIFIC
Associated with lineAgentSpecific.

LINEPROXYREQUEST_GETAGENTACTIVITYLIST
Associated with lineGetAgentActivityList.

LINEPROXYREQUEST_GETAGENTGROUPLIST
Associated with lineGetAgentGroupList.

LINEREMOVEFROMCONF_ Constants
The LINEREMOVEFROMCONF_ scalar constants describe how parties participating in a conference call
can be removed from a conference call.

LINEREMOVEFROMCONF_NONE
Parties cannot be removed from the conference call.

LINEREMOVEFROMCONF_LAST
Only the most recently added party can be removed from the conference call

LINEREMOVEFROMCONF_ANY
Any participating party can be removed from the conference call.

No extensibility. All 32 bits are reserved.

LINEREQUESTMODE_ Constants
The LINEREQUESTMODE_ bit-flag constants describe different types of telephony requests that can be
made from one application to another.

LINEREQUESTMODE_MAKECALL
A tapiRequestMakeCall request.

No extensibility. All 32 bits are reserved.

LINEROAMMODE_ Constants
The LINEROAMMODE_ bit-flag constants describe the roaming status of a line device.

LINEROAMMODE_UNKNOWN
The roam mode is currently unknown but may become known later.

LINEROAMMODE_UNAVAIL
The roam mode is unavailable and will not be known.

LINEROAMMODE_HOME
The line is connected to the home network node.

LINEROAMMODE_ROAMA
The line is connected to the Roam-A carrier and calls are charged accordingly.

LINEROAMMODE_ROAMB
The line is connected to the Roam-B carrier and calls are charged accordingly.

No extensibility. All 32 bits are reserved.

LINESPECIALINFO_ Constants
The LINESPECIALINFO_ bit-flag constants describes special information signals that the network may
use to report various reporting and network observation operations. They are special coded tone
sequences transmitted at the beginning of network advisory recorded announcements.

LINESPECIALINFO_NOCIRCUIT
This special information tone precedes a no circuit or an emergency announcement (trunk blockage
category).

LINESPECIALINFO_CUSTIRREG
This special information tone precedes a vacant number, AIS, Centrex number change and
nonworking station, access code not dialed or dialed in error, or manual intercept operator message
(customer irregularity category). LINESPECIALINFO_CUSTIRREG is also reported when billing
information is rejected and when the dialed address is blocked at the switch.

LINESPECIALINFO_REORDER
This special information tone precedes a reorder announcement (equipment irregularity category).
LINESPECIALINFO_REORDER is also reported when the telephone is kept offhook too long.

LINESPECIALINFO_UNKNOWN
Specifics about the special information tone are currently unknown but may become known later.

LINESPECIALINFO_UNAVAIL
Specifics about the special information tone are unavailable and will not become known.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

Special information tones are defined for advisory messages and are not normally used for billing or
supervisory purpose.

LINETERMDEV_ Constants
The LINETERMDEV_ bit-flag constants describe different types of terminal devices.

LINETERMDEV_PHONE
The terminal is a phone set.

LINETERMDEV_HEADSET
The terminal is a headset.

LINETERMDEV_SPEAKER
The terminal is an external speaker and microphone.

No extensibility. All 32 bits are reserved.

These constants are used to characterize a line's terminal device and help an application to determine the
nature of a terminal device.

LINETERMMODE_ Constants
The LINETERMMODE_ bit-flag constants describe different types of events on a phone line that can be
routed to a terminal device.

LINETERMMODE_BUTTONS
These are button-press events sent from the terminal to the line.

LINETERMMODE_LAMPS
These are lamp events sent from the line to the terminal.

LINETERMMODE_DISPLAY
This is display information sent from the line to the terminal.

LINETERMMODE_RINGER
This is ringer-control information sent from the switch to the terminal.

LINETERMMODE_HOOKSWITCH
These are hookswitch events sent from the terminal to the line.

LINETERMMODE_MEDIATOLINE
This is the unidirectional media stream from the terminal to the line associated with a call on the line.
Use this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIAFROMLINE
This is the unidirectional media stream from the line to the terminal associated with a call on the line.
Use this value when the routing of both unidirectional channels of a call's media stream can be
controlled independently.

LINETERMMODE_MEDIABIDIRECT
This is the bidirectional media stream associated with a call on the line and the terminal. Use this
value when the routing of both unidirectional channels of a call's media stream cannot be controlled
independently.

No extensibility. All 32 bits are reserved.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

LINETERMSHARING_ Constants
The LINETERMSHARING_ bit-flag constants describe different ways in which a terminal can be shared
between line devices, addresses, or calls.

LINETERMSHARING_PRIVATE
The terminal device is private to a single line device.

LINETERMSHARING_SHAREDEXCL
The terminal device can be used by multiple lines. The last line device to do a lineSetTerminal to the
terminal for a given terminal mode will have exclusive connection to the terminal for that mode.

LINETERMSHARING_SHAREDCONF
The terminal device can be used by multiple lines. The lineSetTerminal requests of the various
terminals end up being merged or conferenced at the terminal.

No extensibility. All 32 bits are reserved.

These constants describe the classes of control and information streams that can be routed directly
between a line device and a terminal device (such as a phone set).

LINETOLLLISTOPTION_ Constants
The LINETOLLLISTOPTION_ bit-flag constants describe options for manipulating a toll list.

LINETOLLLISTOPTION_ADD
A prefix is to be added to the toll list.

LINETOLLLISTOPTION_REMOVE
A prefix is to be removed from the toll list.

No extensibility. All 32 bits are reserved.

LINETONEMODE_ Constants
The LINETONEMODE_ constants describe different selections that are used when generating line tones.

LINETONEMODE_CUSTOM
The tone is a custom tone defined by its component frequencies, of type LINEGENERATETONE.

LINETONEMODE_RINGBACK
The tone is ringback tone. Exact definition is service-provider defined.

LINETONEMODE_BUSY
The tone is a busy tone. Exact definition is service-provider defined.

LINETONEMODE_BEEP
The tone is a beep, such as that used to announce the beginning of a recording. Exact definition is
service-provider defined.

LINETONEMODE_BILLING
The tone is a billing information tone such as a credit card prompt tone. Exact definition is service-
provider defined.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

These constants are used to define tones to be generated inband over a call to the remote party. Note
that tone detection of non-custom tones does not use these constants.

LINETRANSFERMODE_ Constants
The LINETRANSFERMODE_ bit-flag constants describe different ways of resolving call transfer requests.

LINETRANSFERMODE_TRANSFER
The transfer is resolved by transferring the initial call to the consultation call. Both calls will become
idle to the application.

LINETRANSFERMODE_CONFERENCE
The transfer is resolved by establishing a three-way conference between the application, the party
connected to the initial call, and the party connected to the consultation call. A conference call is
created when this option is selected.

No extensibility. All 32 bits are reserved.

LINETRANSLATEOPTION_ Constants
The LINETRANSLATEOPTION_ bit-flag constant describes an option used by address translation.

LINETRANSLATEOPTION_CARDOVERRIDE
The default calling card is to be overidden with a specified one.

LINETRANSLATEOPTION_CANCELCALLWAITING
If a Cancel Call Waiting string is defined for the location, setting this bit will cause that string to be
inserted at the beginning of the dialable string. This is commonly used by data modem and fax
applications to prevent interruption of calls by call waiting beeps. If no Cancel Call Waiting string is
defined for the location, this bit has no affect. Note that applications using this bit are advised to also
set the LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags field of the
LINECALLPARAMS structure passed in to lineMakeCall through the lpCallParams parameter, so
that if the line device uses a mechanism other than dialable digits to suppress call interrupts that that
mechanism will be invoked.

LINETRANSLATEOPTION_FORCELOCAL
If the number is local but would have been translated as a long distance call
(LINETRANSLATERESULT_INTOLLLIST bit set in the LINETRANSLATEOUTPUT structure), this
option will force it to be translated as local. This is a temporary override of the toll list setting.

LINETRANSLATEOPTION_FORCELD
If the address could potentially have been a toll call, but would have been translated as a local call
(LINETRANSLATERESULT_NOTINTOLLLIST bit set in the LINETRANSLATEOUTPUT structure),
this option will force it to be translated as long distance. This is a temporary override of the toll list
setting.

No extensibility. All 32 bits are reserved.

LINETRANSLATERESULT_ Constants
The LINETRANSLATERESULT_ bit-flag constants describe various results of an address translation.

LINETRANSLATERESULT_CANONICAL
Indicates that the input string was in valid canonical format.

LINETRANSLATERESULT_INTERNATIONAL
Indicates that the call is being treated as an international call (country code specified in the
destination address is different from the country code specified for the CurrentLocation).

LINETRANSLATERESULT_LONGDISTANCE
Indicates that the call is being treated as a long distance call (country code specified in the destination
address is the same but area code is different from those specified for the CurrentLocation).

LINETRANSLATERESULT_LOCAL
Indicates that the call is being treated as a local call (country code and area code specified in the
destination address are the same as those specified for the CurrentLocation).

LINETRANSLATERESULT_INTOLLLIST
Indicates that the local call is being dialed as long distance because the country has toll calling and
the prefix appears in the TollPrefixList of the CurrentLocation.

LINETRANSLATERESULT_NOTINTOLLLIST
Indicates that the country supports toll calling but the prefix does not appear in the TollPrefixList, so
the call is dialed as a local call. Note that if both INTOLLIST and NOTINTOLLIST are off, the current
country does not support toll prefixes, and user-interface elements related to toll prefixes should not
be presented to the user; if either such bit is on, the country does support toll lists, and the related
user-interface elements should be enabled.

LINETRANSLATERESULT_DIALBILLING
Indicates that the returned address contains a "$".

LINETRANSLATERESULT_DIALQUIET
Indicates that the returned address contain a "@".

LINETRANSLATERESULT_DIALDIALTONE
Indicates that the returned address contains a "W".

LINETRANSLATERESULT_DIALPROMPT
Indicates that the returned address contains a "?".

LINETRANSLATERESULT_VOICEDETECT
Indicates that the returned dialable address contains a ":".

Note The ":" (colon) character will be added to the list of characters which can be embedded in
a dialable string and passed into destination addresses. Attempting to pass it from an application
to a line device that supports an API version less than 0x00020000 will most likely result in
LINEERR_INVALADDRESS, or possibly in the character being ignored entirely. The meaning of
this character is "Pause until a voice prompt is detected, then continue dialing"; it is intended for
use when automatically dialing into systems that give voice prompts, such as long distance calling
card processors.

No extensibility. All 32 bits are reserved.

LINETSPIOPTION_ Constants
LINETSPIOPTION_NONREENTRANT

TAPI should call functions in this service provider one at a time; it should wait from each function to
return (but not for asynchronous functions to complete) before calling the same or another function,
either on the same or a different thread, on the same or a different processor.

Phone Device Constants
The following reference contains the constants for phone devices.

PHONEBUTTONFUNCTION_ Constants
The PHONEBUTTONFUNCTION_ scalar constants describe the functions commonly assigned to buttons
on telephone sets.

PHONEBUTTONFUNCTION_UNKNOWN
A "dummy" function assignment that indicates that the exact function of the button is unknown or has
not been assigned.

PHONEBUTTONFUNCTION_CONFERENCE
Initiates a conference call or adds a call to a conference call.

PHONEBUTTONFUNCTION_TRANSFER
Initiates a call transfer or completes the transfer of a call.

PHONEBUTTONFUNCTION_DROP
Drops the active call.

PHONEBUTTONFUNCTION_HOLD
Places the active call on hold.

PHONEBUTTONFUNCTION_RECALL
Unholds a call.

PHONEBUTTONFUNCTION_DISCONNECT
Disconnects a call, such as after initiating a transfer.

PHONEBUTTONFUNCTION_CONNECT
Reconnects a call that is on consultation hold.

PHONEBUTTONFUNCTION_MSGWAITON
Turns on a message waiting lamp.

PHONEBUTTONFUNCTION_MSGWAITOFF
Turns off a message waiting lamp.

PHONEBUTTONFUNCTION_SELECTRING
Allows the user to select the ring pattern of the phone.

PHONEBUTTONFUNCTION_ABBREVDIAL
The number to be dialed will be indicated using a short, abbreviated number consisting of one digit or
a few digits.

PHONEBUTTONFUNCTION_FORWARD
Initiates or changes call forwarding to this phone.

PHONEBUTTONFUNCTION_PICKUP
Picks up a call ringing on another phone.

PHONEBUTTONFUNCTION_RINGAGAIN
Initiates a request to be notified if a call cannot be completed normally because of a busy signal or no
answer.

PHONEBUTTONFUNCTION_PARK
Parks the active call on another phone, placing it on hold there.

PHONEBUTTONFUNCTION_REJECT
Rejects an inbound call before the call has been answered.

PHONEBUTTONFUNCTION_REDIRECT
Redirects an inbound call to another extension before the call has been answered.

PHONEBUTTONFUNCTION_MUTE
Mutes the phone's microphone device.

PHONEBUTTONFUNCTION_VOLUMEUP
Increases the volume of audio through the phone's handset speaker or speakerphone.

PHONEBUTTONFUNCTION_VOLUMEDOWN
Decreases the volume of audio through the phone's handset speaker or speakerphone.

PHONEBUTTONFUNCTION_SPEAKERON

Turns the phone's external speaker on.
PHONEBUTTONFUNCTION_SPEAKEROFF

Turns the phone's external speaker off.
PHONEBUTTONFUNCTION_FLASH

Generates the equivalent of an onhook/offhook sequence. A flash typically indicates that any digits
typed next are to be understood as commands to the switch. On many switches, places an active call
on consultation hold.

PHONEBUTTONFUNCTION_DATAON
Indicates that the next call is a data call.

PHONEBUTTONFUNCTION_DATAOFF
Indicates that the next call is not a data call.

PHONEBUTTONFUNCTION_DONOTDISTURB
Places the phone in "do not disturb" mode; incoming calls receive a busy signal or are forwarded to
an operator or voice mail system.

PHONEBUTTONFUNCTION_INTERCOM
Connects to the intercom to broadcast a page.

PHONEBUTTONFUNCTION_BRIDGEDAPP
Selects a particular appearance of a bridged address.

PHONEBUTTONFUNCTION_BUSY
Makes the phone appear "busy" to incoming calls.

PHONEBUTTONFUNCTION_CALLAPP
Selects a particular call appearance.

PHONEBUTTONFUNCTION_DATETIME
Causes the phone to display current date and time; this information would be sent by the switch.

PHONEBUTTONFUNCTION_DIRECTORY
Calls up directory service from the switch.

PHONEBUTTONFUNCTION_COVER
Forwards all calls destined for this phone to another phone used for coverage.

PHONEBUTTONFUNCTION_CALLID
Requests display of caller ID on the phone's display.

PHONEBUTTONFUNCTION_LASTNUM
Redials last number dialed.

PHONEBUTTONFUNCTION_NIGHTSRV
Places the phone in the mode it is configured for during night hours.

PHONEBUTTONFUNCTION_SENDCALLS
Sends all calls to another phone used for coverage; same as PHONEBUTTONFUNCTION_COVER.

PHONEBUTTONFUNCTION_MSGINDICATOR
Controls the message indicator lamp.

PHONEBUTTONFUNCTION_REPDIAL
Repertory dialing¾the number to be dialed is provided as a shorthand following pressing of this
button.

PHONEBUTTONFUNCTION_SETREPDIAL
Programs the shorthand-to-phone number mappings accessible by means of repertory dialing (the
"REPDIAL" button).

PHONEBUTTONFUNCTION_SYSTEMSPEED
The number to be dialed is provided as a shorthand following pressing of this button. The mappings
for system speed dialing are configured inside the switch.

PHONEBUTTONFUNCTION_STATIONSPEED
The number to be dialed is provided as a shorthand following pressing of this button. The mappings
for station speed dialing are specific to this station (phone).

PHONEBUTTONFUNCTION_CAMPON

Camps-on an extension that returns a busy indication. When the remote station returns to idle, the
phone will be rung with a distinctive patterns. Picking up the local phone reinitiates the call.

PHONEBUTTONFUNCTION_SAVEREPEAT
When pressed while a call or call attempt is active, it will remember that call's number or command.
When pressed while no call is active (such as during dial tone), it repeats the most saved command.

PHONEBUTTONFUNCTION_QUEUECALL
Queues a call to an outside number after it encounters a trunk-busy indication. When a trunk
becomes later available, the phone will be rung with a distinctive pattern. Picking up the local phone
reinitiates the call.

PHONEBUTTONFUNCTION_NONE
A "dummy" function assignment that indicates that the button does not have a function.

Values in the range 0x80000000 to 0xFFFFFFFF can be assigned for device-specific extensions; values
in the range 0x00000000 to 0x7FFFFFFF are reserved.

The PHONEBUTTONFUNCTION_ constants have values commonly found on current telephone sets.
These button functions can be used to invoke the corresponding function from the switch using
lineDevSpecificFeature. Note that TAPI does not define the semantics of the button functions; it only
provides access to the corresponding function. The behavior associated with each of the function values
above is generic and may vary based on the telephony environment.

PHONEBUTTONMODE_ Constants
The PHONEBUTTONMODE_ bit-flag constants describe the button classes.

PHONEBUTTONMODE_DUMMY
This value is used to describe a button/lamp position that has no corresponding button but has only a
lamp.

PHONEBUTTONMODE_CALL
The button is assigned to a call appearance.

PHONEBUTTONMODE_FEATURE
The button is assigned to requesting features from the switch, such as hold, conference, and transfer.

PHONEBUTTONMODE_KEYPAD
The button is one of the twelve keypad buttons, 0 through 9, '*', and '#'.

PHONEBUTTONMODE_LOCAL
The button is a local function button, such as mute or volume control.

PHONEBUTTONMODE_DISPLAY
The button is a "soft" button associated with the phone's display. A phone set can have zero or more
display buttons.

No extensibility. All 32 bits are reserved.

This enumeration type is used in the PHONECAPS data structure to describe the meaning associated
with the phone's buttons.

PHONEBUTTONSTATE_ Constants
The PHONEBUTTONSTATE_ bit-flag constants describe the button's positions.

PHONEBUTTONSTATE_UP
The button is in the "up" state.

PHONEBUTTONSTATE_DOWN
The button is in the "down" state (pressed down).

PHONEBUTTONSTATE_UNKNOWN
Indicates that the up or down state of the button is not known at this time, but may become known at
a future time.

PHONEBUTTONSTATE_UNAVAIL
Indicates that the up or down state of the button is not known to the service provider, and will not
become known at a future time.

No extensibility. All 32 bits are reserved.

For backward compatibility, it is the responsibility of the service provider to examine the negotiated API
version on the phone, and to not use these PHONEBUTTONSTATE_ values if not supported on the
negotiated version.

PHONEERR_ Constants
This is the list of error codes that the implementation may return when invoking operations on phone
devices. Consult the individual function descriptions to determine which of these error codes each
function may return.

PHONEERR_ALLOCATED
The specified resource is already allocated.

PHONEERR_BADDEVICEID
The specified device ID is invalid or out of range.

PHONEERR_INCOMPATIBLEAPIVERSION
The application requested an API version or version range that cannot be supported by the Telephony
API implementation and/or corresponding service provider.

PHONEERR_INCOMPATIBLEEXTVERSION
The application requested an extension version or version range that cannot supported by the service
provider.

PHONEERR_INIFILECORRUPT
Because of internal inconsistencies or formatting problems in the TELEPHON.INI file, it cannot be
read and understood properly by TAPI.

PHONEERR_INUSE
The device is currently in use. The device cannot be configured.

PHONEERR_INVALAPPHANDLE
The application's specified usage handle or registration handle is invalid.

PHONEERR_INVALAPPNAME
The specified application name is invalid. If an application name is specified by the application, it is
assumed that the string does not contain any nondisplayable characters and is NULL-terminated.

PHONEERR_INVALBUTTONLAMPID
The specified button/lamp ID is out of range or invalid.

PHONEERR_INVALBUTTONMODE
The button mode parameter is invalid.

PHONEERR_INVALBUTTONSTATE
The button states parameter is invalid.

PHONEERR_INVALDATAID
The specified data ID is invalid.

PHONEERR_INVALDEVICECLASS
The specified phone does not support the indicated device class.

PHONEERR_INVALHOOKSWITCHDEV
The hookswitch device parameter is invalid.

PHONEERR_INVALHOOKSWITCHMODE
The hookswitch mode parameter is invalid.

PHONEERR_INVALLAMPMODE
The specified lamp mode parameter is invalid.

PHONEERR_INVALPARAM
A parameter, such as a row or column value or a window handle, is invalid or out of range.

PHONEERR_INVALPHONEHANDLE
The specified device handle is invalid.

PHONEERR_INVALPHONESTATE
The phone device is not in a valid state for the requested operation.

PHONEERR_INVALPOINTER
One or more of the specified pointer parameters are invalid.

PHONEERR_INVALPRIVILEGE

The dwPrivilege parameter is invalid.
PHONEERR_INVALRINGMODE

The ring mode parameter is invalid.
PHONEERR_NODEVICE

The specified device ID, which was previously valid, is no longer accepted because the associated
device has been removed from the system since TAPI was last initialized.

PHONEERR_NODRIVER
The telephone service provider for the specified device found that one of its components is missing or
corrupt in a way that was not detected at initialization time. The user should be advised to use the
Telephony Control Panel to correct the problem.

PHONEERR_NOMEM
Insufficient memory to complete the requested operation, or unable to allocate or lock memory.

PHONEERR_NOTOWNER
The application does not have owner privilege to the specified phone device.

PHONEERR_OPERATIONFAILED
The operation failed for an unspecified reason.

PHONEERR_OPERATIONUNAVAIL
The operation is not available.

PHONEERR_REINIT
If TAPI reinitialization has been requested, for example as a result of adding or removing a telephony
service provider, then phoneInitialize, phoneInitializeEx or phoneOpen requests are rejected with
this error until the last application shuts down its usage of the API (using phoneShutdown), at which
time the new configuration becomes effective and applications are once again permitted to call
phoneInitialize or phoneInitializeEx.

PHONEERR_RESOURCEUNAVAIL
The operation cannot be completed because of resource overcommitment.

PHONEERR_STRUCTURETOOSMALL
The specified phone caps structure is too small.

PHONEERR_UNINITIALIZED
The operation was invoked before any application called phoneInitialize, phoneInitializeEx.

The values 0xC0000000 through 0xFFFFFFFF are available for device-specific extensions; the values
0x80000000 through 0xBFFFFFFF are reserved; and 0x00000000 through 0x7FFFFFFF are used as
request IDs.

If an application gets an error return that it does not specifically handle (such as an error defined by a
device-specific extension), it should treat the error as a PHONEERR_OPERATIONFAILED (for an
unspecified reason).

PHONEFEATURE_ Constants
The PHONEFEATURE_ constants list the operations that can be invoked on a phone using this API. Each
of the PHONEFEATURE_ values correspond to a TAPI function with an identical or similar name.

PHONEFEATURE_GETBUTTONINFO (0x00000001)
PHONEFEATURE_GETDATA (0x00000002)
PHONEFEATURE_GETDISPLAY (0x00000004)
PHONEFEATURE_GETGAINHANDSET (0x00000008)
PHONEFEATURE_GETGAINSPEAKER (0x00000010)
PHONEFEATURE_GETGAINHEADSET (0x00000020)
PHONEFEATURE_GETHOOKSWITCHHANDSET (0x00000040)
PHONEFEATURE_GETHOOKSWITCHSPEAKER (0x00000080)
PHONEFEATURE_GETHOOKSWITCHHEADSET (0x00000100)
PHONEFEATURE_GETLAMP (0x00000200)
PHONEFEATURE_GETRING (0x00000400)
PHONEFEATURE_GETVOLUMEHANDSET (0x00000800)
PHONEFEATURE_GETVOLUMESPEAKER (0x00001000)
PHONEFEATURE_GETVOLUMEHEADSET (0x00002000)
PHONEFEATURE_SETBUTTONINFO (0x00004000)
PHONEFEATURE_SETDATA (0x00008000)
PHONEFEATURE_SETDISPLAY (0x00010000)
PHONEFEATURE_SETGAINHANDSET (0x00020000)
PHONEFEATURE_SETGAINSPEAKER (0x00040000)
PHONEFEATURE_SETGAINHEADSET (0x00080000)
PHONEFEATURE_SETHOOKSWITCHHANDSET (0x00100000)
PHONEFEATURE_SETHOOKSWITCHSPEAKER (0x00200000)
PHONEFEATURE_SETHOOKSWITCHHEADSET (0x00400000)
PHONEFEATURE_SETLAMP (0x00800000)
PHONEFEATURE_SETRING (0x01000000)
PHONEFEATURE_SETVOLUMEHANDSET (0x02000000)
PHONEFEATURE_SETVOLUMESPEAKER (0x04000000)
PHONEFEATURE_SETVOLUMEHEADSET (0x08000000)

PHONEHOOKSWITCHDEV_ Constants
The PHONEHOOKSWITCHDEV_ bit-flag constants describe various audio I/O devices each with its own
hookswitch controllable from the computer.

PHONEHOOKSWITCHDEV_HANDSET
This is the ubiquitous, handheld, ear- and mouthpiece.

PHONEHOOKSWITCHDEV_SPEAKER
This is a built-in loudspeaker and microphone. This could also be an externally connected adjunct
speaker to the telephone set.

PHONEHOOKSWITCHDEV_HEADSET
This is a headset connected to the phone set.

No extensibility. All 32 bits are reserved.

These constants are used in the PHONECAPS data structure to indicate the hookswitch device
capabilities of a phone device. The PHONESTATUS structure reports the state of the phone's hookswitch
devices. The function phoneSetHookSwitch and phoneGetHookSwitch use it as a parameter to select
the phone's I/O device.

PHONEHOOKSWITCHMODE_ Constants
The PHONEHOOKSWITCHMODE_ bit-flag constants describe the microphone and speaker components
of a hookswitch device.

PHONEHOOKSWITCHMODE_ONHOOK
The device's microphone and speaker are both onhook.

PHONEHOOKSWITCHMODE_MIC
The device's microphone is active, the speaker is mute.

PHONEHOOKSWITCHMODE_SPEAKER
The device's speaker is active, the microphone is mute.

PHONEHOOKSWITCHMODE_MICSPEAKER
The device's microphone and speaker are both active.

PHONEHOOKSWITCHMODE_UNKNOWN
The device's hookswitch mode is currently unknown.

No extensibility. All 32 bits are reserved.

These constants are used to provide an individual level of control over the microphone and speaker
components of a phone device.

PHONEINITIALIZEEXOPTION_ Constants
The PHONEINITIALIZEEXOPTION_ constants specify which event notification mechanism to use when
initializing a session.

PHONEINITIALIZEEXOPTION_USEHIDDENWINDOW
The application desires to use the Hidden Window event notification mechanism.

PHONEINITIALIZEEXOPTION_USEEVENT
The application desires to use the Event Handle event notification mechanism.

PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT
The application desires to use the Completion Port event notification mechanism.

See phoneInitializeEx for further details on the operation of these options.

PHONELAMPMODE_ Constants
The PHONELAMPMODE_ bit-flag constants describe various ways in which a phone's lamp can be lit.

PHONELAMPMODE_DUMMY
This value is used to describe a button/lamp position that has no corresponding lamp.

PHONELAMPMODE_OFF
The lamp is off.

PHONELAMPMODE_STEADY
Steady means the lamp is continuously lit.

PHONELAMPMODE_WINK
Wink means normal rate on and off.

PHONELAMPMODE_FLASH
Flash means slow on and off.

PHONELAMPMODE_FLUTTER
Flutter means fast on and off.

PHONELAMPMODE_BROKENFLUTTER
Broken flutter is the superposition of flash and flutter.

PHONELAMPMODE_UNKNOWN
The lamp mode is currently unknown.

The high-order 16 bits can be assigned for device-specific extensions. The low-order 16 bits are reserved.

Where the exact on and off cadences may differ across phone sets from different vendors, mapping of
actual lamp lighting patterns for most phones onto the values listed above should be straightforward.

PHONEPRIVILEGE_ Constants
The PHONEPRIVILEGE_ bit-flag constants describe the various ways in which a phone device can be
opened.

PHONEPRIVILEGE_MONITOR
An application that opens a phone device with the monitor privilege is informed about events and
state changes occurring on the phone. The application cannot invoke any operations on the phone
device that would change its state, so only status operations can be invoked. Multiple applications
can monitor a phone device at any given time.

PHONEPRIVILEGE_OWNER
An application that opens a phone device with the owner privilege is allowed to change the state of
the lamps, ringer, display, hookswitch, and data blocks of the phone. Opening a phone device in
owner mode also provides monitoring of the phone device. Only one application is allowed to be the
owner of a phone device at any given time.

No extensibility. All 32 bits are reserved.

PHONESTATE_ Constants
The PHONESTATE_ bit-flag constants describe various status items for a phone device.

PHONESTATE_OTHER
Phone-status items other than those listed below have changed. The application should check the
current phone status to determine which items have changed.

PHONESTATE_CONNECTED
The connection between the phone device and TAPI was just made. This happens when TAPI is first
invoked or when the wire connecting the phone to the PC is plugged in with TAPI active.

PHONESTATE_DISCONNECTED
The connection between the phone device and TAPI was just broken. This happens when the wire
connecting the phone set to the PC is unplugged while TAPI is active.

PHONESTATE_OWNER
The number of owners for the phone device.

PHONESTATE_MONITORS
The number of monitors for the phone device.

PHONESTATE_DISPLAY
The display of the phone has changed.

PHONESTATE_LAMP
A lamp of the phone has changed.

PHONESTATE_RINGMODE
The ring mode of the phone has changed.

PHONESTATE_RINGVOLUME
The ring volume of the phone has changed.

PHONESTATE_HANDSETHOOKSWITCH
The handset hookswitch state has changed.

PHONESTATE_HANDSETVOLUME
The handset's speaker volume setting has changed.

PHONESTATE_HANDSETGAIN
The handset's microphone gain setting has changed.

PHONESTATE_SPEAKERHOOKSWITCH
The speakerphone's hookswitch state has changed.

PHONESTATE_SPEAKERVOLUME
The speakerphone's speaker volume setting has changed.

PHONESTATE_SPEAKERGAIN
The speakerphone's microphone gain setting state has changed.

PHONESTATE_HEADSETHOOKSWITCH
The headset's hookswitch state has changed.

PHONESTATE_HEADSETVOLUME
The headset's speaker volume setting has changed.

PHONESTATE_HEADSETGAIN
The headset's microphone gain setting has changed.

PHONESTATE_SUSPEND
The application's use of the phone is temporarily suspended.

PHONESTATE_RESUME
The application's use of the phone device is resumed after having been suspended for some time.

PHONESTATE_DEVSPECIFIC
The phone's device-specific information has changed.

PHONESTATE_REINIT
Items have changed in the configuration of phone devices. To become aware of these changes (as for

the appearance of new phone devices), the application should reinitialize its use of TAPI.
PHONESTATE_CAPSCHANGE

Indicates that, due to configuration changes made by the user or other circumstances, one or more of
the fields in the PHONECAPS structure have changed. The application should use
phoneGetDevCaps to read the updated structure. If a service provider sends a PHONE_STATE
message containing this value to TAPI, TAPI will pass it along to applications that have negotiated
TAPI version 0x00010004 or above; applications negotiating a previous API version will receive
PHONE_STATE messages specifying PHONESTATE_REINIT, requiring them to shutdown and
reinitialize their connection to TAPI to obtain the updated information.

PHONESTATE_REMOVED
Indicates that the device is being removed from the system by the service provider (most likely
through user action, through a control panel or similar utility). A PHONE_STATE message with this
value will normally be immediately followed by a PHONE_CLOSE message on the device.
Subsequent attempts to access the device prior to TAPI being reinitialized will result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
PHONE_STATE message containing this value to TAPI, TAPI will pass it along to applications that
have negotiated TAPI version 0x00010004 or above; applications negotiating a previous API version
will not receive any notification.

No extensibility. All 32 bits are reserved.

PHONESTATUSFLAGS_ Constants
The PHONESTATUSFLAGS_ bit-flag constants describe a variety of phone device status information.

PHONESTATUSFLAGS_CONNECTED
Specifies whether the phone is currently connected to TAPI. TRUE if connected, FALSE otherwise.

PHONESTATUSFLAGS_SUSPENDED
Specifies whether TAPI's manipulation of the phone device is suspended. TRUE if suspended, FALSE
otherwise. An application's use of a phone device may be temporarily suspended when the switch
wants to manipulate the phone in a way that cannot tolerate interference from the application.

No extensibility. All 32 bits are reserved.

STRINGFORMAT_ Constants
The STRINGFORMAT_ enumeration constants describe different string formats.

STRINGFORMAT_ASCII
Specifies standard ASCII character format using one byte per character.

STRINGFORMAT_DBCS
Specifies standard DBCS character format using two bytes per character.

STRINGFORMAT_UNICODE
Specifies standard Unicode character format using two bytes per character.

STRINGFORMAT_BINARY
This is an array of unsigned characters; could be used for numeric values.

No extensibility. All 32 bits are reserved.

Assisted Telephony Constants
The following constants are used by Assisted Telephony.

TAPI Error Values
TAPIERR_INVALDESTADDRESS

The pointer to the destination address is not valid, is NULL, or the destination address string is too
long.

TAPIERR_INVALPOINTER
The pointer does not reference a valid memory location. One or more of the pointers
lpszDestAddress, lpszAppName, lpszCalledParty, or lpszComment have been specified but are
invalid.

TAPIERR_NOREQUESTRECIPIENT
No recipient application is available to handle the request. The user should start the recipient
application and try again.

TAPIERR_REQUESTFAILED
The request failed for unspecified reasons.

TAPIERR_REQUESTQUEUEFULL
A recipient application is active, but the request queue is full or there is insufficient memory to expand
the queue. The application can try again later.

Any other TAPIERR_ values are nonfunctional in Win32-based applications and must not be used.

